National Operational Amplifiers Databook

Operational Amplifiers
Buffers
Voltage Comparators
Active Matrix/LCD Display Drivers
Special Functions
Surface Mount

OPERATIONAL AMPLIFIERS
 DATABOOK

1995 Edition

Operational Amplifiers

Buffers

Voltage Comparators

Active Matrix/LCD Display Drivers

Special Functions

Surface Mount
Appendices/Physical Dimensions

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

ABiCTM	Embedded System	MOLETM	SCXTM
Abuseable ${ }^{\text {TM }}$	ProcessortM	MPATM	SERIES/800TM
AirShare ${ }^{\text {TM }}$	EPTM	MSTTM	Series 32000®
AnadigTM	E-Z-LINKTM	Naked-8TM	SIMPLE SWITCHER ${ }^{\text {® }}$
APPSTM	FACTTM	National ${ }^{\text {® }}$	SNITM
ARi19 ${ }^{\text {m }}$	FACT Quiet Series ${ }^{\text {TM }}$	National Semiconductor®	SNICTM
ASPECTTM	FAIRCADTM	National Semiconductor	SofChekTM
AT/LANTICTM	Fairtech ${ }^{\text {TM }}$	Corp. ${ }^{\text {® }}$	SONICTM
Auto-Chem DeflasherTm	FAST®	NAX 800'm	SPiKe ${ }^{\text {TM }}$
ВСРтм	FASTrTM	NeuFuz'm	SPIRETM
BI-FETTM	GENIXTM	Nitride Plus ${ }^{\text {TM }}$	Staggered Refresh'm
BI-FET IITM	GNXTM	Nitride Plus Oxide ${ }^{\text {TM }}$	STARTM
BI-LINETM	GTOTM	NMLTM	Starlink ${ }^{\text {TM }}$
BIPLANTM	HEX 3000'M	NOBUSTM	STARPLEXTM
BLCTM	HiSeCtm	NSC800'm	ST-NICTM
BLXTM	НРСтм	NSCISETM	SuperATTM
BMACTM	HyBaltm	NSX-16TM	Super-Block ${ }^{\text {TM }}$
Brite-LiteTM	${ }^{3} \mathrm{~L}$ - ${ }^{\text {a }}$	NS-XC-16TM	SuperChip TM
BSITM	ICM ${ }^{\text {TM }}$	NTERCOM ${ }^{\text {TM }}$	Superl/OTM
BSI-2TM	Integral ISETM	NURAMTM	SuperScriptm
CDDTM	Intelisplay ${ }^{\text {TM }}$	OPALTM	SYS32TM
CDLTM	Inter-LERICTM	OvertureTM	TapePak ${ }^{\text {® }}$
CGSTM	Inter-RICTM	OXISSTM	TDSTM
СIM ${ }^{\text {т }}$	ISETM	P2CMOSTM	TeleGate ${ }^{\text {TM }}$
CIMBUSTM	ISE/06TM	Perfect Watch ${ }^{\text {TM }}$	The National Anthem ${ }^{\text {® }}$
CLASICTM	ISE/08TM	PLANTM	TinyPaKTM
COMBO®	ISE/16TM	PLANARTM	TLCTM
COMBO ITM	ISE32TM	PLAYERTM	TrapezoidalTM
COMBO IITM	ISOPLANARTM	PLAYER + TM	TRI-CODETM
COPSTM microcontrollers	ISOPLANAR-ZTM	PLLatinum ${ }^{\text {TM }}$	TRI-POLYTM
COP8TM	LERICTM	Plus-2TM	TRI-SAFETM
CRDTM	LMCMOSTM	Polycraft ${ }^{\text {TM }}$	TRI-STATE®
CROSSVOLTTM	M²CMOSTM	РОРTM	TROPICTM
CSNITM	MacrobusTM	Power + ControlTM	Tropic Pele' ${ }^{\text {tm }}$
СтITM	Macrocomponent ${ }^{\text {TM }}$	POWERplanarTM	Tropic Reeftm
CYCLONETM	MACSITM	QSTM	TURBOTRANSCEIVERTM
DA4TM	MAPLTM	QUAD3000TM	TWISTERTM
DENSPAKTM	MAXI-ROM ${ }^{\text {® }}$	Quiet Series ${ }^{\text {TM }}$	VIPTM
DIBTM	Microbus ${ }^{\text {TM }}$ data bus	QUIKLOOKTM	VR32Tm
DISCERNTM	MICRO-DACTM	RATTM	WATCHDOGTM
DISTILLTM	μ Pot ${ }^{\text {TM }}$	RICTM	ХMOSTм
DNR ${ }^{\text {® }}$	μ talkertM	RICKITTM	XPUTM
DPVMTM	Microtalker ${ }^{\text {TM }}$	RTX16TM	Z STARTM
E2CMOSTM	MICROWIRETM	SCANTM	883B/RETSTM
ELSTARTM	MICROWIRE/PLUSTM	SCENICTM	883S/RETSTM

PAL® is a registered trademark of and used under license from Advanced Micro Devices, Inc.
Stratoguard ${ }^{\text {TM }} 4.6$ is a trademark of National Metallizing Co.
Teflon ${ }^{\circledR}$ is a registered trademark of E.I. DuPont de Nemours Company.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

NationalSemiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 1-800-272-9959 TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specifications.

National Semiconductor

Product Status Definitions

Definition of Terms

Data Sheet Identification	Product Status	Definition
¢dyanes intormation.	Formative or In Design	This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.
Frellminary	First Production	This data sheet contains preliminary data, and supplementary data will be published at a later date. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Vs 1denthlication Yoted	Full Production	This data sheet contains final specifications. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Obselete	Not In Production	This data sheet contains specifications on a product that has been discontinued by National Semiconductor Corporation. The data sheet is printed for reference information only.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to improve reliability, function or design. National does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

Table of Contents

Alphanumeric Index viii
Additional Available Linear Devices xiii
Industry Package Cross Reference Guide xxviii
Section 1 Operational Amplifiers
Operational Amplifiers Definition of Terms 1-5
Operational Amplifiers Selection Guide 1-6
LF147/LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers 1-22
LF155/LF156/LF157 Series Monolithic JFET Input Operational Amplifiers 1-31
LF351 Wide Bandwidth JFET Input Operational Amplifier 1-46
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier 1-54
LF411 Low Offset, Low Drift JFET Input Operational Amplifier 1-63
LF412 Low Offset, Low Drift Dual JFET Operational Amplifier 1-70
LF441 Low Power JFET Input Operational Amplifier $1-77$
LF442 Dual Low Power JFET Input Operational Amplifier 1-84
LF444 Quad Low Power JFET Input Operational Amplifier 1-93
LF451 Wide-Bandwidth JFET Input Operational Amplifier 1-100
LF453 Wide-Bandwidth Dual JFET Input Operational Amplifier 1-106
LH0003 Wide Bandwidth Operational Amplifier 1-113
LH0004 High Voltage Operational Amplifier 1-1.16
LH0021/LH0021C 1.0 Amp Power Operational Amplifier 1-120
LH0041/LH0041C 0.2 Amp Power Operational Amplifier 1-120
LH0024 High Slew Rate Operational Amplifier 1-131
LH0032 Ultra Fast FET-Input Operational Amplifier 1-135
LH0042 Low Cost FET Operational Amplifier 1-143
LH0101 Power Operational Amplifier 1-153
LM10 Operational Amplifier and Voltage Reference 1-164
LM101A/LM201A/LM301A Operational Amplifiers 1-180
LM107/LM207/LM307 Operational Amplifiers 1-190
LM108/LM208/LM308 Operational Amplifiers 1-196
LM118/LM218/LM318 Operational Amplifiers 1-203
LM124/LM224/LM324/LM2902 Low Power Quad Operational Amplifiers 1-213
LM143/LM343 High Voltage Operational Amplifiers 1-226
LM146/LM246/LM346 Programmable Quad Operational Amplifiers 1-236
LM148/LM248/LM348 Quad 741 Operational Amplifiers; LM149/LM349 Wide Band Decompensated ($\mathrm{A}_{\mathrm{V}}(\mathrm{MIN})=5$) 1-248
LM158/LM258/LM358/LM2904 Low Power Dual Operational Amplifiers 1-261
LM221/LM321 Precision Preamplifiers 1-274
LM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifier 1-283
LM392/LM2924 Low Power Operational Amplifier/Voltage Comparators 1-301
LM611 Operational Amplifier and Adjustable Reference 1-305
LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference 1-317
LM614 Quad Operational Amplifier and Adjustable Reference 1-333
LM675 Power Operational Amplifier 1-346
LM709 Operational Amplifier 1-353
LM725 Operational Amplifier 1-358
LM741 Operational Amplifier 1-366
LM747 Dual Operational Amplifier 1-370
LM748 Operational Amplifier 1-375
LM759/LM77000 Power Operational Amplifiers 1-379
LM1558/LM1458 Dual Operational Amplifiers 1-390
LM1875 20 Watt Power Audio Amplifier 1-392

Table of Contents ${ }_{\text {Coninuas) }}$

Section 1 Operational Amplifiers (Continued)
LM1877 Dual Power Audio Amplifier 1-398
LM1896/LM2896 Dual Power Audio Amplifier 1-403
LM2877 Dual 4 Watt Power Audio Amplifier 1-411
LM2878 Dual 5 Watt Power Audio Amplifier 1-418
LM2879 Dual 8 Watt Audio Amplifier 1-425
LM2900/LM3900/LM3301 Quad Amplifiers 1-432
LM3045/LM3046/LM3086 Transistor Arrays 1-450
LM3080 Operational Transconductance Amplifier 1-455
LM3303/LM3403 Quad Operational Amplifiers 1-459
LM3875 High Performance 40 Watt Audio Power Amplifier 1-466
LM4250 Programmable Operational Amplifier 1-482
LM6104 Quad Gray Scale Current Feedback Amplifier 1-490
LM6118/LM6218 Fast Settling Dual Operational Amplifiers 1-494
LM6132 Dual and LM6134 Quad High Speed/Low Power 7 MHz Rail-to-Rail I/O Operational Amplifiers 1-503
LM6142 Dual and LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Rail Input-Output Operational Amplifiers 1-504
LM6152 Dual/LM6154 Quad High Speed/Low Power 45 MHz Rail-to-Rail Input-Output Operational Amplifiers 1-515
LM6161/LM6261/LM6361 High Speed Operational Amplifiers 1-516
LM6162/LM6262/LM6362 High Speed Operational Amplifiers 1-523
LM6164/LM6264/LM6364 High Speed Operational Amplifiers 1-531
LM6165/LM6265/LM6365 High Speed Operational Amplifiers 1-539
LM6171 Voltage Feedback Low Distortion Low Power Operational Amplifier 1-546
LM6181 100 mA, 100 MHz Current Feedback Amplifier 1-560
LM6182 Dual 100 mA Output, 100 MHz Dual Current Feedback Amplifier 1-577
LM6313 High Speed, High Power Operational Amplifier 1-598
LM7121 Tiny Very High Speed Low Power Voltage Feedback Amplifier 1-607
LM7131 Tiny High Speed Single Supply Operational Amplifier 1-608
LM7171 Very High Speed High Output Current Voltage Feedback Amplifier 1-630
LM13600 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers 1-631
LM13700/LM13700A Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers 1-649
LMC660 CMOS Quad Operational Amplifier 1-669
LMC662 CMOS Dual Operational Amplifier 1-679
LMC6001 Ultra Ultra-Low Input Current Amplifier 1-689
LMC6022 Low Power CMOS Dual Operational Amplifier 1-699
LMC6024 Low Power CMOS Quad Operational Amplifier 1-711
LMC6032 CMOS Dual Operational Amplifier 1-722
LMC6034 CMOS Quad Operational Amplifier 1-732
LMC6041 CMOS Single Micropower Operational Amplifier 1-742
LMC6042 CMOS Dual Micropower Operational Amplifier 1-753
LMC6044 CMOS Quad Micropower Operational Amplifier 1-763
LMC6061 Precision CMOS Single Micropower Operational Amplifier 1-773
LMC6062 Precision CMOS Dual Micropower Operational Amplifier 1-783
LMC6064 Precision CMOS Quad Micropower Operational Amplifier 1-793
LMC6081 Precision CMOS Single Operational Amplifier 1-803
LMC6082 Precision CMOS Dual Operational Amplifier 1-813
LMC6084 Precision CMOS Quad Operational Amplifier 1-823

Table of Contents ${ }_{\text {(coninineos) }}$

Section 1 Operational Amplifiers (Continued) LMC6462 Dual/LMC6464 Quad Micropower, Rail-to-Rail Input and Output CMOS Operational Amplifier 1-833
LMC6482 CMOS Dual Rail-to-Rail Input and Output Operational Amplifier 1-847
LMC6484 CMOS Quad Rail-to-Rail Input and Output Operational Amplifier 1-864
LMC6492 Dual/LMC6494 Quad CMOS Rail-to-Rail Input and Output Operational Amplifier 1-880
LMC6574 Quad/LMC6572 Dual Low Voltage (2.7V and 3V) Operational Amplifier 1-893
LMC6582 Dual/LMC6584 Quad Low Voltage, Rail-to-Rail Input and Output CMOS Operational Amplifier 1-902
LMC6681 Single/LMC6682 Dual/LMC6684 Quad Low Voltage, Rail-to-Rail Input and Output CMOS Amplifier with Powerdown 1-903
LMC7101 Tiny Low Power Operational Amplifier with Rail-to-Rail Input and Output 1-904
LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Rail Input and Output 1-920
LPC660 Low Power CMOS Quad Operational Amplifier 1-921
LPC661 Low Power CMOS Operational Amplifier 1-933
LPC662 Low Power CMOS Dual Operational Amplifier 1-945
OP07 Low Offset, Low Drift Operational Amplifier 1-957
TL081 Wide Bandwidth JFET Input Operational Amplifier 1-962
TL082 Wide Bandwidth Dual JFET Input Operational Amplifier 1-969
Section 2 Buffers
Buffers Definition of Terms 2-3
Buffers Selection Guide 2-4
LH0002 Buffer 2-5
LH0033/LH0063 Fast and Ultra Fast Buffers 2-8
LH4001 Wideband Current Buffer 2-19
LH4002 Wideband Video Buffer 2-23
LM102/LM302 Voltage Followers 2-27
LM110/LM210/LM310 Voltage Followers 2-33
LM6121/LM6221/LM6321 High Speed Buffers 2-46
LM6125/LM6225/LM6325 High Speed Buffers 2-52
Section 3 Voltage Comparators
Voltage Comparators Definition of Terms 3-3
Voltage Comparators Selection Guide 3-4
LF111/LF211/LF311 Voltage Comparators 3-5
LH2111/LH2311 Dual Voltage Comparators 3-14
LM106/LM306 Voltage Comparators 3-17
LM111/LM211/LM311 Voltage Comparators 3-21
LM119/LM219/LM319 High Speed Dual Comparators 3-35
LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators 3-42
LM160/LM360 High Speed Differential Comparators 3-54
LM161/LM261/LM361 High Speed Differential Comparators 3-58
LM193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators 3-63
LM612 Dual-Channel Comparator and Reference 3-72
LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference 3-80
LM615 Quad Comparator and Adjustable Reference 3-96
LM710 Voltage Comparator 3-107
LM760 High Speed Differential Comparator 3-111
LM1801 Battery Operated Power Comparator 3-118
LM6511 180 ns 3V Comparator 3-126

Table of Contents ${ }_{\text {(coninueas }}$

Section 3 Voltage Comparators (Continued)LMC6762 Dual/LMC6764 Quad Micropower, Rail-to-Rail Input and Output CMOSComparator3-131
LMC6772 Dual, LMC6774 Quad, Micropower Rail-to-Rail Input and Open Drain Output CMOS Comparator 3-132
LMC7211 Tiny CMOS Comparator with Rail-to-Rail Input 3-133
LMC7221 Tiny CMOS Comparator with Rail-to-Rail Input and Open Drain Output 3-144
LP311 Voltage Comparator 3-145
LP339 Ultra-Low Power Quad Comparator 3-149
Section 4 Active Matrix/LCD Display Drivers
LM6104 Quad Gray Scale Current Feedback Amplifier 4-3
LM8305 STN LCD Display Bias Voltage Source 4-7
LMC6008 8 Channel Buffer 4-8
Section 5 Special Functions
DH0006/DH0006C Current Drivers 5-3
DH0034 High Speed Dual Level Translator 5-7
DH0035/DH0035C Pin Diode Driver 5-11
LH0094 Multifunction Converter 5-14
LM194/LM394 Supermatch Pair 5-23
LM195/LM395 Ultra Reliable Power Transistors 5-31
LM3045/LM3046/LM3086 Transistor Arrays 5-42
LM3146 High Voltage Transistor Array 5-47
LP395 Ultra Reliable Power Transistor 5-52
Section 6 Surface Mount
Packing Considerations (Methods, Materials and Recycling) 6-3
Board Mount of Surface Mount Components 6-19
Recommended Soldering Profiles-Surface Mount 6-23
AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability 6-24
Land Pattern Recommendations 6-35
Section 7 Appendices/Physical Dimensions
Appendix A General Product Marking and Code Explanation 7-3
Appendix B Device/Application Literature Cross-Reference 7-4
Appendix C Summary of Commercial Reliability Programs 7-10
Appendix D Military Aerospace Programs from National Semiconductor 7-11
Appendix E Understanding Integrated Circuit Package Power Capabilities 7-21
Appendix F How to Get the Right Information from a Datasheet 7-26
Physical Dimensions 7-30
BookshelfDistributors

Alpha-Numeric Index

AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability 6-24
Board Mount of Surface Mount Components 6-19
DH0006 Current Driver 5-3
DH0034 High Speed Dual Level Translator 5-7
DH0035 Pin Diode Driver 5-11
Land Pattern Recommendations 6-35
LF111. Voltage Comparator 3-5
LF147 Wide Bandwidth Quad JFET Input Operational Amplifier 1-22
LF155 Series Monolithic JFET Input Operational Amplifiers 1-31
LF156 Series Monolithic JFET Input Operational Amplifiers 1-31
LF157 Series Monolithic JFET Input Operational Amplifiers 1-31
LF211 Voltage Comparator 3-5
LF311 Voltage Comparator 3-5
LF347 Wide Bandwidth Quad JFET Input Operational Amplifier 1-22
LF351 Wide Bandwidth JFET Input Operational Amplifier 1-46
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier 1-54
LF411 Low Offset, Low Drift JFET Input Operational Amplifier 1-63
LF412 Low Offset, Low Drift Dual JFET Operational Amplifier 1-70
LF441 Low Power JFET Input Operational Amplifier 1-77
LF442 Dual Low Power JFET Input Operational Amplifier 1-84
LF444 Quad Low Power JFET Input Operational Amplifier 1-93
LF451 Wide-Bandwidth JFET Input Operational Amplifier 1-100
LF453 Wide-Bandwidth Dual JFET Input Operational Amplifier 1-106
LH0002 Buffer 2-5
LH0003 Wide Bandwidth Operational Amplifier 1-113
LH0004 High Voltage Operational Amplifier 1-116
LH0021 1.0 Amp Power Operational Amplifier 1-120
LH0024 High Slew Rate Operational Amplifier 1-131
LH0032 Ultra Fast FET-Input Operational Amplifier 1-135
LH0033 Fast and Ultra Fast Buffers 2-8
LH0041 0.2 Amp Power Operational Amplifier 1-120
LH0042 Low Cost FET Operational Amplifier 1-143
LH0063 Fast and Ultra Fast Buffers 2-8
LH0094 Multifunction Converter 5-14
LH0101 Power Operational Amplifier 1-153
LH2111 Dual Voltage Comparator 3-14
LH2311 Dual Voltage Comparator 3-14
LH4001 Wideband Current Buffer 2-19
LH4002 Wideband Video Buffer 2-23
LM10 Operational Amplifier and Voltage Reference 1-164
LM101A Operational Amplifier 1-180
LM102 Voltage Follower 2-27
LM106 Voltage Comparator 3-17
LM107 Operational Amplifier 1-190
LM108 Operational Amplifier 1-196
LM110 Voltage Follower 2-33
LM111 Voltage Comparator 3-21
LM118 Operational Amplifier 1-203
LM119 High Speed Dual Comparator 3-35
LM124 Low Power Quad Operational Amplifier 1-213

Alpha-Numeric Index ${ }_{\text {(Conitiuaed) }}$

LM139 Low Power Low Offset Voltage Quad Comparator 3-42
LM143 High Voltage Operational Amplifier 1-226
LM146 Programmable Quad Operational Amplifier 1-236
LM148 Quad 741 Operational Amplifier 1-248
LM149 Wide Band Decompensated $\left(A_{V}(M I N)=5\right)$ 1-248
LM158 Low Power Dual Operational Amplifier 1-261
LM160 High Speed Differential Comparator 3-54
LM161 High Speed Differential Comparator 3-58
LM193 Low Power Low Offset Voltage Dual Comparator 3-63
LM194 Supermatch Pair 5-23
LM195 Ultra Reliable Power Transistor 5-31
LM201A Operational Amplifier 1-180
LM207 Operational Amplifier 1-190
LM208 Operational Amplifier 1-196
LM210 Voltage Follower 2-33
LM211 Voltage Comparator 3-21
LM218 Operational Amplifier 1-203
LM219 High Speed Dual Comparator 3-35
LM221 Precision Preamplifier 1-274
LM224 Low Power Quad Operational Amplifier 1-213
LM239 Low Power Low Offset Voltage Quad Comparator 3-42
LM246 Programmable Quad Operational Amplifier 1-236
LM248 Quad 741 Operational Amplifier 1-248
LM258 Low Power Dual Operational Amplifier 1-261
LM261 High Speed Differential Comparator 3-58
LM293 Low Power Low Offset Voltage Dual Comparator 3-63
LM301A Operational Amplifier 1-180
LM302 Voltage Follower 2-27
LM306 Voltage Comparator 3-17
LM307 Operational Amplifier 1-190
LM308 Operational Amplifier 1-196
LM310 Voltage Follower 2-33
LM311 Voltage Comparator 3-21
LM318 Operational Amplifier 1-203
LM319 High Speed Dual Comparator 3-35
LM321 Precision Preamplifier 1-274
LM324 Low Power Quad Operational Amplifier 1-213
LM339 Low Power Low Offset Voltage Quad Comparator 3-42
LM343 High Voltage Operational Amplifier 1-226
LM346 Programmable Quad Operational Amplifier 1-236
LM348 Quad 741 Operational Amplifier 1-248
LM349 Wide Band Decompensated ($\mathrm{A}_{\mathrm{V}}(\mathrm{MIN})=5$) 1-248
LM358 Low Power Dual Operational Amplifier 1-261
LM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifier 1-283
LM360 High Speed Differential Comparator 3-54
LM361 High Speed Differential Comparator 3-58
LM392 Low Power Operational Amplifier/Voltage Comparator 1-301
LM393 Low Power Low Offset Voltage Dual Comparator 3-63
LM394 Supermatch Pair 5-23
LM395 Ultra Reliable Power Transistor 5-31
LM611 Operational Amplifier and Adjustable Reference 1-305
Alpha-Numeric Index ${ }_{\text {Conimineof }}$
LM612 Dual-Channel Comparator and Reference 3-72
LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference 3-80
LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference 1-317
LM614 Quad Operational Amplifier and Adjustable Reference 1-333
LM615 Quad Comparator and Adjustable Reference 3-96
LM675 Power Operational Amplifier 1-346
LM709 Operational Amplifier 1-353
LM710 Voltage Comparator 3-107
LM725 Operational Amplifier 1-358
LM741 Operational Amplifier 1-366
LM747 Dual Operational Amplifier 1-370
LM748 Operational Amplifier 1-375
LM759 Power Operational Amplifier 1-379
LM760 High Speed Differential Comparator 3-111
LM1458 Dual Operational Amplifier 1-390
LM1558 Dual Operational Amplifier 1-390
LM1801 Battery Operated Power Comparator 3-118
LM1875 20 Watt Power Audio Amplifier 1-392
LM1877 Dual Power Audio Amplifier 1-398
LM1896 Dual Power Audio Amplifier 1-403
LM2877 Dual 4 Watt Power Audio Amplifier 1-4.11
LM2878 Dual 5 Watt Power Audio Amplifier 1-418
LM2879 Dual 8 Watt Audio Amplifier 1-425
LM2896 Dual Power Audio Amplifier 1-403
LM2900 Quad Amplifier 1-432
LM2901 Low Power Low Offset Voltage Quad Comparator 3-42
LM2902 Low Power Quad Operational Amplifier 1-213
LM2903 Low Power Low Offset Voltage Dual Comparator 3-63
LM2904 Low Power Dual Operational Amplifier 1-261
LM2924 Low Power Operational Amplifier/Voltage Comparator 1-301
LM3045 Transistor Array 1-450
LM3045 Transistor Array 5-42
LM3046 Transistor Array 5-42
LM3046 Transistor Array 1-450
LM3080 Operational Transconductance Amplifier 1-455
LM3086 Transistor Array 1-450
LM3086 Transistor Array 5-42
LM3146 High Voltage Transistor Array 5-47
LM3301 Quad Amplifier 1-432
LM3302 Low Power Low Offset Voltage Quad Comparator 3-42
LM3303 Quad Operational Amplifier 1-459
LM3403 Quad Operational Amplifier 1-459
LM3875 High Performance 40 Watt Audio Power Amplifier 1-466
LM3900 Quad Amplifier 1-432
LM4250 Programmable Operational Amplifier 1-482
LM6104 Quad Gray Scale Current Feedback Amplifier 1-490
LM6104 Quad Gray Scale Current Feedback Amplifier 4-3
LM6118 Fast Settling Dual Operational Amplifier 1-494
LM6121 High Speed Buffer 2-46
LM6125 High Speed Buffer 2-52
LM6132 Dual High Speed/Low Power 7 MHz Rail-to-Rail I/O Operational Amplifier 1-503
Alpha-Numeric Index (coninueos)
LM6134 Quad High Speed/Low Power 7 MHz Rail-to-Rail I/O Operational Amplifier 1-503
LM6142 Dual High Speed/Low Power 17 MHz Rail-to-Rail Input-Output Operational Amplifier 1-504
LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Rail Input-Output Operational Amplifier 1-504
LM6152 Dual High Speed/Low Power 45 MHz Rail-to-Rail Input-Output Operational Amplifier 1-515
LM6154 Quad High Speed/Low Power 45 MHz Rail-to-Rail Input-Output Operational Amplifier 1-515
LM6161 High Speed Operational Amplifier 1-516
LM6162 High Speed Operational Amplifier 1-523
LM6164 High Speed Operational Amplifier 1-531
LM6165 High Speed Operational Amplifier 1-539
LM6171 Voltage Feedback Low Distortion Low Power Operational Amplifier 1-546
LM6181 $100 \mathrm{~mA}, 100 \mathrm{MHz}$ Current Feedback Amplifier 1-560
LM6182 Dual 100 mA Output, 100 MHz Dual Current Feedback Amplifier 1-577
LM6218 Fast Settling Dual Operational Amplifier 1-494
LM6221 High Speed Buffer 2-46
LM6225 High Speed Buffer 2-52
LM6261 High Speed Operational Amplifier 1-516
LM6262 High Speed Operational Amplifier 1-523
LM6264 High Speed Operational Amplifier 1-531
LM6265 High Speed Operational Amplifier 1-539
LM6313 High Speed, High Power Operational Amplifier 1-598
LM6321 High Speed Buffer 2-46
LM6325 High Speed Buffer 2-52
LM6361 High Speed Operational Amplifier 1-516
LM6362 High Speed Operational Amplifier 1-523
LM6364 High Speed Operational Amplifier 1-531
LM6365 High Speed Operational Amplifier 1-539
LM6511 180 ns 3V Comparator 3-126
LM7121 Tiny Very High Speed Low Power Voltage Feedback Amplifier 1-607
LM7131 Tiny High Speed Single Supply Operational Amplifier 1-608
LM7171 Very High Speed High Output Current Voltage Feedback Amplifier 1-630
LM8305 STN LCD Display Bias Voltage Source 4-7
LM13600 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers 1-631
LM13700 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers 1-649
LM77000 Power Operational Amplifier 1-379
LMC660 CMOS Quad Operational Amplifier 1-669
LMC662 CMOS Dual Operational Amplifier 1-679
LMC6001 Ultra Ultra-Low Input Current Amplifier 1-689
LMC6008 8 Channel Buffer 4-8
LMC6022 Low Power CMOS Dual Operational Amplifier 1-699
LMC6024 Low Power CMOS Quad Operational Amplifier 1-711
LMC6032 CMOS Dual Operational Amplifier 1-722
LMC6034 CMOS Quad Operational Amplifier 1-732
LMC6041 CMOS Single Micropower Operational Amplifier 1-742
LMC6042 CMOS Dual Micropower Operational Amplifier 1-753
LMC6044 CMOS Quad Micropower Operational Amplifier 1-763
LMC6061 Precision CMOS Single Micropower Operational Amplifier 1-773
LMC6062 Precision CMOS Dual Micropower Operational Amplifier 1-783
LMC6064 Precision CMOS Quad Micropower Operational Amplifier 1-793
LMC6081 Precision CMOS Single Operational Amplifier 1-803
LMC6082 Precision CMOS Dual Operational Amplifier 1-813
LMC6084 Precision CMOS Quad Operational Amplifier 1-823
Alpha-Numeric Index (coniniues)
LMC6462 Dual Micropower, Rail-to-Rail Input and Output CMOS Operational Amplifier 1-833
LMC6464 Quad Micropower, Rail-to-Rail Input and Output CMOS Operational Amplifier 1-833
LMC6482 CMOS Dual Rail-to-Rail Input and Output Operational Amplifier 1-847
LMC6484 CMOS Quad Rail-to-Rail Input and Output Operational Amplifier 1-864
LMC6492 Dual CMOS Rail-to-Rail Input and Output Operational Amplifier 1-880
LMC6494 Quad CMOS Rail-to-Rail Input and Output Operational Amplifier 1-880
LMC6572 Dual Low Voltage (3V) Operational Amplifier 1-893
LMC6574 Quad Low Voltage (2.7V) Operational Amplifier 1-893
LMC6582 Dual Low Voltage, Rail-to-Rail Input and Output CMOS Operational Amplifier 1-902
LMC6584 Quad Low Voltage, Rail-to-Rail Input and Output CMOS Operational Amplifier 1-902
LMC6681 Single Low Voltage, Rail-to-Rail Input and Output CMOS Amplifier with Powerdown 1-903
LMC6682 Dual Low Voltage, Rail-to-Rail Input and Output CMOS Amplifier with Powerdown 1-903
LMC6684 Quad Low Voltage, Rail-to-Rail Input and Output CMOS Amplifier with Powerdown 1-903
LMC6762 Dual Micropower, Rail-to-Rail Input and Output CMOS Comparator 3-131
LMC6764 Quad Micropower, Rail-to-Rail Input and Output CMOS Comparator 3-131
LMC6772 Dual Micropower Rail-to-Rail Input and Open Drain Output CMOS Comparator 3-132
LMC6774 Quad Micropower Rail-to-Rail Input and Open Drain Output CMOS Comparator 3-132
LMC7101 Tiny Low Power Operational Amplifier with Rail-to-Rail Input and Output 1-904
LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Rail Input and Output 1-920
LMC7211 Tiny CMOS Comparator with Rail-to-Rail Input 3-133
LMC7221 Tiny CMOS Comparator with Rail-to-Rail Input and Open Drain Output 3-144
LP311 Voltage Comparator 3-145
LP339 Ultra-Low Power Quad Comparator 3-149
LP395 Ultra Reliable Power Transistor 5-52
LPC660 Low Power CMOS Quad Operational Amplifier 1-921
LPC661 Low Power CMOS Operational Amplifier 1-933
LPC662 Low Power CMOS Dual Operational Amplifier 1-945
OP07 Low Offset, Low Drift Operational Amplifier 1-957
Packing Considerations (Methods, Materials and Recycling) 6-3
Recommended Soldering Profiles-Surface Mount 6-23
TL081 Wide Bandwidth JFET Input Operational Amplifier 1-962
TL082 Wide Bandwidth Dual JFET Input Operational Amplifier 1-969

Additional Available Linear Devices

eo Sync Generator	ific
74ACT715 Programmable Video Sync Generator Section 2	Application Specific Analog Products
ADC0800 8-Bit A/D Converter . Section 2	Data Acquisition
ADC0801 8-Bit μ P Compatible A/D Converter Section 2	Data Acquisition
ADC0802 8-Bit $\mu \mathrm{P}$ Compatible A/D Converter Section 2	Data Acquisition
ADC0803 8-Bit $\mu \mathrm{P}$ Compatible A/D Converter Section 2	Data Acquisition
ADC0804 8-Bit $\mu \mathrm{P}$ Compatible A/D Converter Section 2	Data Acquisition
ADC0805 8-Bit $\mu \mathrm{P}$ Compatible A/D Converter Section 2	Data Acquisition
ADC0808 8-Bit $\mu \mathrm{P}$ Compatible A/D Converter with 8-Channel Multiplexer \qquad	Data Acquisition
ADC0809 8-Bit μ P Compatible A/D Converter with 8-Channel Multiplexer Section 2	Data Acquisition
ADC0811 8-Bit Serial I/O A/D Converter with 11-Channel Multiplexer \qquad Section 2	Data Acquisition
ADC0816 8-Bit μ P Compatible A/D Converter with 16-Channel Multiplexer \qquad	Data Acquisition
ADC0817 8-Bit μ P Compatible A/D Converter with 16-Channel Multiplexer \qquad	Data Acquisition
ADC0819 8-Bit Serial I/O A/D Converter with 19-Channel Multiplexer \qquad Section 2	Data Acquisition
ADC0820 8-Bit High Speed μ P Compatible A/D Converter with Track/Hold Function \qquad	Data Acquisition
ADC0831 8-Bit Serial I/O A/D Converter with Multiplexer Options \qquad Section 2	Data Acquisition
ADC0832 8-Bit Serial I/O A/D Converter with Multiplexer Options \qquad Section 2	Data Acquisition
ADC0833 8-Bit Serial I/O A/D Converter with 4-Channel Multiplexer Section 2	Data Acquisition
ADC0834 8-Bit Serial I/O A/D Converter with Multiplexer Options \qquad Section 2	Data Acquisition
ADC0838 8-Bit Serial I/O A/D Converter with Multiplexer Options \qquad Section 2	Data Acquisition
ADC0841 8-Bit $\mu \mathrm{P}$ Compatible A/D Converter Section 2	Data Acquisition
ADC0844 8-Bit μ P Compatible A/D Converter with Multiplexer OptionsSection 2	Data Acquisition
ADC0848 8-Bit $\mu \mathrm{P}$ Compatible A/D Converter with Multiplexer Options \qquad	Data Acquisition
ADC0851 8-Bit Analog Data Acquisition and Monitoring System . Section 1	Data Acquisition
ADC0852 Multiplexed Comparator with 8-Bit Reference Divider. \qquad Section 2	Data Acquisition
ADC0854 Multiplexed Comparator with 8-Bit Reference Divider. \qquad Section 2	Data Acquisition
ADC0858 8-Bit Analog Data Acquisition and Monitoring System . Section 1	Data Acquisition
ADC08031 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function \qquad Section 2	Data Acquisition
ADC08032 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function	Data Acquisitio

Additional Available Linear Devices ${ }_{\text {(Continued }}$

ADC08034 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function \qquad Section 2	Data Acquisition
ADC08038 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference, and	
Track/Hold Function . Section 2	Data Acquisition
ADC08061 500 ns A/D Converter with S/H Function and Input Multiplexer . Section 2	Data Acquisition
ADC08062 500 ns A/D Converter with S/H Function and Input Multiplexer Section 2	Data Acquisition
ADC08131 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference, and	
Track/Hold Function . Section 2	Data Acquisition
ADC08134 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference, and	
Track/Hold Function . Section 2	Data Acquisition
ADC08138 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference, and	
Track/Hold Function . Section 2	Data Acquisition
ADC08161 500 ns A/D Converter with S/H Function and 2.5V Bandgap Reference Section 2	Data Acquisition
ADC08231 8-Bit $2 \mu \mathrm{~s}$ Serial I/O A/D Converter with	
MUX, Reference, and Track/HoldSection 2	Data Acquisition
ADC08234 8-Bit $2 \mu \mathrm{~s}$ Serial I/O A/D Converter with	
MUX, Reference, and Track/Hold Section 2	Data Acquisition
ADC08238 8-Bit $2 \mu \mathrm{~s}$ Serial I/O A/D Converter with	
MUX, Reference, and Track/Hold Section 2	Data Acquisition
ADC12H030 Self-Calibrating 12-Bit Plus Sign Serial	
I/O A/D Converter with MUX and Sample/Hold Section 2	Data Acquisition
ADC12H032 Self-Calibrating 12-Bit Plus Sign Serial	
I/O A/D Converter with MUX and Sample/Hold Section 2	Data Acquisition
ADC12H034 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/HoldSection 2	Data Acquisition
ADC12H038 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/HoldSection 2	Data Acquisition
ADC12L030 3.3V Self-Calibrating 12-Bit Plus Sign	
Serial I/O A/D Converter with MUX and	
Sample/Hold.................................... . . Section 2	Data Acquisition
ADC12L032 3.3V Self-Calibrating 12-Bit Plus Sign	
Serial I/O A/D Converter with MUX and	
Sample/Hold.................................... . Section 2	Data Acquisition
ADC12L034 3.3V Self-Calibrating 12-Bit Plus Sign	
Serial I/O A/D Converter with MUX and	
Sample/Hold. Section 2	Data Acquisition
ADC12L038 3.3V Self-Calibrating 12-Bit Plus Sign	
Serial I/O A/D Converter with MUX and	
Sample/Hold.................................... . Section 2	Data Acquisition
ADC1001 10-Bit μ P Compatible A/D Converter Section 2	Data Acquisition
ADC1005 10-Bit μ P Compatible A/D Converter Section 2	Data Acquisition
ADC1031 10-Bit Serial I/O A/D Converter with Analog	
Multiplexer and Track/Hold Function Section 2	Data Acquisition

Additional Available Linear Devices ${ }_{\text {(continued }}$

ADC1034 10-Bit Serial I/O A/D Converter with Analog	
Multiplexer and Track/Hold Function Section 2	Data Acquisition
ADC1038 10-Bit Serial I/O A/D Converter with Analog	
Multiplexer and Track/Hold Function Section 2	Data Acquisition
ADC1061 10-Bit High-Speed μ P-Compatible A/D	
Converter with Track/Hold Function Section 2	Data Acquisition
ADC1205 12-Bit Plus Sign μ P Compatible A/D	
Converter . Section 2	Data Acquisition
ADC1225 12-Bit Plus Sign μ P Compatible A/D	
Converter . Section 2	Data Acquisition
ADC1241 Self-Calibrating 12-Bit Plus Sign	
$\mu \mathrm{P}$-Compatible A/D Converter with Sample/Hold . . . Section 2	Data Acquisition
ADC1242 12-Bit Plus Sign Sampling A/D Converter . . .Section 2	Data Acquisition
ADC1251 Self-Calibrating 12-Bit Plus Sign A/D	
Converter with Sample/Hold Section 2	Data Acquisition
ADC10061 10-Bit $600 \mathrm{~ns} \mathrm{A/D} \mathrm{Converter} \mathrm{with} \mathrm{Input}$	
Multiplexer and Sample/Hold Section 2	Data Acquisition
ADC10062 10-Bit 600 ns A/D Converter with Input	
Multiplexer and Sample/Hold Section 2	Data Acquisition
ADC10064 10-Bit $600 \mathrm{~ns} \mathrm{A/D} \mathrm{Converter} \mathrm{with} \mathrm{Input}$	
Multiplexer and Sample/Hold Section 2	Data Acquisition
ADC10154 10-Bit Plus Sign $4 \mu s$ ADC with 4- or	
8-Channel MUX, Track/Hold and Reference Section 2	Data Acquisition
ADC10158 10-Bit Plus Sign $4 \mu s$ ADC with 4- or	
8-Channel MUX, Track/Hold and Reference Section 2	Data Acquisition
ADC10461 10-Bit $600 \mathrm{~ns} \mathrm{A/D} \mathrm{Converter} \mathrm{with} \mathrm{Input}$	
Multiplexer and Sample/Hold Section 2	Data Acquisition
ADC10462 10-Bit $600 \mathrm{~ns} \mathrm{A/D} \mathrm{Converter} \mathrm{with} \mathrm{Input}$	
Multiplexer and Sample/Hold Section 2	Data Acquisition
ADC10464 10-Bit $600 \mathrm{~ns} \mathrm{A/D} \mathrm{Converter} \mathrm{with} \mathrm{Input}$	
Multiplexer and Sample/Hold Section 2	Data Acquisition
ADC10662 10-Bit $360 \mathrm{~ns} \mathrm{A/D} \mathrm{Converter} \mathrm{with} \mathrm{Input}$	
Multiplexer and Sample/Hold Section 2	Data Acquisition
ADC10664 10-Bit 360 ns A/D Converter with Input	
Multiplexer and Sample/Hold Section 2	Data Acquisition
ADC10731 10-Bit Plus Sign Serial I/O A/D Converter	
ADC10732 10-Bit Plus Sign Serial I/O A/D Converter	
ADC10734 10-Bit Plus Sign Serial I/O A/D Converter	
ADC10738 10-Bit Plus Sign Serial I/O A/D Converter	
ADC10831 10-Bit Plus Sign Serial I/O A/D Converter with MUX, Sample/Hold and Reference Section 2	Data Acquisition
ADC10832 10-Bit Plus Sign Serial I/O A/D Converter with MUX, Sample/Hold and Reference. Section 2	Data Acquisition
ADC10834 10-Bit Plus Sign Serial I/O A/D Converter with MUX, Sample/Hold and Reference Section 2	Data Acquisition
ADC10838 10-Bit Plus Sign Serial I/O A/D Converter with MUX, Sample/Hold and Reference Section 2	Data Acquisition

Additional Available Linear Devices ${ }_{\text {(Continued) }}$

ADC12030 Self-Calibrating 12-Bit Plus Sign Serial I/O

A/D Converter with MUX and Sample/Hold \qquad
.Section 2
ADC12032 Self-Calibrating 12-Bit Plus Sign Serial I/O
A/D Converter with MUX and Sample/Hold
. .Section 2
ADC12034 Self-Calibrating 12-Bit Plus Sign Serial I/O
A/D Converter with MUX and Sample/HoldSection 2
ADC12038 Self-Calibrating 12-Bit Plus Sign Serial I/O
A/D Converter with MUX and Sample/HoldSection 2
ADC12062 12-Bit, 1 MHz, 75 mW A/D Converter with Input Multiplexer and Sample/Hold
ADC12130 Self-Calibrating 12-Bit Plus Sign Serial I/O
A/D Converter with MUX and Sample/Hold
........Section 2
ADC12132 Self-Calibrating 12-Bit Plus Sign Serial I/O
A/D Converter with MUX and Sample/HoldSection 2
ADC12138 Self-Calibrating 12-Bit Plus Sign Serial I/O
A/D Converter with MUX and Sample/HoldSection 2
ADC12441 Dynamically-Tested Self-Calibrating 12-Bit
Plus Sign A/D Converter with Sample/Hold Section 2
ADC12451 Dynamically-Tested Self-Calibrating 12-Bit
Plus Sign A/D Converter with Sample/Hold Section 2
ADC12662 12-Bit, $1.5 \mathrm{MHz}, 200 \mathrm{~mW}$ A/D Converter
with Input Multiplexer and Sample/Hold
Section 2
ADC16071 16-Bit Delta-Sigma 192 ks/s
Analog-to-Digital Converter
Section 2
ADC16471 16-Bit Delta-Sigma 192 ks/s
Analog-to-Digital Converter
Section 2
AH0014 Dual DPDT-TTL/DTL Compatible MOS
Analog Switch
Section 8
AH0015 Quad SPST-TTL/DTL Compatible MOS Analog Switch
.Section 8
AH0019 Dual DPST-TTL/DTL Compatible MOS
Analog Switch Section 8
AH5010 Monolithic Analog Current Switch.
Section 8
AH5011 Monolithic Analog Current Switch............. . Section 8
AH5012 Monolithic Analog Current Switch............. . Section 8
AH5020C Monolithic Analog Current Switch Section 8
AN-450 Small Outline (SO) Package Surface Mounting
Methods-Parameters and Their Effect on Product
Reliability .. Section 9
AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product
Reliability Section 5
AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product
Reliability
.Section 5
Board Mount of Surface Mount Components. Section 5
Board Mount of Surface Mount Components. Section 5
Board Mount of Surface Mount Components. Section 9
DAC0800 8-Bit D/A Converter . Section 3
DAC0801 8-Bit D/A Converter . Section 3
DAC0802 8-Bit D/A Converter . Section 3

Data Acquisition

Data Acquisition

Power ICs

Application Specific Analog Products
Application Specific Analog Products
Power ICs
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition

Additional Available Linear Devices ${ }_{\text {(Continued }}$

DAC0806 8-Bit D/A Converter Section 3
DAC0807 8-Bit D/A Converter Section 3
DAC0808 8-Bit D/A Converter Section 3
DAC0830 8-Bit μ P Compatible Double-Buffered D/AConverterSection 3
DAC0831 8-Bit μ P Compatible Double-Buffered D/A Converter Section 3
DAC0832 8-Bit μ P Compatible Double-Buffered D/A Converter Section 3
DAC0854 Quad 8-Bit Voltage-Output Serial D/A Converter with Readback Section 3
DAC0890 Dual 8-Bit μ P-Compatible D/A Converter Section 3
DAC1006 μ P Compatible, Double-Buffered D/AConverterSection 3
DAC1007 μ P Compatible, Double-Buffered D/A Converter Section 3
DAC1008 μ P Compatible, Double-Buffered D/A Converter Section 3
DAC1020 10-Bit Binary Multiplying D/A Converter Section 3
DAC1021 10-Bit Binary Multiplying D/A Converter Section 3
DAC1022 10-Bit Binary Multiplying D/A Converter Section 3
DAC1054 Quad 10-Bit Voltage-Output Serial D/AConverter with ReadbackSection 3
DAC1208 12-Bit μ P Compatible Double-Buffered D/A Converter Section 3
DAC1209 12-Bit μ P Compatible Double-Buffered D/A Converter Section 3
DAC1210 12-Bit μ P Compatible Double-Buffered D/AConverterSection 3
DAC1218 12-Bit Binary Multiplying D/A Converter Section 3
DAC1219 12-Bit Binary Multiplying D/A Converter Section 3
DAC1220 12-Bit Binary Multiplying D/A Converter Section 3
DAC1222 12-Bit Binary Multiplying D/A Converter Section 3
DAC1230 12-Bit μ P Compatible Double-Buffered D/A Converter Section 3
DAC1231 12-Bit μ P Compatible Double-Buffered D/A Converter Section 3
DAC1232 12-Bit μ P Compatible Double-Buffered D/A Converter Section 3
DP7310 Octal Latched Peripheral Driver Section 3
DP7311 Octal Latched Peripheral Driver Section 3
DP8310 Octal Latched Peripheral Driver Section 3
DP8311 Octal Latched Peripheral Driver Section 3
DS0026 5 MHz Two Phase MOS Clock Drivers Section 4
DS1631 CMOS Dual Peripheral Driver Section 3
DS1632 CMOS Dual Peripheral Driver Section 3
DS1633 CMOS Dual Peripheral Driver Section 3
DS1634 CMOS Dual Peripheral Driver Section 3
DS2003 High Current/Voltage Darlington Driver Section 3
DS2004 High Current/Voltage Darlington Driver Section 3
DS3631 CMOS Dual Peripheral Driver Section 3

Data Acquisition
Application Specific Analog Products
Additional Available Linear Devices ${ }_{\text {(continued) }}$
DS3632 CMOS Dual Peripheral Driver

Section 3DS3633 CMOS Dual Peripheral DriverDS3634 CMOS Dual Peripheral Driver

Section 3
Section 3
DS3658 Quad High Current Peripheral Driver Section 3
DS3668 Quad Fault Protected Peripheral Driver Section 3
DS3680 Quad Negative Voltage Relay Driver
Section 3
DS9667 High Current/Voltage Darlington Driver Section 3
DS55451 Series Dual Peripheral Driver Section 3
DS55452 Series Dual Peripheral Driver Section 3
DS55453 Series Dual Peripheral Driver Section 3
DS55454 Series Dual Peripheral Driver Section 3
DS75451 Series Dual Peripheral Driver Section 3
DS75452 Series Dual Peripheral Driver Section 3
DS75453 Series Dual Peripheral Driver Section 3
DS75454 Series Dual Peripheral Driver Section 3
DS75491 MOS-to-LED Quad Segment Driver Section 4
DS75492 MOS-to-LED Hex Digit Driver Section 4
DS75494 Hex Digit Driver . Section 4
Land Pattern Recommendations . Section 5
Land Pattern Recommendations . Section 5
Land Pattern Recommendations . Section 9
LF198 Monolithic Sample and Hold Circuit. Section 6
LF298 Monolithic Sample and Hold Circuit. Section 6
LF398 Monolithic Sample and Hold Circuit. Section 6
LF11201 Quad SPST JFET Analog Switch Section 8
LF11202 Quad SPST JFET Analog SwitchSection 8
LF11331 Quad SPST JFET Analog Switch Section 8
LF11332 Quad SPST JFET Analog Switch Section 8
LF11333 Quad SPST JFET Analog Switch Section 8
LF13006 Digital Gain Set . Section 6
LF13007 Digital Gain Set. Section 6
LF13201 Quad SPST JFET Analog Switch Section 8
LF13202 Quad SPST JFET Analog Switch Section 8
LF13331 Quad SPST JFET Analog Switch Section 8
LF13332 Quad SPST JFET Analog Switch Section 8
LF13333 Quad SPST JFET Analog Switch Section 8
LF13508 8-Channel Analog Multiplexer Section 8
LF13509 4-Channel Differential Analog MultiplexerSection 8
LH0070 Series BCD Buffered Reference Section 4
LH0071 Series Precision Buffered Reference Section 4
LH1605 5 Amp, High Efficiency Switching Regulator . . .Section 3
LM12 80W Operational Amplifier .Section 4
LM12H454 12-Bit + Sign Data Acquisition System with Self-Calibration

Section 1
LM12H458 12-Bit + Sign Data Acquisition System with Self-Calibration

Section 1
LM12L438 12-Bit + Sign Data Acquisition System with
Serial I/O and Self-Calibration
Section 1
LM12L454 12-Bit + Sign Data Acquisition System with
Self-Calibration
Section 1

Application Specific Analog Products
Power ICs
Data Acquisition
Power ICs
Power ICs
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition

Additional Available Linear Devices ${ }_{\text {(continued }}$

LM12L458 12-Bit + Sign Data Acquisition System with			
Self-Calibration	Section 1		Data Acquisition
LM34 Precision Fahrenheit Temperature Sensor	Section 5		Data Acquisition
LM35 Precision Centigrade Temperature Sensor	Section 5		Data Acquisition
LM45 SOT-23 Precision Centigrade Temperature			
Sensor	Section 5		Data Acquisition
LM50 Single Supply Precision Centigrade Temperature			
Sensor	Section 5		Data Acquisition
LM78LXX Series 3-Terminal Positive Regulators	Section 1		Power ICs
LM78MXX Series 3-Terminal Positive Regulator.	Section 1		Power ICs
LM78S40 Universal Switching Regulator Subsystem	Section 3		Power ICs
LM78XX Series Voltage Regulators	Section 1		Power ICs
LM79LXXAC Series 3-Terminal Negative Regulat	Section 1		Power ICs
LM79MXX Series 3-Terminal Negative Regulators	Section 1		Power ICs
LM79XX Series 3-Terminal Negative Regulators	Section 1		Power ICs
LM105 Voltage Regulator	Section 1		Power ICs
LM109 5-Volt Regulator	Section 1		Power ICs
LM113 Reference Diode	Section 4		Data Acquisition
LM117 3-Terminal Adjustable Regulator	Section 1		Power ICs
LM117HV 3-Terminal Adjustable Regulator	Section 1		Power ICs
LM120 Series 3-Terminal Negative Regulator	Section 1		Power ICs
LM122 Precision Timer	Section 4	Application Specific	Analog Products
LM123 3-Amp, 5-Volt Positive Regulator	Section 1		Power ICs
LM125 Dual Voltage Regulator	Section 1		Power ICs
LM129 Precision Reference	Section 4		Data Acquisition
LM131 Precision Voltage-to-Frequency Converter	Section 2		Data Acquisition
LM133 3-Amp Adjustable Negative Regulator	Section 1		Power ICs
LM134 3-Terminal Adjustable Current Source	Section 4		Data Acquisition
LM134 3-Terminal Adjustable Current Source	Section 5		Data Acquisition
LM135 Precision Temperature Sensor	Section 5		Data Acquisition
LM136-2.5V Reference Diode	Section 4		Data Acquisition
LM136-5.0V Reference Diode	Section 4		Data Acquisition
LM137 3-Terminal Adjustable Negative Regulator	Section 1		Power ICs
LM137HV 3-Terminal Adjustable Negative Regulator			
LM138 5-Amp Adjustable Regulator	Section 1		Power ICs
LM140 Series 3-Terminal Positive Regulator	Section 1		Power ICs
LM140L Series 3-Terminal Positive Regulator	Section 1		Power ICs
LM145 Negative 3-Amp Regulator	Section 1		Power ICs
LM150 3-Amp Adjustable Regulator	Section 1		Power ICs
LM169 Precision Voltage Reference	Section 4		Data Acquisition
LM185 Adjustable Micropower Voltage Reference	Section 4		Data Acquisition
LM185-1.2 Micropower Voltage Reference Diode	Section 4		Data Acquisition
LM185-2.5 Micropower Voltage Reference Diode	Section 4		Data Acquisition
LM199 Precision Reference	.Section 4		Data Acquisition
LM205 Voltage Regulator	Section 1		Power ICs
LM231 Precision Voltage-to-Frequency Converter	Section 2		Data Acquisition
LM234 3-Terminal Adjustable Current Source	. Section 4		Data Acquisition
LM234 3-Terminal Adjustable Current Source	Section 5		Data Acquisition
LM235 Precision Temperature Sensor	Section 5		Data Acquisition
LM236-2.5V Reference Diode	. Section 4		Data Acquisition

Additional Available Linear Devices ${ }_{(\text {Continued) }}$

LM236-5.0V Reference Diode

Section 4

LM285 Adjustable Micropower Voltage Reference Section 4
LM285-1.2 Micropower Voltage Reference Diode Section 4
LM285-2.5 Micropower Voltage Reference Diode Section 4
LM299 Precision Reference . Section 4
LM305 Voltage Regulator . Section 1
LM309 5-Volt Regulator . Section 1
LM313 Reference Diode . Section 4
LM317 3-Terminal Adjustable Regulator Section 1
LM317HV 3-Terminal Adjustable Regulator Section 1
LM317L 3-Terminal Adjustable Regulator Section 1
LM320 Series 3-Terminal Negative Regulator Section 1
LM320L Series 3-Terminal Negative Regulator Section 1
LM322 Precision Timer . Section 4
LM323 3-Amp, 5-Volt Positive Regulator Section 1
LM325 Dual Voltage Regulator . Section 1
LM329 Precision Reference . Section 4
LM330 3-Terminal Positive Regulator Section 2
LM331 Precision Voltage-to-Frequency Converter Section 2
LM333 3-Amp Adjustable Negative Regulator Section 1
LM334 3-Terminal Adjustable Current Source Section 4
LM334 3-Terminal Adjustable Current Source Section 5
LM335 Precision Temperature Sensor Section 5
LM336-2.5V Reference Diode . Section 4
LM336-5.0V Reference Diode . Section 4
LM337 3-Terminal Adjustable Negative Regulator Section 1
LM337HV 3-Terminal Adjustable Negative Regulator (High Voltage)

Section 1
LM337L 3-Terminal Adjustable Regulator Section 1
LM338 5-Amp Adjustable Regulator Section 1
LM340 Series 3-Terminal Positive Regulator Section 1
LM340L Series 3-Terminal Positive Regulator Section 1
LM341 Series 3-Terminal Positive Regulator Section 1
LM345 Negative 3-Amp Regulator . Section 1
LM350 3-Amp Adjustable Regulator Section 1
LM368-2.5 Precision Voltage Reference Section 4
LM368-5.0 Precision Voltage Reference Section 4
LM368-10 Precision Voltage Reference Section 4
LM369 Precision Voltage Reference Section 4
LM376 Voltage Regulator . Section 1
LM380 Audio Power Amplifier . Section 1
LM383 7W Audio Power Amplifier . Section 1
LM384 5W Audio Power Amplifier Section 1
LM385 Adjustable Micropower Voltage Reference Section 4
LM385-1.2 Micropower Voltage Reference Diode Section 4
LM385-2.5 Micropower Voltage Reference Diode Section 4
LM386 Low Voltage Audio Power Amplifier Section 1
LM387/LM387A Low Noise Dual Preamplifier Section 1
LM388 1.5W Audio Power Amplifier Section 1
LM389 Low Voltage Audio Power Amplifier with NPN
Transistor Array
Section 1

Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Power ICs
Power ICs
Data Acquisition
Power ICs
Power ICs
Power ICs
Power ICs
Power ICs
Application Specific Analog Products
Power ICs
Power ICs
Data Acquisition
Power ICs
Data Acquisition
Power ICs
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Power ICs

Power ICs
Power ICs
Power ICs
Power ICs
Power ICs
Power ICs
Power ICs
Power ICs
Data Acquisition
Data Acquisition Data Acquisition Data Acquisition

Power ICs
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Data Acquisition
Data Acquisition
Data Acquisition
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products

Additional Available Linear Devices ${ }_{\text {(coninueas }}$

LM390 1W Battery Operated Audio Power Amplifier
LM391 Audio Power Driver

Section 1
Section 1

LM399 Precision Reference Section 4
LM431A Adjustable Precision Zener Shunt Regulator LM555 Timer Section 3

LM555C Timer Section 4

LM556 Dual Timer Section 4
LM556C Dual Timer Section 4
LM565 Phase Locked Loop . Section 4
LM565C Phase Locked Loop . Section 4
LM566C Voltage Controlled Oscillator Section 4
LM567 Tone Decoder Section 4
LM567C Tone Decoder . Section 4
LM628 Precision Motion Controller Section 4
LM629 Precision Motion Controller Section 4
LM723 Voltage Regulator . Section 1
LM831 Low Voltage Audio Power Amplifier Section 1
LM833 Dual Audio Operational Amplifier Section 1
LM837 Low Noise Quad Operational Amplifier Section 1
LM903 Fluid Level Detector . Section 3
LM1036 Dual DC Operated Tone/Volume/Balance
Circuit
Section 1
LM1042 Fluid Level Detector . Section 3
LM1131 Dual Dolby B-Type Noise Reduction Processor

Section 1
LM1201 Video Amplifier System Section 2
LM1202 230 MHz Video Amplifier System Section 2
LM1203 RGB Video Amplifier System Section 2
LM1203A 150 MHz RGB Video Amplifier System Section 2
LM1203B 100 MHz RGB Video Amplifier System Section 2
LM1204 150 MHz RGB Video Amplifier System Section 2
LM1205 130 MHz RGB Video Amplifier System with
Blanking
Section 2
LM1207 85 MHz RGB Video Amplifier System with Blanking

Section 2
LM1208 130 MHz RGB Video Amplifier System with Blanking

Section 2
LM1209 100 MHz RGB Video Amplifier System with Blanking
.Section 2
LM1212 230 MHz Video Amplifier System with OSD
Blanking
.Section 2
LM1281 85 MHz RGB Video Amplifier System with On
Screen Display (OSD)
Section 2
LM1291 Video PLL System for Continuous Sync
Monitors
.Section 2
LM1295 DC Controlled Geometry Correction System for Continuous Sync Monitors

Section 2
LM1391 Phase-Locked Loop
Section 2
LM1496 Balanced Modulator-Demodulator Section 4
LM1575 SIMPLE SWITCHER 1A Step-Down Voltage
Regulator
Section 3

Application Specific Analog Products Application Specific Analog Products Data Acquisition

Power ICs
Application Specific Analog Products Application Specific Analog Products

Power ICs
Power ICs
Power ICs
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products Application Specific Analog Products

Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products

Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products

Power ICs
Additional Available Linear Devices (Continued)
LM1575HV SIMPLE SWITCHER 1A Step-Down
.Section 3
Power ICs
LM1577 SIMPLE SWITCHER Step-Up Voltage
Regulator Section 3Power ICs
LM1577 SIMPLE SWITCHER Step-Up VoltageRegulatorSection 3
LM1578A Switching Regulator Section 3
LM1596 Balanced Modulator-Demodulator Section 4
LM1815 Adaptive Variable Reluctance Sensor
AmplifierSection 3
LM1819 Air-Core Meter Driver Section 3
LM1823 Video IF Amplifier/PLL Detector System Section 2
LM1830 Fluid Detector Section 3
LM1851 Ground Fault Interrupter Section 4
LM1865 Advanced FM IF System Section 4
LM1868 AM/FM Radio System Section 4
LM1875 20W Audio Power Amplifier Section 1
LM1876 Dual 20W Audio Power Amplifier with Mute and Standby Modes Section 1
LM1877 Dual Audio Power Amplifier Section 1
LM1881 Video Sync Separator Section 2
LM1882 Programmable Video Sync Generator Section 2
LM1893 Carrier-Current Transceiver Section 4
LM1894 Dynamic Noise Reduction System DNR ${ }^{\circledR}$ Section 1
LM1896 Dual Audio Power Amplifier Section 1
LM1921 1 Amp Industrial Switch Section 3
LM1946 Over/Under Current Limit Diagnostic Circuit Section 3
LM1949 Injector Drive Controller Section 3
LM1950 750 mA High Side Switch Section 3
LM1951 Solid State 1 Amp Switch Section 3
LM1971 μ Pot 62 dB Digitally Controlled Audio
Attenuator with Mute Section 1
LM1972 μ Pot 2-Channel 78 dB Audio Attenuator withMuteSection 1
LM1973 μ Pot 3-Channel 76 dB Audio Attenuator with Mute Section 1
LM2416 Triple 50 MHz CRT Driver Section 2
LM2416C Triple 50 MHz CRT Driver Section 2
LM2418 Triple 30 MHz CRT Driver Section 2
LM2419 Triple 65 MHz CRT Driver Section 2
LM2427 Triple 80 MHz CRT Driver Section 2
LM2524D Regulating Pulse Width Modulator Section 3
LM2574 SIMPLE SWITCHER 0.5A Step-Down Voltage
Regulator Section 3
LM2574HV SIMPLE SWITCHER 0.5A Step-Down Voltage Regulator Section 3
LM2575 SIMPLE SWITCHER 1A Step-Down Voltage
Regulator Section 3
LM2575HV SIMPLE SWITCHER 1A Step-Down Voltage Regulator Section 3

Application Specific Analog Products Power ICs Application Specific Analog Products

Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products

Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products

Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Power ICs

Power ICs

Power ICs

Power ICs

Power ICs

Additional Available Linear Devices ${ }_{\text {(continued) }}$

Additional Available Linear Devices (coninives)LM3875 High Performance 56W Audio Power
Amplifier Section 1
LM3876 High Performance 56W Audio Power Amplifier with Mute Section 1
LM3886 High-Performance 68W Audio Power Amplifier with Mute Section 1
LM3905 Precision Timer Section 4
LM3909 LED Flasher/Oscillator Section 4
LM3914 Dot/Bar Display Driver Section 4
LM3915 Dot/Bar Display Driver Section 4
LM3916 Dot/Bar Display Driver Section 4LM3940 1A Low Dropout Regulator for 5V to 3.3VConversionSection 2
LM3999 Precision Reference Section 4
LM4040 Precision Micropower Shunt VoltageReferenceSection 4
LM4041 Precision Micropower Shunt Voltage
Reference Section 4
LM4431 Micropower Shunt Voltage Reference Section 4
LM4700 OvertureTM 30W Audio Power Amplifier withMute and Standby ModesSection 1
LM4860 1W Audio Power Amplifier with Shutdown Mode Section 1
LM4861 ½W Audio Power Amplifier with Shutdown Mode. Section 1
LM4862 350 mW Audio Power Amplifier with ShutdownMode.Section 1
LM4880 Dual 200 mW Audio Power Amplifier withShutdown ModeSection 1
LM6104 Quad Gray Scale Current Feedback
AmplifierSection 2
LM6121 High Speed Buffer Section 2
LM6125 High Speed Buffer Section 2
LM6142 Dual High Speed/Low Power 17 MHz
Rail-to-Rail Input-Output Operational Amplifier Section 1
LM6144 Quad High Speed/Low Power 17 MHz
Rail-to-Rail Input-Output Operational AmplifierSection 1
LM6152 Dual High Speed/Low Power 45 MHzRail-to-Rail I/O Operational AmplifierSection 2
LM6154 Quad High Speed/Low Power 45 MHz
Rail-to-Rail I/O Operational AmplifierSection 2
LM6161 High Speed Operational Amplifier Section 2
LM6162 High Speed Operational Amplifier Section 2
LM6164 High Speed Operational Amplifier Section 2
LM6165 High Speed Operational Amplifier Section 2
LM6171 Voltage Feedback Low Distortion Low PowerOperational AmplifierSection 2
LM6181 $100 \mathrm{~mA}, 100 \mathrm{MHz}$ Current FeedbackAmplifierSection 2
LM6182 Dual 100 mA Output, 100 MHz Dual Current Feedback Amplifier Section 2Application Specific Analog ProductsApplication Specific Analog ProductsPower ICsData AcquisitionData Acquisition
Data AcquisitionData AcquisitionApplication Specific Analog ProductsApplication Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog ProductsApplication Specific Analog ProductsApplication Specific Analog ProductsApplication Specific Analog Products

Additional Available Linear Devices ${ }_{\text {(Coninued) }}$

LM6221 High Speed Buffer . Section 2	Application Specific Analog Products
LM6225 High Speed Buffer . Section 2	Application Specific Analog Products
LM6261 High Speed Operational Amplifier Section 2	Application Specific Analog Products
LM6262 High Speed Operational Amplifier Section 2	Application Specific Analog Products
LM6264 High Speed Operational Amplifier Section 2	Application Specific Analog Products
LM6265 High Speed Operational Amplifier Section 2	Application Specific Analog Products
LM6321 High Speed Buffer . Section 2	Application Specific Analog Products
LM6325 High Speed Buffer . Section 2	Application Specific Analog Products
LM6361 High Speed Operational Amplifier Section 2	Application Specific Analog Products
LM6362 High Speed Operational Amplifier Section 2	Application Specific Analog Products
LM6364 High Speed Operational Amplifier Section 2	Application Specific Analog Products
LM6365 High Speed Operational Amplifier Section 2	Application Specific Analog Products
LM7131 Tiny High Speed Single Supply Operational	
Amplifier. Section 2	Application Specific Analog Products
LM7171 Very High Speed High Output Current Voltage	
Feedback Amplifier Section 2	Application Specific Analog Products
LM7800C Series 3-Terminal Positive Regulator Section 1	Power ICs
LM8305 STN LCD Display Bias Voltage Source Section 2	Application Specific Analog Products
LM9044 Lambda Sensor Interface Amplifier Section 3	Application Specific Analog Products
LM9061 Power MOSFET Driver with Lossless	
Protection...................................... . . Section 3	Application Specific Analog Products
LM9140 Precision Micropower Shunt Voltage	
Reference . Section 4	Data Acquisition
LM12434 12-Bit + Sign Data Acquisition System with	
Serial I/O and Self-Calibration Section 1	Data Acquisition
LM12454 12-Bit + Sign Data Acquisition System with	
Self-Calibration . Section 1	Data Acquisition
LM12458 12-Bit + Sign Data Acquisition System with	
Self-Calibration . Section 1	Data Acquisition
LM18293 Four Channel Push-Pull Driver Section 4	Power ICs
LMC555 CMOS Timer . Section 4	Application Specific Analog Products
LMC567 Low Power Tone Decoder Section 4	Application Specific Analog Products
LMC568 Low Power Phase-Locked Loop. Section 4	Application Specific Analog Products
LMC835 Digital Controlled Graphic Equalizer Section 1	Application Specific Analog Products
LMC1982 Digitally-Controlled Stereo Tone and Volume	
Circuit with Two Selectable Stereo Inputs Section 1	Application Specific Analog Products
LMC1983 Digitally-Controlled Stereo Tone and Volume	
Circuit with Three Selectable Stereo Inputs Section 1	Application Specific Analog Products
LMC1992 Digitally-Controlled Stereo Tone and Volume	
Circuit with Four-Channel Input-Selector Section 1	Application Specific Analog Products
LMC6008 8 Channel Buffer. Section 2	Application Specific Analog Products
LMC7660 Switched Capacitor Voltage Converter Section 3	Power ICs
LMD18200 3A, 55V H-Bridge . Section 4	Power ICs
LMD18201 3A, 55V H-Bridge . Section 4	Power ICs
LMD18245 3A, 55V DMOS Full-Bridge Motor Driver ... Section 4	Power ICs
LMD18400 Quad High Side Driver Section 3	Application Specific Analog Products
LMF40 High Performance 4th-Order Switched	
Capacitor Butterworth Low-Pass Filter Section 7	Data Acquisition
LMF60 High Performance 6th-Order Switched	
Capacitor Butterworth Low-Pass Filter Section 7	Data Acquisition
LMF90 4th-Order Elliptic Notch Filter Section 7	Data Acquisition

LM6221 High Speed Buffer
LM6261 High Speed Operational Amplifier
LM6262 High Speed Operational Amplifier
LM6265 High Speed Operational Amplifier
Section 2
LM6321 High Speed Buffer
Section 2
LM6361 High Speed Operational Amplifier Section 2
LM6362 High Speed Operational Amplifier Section 2
LM6364 High Speed Operational Amplifier Section 2
LM6365 High Speed Operational Amplifier Section 2
LM7131 Tiny High Speed Single Supply Operational
Amplifier
Section 2
LM7171 Very High Speed High Output Current Voltage Feedback Amplifier

Section 1
LM8305 STN LCD Display Bias Voltage Source Section 2
LM9044 Lambda Sensor Interface Amplifier Section 3
LM9061 Power MOSFET Driver with Lossless Protection

Section 3
LM9140 Precision Micropower Shunt Voltage Reference

Section 1
LM12454 12-Bit + Sign Data Acquisition System with Self-Calibration Section 1
LM12458 12-Bit + Sign Data Acquisition System with Self-Calibration ection 1
LM18293 Four Channel Push-Pull Driver Section 4
LMC555 CMOS Timer
Section 4
LMC567 Low Power Tone Decoder Section 4
LMC568 Low Power Phase-Locked Loop. Section 4
LMC835 Digital Controlled Graphic Equalizer Section 1
LMC1982 Digitally-Controlled Stereo Tone and Volume
Circuit with Two Selectable Stereo Inputs
Section 1
LMC1983 Digitally-Controlled Stereo Tone and Volume
Circuit with Three Selectable Stereo Inputs
Section 1
LMC1992 Digitally-Controlled Stereo Tone and Volume
Circuit with Four-Channel Input-Selector
Section 1
LMC6008 8 Channel Buffer
Section 3
LMD18200 3A, 55V H-Bridge
Section 4
LMD18201 3A, 55V H-Bridge
Section 4
LMD18400 Quad High Side Driver
Section 3
LMF40 High Performance 4th-Order Switched
Capacitor Butterworth Low-Pass Filter
Section 7
LMF60 High Performance 6th-Order Switched
Capacitor Butterworth Low-Pass Filter
Section 7

Application Specific Analog Products Application Specific Analog Products

Application Specific Analog Products
Application Specific Analog Products
Power ICs
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Data Acquisition
Data Acquisition
Data Acquisition
Data Acquisition
Power ICs
Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products

Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products Application Specific Analog Products

Power ICs
Power ICs
Power ICs
Power ICs

Data Acquisition

Data Acquisition

Additional Available Linear Devices ${ }_{\text {(conitinues) }}$

LMF100 High Performance Dual Switched Capacitor Filter	.Section 7		Data Acquisition
LMF380 Triple One-Third Octave Switched Capacitor			
Active Filter	.Section 7		Data Acquisition
LP2950/A-XX Series of Adjustable Micropower			
Voltage Regulators	.Section 3	Application Specific	Analog Products
LP2950/A-XX Series of Adjustable Micropower			
Voltage Regulators	.Section 2		Power ICs
LP2951/A-XX Series of Adjustable Micropower			
Voltage Regulators	.Section 2		Power ICs
LP2951/A-XX Series of Adjustable Micropower			
Voltage Regulators	.Section 3	Application Specific	Analog Products
LP2952 Adjustable Micropower Low-Dropout Voltage			
Regulator	.Section 2		Power ICs
LP2953 Adjustable Micropower Low-Dropout Voltage			
Regulator	.Section 2		Power ICs
LP2954 5V Micropower Low-Dropout Voltage			
Regulator	.Section 2		Power ICs
LP2956 Dual Micropower Low-Dropout Voltage			
Regulator	.Section 2		Power ICs
LP2957 5V Low-Dropout Regulator for $\mu \mathrm{P}$			
Applications	.Section 2		Power ICs
LP2980 Micropower SOT, 50 mA Ultra Low-Dropout			
Regulator	.Section 2		Power ICs
MF4 4th Order Switched Capacitor Butterworth			
Lowpass Filter	.Section 7		Data Acquisition
MF5 Universal Monolithic Switched Capacitor Filter	.Section 7		Data Acquisition
MF6 6th Order Switched Capacitor Butterworth			
Lowpass Filter	.Section 7		Data Acquisition
MF8 4th Order Switched Capacitor Bandpass Filter	.Section 7		Data Acquisition
MF10 Universal Monolithic Dual Switched Capacitor			
Filter	.Section 7		Data Acquisition
MM5368 CMOS Oscillator Divider Circuit	.Section 4	Application Specific	Analog Products
MM5369 17 Stage Oscillator/Divider	.Section 4	Application Specific	Analog Products
MM5450 LED Display Driver	.Section 4	Application Specific	Analog Products
MM5451 LED Display Driver	.Section 4	Application Specific	Analog Products
MM5452 Liquid Crystal Display Driver	.Section 4	Application Specific	Analog Products
MM5453 Liquid Crystal Display Driver	.Section 4	Application Specific	Analog Products
MM5480 LED Display Driver	.Section 4	Application Specific	Analog Products
MM5481 LED Display Driver	.Section 4	Application Specific	Analog Products
MM5483 Liquid Crystal Display Driver	.Section 4	Application Specific	Analog Products
MM5484 16-Segment LED Display Driver	.Section 4	Application Specific	Analog Products
MM5486 LED Display Driver	.Section 4	Application Specific	Analog Products
MM58241 High Voltage Display Driver	. Section 4	Application Specific	Analog Products
MM58341 High Voltage Display Driver	.Section 4	Application Specific	Analog Products
MM58342 High Voltage Display Driver	. Section 4	Application Specific	Analog Products
Packing Considerations (Methods, Materials and			
Recycling)	. Section 5	Application Specific	Analog Products
Packing Considerations (Methods, Materials and			
Recycling)	.Section 5		Power ICs

Additional Available Linear Devices ${ }_{\text {(Continued) }}$

Packing Considerations (Methods, Materials and
Recycling) .. . Section 9
Data Acquisition
Recommended Soldering Profiles-Surface MountSection 9
Data Acquisition
Recommended Soldering Profiles-Surface MountSection 5 Power ICs
Recommended Soldering Profiles-Surface MountSection 5 Application Specific Analog Products

National Semiconductor

Industry Package Cross-Reference Guide

		NSC	$\begin{gathered} \text { NSC } \\ \mu \mathrm{A} \end{gathered}$	Signetics	Motorola	TI	AMD	Sprague
	4/16 Lead Glass/Metal DIP	D	D	1	L		D	R
	Glass/Metal Flat Pack	F	F	Q	F	$\begin{gathered} \mathrm{F} \\ \mathrm{~S} \end{gathered}$	F	
	TO-99, TO-100, TO-5	H	H	T, K, L, DB	G	L	H	
	8-, 14- and 16-Lead Low Temperature Ceramic DIP	J	$\begin{aligned} & \mathrm{R}, \\ & \mathrm{D} \end{aligned}$	F	U	J	D	H
	(Steel)	K			KS			
	(Aluminum)	KC	K	DA	K	K		
	8-, 14- and 16-Lead Plastic DIP	N	$\begin{aligned} & \mathrm{T}, \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & \mathrm{N}, \\ & \mathrm{~V} \end{aligned}$	P	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~N} \end{aligned}$	P	$\begin{aligned} & \mathrm{A}, \\ & \mathrm{~B}, \\ & \mathrm{M} \end{aligned}$

		NSC	$\begin{gathered} \text { NSC } \\ \mu \mathbf{A} \\ \hline \end{gathered}$	Signetics	Motorola	TI	AMD	Sprague
	$\begin{aligned} & \text { TO-263 } \\ & \text { 3- \& 5-Lead } \end{aligned}$	S						
	$\begin{aligned} & \text { TO-220 } \\ & \text { 3- \& 5-Lead } \end{aligned}$	T	U	U		KC		
	$\begin{aligned} & \text { TO-220 } \\ & \text { 11-, 15- \& 23-Lead } \end{aligned}$	T						
	Low Temperature Glass Hermetic Flat Pack	W	F		F	W	F	
	TO-92 (Plastic)	Z	W	S	P	LP		
	SO (Narrow Body)	M	S	$\begin{aligned} & \mathrm{S}, \\ & \mathrm{D} \end{aligned}$	D	D		L
	(Wide Body)	WM				DW		LW
凹	SOT-23 5-Lead	M5						

Section 1

Operational Amplifiers

N
Section 1 Contents
Operational Amplifiers Definition of Terms 1-5
Operational Amplifiers Selection Guide 1-6
LF147/LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers 1-22
LF155/LF156/LF157 Series Monolithic JFET Input Operational Amplifiers 1-31
LF351 Wide Bandwidth JFET Input Operational Amplifier 1-46
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier 1-54
LF411 Low Offset, Low Drift JFET Input Operational Amplifier 1-63
LF412 Low Offset, Low Drift Dual JFET Operational Amplifier 1-70
LF441 Low Power JFET Input Operational Amplifier 1-77
LF442 Dual Low Power JFET Input Operational Amplifier 1-84
LF444 Quad Low Power JFET Input Operational Amplifier 1-93
LF451 Wide-Bandwidth JFET Input Operational Amplifier 1-100
LF453 Wide-Bandwidth Dual JFET Input Operational Amplifier 1-106
LH0003 Wide Bandwidth Operational Amplifier 1-113
LH0004 High Voltage Operational Amplifier 1-116
LH0021/LH0021C 1.0 Amp Power Operational Amplifier 1-120
LH0041/LH0041C 0.2 Amp Power Operational Amplifier 1-120
LH0024 High Slew Rate Operational Amplifier 1-131
LH0032 Ultra Fast FET-Input Operational Amplifier 1-135
LH0042 Low Cost FET Operational Amplifier 1-143
LH0101 Power Operational Amplifier 1-153
LM10 Operational Amplifier and Voltage Reference 1-164
LM101A/LM201A/LM301A Operational Amplifiers 1-180
LM107/LM207/LM307 Operational Amplifiers 1-190
LM108/LM208/LM308 Operational Amplifiers 1-196
LM118/LM218/LM318 Operational Amplifiers 1-203
LM124/LM224/LM324/LM2902 Low Power Quad Operational Amplifiers 1-213
LM143/LM343 High Voltage Operational Amplifiers 1-226
LM146/LM246/LM346 Programmable Quad Operational Amplifiers 1-236
LM148/LM248/LM348 Quad 741 Operational Amplifiers; LM149/LM349 Wide Band Decompensated ($\mathrm{A}_{\mathrm{V}}(\mathrm{MIN})=5$) 1-248
LM158/LM258/LM358/LM2904 Low Power Dual Operational Amplifiers 1-261
LM221/LM321 Precision Preamplifiers 1-274
LM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifier 1-283
LM392/LM2924 Low Power Operational Amplifier/Voltage Comparators 1-301
LM611 Operational Amplifier and Adjustable Reference 1-305
LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference 1-317
LM614 Quad Operational Amplifier and Adjustable Reference 1-333
LM675 Power Operational Amplifier 1-346
LM709 Operational Amplifier $1-353$
LM725 Operational Amplifier 1-358
LM741 Operational Amplifier 1-366
LM747 Dual Operational Amplifier 1-370
LM748 Operational Amplifier 1-375
LM759/LM77000 Power Operational Amplifiers 1-379
LM1558/LM1458 Dual Operational Amplifiers 1-390
LM1875 20 Watt Power Audio Amplifier 1-392
LM1877 Dual Power Audio Amplifier 1-398
Section 1 Contents (Continued)
LM1896/LM2896 Dual Power Audio Amplifier 1-403
LM2877 Dual 4 Watt Power Audio Amplifier 1-411
LM2878 Dual 5 Watt Power Audio Amplifier 1-418
LM2879 Dual 8 Watt Audio Amplifier 1-425
LM2900/LM3900/LM3301 Quad Amplifiers 1-432
LM3045/LM3046/LM3086 Transistor Arrays 1-450
LM3080 Operational Transconductance Amplifier 1-455
LM3303/LM3403 Quad Operational Amplifiers 1-459
LM3875 High Performance 40 Watt Audio Power Amplifier 1-466
LM4250 Programmable Operational Amplifier 1-482
LM6104 Quad Gray Scale Current Feedback Amplifier 1-490
LM6118/LM6218 Fast Settling Dual Operational Amplifiers 1-494
LM6132 Dual and LM6134 Quad High Speed/Low Power 7 MHz Rail-to-Rail I/O Operational Amplifiers 1-503
LM6142 Dual and LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Rail Input-Output Operational Amplifiers 1-504
LM6152 Dual/LM6154 Quad High Speed/Low Power 45 MHz Rail-to-Rail Input-Output Operational Amplifiers 1-515
LM6161/LM6261/LM6361 High Speed Operational Amplifiers 1-516
LM6162/LM6262/LM6362 High Speed Operational Amplifiers 1-523
LM6164/LM6264/LM6364 High Speed Operational Amplifiers 1-531
LM6165/LM6265/LM6365 High Speed Operational Amplifiers 1-539
LM6171 Voltage Feedback Low Distortion Low Power Operational Amplifier 1-546
LM6181 100 mA, 100 MHz Current Feedback Amplifier 1-560
LM6182 Dual 100 mA Output, 100 MHz Dual Current Feedback Amplifier 1-577
LM6313 High Speed, High Power Operational Amplifier 1-598
LM7121 Tiny Very High Speed Low Power Voltage Feedback Amplifier 1-607
LM7131 Tiny High Speed Single Supply Operational Amplifier 1-608
LM7171 Very High Speed High Output Current Voltage Feedback Amplifier 1-630
LM13600 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers 1-631
LM13700/LM13700A Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers 1-649
LMC660 CMOS Quad Operational Amplifier 1-669
LMC662 CMOS Dual Operational Amplifier 1-679
LMC6001 Ultra Ultra-Low Input Current Amplifier 1-689
LMC6022 Low Power CMOS Dual Operational Amplifier 1-699
LMC6024 Low Power CMOS Quad Operational Amplifier 1-711
LMC6032 CMOS Dual Operational Amplifier 1-722
LMC6034 CMOS Quad Operational Amplifier $1-732$
LMC6041 CMOS Single Micropower Operational Amplifier 1-742
LMC6042 CMOS Dual Micropower Operational Amplifier 1-753
LMC6044 CMOS Quad Micropower Operational Amplifier 1-763
LMC6061 Precision CMOS Single Micropower Operational Amplifier 1-773
LMC6062 Precision CMOS Dual Micropower Operational Amplifier 1-783
LMC6064 Precision CMOS Quad Micropower Operational Amplifier 1-793
LMC6081 Precision CMOS Single Operational Amplifier 1-803
LMC6082 Precision CMOS Dual Operational Amplifier 1-813
LMC6084 Precision CMOS Quad Operational Amplifier 1-823
LMC6462 Dual/LMC6464 Quad Micropower, Rail-to-Rail Input and Output CMOS Operational Amplifier 1-833
LMC6482 CMOS Dual Rail-to-Rail Input and Output Operational Amplifier 1-847
LMC6484 CMOS Quad Rail-to-Rail Input and Output Operational Amplifier 1-864
Section 1 Contents (Continued)
LMC6492 Dual/LMC6494 Quad CMOS Rail-to-Rail Input and Output Operational Amplifier 1-880
LMC6574 Quad/LMC6572 Dual Low Voltage (2.7V and 3V) Operational Amplifier 1-893
LMC6582 Dual/LMC6584 Quad Low Voltage, Rail-to-Rail Input and Output CMOS Operational Amplifier 1-902
LMC6681 Single/LMC6682 Dual/LMC6684 Quad Low Voltage, Rail-to-Rail Input and Output CMOS Amplifier with Powerdown 1-903
LMC7101 Tiny Low Power Operational Amplifier with Rail-to-Rail Input and Output 1-904
LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Rail Input and Output 1-920
LPC660 Low Power CMOS Quad Operational Amplifier 1-921
LPC661 Low Power CMOS Operational Amplifier 1-933
LPC662 Low Power CMOS Dual Operational Amplifier 1-945
OP07 Low Offset, Low Drift Operational Amplifier 1-957
TL081 Wide Bandwidth JFET Input Operational Amplifier 1-962
TL082 Wide Bandwidth Dual JFET Input Operational Amplifier 1-969

Operational Amplifiers Definition of Terms

Bandwidth: That frequency at which the voltage gain is reduced to $1 / \sqrt{2}$ times the low frequency value.
Common-Mode Rejection Ratio: The ratio of the input common-mode voltage range to the peak-to-peak change in input offset voltage over this range.
Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental. \% harmonic distortion $=$

$$
\frac{\left(V 2^{2}+V 3^{2}+V 4^{2}+\ldots\right)^{1 / 2}(100)}{V 1}
$$

where V1 is the rms amplitude of the fundamental and V2, V3, V4, . . . are the rms amplitudes of the individual harmonics.
Input Bias Current: The average of the two input currents. Input Common-Mode Voltage Range (or Input Voltage Range): The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.
Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).
Input Offset Current: The difference in the currents into the two input terminals when the output is at zero.
Input Offset Voltage: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.
Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.
Output Impedance: The ratio of output voltage to output current under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).
Output Resistance: The small signal resistance seen at the output with the output voltage near zero.
Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.
Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.
Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.
Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.
Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.
Supply Current: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies.
Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.
Unity Gain Bandwidth: The frequency range from dc to the frequency where the amplifier open loop gain rolls off to one.
Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).

National Semiconductor General Purpose Operati Amplifier Selection Guid Automotive Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$) Specs at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (Note 1)								
Part \#	$\begin{gathered} \mathbf{V O S}_{\mathrm{OS}} \\ \mathrm{mV}(\operatorname{Max}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{nA}(\text { Max }) \end{gathered}$	$\begin{gathered} \text { GBW } \\ \text { MHz (Typ) } \end{gathered}$	$\begin{gathered} \text { Slew } \\ \text { Rate } \\ \mathrm{V} / \mu \mathrm{s} \text { (Typ) } \end{gathered}$	Supply Current (Note 3) mA (Max)	Specified Supply Voltage		Special Features
						Min_{y}	$\underset{\mathbf{V}}{\operatorname{Max}}$	
LM6142A	1	250	17	25	0.8	2.7	24	R-R In-Out Dual
LM6144A	1	250	17	25	0.8	2.7	24	R-R In-Out Quad
LM6142B	2.5	300	17	25	0.8	2.7	24	R-R In-Out Dual
LM6144B	2.5	300	17	25	0.8	2.7	24	R-R In-Out Quad
LM833	5	1000	15	7	4	10	30	Dual Low Noise
LP2902	4	20	0.1	0.05	0.031	3	26	Quad
LM2902	7	250	1	0.5	0.75	5	26	Quad
LM2904	7	250	1	0.5	1.0	5	26	Dual
LM2924	7	250	1	0.5	1.0	5	26	Comparator + Op Amp
Industrial Temperature Range ($-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) Specs at $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$ (Note 1)								
Part \#	$\begin{gathered} V_{\text {OS }} \\ \mathrm{mV}(\mathrm{Max}) \end{gathered}$	$\begin{gathered} I_{B} \\ \mathrm{nA}(\text { Max }) \end{gathered}$	$\begin{gathered} \text { GBW } \\ \text { MHz (Typ) } \end{gathered}$	$\begin{gathered} \text { Slew } \\ \text { Rate } \\ \mathrm{V} / \mu \mathrm{s} \text { (Typ) } \end{gathered}$	Supply Current (Note 3) mA (Max)	Specified Supply Voltage		Special Features
						$\begin{gathered} \text { Min } \\ \mathbf{V} \end{gathered}$	$\begin{gathered} \text { Max } \\ \mathbf{V} \end{gathered}$	
LM208A	0.5	2	1	0.3	0.6	10	40	
LM10B(L)	2	20	0.09	0.1	0.4	(Note 4)		Op Amp + Reference
LM201A	2	75	1	0.5	2.5	10	40	
LM207	2	75	1	0.5	2.5	10	40	Compensated LM201A
LM208	2	2	1	0.3	0.6	10	40	
LM224A	3	80	1	0.5	0.75	5	30	Quad
LM258A	3	80	1	0.5	1.0	3	32	Dual
LF255	5	0.1	2.5	5	4	30	40	
LF256	5	0.1	5	12	7	30	40	
LF257	5	0.1	20	50	7	30	40	Minimum Gain of 5
LM224	5	150	1	0.5	0.75	5	30	Quad
LM258	5	150	1	0.5	1.0	5	30	Dual
LM246	6	250	1.2	0.4	0.625	3	30	(Note 5)
LM248	6	200	1	0.5	1.13	10	30	Quad
LH0042C	20	0.05	1	3	4	10	40	
LM6132	0.25	110	7	22	0.4	2.7	24	R-R In-Out Dual
LM6134	0.25	110	7	22	0.4	2.7	24	R-R In-Out Quad

General Purpose Operational Amplifier Selection Guide (Continued)
Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$) Specs at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Notes 1 and 2)

Part \#	$\begin{gathered} \mathbf{V}_{\mathrm{OS}} \\ \mathrm{mV}(\text { Max }) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{nA} \text { (Max) } \end{gathered}$	$\begin{gathered} \text { GBW } \\ \text { MHz (Typ) } \end{gathered}$	$\begin{gathered} \text { Slew } \\ \text { Rate } \\ \mathrm{V} / \mu \mathrm{s} \text { (Typ) } \end{gathered}$	Supply Current (Note 3) mA (Max)	Specified Supply Voltage		Special Features
						$\underset{\mathbf{V}}{\mathbf{M i n}}$	$\underset{\mathbf{V}}{\operatorname{Max}}$	
LF411A	0.5	0.2	4	15	2.8	10	40	
LF441A	0.5	0.05	1	1	0.25	10	40	
LM308A	0.5	7	1	0.3	0.8	10	40	
LM11C	0.6	0.1	0.8	0.3	0.8	5	40	
LF412A	1	0.2	4	15	2.8	12	40	Dual
LF442A	1	0.05	1	1	0.2	10	32	Dual
LM604AC	1	50	7	3	9	10	32	Multiplexed Op Amp
LF355A	2	0.05	2.5	5	4	30	36	
LF356A	2	0.05	5	12	10	30	36	
LF357A	2	0.05	20	50	10	30	36	Minimum Gain of 5
LF411	2	0.2	4	15	3.4	10	30	
LF412	3	0.2	4	15	3.3	12	30	Dual
LM324A	3	100	1	0.5	0.75	5	30	Quad
LM358A	3	100	1	0.5	1.0	5	30	Dual
LM604C	3	80	7	7	4.5	10	32	Multiplexed Op Amp
LM741E	3	80	1.5	0.7	2.8	10	40	
LM10C(L)	4	30	0.09	0.1	0.5	(Note 4)		Op Amp + Reference
LP324	4	10	0.1	0.05	0.0375	5	30	
LF347B	5	0.2	4	13	2.8	10	30	Quad
LF355B	5	0.1	2.5	5	4	30	40	
LF356B	5	0.1	5	12	4	30	40	
LF357B	5	0.1	20	50	7	30	40	
LF441	5	0.1	1	1	0.25	10	30	
LF442	5	0.1	1	1	0.25	10	30	Dual
LM11CL	5	0.2	0.8	0.3	0.8	5	40	
LF451	5	0.2	4	13	3.4	10	32	SO Pkg
LF453	5	0.2	4	13	3.25	10	32	SO Pkg Dual
LM611	5	35	0.8	0.7	0.35	2.8	32	Op Amp + Ref
LM613	5	35	0.8	0.7	0.25	2.8	32	2 Op Amps + 2 Comparators + Ref

General Purpose Operational Amplifier Selection Guide (Continued)

Commercial Temperature Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) (Notes 1 and 2) (Continued)

Part \#	$\begin{gathered} V_{\text {OS }} \\ \mathrm{mV}(\text { Max }) \end{gathered}$	$\stackrel{\mathrm{I}_{\mathrm{B}}}{\mathrm{nA}(\mathrm{Max})}$	$\begin{gathered} \text { GBW } \\ \text { MHz (Typ) } \end{gathered}$	Slew Rate V/ $\mu \mathrm{s}$ (Typ)	Supply Current (Note 3) mA (Max)	Specified Supply Voltage		Special Features
						$\underset{V}{\operatorname{Min}}$	Max V	
LM614	5	35	0.8	0.7	0.25	2.8	32	Quad Op Amp + Ref
LM392	5	250	1	0.5	1	5	30	
LM346	6	250	1.2	0.4	0.63	3	30	(Note 5)
LM348	6	200	1	0.5	1.13	10	30	
LM349	6	200	4	2	1.13	10	30	
LM741C	6	500	1.5	0.5	2.8	10	40	
LM1458	6	500	*	*	2.8	30	30	
LM4250C	6	75	0.2	0.2	0.1	3	30	(Note 5)
LM324	7	250	1	0.5	0.75	5	30	Quad, Low Cost
LM358	7	250	1	0.5	1.0	5	30	Dual
LM301A	7.5	250	1	0.5	3	10	30	$\mathrm{V}_{\text {CM }}$ to V^{+}
LM307	7.5	250	1	0.5	3	10	30	Compensated LM301A
LM308	7.5	7	1	0.3	0.8	10	36	
LM343	8	40	1	2.5	5	56	68	
LF347	10	0.2	4	13	2.75	10	30	Quad
LF351	10	0.2	4	13	3.4	10	30	
LF353	10	0.2	4	13	5.4	10	30	Dual
LF355	10	0.2	2.5	5	4	30	30	
LF356	10	0.2	5	12	10	30	30	
LF357	10	0.2	20	50	10	30	30	Minimum Gain of 5
LF444	10	0.1	1	1	0.25	10	30	Quad
TL081C	15	0.2	4	13	2.8	10	30	
TL082C	15	0.2	4	13	2.8	12	30	Dual

*Not Specified.
Note 1: Datasheet should be referred to for test conditions and more detailed information.
Note 2: Those looking for a commercial part should also look at the Industrial Temp Range guide as many Hybrids are listed there.
Note 3: Supply current is per amplifier.
Note 4: The LM10 has 2 versions: one a high voltage part, good to 45 V and a low voltage part, good to 7 V . Refer to the datasheet for more information.
Note 5: The LM146 and LM4250 are programmable amplifiers. The data shown is for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{SET}}=10 \mu \mathrm{~A}$. Refer to the datasheets for more information.

General Purpose Operational Amplifier Selection Guide (Continued) Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $+\mathbf{1 2 5 ^ { \circ }} \mathrm{C}$) Specs at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$ (Note 1)								
Part \#	$\begin{gathered} V_{\text {Os }} \\ \mathrm{mV}(\mathrm{Max}) \end{gathered}$	$\underset{\mathrm{nA}(\mathrm{Max})}{\mathrm{I}_{\mathrm{B}}}$	$\begin{gathered} \text { GBW } \\ \text { MHz (Typ) } \end{gathered}$	Slew Rate V/ $\mu \mathrm{s}$ (Typ)	Supply Current (Note 3) mA (Max)	Specified Supply Voltage		Special Features
						$\underset{V}{\operatorname{Min}}$	Max \mathbf{V}	
LF411AM	0.5	0.2	4	15	2.8	10	40	
LF441AM	0.5	0.05	1	1	0.2	10	40	
LM108A	0.5	2	1	0.3	0.6	10	40	
LF412A	1	0.2	4	15	2.8	12	40	Dual
LF442A	1	0.05	1	1	0.2	12	40	Dual
LH0004	1	100	10	*	0.15	10	80	High Voltage
LM604A	1	50	7	2	4.5	10	32	Multiplexed Op Amp
LF155A	2	0.05	2.5	5	4	30	40	
LF156A	2	0.05	5	12	7	30	40	
LF157A	2	0.05	20	50	7	30	40	Minimum Gain of 5
LF411M	2	0.2	4	15	3.4	10	30	
LM10	2	20	0.09	0.1	0.4	1.2	40	Op Amp + Reference
LM101A	2	75	1	0.5	3	10	40	V_{CM} to V^{+}
LM107	2	100	1	0.5	3	10	40	Compensated LM101A
LM108	2	2	1	0.3	0.6	10	40	
LM124A	2	50	1	0.5	0.75	5	30	Quad
LM158A	2	50	1	0.5	0.5	5	30	Dual
LP124	2	4	0.1	0.05	0.035	5	30	Quad
LF412	3	0.2	4	15	3.25	12	30	Dual
LM741A	3	80	1.5	0.7	2.8	10	40	
LF155	5	0.1	2.5	5	4	30	40	
LF156	5	0.1	5	12	7	30	40	
LF157	5	0.1	20	50	7	30	40	Minimum Gain of 5
LF147	5	0.2	4	13	2.75	10	40	Quad
LF442	5	0.1	1	1	0.25	10	40	Dual
LF444A	5	50	1	1	0.20	10	40	Quad
LM124	5	150	1	0.5	0.75	5	30	Quad

General Purpose Operational Amplifier Selection Guide (Continued) Military Temperature Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Specs at $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$ (continued)								
Part \#	$V_{0 S}$		GBW MHz (Typ)	Slew Rate	Supply Current (Note 3)		fied ply ge	Special Features
				V/ $\mu \mathrm{s}$ (Typ)	mA (Max)	$\begin{gathered} \text { Min } \\ \mathbf{v} \end{gathered}$	Max V	
LM143	5	20	1	2.5	4	56	80	High Voltage
LM146	5	100	1.2	0.4	0.55	3	30	(Note 5)
LM148	5	100	1	0.5	0.9	10	30	Quad
LM149	5	100	4	2	0.9	10	30	Minimum Gain of 5, Quad
LM158	5	150	1	0.5	1	5	30	Dual
LM741	5	500	1	0.5	2.8	10	40	
LM1558	5	500	*	*	2.5	30	30	Dual
LM4250	5	50	0.2	0.2	0.1	3	30	(Note 5)
LH0042	20	0.025	1	3	3.5	10	40	

$\hat{C}_{N a}$	ional	Semi w Inpu	$\operatorname{con} d u$	$c t o r$	ion Guid		
<25 fA	<100 fA	$\leq 5 \mathrm{pA}^{*}$	$\leq 20 \mathrm{pA}$	$\leq 50 \mathrm{pA}$	$\leq 100 \mathrm{pA}$	≤ 200 pA	$\leq 500 \mathrm{pA}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
LMC6001A**	LMC6001B**	LMC660*	LH0042	LH0032A	LH0032	TL081	LH0032C
		LMC662*	LH0042C	LF155A/156A	LF155/156	LH0032AC	LH4004
		LMC6041*		LF157A	LF157	LF351	
		LMC6042*		LF355A/356A	LF255/256	LF411A/411	
		LMC6044*		LF357A	LF257	LF355/356	
		LMC6062*		LF441A	LF355B/356B	LF357	
		LMC6082*		LF442A	LF357B	LF147/347B/347	
		LPC660*		LF444A	LF441	LF353	
		LPC661*		LM11	LF442	LF412A/412	
		LPC662*			LF444	LM11CL	
		LMC6061*			LM11C	LMC6022*	
		LMC6081*			LH0101	LMC6024*	
		LMC6064*				LMC6032*	
		LMC6084*				LMC6034*	
		LMC6482*				LH4104	
		LMC6484*				LH4104C	
		LMC6001C					
		LMC6462					
		LMC6464					
		LMC6492					
		LMC6494					
		LMC6572					
		LMC6574					
		LMC6584					
		LMC6681					
		LMC6682					
		LMC6684					
		LMC7101					.
		LMC7111					
Note: Datasheet should be referred to for conditions and more detailed information. *Guaranteed over industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$. Typical value is $\leq 40 \mathrm{fA}$. **100 percent tested and guaranteed.							

National Semiconductor High Speed Operational Amplifier Selection Guide					
Part \#	Slew Rate V/ $\mu \mathrm{s}$ (Тур)	$\begin{gathered} \text { GBW } \\ \text { MHz (Typ) } \end{gathered}$	$\begin{gathered} \mathbf{V O S}_{\text {OS }} \\ \mathrm{mV}(\text { Max }) \end{gathered}$	$\begin{gathered} \text { IS } \\ \text { mA (Max) } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Notes
GBW $\geq \mathbf{4} \mathbf{M H z}, \mathrm{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$					
LM7171A	4100	200	1	8.5	High Output Current, Voltage Feedback
LM6171A	3600	100	3	4	Low Power, Voltage Feedback
LM7171	4100	200	3	8.5	High Output Current, Voltage Feedback
LM6171	3600	100	6	4	Low Power, Voltage Feedback
LM6172	3600	100	1	4	Dual Low Power, Voltage Feedback
LM6181	2000	100	7.0	10	Current Feedback, VIP
LM7121A	1000	200	3	5	Low Power, Voltage Feedback
LM7121	1000	200	6	5	Low Power, Voltage Feedback
LH0024	500	70	4	15	
LH0032	500	70	5	20	FET Input
LM6161	300	50	7	6.8	Unity Gain Stable, VIPTM
LM6162	300	100	5	6.8	Min Gain of 2, VIP
LM6164	300	175	4	6.8	Min Gain of 5, VIP
LM6165	300	725	3	6.8	Min Gain of 25, VIP
LM6313	250	35	20	11.5	Hi Speed Hi Power, Dual
LM6218A	140	17	1	3.5	Fast Settling Dual, VIP
LM6218	140	17	3	3.5	Fast Settling Dual, VIP
LH0003	2-70	10-30	3	3	External Compensation
LM118	70	15	4	7	
LF157A	50	20	2	7	Min Gain of 5, JFET
LM359	30	30	*	11	Dual Current Mode (Norton) Amp
LM6152	30	45	2.5	1.5	R-R In-Out, Dual
LM6154	30	45	2.5	1.5	R-R In-Out, Quad
LM6142A	25	17	1.0	0.8	Low Power, R-R In-Out, Dual
LM6144A	25	17	1.0	0.8	Low Power, R-R In-Out, Quad
LF411A	15	4	0.5	1.4	JFET
LF412A	15	4	1.0	2.8	Dual JFET
LF147	13	4	5	2.75	Quad JFET
LF451	13	4	5	3.4	SO Pkg
LF453	13	4	5	3.25	SO Pkg Dual
LF351	13	4	10	3.4	JFET
LF353	13	4	10	3.3	Dual JFET
LF156A	12	5	2	7	JFET
LM833	7	15	5	4	Dual Low Noise
*Not specified. Note 1: Supply current is per amplifier in a package.					

	$i o n a$	Semi	$n d u$	r plifier	electio	Guide
Part \#	$\begin{gathered} V_{0 S} \\ m V \text { (Max) } \end{gathered}$	$\underset{\mathrm{nA}(\mathrm{Max})}{\mathrm{I}_{\mathrm{B}}}$	$\begin{gathered} \text { GBW } \\ \text { MHz (typ) } \end{gathered}$	Slew Rate $\mathrm{V} / \mu \mathrm{s}$ (Typ)	Supply Current (Note 1) mA (Max)	Notes
Singles						
LMC6081A	0.35	0.00001*	1.3	1.5	0.750	Low power
LMC6061A	0.35	0.00001*	0.1	0.035	0.024	Micropower
LM308A	0.5	7	1	0.3	0.8	
LM208A	0.5	2	1	0.3	0.6	
LM108A	0.5	2	1	0.3	0.6	
LF441A	0.5	0.05	1	1	0.2	
LF411A	0.5	0.2	4	15	2.8	
LM11C	0.6	0.1	0.8	0.3	0.8	
LMC6081	0.8	0.00001*	1.3	1.5	0.750	Low power
LMC6061	0.8	0.00001*	0.1	0.035	0.032	Micropower
Duals						
LMC6082A	0.35	0.00001*	1.3	0.75	0.75	Dual LMC6081A
LMC6062A	0.35	0.00001*	0.1	0.019	0.019	Dual LMC6061A
LMC6482A	0.5	0.00002*	1.3	1	0.50	Rail to Rail Input/Output
LMC6082	0.8	0.00001*	1.3	1.5	0.75	Dual LMC6081
LMC6062	0.8	0.00001*	0.1	0.035	0.023	Dual LMC6061
Quads						
LMC6084A	0.35	0.00001*	1.3	1.5	0.75	Quad LMC6081A
LMC6064A	0.35	0.00001*	0.1	0.035	0.019	Quad LMC6061A
LMC6484A	0.5	0.00002*	1.3	1	0.50	Rail to Rail Input/Output
LMC6084	0.8	0.00001*	1.3	1.5	0.75	Quad LMC6081
LMC6064	0.8	0.00001*	0.1	0.35	0.029	Quad LMC6061
*Typical Value Note 1: Supply current is per amplifier.						

QNational Semiconductor

MicroPower/Low Power Operational Amplifier Selection Guide

	Part \#
	Is Typ (per Amp)

Specs at $T_{A}=25^{\circ} \mathrm{C}$ and $V \mathrm{~V}=+5 \mathrm{~V}$
Singles

LMC6041A	14	3	2	-0.4 to 3.1	0.004 to 4.987	0.075	5	15
LMC6041	14	6	2	-0.4 to 3.1	0.004 to 4.987	0.075	5	15
LMC6061A	20	0.35	10	-0.4 to 3.1	0.005 to 4.995	0.1	5	15
LMC6061	20	0.8	10	-0.4 to 3.1	0.005 to 4.995	0.1	5	15
LPC661A	55	3	2	-0.4 to 3.1	0.004 to 4.987	0.35	5	15
LPC661	55	6	2	-0.4 to 3.1	0.004 to 4.987	0.35	5	15
LMC6081A	450	0.35	10	-0.4 to 3.1	0.02 to 4.98	1.3	5	15
LMC6081	450	0.8	10	-0.4 to 3.1	0.02 to 4.98	1.3	5	15
LMC6681A	700	1	80	-0.3 to 5.3	0.05 to 4.9	1.2	1.8	10
LMC6681	700	3	80	-0.3 to 5.3	0.05 to 4.9	1.2	1.8	10

Duals

LMC6042A	10	3	2	-0.4 to 3.1	0.004 to 4.987	0.1	5	15
LMC6042	10	6	2	-0.4 to 3.1	0.004 to 4.987	0.1	5	15
LMC6062A	16	0.35	10	-0.4 to 3.1	0.005 to 4.995	0.1	5	15
LMC6062	16	0.8	10	-0.4 to 3.1	0.005 to 4.995	0.1	5	15
LMC6462A	20	0.5	150	-0.2 to 5.3	0.005 to 4.995	0.05	73	15
LMC6462	20	3	150	-0.2 to 5.3	0.005 to 4.995	0.05	3	15
LPC662A	43	3	2	-0.4 to 3.1	0.004 to 4.987	0.35	5	15
LPC662	43	6	2	-0.4 to 3.1	0.004 to 4.987	0.35	5	15
LMC6022	43	9	40	-0.4 to 3.1	0.004 to 4.987	0.35	5	15
LMC662A	375	3	2	-0.4 to 3.1	0.02 to 4.98	1.4	5	15
LMC662	375	6	2	-0.4 to 3.1	0.02 to 4.98	1.4	5	15
LMC6032	375	9	40	-0.4 to 3.1	0.02 to 4.98	1.4	5	15
LMC6082A	450	0.35	10	-0.4 to 3.1	0.02 to 4.98	1.3	5	15
LMC6082	450	0.8	10	-0.4 to 3.1	0.02 to 4.98	1.3	5	15
LMC6482A	500	0.5	20	0 to 5	0.03 to 4.97	1.3	3	15
LMC6482	500	3	20	0 to 5	0.03 to 4.97	1.3	3	15
LMC6492A	500	3	150	-0.3 to 5.3	0.02 to 4.98	1.5	2.5	15.5
LMC6492	500	6	150	-0.3 to 5.3	0.02 to 4.98	1.5	2.5	15.5

Part \#	$\begin{gathered} \text { Is } \\ \mu A \\ \text { Typ } \\ \text { (per Amp) } \end{gathered}$	Vos mV Max	$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{fA} \\ \mathrm{Typ} \end{gathered}$	$\begin{gathered} \mathbf{V}_{\mathbf{C M}} \\ \mathbf{V} \\ \mathbf{T y p} \end{gathered}$	$\begin{gathered} \text { Output Swing } \\ V \\ \text { Typ with } R L=100 \mathrm{k} \Omega \end{gathered}$	GBW MHz Typ	Specified Supply Voltage	
							$\underset{\mathbf{V i n}}{M}$	$\begin{gathered} \operatorname{Max} \\ \mathbf{V} \end{gathered}$
Specs at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and Vs $=+5 \mathrm{~V}$								
Duals Continued								
LMC6582A	700	1	80	-0.3 to 5.3	0.05 to 4.9	1.2	1.8	10
LMC6582	700	3	80	-0.3 to 5.3	0.05 to 4.9	1.2	1.8	10
LMC6682A	700	1	80	-0.3 to 5.3	0.05 to 4.9	1.2	1.8	10
LMC6682	700	3	80	-0.3 to 5.3	0.05 to 4.9	1.2	1.8	10
LMC6142A	650	1	170*		0.005 to 4.995	17	2.7	24
Quads								
LMC6044A	10	3	2	-0.4 to 3.1	0.004 to 4.987	0.1	5	15
LMC6044	10	6	2	-0.4 to 3.1	0.004 to 4.987	0.1	5	15
LMC6064A	16	0.35	10	-0.4 to 3.1	0.005 to 4.995	0.1	5	15
LMC6064	16	0.8	10	-0.4 to 3.1	0.005 to 4.995	0.1	5	15
LMC6464	20	3	150	-0.2 to 5.3	0.05 to 4.995	0.05	3	15
LMC6464A	20	0.5	150	-0.2 to 5.3	0.05 to 4.995	0.05	3	15
LPC660A	40	3	2	-0.4 to 3.1	0.004 to 4.987	0.35	5	15
LPC660	40	6	2	-0.4 to 3.1	0.004 to 4.987	0.35	5	15
LMC6024	40	9	40	-0.4 to 3.1	0.004 to 4.987	0.35	5	15
LMC660A	375	3	2	-0.4 to 3.1	0.02 to 4.98	1.4	5	15
LMC660	375	6	2	-0.4 to 3.1	0.02 to 4.98	1.4	5	15
LMC6034	375	9	40	-0.4 to 3.1	0.02 to 4.98	1.4	5	15
LMC6084A	450	0.35	10	-0.4 to 3.1	0.02 to 4.98	1.3	5	15
LMC6084	450	0.8	10	-0.4 to 3.1	0.02 to 4.98	1.3	5	15
LMC6484A	500	0.5	20	0 to 5	0.03 to 4.97	1.3	3	15
LMC6484	500	3	20	0 to 5	0.03 to 4.97	1.3	3	15
LMC6494A	500	3	150	-0.3 to 5.3	0.02 to 4.98	1.5	5	15
LMC6494	500	3	150	-0.3 to 5.3	0.02 to 4.98	1.5	5	15
LMC6144A	650	1	170*	-0.25 to 5.3	0.005 to 4.995	1.7	2.7	24
LMC6584A	700	1	80	-0.3 to 5.3	0.05 to 4.9	1.2	1.8	10
LMC6584	700	3	80	-0.3 to 5.3	0.05 to 4.9	1.2	1.8	10
LMC6684A	700	1	80	-0.3 to 5.3	0.05 to 4.9	1.2	1.8	10
LMC6684	700	3	80	-0.3 to 5.3	0.05 to 4.9	1.2	1.8	10
$*_{n A}$								

Part \#	lout A (Typ)	VOS $\mathbf{m V}$ (Max)	Is mA (Max)	Siew Rate V/ $\mu \mathbf{S}$ (Typ)	PBW (Typ)
LM6181	0.1	7.0	10	2000	60 MHz
LM6182	0.1 (Dual)	7.0	20	2000	60 MHz
LH0041	0.2	3	3.5	3	20 kHz
LH0101A	2.2	3	35	10	300 kHz
LH0101	2.2	10	35	10	300 kHz
LM675	3	10	50	8	$*$
LM12(L)	(Note 2)	7	80	9	60 kHz
LM12C(L)	(Note 2)	15	120	9.5	60 kHz
LM7171A	0.1	1	8.5	4100	33 MHz
LM7171	0.1	3	4	3600	33 MHz
LM6171A	0.1	6	4	3600	28 MHz
LM6171	0.1				28 MHz

*Not Specified
Note 1: Refer to Datasheet for conditions and more detailed information.
Note 2: IOUT for the LM12 is dependent on the amount of power dissipated in the output transistor. The datasheet should be referred to, to determine amount of current available.

National Semiconductor Low Voltage Selection Guide			
Part \#	Minimum Supply Voltage	Typical Supply Current (per Device)	Description
LMC6482	3 V	$500 \mu \mathrm{~A}$	Dual 1 MHz Rail-to-Rail Amp
LMC6484	3 V	$500 \mu \mathrm{~A}$	Quad 1 MHz Rail-to-Rail Amp
LMC7101	2.7 V	$500 \mu \mathrm{~A}$	Tiny PakTM SOT23 1 MHz Rail-to-Rail Amp
LMC7111	2.2 V	$25 \mu \mathrm{~A}$	Tiny Pak SOT23 35 kHz Rail-to-Rail Amp
LMC6582	1.8 V	700	Dual Low-Voltage, 1.2 MHz Rail-to-Rail Input and Output CMOS Amplifier
LMC6584	1.8V	700	Quad Low-Voltage, 1.2 MHz Rail-to-Rail Input and Output CMOS Amplifiers
LMC6681	1.8 V	$700 \mu \mathrm{~A}$	Single Low-Voltage, 1.2 MHz Rail-to-Rail Input and Output CMOS Amplifier with Powerdown
LMC6682	1.8 V	$700 \mu \mathrm{~A}$	Dual Low-Voltage, 1.2 MHz Rail-to-Rail Input and Output CMOS Op Amp with Powerdown
LMC6684	1.8 V	$700 \mu \mathrm{~A}$	Quad Low-Voltage, 1.2 MHz Rail-to-Rail Input and Output CMOS Amplifiers with Powerdown
LM6142	1.8 V	$650 \mu \mathrm{~A}$	Dual 17 MHz Gain-Bandwidth Rail-to-Rail Amp
LM6144	1.8V	$650 \mu \mathrm{~A}$	Quad 17 MHz Gain-Bandwidth Rail-to-Rail Amp
LM7131	3 V	7 mA	Video Amp in SOT23 Tiny Pak, 70 MHz Gain-Bandwidth
LM6132	1.8 V	$360 \mu \mathrm{~A}$	Dual 7 MHz Gain-Bandwidth Rail-to-Rail Amplifier
LM6134	1.8V	$360 \mu \mathrm{~A}$	Quad 7 MHz Gain-Bandwidth Rail-to-Rail Amplifier
LM6152	1.8V	$1500 \mu \mathrm{~A}$	Dual 45 MHz Gain-Bandwidth Rail-to-Rail Amplifier
LM6154	1.8 V	$1500 \mu \mathrm{~A}$	Dual 45 MHz Gain-Bandwidth Rail-to-Rail Amplifier

Audio Op Amp Selection Guide

Part \#	Description Precision Op Amp	Input Referred Noise Voltage	THD	Slew Rate	GBW	PSRR	Supply Range	Single/ Dual/Quad	Package (Pin Count)
LM833	Dual Audio Amplifier	$4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	0.002\%	7V/ $\mu \mathrm{s}$	15 MHz	100 dB	$\pm 18 \mathrm{~V}$	Dual	SO(8), DIP(8)
LM837	Quad Audio Amplifier	$4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	0.0015\%	$10 \mathrm{~V} / \mu \mathrm{s}$	25 MHz	100 dB	$\pm 18 \mathrm{~V}$	Quad	$\begin{aligned} & \mathrm{SO}(14), \\ & \mathrm{DIP}(14) \end{aligned}$
LF347	Wide Bandwidth JFET	$20 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	0.02\%	$13 \mathrm{~V} / \mu \mathrm{s}$	4 MHz	100 dB	$\pm 18 \mathrm{~V}$	Quad	$\begin{aligned} & \text { DIP(14), } \\ & \text { SO(14) } \end{aligned}$
LF351	Wide Bandwidth JFET	$25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	0.02\%	$13 \mathrm{~V} / \mu \mathrm{s}$	4 MHz	100 dB	$\pm 18 \mathrm{~V}$	Single	$\begin{aligned} & \mathrm{SO}(8), \\ & \mathrm{DIP}(8) \end{aligned}$
LF353	Dual LF351	$16 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	0.02\%	$13 \mathrm{~V} / \mu \mathrm{s}$	4 MHz	100 dB	$\pm 18 \mathrm{~V}$	Dual	$\begin{aligned} & S O(14), \\ & \text { DIP(14) } \end{aligned}$
LF411	Low Offset, Low Drift JFET	$25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	0.02\%	$15 \mathrm{~V} / \mu \mathrm{s}$	3 MHz	100 dB	$\pm 18 \mathrm{~V}$	Single	DIP(8)
LF412	Dual LF411	$25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	0.02\%	$15 \mathrm{~V} / \mu \mathrm{s}$	3 MHz	100 dB	$\pm 18 \mathrm{~V}$	Dual	DIP(8)
LF444	Low Power JFET Quad	$35 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	0.02\%	$1 \mathrm{~V} / \mu \mathrm{s}$	1 MHz	100 dB	$\pm 18 \mathrm{~V}$	Quad	$\begin{aligned} & \text { DIP(14), } \\ & \text { SO(14) } \end{aligned}$
LM6142	High-Speed/Low Power Dual	$16 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	0.03\%	$5 \mathrm{~V} / \mu \mathrm{s}$	17 MHz	87 dB	$\pm 1.8 \mathrm{~V}$ to 24 V	Dual	DIP(8), SO(8)
LM6144	High-Speed/Low Power Quad	$16 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	0.03\%	$5 \mathrm{~V} / \mu \mathrm{s}$	17 MHz	87 dB	$\pm 1.8 \mathrm{~V}$ to 24 V	Quad	$\begin{aligned} & \text { DIP(14), } \\ & \text { SO(14) } \end{aligned}$

National Semiconductor Audio Power Amp Selection Guide							
Users Supply Voltage	Part \#	Power [THD $\leq 1 \%$ (Typ)] Power Specified as Continuous RMS			Power [THD $\leq 10 \%$ (Typ)] Power Specified as Continuous RMS		
		4Ω	8Ω	16Ω	4Ω	8Ω	16Ω
$\begin{gathered} 5 \mathrm{~V} \\ \left(V_{S}=6 \mathrm{~V}\right) \\ \hline \end{gathered}$	LM1896	0.7 W	0.45W	NA	1.1W	1.3W	NA
12V		$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~W} \\ & 1.0 \mathrm{~W} \\ & 1.0 \mathrm{~W} \end{aligned}$	0.55 W 0.55W 0.55W	$\begin{aligned} & 1.75 \mathrm{~W} \\ & 1.75 \mathrm{~W} \\ & 2.0 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1.3 \mathrm{~W} \\ & 1.3 \mathrm{~W} \\ & 1.3 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \mathrm{~W} \\ & 0.75 \mathrm{~W} \\ & 0.75 \mathrm{~W} \end{aligned}$
14V	LM1877 LM2877 LM2878 LM2879	$\begin{aligned} & 2.0 \mathrm{~W} \\ & 2.0 \mathrm{~W} \\ & 2.0 \mathrm{~W} \\ & \text { NA } \\ & \hline \end{aligned}$	$\begin{array}{r} 1.3 \mathrm{~W} \\ 1.3 \mathrm{~W} \\ 1.3 \mathrm{~W} \\ 1.25 \mathrm{~W} \\ \hline \end{array}$	$\begin{gathered} 0.85 \mathrm{~W} \\ 0.85 \mathrm{~W} \\ 0.85 \mathrm{~W} \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} 2.5 \mathrm{~W} \\ 2.75 \mathrm{~W} \\ 2.75 \mathrm{~W} \\ \mathrm{NA} \\ \hline \end{gathered}$	$\begin{gathered} 1.75 \mathrm{~W} \\ 1.75 \mathrm{~W} \\ 1.75 \mathrm{~W} \\ 2 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{aligned} & 1.0 \mathrm{~W} \\ & 1.0 \mathrm{~W} \\ & 1.0 \mathrm{~W} \\ & \text { NA } \\ & \hline \end{aligned}$
20V and Above $\begin{aligned} & \left(V_{S}=20 \mathrm{~V}\right) \\ & \left(V_{S}=20 \mathrm{~V}\right) \\ & \left(V_{S}=20 \mathrm{~V}\right) \\ & \left(V_{S}=28 \mathrm{~V}\right) \\ & \left(V_{S}= \pm 25 \mathrm{~V}\right) \\ & \left(V_{S}= \pm 35 \mathrm{~V}\right) \\ & \left(V_{S}= \pm 35 \mathrm{~V}\right) \\ & \left(V_{S}= \pm 35 \mathrm{~V}\right) \end{aligned}$	LM1877 LM2877 LM2878 LM2879 LM1875 LM3875 LM3876 LM3886	2.0 W 2.5 W NA NA 20 W $45 \mathrm{~W} \mathrm{~V}_{\mathrm{S}}= \pm 25 \mathrm{~V}$ $45 \mathrm{~W}\left(\mathrm{~V}_{\mathrm{S}}= \pm 25 \mathrm{~V}\right.$ $68 \mathrm{~W}\left(\mathrm{~V}_{\mathrm{S}}= \pm 28 \mathrm{~V}\right.$	$\begin{aligned} & 2.0 \mathrm{~W} \\ & 3.0 \mathrm{~W} \\ & 4.0 \mathrm{~W} \\ & 7.0 \mathrm{~W} \\ & 20 \mathrm{~W} \\ & 56 \mathrm{~W} \\ & 56 \mathrm{~W} \\ & 63 \mathrm{~W} \end{aligned}$	$\begin{gathered} \text { NA } \\ 1.75 \mathrm{~W} \\ \text { NA } \\ \text { NA } \\ \text { NA } \\ 30 W \\ 30 W \\ 33 W \end{gathered}$	2.5 W 3.7 NA NA 25 W $56 \mathrm{~W}\left(\mathrm{~V}_{\mathrm{S}}= \pm 25 \mathrm{~V}\right)$ $56 \mathrm{~W}\left(\mathrm{~V}_{\mathrm{S}}= \pm 25 \mathrm{~V}\right)$ $87 \mathrm{~W}\left(\mathrm{~V}_{\mathrm{S}}= \pm 28 \mathrm{~V}\right)$	3.0W 4.25W 4.75W 8W 30W 70W 70W 78W	NA 2.3W NA NA NA 39W 39W 41W

**Isolated packages available.

National Semiconductor

Special Amplifier Selection Guide

Amplifiers with Added Functions

Featuring the new Super-BlockTM family, these amplifiers have additional special functions within their packages which help minimize the number of components required in an application. These devices are often used in control circuits, power supplies, and automatic test systems.

LM10	Op Amp and Adjustable Voltage Reference
LM392	Op Amp and Comparator
LM611	Super-Block Op Amp and Adjustable Voltage Reference
LM613	Super-Block Dual Op Amp, Dual Comparator, and Adjustable Voltage Reference
LM614	Super-Block Quad Op Amp and Adjustable Voltage Reference

Transconductance Amplifiers (Voltage In, Current Out)

These amplifiers provide a transconductance $\left(\mathrm{g}_{\mathrm{m}}\right)$ proportional to their bias current, which is controlled externally. This programmable gain makes the amplifiers useful in applications such as voltage-controlled amplifiers, current-controlled amplifiers, AGC circuits, and voltage multipliers.

LM3080	Operational Transconductance Amplifier
LM13600	Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers
LM13700	Improved Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers

Transimpedance Amplifiers (Current In, Voltage Out)

Transimpedance amplifiers are widely used to amplify photo-diode signals, and to ground-reference differential voltage signals which have high common-mode voltages. The LH0082 was designed to receive and amplify analog and digital signals transmitted by fiber optics. Like the LM359, the LH0082 can also be used as a video amplifier. The LM2900 series has found popularity in filter applications, as well as general-purpose amplifiers.

LM359	Dual Current Mode (Norton) Amplifier
LM2900	Quad Current Mode (Norton) Amplifier
LM3900	
LM3301	
LM3401	

LF147/LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers

General Description

The LF147 is a low cost, high speed quad JFET input operational amplifier with an internally trimmed input offset voltage (BI-FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF147 is pin compatible with the standard LM148. This feature allows designers to immediately upgrade the overall performance of existing LF148 and LM124 designs.
The LF147 may be used in applications such as high speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The device has low noise and offset voltage drift.

Simplified Schematic

TL/H/5647-13

Features

- Internally trimmed offset voltage , . 5 mV max
- Low input bias current

50 pA

- Low input noise current $0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Wide gain bandwidth

4 MHz
\square High slew rate $\quad 13 \mathrm{~V} / \mu \mathrm{s}$
■ Low supply current . 7.2 mA

- High input impedance $10^{12} \Omega$
- Low total harmonic distortion $A_{V}=10, \quad<0.02 \%$ $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$
■ Low 1/f noise corner 50 Hz
- Fast settling time to $0.01 \% \quad 2 \mu \mathrm{~s}$

Connection Diagram

Dual-In-Line Package

Top View
Order Number LF147J, LF347M, LF347BN, LF347N, LF147D/883 or LF147J/883* See NS Package Number D14E, J14A, M14A or N14A

[^0]| Absolute Maximum Ratings | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| If Military／Aerospace specified devices are required， please contact the National Semiconductor Sales Office／Distributors for availability and specifications． | | | Operating Temperature Range | LF147
 （Note 4） | LF347B／LF347
 （Note 4） |
| | LF147 | LF347B／LF347 | Storage Temperature | | |
| Supply Voltage | $\pm 22 \mathrm{~V}$ | $\pm 18 \mathrm{~V}$ | Range | $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 150^{\circ} \mathrm{C}$ | |
| Differential Input Voltage | $\pm 38 \mathrm{~V}$ | $\pm 30 \mathrm{~V}$ | Lead Temperature （Soldering， 10 sec ．） | $260^{\circ} \mathrm{C}$ | |
| Input Voltage Range （Note 1） | $\pm 19 \mathrm{~V}$ | $\pm 15 \mathrm{~V}$ | Soldering Information | | $260^{\circ} \mathrm{C}$ |
| Output Short Circuit Duration（Note 2） | Continuous | Continuous | Dual－In－Line Package Soldering（10 seconds） | $260^{\circ} \mathrm{C}$ | |
| Power Dissipation （Notes 3 and 9） | 900 mW | 1000 mW | Small Outline Package Vapor Phase（ 60 seconds） Infrared（ 15 seconds） | | $215{ }^{\circ} \mathrm{C}$ 220 |
| T_{j} max | $150^{\circ} \mathrm{C}$ | $150^{\circ} \mathrm{C}$ | | | |
| θ_{jA} | | | See AN－450＂Surface Mounting Methods and Their Effect on Product Reliability＂for other methods of soldering sur－ face mount devices． | | |
| Ceramic DIP（J）Package | | $\begin{aligned} & 80^{\circ} \mathrm{C} / \mathrm{W} \\ & 70^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$ | | | | |
| Plastic DIP（N）Package | | $75^{\circ} \mathrm{C} / \mathrm{W}$ | ESD Tolerance（Note 10） | | 900 V |
| Surface Mount Narrow（M） | | $100^{\circ} \mathrm{C} / \mathrm{W}$ | | | |
| Surface Mount Wide（WM） | | $85^{\circ} \mathrm{C} / \mathrm{W}$ | | | |

DC Electrical Characteristics（Note 5）

Symbol	Parameter	Conditions	LF147			LF347B			LF347			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Vos	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		1	$\begin{aligned} & 5 \\ & 8 \end{aligned}$		3	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		5	$\begin{array}{r} 10 \\ 13 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10			10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 5,6)$ Over Temperature		25	$\begin{array}{\|c\|} \hline 100 \\ 25 \\ \hline \end{array}$		25	$\begin{array}{\|c\|} \hline 100 \\ 4 \\ \hline \end{array}$		25	$\begin{array}{\|c\|} \hline 100 \\ 4 \\ \hline \end{array}$	pA nA
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 5,6)$ Over Temperature		50	$\begin{array}{\|c\|} \hline 200 \\ 50 \\ \hline \end{array}$		50	$\begin{array}{\|c\|} \hline 200 \\ 8 \\ \hline \end{array}$		50	$\begin{array}{\|c\|} \hline 200 \\ 8 \end{array}$	pA nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{12}			10^{12}			10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ Over Temperature	50 25	100		50 25	100		25 15	100		V / mV V / mV
V_{O}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		± 12	± 13.5		± 12	± 13.5		V
$V_{C M}$	Input Common－Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15 \\ & -12 \\ & \hline \end{aligned}$		± 11	$\begin{array}{r} +15 \\ -12 \\ \hline \end{array}$		± 11	$\begin{aligned} & +15 \\ & -12 \\ & \hline \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$
CMRR	Common－Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	80	100		80	100		70	100		dB
PSRR	Supply Voltage Rejection Ratio	（Note 7）	80	100		80	100		70	100		dB
Is	Supply Current			7.2	11		7.2	11		7.2	11	mA

AC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	LF147			LF347B			LF347			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
	Amplifier to Amplifier Coupling	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \\ & \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz} \\ & \text { (Input Referred) } \\ & \hline \end{aligned}$		-120			-120			-120		dB
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8	13		8	13		8	13		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2	4		2.2	4		2.2	4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1000 \mathrm{~Hz} \end{aligned}$		20			20			20		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 3: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\boldsymbol{\theta}_{\mathrm{j} A}$.
Note 4: The LF147 is available In the military temperature range $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, while the LF347B and the LF347 are available in the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$. Junction temperature can rise to $T_{j} \max =150^{\circ} \mathrm{C}$.
Note 5: Unless otherwise specified the specifications apply over the full temperature range and for $\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$ for the LF 147 and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF347B/ LF347. $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, and l_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 6: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{P}_{\mathrm{D}} . \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{A}}+\theta_{j A} \mathrm{P}_{\mathrm{D}}$ where θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice from $V_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ for the LF347 and LF347B and from $\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF147.
Note 8: Refer to RETS147X for LF147D and LF147J military specifications.
Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.
Note 10: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

TL/H/5647-3

Pulse Response $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

TIME（ $0.2 \mu \mathrm{~s} / \mathrm{DIV})$

TIME（2 $\mu \mathrm{s} / \mathrm{DIV}$ ）

Small Signal Non－Inverting

Large Signal Non－Inverting

TIME（ $2 \mu \mathrm{~s} / \mathrm{DIV}$ ）

Application Hints

The LF147 is an op amp with an internally trimmed input offset voltage and JFET input devices（BI－FET IITM）．These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs．Therefore，large differential input voltages can easily be accommodated without a large increase in input current． The maximum differential input voltage is independent of the supply voltages．However，neither of the input voltages
should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit．

Exceeding the negative common－mode limit on either input will force the output to a high state，potentially causing a reversal of phase to the output．Exceeding the negative common－mode limit on both inputs will force the amplifier

Application Hints (Continued)

output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply; an increase in input offset voltage may occur.
Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 4.5 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The LF147 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings:
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in po-
larity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up"" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Detailed Schematic

TL/H/5647-9

Typical Applications

TL/H/5647-10

Long Time Integrator with Reset, Hold and Starting Threshold Adjustment

TL/H/5647-11

- VOUT starts from zero and is equal to the integral of the input voltage with respect to the threshold voltage:

$$
\mathrm{V}_{\mathrm{OUT}}=\frac{1}{\mathrm{RC}} \int_{0}^{\mathrm{t}}\left(\mathrm{~V}_{\mathbb{I N}}-\mathrm{V}_{\mathrm{TH}}\right) \mathrm{dt}
$$

- Output starts when $V_{I N} \geq V_{T H}$
- Switch S1 permits stopping and holding any output value
- Switch S2 resets system to zero

Typical Applications (Continued)

For circuit shown:

$\mathrm{f}_{\mathrm{O}}=3 \mathrm{kHz}, \mathrm{f}_{\mathrm{NOTCH}}=9.5 \mathrm{kHz}$
$\mathrm{Q}=3.4$
Passband gain:
Highpass-0.1
Bandpass-1
Lowpass-1
Notch-10

- $\mathrm{f}_{0} \times \mathrm{Q} \leq 200 \mathrm{kHz}$
- 10V peak sinusoidal output swing without slew limiting to 200 kHz
- See LM148 data sheet for design equations

LF155/LF156/LF157 Series Monolithic JFET Input Operational Amplifiers

General Description

These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BI-FETTM Technology). These amplifiers feature low input bias and offset currents/low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or commonmode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/f noise corner.

Advantages

- Replace expensive hybrid and module FET op amps
- Rugged JFETs allow blow-out free handling compared with MOSFET input devices
■ Excellent for low noise applications using either high or low source impedance-very low $1 / \mathrm{f}$ corner
- Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers
- New output stage allows use of large capacitive loads ($5,000 \mathrm{pF}$) without stability problems
- Internal compensation and large differential input voltage capability

Applications

- Precision high speed integrators
- Fast D/A and A/D converters
- High impedance buffers
- Wideband, low noise, low drift amplifiers
- Logarithmic amplifiers
- Photocell amplifiers
- Sample and Hold circuits

Common Features

(LF155A, LF156A, LF157A)

- Low input bias current	30 pA
- Low Input Offset Current	3 pA
- High input impedance	$10^{12} \Omega$
- Low input offset voltage	1 mV
- Low input offset voltage temp. drift	$3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- High common-mode rejection ratio	100 dB
- Large dc voltage gain	106 dB

Uncommon Features

	LF155A	LF156A	LF157A $\left(A_{v}=5\right)$	Units
Extremely fast settling time to 0.01\%	4	1.5	1.5	$\mu \mathrm{S}$
Fast slew rate	5	12	50	$\mathrm{V} / \mu \mathrm{s}$
- Wide gain bandwidth	2.5	5	20	MHz
- Low input noise voltage	20	12	12	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

Simplified Schematic

[^1]

TL/H/5646-1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 8)
Supply Voltage
Differential Input Voltage
Input Voltage Range (Note 2)
Output Short Circuit Duration

LF155A/6A/7A	LF155/6/7
$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$
$\pm 40 \mathrm{~V}$	$\pm 40 \mathrm{~V}$
$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$
Continuous	Continuous

TjMAX
H-Package
N-Package
$150^{\circ} \mathrm{C}$

M-Package
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Notes 1 and 9$)$

H-Package (Still Air)	560 mW	560 mW
H-Package (400 LF/Min Air Flow)	1200 mW	1200 mW
N-Package		
M-Package		
Thermal Resistance (Typical) θ_{JA} :		
H-Package (Still Air)	$160^{\circ} \mathrm{C} / \mathrm{W}$	$160^{\circ} \mathrm{C} / \mathrm{W}$
H-Package (400 LF/Min Air Flow)	$65^{\circ} \mathrm{C} / \mathrm{W}$	$65^{\circ} \mathrm{C} / \mathrm{W}$
N-Package		
M-Package		
(Typical) $\theta_{\text {JC }}$		
H-Package	$23^{\circ} \mathrm{C} / \mathrm{W}$	$23^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

LF355B/6B/7B
LF255/6/7
$\pm 22 \mathrm{~V}$
$\pm 40 \mathrm{~V}$
$\pm 20 \mathrm{~V}$
Continuous

LF355/6/7 LF355A/6A/7A $\pm 18 \mathrm{~V}$ $\pm 30 \mathrm{~V}$ $\pm 16 \mathrm{~V}$

Continuous

Soldering Information (Lead Temp.)
Metal Can Package
$300^{\circ} \mathrm{C} \quad 300^{\circ} \mathrm{C}$

Soldering (10 sec.)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Dual-In-Line Package	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Soldering (10 sec.)		$215^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Small Outline Package		$220^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$
Vapor Phase (60 sec.)		$220^{\circ} \mathrm{C}$	

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance
(100 pF discharged through $1.5 \mathrm{k} \Omega$) 1000V 1000V 1000V

DC Electrical Characteristics (Note 3) $T_{A}=T_{j}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	LF155A/6A/7A			LF355A/6A/7A			Units
			Min	Typ	Max	Min	Typ	Max	
Vos	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		1	$\begin{gathered} 2 \\ 2.5 \end{gathered}$		1	$\begin{gathered} 2 \\ 2.3 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{S}=50 \Omega$		3	5		3	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta T C / \Delta V_{\text {OS }}$	Change in Average TC with Vos Adjust	$\mathrm{R}_{\mathrm{S}}=50 \Omega$, (Note 4)		0.5			0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ per mV
los	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,5) \\ & \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {HIGH }} \end{aligned}$		3	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$		3	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,5) \\ & T_{\mathrm{j}} \leq T_{\text {HIGH }} \end{aligned}$		30	$\begin{aligned} & 50 \\ & 25 \end{aligned}$		30	$\begin{gathered} 50 \\ 5 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
RIN	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1012			10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$ Over Temperature	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200		$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200		V / mV V / mV
V_{0}	Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

DC Electrical Characteristics (Note 3) $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (Continued)

Symbol	Parameter	Conditions	LF155A/6A/7A			LF355A/6A/7A			Units
			Min	Typ	Max	Min	Typ	Max	
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$	± 11	$\begin{gathered} +15.1 \\ -12 \end{gathered}$		± 11	$\begin{gathered} +15.1 \\ -12 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio		85	100		85	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	85	100		85	100		dB

AC Electrical Characteristics $T_{A}=T_{j}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Symbol	Parameter	Conditions	LF155A/355A			LF156A/356A			LF157A/357A			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
SR	Slew Rate	$\begin{aligned} & \text { LF155A/6A; } A_{V}=1, \\ & \text { LF157A; } A_{V}=5 \end{aligned}$	3	5		10	12		40	50		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
GBW	Gain Bandwidth Product			2.5		4	4.5		15	20		MHz
t_{s}	Settling Time to 0.01\%	(Note 7)		4			1.5			1.5		$\mu \mathrm{s}$
θ_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & R_{S}=100 \Omega \\ & f=100 \mathrm{~Hz} \\ & f=1000 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 25 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 12 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 12 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
i_{n}	Equivalent Input Noise Current	$\begin{aligned} & f=100 \mathrm{~Hz} \\ & \mathrm{f}=1000 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$		$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			3			3			3		pF

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	LF155/6/7			$\begin{gathered} \text { LF255/6/7 } \\ \text { LF355B/6B/7B } \end{gathered}$			LF355/6/7			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$R_{S}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$ Over Temperature		3	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		3	$\begin{gathered} 5 \\ 6.5 \end{gathered}$		3	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		5			5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\triangle T C / \Delta V_{\text {OS }}$	Change in Average TC with $V_{\text {OS }}$ Adjust	$\mathrm{R}_{\mathrm{S}}=50 \Omega$, (Note 4)		0.5			0.5			0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ per mV
los	Input Offset Current	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,5) \\ & T_{\mathrm{j}} \leq T_{\text {HIGH }} \\ & \hline \end{aligned}$		3	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		3	$\begin{gathered} 20 \\ 1 \end{gathered}$		3	$\begin{gathered} 50 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,5) \\ & T_{\mathrm{j}} \leq T_{\text {HIGH }} \\ & \hline \end{aligned}$		30	$\begin{gathered} 100 \\ 50 \end{gathered}$		30	$\begin{array}{\|c\|} \hline 100 \\ 5 \\ \hline \end{array}$		30	$\begin{array}{\|c\|} \hline 200 \\ 8 \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1012			1012			1012		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \text { Over Temperature } \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \\ & \hline \end{aligned}$	200		$\begin{array}{r} 50 \\ 25 \\ \hline \end{array}$	200		$\begin{aligned} & 25 \\ & 15 \end{aligned}$	200		V / mV V/mV
V_{0}	Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$	± 11	$\begin{gathered} +15.1 \\ -12 \\ \hline \end{gathered}$		± 11	$\begin{gathered} \pm 15.1 \\ -12 \end{gathered}$		+10	$\begin{gathered} +15.1 \\ -12 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio		85	100		85	100		80	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	85	100		85	100		80	100		dB

DC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Parameter	$\begin{gathered} \text { LF155A/155, } \\ \text { LF255, } \\ \text { LF355A/355B } \end{gathered}$		LF355		LF156A/156, LF256/356B		LF356A/356		LF157A/157 LF257/357B		LF357A/357		Units
	Typ	Max											
Supply Current	2	4	2	4	5	7	5	10	5	7.	5	10	mA

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Symbol	Parameter	Conditions	$\begin{gathered} \text { LF155/255/ } \\ \text { 355/355B } \end{gathered}$	$\begin{gathered} \text { LF156/256, } \\ \text { LF356B } \end{gathered}$	$\begin{gathered} \text { LF156/256/ } \\ 356 / 356 B \end{gathered}$	LF157/257, LF357B	$\begin{gathered} \text { LF157/257/ } \\ 357 / 357 B \end{gathered}$	Units
			Typ	Min	Typ	Min	Typ	
SR	Slew Rate	$\begin{aligned} & \text { LF155/6: } A_{V}=1, \\ & \text { LF157: } A_{V}=5 \end{aligned}$	5	7.5	12	30	50	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
GBW	Gain Bandwidth Product		2.5		5		20	MHz
$\mathrm{t}_{\text {s }}$	Settling Time to 0.01\%	(Note 7)	4		1.5		1.5	$\mu \mathrm{S}$
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & R_{S}=100 \Omega \\ & f=100 \mathrm{~Hz} \\ & \mathrm{f}=1000 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & 15 \\ & 12 \\ & \hline \end{aligned}$.	$\begin{aligned} & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & n \mathrm{~V} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
i_{n}	Equivalent Input Current Noise	$\begin{aligned} & f=100 \mathrm{~Hz} \\ & \mathrm{f}=1000 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$		$\begin{array}{r} 0.01 \\ 0.01 \\ \hline \end{array}$		$\begin{aligned} & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{Can}_{\text {IN }}$	Input Capacitance		3		3		3	pF

Notes for Electrical Characteristics

Note 1: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\mathrm{jMA}}, \theta_{\mathrm{j}}$, and the ambient temperature, T_{A}. The maximum available power dissipation at any temperature is $P_{d}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} P_{d M A X}$, whichever is less.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: Unless otherwise stated, these test conditions apply:

	LF155A/6A/7A LF155//6/7	LF255//6/7	LF355A/6A/7A	LF355B/6B/7B	LF355//6/7
Supply Voltage, V_{S} T_{A} $\mathrm{T}_{\mathrm{HIGH}}$	$\begin{aligned} & \pm 15 \mathrm{~V} \leq V_{S} \leq \pm 20 \mathrm{~V} \\ & -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V} \\ & -25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \pm 20 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \\ & +70^{\circ} \mathrm{C} \end{aligned}$

and $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$ and l_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 4: The Temperature Coefficient of the adjusted input offset voltage changes only a small amount ($0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{J}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd} . \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{A}}+\theta_{j \mathrm{~A}} \mathrm{Pd}$ where θ_{j} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 6: Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.
Note 7: Settling time is defined here, for a unity gain inverter connection using $2 \mathrm{k} \Omega$ resistors for the LF155/6. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10 V step inpüt is applied to the inverter. For the LF157, $A_{V}=-5$, the feedback resistor from output to input is $2 \mathrm{k} \Omega$ and the output step is 10 V (See Settling Time Test Circuit).
Note 8: Refer to RETS155AX for LF155A, RETS155X for LF155, RETS156AX for LF156A, RETS156X for LF156, RETS157A for LF157A and RETS157X for LF157 military specifications.
Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Typical DC Performance Characteristics

Curves are for LF155, LF156 and LF157 unless otherwise specified.

Supply Current

Positive Common-Mode Input Voltage Limit

TL/H/5646-2

Output Voltage Swing

Typical AC Performance Characteristics

Typical AC Performance Characteristics (Continued)

Bode Plot

Common-Mode Rejection Ratio

Inverter Settling Time

 1
(S334930) 3SVHd

Equivalent Input Noise

Open Loop Frequency Response

Detailed Schematic

Connection Diagrams (Top Views)

Metal Can Package (H)

TL/H/5646-14
Order Number LF156AH, LF155H, LF156H, LF255H, LF256H, LF257H, LF355AH, LF356AH, LF357AH, LF356BH, LF355H, LF356H, LF357H, LM155AH/883, LM155H/883, LM156AH/883, LM156H/883, LM157AH/883 or LM157H/883* See NS Package Number H08C

Dual-In-Line Package (\mathbf{M} and \mathbf{N})

TL/H/5646-29
Order Number LF355M, LF356M, LF357M, LF355BM, LF356BM, LF355BN, LF356BN, LF357BN, LF355N, LF356N or LF357N
See NS Package Number M08A or N08E

Application Hints

The LF155/6/7 series are op amps with JFET input devices. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore large differential input voltages can easily be accomodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the commonmode voltage can exceed the positive supply by approximately 100 mV independent of supply voltage and over the full operating temperature range. The positive supply can therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
All of the bias currents in these amplifiers are set by FET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltage.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Circuit Connections

- V_{OS} is adjusted with a 25 k potentiometer
- The potentiometer wiper is connected to V^{+}
- For potentiometers with temperature coefficient of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less the additional drift with adjust is $\approx 0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} / \mathrm{mV}$ of adjustment
- Typical overall drift: $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \pm(0.5$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C} / \mathrm{mV}$ of adj.)

Driving Capacitive Loads
LF157. A Large Power BW Amplifier

*LF155/6 R $=5 \mathrm{k}$
LF157 R $=1.25 \mathrm{k}$

TL/H/5646-15
For distortion $\leq 1 \%$ and a $20 \mathrm{Vp}-\mathrm{p} \mathrm{V}_{\text {OUT }}$ swing, power bandwidth is: 500 kHz .

Typical Applications

- Settling time is tested with the LF155/6 connected as unity gain inverter and LF157 connected for $A_{V}=-5$
- FET used to isolate the probe capacitance
- Output $=10 \mathrm{~V}$ step
- $\mathrm{A}_{\mathrm{V}}=-5$ for LF157

Large Signal inverter Output, $\mathbf{V}_{\text {OUT }}$ (from Settling Time Circuit)

Low Drift Adjustable Voltage Reference

- $\Delta V_{\text {OUT }} / \Delta T= \pm 0.002 \% /{ }^{\circ} \mathrm{C}$
- All resistors and potentiometers should be wire-wound
- P1: drift adjust
- P2: V
- Use LF155 for
- Low IB
- Low drift

Low supply current

Typical Applications (Continued)

Fast Logarithmic Converter

- Dynamic range: $100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{i}} \leq 1 \mathrm{~mA}$ (5 decades), $\left|\mathrm{V}_{\mathrm{O}}\right|=1 \mathrm{~V} /$ decade
- Transient response: $3 \mu \mathrm{~s}$ for $\Delta \mathrm{l}_{\mathrm{i}}=1$ decade
- C1, C2, R2, R3: added dynamic compensation
- Vos adjust the LF156 to minimize quiescent error
- R_{T} : Tel Labs type Q81 $+0.3 \% /{ }^{\circ} \mathrm{C}$
$\left|V_{\text {OUT }}\right|=\left[1+\frac{R 2}{R_{T}}\right] \frac{k T}{q} \ln V_{i}\left[\frac{R_{r}}{V_{\text {REF Ri }}}\right]=\log V_{i} \frac{1}{R_{i} l_{r}} R 2=15.7 \mathrm{k}, R_{T}=1 \mathrm{k}, 0.3 \% /{ }^{\circ} \mathrm{C}$ (for temperature compensation)

Precision Current Monitor

8-Bit D/A Converter with Symmetrical Offset Binary Operation

TL/H/5646-32

- R1, R2 should be matched within $\pm 0.05 \%$
- Full-scale response time: $3 \mu \mathrm{~s}$

E $_{\mathbf{O}}$	B1	B2	B3	B4	B5	B6	B7	B8	Comments
+9.920	1	1	1	1	1	1	1	1	Positive Full-Scale
+0.040	1	0	0	0	0	0	0	0	$(+)$ Zero-Scale
-0.040	0	1	1	1	1	1	1	1	$(-)$ Zero-Scale
-9.920	0	0	0	0	0	0	0	0	Negative Full-Scale

Typical Applications (Continued)

Wide BW Low Noise, Low Drift Amplifier

- Power BW: $\mathrm{f}_{\mathrm{MAX}}=\frac{\mathrm{S}_{\mathrm{r}}}{2 \pi \mathrm{~V}_{\mathrm{P}}} \cong 191 \mathrm{kHz}$
- Parasitic input capacitance C1 $\cong(3 \mathrm{pF}$ for LF155, LF156 and LF157 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate add C2 such that: R2 C2 \cong R1 $\mathbf{C 1}$.

Boosting the LF156 with a Current Amplifier

- $I_{\text {OUt(MAX) }} \cong 150 \mathrm{~mA}$ (will drive $R_{L} \geq 100 \Omega$)
- $\frac{\Delta V_{\text {OUT }}}{\Delta T}=\frac{0.15}{10^{-2}} \mathrm{~V} / \mu \mathrm{s}$ (with C_{L} shown)
- No additional phase shift added by the current amplifier

$f=\frac{V_{C}(R 8+R 7)}{\left(8 V_{P U} R 8 R 1\right) C^{\prime}}, 0 \leq V_{C} \leq 30 V, 10 \mathrm{~Hz} \leq f \leq 10 \mathrm{kHz}$
R1, R4 matched. Linearity 0.1% over 2 decades.

Isolating Large Capacitive Loads

- Overshoot 6\%

TL/H/5646-22

- $\mathrm{t}_{\mathrm{s}} 10 \mu \mathrm{~s}$
- When driving large C_{L}, the $V_{O U T}$ slew rate determined by C_{L} and IOUT(MAX):
$\frac{\Delta \mathrm{V}_{\mathrm{OUT}}}{\Delta \mathrm{T}}=\frac{\mathrm{l} \mathrm{lOT}}{\mathrm{C}_{\mathrm{L}}} \cong \frac{0.02}{0.5} \mathrm{~V} / \mu \mathrm{s}=0.04 \mathrm{~V} / \mu \mathrm{s}$ (with C_{L} shown)
Low Drift Peak Detector

- By adding D1 and $\mathrm{R}_{\mathrm{f}}, \mathrm{V}_{\mathrm{D} 1}=0$ during hold mode. Leakage of D2 provided by feedback path through R_{f}.
- Leakage of circuit is essentially l_{b} (LF155, LF156) plus capacitor leakage of Cp .
- Diode D3 clamps $\mathrm{V}_{\text {OUT }}(\mathrm{A} 1)$ to $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{D} 3}$ to improve speed and to limit reverse bias of D2.
- Maximum input frequency should be $\ll 1 / 2 \pi R_{f} C_{D 2}$ where $C_{D 2}$ is the shunt capacitance of D2.

Non-Inverting Unity Gain Operation for LF157

$\mathrm{R1C} \geq \frac{1}{(2 \pi)(5 \mathrm{MHz})}$
$\mathrm{R} 1=\frac{\mathrm{R} 2+\mathrm{R}_{\mathrm{S}}}{4}$
$A_{V(D C)}=1$
$\mathrm{f}_{-3 \mathrm{~dB}} \approx 5 \mathrm{MHz}$

Inverting Unity Gain for LF157

$R 1 \mathrm{C} \geq \frac{1}{(2 \pi)(5 \mathrm{MHz})}$
$R 1=\frac{R 2}{4}$
$A_{V(D C)}=-1$
$\mathrm{f}_{-3 \mathrm{~dB}} \approx 5 \mathrm{MHz}$
TL/H/5646-25

Typical Applications (Continued)

High Impedance, Low Drift Instrumentation Amplifier

- $V_{\text {OUT }}=\frac{R 3}{R}\left[\frac{2 R 2}{R 1}+1\right] \Delta V, V-+2 V \leq V_{I N}$ common-mode $\leq V^{+}$
- System $V_{O S}$ adjusted via A2 V V $_{\text {O }}$ adjust
- Trim R3 to boost up CMRR to 120 dB . Instrumentation amplifier resistor array recommended for best accuracy and lowest drift

Typical Applications (Continued)

Fast Sample and Hold

TL/H/5646-33

- Both amplifiers (A1, A2) have feedback loops individually closed with stable responses (overshoot negligible)
- Acquisition time T_{A}, estimated by:
$T_{A} \cong\left[\frac{2 R_{O N}, V_{\mathbb{I N}_{N}}, C_{h}}{S_{r}}\right]^{1 / 2}$ provided that:
$\mathrm{V}_{\text {IN }}<2 \pi \mathrm{~S}_{\mathrm{r}} \mathrm{R}_{\mathrm{ON}} \mathrm{C}_{\mathrm{h}}$ and $\mathrm{T}_{\mathrm{A}}>\frac{\mathrm{V}_{\text {IN }} C_{h}}{\operatorname{lOUT}(\mathrm{MAX})}, \mathrm{R}_{\mathrm{ON}}$ is of SW1
If inequality not satisfied: $T_{A} \cong \frac{V_{I N} C_{h}}{20 \mathrm{~mA}}$
- LF156 develops full S_{r} output capability for $V_{\mathbb{N}} \geq 1 V$
- Addition of SW2 improves accuracy by putting the voltage drop across SW1 inside the feedback loop
- Overall accuracy of system determined by the accuracy of both amplifiers, A1 and A2

High Accuracy Sample and Hold

TL/H/5646-27

- By closing the loop through A 2 , the $\mathrm{V}_{\text {OUT }}$ accuracy will be determined uniquely by A 1 . No $V_{O S}$ adjust required for A2.
- T_{A} can be estimated by same considerations as previously but, because of the added propagation delay in the feedback loop (A2) the overshoot is not negligible.
- Overall system slower than fast sample and hold
- R1, C_{C} : additional compensation
- Use LF156 for
- Fast settling time
- Low $V_{\text {OS }}$

Typical Applications (Continued)

High Q Band Pass Filter

- By adding positive feedback (R2)
Q increases to 40
- $f_{B P}=100 \mathrm{kHz}$
$\frac{V_{\text {OUT }}}{V_{\text {IN }}}=10 \sqrt{\bar{Q}}$
- Clean layout recommended
- Response to a $1 \mathrm{Vp}-\mathrm{p}$ tone burst: $300 \mu \mathrm{~s}$

TL/H/5646-28

High Q Notch Filter

LF351 Wide Bandwidth JFET Input Operational Amplifier

General Description

The LF351 is a low cost high speed JFET input operational amplifier with an internally trimmed input offset voltage (BI-FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF351 is pin compatible with the standard LM741 and uses the same offset voltage adjustment circuitry. This feature allows designers to immediately upgrade the overall performance of existing LM741 designs.
The LF351 may be used in applications such as high speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The device has low noise and offset voltage drift, but for applications where these requirements are critical, the LF356 is recommended. If maximum supply
current is important, however, the LF351 is the better choice.

Features

Internally trimmed offset voltage	10 mV
Low input bias current	50 pA
■ Low input noise voltage	$25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low input noise current 0	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Wide gain bandwidth	4 MHz
- High slew rate	$13 \mathrm{~V} / \mu \mathrm{s}$
- Low supply current	1.8 mA
- High input impedance	$10^{12} \Omega$
- Low total harmonic distortion $\mathrm{A}_{V}=10$,	<0.02\%
$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$	
Low 1/f noise corner	50 Hz
- Fast settling time to 0.01\%	$2 \mu \mathrm{~s}$

Typical Connection

TL/H/5648-11

Simplified Schematic

Connection Diagrams
Dual-In-Line Package

TL/H/5648-13
Order Number LF351M or LF351N
See NS Package Number M08A or N08E

Absolute Maximum Ratings			
If Military/Aerospace specified devices are required,		$\theta_{\mathrm{j}} \mathrm{A}$	
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		N Package	$120^{\circ} \mathrm{C} / \mathrm{W}$
		M Package	TBD
Supply Voltage	$\pm 18 \mathrm{~V}$	Soldering Information	
Power Dissipation (Notes 1 and 6)	670 mW	Dual-In-Line Package	
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Soldering (10 sec.)	$260^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j} \text { (MAX) }}$	$115^{\circ} \mathrm{C}$	Vapor Phase (60 sec .)	$215^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$	Infrared (15 sec.)	$220^{\circ} \mathrm{C}$
Input Voltage Range (Note 2)	$\pm 15 \mathrm{~V}$	See AN-450 "Surface Mo	heir Effect
Output Short Circuit Duration	Continuous	on Product Reliability" for	dering sur-
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	face mount devices.	
Lead Temp. (Soldering, 10 sec.$)$		ESD rating to be determin	
Metal Can	$300^{\circ} \mathrm{C}$		
DIP	$260^{\circ} \mathrm{C}$		

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	LF351			Units
			Min	Typ	Max	
Vos	Input Offset Voltage	$R_{S}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ Over Temperature		5	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta V_{\text {OS }} / \Delta T$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & T_{j} \leq 70^{\circ} \mathrm{C} \end{aligned}$		25	$\begin{gathered} 100 \\ 4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & T_{j} \leq \pm 70^{\circ} \mathrm{C} \end{aligned}$		50	$\begin{gathered} 200 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
RIN	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ Over Temperature	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100		V / mV V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{array}{r} +15 \\ -12 \\ \hline \end{array}$		V V
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 5)	70	100		dB
Is	Supply Current			1.8	3.4	mA

AC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	LF351			Units
			Min	Typ	Max	
SR	Slew Rate	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		13		$\mathrm{V} / \mathrm{\mu s}$
GBW	Gain Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega \\ & f=1000 \mathrm{~Hz} \end{aligned}$		25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: For operating at elevated temperature, the device must be derated based on the thermal resistance, θ_{JA}.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{OS}}, I_{\mathrm{B}}$ and l_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 4: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 5: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice. From $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$.
Note 6: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Typical Performance Characteristics (Continued)

Open Loop Voltage
Gain (V/V)

Pulse Response

Application Hints

The LF351 is an op amp with an interna!ly trimmed input offset voltage and JFET input devices (BI-FET IITM). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will
cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output.
Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the

Application Hints (Continued)

common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the outpuit; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
The LF351 is biased by a zener reference which allows normal circuit operation on $\pm 4 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The LF351 will drive a $2 \mathbf{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed back-
wards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoúpling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Detailed Schematic

Typical Applications

Supply Current Indicator/Limiter

- $\mathrm{V}_{\text {OUT }}$ switches high when $R_{\mathrm{S}} \mathrm{IS}_{\mathrm{S}}>\mathrm{V}_{\mathrm{D}}$
$\mathrm{Hi}-\mathrm{Z}_{\mathrm{IN}}$ Inverting Amplifier

Parasitic input capacitance $\mathrm{C} 1 \cong(3 \mathrm{pF}$ for LF351 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate, add C2 such that: $\mathrm{R} 2 \mathrm{C} 2 \cong \mathrm{R1C1}$.

Ultra-Low (or High) Duty Cycle Pulse Generator

- toutput high \approx R1C $\ell n \frac{4.8-2 V_{S}}{4.8-V_{S}}$
- toutput Low \approx R2C $\ell n \frac{2 V_{S}-7.8}{V_{S}-7.8}$
where $\mathrm{V}_{\mathbf{S}}=\mathrm{V}^{+}+|\mathbf{V}-|$
*low leakage capacitor

TL/H/5648-10
*Low leakage capacitor

- 50 k pot used for less sensitive $\mathrm{V}_{\text {OS }}$ adjust

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

General Description

These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET IITM technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF353 is pin compatible with the standard LM1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and LM358 designs.
These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

Features

- Internally trimmed offset voltage	10 mV
- Low input bias current	50 pA
- Low input noise voltage	$25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Wide gain bandwidth	4 MHz
- High slew rate	$13 \mathrm{~V} / \mu \mathrm{s}$
- Low supply current	3.6 mA
- High input impedance	1012Ω
- Low total harmonic distortion $\mathrm{AV}=10$,	$<0.02 \%$
RL $=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$	
- Low $1 / \mathrm{f}$ noise corner	
- Fast settling time to 0.01%	50 Hz

Typical Connection

Simplified Schematic

Connection Diagrams

Metal Can Package (Top View)

Order Number LF353H See NS Package Number H08A

Order Number LF353M or LF353N See NS Package Number M08A or N08E

Absolute Maximum Ratings	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation	(Note 1$)$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Tj MAX)	$150^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 2)	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	Continuous
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temp. (Soldering, 10 sec .)
$260^{\circ} \mathrm{C}$
Soldering Information
Dual-In-Line Package Soldering (10 sec.) Small Outline Package Vapor Phase (60 sec .) Infrared (15 sec .) $220^{\circ} \mathrm{C}$ $215^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 7) 1700V θ_{JA} M Package TBD

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	LF353			Units
			M 1 n	Typ	Max	
V_{OS}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		5	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 4,5) \\ & \mathrm{T}_{\mathrm{j}} \leq 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		25	$\begin{gathered} 100 \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 4,5) \\ & \mathrm{T}_{\mathrm{j}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		50	$\begin{gathered} 200 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
R_{IN}	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { Over Temperature } \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \\ & \hline \end{aligned}$	100		V / mV V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	70	100		dB
Is	Supply Current			3.6	6.5	mA

AC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	LF353			Units
			Min	Typ	Max	
	Amplifier to Amplifier Coupling	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz} \\ & \text { (Input Referred) } \end{aligned}$		-120		dB
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8.0	13		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.7	4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & f=1000 \mathrm{~Hz} \end{aligned}$		16		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: For operating at elevated temperatures, the device must be derated based on a thermal resistance of $115^{\circ} \mathrm{C} / \mathrm{W}$ typ junction to ambient for the N package, and $158^{\circ} \mathrm{C} / \mathrm{W}$ typ junction to ambient for the H package.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: The power dissipation limit, however, cannot be exceeded.
Note 4: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$. $V_{O S}, I_{B}$ and $I_{O S}$ are measured at $V_{C M}=0$.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 6: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice. $V_{S}= \pm 6 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.
Note 7: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics

Positive Common-Mode Input Voltage Limit

Negative Common-Mode Input Voltage Limit

Supply Current

TL/H/5649-2

Typical Performance Characteristics (Continued)

FREQUENCY (Hz)

Power Supply Rejection

 RatioOpen Loop Frequency Response

Equivalent Input Noise Voltage

Pulse Response

Application Hints

These devices are op amps with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Application Hints (Continued)

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 6 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The amplifiers will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards
in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Detailed Schematic

Typical Applications

Three-Band Active Tone Control

Note 1: All controls flat.
Note 2: Bass and treble boost, mid flat
Note 3: Bass and treble cut, mid flat.
Note 4: Mid boost, bass and treble flat.
Note 5: Mid cut, bass and treble flat.

- All potentiometers are linear taper
- Use the LF347 Quad for stereo applications

Typical Applications (Continued)

$$
A_{V}=\left(\frac{2 R 2}{R 1}+1\right) \frac{R 5}{R 4}
$$

I7 and $\stackrel{1}{=}$ are separate isolated grounds
Matching of R2's, R4's and R5's control CMRR With $A V_{T}=1400$, resistor matching $=0.01 \%: C M R R=136 \mathrm{~dB}$

- Very high input impedance
- Super high CMRR

Fourth Order Low Pass Butterworth Filter

- Corner frequency $\left(f_{c}\right)=\sqrt{\frac{1}{R 1 R 2 C C 1}} \cdot \frac{1}{2 \pi}=\sqrt{\frac{1}{R 1^{\prime} R 2^{\prime} C C 1}} \cdot \frac{1}{2 \pi}$
- Passband gain $\left(\mathrm{H}_{\mathrm{O}}\right)=(1+\mathrm{R} 4 / \mathrm{R} 3)\left(1+\mathrm{R} 4^{\prime} / R 3^{\prime}\right)$
- First stage $Q=1.31$
- Second stage $Q=0.541$
- Circuit shown uses nearest 5% tolerance resistor values for a filter with a corner frequency of 100 Hz and a passband gain of 100
- Offset nulling necessary for accurate DC performance

Typical Applications (Continued)

Fourth Order High Pass Butterworth Filter

- Corner frequency $\left(f_{c}\right)=\sqrt{\frac{1}{R 1 R 2 C^{2}}} \cdot \frac{1}{2 \pi}=\sqrt{\frac{1}{R_{1}^{\prime} R^{\prime} C^{2}}} \cdot \frac{1}{2 \pi}$
- Passband gain ($H_{0}=(1+\mathrm{R} 4 / \mathrm{R} 3)\left(1+\mathrm{R} 4^{\prime} / R 3^{\prime}\right)$
- First stage $Q=1.31$
- Second stage $Q=0.541$
- Circuit shown uses closest 5% tolerance resistor values for a filter with a corner frequency of 1 kHz and a passband gain of 10 .

Ohms to Volts Converter

$\mathrm{V}_{\mathrm{O}}=\frac{1 \mathrm{~V}}{\mathrm{R}_{\text {LADDER }}} \times \mathrm{R}_{\mathrm{X}}$
Where' $\mathrm{R}_{\text {LADDER }}$ is the resistance from switch S1 pole to pin 7 of the LF353.

LF411 Low Offset，Low Drift JFET Input Operational Amplifier

General Description

These devices are low cost，high speed，JFET input opera－ tional amplifiers with very low input offset voltage and guar－ anteed input offset voltage drift．They require low supply current yet maintain a large gain bandwidth product and fast slew rate．In addition，well matched high voltage JFET input devices provide very low input bias and offset currents．The LF411 is pin compatible with the standard LM741 allowing designers to immediately upgrade the overall performance of existing designs．
These amplifiers may be used in applications such as high speed integrators，fast D／A converters，sample and hold circuits and many other circuits requiring low input offset voltage and drift，low input bias current，high input imped－ ance，high slew rate and wide bandwidth．

Features

$\begin{array}{lr}\text {－Internally trimmed offset voltage } & 0.5 \mathrm{mV}(\max) \\ \text {－Input offset voltage drift } & 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(\max) \\ \text {－Low input bias current } & 50 \mathrm{pA} \\ \text {－Low input noise current } & 0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ \text {－Wide gain bandwidth } & 3 \mathrm{MHz}(\mathrm{min}) \\ \text {－High slew rate } & 10 \mathrm{~V} / \mu \mathrm{s}(\mathrm{min}) \\ \text {－Low supply current } & 1.8 \mathrm{~mA} \\ \text {－High input impedance } & 10^{12} \Omega \\ \text {－Low total harmonic distortion } \mathrm{A}_{\mathrm{V}}=10, & <0.02 \% \\ \text { R }=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz} \\ \text {－Low } 1 / \mathrm{f} \text { noise corner } & \\ \text {－Fast settling time to } 0.01 \% & 50 \mathrm{~Hz} \\ & 2 \mu \mathrm{~s}\end{array}$

Typical Connection

Simplified Schematic

Ordering Information
LF411XYZ
X indicates electrical grade
\mathbf{Y} indicates temperature range
＂M＂for military
＂C＂for commercial
\mathbf{Z} indicates package type
＂H＂or＂N＂

TL／H／5655－6

Connection Diagrams

Dual－In－Line Package

Top View
Order Number LF411ACN， LF411CN or LF411MJ／883＊ See NS Package Number N08E or J08A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 8)			Power Dissipation (Notes 2 and 9)	H Package	N Package	
			670 mW	670 mW		
			T_{j} max	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	
	LF411A	LF411		$\theta_{i} A$	$162^{\circ} \mathrm{C} / \mathrm{W}$ (Still Air)	$120^{\circ} \mathrm{C} / \mathrm{W}$
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$		$65^{\circ} \mathrm{C} / \mathrm{W}(400 \mathrm{LF} / \mathrm{min}$		
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$		Air Flow)		
Input Voltage Range			$\theta_{\mathrm{j}} \mathrm{C}$	$20^{\circ} \mathrm{C} / \mathrm{W}$		
(Note 1)	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	Operating Temp.			
Output Short Circuit			Range	(Note 3)	(Note 3)	
Duration	Continuous	Continuous	Storage Temp. Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$	
			Lead Temp. (Soldering, 10 sec .)) $260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	
			ESD Tolerance	R	ing to be determined.	

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions		LF411A			LF411			Units
				Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.3	0.5		0.8	2.0	mV
$\Delta V_{\text {OS }} / \Delta T$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$ (Note 5)			7	10		7	$\begin{gathered} 20 \\ \text { (Note 5) } \\ \hline \end{gathered}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & (\text { Notes } 4,6) \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		25	100		25	100	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			2			2	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			25			25	nA
I_{B}	Input Bias Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & (\text { Notes } 4,6) \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		50	200		50	200	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			4			4	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			50			50	nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			1012			1012		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		50	200		25	200		V/mV
		Over Temperature		25	200		15	200		V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		± 12	± 13.5		± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range			± 16	+19.5		± 11	+14.5		V
					-16.5			-11.5		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$		80	100		70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 7)		80	100		70	100		dB
Is	Supply Current				1.8	2.8		1.8	3.4	mA

AC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	LF411A			LF411			Units
			Min	Typ	Max	Min	Typ	Max	
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	15		8	15		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3	4		2.7	4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		25			25		$\mathrm{nV} / \sqrt{ } \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{ } \sqrt{\mathrm{Hz}}$

Note 1：Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage．
Note 2：For operating at elevated temperature，these devices must be derated based on a thermal resistance of $\theta_{\mathrm{j}} \mathrm{A}$ ．
Note 3：These devices are available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$ ．The temperature range is designated by the position just before the package type in the device number．A＂C＂indicates the commercial temperature range and an＂M＂ indicates the military temperature range．The military temperature range is available in＂ H ＂package only．
Note 4：Unless otherwise specified，the specifications apply over the full temperature range and for $V_{S}= \pm 20 \mathrm{~V}$ for the $L F 411 \mathrm{~A}$ and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF 411 $V_{O S}, I_{\mathrm{B}}$ ，and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$ ．
Note 5：The LF411A is 100% tested to this specification．The LF411 is sample tested to insure at least 90% of the units meet this specification．
Note 6：The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature，T_{j} ．Due to limited production test time，the input bias currents measured are correlated to junction temperature．In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation，$P_{D} . T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient．Use of a heat sink is recommended if input bias current is to be kept to a minimum．
Note 7：Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice，from $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF411 and from $\pm 20 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF411A．
Note 8：RETS 411X for LF411MH and LF411MJ military specifications．
Note 9：Max．Power Dissipation is defined by the package characteristics．Operating the part near the Max．Power Dissipation may cause the part to operate outside guaranteed limits．

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Gain Bandwidth

Undistorted Output Voltage Swing

Power Supply

Slew: Rate

Application Hints

The LF411 series of internally trimmed JFET input op amps （BI－FET IITM）provide very low input offset voltage and guar－ anteed input offset voltage drift．These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs．There－ fore，large differential input voltages can easily be accom－ modated without a large increase in input current．The maxi－ mum differential input voltage is independent of the supply voltages．However，neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit．

Exceeding the negative common－mode limit on either input will force the output to a high state，potentially causing a reversal of phase to the output．Exceeding the negative common－mode limit on both inputs will force the amplifier output to a high state．In neither case does a latch occur since raising the input back within the common－mode range again puts the input stage and thus the amplifier in a normal operating mode．
Exceeding the positive common－mode limit on a single input will not change the phase of the output；however，if both inputs exceed the limit，the output of the amplifier may be forced to a high state．

Application Hints (Continued)

The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within $3 V$ of the negative supply, an increase in input offset voltage may occur.
The LF411 is biased by a zener reference which allows normal circuit operation on $\pm 4.5 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The LF411 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up", and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground:
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency, a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Applications

TO-5 heat sinks for Q6-Q7
TL/H/5655-9

Typical Applications（Continued）

$$
\begin{aligned}
& V_{\text {OUT }}=-V_{\text {REF }}\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+* * * \frac{A 10}{1024}\right) \\
& -10 V \leq V_{\text {REF }} \leq 10 \mathrm{~V} \\
& 0 \leq V_{\text {OUT }} \leq-\frac{1023}{1024} V_{\text {REF }} \\
& \text { where } A_{N}=1 \text { if the } A_{N} \text { digital input is high } \\
& A_{N}=0 \text { if the } A_{N} \text { digital input is low }
\end{aligned}
$$

Single Supply Analog Switch with Buffered Output

Detailed Schematic

LF412 Low Offset, Low Drift
Dual JFET Input Operational Amplifier

General Description

These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input offset voltage drift. They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. LF412 dual is pin compatible with the LM1558, allowing designers to immediately upgrade the overall performance of existing designs.
These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage and drift, low input bias current, high input impedance, high slew rate and wide bandwidth.

Features

- Internally trimmed offset voltage

1 mV (max)

- Input offset voltage drift
- Low input bias current
- Low input noise current
- Wide gain bandwidth
- High slew rate
- Low supply current
- High input impedance
- Low total harmonic distortion $A_{V}=10$,
$\leq 0.02 \%$
$R_{L}=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$
- Low 1/f noise corner

50 Hz
■ Fast settling time to 0.01%
$2 \mu \mathrm{~s}$

Typical Connection

Ordering Information
 Connection Diagrams

LF412XYZ
X indicates electrical grade
\mathbf{Y} indicates temperature range
" M " for military
" C " for commercial
Z indicates package type
" H " or " N "

Simplified Schematic

*Available per JM38510/11905

Note. Pin 4 connected to case. TOP VIEW

Order Number LF412AMH, LF412MH, LF412CH or LF412MH/883* See NS Package Number H08A

Order Number LF412ACN, LF412CN or LF412MJ/883* See NS Package Number J08A or N08E

Absolute Maximum Ratings

If Military／Aerospace specified devices are required，please contact the National Semiconductor Sales Office／ Distributors for availability and specifications．
（Note 9）

Supply Voltage	LF412A	LF412		H Package	N Package
	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	Power Dissipation（Note 10）	（Note 3）	670 mW
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	T_{j} max	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
Input voltage Range			θ_{j}（Typical）	$152^{\circ} \mathrm{C} / \mathrm{W}$	$115^{\circ} \mathrm{C} / \mathrm{W}$
（Note 1）	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	Operating Temp．Range	（Note 4）	（Note 4）
Output Short Circuit Duration（Note 2）	Continuous	Continuous	Storage Temp． Range	$-65^{\circ} \mathrm{C} \leq T_{A} \leq 150^{\circ} \mathrm{C}-65^{\circ} \mathrm{C} \leq T_{A} \leq 150^{\circ} \mathrm{C}$	
			Lead Temp． （Soldering， 10 sec ．）	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
			ESD Tolerance（Note 11）	1700 V	1700 V

DC Electrical Characteristics（Note 5）

Symbol	Parameter	Conditions		LF412A			LF412			Units
				Min	Typ	Max	Min	Typ	Max	
Vos	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.5	1.0		1.0	3.0	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$（Note 6）			7	10		7	20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{V}_{S}= \pm 15 \mathrm{~V} \\ & \text { (Notes } 5 \text { and } 7 \text {) } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		25	100		25	100	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			2			2	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			25			25	nA
I_{B}	Input Bias Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & \text { (Notes } 5 \text { and } 7 \text {) } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		50	200		50	200	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			4			4	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			50			50	nA
RIN	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			10^{12}			10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		50	200		25	200		V／mV
		Over Temperature		25	200		15	200		V / mV
V_{O}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		± 12	± 13.5		± 12	± 13.5		V
V_{CM}	Input Common－Mode Voltage Range			± 16	＋ 19.5		± 11	＋14．5		V
					－16．5			－11．5		V
CMRR	Common－Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$		80	100		70	100		dB
PSRR	Supply Voltage Rejection Ratio	（Note 8）		80	100		70	100		dB
Is	Supply Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			3.6	5.6		3.6	6.5	mA

AC Electrical Characteristics（Note 5）

＇Symbol	Parameter	Conditions	LF412A			LF412			Units
			Min	Typ	Max	Min	Typ	Max	
	Amplifier to Amplifier Coupling	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz} \\ & \text { (Input Referred) } \end{aligned}$		－120			－120		dB
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	15		8	15		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain－Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3	4		2.7	4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		25			25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: Any of the amplifier outputs can be shorted to ground indefintely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 3: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\boldsymbol{\theta}_{\mathrm{j}} \mathrm{A}$:
Note 4: These devices are available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$. The temperature range is designated by the position just before the package type in the device number. A " C " indicates the commercial temperature range and an " M " indicates the military temperature range. The military temperature range is available in " H " package only. In all cases the maximum operating temperature is limited by internal junction temperature T_{j} max.
Note 5: Unless otherwise specified, the specifications apply over the full temperature range and for $V_{S}= \pm 20 \mathrm{~V}$ for the $L F 412 \mathrm{~A}$ and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF 412 . $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, and l_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 6: The LF412A is 100% tested to this specification. The LF412 is sample tested on a per amplifier basis to insure at least 85% of the amplifiers meet this specification.
Note 7: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{P}_{\mathrm{D}} . \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{A}}+\theta_{\mathrm{j}} \mathrm{P}_{\mathrm{D}}$ where θ_{j} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 8: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.
$V_{S}= \pm 6 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.
Note 9: Refer to RETS412X for LF412MH and LF412MJ military specifications.
Note 10: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.
Note 11: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Pulse Response $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

TIME ($5 \mu \mathrm{~s} / \mathrm{DIV}$)

Application Hints

The LF412 series of JFET input dual op amps are internally trimmed (BI-FET IITM) providing very low input offset voltages and guaranteed input offset voltage drift. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state.

Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output, however, if both inputs exceed the limit, the output of the amplifier may be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.

Application Hints（Continued）

Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 6.0 \mathrm{~V}$ power sup－ plies．Supply voltages less than these may result in lower gain bandwidth and slew rate．
The amplifiers will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range．If the amplifier is forced to drive heavier load currents，however，an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and neg－ ative swings．
Precautions should be taken to ensure that the power sup－ ply for the integrated circuit never becomes reversed in po－ larity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the result－ ing forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit．

As with most amplifiers，care should be taken with lead dress，component placement and supply decoupling in or－ der to ensure stability．For example，resistors from the out－ put to an input should be placed with the body close to the input to minimize＂pick－up＂and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground．
A feedback pole is created when the feedback around any amplifier is resistive．The parallel resistance and capaci－ tance from the input of the device（usually the inverting in－ put）to AC ground set the frequency of the pole．In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin． However，if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp．The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant．

Typical Application

Single Supply Sample and Hold

Detailed Schematic

TL/H/5656-9

LF441 Low Power JFET Input Operational Amplifier

General Description

The LF441 low power operational amplifier provides many of the same AC characteristics as the industry standard LM741 while greatly improving the DC characteristics of the LM741. The amplifier has the same bandwidth, slew rate, and gain ($10 \mathrm{k} \Omega$ load) as the LM741 and only draws one tenth the supply current of the LM741. In addition, the well matched high voltage JFET input devices of the LF441 reduce the input bias and offset currents by a factor of 10,000 over the LM741. A combination of careful layout design and internal trimming guarantees very low input offset voltage and voltage drift. The LF441 also has a very low equivalent input noise voltage for a low power amplifier.
The LF441 is pin compatible with the LM741, allowing an immediate 10 times reduction in power drain in many applications. The LF441 should be used where low power
dissipation and good electrical characteristics are the major considerations.

Features

- $1 / 10$ supply current of a LM741 $200 \mu \mathrm{~A}$ (max)
- Low input bias current

50 pA (max)

- Low input offset voltage
0.5 mV (max)
- Low input offset voltage drift
$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (max)
- High gain bandwidth

1 MHz

- High slew rate
- Low noise voltage for low power
$1 \mathrm{~V} / \mu \mathrm{s}$
Low $0.01 \mathrm{pA} / \mathrm{VHz}$
- High input impedance
$35 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
$0.01 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$
$10^{12} \Omega$
- High gain $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$

Typical Connection

Ordering Information

LF441XYZ

\mathbf{X} indicates electrical grade
\mathbf{Y} indicates temperature range
"M" for military,
"C" for commercial
Z indicates package type " H " or " N "

Connection Diagrams

Metal Can Package

TL/H/9297-2 Top View
Note: Pin 4 connected to case.
Order Number LF441MH/883
See NS Package Number H08A

Dual-In-Line Package

TL/H/9297-4
Top View
Order Number LF441ACN, LF441CM or LF441CN
See NS Package Number M08A or N08E

Absolute Maximum Ratings

If Military／Aerospace specified devices are required， please contact the National Semiconductor Sales Office／Distributors for availability and specifications．

	LF441A	LF441
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differ	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$

Power Dissipation
（Notes 2 and 9 ）
$\mathrm{T}_{\mathrm{j} \text { max }}$
θ_{jA}（Typical）
Board Mount in still air
Board Mount in $400 \mathrm{LF} /$
\quad min air flow
$\theta_{\mathrm{j} \mathrm{C}} \quad$
Operating Temp．Range
Storage Temp．Range
Lead Temperature
（Soldering， 10 seconds）

H Package
 670 mW
 $150^{\circ} \mathrm{C}$
 $165^{\circ} \mathrm{C} / \mathrm{W}$
 $65^{\circ} \mathrm{C} / \mathrm{W}$
 $25^{\circ} \mathrm{C} / \mathrm{W}$

（Note 3）
$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

LF441A
LF441
Soldering Information
Dual－In－Line Package Soldering（10 sec．）
Small Outline Package Vapor Phase（ 60 sec. ） Infrared（ 15 sec. ）

LF441
$\pm 30 \mathrm{~V}$

Input Voltage Range （Note 1）
Output Short Circuit Duration

N Package

670 mW
$115^{\circ} \mathrm{C}$
$130^{\circ} \mathrm{C} / \mathrm{W}$
（Note 3）
$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$
See AN－450＂Surface Mounting Methods and Their Effect on Product Reliability＂for other methods of soldering sur－ face mount devices．
ESD Tolerance（Note 10）Rating to be Determined

DC Electrical Characteristics（Note 4）

Symbol	Parameter	Conditions		LF441A			LF441			Units
				Min	Typ	Max	Min	Typ	Max	
V OS	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.3	0.5		1	5	mV
		Over Temperature							7.5	mV
$\Delta V_{\text {OS }} / \Delta T$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$（Note 5）			7	10		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \text { (Notes } 4 \text { and } 6 \text {) } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		5	25		5	50	pÁ
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			1.5			1.5	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			10				nA
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ （Notes 4 and 6）	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10	50		10	100	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			3			3	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			20				nA
RIN	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			10^{12}			1012		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		50	100		25	100		V／mV
		Over Temperature		25			15			V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		± 12	± 13		± 12	± 13		V
V_{CM}	Input Common－Mode Voltage Range			± 16	＋18	－17	± 11	＋14，	－12	V
CMRR	Common－Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		80	100		70	95		dB

DC Electrical Characteristics（Note 4）（Continued）									
Symbol	Parameter	Conditions	LF441A			LF441			Units
			Min	Typ	Max	Min	Typ	Max	
PSRR	Supply Voltage Rejection Ratio （Not	（Note 7）	80	100		70	90		dB
Is	Supply Current			150	200		150	250	$\mu \mathrm{A}$
AC Electrical Characteristics（Note 4）									
Symbol	Parameter	Conditions	LF441A			LF441			Units
			Min	Typ	Max	Min	Typ	Max	
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1		0.6	1		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain－Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1		0.6	1		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		35			35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1：Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage．
Note 2：For operating at elevated temperature，these devices must be derated based on a thermal resistance of $\theta_{\mathrm{j}} \mathrm{A}$ ．
Note 3：The temperature range is designated by the position just before the package type in the device number．A＂C＂indicates the commercial temperature range and an＂M＂indicates the military temperature range．The military temperature range is available in＂ H ＂package only．
Note 4：Unless otherwise specified the specifications apply over the full temperature range and for $V_{S}= \pm 20 \mathrm{~V}$ for the LF 441 A and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF441． $V_{O S}, I_{B}$ ，and $I_{O S}$ are measured at $V_{C M}=0$ ．
Note 5：The LF441A is 100% tested to this specification．
Note 6：The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature， T_{j} ．Due to limited production test time，the input bias currents measured are correlated to junction temperature．In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation，$P_{D} . T_{j}=T_{A}+\theta_{j A} P_{D}$ where θ_{jA} is the thermal resistance from junction to ambient．Use of a heat sink is recommended if input bias current is to be kept to a minimum．
Note 7：Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice．From $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF441 and from $\pm 20 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF441A．
Note 8：Refer to RETS441X for LF441MH military specifications．
Note 9：Max．Power Dissipation is defined by the package characteristics．Operating the part near the Max．Power Dissipation may cause the part to operate outside guaranteed limits．
Note 10：Human body model， $1.5 \mathrm{k} \Omega$ in series with 100 pF ．

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Gain Bandwidth

Undistorted Output Voltage Swing

TL/H/9297-6

Typical Performance Characteristics（Continued）

Simplified Schematic

TL／H／9297－3
Pulse Response $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

TIME（ $0.5 \mu \mathrm{~s} / \mathrm{DIV})$

Pulse Response $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$（Continued）

TIME（ $0.5 \mu \mathrm{~s} / \mathrm{DIV})$
TL／H／9297－9

TIME（ $10 \mu \mathrm{~s} / \mathrm{DIV}$ ）
TL／H／9297－10

TIME（ $10 \mu \mathrm{~s} / \mathrm{DIV})$

Application Hints

This device is a low power op amp with an internally trimmed input offset voltage and JFET input devices （BI－FET II）．These JFETs have large reverse breakdown voltages from gate to source and drain，eliminating the need for clamps across the inputs．Therefore，large differential input voltages can easily be accommodated without a large increase in input current．The maximum differential input voltage is independent of the supply voltages．However，nei－ ther of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit．
Exceeding the negative common－mode limit on either input will force the output to a high state，potentially causing a reversal of phase to the output．Exceeding the negative common－mode limit on both inputs will force the amplifier output to a high state．In neither case does a latch occur since raising the input back within the common－mode range again puts the input stage and thus the amplifier in a normal operating mode．
Exceeding the positive common－mode limit on a single input will not change the phase of the output；however，if both inputs exceed the limit，the output of the amplifier will be forced to a high state．
The amplifier will operate with a common－mode input volt－ age equal to the positive supply；however，the gain band－ width and slew rate may be decreased in this condition． When the negative common－mode voltage swings to within 3 V of the negative supply，an increase in input offset voltage may occur．
The amplifier is biased to allow normal circuit operation with power supplies of $\pm 3 \mathrm{~V}$ ．Supply voltages less than these may degrade the common－mode rejection and restrict the output voltage swing．

The amplifier will drive a $10 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range．
Precautions should be taken to ensure that the power sup－ ply for the integrated circuit never becomes reversed in po－ larity or that the unit is not inadvertently installed backwards in a socket，as an unlimited current surge through the result－ ing forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit．
As with most amplifiers，care should be taken with lead dress，component placement and supply decoupling in or－ der to ensure stability．For example，resistors from the out－ put to an input should be placed with the body close to the input to minimize＂pick－up＂and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground．
A feedback pole is created when the feedback around any amplifier is resistive．The parallel resistance and capaci－ tance from the input of the device（usually the inverting input to $A C$ ground）set the frequency of this pole．In many in－ stances the frequency of this pole is much greater than the expected 3 dB frequency，of the closed loop gain and con－ sequently there is negligible effect on stability margin．How－ ever，if the feedback pole is less than approximately 6 times the expected 3 dB frequency，a lead capacitor should be placed from the output to the input of the op amp．The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time con－ stant．

Detailed Schematic

LF442 Dual Low Power

 JFET Input Operational Amplifier
General Description

The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while greatly improving the DC characteristics of the LM1458. The amplifiers have the same bandwidth, slew rate, and gain ($10 \mathrm{k} \Omega$ load) as the LM1458 and only draw one tenth the supply current of the LM1458. In addition the well matched high voltage JFET input devices of the LF442 reduce the input bias and offset currents by a factor of 10,000 over the LM1458. A combination of careful layout design and internal trimming guarantees very low input offset voltage and voltage drift. The LF442 also has a very low equivalent input noise voltage for a low power amplifier.
The LF442 is pin compatible with the LM1458 allowing an immediate 10 times reduction in power drain in many applications. The LF442 should be used where low power dissipation and good electrical characteristics are the major considerations.

Typical Connection

Simplified Schematic

TL/H/9155-3

Ordering Information LF442XYZ
\mathbf{X} indicates electrical grade
\mathbf{Y} indicates temperature range
" M " for military
" C " for commercial
Z indicates package type
" H " or " N "

Features

- $1 / 10$ supply current of a LM1458

$$
\begin{array}{r}
400 \mu \mathrm{~A}(\max) \\
50 \mathrm{pA}(\max) \\
1 \mathrm{mV}(\max) \\
10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(\max) \\
1 \mathrm{MHz} \\
1 \mathrm{~V} / \mu \mathrm{s} \\
35 \mathrm{nV} / \sqrt{\mathrm{Hz}} \\
0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}} \\
10^{12} \Omega \\
50 \mathrm{k}(\mathrm{~min})
\end{array}
$$

- Low input bias current
- Low input offset voltage drift

Connection Diagrams
Metal Can Package

TL/H/9155-2
Top View
Note: Pin 4 connected to case
Order Number LF442AMH or LF442MH/883
See NS Package Number H08A

Order Number LF442ACN or LF442CN See NS Package Number N08E

Absolute Maximum Ratings					
If Military／Aerospace specified devices are required， please contact the National Semiconductor Sales Office／Distributors for avallability and specifications． （Note 9）			T_{j} max	H Package $150^{\circ} \mathrm{C}$	N Package $115^{\circ} \mathrm{C}$
			$\theta_{\text {JA }}$（Typical） （Note 3）	$65^{\circ} \mathrm{C} / \mathrm{W}$	$114^{\circ} \mathrm{C} / \mathrm{W}$
	LF442A	LF442	（Note 4）	$165^{\circ} \mathrm{C} / \mathrm{W}$	$152^{\circ} \mathrm{C} / \mathrm{W}$
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	$\theta_{\text {JC }}$（Typical）	$21^{\circ} \mathrm{C} / \mathrm{W}$	
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	Operating Temperature	（Note 4）	（Note 4）
Input Voltage Range （Note 1）	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	Range		
			Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 150$	$5^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$
Output Short Circuit Duration（Note 2）	Continuous	Continuous			
			Lead Temperature （Soldering， 10 sec ．）	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
			ESD Tolerance	Rating to	termined

DC Electrical Characteristics（Note 6）

Symbol	Parameter	Conditions		LF442A			LF442			Units
				Min	Typ	Max	Min	Typ	Max	
V_{OS}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.5	1.0		1.0	5.0	mV
		Over Temperature							7.5	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$			7	10		7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{V}_{S}= \pm 15 \mathrm{~V} \\ & (\text { Notes } 6 \text { and } 7 \text {) } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		5	25		5	50	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			1.5			1.5	nA
			$\mathrm{T}_{\mathrm{i}}=125^{\circ} \mathrm{C}$			10				nA
I_{B}	Input Bias Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & \text { (Notes } 6 \text { and } 7 \text {) } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10	50		10	100	pA
			$\mathrm{T}_{\mathrm{i}}=70^{\circ} \mathrm{C}$			3			3	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			20				nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			1012			1012		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		50	200		25	200		V／mV
		Over Temperature		25	200		15	200		V / mV
V_{O}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		± 12	± 13		± 12	± 13		V
V_{CM}	Input Common－Mode Voltage Range			± 16	$\begin{aligned} & +18 \\ & -17 \end{aligned}$		± 11	$\begin{aligned} & +14 \\ & -12 \end{aligned}$		$\begin{aligned} & \text { V } \\ & \text { v } \end{aligned}$
CMRR	Common－Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		80	100		70	95		dB
PSRR	Supply Voltage Rejection Ratio	（Note 8）		80	100		70	90		dB
Is	Supply Current				300	400		400	500	$\mu \mathrm{A}$

AC Electrical Characteristics (Note 6)

Symbol	Parameter	Conditions	LF442A			LF442			Units
			Min	Typ	Max	Min	Typ	Max	
	Amplifier to Amplifier Coupling	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz} \\ & \text { (Input Referred) } \end{aligned}$		-120			-120		dB
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1		0.6	1		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1		0.6	1		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		35	",		35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 3: The value given is in 400 linear feet/min air flow.
Note 4: The value given is in static air.
Note 5: These devices are available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$. The temperature range is designated by the position just before the package type in the device number. A " C " indicates the commercial temperature range and an " M " indicates the military temperature range. The military temperature range is available in " H " package only.
Note 6: Unless otherwise specified, the specifications apply over the full temperature range and for $\mathrm{V}_{\mathrm{S}} \pm \pm 20 \mathrm{~V}$ for the LF 442 A and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF 442 . $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, and los are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 7: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{P}_{\mathrm{D}} \cdot \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{A}}+\theta_{\mathrm{jA}} \mathrm{P}_{\mathrm{D}}$ where θ_{j} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

Note 8: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice from $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF442 and $\pm 20 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF442A.
Note 9: Refer to RETS442X for LF442MH military specifications.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Pulse Response $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

Application Hints

This device is a dual low power op amp with internally trimmed input offset voltages and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
Each amplifier is individually biased to allow normal circuit operation with power supplies of $\pm 3.0 \mathrm{~V}$. Supply voltages less than these may degrade the common-mode rejection and restrict the output voltage swing.

The amplifiers will drive a $10 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequenty there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Applications

Battery Powered Strip Chart Preamplifier

TIME CONSTANT

Typical Applications（Continued）

TL／H／9155－12

High Efficiency Crystal Oven Controlier
－$T_{\text {control }}=75^{\circ} \mathrm{C}$
－A1＇s output represents the ampli－ fied difference between the LM335 temperature sensor and the crystal oven＇s temperature
－A2，a free running duty cycle mod－ ulator，drives the LM395 to com－ plete a servo loop
－Switched mode operation yields high efficiency
－ 1% metal film resistor

Conventional Log Amplifier

$E_{\text {OUT }}=-\left[\log 10\left(\frac{E_{I N}}{R_{I N}}\right)+5\right]$
$\mathrm{R}_{\mathrm{T}}=$ Tel Labs type Q81
Trim 5 k for $10 \mu \mathrm{~A}$ through the $5 \mathrm{k}-120 \mathrm{k}$ combination
＊1\％film resistor

Typical Applications (Continued)

Detailed Schematic

LF444 Quad Low Power JFET Input Operational Amplifier

General Description

The LF444 quad low power operational amplifier provides many of the same AC characteristics as the industry standard LM148 while greatly improving the DC characteristics of the LM148. The amplifier has the same bandwidth, slew rate, and gain ($10 \mathrm{k} \Omega$ load) as the LM148 and only draws one fourth the supply current of the LM148. In addition the well matched high voltage JFET input devices of the LF444 reduce the input bias and offset currents by a factor of 10,000 over the LM148. The LF444 also has a very low equivalent input noise voltage for a low power amplifier.
The LF444 is pin compatible with the LM148 allowing an immediate 4 times reduction in power drain in many applica:tions. The LF444 should be used wherever low power dissipation and good electrical characteristics are the major considerations.

Features

- $1 / 4$ supply current of a LM148 $200 \mu \mathrm{~A} /$ Amplifier (max)
- Low input bias current 50 pA (max)
- High gain bandwidth

1 MHz

- High slew rate
- Low noise voltage for low power
- Low input noise current $35 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- High input impedance $0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
\square High gain $V_{O}= \pm 10 \mathrm{~V}, R_{L}=10 \mathrm{k}$

Simplified Schematic

TL/H/9156-1

Ordering Information

LF444XYZ

\mathbf{X} indicates electrical grade
\mathbf{Y} indicates temperature range
"M" for military, "C" for commercial
Z indicates package type "D", "M" or "N"

Connection Diagram

Top View
Order Number LF444AMD, LF444CM,
LF444ACN, LF444CN or LF444MD/883
See NS Package Number D14E, M14A or N14A

Absolute Maximum Ratings		
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		
	LF444A	LF444
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 1)	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration (Note 2)	Continuous	Continuous
Power Dissipation (Notes 3 and 9)	D Package 900 mW	N, M Packages 670 mW
T_{j} max	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
θ_{j} (Typical)	$100^{\circ} \mathrm{C} / \mathrm{W}$	$85^{\circ} \mathrm{C} / \mathrm{W}$

\(\left.\begin{array}{lc}LF444A/LF444

Operating Temperature Range \& (Note 4)\end{array}\right]\)| Storage Temperature Range | $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$ |
| :--- | :---: |
| ESD Tolerance (Note 10) | Rating to |
| | be determined |
| Soldering Information | |
| Dual-ln-Line Packages | |
| (Soldering, 10 sec.) | $260^{\circ} \mathrm{C}$ |
| Small Outline Package | $215^{\circ} \mathrm{C}$ |
| Vapor Phase (60 sec.) | $220^{\circ} \mathrm{C}$ |

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

DC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions		LF444A			LF444			Units
				Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2	5		3	10	mV
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$				6.5			12	mV
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$				8				mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{S}=10 \mathrm{k} \Omega$			10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ (Notes 5, 6)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		5	25		5	50	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			1.5			1.5	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			10				nA
I_{B}	Input Bias Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & (\text { Notes } 5,6) \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10	50		10	100	pA
			$\mathrm{T}_{\mathrm{i}}=70^{\circ} \mathrm{C}$			3			3	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			20				nA
R_{IN}	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			1012			1012		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		50	100		25	100		V/mV
		Over Temperature		25			15			V / mV
V_{O}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		± 12	± 13		± 12	± 13		V
V_{CM}	Input Common-Mode Voltage Range			± 16	$\begin{array}{r} +18 \\ -17 \\ \hline \end{array}$		± 11	$\begin{array}{r} +14 \\ -12 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		80	100		70	95		dB
PSRR	Supply Voltage Rejection Ratio	(Note 7)		80	100		70	90		dB
Is	Supply Current				0.6	0.8		0.6	1.0	mA

AC Electrical Characteristics（Note 5）									
Symbol	Parameter	Conditions	LF444A			LF444			Units
			Min	Typ	Max	Min	Typ	Max	
	Amplifier－to－Amplifier Coupling			－120			－120		dB
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1			1		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain－Bandwidth Product	$V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$		1			1		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & f=1 \mathrm{kHz} \end{aligned}$		35			35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1：Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage．
Note 2：Any of the amplifier outputs can be shorted to ground indefinitely，however，more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded．
Note 3：For operating at elevated temperature，these devices must be derated based on a thermal resistance of $\theta_{\mathrm{j} A}$
Note 4：The LF444A is available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ ．The LF444 is available in the commercial temperature range only．The temperature range is designated by the position just before the package type in the device number．A＂C＂indicates the commercial temperature range and an＂M＂indicates the military temperature range．The military temperature range is available in＂D＂ package only．
Note 5：Uniess otherwise specified the specifications apply over the full temperature range and for $V_{S}= \pm 20 \mathrm{~V}$ for the LF444A and for $V_{S}= \pm 15 V$ for the LF444． $V_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$ ，and IOS are measured at $\mathrm{V}_{\mathrm{CM}}=0$ ．
Note 6：The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature， T_{j} ．Due to limited production test time，the input bias currents measured are correlated to junction temperature．In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation，$P_{D} . T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient．Use of a heat sink is recommended if input bias current is to be kept to a minimum．
Note 7：Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice from $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF444 and from $\pm 20 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF444A．
Note 8：Refer to RETS444X for LF444MD military specifications．
Note 9：Max．Power Dissipation is defined by the package characteristics．Operating the part near the Max．Power Dissipation may cause the part to operate outside guaranteed limits．
Note 10：Human body model， $1.5 \mathrm{k} \Omega$ in series with 100 pF ．

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Undistorted Output
Voltage Swing

TL/H/9156-4

Typical Performance Characteristics (Continued)

TL/H/9156-5

Pulse Response $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

Large Signal Inverting

Small Signal Non-Inverting

Large Signal Non-Inverting

Application Hints

This device is a quad low power op amp with JFET input devices (BI-FETTM). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
Each amplifier is individually biased to allow normal circuit operation with power supplies of $\pm 3.0 \mathrm{~V}$. Supply voltages less than these may degrade the common-mode rejection and restrict the output voltage swing.

The amplifiers will drive a $10 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Application

pH Probe Amplifier/Temperature Compensator

LF451 Wide-Bandwidth JFET-Input Operational Amplifier

General Description

The LF451 is a low-cost high-speed JFET-input operational amplifier with an internally trimmed input offset voltage (BIFET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF451 is pin compatible with the standard LM741, allowing designers to upgrade the overall performance of existing designs.
The LF451 may be used in such applications as high-speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input bias current, high input impedance, high slew rate and wide bandwidth.

Features

- Internally trimmed offset voltage
- Low input bias current
- Low input noise current
- Wide gain bandwidth
- High slew rate
- Low supply current
- High input impedance
5.0 mV (max)

50 pA (typ)
$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ (typ)
4 MHz (typ)
$13 \mathrm{~V} / \mu \mathrm{s}$ (typ)
3.4 mA (max)
$10^{12} \Omega$ (typ)

- Low total harmonic distortion $A_{V}=10, \quad<0.02 \%$ (typ) $R_{L}=10 k, V_{O}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{f}=20 \mathrm{~Hz}-20 \mathrm{kHz}$
- Low 1/f noise corner 50 Hz (typ)
- Fast settling time to $0.01 \% \quad 2 \mu \mathrm{~s}$ (typ)

Typical Connection

TL/H/9660-1

Simplified Schematic

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
36V
Input Voltage Range
Differential Input Voltage (Note 2)
Junction Temperature (T_{J} MAX)
Output Short Circuit Duration
Power Dissipation (Note 3)

$$
\begin{aligned}
& \mathrm{V}-\leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}+ \\
& \pm 30 \mathrm{~V} \\
& 150^{\circ} \mathrm{C} \\
& \text { Continuous } \\
& 500 \mathrm{~mW}
\end{aligned}
$$

DC Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}$ and $\mathrm{V}-=-15 \mathrm{~V}$. Boldface limits apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LF451CM			Units
			Typical (Note 6)		Design Limit (Note 8)	
V_{OS}	Maximum Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$, (Note 10)	0.3	5		mV
los	Maximum Input Offset Current	$\begin{array}{ll} \text { (Notes } 9,10) & T_{J}=25^{\circ} \mathrm{C} \\ & T_{J}=70^{\circ} \mathrm{C} \\ \hline \end{array}$	25	100	2	pA nA
I_{B}	Maximum Input Bias Current	$\begin{array}{ll} \text { (Notes } 9,10) & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C} \\ \hline \end{array}$	50	200	4	pA nA
RIN	Input Resistance	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	1012			Ω
AVOL	Minimum Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & (\text { Note } 10) \end{aligned}$	200	50	25	V/mV
V_{0}	Minimum Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	± 13.5	± 12	± 12	V
V_{CM}	Minimum Input Common Mode Voltage Range		$\begin{aligned} & +14.5 \\ & -11.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +11 \\ & -11 \\ & \hline \end{aligned}$	$\begin{aligned} & +11 \\ & -11 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
CMRR	Minimum Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	100	80	80	dB
PSRR	Minimum Supply Voltage Rejection Ratio	(Note 11)	100	80	80	dB
Is	Maximum Supply Current			3.4	3.4	mA

AC Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}$ and $\mathrm{V}-=-15 \mathrm{~V}$. Boldface limits apply for $T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LF451CM			Units
			Typical (Note 6)		Design Limit (Note 8)	
SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=+1$	13	8		V/ $\mu \mathrm{s}$
GBW	Minimum Gain-Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	4	2.7		MHz
e_{n}	Equivalent Input Noise Voltage	$\mathrm{R}_{S}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$	25			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{R}_{S}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$	0.01			$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings.
Note 2: When the input voltage exceeds the power supplies, the current should be limited to 1 mA .
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J} M A X, \theta_{J A}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J} M A X-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For guaranteed operation $T_{J \max }=125^{\circ} \mathrm{C}$. The typical thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ of the LF451CM when board-mounted is $170^{\circ} \mathrm{C} / \mathrm{W}$.
Note 5: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices. Note 6: Typicals are at $T_{J}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.

Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Design limits are guaranteed to National's AOQL, but not 100\% tested.
Note 9: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature T_{J}. Due to limited production test time, the input bias currents are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{P}_{\mathrm{D}} . \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\theta_{\mathrm{JA}} \mathrm{P}_{\mathrm{D}}$ where θ_{JA} is the thermal resistance from junction to ambient.
Note 10: $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}, \mathrm{AVOL}$, and I_{S} are measured at $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$.
Note 11: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Pulse Response

Application Hints

The LF451CM is an op amp with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will
cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit with the non-inverting input, or with both inputs, will force the output to a high state, potentially causing a reversal of phase to the output.
In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Application Hints (Continued)

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
The LF451 is biased by a zener reference which allows normal circuit operation on $\pm 4 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The LF451 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the
input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to $A C$ ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.
The benefit of the S.O. package results from its very small size. It follows, however, that the die inside the S.O. package is less protected from external physical forces than a die in a standard DIP. would be, because there is so much less plastic in the S.O. Therefore, not following certain precautions when board mounting the LF451CM can put mechanical stress on the die, lead frame, and/or bond wires. This can cause shifts in the LF451CM's parameters, even causing them to exceed limits specified in the Electrical Characteristics. For recommended practices in LF451CM surface mounting refer to Application Note AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" and to Section 6 "Surface Mount" found in any Rev. 1 Linear Databook volume.

Detailed Schematic

TL/H/9660-11

LF453 Wide-Bandwidth Dual JFET-Input Operational Amplifiers

General Description

The LF453 is a low-cost, high-speed, dual JFET-input operational amplifier with an internally trimmed input offset voltage (BI-FET II technology). The device requires a low supply current and yet the amplifiers maintain a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF453 is pin compatible with the standard LM1558, allowing designers to upgrade the overall performance of existing designs.
The LF453 may be used in such applications as high-speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input bias current, high input impedance, high slew rate and wide bandwidth.

Features

- Internally trimmed offset voltage
5.0 mV (max)
50 pA (typ)
$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ (typ)
4 MHz (typ)

4 MHz (typ)
$13 \mathrm{~V} / \mu \mathrm{s}$ (typ)
6.5 mA (max)
$10^{12} \Omega$ (typ)
<0.02\% (typ)
Low total harmonic distortion
$\begin{array}{lr}\text { - Low } 1 / \mathrm{f} \text { noise corner } & 50 \mathrm{~Hz} \text { (typ) } \\ \text { - Fast settling time to } 0.01 \% & 2 \mu \mathrm{~s} \text { (typ) }\end{array}$

Typical Connection

Connection Diagram

Simplified Schematic

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
36 V
Input Voltage Range
$V^{-} \leq V_{\mathrm{IN}} \leq \mathrm{V}^{+}$
Operating Ratings (Note 1)
Differential Input Voltage (Note 2)
$\pm 30 \mathrm{~V}$
Junction Temperature ($T_{J} M A X$)
$150^{\circ} \mathrm{C}$
Output Short Circuit Duration
Continuous
Power Dissipation (Note 3)
500 mW
ESD Tolerance
TBD
DC Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}$ and $\mathrm{V}-=-15 \mathrm{~V}$. Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LF453CM			Units
			Typical (Note 5)	Tested Limit (Note 6)	Design Limit (Note 7)	
V_{OS}	Maximum Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$, (Note 9)		5		mV
los	Maximum Input Offset Current	$\begin{aligned} &(\text { Notes } 8,9) T_{J}=25^{\circ} \mathrm{C} \\ & T_{J}=70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	25	100	2	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Maximum Input Bias Current	$\begin{aligned} &\left(\text { Notes 8, 9) } \mathrm{T}_{\mathrm{J}}\right.=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	50	200	4	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
RIN	Input Resistance	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	1012			Ω
AVOL	Minimum Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { (Note } 9 \text {) } \end{aligned}$	200	50	25	V/mV
V_{0}	Minimum Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	± 13.5	± 12	± 12	V
$\mathrm{V}_{\text {CM }}$	Minimum Input Common Mode Voltage Range		$\begin{array}{r} +14.5 \\ -11.5 \\ \hline \end{array}$	$\begin{aligned} & +11 \\ & -11 \\ & \hline \end{aligned}$	$\begin{array}{r} +11 \\ -11 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Minimum Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	100	80	80	dB
PSRR	Minimum Supply Voltage Rejection Ratio	(Note 10)	100	80	80	dB
Is	Maximum Supply Current			6.5	6.5	mA

AC Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}$ and $\mathrm{V}^{-}=-15 \mathrm{~V}$. Limits apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LF453CM			Units
			Typical (Note 5)	Tested Limit (Note 6)	Design Limit (Note 7)	
SR	Slew Rate	$\mathrm{A}_{V}=+1$	13	8		$\mathrm{V} / \mu \mathrm{s}$
GBW	Minimum Gain-Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	4	2.7		MHz
e_{n}	Equivalent Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$	25			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$	0.01			$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings.
Note 2: When the input voltage exceeds the power supplies, the current should be limited to 1 mA .
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J} M A X, \Theta_{J A}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J} M A X-T_{A}\right) / \Theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For guaranteed operation $T_{J \text { max }}=125^{\circ} \mathrm{C}$. The typical thermal resistance (Θ_{JA}) of the LF453CM when board-mounted is $160^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (section titled "Surface Mount") for other methods of soldering surface mount devices.
Note 5: Typicals are at $T_{J}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 6: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 7: Design limits are guaranteed to National's AOQL, but not 100% tested.
Note 8: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature T_{J}. Due to limited production test time, the input bias currents are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{J}=T_{A}+\Theta_{J A} P_{D}$ where $\Theta_{J A}$ is the thermal resistance from junction to ambient.
Note 9: $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, AVOL and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$.
Note 10: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Undistorted Output Voltage Swing

Pulse Response

TL/H/9710-6

TIME (2 $\mu \mathrm{s} / \mathrm{DIV})$
TL/H/9710-8

Small Signal Non-Inverting

TIME ($0.2 \mu \mathrm{~s} / \mathrm{DIV}$)
TL/H/9710-7

TIME ($2 \mu \mathrm{~s} / \mathrm{DIV}$)

Current Limit ($\mathrm{R}_{\mathrm{L}}=100 \Omega$)

TIME ($5 \mu \mathrm{~s} / \mathrm{DIV}$)

Application Hints

These devices are op amps with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit with the non-inverting input, or with both inputs, will force the output to a high state, potentially causing a reversal of phase to the output. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 5 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The amplifiers will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to $A C$ ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.
The benefit of the SO package results from its very small size. It follows, however, that the die inside the SO package is less protected from external physical forces than a die in a standard DIP would be, because there is so much less plastic in the SO. Therefore, not following certain precautions when board mounting the LF453CM can put mechanical stress on the die, lead frame, and/or bond wires. This can cause shifts in the LF453CM's parameters, even causing them to exceed limits specified in the Electrical Characteristics. For recommended practices in LF453CM surface mounting refer to Application Note AN450 "Surface Mounting Methods and Their Effect on Product Reliability" and to the section titled "Surface Mount" found in any Rev 1. Linear Databook volume.

TL/H/9710-11

LH0003

Wide Bandwidth Operational Amplifier

General Description

The LH0003/LH0003C is a general purpose operational amplifier which features: slewing rate up to $70 \mathrm{~V} / \mu \mathrm{s}$, a gain bandwidth of up to 30 MHz , and high output currents. Other features are:

Features

- Very low offset voltage

Typically 0.4 mV

- Large output swing $> \pm 10 \mathrm{~V}$ into 100Ω load

Schematic and Connection Diagrams

Order Number LH0003H, LH0003H-MIL or LH0003CH See NS Package Number H10G

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
Power Dissipation
Differential Input Voltage

Input Voltage	Equal to supply
Load Current	120 mA
Operating Temperature Range LH0003 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
LH0003C	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	300°

Electrical Characteristics (Notes 1 \& 2)

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}<100 \Omega$		0.4	3.0	mV
Input Offset Current			0.02	0.2	$\mu \mathrm{~A}$
Input Bias Current			0.4	2.0	$\mu \mathrm{~A}$
Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$		1.2	3	mA
Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}$	20	70		$\mathrm{~V} / \mathrm{mV}$
Voltage Gain	$\mathrm{V}_{\mathrm{S}}= \pm 15, \mathrm{R}_{\mathrm{L}}=100 \Omega$	15	40		$\mathrm{~V} / \mathrm{mV}$
Output Voltage Swing		± 10	± 12		V
Input Resistance	$\mathrm{R}_{\mathrm{S}}<100 \Omega$		100		$\mathrm{k} \Omega$
Average Temperature					
Coefficient of Offset Voltage					

Note 1: These specifications apply for Pin 7 grounded, for $\pm 5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}< \pm 20 \mathrm{~V}$, with capacitor $\mathrm{C}_{1}=90 \mathrm{pF}$ from pin 1 to pin 10 and $\mathrm{C}_{2}=90 \mathrm{pF}$ from pin 5 to ground, over the specified operating temperature range, unless otherwise specified.
Note 2: Typical values are for $t_{\text {AMBIENT }}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Note 3: See \# RETS0003X for the LM0003H military specifications.

Typical Performance Characteristics

Typical Applications

High Slew Rate Unity Gain Inverting Amplifier

Typical Compensation				
$\left.\begin{array}{\|c\|c\|c\|c\|c\|}\hline \begin{array}{c}\text { Circuit } \\ \text { Gain }\end{array} & \begin{array}{c}\mathbf{C}_{\mathbf{1}} \\ \mathbf{p F}\end{array} & \begin{array}{c}\mathbf{C}_{\mathbf{2}} \\ \mathbf{p F}\end{array} & \begin{array}{c}\text { Slew Rate } \\ \mathbf{R}_{\mathrm{L}}>\mathbf{2 0 0 \Omega}, \\ \mathbf{V} / \mu \mathbf{s}\end{array} & \begin{array}{c}\text { Full Output } \\ \text { Frequency } \\ \mathbf{R}_{\mathrm{L}}=\mathbf{2 0 0 \Omega} \\ \mathbf{\mathbf { V O U T } = \pm \mathbf { 1 0 V }}\end{array} \\ \hline 240 & 0 & 0 & 70 & 400 \\ \geq 10 & 5 & 30 & 30 & 350 \\ \geq 5 & 15 & 30 & 15 & 250 \\ \geq 2 & 50 & 50 & 5 & 100 \\ \geq 1 & 90 & 90 & 2 & 50\end{array}\right\} \mathrm{kHz}$				

LH0004 High Voltage Operational Amplifier

General Description

The LH0004 is a general purpose operational amplifier designed to operate from supply voltages up to $\pm 40 \mathrm{~V}$. The device dissipates extremely low quiescent power, typically 8 mW at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 40 \mathrm{~V}$.
The LH0004's high gain and wide range of operating voltages make it ideal for applications requiring large output swing and low power dissipation.
The LH0004 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0004C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- Capable of operation over the range of $\pm 5 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$
- Large output voltage typically $\pm 35 \mathrm{~V}$ for the LH0004 and $\pm 33 \mathrm{~V}$ for the LH0004C into a $2 \mathrm{k} \Omega$ load with $\pm 40 \mathrm{~V}$ supplies
- Low input offset voltage typically 0.3 mV
- Frequency compensation with 2 small capacitors
- Low power consumption 8 mW at $\pm 40 \mathrm{~V}$

Applications

- High voltage power supply
- Resolver excitation
- Wideband high voltage amplifier
- Transducer power supply

Schematic and Connection Diagrams

TL/H/5559-2
Note: Pin 7 must be grounded or connected to a voltage at least 5 V more negative than the positive supply (Pin 9). Pin 7 may be connected to the negative supply; however, the standby current will be increased. A resistor may be inserted in series with Pin 7 to Pin 9. The value of the resistor should be a maximum of $100 \mathrm{k} \Omega$ per volt of potential between Pin 3 and Pin 9.

Order Number LH0004H, LH0004H-MIL or LH0004CH See NS Package Number H10G

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 2)
Supply Voltage $\pm 45 \mathrm{~V}$
Power Dissipation (see Curve) 400 mW
Differential Input Voltage
Input Voltage

Electrical Characteristics (Note 1)

Parameter	Conditions	LH0004			LH0004C			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & R_{S} \leq 100 \Omega \end{aligned}$		0.3	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$		0.3	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20	$\begin{aligned} & 100 \\ & 300 \end{aligned}$		30	$\begin{aligned} & 120 \\ & 300 \end{aligned}$	nA
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3	$\begin{gathered} 20 \\ 100 \end{gathered}$		10	$\begin{gathered} 45 \\ 150 \end{gathered}$	nA
Positive Supply Current	$\begin{aligned} & V_{S}= \pm 40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 40 \mathrm{~V} \end{aligned}$		110	$\begin{aligned} & 150 \\ & 175 \end{aligned}$		110	$\begin{aligned} & 150 \\ & 175 \end{aligned}$	$\mu \mathrm{A}$
Negative Supply Current	$\begin{aligned} & V_{S}= \pm 40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 40 \mathrm{~V} \end{aligned}$		80	$\begin{aligned} & 100 \\ & 135 \end{aligned}$		80	$\begin{aligned} & 100 \\ & 135 \end{aligned}$	$\mu \mathrm{A}$
Voltage Gain	$\begin{aligned} & V_{S}= \pm 40 \mathrm{~V}, R_{\mathrm{L}}=100 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{\text {OUT }}= \pm 30 \mathrm{~V} \end{aligned}$	30	60		30	60		V/mV
	$\begin{aligned} & V_{S}= \pm 40 \mathrm{~V}, R_{L}=100 \mathrm{k} \\ & V_{\text {OUT }}= \pm 30 \mathrm{~V} \end{aligned}$	10			10			V/mV
Output Voltage	$\mathrm{V}_{\mathrm{S}}= \pm 40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		± 35	± 30		± 33	± 30	V
CMRR	$\begin{aligned} & V_{S}= \pm 40 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 33 \mathrm{~V} \end{aligned}$	70	90		70	90		dB
PSRR	$\begin{aligned} & V_{S}= \pm 40 \mathrm{~V}, R_{S} \leq 5 \mathrm{k} \\ & \Delta \mathrm{~V}=20 \mathrm{~V} \text { to } 40 \mathrm{~V} \end{aligned}$	70	90		70	90		dB
Average Temperature Coefficient Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \Omega$		4.0			4.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Offset Current			0.4			0.4		$n A /{ }^{\circ} \mathrm{C}$
Equivalent Input Noise Voltage	$\begin{aligned} & R_{\mathrm{S}}=100 \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 40 \mathrm{~V} \\ & \mathrm{f}=500 \mathrm{~Hz} \text { to } 5 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		3.0			3.0		$\mu \mathrm{Vrms}$

Note 1: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 40 \mathrm{~V}$, Pin 7 grounded, with capacitors $\mathrm{C} 1=39 \mathrm{pF}$ between Pin 1 and Pin $10, \mathrm{C} 2=22 \mathrm{pF}$ between Pin 5 and ground, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH0004, and $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LH 0004 C unless otherwise specified.
Note 2: Refer to RETS0004X for LH0004H military specifications.

Typical Applications

Typical Performance Characteristics

Open Loop Frequency

Input Bias Current

Positive Supply Current

Response

LH0021/LH0021C 1.0 Amp Power Operational Amplifier LH0041/LH0041C 0.2 Amp Power Operational Amplifier

General Description

The LH0021/LH0021C and LH0041/LH0041C are general purpose operational amplifiers capable of delivering large output currents not usually associated with conventional IC Op Amps. The LH0021 will provide output currents in excess of one ampere at voltage levels of $\pm 12 \mathrm{~V}$; the LH0041 delivers currents of 200 mA at voltage levels closely approaching the available power supplies. In addition, both the inputs and outputs are protected against overload. the devices are compensated with a single external capacitor and are free of any unusual oscillation or latch-up problems.
The excellent input characteristics and high output capability of the LH0021 make it an ideal choice for power applications such as DC servos, capstan drivers, deflection yoke drivers, and programmable power supplies.
The LH0041 is particularly suited for applications such as torque driver for inertial guidance systems, diddle yoke driver for alpha-numeric CRT displays, cable drivers, and programmable power supplies for automatic test equipment.
The LH0021 is supplied in a 8 pin TO-3 package rated at 20 watts with suitable heatsink. The LH0041 is supplied in both

12 pin TO-8 (2.5 watts with clip on heatsink) and a power 8 pin ceramic DIP (2 watts with suitable heatsink). The LH0021 and LH0041 are guaranteed over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LH0021C and LH0041C are guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Output current

LH0021	1.0 Amp
LH0041	0.2 Amp

- Output voltage swing
LH0021 $\pm 12 \mathrm{~V}$ into 10Ω

LH0041 $\pm 14 \mathrm{~V}$ into 100Ω

- Wide full power bandwidth 15 kHz
- Low standby power 100 mW at $\pm 15 \mathrm{~V}$
- Low input offset voltage and current 1 mV and 20 nA
High slew rate $3.0 \mathrm{~V} / \mu \mathrm{s}$
- High open loop gain 100 dB

Schematic Diagram

*RSC external on " G " and " K " packages. RSC internal on "J" package. Offset Null connections available only on " G " package.

TL/H/9298-1

Absolute Maximum Ratings														
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		Output Short Circuit Duration (Note 3) Operating Temperature Range LH0021/LH0041 LH0021C/LH0041C					Continuous							
		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$												
Supply Voltage	$\pm 18 \mathrm{~V}$						$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$							
Power Dissipation	See Curves						Storage Temperature Range					$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
Differential Input Voltage	$\pm 30 \mathrm{~V}$						Lead Temperature (Soldering, 10 sec .)					$300^{\circ} \mathrm{C}$		
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$	ESD rating to be determined.												
Peak Output Current (Note 2)														
LH0021/LH0021C 2.0 Amps														
LH0041/LH0041C 0.5 Amps														
DC Electrical Characteristics for LH0021/LH0021C (Note 4)														
Parameter	Conditions		Limits						Units					
			LH0021			LH0021C								
			Min	Typ	Max	Min	Typ	Max						
Input Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}<100 \Omega, \mathrm{~T}_{\mathrm{C}}=2 \\ & \mathrm{R}_{\mathrm{S}}<100 \Omega \end{aligned}$			1.0	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$		3.0	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$					
Voltage Drift with Temperature	$\mathrm{R}_{\mathrm{S}}<100 \Omega$			3	25		5	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$					
Offset Voltage Drift with Time				5			5		$\mu \mathrm{V} /$ week					
Offset Voltage Change with Output Power				5	15		5	20	$\mu \mathrm{V} / \mathrm{W}$					
Input Offset Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			30	$\begin{array}{\|l\|} \hline 100 \\ 300 \\ \hline \end{array}$		50	$\begin{array}{\|l\|} \hline 200 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$					
Offset Current Drift with Temperature				0.1	1.0		0.2	1.0	$n A /{ }^{\circ} \mathrm{C}$					
Offset Current Drift with Time				2			2		nA/week					
Input Bias Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			100	$\begin{array}{\|r} 300 \\ 1.0 \\ \hline \end{array}$		200	$\begin{array}{\|r} \hline 500 \\ 1.0 \\ \hline \end{array}$	nA $\mu \mathrm{A}$					
Input Resistance	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		0.3	1.0		0.3	1.0		$\mathrm{M} \Omega$					
Input Capacitance				3			3		pF					
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} 100 \Omega, \Delta \mathrm{~V}_{\mathrm{CM}}=$		70	90		70	90		dB					
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$		± 12			± 12			V					
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 100 \Omega, \Delta \mathrm{~V}_{\mathrm{S}}=$		80	96		70	90		dB					
Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{C}}=25 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$		$\begin{array}{r} 100 \\ 25 \\ \hline \end{array}$	200		$\begin{array}{r} 100 \\ 20 \\ \hline \end{array}$	200		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$					
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}= \\ & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}= \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\begin{array}{r} \pm 13.5 \\ \pm 11.0 \\ \hline \end{array}$	$\begin{gathered} 14 \\ \pm 12 \\ \hline \end{gathered}$		$\begin{aligned} & \pm 13 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 12 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$					
Output Short Circuit Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=$	$\mathrm{R}_{\text {SC }}=0.5 \Omega$	0.8	1.2	1.6	0.8	1.2	1.6	Amps					
Power Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}$			2.5	3.5		3.0	4.0	mA					
Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}$			75	105		90	120	mW					

AC Electrical Characteristics for LH0021/LH0021C $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}\right)$

Parameter	Conditions	Limits						Units
		LH0021			LH0021C			
		Min	Typ	Max	Min	Typ	Max	
Slew Rate	$A_{V}=+1, R_{L}=100 \Omega$	0.8	3.0		1.0	3.0		$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		20			20		kHz
Small Signal Transient Response			0.3	1.0		0.3	1.5	$\mu \mathrm{s}$
Small Signal Overshoot			5	20		10	30	\%
Settling Time (0.1\%)	$\Delta V_{\text {IN }}=10 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1$		4			4		$\mu \mathrm{s}$
Overload Recovery Time			3			3		$\mu \mathrm{s}$
Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$		0.2			0.2		\%
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$, B.W. $=10 \mathrm{~Hz}$ to 10 kHz		5			5		$\mu \mathrm{V} / \mathrm{rms}$
Input Noise Current	B.W. $=10 \mathrm{~Hz}$ to 10 kHz		0.05			0.05		$\mathrm{nA} / \mathrm{rms}$

DC Electrical Characteristics for LH0041/LH0041C (Note 4)

Parameter	Conditions	Limits						Units
		LH0041			LH0041C			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & R_{S}<100 \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & R_{S}<100 \Omega \end{aligned}$		1.0	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$		3.0	$\begin{aligned} & 6.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Voltage Drift with Temperature	$\mathrm{R}_{\mathrm{S}}<100 \Omega$		3			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Drift with Time			5			5		$\mu \mathrm{V} /$ week
Offset Voltage Change with Output Power			15			15		$\mu \mathrm{V} / \mathrm{W}$
Offset Voltage Adjustment Range	(Note 5)		20			20		mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	$\begin{aligned} & 100 \\ & 300 \end{aligned}$		50	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Offset Current Drift with Temperature			0.1	1.0		0.2	1.0	$n A /{ }^{\circ} \mathrm{C}$
Offset Current Drift with Time			2			2		nA/week
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	$\begin{aligned} & 300 \\ & 1.0 \\ & \hline \end{aligned}$		200	$\begin{array}{r} 500 \\ 1.0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.3	1.0		0.3	1.0		$\mathrm{M} \Omega$
Input Capacitance			3			3		pF
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} 100 \Omega, \Delta \mathrm{~V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	70	90		70	90		dB
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	+12			+12			V
Power Supply Rejection Ratio	$\mathrm{R}_{S} \leq 100 \Omega, \Delta \mathrm{~V}_{S}= \pm 10 \mathrm{~V}$	80	96		70	90		dB
Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{O}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=100 \Omega \end{aligned}$	$\begin{aligned} & 100 \\ & 25 \\ & \hline \end{aligned}$	200		$\begin{array}{r} 100 \\ 20 \\ \hline \end{array}$	200		V / mV V / mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	± 13	14		± 13	± 14		V
Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Note 6) } \end{aligned}$		200	300		200	300	mA
Power Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0$		2.5	3.5		3.0	4.0	mA
Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0$		75	105		90	120	mW

AC Electrical Characteristics for LH0041/LH0041C ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}\right)$

Parameter	Conditions	Limits						Units
		LH0041			LH0041C			
		Min	Typ	Max	Min	Typ	Max	
Slew Rate	$A_{V}=+1, R_{L}=100 \Omega$	1.5	3.0		1.0	3.0		$\mathrm{V} / \mathrm{\mu s}$
Power Bandwidth	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		20			20		kHz
Small Signal Transient Response			0.3	1.0		0.3	1.5	$\mu \mathrm{s}$
Small Signal Overshoot			5	20		10	30	\%
Settling Time (0.1\%)	$\Delta V_{I N}=10 \mathrm{~V}, A_{V}=+1$		4			4		$\mu \mathrm{s}$
Overload Recovery Time			3			3		$\mu \mathrm{s}$
Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$		0.2			0.2		\%
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$, B.W. $=10 \mathrm{~Hz}$ to 10 kHz		5			5		$\mu \mathrm{V} / \mathrm{rms}$
Input Noise Current	B.W. $=10 \mathrm{~Hz}$ to 10 kHz		0.05			0.05		nA/rms

Note 1: Rating applies for supply voltages above $\pm 15 \mathrm{~V}$. For supplies less than $\pm 15 \mathrm{~V}$, rating is equal to supply voltage.
Note 2: Rating applies for LH0041G and LH0021K with R ${ }_{\text {SC }}=0 \Omega$.
Note 3: Rating applies as long as package power rating is not exceeded.
Note 4: Specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \pm 18 \mathrm{~V}$, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}}=\leq 125^{\circ} \mathrm{C}$ for LH0021K and LH0041G, and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+85^{\circ} \mathrm{C}$ for LH0021CK,
LH0041CG and LH0041CJ unless otherwise specified. Typical values are for $25^{\circ} \mathrm{C}$ only.
Note 5: TO-8 "G" packages only.
Note 6: Rating applies for "J" DIP package and for TO-8 " G " package with RSC $=3.3$ ohms.
Note 7: See Typical Performance Characteristics.

Typical Performance Characteristics

Short Circuit Current vs
Temperature LH0041/LH0041C

Open Loop Frequency
Response

Package Power Dissipation LH0041/LH0041C

Large Signal Frequency Response

Short Circuit Current vs Temperature LH0021/LH0021C

Typical Performance Characteristics (Continued)

TL/H/9298-7

Connections Diagrams

TL/H/9298-2
Top View
Order Number LH0021K or LH0021CK See NS Package Number K08A

TL/H/9298-3
Order Number LH0041G or LH0041CG See NS Package Number H12B

Connection Diagrams (Continued)

Order Number LH0041CJ See NS Package Number HY08A

TL/H/9298-5
Order Number LH0041E See NS Package Number E48A

Typical Applications

Typical Applications (Continued)
10W (rms) Audio Amplifier

TL/H/9298-9

Typical Applications (Continued)

TL/H/9298-11
Two Way Intercom

Programmable High Current Source/Sink

Typical Applications (Continued)

TL/H/9298-15

Auxiliary Circuits

LH0021 Unity Gain Circuit with Short Circuit Limiting

TL/H/9298-16

LH0041/LH0021 Offset Voltage Null Circuit (LH0041CJ Pin Connections Shown)*

$R 1=R 3$
$A_{V}=-\frac{R 2}{R 1}$

LH0041G Unity Gain with Short Circuit Limiting

TL/H/9298-17

LH0041G Offset Voltage Null Circuit*

TL/H/9298-19

Auxiliary Circuits (Continued)

Operation from Single Supplies

positive

NEGATIVE

Auxiliary Circuits (Continued)
Operation from Non-Symmetrical Supplies

*For additional offset null circuit techniques see National Linear Applications Handbook.

LH0024 High Slew Rate Operational Amplifier

General Description

The LH0024/LH0024C is a very wide bandwidth, high slew rate operational amplifier intended to fulfill a wide variety of high speed applications such as buffers to A to D and D to A converters and high speed comparators. The device exhibits useful gain in excess of 50 MHz making it possible to use in video applications requiring higher gain accuracy than is usually associated with such amplifiers.
The LH0024/LH0024C's combination of wide bandwidth and high slew rate make it an ideal choice for a variety of high speed applications including active filters, oscillators, and comparators as well as many high speed general purpose applications.

The LH0024 is guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, whereas the LH0024C is guaranteed $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Very high slew rate-500 V/ $\mu \mathrm{s}$ at $A_{V}=+1$
- Wide small signal bandwidth- 70 MHz
- Wide large signal bandwidth- 15 MHz
- High output swing $- \pm 12 \mathrm{~V}$ into 1 k
- Low input offset-2 mV
- Pin compatible with standard IC op amps

Schematic and Connection Diagrams

Note: For heat sink use Thermalloy 2230-5 series.

Order Number LH0024H, LH0024H-MIL or LH0024CH See NS Package Number H08B

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales please contact the National Semiconductor Sale
Office/Distributors for availability and specifications. (Note 2)
Supply Voltage
$\pm 18 \mathrm{~V}$
Equal to Supply
$\pm 5 \mathrm{~V}$
Differential Input Voltage
Power Dissipation

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
ESD rating to be determined.	

$\begin{array}{ll}\text { Operating Temperature Range } \\ \text { LH0024 } \\ \text { LHOO24C } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { LHO } & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\end{array}$

DC Electrical Characteristics (Note 1)

Parameter	Conditions	LH0024			LH0024C			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & R_{S}=50 \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & R_{S}=50 \Omega \end{aligned}$		2.0	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		5.0	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & \mathrm{mv} \\ & \mathrm{mV} \end{aligned}$
Average Temperature Coefficient of Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$		-20			-25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$		4.0	$\begin{aligned} & 15.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		15	$\begin{aligned} & 30 \\ & 40 \end{aligned}$		18	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Supply Current			12.5	15		12.5	15	mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	5		$\begin{gathered} 3 \\ 2.5 \end{gathered}$	4		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 12	± 13		± 12	± 13		V
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	± 13		$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	± 13		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Slew Rate	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \\ & C_{1}=C_{2}=30 \mathrm{pF}, \\ & A_{V}=+1, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	400	500		250	400		$\mathrm{V} / \mu \mathrm{s}$
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$		60			60		dB
Power Supply Rejection Ratio	$\begin{aligned} & \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$		60			60		dB

Note 1: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH 0024 and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LH0024C.
Note 2: Refer to RETS0024 for LH0024H military specifications.

Frequency Compensation

TABLE I

Closed Loop Gain	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{3}}$
100	0	0	0
20	0	0	0
10	0	20 pF	1 pF
1	30 pF	30 pF	3 pF

Frequency Compensation Circuit

Typical Performance Characteristics

Applications Information LAYOUT CONSIDERATIONS

The LH0024/LH0024C, like most high speed circuitry, is sensitive to layout and stray capacitance. Power supplies should be by-passed as near the device as is practicable with at least $0.01 \mu \mathrm{~F}$ disc type capacitors. Compensating capacitors should also be placed as close to device as possible.

COMPENSATION RECOMMENDATIONS

Compensation schemes recommended in Table 1 work well under typical conditions. However, poor layout and long lead lengths can degrade the performance of the LH0O24 or cause the device to oscillate. Slight adjustments in the values for C1, C2, and C3 may be necessary for a given layout. In particular, when operating at a gain of -1, C3 may re-

TL/K/5552-7
quire adjustment in order to perfectly cancel the input capacitance of the device.
When operating the LH0024/LH0024C at a gain of +1 , the value of $R 1$ should be at least $1 \mathrm{k} \Omega$.

The case of the LH0024 is electrically isolated from the circuit; hence, it may be advantageous to drive the case in order to minimize stray capacitances.

HEAT SINKING

The LH0024/LH0024C is specified for operation without the use of an explicit heat sink. However, internal power dissipation does cause a significant temperature rise. Improved offset voltage drift can be obtained by limiting the temperature rise with a clip-on heat sink such as the Thermalloy 2228B or equivalent.

Typical Applications

LH0032

Ultra Fast FET-Input Operational Amplifier

General Description

The LH0032 is a high slew rate, high input impedance differential operational amplifier suitable for diverse applications in fast signal handling. The high allowable differential input voltage, ease of output clamping, and high output drive capability particularly suit it for comparator applications. It may be used in applications normally reserved for video amplifiers allowing the use of operational gain setting and frequency response shaping into the megahertz region.
The LH0032's wide bandwidth, high input impedance and high output capacity make it an ideal choice for applications such as summing amplifiers in high speed D to A converters, buffers in data acquisition systems and sample and hold circuits. Additional applications include high speed integrators and video amplifiers. The LH0032 is guaranteed for operation over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LH0032C is guaranteed for $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- $500 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- 70 MHz bandwidth
- $10^{12} \Omega$ input impedance
- As low as 2 mV max input offset voltage
- FET input
- Peak output current to 100 mA

Schematic

TL/K/5265-1

Absolute Maximum Ratings (Note 9)

Supply Voltage, V_{S}	$\pm 18 \mathrm{~V}$
Input Voltage, $\mathrm{V}_{\text {IN }}$	$\pm \mathrm{V}_{\mathrm{S}}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$ or $\pm 2 \mathrm{~V}$ S
Power Dissipation, P_{D}	(Note 10)
Steady State Output Current	$\pm 100 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Operating Ratings

Temperature Range, T_{A}

LH0032G	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0032CG	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature, T_{J}	$+175^{\circ} \mathrm{C}$
LH0032G	
Thermal Resistance (Note 8)	$100^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{J A}$ G Package	$70^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ unless otherwise noted (Note 2) $\left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}\right)$

Symbol	Parameter	Test Conditions		LH0032			LH0032C			Units
				Min	Typ	Max	Min	Typ	Max	
Vos	Input Offset Voltage	$\mathrm{V}_{\mathbf{I N}}=0$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \text { (Note 3) } \end{aligned}$		2	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$		2	$\begin{aligned} & 15 \\ & 20 \\ & \hline \end{aligned}$	mV
$\Delta \mathrm{V}_{\mathrm{OS}} /$ ΔT	Average Offset Voltage Drift		(Note 4)		15	50		15	50.	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current		$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}(\text { Note } 3) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { (Note 5) } \end{aligned}$			$\begin{gathered} 25 \\ 250 \\ 25 \\ \hline \end{gathered}$			$\begin{gathered} 50 \\ 500 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Input Bias Current		$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}(\text { Note } 3) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { (Note 5) } \end{aligned}$,		$\begin{gathered} 100 \\ 1 \\ 50 \\ \hline \end{gathered}$			$\begin{gathered} \hline 500 \\ 5 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
${ }^{*} \mathrm{~V}_{\text {INCM }}$	Input Voltage Range			± 10	± 12		± 10	± 12		V
CMRR	Common Mode Rejection Ratio	$\Delta \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$		50	60		50	60		dB
Avol	Open-Loop Voltage Gain	$\begin{aligned} & V_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	60	70		60	70		dB
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { (Note 6) } \end{aligned}$		57			57			
Vo	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		± 10	± 13.5		± 10	± 13		V
Is	Power Supply Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{O}}=0 \text { (Note } 5 \text {) } \end{aligned}$			18	20		20	22	mA
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \Delta V_{S}=10 \mathrm{~V} \\ & (\pm 5 \text { to } \pm 15 \mathrm{~V}) \end{aligned}$		50	60		50	60		dB

*Guaranteed by CMRR test condition.

AC Electrical Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 7)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
S_{R}	Slew Rate	$A_{V}=+1$	$\Delta \mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}$	350	500		$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{t}_{\text {s }}$	Settling Time to 1\% of Final Value	$A_{V}=-1$,			100		ns
$\mathrm{t}_{\text {s }}$	Settling Time to 0.1% of Final Value				300		ns
t_{R}	Small Signal Rise Time	$A_{V}=+1, \Delta V_{\text {IN }}=1 \mathrm{~V}$			8	20	
t_{D}	Small Signal Delay Time				10	25	

Note 1: In order to limit maximum junction temperature to $+175^{\circ} \mathrm{C}$, it may be necessary to operate with $\mathrm{VS}< \pm 15 \mathrm{~V}$ when T_{A} or T_{C} exceeds specific values depending on the P_{D} within the device package. Total P_{D} is the sum of quiescent and load-related dissipation. See applications notes AN-277, "Applications of Wide-Band Buffer Amplifiers" and AN-253, "High-Speed Operational-Amplifier Applications" for a discussion of load-related power dissipation.
Note 2: LH0032G is 100% production tested as specified at $25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$. LH0032CG is 100% production tested at $25^{\circ} \mathrm{C}$ only. Specifications at temperature extremes are verified by sample testing, but these limits are not used to calculate outgoing quality level.
Note 3: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high-speed automatic testing. Actual values at operating temperature will exceed the value at $T_{J}=25 \mathrm{C}$. When supply voltages are $\pm 15 \mathrm{~V}$, no-load operating junction temperature may rise $40-60^{\circ} \mathrm{C}$ above ambient, and more under load conditions. Accordingly, V_{OS} may change one to several mV , and I_{B} and I_{OS} will change significantly during warm-up. Refer to I_{B} and I_{OS} vs. temperature graph for expected values.
Note 4: LH0032G is 100% production tested for this parameter. LH0032CG is sample tested only. Limits are not used to calculate outgoing quality levels. $\Delta V_{O S} /$ ΔT is the average value calculated from measurements at $25^{\circ} \mathrm{C}$ and $T_{\text {MAX }}$.
Note 5: Measured in still air 7 minutes after application of power. Guaranteed thru correlated automatic pulse testing.
Note 6: Guaranteed thru correlated automatic pulse testing at $T_{J}=25^{\circ} \mathrm{C}$.
Note 7: Not 100% production tested; verified by sample testing only. Limits are not used to calculate outgoing quality level.
Note 8: For operating at elevated temperatures, the device must be derated based on the thermal resistance $\theta_{J A}$ and $T_{J} \max . T_{J}=T_{A}+P_{D} \theta_{J A}$.
Note 9: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 10: The maximum power dissipation is a function of maximum junction temperature T_{J} max, total thermal resistance $\theta_{J A}$, and ambient temperature T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J} \max -T_{A}\right) / \theta_{J A}$.
Note 11: See RETSO032X for LH0032G military specifications.

Connection Diagram

TOP VIEW
TL/K/5265-23

> Order Number LH0032G, LH0032G/883 or LH0032CG See NS Package Number G12B

Typical Performance Characteristics

Total Input Noise
Voltage vs. Frequency*

Typical Applications

100X Buffer Amplifier

TL/K/5265-19

TL/K/5265-18

Typical Applications (Continued)

TL/K/5265-22

Applications Information

POWER SUPPLY DECOUPLING

The LH0032/LH0032A, like most high speed circuits, is sensitive to layout and stray capacitance. Power supplies should be by passed as near to pins 10 and 12 as practicable with low inductance capacitors such as $0.01 \mu \mathrm{~F}$ disc ceramics. Compensation components should also be located close to the appropriate pins to minimize stray reactances.

INPUT CURRENT

Because the input devices are FETs, the input bias current may be expected to double for each $11^{\circ} \mathrm{C}$ junction temperature rise. This characteristic is plotted in the typical performance characteristics graphs. The device will self-heat due to internal power dissipation after application of power thus raising the FET junction temperature $40-60^{\circ} \mathrm{C}$ above freeair ambient temperature when supplies are $\pm 15 \mathrm{~V}$. The de-

Applications Information (Continued)

vice temperature will stabilize within 5-10 minutes after application of power, and the input bias currents measured at that time will be indicative of normal operating currents. An additional rise would occur as power is delivered to a load due to additional internal power dissipation.
There is an additional effect on input bias current as the input voltage is changed. The effect, common to all FETs, is an avalanche-like increase in gate current as the FET gate-to-drain voltage is increased above a critical value depending on FET geometry and doping levels. This effect will be noted as the input voltage of the LH0O32 is taken below ground potential when the supplies are $\pm 15 \mathrm{~V}$. All of the effects described here may be minimized by operating the device with $\mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$.
These effects are indicated in the typical performance curves.

INPUT CAPACITANCE

The input capacitance to the LH0032/LH0032C is typically 5 pF and thus may form a significant time constant with high value resistors. For optimum performance, the input capacitance to the inverting input should be compensated by a small capacitor across the feedback resistor. The value is strongly dependent on layout and closed loop gain, but will typically be in the neighborhood of several picofarads.
In the non-inverting configuration, it may be advantageous to bootstrap the case and/or a guard conductor to the inverting input. This serves both to divert leakage currents away from the non-inverting input and to reduce the effective input capacitance. A unity gain follower so treated will have an input capacitance under a picofarad.

HEAT SINKING

While the LH0032/LH0032A is specified for operation without any explicit heat sink, internal power dissipation does cause a significant temperature rise. Improved bias current performance can thus be obtained by limiting this temperature rise with a small heat sink such as the Thermalloy No. 2241 or equivalent. The case of the device has no internal connection, so it may be electrically connected to the sink if this is advantageous. Be aware, however, that this will affect the stray capacitances to all pins and may thus require adjustment of circuit compensation values.
For additional applications information request Application Note AN-253.

Compensating the LH0032

With the LH0032, two compensation schemes may be used, depending on the designer's specific needs.
The first technique is shown in Figure 14. It offers the best 0.1% settling time for a $\pm 10 \mathrm{~V}$ square wave input. The compensation capacitors C_{C} and C_{A} should be selected from Figure 15 for various closed-loop gains. Figure 16 shows how the LH0032 frequency response is modified for different value compensation capacitors.
Although this approach offers the shortest settling time, the falling edge exhibits overshoot up to 30% lasting 200 to 300 ns. Figure 17 shows the typical pulse response.

TL/K/5265-27
FIGURE 14. LH0032 Frequency Compensation Circuit

TL/K/5265-28
FIGURE 15. Recommended Value of Compensation Capacitor vs. Closed-Loop Gain for Optimum Settling Time

Applications Information (Continued)

TL/K/5265-29
FIGURE 16. The Effect of Various Compensation Capacitors on LH0032 Open Loop Frequency Response

TL/K/5265-30
FIGURE 17. LH0032 Unity Gain Non-Inverting Large Signal Pulse Response:
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{C}}=10 \mathrm{pF}, \mathrm{C}_{\mathrm{A}}=100 \mathrm{pF}$
If obtaining minimum ringing at the falling edge is the primary objective, a slight modification to the above is recommended. It is based on the same circuit as that of Figure 14.
The values of the unity gain compensation capacitors C_{C} and C_{A} should be modified to 5 pF and 1000 pF , respectively. Figure 18 shows the suitable capacitance to use for various closed-loop gains. The resulting unity gain pulse response waveform is shown in Figure 19. The settling time to 1% final value is actually superior to the first method of compensation. However, the LH0032 suffers slow settling thereafter to 0.1% accuracy at the falling edge, and nearly four times as much at the rising edge, compared to the previous scheme. Note, however, that the falling edge ringing is considerably reduced. Furthermore, the slew rate is consistently superior using this compensation because of the smaller value of Miller capacitance C_{C} required. Typical improvement is as much as 50%. A more detailed discussion of this effect is provided in the Slew Response section of this Application Note.
The second compensation scheme works well with both inverting or non-inverting modes. Figure 20 shows the circuit

TL/K/5265-31
FIGURE 18. Recommended Value of Compensation Capacitor vs. Closed-Loop Gain for Optimum Slew Rate

TL/K/5265-32
FIGURE 19. LH0032 Unity Gain Non-Inverting Large Signal Pulse Response: $\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}, \mathrm{C}_{\mathrm{A}}=1000 \mathrm{pF}$
schematic, in which a 270Ω resistor and a $0.01 \mu \mathrm{~F}$ capacitor are shunted across the inputs of the device. This lag compensation introduces a zero in the loop modifying the response such that adequate phase margin is preserved at unity gain crossover frequency. Note that the circuit requires no additional compensation.

TL/K/5265-33
FIGURE 20. LH0032 Non-Compensated Unity Gain Compensation

LH0042

Low Cost FET Op Amp

General Description

The LH0042 is a FET input operational amplifier with very high input impedance and low input currents with no compromise in noise, common mode rejection ratio, open loop gain, or slew rate. The LH0042 is internally compensated and is free of latch-up.
The LH0042 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0042C is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

The LH0042 op amp is intended to fulfill a wide variety of applications for process control, medical instrumentation, and other systems requiring very low input currents. The LH0042 provides low cost high performance for such applications as electrometer and photocell amplification, picoammeters, and high input impedance buffers.

Features

- High open loop gain-100 dB typ
- Internal compensation
- Pin compatible with standard IC op amps (TO-99 package)

Connection Diagram

Order Number LH0042H-MIL, LH0042H or LH0042CH
See NS Package Number H08D

Absolute Maximum Ratings	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage	$\pm 22 \mathrm{~V}$
Power Dissipation (see Graph)	500 mW
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$
Differential Input Voltage (Note 2)	$\pm 30 \mathrm{~V}$
Voltage Between Offset Null and $\mathrm{V}-$	$\pm 0.5 \mathrm{~V}$

Short Circuit Duration Operating Temperature Range

LHO022, LH0042, LH0052	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0022C, LH0042C, LH0052C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

Continuous

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

DC Electrical Characteristics for LH0022/LH0022C (Note 3) $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}$ (Max)

Parameter	Conditions	Limits						Units
		LH0022			LH0022C			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$		2.0	4.0		3.5	6.0	mV
	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			5.0			7.0	mV
Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		10			15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Drift with Time			3			4		$\mu \mathrm{V} /$ week
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)		0.2	2.0		1.0	5.0	pA
				2.0			0.5	nA
Temperature Coefficient of Input Offset Current		Doubles Every $10^{\circ} \mathrm{C}$			Doubles Every $10^{\circ} \mathrm{C}$			
Offset Current Drift with Time			0.1			0.1		pA/week
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)		5	10		10	25	pA
				10			2.5	nA
Temperature Coefficient of Input Bias Current		Doubles Every $10^{\circ} \mathrm{C}$			Doubles Every $10^{\circ} \mathrm{C}$			
Differential Input Resistance			1012			1012		Ω
Common Mode Input Resistance			1012			10^{12}		Ω
Input Capacitance			4.0			4.0		pF
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 12	± 13.5		± 12	± 13.5		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	74	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$	74	90		70	90		dB
Large Signal Voitage Gain	$\begin{aligned} & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	75	100		75	100		V / mV
	$\begin{aligned} & R_{L}=2 \mathrm{k} \Omega, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$	30			30			V/mV
Output Voltage Swing	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$	± 10	± 12.5		± 10	± 12		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 10			± 10			V
Output Current Swing	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 10	± 15		± 10	± 15		mA
Output Resistance			75			75		Ω
Output Short Circuit Current			25			25		mA
Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		2.0	2.5		2.4	2.8	mA
Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			75			85	mW

DC Electrical Characteristics for LH0042/LHOO42C (Note 3)

Parameter	Conditions	Limits						Units
		LH0042			LH0042C			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		5.0	20		6.0	20	mV
Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		10			15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Drift with Time			7.0			10		$\mu \mathrm{V} /$ week
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)		1.0	5.0		2.0	10	pA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)		10	25		15	50	pA
Temperature Coefficient of Input Bias Current		Doubles Every $10^{\circ} \mathrm{C}$			Doubles Every $10^{\circ} \mathrm{C}$			
Differential Input Resistance			10^{12}			1012		Ω
Common Mode Input Resistance			1012			1012		Ω
Input Capacitance			4.0			4.0		pF
Input Voltage Range		± 12	± 13.5		± 12	± 13.5		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$	70	86		70	80		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$	70	86		70	86		dB
Large Signal Voltage Gain	$\begin{aligned} & R_{S} \leq 2 \mathrm{k} \Omega, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	50	100		25	100		V / mV
	$\mathrm{R}_{\mathrm{S}} \leq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	30			25			V / mV
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 10	± 12.5		± 10	± 12		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10			± 10			V
Output Current Swing	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	± 10	± 15		± 10	± 15		mA
Output Resistance			75			75		Ω
Output Short Circuit Current			20			20		mA
Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		2.5	3.5		2.8	4.0	mA
Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			105			120	mW

DC Electrical Characteristics for LH0052/LH0052C (Note 3) (Continued)

Parameter	Conditions	Limits						Units
		LH0052			LH0052C			
		Min	Typ	Max	Min	Typ	Max	
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}($ Note 4)		0.5	2.5		1.0	5.0	pA
				2.5			0.5	nA
Temperature Coefficient of Input Bias Current		Doubles Every $10^{\circ} \mathrm{C}$			Doubles Every $10^{\circ} \mathrm{C}$			
Differential Input Resistance			1012			1012		Ω
Common Mode Input Resistance			1012			1012		Ω
Input Capacitance			4.0			4.0		pF
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 12	± 13.5		± 12	± 13.5		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{V}_{1 \mathrm{~N}}= \pm 10 \mathrm{~V}$	74	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$	74	90		70	90		dB
Large Signal Voltage Gain	$\begin{aligned} & R_{L}=2 \mathrm{k} \Omega, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	75	100		75	100		V / mV
	$\begin{aligned} & R_{L}=2 \mathrm{k} \Omega, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$	30			30			V / mV
Output Voltage Swing	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$	± 10	± 12.5		± 10	± 12		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$	± 10			± 10			V
Output Current Swing	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 10	± 15		± 10	± 15		mA
Output Resistance			75			75		Ω
Output Short Circuit Current			25			25		mA
Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		3.0	3.5		3.0	3.8	mA
Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			105			114	mW

AC Electrical Characteristics tor al amplifies $\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right)$

Parameter	Conditions	Limits						Units
		LH0022/42/52			LH0022C/42C/52C			
		Min	Typ	Max	Min	Typ	Max	
Slew Rate	Voltage Follower	1.5	3.0		1.0	3.0		$\mathrm{V} / \mu \mathrm{s}$
Large Signal Bandwidth	Voltage Follower		40			40		kHz
Small Signal Bandwidth			1.0			1.0		MHz
Rise Time			0.3	1.5		0.3	1.5	$\mu \mathrm{s}$
Overshoot			10	30		15	40	\%
Settling Time (0.1\%)	$\Delta V_{\text {IN }}=10 \mathrm{~V}$		4.5			4.5		$\mu \mathrm{S}$
Overload Recovery			4.0			4.0		$\mu \mathrm{S}$

AC Electrical Characteristics for all amplifiers $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right)$ (Continued)

Parameter	Conditions	Limits						Units
		LH0042			LH0042C			
		Min	Typ	Max	Min	Typ	Max	
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=10 \mathrm{~Hz}$		150			150		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=100 \mathrm{~Hz}$		55			55		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=1 \mathrm{kHz}$		35			35		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=10 \mathrm{kHz}$		30			30		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	$B W=10 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		12			12		$\mu \mathrm{Vrms}$

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2: Rating applies for minimum source resistance of $10 \mathrm{k} \Omega$, for source resistances less than $10 \mathrm{k} \Omega$, maximum differential input voltage is $\pm 5 \mathrm{~V}$.
Note 3: Unless otherwise specified, these specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LH0042 and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for the LH0042C. Typical values are given for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Input currents are a strong function of temperature. Due to high speed testing they are specified at a junction temperature $T_{j}=25^{\circ} \mathrm{C}$. Self heating will cause an increase in current in manual tests. $25^{\circ} \mathrm{C} \mathrm{spec}$ is guaranteed by testing at $125^{\circ} \mathrm{C}$.
Note 5: See RETS0042X for the LH0042H military specifications.
Auxiliary Circuits (Shnown for To-99 pin out)

TL/K/5557-6

TL/K/5557-7

Typical Applications

TL/K/5557-9

TL/K/5557-11

Typical Applications (Continued)

TL/K/5777-13

TL/K/5557-16

Re-Zeroing Amplifier

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

LH0101 Power Operational Amplifier

General Description

The LH0101 is a wideband power operational amplifier featuring FET inputs, internal compensation, virtually no crossover distortion, and rapid settling time. These features make the LH0101 an ideal choice for DC or AC servo amplifiers, deflection yoke drives, programmable power supplies, and disk head positioner amplifiers. The LH0101 is packaged in an 8 pin TO-3 hermetic package, rated at 60 watts with a suitable heat sink.

Features

- 5 Amp peak, 2 Amp continuous output current
- 300 kHz power bandwidth
- 850 mW standby power ($\pm 15 \mathrm{~V}$ supplies)
- 300 pA input bias current
- $10 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Virtually no crossover distortion
- $2 \mu \mathrm{~s}$ settling time to 0.01%
- 5 MHz gain bandwidth

Schematic and Connection Diagrams

Top View
Order Numbers LH0101K, LH0101K-MIL, LH0101CK, LH0101AK,
LH0101AK-MIL or LH0101ACK See NS Package Number K08A

Note: Electrically connected internally, no connection should be made to pin.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 5)
$\begin{array}{lr}\text { Supply Voltage, } \mathrm{V}_{S} & \pm 22 \mathrm{~V} \\ \text { Power Dissipation at } \mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} & 5 \mathrm{~W}\end{array}$
Derate linearly at $25^{\circ} \mathrm{C} / \mathrm{W}$ to zero at $150^{\circ} \mathrm{C}$,
Power Dissipation at $T_{\mathrm{C}}=25^{\circ} \mathrm{C} \quad 62 \mathrm{~W}$
Derate linearly at $2^{\circ} \mathrm{C} / \mathrm{W}$ to zero at $150^{\circ} \mathrm{C}$
Differential Input Voltage, V_{IN}
Input Voltage Range, V_{CM}
Thermal Resistance-
See Typical Performance Characteristics

Peak Output Current (50 ms pulse), lo(PK)
Output Short Circuit Duration (within rated power dissipation, $\mathrm{R}_{\mathrm{SC}}=0.35 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Continuous
Operating Temperature Range, T_{A}
LH0101AC, LH0101C
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH0101A, LH0101
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range, TSTG $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature, $\mathrm{T}_{\mathrm{J}} \quad 150^{\circ} \mathrm{C}$

Lead Temperature (Soldering <10 sec.) $260^{\circ} \mathrm{C}$
ESD rating to be determined.
$\pm 20 \mathrm{~V}$ but $< \pm \mathrm{V}_{\mathrm{S}}$
$+85^{\circ} \mathrm{C}$
$+125^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$

AC Electrical Characteristics (Note 1), $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions		LH0101 LH0101A			LH0101C LH0101AC			Units
				Min	Typ	Max	Min	Typ	Max	
e_{n}	Equivalent Input Noise Voltage	$f=1 \mathrm{kHz}$			25			25		$\mathrm{nV} \sqrt{\mathrm{Hz}}$
CIN	Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$			3.0			3.0		pF
	Power Bandwidth, -3 dB	$\underline{L}=10 \Omega$	$A_{V}=+1$		300			300		kHz
SR	Slew Rate			$\begin{gathered} 7.5 \\ \text { (Note 4) } \\ \hline \end{gathered}$	10			10		$\mathrm{V} / \mu \mathrm{s}$
t_{r}, t_{f}	Small Signal Rise or Fall Time				200			200		ns
	Small Signal Overshoot				10			10		\%
GBW	Gain-Bandwidth Product	$\mathrm{R}_{\mathrm{L}}=\infty$		4.0 (Note 4)	5.0			5.0		MHz
$\mathrm{t}_{\text {s }}$	Large Signal Settling Time to 0.01\%				2.0			2.0		$\mu \mathrm{S}$
THD	Total Harmonic Distortion	$\begin{aligned} & P_{\mathrm{O}}=10 \mathrm{~W}, \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$			0.008			0.008		\%

Note 1: Specification is at $T_{A}=25^{\circ} \mathrm{C}$. Actual values at operating temperature may differ from the $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ value. When supply voltages are $\pm 15 \mathrm{~V}$, quiescent operating junction temperature will rise approximately $20^{\circ} \mathrm{C}$ without heat sinking. Accordingly, V_{OS} may change 0.5 mV and I_{B} and l_{OS} will change significantly during warm-ups. Refer to the I_{B} vs. temperature and power dissipation graphs for expected values. Power supply voltage is $\pm 15 \mathrm{~V}$. Temperature tests are made only at extremes.
Note 2: Change in offset voltage with dissipated power is due entirely to average device temperature rise and not to differential thermal feedback effects. Test is performed without any heat sink.
Note 3: At light loads, the output swing may be limited by the second stage rather than the output stage. See the application section under "Output swing enhancement" for hints on how to obtain extended operation.
Note 4: These parameters are sample tested to 10\% LTPD.
Note 5: Refer to RETS0101AK for the LH0101AK military specifications and RETS0101K for the LH0101K military specifications.

Typical Performance Characteristics

Power Supply Rejection
Ratio vs. Frequency

Safe Operating Area

Input Bias Current after

Output Voltage Swing
vs. Frequency

Settling Time

Quiescent Power Supply
Current

Input Common-Mode
Voltage Range

Common-Mode Rejection
Ratio vs. Frequency

Total Harmonic
Distortion vs. Frequency

TL/K/5558-3

Typical Performance Characteristics (Continued)

Small Signal Pulse Response (No Load)

TL/K/5558-5

Large Signal Pulse Response $\left(\mathrm{R}_{\mathrm{L}}=10 \Omega\right)$

TL/K/5558-6

Application Hints

Input Voltages

The LH0101 operational amplifier contains JFET input devices which exhibit high reverse breakdown voltages from gate to source or drain. This eliminates the need for input clamp diodes, so that high differential input voltages may be applied without a large increase in input current. However, neither input voltage should be allowed to exceed the negative supply as the resultant high current flow may destroy the unit.
Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the commonmode voltage may exceed the positive supply by approximately 100 mV , independent of supply voltage and over the full operating temperature range. The positive supply may therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.
With the LH0101 there is a temptation to remove the bias current compensation resistor normally used on the non-inverting input of a summing amplifier. Direct connection of the inputs to ground or a low-impedance voltage source is not recommended with supply voltages greater than 3 V . The potential problem involves loss of one supply which can cause excessive current in the second supply. Destruction of the IC could result if the current to the inputs of the device is not limited to less than 100 mA or if there is much more than $1 \mu \mathrm{~F}$ bypass on the supply buss.
Although difficulties can be largely avoided by installing clamp diodes across the supply lines on every PC board, a conservative design would include enough resistance in the input lead to limit current to 10 mA if the input lead is pullied to either supply by internal currents. This precaution is by no means limited to the LH0101.

Layout Considerations

When working with circuitry capable of resolving pico-ampere level signals, leakage currents in circuitry external to the op amp can significantly degrade performance. High quality insulation is a must (Kel-F and Teflon rate high). Proper cleaning of all insulating surfaces to remove fluxes and other residues is also required. This includes the IC package as well as sockets and printed circuit boards. When operating in high humidity environments or near $0^{\circ} \mathrm{C}$, some form of surface coating may be necessary to provide a moisture barrier.
The effects of board leakage can be minimized by encircling the input circuitry with a conductive guard ring operated at a potential close to that of the inputs.

Electrostatic shielding of high impedance circuitry is advisable.
Error voltages can also be generated in the external circuitry . Thermocouples formed between dissimilar metals can cause hundreds of microvolts of error in the presence of temperature gradients.
Since the LH0101 can deliver large output currents, careful attention should be paid to power supply, power supply bypassing and load currents. Incorrect grounding of signal inputs and load can cause significant errors.
Every attempt should be made to achieve a single point ground system as shown in the figure below.

TL/K/5558-7
FIGURE 1. Single-Point Grounding
Bypass capacitor $C_{B X}$ should be used if the lead lengths of bypass capacitors C_{B} are long. If a single point ground system is not possible, keep signal, load, and power supply from intermingling as much as possible. For further information on proper grounding techniques refer to "Grounding and Shielding Techniques in Instrumentation" by Morrison, and "Noise Reduction Techniques in Electronic Systems" by Ott (both published by John Wiley and Sons).
Leads or PC board traces to the supply pins, short-circuit current limit pins, and the output pin must be substantial enough to handle the high currents that the LH0101 is capable of producing.

Short Circuit Current Limiting

Should current limiting of the output not be necessary, SC+ should be shorted to $\mathrm{V}+$ and SC - should be shorted to $\mathrm{V}-$. Remember that the short circuit current limit is dependent upon the total resistance seen between the supply and current limit pins. This total resistance includes the desired resistor plus leads, PC Board traces, and solder joints.* Assuming a zero TCR current limit resistor, typical temperature coefficient of the short circuit current will be approximately $.3 \% /{ }^{\circ} \mathrm{C}$.
*Short circuit current will be limited to approximately $\frac{0.6}{\text { RSC }}$.

Application Hints (Continued)

Thermal Resistance

The thermal resistance between two points of a conductive system is expressed as:

$$
\theta_{12}=\frac{T_{1}-T_{2}}{P_{D}}{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

where subscript order indicates the direction of heat flow. A simplified heat transfer circuit for a cased semiconductor and heat sink system is shown in the figure below.
The circuit is valid only if the system is in thermal equilibrium (constant heat flow) and there are, indeed, single specific temperatures T_{J}, T_{C} and T_{S} (no temperature distribution in junction, case, or heat sink). Nevertheless, this is a reasonable approximation of actual performance.

FIGURE 2. Semiconductor-Heat Sink Thermal Circuit
The junction-to-case thermal resistance θ_{JC} specified in the data sheet depends upon the material and size of the package, die size and thickness, and quality of the die bond to the case or lead frame. The case-to-heat sink thermal resistance $\theta_{\text {CS }}$ depends on the mounting of the device to the heat sink and upon the area and quality of the contact surface. Typical θ_{CS} for a TO-3 package is 0.5 to $0.7^{\circ} \mathrm{C} / \mathrm{W}$, and 0.3 to $0.5^{\circ} \mathrm{C} / \mathrm{W}$ using silicone grease.

The heat sink to ambient thermal resistance $\theta_{\text {SA }}$ depends on the quality of the heat sink and the ambient conditions.
Cooling is normally required to maintain the worst case operating junction temperature T_{J} of the device below the specified maximum value $T_{J(M A X)}$. T_{J} can be calculated from known operating conditions. Rewriting the above equation, we find:

$$
\begin{aligned}
& \theta_{\mathrm{JA}}=\frac{T_{J}-T_{A^{\circ}}{ }^{\circ} \mathrm{C} / \mathrm{W}}{P_{\mathrm{D}}} \\
& T_{J}=T_{A}+P_{D} \theta_{J A}{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Where: $P_{D}\left(V_{S}-V_{\text {OUT }}\right) l_{\text {OUT }}+|V+-(V-)|_{Q}$ for a DC Signal
$\theta_{\mathrm{JA}}=\theta_{\mathrm{JC}}+\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}$ and $\mathrm{V}_{\mathrm{S}}=$ Supply Voltage
$\theta_{\text {JC }}$ for the LH0101 is about $2^{\circ} \mathrm{C} / \mathrm{W}$.

Stability and Compensation

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input device (usually the inverting input) to ac
ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time consistant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.
Some inductive loads may cause output stage oscillation. A $.01 \mu \mathrm{~F}$ ceramic capacitor in series with a 10Ω resistor from the output to ground will usually remedy this situation.

TL/K/5558-9
FIGURE 3. Driving Inductive Loads
Capacitive loads may be compensated for by traditional techniques. (See "Operational Amplifiers: Theory and Practice" by Roberge, published by Wiley):

TL/K/5558-10
FIGURE 4. R $_{\mathbf{C}}$ and $\mathbf{C}_{\mathbf{C}}$ Selected to Compensate for Capacitive Load
A similar but alternative technique may be used for the LH0101:

TL/K/5558-11
FIGURE 5. Alternate Compensation for Capacitive Load

Application Hints (Continued)

Output Swing Enhancement

When the feedback pin is connected directly to the output, the output voltage swing is limited by the driver stage and not by output saturation. Output swing can be increased as shown by taking gain in the output stage as shown in High Power Voltage Follower with Swing Enhancement below. Whenever gain is taken in the output stage, as in swing enhancement, either the output stage, or the entire op amp must be appropriately compensated to account for the additional loop gain.

Output Resistance

The open loop output resistance of the LH0101 is a function of the load current. No load output resistance is approximately 10Ω. This decreases to under 1Ω for load currents exceeding 100 mA .

Typical Applications

See AN261 for more information.

TL/K/5558-13
FIGURE 7. High Power Voltage Follower with Swing Enhancement

TL/K/5558-14
FIGURE 8. Restricting Outputs to Positive Voltages Only
Following is a partial list of sockets and heat dissipators for use with the LH0101. National assumes no responsibility for their quality or availability.
8-Lead TO-3 Hardware
SOCKETS

Keystone 4626 or 4627
Robinson Nugent 0002011
Azimuth 6028 (test socket)

HEAT SINKS

Thermalloy 2266B ($35^{\circ} \mathrm{C} / \mathrm{W}$)
IERC LAIC3B4CB
IERC HP1-TO3-33CB $\left(7^{\circ} \mathrm{C} / \mathrm{W}\right)$
AAVID 5791B
MICA WASHERS
Keystone 4658

AAVID Engineering
30 Cook Court
Laconla, New Hampshire 03246
Azimuth Electronics
2377 S. El Camino Real
San Clemente, CA 92572
IERC
135 W. Magnolia Blvd.
Burbank, CA 91502

Keystone Electronics Corp.
49 Bleecker St.
New York, NY 10012
Robinson Nugent Inc.
800 E. 8th St.
New Albany, IN 47150
Thermalloy
P.O. Box 34829

Dallas, TX 75234

Typical Applications (Continued)

TL/K/5558-15
FIGURE 9. Generating a Split Supply from a Single Voltage Supply

FIGURE 10. Power DAC

TL/K/5558-17
FIGURE 11. Bridge Audio Amplifier

Typical Applications (Continued)

FIGURE 12. ± 5 to ± 35 Power Source or Sink

TL/K/5558-19
FIGURE 13. Remote Loudspeaker via Infrared Link

TL/K/5558-20
FIGURE 14. CRT Deflection Yoke Driver

Typical Applications (Continued)

TL/K/5558-21
FIGURE 15. DC Servo Amplifier

TL/K/5558-22
FIGURE 16. High Current Source/Sink

LM10 Operational Amplifier and Voltage Reference

General Description

The LM10 series are monolithic linear ICs consisting of a precision reference, an adjustable reference buffer and an independent, high quality op amp .
The unit can operate from a total supply voltage as low as 1.1 V or as high as 40 V , drawing only $270 \mu \mathrm{~A}$. A complementary output stage swings within 15 mV of the supply terminals or will deliver $\pm 20 \mathrm{~mA}$ output current with $\pm 0.4 \mathrm{~V}$ saturation. Reference output can be as low as 200 mV . Some other characteristics of the LM10 are

\square	$2.0 \mathrm{mV}(\max)$
input offset voltage	$0.7 \mathrm{nA}(\max)$
\square input offset current	$20 \mathrm{nA}(\max)$
input bias current	$0.1 \%(\max)$
\square reference regulation	$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
\square offset voltage drift	$0.002 \% /{ }^{\circ} \mathrm{C}$

Connection and Functional Diagrams

TL/H/5652-1
Order Number LM10BH, LM10CH, LM10CLH or LM10H/883
available per SMA \# 5962-8760401
See NS Package Number H08A
Small Outline Package (WM)

TL/H/5652-17
Order Number LM10CWM
See NS Package Number M14B 101
-

The circuit is recommended for portable equipment and is completely specified for operation from a single power cell. In contrast, high output-drive capability, both voltage and current, along with thermal overload protection, suggest it in demanding general-purpose applications.
The device is capable of operating in a floating mode, independent of fixed supplies. It can function as a remote comparator, signal conditioner, SCR controller or transmitter for analog signals, delivering the processed signal on the same line used to supply power. It is also suited for operation in a wide range of voltage- and current-regulator applications, from low voltages to several hundred volts, providing greater precision than existing ICs.
This series is available in the three standard temperature ranges, with the commercial part having relaxed limits. In addition, a low-voltage specification (suffix " L ") is available in the limited temperature ranges at a cost savings.

TL/H/5652-15
Order Number LM10CN or LM10CLN
See NS Package Number N08E

TL/H/5652-16

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 7)

LM10/LM10B/ LM10BL/		
	LM10C	LM10CL
Total Supply Voltage	45 V	7 V
Differential Input Voltage (note 1)	$\pm 40 \mathrm{~V}$	$\pm 7 \mathrm{~V}$
Power Dissipation (note 2)	internally limited	
Output Short-circuit Duration (note 3)	continuous	
Storage-Temp. Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temp. (Soldering, 10 seconds)		
Metal Can	$300^{\circ} \mathrm{C}$	
Lead Temp. (Soldering, 10 seconds) DIP	$260^{\circ} \mathrm{C}$	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$	
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$	

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating is to be determined.
Maximum Junction Temperature

LM10	$150^{\circ} \mathrm{C}$
LM10B	$100^{\circ} \mathrm{C}$
LM10C	$85^{\circ} \mathrm{C}$

Operating Ratings

Package Thermal Resistance
θ_{JA}

H Package	$150^{\circ} \mathrm{C} / \mathrm{W}$
N Package	$87^{\circ} / \mathrm{W}$
WM Package	$90^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JC }}$	
H Package	$45^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

$T_{J}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {MAX }}$ (note 4) (Boldface type refers to limits over temperature range)

Parameter	Conditions	LM10/LM10B			LM10C			Units
		Min	Typ	Max	Min	Typ	Max	
Input offset voltage			0.3	$\begin{aligned} & 2.0 \\ & \mathbf{3 . 0} \end{aligned}$		0.5	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input offset current (note 5)			0.25	$\begin{aligned} & 0.7 \\ & 1.5 \end{aligned}$		0.4	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input bias current			10	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		12	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input resistance		$\begin{aligned} & \hline 250 \\ & 150 \end{aligned}$	500		$\begin{aligned} & 150 \\ & 115 \end{aligned}$	400		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Large signal voltage gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0 \\ & \mathrm{~V}_{\mathrm{OUT}}= \pm 19.95 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}= \pm 19.4 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OUT}}= \pm 20 \mathrm{~mA}(\pm \mathbf{1 5} \mathbf{~ m A}) \\ & \mathrm{V}_{\mathrm{S}}= \pm 0.6 \mathrm{~V}(\mathbf{0 . 6 5 V}), \mathrm{loUT}= \pm 2 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT }}= \pm 0.4 \mathrm{~V}(\pm \mathbf{0 . 3 V}), \mathrm{V}_{\mathbf{C M}}=-\mathbf{0 . 4 V} \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 80 \\ & 50 \\ & 20 \\ & 1.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 130 \\ & 3.0 \end{aligned}$		$\begin{gathered} 80 \\ 50 \\ 25 \\ 15 \\ 1.0 \\ 0.75 \\ \hline \end{gathered}$	$\begin{aligned} & 400 \\ & 130 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Shunt gain (note 6)	$\begin{aligned} & 1.2 \mathrm{~V}(1.3 \mathrm{~V}) \leq \mathrm{V}_{\text {OUT }} \leq 40 \mathrm{~V}, \\ & R_{\mathrm{L}}=1.1 \mathrm{k} \Omega \\ & 0.1 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 5 \mathrm{~mA} \\ & 1.5 \mathrm{~V} \leq \mathrm{V}+\leq 40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=250 \Omega \\ & 0.1 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 20 \mathrm{~mA} \end{aligned}$	14	33 25		$\begin{aligned} & \hline 10 \\ & 6 \\ & 6 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 33 \\ & 25 \end{aligned}$		V / mV V / mV V / mV V / mV
Common-mode rejection	$\begin{aligned} & -20 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 19.15 \mathrm{~V}(19 \mathrm{~V}) \\ & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 93 \\ & \mathbf{8 7} \\ & \hline \end{aligned}$	102		$\begin{aligned} & 90 \\ & 87 \end{aligned}$	102		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Supply-voltage rejection	$\begin{aligned} & -0.2 \mathrm{~V} \geq \mathrm{V}-\geq-39 \mathrm{~V} \\ & \mathrm{~V}^{+}=1.0 \mathrm{~V}(1.1 \mathrm{~V}) \\ & 1.0 \mathrm{~V}(1.1 \mathrm{~V}) \leq \mathrm{V}^{+} \leq 39.8 \mathrm{~V} \\ & \mathrm{~V}^{-}=-0.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 90 \\ & \mathbf{8 4} \\ & 96 \\ & \mathbf{9 0} \end{aligned}$	$\begin{gathered} 96 \\ 106 \end{gathered}$		$\begin{aligned} & 87 \\ & 84 \\ & 93 \\ & 90 \end{aligned}$	$\begin{aligned} & 96 \\ & 106 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Offset voltage drift			2.0			5.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset current drift			2.0			5.0		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Bias current drift	$\mathrm{T}_{\mathrm{C}}<100^{\circ} \mathrm{C}$		60			90		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Line regulation	$\begin{aligned} & 1.2 \mathrm{~V}(1.3 \mathrm{~V}) \leq \mathrm{V}_{\mathrm{S}} \leq 40 \mathrm{~V} \\ & 0 \leq I_{\text {REF }} \leq 1.0 \mathrm{~mA}, \mathrm{~V}_{\text {REF }}=200 \mathrm{mV} \end{aligned}$		0.001	$\begin{gathered} 0.003 \\ 0.006 \end{gathered}$		0.001	$\begin{aligned} & 0.008 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
Load regulation	$\begin{aligned} & 0 \leq I_{R E F} \leq 1.0 \mathrm{~mA} \\ & \mathrm{~V}+-\mathrm{V}_{\mathrm{REF}} \geq 1.0 \mathrm{~V}(1.1 \mathrm{~V}) \end{aligned}$		0.01	$\begin{gathered} 0.1 \\ 0.15 \end{gathered}$		0.01	$\begin{aligned} & 0.15 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$

Electrical Characteristics
$T_{J}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {MAX }}$, (note 4) (Boldface type refers to limits over temperature range) (Continued)

Parameter	Conditions	LM10/LM10B			LM10C			Units
		Min	Typ	Max	Min	Typ	Max	
Amplifier gain	$0.2 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 35 \mathrm{~V}$	$\begin{aligned} & 50 \\ & 23 \end{aligned}$	75		$\begin{aligned} & 25 \\ & 15 \end{aligned}$	70		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Feedback sense voltage		$\begin{gathered} 195 \\ 194 \\ \hline \end{gathered}$	200	$\begin{aligned} & 205 \\ & 206 \end{aligned}$	$\begin{aligned} & 190 \\ & 189 \\ & \hline \end{aligned}$	200	$\begin{aligned} & 210 \\ & 211 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Feedback current			20	$\begin{aligned} & 50 \\ & 65 \end{aligned}$		22	$\begin{aligned} & 75 \\ & 90 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Reference drift	,		0.002			0.003		\%/ ${ }^{\circ} \mathrm{C}$
Supply current			270	$\begin{aligned} & 400 \\ & 500 \\ & \hline \end{aligned}$		300	$\begin{aligned} & 500 \\ & 570 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Supply current change	$1.2 \mathrm{~V}(1.3 \mathrm{~V}) \leq \mathrm{V}_{\mathrm{S}} \leq 40 \mathrm{~V}$		15	75		15	75	$\mu \mathrm{A}$

Parameter	Conditions	LM10BL			LM10CL			Units
		Min	Typ	Max	Min	Typ	Max	
Input offset voltage	, \%. \%		0.3	$\begin{aligned} & 2.0 \\ & \mathbf{3 . 0} \end{aligned}$		0.5	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Input offset current (note 5)			0.1	$\begin{aligned} & 0.7 \\ & 1.5 \end{aligned}$		0.2	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	nA nA
Input bias current			10	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		12	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Input resistance	:	$\begin{aligned} & 250 \\ & 150 \end{aligned}$	500		$\begin{aligned} & 150 \\ & 115 \end{aligned}$	400		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Large signal voltage gain		60 40 10 4 1.5 0.5	$\begin{aligned} & 300 \\ & 25 \\ & 3.0 \end{aligned}$		$\begin{gathered} \hline 40 \\ 25 \\ 5 \\ 3 \\ 1.0 \\ 0.75 \end{gathered}$	$\begin{aligned} & 300 \\ & 25 \\ & 3.0 \end{aligned}$		V / mV
Shunt gain (note 6)	$\begin{aligned} & 1.5 \mathrm{~V} \leq \mathrm{V}+\leq 6.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & 0.1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq 10 \mathrm{~mA} \end{aligned}$	$\begin{array}{r} 8 \\ 4 \\ \hline \end{array}$	30		$\begin{aligned} & 6 \\ & 4 \\ & \hline \end{aligned}$	30		V / mV V / mV
Common-mode rejection	$\begin{aligned} & -3.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.4 \mathrm{~V}(2.25 \mathrm{~V}) \\ & \mathrm{V}_{\mathrm{S}}= \pm 3.25 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 89 \\ \mathbf{8 3} \\ \hline \end{array}$	102		$\begin{aligned} & \hline 80 \\ & 74 \\ & \hline \end{aligned}$	102		dB dB
Supply-voltage rejection	$\begin{aligned} & -0.2 \mathrm{~V} \geq \mathrm{V}-\geq-5.4 \mathrm{~V} \\ & \mathrm{~V}+=1.0 \mathrm{~V}(1.2 \mathrm{~V}) \\ & 1.0 \mathrm{~V}(1.1 \mathrm{~V}) \leq \mathrm{V}^{+} \leq 6.3 \mathrm{~V} \\ & \mathrm{~V}-=0.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 86 \\ & \mathbf{8 0} \\ & 94 \\ & \mathbf{8 8} \end{aligned}$	96 106		$\begin{aligned} & 80 \\ & 74 \\ & 80 \\ & 74 \end{aligned}$	96 106		dB dB dB dB
Offset voltage drift			2.0			5.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset current drift			2.0			5.0		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Bias current drift			60			90		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Line regulation	$\begin{aligned} & 1.2 \mathrm{~V}(1.3 \mathrm{~V}) \leq \mathrm{V}_{\mathrm{S}} \leq 6.5 \mathrm{~V} \\ & 0 \leq I_{\text {REF }} \leq 0.5 \mathrm{~mA}, \mathrm{~V}_{\text {REF }}=200 \mathrm{mV} \end{aligned}$		0.001	$\begin{gathered} 0.01 \\ 0.02 \\ \hline \end{gathered}$		0.001	$\begin{aligned} & 0.02 \\ & \mathbf{0 . 0 3} \\ & \hline \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
Load regulation	$\begin{aligned} & 0 \leq I_{\text {REF }} \leq 0.5 \mathrm{~mA} \\ & \mathrm{~V}+-\mathrm{V}_{\text {REF }} \geq 1.0 \mathrm{~V}(1.1 \mathrm{~V}) \end{aligned}$		0.01	$\begin{array}{r} 0.1 \\ 0.15 \\ \hline \end{array}$:	0.01	$\begin{aligned} & 0.15 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
Amplifier gain	$0.2 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 5.5 \mathrm{~V}$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	70		$\begin{array}{r} 20 \\ 15 \end{array}$	70		V/mV V/mV

Electrical Characteristics

$\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{min}} \leq \mathbf{T}_{\mathbf{J}} \leq \mathbf{T}_{\text {max }}$, (note 4) (Boldface type refers to limits over temperature range) (Continued)

Parameter	Conditions	LM10BL			LM10CL			Units
		Min	Typ	Max	Min	Typ	Max	
Feedback sense voltage		$\begin{gathered} 195 \\ 194 \end{gathered}$	200	$\begin{aligned} & 205 \\ & 206 \end{aligned}$	$\begin{gathered} 190 \\ 189 \end{gathered}$	200	$\begin{aligned} & 210 \\ & 211 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Feedback current			20	$\begin{aligned} & 50 \\ & 65 \end{aligned}$		22	$\begin{aligned} & 75 \\ & 90 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Reference drift			0.002			0.003		\%/ ${ }^{\circ} \mathrm{C}$
Supply current			260	$\begin{aligned} & 400 \\ & \mathbf{5 0 0} \end{aligned}$		280	$\begin{aligned} & 500 \\ & 570 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

Note 1: The Input voltage can exceed the supply voltages provided that the voltage from the input to any other terminal does not exceed the maximum differential input voltage and excess dissipation is accounted for when $\mathrm{V}_{\mathbf{I N}}<\mathrm{V}^{-}$.
Note 2: The maximum, operating-junction temperature is $150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10,100^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{~B}(\mathrm{~L})$ and $85^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{C}(\mathrm{L})$. At elevated temperatures, devices must be derated based on package thermal resistance.
Note 3: Internal thermal limiting prevents excessive heating that could result in sudden failure, but the IC can be subjected to accelerated stress with a shorted output and worst-case conditions.
Note 4: These specifications apply for $\mathrm{V}^{-} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}+-0.85 \mathrm{~V}(1.0 \mathrm{~V}), 1.2 \mathrm{~V}(1.3 \mathrm{~V})<\mathrm{V}_{\mathrm{S}} \leq \mathrm{V}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{REF}}=0.2 \mathrm{~V}$ and $0 \leq \mathrm{I}_{\mathrm{REF}} \leq 1.0 \mathrm{~mA}$, unless otherwise specified: $\mathrm{V}_{\text {MAX }}=40 \mathrm{~V}$ for the standard part and 6.5 V for the low voltage part. Normal typeface indicates $25^{\circ} \mathrm{C}$ limits. Boldface type Indicates limits and altered test conditions for full-temperature-range operation; this is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10,-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{~B}(\mathrm{~L})$ and $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{C}(\mathrm{L})$. The specifications do not include the effects of thermal gradients ($\tau_{1} \cong 20 \mathrm{~ms}$), die heating ($\tau_{2} \cong 0.2 \mathrm{~s}$) or package heating. Gradient effects are small and tend to offset the electrical error (see curves).
Note 5: For $T_{J}>90^{\circ} \mathrm{C}$, Ios may exceed 1.5 nA for $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$. With $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ and $\mathrm{V}^{-} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}^{-}+0.1 \mathrm{~V}$, $\mathrm{l}_{\mathrm{OS}} \leq 5 \mathrm{nA}$
Note 6: This defines operation in floating applications such as the bootstrapped regulator or two-wire transmitter. Output is connected to the $\mathrm{V}+$ terminal of the IC and input common mode is referred to V^{-}(see typical applications). Effect of larger output-voltage swings with higher load resistance can be accounted for by adding the positive-supply rejection error.
Note 7: Refer to RETS10X for LM10H military specifications.

Definition of Terms

Input offset voltage: That voltage which must be applied between the input terminals to bias the unloaded output in the linear region.

Input offset current: The difference in the currents at the input terminals when the unloaded output is in the linear region.
Input bias current: The absolute value of the average of the two input currents.

Input resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Large signal voltage gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it.

Shunt gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it with the output tied to the $\mathrm{V}+$ terminal of the IC. The load and power source are connected between the V^{+}and V - terminals, and input common-mode is referred to the V - terminal.

Common-mode rejection: The ratio of the input voltage range to the change in offset voltage between the extremes.

Supply-voltage rejection: The ratio of the specified sup-ply-voltage change to the change in offset voltage between the extremes.

Line regulation: The average change in reference output voltage over the specified supply voltage range.

Load regulation: The change in reference output voltage from no load to that load specified.

Feedback sense voltage: The voltage, referred to V^{-}, on the reference feedback terminal while operating in regulation.

Reference amplifier gain: The ratio of the specified reference output change to the change in feedback sense voltage required to produce it.

Feedback current: The absolute value of the current at the feedback terminal when operating in regulation.

Supply current: The current required from the power source to operate the amplifier and reference with their outputs unloaded and operating in the linear range.

Typical Performance Characteristics (Op Amp) (Continued)

TL/H/5652-4

Typical Performance Characteristics (Reference)

Reference Noise Voltage

Typical Applications ${ }^{\dagger \dagger}$ (Pin numbers are for devices in 8-pin packages)

Op Amp Offset Adjustment

Positive Regulators ${ }^{\dagger}$

Low Voltage

Best Regulation

Zero Output

TL/H/5652-6

[^2]Typical Applications ${ }^{\dagger \dagger}$ (Pin numbers are for devices in 8 -pin packages) (Continued)

Current Regulator

Negative Regulator

*Electrolytic

Shunt Regulator

Laboratory Power Supply

${ }^{*} V_{\text {OUT }}=10^{-4}$ R3
$\dagger \dagger$ Circuit descriptions available in application note AN-211.

Typical Applications ${ }^{\dagger \dagger}$ (Pin numbers are for devicess in 8 -pin packages) (Continued) Transmitter for Bridge Sensor

Precision Thermocouple Transmitter

*ain Trim

Resistance Thermometer Transmitter

[^3]Typical Applications ${ }^{\dagger \dagger}$ (Pin numbers are for devices in 8 -pin packages) (Continued)

Thermocouple Transmitter

Battery-level Indicator

Single-cell Voltage Monitor

Logarithmic Light Sensor

Battery-threshold Indicator

Double-ended Voltage Monitor

Flash Rate Increases Above 6 V and Below 15V

[^4]Typical Applications $\dagger \dagger$ (Pin numbers are for devices in 8 -pin packages) (Continued)

Meter Amplifier

Thermometer

Light Meter

Microphone Amplifier

Typical Applications ${ }^{\dagger \dagger}$ (Pin numbers are for devices in 8 -pin packages) (Continued)

${ }^{\dagger \dagger}$ Circuit descriptions available in application note AN-211.

Application Hints

With heavy amplifier loading to V^{-}, resistance drops in the V^{-}lead can adversely affect reference regulation. Lead resistance can approach 1Ω. Therefore, the common to the reference circuitry should be connected as close as possible to the package.

LM101A/LM201A/LM301A Operational Amplifiers General Description

The LM101A series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. Advanced processing techniques make possible an order of magnitude reduction in input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current. Improved specifications include:

- Offset voltage 3 mV maximum over temperature (LM101A/LM201A)
- Input current 100 nA maximum over temperature (LM101A/LM201A)
- Offset current 20 nA maximum over temperature (LM101A/LM201A)
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ as a summing amplifier

This amplifier offers many features which make its application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is ex-
ceeded, and freedom from oscillations and compensation with a single 30 pF capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application. For example, in low frequency circuits it can be overcompensated for increased stability margin. Or the compensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.
In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and a drift at a lower cost.
The LM101A is guaranteed over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM 201 A from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the LM301A from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Connection Diagrams (Top View)

TL/H/7752-4
Order Number LM101AJ, LM101J/883*, LM201AN or LM301AN
See NS Package Number J08A or N08A

TL/H/7752-2 Note: Pin 4 connected to case. Order Number LM101AH, LM101AH/883*, LM201AH or LM301AH See NS Package Number H08C

Order Number LM101AW/883 or LM101W/883 See NS Package Number W10A

Order Number LM101AJ-14/883*
See NS Package Number J14A

[^5]
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	LM101A/LM201A	LM301A
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration (Note 2)	Continuous	Continuous
Operating Ambient Temp. Range	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\mathrm{LM} 101 \mathrm{~A}) \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}(\mathrm{LM} 201 \mathrm{~A}) \end{aligned}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TJ Max		
H-Package	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
N-Package	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
J-Package	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
H-Package (Still Air)	500 mW	300 mW
(400 LF/Min Air Flow)	1200 mW	700 mW
N-Package	900 mW	500 mW
J-Package	1000 mW	650 mW
Thermal Resistance (Typical) $\boldsymbol{\theta}_{\mathrm{j}} \mathrm{A}$.		
H-Package (Still Air)	$165^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
(400 LF/Min Air Flow)	$67^{\circ} \mathrm{C} / \mathrm{W}$	$67^{\circ} \mathrm{C} / \mathrm{W}$
N Package	$135^{\circ} \mathrm{C} / \mathrm{W}$	$135^{\circ} \mathrm{C} / \mathrm{W}$
J-Package	$110^{\circ} \mathrm{C} / \mathrm{W}$	$110^{\circ} \mathrm{CmW}$
(Typical) $\theta_{\mathrm{j}} \mathrm{C}$		
H-Package	$25^{\circ} \mathrm{C} / \mathrm{W}$	$25^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$		
Metal Can or Ceramic	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Plastic	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
ESD Tolerance (Note 5)	2000V	2000 V

Electrical Characteristics (Note 3) $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}$

Parameter	Conditions		LM101A/LM201A			LM301A			Units
			Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$			0.7	2.0		2.0	7.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.5	10		3.0	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			30	75		70	250	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	4.0		0.5	2.0		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{S}= \pm 20 \mathrm{~V}$		1.8	3.0				mA
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$					1.8	3.0	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$		50	160		25	160		V/mV
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$				3.0			10	mV
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$			3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current					20			70	nA
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C} \end{aligned}$			0.01	0.1		0.01	0.3	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
				0.02	0.2		0.02	0.6	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$

Electrical Characteristics ${ }_{(\text {Note } 3)} \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}$ (Continued)

Parameter	Conditions		LM101A/LM201A			LM301A			Units
			Min	Typ	Max	Min	Typ	Max	
Input Bias Current					0.1			0.3	$\mu \mathrm{A}$
Supply Current	$T_{A}=T_{M A X}, V_{S}= \pm 20 \mathrm{~V}$			1.2	2.5				mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \end{aligned}$		25			15			V / mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$		± 15						V
	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			+15, -13		± 12	+15, -13		V
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$		80	96		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$		80	96		70	96		dB

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2: Continuous short circuit is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $75^{\circ} \mathrm{C}$ for $\mathrm{LM} 101 \mathrm{~A} / \mathrm{LM} 201 \mathrm{~A}$, and $70^{\circ} \mathrm{C}$ and $55^{\circ} \mathrm{C}$ respectively for LM301A.
Note 3: Unless otherwise specified, these specifications apply for $\mathrm{C} 1=30 \mathrm{pF}, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}(\mathrm{LM} 101 \mathrm{~A})$, $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (LM201A), $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (LM301A).
Note 4: Refer to RETS101AX for LM101A military specifications and RETS101X for LM101 military specifications.
Note 5: Human body model, 100 pF discharged through $1.5 \mathrm{k} \Omega$.

Guaranteed Performance Characteristics LM101A/LM201A

TL/H/7752-5

Guaranteed Performance Characteristics Lм301A

TL/H/7752-6

Typical Performance Characteristics

Typical Performance Characteristics for Various Compensation Circuits**

Single Pole Compensation

$\mathrm{C} 1 \geq \frac{\mathrm{R} 1 \mathrm{C}_{\mathrm{S}}}{\mathrm{R} 1+\mathrm{R} 2}$
$\mathrm{C}_{\mathrm{S}}=30 \mathrm{pF}$

TL/H/7752-9

TL/H/7752-10
Voltage Follower Pulse Response

TL/H/7752-11

Two Pole Compensation

TL/H/7752-12

TL/H/7752-13
Large Signal Frequency
Response

TL/H/7752-14
Voltage Follower Pulse
Response

TL/H/7752-15

Feedforward Compensation

TL/H/7752-18

TL/H/7752-19

Typical Applications**

Application Hints**

Compensating for Stray Input Capacitances or Large Feedback Resistor

TL/H/7752-28

Although the LM101A is designed for trouble free operation, experience has indicated that it is wise to observe certain precautions given below to protect the devices from abnormal operating conditions. It might be pointed out that the advice given here is applicable to practically any IC op amp, although the exact reason why may differ with different devices.
When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak instantaneous output current of the source to something less than 100 mA . This is especially important when the inputs go outside a piece of equipment where they could accidentally be connected to high voltage sources. Large capacitors on the input (greater than $0.1 \mu \mathrm{~F}$) should be treated as a low source impedance and isolated with a resistor. Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage. However, the supplies go to zero when they are turned off, so the isolation is usually needed.
The output circuitry is protected against damage from shorts to ground. However, when the amplifier output is connected to a test point, it should be isolated by a limiting resistor, as test points frequently get shorted to bad places. Further, when the amplifer drives a load external to the equipment, it is also advisable to use some sort of limiting resistance to preclude mishaps.

Precautions should be taken to insure that the power supplies for the integrated circuit never become reversedeven under transient conditions. With reverse voltages greater than IV, the IC will conduct excessive current, fusing internal aluminum interconnects. If there is a possibility of this happening, clamp diodes with a high peak current rating should be installed on the supply lines. Reversal of the voltage between V^{+}and V^{-}will always cause a problem, although reversals with respect to ground may also give difficulties in many circuits.
The minimum values given for the frequency compensation capacitor are stable only for source resistances less than $10 \mathrm{k} \Omega$, stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF . If any of these conditions are not met, it becomes necessary to overcompensate the amplifier with a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads.
Although the LM101A is relatively unaffected by supply bypassing, this cannot be ignored altogether. Generally it is necessary to bypass the supplies to ground at least once on every circuit card, and more bypass points may be required if more than five amplifiers are used. When feed-forward compensation is employed, however, it is advisable to bypass the supply leads of each amplifier with low inductance capacitors because of the higher frequencies involved.

Typical Applications** (Continued)

TL/H/7752-31

TL/H/7752-32

Fast AC/DC Converter*

Typical Applications** (Continued)

TL/H/7752-34

Voltage Comparator for Driving RTL Logic or High Current Driver

TL/H/7752-37

Low Frequency Square Wave Generator

TL/H/7752-36

Typical Applications** (Continued)

Schematic**
TL/H/7752-38

TL/H/7752-1

LM107/LM207/LM307 Operational Amplifiers

General Description

The LM107 series are complete, general purpose operational amplifiers, with the necessary frequency compensation built into the chip. Advanced processing techniques make the input currents a factor of ten lower than industry standards like the 709. Yet, they are a direct, plug-in replacement for the 709, LM101A and 741.
The LM107 series offers the features of the LM101A, which makes its application nearly foolproof. In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform genera-
tors. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and drift at a lower cost.
The LM107 is guaranteed over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range, the LM 207 from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and the LM307 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Offset voltage 3 mV maximum over temperature
- Input current 100 nA maximum over temperature
- Offset current 20 nA maximum over temperature
- Guaranteed drift characteristics

Connection Diagrams

TL/H/7757-2
Note: Pin 4 connected to case.
Top View
Order Number LM107H/883* See NS Package Number H08C

TL/H/7757-13

Order Number LM107J-14/883*

See NS Package Number J14A

TL/H/7757-3
Top View
Order Number LM107J/883* or LM207J See NS Package Number J08A

Order Number LM307N See NS Package Number N08A

[^6]
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 4)

	LM107/LM207	LM307			
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$			
Power Dissipation (Note 1)	500 mW	500 mW		TMIN	TMAX
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	LM107	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	LM207	$-25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$
Output Short Circuit Duration	Continuous	Continuous	LM307	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
Operating Temperature Range (T_{A})			ESD rating to be determined.		
(LM107)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
(LM207)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			
Lead Temperature (Soldering, 10 sec)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$			

Electrical Characteristics (Note 3)

Parameter	Conditions	LM107/LM207			LM307			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$		0.7	2.0		2.0	7.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	10		3.0	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	75		70	250	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.5	4.0		0.5	2.0		$\mathrm{M} \Omega$
Supply Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \hline \end{aligned}$		1.8	3.0		1.8	3.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	160		25	160		V/mV
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$			3.0			10	mV
Average Temperature Coefficient of Input Offset Voltage			3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				20			70	nA
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.2 \end{gathered}$		$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	$n A /{ }^{\circ} \mathrm{C}$ $n A /{ }^{\circ} \mathrm{C}$
Input Bias Current				100			300	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$		1.2	2.5				mA

Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	LM107/LM207			LM307			Units
		Min	Typ	Max	Min	Typ	Max	
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			15			V / mV
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Voltage Range	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	± 15	$\begin{array}{r} +15 \\ -13 \\ \hline \end{array}$		± 12	$\begin{aligned} & +15 \\ & -13 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { v } \\ & \text { V } \end{aligned}$
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$	80	96		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$	80	96		70	96		dB

Note 1: The maximum junction temperature of the LM107 is $150^{\circ} \mathrm{C}$, and the LM207/LM307 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of $165^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $30^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LM 107 or $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}+85^{\circ} \mathrm{C}$ for the LM 207 , and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq$ $+70^{\circ} \mathrm{C}$ and $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$ for the LM307 unless otherwise specified.
Note 4: Refer to RETS107X for LM107H and LM107J military specifications.

Schematic Diagram*

TL/H/7757-1

Guaranteed Performance Characteristics LM107/LM207

Guaranteed Performance Characteristics Lм307

TL/H/7757-5

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Large Signal
Frequency Response

Voltage Follower Pulse Response

TL/H/7757-7

Typical Applications**

TL/H/7757-8

Non-Inverting Amplifier
TL/H/7757-9

TL/H/7757-10
**Pin connections shown are for metal can.

Typical Applications** (Continued)

TL/H/7757-12
**Pin connections shown are for metal can.

National Semiconductor

LM108/LM208/LM308 Operational Amplifiers

General Description

The LM108 series are precision operational amplifiers having specifications a factor of ten better than FET amplifiers over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.
The devices operate with supply voltages from $\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ and have sufficient supply rejection to use unregulated supplies. Although the circuit is interchangeable with and uses the same compensation as the LM101A, an alternate compensation scheme can be used to make it particularly insensitive to power supply noise and to make supply bypass capacitors unnecessary.
The low current error of the LM108 series makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from $10 \mathrm{M} \Omega$ source resistances,
introducing less error than devices like the 709 with $10 \mathrm{k} \Omega$ sources. Integrators with drifts less than $500 \mu \mathrm{~V} / \mathrm{sec}$ and analog time delays in excess of one hour can be made using capacitors no larger than $1 \mu \mathrm{~F}$.
The LM108 is guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM208 from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the LM308 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Maximum input bias current of 3.0 nA over temperature
- Offset current less than 400 pA over temperature
- Supply current of only $300 \mu \mathrm{~A}$, even in saturation
- Guaranteed drift characteristics

Compensation Circuits

TL/H/7758-1
${ }^{* *}$ Bandwidth and slew rate are proportional to $1 / \mathrm{C}_{\mathrm{f}}$

Alternate* Frequency Compensation

TL/H/7758-2
*Improves rejection of power supply noise by a factor of ten.
**Bandwidth and slew rate are proportional to $1 / \mathrm{C}_{\mathrm{s}}$

Feedforward Compensation

TL/H/7758-3

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 5)

Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range (LM108)
(LM208)
Storage Temperature Range
Lead Temperature (Soldering, 10 sec) DIP
H Package Lead Temp (Soldering 10 seconds)
Soldering Information Dual-In-Line Package Soldering (10 seconds) $260^{\circ} \mathrm{C}$ Small Outline Package Vapor Phase (60 seconds) Infrared (15 seconds)

LM108/LM208
$\pm 20 \mathrm{~V}$
500 mW
$\pm 10 \mathrm{~mA}$ $\pm 15 \mathrm{~V}$
Continuous
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
$215^{\circ} \mathrm{C}$
$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 6)
2000 V

Electrical Characteristics (Note 4)

Parameter	Condition	LM108/LM208			LM308			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.7	2.0		2.0	7.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.05	0.2		0.2	1	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.8	2.0		1.5	7	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	70		10	40		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.3	0.6		0.3	0.8	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	50	300		25	300		V/mV
Input Offset Voltage				3.0			10	mV
Average Temperature Coefficient of Input Offset Voltage			3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				0.4			1.5	nA
Average Temperature Coefficient of Input Offset Current			0.5	2.5		2.0	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current				3.0			10	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		0.15	0.4				mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	25			15			V/mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 14		± 13	± 14		V

Electrical Characteristics (Note 4) (Continued)

Parameter	Condition	LM 108/LM208			LM308			Units
		Min	Typ	Max	Min	Typ	Max	
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 13.5			± 14			V
Common Mode Rejection Ratio		85	100		80	100		dB
Supply Voltage Rejection Ratio		80	96		80	96		dB

Note 1: The maximum junction temperature of the LM108 is $150^{\circ} \mathrm{C}$, for the $\mathrm{LM} 208,100^{\circ} \mathrm{C}$ and for the $\mathrm{LM} 308,85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 08 package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM208, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$, and for the LM 308 they are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$.
Note 5: Refer to RETS108X for LM108 military specifications and RETs 108AX for LM108A military specifications.
Note 6: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Schematic Diagram

TL/H/7758-8

Typical Applications

High Speed Amplifier with Low Drift and Low Input Current

Typical Applications (Continued)

Connection Diagrams

TL/H/7758-13
*Package is connected to Pin $4\left(\mathrm{~V}^{-}\right)$
**Unused pin (no internal connection) to allow for input anti-leakage guard ring on printed circuit board layout.

Order Number LM108H, LM108H/883,
LM308AH or LM308H See NS Package Number H08C

Top View

Dual-In-Line Package

TL/H/7758-15
Top View
Order Number LM108J-8/883, LM308M or LM308N See NS Package Number J08A, M08A or N08E

Order Number LM108J/883
See NS Package Number J14A

LM118/LM218/LM318 Operational Amplifiers

General Description

The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They feature a factor of ten increase in speed over general purpose devices without sacrificing DC performance.
The LM118 series has internal unity gain frequency compensation. This considerably simplifies its application since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feedforward compensation will boost the slew rate to over $150 \mathrm{~V} / \mu \mathrm{s}$ and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under $1 \mu \mathrm{~s}$.
The high speed and fast settling time of these op amps make them useful in A/D converters, oscillators, active fil-
ters, sample and hold circuits, or general purpose amplifiers. These devices are easy to apply and offer an order of magnitude better AC performance than industry standards such as the LM709.
The LM218 is identical to the LM118 except that the LM218 has its performance specified over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LM318 is specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- 15 MHz small signal bandwidth
- Guaranteed $50 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Maximum bias current of 250 nA
- Operates from supplies of $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- Internal frequency compensation
- Input and output overioad protected
- Pin compatible with general purpose op amps

Connection Diagrams

Dual-In-Line Package

Top View
Order Number LM118J-8/883*, LM318M or LM318N
See NS Package Number J08A, M08A or N08B
Metal Can Package**
compensation-2

TL/H/7766-2
Top View
**Pin connections shown on schematic diagram and typical applications are for TO-5 package.
Order Number LM118H, LM118H/883*,
LM218H or LM318H See NS Package Number H08C

Absolute Maximum Ratings	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
(Note 6)	$\pm 20 \mathrm{~V}$
Supply Voltage	500 mW
Power Dissipation (Note 1)	$\pm 10 \mathrm{~mA}$
Differential Input Current (Note 2)	$\pm 15 \mathrm{~V}$
Input Voltage (Note 3)	Continuous

Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM118	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM218	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM318	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$
Hermetic Package	$260^{\circ} \mathrm{C}$
Plastic Package	
Soldering Information	
Dual-In-Line Package	$260^{\circ} \mathrm{C}$
Soldering (10 sec.)	$215^{\circ} \mathrm{C}$
Small Outline Package	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 7)
2000V

Electrical Characteristics (Note 4)

Parameter	Conditions	LM118/LM218			LM318			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	4		4	10	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6	50		30	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		120	250		150	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	3	.	0.5	3		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	8		5	10	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	200		25	200		V/mV
Slew Rate	$T_{A}=25^{\circ} C, V_{S}= \pm 15 V, A_{V}=1$ (Note 5)	50	70		50	70		$\mathrm{V} / \mu \mathrm{s}$
Small Signal Bandwidth	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		15			15		MHz
Input Offset Voltage				6			15	mV
Input Offset Current				100			300	nA
Input Bias Current				500			750	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		4.5	7				mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			20			V/mV
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 12	± 13		± 12	± 13		V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11.5			± 11.5			V
Common-Mode Rejection Ratio		80	100		70	100		dB
Supply Voltage Rejection Ratio		70	80		65	80		dB

Note 1: The maximum junction temperature of the LM118 is $150^{\circ} \mathrm{C}$, the LM218 is $110^{\circ} \mathrm{C}$, and the LM318 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}(\mathrm{LM} 118),-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (LM218), and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (LM318). Also, power supplies must be bypassed with $0.1 \mu \mathrm{~F}$ disc capacitors.
Note 5: Slew rate is tested with $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. The LM118 is in a unity-gain non-inverting configuration. $\mathrm{V}_{\mathbb{N}}$ is stepped from -7.5 V to +7.5 V and vice versa. The slew rates between -5.0 V and +5.0 V and vice versa are tested and guaranteed to exceed $50 \mathrm{~V} / \mu \mathrm{s}$.
Note 6: Refer to RETS118X for LM118H and LM118J military specifications.
Note 7: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics LM118, LM218

Typical Performance Characteristics LM118, LM218 (Continued)

TL/H/7766-5
Typical Performance Characteristics Lм318

Typical Performance Characteristics LM318 (Continued)

Auxiliary Circuits

Compensation for Minimum Settling \dagger Time

TL/H/7766-9

Typical Applications

TL/H/7766-13

Integrator or Slow Inverter

TL/H/7766-14
*Do not hard-wire as integrator or slow inverter; insert a $10 \mathrm{k}-5 \mathrm{pF}$ network in series with the input, to prevent oscillation.

Typical Applications (Continued)

Fast Sample and Hold

TL/H/7766-18

D/A Converter Using Ladder Network

Four Quadrant Multiplier

TL/H/7766-17

Typical Applications (Continued)
D/A Converter Using Binary Weighted Network

Fast Summing Amplifier with Low Input Current

TL/H/7766-21

Instrumentation Amplifier

Schematic Diagram

LM124/LM224/LM324/LM2902

Low Power Quad Operational Amplifiers

General Description

The LM124 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.
Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard +5 V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 \mathrm{~V}$ power supplies.

Unique Characteristics

- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage
- The unity gain cross frequency is temperature compensated
- The input bias current is also temperature compensated

Advantages

- Eliminates need for dual supplies
- Four internally compensated op amps in a single package
- Allows directly sensing near GND and $\mathrm{V}_{\text {OUT }}$ also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Internally frequency compensated for unity gain
- Large DC voltage gain 100 dB
- Wide bandwidth (unity gain) $\quad 1 \mathrm{MHz}$ (temperature compensated)
- Wide power supply range:

$$
\begin{array}{lr}
\text { Single supply } & 3 \mathrm{~V} \text { to } 32 \mathrm{~V} \\
\text { or dual supplies } & \pm 1.5 \mathrm{~V} \text { to } \pm 16 \mathrm{~V}
\end{array}
$$

- Very low supply current drain ($700 \mu \mathrm{~A}$) -essentially independent of supply voltage
- Low input biasing current 45 nA (temperature compensated)
- Low input offset voltage 2 mV and offiset current 5 nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
■ Large output voltage swing
0 V to $\mathrm{V}+-1.5 \mathrm{~V}$

Connection Diagram

Dual-In-Line Package

Order Number LM124J, LM124AJ, LM124J/883**, LM124AJ/883*, LM224J, LM224AJ, LM324J, LM324M, LM324AM, LM2902M, LM324N, LM324AN or LM2902N See NS Package Number J14A, M14A or N14A

TL/H/9299-32
Order Number LM124AE/883 or LM124E/883 See NS Package Number E20A

TL/H/9299-33
Order Number LM124AW/883 or LM124W/883 See NS Package Number W14B

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 9)

Supply Voltage, V^{+}	LM124/LM224/LM324 LM124A/LM224A/LM324A 32V	LM2902 26V	Storage Temperature Range $\begin{array}{r}\text { LM124 } \\ \text { LM124A }\end{array}$	LM224/LM324 LM224A/LM324A C to $+150^{\circ} \mathrm{C}$	LM2902 $-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}$
Differential Input Voltage	32V	26 V	Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Input Voltage	-0.3 V to +32 V	$-0.3 V$ to +26 V	Soldering Information		
Input Current $\left(\mathrm{V}_{\mathrm{IN}}<-0.3 \mathrm{~V}\right)(\text { Note } 3)$	50 mA	50 mA	Dual-In-Line Package Soldering (10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Power Dissipation (Note 1) Molded DIP Cavity DIP	1130 mW 1260 mW 800 mW	$\begin{aligned} & 1130 \mathrm{~mW} \\ & 1260 \mathrm{~mW} \end{aligned}$	Small Outline Package Vapor Phase (60 seconds) Infrared (15 seconds)	$\begin{aligned} & 215^{\circ} \mathrm{C} \\ & 220^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 215^{\circ} \mathrm{C} \\ 220^{\circ} \mathrm{C} \\ \text { uct Reliability"' for } \end{gathered}$
Small Outline Package .-	800 mW	800 mW	See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.		
Output Short-Circuit to GND (One Amplíier) (Note 2) $\mathrm{V}^{+} \leq 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Continuous	Continuous	ESD Tolerance (Note 10)	250 V	250 V
Operating Temperature Range LM324/LM324A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	- -		
LM224/LM224A	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-		
LM124/LM124A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				

Electrical Characteristics $\mathrm{v}^{+}=+5.0 \mathrm{~V}$, (Note 4), unless otherwise stated

Parameter	Conditions	LM124A		LM224A		LM324A		LM124/LM224		LM324		LM2902		Units
		Min Typ	Max											
Input Offset Voltage	(Note 5) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	2	1	3	2	3	2	5	2	7	2	7	mV
Input Bias Current (Note 6)	$\begin{aligned} & \operatorname{liN}(+) \text { or } \operatorname{lin}(-), V_{C M}=0 \mathrm{~V}, \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	20	50	40	80	45	100	45	150	45	250	45	250	nA
Input Offset Current	$\begin{aligned} & \operatorname{lig}_{N(+)}-\operatorname{li} \operatorname{N(-)}, V_{C M}=0 V, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	2	10	2	15	5	30	3	30	5	50	5	50	nA
Input Common-Mode Voltage Range (Note 7)	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V},\left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right), \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	0	$\mathrm{V}^{+}-1.5$	V										
Supply Current	Over Full Temperature Range $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \text { On All Op Amps } \\ & \mathrm{V}^{+}=30 \mathrm{~V}\left(\mathrm{LM} 2902 \mathrm{~V}^{+}=26 \mathrm{~V}\right) \\ & \mathrm{V}^{+}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \\ \hline \end{gathered}$	$\begin{array}{r} 1.5 \\ 0.7 \\ \hline \end{array}$	$\begin{gathered} 3 \\ 1.2 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \\ \hline \end{gathered}$	$\begin{array}{r} 1.5 \\ 0.7 \\ \hline \end{array}$	$\begin{gathered} 3 \\ 1.2 \\ \hline \end{gathered}$	$\begin{array}{r} 1.5 \\ 0.7 \\ \hline \end{array}$	$\begin{gathered} 3 \\ 1.2 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 3 \\ 1.2 \\ \hline \end{array}$	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \\ & \left(V_{\mathrm{O}}=1 \mathrm{~V} \text { to } 11 \mathrm{~V}\right), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	50100		50100		25100		50100		25100		25100		V/mV
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{DC}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } \mathrm{V}^{+}-1.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$70 \quad 85$		$70 \quad 85$		$65 \quad 85$		$70 \quad 85$		6585		$50 \quad 70$		dB
Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { to } 30 \mathrm{~V} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=5 \mathrm{~V} \text { to } 26 \mathrm{~V}\right), \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	65100		65100		65100		65100		65100		50100		dB

Electrical Characteristics $\mathrm{V}^{+}=+5.0 \mathrm{~V}$（Note 4）unless otherwise stated（Continued）																								
Parameter		Conditions		LM124A			LM224A			LM324A			LM124／LM224			LM324			LM2902			Units		
		Min	Typ	Max																				
Amplifier－to－Amplifier Coupling（Note 8）				$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Input Referred) } \end{aligned}$		－120			－120						－120			－120			－120			dB
Output Current	Source	$\begin{aligned} & \mathrm{V}_{1{ }^{+}}=1 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}^{-}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		$20 \quad 40$			$20 \quad 40$			$20 \quad 40$			20	40		20	40		20	40		mA		
	Sink	$\begin{aligned} & \mathrm{V}_{\mathrm{N}^{-}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}{ }^{+}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		$10 \quad 20$			1020			$10 \quad 20$			$10 \quad 20$				20		10	20				
		$\begin{aligned} & \mathrm{V}_{\mathrm{N}^{-}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{+}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		12	50		12	50		12	50		12	50		12	50		12	50		$\mu \mathrm{A}$		
Short Circuit to Ground		（Note 2） $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			40	60			60		40	60		40	60		40	60		40	60	mA		
Input Offset Voltage		（Note 5）				4			4			5			7			9			10	mV		
Input Offset Voltage Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$				20			20			30		7			7			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
Input Offset Current		$\ln (+)-\operatorname{lin}(-), \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$				30			30			75			100			150		45	200	nA		
Input Offset Current Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$				200			200			300	10			10			10			pA／$/{ }^{\circ} \mathrm{C}$		
Input Bias Current		$\ln (+)$ or $\ln (-)$			40	100		40	100		40	200		40	300		40	500		40	500	nA		
Input Common－Mode Voltage Range（Note 7）		$\begin{aligned} & \mathrm{V}^{+}=+30 \mathrm{~V} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right) \end{aligned}$		0	$v^{+}-2$		0		$v^{+}-2$	0	$\mathrm{V}^{+}-2$		V											
Large Signal Voltage Gain		$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}} \text { Swing }=1 \mathrm{~V} \text { to } 11 \mathrm{~V} \text {) } \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$		25			25			15			25			15			15			V / mV		
Output Voltage Swing	V_{OH}	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right) \end{aligned}$	$R_{L}=2 \mathrm{k} \Omega$	26			26			26			26			26			22			V		
			$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$27 \quad 28$			$27 \quad 28$				28		$27 \quad 28$			$27 \quad 28$			$23 \quad 24$					
	$\mathrm{V}_{\text {OL }}$	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			5	20		5	20		5	20		5	20		5	20		5	100	mV		

Electrical Characteristics $\mathrm{v}^{+}=+5.0 \mathrm{~V}$ (Note 4) unless otherwise stated (Continued)

Parameter		Conditions		LM124A			LM224A			LM324A			LM124/LM224			LM324			LM2902			Units		
		Min	Typ	Max																				
Output Current	Source			$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}{ }^{+}=+1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}^{-}=0 \mathrm{~V}, \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	10	20		10	20		10	20		10	20		10	20		10	20		
	Sink	$\begin{aligned} & V_{\mathbb{N}^{-}}^{-}=+1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathbb{N}^{+}}=0 \mathrm{~V}, \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	10		15		5	8		5	8		5	8		5	8		5	8				

Note 1: For operating at high temperatures, the LM324/LM324A/LM2902 must be derated based on a $+125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $88^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM224/LM224A and LM124/LM124A can be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature. The dissipation is the total of all four amplifiers-use external resistors, where possible, to allow the amplifier to saturate of to reduce the power which is dissipated in the integrated circuit.
Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independentof the magnitude of V^{+}. At values of supply voltage in excess of +15 V , continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers. Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode cclamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than - 0.3 V (at $25^{\circ} \mathrm{C}$). Note 4: These specifications are limited to $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 124 / \mathrm{LM124A}$. With the $\mathrm{LM} 224 / \mathrm{LM} 224 \mathrm{~A}$, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, the $\mathrm{LM} 324 / \mathrm{LM} 324 \mathrm{~A}$ temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$, and the LM 2902 specifications are limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.
Note 5: $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}, \mathrm{R}_{S}=0 \Omega$ with V^{+}from 5 V to 30 V ; and over the full input common-mode range (0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$) for $\mathrm{LM} 2902, \mathrm{~V}^{+}$from 5 V to 26 V .
Note 6: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
Note 7: The input common-mode voitage of either input signal voltage should not be allowed to go negative by more than 0.3 V (at $25^{\circ} \mathrm{C}$). The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$ (at $25^{\circ} \mathrm{C}$), but either or both inputs can go to +32 V without damage (+26 V for LM2902), independent of the magnitude of V^{+}
Note 8: Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies. Note 9: Refer to RETS124AX for LM124A military specifications and refer to RETS124X for LM124 military specifications.
Note 10: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Schematic Diagram (Each Ampilifer)

TL/H/9299-2

Typical Performance Characteristics

Voltage Follower Pulse Response（Small Signal）

Typical Performance Characteristics (LM2902 only)

Input Current

Application Hints

The LM124 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of $0 \mathrm{~V}_{\mathrm{DC}}$. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At $25^{\circ} \mathrm{C}$ amplifier operation is possible down to a minimum supply voltage of $2.3 \mathrm{~V}_{\mathrm{DC}}$.
The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7, 8, and 14). Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V^{+}without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode with a resistor to the IC input terminal can be used.
To reduce the power supply drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.
For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion.

TL/H/9299-4

Where the load is directly coupled, as in dc applications, there is no crossover distortion.
Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.
The bias network of the LM124 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $3 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$.
Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at $25^{\circ} \mathrm{C}$ provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.
The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of $V^{+} / 2$) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right.$ (Continued)

Fixed Current Sources

$$
I_{2}=\left(\frac{R 1}{R 2}\right) I_{1}
$$

Lamp Driver

TL/H/9299-11

Driving TTL

TL/H/9299-12

TL/H/9299-14

Typical Single－Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\text {DC }}\right.$（Continued）

High Compliance Current Sink

TL／H／9299－17

Low Drift Peak Detector

TL／H／9299－19

Ground Referencing a Differential Input Signal

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)($ Continued)

Voltage Controlled Oscillator Circuit

TL/H/9299-22
*Wide control voltage range: $0 \mathrm{~V}_{\mathrm{DC}} \leq \mathrm{V}_{\mathrm{C}} \leq 2\left(\mathrm{~V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}\right)$

Photo Voltaic-Cell Amplifier

TL/H/9299-24

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}\right.$ DC) (Continued)

DC Coupled Low-Pass RC Active Filter

TL/H/9299-26
High Input Z, DC Differential Amplifier

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)($ Continued)

TL/H/9299-28

TL/H/9299-29

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V} \mathrm{VCC}\right.$ (Continued)

LM143/LM343 High Voltage Operational Amplifier

General Description

The LM143 is a general purpose high voltage operational amplifier featuring operation to $\pm 40 \mathrm{~V}$, complete input overvoltage protection up to $\pm 40 \mathrm{~V}$ and input currents comparable to those of other super- β op amps. Increased slew rate, together with higher common-mode and supply rejection, insure improved performance at high supply voltages. Operating characteristics, in particular supply current, slew rate and gain, are virtually independent of supply voltage and temperature. Furthermore, gain is unaffected by output loading at high supply voltages due to thermal symmetry on the die. The LM143 is pin compatible with general purpose op amps and has offset null capability.
Application areas include those of general purpose op amps, but can be extended to higher voltages and higher output power when externally boosted. For example, when used in audio power applications, the LM143 provides a power bandwidth that covers the entire audio spectrum. In addition, the LM143 can be reliably operated in environments with large overvoltage spikes on the power supplies, where other internally-compensated op amps would suffer catastrophic failure.
The LM343 is similar to the LM143 for applications in less severe supply voltage and temperature environments.

Features

- Wide supply voltage range $\pm 4.0 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$

■ Large output voltage swing $\pm 37 \mathrm{~V}$

- Wide input common-mode range $\pm 38 \mathrm{~V}$
- Input overvoltage protection Full $\pm 40 \mathrm{~V}$
- Supply current is virtually independent of supply voltage and temperature

Unique Characteristics

- Low input bias current 8.0 nA
- Low input offset current 1.0 nA
- High slew rate-essentially independent of temperature and supply voltage $2.5 \mathrm{~V} / \mu \mathrm{s}$
- High voltage gain-virtually independent of resistive loading, temperature, and supply voltage 100k min
- Internally compensated for unity gain
- Output short circuit protection
- Pin compatible with general purpose op amps

Connection Diagram

TL/H/7783-1
Order Number LM143H, LM143H/883* or LM343H
See NS Package Number H08C

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 4)

	LM143	LM343
Supply Voltage	$\pm 40 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
Power Dissipation (Note 1)	680 mW	680 mW
Differential Input Voltage (Note 2)	80 V	68 V
Input Voltage (Note 2)	$\pm 40 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Output Short Circuit Duration	5 seconds	5 seconds
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
ESD rating to be determined.		

Electrical Characteristics (Note 3)

Parameter	Conditions	LM143			LM343			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0		2.0	8.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0	3.0		1.0	10	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8.0	20		8.0	40	nA
Supply Voltage Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	100		10	200	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 5 \mathrm{k} \Omega$	22	25		20	25		V
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega \end{aligned}$	100k	180k		70k	180k		V/V
Common-Mode Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	90		70	90		dB
Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 24	± 26.		± 22	± 26		V
Supply Current (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	4.0		2.0	5.0	mA
Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20			20		mA
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{A}_{V}=1$		2.5			2.5		$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {OUT }}=40 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \\ & R_{\mathrm{L}}=5 \mathrm{k} \Omega, T H D \leq 1 \% \end{aligned}$		20k			20k		Hz
Unity Gain Frequency	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0M			1.0M		Hz
Input Offset Voltage	$\begin{aligned} & T_{A}=M a x \\ & T_{A}=M i n \\ & \hline \end{aligned}$			$\begin{aligned} & \hline 6.0 \\ & 6.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	mV
Input Offset Current	$\begin{aligned} & T_{A}=\operatorname{Max} \\ & T_{A}=\operatorname{Min} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.5 \\ 7.0 \\ \hline \end{array}$		$\begin{aligned} & 0.8 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	nA
Input Bias Current	$\begin{aligned} & T_{A}=\operatorname{Max} \\ & T_{A}=\operatorname{Min} \end{aligned}$		$\begin{aligned} & 5.0 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.0 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & \hline \end{aligned}$	nA
Large Signal Voltage Gain	$\begin{aligned} & R_{L} \geq 100 \mathrm{k} \Omega, \mathrm{~T}_{A}=\mathrm{Max} \\ & R_{\mathrm{L}} \geq 100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=\text { Min } \end{aligned}$	$\begin{array}{r} 50 \mathrm{k} \\ 50 \mathrm{k} \end{array}$	$\begin{aligned} & \text { 150k } \\ & \text { 220k } \end{aligned}$		$\begin{aligned} & 50 \mathrm{k} \\ & 50 \mathrm{k} \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \mathrm{k} \\ & 220 \mathrm{k} \end{aligned}$		V/V
Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=\operatorname{Max} \\ & \mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=\operatorname{Min} \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 26 \\ & 25 \end{aligned}$		20 20	$\begin{aligned} & 26 \\ & 25 \end{aligned}$		V

Note 1: Absolute maximum ratings are not necessarily concurrent, and care must be taken not to exceed the maximum junction temperature of the LM143 (150 ${ }^{\circ} \mathrm{C}$) or the LM343 $\left(100^{\circ} \mathrm{C}\right)$. For operating at elevated temperatures, devices in the H 08 package must be derated based on a thermal resistance of $155^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: For supply voltage less than $\pm 40 \mathrm{~V}$ for the LM143 and less than $\pm 34 \mathrm{~V}$ for the LM343, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 28 \mathrm{~V}$. For $L M 143, T_{A}=\max =125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=\min =-55^{\circ} \mathrm{C}$. For $\mathrm{LM} 343, \mathrm{~T}_{\mathrm{A}}=\max =70^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=\min =$ $0^{\circ} \mathrm{C}$.
Note 4: Refer to RETS143X for LM143H and LM1536H military specifications.
Note 5: The maximum supply currents are guaranteed at $\mathrm{V}_{\mathrm{S}}= \pm 40 \mathrm{~V}$ for the LM143 and $\mathrm{V}_{\mathrm{S}}= \pm 34 \mathrm{~V}$ for the LM343.

Typical Performance Characteristics

Large Signal Frequency
Response

Typical Performance Characteristics (Continued)

Voltage Gain

TL/H/7783-3

Application Hints (See AN-127)

The LM143 is designed for trouble free operation at any supply voltage up to and including the guaranteed maximum of $\pm 40 \mathrm{~V}$. Input overvoltage protection, both common-mode and differential, is 100% tested and guaranteed at the maximum supply voltage. Furthermore, all possible high voltage destructive modes during supply voltage turn-on have been eliminated by design. As with most IC op amps, however, certain precautions should be observed to insure that the LM143 remains virtually blow-out proof.
Although output short circuits to ground or either supply can be sustained indefinitely at lower supply voltages, these short circuits should be of limited duration when operating at higher supply voltages. Units can be destroyed by any combination of high ambient temperature, high supply voltages, and high power dissipation which results in excessive die temperature. This is also true when driving low impedance or reactive loads or loads that can revert to low impedance; for example, the LM143 can drive most general purpose op amps outside of the maximum input voltage range, causing heavy current to flow and possibly destroying both devices. Precautions should be taken to insure that the power supplies never become reversed in polarity-even under transient conditions. With reverse voltage, the IC will conduct excessive current, fusing the internal aluminum interconnects. Voltage reversal between the power supplies will almost always result in a destroyed unit.

In high voltage applications which are sensitive to very low input currents, special precautions should be exercised. For example, with high source resistances, care should be taken to prevent the magnitude of the PC board leakage currents, although quite small, from approaching those of the op amp input currents. These leakage currents become larger at $125^{\circ} \mathrm{C}$ and are made worse by high supply voltages. To prevent this, PC boards should be properly cleaned and coated to prevent contamination and to provide protection from condensed water vapor when operating below $0^{\circ} \mathrm{C}$. A guard ring is also recommended to significantly reduce leakage currents from the op amp input pins to the adjacent high voltage pins in the standard op amp pin connection as shown in Figure 1. Figures 2, 3 and 4 show how the guard ring is connected for the three most common op amp configurations.
Finally, caution should be exercised in high voltage applications as electrical shock hazards are present. Since the negative supply is connected to the case, users may inadvertantly contact voltages equal to those across the power supplies.
The LM143 can be used as a plug-in replacement in most general purpose op amp applications. The circuits presented in the following section emphasize those applications which take advantage of the unique high voltage abilities of the LM143.

Application Hints (See AN-127) (Continued)

FIGURE 1. Printed Circuit Layout for Input Guarding with TO-5 Package

TL/H/7783-7
FIGURE 3. Guarded Non-Inverting Amplifier

TL/H/7783-6
FIGURE 2. Guarded Voltage Follower

TL/H/7783-8
FIGURE 4. Guarded Inverting Amplifier

TL/H/7783-14

FIGURE 5. Offset Voltage Adjustment

Typical Applications \ddagger (For more detail see AN-127)

TL/H/7783-9

TL/H/7783-10
*R2 may be adjustable to trim the gain:
**R7 may be adjusted to compensate for the resistance tolerance of R4-R7 for best CMR.

Typical Applications \ddagger (Continued) (For more detail see AN-127)

TL/H/7783-12

Typical Applications \ddagger (Continued) (For more detail see AN-127)

\ddagger The 38 V supplies allow for a 5% voltage tolerance. All resistors are $1 / 2$ watt, except as noted.

LM146/LM246/LM346 Programmable Quad Operational Amplifiers

General Description

The LM146 series of quad op amps consists of four independent, high gain, internally compensated, low power, programmable amplifiers. Two external resistors (RSET) allow the user to program the gain bandwidth product, slew rate, supply current, input bias current, input offset current and input noise. For example, the user can trade-off supply current for bandwidth or optimize noise figure for a given source resistance. In a similar way, other amplifier characteristics can be tailored to the application. Except for the two programming pins at the end of the package, the LM146 pin-out is the same as the LM124 and LM148.

Features ($l_{\text {SET }}=10 \mu \mathrm{~A}$)

- Programmable electrical characteristics
- Battery-powered operation
- Low supply current
- Guaranteed gain bandwidth product
$350 \mu \mathrm{~A} /$ amplifier
- Large DC voltage gain 0.8 MHz min

120 dB

- Low noise voltage
$28 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Wide power supply range $\pm 1.5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Class AB output stage-no crossover distortion
- Ideal pin out for Biquad active filters
- Input bias currents are temperature compensated

Connection Diagram (Dual-In-Line Package, Top View)

TL/H/5654-1
Order Number LM146J, LM146J/883, LM246J, LM346M or LM346N
See NS Package Number J16A, M16A or N16A

PROGRAMMING EQUATIONS

Total Supply Current $=1.4 \mathrm{~mA}($ ISET $/ 10 \mu \mathrm{~A})$
Gain Bandwidth Product $=1 \mathrm{MHz}\left(\mathrm{I}_{\mathrm{SET}} / 10 \mu \mathrm{~A}\right)$
Slew Rate $=0.4 \mathrm{~V} / \mu \mathrm{s}\left(\mathrm{I}_{\mathrm{SET}} / 10 \mu \mathrm{~A}\right)$
Input Bias Current $\cong 50 \mathrm{nA}\left(I_{\mathrm{SET}} / 10 \mu \mathrm{~A}\right)$
$\mathrm{I}_{\text {SET }}=$ Current into pin 8 , pin 9 (see schematicdiagram)
$\mathrm{I}_{\text {SET }}=\frac{\mathrm{V}^{+}-\mathrm{V}^{-}-0.6 \mathrm{~V}}{\mathrm{R}_{\text {SET }}}$

Schematic Diagram

Absolute Maximum Ratings (Note 1)										$\stackrel{\rightharpoonup}{1}$			
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.										\%			
		LM146		LM246			LM346			$\stackrel{\text { t }}{ }$			
Supply Voltage		$\pm 22 \mathrm{~V}$		$\pm 18 \mathrm{~V}$			$\pm 18 \mathrm{~V}$			$\stackrel{3}{\square}$			
Differential Input Voltage (Note		$\pm 30 \mathrm{~V}$		$\pm 30 \mathrm{~V}$			$\pm 30 \mathrm{~V}$			5			
CM Input Voltage (Note 1)		$\pm 15 \mathrm{~V}$		$\pm 15 \mathrm{~V}$			$\pm 15 \mathrm{~V}$			ట			
Power Dissipation (Note 2)		900 mW		500 mW			500 mW			か			
Output Short-Circuit Duration (N	Note 3)	Continuous		Continuous			Continuous						
Operating Temperature Range		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$						
Maximum Junction Temperature		150°			110		$100^{\circ} \mathrm{C}$						
Storage Temperature Range							$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$						
Lead Temperature (Soldering, 10 seconds)		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$$260^{\circ} \mathrm{C}$		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$$260^{\circ} \mathrm{C}$									
Thermal Resistance ($\left.\theta_{\mathrm{j}} \mathrm{A}\right)$, (Note 2)													
Cavity DIP (J) Pd		900 mW$100^{\circ} \mathrm{C} / \mathrm{W}$		900 mW			900 mW						
$\theta_{j A}$				$100^{\circ} \mathrm{C} / \mathrm{W}$			$100^{\circ} \mathrm{C} / \mathrm{W}$						
Small Outline (M) θ_{ja}		$100^{\circ} \mathrm{C} / \mathrm{W}$					$115^{\circ} \mathrm{C} / \mathrm{W}$						
Molded DIP (N) Pd							500 mW						
$\theta_{j A}$							$90^{\circ} \mathrm{C} / \mathrm{W}$						
Soldering Information													
Dual-In-Line Package		$+260^{\circ} \mathrm{C}$		$+260^{\circ} \mathrm{C}$									
Soldering (10 seconds)				$+260^{\circ} \mathrm{C}$									
Small Outline Package													
Vapor Phase (60 seconds)		$+215^{\circ} \mathrm{C}$					$+215^{\circ} \mathrm{C}$			$+215^{\circ} \mathrm{C}$			
Infrared (15 seconds)		$+220^{\circ} \mathrm{C}$		$+220^{\circ} \mathrm{C}$			$+220^{\circ} \mathrm{C}$						
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.													
ESD rating is to be determined.													
DC Electrical Characteristics ($\mathrm{V}_{S}= \pm 15 \mathrm{~V}$, ISET $=10 \mu \mathrm{~A}$, Note 4)													
Parameter	Conditions		LM146			LM246/LM346			Units				
			Min	Typ	Max	Min	Typ	Max					
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$,	, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5	5		0.5	6	mV				
Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}$			2	20		2	100	nA				
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}$			50	100		50	250	nA				
Supply Current (4 Op Amps)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.4	2.0		1.4	2.5	mA				
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$= \pm 10 \mathrm{~V},$	100	1000		50	1000		V / mV				
Input CM Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 13.5	± 14		± 13.5	± 14		V				
CM Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$,		80	100		70	100		dB				
Power Supply Rejection Ratio	$\begin{aligned} & R_{S} \leq 10 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{tc} \end{aligned}$		80	100		74	100		dB				
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$,		± 12	± 14		± 12	± 14		V				
Short-Circuit	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	20	35.	5	20	35	mA				
Gain Bandwidth Product	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.8	1.2		0.5	1.2		MHz				
Phase Margin	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			60			60		Deg				
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.4			0.4		$\mathrm{V} / \mu \mathrm{s}$				
Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\text {A }}$			28			28		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$				
Channel Separation	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \pm 12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}= \end{aligned}$	$=0 \mathrm{~V} \text { to }$		120			120		dB				
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.0			1.0		$\mathrm{M} \Omega$				
Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2.0			2.0		pF				
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}$			0.5	6		0.5	7.5	mV				
Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$			2	25		2	100	nA				
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$			50	100		50	250	nA				
Supply Current (4 Op Amps)				1.7	2.2		1.7	2.5	mA				

DC Electrical Characteristics (Continued) $\left(V_{S}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{SET}}=10 \mu \mathrm{~A}\right.$, Note 4)

Parameter	Conditions	LM146			LM246/LM346			Units
		Min	Typ	Max	Min	Typ	Max	
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \Delta \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	50	1000		25	1000		V / mV
Input CM Range		± 13.5	± 14		± 13.5	± 14		V
CM Rejection Ratio	$\mathrm{R}_{S} \leq 50 \Omega$	70	100		70	100		dB
Power Supply Rejection Ratio	$\begin{aligned} & R_{S} \leq 50 \Omega, \\ & V_{S}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \end{aligned}$	76	100		74	100		dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V

DC Electrical Characteristic $N_{\mathrm{s}}= \pm 15 \mathrm{~V}$, ISET $\left.=1 \mu \mathrm{~A}\right)$

Parameter	Conditions	LM146			LM246/LM346			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.5	5		0.5	7	mV
Input Bias Current	$\mathrm{V}_{C M}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.5	20		7.5	100	nA
Supply Current (4 Op Amps)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		140	250		140	300	$\mu \mathrm{A}$
Gain Bandwidth Product	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	100		50	100		kHz

DC Electrical Characteristics $\left(N_{s}= \pm 1.5 \mathrm{~V}, 1\right.$ Istr $\left.=10 \mu \mathrm{~A}\right)$

Parameter	Conditions	LM146			LM246/LM346			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.5	5		0.5	7	mV
Input CM Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.7			± 0.7			V
CM Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80			80		dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.6			± 0.6			V

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A X}, \theta_{j A}$, and the ambient temperature,
T_{A}. The maximum available power dissipation at any temperature is $P_{d}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} P_{d M A X}$, whichever is less.
Note 3: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 4: These specifications apply over the absolute maximum operating temperature range unless otherwise noted.
Note 5: Refer to RETS146X for LM146J military specifications.

Typical Performance Characteristics

Typical Performance Characteristics

Common－Mode Rejection Ratio vs ISET

Input Voltage Range vs
Supply Voltage
 SUPPLY VOLTAGE（IV）

Typical Performance Characteristics (Continued)

TL/H/5654-5

Transient Response Test Circuit

TL/H/5654-6

Application Hints

Avoid reversing the power supply polarity; the device will fail.
Common-Mode Input Voltage: The negative commonmode voltage limit is one diode drop above the negative supply voltage. Exceeding this limit on either input will result in an output phase reversal. The positive common-mode limit is typically 1V below the positive supply voltage. No output phase reversal will occur if this limit is exceeded by either input.
Output Voltage Swing vs ISET: For a desired output voltage swing the value of the minimum load depends on the positive and negative output current capability of the op amp. The maximum available positive output current, ($\mathrm{I}_{\mathrm{CL}+}+$), of the device increases with $\mathrm{I}_{\mathrm{SET}}$ whereas the negative output current (ICL-) is independent of ISET. Figure 1 illustrates the above.

TL/H/5654-7
FIGURE 1. Output Current Limit vs ISET

Input Capacitance: The input capacitance, C_{IN}, of the LM146 is approximately 2 pF ; any stray capacitance, C_{S}, (due to external circuit circuit layout) will add to $\mathrm{C}_{\mathbf{I N}}$. When resistive or active feedback is applied, an additional pole is added to the open loop frequency response of the device. For instance with resistive feedback (Figure 2), this pole occurs at $1 / 2 \pi(\mathrm{R} 1 \| \mathrm{R} 2)\left(\mathrm{C}_{\mathrm{IN}}+\mathrm{C}_{\mathrm{S}}\right)$. Make sure that this pole occurs at least 2 octaves beyond the expected -3 dB frequency corner of the closed loop gain of the amplifier; if not, place a lead capacitor in the feedback such that the time constant of this capacitor and the resistance it parallels is equal to the $R_{1}\left(C_{s}+C_{I N}\right)$, where R_{l} is the input resistance of the circuit.

TL/H/5654-9
FIGURE 2
Temperature Effect on the GBW: The GBW (gain bandwidth product), of the LM146 is directly proportional to ISET and inversely proportional to the absolute temperature. When using resistors to set the bias current, ISET, of the device, the GBW product will decrease with increasing temperature. Compensation can be provided by creating an ISET current directly proportional to temperature (see typical applications).

Isolation Between Amplifiers: The LM146 die is isothermally layed out such that crosstalk between all 4 amplifiers is in excess of -105 dB (DC). Optimum isolation (better than -110 dB) occurs between amplifiers A and D, B and C; that is, if amplifier A dissipates power on its output stage, amplifier D is the one which will be affected the least, and vice versa. Same argument holds for amplifiers B and C.
LM146 Typical Performance Summary: The LM146 typical behaviour is shown in Figure 3. The device is fully predictable. As the set current, ISET, increases, the speed, the bias current, and the supply current increase while the noise power decreases proportionally and the V_{OS} remains constant. The usable GBW range of the op amp is 10 kHz to $3.5-4 \mathrm{MHz}$.

TL/H/5654-8
FIGURE 3. LM146 Typical Characteristics

Low Power Supply Operation: The quad op amp operates down to $\pm 1.3 \mathrm{~V}$ supply. Also, since the internal circuitry is biased through programmable current sources, no degradation of the device speed will occur.
Speed vs Power Consumption: LM146 vs LM4250 (single programmable). Through Figure 4, we observe that the LM146's power consumption has been optimized for GBW products above 200 kHz , whereas the LM4250 will reach a GBW of no more than 300 kHz . For GBW products below 200 kHz , the LM4250 will consume less power.

TL/H/5654-10
FIGURE 4. LM146 vs LM4250

Typical Applications

Dual Supply or Negative Supply Biasing

Current Source Biasing with Temperature Compensation

- The LM334 provides an ISET directly proportional to absolute temperature. This cancels the slight GBW product Temperature coefficient of the LM346.

$$
\mathrm{I}_{\mathrm{SET}} \cong \frac{\mathrm{~V}^{+}-0.6 \mathrm{~V}}{R_{\mathrm{SET}}}
$$

Biasing all 4 Amplifiers with Single Current Source

TL/H/5654-11

$$
\frac{I_{\text {SET } 1}}{I_{\mathrm{SET} 2}}=\frac{\mathrm{R} 2}{\mathrm{R} 1}, \mathrm{I}_{\mathrm{SET} 1}+\mathrm{I}_{\mathrm{SET} 2}=\frac{67.7 \mathrm{mV}}{\mathrm{R}_{\mathrm{SET}}}
$$

- For ISET1 § ISET2 resistors R1 and R2 are not required if a slight error between the 2 set currents can be tolerated. If not, then use R1 = R2 to create a 100 mV drop across these resistors.

Active Filters Applications

Basic (Non-Inverting "State Variable") Active Filter Building Block

The LM146 quad programmable op amp is especially suited for active filters because of their adequate GBW product and low power consumption.
Circuit synthesis equations (for circuit analysis equations, consult with the LM148 data sheet).
Need to know desired: $f_{0}=$ center frequency measured at the BP output

$$
\begin{aligned}
& Q_{0}=\text { quality factor measured at the BP output } \\
& H_{0}=\text { gain at the output of interest (BP or HP or LP or all of them) }
\end{aligned}
$$

- Relation between different gains: $H_{0(B P)}=0.316 \times Q_{0} \times H_{0(L P)} ; H_{0(L P)}=10 \times H_{0(H P)}$
- $\mathrm{R} \times \mathrm{C}=\frac{5.033 \times 10^{-2}}{\mathrm{f}_{\mathrm{o}}}(\mathrm{sec})$
- For BP output: $R_{Q}=\left(\frac{3.478 Q_{0}-H_{0(B P)}}{10^{5}}-\frac{H_{0(B P)}}{10^{5} \times 3.748 \times Q_{0}}\right)^{-1} ; R_{I N}=\frac{\left(\frac{3.478 Q_{0}}{H_{0(B P)}}-1\right)}{\frac{1}{R Q}+10^{-5}}$
- For HP ouput: $R_{Q}=\frac{1.1 \times 10^{5}}{3.478 Q_{0}\left(1.1-H_{O(H P)}\right)-H_{O(H P)}} ; R_{I N}=\frac{\frac{1.1}{H_{0(H P)}}-1}{\frac{1}{R Q}+10^{-5}}$

Note. All resistor values are given in ohms.

- For LP output: $R_{Q}=\frac{11 \times 10^{5}}{3.478 Q_{O}\left(11-H_{O(L P)}\right)-H_{O(L P)}} ; R_{\mathbb{I N}}=\frac{\frac{11}{H_{0(L P)}-1}}{\frac{1}{R Q}+10^{-5}}$
- For BR (notch) output: Use the 4th amplifier of the LM146 to sum the LP and HP outputs of the basic filter.

$$
\sqrt{\frac{R_{H}}{R_{L}}}=0.316 \frac{f_{\text {notch }}}{f_{0}}
$$

$$
\text { Determine } R_{F} \text { according to the desired gains: }\left.H_{0(B R)}\right|_{f \ll f_{\text {notch }}}=\frac{T L / H / 5654-13}{R_{L}} H_{0(L P)},\left.H_{0(B R)}\right|_{f \gg f_{\text {notch }}}=\frac{R_{F^{\prime}}}{R_{H}} H_{0(H P)}
$$

- Where to use amplifier \mathbf{C} : Examine the above gain relations and determine the dynamics of the filter. Do not allow slew rate limiting in any output (V_{H}, V_{BP}, $V_{\text {LP }}$), that is:
$\mathrm{V}_{\text {IN(peak) }}<63.66 \times 10^{3} \times \frac{\mathrm{I}_{\text {SET }}}{10 \mu \mathrm{~A}} \times \frac{1}{\mathrm{f}_{\mathrm{o}} \times \mathrm{H}_{\mathrm{o}}}$ (Volts)
If necessary, use amplifier C, biased at higher ISET, where you get the largest output swing.
Deviation from Theoretical Predictions: Due to the finite GBW products of the op amps the f_{0}, Q_{0} will be slightly different from the theoretical predictions.
$f_{\text {real }} \cong \frac{f_{o}}{1+\frac{2 f_{0}}{G B W}}, Q_{\text {real }} \cong \frac{Q_{o}}{1-\frac{3.2 f_{o} \times Q_{o}}{G B W}}$

Active Filters Applications (Continued)

A Simple-to-Design BP, LP Filter Building Block

TL/H/5654-14

- If resistive biasing is used to set the LM346 performance, the Q_{0} of this filter building block is nearly insensitive to the op amp's GBW product temperature drift; it has also better noise performance than the state variable filter.

Circuit Synthesis Equations

$H_{O(B P)}=Q_{O} H_{O(L P)} ; R \times C=\frac{0.159}{f_{0}} ; R_{Q}=Q_{O} \times R ; R_{I N}=\frac{R_{Q}}{H_{O(B P)}}=\frac{R}{H_{O(L P)}}$

- For the eventual use of amplifier C , see comments on the previous page.

A 3-Amplifier Notch Filter (or Elliptic Filter Bullding Block)

TL/H/5654-15

Circuit Synthesis Equations

$R \times C=\frac{0.159}{f_{0}} ; R_{0}=Q_{0} \times R ; R_{I N}=\frac{0.159 \times f_{0}}{C^{\prime} \times f^{2} \text { notch }}$
$\left.H_{0(B R)}\right|_{f \ll f_{\text {notch }}}=\left.\frac{R}{R_{I N}} H_{0(B R)}\right|_{f \gg f_{\text {notch }}}=\frac{C^{\prime}}{C}$
\bullet For nothing but a notch output: $\mathrm{RIN}_{\mathrm{IN}}=\mathrm{R}, \mathrm{C}^{\prime}=\mathrm{C}$.

Active Filters Applications (Continued)

- This is a BP, LP, BR filter. The filter characteristics are created by using the tunable frequency response of the LM346.
- Limitations: $Q_{0}<10, f_{0} \times Q_{0}<1.5 \mathrm{MHz}$, output voitage should not exceed Vpeak(out) $\leq \frac{63.66 \times 10^{3}}{f_{0}} \times \frac{I_{\text {SET }}(\mu \mathrm{A})}{10 \mu \mathrm{~A}}$
- Design equations: $a=\frac{R 6+R 5}{R 6}, b=\frac{R 2}{R 1+R 2}, c=\frac{R 3}{R 3+R 4}, d=\frac{R 7}{R 8+R 7}, e=\frac{R 10}{R(+R 10}, f_{0(B P)}=f_{u} \sqrt{\frac{b}{a}}, H_{O(B P)}=a \times c, H_{o(L P)}=\frac{c}{b}, Q_{0}=\sqrt{a \times b}$
$f_{0(B R)}=f_{O(B P),}\left(1-\frac{c}{b}\right) \cong f_{O(B P)}(C \ll 1)$ provided that $d=H_{O(B P)} \times \theta, H_{O(B R)}=\frac{R 10}{R 9}$.
- Advantage: $\mathrm{f}_{0} \mathrm{Q}_{0}, \mathrm{H}_{0}$ can be independently adjusted; that is, the filter is extremely easy to tune.
- Tuning procedure (ex. BP tuning)

1. Pick up a convenient value for $b ;(b<1)$
2. Adjust Q_{0} through R5
3. Adjust $\mathrm{H}_{\mathrm{o}}(\mathrm{BP})$ through R4
4. Adjust f_{0} through R RET. This adjusts the unity gain frequency (f_{u}) of the op amp.

A 4th Order Butterworth Low Pass Capacitoriess Filter

TL/H/5654-17
Ex: $f_{c}=20 \mathrm{kHz}, H_{0}$ (gain of the filter) $=1, Q_{01}=0.541, Q_{02}=1.306$.

- Since for this filter the GBW product of all 4 amplifiers has been designed to be the same ($\sim 1 \mathrm{MHz}$) only one current source can be used to bias the circuit. Fine tuning can be further accomplished through R_{b}.

Miscellaneous Applications

A Unity Gain Follower with Bias Current Reduction

- For better performance, use a matched NPN pair.

Circuit Shutdown

- By pulling the SET pin(s) to V^{-}the op amp(s) shuts down and its output goes to a high impedance state. According to this property, the LM346 can be used as a very low speed analog switch.

Voice Activated Switch and Amplifier

TL/H/5654-18

Miscellaneous Applications (Continued)

X10 Micropower Instrumentation Amplifier with Buffered Input Guarding

LM148/LM248/LM348 Quad 741 Op Amps LM149/LM349 Wide Band Decompensated (Av (MIN) $=5$)

General Description

The LM148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar 741 operational amplifier. In addition the total supply current for all four amplifiers is comparable to the supply current of a single 741 type op amp. Other features include input offset currents and input bias current which are much less than those of a standard 741. Also, excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques which minimize thermal coupling. The LM149 series has the same features as the LM148 plus a gain bandwidth product of 4 MHz at a gain of 5 or greater.
The LM148 can be used anywhere multiple 741 or 1558 type amplifiers are being used and in applications' where amplifier matching or high packing density is required.

Features

- 741 op amp operating characteristics
- Low supply current drain $0.6 \mathrm{~mA} /$ Amplifier
- Class $A B$ output stage-no crossover distortion
- Pin compatible with the LM124
- Low input offset voltage 1 mV
- Low input offset current 4 nA
- Low input bias current 30 nA
- Gain bandwidth product

LM148 (unity gain)
1.0 MHz

LM149 ($A_{V} \geq 5$)

- High degree of isolation between amplifiers 120 dB
- Overload protection for inputs and outputs

Schematic Diagram

Absolute Maximum Ratings			
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.(Note 4)			
	LM148/LM149	LM248	LM348/LM349
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 44 \mathrm{~V}$	$\pm 36 \mathrm{~V}$	$\pm 36 \mathrm{~V}$
Output Short Circuit Duration (Note 1)	Continuous	Continuous	Continuous
Power Dissipation (P_{d} at $25^{\circ} \mathrm{C}$) and			
Thermal Resistance ($\theta_{\mathrm{j}} \mathrm{A}$), (Note 2)			
Molded DIP (N) P_{d}	-	-	750 mW
$\theta_{j} A$	- 1100	-	$100^{\circ} \mathrm{C} / \mathrm{W}$
Cavity DIP (J) Pd_{d}	1100 mW	800 mW	700 mW
$\theta_{J A}$	$110^{\circ} \mathrm{C} / \mathrm{W}$	$110^{\circ} \mathrm{C} / \mathrm{W}$	$110^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature ($\mathrm{T}_{\mathrm{j} M \mathrm{AX}}$)	$150^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) Ceramic	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) Plastic			$260^{\circ} \mathrm{C}$
Soldering Information			
Dual-In-Line Package			
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Small Outline Package			
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance (Note 5) 500V 500V 500V

Electrical Characteristics (Note 3)

Parameter	Conditions	LM148/LM149			LM248			LM348/LM349			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	5.0		1.0	6.0		1.0	6.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	25		4	50		4	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	100		30	200		30	200	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	2.5		0.8	2.5		0.8	2.5		$\mathrm{M} \Omega$
Supply Current All Amplifiers	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		2.4	3.6		2.4	4.5		2.4	4.5	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	50	160		25	160		25	160		V/mV
Amplifier to Amplifier Coupling	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}$ to 20 kHz (Input Referred) See Crosstalk Test Circuit		-120			-120			-120		dB
Small Signal Bandwidth	$\begin{gathered} \text { LM148 Series } \\ T_{A}=25^{\circ} \mathrm{C} \\ \text { LM149 Series } \\ \hline \end{gathered}$		$\begin{aligned} & 1.0 \\ & 4.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.0 \\ & 4.0 \\ & \hline \end{aligned}$			$\begin{array}{r} 1.0 \\ 4.0 \\ \hline \end{array}$		MHz MHz
Phase Margin	$\begin{gathered} \text { LM148 Series }\left(A_{V}=1\right) \\ T_{A}=25^{\circ} \mathrm{C} \\ \text { LM149 Series }\left(A_{V}=5\right) \\ \hline \end{gathered}$		60 60			60 60			60 60		degrees degrees
Slew Rate	$\begin{gathered} \text { LM148 Series }\left(A_{V}=1\right) \\ T_{A}=25^{\circ} \mathrm{C} \\ \text { LM149 Series }\left(A_{V}=5\right) \end{gathered}$		$\begin{aligned} & 0.5 \\ & 2.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \\ & 2.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \\ & 2.0 \\ & \hline \end{aligned}$		$\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$
Output Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		25			25			25		mA
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			6.0			7.5			7.5	mV
Input Offset Current				75			125			100	nA
Input Bias Current				325			500			400	nA

Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	LM148/LM149			LM248			LM348/LM349			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega \end{aligned}$	25			15			15			V/mV
Output Voltage Swing	$\begin{aligned} \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} & =10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}} & =2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 12			± 12			± 12			V
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		70	90		70	90		dB
Supply Voltage Rejection	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$	77	96		77	96		77	96		dB

Note 1: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dicated by $T_{j M A X}, \theta_{j A}$, and the ambient temperature, T_{A}. The maximum available power dissipation at any temperature is $P_{d}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} P_{d M A X}$, whichever is less.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and over the absolute maximum operating temperature range ($T_{L} \leq T_{A} \leq T_{H}$) unless otherwise noted.
Note 4: Refer to RETS 148X for LM148 military specifications and refer to RETS 149X for LM149 military specifications.
Note 5: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Cross Talk Test Circuit

Application Hints

The LM148 series are quad low power 741 op amps. In the proliferation of quad op amps, these are the first to offer the convenience of familiar, easy to use operating characteristics of the 741 op amp. In those applications where 741 op amps have been employed, the LM148 series op amps can be employed directly with no change in circuit performance.
The LM149 series has the same characteristics as the LM148 except it has been decompensated to provide a wider bandwidth. As a result the part requires a minimum gain of 5 .
The package pin-outs are such that the inverting input of each amplifier is adjacent to its output. In addition, the amplifier outputs are located in the corners of the package which simplifies PC board layout and minimizes package related capacitive coupling between amplifiers.
The input characteristics of these amplifiers allow differential input voltages which can exceed the supply voltages. In addition, if either of the input voltages is within the operating common-mode range, the phase of the output remains correct. If the negative limit of the operating common-mode range is exceeded at both inputs, the output voltage will be positive. For input voltages which greatly exceed the maximum supply voltages, either differentially or common-mode, resistors should be placed in series with the inputs to limit the current.
Like the LM741, these amplifiers can easily drive a 100 pF capacitive load throughout the entire dynamic output voltage and current range. However, if very large capacitive loads must be driven by a non-inverting unity gain amplifier,

TL/H/7786-7
Crosstalk $=-20 \log \frac{e^{\prime} \mathrm{OUT}}{101 \times e_{\mathrm{OUT}}}(\mathrm{dB})$
$V_{S}= \pm 15 \mathrm{~V}$
a resistor should be placed between the output (and feedback connection) and the capacitance to reduce the phase shift resulting from the capacitive loading.
The output current of each amplifier in the package is limited. Short circuits from an output to either ground or the power supplies will not destroy the unit. However, if multiple output shorts occur simultaneously, the time duration should be short to prevent the unit from being destroyed as a result of excessive power dissipation in the IC chip.
As with most amplifiers, care should be taken lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole which capacitance from the input to ground creates.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Inverting Large Signal Pulse Response (LM148)

Slew Rate

Input Noise Voltage and Noise Current

Undistorted Output
Voltage Swing

Inverting Large Signal Pulse Response (LM149)

Positive Common-Mode Input Voltage Limit

TL/H/7786-5

Typical Applications-LM148
One Decade Low Distortion Sinewave Generator

$f=\frac{1}{2 \pi R 1 C 1} \times \sqrt{\mathrm{K}}, \mathrm{K}=\frac{\mathrm{R} 4 \mathrm{R} 5}{\mathrm{R} 3}\left(\frac{1}{r_{\mathrm{DS}}}+\frac{1}{\mathrm{R} 4}+\frac{1}{\mathrm{R} 5}\right), \quad \mathrm{r}_{\mathrm{DS}} \approx \frac{\mathrm{R}_{\mathrm{ON}}}{\left(1-\frac{\mathrm{V}_{\mathrm{GS}}}{\mathrm{V}_{\mathrm{P}}}\right)^{1 / 2}}$
$\mathrm{f}_{\mathrm{MAX}}=5 \mathrm{kHz}, \mathrm{THD} \leq 0.03 \%$
$\mathrm{R} 1=100 \mathrm{k}$ pot. $\mathrm{C} 1=0.0047 \mu \mathrm{~F}, \mathrm{C} 2=0.01 \mu \mathrm{~F}, \mathrm{C} 3=0.1 \mu \mathrm{~F}, \mathrm{R} 2=\mathrm{R} 6=\mathrm{R} 7=1 \mathrm{M}$,
$R 3=5.1 \mathrm{k}, \mathrm{R} 4=12 \Omega, \mathrm{R} 5=240 \Omega, \mathrm{Q}=\mathrm{NS} 5102, \mathrm{D} 1=1 \mathrm{~N} 914, \mathrm{D} 2=3.6 \mathrm{~V}$ avalanche
diode (ex. LM103), $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
A simpler version with some distortion degradation at high frequencies can be made by using A1 as a simple inverting amplifier, and by putting back to back zeners in the feedback loop of A3.

$V_{\text {OUT }}=2\left(\frac{2 R}{R 1}+1\right), V_{S}-3 V \leq V_{\text {INCM }} \leq V_{S}{ }^{+}-3 V$,
$V_{S}= \pm 15 \mathrm{~V}$
$R=R 2$, trim R2 to boost CMRR

Typical Applications-LM148 (Continued)
Low Drift Peak Detector with Bias Current Compensation

TL/H/7786-10

Universal State-Variable Filter

TL/H/7786-11
$\frac{V_{(s)}}{V_{I N(s)}}=\frac{N_{(s)}}{D_{(s)}}, D(s)=S^{2}+\frac{S \omega_{0}}{Q}+\omega_{0}^{2}$
$N_{\mathrm{HP}(\mathrm{s})}=\mathrm{S}^{2} \mathrm{H}_{\mathrm{OHP}}, N_{\mathrm{BP}(\mathrm{s})}=\frac{-\mathrm{s} \omega_{\mathrm{O}} H_{\mathrm{OBP}}}{\mathrm{Q}} \quad N_{\mathrm{LP}}=\omega_{\mathrm{o}}{ }^{2} H_{\mathrm{OLP}}$.
$\mathrm{f}_{\mathrm{O}}=\frac{1}{2 \pi} \sqrt{\frac{R 6}{\mathrm{R} 5}} \sqrt{\frac{1}{\mathrm{t} 1 \mathrm{t}},} \mathrm{t}_{\mathrm{i}}=\mathrm{R}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}, \mathrm{Q}=\left(\frac{1+\mathrm{R} 4|\mathrm{R} 3+\mathrm{R} 4| \mathrm{RO}}{1+\mathrm{R} 6 \mid \mathrm{R} 5}\right)\left(\frac{\mathrm{R} 6}{\mathrm{R} 5} \mathrm{t}_{\mathrm{t}_{2}}\right)^{1 / 2}$
$f_{\mathrm{NOTCH}}=\frac{1}{2 \pi}\left(\frac{\mathrm{R}_{\mathrm{H}}}{\mathrm{R}_{\mathrm{L}} \mathrm{t}_{1} \mathrm{t}_{2}}\right)^{1 / 2}, \mathrm{H}_{\mathrm{OHP}}=\frac{1+\mathrm{R} 6 \mid \mathrm{R} 5}{1+\mathrm{R} 3|\mathrm{RO} 0+\mathrm{R} 3| \mathrm{R} 4}, \mathrm{H}_{\mathrm{OBP}}=\frac{1+\mathrm{R} 4|\mathrm{R} 3+\mathrm{R} 4| \mathrm{R} 0}{1+\mathrm{R} 3|\mathrm{RO} 0+\mathrm{R} 3| \mathrm{R} 4}$
$H_{\text {OLP }}=\frac{1+\mathrm{R} 5 \mid \mathrm{R} 6}{1+\mathrm{R} 3|\mathrm{RO}+\mathrm{R} 3| \mathrm{R} 4}$

Typical Applications-LM148 (Continued)
A 1 kHz 4 Pole Butterworth

TL/H/7786-12
Use general equations, and tune each section separately
$Q_{1 \text { stSECTION }}=0.541, Q_{\text {2ndSECTION }}=1.306$
The response should have 0 dB peaking
A 3 Amplifier Bi-Quad Notch Filter

TL/H/7786-13
$Q=\sqrt{\frac{R 8}{R 7}} \times \frac{R 1 C 1}{\sqrt{\text { R3C2R2C1 }}}, f_{0}=\frac{1}{2 \pi} \sqrt{\frac{R 8}{R 7}} \times \frac{1}{\sqrt{\text { R2R3C1C2 }}}, f_{\text {NOTCH }}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{R} 6}{\text { R3R5R7C1C2 }}}$
Necessary condition for notch: $\frac{1}{\mathrm{R} 6}=\frac{\mathrm{R} 1}{\mathrm{R} 4 \mathrm{R} 7}$
$E x: f_{N O T C H}=3 \mathrm{kHz}, Q=5, R 1=270 \mathrm{k}, \mathrm{R} 2=\mathrm{R} 3=20 \mathrm{k}, \mathrm{R} 4=27 \mathrm{k}, \mathrm{R} 5=20 \mathrm{k}, \mathrm{R} 6=\mathrm{R} 8=10 \mathrm{k}, \mathrm{R} 7=100 \mathrm{k}, \mathrm{C} 1=\mathrm{C} 2=0.001 \mu \mathrm{~F}$
Better noise performance than the state-space approach.

Typical Applications-LM148 (Continued)

A 4th Order 1 kHz Elliptic Filter (4 Poles, 4 Zeros)

TL/H/7786-14
$f_{C}=1 \mathrm{kHz}, f_{S}=2 \mathrm{kHz}, f_{p}=0.543, f_{Z}=2.14, Q=0.841, f^{\prime} P=0.987, f^{\prime} z=4.92, Q^{\prime}=4.403$, normalized to ripple $B W$
$f_{P}=\frac{1}{2 \pi} \sqrt{\frac{R 6}{R 5}} \times \frac{1}{t}, f_{Z}=\frac{1}{2 \pi} \sqrt{\frac{R_{H}}{R_{L}}} \times \frac{1}{t}, Q=\left(\frac{1+R^{\prime}|R 3+R 4| R 0}{1+R_{6} \mid R 5}\right) \times \sqrt{\frac{R 6}{R 5}}, Q^{\prime}=\sqrt{\frac{R^{\prime} 6}{R 5}} \frac{1+R^{\prime} 4 \mid R^{\prime} 0}{1+R^{\prime} 6\left|R^{\prime} 5+R^{\prime} 6\right| R_{P}}$
$R_{P}=\frac{R_{H} R_{L}}{R_{H}+R_{L}}$
Use the BP outputs to tune Q, Q^{\prime}, tune the 2 sections separately
$R 1=R 2=92.6 \mathrm{k}, \mathrm{R} 3=\mathrm{R} 4=\mathrm{R} 5=100 \mathrm{k}, \mathrm{R} 6=10 \mathrm{k}, \mathrm{R} 0=107.8 \mathrm{k}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{R}_{\mathrm{H}}=155.1 \mathrm{k}$,
$R^{\prime} 1=R^{\prime} 2=50.9 k, R^{\prime} 4=R^{\prime} 5=100 \mathrm{k}, R^{\prime} 6=10 k, R^{\prime} 0=5.78 \mathrm{k}, R_{L}^{\prime}=100 \mathrm{k}, R_{H}^{\prime}=248.12 k, R^{\prime} f=100 \mathrm{k}$. All capacitors are $0.001 \mu F$.

TL/H/7786-15

Typical Applications-LM149

Minimum Gain to Insure LM149 Stability

TL/H/7786-16
$A_{C L(S)}=\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{-4}{\left(1+\frac{5}{A_{O L(s)}}\right)} \cong-4$
$\left.v_{0}\right|_{V_{I N}=0} \cong \pm 5 \mathrm{~V}_{\mathrm{OS}}$
$V_{\text {IN }}=0$
Power BW $=40 \mathrm{kHz}$
Small Signal BW $=$ G BW/5

The LM149 as a Unity Gain Inverter

TL/H/7786-17

$$
\begin{aligned}
& A_{C L(s)}=\frac{V_{O U T}}{V_{I N}}=\left(\frac{-1}{1+\frac{6}{A_{O L(s)}}}\right) \cong-1 \\
& \left.V_{O}\right|_{V_{I N}=0} \cong \pm 5 V_{\mathrm{OS}} \\
& \text { Small Signal } \mathrm{BW}=\mathrm{G} B W / 5
\end{aligned}
$$

For stability purposes: $\mathrm{R} 7=\mathrm{R} 6 / 4,10 \mathrm{R} 6=\mathrm{R} 5, \mathrm{C}_{\mathrm{C}}=10 \mathrm{C}$
$f_{\mathrm{O}}=\frac{1}{2 \pi} \sqrt{\frac{R 5}{R 6}} \times \frac{1}{\mathrm{RC}}, \mathrm{Q}=\frac{\mathrm{R}_{\mathrm{Q}}}{\mathrm{R}} \sqrt{\frac{R 5}{\mathrm{R} 6}}, \mathrm{Ho}_{\mathrm{BP}}=\frac{\mathrm{R}_{\mathrm{Q}}}{\mathrm{R}_{\mathrm{IN}}}$
$\mathrm{f}_{\mathrm{O}(\mathrm{mAX})}, \mathrm{Q}_{\mathrm{MAX}}=20 \mathrm{kHz}, 10$
Better Q sensitivity with respect to open loop gain variations than the state variable filter.
R7, C_{C} added for compensation

Typical Applications-LM149 (Continued)
Active Tone Control with Full Output Swing (No Slew Limiting at 20 kHz)

TL/H/7786-19

$$
V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT(MAX) }}=9.1 V_{\text {RMS }}
$$

$\mathrm{f}_{\text {MAX }}=20 \mathrm{kHz}$, THD $\leq 1 \%$
Duplicate the above circuit for stereo
$f_{L}=\frac{1}{2 \pi R 2 C 1}, f_{L B}=\frac{1}{2 \pi R 1 C 1}$

$$
f_{H}=\frac{1}{2 \pi R 5 C 3}, f_{H B}=\frac{1}{2 \pi(R 1+2 R 7) C 3}
$$

Max Bass Gain $\cong(R 1+R 2) / R 1$
Max Treble Gain $\cong(R 1+2 R 7) / R 5$
as shown: $\mathrm{f}_{\mathrm{L}} \cong 32 \mathrm{~Hz}, \mathrm{f}_{\mathrm{LB}} \cong 320 \mathrm{~Hz}$

$$
f_{H} \cong 11 \mathrm{kHz}, \mathrm{f}_{\mathrm{HB}} \cong 1.1 \mathrm{~Hz}
$$

Triangular Squarewave Generator

$f=\frac{K \times V_{I N}}{8 V^{+} C 1 R 1}, K=R 2 / R^{\prime} 2, \frac{2 V_{1}}{K} \leq 25 V, V^{+}=V^{-}, V_{S}= \pm 15 \mathrm{~V}$
Use LM125 for $\pm 15 \mathrm{~V}$ supply
The circuit can be used as a low frequency V/F for process control.
Q1, Q3: KE4393, Q2, Q4: P1087E, D1-D4 = 1 N914

Connection Diagram

Dual-In-Line Package

Order Number LM148J, LM148J/883, LM149J, LM149J/883, LM248J, LM348J, LM348M, LM348N or LM349N See NS Package Number J14A, M14A or N14A LM148J is available per JM38510/11001

LM158/LM258/LM358/LM2904

Low Power Dual Operational Amplifiers

General Description

The LM158 series consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.
Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM158 series can be directly operated off of the standard +5 V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 \mathrm{~V}$ power supplies.

Unique Characteristics

- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.
- The unity gain cross frequency is temperature compensated.
- The input bias current is also temperature compensated.

Advantages

- Two internally compensated op amps in a single package
- Eliminates need for dual supplies
- Allows directly sensing near GND and Vout also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation
- Pin-out same as LM1558/LM1458 dual operational amplifier

Features

- Internally frequency compensated for unity gain

■ Large dc voltage gain 100 dB
■ Wide bandwidth (unity gain) 1 MHz (temperature compensated)

- Wide power supply range:

Single supply

3 V to 32 V
or dual supplies
$\pm 1.5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$
■ Very low supply current drain ($500 \mu \mathrm{~A}$)-essentially independent of supply voltage

- Low input offset voltage 2 mV
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
■ Large output voltage swing $\quad 0 \mathrm{~V}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}$

Connection Diagrams (Top Views)

Order Number LM158AH, LM158AH/883*, LM158H, LM158H/883*, LM258H or LM358H See NS Package Number H08C

[^7]
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 9)

See AN-450 "Surface Mounting Methods and Their Effect on Product
Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 10)
250 V
250 V
Electrical Characteristics $\mathrm{v}+=+5.0 \mathrm{v}$, unless otherwise stated

Parameter	Conditions	LM158A			LM358A			LM158/LM258			LM358			LM2904			Units
		Min	Typ	Max													
Input Offset Voltage	(Note 5), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	2		2	3		2	5		2	7		2	7	mV
Input Bias Current	$\begin{aligned} & \mathrm{l}_{\mathrm{N}(+)} \text { or lin }(-), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \text { (Note } 6 \text {) } \end{aligned}$		20	50		45	100		45	150		45	250		45	250	nA
Input Offset Current	$\operatorname{lin~(+)}-\operatorname{lin(-)}, \mathrm{V}_{C M}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		2	10		5	30		3	30		5	50		5	50	nA
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}, \text { (Note 7) } \\ & \text { (LM2904, } \left.\mathrm{V}^{+}=26 \mathrm{~V}\right), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	0		$V^{+}-1.5$	0	\therefore	$V+-1.5$	V									
Supply Current	Over Full Temperature Range $\mathrm{R}_{\mathrm{L}}=\infty$ on All Op Amps $\mathrm{V}^{+}=30 \mathrm{~V}\left(\mathrm{LM} 2904 \mathrm{~V}^{+}=26 \mathrm{~V}\right)$ $\mathrm{V}+=5 \mathrm{~V}$		$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \\ \hline \end{gathered}$		$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \end{gathered}$		$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \end{gathered}$		1 0.5	$\begin{gathered} 2 \\ 1.2 \end{gathered}$		$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \end{gathered}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$

Electrical Characteristics (Continued) $\mathrm{V}+=+5.0 \mathrm{~V}$, Note 4 , unless otherwise stated

Parameter		Conditions	LM158A			LM358A			LM158/LM258			LM358			LM2904			Units	
		Min	Typ	Max															
Large Signal Voltage Gain			$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \text {, (For } \mathrm{V}_{\mathrm{O}}=1 \mathrm{~V} \\ & \text { to } 11 \mathrm{~V} \text {) } \end{aligned}$	50	100		25	100		50	100		25	100		25	100		V/mV
Common-Mode Rejection Ratio		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } \mathrm{V}+-1.5 \mathrm{~V} \end{aligned}$	70	85		65	85		70	85		65	85		50	70		dB	
Power Supply Rejection Ratio		$\mathrm{V}+=5 \mathrm{~V}$ to 30 V (LM2904, $\mathrm{V}^{+}=5 \mathrm{~V}$ to 26 V), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	65	100		65	100		65	100		65	100		50	100		dB	
Amplifier-to-Amplifier Coupling		$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Input Referred), (Note 8) } \end{aligned}$		-120			-120			-120			-120			-120		dB	
Output Current	Source	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{+}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{1 \mathrm{~N}^{-}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	20	40		20	40		20	40		20	40		20	40		mA	
	Sink	$\begin{aligned} & \mathrm{V}_{\mathrm{N}^{-}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{+}}=0 \mathrm{~V} \\ & \mathrm{~V}+=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \end{aligned}$	10	20		10	20		10	20		10	20		10	20		mA	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{-}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{1 \mathrm{~N}^{+}}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	12	50		12	50		12	50		12	50		12	50		$\mu \mathrm{A}$	
Short Circuit to Ground		$\begin{aligned} & \left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { (Note } 2\right), \\ & \mathrm{V}^{+}=15 \mathrm{~V} \end{aligned}$		40	60		40	60		40	60		40	60		40	60	mA	
Input Offset Voltage		(Note 5)			4			5			7			9			10	mV	
Input Offset Voltage Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$		7	15		7	20		7			7			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input Offset Current		$\ln (+)-\ln (-)$			30			75			100			150		45	200	nA	
Input Offset Current Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$		10	200		10	300		10			10			10		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$	
Input Bias Current		$\operatorname{lin}(+)$ or $\ln (-)$		40	100		40	200		40	300		40	500		40	500	nA	

Electrical Characteristics (Continued) $\mathrm{V}^{+}=+5.0 \mathrm{~V}$, Note 4 , unless otherwise stated

Parameter		Conditions		LM158A			LM358A			LM158/LM258			LM358			LM2904			Units		
		Min	Typ	Max																	
Input Common-Mode Voltage Range				$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V},(\text { Note } 7 \text {) } \\ & \left(\text { LM2904, } \mathrm{V}^{+}=26 \mathrm{~V}\right) \end{aligned}$		0		$V^{+}-2$	0		$\mathrm{V}+-2$	0		$\mathrm{V}+-2$	0		$\mathrm{V}+-2$	0	\cdot	$\mathrm{V}+$-2	V
Large Signal Voltage Gain		$\begin{aligned} & V+=+15 \mathrm{~V} \\ & \left(V_{O}=1 \mathrm{~V} \text { to } 11 \mathrm{~V}\right) \\ & R_{L} \geq 2 \mathrm{k} \Omega \end{aligned}$		25			15			25			15			15			V / mV		
Output Voltage Swing	VOH	$\begin{aligned} & \mathrm{V}^{+}=+30 \mathrm{~V} \\ & \left(\mathrm{LM} 2904, \mathrm{~V}^{+}=26 \mathrm{~V}\right) \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	26			26			26			26			22			V		
			$R_{L}=10 \mathrm{k} \Omega$	27	28		27.	28		27	28		27	28		23	24		V		
	V_{OL}	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			5	20		5	20		5	20		5	20		5	100	mV		
Output Current	Source	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{+}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{-}}=\mathrm{OV} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \end{aligned}$			20		10	20		10	20			20		10	20		mA		
	Sink	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{-}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{+}}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \end{aligned}$		10	15		5	8		5	8		5	8		5	8		mA		

Note 1: For operating at high temperatures, the LM358/LM358A, LM2904 must be derated based on a $+125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $120^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM258/LM258A and LM158/LM158A can be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature. The dissipation is the total of both amplifiers-use external resistors, wherepossible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. When considering short cirucits to ground, the maximum output current is approximately 40 mA independent of the magnitude of $\mathrm{V}+$. At values of supply voltage in excess of +15 V , continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers. Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the $V+$ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V (at $25^{\circ} \mathrm{C}$). Note 4: These specifications are limited to $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 158 / \mathrm{LM} 158 \mathrm{~A}$. With the LM258/LM258A, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, the $\mathrm{LM} 358 / \mathrm{LM} 358 \mathrm{~A}$ temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$, and the LM2904 specifications are limited to $-40^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.
Note $5: V_{O} \cong 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V^{+}from 5 V to 30 V ; and over the full input common-mode range (0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$) at $25^{\circ} \mathrm{C}$. For $\mathrm{LM} 2904, \mathrm{~V}^{+}$from 5 V to 26 V .
Note 6: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
Note 7: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V (at $25^{\circ} \mathrm{C}$). The upper end of the common-mode voltage range is $\mathrm{V}+-1.5 \mathrm{~V}$ (at $25^{\circ} \mathrm{C}$), but either or both inputs can go to +32 V without damage (+26 V for LM 2904), independent of the magnitude of $\mathrm{V}+$.
Note 8: Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies Note 9: Refer to RETS158AX for LM158A military specifications and to RETS158X for LM158 military specifications.
Note 10: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics

Voltage Follower Pulse Response (Small Signal)

Output Characteristics Current Sourcing

Large Signal Frequency Response

Typical Performance Characteristics (Continued) (LM2902 only)

Application Hints

The LM158 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of $0 \mathrm{~V}_{\mathrm{DC}}$. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At $25^{\circ} \mathrm{C}$ amplifier operation is possible down to a minimum supply voltage of 2.3 V VC .
Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Large differential input voltages can be easily accomodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V^{+}without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$. An input clamp diode with a resistor to the IC input terminal can be used.
To reduce the power supply current drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.
For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion. Where the load is directly coupled, as in dc applications, there is no crossover distortion.

TL/H/7787-5

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accomodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.
The bias network of the LM158 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of $3 \mathrm{~V}_{\mathrm{DC}}$ to 30 V DC .
Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive function temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at $25^{\circ} \mathrm{C}$ provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.
The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of $\mathrm{V}+/ 2$) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

Typical Single-Supply Applications $\left({ }^{\mathrm{V}}+=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

Fixed Current Sources

Driving TTL

TL/H/7787-17

Lamp Driver

TL/H/7787-14

TL/H/7787-16

Typical Single-Supply Applications $\left(v^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

High Compliance Current Sink

Comparator with Hysteresis

Typical Single-Supply Applications ($\mathrm{V}+=5.0 \mathrm{~V}_{\mathrm{DC}}$) (Continued)

TL/H/7787-23
*WIDE CONTROL VOLTAGE RANGE: $0 \mathrm{~V}_{\mathrm{DC}} \leq \mathrm{V}_{\mathrm{C}} \leq 2\left(\mathrm{~V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}\right)$

Ground Referencing a Differential Input Signal

TL/H/7787-25

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{~V} \mathrm{DC}\right)$ (Continued)

DC Coupled Low-Pass RC Active Filter

TL/H/7787-27
Bandpass Active Filter

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)
High Input Z, DC Differential Amplifier

TL/H/7787-29

Photo Voltaic-Cell Amplifier

Bridge Current Amplifier

High Input Z Adjustable-Gain
DC Instrumentation Amplifier

If R1 $=R 5$ \& $R 3=R 4=R 6=R 7$ (CMRR depends on match)

$$
V_{O}=1+\frac{2 R 1}{R 2}\left(V_{2}-V_{1}\right)
$$

TL/H/7787-31

As shown $\mathrm{V}_{\mathrm{O}}=101\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)($ (Ontinued)
Using Symmetrical Amplifiers to Reduce Input Current (General Concept)

National Semiconductor

LM221/LM321 Precision Preamplifiers

General Description

The LM221 series are precision preamplifiers designed to operate with general purpose operational amplifiers to drastically decrease dc errors. Drift, bias current, common mode and supply rejection are more than a factor of 50 better than standard op amps alone. Further, the added dc gain of the LM221 decreases the closed loop gain error.
The LM221 series operates with supply voltages from $\pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ and has sufficient suppiy rejection to operate from unregulated supplies. The operating current is programmable from $5 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$ so bias current, offset current, gain and noise can be optimized for the particular application while still realizing very low drift. Super-gain transistors are used for the input stage so input error currents are lower than conventional amplifiers at the same operating current. Further, the initial offset voltage is easily nulled to zero.
The extremely low drift of the LM221 will improve accuracy on almost any precision dc circuit. For example, instrumentation amplifier, strain gauge amplifiers and thermocouple amplifiers now using chopper amplifiers can be made with
the LM221. The full differential input and high commonmode rejection are another advantage over choppers. For applications where low bias current is more important than drift, the operating current can be reduced to low values. High operating currents can be used for low voltage noise with low source resistance. The programmable operating current of the LM221 allows tailoring the input characteristics to match those of specialized op amps.
The LM221 is specified over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range and the LM321 over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Guaranteed drift of LM321A-0.2 $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
- Guaranteed drift of LM221 series-1 $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
- Offset voltage less than 0.4 mV
- Bias current less than 10 nA at $10 \mu \mathrm{~A}$ operating current
- CMRR 126 dB minimum
- 120 dB supply rejection
- Easily nulled offset voltage

Typical Applications

Thermocouple Amplifier with Cold Junction Compensation

shorted. Output should equal ambient temperature at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$.
\dagger Adjust for output reading in ${ }^{\circ} \mathrm{C}$. TL/H/7769-1

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage (Notes 2 and 3)	$\pm 15 \mathrm{~V}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$

Electrical Characteristics (Note 4) LM321A

Parameter	Conditions	LM321A			Units
		Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 6.4 \mathrm{k} \leq \mathrm{R}_{\text {SET }} \leq 70 \mathrm{k}$		0.2	0.4	mV
Input Offset Current	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ \mathrm{R}_{\text {SET }}=70 \mathrm{k} \\ \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \end{gathered}$		0.3	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Input Bias Current	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ \mathrm{R}_{\text {SET }}=70 \mathrm{k} \\ \mathrm{R}_{\text {SET }}=6.4 \mathrm{k} \\ \hline \end{gathered}$		$\begin{gathered} 5 \\ 50 \end{gathered}$	$\begin{gathered} 15 \\ 150 \end{gathered}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Input Resistance	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ \mathrm{R}_{\text {SET }}=70 \mathrm{k} \\ \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.2 \end{gathered}$	8		$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
Supply Current	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}, \mathrm{R}_{\text {SET }}=70 \mathrm{k}$		0.8	2.2	mA
Input Offset Voltage	$6.4 \mathrm{k} \leq \mathrm{R}_{\text {SET }} \leq 70 \mathrm{k}$		0.5	0.65	mV
Input Bias Current	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 15 \\ 150 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 250 \\ \hline \end{gathered}$	nA nA
Input Offset Current	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 0.5 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 10 \\ \hline \end{gathered}$	nA nA
Input Offset Current Drift	$\mathrm{R}_{\text {SET }}=70 \mathrm{k}$		3		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Average Temperature	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, 6.4 \mathrm{k} \leq \mathrm{R}_{\text {SET }} \leq 70 \mathrm{k}$				
Coefficient of Input Offset Voltage	Offset Voltage Nulled		0.07	0.2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Long Term Stability			3		$\mu \mathrm{V} / \mathrm{yr}$
Supply Current			1	3.5	mA
Input Voltage Range	$\begin{gathered} \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V},(\text { Note } 5) \\ \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \end{gathered}$	$\begin{gathered} \pm 13 \\ +7,-13 \\ \hline \end{gathered}$			$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ & \hline \end{aligned}$	$\begin{array}{r} 126 \\ 120 \\ \hline \end{array}$	$\begin{aligned} & 140 \\ & 130 \\ & \hline \end{aligned}$		dB dB
Supply Voltage Rejection Ratio	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \end{aligned}$	$\begin{aligned} & 118 \\ & 114 \end{aligned}$	$\begin{aligned} & 126 \\ & 120 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Voltage Gain	$\begin{gathered} T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k}, \\ \mathrm{R}_{\mathrm{L}}>3 \mathrm{M} \Omega \end{gathered}$	12	20		V/V
Noise	$\mathrm{R}_{\text {SET }}=70 \mathrm{k}, \mathrm{R}_{\text {SOURCE }}=0$		8		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

Note 1: The maximum junction temperature of the LM321A is $85^{\circ} \mathrm{C}$. For operating at elevated temperature, devices in the H08 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $18^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: The inputs are shunted with back-to-back diodes in series with a 500Ω resistor for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs.

Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \leq V_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM221A, however all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, and for the LM321A the specifications apply over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Note 5: External precision resistor - 0.1% - can be placed from pins 1 and 8 to 7 increase positive common-mode range.
Note 6: See RETS121X for LM121H/883 military specs and RET121AX for LM121AH/883 military specs.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)
500 mW
Differential Input Voltage (Notes 2 and 3)
$\pm 15 \mathrm{~V}$
Input Voltage (Note 3)

Operating Temperature Range
LM221, LM121A (-883), LM121 (-883) $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM321, LM321A
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
ESD rating to be determined.

Electrical Characteristics (Note 4) LM221, LM321

Parameter	Conditions	LM221			LM321			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 6.4 \mathrm{k} \leq \mathrm{R}_{\text {SET }} \leq 70 \mathrm{k}$			0.7			1.5	mV
Input Offset Current	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ \mathrm{R}_{\text {SET }}=70 \mathrm{k} \\ \mathrm{R}_{\text {SET }}=6.4 \mathrm{k} \\ \hline \end{gathered}$			$\begin{gathered} 1 \\ 10 \end{gathered}$			$\begin{gathered} 2 \\ 20 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Bias Current	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ \mathrm{R}_{\text {SET }}=70 \mathrm{k} \\ \mathrm{R}_{\text {SET }}=6.4 \mathrm{k} \\ \hline \end{gathered}$			$\begin{gathered} 10 \\ 100 \end{gathered}$			$\begin{gathered} 18 \\ 180 \end{gathered}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Input Resistance	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ \mathrm{R}_{\text {SET }}=70 \mathrm{k} \\ \mathrm{R}_{\text {SET }}=6.4 \mathrm{k} \end{gathered}$	$\begin{gathered} 4 \\ 0.4 \end{gathered}$			$\begin{gathered} 2 \\ 0.2 \end{gathered}$			$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
Supply Current	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}, \mathrm{R}_{\text {SET }}=70 \mathrm{k}$			1.5			2.2	mA
Input Offset Voltage	$6.4 \mathrm{k} \leq \mathrm{R}_{\text {SET }} \leq 70 \mathrm{k}$			1.0			2.5	mV
Input Bias Current	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ & \hline \end{aligned}$			$\begin{array}{r} 30 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 28 \\ 280 \\ \hline \end{array}$	nA nA
Input Offset Current	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ & \hline \end{aligned}$			$\begin{gathered} 3 \\ 30 \\ \hline \end{gathered}$			$\begin{gathered} 4 \\ 40 \\ \hline \end{gathered}$	nA nA
Input Offset Current Drift	$\mathrm{R}_{\text {SET }}=70 \mathrm{k}$		3			3		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, 6.4 \mathrm{k} \leq \mathrm{R}_{\mathrm{SET}} \leq 70 \mathrm{k}$ Offset Voltage Nulled			1			1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Long Term Stability			5			5		$\mu \mathrm{V} / \mathrm{yr}$
Supply Current				2.5			3.5	mA
Input Voltage Range	$\begin{gathered} \left.V_{\mathrm{S}}= \pm 15 \mathrm{~V}, \text { (Note } 5\right) \\ \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ \hline \end{gathered}$	$\begin{gathered} \pm 13 \\ +7,-13 \\ \hline \end{gathered}$			$\begin{gathered} \pm 13 \\ +7,-13 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{R}_{\text {SET }}=70 \mathrm{k} \\ & \mathrm{R}_{\text {SET }}=6.4 \mathrm{k} \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 114 \\ & \hline \end{aligned}$			$\begin{aligned} & 114 \\ & 114 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Supply Voltage Rejection Ratio	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 114 \\ & \hline \end{aligned}$			$\begin{aligned} & 114 \\ & 114 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Voltage Gain	$\begin{gathered} T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k}, \\ R_{\mathrm{L}}>3 \mathrm{M} \Omega \end{gathered}$	16			12			V/V
Noise	$\mathrm{R}_{\text {SET }}=70 \mathrm{k}, \mathrm{R}_{\text {SOURCE }}=0$		8			8		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

Note 1: The maximum junction temperature of the LM221 is $100^{\circ} \mathrm{C}$. The maximum junction temperature of the LM321 is $85^{\circ} \mathrm{C}$. For operating at elevated temperature, devices in the H08 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $18^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: The inputs are shunted with back-to-back diodes in series with a 500Ω resistor for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \leq V_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM221, however all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$, and for the LM321 the specifications apply over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
Note 5: External precision resistor - 0.1% - can be placed from pins 1 and 8 to 7 increase positive common-mode range.

Typical Performance Characteristics

Positive Power Supply Rejection

Input Noise Current

Set Resistor and Set Current

Distribution of Offset Voltage Drift (Nulled)

Negative Power Supply Rejection

Voltage Drift

Set Current

Distribution of Offset Voltage Drift (Nulled)

VOLTAGE DRIFT $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right.$

Typical Performance Characteristics (Continued)

Connection Diagram

TL/H/7769-7
Top View
Note: Pin 4 connected to case.
Order Number LM121AH/883, LM121H/883, LM221H, LM321H or LM321AH
See NS Package Number H08C
Note: Outputs are inverting from the input of the same number.

Schematic Diagram

Frequency Compensation

UNIVERSAL COMPENSATION

The additional gain of the LM321 preamplifier when used with an operational amplifier usually necessitates additional frequency compensation. When the closed loop gain of the op amp with the LM321 is less than the gain of the LM321 alone, more compensation is needed. The worst case situation is when there is 100% feedback-such as a voltage follower or integrator-and the gain of the LM321 is high. When high closed loop gains are used-for example $A_{V}=$ 1000-and only an addition gain of 200 is inserted by the LM321, the frequency compensation of the op amp will usually suffice.
The frequency compensation shown here is designed to operate with any unity-gain stable op amp. Figure 1 shows the basic configuration of frequency stabilizing network. In operation the output of the LM321 is rendered single ended by a $0.01 \mu \mathrm{~F}$ bypass capacitor to ground. Overall frequency compensation then is achieved by an integrating capacitor around the op amp.

$$
\begin{aligned}
& \text { Bandwidth at unity-gain } \cong \frac{12}{2 \pi R_{\text {SET }} \mathrm{C}} \\
& \text { for } 0.5 \mathrm{MHz} \text { bandwidth } \mathrm{C}=\frac{4}{10^{6} \mathrm{R}_{\mathrm{SET}}}
\end{aligned}
$$

For use with higher frequency op amps such as the LM118 the bandwidth may be increased to about 2 MHz .
If the closed loop gain is greater than unity, "C" may be decreased to:

$$
C=\frac{4}{10^{6} A_{C L} R_{S E T}}
$$

ALTERNATE COMPENSATION

The two compensation capacitors can be made equal for improved power supply rejection. In this case the formula for the compensation capscitor is:

$$
C=\frac{8}{10^{6} A_{C L} R_{S E T}}
$$

Typical Applications

[^8]

FIGURE 1. Low Drift Op Amp Using the LM321A as a Preamp

Typical Applications (Continued)

Gain of $\mathbf{1 0 0 0}$ Instrumentation Amplifier \ddagger

High Speed* Inverting Amplifier with Low Drift

LM359 Dual, High Speed, Programmable, Current Mode (Norton) Amplifiers

General Description

The LM359 consists of two current differencing (Norton) input amplifiers. Design emphasis has been placed on obtaining high frequency performance and providing user programmable amplifier operating characteristics. Each amplifier is broadbanded to provide a high gain bandwidth product, fast slew rate and stable operation for an inverting closed loop gain of 10 or greater. Pins for additional external frequency compensation are provided. The amplifiers are designed to operate from a single supply and can accommodate input common-mode voltages greater than the supply.

Applications

- General purpose video amplifiers
- High frequency, high Q active filters
- Photo-diode amplifiers
- Wide frequency range waveform generation circuits
- All LM3900 AC applications work to much higher frequencies

Typical Application

TL/H/7788-1

- $A_{V}=20 \mathrm{~dB}$
- -3 dB bandwidth $=2.5 \mathrm{~Hz}$ to 25 MHz
- Differential phase error $<1^{\circ}$ at 3.58 MHz
- Differential gain error $<0.5 \%$ at 3.58 MHz

Features

- User programmable gain bandwidth product, slew rate, input bias current, output stage biasing current and total device power dissipation
- High gain bandwidth product ($l_{\text {SET }}=0.5 \mathrm{~mA}$)

400 MHz for $A_{V}=10$ to 100 30 MHz for $\mathrm{A}_{\mathrm{V}}=1$

- High slew rate (ISET $=0.5 \mathrm{~mA}$)
$60 \mathrm{~V} / \mu \mathrm{s}$ for $\mathrm{A}_{V}=10$ to 100
$30 \mathrm{~V} / \mu \mathrm{s}$ for $\mathrm{A}_{\mathrm{V}}=1$
- Current differencing inputs allow high common-mode input voltages
- Operates from a single 5 V to 22 V supply
- Large inverting amplifier output swing, 2 mV to VCC - 2 V
- Low spot noise, $6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, for $\mathrm{f}>1 \mathrm{kHz}$

Connection Diagram

TL/H/7788-2
Top View
Order Number LM359J, LM359M or LM359N
See NS Package Number J14A, M14A or N14A

Absolute Maximum Ratings	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage	$22 \mathrm{~V}_{\mathrm{DC}}$
	or $\pm 11 . \mathrm{V}_{\mathrm{DC}}$
Power Dissipation (Note 1)	1 W
J Package	750 mW
N Package	
Maximum T_{J}	$+150^{\circ} \mathrm{C}$
J Package	$+125^{\circ} \mathrm{C}$

Thermal Resistance
$\theta_{\mathrm{jA}} \quad 147^{\circ} \mathrm{C} / \mathrm{W}$ still air $110^{\circ} \mathrm{C} / \mathrm{W}$ with 400 linear feet/min air flow N Package
$\theta_{\mathrm{jA}} \quad 100^{\circ} \mathrm{C} / \mathrm{W}$ still air
$75^{\circ} \mathrm{C} / \mathrm{W}$ with 400 linear feet/min air flow

Input Currents, $\mathrm{I}_{\mathbf{N}}(+)$ or $\mathrm{I}_{\mathrm{N}}(-)$	10 mADC
Set Currents, $\mathrm{I}_{\text {SET(IN) }}$ or ISET(OUT)	2 mA AC
Operating Temperature Range	
LM359	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)	$260^{\circ} \mathrm{C}$
Soldering Information	
Dual-In-Line Package	
Soldering (10 sec.)	$260^{\circ} \mathrm{C}$
Small Outline Package	
Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating to be determined.

Electrical Characteristics $I_{\text {SET(IN })}=I_{\text {SET(OUT) }}=0.5 \mathrm{~mA}, \mathrm{~V}_{\text {supply }}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Parameter	Conditions	LM359			Units
		Min	Typ	Max	
Open Loop Voltage Gain	$\begin{aligned} & V_{\text {supply }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{f}=100 \mathrm{~Hz} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	62	$\begin{array}{r} 72 \\ 68 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Bandwidth Unity Gain	$\mathrm{R}_{\text {IN }}=1 \mathrm{k} \Omega, \mathrm{C}_{\text {comp }}=10 \mathrm{pF}$	15	30		MHz
Gain Bandwidth Product Gain of 10 to 100	$\mathrm{R}_{\mathrm{IN}}=50 \Omega$ to 200Ω	200	400		MHz
Slew Rate Unity Gain Gain of 10 to 100	$\begin{aligned} & \mathrm{R}_{\text {IN }}=1 \mathrm{k} \Omega, \mathrm{C}_{\text {comp }}=10 \mathrm{pF} \\ & \mathrm{R}_{\text {IN }}<200 \Omega \end{aligned}$		$\begin{array}{r} 30 \\ 60 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
Amplifier to Amplifier Coupling	$\mathrm{f}=100 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		-80		dB
Mirror Gain (Note 2)	$\begin{aligned} & \text { at } 2 \mathrm{~mA} \operatorname{liN}_{\mathrm{N}}(+), \mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { at } 0.2 \mathrm{~mA} \mathrm{I}_{\mathrm{N}}(+), \mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A} \\ & \text { Over Temp. } \\ & \text { at } 20 \mu \mathrm{~A} \operatorname{liN}_{\mathrm{N}}(+) \text {, } \mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A} \\ & \text { Over Temp. } \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.9 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} / \mu \mathrm{A} \\ & \mu \mathrm{~A} / \mu \mathrm{A} \\ & \mu \mathrm{~A} / \mu \mathrm{A} \end{aligned}$
Δ Mirror Gain (Note 2)	at $20 \mu \mathrm{~A}$ to $0.2 \mathrm{~mA} \mathrm{I}_{\mathrm{I}} \mathrm{N}^{(+)}$ Over Temp, $\mathrm{I}_{\text {SET }}=5 \mu \mathrm{~A}$		3	5	\%
Input Bias Current	Inverting Input, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temp.		8	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Resistance ($\beta \mathrm{re}$)	Inverting Input		2.5		k Ω
Output Resistance	$\mathrm{l}_{\text {OUT }}=15 \mathrm{~mA} \mathrm{rms} \mathrm{f}=,1 \mathrm{MHz}$		3.5		Ω
Output Voltage Swing $V_{\text {OUT }}$ High $V_{\text {OUT }}$ Low	$\mathrm{R}_{\mathrm{L}}=600 \Omega$ $\mathrm{I}_{\mathbb{N}}(-)$ and $\mathrm{I}_{\mathbb{N}}(+)$ Grounded $\operatorname{lin}(-)=100 \mu A, \operatorname{lin}(+)=0$	9.5	$\begin{gathered} 10.3 \\ 2 \\ \hline \end{gathered}$	50	$\begin{gathered} \mathrm{V} \\ \mathrm{mV} \\ \hline \end{gathered}$
Output Currents Source Sink (Linear Region) Sink (Overdriven)	$\begin{aligned} & l_{\operatorname{IN}}(-) \text { and } \operatorname{liN}_{\operatorname{IN}}(+) \text { Grounded, } R_{\mathrm{L}}=100 \Omega \\ & V_{\text {comp }}-0.5 \mathrm{~V}=\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}(+)=0 \\ & \operatorname{liN}_{\mathrm{N}}(-)=100 \mu \mathrm{~A}, \mathrm{l}_{\mathrm{IN}}(+)=0, \\ & V_{\text {OUT }} \text { Force }=1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 16 \\ & 1.5 \end{aligned}$	$\begin{gathered} 40 \\ 4.7 \\ 3 \end{gathered}$		mA mA mA
Supply Current	Non-Inverting Input Grounded, $\mathrm{R}_{\mathrm{L}}=\infty$		18.5	22	mA
Power Supply Rejection (Note 3)	$f=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{IN}}(+)$ Grounded	40	50		dB

Note 1: See Maximum Power Dissipation graph.
Note 1: See Maximum Power Dissipation graph.
Note 2: Mirror gain is the current gain of the current mirror which is used as the non-inverting input. $\left(A_{1}=\frac{l_{1}(-)}{l_{N}(+)}\right) \Delta$ Mirror Gain is the \% change in A_{1} for two different mirror currents at any given temperature.
Note 3: See Supply Rejection graphs.

Schematic Diagram

Typical Performance Characteristics

Note: Shaded area refers to LM359

Note: Shaded area refers to LM359

Typical Performance Characteristics (Continued)

Application Hints

The LM359 consists of two wide bandwidth, decompensated current differencing (Norton) amplifiers. Although similar in operation to the original LM3900, design emphasis for these amplifiers has been placed on obtaining much higher frequency performance as illustrated in Figure 1.
This significant improvement in frequency response is the result of using a common-emitter/common-base (cascode) gain stage which is typical in many discrete and integrated video and RF circuit designs. Another versatile aspect of these amplifiers is the ability to externally program many internal amplifier parameters to suit the requirements of a wide variety of applications in which this type of amplifier can be used.

TL/H/7788-6

FIGURE 1

Application Hints (Continued)

DC BIASING

The LM359 is intended for single supply voltage operation which requires DC biasing of the output. The current mirror circuitry which provides the non-inverting input for the amplifier also facilitates DC biasing the output. The basic operation of this current mirror is that the current (both DC and $A C$) flowing into the non-inverting input will force an equal amount of current to flow into the inverting input. The mirror gain $\left(A_{l}\right)$ specification is the measure of how closely these two currents match. For more details see National Application Note AN-72.
DC biasing of the output is accomplished by establishing a reference $D C$ current into the $(+)$ input, $\mathrm{I}_{\mathrm{N}}(+)$, and requiring the output to provide the $(-)$ input current. This forces the output DC level to be whatever value necessary (within the output voltage swing of the amplifier) to provide this DC reference current, Figure 2.

$V_{0(D C)}=V_{B E}(-)+I_{F B} R_{f}$
TL/H/7788-7
$\mathrm{I}_{\mathrm{FB}}=\mathrm{I}_{\mathrm{I}}(+) \mathrm{A}_{\mathrm{I}}+\mathrm{l}_{\mathrm{b}}(-)$
$\mathrm{I}_{\mathrm{N}}(+)=\frac{\mathrm{V}^{+}-\mathrm{V}_{\mathrm{BE}}(+)}{\mathrm{R}_{\mathrm{b}}}$
$I_{b}(-)$ is the inverting input bias current

FIGURE 2

The $D C$ input voltage at each input is a transistor $V_{B E}$ ($\cong 0.6 \mathrm{~V} D$) and must be considered for DC biasing. For most applications, the supply voltage, V^{+}, is suitable and convenient for establishing $\mathrm{l}_{\mathrm{N}}(+)$. The inverting input bias current, $\mathrm{I}_{\mathrm{b}}(-)$, is a direct function of the programmable input stage current (see current programmability section) and to obtain predictable output DC biasing set $\mathrm{I}_{\mathrm{N}}(+) \geq 10 \mathrm{I}_{\mathrm{b}}(-)$. The following figures illustrate typical biasing schemes for AC amplifiers using the LM359:

FIGURE 3. Biasing an Inverting AC Amplifier

FIGURE 4. Biasing a Non-Inverting AC Amplifier

FIGURE 5. $n V_{B E}$ Biasing
The $n V_{B E}$ biasing configuration is most useful for low noise applications where a reduced input impedance can be accommodated (see typical applications section).

OPERATING CURRENT PROGRAMMABILITY (ISET)

The input bias current, slew rate, gain bandwidth product, output drive capability and total device power consumption of both amplifiers can be simultaneously controlled and optimized via the two programming pins ISET(OUT) and ISET(IN). ISET(OUT)
The output set current (ISET(OUT)) is equal to the amount of current sourced from pin 1 and establishes the class A biasing current for the Darlington emitter follower output stage. Using a single resistor from pin 1 to ground, as shown in Figure 6, this current is equal to:

$I_{\text {SETIOUT })}=\frac{\mathrm{V}^{+}-\mathrm{V}_{\text {BE }}}{\mathrm{R}_{\text {SET(OUT })}+500 \Omega}$

TL/H/7788-11
FIGURE 6. Establishing the Output Set Current

Application Hints (Continued)

The output set current can be adjusted to optimize the amount of current the output of the amplifier can sink to drive load capacitance and for loads connected to V^{+}. The maximum output sinking current is approximately 10 times ISET(OUT). This set current is best used to reduce the total device supply current if the amplifiers are not required to drive small load impedances.
$I_{\text {SET (IN) }}$
The input set current ISET(IN) is equal to the current flowing into pin 8. A resistor from pin 8 to V^{+}sets this current to be:

TL/H/7788-12
FIGURE 7. Establishing the Input Set Current
ISET(IN) is most significant in controlling the AC characteristics of the LM359 as it directly sets the total input stage current of the amplifiers which determines the maximum slew rate, the frequency of the open loop dominant pole, the input resistance of the $(-)$ input and the biasing current $\mathrm{I}_{\mathrm{b}}(-)$. All of these parameters are significant in wide band amplifier design. The input stage current is approximately 3 times ISET(IN) and by using this relationship the following first order approximations for these AC parameters are:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{r}(\mathrm{MAX})}=\text { max slew rate } \cong \frac{3 \mathrm{I}_{\mathrm{SET}(\mathrm{IN})}\left(10^{-6}\right)}{\mathrm{C}_{\mathrm{comp}}}(\mathrm{~V} / \mu \mathrm{s}) \\
& \text { frequency of } \cong \frac{3 \mathrm{I}_{\mathrm{SET}(\mathrm{IN})}}{2 \pi \mathrm{C}_{\mathrm{comp}} A_{\mathrm{VOL}}(0.026 \mathrm{~V})}(\mathrm{Hz}) \\
& \text { dominant pole } \\
& \text { input resistance }=\beta \mathrm{re} \cong \frac{150(0.026 \mathrm{~V})}{3 \mathrm{I}_{\mathrm{SET}(\mathrm{IN})}}(\Omega)
\end{aligned}
$$

where $\mathrm{C}_{\text {comp }}$ is the total capacitance from the compensation pin (pin 3 or pin 13) to ground, Avol is the low frequency open loop voltage gain in V/V and an ambient tempera-
ture of $25^{\circ} \mathrm{C}$ is assumed ($\mathrm{KT} / \mathrm{q}=26 \mathrm{mV}$ and $\beta_{\mathrm{typ}}=150$). ISET(IN) also controls the DC input bias current by the expression:

$$
\mathrm{I}_{\mathrm{b}}(-)=\frac{3 \mathrm{I}_{\mathrm{SET}}}{\beta} \cong \frac{I_{\text {SET }}}{50} \text { for NPN } \beta=150
$$

which is important for DC biasing considerations.
The total device supply current (for both amplifiers) is also a direct function of the set currents and can be approximated by:

$$
I_{\text {supply }} \cong 27 \times I_{\text {SET(OUT })}+11 \times I_{\text {SET(IN }}
$$

with each set current programmed by individual resistors.

PROGRAMMING WITH A SINGLE RESISTOR

Operating current programming may also be accomplished using only one resistor by letting ISET(IN) equal ISET(OUT). The programming current is now referred to as ISET and it is created by connecting a resistor from pin 1 to pin 8 (Figure 8).

FIGURE 8. Single Resistor Programming of ISET
This configuration does not affect any of the internal set current dependent parameters differently than previously discussed except the total supply current which is now equal to:

$$
I_{\text {supply }} \cong 37 \times I_{\text {SET }}
$$

Care must be taken when using resistors to program the set current to prevent significantly increasing the supply voltage above the value used to determine the set current. This would cause an increase in total supply current due to the resulting increase in set current and the maximum device power dissipation could be exceeded. The set resistor value(s) should be adjusted for the new supply voltage.

Application Hints (Continued)

One method to avoid this is to use an adjustable current source which has voltage compliance to generate the set current as shown in Figure 9.

$$
I_{\text {SET }}=\frac{67.7 \mathrm{mV}}{R_{\text {SET }}} \text { @25 } 5^{\circ} \mathrm{C}
$$

TL/H/7788-14
FIGURE 9. Current Source Programming of ISET
This circuit allows ISET to remain constant over the entire supply voltage range of the LM359 which also improves power supply ripple rejection as illustrated in the Typical Performance Characteristics. It should be noted, however, that the current through the LM334 as shown will change linearly with temperature but this can be compensated for (see LM334 data sheet).
Pin 1 must never be shorted to ground or pin 8 never shorted to V^{+}without limiting the current to 2 mA or less to prevent catastrophic device failure.

CONSIDERATIONS FOR HIGH FREQUENCY OPERATION

The LM359 is intended for use in relatively high frequency applications and many factors external to the amplifier itself must be considered. Minimization of stray capacitances and their effect on circuit operation are the primary requirements. The following list contains some general guidelines to help accomplish this end:

1. Keep the leads of all external components as short as possible.
2. Place components conducting signal current from the output of an amplifier away from that amplifier's non-inverting input.
3. Use reasonably low value resistances for gain setting and biasing.
4. Use of a ground plane is helpful in providing a shielding effect between the inputs and from input to output. Avoid using vector boards.
5. Use a single-point ground and single-point supply distribution to minimize crosstalk. Always connect the two grounds (one from each amplifier) together.
6. Avoid use of long wires (> $2^{\prime \prime}$) but if necessary, use shielded wire.
7. Bypass the supply close to the device with a low inductance, low value capacitor (typically a $0.01 \mu \mathrm{~F}$ ceramic) to create a good high frequency ground. If long supply leads are unavoidable, a small resistor ($\sim 10 \Omega$) in series with the bypass capacitor may be needed and using shielded wire for the supply leads is also recommended.

COMPENSATION

The LM359 is internally compensated for stability with closed loop inverting gains of 10 or more. For an inverting gain of less than 10 and all non-inverting amplifiers (the amplifier always has 100% negative current feedback regardless of the gain in the non-inverting configuration) some external frequency compensation is required because the stray capacitance to ground from the (-) input and the feedback resistor add additional lagging phase within the feedback loop. The value of the input capacitance will typically be in the range of 6 pF to 10 pF for a reasonably constructed circuit board. When using a feedback resistance of $30 \mathrm{k} \Omega$ or less, the best method of compensation, without sacrificing slew rate, is to add a lead capacitor in parallel with the feedback resistor with a value on the order of 1 pF to 5 pF as shown in Figure 10.

TL/H/7788-15
FIGURE 10. Best Method of Compensation
Another method of compensation is to increase the effective value of the internal compensation capacitor by adding capacitance from the COMP pin of an amplifier to ground. An external 20 pF capacitor will generally compensate for all gain settings but will also reduce the gain bandwidth product and the slew rate. These same results can also be obtained by reducing ISET(IN) if the full capabilities of the amplifier are not required. This method is termed over-compensation.
Another area of concern from a stability standpoint is that of capacitive loading. The amplifier will generally drive capacitive loads up to 100 pF without oscillation problems. Any larger C loads can be isolated from the output as shown in Figure 11. Over-compensation of the amplifier can also be used if the corresponding reduction of the GBW product can be afforded.

TL/H/7788-16
FIGURE 11. Isolating Large Capacitive Loads

Application Hints (Continued)

In most applications using the LM359, the input signal will be AC coupled so as not to affect the DC biasing of the amplifier. This gives rise to another subtlety of high frequency circuits which is the effective series inductance (ESL) of the coupling capacitor which creates an increase in the impedance of the capacitor at high frequencies and can cause an unexpected gain reduction. Low ESL capacitors like solid tantalum for large values of C and ceramic for smaller values are recommended. A parallel combination of the two types is even better for gain accuracy over a wide frequency range.

AMPLIFIER DESIGN EXAMPLES

The ability of the LM359 to provide gain at frequencies higher than most monolithic amplifiers can provide makes it most useful as a basic broadband amplification stage. The design of standard inverting and non-inverting amplifiers, though different than standard op amp design due to the current differencing inputs, also entail subtle design differences between the two types of amplifiers. These differences will be best illustrated by design examples. For these examples a practical video amplifier with a passband of 8 Hz to 10 MHz and a gain of 20 dB will be used. It will be assumed that the input will come from a 75Ω source and proper signal termination will be considered. The supply voltage is $12 \mathrm{~V}_{\mathrm{DC}}$ and single resistor programming of the operating current, ISET, will be used for simplicity.

AN INVERTING VIDEO AMPLIFIER

1. Basic circuit configuration:

TL/H/7788-17
2. Determine the required $I_{\text {SET }}$ from the characteristic curves for gain bandwidth product.

$$
\mathrm{GBW}_{\mathrm{MIN}}=10 \times 10 \mathrm{MHz}=100 \mathrm{MHz}
$$

For a flat response to 10 MHz a closed loop response to two octaves above $10 \mathrm{MHz}(40 \mathrm{MHz})$ will be sufficient.
Actual GBW $=10 \times 40 \mathrm{MHz}=400 \mathrm{MHz}$
$I_{\text {SET }}$ required $=0.5 \mathrm{~mA}$
$R_{\text {SET }}=\frac{\mathrm{V}^{+}-2 \mathrm{~V}_{\mathrm{BE}}}{\mathrm{I}_{\mathrm{SET}}}-1 \mathrm{k} \Omega=\frac{10.8 \mathrm{~V}}{0.5 \mathrm{~mA}}-1 \mathrm{k} \Omega=20.6 \mathrm{k} \Omega$
3. Determine maximum value for R_{f} to provide stable $D C$ biasing

$$
\mathrm{I}_{\mathrm{f}(\mathrm{MIN})} \geq 10 \times \frac{3 \mathrm{I}_{\mathrm{SET}}}{\beta}=\underset{\text { feedback current }}{100} \mu \mathrm{~A} \text { minimum } \mathrm{DC}
$$

Optimum output DC level for maximum symmetrical swing without clipping is:

$$
\begin{aligned}
V_{O D C(o p t)} & =\frac{V_{O(M A X)}-V_{O(M I N)}}{2}+V_{O(M I N)} \\
& \approx \frac{\left(\mathrm{V}^{+}-3 V_{B E}\right)-2 \mathrm{mV}}{2} \\
V_{O D C(o p t)} & \cong \frac{12-1.8 \mathrm{~V}}{2}=\frac{10.2 \mathrm{~V}}{2}=5.1 \mathrm{~V}_{\mathrm{DC}}
\end{aligned}
$$

$\mathrm{R}_{f(\mathrm{MAX})}$ can now be found:
$\mathrm{R}_{\mathrm{f}(\mathrm{MAX})}=\frac{\mathrm{V}_{0 \mathrm{DC}(\mathrm{opt})}-\mathrm{V}_{\mathrm{BE}}(-)}{\mathrm{I}_{\mathrm{f}(\mathrm{MIN})}}=\frac{5.1 \mathrm{~V}-0.6 \mathrm{~V}}{100 \mu \mathrm{~A}}=45 \mathrm{k} \Omega$
This value should not be exceeded for predictable DC biasing.
4. Select R_{s} to be large enough so as not to appreciably load the input termination resistance:

$$
\mathrm{R}_{\mathrm{s}} \geq 750 \Omega \text { Let } \mathrm{R}_{\mathrm{s}}=750 \Omega
$$

5. Select R_{f} for appropriate gain:

$$
A_{V}=-\frac{R_{f}}{R_{s}} \mathrm{so} ; R_{f}=10 R_{s}=7.5 \mathrm{k} \Omega
$$

$7.5 \mathrm{k} \Omega$ is less than the calculated $\mathrm{R}_{\mathrm{f}(\mathrm{MAX})}$ so DC predictability is insured.
6. Since $R_{f}=7.5 \mathrm{k}$, for the output to be biased to $5.1 \mathrm{~V}_{\mathrm{DC}}$, the reference current $\operatorname{liN}_{\mathrm{N}}(+)$ must be:

$$
\mathrm{I}_{\mathrm{IN}}(+)=\frac{5.1 \mathrm{~V}-\mathrm{V}_{\mathrm{BE}}(-)}{\mathrm{R}_{\mathrm{f}}}=\frac{5.1 \mathrm{~V}-0.6 \mathrm{~V}}{7.5 \mathrm{k} \Omega}=600 \mu \mathrm{~A}
$$

Now R_{b} can be found by:

$$
\mathrm{R}_{\mathrm{b}}=\frac{\mathrm{V}^{+}-\mathrm{V}_{\mathrm{BE}}(+)}{\operatorname{liN}^{(+)}}=\frac{12-0.6}{600 \mu \mathrm{~A}}=19 \mathrm{k} \Omega
$$

7. Select C_{i} to provide the proper gain for the 8 Hz minimum input frequency:

$$
\mathrm{C}_{\mathrm{i}} \geq \frac{1}{2 \pi \mathrm{R}_{\mathrm{S}}\left(\mathrm{f}_{\mathrm{ow}}\right)}=\frac{1}{2 \pi(750 \Omega)(8 \mathrm{~Hz})}=26 \mu \mathrm{~F}
$$

A larger value of C_{i} will allow a flat frequency response down to 8 Hz and a $0.01 \mu \mathrm{~F}$ ceramic capacitor in parallel with C_{i} will maintain high frequency gain accuracy.
8. Test for peaking of the frequency response and add a feedback "lead" capacitor to compensate if necessary.

Application Hints (Continued)
Final Circuit Using Standard 5\% Tolerance Resistor Values:

TL/H/7788-18

$V_{0(D C)}=5.1 \mathrm{~V}$
Differential phase error $<1^{\circ}$ for $3.58 \mathrm{MHz} \mathrm{f}_{\mathrm{IN}}$
Differential gain error $<0.5 \%$ for $3.58 \mathrm{MHz} \mathrm{f}_{\mathrm{IN}}$
$f_{-3} \mathrm{~dB}$ low $=2.5 \mathrm{~Hz}$

A NON-INVERTING VIDEO AMPLIFIER

For this case several design considerations must be dealt with.

- The output voltage (AC and DC) is strictly a function of the size of the feedback resistor and the sum of AC and DC "mirror current" flowing into the (+) input.
- The amplifier always has 100% current feedback so external compensation is required. Add a small ($1 \mathrm{pF}-5 \mathrm{pF}$) feedback capacitance to leave the amplifier's open loop response and slew rate unaffected.
- To prevent saturating the mirror stage the total AC and DC current flowing into the amplifier's (+) input should be less than 2 mA .
- The output's maximum negative swing is one diode above ground due to the V_{BE} diode clamp at the (-) input.

DESIGN EXAMPLE:

$\mathrm{e}_{\mathrm{IN}}=50 \mathrm{mV}(\mathrm{MAX}), \mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}$ (MAX), desired circuit $B W=20 \mathrm{MHz}, A_{V}=20 \mathrm{~dB}$, driving source impedance $=$ $75 \Omega, \mathrm{~V}^{+}=12 \mathrm{~V}$.

1. Basic circuit configuration:

TL/H/7788-20
2. Select ISET to provide adequate amplifier bandwidth so that the closed loop bandwidth will be determined by R_{f} and C_{f}. To do this, the set current should program an amplifier open loop gain of at least 20 dB at the desired closed loop bandwidth of the circuit. For this example, an ISET of 0.5 mA will provide 26 dB of open loop gain at 20 MHz which will be sufficient. Using single resistor programming for ISET:

$$
\mathrm{R}_{\mathrm{SET}}=\frac{\mathrm{V}^{+}-2 \mathrm{~V}_{\mathrm{BE}}}{\mathrm{I}_{\mathrm{SET}}}-1 \mathrm{k} \Omega=20.6 \mathrm{k} \Omega
$$

3. Since the closed loop bandwidth will be determined by

$$
R_{f} \text { and } C_{f}\left(f-3 d B=\frac{1}{2 \pi R_{f} C_{f}}\right)
$$

Application Hints (Continued)

to obtain a 20 MHz bandwidth, both R_{f} and C_{f} should be kept small. It can be assumed that C_{f} can be in the range of 1 pF to 5 pF for carefully constructed circuit boards to insure stability and allow a flat frequency response. This will limit the value of R_{f} to be within the range of:

$$
\begin{aligned}
& \frac{1}{2 \pi 5 \mathrm{pF} \mathrm{20} \mathrm{MHz}}<\mathrm{R}_{\mathrm{f}} \leq \frac{1}{2 \pi 1 \mathrm{pF} 20 \mathrm{MHz}} \\
& \text { or } 1.6 \mathrm{k} \Omega \leq \mathrm{R}_{\mathrm{f}} \leq 7.96 \mathrm{k} \Omega
\end{aligned}
$$

Also, for a closed loop gain of $+10, R_{f}$ must be 10 times $R_{s}+r_{e}$ where r_{e} is the mirror diode resistance.
4. So as not to appreciably load the 75Ω input termination resistance the value of $\left(R_{s}+r_{e}\right)$ is set to 750Ω.
5. For $A_{v}=10 ; R_{f}$ is set to $7.5 \mathrm{k} \Omega$.
6. The optimum output $D C$ level for symmetrical $A C$ swing is:

$$
\begin{aligned}
V_{O D C(O p t)} & =\frac{V_{0(M A X)}-V_{O(M I N)}}{2}+V_{O(M I N)} \\
& =\frac{(12-1.8) \mathrm{V}-0.6 \mathrm{~V}}{2}+0.6 \mathrm{~V}=5.4 \mathrm{~V}_{\mathrm{DC}}
\end{aligned}
$$

7. The DC feedback current must be:

$$
\begin{aligned}
I_{F B} & =\frac{V_{O D C(\text { opt })}-V_{B E}(-)}{R_{f}}=\frac{5.4 V-0.6 V}{7.5 k} \\
& =640 \mu A=I_{I N}(+)
\end{aligned}
$$

DC biasing predictability will be insured because $640 \mu \mathrm{~A}$ is greater than the minimum of $I_{\mathrm{SET}} / 5$ or $100 \mu \mathrm{~A}$.

For gain accuracy the total AC and DC mirror current should be less than 2 mA . For this example the maximum AC mirror current will be;

$$
\frac{ \pm e_{\text {in peak }}}{R_{s}+r_{e}}=\frac{ \pm 50 \mathrm{mV}}{750 \Omega}= \pm 66 \mu \mathrm{~A}
$$

therefore the total mirror current range will be $574 \mu \mathrm{~A}$ to $706 \mu \mathrm{~A}$ which will insure gain accuracy.
8. R_{b} can now be found:

$$
R_{b}=\frac{V^{+}-V_{B E}(+)}{I_{I N}(+)}=\frac{12-0.6}{640 \mu \mathrm{~A}}=17.8 \mathrm{k} \Omega
$$

9. Since $R_{s}+r_{e}$ will be 750Ω and r_{θ} is fixed by the $D C$ mirror current to be:

$$
r_{\theta}=\frac{K T}{q \ln (+)}=\frac{26 \mathrm{mV}}{640 \mu \mathrm{~A}} \cong 40 \Omega \text { at } 25^{\circ} \mathrm{C}
$$

R_{s} must be $750 \Omega-40 \Omega$ or 710Ω which can be a 680Ω resistor in series with a 30Ω resistor which are standard 5% tolerance resistor values.
10. As a final design step, C_{j} must be selected to pass the lower passband frequency corner of 8 Hz for this example.
$C_{i}=\frac{1}{2 \pi\left(R_{s}+r_{e}\right) f_{\text {low }}}=\frac{1}{2 \pi(750 \Omega)(8 \mathrm{~Hz})}=26.5 \mu \mathrm{~F}$
A larger value may be used and a $0.01 \mu \mathrm{~F}$ ceramic capacitor in parallel with C_{i} will maintain high frequency gain accuracy.

Final Circuit Using Standard 5\% Toleranced Resistor Values

Application Hints (Continued)

GENERAL PRECAUTIONS

The LM359 is designed primarily for single supply operation but split supplies may be used if the negative supply voltage is well regulated as the amplifiers have no negative supply rejection.
The total device power dissipation must always be kept in mind when selecting an operating supply voltage, the programming current, ISET, and the load resistance, particularly when DC coupling the output to a succeeding stage.. To prevent damaging the current mirror input diode, the mirror current should always be limited to 10 mA , or less, which is important if the input is susceptible to high voltage transients. The voltage at any of the inputs must not be forced more negative than -0.7 V without limiting the current to 10 mA .
The supply voltage must never be reversed to the device; however, plugging the device into a socket backwards would then connect the positive supply voltage to the pin that has no internal connection (pin 5) which may prevent inadvertent device failure.

Typical Applications

DC Coupled Inputs

Inverting

TL/H/7788-23
$V_{O(D C)}=\left[\frac{V^{+}-V_{B E}(+)}{R_{b}}-\frac{V_{I N(D C)}-V_{B E}(-)}{R_{S}}\right] R_{f}+V_{B E(-)}$
$A_{V(A C)}=\frac{R_{f}}{R_{S}}$

TL/H/7788-24

- Eliminates the need for an input coupling capacitor
- Input DC level must be stable and can exceed the supply voltage of the LM359 provided that maximum input currents are not exceeded.

TL/H/7788-25

Typical Input Referred Noise Performance

TL/H/7788-27

TL/H/7788-26

- R1 and C2 provide additional filtering of the negative biasing supply

Adding a JFET Input Stage

TL/H/7788-28

- FET input voltage mode op amp
- For $A_{V}=+1 ; B W=40 \mathrm{MHz}, S_{r}=60 \mathrm{~V} / \mu \mathrm{s} ; \mathrm{C}_{\mathrm{C}}=51 \mathrm{pF}$
- For $A_{V}=+11 ; B W=24 \mathrm{MHz}, S_{r}=130 \mathrm{~V} / \mu \mathrm{s} ; \mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}$
- For $A_{V}=+100 ; B W=4.5 \mathrm{MHz}, \mathrm{S}_{\mathrm{r}}=150 \mathrm{~V} / \mu \mathrm{s} ; \mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}$
- V_{OS} is typically $<25 \mathrm{mV} ; 100 \Omega$ potentiometer allows a $\mathrm{V}_{\text {OS }}$ adjust range of $\approx \pm 200 \mathrm{mV}$
- Inputs must be DC biased for single supply operation

Typical Applications (Continued)

D1 ~ RCA N-Type Silicon P-I-N Photodiode

- Frequency response of greater than 10 MHz
- If slow rise and fall times can be tolerated the gate on the output can be removed. In this case the rise and the fall time of the LM359 is 40 ns .
- $T_{P D L}=45 \mathrm{~ns}, T_{P D H}=50 \mathrm{~ns}-T^{2} \mathrm{~L}$ output

Balanced Line Driver

TL/H/7788-30
For $\mathrm{V}_{0} 1=\mathrm{V}_{0} 2=\frac{\mathrm{V}^{+}}{2}, \frac{\mathrm{R} 3}{\mathrm{R} 2}=\frac{\mathrm{V}^{+}-2 \phi}{2\left(\mathrm{~V}^{+}-\phi\right)}, \frac{\mathrm{R} 6}{\mathrm{R} 5}=\frac{\mathrm{V}^{+}-2 \phi}{\phi}$ where $\phi \approx 0.6 \mathrm{~V}$ $A_{V}=\frac{R 3}{R 1}\left(\frac{R 6}{R 4}+1\right)$

- $1 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth with gain of 10 and 0 dbm into 600Ω
- 0.3% distortion at full bandwidth; reduced to 0.05% with bandwidth of 10 kHz
- Will drive $\mathrm{C}_{\mathrm{L}}=1500 \mathrm{pF}$ with no additional compensation, $\pm 0.01 \mu \mathrm{~F}$ with $\mathrm{C}_{\text {comp }}=180 \mathrm{pF}$
$\bullet 70 \mathrm{~dB}$ signal to noise ratio at 0 dbm into $600 \Omega, 10 \mathrm{kHz}$ bandwidth

Typical Applications (Continued)

$V_{o(D C)}=\frac{R 4}{R 3}\left(\mathrm{~V}^{+}-\phi\right)$ where $\phi=0.6 \mathrm{~V}$
TL/H/7788-31
$A_{V}=\frac{R 4}{R 1}$ for $R 1=R 2$
*CMRR is adjusted for max at expected CM input signa
$R 6 \approx \frac{\mathrm{R} 5}{5}$, for $\mathrm{R} 5=100 \mathrm{k} \Omega$

- Wide bandwidth
- 70 dB CMRR typ
- Wide CM input voltage range

$f_{0}=\frac{V_{I N}-\phi}{4 C \Delta V R 1}$
where: R2 $=2 \mathrm{R} 1$

$$
\phi=\text { amplifier input voltage }=0.6 \mathrm{~V}
$$

$\Delta \mathrm{V}=\mathrm{DM} 7414$ hysteresis, typ 1 V

- 5 MHz operation
- T2L output

Phase Locked Loop

- Up to 5 MHz operation
- T² compatible input

All diodes $=1$ N914

Typical Applications (Continued)

Squarewave Generator

$f=1 \mathrm{MHz}$
Output is TTL compatible
Frequency is adjusted by R1 \& C (R1 < R2)

Pulse Generator

Crystal Controlled Sinewave Oscillator

Typical Applications (Continued)

High Performance 2 Amplifier Biquad Filter(s)

TL/H/7788-35

- The high speed of the LM359 allows the center frequency Q_{0} product of the filter to be: $\mathrm{f}_{\mathrm{o}} \times \mathrm{Q}_{\mathrm{o}} \leq 5 \mathrm{MHz}$
- The above filter(s) maintains performance over wide temperature range
- One half of LM359 acts as a true non-inverting integrator so only 2 amplifiers (instead of 3 or 4) are needed for the biquad filter structure

Type I	$\frac{2 V_{I N(D C)}}{V^{+}\left(R_{i 2}\right)}+\frac{1}{R}+\frac{1}{R_{Q}}=\frac{2}{R_{b}} ; R_{1}=2 R$
Type II	$\frac{1}{\mathrm{R}}+\frac{1}{\mathrm{R}_{\mathrm{Q}}}=\frac{2}{\mathrm{R}_{\mathrm{b}}} ; \mathrm{R} 1=2 \mathrm{R}$
Type III	$\frac{1}{R}+\frac{1}{R_{Q}}=\frac{2}{R_{b}} ; \frac{1}{R_{1}}=\frac{V_{I N(D C)}}{V^{+}\left(R_{i 1}\right)}+\frac{1}{2 R}$

Analysis and Design Equations

Type	V_{01}	$\mathrm{V}_{\mathbf{O} 2}$	C_{i}	$\mathbf{R}_{\mathbf{i} 2}$	$\mathbf{R}_{\mathbf{i 1}}$	f_{0}	\mathbf{Q}_{0}	fz_{Z} (notch)	$\mathrm{H}_{\mathbf{\prime}}(\mathrm{LP})$	$\mathrm{H}_{0}(\mathrm{BP})$	$\mathrm{H}_{\mathbf{o} \text { (HP) }}$	$\mathrm{H}_{\mathbf{O} \text { (BR) }}$
1	BP	LP	0	$\mathrm{R}_{\mathrm{i} 2}$	∞	$1 / 2 \pi \mathrm{RC}$	$\mathrm{R}_{\mathrm{Q}} / \mathrm{R}$	-	$\mathrm{R} / \mathrm{R}_{\mathrm{i} 2}$	$\mathrm{R}_{\mathrm{Q}} / \mathrm{R}_{\mathrm{i} 2}$	-	-
11	HP	BP	C_{i}	∞	∞	$1 / 2 \pi \mathrm{RC}$	$\mathrm{R}_{\mathrm{Q}} / \mathrm{R}$	-	-	$\mathrm{R}_{\mathrm{Q}} \mathrm{C}_{\mathrm{i}} / \mathrm{RC}$	$\mathrm{C}_{\mathrm{i}} / \mathrm{C}$	-
III	Notch/ BR	-	Ci_{i}	∞	R_{i1}	$1 / 2 \pi \mathrm{RC}$	$\mathrm{R}_{\mathrm{Q}} / \mathrm{R}$	$1 / 2 \pi \sqrt{R R_{i} C^{\prime}}{ }_{i}$	-	-	-	$\left.\mathrm{H}_{\mathrm{o}}\right\|_{\mathrm{f} \rightarrow \infty} ^{=} \mathrm{C}_{i} / \mathrm{C}$
												$\left.\mathrm{H}_{0}\right\|_{\mathrm{f} \rightarrow 0}=\mathrm{C} / \mathrm{R}_{\mathrm{i}}$

Typical Applications (Continued)

TL/H/7788-38

LM392/LM2924
 Low Power Operational Amplifier/Voltage Comparator

General Description

The LM392 series consists of 2 independent building block circuits. One is a high gain, internally frequency compensated operational amplifier, and the other is a precision voltage comparator. Both the operational amplifier and the voltage comparator have been specifically designed to operate from a single power supply over a wide range of voltages. Both circuits have input stages which will common-mode input down to ground when operating from a single power supply. Operation from split power supplies is also possible and the low power supply current is independent of the magnitude of the supply voltage.
Application areas include transducer amplifier with pulse shaper, DC gain block with level detector, VCO, as well as all conventional operational amplifier or voltage comparator circuits. Both circuits can be operated directly from the standard $5 \mathrm{~V}_{\mathrm{DC}}$ power supply voltage used in digital systems, and the output of the comparator will interface directly with either TTL or CMOS logic. In addition, the low power drain makes the LM392 extremely useful in the design of portable equipment.

Advantages

- Eliminates need for dual power supplies
- An internally compensated op amp and a precision comparator in the same package
- Allows sensing at or near ground
- Power drain suitable for battery operation
- Pin-out is the same as both the LM358 dual op amp and the LM393 dual comparator

Features

- Wide power supply voltage range Single supply

3 V to 32 V
Dual supply $\pm 1.5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$

- Low supply current drain-essentially independent of supply voltage $600 \mu \mathrm{~A}$
- Low input biasing current 50 nA
- Low input offset voltage 2 mV
- Low input offset current 5 nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage

ADDITIONAL OP AMP FEATURES

- Internally frequency compensated for unity gain
- Large DC voltage gain 100 dB
- Wide bandwidth (unity gain) 1 MHz
- Large output voltage swing

0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$

ADDITIONAL COMPARATOR FEATURES

- Low output saturation voltage

250 mV at 4 mA

- Output voltage compatible with all types of logic systems

Connection Diagram (Top View)

Order Number LM392M or LM2924M
See NS Package Number M08A
Order Number LM392N or LM2924N
See NS Package Number N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	LM392	LM2924
Supply Voltage, V +	32 V or $\pm 16 \mathrm{~V}$	26 V or $\pm 13 \mathrm{~V}$
Differential Input Voltage	32 V	26 V
Input Voltage	-0.3 V to +32 V	-0.3 V to +26 V
Power Dissipation (Note 1)		
Molded DIP (LM392N, LM2924N)	820 mW	820 mW
Small Outline Package (LM392M, LM2924M)	530 mW	530 mW
Output Short-Circuit to Ground (Note 2)	Continuous	Continuous
Input Current (VIN $<-0.3 \mathrm{~V}$ DC) (Note 3)	50 mA	50 mA
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
ESD rating to be determined.		
Soldering Information		$260^{\circ} \mathrm{C}$
Dual-in-Line Package	$260^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$
\quad Soldering (10 seconds)	$215^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics ($\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}$; specifications apply to both amplifiers unless otherwise stated) (Note 4)

Parameter	Conditions	LM392			LM2924			Units
		Min	Typ	Max	. Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 5)		± 2	± 5		± 2	± 7	mV
Input Bias Current	$\begin{aligned} & \mathrm{IN}(+) \text { or } \operatorname{IN}(-), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \text { (Note 6), } \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		50	250		50	250	nA
Input Offset Current	$\underline{I N}(+)-\mathbb{I N}(-), T_{A}=25^{\circ} \mathrm{C}$		± 5	± 50		± 5	± 50	nA
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}+=30 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & (\text { Note } 7)(\mathrm{LM} 2924, \\ & \left.\mathrm{V}+=26 \mathrm{~V}_{\mathrm{DC}}\right) \end{aligned}$	0		$\mathrm{V}+-1.5$	0		$\mathrm{V}+-1.5$	V
Supply Current	$\begin{aligned} & R_{\mathrm{L}}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}, \\ & (\mathrm{LM} 2924, \mathrm{~V}+=26 \mathrm{~V}) \end{aligned}$		1	2		1	2	mA
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=5 \mathrm{~V}$		0.5	1		0.5	1	mA
Amplifier-to-Amplifier Coupling	$\begin{aligned} & f=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, Input Referred, } \\ & \text { (Note 8) } \\ & \hline \end{aligned}$		-100			-100		dB
Input Offset Voltage	(Note 5)			± 7			± 10	mV
Input Bias Current	$\operatorname{IN}(+)$ or $\operatorname{IN}(-)$			400			500	nA
Input Offset Current	$\operatorname{IN}(+)-\operatorname{IN}(-)$			150			200	nA
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}},(\text { Note } 7) \\ & \left(\mathrm{LM} 2924, \mathrm{~V}^{+}=26 \mathrm{~V}_{\mathrm{DC}}\right) \end{aligned}$	0		V+-2	0		$\mathrm{V}+$-2	V
Differential Input Voltage	Keep All V_{IN} 's $\geq 0 \mathrm{~V}_{\mathrm{DC}}$ (or V^{-}, if Used), (Note 9)			32			26	V
OP AMP ONLY								
Large Signal Voltage Gain	$\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{O}}$ swing $=$ $1 \mathrm{~V}_{D C}$ to $11 \mathrm{~V}_{\mathrm{DC}}$, $R_{L}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	25	100		25	100		V / mV

Electrical Characteristics ($\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}$; specifications apply to both amplifiers unless otherwise stated)
(Note 4) (Continued)

Parameter	Conditions	LM392			LM2924			Units
		Min	Typ	Max	Min	Typ	Max	

Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \left(\mathrm{LM} 2924, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega\right) \end{aligned}$	0		$V^{+}-1.5$	0		$\mathrm{V}+-1.5$	V
Common-Mode Rejection Ratio	$\begin{aligned} & D C, T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CM}}= \\ & 0 \mathrm{~V}_{\mathrm{DC}} \text { to } \mathrm{V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	65	70		50	70		dB
Power Supply Rejection Ratio	$D C, T_{A}=25^{\circ} \mathrm{C}$	65	100		50	100		dB
Output Current Source	$\begin{aligned} & V_{I N(+)}=1 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{\mathrm{IN}(-)}=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{O}}= \\ & 2 \mathrm{~V}_{\mathrm{DC}}, T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	20	40		20	40		mA
Output Current Sink	$\begin{aligned} & V_{I N(-)}=1 V_{D C}, \\ & V_{I N(+)}=0 V_{D C}, \\ & V^{+}=15 V_{D C}, V_{O}= \\ & 2 V_{D C}, T_{A}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	10	20	"	10	20		mA
	$\begin{aligned} & V_{I N(-)}=1 V_{D C}, \\ & V_{I N(+)}=0 V_{D C}, \\ & V^{+}=15 V_{D C}, V_{O}= \\ & 200 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	12	50	-	12	50	.	$\mu \mathrm{A}$
Input Offset Voltage Drift	$\mathrm{R}_{\mathrm{S}}=0 \Omega$		7			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current Drift	$\mathrm{R}_{\mathrm{S}}=0 \Omega$		10			10		$\mathrm{pA}_{\text {DC }} /{ }^{\circ} \mathrm{C}$

COMPARATOR ONLY

Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V} \mathrm{DC}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	50	200		25	100		V/mV
Large Signal Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{TTL} \text { Logic Swing, } \\ & \mathrm{V}_{\mathrm{REF}}=1.4 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, R_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		300			300		ns
Response Time	$\begin{aligned} & V_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},(\text { Note 10 }) \end{aligned}$		1.3			1.5		$\mu \mathrm{S}$
Output Sink Current	$\begin{aligned} & V_{I N(-)}=1 \mathrm{~V}_{D C}, \\ & \mathrm{~V}_{I N(+)}=0 \mathrm{~V}_{D C}, \\ & \mathrm{~V}_{0} \geq 1.5 \mathrm{~V}_{D C}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	6	16		6	16		mA
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\operatorname{IN}(-)} \geq 1 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{\mathrm{IN}(+)}=0, \\ & \mathrm{I}_{\text {SINK }} \leq 4 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		250	400			400	mV
	$\begin{aligned} & \mathrm{V}_{\operatorname{IN}(-)} \geq 1 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{\mathrm{IN}(+)}=0, \\ & \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA} \\ & \hline \end{aligned}$			700			700	mV
Output Leakage Current	$\begin{aligned} & V_{I N(-)}=0, \\ & V_{I N(+)} \geq 1 V_{D C}, \\ & V_{0}=5 V_{D C}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.1			0.1		nA
	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(-)}=0, \\ & \mathrm{~V}_{\mathrm{IN}(+)} \geq 1 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$			1.0			1.0	$\mu \mathrm{A}$

Note 1: For operating at temperatures above $25^{\circ} \mathrm{C}$, the LM392 and the LM2924 must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $122^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in still air ambient. The dissipation is the total of both amplifiersuse external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA for the op amp and 30 mA for the comparator independent of the magnitude of $\mathrm{V}+$. At values of supply voltage in excess of 15 V , continuous short circuits can exceed the power dissipation ratings and cause eventual destruction.
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the amplifiers to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V (at $25^{\circ} \mathrm{C}$).

Note 4: These specifications apply for $\mathrm{V}+=5 \mathrm{~V}$, unless otherwise stated. For the LM392, temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ and the LM2924 temperature specifications are limited to $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$.
Note 5: At output switch point, $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}, R_{S}=0 \Omega$ with $\mathrm{V}+$ from 5 V to 30 V ; and over the full input common-mode range (0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$).
Note 6: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

Note 7: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the commonmode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to 32 V without damage (26 V for LM2924).
Note 8: Due to proximity of external components, insure that coupling is not originating via the stray capacitance between these external parts. This typically can be detected as this type of capacitive increases at higher frequencies.
Note 9: Positive excursions of input voltage may exceed the power supply level. As long as the other input voltage remains within the common-mode range, the comparator will provide a proper output state. The input voltage to the op amp should not exceed the power supply level. The input voltage state must not be less than -0.3 V (or 0.3 V below the magnitude of the negative power supply, if used) on either amplifier.
Note 10: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained.

Schematic Diagram

Comparator A
Amplifier B

Application Hints

Please refer to the application hints section of the LM193 and the LM158 datasheets.

LM611

Operational Amplifier and Adjustable Reference

General Description

The LM611 consists of a single-supply op-amp and a programmable voltage reference in one space saving 8 -pin package. The op-amp out-performs most single-supply opamps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement and data acquisition systems.
Combining a stable voltage reference with a wide output swing op-amp makes the LM611 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (1Ω typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2 V to 6.3 V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems.
As a member of National's Super-BlockTM family, the LM611 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance.

Features

OP AMP

- Low operating current $300 \mu \mathrm{~A}$ (op amp)
- Wide supply voltage range

4 V to 36 V

- Wide common-mode range V^{-}to ($V^{+}-1.8 \mathrm{~V}$)
- Wide differential input voltage

■ Available in low cost 8-pin DIP

- Available in plastic package rated for Military Temperature Range Operation
REFERENCE
- Adjustable output voltage
1.2 V to 6.3 V
- Tight initial tolerance available
$\pm 0.6 \%$
- Wide operating current range
$17 \mu \mathrm{~A}$ to 20 mA
- Reference floats above ground
- Tolerant of load capacitance

Applications

- Transducer bridge driver
- Process and Mass Flow Control systems
- Power supply voltage monitor
- Buffered voltage references for A/D's

Connection Diagrams

TL/H/9221-1

TL/H/9221-2

Ordering Information

Reference Tolerance \& VOS	Temperature Range			Package	NSC Drawing
	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	Commercial $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		
$\begin{aligned} & \pm 0.6 \% \text { @ } \\ & 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { max } \\ & \mathrm{V}_{\mathrm{OS}}=3.5 \mathrm{mV} \text { max } \end{aligned}$	LM611AMN	LM611AIN	-	$\begin{gathered} \text { 8-pin } \\ \text { molded DIP } \end{gathered}$	N08E
	LM611AMJ/883 (Note 12)	-	-	$\begin{aligned} & \text { 8-pin } \\ & \text { ceramic DIP } \end{aligned}$	J08A
$\begin{aligned} & \pm 2.0 \% \text { @ } \\ & 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { max } \\ & \mathrm{V}_{\mathrm{OS}}=5 \mathrm{mV} \text { max } \end{aligned}$	LM611MN	LM611BIN	LM611CN	$\begin{gathered} \text { 8-pin } \\ \text { molded DIP } \end{gathered}$	N08E
	-	LM611IM	LM611CM	14-pin Narrow Surface Mount	M14A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Voltage on Any Pins Except V_{R}
(referred to V-pin)
(Note 2)
Current through Any Input Pin and V V_{R} Pin
Differential Input Voltage
Military and Industrial
Commercial
Storage Temperature Range
Maximum Junction Temperature

Thermal Resistance, Junction-to-Ambient (Note 3)	
N Package	$100^{\circ} \mathrm{C} / \mathrm{W}$
M Package	$150^{\circ} \mathrm{C} / \mathrm{W}$
Soldering Information Soldering (10 seconds)	
N Package	
M Package	$260^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)	$220^{\circ} \mathrm{C}$
	$\pm 1 \mathrm{kV}$

Operating Temperature Range

LM611AI, LM611I, LM611BI $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{j} \leq 70^{\circ} \mathrm{C}$
LM611AM, LM611M ... $\quad-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
LM611C

Electrical Characteristics

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 5)	LM611AM LM611AI Limits (Note 6)	LM611M LM611BI LM611I LM611C Limits (Note 6)	Units
Is	Total Supply Current	$\begin{aligned} & R_{\text {LOAD }}=\infty, \\ & 4 \mathrm{~V} \leq \mathrm{V}+36 \mathrm{~V}(32 \mathrm{~V} \text { for LM611C) } \end{aligned}$	$\begin{array}{r} 210 \\ 221 \end{array}$	$\begin{aligned} & 300 \\ & \mathbf{3 2 0} \end{aligned}$	$\begin{array}{r} 350 \\ \mathbf{3 7 0} \end{array}$	$\mu \mathrm{A}$ max $\mu A \max$
V_{S}	Supply Voltage Range		$\begin{aligned} & 2.2 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3 \end{aligned}$	$\begin{gathered} 2.8 \\ 3 \end{gathered}$	\checkmark min V min
			$\begin{aligned} & 46 \\ & 43 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	\checkmark max $V_{\text {max }}$

OPERATIONAL AMPLIFIER

VOS1	V ${ }_{\text {Os }}$ Over Supply	$\begin{aligned} & 4 V \leq V+\leq 36 V \\ & (4 V \leq V+\leq 32 V \text { for LM611C }) \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	mV max mV max
$\mathrm{V}_{\text {OS2 }}$	$\mathrm{V}_{\text {OS }}$ Over $\mathrm{V}_{\text {ç }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { through } \mathrm{V}_{\mathrm{CM}}= \\ & \left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right), \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	mV max mV max
$\frac{\mathrm{V}_{\mathrm{OS} 3}}{\Delta \mathrm{~T}}$	Average $\mathrm{V}_{\text {OS }}$ Drift	(Note 6)	15			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ max
I_{B}	Input Bias Current		$\begin{array}{r} 10 \\ 11 \end{array}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	nA max nA max
los	Input Offset Current		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	nA max nA max
$\frac{\operatorname{los} 1}{\Delta T}$	Average Offset Drift Current		4			$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential	1800			M Ω
		Common-Mode	3800			M Ω
$\mathrm{CiN}_{\text {IN }}$	Input Capacitance	Common-Mode :	5.7			pF
e_{n}	Voltage Noise	$f=100 \mathrm{~Hz}$; Input Referred	74			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
In	Current Noise	$f=100 \mathrm{~Hz}$, Input Referred	58		*	$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
CMRR	Common-Mode Rejection-Ratio	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq(\mathrm{V}+-1.8 \mathrm{~V}) \\ & \mathrm{CMRR}=20 \log \left(\Delta \mathrm{~V}_{\mathrm{CM}} / \Delta \mathrm{V}_{\mathrm{OS}}\right) \end{aligned}$	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	dB min dB min
PSRR	Power Supply Rejection-Ratio	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}+\leq 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \\ & \text { PSRR }=20 \log \left(\Delta \mathrm{~V}+/ \Delta V_{\mathrm{OS}}\right) \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	dB min dB min
A_{V}	Open Loop Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND}, \mathrm{~V}+=30 \mathrm{~V}, \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq 25 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 500 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 40 \end{aligned}$	$\begin{aligned} & 94 \\ & 40 \end{aligned}$	V / mV \min
SR	Slew Rate	$\mathrm{V}^{+}=30 \mathrm{~V}$ (Note 7)	$\begin{gathered} 0.70 \\ \mathbf{0 . 6 5} \end{gathered}$	$\begin{aligned} & 0.55 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.45 \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}$

Electrical Characteristics (Continued)

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=\mathrm{OV}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 5)	LM611AM LM611AI Limits (Note 6)	LM611M LM611BI LM6111 LM611C Limits (Note 6)	Units

OPERATIONAL AMPLIFIER (Continued)

GBW	Gain Bandwidth	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & 0.80 \\ & 0.50 \end{aligned}$			MHz
$\mathrm{V}_{\mathrm{O} 1}$	Output Voltage Swing High	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & \mathrm{~V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 611 \mathrm{C}) \end{aligned}$	$\begin{gathered} v^{+}-1.4 \\ \mathbf{v}^{+}-1.6 \end{gathered}$	$\begin{gathered} \mathbf{v}^{+}-1.7 \\ \mathbf{v}^{+}-1.9 \end{gathered}$	$\begin{aligned} & \mathbf{v}^{+}-1.8 \\ & \mathbf{v}^{+}-1.9 \end{aligned}$	\vee min V min
$\mathrm{V}_{\mathrm{O} 2}$	Output Voltage Swing Low	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}+ \\ & \mathrm{V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 611 \mathrm{C}) \end{aligned}$	$\begin{aligned} & \mathbf{v}^{-}+0.8 \\ & \mathbf{v}^{-}+\mathbf{0 . 9} \end{aligned}$	$\begin{aligned} & \mathbf{v}^{-}+0.9 \\ & \mathbf{v}^{-}+\mathbf{1 . 0} \end{aligned}$	$\begin{aligned} & v^{-}+0.95 \\ & \mathbf{v}^{-}+\mathbf{1 . 0} \end{aligned}$	V max V max
lout	Output Source Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{~V}_{+\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathbb{I N}}=-0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{aligned} & 16 \\ & 13 \end{aligned}$	mA min mA min
ISINK	Output Sink Current	$\begin{aligned} & V_{O U T}=1.6 \mathrm{~V}, \mathrm{~V}_{+\mathrm{IN}}=0 \mathrm{~V}, \\ & V_{-\mathbb{I N}}=0.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 17 \\ 9 \end{gathered}$	$\begin{gathered} 14 \\ 8 \end{gathered}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA min mA min
ISHORT	Short Circuit Current	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{+\mathbb{I N}}=3 \mathrm{~V}, \\ & V_{-I N}=2 \mathrm{~V}, \text { Source } \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	mA max mA max
		$\begin{aligned} & V_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{+\mathbb{I N}}=2 \mathrm{~V}, \\ & V_{-I N}=3 \mathrm{~V}, \text { Sink } \end{aligned}$	$\begin{aligned} & 30 \\ & 32 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 70 \\ & \mathbf{9 0} \end{aligned}$	mA max mA max

VOLTAGE REFERENCE

V_{R}	Reference Voltage	(Note 8)	1.244	$\begin{gathered} 1.2365 \\ 1.2515 \\ (\pm 0.6 \%) \end{gathered}$	$\begin{gathered} 1.2191 \\ 1.2689 \\ (\pm 2.0 \%) \end{gathered}$	$\begin{aligned} & V_{\text {min }} \\ & V_{\text {max }} \end{aligned}$
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~T}}$	Average Temperature Drift	(Note 9)	10	80	150	PPM $/{ }^{\circ} \mathrm{C}$ max
$\frac{\Delta V_{R}}{\Delta T_{J}}$	Hysteresis	Hyst $=\left(V \mathrm{VrO}^{\prime}-\mathrm{Vro}\right) / \Delta \mathrm{T}_{J}$ (Note 10)	3.2			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{R}}{\Delta I_{R}}$	V_{R} Change with Current	$\mathrm{V}_{\mathrm{R}(100 \mu \mathrm{~A})}-\mathrm{V}_{\mathrm{R}(17 \mu \mathrm{~A})}$	$\begin{aligned} & 0.05 \\ & 0.1 \end{aligned}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	$m V$ max mV max
		$\begin{aligned} & \mathrm{V}_{\mathrm{R}(10 \mathrm{~mA})}-\mathrm{V}_{\mathrm{R}(100 \mu \mathrm{~A})} \\ & \text { (Note 11) } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$\begin{gathered} 5 \\ \mathbf{5 . 5} \end{gathered}$	$m V$ max $m V$ max
R	Resistance	$\begin{aligned} & \Delta V_{R(10 \rightarrow 0.1 m A)} / 9.9 \mathrm{~mA} \\ & \Delta \mathrm{~V}_{\mathrm{R}(100 \rightarrow 17 \mu \mathrm{~A})} / 83 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{gathered} 0.56 \\ 13 \end{gathered}$	$\begin{gathered} 0.56 \\ 13 \end{gathered}$	Ω max Ω max
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\mathrm{~V}_{\mathrm{RO}}}$	V_{R} Change with High VRO	$V_{R}\left(V_{r o}=V_{r}\right)-V_{R}\left(V_{r o}=6.3 V\right)$ (5.06 V between Anode and FEEDBACK)	$\begin{aligned} & 2.5 \\ & 2.8 \end{aligned}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	$m V$ max $m V$ max
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~V}^{+}}$	V_{R} Change with V+Change	$\begin{aligned} & \left.\left.V_{R\left(V^{+}\right.}=5 \mathrm{~V}\right)-V_{R(V+}=36 \mathrm{~V}\right) \\ & \left.V^{+}=32 V^{\prime} \text { for } L M 611 \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$m V$ max $m V$ max
		$\left.\mathrm{V}_{\mathrm{R}\left(\mathrm{V}^{+}=5 \mathrm{~V}\right)}-\mathrm{V}_{\mathrm{R}\left(\mathrm{V}^{+}\right.}=3 \mathrm{~V}\right)$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$m V$ max $m V$ max
$\frac{\Delta V_{\mathrm{R}}}{\Delta \mathrm{~V}_{\mathrm{ANODE}}}$	V_{R} Change with $V_{\text {Anode }}$ Change	$\begin{aligned} & V^{+}=V^{+} \max , \Delta V_{R}=V_{R} \\ & \left(@ V_{\text {ANODE }}=V^{-}=G N D\right)-V_{R} \\ & \left(@ V_{\text {ANODE }}=V^{+}-1.0 V\right) \end{aligned}$	$\begin{aligned} & 0.7 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & \mathbf{3 . 0} \end{aligned}$	$m V$ max $m V$ max
$\mathrm{I}_{\text {FB }}$	FEEDBACK Bias Current	$\mathrm{I}_{\mathrm{FB}} ; \mathrm{V}_{\mathrm{ANODE}} \leq \mathrm{V}_{\mathrm{FB}} \leq 5.06 \mathrm{~V}$	$\begin{aligned} & 22 \\ & 29 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	nA max nA max
e_{n}	V_{R} Noise	10 Hz to $10,000 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{RO}}=\mathrm{V}_{\mathrm{R}}$	30			$\mu \mathrm{V}_{\text {RMS }}$

Electrical Characteristics (Continued)

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: More accurately, it is excessive current flow, with resulting excess heating, that limits the voltages on all pins. When any pin is pulled a diode drop below V^{-}, a parasitic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operation is undefined and unpredictable when any parasitic diode or transistor is conducting.
Note 3: Junction temperature may be calculated using $T_{J}=T_{A}+P_{D} \theta_{J A}$. The given thermal resistance is worst-case for packages in sockets in still air. For packages soldered to copper-clad board with dissipation from one op amp or reference output transistor, nominal θ_{JA} is $90^{\circ} \mathrm{C} / \mathrm{W}$ for the N package amd $135^{\circ} \mathrm{C} / \mathrm{W}$ for the M package
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typical values in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; values in boldface type apply for the full operating temperature range. These values represent the most likely parametric norm.
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (boid face type).
Note 7: Slew rate is measured with op amp in a voltage follower configuration. For rising slew rate, the input voltage is driven from 5 V to 25 V , and the output voltage transition is sampled at 10 V and 20 V . For falling slew rate, the input voltage is driven from 25 V to 5 V , and output voltage transition is sampled at 20 V and 10 V .
Note 8: V_{R} is the cathode-feedback voltage, nominally 1.244 V .
Note 9: Average reference drift is calculated from the measurement of the reference voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes. The drift, in ppm/ ${ }^{\circ} \mathrm{C}$, is $\left.10^{6} \bullet \Delta V_{R} /\left(V_{R\left[25^{\circ}\right.}{ }^{\bullet}\right]^{\bullet} \Delta T_{j}\right)$, where ΔV_{R} is the lowest value subtracted from the highest; $V_{R\left[25^{\circ} C\right]}$ is the value at $25^{\circ} C$, and ΔT_{J} is the temperature range. This parameter is guaranteed by design and sample testing.
Note 10: Hysteresis is the change in V_{R} caused by a change in T_{J}, after the reference has been "dehysterized". To dehysterize the reference; that is minimize the hysteresis to the typical value, its junction temperature should be cycled in the following pattern, spiraling in toward $25^{\circ} \mathrm{C}: 25^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$.
Note 11: Low contact resistance is required for accurate measurement.
Note 12: Military RETS 611AMX electrical test specification is available on request. The LM611AMJ/883 can also be procured as a Standard Military Drawing.

Simplified Schematic Diagrams

TL/H/9221-3

TL/H/9221-4

Typical Performance Characteristics (Reference)

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted

Typical Performance Characteristics (Reference) (Continued)
$T_{J}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted

Typical Performance Characteristics (Op Amps)
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Typical Performance Characteristics (Op Amps) (Continued)
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Typical Performance Characteristics (Op Amps) (continued)
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-} \mathrm{Q}$ GND $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\text {OUT }}=\mathrm{V}+/ 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Input Offset Current vs Junction Temperature

Typical Performance Distributions

Input Bias Current vs Junction Temperature

Average $\mathrm{V}_{\text {OS }}$ Drift Commercial Temperature Range

Typical Performance Distributions (Continued)

Application Information

VOLTAGE REFERENCE

Reference Biasing

The voltage reference is of a shunt regulator topology that models as a simple zener diode. With current I_{r} flowing in the 'forward' direction there is the familiar diode transfer function. I_{r} flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The applied voltage to the cathode may range from a diode drop below V^{-}to the reference voltage or to the avalanche voltage of the parallel protection diode, nominally 7 V . A 6.3 V reference with $\mathrm{V}^{+}=3 \mathrm{~V}$ is allowed.

TL/H/9221-14
FIGURE 1. Voltages Associated with Reference (Current Source I_{r} is External)

The reference equivalent circuit reveals how V_{r} is held at the constant 1.2 V by feedback, and how the FEEDBACK pin passes little current.
To generate the required reverse current, typically a resistor is connected from a supply voltage higher than the refer-
ence voltage. Varying that voltage, and so varying I_{r}, has small effect with the equivalent series resistance of less than an ohm at the higher currents. Alternatively, an active current source, such as the LM134 series, may generate I_{r}.

TL/H/9221-15
FIGURE 2. Reference Equivalent Circuit

TL/H/9221-16
FIGURE 3. 1.2V Reference

Application Information (Continued)

Capacitors in parallel with the reference are allowed. See the Reference AC Stability Range curve for capacitance val-ues-from $20 \mu \mathrm{~A}$ to 3 mA any capacitor value is stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering.

Adjustable Reference

The FEEDBACK pin allows the reference output voltage, V_{ro}, to vary from 1.24 V to 6.3 V . The reference attempts to hold V_{r} at 1.24 V . If V_{r} is above 1.24 V , the reference will conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then $V_{r o}=V_{r}=1.24 \mathrm{~V}$. For higher voltages FEEDBACK is held at a constant voltage above Anode-say 3.76 V for $\mathrm{V}_{\mathrm{ro}}=5 \mathrm{~V}$. Connecting a resistor across the constant V_{r} generates a current I=R1/Vr flowing from Cathode into FEEDBACK node. A Thevenin equivalent 3.76 V is generated from FEEDBACK to Anode with R2=3.76/I. Keep I greater than one thousand times larger than FEEDBACK bias current for $<0.1 \%$ error- $1 \geq 32 \mu \mathrm{~A}$ for the military grade over the military temperature range ($1 \geq 5.5 \mu \mathrm{~A}$ for a 1% untrimmed error for a commercial part.)

TL/H/9221-17
FIGURE 4. Thevenin Equivalent of Reference with 5V Output

TL/H/9221-18

$$
\begin{gathered}
\mathrm{R} 1=\mathrm{Vr} / \mathrm{I}=1.24 / 32 \mu=39 \mathrm{k} \\
\mathrm{R} 2=\mathrm{R} 1\{(\mathrm{Vro} / \mathrm{Vr})-1\}=39 \mathrm{k}\{(5 / 1.24)-1)\}=118 \mathrm{k}
\end{gathered}
$$

FIGURE 5. Resistors R1 and R2 Program Reference Output Voltage to be 5 V
Understanding that V_{r} is fixed and that voltage sources, resistors, and capacitors may be tied to the FEEDBACK pin, a range of V_{r} temperature coefficients may be synthesized.

TL/H/9221-19
FIGURE 6. Output Voltage has Negative Temperature Coefficient (TC) if R2 has Negative TC

TL/H/9221-20
FIGURE 7. Output Voltage has Positive TC if R1 has Negative TC

TL/H/9221-21
FIGURE 8. Diode in Series with R1 Causes Voltage Across R1 and R2 to be Proportional to Absolute Temperature (PTAT)
Connecting a resistor across Cathode-to-FEEDBACK creates a 0 TC current source, but a range of TCs may be synthesized.

TL/H/9221-22

$$
\mathrm{I}=\mathrm{Vr} / \mathrm{R} 1=1.24 / \mathrm{R} 1
$$

FIGURE 9. Current Source is Programmed by R1

Application Information (Continued)

TL/H/9221-23
FIGURE 10. Proportional-to-AbsoluteTemperature Current Source

TL/H/9221-24
FIGURE 11. Negative - TC Current Source

Hysteresis

The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products vary-always check the data sheet for any given device. Do not assume that no specification means no hysteresis.

OPERATIONAL AMPLIFIER

The amp or the reference may be biased in any way with no effect on the other, except when a substrate diode conducts (see Guaranteed Electrical Characteristics Note 1). The amp may have inputs outside the common-mode range, may be operated as a comparator, or have all terminals floating with no effect on the reference (tying inverting input to output and non-inverting input to V^{-}on unused amp is preferred). Choosing operating points that cause oscillation, such as driving too large a capacitive load, is best avoided.

Op Amp Output Stage

The op amp, like the LM124 series, has a flexible and relatively wide-swing output stage. There are simple rules to optimize output swing, reduce cross-over distortion, and optimize capacitive drive capability:

1) Output Swing: Unloaded, the $42 \mu \mathrm{~A}$ pull-down will bring the output within 300 mV of V^{-}over the military temperature range. If more than $42 \mu \mathrm{~A}$ is required, a resistor from output to V^{-}will help. Swing across any load may be improved slightly if the load can be tied to V^{+}, at the cost of poorer sinking open-loop voltage gain.
2) Cross-over Distortion: The LM611 has lower cross-over distortion (a $1 \mathrm{~V}_{\mathrm{BE}}$ deadband versus $3 \mathrm{~V}_{\mathrm{BE}}$ for the LM124), and increased slew rate as shown in the characteristic curves. A resistor pull-up or pull-down will force class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-over distortion.
3) Capacitive Drive: Limited by the output pole caused by the output resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN r_{e} until the output resistance is that of the current limit $25 \Omega .200 \mathrm{pF}$ may then be driven without oscillation.

Op Amp Input Stage

The lateral PNP input transistors, unlike those of most op amps, have $B V_{E B O}$ equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages.

Typical Applications

*10k must be low
TL/H/9221-28
t.c. trim pot.

FIGURE 12. Ultra Low Noise 10.00V Reference. Total Output Noise is Typically $14 \mu V_{\text {RMS }}$ Adjust the 10 k pot for $\mathbf{1 0 . 0 0 0}$.

FIGURE 13. Simple Low Quiescent Drain Voltage Regulator. Total Supply Current is approximately $320 \mu \mathrm{~A}$ when $\mathrm{V}_{\mathrm{IN}}=\mathbf{5 V}$, and output has no load.

Typical Applications (Continued)

$V_{\text {OUT }}=(R 1 / R 2+1) V_{\text {REF }}$.
R1, R2 should be 1% metal film
R3 should be low t.c. trim pot.
FIGURE 14. Slow Rise-Time Upon Power-Up, Adjustable Transducer Bridge Driver. Rise-time is approximately 0.5 ms .

TL/H/9221-31
FIGURE 15. Low Drop-Out Voltage Regulator Circuit. Drop out voltage is typically 0.2 V .

FIGURE 16. Nulling Bridge Detection System. Adjust sensitivity via 400 k Ω pot. Null offset with R1, and bridge drive with the 10 k pot.

LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference

General Description

The LM613 consists of dual op-amps, dual comparators, and a programmable voltage reference in a 16-pin package. The op-amps out-performs most single-supply op-amps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement, and data acquisition systems.
Combining a stable voltage reference with wide output swing op-amps makes the LM613 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (1Ω typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2 V to 6.3 V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems.
As a member of National's Super-BlockTM family, the LM613 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance.

Features

OP AMP

- Low operating current (Op Amp)
$300 \mu \mathrm{~A}$
- Wide supply voltage range

4 V to 36 V

- Wide common-mode range $\quad \mathrm{V}^{-}$to $\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right)$
- Wide differential input voltage $\pm 36 \mathrm{~V}$
- Available in plastic package rated for Military Temp. Range Operation

REFERENCE

- Adjustable output voltage $\quad 1.2 \mathrm{~V}$ to 6.3 V
- Tight initial tolerance available $\pm 0.6 \%$
- Wide operating current range
$17 \mu \mathrm{~A}$ to 20 mA
- Tolerant of load capacitance

Applications

- Transducer bridge driver
- Process and mass flow control systems
- Power supply voltage monitor
- Buffered voltage references for A/D's

Connection Diagrams

TL/H/9226-48

Ordering Information

Reference Tolerance \& Vos	Temperature Range			Package	NSC Drawing
	$\begin{gathered} \hline \text { Military } \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	Commercial $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+70^{\circ} \mathrm{C}$		
$\pm 0.6 \%$ $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max. $\mathrm{V}_{\mathrm{OS}} \leq 3.5 \mathrm{mV}$	LM613AMN	LM613AIN	-	16-Pin Molded DIP	N16E
	$\begin{aligned} & \text { LM613AMJ/883 } \\ & \text { (Note 14) } \\ & \hline \end{aligned}$	-	-	$\begin{gathered} 16-\text { Pin } \\ \text { Ceramic DIP } \end{gathered}$	J16A
	$\begin{aligned} & \text { LM613AME/883 } \\ & \text { (Note 14) } \\ & \hline \end{aligned}$	-	-	$\begin{gathered} 20-\mathrm{Pin} \\ \text { LCC } \\ \hline \end{gathered}$	E20A
$\begin{aligned} & \pm 2.0 \% \\ & 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \mathrm{Max.} \\ & \mathrm{~V}_{\mathrm{OS}} \leq 5.0 \mathrm{mV} \text { Max. } \end{aligned}$	LM613MN	LM613IN	LM613CN	16-Pin Molded DIP	N16E
	-	LM613IWM		16-Pin Wide Surface Mount	M16B

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Voltage on Any Pin Except V_{R} (referred to V^{-}pin)
(Note 2)
36 V (Max)
$-0.3 \mathrm{~V}(\mathrm{Min})$
$\pm 20 \mathrm{~mA}$
Current through Any Input Pin \& V_{R} Pin
Differential Input Voltage

Military and Industrial	$\pm 36 \mathrm{~V}$
Commercial	$\pm 32 \mathrm{~V}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$	
Maximum Junction Temperature (Note 4)	$150^{\circ} \mathrm{C}$

Thermal Resistance, Junction-to-Ambient (Note 5)

N Package	$100^{\circ} \mathrm{C} / \mathrm{W}$
WM Package	$150^{\circ} \mathrm{C} / \mathrm{W}$

Soldering Information (10 Seconds) N Package $260^{\circ} \mathrm{C}$ WM Package $220^{\circ} \mathrm{C}$ ESD Tolerance (Note 6) $\pm 1 \mathrm{kV}$

Operating Temperature Range

LM613AI, LM613BI $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+70^{\circ} \mathrm{C}$

Electrical Characteristics These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$, $I_{R}=100 \mu A$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 7)	LM613AM LM613AI Limits (Note 8)	LM613M LM613I LM613C Limits (Note 8)	Units
Is	Total Supply Current	$\begin{aligned} & R_{\text {LOAD }}=\infty, \\ & 4 V \leq V+\leq 36 V(32 V \text { for LM613C }) \end{aligned}$	$\begin{gathered} 450 \\ 550 \end{gathered}$	$\begin{gathered} 940 \\ 1000 \end{gathered}$	$\begin{gathered} 1000 \\ 1070 \end{gathered}$	$\mu \mathrm{A}$ (Max) $\mu \mathrm{A}$ (Max)
V_{S}	Supply Voltage Range	\cdots	$\begin{aligned} & 2.2 \\ & 2.9 \end{aligned}$	$\begin{gathered} 2.8 \\ 3 \end{gathered}$	$\begin{gathered} 2.8 \\ 3 \end{gathered}$	$\begin{aligned} & V(\operatorname{Min}) \\ & V(\operatorname{Min}) \end{aligned}$
			$\begin{aligned} & 46 \\ & 43 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	V (Max) V (Max)

OPERATIONAL AMPLIFIERS

Vos1	Vos Over Supply	$\begin{aligned} & 4 V \leq V^{+} \leq 36 V \\ & \left(4 V \leq V^{+} \leq 32 V \text { for } L M 613 C\right) \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV}(\operatorname{Max}) \\ & \mathrm{mV}(\operatorname{Max}) \end{aligned}$
$\mathrm{V}_{\text {OS2 }}$	V ${ }_{\text {OS }}$ Over $\mathrm{V}_{\text {CM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { through } \mathrm{V}_{\mathrm{CM}}= \\ & (\mathrm{V}+-1.8 \mathrm{~V}), \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$m V$ (Max) $m V$ (Max)
$\frac{\mathrm{V}_{\mathrm{OS3}}}{\Delta \mathrm{~T}}$	Average $\mathrm{V}_{\text {OS }}$ Drift	(Note 8)	15			$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & (\text { Max }) \end{aligned}$
I_{B}	Input Bias Current		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{array}{r} 35 \\ 40 \end{array}$	nA (Max) nA (Max)
los	Input Offset Current		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	4	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	nA (Max) nA (Max)
$\frac{\mathrm{loS} 1}{\Delta \mathrm{~T}}$	Average Offset Current		4			$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
RIN	Input Resistance	Differential	1000			$\mathrm{M} \Omega$
C_{1}	Input Capacitance	Common-Mode	6			pF
e_{n}	Voltage Noise	$f=100 \mathrm{~Hz}$, Input Referred	74			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
In_{n}	Current Noise	$\mathrm{f}=100 \mathrm{~Hz}$, Input Referred	58			$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right) \\ & \mathrm{CMRR}=20 \log \left(\Delta \mathrm{~V}_{\mathrm{CM}} / \Delta \mathrm{V}_{\mathrm{OS}}\right) \end{aligned}$	$\begin{aligned} & 95 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} 80 \\ 75 \\ \hline \end{array}$	$\begin{array}{r} 75 \\ 70 \\ \hline \end{array}$	dB (Min) $\mathrm{dB} \text { (Min) }$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}+\leq 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \\ & \mathrm{PSRR}=20 \log \left(\Delta \mathrm{~V}+/ \mathrm{V}_{\mathrm{OS}}\right) \end{aligned}$	$\begin{gathered} 110 \\ 100 \\ \hline \end{gathered}$	$\begin{array}{r} 80 \\ 75 \\ \hline \end{array}$	$\begin{aligned} & 75 \\ & 70 \\ & \hline \end{aligned}$	dB (Min) dB (Min)
A_{V}	Open Loop Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND}, \mathrm{~V}^{+}=30 \mathrm{~V}, \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 25 \mathrm{~V} \end{aligned}$	$\begin{gathered} 500 \\ 50 \end{gathered}$	$\begin{aligned} & 100 \\ & 40 \end{aligned}$	$\begin{aligned} & 94 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & (\mathrm{Min}) \end{aligned}$

Electrical Characteristics These specifications apply for $\mathrm{V}-=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$, $I_{R}=100 \mu A$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over Operating Temperature Range. (Continued)

Symbol	Parameter	Conditions	Typical (Note 7)	LM613AM LM613AI Limits (Note 8)	LM613M LM613I LM613C Limits (Note 8)	Units
OPERATIONAL AMPLIFIERS (Continued)						
SR	Slew Rate	$\mathrm{V}^{+}=30 \mathrm{~V}$ (Note 9)	$\begin{aligned} & 0.70 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.45 \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth	$C_{L}=50 \mathrm{pF}$	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$.		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{V}_{\text {O1 }}$	Output Voltage Swing High	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND}, \\ & \mathrm{~V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}) \end{aligned}$	$\begin{aligned} & v^{+}-1.4 \\ & \mathbf{v}^{+}-1.6 \end{aligned}$	$\begin{gathered} \mathbf{V}^{+}-1.7 \\ \mathbf{v}+-1.9 \end{gathered}$	$\begin{aligned} & \mathbf{v}^{+}-1.8 \\ & \mathbf{v}^{+}-1.9 \end{aligned}$	V (Min) V (Min)
$\mathrm{V}_{\mathrm{O} 2}$	Output Voltage Swing Low	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}^{+}, \\ & \mathrm{V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}) \end{aligned}$	$\begin{aligned} & \mathbf{v}^{-}+0.8 \\ & \mathbf{v}^{-}+\mathbf{0 . 9} \end{aligned}$	$\begin{aligned} & \mathbf{v}^{-}+0.9 \\ & \mathbf{v}^{-}+\mathbf{1 . 0} \end{aligned}$	$\begin{aligned} & v^{-}+0.95 \\ & \mathbf{v}^{-}+\mathbf{1 . 0} \end{aligned}$	V (Max) V (Max)
Iout	Output Source Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{~V}^{+}{ }_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{-} \mathrm{IN}=-0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{aligned} & 16 \\ & 13 \end{aligned}$	mA (Min) mA (Min)
İINK	Output Sink Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=1.6 \mathrm{~V}, \mathrm{~V}^{+}{ }_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{-} \mathrm{IN}=0.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 17 \\ 9 \end{gathered}$	$\begin{gathered} 14 \\ 8 \end{gathered}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA (Min) mA (Min)
ISHORT	Short Circuit Current	$\begin{aligned} & V_{O U T}=0 V, V^{+}{ }_{I N}=3 V, \\ & V^{-} \text {IN }=2 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 30 \\ 40 \end{array}$	$\begin{array}{r} 50 \\ 60 \end{array}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	mA (Max) mA (Max)
		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}^{+} \mathbb{I N}=2 \mathrm{~V}, \\ & \mathrm{~V}^{-} \mathbb{I N}=3 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 30 \\ 32 \end{array}$	$\begin{aligned} & 60 \\ & \mathbf{8 0} \end{aligned}$	$\begin{aligned} & 70 \\ & \mathbf{9 0} \end{aligned}$	$\begin{aligned} & \mathrm{mA} \text { (Max) } \\ & \mathrm{mA}(\mathrm{Max}) \end{aligned}$
COMPARATORS						
Vos	Offset Voltage	$\begin{aligned} & 4 V \leq V+\leq 36 V(32 V \text { for } L M 613 C), \\ & R_{L}=15 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$m V$ (Max) $m V$ (Max)
$\frac{\mathrm{V}_{\mathrm{OS}}}{\mathrm{~V}_{\mathrm{CM}}}$	Offset Voltage over V_{CM}	$\begin{aligned} & 0 V \leq V_{C M} \leq 36 V \\ & V^{+}=36 \mathrm{~V},(32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}) \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$m V$ (Max) mV (Max)
$\frac{V_{\mathrm{OS}}}{\Delta T}$	Average Offset Voltage Drift		15		:	$\begin{gathered} \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ (\text { Max) } \end{gathered}$
I_{B}	Input Bias Current		$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	nA (Max) nA (Max)
Ios	Input Offset Current		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{array}{r} 4 \\ 5 \end{array}$	nA (Max) nA (Max)
A_{V}	Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}) \\ & 2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 27 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 100 \end{aligned}$			$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
t_{r}	Large Signal Response Time	$\begin{aligned} & \mathrm{V}^{+}{ }_{\mathrm{IN}}=1.4 \mathrm{~V}, \mathrm{~V}^{-}{ }_{\mathrm{IN}}=\mathrm{TTL} \text { Swing, } \\ & \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega \end{aligned}$	$\begin{array}{r} 1.5 \\ 2.0 \\ \hline \end{array}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
ISINK	Output Sink Current	$\begin{aligned} & V^{+} \mathbb{I N}=0 \mathrm{~V}, \mathrm{~V}^{-} \mathrm{IN}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 20 \\ 13 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ \mathbf{8} \\ \hline \end{array}$	$\begin{array}{r} 10 \\ \mathbf{8} \\ \hline \end{array}$	mA (Min) mA (Min)
		$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	$\begin{array}{r} 2.8 \\ 2.4 \\ \hline \end{array}$	$\begin{array}{r} 1.0 \\ \quad 0.5 \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA}(\mathrm{Min}) \\ & \mathrm{mA}(\mathrm{Min}) \end{aligned}$
ILEAK	Output Leakage Current	$\begin{aligned} & V^{+}{ }_{I N}=1 V, V^{-}{ }_{I N}=0 V \\ & V_{O U T}=36 V(32 V \text { for } L M 613 C) \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	10	10	μA (Max) $\mu \mathrm{A}$ (Max)

Electrical Characteristics These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$, $I_{R}=100 \mu A$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over Operating Temperature Range. (Continued)

Symbol	Parameter	Conditions	Typical (Note 7)	LM613AM LM613AI Limits (Note 8)	LM613M LM613I LM613C Limits (Note 8)	Units
VOLTAGE REFERENCE						
V_{R}	Voltage Reference	(Note 10)	1.244	$\begin{gathered} 1.2365 \\ 1.2515 \\ (\pm 0.6 \%) \\ \hline \end{gathered}$	$\begin{aligned} & 1.2191 \\ & 1.2689 \\ & (\pm 2 \%) \\ & \hline \end{aligned}$	V (Min) V (Max)
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~T}}$	Average Temp. Drift	(Note 11)	10	80	150	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ (\mathrm{Max}) \end{gathered}$
$\frac{\Delta V_{R}}{\Delta T_{J}}$	Hysteresis	(Note 12)	3.2			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{R}}{\Delta I_{R}}$	V_{R} Change with Current	$\mathrm{V}_{\mathrm{R}(100 \mu \mathrm{~A})}-\mathrm{V}_{\mathrm{R}(17 \mu \mathrm{~A})}$	$\begin{aligned} & 0.05 \\ & 0.1 \end{aligned}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	mV (Max) mV (Max)
		$\begin{aligned} & V_{\mathbf{R}(10 \mathrm{~mA})}-\mathrm{V}_{\mathbf{R}(100 \mu \mathrm{~A})} \\ & \text { (Note 13) } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$\begin{gathered} \hline 5 \\ 5.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV}(\operatorname{Max}) \\ & \mathrm{mV} \text { (Max) } \end{aligned}$
R	Resistance	$\begin{aligned} & \Delta V_{R(10 \rightarrow 0.1 \mathrm{~mA})} / 9.9 \mathrm{~mA} \\ & \Delta V_{R(100 \rightarrow 17 \mu A)} / 83 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{gathered} 0.56 \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} 0.56 \\ 13 \\ \hline \end{gathered}$	$\begin{aligned} & \Omega \text { (Max) } \\ & \Omega \text { (Max) } \end{aligned}$
$\frac{\mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~V}_{\mathrm{RO}}}$	V_{R} Change with High V_{RO}	$\left.\mathrm{V}_{\mathrm{R}(\mathrm{VrO}}=\mathrm{V}_{\mathrm{r})}-\mathrm{V}_{\mathrm{R}(\mathrm{Vro}}=6.3 \mathrm{~V}\right)$ (5.06V between Anode and FEEDBACK)	$\begin{aligned} & 2.5 \\ & 2.8 \end{aligned}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{aligned} & m V(\operatorname{Max}) \\ & m V(M a x) \end{aligned}$
$\frac{\mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~V}^{+}}$	V_{R} Change with $V_{\text {ANODE }}$ Change	$\begin{aligned} & \left.\left.\mathrm{V}_{\mathrm{R}} \mathrm{~V}^{+}=5 \mathrm{~V}\right)-\mathrm{V}_{\mathrm{R}\left(\mathrm{~V}^{+}\right.}=36 \mathrm{~V}\right) \\ & \left(\mathrm{V}^{+}=32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 1.2 \\ 1.3 \\ \hline \end{array}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & m V(\text { Max }) \\ & m V(M a x) \end{aligned}$
		$\left.\mathrm{V}_{\mathrm{R}\left(\mathrm{V}^{+}=5 \mathrm{~V}\right)}-\mathrm{V}_{\mathrm{R}\left(\mathrm{V}^{+}\right.}=3 \mathrm{~V}\right)$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	mV (Max) mV (Max)
$l_{\text {FB }}$	FEEDBACK Bias Current	$\mathrm{V}_{\text {ANODE }} \leq \mathrm{V}_{\mathrm{FB}} \leq 5.06 \mathrm{~V}$	$\begin{aligned} & 22 \\ & 29 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \\ & \hline \end{aligned}$	$\begin{array}{r} 50 \\ 55 \\ \hline \end{array}$	nA (Max) $n A(M a x)$
e_{n}	V ${ }_{\text {R }}$ Noise	10 Hz to 10 kHz , $\mathrm{V}_{\mathrm{RO}}=\mathrm{V}_{\mathrm{R}}$	30			$\mu \mathrm{V}_{\text {RMS }}$

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: Input voltage above V^{+}is allowed. As long as one input pin voltage remains inside the common-mode range, the comparator will deliver the correct output.
Note 3: More accurately, it is excessive current flow, with resulting excess heating, that limits the voltages on all pins. When any pin is pulled a diode drop below V^{-}, a parasitic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operation is undefined and unpredictable when any parasitic diode or transistor is conducting.
Note 4: Simultaneous short-circuit of multiple comparators while using high supply voltages may force junction temperature above maximum, and thus should not be continuous.

Note 5: Junction temperature may be calculated using $T_{J}=T_{A}+P_{D} \theta_{J A}$. The given thermal resistance is worst-case for packages in sockets in still air. For packages soldered to copper-clad board with dissipation from one comparator or reference output transistor, nominal θ_{JA} is $90^{\circ} \mathrm{C} / \mathrm{W}$ for the N package, and $135^{\circ} \mathrm{C} / \mathrm{W}$ for the WM package.
Note 6: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: Typical values in standard typeface are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$; values in bold face type apply for the full operating temperature range. These values represent the most likely parametric norm.
Note 8: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold type face).
Note 9: Slew rate is measured with the op amp in a voltage follower configuration. For rising slew rate, the input voltage is driven from 5V to 25V, and the output voltage transition is sampled at 10 V and © 20 V . For falling slew rate, the input voltage is driven from 25 V to 5 V , and the output voltage transition is sampled at 20 V and 10 V .
Note 10: V_{R} is the Cathode-to-feedback voltage, nominally 1.244 V .
Note 11: Average reference drift is calculated from the measurement of the reference voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes. The drift, in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$, is $10^{6} \cdot \Delta V_{R} /\left(V_{R\left[25^{\circ}\right.}{ }^{\bullet}{ }^{\bullet} \Delta T_{j}\right)$, where ΔV_{R} is the lowest value subtracted from the highest, $V_{R\left[25^{\circ} \mathrm{C}\right]}$ is the value at $25^{\circ} \mathrm{C}$, and ΔT_{J} is the temperature range. This parameter is guaranteed by design and sample testing.
Note 12: Hysteresis is the change in V_{R} caused by a change in T_{J}, after the reference has been "dehysterized". To dehysterize the reference; that is minimize the hysteresis to the typical value, its junction temperature should be cycled in the following pattern, spiraling in toward $25^{\circ} \mathrm{C}: \mathbf{2 5}^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$.
Note 13: Low contact resistance is required for accurate measurement.
Note 14: A military RETS 613AMX electrical test specification is available on request. The Military screened parts can also be procured as a Standard Military Drawing.

Simplified Schematic Diagrams

TL/H/9226-2

TL/H/9226-3

TL/H/9226-4

Typical Performance Characteristics (Reference)
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=\mathrm{OV}$, unless otherwise noted

Reference Voltage vs Current and Temperature

Reference AC Stability Range

Reference Voltage vs Reference Current

FEEDBACK Current vs FEEDBACK-to-Anode Voltage

TL/H/9226-5

Typical Performance Characteristics (Reference) (Continued)

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted

Typical Performance Characteristics (Op Amps)

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=\mathrm{V}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}+/ 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

TL/H/9226-7

Typical Performance Characteristics (Op Amps) (Continued)
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}+/ 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Output Swing,
Large Signal

TL/H/9226-8

Typical Performance Characteristics (Op Amps) (Continued)
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted
 JUNCTION TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

TL/H/9226-9

Typical Performance Characteristics (Comparators)

TL/H/9226-10

TL/H/9226-11

Typical Performance Characteristics (Comparators) (Continued)

TL/H/9226-14

TL/H/9226-16

Comparator
Response Times-Non-Inverting
Input, Negative Transition

TL/H/9226-15

Typical Performance Characteristics (Comparators) (Continued)

TL/H/9226-18

Typical Performance Distributions

TL/H/9226-20

TL/H/9226-22

TL/H/9226-21

TL/H/9226-23

Typical Performance Distributions (Continued)

TL/H/9226-24

TL/H/9226-25

TL/H/9226-27

TL/H/9226-28

Application Information VOLTAGE REFERENCE

Reference Biasing

The voltage reference is of a shunt regulator topology that models as a simple zener diode. With current I_{r} flowing in the "forward" direction there is the familiar diode transfer function. I_{r} flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The cathode may swing from a diode drop below V - to the reference voltage or to the avalanche voltage of the parallel protection diode, nominally 7 V . A 6.3 V reference with $\mathrm{V}^{+}=$ 3 V is allowed.

TL/H/9226-29
FIGURE 1. Voltage Associated with Reference (current source $\mathbf{I}_{\mathbf{r}}$ is external)

Application Information (Continued)

The reference equivalent circuit reveals how V_{r} is held at the constant 1.2 V by feedback, and how the FEEDBACK pin passes little current.
To generate the required reverse current, typically a resistor is connected from a supply voltage higher than the reference voltage. Varying that voltage, and so varying I_{r}, has small effect with the equivalent series resistance of less than an ohm at the higher currents. Alternatively, an active current source, such as the LM134 series, may generate I_{r}.

TL/H/9226-30
FIGURE 2. Reference Equivalent Circuit

TL/H/9226-31
FIGURE 3. 1.2V Reference
Capacitors in parallel with the reference are allowed. See the Reference AC Stability Range typical curve for capacitance values-from $20 \mu \mathrm{~A}$ to 3 mA any capacitor value is stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering.

Adjustable Reference

The FEEDBACK pin allows the reference output voltage, V_{ro}, to vary from 1.24 V to 6.3 V . The reference attempts to hold V_{r} at 1.24 V . If V_{r} is above 1.24 V , the reference will conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then $V_{r o}=V_{r}=1.24 \mathrm{~V}$. For higher voltages FEEDBACK is held at a constant voltage above Anode-say 3.76 V for $\mathrm{V}_{\mathrm{ro}}=5 \mathrm{~V}$. Connecting a resistor across the constaint V_{r} generates a current $I=R 1 / V_{r}$ flowing from Cathode into FEEDBACK node. A Thevenin equivalent 3.76 V is generated from FEEDBACK to Anode with R2=3.76/I. Keep I greater than one thousand times larger than FEEDBACK bias current for $<0.1 \%$ error- $1 \geq 32 \mu \mathrm{~A}$ for the military grade over the military temperature range ($1 \geq 5.5 \mu \mathrm{~A}$ for a 1% untrimmed error for a commercial part).

TL/H/9226-32
FIGURE 4. Thevenin Equivalent of Reference with 5V Output

TL/H/9226-33
$\mathrm{R} 1=\mathrm{Vr} / \mathrm{I}=1.24 / 32 \mu=39 \mathrm{k}$
$\mathrm{R} 2=\mathrm{R} 1\{(\mathrm{Vro} / \mathrm{Vr})-1\}=39 \mathrm{k}\{(5 / 1.24)-1)\}=118 \mathrm{k}$
FIGURE 5. Resistors R1 and R2 Program Reference Output Voltage to be 5 V
Understanding that V_{r} is fixed and that voltage sources, resistors, and capacitors may be tied to the FEEDBACK pin, a range of V_{r} temperature coefficients may be synthesized.

TL/H/9226-34
FIGURE 6. Output Voltage has Negative Temperature Coefficient (TC) if R2 has Negative TC

TL/H/9226-35
FIGURE 7. Output Voltage has Positive TC if R1 has Negative TC

Application Information (Continued)

 TL/H/9226-36
FIGURE 8. Diode in Series with R1 Causes Voltage Across R1 and R2 to be Proportional to Absolute Temperature (PTAT)
Connecting a resistor across Cathode-to-FEEDBACK creates a 0 TC current source, but a range of TCs may be synthesized.

TL/H/9226-37
$I=V r / R 1=1.24 / R 1$
FIGURE 9. Current Source is Programmed by R1

TL/H/9226-38
FIGURE 10. Proportional-to-Absolute-Temperature Current Source

TL/H/9226-39
FIGURE 11. Negative-TC Current Source

Reference Hysteresis

The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products varyalways check the data sheet for any given device. Do not assume that no specification means no hysteresis.

OPERATIONAL AMPLIFIERS AND COMPARATORS

Any amp, comparator, or the reference may be biased in any way with no effect on the other sections of the LM613, except when a substrate diode conducts (see Electrical Characteristics Note 1). For example, one amp input may be outside the common-mode range, another amp may be operating as a comparator, and all other sections may have all terminals floating with no effect on the others. Tying inverting input to output and non-inverting input to V - on unused amps is preferred. Unused comparators should have non-inverting input and output tied to V^{+}, and inverting input tied to V^{-}. Choosing operating points that cause oscillation, such as driving too large a capacitive load, is best avoided.

Op Amp Output Stage

These op amps, like the LM124 series, have flexible and relatively wide-swing output stages. There are simple rules to optimize output swing, reduce cross-over distortion, and optimize capacitive drive capability:

1) Output Swing: Unloaded, the $42 \mu \mathrm{~A}$ pull-down will bring the output within 300 mV of V^{-}over the military temperature range. If more than $42 \mu \mathrm{~A}$ is required, a resistor from output to V^{-}will help. Swing across any load may be improved slightly if the load can be tied to $\mathrm{V}+$, at the cost of poorer sinking open-loop voltage gain.
2) Cross-Over Distortion: The LM613 has lower cross-over distortion (a $1 \mathrm{~V}_{\mathrm{BE}}$ deadband versus $3 \mathrm{~V}_{\mathrm{BE}}$ for the LM124), and increased slew rate as shown in the characteristic curves. A resistor pull-up or pull-down will force class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-over distortion.
3) Capacitive Drive: Limited by the output pole caused by the output resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN r_{e} until the output resistance is that of the current limit $25 \Omega .200 \mathrm{pF}$ may then be driven without oscillation.

Comparator Output Stage

The comparators, like the LM139 series, have open-collector output stages. A pull-up resistor must be added from each output pin to a positive voltage for the output transistor to switch properly. When the output transistor is OFF, the output voltage will be this external positive voltage.
For the output voltage to be under the TTL-low voltage threshold when the output transistor is ON, the output current must be less than 8 mA (over temperature). This impacts the minimum value of pull-up resistor.
The offset voltage may increase when the output voltage is low and the output current is less than $30 \mu \mathrm{~A}$. Thus, for best accuracy, the pull-up resistor value should be low enough to allow the output transistor to sink more than $30 \mu \mathrm{~A}$.

Op Amp and Comparator Input Stage

The lateral PNP input transistors, unlike those of most op amps, have $B V_{\text {EBO }}$ equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages.

Typical Applications

TL/H/9226-40
FIGURE 12. High Current, High Voltage Switch

TL/H/9226-41
FIGURE 13. High Speed Level Shifter. Response time is approximately $1.5 \mu \mathrm{~s}$, where output is either approximately + V or -V .

TL/H/9226-42
FIGURE 14. Low Voltage Regulator. Dropout voltage is approximately 0.2 V .

TL/H/9226-43

FIGURE 15. Ultra Low Noise, 10.00 V Reference. Total output noise is typically $14 \mu \mathbf{V}_{\text {RMS }}$

Typical Applications (Continued)

TL/H/9226-44

FIGURE 16. Basic Comparator

FIGURE 18. Wide-Input Range Comparator with TTL Output

TL/H/9226-45
FIGURE 17. Basic Comparator with External Strobe

FIGURE 19. Comparator with
Hysteresis ($\Delta \mathbf{V}_{\mathbf{H}}=+\mathbf{V}(\mathbf{1 k} / \mathbf{1 M})$)

LM614 Quad Operational Amplifier and Adjustable Reference

General Description

The LM614 consists of four op-amps and a programmable voltage reference in a 16 -pin package. The op-amp out-performs most single-supply op-amps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement and data acquisition systems.
Combining a stable voltage reference with four wide output swing op-amps makes the LM614 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (1Ω typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2 V to 6.3 V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems.
As a member of National's new Super-BlockTM family, the LM614 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance.

Features

Op Amp

- Low operating current
$300 \mu \mathrm{~A}$
- Wide supply voltage range 4 V to 36 V
- Wide common-mode range

V- to ($\mathrm{V}+-1.8 \mathrm{~V}$)

- Wide differential input voltage
$\pm 36 \mathrm{~V}$
- Available in plastic package rated for Military Temperature Range Operation

Reference

■ Adjustable output voltage
1.2V to 6.3 V

- Tight initial tolerance available $\pm 0.6 \%$
- Wide operating current range
$17 \mu \mathrm{~A}$ to 20 mA
- Tolerant of load capacitance

Applications

- Transducer bridge driver and signal processing
- Process and mass flow control systems
- Power supply voltage monitor
- Buffered voltage references for A/D's

Connection Diagram

TL/H/9326-1

Ordering Information

Reference Tolerance \& VOS	Temperature Range			Package	NSC Drawing
	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	Commercial $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		
$\pm 0.6 \% @$ $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max $\mathrm{V}_{\mathrm{OS}} \leq 3.5 \mathrm{mV}$ max	LM614AMN	LM614AIN	-	16-pin Molded DIP	N16E
	LM614AMJ/883 (Note 13)	-	-	16-pin Ceramic DIP	J16A
$\begin{aligned} & \pm 2.0 \% @ \\ & 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \mathrm{max} \\ & \mathrm{~V}_{\mathrm{OS}} \leq 5.0 \mathrm{mV} \end{aligned}$	LM614MN	LM614BIN	LM614CN	16-pin Molded DIP	N16E
	-	LM614WM	LM614CWM	16-pin Wide Surface Mount	M16B

Absolute Maximum Ratings	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.	
Voltage on Any Pins except V_{R} (referred to V^{-}pin)	
(Note 2)	36 V (Max)
(Note 3)	-0.3V (Min)
Current through Any Input Pin \& V_{R} Pin	Pin $\quad \pm 20 \mathrm{~m}$
Differential Input Voltage	
Military and Industrial	± 36
Commercial	± 32
Storage Temperature Range - 6	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150$

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales

Voltage on Any Pins except V_{R}
(referred to V^{-}pin)
(Note 2)
36 V (Max) $\pm 20 \mathrm{~mA}$
Differential Input Voltage
Military and Industrial
$\pm 36 \mathrm{~V}$
Storage Temperature Range

Maximum Junction Temperature
$150^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Ambient (Note 4) $100^{\circ} \mathrm{C}$
N Package N Package $150^{\circ} \mathrm{C}$
Soldering Information (Soldering, 10 seconds)
N Package
$260^{\circ} \mathrm{C}$
$220^{\circ} \mathrm{C}$
ESD Tolerance (Note 5) $\pm 1 \mathrm{kV}$

Operating Temperature Range

LM614AI, LM614I, LM614BI
LM614AM, LM614M LM614C
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+70^{\circ} \mathrm{C}$

Electrical Characteristics

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 6)	LM614AM LM614AI Limits (Note 7)	LM614M LM614BI LM614I LM614C Limits (Note 7)	Units
Is	Total Supply Current	$\begin{aligned} & R_{\text {LOAD }}=\infty, \\ & 4 \mathrm{~V} \leq \mathrm{V}+\leq 36 \mathrm{~V}(32 \mathrm{~V} \text { for LM614C) } \end{aligned}$	$\begin{aligned} & 450 \\ & \mathbf{5 5 0} \end{aligned}$	$\begin{gathered} 940 \\ 1000 \end{gathered}$	$\begin{gathered} 1000 \\ 1070 \end{gathered}$	$\mu \mathrm{A}$ max $\mu \mathrm{A}$ max
V_{S}	Supply Voltage Range		$\begin{aligned} & 2.2 \\ & 2.9 \end{aligned}$	$\begin{gathered} 2.8 \\ 3 \end{gathered}$	$\begin{gathered} 2.8 \\ 3 \end{gathered}$	\checkmark min V min
			$\begin{aligned} & 46 \\ & 43 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	V max V max
OPERATIONAL AMPLIFIER						
Vos1	Vos Over Supply	$\begin{aligned} & 4 V \leq V^{+} \leq 36 V \\ & \left(4 V \leq V^{+} \leq 32 V \text { for } L M 614 C\right) \end{aligned}$	$\begin{aligned} & 1.5 \\ & \mathbf{2 . 0} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	mV max mV max
$\mathrm{V}_{\mathrm{OS} 2}$	$\mathrm{V}_{\text {OS }}$ Over V_{CM}	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { through } \mathrm{V}_{\mathrm{CM}}= \\ & \left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right), \mathrm{V}^{+}=30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \\ & \hline \end{aligned}$	mV max $m V$ max
$\frac{\mathrm{V}_{\mathrm{OS} 3}}{\Delta \mathrm{~T}}$	Average $\mathrm{V}_{\text {Os }}$ Drift	(Note 7)	15			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ max
I_{B}	Input Bias Current		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 25 \\ & \mathbf{3 0} \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	nA max nA max
los	Input Offset Current		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	nA max nA max
$\frac{\operatorname{los} 1}{\Delta T}$	Average Offset Drift Current		4			$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
R_{IN}	Input Resistance	Differential	1800			$\mathrm{M} \Omega$
		Common-Mode	3800		,	$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Common-Mode Input	5.7			pF
e_{n}	Voltage Noise	$\mathrm{f}=100 \mathrm{~Hz}$, Input Referred	74			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
I_{n}	Current Noise	$\mathrm{f}=100 \mathrm{~Hz}$, Input Referred	58			$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right), \\ & \mathrm{CMRR}=20 \log \left(\Delta \mathrm{~V}_{\mathrm{CM}} / \Delta \mathrm{V}_{\mathrm{OS}}\right) \end{aligned}$	$\begin{aligned} & 95 \\ & \mathbf{9 0} \\ & \hline \end{aligned}$	$\begin{array}{r} 80 \\ 75 \\ \hline \end{array}$	$\begin{array}{r} 75 \\ \mathbf{7 0} \\ \hline \end{array}$	dB min dB min
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GM}}=\mathrm{V}+/ 2, \\ & \text { PSRR }=20 \log \left(\Delta \mathrm{~V}+/ \Delta \mathrm{V}_{\mathrm{OS}}\right) \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} 80 \\ 75 \\ \hline \end{array}$	$\begin{array}{r} 75 \\ \mathbf{7 0} \\ \hline \end{array}$	dB min dB min
A_{V}	Open Loop Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND}, \mathrm{~V}^{+}=30 \mathrm{~V}, \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq 25 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 500 \\ 50 \end{array}$	$\begin{aligned} & 100 \\ & 40 \end{aligned}$	$\begin{aligned} & 94 \\ & 40 \end{aligned}$	V / mV \min

Electrical Characteristics (Continued)
These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=\mathrm{OV}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 6)	LM614AM LM614AI Limits (Note 8)	LM614M LM614BI LM614I LM614C Limits (Note 8)	Units
SR	Slew Rate	$\mathrm{V}+=30 \mathrm{~V}$ (Note 8)	$\begin{gathered} \pm 0.70 \\ \pm 0.65 \end{gathered}$	$\begin{aligned} & \pm 0.55 \\ & \pm 0.45 \end{aligned}$	$\begin{aligned} & \pm 0.50 \\ & \pm 0.45 \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth	$C_{L}=50 \mathrm{pF}$	$\begin{gathered} 0.8 \\ 0.52 \end{gathered}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
V 01	Output Voltage Swing High	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & \mathrm{~V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 614 \mathrm{C}) \end{aligned}$	$\begin{gathered} v^{+}-1.4 \\ v^{+}-1.6 \end{gathered}$	$\begin{aligned} & \mathbf{v}^{+}-1.7 \\ & \mathbf{v}^{+}-1.9 \end{aligned}$	$\begin{aligned} & v^{+}-1.8 \\ & \mathbf{v}^{+}-1.9 \end{aligned}$	\checkmark min V min
$\mathrm{V}_{\mathrm{O} 2}$	Output Voltage Swing Low	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} \\ & \mathrm{V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 614 \mathrm{C}) \end{aligned}$	$\begin{aligned} & v^{-}+0.8 \\ & v^{-}+0.9 \end{aligned}$	$\begin{aligned} & v^{-}+0.9 \\ & v^{-}+\mathbf{1 . 0} \end{aligned}$	$\begin{aligned} & v^{-}+0.95 \\ & v^{-}+1.0 \end{aligned}$	$V_{\text {max }}$ V max
IOUT	Output Source	$\begin{aligned} & V_{O U T}=2.5 \mathrm{~V}, \mathrm{~V}_{+\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathrm{IN}}=-0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{array}{r} 16 \\ 13 \end{array}$	mA min mA min
IsINK	Output Sink Current	$\begin{aligned} & V_{\text {OUT }}=1.6 \mathrm{~V}, \mathrm{~V}_{+\mathrm{IN}}=0 \mathrm{~V}, \\ & V_{-I N}=0.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 17 \\ 9 \end{gathered}$	$\begin{array}{r} 14 \\ 8 \end{array}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA min mA min
ISHORT	Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}, \mathrm{~V}_{+\mathbb{I N}}=3 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathbb{I N}}=2 \mathrm{~V}, \text { Source } \end{aligned}$	$\begin{array}{r} 30 \\ 40 \\ \hline \end{array}$	$\begin{array}{r} 50 \\ 60 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 60 \\ & \hline \end{aligned}$	mA max mA max
		$\begin{aligned} & V_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{+\mathbb{N}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathbb{N}}=3 \mathrm{~V}, \text { Sink } \end{aligned}$	$\begin{aligned} & 30 \\ & 32 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 70 \\ & \mathbf{9 0} \end{aligned}$	mA max mA max
VOLTAGE REFERENCE						
V_{R}	Voltage Reference	(Note 9)	1.244	$\begin{array}{r} 1.2365 \\ 1.2515 \\ (\pm 0.6 \%) \\ \hline \end{array}$	$\begin{gathered} 1.2191 \\ 1.2689 \\ (\pm 2.0 \%) \\ \hline \end{gathered}$	V min V max
$\frac{\Delta V_{\mathrm{R}}}{\Delta \mathrm{~T}}$	Average Temperature Drift	(Note 10)	10	80	150	PPM $/{ }^{\circ} \mathrm{C}$ max
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Hysteresis	(Note 11)	3.2			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{l}_{\mathrm{R}}}$	V_{R} Change with Current	$\mathrm{V}_{\mathrm{R}(100 \mu \mathrm{~A})}-\mathrm{V}_{\mathrm{R}(17 \mu \mathrm{~A})}$	$\begin{aligned} & 0.05 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 1.1 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 1.1 \\ \hline \end{gathered}$	mV max mV max
		$\begin{aligned} & V_{R(10 m A)}-V_{R(100 \mu A)} \\ & \text { (Note 12) } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	mV max $m V$ max
R	Resistance	$\begin{aligned} & \left.\Delta V_{R(10 \rightarrow 0} 0.1 \mathrm{~mA}\right) / 9.9 \mathrm{~mA} \\ & \Delta V_{R(100 \rightarrow 17 \mu \mathrm{~A})} / 83 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{gathered} 0.56 \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} 0.56 \\ 13 \\ \hline \end{gathered}$	Ω max Ω max
$\frac{\Delta V_{R}}{\Delta V_{R O}}$	V_{R} Change with High V_{RO}	$\left.V_{R}\left(V_{r o}=V_{r}\right)-V_{R(V r o}=6.3 V\right)$ (5.06V between Anode and FEEDBACK)	$\begin{aligned} & 2.5 \\ & 2.8 \end{aligned}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	mV max $m V$ max
$\frac{\Delta V_{R}}{\Delta V^{+}}$	V_{R} Change with V+ Change	$\begin{aligned} & V_{R}(\mathrm{~V}+=5 \mathrm{~V})-\mathrm{V}_{\mathrm{R}(\mathrm{~V}+=36 \mathrm{~V})} \\ & \left(\mathrm{V}^{+}=32 \mathrm{~V} \text { for } \mathrm{LM} 614 \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$\begin{array}{r} 1.2 \\ 1.3 \\ \hline \end{array}$	mV max $m V$ max
		$\mathrm{V}_{\mathrm{R}}(\mathrm{V}+=5 \mathrm{~V})-\mathrm{V}_{\mathrm{R}}(\mathrm{V}+=3 \mathrm{~V})$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 1.5 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 1.5 \\ \hline \end{gathered}$	mV max mV max
$\mathrm{I}_{\text {FB }}$	FEEDBACK Bias Current	$\mathrm{V}_{\text {ANODE }} \leq \mathrm{V}_{\mathrm{FB}} \leq 5.06 \mathrm{~V}$	$\begin{aligned} & 22 \\ & 29 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \\ & \hline \end{aligned}$	$\begin{array}{r} 50 \\ \mathbf{5 5} \\ \hline \end{array}$	nA max nA max
e_{n}	Voltage Noise	$\begin{aligned} & \mathrm{BW}=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{RO}}=\mathrm{V}_{\mathrm{R}} \end{aligned}$	30			$\mu \mathrm{V}_{\text {RMS }}$

Electrical Characteristics (Continued)

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: input voltage above $\mathrm{V}+$ is allowed.
Note 3: More accurately, it is excessive current flow, with resulting excess heating, that limits the voltages on all pins. When any pin is pulled a diode drop below V-, a parasitic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operation is undefined and unpredictable when any parasitic diode or transistor is conducting.
Note 4: Junction temperature may be calculated using $T_{J}=T_{A}+P_{D} \theta_{j A}$. The given thermal resistance is worst-case for packages in sockets in still air. For packages soldered to copper-clad board with dissipation from one comparator or reference output transistor, nominal θ_{jA} are $90^{\circ} \mathrm{C} / \mathrm{W}$ for the N package, WM package.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: Typical values in standard typeface are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$; values in boldface type apply for the full operating temperature range. These values represent the most likely parametric norm.
Note 7: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold type face).
Note 8: Slew rate is measured with op amp in a voltage follower configuration. For rising slew rate, the input voltage is driven from 5 V to 25 V , and the output voltage transition is sampled at 10 V and @20V. For falling slew rate, the input voltage is driven from 25 V to 5 V , and the output voltage transition is sampled at 20 V and 10 V .
Note 9: V_{R} is the Cathode-feedback voltage, nominally 1.244 V .
Note 10: Average reference drift is calculated from the measurement of the reference voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes. The drift, in ppm/ ${ }^{\circ} \mathrm{C}$, is $106 \bullet \Delta V_{R} /\left(V_{R}\left[25^{\circ} \mathrm{C}\right]{ }^{\bullet} \Delta T_{j}\right)$, where ΔV_{R} is the lowest value subtracted from the highest, $V_{R\left[25^{\circ} \mathrm{C}\right]}$ is the value at $25^{\circ} \mathrm{C}$, and ΔT_{j} is the temperature range. This parameter is guaranteed by design and sample testing.
Note 11: Hysteresis is the change in V_{R} caused by a change in T_{J}, after the reference has been "dehysterized". To dehysterize the reference; that is minimize the hysteresis to the typical value, cycle its junction temperature in the following pattern, spiraling in toward $25^{\circ} \mathrm{C}: 25^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$.
Note 12: Low contact resistance is required for accurate measurement.
Note 13: A military RETSLM614AMX electrical test specification is available on request. The LM614AMJ/883 can also be procured as a Standard Military Drawing.

Simplified Schematic Diagrams

TL/H/9326-2

$T_{J}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted

Typical Performance Characteristics (Reference) (Continued)
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted

Reference Step Response
for $100 \mu \mathrm{~A} \sim 10 \mathrm{~mA}$ Current Step

TL/H/9326-8

Typical Performance Characteristics (Op Amps)

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}-=\mathrm{GND}=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}+/ 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, uniess otherwise noted

Typical Performance Characteristics (Op Amps) (Continued)
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}+/ 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Output Impedance vs Frequency and Gain

Output Sink Current vs Output Voltage and Temp.

Small-SIgnal Pulse Response vs Temp.

Op Amp Current Noise vs Frequency

Output Swing, Large Signal

Small-Signal Pulse
Response vs Load

Small-Signal Voltage
Gain vs Frequency
and Temperature

TOTAL SUPPLY VOLTAGE (V)

Typical Performance Distributions

Average Vos Drift Commercial Temperature Range

TL/H/9326-31

TL/H/9326-33

Average $\mathrm{V}_{\text {os }}$ Drift
Industrial Temperature Range

TL/H/9326-30

Average los Drift
Commercial Temperature Range

TL/H/9326-34

Typical Performance Distributions (Continued)

Op Amp Voltage
Noise Distribution

Op Amp Current
Noise Distribution

Application Information

VOLTAGE REFERENCE

Reference Biasing

The voltage reference is of a shunt regulator topology that models as a simple zener diode. With current I_{r} flowing in the 'forward' direction there is the familiar diode transfer function. I_{r} flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The cathode may swing from a diode drop below V - to the reference voltage or to the avalanche voltage of the parallel protection diode, nominally 7 V . A 6.3 V reference with $\mathrm{V}^{+}=$ 3 V is allowed.

TL/H/9326-9
FIGURE 1. Voltages Associated with Reference (Current Source I_{r} is External)
The reference equivalent circuit reveals how V_{r} is held at the constant 1.2 V by feedback, ând how the FEEDBACK pin passes little current.
To generate the required reverse current, typically a resistor is connected from a supply voltage higher than the reference voltage. Varying that voltage, and so varying I_{r}, has small effect with the equivalent series resistance of less than an ohm at the higher currents. Alternatively, an active current source, such as the LM134 series, may generate I_{r}. Capacitors in parallel with the reference are allowed. See the Reference AC Stability Range typical curve for capacitance values-from $20 \mu \mathrm{~A}$ to 3 mA any capacitor value is stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering.

TL/H/9326-10
FIGURE 2. Reference Equivalent Circuit

> TL/H/9326-11

FIGURE 3. 1.2V Reference

Adjustable Reference

The FEEDBACK pin allows the reference output voltage, $V_{\text {ro }}$, to vary from 1.24 V to 6.3 V . The reference attempts to hold V_{r} at 1.24 V . If V_{r} is above 1.24 V , the reference will conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then $V_{r o}=V_{r}=1.24 \mathrm{~V}$. For higher voltages FEEDBACK is held at a constant voltage above Anode-say 3.76 V for $\mathrm{V}_{\mathrm{ro}}=5 \mathrm{~V}$. Connecting a resistor across the constaint V_{r} generates a current $I=R 1 / V_{r}$ flowing from Cathode into FEEDBACK node. A Thevenin equivalent 3.76 V is generated from FEEDBACK to Anode with R2=3.76/I. Keep I

Application Information (Continued)

greater than one thousand times larger than FEEDBACK bias current for $<0.1 \%$ error- $1 \geq 32 \mu \mathrm{~A}$ for the military grade over the military temperature range ($1 \geq 5.5 \mu \mathrm{~A}$ for a 1% untrimmed error for a commercial part.)

TL/H/9326-12
FIGURE 4. Thevenin Equivalent of Reference with 5V Output

TL/H/9326-13

$$
\begin{gathered}
\mathrm{R} 1=\mathrm{Vr} / \mathrm{I}=1.24 / 32 \mu=39 \mathrm{k} \\
\mathrm{R} 2=\mathrm{R} 1\{(\mathrm{Vro} / \mathrm{Vr})-1\}=39 \mathrm{k}\{(5 / 1.24)-1)\}=118 \mathrm{k}
\end{gathered}
$$

FIGURE 5. Resistors R1 and R2 Program Reference Output Voltage to be 5V
Understanding that V_{r} is fixed and that voltage sources, resistors, and capacitors may be tied to the FEEDBACK pin, a range of V_{r} temperature coefficients may be synthesized.

TL/H/9326-14
FIGURE 6. Output Voltage has Negative Temperature Coefficient (TC) if R2 has Negative TC

TL/H/9326-15
FIGURE 7. Output Voltage has Positive TC if R1 has Negative TC

TL/H/9326-16
FIGURE 8. Diode in Series with R1 Causes Voltage across R1 and R2 to be Proportional to Absolute Temperature (PTAT)
Connecting a resistor across Cathode-to-FEEDBACK creates a 0 TC current source, but a range of TCs may be synthesized.

TL/H/9326-17

$$
I=V r / R 1=1.24 / R 1
$$

FIGURE 9. Current Source is Programmed by R1

Application Information (Continued)

TL/H/9326-18
FIGURE 10. Proportional-to-Absolute-Temperature Current Source

TL/H/9326-19

FIGURE 11. Negative-TC Current Source

Hysteresis

The reference voltage depends; slightly, on the thermal history of the die. Competitive micro-power products vary-always check the data sheet for any given device. Do not assume that no specification means no hysteresis.

OPERATIONAL AMPLIFIERS

Any amp or the reference may be biased in any way with no effect on the other amps or reference, except when a substrate diode conducts (see Guaranteed Electrical Characteristics Note 1). One amp input may be outside the com-
mon-mode range, another amp may be operated as a comparator, another with all terminals floating with no effect on the others (tying inverting input to output and non-inverting input to V^{-}on unused amps is preferred). Choosing operating points that cause oscillation, such as driving too large a capacitive load, is best avoided.

Op Amp Output Stage

These op amps, like their LM124 series, have flexible and relatively wide-swing output stages. There are simple rules to optimize output swing, reduce cross-over distortion, and optimize capacitive drive capability:

1) Output Swing: Unloaded, the $42 \mu \mathrm{~A}$ pull-down will bring the output within 300 mV of V^{-}over the military temperature range. If more than $42 \mu \mathrm{~A}$ is required, a resistor from output to V - will help. Swing across any load may be improved slightly if the load can be tied to $\mathrm{V}+$, at the cost of poorer sinking open-loop voltage gain
2) Cross-over Distortion: The LM614 has lower cross-over distortion (a $1 \mathrm{~V}_{\mathrm{BE}}$ deadband versus $3 \mathrm{~V}_{\mathrm{BE}}$ for the LM124), and increased slew rate as shown in the characteristic curves. A resistor pull-up or pull-down will force class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-over distortion
3) Capacitive Drive: Limited by the output pole caused by the output resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN r_{e} until the output resistance is that of the current limit $25 \Omega .200 \mathrm{pF}$ may then be driven without oscillation.

Op Amp Input Stage

The lateral PNP input transistors, unlike most op amps, have $B V_{E B O}$ equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages.

Typical Applications

TL/H/9326-42
FIGURE 12. Simple Low Quiescent Drain Voltage
Regulator. Total supply current approximately $320 \mu \mathrm{~A}$, when $\mathbf{V}_{\mathbf{I N}}=+5 \mathrm{~V}$.

*10k must be low
t.c. trimpot.

FIGURE 13. Ultra Low Noise 10.00V Reference. Total output noise is typically $14 \mu \mathrm{~V}_{\mathrm{RMS}}$.

FIGURE 14. Slow Rise Time Upon Power-Up, Adjustable Transducer Bridge Driver. Rise time is approximately 1 ms .

TL/H/9326-46
FIGURE 16. Low Drop-Out Voltage Regulator Circuit, drop-out voltage is typically 0.2 V .

TL/H/9326-45
FIGURE 15. Transducer Data Acquisition System. Set zero code voltage, then adjust 10Ω gain adjust pot for full scale.

LM675 Power Operational Amplifier

General Description

The LM675 is a monolithic power operational amplifier featuring wide bandwidth and low input offset voltage, making it equally suitable for $A C$ and $D C$ applications.
The LM675 is capable of delivering output currents in excess of 3 amps , operating at supply voltages of up to 60 V . The device overload protection consists of both internal current limiting and thermal shutdown. The amplifier is also internally compensated for gains of 10 or greater.

Features

- 3A current capability
- Avo typicaly 90 dB
- 5.5 MHz gain bandwidth product
- $8 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Wide power bandwidth 70 kHz
- 1 mV typical offset voltage
- Short circuit protection
- Thermal protection with parole circuit (100% tested)
- 16V-60V supply range
- Wide common mode range
- Internal output protection diodes
- 90 dB ripple rejection
- Plastic power package TO-220

Applications

- High performance power op amp
- Bridge amplifiers
- Motor speed controls
- Servo amplifiers
- Instrument systems

Connection Diagram

TO-220 Power Package (T)

Typical Applications

Non-Inverting Amplifier

TL/H/6739-2

Absolute Maximum Ratings

If Military/Aerospace specified devices are required please contact the National Semiconductor Sales Office/Distributors for availablity and specifications.
$\begin{array}{lr}\text { Supply Voltage } & \pm 30 \mathrm{~V} \\ \text { Input Voltage } & -V_{E E} \text { to } \mathrm{V}_{\mathrm{CC}}\end{array}$

Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Power Dissipation (Note 1)	30 W
Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
ESD rating to be determined.	

Electrical Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Typical	Tested Limit	Units
Supply Current	$\mathrm{P}_{\mathrm{OUT}}=0 \mathrm{~W}$	18	$50(\mathrm{max})$	mA
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1	$10(\mathrm{max})$	mV
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	0.2	$2(\mathrm{max})$	$\mu \mathrm{A}$
Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	50	$500(\mathrm{max})$	nA
Open Loop Gain	$\mathrm{R}_{\mathrm{L}}=\infty \Omega$	90	$70(\mathrm{~min})$	dB
PSRR	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	90	$70(\mathrm{~min})$	dB
CMRR	$\mathrm{V}_{\mathrm{IN}}= \pm 20 \mathrm{~V}$	90	$70(\mathrm{~min})$	dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=8 \Omega$	± 21	$\pm 18(\mathrm{~min})$	V
Offset Voltage Drift Versus Temperature	$\mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega$	25		$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Drift Versus Output Power		25		$\mu \mathrm{~V} / \mathrm{W}$
Output Power	$\mathrm{THD}=1 \%, \mathrm{fo}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	25	20	W
Gain Bandwidth Product	$\mathrm{f}_{\mathrm{O}}=20 \mathrm{kHz}, \mathrm{AVCL}=1000$	5.5		MHz
Max Slew Rate		8		$\mathrm{~V} / \mu \mathrm{s}$
Input Common Mode Range		± 22	$\pm 20(\mathrm{~min})$	V

Note 1: Assumes T_{A} equal to $70^{\circ} \mathrm{C}$. For operation at higher tab temperatures, the LM675 must be derated based on a maximum junction temperature of $150^{\circ} \mathrm{C}$.

Typical Applications (Continued)

Generating a Split Supply From a Single Supply

Typical Performance Characteristics

TL/H/6739-4

Application Hints

STABILITY

The LM675 is designed to be stable when operated at a closed-loop gain of 10 or greater, but, as with any other high-current amplifier, the LM675 can be made to oscillate under certain conditions. These usually involve printed circuit board layout or output/input coupling.
When designing a printed circuit board layout, it is important to return the load ground, the output compensation ground, and the low level (feedback and input) grounds to the circuit board ground point through separate paths. Otherwise, large currents flowing along a ground conductor will generate voltages on the conductor which can effectively act as signals at the input, resulting in high frequency oscillation or excessive distortion. It is advisable to keep the output compensation components and the $0.1 \mu \mathrm{~F}$ supply decoupling capacitors as close as possible to the LM675 to reduce the effects of PCB trace resistance and inductance. For the same reason, the ground return paths for these components should be as short as possible.

Occasionally, current in the output leads (which function as antennas) can be coupled through the air to the amplifier input, resulting in high-frequency oscillation. This normally happens when the source impedance is high or the input leads are long. The problem can be eliminated by placing a small capacitor (on the order of 50 pF to 500 pF) across the circuit input.
Most power amplifiers do not drive highly capacitive loads well, and the LM675 is no exception. If the output of the LM675 is connected directly to a capacitor with no series resistance, the square wave response will exhibit ringing if the capacitance is greater than about $0.1 \mu \mathrm{~F}$. The amplifier can typically drive load capacitances up to $2 \mu \mathrm{~F}$ or so without oscillating, but this is not recommended. If highly capacitive loads are expected, a resistor (at least 1Ω) should be placed in series with the output of the LM675. A method commonly employed to protect amplifiers from low impedances at high frequencies is to couple to the load through a 10Ω resistor in parallel with a $5 \mu \mathrm{H}$ inductor.

CURRENT LIMIT AND SAFE OPERATING AREA (SOA) PROTECTION

A power amplifier's output transistors can be damaged by excessive applied voltage, current flow, or power dissipation. The voltage applied to the amplifier is limited by the design of the external power supply, while the maximum current passed by the output devices is usually limited by internal circuitry to some fixed value. Short-term power dissipation is usually not limited in monolithic operational power amplifiers, and this can be a problem when driving reactive loads, which may draw large currents while high voltages appear on the output transistors. The LM675 not only limits current to around 4A, but also reduces the value of the limit current when an output transistor has a high voltage across it.
When driving nonlinear reactive loads such as motors or loudspeakers with built-in protection relays, there is a possibility that an amplifier output will be connected to a load whose terminal voltage may attempt to swing beyond the power supply voltages applied to the amplifier. This can cause degradation of the output transistors or catastrophic failure of the whole circuit. The standard protection for this
type of failure mechanism is a pair of diodes connected between the output of the amplifier and the supply rails. These are part of the internal circuitry of the LM675, and needn't be added externally when standard reactive loads are driven.

THERMAL PROTECTION

The LM675 has a sophisticated thermal protection scheme to prevent long-term thermal stress to the device. When the temperature on the die reaches $170^{\circ} \mathrm{C}$, the LM675 shuts down. It starts operating again when the die temperature drops to about $145^{\circ} \mathrm{C}$, but if the temperature again begins to rise, shutdown will occur at only $150^{\circ} \mathrm{C}$. Therefore, the device is allowed to heat up to a relatively high temperature if the fault condition is temporary, but a sustained fault will limit the maximum die temperature to a lower value. This greatly reduces the stresses imposed on the IC by thermal cycling, which in turn improves its reliability under sustained fault conditions. This circuitry is 100% tested without a heat sink.

Since the die temperature is directly dependent upon the heat sink, the heat sink should be chosen for thermal resistance low enough that thermal shutdown will not be reached during normal operaton. Using the best heat sink possible within the cost and space constraints of the system will improve the long-term reliability of any power semiconductor.

POWER DISSIPATION AND HEAT SINKING

The LM675 should always be operated with a heat sink, even though at idle worst case power dissipation will be only $1.8 \mathrm{~W}(30 \mathrm{~mA} \times 60 \mathrm{~V})$ which corresponds to a rise in die temperature of $97^{\circ} \mathrm{C}$ above ambient assuming $\theta_{j \mathrm{~A}}=54^{\circ} \mathrm{C} / \mathrm{W}$ for a TO-220 package. This in itself will not cause the thermal protectioncircuitrytoshutdowntheamplifierwhenoperating at roomtemperature, butamere 0.9 W of additionalpowerdissipation will shut the amplifier down since T_{J} will then increase from $122^{\circ} \mathrm{C}\left(97^{\circ} \mathrm{C}+25^{\circ} \mathrm{C}\right)$ to $170^{\circ} \mathrm{C}$.
In order to determine the appropriate heat sink for a given application, the power dissipation of the LM675 in that application must be known. When the load is resistive, the maximum average power that the IC will be required to dissipate is approximately:

$$
\mathrm{P}_{\mathrm{D}(\mathrm{MAX})} \approx \frac{\mathrm{V}_{S^{2}}}{2 \pi^{2} \mathrm{R}_{\mathrm{L}}}+\mathrm{P}_{\mathrm{Q}}
$$

where V_{S} is the total power supply voltage across the LM675, R_{L} is the load resistance and P_{Q} is the quiescent power dissipation of the amplifier. The above equation is only an approximation which assumes an "ideal" class B output stage and constant power dissipation in all other parts of the circuit. As an example, if the LM675 is operated on a 50 V power supply with a resistive load of 8Ω, it can develop up to 19 W of internal power dissipation. If the die temperature is to remain below $150^{\circ} \mathrm{C}$ for ambient temperatures up to $70^{\circ} \mathrm{C}$, the total junction-to-ambient thermal resistance must be less than

$$
\frac{150^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{19 \mathrm{~W}}=4.2^{\circ} \mathrm{C} / \mathrm{W}
$$

Using $\theta_{\mathrm{JC}}=2^{\circ} \mathrm{C} / \mathrm{W}$, the sum of the case-to-heat sink interface thermal resistance and the heat-sink-to-ambient

Application Hints (Continued)

thermal resistance must be less than $2.2^{\circ} \mathrm{C} / \mathrm{W}$. The case-to-heat-sink thermal resistance of the TO-220 package varies with the mounting method used. A metal-to-metal interface will be about $1^{\circ} \mathrm{C} / \mathrm{W}$ if lubricated, and about $1.2^{\circ} \mathrm{C} / \mathrm{W}$ if dry. If a mica insulator is used, the thermal resistance will be about $1.6^{\circ} \mathrm{C} / \mathrm{W}$ lubricated and $3.4^{\circ} \mathrm{C} / \mathrm{W}$ dry. For this example, we assume a lubricated mica insulator between the LM675 and the heat sink. The heat sink thermal resistance must then be less than

$$
4.2^{\circ} \mathrm{C} / \mathrm{W}-2^{\circ} \mathrm{C} / \mathrm{W}-1.6^{\circ} \mathrm{C} / \mathrm{W}=0.6^{\circ} \mathrm{C} / \mathrm{W} .
$$

This is a rather large heat sink and may not be practical in some applications. If a smaller heat sink is required for reasons of size or cost, there are two alternatives. The maximum ambient operating temperature can be restricted to $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$, resulting in a $1.6^{\circ} \mathrm{C} / \mathrm{W}$ heat sink, or the heat
sink can be isolated from the chassis so the mica washer is not needed. This will change the required heat sink to a $1.2^{\circ} \mathrm{C} / \mathrm{W}$ unit if the case-to-heat-sink interface is lubricated. The thermal requirements can become more difficult when an amplifier is driving a reactive load. For a given magnitude of load impedance, a higher degree of reactance will cause a higher level of power dissipation within the amplifier. As a general rule, the power dissipation of an amplifier driving a 60° reactive load will be roughly that of the same amplifier driving the resistive part of that load. For example, some reactive loads may at some frequency have an impedance with a magnitude of 8Ω and a phase angle of 60°. The real part of this load will then be $8 \Omega \times \cos 60^{\circ}$ or 4Ω, and the amplifier power dissipation will roughly follow the curve of power dissipation with a 4Ω load.

Typical Applications (Continued)

Typical Applications (Continued)

TL/H/6739-8

Operational Amplifier

General Description

The LM709 series is a monolithic operational amplifier intended for general-purpose applications. Operation is completely specified over the range of voltages commonly used for these devices. The design, in addition to providing high gain, minimizes both offset voltage and bias currents. Further, the class-B output stage gives a large output capability with minimum power drain.

External components are used to frequency compensate the amplifier. Although the unity-gain compensation network specified will make the amplifier unconditionally stable in all feedback configurations, compensation can be tailored to optimize high-frequency performance for any gain setting.
The LM709C is the commercial-industrial version of the LM709. It is identical to the LM709 except that it is specified for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Connection Diagrams

Order Number LM709AH, LM709H or LM709CH See NS Package Number H08C

Order Number LM709CN-8 See NS Package Number N08E

Order Number LM709CN See NS Package Number N14A

```
Absolute Maximum Ratings (Note 3)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
    LM709/LM709A/LM709C
Power Dissipation (Note 1)
    LM709/LM709A
                                300 mW
    LM709C }250\textrm{mW
Differential Input Voltage
    LM709/LM709A/LM709C }\pm5\textrm{V
Input Voltage
    LM709/LM709A/LM709C , }\pm10\textrm{V
Output Short-Circuit Duration ( }\mp@subsup{\textrm{T}}{\textrm{A}}{}=+2\mp@subsup{5}{}{\circ}\textrm{C}
    LM709/LM709A/LM709C
```

Storage Temperature Range

LM709/LM709A/LM709C	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	
LM709/LM709A/LM709C	$300^{\circ} \mathrm{C}$

Operating Ratings (Note 3)
Junction Temperatúre Range (Note 1)

LM709/LM709A	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM709C	$0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JAA}}\right)$	
H Package	
8-Pin N Package	$150^{\circ} \mathrm{C} / \mathrm{W},\left(\theta_{\mathrm{JC}}\right) 45^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin N Package	$134^{\circ} \mathrm{C} / \mathrm{W}$
	$109^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics (Note 2)

Parameter	Conditions	LM709A			LM709			LM709C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		0.6	2.0		1.0	5.0		2.0	7.5	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	200		200	500		300	1500	nA
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	50		50	200		100	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	350	700		150	400		50	250		k Ω
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		150			150			150		Ω
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		2.5	3.6		2.6	5.5		2.6	6.6	mA
Transient Response Risetime Overshoot	$\begin{aligned} & V_{I N}=20 \mathrm{mV}, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 30 \end{aligned}$		$\begin{gathered} 0.3 \\ 10 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 30 \end{aligned}$		$\begin{gathered} 0.3 \\ 10 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 30 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \% \end{aligned}$
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.25		,	0.25			0.25		$\mathrm{V} / \mu \mathrm{s}$
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			3.0			6.0			10	mV
Average Temperature Coefficient of Input Offset Voltage	$\begin{array}{ll} R_{S}=50 \Omega & T_{A}=25^{\circ} \mathrm{C} \text { to } T_{\text {MAX }} \\ R_{S}=10 \mathrm{k} \Omega & T_{A}=25^{\circ} \mathrm{C} \text { to } \mathrm{T}_{\text {MIN }} \\ & T_{A}=25^{\circ} \mathrm{C} \text { to } T_{\text {MAX }} \\ T_{A}=25^{\circ} \mathrm{C} \text { to } T_{\text {MIN }} \end{array}$		$\begin{aligned} & 1.8 \\ & 1.8 \\ & 2.0 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 15 \\ & 25 \end{aligned}$	*	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 6.0 \\ & 12 \end{aligned}$	\because	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Large Signal Voltage Gain	$\begin{array}{\|l} \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ \hline \end{array}$	25		70	25	45	70	15	45		V/mV
Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 14 \\ \pm 13 \\ \hline \end{array}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 14 \\ \pm 13 \\ \hline \end{array}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \\ & \hline \end{aligned}$		V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 8			± 8	± 10		± 8	± 10		V
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	80	110		70	90		65	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		40	100		25	150		25	200	$\mu \mathrm{V} / \mathrm{V}$
Input Offset Current	$\begin{aligned} & T_{A}=T_{M A X} \\ & T_{A}=T_{M I N} \\ & \hline \end{aligned}$		$\begin{array}{r} 3.5 \\ 40 \\ \hline \end{array}$	$\begin{gathered} 50 \\ 250 \\ \hline \end{gathered}$		$\begin{gathered} 20 \\ 100 \\ \hline \end{gathered}$	$\begin{array}{r} 200 \\ 500 \\ \hline \end{array}$		$\begin{gathered} 75 \\ 125 \\ \hline \end{gathered}$	$\begin{array}{r} 400 \\ 750 \\ \hline \end{array}$	nA
Input Bias Current	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$		0.3	0.6		0.5	1.5		0.36	2.0	$\mu \mathrm{A}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	85	170		40	100		50	250		k Ω

Note 1: For operating at elevated temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature for LM709/LM709A and $100^{\circ} \mathrm{C}$ maximum for L709C. For operating at elevated temperatures, the device must be derated based on thermal resistance $\theta_{\mathrm{JA}}, \mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$ and T_{A}.
Note 2: These specifications apply for $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ for the LM709/LM709A and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the LM709C with the following conditions: $\pm 9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}, \mathrm{C} 1=5000 \mathrm{pF}, \mathrm{R} 1=1.5 \mathrm{k} \Omega, \mathrm{C} 2=200 \mathrm{pF}$ and $\mathrm{R} 2=51 \Omega$.
Note 3: Absolute Maximum Ratings indicate limits which if exceeded may result in damage. Operating Ratings are conditions where the device is expected to be functional but not necessarily within the guaranteed performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Schematic Diagram**

Typical Applications**

Unity Gain Inverting Amplifier

TL/H/11477-2
*To be used with any capacitive loading on output.
**Pin connections shown are for metal can package.
\dagger Should be equal to DC source resistance on input.
Th

TL/H/11477-7

FET Operational Amplifier

Guaranteed Performance Characteristics

TL/H/11477-9

LM725 Operational Amplifier

General Description

The LM725/LM725A/LM725C are operational amplifiers featuring superior performance in applications where low noise, low drift, and accurate closed-loop gain are required. With high common mode rejection and offset null capability, it is especially suited for low level instrumentation applications over a wide supply voltage range.
The LM725A has tightened electrical performance with higher input accuracy and like the LM725, is guaranteed over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The LM725C has slightly relaxed specifications and has its performance

Features

- High open loop gain 3,000,000
- Low input voltage drift $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- High common mode rejection
- Low input noise current
- Low input offset current

120 dB

- High input voltage range $0.15 \mathrm{pA} / \sqrt{\mathrm{Hz}}$

2 nA
$\pm 14 \mathrm{~V}$

- Wide power supply range
$\pm 3 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Offset null capability
- Output short circuit protection guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

Connection Diagrams and Ordering Information

TL/H/10474-2
Order Number LM725CN See NS Package Number N08E

TL/H/10474-1
Order Number LM725H/883, LM725CH
or LM725AH/883
See NS Package Number H08C

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
$\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 1)
500 mW
Differential Input Voltage
$\pm 5 \mathrm{~V}$
Input Voltage (Note 2)
Electrical Characteristics

Parameter	Conditions	LM725A			LM725			LM725C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (Without External Trim)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$			0.5		0.5	1.0		0.5	2.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0		2.0	20		2.0	35	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		42	80		42	100		42	125	nA
Input Noise Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \\ & \hline \end{aligned}$		$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 1.0 \\ 0.3 \\ 0.15 \end{gathered}$			$\begin{gathered} 1.0 \\ 0.3 \\ 0.15 \end{gathered}$			$\begin{gathered} 1.0 \\ 0.3 \\ 0.15 \end{gathered}$		$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5			1.5			1.5		$\mathrm{M} \Omega$
Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 13.5	± 14		± 13.5	± 14		± 13.5	± 14		V
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \end{aligned}$	1000	3000		1000	3000		250	3000		V / mV
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	120			110	120		94	120		dB
Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$		2.0	5.0		2.0	10		2.0	35	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12.5 \\ & \pm 12.0 \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & \pm 13.5 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{array}{r} \pm 13.5 \\ \pm 13.5 \end{array}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{array}{r} \pm 13.5 \\ \pm 13.5 \\ \hline \end{array}$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80	105		80	105		80	150	mW
Input Offset Voltage (Without External Trim)	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			0.7			1.5			3.5	mV
Average Input Offset Voltage Drift (Without External Trim)	$\mathrm{R}_{\mathrm{S}}=50 \Omega$			2.0		2.0	5.0		2.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Input Offset Voltage Drift (With External Trim)	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		0.6	1.0		0.6			0.6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\begin{aligned} & T_{A}=T_{M A X} \\ & T_{A}=T_{M I N} \end{aligned}$		$\begin{aligned} & 1.2 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4.0 \\ 18.0 \\ \hline \end{gathered}$		$\begin{aligned} & 1.2 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.2 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 35 \\ 50 \\ \hline \end{array}$	nA nA
Average Input Offset Current Drift			35	90		35	150		10		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\begin{aligned} & T_{A}=T_{M A X} \\ & T_{A}=T_{M I N} \end{aligned}$		$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\begin{gathered} 70 \\ 180 \end{gathered}$		$\begin{aligned} & 20 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$			$\begin{aligned} & 125 \\ & 250 \end{aligned}$	nA nA

Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	LM725A			LM725			LM725C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \end{aligned}$	$\begin{gathered} 1,000,000 \\ 500,000 \\ \hline \end{gathered}$			$\begin{aligned} & 1,000,000 \\ & 250,000 \end{aligned}$			$\begin{aligned} & 125,000 \\ & 125,000 \end{aligned}$			$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~V} / \mathrm{V} \end{aligned}$
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	110			100				115		dB
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \Omega$			8.0			20		20		$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	± 12			± 10			± 10			V

Note 1: Derate at $150^{\circ} \mathrm{C} / \mathrm{W}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$.
Note 2: For supply voltages less than $\pm 22 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ unless otherwise specified.
Note 4: For Military electrical specifications RETS725AX are available for LM725AH and RETS725X are available for LM725H.
Schematic Diagram

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Transient Response Test Circuit

TL/H/10474-8

Auxiliary Circuits

Compensation Component Values				
$\mathbf{A}_{\mathbf{V}}$	$\mathbf{R}_{\mathbf{1}}$ (Ω)	$\mathbf{C}_{\mathbf{1}}$ $(\mu \mathrm{F})$	$\mathbf{R}_{\mathbf{2}}$ (Ω)	$\mathbf{C}_{\mathbf{2}}$ $(\mu \mathbf{F})$
10,000	10 k	50 pF		
1,000	470	0.001		
100	47	0.01		
10	27	0.05	270	0.0015
$\mathbf{1}$	10	0.05	39	0.02

TL/H/10474-4

Typical Applications

TL/H/10474-9
DC Gains = 10,000; 1,000; 100; and 10
Bandwidth = Determined by value of C1

Note 1: Indicates $\pm 1 \%$ metal film resistors recommended for temperature stability.

Typical Applications (Continued)
Instrumentation Amplifier with High Common Mode Rejection

$\frac{R 1}{R 6}=\frac{R 3}{R 4}$ for best CMRR
R3 $=$ R4
$R 1=R 6=10 R 3$
Gain $=\frac{R 6}{R 7}$

National Semiconductor

LM741 Operational Amplifier

General Description

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and
output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.
The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/LM741E have their performance guaranteed over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Schematic Diagram

TL/H/9341-7

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 5)	LM741A	LM741E	LM741	LM741C
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW	500 mW	500 mW	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	Continuous	Continuous	Continuous	Continuous
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			
Junction Temperature	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Soldering Information				
N-Package (10 seconds) J- or H-Package (10 seconds)	$260^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$360^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
M-Package	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Infrared (15 seconds)	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 6) 400V 400V 400V . 400V
Electrical Characteristics (Note 3)

Parameter	Conditions	LM741A/LM741E			LM741			LM741C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega \\ & \hline \end{aligned}$		0.8	3.0		1.0	5.0		2.0	6.0	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	$\begin{aligned} & T_{\text {AMIN }} \leq T_{A} \leq T_{\text {AMAX }} \\ & R_{S} \leq 50 \Omega \\ & R_{S} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$			4.0			6.0			7.5	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Average Input Offset Voltage Drift				15							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Adjustment Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$	± 10				± 15			± 15		mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0	30		20	200		20	200	nA
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {AMAX }}$			70		85	500			300	nA
Average Input Offset Current Drift				0.5							nA/ ${ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	80		80	500		80	500	nA
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }}$			0.210			1.5			0.8	$\mu \mathrm{A}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$	1.0	6.0		0.3	2.0		0.3	2.0		$\mathrm{M} \Omega$
	$\begin{aligned} & T_{\text {AMIN }} \leq T_{A} \leq T_{A M A X} \\ & V_{S}= \pm 20 \mathrm{~V} \end{aligned}$	0.5				.					M Ω
Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							± 12	± 13		V
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }}$				± 12	± 13					V
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \hline \end{aligned}$	50			50	200		20	200		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
	$T_{A M I N} \leq T_{A} \leq T_{A M A X}$, $R_{L} \geq 2 \mathrm{k} \Omega$, $\begin{aligned} & V_{S}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 32 \\ & 10 \\ & \hline \end{aligned}$			25			15			V / mV V / mV V/mV

Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	LM741A/LM741E			LM741			LM741C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 20 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & R_{L} \geq 2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 16 \\ & \pm 15 \end{aligned}$			"						$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & R_{L} \geq 10 \mathrm{k} \Omega \\ & R_{L} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$				$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Short Circuit Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	25	$\begin{aligned} & 35 \\ & 40 \end{aligned}$		25			25		mA mA
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }} \\ & R_{S} \leq 10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CM}}= \pm 12 \mathrm{~V} \\ & R_{\mathrm{S}} \leq 50 \Omega, \mathrm{~V}_{\mathrm{CM}}= \pm 12 \mathrm{~V} \\ & \hline \end{aligned}$	80	95		70	90		70	90		$\begin{aligned} & d B \\ & d B \end{aligned}$
Supply Voltage Rejection Ratio	$\begin{aligned} & T_{A M I N} \leq T_{A} \leq T_{A M A X} \\ & V_{S}= \pm 20 \mathrm{~V} \text { to } V_{S}= \pm 5 \mathrm{~V} \\ & R_{S} \leq 50 \Omega \\ & R_{S} \leq 10 \mathrm{k} \Omega \end{aligned}$	86	96		77	96		77	96		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Transient Response Rise Time Overshoot	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unity Gain		$\begin{gathered} 0.25 \\ 6.0 \end{gathered}$	$\begin{aligned} & 0.8 \\ & 20 \end{aligned}$		$\begin{gathered} 0.3 \\ 5 \end{gathered}$			$\begin{gathered} 0.3 \\ 5 \end{gathered}$		$\begin{gathered} \mu \mathrm{s} \\ \% \end{gathered}$
Bandwidth (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.437	1.5								MHz
Slew Rate	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$, Unity Gain	0.3	0.7			0.5			0.5		$\mathrm{V} / \mu \mathrm{s}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					1.7	2.8		1.7	2.8	mA
Power Consumption	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		80	150		50	85		50	85	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
LM741A	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {AMIN }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{AMAX}} \end{aligned}$			$\begin{aligned} & 165 \\ & 135 \end{aligned}$							$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
LM741E	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {AMIN }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {AMAX }} \\ & \hline \end{aligned}$			$\begin{aligned} & 150 \\ & 150 \end{aligned}$							mW mW
LM741	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {AMIN }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {AMAX }} \end{aligned}$					$\begin{aligned} & 60 \\ & 45 \end{aligned}$	$\begin{gathered} 100 \\ 75 \end{gathered}$,			$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

Note 1: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_{j} max. (listed under "Absolute Maximum
Ratings"). $T_{j}=T_{A}+\left(\theta_{j A} P_{D}\right)$.

Thermal Resistance	Cerdip (J)	DIP (N)	HO8 (H)	SO-8 (M)
θ_{jA} (Junction to Ambient)	$100^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$170^{\circ} \mathrm{C} / \mathrm{W}$	$195^{\circ} \mathrm{C} / \mathrm{W}$
θ_{jC} (Junction to Case)	N/A	N/A	$25^{\circ} \mathrm{C} / \mathrm{W}$	N/A

Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Unless otherwise specified, these specifications apply for $V_{S}= \pm 15 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.
Note 4: Calculated value from: $\mathrm{BW}(\mathrm{MHz})=0.35 /$ Rise $\operatorname{Time}(\mu \mathrm{s})$.
Note 5: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.
Note 6: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Connection Diagrams

Metal Can Package

TL/H/9341-2
Order Number LM741H, LM741H/883*, LM741AH/883 or LM741CH See NS Package Number H08C

Dual-In-Line or S.O. Package

TL/H/9341-3
Order Number LM741J, LM741J/883, LM741CM, LM741CN or LM741EN
See NS Package Number J08A, M08A or N08E

Ceramic Dual-In-Line Package

Order Number LM741J-14/883*, LM741AJ-14/883** See NS Package Number J14A
*also available per JM38510/10101
**also available per JM38510/10102

Order Number LM741W/883
See NS Package Number W10A

LM747

Dual Operational Amplifier

General Description

The LM747 is a general purpose dual operational amplifier. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.
Additional features of the LM747 are: no latch-up when input common mode range is exceeded, freedom from oscillations, and package flexibility.
The LM747C/LM747E is identical to the LM747/LM747A except that the LM747C/LM747E has its specifications guaranteed over the temperature range from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Features

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low power consumption
- No latch-up
- Balanced offset null

Connection Diagrams

TL/H/11479-4 See NS Package Number H10C

* $\mathrm{V}+\mathrm{A}$ and $\mathrm{V}+\mathrm{B}$ are internally connected.

Order Number LM747CN or LM747EN See NS Package Number N14A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage LM747/LM747A
$\pm 22 \mathrm{~V}$
LM747C/LM747E
$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1) 800 mW
Differential Input Voltage
$\pm 30 \mathrm{~V}$

Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	
Indefinite	
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM747/LM747A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM747C/LM747E	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

Parameter	Conditions	LM747A/LM747E			LM747			LM747C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & R_{S} \leq 10 \mathrm{k} \Omega \\ & R_{S} \leq 50 \Omega \\ & \hline \end{aligned}$		0.8	3.0		1.0	5.0		2.0	6.0	mV
	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$			4.0			6.0			7.5	mV
Average Input Offset Voltage Drift				15							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Adjustment Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	± 10				± 15			± 15		mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0	30		20	200		20	200	nA
				70		85	500			300	
Average Input Offset Current Drift				0.5							$n A /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {AMIN }} \leq T_{A} \leq T_{\text {AMAX }} \end{aligned}$			$\begin{gathered} 80 \\ 0.210 \\ \hline \end{gathered}$		80	$\begin{array}{r} 500 \\ 1.5 \\ \hline \end{array}$			$\begin{array}{r} 500 \\ 0.8 \\ \hline \end{array}$	nA μA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$	1.0	6.0		0.3	2.0		0.3	2.0		$\mathrm{M} \Omega$
	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	0.5									
Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							± 12	± 13		V
		± 12	± 13		± 12	± 13					
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} C, R_{L} \geq 2 \mathrm{k} \Omega \\ & V_{S}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V} \end{aligned}$	50									V / mV
	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$					200		20	200		V/mV
	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V}$	32									V / mV
	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$				25			15			V / mV
	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 2 \mathrm{~V}$	10									V / mV
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 20 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 16 \\ & \pm 15 \\ & \hline \end{aligned}$									V
	$\begin{aligned} & V_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$				$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \\ & \hline \end{aligned}$		V
Output Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{array}{r} 10 \\ 10 \\ \hline \end{array}$	25	$\begin{aligned} & 35 \\ & 40 \\ & \hline \end{aligned}$		25			25		mA
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}$				70	90		70	90		dB
	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}$	80	95								

Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	LM747A/LM747E			LM747			LM747C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Supply Voltage Rejection Ratio	$\begin{aligned} & V_{S}= \pm 20 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	86	96		77	96		77	96		dB
Transient Response Rise Time Overshoot	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unity Gain		$\begin{gathered} 0.25 \\ 6.0 \\ \hline \end{gathered}$	$\begin{aligned} & 0.8 \\ & 20 \\ & \hline \end{aligned}$		$\begin{gathered} 0.3 \\ 5 \\ \hline \end{gathered}$			$\begin{gathered} 0.3 \\ 5 \\ \hline \end{gathered}$		$\begin{gathered} \mu \mathrm{s} \\ \% \end{gathered}$
Bandwidth (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.437	1.5								MHz
Slew Rate	$T_{A}=25^{\circ} \mathrm{C}$, Unity Gain	0.3	0.7			0.5			0.5		$\mathrm{V} / \mu \mathrm{s}$
Supply Current/Amp	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2.5		1.7	2.8		1.7	2.8	mA
Power Consumption/Amp	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 20 \mathrm{~V} \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$		80	150		50	85		50	85	mW
LM747A	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {AMIN }} \\ & T_{\mathrm{A}}=\mathrm{T}_{\text {AMAX }} \\ & \hline \end{aligned}$			$\begin{aligned} & 165 \\ & 135 \\ & \hline \end{aligned}$							mW
LM747E	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {AMIN }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {AMAX }} \end{aligned}$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & \hline \end{aligned}$							mW
LM747	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & T_{A}=T_{\text {AMIN }} \\ & T_{A}=T_{\text {AMAX }} \end{aligned}$					$\begin{aligned} & 60 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 75 \\ & \hline \end{aligned}$				mW

Note 1: The maximum junction temperature of the LM747C/LM747E is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devies in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} /$ W , junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$ for the LM747A and $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ for the LM747E unless otherwise specified. The LM747 and LM747C are specified for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$, respectively, unless otherwise specified.
Note 4: Calculated value from: $0.35 /$ Rise Time ($\mu \mathrm{s}$).

Schematic Diagram (Each Amplifier)

TL/H/11479-1

[^9]Typical Performance Characteristics

Input Noise Voltage
and Current vs Frequency

Broadband Noise for Various Bandwidths

Voltage Follower Large Signal Pulse Response

TL/H/11479-3

LM748 Operational Amplifier

General Description

The LM748 is a general purpose operational amplifier with external frequency compensation.
The unity-gain compensation specified makes the circuit stable for all feedback configurations, even with capacitive loads. It is possible to optimize compensation for best high frequency performance at any gain. As a comparator, the output can be clamped at any desired level to make it compatible with logic circuits.
The LM748C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Frequency compensation with a single 30 pF capacitor
- Operation from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- Continuous short-circuit protection
- Operation as a comparator with differential inputs as high as $\pm 30 \mathrm{~V}$
- No latch-up when common mode range is exceeded
- Same pin configuration as the LM101

Connection Diagram

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage
$\pm 22 \mathrm{~V}$
Power Dissipation (Note 1)
500 mW
Differential Input Voltage
$\pm 30 \mathrm{~V}$

Input Voltage (Note 2) $\pm 15 \mathrm{~V}$
Output Short-Circuit Duration (Note 3)
Operating Temperature Range:
LM748C
$0^{\circ} \mathrm{C}$ to +70 C
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)
$+300^{\circ} \mathrm{C}$

Electrical Characteristics
(Note 4)

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}, \mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$		1.0	5.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		40	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		120	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	300	800		$\mathrm{k} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		1.8	2.8	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	160		V/mV
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			6.0	mV
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \Omega$		3.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		6.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			300	nA
	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			500	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			0.8	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1.5	$\mu \mathrm{A}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		1.2	2.25	mA
	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		1.9	3.3	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			V/mV
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		V
	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 13		V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 12			V
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	77	90		dB

Note 1: For operating at elevated temperatures, the device must be derated based on a maximum junction to case thermal resistance of $45^{\circ} \mathrm{C}$ per watt, or $150^{\circ} \mathrm{C}$ per watt junction to ambient. (See Curves).
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to $+125^{\circ} \mathrm{C}$ and ambient temperatures to $+70^{\circ} \mathrm{C}$.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, unless otherwise specified.

Typical Applications

Voltage Comparator for Driving DTL or TTL Integrated Circuits

TL/H/11478-4
\dagger May be zero or equal to parallel combination of R1 and R2 for minimum offset.

TL/H/11478-3

Voltage Comparator for Driving RTL Logic or High Current Driver

Guaranteed Performance Characteristics (Note 4)

Typical Performance Characteristics

Open Loop Frequency Response

Input Current

Maximum Power Dissipation

Voltage Follower

 Pulse Response

LM759/LM77000

Power Operational Amplifiers

General Description

The LM759 and LM77000 are high performance operational amplifiers that feature high output current capability. The LM759 is capable of providing 325 mA and the LM77000 providing 250 mA . Both amplifiers feature small signal characteristics that are better than the LM741. The amplifiers are designed to operate from a single or dual power supply with an input common mode range that includes the negative supply. The high gain and high output power provide superior performance. Internal current limiting, thermal shutdown, and safe area compensation are employed making the LM759 and LM77000 essentially indestructible.

Features

- Output current LM759-325 mA minimum LM77000-250 mA minimum
- Internal short circuit current limiting
- Internal thermal overload protection
- Internal output transistors safe-area protection
- Input common mode voltage range includes ground or negative supply

Applications

- Voltage regulators
- Audio amplifiers
- Servo amplifiers
- Power drivers

Connection Diagrams and Ordering Information

TL/H/10075-1
Lead 4 connected to case.
Top View
Order Number LM759MH, LM759CH or LM759H/883
See NS Package Number H08C

Order Number LM759CP or LM77000CP See NS Package Number P04A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range

Metal Can	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Plastic Package	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Junction Temperature Range	
Military (LM759M)	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Commercial (LM759C, LM77000C)	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature	
Metal Can (soldering, 60 sec$)$	$300^{\circ} \mathrm{C}$
Plastic Package (soldering, 10 sec$)$	$265^{\circ} \mathrm{C}$

Internal Power Dissipation (Note 1) Internally Limited
Supply Voltage $\quad \therefore \pm 18 \mathrm{~V}$
Differential Input Voltage 30 V
Input Voltage (note 2)
$\pm 15 \mathrm{~V}$

LM759

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter		Conditions	Min	Typ	Max	Units
V_{10}	Input Offset Voltage		$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	3.0	mV
10	Input Offset Current				5.0	30	nA
$I_{\text {IB }}$	Input Bias Current				50	150	nA
Z_{1}	Input Impedance			0.25	1.5		$\mathrm{M} \Omega$
ICC	Supply Current				12	18	mA
$\mathrm{V}_{\text {IR }}$	Input Voltage Range			$\mathrm{V}^{+}-2 \mathrm{~V}$ to V^{-}	$\mathrm{V}^{+}-2 \mathrm{~V}$ to V^{-}		V
los	Output Short Circuit Current		$\left\|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{O}}\right\|=30 \mathrm{~V}$		± 200		mA
IOPEAK	Peak Output Current		$3.0 \mathrm{~V} \leq\left\|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{O}}\right\| \leq 10 \mathrm{~V}$	± 325	± 500		mA
Avs	Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geq 50 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	50	200		V / mV
TR	Transient Response	Rise Time	$R_{L}=50 \Omega, A_{V}=1.0$		300		ns
		Overshoot			5.0		\%
SR	Slew Rate		$R_{L}=50 \Omega, A_{V}=1.0$	\cdot	0.6		$\mathrm{V} / \mu \mathrm{s}$
BW	Bandwidth		$A_{V}=1.0$		1.0		MHz

The following specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+150^{\circ} \mathrm{C}$

V_{10}	Input Offset Voltage	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$			4.5	mV
I_{IO}	Input Offset Current				60	nA
I_{IB}	Input Bias Current				300	nA
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$	80	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	80	100		dB
AVS	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 50 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	200		$\mathrm{~V} / \mathrm{mV}$
V_{OP}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	± 10	± 12.5		V

Electrical Characteristics $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter		Conditions	Min	Typ	Max	Units
V_{10}	Input Offset Voltage		$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	-	1.0	6.0	mV
10	Input Offset Current				5.0	50	nA
I_{B}	Input Bias Current				50	250	nA
Z_{1}	Input Impedance			0.25	1.5		$\mathrm{M} \Omega$
$\mathrm{I}_{\text {CC }}$	Supply Current				12	18	mA
$\mathrm{V}_{\text {IR }}$	Input Voltage Range			$\mathrm{V}^{+}-2 \mathrm{~V}$ to V^{-}	$\mathrm{V}^{+}-2 \mathrm{~V}$ to V^{-}		V
los	Output Short Circuit Current		$\left\|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{O}}\right\|=30 \mathrm{~V}$		± 200		mA
IOPEAK	Peak Output Current		$3.0 \mathrm{~V} \leq\left\|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{O}}\right\| \leq 10 \mathrm{~V}$	± 325	± 500		mA
Avs	Large Signal Voltage Gain		$R_{L} \geq 50 \Omega, \mathrm{~V}_{O}= \pm 10 \mathrm{~V}$	25	200		V / mV
TR	Transient Response	Rise Time	$R_{L}=50 \Omega, A_{V}=1.0$		300		ns
		Overshoot			10		\%
SR	Slew Rate		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~A}_{\mathrm{V}}=1.0$		0.5		$\mathrm{V} / \mu \mathrm{s}$
BW	Bandwidth		$A_{V}=1.0$		1.0		MHz

The following specifications apply for $0^{\circ} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$

$\mathrm{V}_{I O}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			7.5	mV
I_{IO}	Input Offset Current				100	nA
I_{IB}	Input Bias Current				400	nA
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	80	100		dB
$\mathrm{~A}_{\mathrm{VS}}$	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 50 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	200		$\mathrm{~V} / \mathrm{mV}$
V_{OP}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	± 10	± 12.5		V

LM77000

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter		Conditions	Min	Typ	Max	Units
V_{10}	Input Offset Voltage		$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	8.0	mV .
10	Input Offset Current				5.0	50	nA
I_{B}	Input Bias Current				50	250	nA
Z_{1}	Input Impedance			0.25	1.5		$\mathrm{M} \Omega$
ICC	Supply Current				12	18	mA
$\mathrm{V}_{\text {IR }}$	Input Voltage Range			+ 13 to V^{-}	+ 13 to V^{-}		V
los	Output Short Circuit Current		$\left\|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{O}}\right\|=30 \mathrm{~V}$		± 200		mA
IOPEAK	Peak Output Current		$3.0 \mathrm{~V} \leq\left\|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{O}}\right\| \leq 10 \mathrm{~V}$	± 250	± 400		mA
Avs	Large Signal Voltage Gain		$R_{L} \geq 50 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	200		V / mV
TR	Transient Response	Rise Time	$R_{L}=50 \Omega, A_{V}=1.0$		300		ns
		Overshoot			10		\%
SR	Slew Rate		$R_{L}=50 \Omega, A_{V}=1.0$		0.5		$\mathrm{V} / \mu \mathrm{s}$
BW	Bandwidth		$A_{V}=1.0$		1.0		MHz

The following specifications apply for $0^{\circ} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$

V_{10}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			10	mV
I_{IO}	Input Offset Current				100	nA
I_{IB}	Input Bias Current				400	nA
CMR	Common Mode Rejection	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	80	100		dB
$\mathrm{~A}_{\mathrm{VS}}$	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 50 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	200		$\mathrm{~V} / \mathrm{mV}$
V_{OP}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	± 10	± 12.5		V

Note 1: Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, use the thermal resistance values which follow the Equivalent Circuit Schematic.
Note 2: For a supply voltage less than 30 V between V^{+}and V^{-}, the absolute maximum input voltage is equal to the supply voltage.
Note 3: For military electrical specifications RETS759X are available for LM759H.

Package	$\begin{gathered} \text { Typ } \\ \theta_{\mathrm{Jc}} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ \theta_{\mathrm{Jc}} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	Typ θ_{JA} ${ }^{\circ} \mathrm{C} / \mathrm{W}$	$\begin{gathered} \text { Max } \\ \theta_{\text {JA }} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Plastic Package (P)	8.0	12	75	80
Metal Can (H)	30	40	120	150
$\begin{aligned} P_{D ~ M a x} & =\frac{T_{J M a x}-T_{A}}{\theta_{J C}+\theta_{C A}} \text { or } \\ & =\frac{T_{J M a x}-T_{A}}{\theta_{J A}} \text { (without a heat sink) } \end{aligned}$				
$\theta_{\mathrm{CA}}=\theta_{\mathrm{CS}}+\theta_{\text {SA }}$				

Solving T_{J} :
$T_{J}=T_{A}+P_{D}\left(\theta_{J C}+\theta_{C A}\right)$ or
$=T_{A}+P_{D} \theta_{J A}$ (without a heat sink)
Where:
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$\mathrm{P}_{\mathrm{D}}=$ Power Dissipation
$\theta_{\mathrm{JA}}=$ Junction to ambient thermal resistance
$\theta_{\mathrm{JC}}=$ Junction to case thermal resistance
$\theta_{\mathrm{CA}}=$ Case to ambient thermal resistance
$\theta_{\text {CS }}=$ Case to heat sink thermal resistance
$\theta_{\text {SA }}=$ Heat sink to ambient thermal resistance

Mounting Hints

Metal Can Package (LM759CH/LM759MH)
The LM759 in the 8-Lead TO-99 metal can package must be used with a heat sink. With $\pm 15 \mathrm{~V}$ power supplies, the LM759 can dissipate up to 540 mW in its quiescent (no load) state. This would result in a $100^{\circ} \mathrm{C}$ rise in chip temperature to $125^{\circ} \mathrm{C}$ (assuming a $25^{\circ} \mathrm{C}$ ambient temperature). In order to avoid this problem, it is advisable to use either a slip on or stud mount heat sink with this package. If a stud mount heat sink is used, it may be necessary to use insulating washers between the stud and the chassis because the case of the LM759 is internally connected to the negative power supply terminal.

Plastic Package (LM759CP/LM77000CP)

The LM759CP and LM77000CP are designed to be attached by the tab to a heat sink. This heat sink can be either one of the many heat sinks which are commercially available, a piece of metal such as the equipment chassis, or a suitable amount of copper foil as on a double sided PC board. The important thing to remember is that the negative power supply connection to the op amp must be made through the tab. Furthermore, adequate heat sinking must be provided to keep the chip temperature below $125^{\circ} \mathrm{C}$ under worst case load and ambient temperature conditions.

Typical Performance Characteristics

Voltage Follower Large Signal Puise Response

Total Harmonic Distortion vs Frequency

Applications

TL/H/10075-5

Audio Applications

Low Cost Phono Amplifier

TL/H/10075-6

Speaker Impedance (Ohms)	Output Power (Watts)	Min Supply (Volts)	V Op_p $^{\text {(Volts) }}$
4	0.18	9	2.4
8	0.36	12	4.8
16	0.72	15	9.6
32	1.44	25	19.2

Applications (Continued)

Bi-Directional Intercom System Using the LM759 Power Op Amp

TL/H/10075-9

Features:

Circuit Simplicity
1 Watt of Audio Output
Duplex operation with only one two-wire cable as interconnect.
Note 1: All resistor values in ohms.

Applications (Continued)

Features:

High Slew Rate $9 \mathrm{~V} / \mu \mathrm{s}$
High 3 dB Power Bandwidth 85 kHz 18 Watts Output Power into an 8Ω load. Low Distortion- $0.2 \%, 10 \mathrm{Vrms}, 1 \mathrm{kHz}$ into 8Ω Design Consideration $A_{V} \geq 10$

Servo Applications
AG Servo Amplifier-Bridge Type

TL/H/10075-11
Features:
Gain of 10
Use of LM759 Means Simple Inexpensive Circuit
Design Considerations:
325 mA Max Output Current

Features:

Circuit Simplicity
One Chip Means Excellent Reliability
Design Considerations
$10 \leq 325 \mathrm{~mA}$
Note 1: All resistor values in ohms.

Regulator Applications

Features:

Excellent Load and Line Regulation Excellent Temperature Coefficient-Depends Largely on Tempco of the Reference Zener
Note 1: All resistor values in ohms.

LM1558/LM1458 Dual Operational Amplifier

General Description

The LM1558 and the LM1458 are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.
The LM1458 is identical to the LM1558 except that the LM1458 has its specifications guaranteed over the temperature range from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Features

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low-power consumption

■ 8-lead can and 8-lead mini DIP

- No latch up when input common mode range is exceeded

Schematic and Connection Diagrams

TL/H/7886-1
Note: Numbers in parentheses are pin numbers for amplifier B.

Metal Can Package

TL/H/7886-2
Top View
Order Number LM1558H,
LM1558H/883 or LM1458H
See NS Package Number H08C

Dual-In-Line Package

TL/H/7886-3
Top View

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 4)
Supply Voltage

LM1558	$\pm 22 \mathrm{~V}$
LM1458	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	
LM1558H/LM1458H	500 mW
LM1458N	$\pm 00 \mathrm{~mW}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Continuous

Operating Temperature Range	
LM1558	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM1458	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)	$260^{\circ} \mathrm{C}$
Soldering Information	
Dual-In-Line Package	
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$
Small Outline Package	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.	
ESD tolerance (Note 5)	300 V

Electrical Characteristics (Note 3)

Parameter	Conditions	LM1558			LM1458			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	5.0		1.0	6.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80	200		80	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200	500		200	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.3	1.0		0.3	1.0		$\mathrm{M} \Omega$
Supply Current Both Amplifiers	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		3.0	5.0		3.0	5.6	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	160		20	160		V/mV
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			6.0			7.5	mV
Input Offset Current				500			300	nA
Input Bias Current				1.5			0.8	$\mu \mathrm{A}$
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq \mathrm{k} \Omega \end{aligned}$	25			15			V/mV
Output Voltage Swing	$\begin{aligned} V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} & =10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}} & =2 \mathrm{k} \Omega \end{aligned}$	± 12	± 14		± 12	± 14		V
		± 10	± 13		± 10	± 13		V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 12			± 12			V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	77	96		77	96		dB

Note 1: The maximum junction temperature of the LM1558 is $150^{\circ} \mathrm{C}$, while that of the LM1458 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 08 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the DIP the device must be derated based on a thermal resistance of $187^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM1458, however, all specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$.
Note 4: Refer to RETS 1558V for LM1558J and LM1558H military specifications.
Note 5: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

LM1875 20W Audio Power Amplifier

General Description

The LM1875 is a monolithic power amplifier offering very low distortion and high quality performance for consumer audio applications.
The LM1875 delivers 20 watts into a 4Ω or 8Ω load on $\pm 25 \mathrm{~V}$ supplies. Using an 8Ω load and $\pm 30 \mathrm{~V}$ supplies, over 30 watts of power may be delivered. The amplifier is designed to operate with a minimum of external components. Device overload protection consists of both internal current limit and thermal shutdown.

The LM1875 design takes advantage of advanced circuit techniques and processing to achieve extremely low distortion levels even at high output power levels. Other outstanding features include high gain, fast slew rate and a wide power bandwidth, large output voltage swing, high current capability, and a very wide supply range. The amplifier is internally compensated and stable for gains of 10 or greater.

Features

- Up to 30 watts output power
- Avo typically 90 dB

■ Low distortion: $0.015 \%, 1 \mathrm{kHz}, 20 \mathrm{~W}$

- Wide power bandwidth: 70 kHz
- Protection for AC and DC short circuits to ground
- Thermal protection with parole circuit
- High current capability: 4A
- Wide supply range $16 \mathrm{~V}-60 \mathrm{~V}$
- Internal output protection diodes
- 94 dB ripple rejection
- Plastic power package TO-220

Applications

- High performance audio systems
- Bridge amplifiers
- Stereo phonographs
- Servo amplifiers

■ Instrument systems

Typical Applications

TL/H/5030-2

```
Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
    60V
Input Voltage
- VEE to }\mp@subsup{V}{CC}{
\begin{tabular}{lr} 
Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Junction Temperature & \(150^{\circ} \mathrm{C}\) \\
Lead Temperature (Soldering, 10 seconds) & \(260^{\circ} \mathrm{C}\) \\
\(\theta_{\mathrm{JC}}\) & \(3^{\circ} \mathrm{C}\) \\
\(\theta_{\mathrm{JA}}\) & \(73^{\circ} \mathrm{C}\)
\end{tabular}
```


Electrical Characteristics

$V_{C C}=+25 \mathrm{~V},-V_{E E}=-25 \mathrm{~V}, \mathrm{~T}_{\text {AMBIENT }}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=8 \Omega, A_{V}=20(26 \mathrm{~dB}), \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}$, unless otherwise specified.

Parameter	Conditions	Typical	Tested Limits	Units
Supply Current	POUT $=0 W$	70	100	mA
Output Power (Note 1)	THD $=1 \%$	25		W
THD (Note 1)	$\begin{aligned} & \text { POUT }=20 \mathrm{~W}, \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \\ & \text { POUT }=20 \mathrm{~W}, \mathrm{f}_{\mathrm{O}}=20 \mathrm{kHz} \\ & \text { POUT }=20 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \\ & \text { POUT }=20 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{f}_{\mathrm{O}}=20 \mathrm{kHz} \\ & \hline \end{aligned}$	$\begin{gathered} 0.015 \\ 0.05 \\ 0.022 \\ 0.07 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$
Offset Voltage		± 1	± 15	mV
Input Bias Current		± 0.2	± 2	$\mu \mathrm{A}$
Input Offset Current		0	± 0.5	$\mu \mathrm{A}$
Gain-Bandwidth Product	$\mathrm{f}_{0}=20 \mathrm{kHz}$	5.5		MHz
Open Loop Gain	DC	90		dB
PSRR	$\mathrm{V}_{\mathrm{CC}}, 1 \mathrm{kHz}, 1 \mathrm{Vrms}$ $\mathrm{V}_{\mathrm{EE}}, 1 \mathrm{kHz}, 1 \mathrm{Vrms}$	$\begin{aligned} & 95 \\ & 83 \\ & \hline \end{aligned}$	$\begin{aligned} & 52 \\ & 52 \\ & \hline \end{aligned}$	dB dB
Max Slew Rate	$20 \mathrm{~W}, 8 \Omega, 70 \mathrm{kHz} \mathrm{BW}$	8		$\mathrm{V} / \mu \mathrm{s}$
Current Limit	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SUPPLY }}-10 \mathrm{~V}$	4	3	A
Equivalent Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=600 \Omega, \mathrm{CCIR}$	3		μ Vrms

Note 1: Assumes the use of a heat sink having a thermal resistance of $1^{\circ} \mathrm{C} / \mathrm{W}$ and no insulator with an ambient temperature of $25^{\circ} \mathrm{C}$. Because the output limiting circuitry has a negative temperature coefficient, the maximum output power delivered to a 4Ω load may be slightly reduced when the tab temperature exceeds $55^{\circ} \mathrm{C}$.

Typical Applications (Continued)
Typical Single Supply Operation

Typical Performance Characteristics

THD vs Frequency

Power Dissipation vs Power Output

Power Output vs Supply Voltage

Device Dissipation vs Ambient Temperature \dagger

$\dagger \phi$ INTERFACE $=1^{\circ} \mathrm{C} / \mathrm{W}$. See Application Hints.
Iout vs Vout-Current Limit/ Safe Operating Area Boundary

FREQUENCY (Hz)

Input Bias Current

TL/H/5030-4
*Thermal shutdown with infinite heat sink
**Thermal shutdown with $1^{\circ} \mathrm{C} / \mathrm{W}$ heat sink

Application Hints

STABILITY

The LM1875 is designed to be stable when operated at a closed-loop gain of 10 or greater, but, as with any other high-current amplifier, the LM1875 can be made to oscillate under certain conditions. These usually involve printed circuit board layout or output/input coupling.
Proper layout of the printed circuit board is very important. While the LM1875 will be stable when installed in a board similar to the ones shown in this data sheet, it is sometimes necessary to modify the layout somewhat to suit the physical requirements of a particular application. When designing a different layout, it is important to return the load ground, the output compensation ground, and the low level (feedback and input) grounds to the circuit board ground point through separate paths. Otherwise, large currents flowing along a ground conductor will generate voltages on the conductor which can effectively act as signals at the input, resulting in high frequency oscillation or excessive distortion. It is advisable to keep the output compensation components and the $0.1 \mu \mathrm{~F}$ supply decoupling capacitors as close as possible to the LM1875 to reduce the effects of PCB trace resistance and inductance. For the same reason, the ground return paths for these components should be as short as possible.
Occasionally, current in the output leads (which function as antennas) can be coupled through the air to the amplifier input, resulting in high-frequency oscillation. This normally happens when the source impedance is high or the input leads are long. The problem can be eliminated by placing a small capacitor (on the order of 50 pF to 500 pF) across the circuit input.
Most power amplifiers do not drive highly capacitive loads well, and the LM1875 is no exception. If the output of the LM1875 is connected directly to a capacitor with no series resistance, the square wave response will exhibit ringing if the capacitance is greater than about $0.1 \mu \mathrm{~F}$. The amplifier can typically drive load capacitances up to $2 \mu \mathrm{~F}$ or so without oscillating, but this is not recommended. If highly capacitive loads are expected, a resistor (at least 1Ω) should be placed in series with the output of the LM1875. A method commonly employed to protect amplifiers from low impedances at high frequencies is to couple to the load through a 10Ω resistor in parallel with a $5 \mu \mathrm{H}$ inductor.

DISTORTION

The preceding suggestions regarding circuit board grounding techniques will also help to prevent excessive distortion levels in audio applications. For low THD, it is also necessary to keep the power supply traces and wires separated from the traces and wires connected to the inputs of the LM1875. This prevents the power supply currents, which are large and nonlinear, from inductively coupling to the LM1875 inputs. Power supply wires should be twisted together and separated from the circuit board. Where these wires are soldered to the board, they should be perpendicular to the plane of the board at least to a distance of a couple of inches. With a proper physical layout, THD levels at 20 kHz with 10 W output to an 8Ω load should be less than 0.05%, and less than 0.02% at 1 kHz .

CURRENT LIMIT AND SAFE OPERATING AREA (SOA) PROTECTION

A power amplifier's output transistors can be damaged by excessive applied voltage, current flow, or power dissipation. The voltage applied to the amplifier is limited by the design of the external power supply, while the maximum current passed by the output devices is usually limited by internal circuitry to some fixed value. Short-term power dissipation is usually not limited in monolithic audio power amplifiers, and this can be a problem when driving reactive loads, which may draw large currents while high voltages appear on the output transistors. The LM1875 not only limits current to around 4A, but also reduces the value of the limit current when an output transistor has a high voltage across it.

When driving nonlinear reactive loads such as motors or loudspeakers with built-in protection relays, there is a possibility that an amplifier output will be connected to a load whose terminal voltage may attempt to swing beyond the power supply voltages applied to the amplifier. This can cause degradation of the output transistors or catastrophic failure of the whole circuit. The standard protection for this type of failure mechanism is a pair of diodes connected between the output of the amplifier and the supply rails. These are part of the internal circuitry of the LM1875, and needn't be added externally when standard reactive loads are driven.

THERMAL PROTECTION

The LM1875 has a sophisticated thermal protection scheme to prevent long-term thermal stress to the device. When the temperature on the die reaches $170^{\circ} \mathrm{C}$, the LM1875 shuts down. It starts operating again when the die temperature drops to about $145^{\circ} \mathrm{C}$, but if the temperature again begins to rise, shutdown will occur at only $150^{\circ} \mathrm{C}$. Therefore, the device is allowed to heat up to a relatively high temperature if the fault condition is temporary, but a sustained fault will limit the maximum die temperature to a lower value. This greatly reduces the stresses imposed on the IC by thermal cycling, which in turn improves its reliability under sustained fault conditions.
Since the die temperature is directly dependent upon the heat sink, the heat sink should be chosen for thermal resistance low enough that thermal shutdown will not be reached during normal operation. Using the best heat sink possible within the cost and space constraints of the system will improve the long-term reliability of any power semiconductor device.

POWER DISSIPATION AND HEAT SINKING

The LM1875 must always be operated with a heat sink, even when it is not required to drive a load. The maximum idling current of the device is 100 mA , so that on a 60 V power supply an unloaded LM1875 must dissipate 6W of power. The $54^{\circ} \mathrm{C} / \mathrm{W}$ junction-to-ambient thermal resistance of a TO-220 package would cause the die temperature to rise $324^{\circ} \mathrm{C}$ above ambient, so the thermal protection circuitry will shut the amplifier down if operation without a heat sink is attempted.

Application Hints (Continued)

In order to determine the appropriate heat sink for a given application, the power dissipation of the LM1875 in that application must be known. When the load is resistive, the maximum average power that the IC will be required to dissipate is approximately:

$$
\mathrm{P}_{\mathrm{D}(\mathrm{MAX})} \approx \frac{\mathrm{V}_{S^{2}}}{2 \pi^{2} \mathrm{R}_{\mathrm{L}}}+\mathrm{P}_{\mathrm{Q}}
$$

where V_{S} is the total power supply voltage across the LM1875, R_{L} is the load resistance, and P_{Q} is the quiescent power dissipation of the amplifier. The above equation is only an approximation which assumes an "ideal" class B output stage and constant power dissipation in all other parts of the circuit. The curves of "Power Dissipation vs Power Output" give a better representation of the behavior of the LM1875 with various power supply voltages and resistive loads. As an example, if the LM1875 is operated on a 50 V power supply with a resistive load of 8Ω, it can develop up to 19 W of internal power dissipation. If the die temperature is to remain below $150^{\circ} \mathrm{C}$ for ambient temperatures up to $70^{\circ} \mathrm{C}$, the total junction-to-ambient thermal resistance must be less than

$$
\frac{150^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{19 \mathrm{~W}}=4.2^{\circ} \mathrm{C} / \mathrm{W} .
$$

Using $\theta_{\mathrm{JC}}=2^{\circ} \mathrm{C} / \mathrm{W}$, the sum of the case-to-heat-sink interface thermal resistance and the heat-sink-to-ambient thermal resistance must be less than $2.2^{\circ} \mathrm{C} / \mathrm{W}$. The case-to-heat-sink thermal resistance of the TO-220 package varies with the mounting method used. A metal-to-metal interface will be about $1^{\circ} \mathrm{C} / \mathrm{W}$ if lubricated, and about $1.2^{\circ} \mathrm{C} / \mathrm{W}$ if dry.

Component Layouts

If a mica insulator is used, the thermal resistance will be about $1.6^{\circ} \mathrm{C} / \mathrm{W}$ lubricated and $3.4^{\circ} \mathrm{C} / \mathrm{W}$ dry. For this example, we assume a lubricated mica insulator between the LM1875 and the heat sink. The heat sink thermal resistance must then be less than

$$
4.2^{\circ} \mathrm{C} / \mathrm{W}-2^{\circ} \mathrm{C} / \mathrm{W}-1.6^{\circ} \mathrm{C} / \mathrm{W}=0.6^{\circ} \mathrm{C} / \mathrm{W} .
$$

This is a rather large heat sink and may not be practical in some applications. If a smaller heat sink is required for reasons of size or cost, there are two alternatives. The maximum ambient operating temperature can be reduced to $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$, resulting in a $1.6^{\circ} \mathrm{C} / \mathrm{W}$ heat sink, or the heat sink can be isolated from the chassis so the mica washer is not needed. This will change the required heat sink to a $1.2^{\circ} \mathrm{C} / \mathrm{W}$ unit if the case-to-heat-sink interface is lubricated.
Note: When using a single supply, maximum transfer of heat away from the LM1875 can be achieved by mounting the device directly to the heat sink (tab is at ground potential); this avoids the use of a mica or other type insulator.
The thermal requirements can become more difficult when an amplifier is driving a reactive load. For a given magnitude of load impedance, a higher degree of reactance will cause a higher level of power dissipation within the amplifier. As a general rule, the power dissipation of an amplifier driving a 60° reactive load (usually considered to be a worst-case loudspeaker load) will be roughly that of the same amplifier driving the resistive part of that load. For example, a loudspeaker may at some frequency have an impedance with a magnitude of 8Ω and a phase angle of 60°. The real part of this load will then be 4Ω, and the amplifier power dissipation will roughly follow the curve of power dissipation with a 4Ω load.

LM 1877 Dual Audio Power Amplifier

General Description

The LM1877 is a monolithic dual power amplifier designed to deliver $2 W /$ channel continuous into 8Ω loads. The LM1877 is designed to operate with a low number of external components, and still provide flexibility for use in stereo phonographs, tape recorders and AM-FM stereo receivers, etc. Each power amplifier is biased from a common internal regulator to provide high power supply rejection, and output Q point centering. The LM1877 is internally compensated for all gains greater than 10.

Features

- 2W/channel
- -65 dB ripple rejection, output referred
- -65 dB channel separation, output referred

■ Wide supply range, 6V-24V

- Very low cross-over distortion
- Low audio band noise
- AC short circuit protected
- Internal thermal shutdown

Applications

- Multi-channel audio systems
- Stereo phonographs
- Tape recorders and players
- AM-FM radio receivers
- Servo amplifiers
- Intercom systems
- Automotive products

Connection Diagram

Equivalent Schematic Diagram

Absolute Maximum Ratings

$\begin{array}{lr}\text { If Military/Aerospace specified devices are required, } \\ \text { please contact the National Semiconductor Sales } \\ \text { Office/Distributors for availability and specifications. } \\ \text { Supply Voltage } & 26 \mathrm{~V} \\ \text { Input Voltage } & \pm 0.7 \mathrm{~V} \\ \text { Operating Temperature } & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \text { Storage Temperature } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Junction Temperature } & 150^{\circ} \mathrm{C}\end{array}$

Lead Temperature
$\begin{array}{ll}\text { N-Package Soldering (10 sec.) } & 260^{\circ} \mathrm{C} \\ \text { M-Package Infared (15 sec.) } & 220^{\circ} \mathrm{C}\end{array}$
M-Package Vapor Phase (60 sec .) $215^{\circ} \mathrm{C}$
Thermal Resistance
θ_{JC} (N-Package) $30^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JA} (N-Package) $\quad 79^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC} (M-Package) $\quad 27^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JA} (M-Package) $114^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

$V_{S}=20 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, (See Note 1) $\mathrm{R}_{\mathrm{L}}=8 \Omega, A_{V}=50(34 \mathrm{~dB})$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Total Supply Current	$\mathrm{PO}_{\mathrm{O}}=0 \mathrm{~W}$		25	50	mA
Output Power LM1877	$\begin{aligned} & \mathrm{THD}=10 \% \\ & \mathrm{~V}_{\mathrm{S}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{~V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$	2.0	1.3		W/Ch W/Ch
Total Harmonic Distortion LM1877	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}$				
	$\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} /$ Channel		0.075		\%
	$\mathrm{P}_{\mathrm{O}}=500 \mathrm{~mW} /$ Channel		0.045		\%
	$\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} /$ Channel		0.055		\%
Output Swing	$\mathrm{R}_{\mathrm{L}}=8 \Omega$		$\mathrm{V}_{\mathrm{S}}-6$		Vp-p
Channel Separation	$\begin{aligned} & C_{F}=50 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}, \\ & \mathrm{f}=1 \mathrm{kHz} \text {, Output Referred } \end{aligned}$				
	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4 \mathrm{Vrms}$	-50	-70		dB
	$\mathrm{V}_{\mathrm{S}}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{Vrms}$		-60		dB
PSRR Power Supply Rejection Ratio	$C_{F}=50 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}$ $f=120 \mathrm{~Hz} \text {, Output Referred }$				
	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \mathrm{~V}_{\text {RIPPLE }}=1 \mathrm{Vrms}$	-50	-65		dB
	$\mathrm{V}_{\mathrm{S}}=7 \mathrm{~V}, \mathrm{~V}_{\text {RIPPLE }}=0.5 \mathrm{Vrms}$		-40		dB
Noise	Equivalent Input Noise				
	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=0, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}, \\ & \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz} \text {, Output Noise Wideband } \end{aligned}$		2.5		$\mu \mathrm{V}$
	$\mathrm{R}_{\mathrm{S}}=0, \mathrm{C}_{\mathrm{N}}=0.1 \mu \mathrm{~F}, \mathrm{~A}_{\mathrm{V}} 200$		0.80		mV
Open Loop Gain	$\mathrm{R}_{\mathrm{S}}=0, \mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		70		dB
Input Offset Voltage			15		mV
Input Bias Current			50		nA
Input Impedance	Open Loop		4		$\mathrm{M} \Omega$
DC Output Level	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}$	9	10	11	V
Slew Rate			2.0		$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth			65		kHz
Current Limit			1.0		A

Note 1: For operation at ambient temperature greater than $25^{\circ} \mathrm{C}$, the LM 1877 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature.

Typical Performance Characteristics

Typical Applications

Stereo Phonograph Amplifier with Bass Tone Control

TL/H/7913-4

Frequency Response of Bass Tone Control

TL/H/7913-5

Typical Applications (Continued)

TL/H/7913-7

Non-Inverting Amplifier Using Split Supply

LM1896/LM2896 Dual Audio Power Amplifier

General Description

The LM1896 is a high performance 6V stereo power amplifier designed to deliver 1 watt/channel into 4Ω or 2 watts bridged monaural into 8Ω. Utilizing a unique patented compensation scheme, the LM1896 is ideal for sensitive AM radio applications. This new circuit technique exhibits lower wideband noise, lower distortion, and less AM radiation than conventional designs. The amplifier's wide supply range ($3 \mathrm{~V}-9 \mathrm{~V}$) is ideal for battery operation. For higher supplies ($\mathrm{V}_{\mathrm{S}}>9 \mathrm{~V}$) the LM2896 is available in an 11-lead single-in-" line package. The LM2896 package has been redesigned, resulting in the slightly degraded thermal characteristics shown in the figure Device Dissipation vs Ambient Temperature.

Features

- Low AM radiation
- Low noise
- $3 \mathrm{~V}, 4 \Omega$, stereo $\mathrm{P}_{\mathrm{o}}=250 \mathrm{~mW}$
- Wide supply operation 3V-15V (LM2896)
- Low distortion
- No turn on "pop"
- Adjustable voltage gain and bandwidth
- Smooth waveform clipping
- $\mathrm{P}_{\mathrm{O}}=9 \mathrm{~W}$ bridged, LM2896

Applications

- Compact AM-FM radios
- Stereo tape recorders and players
- High power portable stereos

Typical Applications

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales

 Office/Distributors for availability and specifications.Supply Voltage
LM1896
LM2896
Operating Temperature (Note 1)
Storage Temperature

$$
\begin{array}{r}
V_{S}=12 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\end{array}
$$

Junction Temperature
$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)
$260^{\circ} \mathrm{C}$
Thermal Resistance

$\theta_{\text {JC }}$ (DIP)	$30^{\circ} \mathrm{C} / \mathrm{W}$	
$\theta_{\text {JA }}$ (DIP)	$137^{\circ} \mathrm{C} / \mathrm{W}$	
$\theta_{\text {JC }}(S I P)$	$10^{\circ} \mathrm{C} / \mathrm{W}$	
$\theta_{\text {JA }}$ (SIP)		$55^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

Unless otherwise specified, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{A}_{\mathrm{V}}=200(46 \mathrm{~dB})$. For the $\mathrm{LM} 1896 ; \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=4 \Omega$. For LM2896, $T_{T A B}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=8 \Omega$. Test circuit shown in Figure 2.

Parameter	Conditions	LM1896			LM2896			Units
		Min	Typ	Max	Min	Typ	Max	
Supply Current	$\mathrm{P}_{0}=0 W$, Dual Mode		15	25		25	40	mA
Operating Supply Voltage		3		10	3		15	V
Output Power LM1896N-1 LM1896N-2 LM2896P-1 LM2896P-2	$\left.\begin{array}{l} \text { THD }=10 \%, f=1 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega \text { Dual Mode } \\ \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega \text { Bridge Mode } \\ \mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega \text { Dual Mode } \\ \mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega \text { Dual Mode } \\ \mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega \text { Bridge Mode } \\ \mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega \text { Bridge Mode } \\ \mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega \text { Dual Mode } \end{array}\right\} \quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.9	$\begin{aligned} & 1.1 \\ & 1.8 \\ & 1.3 \end{aligned}$	2.1	$\begin{aligned} & 2.0 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 9.0 \\ & 7.8 \\ & 2.5 \end{aligned}$		W/ch W W/ch W/ch W W W/ch
Distortion	$\begin{aligned} & f=1 \mathrm{kHz} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \\ & \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W} \\ & \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.09 \\ & 0.11 \end{aligned}$			$\begin{aligned} & 0.09 \\ & 0.11 \\ & 0.14 \\ & \hline \end{aligned}$		$\begin{aligned} & \% \\ & \% \\ & \% \\ & \hline \end{aligned}$
Power Supply Rejection Ratio (PSRR)	$\begin{aligned} & \mathrm{C}_{\mathrm{BY}}=100 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F} \\ & \text { Output Referred, } \mathrm{V}_{\text {RIPPLE }}=250 \mathrm{mV} \\ & \hline \end{aligned}$	-40	-54		-40	-54		dB
Channel Separation	$\begin{aligned} & \mathrm{C}_{\mathrm{BY}}=100 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F} \\ & \text { Output Referred } \end{aligned}$	-50	-64		-50	-64		dB
Noise	Equivalent Input Noise $\mathrm{R}_{\mathrm{S}}=0$, $\mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}, \mathrm{BW}=20-20 \mathrm{kHz}$ CCIR/ARM Wideband		$\begin{aligned} & 1.4 \\ & 1.4 \\ & 2.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.4 \\ & 1.4 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
DC Output Level		2.8	3	3.2	5.6	6	6.4	V
Input Impedance		50	100	350	50	100	350	k Ω
Input Offset Voltage			5			5		mV
Voltage Difference between Outputs	LM1896N-2, LM2896P-2		10	20		10	20	mV
Input Bias Current			120			120		nA

Note 1: For operation at ambient temperature greater than $25^{\circ} \mathrm{C}$, the LM1896/LM2896 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon mounting techniques.

Typical Performance Curves

Typical Performance Curves (Continued)

Equivalent Schematic

6, 9 No connection on LM1896
() indicates pin number for LM2896

TL/H/7920-3

TL/H/7920-4

Connection Diagrams

Typical Applications (Continued)

TL/H/7920-8

6, 9 No connection on LM1896
() Indicates pin number for LM2896

FIGURE 2. Stereo Amplifier with $\mathbf{A v}_{\mathbf{V}}=\mathbf{2 0 0}$, $\mathbf{B W}=\mathbf{3 0} \mathbf{~ k H z}$

External Components (Figure 2)

Components

1. R2, R5, R10, R13
2. R3, R12
3. R_{o}
4. C1, C14
5. $\mathrm{C} 2, \mathrm{C} 13$
6. C3, C12
7. C5, C10
8. C7
9. C_{c}
10. C_{0}
11. C_{S}

Comments

Sets voltage gain, $A_{V}=1+R 5 / R 2$ for one channel and $A_{V}=1+R 10 / R 13$ for the other channel.
Bootstrap resistor sets drive current for output stage and allows pins 3 and 12 to go above V_{S}.
Works with C_{o} to stabilize output stage.
Input coupling capacitor. Pins 1 and 14 are at a DC potential of $\mathrm{V}_{\mathrm{S}} / 2$. Low frequency pole set by:

$$
\mathrm{f}_{\mathrm{L}}=\frac{1}{2 \pi \mathrm{R}_{\mathrm{IN}} \mathrm{C} 1}
$$

Feedback capacitors. Ensure unity gain at DC. Also a low frequency pole at:

$$
f_{L}=\frac{1}{2 \pi R 2 C 2}
$$

Bootstrap capacitors, used to increase drive to output stage. A low frequency pole is set by:

$$
f_{L}=\frac{1}{2 \pi R 3 C 3}
$$

Compensation capacitor. These stabilize the amplifiers and adjust their bandwidth. See curve of bandwidth vs allowable gain.
Improves power supply rejection (See Typical Performance Curves). Increasing C7 increases turn-on delay.
Output coupling capacitor. Isolates pins 5 and 10 from the load. Low frequency pole set by:

$$
f_{L}=\frac{1}{2 \pi C_{C} R_{L}}
$$

Works with R_{0} to stabilize output stage.
Provides power supply filtering.

Application Hints

AM Radios

The LM1896/LM2896 has been designed fo fill a wide range of audio power applications. A common problem with IC audio power amplifiers has been poor signal-to-noise performance when used in AM radio applications. In a typical radio application, the loopstick antenna is in close proximity to the audio amplifer. Current flowing in the speaker and power supply leads can cause electromagnetic coupling to the loopstick, resulting in system oscillation. In addition, most audio power amplifiers are not optimized for lowest noise because of compensation requirements. If noise from the audio amplifier radiates into the AM section, the sensitivity and signal-to-noise ratio will be degraded.
The LM1896 exhibits extremely low wideband noise due in part to an external capacitor C5 which is used to tailor the bandwidth. The circuit shown in Figure 2 is capable of a signal-to-noise ratio in excess of 60 dB referred to 50 mW . Capacitor C5 not only limits the closed loop bandwidth, it also provides overall loop compensation. Neglecting C2 in Figure 2, the gain is:

$$
\begin{gathered}
A_{V}(S)=\frac{S+A_{V} \omega_{0}}{S+\omega_{0}} \\
\text { where } A_{V}=\frac{R 2+R 5}{R 2}, \quad \omega_{0}=\frac{1}{R 5 C 5}
\end{gathered}
$$

A curve of -3 dB BW $\left(\omega_{0}\right)$ vs A_{V} is shown in the Typical Performance Curves.
Figure 3 shows a plot of recovered audio as a function of field strength in $\mu \mathrm{V} / \mathrm{M}$. The receiver section in this example is an LM3820. The power amplifier is located about two inches from the loopstick antenna. Speaker leads run parallel to the loopstick and are $1 / 8$ inch from it. Referenced to a 20 dB S/N ratio, the improvement in noise performance over conventional designs is about 10 dB . This corresponds to an increase in usable sensitivity of about 8.5 dB .

Bridge Amplifiers

The LM1896/LM2896 can be used in the bridge mode as a monaural power amplifier. In addition to much higher power output, the bridge configuration does not require output coupling capacitors. The load is connected directly between the amplifier outputs as shown in Figure 4.

Amp 1 has a voltage gain set by $1+$ R5/R2. The output of amp 1 drives amp 2 which is configured as an inverting amplifier with unity gain. Because of this phase inversion in amp 2 , there is a 6 dB increase in voltage gain referenced to V_{i}. The voltage gain in bridge is:

$$
\frac{V_{0}}{V_{i}}=2\left(1+\frac{R 5}{R 2}\right)
$$

C_{B} is used to prevent DC voltage on the output of amp 1 from causing offset in amp 2. Low frequency response is influenced by:

$$
f_{L}=\frac{1}{2 \pi R_{B} C_{B}}
$$

Several precautions should be observed when using the LM1896/LM2896 in bridge configuration. Because the amplifiers are driving the load out of phase, an 8Ω speaker will appear as a 4Ω load, and a 4Ω speaker will appear as a 2Ω load. Power dissipation is twice as severe in this situation. For example, if $V_{S}=6 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=8 \Omega$ bridged, then the maximum dissipation is:

$$
\begin{gathered}
P_{D}=\frac{V_{S}^{2}}{20 R_{L}} \times 2=\frac{6^{2}}{20 \times 4} \times 2 \\
P_{D}=0.9 \text { Watts }
\end{gathered}
$$

This amount of dissipation is equivalent to driving two 4Ω loads in the stereo configuration.
When adjusting the frequency response in the bridge configuration, R5C5 and R10C10 form a 2 pole cascade and the -3 dB bandwidth is actually shifted to a lower frequency:

$$
\mathrm{BW}=\frac{0.707}{2 \pi \mathrm{RC}}
$$

where $R=$ feedback resistor

$$
C=\text { feedback capacitor }
$$

To measure the output voltage, a floating or differential meter should be used because a prolonged output short will over dissipate the package. Figure 1 shows the complete bridge amplifier.

FIELD STRENGTH (mV/M)
TL/H/7920-9
FIGURE 3. Improved AM Sensitivity over Conventional Design

Application Hints (Continued)

TL/H/7920-10
Figure 4. Bridge Amplifier Connection

Printed Circuit Layout

Printed Circuit Board Layout

Figure 5 and Figure 6 show printed circuit board layouts for the LM1896 and LM2896. The circuits are wired as stereo amplifiers. The signal source ground should return to the input ground shown on the boards. Returning the loads to power supply ground through a separate wire will keep the THD at its lowest value. The inputs should be terminated in
less than $50 \mathrm{k} \Omega$ to prevent an input-output oscillation. This oscillation is dependent on the gain and the proximity of the bridge elements R_{B} and C_{B} to the $(+)$ input. If the bridge mode is not used, do not insert R_{B}, C_{B} into the PCB.
To wire the amplifer into the bridge configuration, short the capacitor on pin 7 (pin 1 of the LM1896) to ground. Connect together the nodes labeled BRIDGE and drive the capacitor connected to pin 5 (pin 14 of the LM1896).

FIGURE 5. Printed Circuit Board Layout for the LM 1896

TL/H/7920-12
FIGURE 6. Printed Circuit Board Layout for the LM2896

LM2877 Dual 4W Audio Power Amplifier

General Description

The LM2877 is a monolithic dual power amplifier designed to deliver $4 \mathrm{~W} /$ channel continuous into 8Ω loads. The LM2877 is designed to operate with a low number of external components, and still provide flexibility for use in stereo phonographs, tape recorders and AM-FM stereo receivers, etc. Each power amplifier is biased from a common internal regulator to provide high power supply rejection and output Q point centering. The LM2877 is internally compensated for all gains greater than 10, and comes in an 11-lead sin-gle-in-line package.

Features

- Wide supply range, 6-24V
- Very low cross-over distortion
- Low audio band noise
- AC short circuit protected
- Internal thermal shutdown

Applications

- Multi-channel audio systems
- Stereo phonographs
- Tape recorders and players
- AM-FM radio receivers
- Servo amplifiers
- Intercom systems
- Automotive products

Connection Diagram

(Single-In-Line Package)

*Pin 6 must be connected to GND.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		Storage Temperature		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
		Junction Temperature $150^{\circ} \mathrm{C}$		-	
		Lead Temperature (Soldering, 10 sec .) 260			
Supply Voltage	26 V	Thermal Resistance			
Input Voltage	$\pm 0.7 \mathrm{~V}$	$\theta_{\text {Jc }}$			$10^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\theta_{\text {JA }}$			$55^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics $V_{S}=20 \mathrm{~V}, T_{T A B}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=8 \Omega, A_{V}=50$ (34 dB) unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Total Supply Current	$\mathrm{P}_{\mathrm{O}}=0 \mathrm{~W}$		25	50	mA
Operating Supply Voltage		6		24	V
Output Power/Channel	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{THD}=10 \%, \mathrm{~T}_{\mathrm{TAB}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{~V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.6 \\ & 1.9 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \text { w } \\ & \text { w } \\ & \text { w } \\ & \text { w } \end{aligned}$
Distortion, THD	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{S}}=20 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} / \text { Channel } \\ & \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} / \text { Channel } \\ & \mathrm{P}_{\mathrm{O}}=2 \mathrm{~W} / \text { Channel } \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} / \text { Channel } \\ & \mathrm{P}_{\mathrm{O}}=500 \mathrm{~mW} / \text { Channel } \\ & \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} / \text { Channel } \\ & \hline \end{aligned}$		$\begin{gathered} 0.1 \\ 0.07 \\ 0.07 \\ 0.25 \\ 0.20 \\ 0.15 \end{gathered}$	1 1	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \\ & \% \\ & \% \\ & \hline \end{aligned}$
Output Swing	$\mathrm{R}_{\mathrm{L}}=8 \Omega$		$\mathrm{V}_{S}-4$		$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Channel Separation	$\mathrm{C}_{\mathrm{F}}=50 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}$ Output Referred $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4 \mathrm{Vrms} \\ & \mathrm{~V}_{\mathrm{S}}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{Vrms} \end{aligned}$	-50	$\begin{aligned} & -70 \\ & -60 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
PSRR Power Supply	$\mathrm{C}_{\mathrm{F}}=50 \mu \mathrm{~F}, \mathrm{C}_{\text {IN }}=0.1 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz}$				
Rejection Ratio	Output Referred $V_{S}=20 \mathrm{~V}, \mathrm{~V}_{\text {RIPPLE }}=1 \mathrm{Vrms}$ $\mathrm{V}_{\mathrm{S}}=7 \mathrm{~V}, \mathrm{~V}_{\text {RIPPLE }}=0.5 \mathrm{Vrms}$	-50	$\begin{aligned} & -68 \\ & -40 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Noise	Equivalent Input Noise $\mathrm{R}_{\mathrm{S}}=0, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$ Output Noise Wideband $\mathrm{R}_{\mathrm{S}}=0, \mathrm{C}_{\mathbb{I N}}=0.1 \mu \mathrm{~F}, \mathrm{~A}_{\mathrm{V}}=200$		$\begin{array}{r} 2.5 \\ 0.80 \\ \hline \end{array}$		$\mu \mathrm{V}$ mV
Open Loop Gain	$\mathrm{R}_{\mathrm{S}}=0, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		70		dB
Input Offset Voltage			15		mV
Input Bias Current	3.		50		nA
Input Impedance	Open Loop		4		$\mathrm{M} \Omega$
DC Output Level	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}$	9	10	11	V
Slew Rate			2.0		$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth			65		kHz
Current Limit			1.0		A

Note 1: For operation at ambient temperature greater than $25^{\circ} \mathrm{C}$, the LM2877 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon device mounting techniques.

Equivalent Schematic Diagram

Typical Performance Characteristics

Power Supply Rejection Ratio (Referred to the Output) vs Supply Voltage

Average Supply Current vs Power Output

Power Dissipation vs Power Output

Power Supply Rejection Ratio (Referred to the Output) vs Frequency

Channel Separation (Referred) to the Output) vs Frequency

Total Harmonic Distortion vs Frequency

Open Loop Gain vs Frequency

Power Supply Rejection Ratio (Referred to the Output) vs Frequency

Channel Separation (Referred) to the Output) vs Frequency

Total Harmonic Distortion vs Frequency

Output Swing vs Supply Voltage

Typical Applications

TL/H/7933-4

Typical Applications (Continued)

TL/H/7933-6

Typical Applications (Continued)

TL/H/7933-8
Truth Table

$V_{\text {IN }}$	High	Low
$<1 / 4 V^{+}$	Off	On
$1 / 4 V^{+}$to $3 / 4 V^{+}$	Off	Off
$>3 / 4 V^{+}$	On	Off

Application Hints

The LM2877 is an improved LM377 in typical audio applications. In the LM2877, the internal voltage regulator for the input stage is generated from the voltage on pin 1. Normally, the input common-mode range is within $\pm 0.7 \mathrm{~V}$ of this pin 1 voltage. Nevertheless, the common-mode range can be increased by externally forcing the voltage on pin 1 . One way to do this is to short pin 1 to the positive supply, pin 11.

The only special care required with the LM2877 is to limit the maximum input differential voltage to $\pm 7 \mathrm{~V}$. If this differential voltage is exceeded, the input characteristics may change.
Figure 1 shows a power op amp application with $A_{V}=1$. The 100k and 10 k resistors set a noise gain of 10 and are dictated by amplifier stability. The 10k resistor is bootstrapped by the feedback so the input resistance is dominated by the $1 \mathrm{M} \Omega$ resistor.

LM2878 Dual 5 Watt Power Audio Amplifier

General Description

The LM2878 is a high voltage stereo power amplifier designed to deliver $5 \mathrm{~W} /$ channel continuous into 8Ω loads. The amplifier is ideal for use with low regulation power supplies due to the absolute maximum rating of 35 V and its superior power supply rejection. The LM2878 is designed to operate with a low number of external components, and still provide flexibility for use in stereo phonographs, tape recorders, and AM-FM stereo receivers. The flexibility of the LM2878 allows it to be used as a power operational amplifier, power comparator or servo amplifier. The LM2878 is internally compensated for all gains greater than 10, and comes in an 11 -lead single-in-line package (SIP). The package has been redesigned, resulting in the slightly degraded thermal characteristics shown in the figure Device Dissipation vs Ambient Temperature.

Features

- Wide operating range $6 \mathrm{~V}-32 \mathrm{~V}$
- 5W/channel output
- 60 dB ripple rejection, output referred
- 70 dB channel separation, output referred
- Low crossover distortion
- AC short circuit protected
- Internal thermal shutdown

Applications

- Stereo phonographs
- AM-FM radio receivers
- Power op amp, power comparator
- Servo amplifiers

Typical Applications

TL/H/7934-2

FIGURE 1. Stereo Phonograph Amplifier with Bass Tone Control

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
please contact the National Semiconductor Sales	Junction Temperature	$+150^{\circ} \mathrm{C}$	
Office/Distributors for availability and specifications.	35 V	Lead Temperature (Soldering, 10 sec.)	$+260^{\circ} \mathrm{C}$
Supply Voltage	$\pm 0.7 \mathrm{~V}$	Thermal Resistance	
Input Voltage (Note 1)	θ_{JC}	$10^{\circ} \mathrm{C} / \mathrm{W}$	
Operating Temperature (Note 2)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	θ_{JA}	$55^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics $\mathrm{V}_{\mathrm{S}}=22 \mathrm{~V}, \mathrm{~T}_{T A B}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{~A}_{\mathrm{V}}=50(34 \mathrm{~dB})$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Total Supply Current	$\mathrm{P}_{\mathrm{O}}=0 \mathrm{~W}$		10	50	mA
Operating Supply Voltage		6		32	V
Output Power/Channel	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{THD}=10 \%, \mathrm{~T}_{\text {TAB }}=25^{\circ} \mathrm{C} \\ & f=1 \mathrm{kHz}, \mathrm{THD}=10 \%, V_{S}=12 \mathrm{~V} \end{aligned}$	5	$\begin{aligned} & 5.5 \\ & 1.3 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { w } \\ & \text { w } \end{aligned}$
Distortion	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \end{aligned}$		0.20		\%
	$\mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$		0.15		\%
	$\mathrm{P}_{\mathrm{O}}=2 \mathrm{~W}$		0.14		\%
Output Swing	$\mathrm{R}_{\mathrm{L}}=8 \Omega$		$\mathrm{V}_{\mathrm{S}}-6 \mathrm{~V}$		Vp-p
Channel Separation	$\begin{aligned} & \mathrm{C}_{\mathrm{BYPASS}}=50 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F} \\ & \mathrm{f}=1 \mathrm{kHz} \text {, Output Referred } \\ & \mathrm{V}_{\mathrm{O}}=4 \mathrm{Vrms} \end{aligned}$	-50	-70		dB
PSRR Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{C}_{\mathrm{BYPASS}}=50 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F} \\ & \mathrm{f}=120 \mathrm{~Hz}, \text { Output Referred } \\ & \mathrm{V}_{\text {ripple }}=1 \text { Vrms } \end{aligned}$	-50	-60		dB
PSRR Negative Supply	Measured at DC, Input Referred		-60		dB
Common-Mode Range	Split Supplies $\pm 15 \mathrm{~V}$, Pin 1 Tied to Pin 11		± 13.5		V
Input Offset Voltage			10		mV
Noise	Equivalent Input Noise $\begin{aligned} & \mathrm{R}_{\mathrm{S}}=0, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F} \\ & \mathrm{BW}=20-20 \mathrm{kHz} \end{aligned}$		2.5		$\mu \mathrm{V}$
	CCIR•ARM		3.0		$\mu \mathrm{V}$
	Output Noise Wideband $R_{S}=0, C_{I N}=0.1 \mu F, A_{V}=200$		0.8		mV
Open Loop Gain	$\mathrm{R}_{\mathrm{S}}=51 \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		70		dB
Input Bias Current			100		nA
Input Impedance	Open Loop		4		$\mathrm{M} \Omega$
DC Output Voltage	$\mathrm{V}_{\mathrm{S}}=22 \mathrm{~V}$	10	11	12	V
Slew Rate			2		$\mathrm{V} / \mu \mathrm{S}$
Power Bandwidth	3 dB Bandwidth at 2.5W		65		kHz
Current Limit			1.5		A

Note 1: $\pm 0.7 \mathrm{~V}$ applies to audio applications; for extended range, see Application Hints.
Note 2: For operation at ambient temperature greater than $25^{\circ} \mathrm{C}$, the LM2878 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon device mounting techniques.

Typical Performance Characteristics

Power Dissipation vs
Power Out

POWER OUTPUT (W/CHANNEL)

Connection Diagram

Single-In-Line Package

*Pin 6 must be connected to GND.
Order Number LM2878P
See NS Package Number P11A

Application Hints

The LM2878 is an improved LM378 in typical audio applications. In the LM2878, the internal voltage regulator for the input stage is generated from the voltage on pin 1. Normally, the input common-mode range is within $\pm 0.7 \mathrm{~V}$ of this pin 1 voltage. Nevertheless the common-mode range can be increased by externally forcing the voltage on pin 1 . One way to do this is to short pin 1 to the positive supply, pin 11.
The only special care required with the LM2878 is to limit the maximum input differential voltage to $\pm 7 \mathrm{~V}$. If this differential voltage is exceeded, the input characteristics may change.
Figure 2 shows a power op amp application with $A_{V}=1$. The 100k and 10k resistors set a noise gain of 10 and are dictated by amplifier stability. The 10 k resistor is bootstrapped by the feedback so the input resistance is dominated by the $1 \mathrm{M} \Omega$ resistor.

TL/H/7934-6
FIGURE 2. Operational Power Amplifier, $A_{V}=1$

External Components (Figure 3)

1. R2, R5, R7, R10 Sets voltage gain $A_{V}=1+R 2 / R 5$ for one channel and $A_{V}=1+R 10 / R 7$ for the other channel.
2. R4, R8 Resistors set input impedance and supply bias current for the positive input.
3. R_{O}
4. C1 Works with C_{O} to stabilize output stage. Improves power supply rejection (see Typical Performance Characteristics).
5. C11

Stabilizes amplifier, may need to be larger depending on power supply filtering.

Typical Applications (Continued)

TL/H/7934-7
FIGURE 3. Stereo Amplifier with $\mathbf{A V}_{\mathbf{V}} \mathbf{2 0 0}$
6. $\mathrm{C} 4, \mathrm{C} 8$
7. C5, C7
8. Co
9. C2, C10

Input coupling capacitor. Pins 4 and 8 are at a DC potential of $\mathrm{V}_{\mathrm{S}} / 2$. Low frequency pole set by:

$$
f_{L}=\frac{1}{2 \pi R 4 C 4}
$$

Feedback capacitors. Ensure unity gain at DC. Also low frequency pole at:

$$
f_{L}=\frac{1}{2 \pi R 5 C 5}
$$

Works with R_{O} to stabilize output stage. Output coupling capacitor. Low frequency pole given by:

$$
f_{L}=\frac{1}{R \pi R L C 2}
$$

TL/H/7934-8
FIGURE 4. LM2878 Servo Amplifier in Bridge Configuration

Truth Table

$\mathbf{V}_{\text {IN }}$	High	Low
$<1 / 4 V^{+}$	Off	On
$1 / 4 V^{+}$to $3 / 4 V^{+}$	Off	Off
$>3 / 4 V^{+}$	On	Off

FIGURE 5. Window Comparator Driving High, Low Lamps

LM2879 Dual 8W Audio Amplifier

General Description

The LM2879 is a monolithic dual power amplifier which offers high quality performance for stereo phonographs, tape players, recorders, AM-FM stereo receivers, etc.
The LM2879 will deliver 8W/channel to an 8Ω load. The amplifier is designed to operate with a minimum of external components and contains an internal bias regulator to bias each amplifier. Device overload protection consists of both internal current limit and thermal shutdown.

Features

- Avo typical 90 dB
- 9W per channel (typical)
- 60 dB ripple rejection
- 70 dB channel separation
- Self-centering biasing
- $4 \mathrm{M} \Omega$ input impedance
- Internal current limiting
- Internal thermal protection

Applications

- Multi-channel audio systems
- Tape recorders and players
- Movie projectors
- Automotive systems
- Stereo phonographs
- Bridge output stages
- AM-FM radio receivers
- Intercoms
- Servo amplifiers
- Instrument systems

Connection Diagram and Typical Application

Plastic Package

TOP VIEW
TL/H/5291-1

Order Number LM2879T
See NS Package Number TA11B

FIGURE 1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage
35 V
Input Voltage (Note 1) $\pm 0.7 \mathrm{~V}$
Operating Temperature (Note 2)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}_{\mathrm{S}}=28 \mathrm{~V}, \mathrm{~T}_{T A B}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{~A}_{V}=50(34 \mathrm{~dB})$, unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Total Supply Current	$\mathrm{P}_{\mathrm{O}}=0 \mathrm{~W}$		12	65	mA
Operating Supply Voltage		6		32	V
Output Power/Channel	$f=1 \mathrm{kHz}, \mathrm{THD}=10 \%, \mathrm{~T}_{\text {TAB }}=25^{\circ} \mathrm{C}$	6	8		W
Distortion	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} / \text { Channel } \\ & \hline \end{aligned}$		0.05	1	\%
Output Swing	$\mathrm{R}_{\mathrm{L}}=8 \mathrm{\Omega}$		$\mathrm{V}_{\mathrm{S}}-6 \mathrm{~V}$		Vp-p
Channel Separation	C $_{\text {BYPASS }}=50 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}$ $\mathrm{f}=1 \mathrm{kHz}$, Output Referred $\mathrm{V}_{\mathrm{O}}=4 \mathrm{Vrms}$	-50	-70		dB
PSRR Positive Supply	$\begin{aligned} & \mathrm{C}_{\text {BYPASS }}=50 \mu \mathrm{~F}, \mathrm{C}_{I N}=0.1 \mu \mathrm{~F} \\ & \mathrm{f}=120 \mathrm{~Hz} \text {, Output Referred } \\ & \mathrm{V}_{\text {ripple }}=1 \mathrm{Vrms} \end{aligned}$	-50	-60		dB
PSRR Negative Supply	Measured at DC, Input Referred		-60		dB
Common-Mode Range	Split Supplies $\pm 15 \mathrm{~V}$, Pin 1 Tied to Pin 11		± 13.5		V
Input Offset Voltage			10		mV
Noise	Equivalent Input Noise $\mathrm{R}_{\mathrm{S}}=0, \mathrm{C}_{\mathrm{IN}_{\mathrm{N}}}=0.1 \mu \mathrm{~F}$ $\mathrm{BW}=20-20 \mathrm{kHz}$ CCIR•ARM Output Noise Wideband $R_{S}=0, C_{I N}=0.1 \mu F, A_{V}=200$		$\begin{aligned} & 2.5 \\ & 3.0 \\ & 0.8 \end{aligned}$		$\begin{aligned} & \mu V \\ & \mu V \\ & m V \end{aligned}$
Open Loop Gain	$\mathrm{R}_{\mathrm{S}}=51 \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		70		dB
Input Bias Current			100		nA
Input Impedance	Open Loop		4		$\mathrm{M} \Omega$
DC Output Voltage	$\mathrm{V}_{\mathrm{S}}=28 \mathrm{~V}$		14		V
Slew Rate			2		$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth	3 dB Bandwidth at 2.5 W		65		kHz
Current Limit			1.5		A

Note 1: The input voltage range is normally limited to $\pm 0.7 \mathrm{~V}$ with respect to pin 1 . This range may be extended by shorting pin 1 to the positive supply
Note 2: For operation at ambient temperature greater than $25^{\circ} \mathrm{C}$, the LM2879 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature. Thermal resistance, junction to case, is $3^{\circ} \mathrm{C} / \mathrm{W}$. Thermal resistance, case to ambient, is $40^{\circ} \mathrm{C} / \mathrm{W}$.

Typical Performance Characteristics

Device Dissipation vs Ambient Temperature

Open Loop Gain vs Frequency

Power Dissipation vs

TL/H/5291-3

Typical Performance Characteristics (Continued)

TL/H/5291-5

Typical Applications

Two-Phase Motor Drive

Typical Applications (Continued)

> Simple Stereo Amplifier with Bass Boost

TL/H/5291-8

Power Op Amp (Using Split Supplies)

Typical Applications (Continued)

Frequency Response of Bass Tone Control

National Semiconductor

LM2900/LM3900/LM3301 Quad Amplifiers

General Description

The LM2900 series consists of four independent, dual input, internally compensated amplifiers which were designed specifically to operate off of a single power supply voltage and to provide a large output voltage swing. These amplifiers make use of a current mirror to achieve the non-inverting input function. Application areas include: ac amplifiers, RC active filters, low frequency triangle, squarewave and pulse waveform generation circuits, tachometers and low speed, high voltage digital logic gates.

Features

- Wide single supply voltage Range or dual supplies
- Supply current drain independent of supply voltage
- Low input biasing current

30 nA

- High open-loop gain

70 dB

- Wide bandwidth
- Large output voltage swing 2.5 MHz (unity gain)
- Output short-circuit protection

Schematic and Connection Diagrams

Dual-In-Line and S.O.

Top View
Order Number LM2900N, LM3900M, LM3900N or LM3301N
See NS Package Number M14A or N14A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Distributors for avalabily and specificatior	LM2900/LM3900	LM3301
Supply Voltage	$\begin{aligned} & 32 V_{D C} \\ & \pm 16 V_{D C} \end{aligned}$	$\begin{aligned} & 28 V_{D C} \\ & \pm 14 V_{D C} \end{aligned}$
Power Dissipation ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) (Note 1)		
Molded DIP	1080 mW	1080 mW
S.O. Package	765 mW	
Input Currents, $\mathrm{I}_{\mathrm{N}}+$ or $\mathrm{I}{ }^{-}$	20 mA DC	20 mADC
Output Short-Circuit Duration-One Amplifier $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Application Hints)	Continuous	Continuous
Operating Temperature Range		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM2900	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
LM3900	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Soldering Information		
Dual-In-Line Package		
Soldering (10 sec.)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Small Outline Package		
Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance (Note 7)
2000 V
2000 V
Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=15 \mathrm{~V} \mathrm{DC}$, unless otherwise stated

Parameter		Conditions		LM2900			LM3900			LM3301			Units		
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max					
Open Loop	Voltage Gain			Over Temp. $\Delta V_{O}=10 V_{D C}$ Inverting Input											V / mV
	Voltage Gain	1.2	2.8				1.2	2.8		1.2	2.8				
	Input Resistance		1					1			1		$\mathrm{M} \Omega$		
	Output Resistance		8					8			9		$\mathrm{k} \Omega$		
Unity Gain Bandwidth		Inverting Input			2.5			2.5			2.5		MHz		
Input Bias Current		Inverting Input, $\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}$ Inverting Input			30	200		30	200		30	300	nA		
Slew Rate		Positive Output Swing Negative Output Swing			$\begin{aligned} & 0.5 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$		$\mathrm{V} / \mu \mathrm{s}$		
Supply Current		$\mathrm{R}_{\mathrm{L}}=\infty$ On All Amplifiers			6.2	10		6.2	10		6.2	10	$\mathrm{mA}_{\text {DC }}$		
Output Voltage Swing	Vout High	$\begin{aligned} & R_{\mathrm{L}}=2 \mathrm{k}, \\ & \mathrm{~V}^{+}=15.0 \mathrm{~V} \mathrm{DC} \end{aligned}$ $\mathrm{V}^{+}=\text {Absolute }$ Maximum Rating	$\begin{aligned} & \operatorname{liN}^{-}=0, \\ & \operatorname{lN}^{+}=0 \\ & \hline \end{aligned}$	13.5			13.5			13.5			$V_{D C}$		
	Vout Low		$\begin{aligned} & \operatorname{liN}^{-}=10 \mu \mathrm{~A}, \\ & \mathrm{IN}^{+}=0 \end{aligned}$		0.09	0.2		0.09	0.2		0.09	0.2			
	Vout High		$\begin{aligned} & \mathbb{I N}^{-}=0, \\ & \mathbb{I N}^{+}=0 \\ & R_{L}=\infty, \end{aligned}$	29.5			29.5			26.0					
Output Current Capability	Source			6	18		6	10		5	18		$m A_{D C}$		
	Sink	(Note 2)		0.5	1.3		0.5	1.3		0.5	1.3				
	ISINK	$\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}{ }^{-}=5 \mu \mathrm{~A}$			5			5			5				

Electrical Characteristics (Note 6), $\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}$, unless otherwise stated (Continued)

Parameter	Conditions	LM2900			LM3900			LM3301			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Power Supply Rejection	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=100 \mathrm{~Hz}$		70			70			70		dB
Mirror Gain	@ $20 \mu \mathrm{~A}$ (Note 3) @ $200 \mu \mathrm{~A}$ (Note 3)	$\begin{aligned} & 0.90 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.10 \end{aligned}$	$\mu \mathrm{A} / \mu \mathrm{A}$
Δ Mirror Gain	@ $20 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$ (Note 3)		2	5		2	5		2	5	\%
Mirror Current	(Note 4)		10	500		10	500		10	500	$\mu A_{D C}$
Negative Input Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)		1.0			1.0			1.0		$m A_{D C}$
Input Bias Current	Inverting Input		300			300					nA

Note 1: For operating at high temperatures, the device must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $92^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. Thermal resistance for the S.O. package is $131^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: The output current sink capability can be increased for large signal conditions by overdriving the inverting input. This is shown in the section on Typical Characteristics.
Note 3: This spec indicates the current gain of the current mirror which is used as the non-inverting input.
Note 4: Input V_{BE} match between the non-inverting and the inverting inputs occurs for a mirror current (non-inverting input current) of approximately $10 \mu \mathrm{~A}$. This is therefore a typical design center for many of the application circuits.
Note 5: Clamp transistors are included on the IC to prevent the input voltages from swinging below ground more than approximately $-0.3 \mathrm{~V}_{\mathrm{DC}}$. The negative input currents which may result from large signal overdrive with capacitance input coupling need to be externally limited to values of approximately 1 . mA. Negative input currents in excess of 4 mA will cause the output voltage to drop to a low voltage. This maximum current applies to any one of the input terminals. If more than one of the input terminals are simultaneously driven negative smaller maximum currents are allowed. Common-mode current biasing can be used to prevent negative input voltages; see for example, the "Differentiator Circuit" in the applications section.
Note 6: These specs apply for $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise stated.
Note 7: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Application Hints

When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak input current. Currents as large as 20 mA will not damage the device, but the current mirror on the non-inverting input will saturate and cause a loss of mirror gain at mA current levels-especially at high operating temperatures.
Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. For example, when operating from a well-regulated $+5 \mathrm{~V}_{\mathrm{DC}}$ power supply at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ with a $100 \mathrm{k} \Omega$ shunt-feedback resistor (from the output to the inverting input) a short directly to the power supply will not cause catastrophic failure but the current magnitude will be approximately 50 mA and the junction temperature will be above T_{J} max. Larger feedback resistors will reduce the current, $11 \mathrm{M} \Omega$ provides approximately 30 mA , an open circuit provides 1.3 mA , and a direct connection from the output to the non-inverting input will result in catastrophic failure when the output is shorted to V^{+}as this then places the base-emitter junction of the input transistor directly across the power supply. Short-circuits to ground will have magnitudes of approximately 30 mA and will not cause catastrophic failure at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Unintentional signal coupling from the output to the non-inverting input can cause oscillations. This is likely only in breadboard hook-ups with long component leads and can be prevented by a more careful lead dress or by locating the non-inverting input biasing resistor close to the IC. A quick check of this condition is to bypass the non-inverting input to ground with a capacitor. High impedance biasing resistors used in the non-inverting input circuit make this input lead highly susceptible to unintentional AC signal pickup.
Operation of this amplifier can be best understood by noticing that input currents are differenced at the inverting-input terminal and this difference current then flows through the external feedback resistor to produce the output voltage. Common-mode current biasing is generally useful to allow operating with signal levels near ground or even negative as this maintains the inputs biased at $+\mathrm{V}_{\mathrm{BE}}$. Internal clamp transistors (see note 5) catch-negative input voltages at approximately $-0.3 \mathrm{~V}_{\mathrm{DC}}$ but the magnitude of current flow has to be limited by the external input network. For operation at high temperature, this limit should be approximately $100 \mu \mathrm{~A}$. This new "Norton" current-differencing amplifier can be used in most of the applications of a standard IC op amp. Performance as a DC amplifier using only a single supply is not as precise as a standard IC op amp operating with split supplies but is adequate in many less critical applications. New functions are made possible with this amplifier which are useful in single power supply systems. For example, biasing can be designed separately from the AC gain as was shown in the "inverting amplifier," the "difference integrator" allows controlling the charging and the discharging of the integrating capacitor with positive voltages, and the "frequency doubling tachometer" provides a simple circuit which reduces the ripple voltage on a tachometer output DC voltage.

Typical Performance Characteristics

Supply Current

Output Sink Current

Large Signal Frequency Response

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V} \mathrm{DC}\right)$

Inverting Amplifier

Triangle/Square Generator

TL/H/7936-4

TL/H/7936-6

TL/H/7936-7

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

TL/H/7936-10

Bi-Quad Active Filter
(2nd Degree State-Variable Network)

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)
Voltage-Controlled Current Source (Transconductance Amplifier)

TL/H/7936-12

TL/H/7936-14

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)($ Continued $)$

Square-Wave Oscillator

Frequency Differencing Tachometer

$V_{O D C}=A\left(f_{1}-f_{2}\right)$
TL/H/7936-26

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

TL/H/7936-34

TL/H/7936-36

Bandpass Active Filter

Free-Running Staircase Generator/Pulse Counter

TL/H/7936-39

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

TL/H/7936-40

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)($ Continued)
Channel Selection by DC Control (or Audio Mixer)

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

Boosting to $\mathbf{3 0 0} \mathrm{mA}$ Loads

TL/H/7936-50

Split-Supply Applications $\left(\mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}} \& \mathrm{~V}^{-}=-15 \mathrm{~V}_{\mathrm{DC}}\right)$

TL/H/7936-52

LM3045/LM3046/LM3086 Transistor Arrays

General Description

The LM3045, LM3046 and LM3086 each consist of five general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially-connected pair. The transistors are well suited to a wide variety of applications in low power system in the DC through VHF range. They may be used as discrete transistors in conventional circuits however, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The LM3045 is supplied in a 14 -lead cavity dual-in-line package rated for operation over the full military temperature range. The LM3046 and LM3086 are electrically identical to the LM3045 but are supplied in a 14 -lead molded dual-in-line package for applications requiring only a limited temperature range.

Features

- Two matched pairs of transistors
$V_{B E}$ matched $\pm 5 \mathrm{mV}$
Input offset current $2 \mu \mathrm{~A}$ max at $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
- Five general purpose monolithic transistors
- Operation from DC to 120 MHz
- Wide operating current range
- Low noise figure
- Full military temperature range (LM3045) $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Applications

- General use in all types of signal processing systems operating anywhere in the frequency range from DC to VHF
- Custom designed differential amplifiers
- Temperature compensated amplifiers

Schematic and Connection Diagram

Dual-In-Line and Small Outline Packages

Top View
TL/H/7950-1

Order Number LM3045J, LM3046M, LM3046N or LM3086N
See NS Package Number J14A, M14A or N14A

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Distributors for availability and specifications	LM3045		LM3046/LM3086		Units
	Each Transistor	Total Package	Each Transistor	Total Package	
Power Dissipation:					
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	300	750	300	750	mW
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$			300	750	mW
$\mathrm{T}_{\mathrm{A}}>55^{\circ} \mathrm{C}$			Derate at 6.67		$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	300	750			mW
$\mathrm{T}_{\mathrm{A}}>75^{\circ} \mathrm{C}$	Derate at 8				$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Collector to Emitter Voltage, $\mathrm{V}_{\text {CEO }}$	15		15		V
Collector to Base Voltage, $\mathrm{V}_{\text {CBO }}$	20		20		V
Collector to Substrate Voltage, $\mathrm{V}_{\text {CIO }}$ (Note 1)	20		20		V
Emitter to Base Voltage, $\mathrm{V}_{\mathrm{EBO}}$	5		5		V
Collector Current, Ic	50		50		mA
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		$-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Soldering Information					
Dual-In-Line Package Soldering (10 Sec.)	$260^{\circ} \mathrm{C}$		$260^{\circ} \mathrm{C}$		
Small Outline Package					
Vapor Phase (60 Seconds)			$215^{\circ} \mathrm{C}$		
Infrared (15 Seconds)			$220^{\circ} \mathrm{C}$		

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Conditions	Limits			Limits			Units
		LM3045, LM3046			LM3086			
		Min	Typ	Max	Min	Typ	Max	
Collector to Base Breakdown Voltage ($\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$)	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	20	60		20	60		V
Collector to Emitter Breakdown Voltage ($\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$)	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	15	24		15	24		V
Collector to Substrate Breakdown Voltage ($\mathrm{V}_{\text {(BR)CIO }}$)	$\mathrm{IC}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{ICI}=0$	20	60		20	60		V
Emitter to Base Breakdown Voltage ($\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$)	$\mathrm{I}_{\mathrm{E}} 10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	5	7		5	7		V
Collector Cutoff Current (ICBO)	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		0.002	40		0.002	100	nA
Collector Cutoff Current (ICEO)	$\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$			0.5			5	$\mu \mathrm{A}$
Static Forward Current Transfer Ratio (Static Beta) (h_{FE})	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}\left\{\begin{array}{l} \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \end{array}\right.$		100			100		
		40	100		40	100		
			54			54		
Input Offset Current for Matched Pair Q_{1} and $\left.\mathrm{Q}_{2}\right\|_{\mathrm{O}_{1}}$ - $\mathrm{I}_{\mathrm{IO}_{2}} \mid$	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		0.3	2				$\mu \mathrm{A}$
Base to Emitter Voltage (V_{BE})	$V_{C E}=3 V\left\{\begin{array}{l} \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA} \end{array}\right.$		0.715			0.715		V
			0.800			0.800		
Magnitude of Input Offset Voltage for Differential Pair $\left\|V_{B E 1}-V_{B E 2}\right\|$	$\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		0.45	5				mV
Magnitude of Input Offset Voltage for Isolated Transistors $\left\|\mathrm{V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{BE}}\right\|,\left\|\mathrm{V}_{\mathrm{BE} 4}-\mathrm{V}_{\mathrm{BE}}\right\|$, $\left\|V_{B E 5}-V_{B E 3}\right\|$	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		0.45	5				mV
Temperature Coefficient of Base to Emitter Voltage $\left(\frac{\Delta V_{\mathrm{BE}}}{\Delta \mathrm{T}}\right)$	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		-1.9			-1.9		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Collector to Emitter Saturation Voltage ($\mathrm{V}_{\text {CE(SAT) }}$)	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$		0.23			0.23		V
Temperature Coefficient of Input Offset Voltage $\left(\frac{\Delta V_{10}}{\Delta T}\right)$	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		1.1					$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

[^10]Electrical Characteristics (Continued)

Parameter	Conditions	Min	Typ	Max	Units
Low Frequency Noise Figure (NF)	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega \end{aligned}$		3.25		dB
LOW FREQUENCY, SMALL SIGNAL EQUIVALENT CIRCUIT CHARACTERISTICS					
Forward Current Transfer Ratio ($\mathrm{hfe}_{\text {fe }}$)	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{IC}=1 \mathrm{~mA} \end{aligned}$		110 (LM3045, LM3046) (LM3086)		
Short Circuit Input Impednace (h_{ie})			3.5		$\mathrm{k} \Omega$
Open Circuit Output Impedance ($\mathrm{h}_{0 \theta}$)			15.6		$\mu \mathrm{mho}$
Open Circuit Reverse Voltage Transfer Ratio ($\mathrm{hre}^{\text {) }}$			1.8×10^{-4}		
ADMITTANCE CHARACTERISTICS					
Forward Transfer Admittance (Y_{fe})	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$		31-j 1.5		
Input Admittance (Y_{ie})			$0.3+\mathrm{J} 0.04$		
Output Admittance ($\mathrm{Y}_{0 \text { O }}$)			$0.001+\mathrm{j} 0.03$		
Reverse Transfer Admittance (Y_{re})			See Curve		
Gain Bandwidth Product ($\mathrm{f}_{\mathrm{T} \text {) }}$	$\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}$	300	550		
Emitter to Base Capacitance ($\mathrm{C}_{\text {EB }}$)	$V_{E B}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		0.6		pF
Collector to Base Capacitance (C_{CB})	$V_{C B}=3 \mathrm{~V}, I_{C}=0$		0.58		pF
Collector to Substrate Capacitance (C_{Cl})	$V_{C S}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		2.8		pF

Typical Performance Characteristics

Typical Static Base To Emitter Voltage Characteristic and Input Offset Voltage for Differential Pair and Paired Isolated Transistors vs Emitter Current

Typical Performance Characteristics (Continued)

Typical Base To Emitter Voltage Characteristic for Each Transistor vs Ambient Temperature

Typical Input Offset Voltage Characteristics for Differential Pair and Paired Isolated Transistors vs Amblent Temperature

TL/H/7950-5

Typical Normalized Forward Current Transfer Ratio, Short Circuit Input Impedance, Open Circuit Output Impedance, and Open Circuit Reverse Voltage Transfer Ratio vs Coliector Current

Typical Output Admittance vs Frequency

Typical Performance Characteristics (Continued)

Typical Gain-Bandwidth Product vs Collector Current

LM3080

Operational Transconductance Amplifier

General Description

The LM3080 is a programmable transconductance block intended to fulfill a wide variety of variable gain applications. The LM3080 has differential inputs and high impedance push-pull outputs. The device has high input impedance and its transconductance $\left(\mathrm{g}_{\mathrm{m}}\right)$ is directly proportional to the amplifier bias current (l_{ABC}).
High slew rate together with programmable gain make the LM3080 an ideal choice for variable gain applications such as sample and hold, multiplexing, filtering, and multiplying. The LM3080N and LM3080AN are guaranteed from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Slew rate (unity gain compensated): $50 \mathrm{~V} / \mu \mathrm{s}$
- Fully adjustable gain: 0 to $g_{m} \bullet R_{L}$ limit
- Extended g_{m} linearity: 3 decades
- Flexible supply voltage range: $\pm 2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Adjustable power consumption

Schematic and Connection Diagrams

Top View
Order Number LM3080AN, LM3080M or LM3080N
See NS Package Number M08A or N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,	Amplifier Bias Current (laBC)	2 mA
please contact the National Semiconductor Sales	DC Input Voltage	$+V_{S}$ to $-\mathrm{V}_{\mathrm{S}}$
Office/Distributors for availability and specifications.		Output Short Circuit Duration
Supply Voltage (Note 2)	$\pm 18 \mathrm{~V}$	Operating Temperature Range
LM3080	$\pm 22 \mathrm{~V}$	LM3080N or LM3080AN
LM3080A	Storage Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power Dissipation	250 mW	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 5 \mathrm{~V}$	Lead Temperature (Soldering, 10 sec.)

Electrical Characteristics (Note 1)

Parameter	Conditions	LM3080			LM3080A			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	Over Specified Temperature Range $I_{A B C}=5 \mu \mathrm{~A}$		$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 2 \end{aligned}$	mV mV mV
Input Offset Voltage Change	$5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A}$		0.1	,		0.1	3	mV
Input Offset Current			0.1	0.6		0.1	0.6	$\mu \mathrm{A}$
Input Bias Current	Over Specified Temperature Range		$\begin{gathered} 0.4 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & 5 \\ & 7 \\ & \hline \end{aligned}$		$\begin{gathered} 0.4 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & 5 \\ & 8 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Forward Transconductance (gm_{m})	Over Specified Temperature Range	$\begin{aligned} & 6700 \\ & 5400 \\ & \hline \end{aligned}$	9600	13000	$\begin{array}{r} 7700 \\ 4000 \\ \hline \end{array}$	9600	12000	$\mu \mathrm{mho}$ $\mu \mathrm{mho}$
Peak Output Current	$\begin{aligned} & R_{\mathrm{L}}=0, I_{\mathrm{ABC}}=5 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=0 \\ & \mathrm{R}_{\mathrm{L}}=0 \end{aligned}$ Over Specified Temperature Range	$\begin{aligned} & 350 \\ & 300 \end{aligned}$	$\begin{gathered} 5 \\ 500 \end{gathered}$	650	$\begin{gathered} 3 \\ 350 \\ 300 \end{gathered}$	$\begin{gathered} 5 \\ 500 \end{gathered}$	$\begin{gathered} 7 \\ 650 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Peak Output Voltage Positive Negative	$\begin{aligned} & R_{L}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & +12 \\ & -12 \end{aligned}$	$\begin{aligned} & +14.2 \\ & -14.4 \end{aligned}$		$\begin{aligned} & +12 \\ & -12 \end{aligned}$	$\begin{aligned} & +14.2 \\ & -14.4 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Amplifier Supply Current			1.1			1.1		mA
Input Offset Voltage Sensitivity Positive Negative	$\Delta \mathrm{V}_{\text {OFFSET }} / \Delta \mathrm{V}+$ $\Delta V_{\text {OFFSET }} / \Delta V$ -		$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} / \mathrm{V} \\ & \mu \mathrm{~V} / \mathrm{V} \end{aligned}$
Common Mode Rejection Ratio	.	80	110		80	110		dB
Common Mode Range		± 12	± 14		± 12	± 14		V
Input Resistance		10	26		10	26		$\mathrm{k} \Omega$
Magnitude of Leakage Current	$l_{\text {ABC }}=0$		0.2	100		0.2	5	nA
Differential Input Current	$\mathrm{l}_{\mathrm{ABC}}=0$, Input $= \pm 4 \mathrm{~V}$		0.02	100		0.02	5	nA
Open Loop Bandwidth			2			2		MHz
Slew Rate	Unity Gain Compensated		50			50		$\mathrm{V} / \mu \mathrm{s}$

Note 1: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$, amplifier bias current $\left(\mathrm{l}_{A B C}\right)=500 \mu \mathrm{~A}$, unless otherwise specified.
Note 2: Selection to supply voltage above $\pm 22 \mathrm{~V}$, contact the factory.
Typical Performance Characteristics

Total Power Dissipation

Peak Output Voltage and Common Mode Range

Leakage Current

Amplifier Bias Voltage vs Amplifier Bias Current

Leakage Current Test Circuit

TL/H/7148-6
Differential Input Current Test Circuit

TL/H/7148-7

National Semiconductor

LM3303/LM3403
 Quad Operational Amplifiers

General Description

The LM3303 and LM3403 are monolithic quad operational amplifiers consisting of four independent high gain, internally frequency compensated, operational amplifiers designed to operate from a single power supply or dual power supplies over a wide range of voltages. The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications.

Features

- Input common mode voltage range includes ground or negative supply
- Output voltage can swing to ground or negative supply

Connection Diagram

14-Lead DIP and SO-14 Package

Order Information

Device Code	Package Code	Package Description
LM3303J	J14A	Ceramic DIP
LM3303N	N14A	Molded DIP
LM3303M	M14A	Molded Surface Mount
LM3403J	J14A	Ceramic DIP
LM3403N	N14A	Molded DIP
LM3403M	M14A	Molded Surface Mount

Equivalent Circuit (1/4 of Circuit)

Absolute Maximum Ratings	
If Military/Aerospace specified please contact the National Office/Distributors for availabilit	ces are required, conductor Sales specifications.
Storage Temperature Range	
Ceramic DIP	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Molded DIP and SO-14	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
Industrial (LM3303)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Commercial (LM3403)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature	
Ceramic DIP (Soldering, 60 sec.)	$300^{\circ} \mathrm{C}$
Molded DIP and SO-14	
(Soldering, 10 sec .)	$265^{\circ} \mathrm{C}$

Internal Power Dissipation (Notes 1, 2)	
14L-Ceramic DIP	1.36 W
14L-Molded DIP	1.04 W
SO-14	0.93 W
Supply Voltage between V + and V-	36 V
Differential Input Voltage (Note 3)	$\pm 30 \mathrm{~V}$
Input Voltage	$(\mathrm{V}-)-0.3 \mathrm{~V}$ to $\mathrm{V}+$
ESD Tolerance	(To Be Determined)

LM3303 and LM3403

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter		Conditions	LM3303			LM3403			Units	
			Min	Typ	Max	Min	Typ	Max			
V_{10}	Input Offset Voltage					2.0	8.0		2.0	8.0	mV
I_{10}	Input Offset Current				30	75		30	50	nA	
IIB	Input Bias Current				200	500		200	500	nA	
Z_{1}	Input Impedance			0.3	1.0		0.3	1.0		$\mathrm{M} \Omega$	
ICC	Supply Current		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		2.8	7.0		2.8	7.0	mA	
CMR	Common Mode Rejection		$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		70	90		dB	
V_{IR}	Input Voltage Range			$\begin{aligned} & +12 V \\ & \text { to } V- \end{aligned}$	$\begin{aligned} & +12.5 \mathrm{~V} \\ & \text { to } V- \end{aligned}$		$\begin{aligned} & +13 V \\ & \text { to } V- \end{aligned}$	$\begin{aligned} & +13.5 \mathrm{~V} \\ & \text { to } V- \end{aligned}$		V	
PSRR	Power Supply Rejection Ratio				30	150	"	30	150	$\mu \mathrm{V} / \mathrm{V}$	
los	Output Short Circuit Current (Per Amplifier) (Note 4)			± 10	± 30	± 45	± 10	± 30	± 45	mA	
Avs	Large Signal Voltage Gain		$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega \\ \hline \end{array}$	20	200		20	200		V/mV	
$\mathrm{V}_{\text {OP }}$	Output Volt		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	12.5		± 12	+13.5		V	
			$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$	± 10	12		± 10	± 13			
TR	Transient Response	Rise Time/ Fall Time	$\begin{aligned} & V_{O}=50 \mathrm{mV}, \\ & A_{V}=1.0, R_{L}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$		0.3			0.3		$\mu \mathrm{S}$	
		Overshoot	$\begin{aligned} & V_{O}=50 \mathrm{mV} \\ & A_{V}=1.0, R_{L}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$		5.0			5.0		\%	
BW	Bandwidth		$\begin{aligned} & V_{O}=50 \mathrm{mV}, \\ & A_{V}=1.0, R_{L}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$		1.0			1.0		MHz	
SR	Slew Rate		$\begin{aligned} & V_{1}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}, \\ & A_{V}=1.0 \end{aligned}$		0.6			0.6		$\mathrm{V} / \mu \mathrm{s}$	

LM3303 and LM3403 (Continued)

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified
The following specifications apply for $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for the LM 3303 , and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the LM 3403

Symbol	Parameter	Conditions	LM3303			LM3403			Units
			Min	Typ	Max	Min	Typ	Max	
V_{10}	Input Offset Voltage				10			10	mV
$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	Input Offset Voltage Temperature Sensitivity			10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
10	Input Offset Current				250			200	nA
$\Delta l_{10} / \Delta T$	Input Offset Current Temperature Sensitivity			50			50		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
I_{IB}	Input Bias Current				1000			800	nA
Avs	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega \end{aligned}$	15			15			V/mV
$\mathrm{V}_{\text {OP }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$	± 10			± 10			V

LM3303 and LM3403

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=5.0 \mathrm{~V}, \mathrm{~V}-=\mathrm{GND}$, unless otherwise specified

Symbol	Parameter	Conditions	LM3303			LM3403			Units
			Min	Typ	Max	Min	Typ	Max	
V_{10}	Input Offset Voltage				8.0		2.0	8.0	mV
10	Input Offset Current				75		30	50	nA
I_{IB}	Input Bias Current				500		200	500	nA
lCC	Supply Current			2.5	7.0		2.5	7.0	mA
PSRR	Power Supply Rejection Ratio				150			150	$\mu \mathrm{V} / \mathrm{V}$
Avs	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega$	20	200		20	200		V / mV
V_{OP}	Output Voltage Swing (Note 5)	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	3.3			3.3			V
		$\begin{aligned} & 5.0 \mathrm{~V} \leq \mathrm{V}+\leq 30 \mathrm{~V}, \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{array}{r} (V+) \\ -2.0 \\ \hline \end{array}$			$\begin{array}{r} (V+) \\ -2.0 \\ \hline \end{array}$			
CS	Channel Separation	$1.0 \mathrm{~Hz} \leq \mathrm{f} \leq 20 \mathrm{kHz}$ (Input Referenced)		-120			-120		dB

Note 1: $\mathrm{T}_{\mathrm{J} \text { Max }}=150^{\circ} \mathrm{C}$ for the Molded DIP and SO-14, and $175^{\circ} \mathrm{C}$ for the Ceramic DIP.
Note 2: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature, derate the 14 L -Ceramic DIP at $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the $14 \mathrm{~L}-\mathrm{Molded} \mathrm{DIP}$ at $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, and the SO-14 at $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Note 3: For supply voltage less than 30 V between $\mathrm{V}+$ and V -, the absolute maximum input voltage is equal to the supply voltage.
Note 4: Not to exceed maximum package power dissipation.
Note 5: Output will swing to ground.

Typical Performance Characteristics

Output Swing vs Supply Voltage

SUPPLY VOLTAGE ($\pm V)$

Sine Wave Response

Input Bias Current vs Temperature

TEMPERATURE $\left({ }^{\circ}{ }^{\circ}\right.$)

SUPPLY VOLTAGE ($\ddagger \mathrm{V}$)

Typical Applications

Multiple Feedback Bandpass Filter

TL/H/10064-4
$f_{0}=$ center frequency
$\mathrm{BW}=$ Bandwidth
R in $k \Omega$
C in $\mu \mathrm{F}$
$Q=\frac{f_{0}}{B W}<10$
$\mathrm{C} 1=\mathrm{C} 2=\frac{\mathrm{Q}}{3}$
$\left.R 1=R 2=1 R 3=9 Q^{2}-1\right\}$ Using scaling factors in these expressions.
If source impedance is high or varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Design example:
given: $Q=5, f_{0}=1 \mathrm{kHz}$
Let R1 $=$ R2 $=10 \mathrm{k} \Omega$
then R3 $=9(5)^{2}-10$
$R 3=215 \mathrm{k} \Omega$
$C=\frac{5}{3}=1.6 \mathrm{nF}$

Wein Bridge Oscillator

TL/H/10064-5

$$
\begin{aligned}
f_{0}=\frac{1}{2 \pi R C} \text { for } f_{0} & =1 \mathrm{kHz} \\
R & =16 \mathrm{k} \Omega \\
C & =0.01 \mu \mathrm{~F}
\end{aligned}
$$

Comparator with Hysteresis

$V_{I L}=\frac{R 1}{R 1+R 2}\left(V_{O L}-V_{R E F}\right)+V_{\text {REF }}$
$V_{I H}=\frac{R_{1}}{R 1+R_{2}}\left(V_{O H}-V_{\text {REF }}\right)+V_{\text {REF }}$
$H=\frac{R 1}{R 1+R 2}\left(V_{O H}-V_{O L}\right)$

High Impedance Differential Amplifier

TL/H/10064-7
$V_{\text {OUT }}=C(1+a+b)\left(V 2-V_{1}\right)$
$\frac{\mathrm{R} 2}{\mathrm{R} 5} \equiv \frac{\mathrm{R} 6}{\mathrm{R} 7}$ for best CMRR
$R 1=R 4$
$R 2=R 5$
Gain $=\frac{R 6}{R 5}\left(1+\frac{2 R 1}{R 3}\right)=C(1+a+b)$

AC Coupled Non-Inverting Amplifier

TL/H/10064-9
$A_{V}=1+\frac{R 2}{R 1}$
$A_{V}=11$ (as shown)

Typical Applications (Continued)

Voltage Reference

TL/H/10064-10

$$
\begin{aligned}
& V_{O}=\frac{R 1}{R 1+R 2}\left(=\frac{V+}{2} \text { as shown }\right) \\
& V_{O}=\frac{1}{2} V+
\end{aligned}
$$

TL/H/10064-11

Voltage Controlled Oscillator

TL/H/10064-12
Note 1: Wide Control Voltage Range:

$$
0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CO}} \leq 2(\mathrm{~V} \pm 1.5 \mathrm{~V})
$$

Typical Applications (Continued)

Function Generator

Note 2: $f=\frac{R 1+R 2}{4 C R_{f} R 1}$ if $R 3=\frac{R 2 R 1}{R 2+R 1}$

General Description

The LM3875 is a high-performance audio power amplifier capable of delivering 56W of continuous average power to an 8Ω load with $0.1 \%(T H D+N)$ from $20 \mathrm{~Hz}-20 \mathrm{kHz}$.

The performance of the LM3875, utilizing its Self Peak Instantaneous Temperature (${ }^{\circ} \mathrm{Ke}$) (SPiKe) Protection Circuitry, puts it in a class above discrete and hybrid amplifiers by providing an inherently, dynamically protected Safe Operating Area (SOA). SPiKe Protection means that these parts are completely safeguarded at the output against overvoltage, undervoltage, overloads, including shorts to the supplies, thermal runaway, and instantaneous temperature peaks.

The LM3875 maintains an excellent Signal-to-Noise Ratio of greater than $95 \mathrm{~dB}(\mathrm{~min})$ with a typical low noise floor of $2.0 \mu \mathrm{~V}$. It exhibits extremely low (THD +N) values of 0.06% at the rated output into the rated load over the audio spectrum, and provides excellent linearity with an IMD (SMPTE) typical rating of 0.004%.

Features

- 56W continuous average output power into 8Ω
- 100W instantaneous peak output power capability
- Signal-to-Noise Ratio $>95 \mathrm{~dB}$ (min)
- Output protection from a short to ground or to the supplies via internal current limiting circuitry
- Output over-voltage protection against transients from inductive loads
- Supply under-voltage protection, not allowing internal biasing to occur when $\left|\mathrm{V}_{\mathrm{EE}}\right|+\left|\mathrm{V}_{\mathrm{CC}}\right| \leq 12 \mathrm{~V}$, thus eliminating turn-on and turn-off transients
- 11 lead TO-220 package

Applications

- Component stereo
- Compact stereo
- Self-powered speakers
- Surround-sound amplifiers
- High-end stereo TVs

Typical Application

Connection Diagram

FIGURE 1. Typical Audio Amplifier Application Circuit
*Optional components dependent upon specific design requirements. Refer to the External Components Description section for a component function description.

Absolute Maximum Ratings (Notes 1, 2)		
If Military/Aerospace specified devices are required,	Junction Temperature (Note 5)	$150^{\circ} \mathrm{C}$
please contact the National Semiconductor Sales	Soldering Information	
Office/Distributors for availability and specifications.	T package (10 seconds)	$260^{\circ} \mathrm{C}$
Supply Voltage $\|\mathrm{V}+\|+\|\mathrm{V}-\|$ (No Signal) 94 V	Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage \|V $+\|+\|\mathrm{V}-\|$ (Input Signal) 84 V	Thermal Resistance	
Common Mode Input Voltage $\quad \begin{array}{r}\left(\mathrm{V}^{+} \text {or } \mathrm{V}^{-}\right) \text {and } \\ \|\mathrm{V}+\|+\| \mathrm{V}-1 \leq 80 \mathrm{~V}\end{array}$	$\boldsymbol{\theta}_{\boldsymbol{\theta} \mathrm{Cc}}$	$\begin{array}{r} 1^{\circ} \mathrm{C} / \mathrm{W} \\ 43^{\circ} \mathrm{C} / \mathrm{W} \end{array}$
Differential Input Voltage 60 V	Operating Ratings (Notes 1, 2)	
Output Current Internally Limited		
Power Dissipation (Note 3) 125W	Temperature Range	
ESD Susceptibility (Note 4) 2500V	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	$-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
	Note: Operation is guaranteed up to 8 duced from the SPIKe Protection if proper thermal considerations the Thermal Considerations sect Protection Response)	wever, distortion may be introuitry when operating above 70 V ot taken into account. Refer to more information. (See SPiKe

Electrical Characteristics (Notes 1, 2) The following specifications apply for $\mathrm{V}+=+35 \mathrm{~V}, \mathrm{~V}-=-35 \mathrm{~V}$ with $R_{L}=8 \Omega$ unless otherwise specified. Limits apply for $T_{A}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LM3875		Units (Limits)
			Typical (Note 6)	Limit (Note 7)	
$\|\mathrm{V}+\|+\| \mathrm{V}-1$	Power Supply Voltage			$\begin{aligned} & 20 \\ & 84 \end{aligned}$	V (Min) V (Max)
${ }^{* *}{ }^{\text {P }}$	Output Power (Continuous Average)	$\begin{aligned} & \text { THD }+N=0.1 \%(\text { Max }) \\ & f=1 \mathrm{kHz}, \mathrm{f}=20 \mathrm{kHz} \end{aligned}$	56	40	W (Min)
Peak Po	Instantaneous Peak Output Power		100		W
THD + N	Total Harmonic Distortion Plus Noise	$\begin{aligned} & 40 \mathrm{~W}, 20 \mathrm{~Hz} \leq \mathrm{f} \leq 20 \mathrm{kHz} \\ & \mathrm{~A}_{\mathrm{V}}=26 \mathrm{~dB} \end{aligned}$	0.06		\%
**SR	Slew Rate (Note 9)	$\mathrm{V}_{\mathrm{iN}}=1.414 \mathrm{Vrms}, \mathrm{f}=10 \mathrm{kHz}$ Square-wave, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	11	5	$\mathrm{V} / \mu \mathrm{s}$ (Min)
${ }^{*}+$	Total Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~mA}$	30	70	mA (Max)
${ }^{*} \mathrm{~V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$	1	10	mV (Max)
I_{B}	Input Bias Current	$V_{C M}=0 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~mA}$	0.2	1	$\mu \mathrm{A}$ (Max)
los	Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~mA}$	0.01	0.2	$\mu \mathrm{A}$ (Max)
10	Output Current Limit	$\left\|\mathrm{V}+\left\|=\|\mathrm{V}-\|=10 \mathrm{~V}, \mathrm{t}_{\text {on }}=10 \mathrm{~ms}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right.\right.$	6	4	A (Min)
${ }^{*} \mathrm{~V}_{\text {od }}$	Output Dropout Voltage (Note 10)	$\begin{aligned} & \left\|V^{+}-\mathrm{V}_{0}\right\|, \mathrm{V}^{+}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=+100 \mathrm{~mA} \\ & \left\|\mathrm{~V}_{\mathrm{o}}-\mathrm{V}-\right\|, \mathrm{V}^{-}=-20 \mathrm{~V}, \mathrm{I}_{0}=-100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline V \text { (Max) } \\ & V \text { (Max) } \end{aligned}$
*PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}+=40 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{~V}^{-}=-40 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cm}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~V}^{+}=40 \mathrm{~V}, \mathrm{~V}-=-40 \mathrm{~V} \text { to }-20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cm}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	85 85	dB (Min)
*CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}+=60 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{~V}-=-20 \mathrm{~V} \text { to }-60 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cm}}=20 \mathrm{~V} \text { to }-20 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~mA} \\ & \hline \end{aligned}$	120	80	dB (Min)
*AVOL	Open Loop Voltage Gain	$\left\|\mathrm{V}+\left\|=\|\mathrm{V}-\|=40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \Delta \mathrm{V}_{\mathrm{O}}=60 \mathrm{~V}\right.\right.$	120	90	dB (Min)
GBWP	Gain-Bandwidth Product	$\begin{aligned} & \|\mathrm{V}+\|=\|\mathrm{V}-\|=40 \mathrm{~V} \\ & \mathrm{fo}=100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}=50 \mathrm{mVrms} \end{aligned}$	8	2	MHz (Min)
${ }^{* *} \mathrm{e}_{\text {IN }}$	Input Noise	IHF - A Weighting Filter $R_{I N}=600 \Omega$ (Input Referred)	2.0	8.0	$\mu \mathrm{V}$ (Max)

*DC Electricat Test; refer to Test Circuit \#1.
**AC Electrical Test; refer to Test Circuit \#2.

Electrical Characteristics (Notes 1, 2) The following specifications apply for $\mathrm{V}+=+35 \mathrm{~V}, \mathrm{~V}-=-35 \mathrm{~V}$ with $R_{L}=8 \Omega$ unless otherwise specified. Limits apply for $T_{A}=25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter	Conditions	LM3875		Units (Limits)
			Typical (Note 6)	Limit (Note 7)	
SNR	Signal-to-Noise Ratio	$\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}, \mathrm{~A}-$ Weighted, Measured at $1 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$	98 dB		dB
		$\mathrm{P}_{\mathrm{O}}=40 \mathrm{~W}, \mathrm{~A}-$ Weighted, Measured at $1 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$	114 dB		dB
		$P_{p k}=100 \mathrm{~W}, \mathrm{~A}-$ Weighted, Measured at $1 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$	122 dB		dB
IMD	Intermodulation Distortion Test	$60 \mathrm{~Hz}, 7 \mathrm{kHz}, 4: 1$ (SMPTE) $60 \mathrm{~Hz}, 7 \mathrm{kHz}, 1: 1$ (SMPTE)	$\begin{aligned} & 0.004 \\ & 0.006 \end{aligned}$		\%

*DC Electrical Test; refer to Test Circuit \#1.
**AC Electrical Test; refer to Test Circuit \#2.
Note 1: All voltages are measured with respect to supply GND, unless otherwise specified.
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.
Note 3: For operating at case temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $\theta_{\mathrm{JC}}=1.0^{\circ} \mathrm{C} / \mathrm{W}$ (junction to case). Refer to the Thermal Resistance figure in the Application Information section under Thermal Considerations.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: The operating junction temperature maximum is $150^{\circ} \mathrm{C}$, however, the instantaneous Safe Operating Area temperature is $250^{\circ} \mathrm{C}$.
Note 6: Typicals are measured at $25^{\circ} \mathrm{C}$ and represent the parametric norm.
Note 7: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: The LM3875T package TA11B is a non-isolated package, setting the tab of the device and the heat sink at V-potential when the LM3875 is directly mounted to the heat sink using only thermal compound. If a mica washer is used in addition to thermal compound, $\theta_{\text {CS }}$ (case to sink) is increased, but the heat sink will be isolated from V-.
Note 9: The feedback compensation network limits the bandwidth of the closed-loop response and so the slew rate will be reduced due to the high frequency rolloff. Without feedback compensation, the slew rate is typically $16 \mathrm{~V} / \mu \mathrm{s}$.
Note 10: The output dropout voltage is the supply voltage minus the clipping voltage. Refer to the Clipping Voltage vs. Supply Voltage graph in the Typical Performance Characteristics section.

Test Circuit \# 1 *(DC Electrical Test Circuit)

Test Circuit \# 2 (**AC Electrical Test Circuit)

TL/H/11449-4

Single Supply Application Circuit

TL/H/11449-5
FIGURE 2. Typical Single Supply Audio Amplifier Application Circuit
*Optional components dependent upon specific design requirements. Refer to the External Components Description section for a component function description.
Equivalent Schematic (Excluding active protection circuitry)

External Components Description (Figures 1 and 2)		
Components		Functional Description
1.	R_{IN}	Acts as a volume control by setting the voltage level allowed to the amplifier's input terminals.
2.	$\mathrm{R}_{\text {A }}$	Provides DC voltage biasing for the single supply operation and bias current for the positive input terminal.
3.	$\mathrm{C}_{\text {A }}$	Provides bias filtering.
4.	C	Provides AC coupling at the input and output of the amplifier for single supply operation.
5.	R_{B}	Prevents currents from entering the amplifier's non-inverting input which may be passed through to the load upon power-down of the system due to the low input impedance of the circuitry when the under-voltage circuitry is off. This phenomenon occurs when the supply voltages are below 1.5 V .
6.	${ }^{*} \mathrm{C}_{\mathrm{C}}$	Reduces the gain (bandwidth of the amplifier) at high frequencies to avoid quasi-saturation oscillations of the output transistor. The capacitor also suppresses external electromagnetic switching noise created from fluorescent lamps.
7.	Ri	Inverting input resistance to provide AC Gain in conjunction with $\mathrm{R}_{\mathrm{f} 1}$.
8.	* Ci	Feedback capacitor. Ensures unity gain at DC. Also a low frequency pole (highpass roll-off) at: $f_{c}=1 /(2 \pi R i C i)$
9.	$\mathrm{R}_{\text {f1 }}$	Feedback resistance to provide AC Gain in conjunction with Ri.
10.	${ }^{*} \mathrm{R}_{\text {f2 }}$	At higher frequencies feedback resistance works with C_{f} to provide lower $A C$ Gain in conjunction with $\mathrm{R}_{\mathrm{f} 1}$ and Ri. A high frequency pole (lowpass roll-off) exists at: $f_{c}=\left[R_{f 1} R_{f 2}\right]\left(s+1 / R_{f 2} C_{f}\right] /\left[\left(R_{f 1}+R_{f 2}\right)\left(s+1 / C_{f}\left(R_{f 1}+R_{f 2}\right)\right)\right]$
11.	${ }^{*} \mathrm{C}_{\mathrm{f}}$	Compensation capacitor that works with $\mathrm{R}_{\mathrm{f} 1}$ and $\mathrm{R}_{\mathrm{f} 2}$ to reduce the AC Gain at higher frequencies.
12.	${ }^{*} \mathrm{R}_{\text {SN }}$	Works with $\mathrm{C}_{\text {SN }}$ to stabilize the output stage by creating a pole that eliminates high frequency oscillations.
13.	${ }^{*} \mathrm{C}_{\text {SN }}$	Works with $\mathrm{R}_{\text {SN }}$ to stabilize the output stage by creating a pole that eliminates high frequency oscillations. $f_{C}=1 /\left(2 \pi R_{S N} C_{S N}\right) .$
14.	*L	Provides high impedance at high frequencies so that R may decouple a highly capacitive load and reduce the
15.	*R	Q of the series resonant circuit due to capacitive load. Also provides a low impedance at low frequencies to short out R and pass audio signals to the load.
16.	C_{S}	Provides power supply filtering and bypassing.

*Optional components dependent upon specific design requirements. Refer to the Application Information section for more information.

OPTIONAL EXTERNAL COMPONENT INTERACTION

Although the optional external components have specific desired functions that are designed to reduce the bandwidth and eliminate unwanted high frequency oscillations they may cause certain undesirable effects when they interact. Interaction may occur for components whose reactances are in close proximity to one another. One example would be the coupling capacitor, C_{C}, and the compensation capacitor, C_{f}. These two components act as low impedances to certain frequencies which will couple signals from the input to the output. Please take careful note of basic amplifier component functionality when designing in these components.
The optional external components shown in Figure 2 and described above are applicable in both single and split voltage supply configurations.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

THD Distribution

THD Distribution

TL/H/11449-8

Typical Performance Characteristics (Continued)

Application Information

GENERAL FEATURES

Under-Voltage Protection: Upon system power-up the un-der-voltage Protection Circuitry allows the power supplies and their corresponding caps to come up close to their full values before turning on the LM3875 such that no DC output spikes occur. Upon turn-off, the output of the LM3875 is brought to ground before the power supplies such that no transients occur at power-down.
Over-Voltage Protection: The LM3875 contains overvoltage protection circuitry that limits the output current to approximately 4Apeak while also providing voltage clamping, though not through internal clamping diodes. The clamping effect is quite the same, however, the output transistors are designed to work alternately by sinking large current spikes.
SPiKe Protection: The LM3875 is protected from instantaneous peak-temperature stressing by the power transistor array. The Safe Operating Area graph in the Typical Performance Characteristics section shows the area of device operation where the SPiKe Protection Circuitry is not enabled. The waveform to the right of the SOA graph exemplifies how the dynamic protection will cause waveform distortion when enabled.
Thermal Protection: The LM3875 has a sophisticated thermal protection scheme to prevent long-term thermal stress to the device. When the temperature on the die reaches $165^{\circ} \mathrm{C}$, the LM3875 shuts down. It starts operating again when the die temperature drops to about $155^{\circ} \mathrm{C}$, but if the temperature again begins to rise, shutdown will occur again at $165^{\circ} \mathrm{C}$. Therefore the device is allowed to heat up to a relatively high temperature if the fault condition is temporary, but a sustained fault will cause the device to cycle in a Schmitt Trigger fashion between the thermal shutdown temperature limits of $165^{\circ} \mathrm{C}$ and $155^{\circ} \mathrm{C}$. This greatly reduces the stress imposed on the IC by thermal cycling, which in turn improves its reliability under sustained fault conditions.
Since the die temperature is directly dependent upon the heat sink, the heat sink should be chosen as discussed in the Thermal Considerations section, such that thermal shutdown will not be reached during normal operation. Using the best heat sink possible within the cost and space constraints of the system will improve the long-term reliability of any power semiconductor device.

THERMAL CONSIDERATIONS

Heat Sinking

The choice of a heat sink for a high-power audio amplifier is made entirely to keep the die temperature at a level such that the thermal protection circuitry does not operate under normal circumstances. The heat sink should be chosen to dissipate the maximum IC power for a given supply voltage and rated load.
With high-power pulses of longer duration than 100 ms , the case temperature will heat up drastically without the use of a heat sink. Therefore the case temperature, as measured at the center of the package bottom, is entirely dependent on heat sink design and the mounting of the IC to the heat sink. For the design of a heat sink for your audio amplifier application refer to the Determining the Correct Heat Sink section.

Since a semiconductor manufacturer has no control over which heat sink is used in a particular amplifier design, we can only inform the system designer of the parameters and the method needed in the determination of a heat sink. With this in mind, the system designer must choose his supply voltages, a rated load, a desired output power level, and know the ambient temperature surrounding the device. These parameters are in addition to knowing the maximum junction temperature and the thermal resistance of the IC, both of which are provided by National Semiconductor.
As a benefit to the system designer we have provided Maximum Power Dissipation vs Supply Voltages curves for various loads in the Typical Performance Characteristics section, giving an accurate figure for the maximum thermal resistance required for a particular amplifier design. This data was based on $\theta_{\mathrm{JC}}=1^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{\mathrm{CS}}=0.2^{\circ} \mathrm{C} / \mathrm{W}$. We also provide a section regarding heat sink determination for any audio amplifier design where $\theta_{\text {CS }}$ may be a different value. It should be noted that the idea behind dissipating the maximum power within the IC is to provide the device with a low resistance to convection heat transfer such as a heat sink. Therefore, it is necessary for the system designer to be conservative in his heat sink calculations. As a rule, the lower the thermal resistance of the heat sink the higher the amount of power that may be dissipated. This is, of course, guided by the cost and size requirements of the system. Convection cooling heat sinks are available commercially, and their manufacturers should be consulted for ratings.
Proper mounting of the IC is required to minimize the thermal drop between the package and the heat sink. The heat sink must also have enough metal under the package to conduct heat from the center of the package bottom to the fins without excessive temperature drop.
A thermal grease such as Wakefield type 120 or Thermalloy Thermacote should be used when mounting the package to the heat sink. Without this compound, the thermal resistance will be no better than $0.5^{\circ} \mathrm{C} / \mathrm{W}$, and probably much worse. With the compound, thermal resistance will be $0.2^{\circ} \mathrm{C} / \mathrm{W}$ or less, assuming under 0.005 inch combined flatness runout for the package and heat sink. Proper torquing of the mounting bolts is important and can be determined from heat sink manufacturer's specification sheets.
Should it be necessary to isolate V - from the heat sink, an insulating washer is required. Hard washers like berylum oxide, anodized aluminum and mica require the use of thermal compound on both faces. Two-mil mica washers are most common, giving about $0.4^{\circ} \mathrm{C} / \mathrm{W}$ interface resistance with the compound.
Silicone-rubber washers are also available. A $0.5^{\circ} \mathrm{C} / \mathrm{W}$ thermal resistance is claimed without thermal compound. Experience has shown that these rubber washers deteriorate and must be replaced should the IC be dismounted.

Determining Maximum Power Dissipation

Power dissipation within the integrated circuit package is a very important parameter requiring a thorough understanding if optimum power output is to be obtained. An incorrect maximum power dissipation (PD_{D}) calculation may result in inadequate heatsinking, causing thermal shutdown circuitry to operate and limit the output power.

Application Information (Continued)

The following equations can be used to accurately calculate the maximum and average integrated circuit power dissipation for your amplifier design, given the supply voltage, rated load, and output power. These equations can be directly applied to the Power Dissipation vs Output Power curves in the Typical Performance Characteristics section.
Equation (1) exemplifies the maximum power dissipation of the IC and equations (2) and (3) exemplify the average IC power dissipation expressed in different forms.

$$
\begin{equation*}
P_{D M A X}=V_{C C}{ }^{2 / 2} \pi^{2} R_{L} \tag{1}
\end{equation*}
$$

where $V_{C C}$ is the total supply voltage

$$
\begin{equation*}
\mathrm{P}_{\mathrm{DAVE}}=\left(\mathrm{V}_{\mathrm{Opk}} / \mathrm{R}_{\mathrm{L}}\right)\left[\mathrm{V}_{\mathrm{CC}} / \pi-\mathrm{V}_{\mathrm{Opk}} / 2\right] \tag{2}
\end{equation*}
$$

where V_{CC} is the total supply voltage and $\mathrm{V}_{\mathrm{Opk}}=\mathrm{V}_{\mathrm{CC}} / \pi$

$$
\begin{equation*}
P_{\mathrm{DAVE}}=\mathrm{V}_{\mathrm{CC}} \mathrm{~V}_{\mathrm{Opk}} / \pi \mathrm{R}_{\mathrm{L}}-\mathrm{V}_{\mathrm{Opk}}{ }^{2 / 2} \mathrm{R}_{\mathrm{L}} \tag{3}
\end{equation*}
$$

where $V_{C C}$ is the total supply voltage.

Determining the Correct Heat Sink

Once the maximum IC power dissipation is known for a given supply voltage, rated load, and the desired rated output power the maximum thermal resistance (in ${ }^{\circ} \mathrm{C} / \mathrm{W}$) of a heat sink can be calculated. This calculation is made using equation (4) and is based on the fact that thermal heat flow parameters are analogous to electrical current flow properties. It is also known that typically the thermal resistance, θ_{JC} (junction to case), of the LM3875 is $1^{\circ} \mathrm{C} / \mathrm{W}$ and that using Thermalloy Thermacote thermal compound provides a thermal resistance, θ_{CS} (case to heat sink), of about $0.2^{\circ} \mathrm{C} / \mathrm{W}$ as explained in the Heat Sinking section.
Referring to the figure below, it is seen that the thermal resistance from the die (junction) to the outside air (ambient) is a combination of three thermal resistances, two of which are known, $\boldsymbol{\theta}_{\mathrm{JC}}$ and $\boldsymbol{\theta}_{\mathrm{cs}}$. Since convection heat flow (power dissipation) is analogous to current flow, thermal resistance is analogous to electrical resistance, and temperature drops are analogous to voltage drops, the power dissipation out of the LM3875 is equal to the following:

TL/H/11449-10
But since we know $\mathrm{P}_{\mathrm{DMAX}}, \theta_{\mathrm{JC}}$, and θ_{SC} for the application and we are looking for $\theta_{\text {SA }}$, we have the following:
$\theta_{S A}=\left[\left(T_{J \max }-T_{\text {Amb }}\right)-P_{\text {DMAX }}\left(\theta_{J C}+\theta_{C S}\right)\right] / P_{D M A X}(4)$
Again it must be noted that the value of θ_{SA} is dependent upon the system designer's amplifier application and its corresponding parameters as described previously. If the ambient temperature that the audio amplifier is to be working under is higher than the normal $25^{\circ} \mathrm{C}$, then the thermal resistance for the heat sink, given all other things are equal, will need to be smaller.

Equations (1) and (4) are the only equations needed in the determination of the maximum heat sink thermal resistance. This is, of course, given that the system designer knows the required supply voltages to drive his rated load at a particular power output level and the parameters provided by the semiconductor manufacturer. These parameters are the junction to case thermal resistance, $\theta_{\mathrm{JC}}, \mathrm{T}_{\mathrm{Jmax}}=150^{\circ} \mathrm{C}$, and the recommended Thermalloy Thermacote thermal compound resistance, $\theta_{\text {Cs. }}$.

SIGNAL-TO-NOISE RATIO

In the measurement of the signal-to-noise ratio, misinterpretations of the numbers actually measured are common. One amplifier may sound much quieter than another, but due to improper testing techniques, they appear equal in measurements. This is often the case when comparing integrated circuit designs to discrete amplifier designs. Discrete transistor amps often "run out of gain" at high frequencies and therefore have small bandwidths to noise as indicated below.

TL/H/11449-11
Integrated circuits have additional open loop gain allowing additional feedback loop gain in order to lower harmonic distortion and improve frequency response. It is this additional bandwidth that can lead to erroneous signal-to-noise measurements if not considered during the measurement process. In the typical example above, the difference in bandwidth appears small on a log scale but the factor of 10 in bandwidth, (200 kHz to 2 MHz) can result in a 10 dB theoretical difference in the signal-to-noise ratio (white noise is proportional to the square root of the bandwidth in a system).
In comparing audio amplifiers it is necessary to measure the magnitude of noise in the audible bandwidth by using a "weighting" filter. ${ }^{1}$ A "weighting" filter alters the frequency response in order to compensate for the average human ear's sensitivity to the frequency spectra. The weighting filters at the same time provide the bandwidth limiting as discussed in the previous paragraph.
In addition to noise filtering, differing meter types give different noise readings. Meter responses include:

1. RMS reading,
2. average responding,
3. peak reading, and
4. quasi peak reading.

Reference 1: CCIR/ARM: A Practical Noise Measurement Method; by Ray Dolby, David Robinson and Kenneth Gundry, AES Preprint No. 1353 (F-3).

Application Information (Continued)

Although theoretical noise analysis is derived using true RMS based calculations, most actual measurements are taken with ARM (Average Responding Meter) test equipment.
Typical signal-to-noise figures are listed for an A-weighted filter which is commonly used in the measurement of noise. The shape of all weighting filters is similar, with the peak of the curve usually occurring in the $3 \mathrm{kHz-7} \mathrm{kHz}$ region as shown below.

TL/H/11449-12

SUPPLY BYPASSING

The LM3875 has excellent power supply rejection and does not require a regulated supply. However, to eliminate possible oscillations all op amps and power op amps should have their supply leads bypassed with low-inductance capacitors having short leads and located close to the package terminals. Inadequate power supply bypassing will manifest itself by a low frequency oscillation known as "motorboating" or by high frequency instabilities. These instabilities can be eliminated through multiple bypassing utilizing a large tantalum or electrolytic capacitor ($10 \mu \mathrm{~F}$ or larger) which is used to absorb low frequency variations and a small ceramic capacitor ($0.1 \mu \mathrm{~F}$) to prevent any high frequency feedback through the power supply lines.
If adequate bypassing is not provided the current in the supply leads which is a rectified component of the load current may be fed back into internal circuitry. This signal causes low distortion at high frequencies requiring that the supplies be bypassed at the package terminals with an electrolytic capacitor of $470 \mu \mathrm{~F}$ or more.

LEAD INDUCTANCE

Power op amps are sensitive to inductance in the output lead, particularly with heavy capacitive loading. Feedback to the input should be taken directly from the output terminal, minimizing common inductance with the load.
Lead inductance can also cause voltage surges on the supplies. With long leads to the power supply, energy is stored in the lead inductance when the output is shorted. This energy can be dumped back into the supply bypass capacitors when the short is removed. The magnitude of this transient is reduced by increasing the size of the bypass capacitor near the IC. With at least a $20 \mu \mathrm{~F}$ local bypass, these voltage surges are important only if the lead length exceeds a couple feet ($>1 \mu \mathrm{H}$ lead inductance). Twisting together the supply and ground leads minimizes the effect.

LAYOUT, GROUND LOOPS AND STABILITY

The LM3875 is designed to be stable when operated at a closed-loop gain of 10 or greater, but as with any other high-
current amplifier, the LM3875 can be made to oscillate under certain conditions. These usually involve printed circuit board layout or output/input coupling.
When designing a layout, it is important to return the load ground, the output compensation ground, and the low level (feedback and input) grounds to the circuit board common ground point through separate paths. Otherwise, large currents flowing along a ground conductor will generate voltages on the conductor which can effectively act as signals at the input, resulting in high frequency oscillation or excessive distortion. It is advisable to keep the output compensation components and the $0.1 \mu \mathrm{~F}$ supply decoupling capacitors as close as possible to the LM3875 to reduce the effects of PCB trace resistance and inductance. For the same reason, the ground return paths should be as short as possible.
In general, with fast, high-current circuitry, all sorts of problems can arise from improper grounding which again can be avoided by returning all grounds separately to a common point. Without isolating the ground signals and returning the grounds to a common point, ground loops may occur.
"Ground Loop" is the term used to describe situations occurring in ground systems where a difference in potential exists between two ground points. Ideally a ground is a ground, but unfortunately, in order for this to be true, ground conductors with zero resistance are necessary. Since real world ground leads possess finite resistance, currents running through them will cause finite voltage drops to exist. If two ground return lines tie into the same path at different points there will be a voltage drop between them. The first figure below shows a common ground example where the positive input ground and the load ground are returned to the supply ground point via the same wire. The addition of the finite wire resistance, R_{2}, results in a voltage difference between the two points as shown below.

Application Information (Continued)

The load current I_{L}. will be much larger than input bias current I_{1}, thus V_{1} will follow the output voltage directly, i.e., in phase. Therefore the voltage appearing at the non-inverting input is effectively positive feedback and the circuit may oscillate. If there were only one device to worry about then the values of R_{1} and R_{2} would probably be small enough to be ignored; however, several devices normally comprise a total system. Any ground return of a separate device, whose output is in phase, can feedback in a similar manner and cause instabilities. Out of phase ground loops also are troublesome, causing unexpected gain and phase errors.
The solution to most ground loop problems is to always use a single-point ground system, although this is sometimes impractical. The third figure above is an example of a singlepoint ground system.
The single-point ground concept should be applied rigorously to all components and all circuits when possible. Violations of single-point grounding are most common among printed circuit board designs, since the circuit is surrounded by large ground areas which invite the temptation to run a device to the closest ground spot. As a final rule, make all ground returns low resistance and low inductance by using large wire and wide traces.
Occasionally, current in the output leads (which function as antennas) can be coupled through the air to the amplifier input, resulting in high-frequency oscillation. This normally happens when the source impedance is high or the input
leads are long. The problem can be eliminated by placing a small capacitor, C_{C}, (on the order of $50 \mathrm{pF}-500 \mathrm{pF}$) across the LM3875 input terminals. Refer to the External Components Description section relating to component interaction with C_{f}.

REACTIVE LOADING

It is hard for most power amplifiers to drive highly capacitive loads very effectively and normally results in oscillations or ringing on the square wave response. If the output of the LM3875 is connected directly to a capacitor with no series resistance, the square wave response will exhibit ringing if the capacitance is greater than about $0.2 \mu \mathrm{~F}$. If highly capacitive loads are expected due to long speaker cables, a method commonly employed to protect amplifiers from low impedances at high frequencies is to couple to the load through a 10Ω resistor in parallel with a $0.7 \mu \mathrm{H}$ inductor. The inductor-resistor combination as shown in the Typical Application Circuit isolates the feedback amplifier from the load by providing high output impedance at high frequencies thus allowing the 10Ω resistor to decouple the capacitive load and reduce the Q of the series resonant circuit. The LR combination also provides low output impedance at low frequencies thus shorting out the 10Ω resistor and allowing the amplifier to drive the series RC load (large capacitive load due to long speaker cables) directly.

Application Information (Continued)

GENERALIZED AUDIO POWER AMPLIFIER DESIGN

The system designer usually knows some of the following parameters when starting an audio amplifier design:

Desired Power Output	Input Level
Input Impedance	Load Impedance
Maximum Supply Voltage	Bandwidth

The power output and load impedance determine the power supply requirements, however, depending upon the application some system designers may be limited to certain maximum supply voltages. If the designer does have a power supply limitation, he should choose a practical load impedance which would allow the amplifier to provide the desired output power, keeping in mind the current limiting capabilities of the device. In any case, the output signal swing and current are found from (where P_{O} is the average output power):

$$
\begin{align*}
& V_{\text {opeak }}=\sqrt{2 R_{L} P_{O}} \tag{1}\\
& \mathrm{I}_{\text {opeak }}=\sqrt{\left(2 P_{O}\right) / R_{L}} \tag{2}
\end{align*}
$$

To determine the maximum supply voltage the following parameters must be considered. Add the dropout voltage (5 volts for LM3875) to the peak output swing, $V_{\text {opeak, }}$, to get the supply rail value, (i.e. $+\mathrm{V}_{\text {opeak }}+\mathrm{Vod}$) at a current of $l_{\text {opeak) }}$. The regulation of the supply determines the unloaded voltage, usually about 15% higher. Supply voltage will also rise 10% during high line conditions. Therefore, the maximum supply voltage is obtained from the following equation:
max. supplies $\approx \pm\left(V_{\text {opeak }}+\operatorname{Vod}(1+\right.$ regulation $)(1.1)$
The input sensitivity and the output power specs determine the minimum required gain as depicted below:

$$
\begin{equation*}
A_{V} \geq\left(\sqrt{P_{\mathrm{O}} R_{\mathrm{L}}}\right) /\left(V_{\mathrm{IN}}\right)=V_{\text {orms }} / V_{\text {inrms }} \tag{4}
\end{equation*}
$$

Normally the gain is set between 20 and 200; for a $40 \mathrm{~W}, 8 \Omega$ audio amplifier this results in a sensitivity of 894 mV and 89 mV , respectively. Although higher gain amplifiers provide greater output power and dynamic headroom capabilities, there are certain shortcomings that go along with the so called "gain". The input referred noise floor is increased and hence the SNR is worse. With the increase in gain, there is also a reduction of the power bandwidth which results in a decrease in feedback thus not allowing the amplifier to respond as quickly to nonlinearities. This decreased ability to respond to nonlinearities increases the THD + N specification.
The desired input impedance is set by R_{IN}. Very high values can cause board layout problems and DC offsets at the output. The value for the feedback resistance, $\mathrm{R}_{\mathrm{f} 1}$, should be chosen to be a relatively large value ($10 \mathrm{k} \Omega-100 \mathrm{k} \Omega$), and the other feedback resistance, Ri , is calculated using standard op amp configuration gain equations. Most audio amplifiers are designed from the non-inverting amplifier configuration.

DESIGN A 40W/8 Ω AUDIO AMPLIFIER

Given:

Power Output	40 W
Load Impedance	8Ω
Input Level	$1 \mathrm{~V}_{(\text {max })}$
Input Impedance	$100 \mathrm{k} \mathrm{\Omega}$
Bandwidth	$20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 0.25 \mathrm{~dB}$

Equation (1) and (2) give:

$$
40 \mathrm{~W} / 8 \Omega \quad \mathrm{~V}_{\text {opeak }}=25.3 \mathrm{~V} \quad \mathrm{l}_{\text {opeak }}=3.16 \mathrm{~A}
$$

Therefore the supply required is: $\pm 30.3 \mathrm{~V} @ 3.16 \mathrm{~A}$
With 15% regulation and high line the final supply voltage is $\pm 38.3 \mathrm{~V}$ using equation (3). At this point it is a good idea to check the Power Output vs Supply Voltage to ensure that the required output power is obtainable from the device while maintaining low THD + N. It is also good to check the Power Dissipation vs Supply Voltage to ensure that the device can handle the internal power dissipation. At the same time designing in a relatively practical sized heat sink with a low thermal resistance is also important. Refer to Typical Performance Characteristics graphs and the Thermal Considerations section for more information.
The minimum gain from equation (4) is: $A_{V} \geq 18$
We select a gain of 21 (Non-Inverting Amplifier); resulting in a sensitivity of 894 mV .
Letting $R_{\mathbb{I N}}$ equal $100 \mathrm{k} \Omega$ gives the required input impedance, however, this would eliminate the "volume control" unless an additional input impedance was placed in series with the $10 \mathrm{k} \Omega$ potentiometer that is depicted in Figure 1. Adding the additional $100 \mathrm{k} \Omega$ resistor would ensure the minimum required input impedance.
For low DC offsets at the output we let $R_{\mathrm{f} 1}=100 \mathrm{k} \Omega$. Solving for Ri (Non-Inverting Amplifier) gives the following:

$$
R i=R_{f 1} /\left(A_{V}-1\right)=100 \mathrm{k} /(21-1)=5 \mathrm{k} \Omega \text {; use } 5.1 \mathrm{k} \Omega
$$

The bandwidth requirement must be stated as a pole, i.e., the 3 dB frequency. Five times away from a pole give 0.17 dB down, which is better than the required 0.25 dB . Therefore:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{L}}=20 \mathrm{~Hz} / 5=4 \mathrm{~Hz} \\
& \mathrm{f}_{\mathrm{H}}=20 \mathrm{kHz} \times 5=100 \mathrm{kHz}
\end{aligned}
$$

At this point, it is a good idea to ensure that the Gain Bandwidth Product for the part will provide the designed gain out to the upper 3 dB point of 100 kHz . This is why the minimum GBWP of the LM3875 is important.

$$
\begin{gathered}
\text { GBWP }=A_{V} \times f 3 \mathrm{~dB}=21 \times 100 \mathrm{kHz}=2.1 \mathrm{MHz} \\
\text { GBWP }=2.0 \mathrm{MHz}(\mathrm{~min}) \text { for } L M 3875
\end{gathered}
$$

Solving for the low frequency roll-off capacitor, Ci , we have:

$$
\mathrm{Ci}>1 /\left(2 \pi \mathrm{Ri} \mathrm{f}_{\mathrm{L}}\right)=7.8 \mu \mathrm{~F} \text {; use } 10 \mu \mathrm{~F}
$$

Definition of Terms

Input Offset Voltage: The absolute value of the voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage and current.
Input Bias Current: The absolute value of the average of the two input currents with the output voltage and current at zero.
Input Offset Current: The absolute value of the difference in the two input currents with the output voltage and current at zero.
Input Common-Mode Voltage Range (or Input Voltage Range): The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.
Common-Mode Rejection: The ratio of the input commonmode voltage range to the peak-to-peak change in input offset voltage over this range.
Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.
Quiescent Supply Current: The current required from the power supply to operate the amplifier with no load and the output voltage and current at zero.
Slew Rate: The internally limited rate of change in output voltage with a large amplitude step function applied to the input.
Class B Amplifier: The most common type of audio power amplifier that consists of two output devices each of which conducts for 180° of the input cycle. The LM3875 is a Quasi-AB type amplifier.
Crossover Distortion: Distortion caused in the output stage of a class B amplifier. It can result from inadequate bias current providing a dead zone where the output does not respond to the input as the input cycle goes through its zero crossing point. Also for ICs an inadequate frequency response of the output PNP device can cause a turn-on delay giving crossover distortion on the negative going transistion through zero crossing at the higher audio frequencies.
THD +N : Total Harmonic Distortion plus Noise refers to the measurement technique in which the fundamental component is removed by a bandreject (notch) filter and all remaining energy is measured including harmonics and noise.
Signal-to-Noise Ratio: The ratio of a system's output signal level to the system's output noise level obtained in the absence of a signal. The output reference signal is either specified or measured at a specified distortion level.
Continuous Average Output Power: The minimum sine wave continuous average power output in watts (or dBW) that can be delivered into the rated load, over the rated bandwidth, at the rated maximum total harmonic distortion.
Music Power: A measurement of the peak output power capability of an amplifier with either a signal duration sufficiently short that the amplifier power supply does not sag during the measurement, or when high quality external power supplies are used. This measurement (an IHF standard) assumes that with normal music program material the amplifier power supplies will sag insignificantly.
Peak Power: Most commonly referred to as the power output capability of an amplifier that can be delivered to the load; specified by the part's maximum voltage swing.

Headroom: The margin between an actual signal operating level (usually the power rating of the amplifier with particular supply voltages, a rated load value, and a rated THD + N figure) and the level just before clipping distortion occurs, expressed in decibels.
Large Signal Voltage Gain: The ratio of the output voltage swing to the differential input voltage required to drive the output from zero to either swing limit. The output swing limit is the supply voltage less a specified quasi-saturation voltage. A pulse of short enough duration to minimize thermal effects is used as a measurement signal.
Output-Current Limit: The output current with a fixed output voltage and a large input overdrive. The limiting current drops with time once SPiKe protection circuitry is activated.
Output Saturation Threshold (Clipping Point): The output swing limit for a specified input drive beyond that required for zero output. It is measured with respect to the supply to which the output is swinging.
Output Resistance: The ratio of the change in output voltage to the change in output current with the output around zero.
Power Dissipation Rating: The power that can be dissipated for a specified time interval without activating the protection circuitry. For time intervals in excess of 100 ms , dissipation capability is determined by heat sinking of the IC package rather than by the IC itself.
Thermal Resistance: The peak, junction-temperature rise, per unit of internal power dissipation (units in ${ }^{\circ} \mathrm{C} / \mathrm{W}$), above the case temperature as measured at the center of the package bottom.
The DC thermal resistance applies when one output transistor is operating continuously. The AC thermal resistance applies with the output transistors conducting alternately at a high enough frequency that the peak capability of neither transistor is exceeded.
Power Bandwidth: The power bandwidth of an audio amplifier is the frequency range over which the amplifier voltage gain does not fall below 0.707 of the flat band voltage gain specified for a given load and output power.
Power bandwidth also can be measured by the frequencies at which a specified level of distortion is obtained while the amplifier delivers a power output 3 dB below the rated output. For example, an amplifier rated at 60 W with $\leq 0.25 \%$ THD $+N$, would make its power bandwidth measured as the difference between the upper and lower frequencies at which 0.25% distortion was obtained while the amplifier was delivering 30W.
Gain-Bandwidth Product: The Gain-Bandwidth Product is a way of predicting the high-frequency usefulness of an op amp. The Gain-Bandwidth Product is sometimes called the unity-gain frequency or unity-gain cross frequency because the open-loop gain characteristic passes through or crosses unity gain at this frequency. Simply, we have the following relationship:

$$
A_{C L 1} \times f_{1}=A_{C L 2} \times f_{2}
$$

Assuming that at unity-gain

$$
\left(A_{C L 1}=1 \text { or } 0 d B\right) f u=f_{1}=G B W P
$$

then we have the following:

$$
\mathrm{GBWP}=\mathrm{A}_{\mathrm{CL} 2} \times \mathrm{f}_{2}
$$

Definition of Terms (Continued)

This says that once fu (GBWP) is known for an amplifier, then the open-loop gain can be found at any frequency. This is also an excellent equation to determine the 3 dB point of a closed-loop gain, assuming that you know the GBWP of the device. Refer to the diagram below.
Bi -amplification: The technique of splitting the audio frequency spectrum into two sections and using individual power amplifiers to drive a separate woofer and tweeter. Crossover frequencies for the amplifiers usually vary between 500 Hz and 1600 Hz . "Biamping" has the advantages of allowing smaller power amps to produce a given sound pressure level and reducing distortion effects produced by overdrive in one part of the frequency spectrum affecting the other part.

C.C.I.R./A.R.M.:

Literally: International Radio Consultative Committee Average Responding Meter
This refers to a weighted noise measurement for a Dolby B type noise reduction system. A filter characteristic is used that gives a closer correlation of the measurement with the subjective annoyance of noise to the ear. Measurements made with this filter cannot necessarily be related to unweighted noise measurements by some fixed conversion factor since the answers obtained will depend on the spectrum of the noise source.
S.P.L.: Sound Pressure Level-usually measured with a microphone/meter combination calibrated to a pressure level of 0.0002μ Bars (approximately the threshold hearing level).

$$
\text { S.P.L. }=20 \text { Log 10P/0.0002 dB }
$$

Where P is the R.M.S sound pressure in microbars. ($1 \mathrm{Bar}=1$ atmosphere $=14.5 \mathrm{lb} . / \mathrm{in}^{2}=194 \mathrm{~dB}$ S.P.L.).

LM4250 Programmable Operational Amplifier

General Description

The LM4250 and LM4250C are extremely versatile programmable monolithic operational amplifiers. A single external master bias current setting resistor programs the input bias current, input offset current, quiescent power consumption, slew rate, input noise, and the gain-bandwidth product. The device is a truly general purpose operational amplifier. The LM4250C is identical to the LM4250 except that the LM4250C has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range instead of the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range of the LM4250

Features

- $\pm 1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply operation
- 3 nA input offset current
- Standby power consumption as low as 500 nW
- No frequency compensation required
- Programmable electrical characteristics
- Offset voltage nulling capability
- Can be powered by two flashlight batteries
- Short circuit protection

Connection Diagrams

Ordering Information

Temperature Range		Package	NSC Package Number
Military $-\mathbf{5 5} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+\mathbf{1 2 5}^{\circ} \mathbf{C}$	Commercial $\mathbf{0}^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+\mathbf{7 0} \mathbf{C}$		8-Pin Molded DIP
	LM4250CM	8-Pin Surface Mount	M08E
LM4250J LM4250J-MIL	LM4250CH	8-Pin Ceramic DIP	J08E
LM4250H LM4250H-MIL Metal Can	H08C		

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 2)

Supply Voltage
Operating Temp. Range
Differential Input Voltage
Input Voltage (Note 1)
ISET Current
Output Short Circuit Duration
TJMAX
H-Package
N-Package
J-Package
M-Package

Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
H-Package (Still Air)
(400 LF/Min Air Flow)

N-Package
J-Package M-Package

Thermal Resistance (Typical) $\boldsymbol{\theta}_{\mathrm{JA}}$ H-Package (Still Air)
(400 LF/Min Air Flow)
N-Package J-Package M-Package (Typical) $\theta_{\text {Jc }}$ H-Package

Storage Temperature Range
Soldering Information
Dual-In-Line Package Soldering (10 seconds) $260^{\circ} \mathrm{C}$
Small Outline Package Vapor Phase (60 seconds) $\quad 215^{\circ} \mathrm{C}$ Infrared (15 seconds) $220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance (Note 3) 800V
Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2: Refer to RETS4250X for military specifications.
Note 3: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Resistor Biasing

Set Current Setting Resistor to \mathbf{V} -

$\mathbf{I}_{\text {SET }}$					
$\mathbf{V}_{\mathbf{S}}$	$\mathbf{0 . 1} \mu \mathbf{A}$	$\mathbf{0 . 5 \mu \mathbf { A }}$	$\mathbf{1 . 0 \mu \mathbf { A }}$	$\mathbf{5 \mu \mathbf { A }}$	$10 \mu \mathbf{A}$
$\pm 1.5 \mathrm{~V}$	$25.6 \mathrm{M} \Omega$	$5.04 \mathrm{M} \Omega$	$2.5 \mathrm{M} \Omega$	$492 \mathrm{k} \Omega$	$244 \mathrm{k} \Omega$
$\pm 3.0 \mathrm{~V}$	$55.6 \mathrm{M} \Omega$	$11.0 \mathrm{M} \Omega$	$5.5 \mathrm{M} \Omega$	$1.09 \mathrm{M} \Omega$	$544 \mathrm{k} \Omega$
$\pm 6.0 \mathrm{~V}$	$116 \mathrm{M} \Omega$	$23.0 \mathrm{M} \Omega$	$11.5 \mathrm{M} \Omega$	$2.29 \mathrm{M} \Omega$	$1.14 \mathrm{M} \Omega$
$\pm 9.0 \mathrm{~V}$	$176 \mathrm{M} \Omega$	$35.0 \mathrm{M} \Omega$	$17.5 \mathrm{M} \Omega$	$3.49 \mathrm{M} \Omega$	$1.74 \mathrm{M} \Omega$
$\pm 12.0 \mathrm{~V}$	$236 \mathrm{M} \Omega$	$47.0 \mathrm{M} \Omega$	$23.5 \mathrm{M} \Omega$	$4.69 \mathrm{M} \Omega$	$2.34 \mathrm{M} \Omega$
$\pm 15.0 \mathrm{~V}$	$296 \mathrm{M} \Omega$	$59.0 \mathrm{M} \Omega$	$29.5 \mathrm{M} \Omega$	$5.89 \mathrm{M} \Omega$	$2.94 \mathrm{M} \Omega$

Electrical Characteristics $L M 4250\left(-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}\right.$ unless otherwise specified.) $T_{A}=T_{J}$

Parameter	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$			
		$\mathrm{ISET}=1 \mu \mathrm{~A}$		$\mathrm{ISET}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
V_{OS}	$\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3 mV		5 mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3 nA		10 nA
Ibias	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.5 nA		50 nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	40k		50k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$7.5 \mu \mathrm{~A}$		$80 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$23 \mu \mathrm{~W}$		$240 \mu \mathrm{~W}$
V_{OS}	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		4 mV		6 mV
los	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 5 \mathrm{nA} \\ & 3 \mathrm{nA} \\ & \hline \end{aligned}$		$\begin{aligned} & 10 \mathrm{nA} \\ & 10 \mathrm{nA} \\ & \hline \end{aligned}$
Ibias			7.5 nA		50 nA
Input Voltage Range		$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	30k		30k	
Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	76 dB		76 dB	
Supply Current			$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$

Parameter	Conditions	$\mathrm{V}_{\mathbf{S}}= \pm 15 \mathrm{~V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3 mV		5 mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3 nA		10 nA
Ibias	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.5 nA		50 nA
Large Signal Voltage Gain	$\begin{aligned} & R_{L}=100 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & V_{O}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	100k		100k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$10 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$300 \mu \mathrm{~W}$		2.7 mW
Vos	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		4 mV		6 mV
los	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 25 \mathrm{nA} \\ 3 \mathrm{nA} \\ \hline \end{gathered}$		$\begin{aligned} & 25 \mathrm{nA} \\ & 10 \mathrm{nA} \\ & \hline \end{aligned}$
Ibias			7.5 nA		50 nA
Input Voltage Range		$\pm 13.5 \mathrm{~V}$		$\pm 13.5 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	50k		50k	
Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\pm 12 \mathrm{~V}$		$\pm 12 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	76 dB		76 dB	
Supply Current			$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption			$330 \mu \mathrm{~W}$		3 mW

Electrical Characteristics $L M 4250 \mathrm{C}\left(0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}\right.$ unless otherwise specified.) $T_{A}=T_{J}$

Parameter	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm \mathbf{1 . 5 V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5 mV		6 mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6 nA		20 nA
l bias	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10 nA		75 nA
Large Signal Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	25k		25k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$24 \mu \mathrm{~W}$		$270 \mu \mathrm{~W}$
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$		6.5 mV		7.5 mV
los			8 nA		25 nA
lbias			10 nA		80 nA
Input Voltage Range		$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	25k		25k	
Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	74 dB		74 dB	
Supply Current			$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption			$24 \mu \mathrm{~W}$		$270 \mu \mathrm{~W}$

Parameter	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5 mV		6 mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6 nA		20 nA
l bias	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10 nA		75 nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	60k		60k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$330 \mu \mathrm{~W}$		3 mW
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		6.5 mV		7.5 mV
los			8 nA		25 nA
${ }_{\text {bias }}$			10 nA		80 nA
Input Voltage Range		$\pm 13.5 \mathrm{~V}$		$\pm 13.5 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	50k		50k	
Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\pm 12 \mathrm{~V}$		$\pm 12 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	74 dB		74 dB	
Supply Current			$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption			$330 \mu \mathrm{~W}$		3 mW

Typical Performance Characteristics (Continued)

TL/H/9300-7

Typical Applications

X5 Difference Amplifier

Quiescent $P_{D}=0.6 \mathrm{~mW}$

TL/H/9300-3

500 Nano-Watt X10 Amplifier

TL/H/9300-4
Quiescent $P_{D}=500 \mathrm{nW}$

Floating Input Meter Amplifier 100 nA Full Scale

Quiescent $P_{D}=1.8 \mu \mathrm{~W}$
TL/H/9300-8
*Meter movement ($0-100 \mu \mathrm{~A}, 2 \mathrm{k} \Omega$) marked
for 0-100 nA full scale.

Typical Applications (Continued)

X 100 Instrumentation Amplifier $10 \mu \mathrm{~W}$

TL/H/9300-9
Note 1: Quiescent $\mathrm{P}_{\mathrm{D}}=10 \mu \mathrm{~W}$.
Note 2: R2, R3, R4, R5, R6 and R7 are 1\% resistors.
Note 3: R11 and C1 are for DC and AC common mode rejection adjustments.

TL/H/9300-10

RSET Connected to Ground

TL/H/9300-11

ISET Equations:
$I_{\text {SET }} \approx \frac{\mathrm{V}^{+}+\left|\mathrm{V}^{-}\right|-0.5}{R_{\text {SET }}} \quad \begin{aligned} & \text { where } \mathrm{R}_{\text {SET }} \text { is } \\ & \text { connected to } \mathrm{V}^{-} .\end{aligned}$
$I_{\text {SET }} \approx \frac{\mathrm{V}^{+}-0.5}{\mathrm{R}_{\mathrm{SET}}} \begin{aligned} & \text { where } \mathrm{R}_{\text {SET }} \text { is } \\ & \text { connected to ground. }\end{aligned}$

Transistor Current Sourcing Biasing

*R1 limits I SET maximum

FET Current Sourcing Biasing

Offset Null Circuit

Schematic Diagram

General Description

The LM6104 quad amplifier meets the requirements of battery operated liquid crystal displays by providing high speed while maintaining low power consumption.
Combining this high speed with high integration, the LM6104 conserves valuable board space in portable systems with a cost effective, surface mount quad package. Built on National's advanced high speed VIPTM (Vertically Integrated PNP) process, the LM6104 current feedback architecture is easily compensated for speed and loading conditions. These features make the LM6104 ideal for buffering grey levels in liquid crystal displays.

Features (Typical unless otherwise noted)

Low power	IS $=875 \mu \mathrm{~A} /$ amplifier
Slew rate	$100 \mathrm{~V} / \mu \mathrm{s}$
- 3 dB bandwidth $\left(\mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega\right)$	30 MHz
High output drive	$\pm 5 \mathrm{~V}$ into 100Ω
Wide operating range	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ to $\pm 12 \mathrm{~V}$
High integration	Quad surface mount

Applications

- Grey level buffer for liquid crystal displays
- Column buffer for portable LCDs
- Video distribution amplifiers, video line drivers
- Hand-held, high speed signal conditioning

Typical Application

LCD Buffer Application for Grey Levels

Connection Diagram

TL/H/11979-2
Order Number LM6104M
See NS Package Number M14A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage $24 V$
Differential Input Voltage $\pm 6 \mathrm{~V}$
Input Voltage
Inverting Input Current
\pm Supply Voltage

Soldering Information
Vapor Phase (60s) $215^{\circ} \mathrm{C}$
Infrared (15s)

Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
ESD Rating (Note 2)	2000 V

Operating Ratings

Supply Voltage Range
4.75 V to 24 V

Junction Temperature Range (Note 3) LM6104M
$-20^{\circ} \leq \mathrm{T}_{\mathrm{J}} \leq+80^{\circ} \mathrm{C}$

Electrical Characteristics

The following specifications apply for $\mathrm{V}+=8 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{F}}=2 \mathrm{k} \Omega$ and $0^{\circ} \leq \mathrm{T}_{\mathrm{J}} \leq 60^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	LM6104M		Units
			Typical (Note 4)	Limits (Note 5)	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		10	30	$m \mathrm{max}$
I_{B}	Inverting Input Bias Current		5.0	20	$\mu \mathrm{A}$ max
	Non-Inverting Input Bias Current		0.5	2	$\mu \mathrm{A}$ max
Is	Supply Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	3.5	4.0	mA max
Isc	Output Source Current	$\begin{aligned} & V_{O}=0 V \\ & \ln (-)=-100 \mu \mathrm{~A} \end{aligned}$	60	45	mA min
	Output Sink Current	$\begin{aligned} & V_{O}=0 V \\ & \ln (-)=100 \mu \mathrm{~A} \end{aligned}$	60	45	mA min
V_{0}	Positive Output Swing	$\ln (-)=-100 \mu \mathrm{~A}$	6.5	6.1	$V_{\text {min }}$
	Negative Output Swing	$\operatorname{IN}(-)=100 \mu \mathrm{~A}$	-3.5	-3.1	\checkmark max
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 4$ to $\pm 10 \mathrm{~V}$	70	60	dB min
		100 mV pp @ 100 kHz	40	30	dB min
R_{T}	Transresistance		10	5	$\mathrm{M} \Omega$ min
SR	Slew Rate	(Note 6)	100	55	$\mathrm{V} / \mu \mathrm{s}$ min
BW	Bandwidth	$\begin{aligned} & A_{V}=-1 \\ & R_{I N}=R_{F}=2 \mathrm{k} \Omega \end{aligned}$	7.5	5.0	MHz
	Amp-to-Amp Isolation	$\begin{aligned} & R_{L}=2 \mathrm{k} \Omega \\ & \mathrm{~F}=1 \mathrm{MHz} \end{aligned}$	60		dB
CMVR	Common Mode Voltage Range		$\begin{aligned} & V^{+}-1.4 \mathrm{~V} \\ & \mathrm{~V}^{-}+1.4 \mathrm{~V} \end{aligned}$		V
CMRR	Common Mode Rejection Ratio		60		dB
ts_{5}	Settling Time	$\begin{aligned} & 0.05 \%, 5 \mathrm{~V} \text { Step, } A_{V}=-1 \\ & R_{F}=R_{S}=2 \mathrm{k} \Omega, V_{S}= \pm 5 \mathrm{~V} \end{aligned}$	240		ns

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions. Operating ratings indicate conditions the device is intended to be functional, but device parameter specifications may not be guaranteed under the conditions.
Note 2: Human body model $1.5 \mathrm{k} \Omega$ and 100 pF . This is a class 2 device rating.
Note 3: Thermal resistance of the SO package is $98^{\circ} \mathrm{C} / \mathrm{W}$. When operating at $\mathrm{T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$, maximum power dissipation is 700 mW .
Note 4: Typical values represent the most likely parametric norm
Note 5: All limits guaranteed at operating temperature extremes.
Note 6: $A_{V}=-1$ with $R_{I N}=R_{F}=2 \mathrm{k} \Omega$. Slew rate is calculated from the 25% to the 75% point on both rising and falling edges. Output swing is -0.6 V to +5.6 V and 5.6 V to 0.6 V .

Typical Performance Characteristics

LM6104 Output Voltage vs Sink Current

Applications Information

CURRENT FEEDBACK TOPOLOGY

The small-signal bandwidth of conventional voltage feedback amplifiers is inversely proportional to the closed-loop gain based on the gain-bandwidth concept. In contrast, the current feedback amplifier topology, such as the LM6104, enables a signal bandwidth that is relatively independent of the amplifier's gain (see typical curve Frequency Response vs Closed Loop Gain).

FEEDBACK RESISTOR SELECTION: $\mathbf{R}_{\text {F }}$

Current feedback amplifier bandwidth and slew rate are controlled by R_{F}. R_{F} and the amplifier's internal compensation capacitor set the dominant pole in the frequency response. The amplifier, therefore, always requires a feedback resistor, even in unity gain.

Bandwidth and slew rate are inversely proportional to the value of R_{F} (see typical curve Frequency Response vs R_{F}). This makes the amplifier especially easy to compensate for a desired pulse response (see typical curve Large Signal Pulse Response). Increased capacitive load driving capability is also achieved by increasing the value of R_{F}.
The LM6104 has guaranteed performance with a feedback resistor of $2 \mathrm{k} \Omega$.

CAPACITIVE FEEDBACK

It is common to place a small lead capacitor in parallel with feedback resistance to compensate voltage feedback amplifiers. Do not place a capacitor across R_{F} to limit the bandwidth of current feedback amplifiers. The dynamic impedance of capacitors in the feedback path of the LM6104, as with any current feedback amplifier, will cause instability.

LM6118/LM6218
 Fast Settling Dual Operational Amplifiers

General Description

The LM6118 series are monolithic fast-settling unity-gaincompensated dual operational amplifiers with $\pm 20 \mathrm{~mA}$ output drive capability. The PNP input stage has a typical bias current of 200 nA , and the operating supply voltage is $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.
These dual op amps use slew enhancement with special mirror circuitry to achieve fast response and high gain with low total supply current.
The amplifiers are built on a junction-isolated VIPTM (Vertically Integrated PNP) process which produces fast PNP's that complement the standard NPN's.

Features Typical

- Low offset voltage 0.2 mV
- 0.01% settling time 400 ns
- Slew rate $A_{V}=-1 \quad 140 \mathrm{~V} / \mu \mathrm{s}$
- Slew rate $A_{v}=+1 \quad 75 \mathrm{~V} / \mu \mathrm{s}$
- Gain bandwidth

17 MHz
■ Total supply current 5.5 mA

- Output drives 50Ω load ($\pm 1 \mathrm{~V}$)

Applications

- D/A converters
- Fast integrators
- Active filters

Connection Diagrams and Order Information

Order Number LM6118E/883* See NS Package Number E20A

Small Outline Package (WM)

TL/H/10254-3
Top View
Order Number LM6218AWM or LM6218WM See NS Package Number M14B

Dual-In-Line Package (J or N)

TL/H/10254-4
Top View
Order Number LM6118N, LM6118J/883*,
LM6218AN or LM6218N
See NS Package Number J08A or N08E
Typical Applications

Single ended input to differential output TL/H/10254-1
$A_{V}=10, B W=3.2 \mathrm{MHz}$
$40 \mathrm{~V}_{\mathrm{PP}}$ Response $=1.4 \mathrm{MHz}$
$V_{S}= \pm 15 \mathrm{~V}$
Wide-Band, Fast-Settling 40 Vpp Amplifier

Typical Performance Characteristics

TL/H/10254-5

Typical Performance Characteristics (Continued)

TL/H/10254-7

Application Information

General

The LM6118 series are high-speed, fast-settling dual opamps. To insure maximum performance, circuit board layout is very important. Minimizing stray capacitance at the inputs and reducing coupling between the amplifier's input and output will minimize problems.

Supply Bypassing

To assure stability, it is recommended that each power supply pin be bypassed with a $0.1 \mu \mathrm{~F}$ low inductance capacitor near the device. If high frequency spikes from digital circuits or switching supplies are present, additional filtering is recommended. To prevent these spikes from appearing at the output, R-C filtering of the supplies near the device may be necessary.

Power Dissipation

These amplifiers are specified to 20 mA output current. If accompanied with high supply voltages, relatively high power dissipation in the device will occur, resulting in high junction temperatures. In these cases the package thermal resistance must be taken into consideration. (See Note 5 under Electrical Characteristics.) For high dissipation, an N package with large areas of copper on the pc board is recommended.

Amplifier Shut Down

If one of the amplifiers is not used, it can be shut down by connecting both the inverting and non-inverting inputs to the V^{-}pin. This will reduce the power supply current by approximately 25%.

Capacitive Loading

Maximum capacitive loading is about 50 pF for a closedloop gain of +1 , before the amplifier exhibits excessive ringing and becomes unstable. A curve showing maximum capacitive loads, with different closed-loop gains, is shown in the Typical Performance Characteristics section.
To drive larger capacitive loads at low closed-loop gains, isolate the amplifier output from the capacitive load with 50Ω. Connect a small capacitor directly from the amplifier output to the inverting input. The feedback loop is closed from the isolated output with a series resistor to the inverting input.

Voltage Follower

TL/H/10254-10
For $C_{L}=1000 \mathrm{pF}$, Small signal $\mathrm{BW}=5 \mathrm{MHz}$
20 V p-p $\mathrm{BW}=500 \mathrm{kHz}$
Inverter

TL/H/10254-11
Settling time to $0.01 \%, 10 \mathrm{~V}$ Step
For $C_{L}=1000 \mathrm{pF}$, settling time $\approx 1500 \mathrm{~ns}$
For $\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$, settling time $\approx 500 \mathrm{~ns}$

Application Information (Continued)

Examples of unity gain connections for a voltage follower, Inverter, and integrator driving capacitive loads up to 1000 pF are shown here. Different R1-C1 time constants and capacitive loads will have an effect on settling times.

Input Blas Current Compensation

Input bias current of the first op amp can be reduced or balanced out by the second op amp. Both amplifiers are laid out in mirror image fashion and in close proximity to each other, thus both input bias currents will be nearly identical
and will track with temperature. With both op amp inputs at the same potential, a second op amp can be used to convert bias current to voltage, and then back to current feeding the first op amp using large value resistors to reduce the bias current to the level of the offset current.
Examples are shown here for an inverting application, (a) where the inputs are at ground potential, and a second circuit (b) for compensating bias currents for both inputs.

Bias Current Compensation

TL/H/10254-14
*mount resistor close to input pin to minimize stray capacitance
(b) Compensation to Both Inputs
(a) Inverting Input Bias Compensation for Integrator Application

Amplifier/Parallel Buffer

TL/H/10254-15

[^11]Application Information (Continued)

Bilateral Current Source

$V_{S}= \pm 15 \mathrm{~V},-10 \leq \mathrm{V}_{\mathbb{I N}} \leq 10 \mathrm{~V}$
$\frac{\mathrm{l}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}=\frac{\mathrm{R} 4}{\text { R2 R6 }}=\frac{1 \mathrm{~mA}}{1 \mathrm{~V}}$
Output dynamic range $=10 \mathrm{~V}-$ R6 $|\mathrm{lout}|$
$R_{L}=500 \Omega$, small signal $B W=6 \mathrm{MHz}$
Large signal response $=800 \mathrm{kHz}$
$\mathrm{C}_{\text {out }}$ equiv. $=\frac{\mathrm{R} 2+\mathrm{R} 4}{2 \pi \mathrm{f}_{\mathrm{O}} \mathrm{R} 2 \mathrm{R} 6}=32 \mathrm{pF}$ (fo $=15 \mathrm{MHz}$)

Coaxial Cable Driver

Small signal $\left(200 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}\right) \mathrm{BW} \approx 5 \mathrm{MHz}$

8เZ9W7/81L9W7

Schematic Diagram (Continued)

National Semiconductor

LM6132 Dual and LM6134 Quad High Speed/Low Power 7 MHz Rail-to-Rail I/O Operational Amplifiers

General Description

Using patent pending circuit topologies, the LM6132/34 provides new levels of speed vs. power performance in applications where low voltage supplies or power limitations previously made compromise necessary. With only 550 $\mu \mathrm{A} / \mathrm{amp}$ supply current, the 7 MHz bandwidth of this device supports new portable applications where higher power devices unacceptably drain battery life.
In addition, the LM6132/34 can be driven by voltages that exceed both power supply rails, thus eliminating concerns over exceeding the common-mode voltage range. The rail-to-rail output swing capability provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages. The LM6132/34 can also drive large capacitive loads without oscillating.
Operating on supplies of 1.8 to over 24 volts, the LM6132/34 is excellent for a very wide range of applications, from battery operated systems with large bandwidth requirements to high speed instrumentation.

Features (For 5V Supply)

- Rail-to-rail input CMVR $\quad-0.25 \mathrm{~V}$ to 5.25 V (Max/Min)
- Rail-to-rail output swing $\quad 0.01 \mathrm{~V}$ to 4.99 V ($\mathrm{Max} / \mathrm{Min}$)
- Wide gain-bandwidth at 50 KHz

7 MHz (Typ)

- Slew rate
$12 \mathrm{~V} / \mu \mathrm{s}$ (Typ)
- Low supply current
$550 \mu \mathrm{~A} / \mathrm{amp}$ (Typ)
- Wide supply range
- CMRR
1.8 V to 24 V

107 dB (Typ)

- Gain
- PSRR

108 dB (Typ) with $R_{L}=10 \mathrm{~K}$
87 dB (Typ)

Applications

- Battery operated instrumentation
- 5V instrumentation
- Portable scanners
- Wireless communications

Connection Diagrams

TL/H/12349-2
Top View

Ordering Information

Package	Temperature Range	
	Industrial $-\mathbf{4 0} \mathbf{C}$ to $+\mathbf{8 5}^{\circ} \mathbf{C}$	NSC Drawing
8-Pin Molded DIP	LM6132AIN, LM6132BIN	N08E
8-Pin Small Outline	LM6132AIM, LM6132BIM	M08A
14-Pin Molded DIP	LM6134AIN, LM6134BIN	N14A
14-Pin Small Outline	LM6134AIM, LM6134BIM	M14A

LM6142 Dual and LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Rail Input-Output Operational Amplifiers

General Description

Using patent pending new circuit topologies, the LM6142/44 provides new levels of performance in applications where low voltage supplies or power limitations previously made compromise necessary. Operating on supplies of 1.8 V to over 24 V , the LM6142/44 is an excellent choice for battery operated systems, portable instrumentation and others.
The greater than rail-to-rail input voltage range eliminates concern over exceeding the common-mode voltage range. The rail-to-rail output swing provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.
High gain-bandwidth with $650 \mu \mathrm{~A} /$ Amplifier supply current opens new battery powered applications where previous higher power consumption reduced battery life to unacceptable levels. The ability to drive large capacitive loads without oscillating functionally removes this common problem.

Features At $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$. Typ unless noted.

- Rail-to-rail input CMVR -0.25 V to 5.25 V
- Rail-to-rail output swing 0.005 V to 4.995 V
- Wide gain-bandwidth: 17 MHz at 50 kHz (typ)
- Slew rate:

Small signal, $5 \mathrm{~V} / \mu \mathrm{s}$
Large signal, $30 \mathrm{~V} / \mu \mathrm{s}$

- Low supply current $650 \mu \mathrm{~A} /$ Amplifier
- Wide supply range 1.8 V to 24 V
- CMRR 107 dB
- Gain 108 dB with $R_{L}=10 k$
- PSRR 87 dB

Applications

- Battery operated instrumentation
- Depth sounders/fish finders
- Barcode scanners
- Wireless communications
- Rail-to-rail in-out instrumentation amps

Connection Diagrams

Ordering Information

Package	Temperature Range	Temperature Range	NSC Drawing
	Industrial $-\mathbf{4 0} \mathbf{C}$ to $+\mathbf{8 5} \mathbf{C}$	Military $-\mathbf{5 5} \mathbf{C}$ to $+\mathbf{1 2 5} \mathbf{C}$	
8-Pin Molded DIP	LM6142AIN, LM6142BIN		M08A
8-Pin Small Outline	LM6142AIM, LM6142BIM		N14A
14-Pin Molded DIP	LM6144AIN, LM6144BIN		M14A
14-Pin Small Outline	LM6144AIM, LM6144BIM		D08C
8-Pin CDIP		LM6142AMJ/883	

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the	National
Semiconductor Sales	
Office/Distributors for avallability and specifications.	
ESD Tolerance (Note 2)	2500 V
Differential Input Voltage	15 V
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	35 V
Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin (Note 3)	$\pm 25 \mathrm{~mA}$
Current at Power Supply Pin	50 mA
Lead Temperature (soldering, 10 sec$)$	$260^{\circ} \mathrm{C}$
Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 4)	$150^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Supply Voltage	$1.8 \mathrm{~V} \leq \mathrm{V}^{+} \leq 24 \mathrm{~V}$
Junction Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
LM6142, LM6144	
Thermal Resistance ($\theta_{J A}$)	$115^{\circ} \mathrm{C} / \mathrm{W}$
N Package, 8-Pin Molded DIP	$193^{\circ} \mathrm{C} / \mathrm{W}$
M Package, 8-Pin Surface Mount	$81^{\circ} \mathrm{C} / \mathrm{W}$
N Package, 14-Pin Molded DIP	$126^{\circ} \mathrm{C} / \mathrm{W}$
M Package, 14-Pin Surface Mount	

5.0V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}+/ 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LM6144AI LM6142AI Limit (Note 6)	LM6144BI LM6142BI Limit (Note 6)	Units
Vos	Input Offset Voltage		0.3	$\begin{aligned} & 1.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 2.5 \\ & \mathbf{3 . 3} \end{aligned}$	mV max
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift		3			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		170	250	300	$\begin{gathered} \mathrm{nA} \\ \max \end{gathered}$
		$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$	180	$\begin{aligned} & 280 \\ & \mathbf{5 2 6} \end{aligned}$	526	
los	Input Offset Current		3	$\begin{aligned} & 30 \\ & \mathbf{8 0} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathbf{8 0} \end{aligned}$	nA max
RIN	Input Resistance, C_{M}		126			M Ω
CMRR	Common Mode Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 4 \mathrm{~V}$	107	$\begin{aligned} & 84 \\ & 78 \end{aligned}$	$\begin{aligned} & 84 \\ & 78 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
		$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$	$\begin{aligned} & 82 \\ & 79 \end{aligned}$	$\begin{aligned} & 66 \\ & 64 \end{aligned}$	$\begin{aligned} & 66 \\ & 64 \end{aligned}$	
PSRR	Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}+\leq 24 \mathrm{~V}$	87	$\begin{aligned} & 80 \\ & 78 \end{aligned}$	$\begin{aligned} & 80 \\ & 78 \end{aligned}$	
V_{CM}	Input Common-Mode Voltage Range		-0.25	0	0	V
			5.25	5.0	5.0	
A_{V}	Large Signal Voltage Gain	$R_{L}=10 k$	$\begin{aligned} & 270 \\ & 70 \end{aligned}$	$\begin{aligned} & 100 \\ & 33 \end{aligned}$	$\begin{aligned} & 80 \\ & 25 \end{aligned}$	V / mV min
V_{O}	Output Swing	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$	0.005	$\begin{gathered} 0.01 \\ 0.013 \end{gathered}$	$\begin{gathered} 0.01 \\ 0.013 \end{gathered}$	$\underset{\max }{V}$
			4.995	$\begin{aligned} & 4.98 \\ & 4.93 \end{aligned}$	$\begin{aligned} & 4.98 \\ & 4.93 \end{aligned}$	$\begin{gathered} V \\ \min \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	0.02			\checkmark max
			4.97			V min
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	0.06	$\begin{gathered} 0.1 \\ 0.133 \end{gathered}$	$\begin{gathered} 0.1 \\ 0.133 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			4.90	$\begin{aligned} & 4.86 \\ & 4.80 \end{aligned}$	$\begin{aligned} & 4.86 \\ & 4.80 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$

5.0V DC Electrical Characteristics

Unless Otherwise Specified, All Limits Guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}+/ 2$. Boldface limits apply at the temperature extremes. (Continued)

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LM6144AI LM6142AI Limit (Note 6)	LM6144BI LM6142BI Limit (Note 6)	Units
Isc	Output Short Circuit Current LM6142	Sourcing	13	$\begin{array}{r} 10 \\ 4.9 \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	mA min
				35	35	mA max
		Sinking	24	$\begin{gathered} 10 \\ 5.3 \end{gathered}$	$\begin{gathered} 10 \\ 5.3 \end{gathered}$	mA \min
				35	35	mA max
Isc	Output Short Circuit Current LM6144	Sourcing	8	$\begin{array}{r} 6 \\ 3 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ 3 \\ \hline \end{array}$	mA min
				35	35	mA max
		Sinking	22	$\begin{array}{r} 8 \\ 4 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ 4 \\ \hline \end{array}$	mA min
				35	35	mA max
Is	Supply Current	Per Amplifier	650	$\begin{aligned} & 800 \\ & \mathbf{8 8 0} \end{aligned}$	$\begin{aligned} & 800 \\ & \mathbf{8 8 0} \end{aligned}$	$\mu \mathrm{A}$ \max

5.0V AC Electrical Characteristics

Unless Otherwise Specified, All Limits Guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LM6144AI LM6142AI Limit (Note 6)	LM6144BI LM6142BI Limit (Note 6)	Units
SR	Slew Rate	$\begin{aligned} & 8 V_{p-p} @ V_{C C} 12 V \\ & R_{S}>1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	25	$\begin{aligned} & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 13 \\ & 11 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mu \mathrm{s} \\ \mathrm{~min} \end{gathered}$
GBW	Gain-Bandwidth Product	$\mathrm{f}=50 \mathrm{kHz}$	17	$\begin{gathered} 10 \\ 6 \end{gathered}$	$\begin{gathered} 10 \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{MHz} \\ \mathrm{~min} \end{gathered}$
ϕ_{m}	Phase Margin		38			Deg
	Amp-to-Amp Isolation		130			dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	16			$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$f=1 \mathrm{kHz}$	0.22	"	-	$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
T.H.D.	Total Harmonic Distortion	$f=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	0.003			\%

2.7V DC Electrical Characteristics

Unless Otherwise Specified, All Limits Guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}+/ 2$. Boldface limits apply at the temperature extreme

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LM6144AI LM6142AI Limit (Note 6)	LM6144BI LM6142BI Limit (Note 6)	Units
Vos	Input Offset Voltage		0.4	$\begin{aligned} & 1.8 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.3 \end{aligned}$	mV max
I_{B}	Input Bias Current		150	$\begin{aligned} & 250 \\ & 526 \end{aligned}$	$\begin{gathered} 300 \\ \mathbf{5 2 6} \end{gathered}$	nA max
los	Input Offset Current		4	$\begin{aligned} & 30 \\ & \mathbf{8 0} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathbf{8 0} \end{aligned}$	nA max
RIN	Input Resistance		128			$\mathrm{M} \Omega$
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.8 \mathrm{~V}$	90			$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
		$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.7 \mathrm{~V}$	76			
PSRR	Power Supply Rejection Ratio	$3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}$	79			
V_{CM}	Input Common-Mode Voltage Range		-0.25	0	0	V min
			2.95	2.7	2.7	\checkmark max
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	55			$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
V_{O}	Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	0.019	$\begin{gathered} 0.08 \\ \mathbf{0 . 1 1 2} \end{gathered}$	$\begin{gathered} 0.08 \\ 0.112 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			2.67	$\begin{aligned} & 2.66 \\ & 2.25 \end{aligned}$	$\begin{aligned} & 2.66 \\ & 2.25 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
Is	Supply Current	Per Amplifier	510	$\begin{aligned} & 800 \\ & \mathbf{8 8 0} \end{aligned}$	$\begin{aligned} & 800 \\ & \mathbf{8 8 0} \end{aligned}$	$\mu \mathrm{A}$ max

2.7V AC Electrical Characteristics

Unless Otherwise Specified, All Limits Guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}+/ 2$. Boldface limits apply at the temperature extreme

Symbol	Parameter	Conditions	Typ (Note 5)	LM6144AI LM6142AI Limit (Note 6)	LM6144BI LM6142BI Limit (Note 6)	Units
GBW	Gain-Bandwidth Product	$\mathrm{f}=50 \mathrm{kHz}$	9			MHz
ϕ_{m}	Phase Margin		36			Deg
G_{m}	Gain Margin		6			dB

24V Electrical Characteristics

Unless Otherwise Specified, All Limits Guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=24 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$. Boldface limits apply at the temperature extreme

Symbol	Parameter	Conditions	Typ (Note 5)	LM6144AI LM6142AI Limit (Note 6)	LM6144BI LM6142BI Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1.3	$\begin{gathered} 2 \\ 4.8 \end{gathered}$	$\begin{aligned} & 3.8 \\ & 4.8 \end{aligned}$	mV max
I_{B}	Input Bias Current		174			nA. max
los	Input Offset Current		5			nA max
R_{IN}	Input Resistance	-	288			$\mathrm{M} \Omega$
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 23 \mathrm{~V}$	114			$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
		$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 24 \mathrm{~V}$	100			
PSRR	Power Supply Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 24 \mathrm{~V}$	87			
V_{CM}	Input Common-Mode Voltage Range		-0.25	0	0	\checkmark min
			24.25	24	24	V max
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	500			$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
V_{O}	Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	0.07	$\begin{gathered} 0.15 \\ 0.185 \end{gathered}$	$\begin{gathered} 0.15 \\ 0.185 \end{gathered}$	$\underset{\max }{V}$
			23.85	$\begin{gathered} 23.81 \\ 23.62 \end{gathered}$	$\begin{gathered} 23.81 \\ 23.62 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
Is	Supply Current	Per Amplifier	750	$\begin{gathered} 1100 \\ 1150 \end{gathered}$	$\begin{gathered} 1100 \\ 1150 \end{gathered}$	$\mu \mathrm{A}$ \max
GBW	Gain-Bandwidth Product	$\mathrm{f}=50 \mathrm{kHz}$	18			MHz

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Charactenstics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.

Note 4: The maximum power dissipation is a function of $T_{J(m a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{j(\max)}-T_{A}\right) / \boldsymbol{\theta}_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: For guaranteed military specifications see military datasheet MNLM6142AM-X.

Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ Unless Otherwise Specified

Open－Loop Transfer Function

TL／H／12057－3

Typical Performance Characteristics

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ Unless Otherwise Specified (Continued)

Typical Performance Characteristics

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ Unless Otherwise Specified（Continued）

LM6142/44 Application Ideas

The LM6142 brings a new level of ease of use to opamp system design.
With greater than rail-to-rail input voltage range concern over exceeding the common-mode voltage range is eliminated.
Rail-to-rail output swing provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.
The high gain-bandwidth with low supply current opens new battery powered applications, where high power consumption, previously reduced battery life to unacceptable levels.
To take advantage of these features, some ideas should be kept in mind.

ENHANCED SLEW RATE

Unlike most bipolar opamps, the unique phase reversal pre-vention/speed-up circuit in the input stage causes the slew rate to be very much a function of the input signal amplitude.
Figure 1 shows how excess input signal, is routed around the input collector-base junctions, directly to the current mirrors.
The LM6142/44 input stage converts the input voltage change to a current change. This current change drives the current mirrors through the collectors of Q1-Q2, Q3-Q4 when the input levels are normal.
If the input signal exceeds the slew rate of the input stage, the differential input voltage rises above two diode drops. This excess signal bypasses the normal input transistors, (Q1-Q4), and is routed in correct phase through the two additional transistors, (Q5, Q6), directly into the current mirrors.
This rerouting of excess signal allows the slew-rate to increase by a factor of 10 to 1 or more. (See Figure 2.)
As the overdrive increases, the opamp reacts better than a conventional opamp. Large fast pulses will raise the slewrate to around 30 V to $60 \mathrm{~V} / \mu \mathrm{s}$.

TL/H/12057-7
FIGURE 2
This effect is most noticeable at higher supply voltages and lower gains where incoming signals are likely to be large.
This new input circuit also eliminates the phase reversal seen in many opamps when they are overdriven.
This speed-up action adds stability to the system when driving large capacitive loads.

DRIVING CAPACITIVE LOADS

Capacitive loads decrease the phase margin of all opamps. This is caused by the output resistance of the amplifier and the load capacitance forming an R-C phase lag network. This can lead to overshoot, ringing and oscillation. Slew rate limiting can also cause additional lag. Most opamps with a fixed maximum slew-rate will lag further and further behind when driving capacitive loads even though the differential input voltage raises. With the LM6142, the lag causes the slew rate to raise. The increased slew-rate keeps the output following the input much better. This effectively reduces phase lag. After the output has caught up with the input, the differential input voltage drops down and the amplifier settles rapidly.

TL/H/12057-6
FIGURE 1

LM6142／44 Application Ideas

（Continued）
These features allow the LM6142 to drive capacitive loads as large as 1000 pF at unity gain and not oscillate．The scope photos（Figure 3a and 3b）above show the LM6142 driving a 1000 pF load．In Figure 3a，the upper trace is with no capacitive load and the lower trace is with a 1000 pF load．Here we are operating on $\pm 12 \mathrm{~V}$ supplies with a 20 Vp－p pulse．Excellent response is obtained with a C_{f} of 10 pF ．In Figure 3b，the supplies have been reduced to $\pm 2.5 \mathrm{~V}$ ，the pulse is $4 \mathrm{Vp}-\mathrm{p}$ and C_{f} is 39 pF ．The best value for the compensation capacitor is best established after the board layout is finished because the value is dependent on board stray capacity，the value of the feedback resistor，the closed loop gain and，to some extent，the supply voltage．
Another effect that is common to all opamps is the phase shift caused by the feedback resistor and the input capaci－ tance．This phase shift also reduces phase margin．This ef－ fect is taken care of at the same time as the effect of the capacitive load when the capacitor is placed across the feedback resistor．
The circuit shown in Figure 4 was used for these scope photos．

TL／H／12057－8
FIGURE 3a

TL／H／12057－9
FIGURE 3b

TL／H／12057－10
FIGURE 4

Typical Applications

FISH FINDER／DEPTH SOUNDER．
The LM6142／44 is an excellent choice for battery operated fish finders．The low supply current，high gain－bandwidth and full rail to rail output swing of the LM6142 provides an ideal combination for use in this and similar applications．

ANALOG TO DIGITAL CONVERTER BUFFER

The high capacitive load driving ability，rail－to－rail input and output range with the excellent CMR of 82 dB ，make the LM6142／44 a good choice for buffering the inputs of A to D converters．

3 OPAMP INSTRUMENTATION AMP WITH RAIL－TO－ RAIL INPUT AND OUTPUT

Using the LM6144，a 3 opamp instrumentation amplifier with rail－to－rail inputs and rail to rail output can be made．These features make these instrumentation amplifiers ideal for sin－ gle supply systems．
Some manufacturers use a precision voltage divider array of 5 resistors to divide the common－mode voltage to get an input range of rail－to－rail or greater．The problem with this method is that it also divides the signal，so to even get unity gain，the amplifier must be run at high closed loop gains． This raises the noise and drift by the internal gain factor and lowers the input impedance．Any mismatch in these preci－ sion resistors reduces the CMR as well．Using the LM6144， all of these problems are eliminated．
In this example，amplifiers A and B act as buffers to the differential stage（Figure 5）．These buffers assure that the input impedance is over $100 \mathrm{M} \Omega$ and they eliminate the requirement for precision matched resistors in the input stage．They also assure that the difference amp is driven from a voltage source．This is necessary to maintain the CMR set by the matching of R1－R2 with R3－R4．

TL／H／12057－13

The gain is set by the ratio of R2/R1 and R3 should equal R1 and R4 equal R2. Making R4 slightly smaller than R2 and adding a trim pot equal to twice the difference between R2 and R4 will allow the CMR to be adjusted for optimum. With both rail to rail input and output ranges, the inputs and outputs are only limited by the supply voltages. Remember that even with rail-to-rail output, the output can not swing
past the supplies so the combined common mode voltage plus the signal should not be greater than the supplies or limiting will occur.

SPICE MACROMODEL

A SPICE macromodel of this and many other National Semiconductor opamps is available at no charge from the NSC Customer Response Group at 800-272-9959.

National Semiconductor

LM6152 Dual and LM6154 Quad High Speed/Low Power
 45 MHz Rail-to-Rail I/O Operational Amplifiers

General Description

Using patent pending circuit topologies, the LM6152/54 provides new levels of speed vs power performance in applications where low voltage supplies or power limitations made compromise necessary. With only $1.5 \mathrm{~mA} / \mathrm{mp}$ supply current, the 45 MHz bandwidth of this device supports new portable applications where higher power devices unacceptably drain battery life.
In addition, the LM6152/54 can be driven by voltages that exceed both power supply rails, thus eliminating concerns over exceeding the common-mode voltage range. The rail-to-rail output swing capability provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages. The LM6152/54 can also drive capacitive loads without oscillating.
Operating on supplies of 1.8 V to over 24 V , the LM6152/54 is excellent for a very wide range of applications, from battery operated systems with large bandwidth requirements to high speed instrumentation.

Features (For 5V Supply)

- Rail-to-rail input CMVR $\quad-0.25 \mathrm{~V}$ to 5.25 V (max/min)
- Rail-to-rail output swing 0.01 V to 4.99 V ($\mathrm{max} / \mathrm{min}$)
- Wide gain-bandwidth: 45 MHz (typ) @ 50 kHz
- Slew rate
- Low supply current
- Wide supply range
$30 \mathrm{~V} / \mu \mathrm{s}$ (typ)
1.5/Amp (typ)
- Fast settling time:
- Gain

108 dB (typ) with $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$
87 dB (typ)

Applications

- Portable high speed instrumentation
- 5V signal conditioning amplifiers/ADC buffers
- Bar code scanners
- Wireless communications

Connection Diagrams

TL/H/12350-2
Top View

Ordering Information

Package	Temperature Range	NSC Drawing
	Industrial $-40^{\circ} \mathrm{C}$ to $+\mathbf{8 5}^{\circ} \mathrm{C}$	
8-Pin Molded DIP	LM6142AIN, LM6142BIN	M08A
8-Pin Small Outline	LM6142AIM, LM6142BIM	N14A
14-Pin Molded DIP	LM6144AIN, LM6144BIN	M14A
14-Pin Small Outline	LM6144AIM, LM6144BIM	

LM6161/LM6261/LM6361 High Speed Operational Amplifier

General Description

The LM6161 family of high-speed amplifiers exhibits an excellent speed-power product in delivering $300 \mathrm{~V} / \mu \mathrm{s}$ and 50 MHz unity gain stability with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5 V .
These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

- High slew rate
- High unity gain freq
$300 \mathrm{~V} / \mu \mathrm{s}$
- Low supply current 50 MHz
- Fast settling

120 ns to 0.1%

- Low differential gain
- Low differential phase
- Wide supply range
4.75 V to 32 V
- Stable with unlimited capacitive load
- Well behaved; easy to apply

Applications

- Video amplifier
- High-frequency filter
- Wide-bandwidth signal conditioning
- Radar
- Sonar

Connection Diagrams

See NS Package Number W10A

TL/H/9057-14
See NS Package Number E20A

Temperature Range			Package	NSC Drawing
$\begin{gathered} \text { Millitary } \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	Commercial $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		
	LM6261N	LM6361N	$\begin{gathered} \text { 8-Pin } \\ \text { Molded DIP } \end{gathered}$	N08E
$\begin{aligned} & \text { LM6161J/883 } \\ & \text { 5962-8962101PA } \end{aligned}$		LM6361J	$\begin{aligned} & \text { 8-Pin } \\ & \text { Ceramic DIP } \end{aligned}$	J08A
	LM6261M	LM6361M	8-Pin Molded Surface Mt.	M08A
$\begin{aligned} & \text { LM6161E/883 } \\ & \text { 5962-89621012A } \end{aligned}$,		$\begin{aligned} & \text { 20-Lead } \\ & \text { LCC } \end{aligned}$	E20A
LM6161W/883 5962-8962101HA			$\begin{gathered} \text { 10-Pin } \\ \text { Ceramic Flatpak } \end{gathered}$	W10A

TL/H/9057-5
See NS Package Number J08A, N08E or M08A

Absolute Maximum Ratings (Note 12)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
36 V
Differential Input Voltage (Note 8) $\pm 8 \mathrm{~V}$
Common-Mode Voltage Range
(Note 10)
$\left(\mathrm{V}^{+}-0.7 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-7 \mathrm{~V}\right)$
Output Short Circuit to GND (Note 1) Continuous
Soldering Information
$\left.\begin{array}{ll}\text { Dual-In-Line Package (N, J) } \\ \text { Soldering (10 sec.) }\end{array}\right) 260^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Storage Temp Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Max Junction Temperature	$150^{\circ} \mathrm{C}$
ESD Tolerance (Notes 6 and 7)	$\pm 700 \mathrm{~V}$

Operating Ratings (Note 12)

Temperature Range (Note 2)

LM6161	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LM6261	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
LM6361	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+70^{\circ} \mathrm{C}$
Supply Voltage Range	4.75 V to 32 V

DC Electrical Characteristics

The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{S}}=50 \Omega$ unless otherwise noted. Boldface limits apply for $T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	LM6161	LM6261	LM6361	Units
				Limit (Notes 3, 11)	Limit (Note 3)	$\begin{aligned} & \text { Limit } \\ & \text { (Note 3) } \end{aligned}$	
V_{OS}	Input Offset Voltage		5	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{aligned} & 7 \\ & 9 \end{aligned}$	$\begin{aligned} & 20 \\ & 22 \end{aligned}$	$\begin{gathered} m V \\ M a x \end{gathered}$
$V_{\text {OS }}$ Drift	Input Offset Voltage Average Drift		10				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
l_{b}	Input Bias Current		2	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	$\begin{array}{r} 3 \\ 5 \end{array}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\mu \mathrm{A}$ Max
los	Input Offset Current		150	$\begin{aligned} & 350 \\ & \mathbf{8 0 0} \end{aligned}$	$\begin{aligned} & 350 \\ & 600 \end{aligned}$	$\begin{gathered} 1500 \\ 1900 \end{gathered}$	nA Max
los Drift	Input Offset Current Average Drift		0.4				$n A /{ }^{\circ} \mathrm{C}$
$\mathrm{RIN}^{\text {I }}$	Input Resistance	Differential	325				k Ω
C_{IN}	Input Capacitance	$A_{V}=+1 @ 10 \mathrm{MHz}$	1.5				pF
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega(\text { Note } 9) \end{aligned}$	750	$\begin{gathered} 550 \\ 300 \end{gathered}$	$\begin{gathered} 550 \\ 400 \end{gathered}$	$\begin{gathered} 400 \\ 350 \end{gathered}$	$\begin{aligned} & V / V \\ & M i n \end{aligned}$
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ (Note 9)	2900				V/V
V_{CM}	Input Common-Mode Voltage Range	Supply $= \pm 15 \mathrm{~V}$	+14.0	$\begin{array}{r} +13.9 \\ +13.8 \end{array}$	$\begin{array}{r} +13.9 \\ +13.8 \end{array}$	$\begin{array}{r} +13.8 \\ +13.7 \end{array}$	Volts Min
			-13.2	$\begin{array}{r} -12.9 \\ -12.7 \end{array}$	$\begin{array}{r} -12.9 \\ -12.7 \end{array}$	$\begin{array}{r} -12.8 \\ -12.7 \end{array}$	Volts Min
		$\begin{aligned} & \text { Supply }=+5 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$	4.0	$\begin{aligned} & 3.9 \\ & \mathbf{3 . 8} \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 3.8 \\ & \mathbf{3 . 7} \end{aligned}$	Volts Min
			1.8	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.2 \end{aligned}$	Volts Max
CMRR	Common-Mode Rejection Ratio	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	94	$\begin{aligned} & 80 \\ & 74 \end{aligned}$	$\begin{aligned} & 80 \\ & 76 \end{aligned}$	$\begin{aligned} & 72 \\ & 70 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\pm 10 \mathrm{~V} \leq \mathrm{V} \pm \leq \pm 16 \mathrm{~V}$	90	$\begin{aligned} & 80 \\ & 74 \end{aligned}$	$\begin{aligned} & 80 \\ & 76 \end{aligned}$	$\begin{aligned} & 72 \\ & 70 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
V_{O}	Output Voltage Swing	$\begin{aligned} & \text { Supply }= \pm 15 \mathrm{~V} \\ & \text { and } R_{L}=2 \mathrm{k} \Omega \end{aligned}$	+14.2	$\begin{array}{r} +13.5 \\ +13.3 \end{array}$	$\begin{array}{r} +13.5 \\ +13.3 \end{array}$	$\begin{array}{r} +13.4 \\ +13.3 \end{array}$	Volts Min
			-13.4	$\begin{array}{r} -13.0 \\ -12.7 \end{array}$	$\begin{gathered} -13.0 \\ -12.8 \end{gathered}$	$\begin{array}{r} -12.9 \\ -12.8 \end{array}$	Volts Min

DC Electrical Characteristics (Continued)
The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, V_{C M}=0, R_{L} \geq 100 \mathrm{k} \Omega$ and $R_{S}=50 \Omega$ unless otherwise noted. Boldface limits apply for $T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	LM6161	LM6261	LM6361	Units
				Limit (Notes 3, 11)	$\begin{gathered} \text { Limit } \\ \text { (Note 3) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 3) } \end{gathered}$	
V_{O} (Continued)	Output Voltage Swing (Continued)	$\begin{aligned} & \text { Supply }=+5 V \\ & \text { and } R_{L}=2 \mathrm{k} \Omega \\ & \text { (Note 4) } \end{aligned}$	4.2	$\begin{aligned} & 3.5 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.3 \\ & \hline \end{aligned}$	Volts Min
			1.3	$\begin{aligned} & 1.7 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.9 \end{aligned}$	Volts Max
-	Output Short Circuit Current	Source	65	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \\ & \hline \end{aligned}$
		Sink	65	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \\ & \hline \end{aligned}$
Is	Supply Current		5.0	$\begin{aligned} & 6.5 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 6.9 \end{aligned}$	$\begin{array}{r} \mathrm{mA} \\ \mathrm{Max} \\ \hline \end{array}$

AC Electrical Characteristics

The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{S}}=50 \Omega$ unless otherwise noted. Boldface limits apply for $T_{J}=T_{M I N}$ to $T_{M A X}$; all other limits $T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	LM6161	LM6261	LM6361	Units
				Limit (Notes 3, 11)	Limit (Note 3)	Limit (Note 3)	
GBW	Gain-Bandwidth Product	@ $\mathrm{f}=20 \mathrm{MHz}$	50	$\begin{aligned} & 40 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 32 \end{aligned}$	MHz Min
		Supply $= \pm 5 \mathrm{~V}$	35				MHz
SR	Slew Rate	$A_{V}=+1$ (Note 8)	300	$\begin{aligned} & 200 \\ & 180 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 180 \\ & \hline \end{aligned}$	$\begin{array}{r} 200 \\ 180 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{Min} \end{aligned}$
		Supply $= \pm 5 \mathrm{~V}$ (Note 8)	200				$\mathrm{V} / \mathrm{\mu s}$
PBW	Power Bandwidth	$\mathrm{V}_{\text {OUT }}=20 \mathrm{VPP}$	4.5				MHz
ts	Settling Time	$\begin{aligned} & 10 \mathrm{~V} \text { Step to } 0.1 \% \\ & A_{V}=-1, R_{L}=2 \mathrm{k} \Omega \end{aligned}$	120				ns
$\phi \mathrm{m}$	Phase Margin		45				Deg
A_{D}	Differential Gain	NTSC, $A_{V}=+4$	<0.1				\%
ϕ D	Differential Phase	NTSC, $A_{V}=+4$	0.1				Deg
$\theta_{\text {np-p }}$	Input Noise Voltage	$\mathrm{f}=10 \mathrm{kHz}$	15				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{i}_{\text {np-p }}$	Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$	1.5				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 2: The typical junction-to-ambient thermal resistance of the molded plastic DIP (N) is $105^{\circ} \mathrm{C} / \mathrm{W}$, the molded plastic SO (M) package is $155^{\circ} \mathrm{C} / \mathrm{W}$, and the cerdip (J) package is $125^{\circ} \mathrm{C} / \mathrm{W}$. All numbers apply for packages soldered directly into a printed circuit board.
Note 3: Limits are guaranteed by testing or correlation.
Note 4: For single supply operation, the following conditions apply: $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$. Pin 1 \& Pin 8 (Vos Adjust) are each connected to Pin $4\left(\mathrm{~V}^{-}\right)$to realize maximum output swing. This connection will degrade V_{OS}, V_{OS} Drift, and Input Voltage Noise.
Note 5: $\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$.
Note 6: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors and probable degradation of the input parameters (especially Vos, los, and Noise).
Note 7: The average voltage that the weakest pin combinations (those involving Pin 2 or Pin 3) can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500Ω.
Note 8: $\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}$ step. For supply $= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$ step.
Note 9: Voltage Gain is the total output swing (20V) divided by the input signal required to produce that swing.
Note 10: The voltage between V^{+}and either input pin must not exceed 36 V .
Note 11: A military RETS electrical test specification is available on request. At the time of printing, the RETS6161X specs complied with all Boldface limits in this column.

Note 12: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Typical Performance Characteristics ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Typical Performance Characteristics

($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Continued)

Typical Performance Characteristics

($R_{L}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Continued)

Simplified Schematic

TL/H/9057-3

Applications Tips

The LM6361 has been compensated for unity-gain operation. Since this compensation involved adding emitter-degeneration resistors to the op amp's input stage, the openloop gain was reduced as the stability increased. Gain error due to reduced Avol is most apparent at high gains; thus, for gains between 5 and 25, the less-compensated LM6364 should be used, and the uncompensated LM6365 is appropriate for gains of 25 or more. The LM6361, LM6364, and LM6365 have the same high slew rate, regardless of their compensation.
The LM6361 is unusually tolerant of capacitive loads. Most op amps tend to oscillate when their load capacitance is greater than about 200 pF (especially in low-gain circuits). The LM6361's compensation is effectively increased with load capacitance, reducing its bandwidth and increasing its stability.
Power supply bypassing is not as critical for the LM6361 as it is for other op amps in its speed class. Bypassing will,
however, improve the stability and transient response and is recommended for every design. $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic capacitors should be used (from each supply "rail" to ground); if the device is far away from its power supply source, an additional $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ of tantalum may provide extra noise reduction.

Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling across adjacent nodes and can cause gain to unintentionally vary with frequency.
Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit performance.

Typical Applications

Offset Voltage Adjustment

TL/H/9057-4

1 MHz Low-Pass Filter

TL/H/9057-10
$\dagger 1 \%$ tolerance
*Matching determines filter precision
$\mathrm{f}_{\mathrm{c}}=(2 \pi \sqrt{(\mathrm{R} 1 \mathrm{R} 2 \mathrm{C} 1 \mathrm{C} 2)})^{-1}$

LM6162/LM6262/LM6362 High Speed Operational Amplifier

General Description

The LM6362 family of high-speed amplifiers exhibits an excellent speed-power product, delivering $300 \mathrm{~V} / \mu \mathrm{s}$ and 100 MHz gain-bandwidth product (stable for gains as low as +2 or -1) with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5 V .
These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which provides fast transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

- Low supply current
- Fast settling time

120 ns to 0.1%

- Low differential gain
<0.1\%
- Low differential phase
- Wide supply range
4.75 V to 32 V
- Stable with unlimited capacitive load
- Well behaved; easy to apply

Applications

- Video amplifier
- Wide-bandwidth signal conditioning for image processing (FAX, scanners, laser printers)
- Hard disk drive preamplifier
- Error amplifier for high-speed switching regulator

Features

- High slew rate	$300 \mathrm{~V} / \mu \mathrm{s}$
- High gain-bandwidth product	100 MHz

Connection Diagrams

TL/H/11061-14
Top View
See NS Package Number E20A

TL/H/11061-2
See NS Package Number N08E, M08A or J08A

Temperature Range			Package	NSC Drawing
$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	Commercial $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+70^{\circ} \mathrm{C}$		
LM6162N	LM6262N	LM6362N	8-Pin Molded DIP	N08E
LM6162J/883 5962-9216501PA			8-Pin Ceramic DIP	J08A
	LM6262M	LM6362M	8-Pin Molded Surface Mt.	M08A
$\begin{aligned} & \text { LM6162E/883 } \\ & 5962-92165012 \mathrm{~A} \end{aligned}$			20-Lead LCC	E20A
LM6162W/883 5962-9216501HA			10-Pin Ceramic Flatpak	W10A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
36 V
Differential Input Voltage (Note 2)
$\pm 8 \mathrm{~V}$
Common-Mode Input Voltage
$\left(V^{+}-0.7 V\right)$ to
(Note 3)
Output Short Circuit to GND (Note 4)
Soldering Information
Dual-In-Line Package (N)
Soldering (10 seconds)
Small Outline Package (M)
Vapor Phase (60 seconds) Infrared (15 seconds)
(V--0.3V)
Continuous
$260^{\circ} \mathrm{C}$
$215^{\circ} \mathrm{C}$
$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$
Max Junction Temperature	$150^{\circ} \mathrm{C}$
ESD Tolerance (Note 5)	$\pm 1100 \mathrm{~V}$

Operating Ratings

Temperature Range (Note 6)

LM6162	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LM6262	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
LM6362	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+70^{\circ} \mathrm{C}$
Supply Voltage Range	4.75 V to 32 V

DC Electrical Characteristics

These limits apply for supply voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega$, unless otherwise specified. Limits in standard typeface are for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	\because Parameter	Conditions	Typical (Note 7)	LM6162 Limit (Note 8)	LM6262 Limit (Note 8)	LM6362 Limit (Note 8)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		± 3	$\begin{array}{r} \pm 5 \\ \pm 8 \end{array}$	$\begin{array}{r} \pm 5 \\ \pm 8 \end{array}$	$\begin{aligned} & \pm 13 \\ & \pm 15 \end{aligned}$	mV max
$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{Temp}}$	Input Offset Voltage Average Drift		7				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$l_{\text {bias }}$	Input Bias Current		2.2	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\mu \mathrm{A}$ \max
los	Input Offset Current		± 150	$\begin{gathered} \pm 350 \\ \pm \mathbf{8 0 0} \end{gathered}$	$\begin{gathered} \pm 350 \\ \pm \mathbf{6 0 0} \end{gathered}$	$\begin{gathered} \pm 1500 \\ \pm 1900 \end{gathered}$	nA max
$\frac{\Delta \mathrm{l}_{\mathrm{OS}}}{\Delta \text { Temp }}$	Input Offset Current Average Drift		0.3				$n A /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential	180				k Ω
C_{IN}	Input Capacitance		2.0				pF
AVOL	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { (Note 9) } \end{aligned}$	1400	$\begin{array}{r} 1000 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 1000 \\ & 700 \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & \mathbf{6 5 0} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	6500				V/V
V_{CM}	Input Common-Mode Voltage Range	Supply $= \pm 15 \mathrm{~V}$	+14.0	$\begin{gathered} +13.9 \\ +13.8 \end{gathered}$	$\begin{array}{r} +13.9 \\ +13.8 \end{array}$	$\begin{array}{r} +13.8 \\ +13.7 \end{array}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			-13.2	$\begin{array}{r} -12.9 \\ -12.7 \\ \hline \end{array}$	$\begin{array}{r} -12.9 \\ -12.7 \\ \hline \end{array}$	$\begin{array}{r} -12.9 \\ -12.8 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \text { Supply }=+5 \mathrm{~V} \\ & \text { (Note 10) } \end{aligned}$	4.0	$\begin{aligned} & 3.9 \\ & 3.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.7 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			1.6	$\begin{aligned} & 1.8 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
CMRR	Common-Mode Rejection Ratio	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	100	$\begin{array}{r} 83 \\ 79 \\ \hline \end{array}$	$\begin{array}{r} 83 \\ 79 \\ \hline \end{array}$	$\begin{aligned} & 76 \\ & 74 \\ & \hline \end{aligned}$	dB \min
PSRR	Power Supply Rejection Ratio	$\pm 10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 16 \mathrm{~V}$	93	$\begin{array}{r} 83 \\ 79 \\ \hline \end{array}$	$\begin{array}{r} 83 \\ 79 \\ \hline \end{array}$	$\begin{aligned} & 76 \\ & 74 \\ & \hline \end{aligned}$	dB min
Vo	Output Voltage Swing	Supply $= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	+14.2	$\begin{array}{r} +13.5 \\ +13.3 \end{array}$	$\begin{array}{r} +13.5 \\ +13.3 \end{array}$	$\begin{gathered} +13.4 \\ 13.3 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			-13.4	$\begin{array}{r} -13.0 \\ -12.7 \end{array}$	$\begin{gathered} -13.0 \\ -12.8 \end{gathered}$	$\begin{array}{r} -12.9 \\ -12.8 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \max \end{aligned}$

DC Electrical Characteristics (Continued)

These limits apply for supply voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V}$, and $R_{L} \geq 100 \mathrm{k} \Omega$, unless otherwise specified. Limits in standard typeface are for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 7)				Units
V_{0}	Output Voltage Swing	$\begin{aligned} & \text { Supply }=+5 \mathrm{~V} \text { and } \\ & R_{L}=2 \mathrm{k} \Omega \text { (Note 10) } \end{aligned}$	4.2	$\begin{aligned} & 3.5 \\ & \mathbf{3 . 3} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.3 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			1.3	$\begin{aligned} & 1.7 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.9 \end{aligned}$	V max
losc	Output Short Circuit Current	Sourcing	65	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	mA \min
		Sinking	65	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	mA \min
Is	Supply Current		5.0	$\begin{aligned} & 6.5 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 6.9 \end{aligned}$	mA max

AC Electrical Characteristics

These limits apply for supply voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega$, and $\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$, unless otherwise specified. Limits in standard typeface are for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 7)				Units
GBW	Gain-Bandwidth Product	$\begin{aligned} & f=20 \mathrm{MHz} \\ & \quad \text { Supply }= \pm 5 \mathrm{~V} \end{aligned}$	100	$\begin{aligned} & 80 \\ & 55 \end{aligned}$	$\begin{aligned} & 80 \\ & 65 \end{aligned}$	$\begin{aligned} & 75 \\ & 65 \end{aligned}$	MHz min
			70				MHz
SR	Slew Rate	$A_{V}=+2(\text { Note } 11)$$\text { Supply }= \pm 5 \mathrm{~V}$	300	$\begin{aligned} & 200 \\ & 180 \end{aligned}$	$\begin{aligned} & 200 \\ & 180 \end{aligned}$	$\begin{aligned} & 200 \\ & 180 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mu \mathrm{s} \\ \mathrm{~min} \end{gathered}$
			200				V/ $\mu \mathrm{s}$
PBW	Power Bandwidth	$\mathrm{V}_{\text {OUT }}=20 \mathrm{VPP}$	4.5				MHz
$\mathrm{t}_{\text {s }}$	Settling Time	$\begin{aligned} & 10 \mathrm{~V} \text { step, to } 0.1 \% \\ & \mathrm{~A}_{V}=-1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	100				ns
ϕ_{m}	Phase Margin	$A_{V}=+2$	45				deg
	Differential Gain	NTSC, $A_{V}=+2$	<0.1				\%
	Differential Phase	NTSC, $A_{V}=+2$	<0.1				deg
e_{n}	Input Noise Voltage	$\mathrm{f}=10 \mathrm{kHz}$	10				$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{n}	Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$	1.2				$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: The ESD protection circuitry between the inputs will begin to conduct when the differential input voltage reaches 8 V .
Note 3: a) In addition, the voltage between the V^{+}pin and either input pin must not exceed 36 V .
b) When the voltage applied to an input pin is driven more than 0.3 V below the negative supply pin voltage, a substrate diode begins to conduct. Current through this pin must then be kept less than 20 mA to limit damage from self-heating.
Note 4: Although the output current is internally limited, continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 5: This value is the average voltage that the weakest pin combinations can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model, 100 pF in series with 1500Ω.
Note 6: The typical thermal resistance, junction-to-ambient, of the molded plastic DIP (N package) is $105^{\circ} \mathrm{C} / \mathrm{W}$. For the molded plastic SO (M package), use $155^{\circ} \mathrm{C} / \mathrm{W}$. All numbers apply for packages soldered directly into a printed circuit board.
Note 7: Typical values are for $T_{J}=25^{\circ} \mathrm{C}$, and represent the most likely parametric norm.
Note 8: Limits are guaranteed, by testing or correlation.
Note 9: Voltage Gain is the total output swing (20V) divided by the magnitude of the input signal required to produce that swing.
Note 10: For single-supply operation, the following conditions apply: $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$. Pin 1 and Pin 8 (V_{OS} Adjust pins) are each connected to pin $4\left(\mathrm{~V}^{-}\right)$to realize maximum output swing. This connection will increase the offset voltage.
Note 11: $\mathrm{V}_{\mathbb{I N}}=10 \mathrm{~V}$ step. For $\pm 5 \mathrm{~V}$ supplies, $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}$ step.
Note 12: A military RETS electrical test specification is available on request.

Typical Performance Characteristics $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Supply Current vs Supply Voltage

Gain-Bandwidth Product vs Supply Voltage

Common-Mode
Rejection Ratio

Slew Rate vs Load Capacitance

Power Supply Rejection Ratio

Propagation Delay, Rise and Fall Times

Overshoot vs Load Capacitance

TL/H/11061-3

Typical Performance Characteristics (Continued)
$R_{L}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

Differential Phase (Note)

Note: Differential gain and differential phase measured for four series LM6362 op amps configured with gain of +2 each, in series with a 1:16 attenuator and an LM6321 buffer. Error added by LM6321 is negligible. Test performed using Tektronix Type 520 NTSC test system.
TL/H/11061-4

TIME (50 ns/div)

Input Noise Voltage

Input Noise Current

TL/H/11061-6

TL/H/11061-7

Typical Performance Characteristics (Continued)
$R_{L}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

Simplified Schematic

TL/H/11061-1

Application Tips

The LM6362 has been decompensated for a wider gainbandwidth product than the LM6361. However, the LM6362 still offers stability at gains of 2 (and -1) or greater over the specified ranges of temperature, power supply voltage, and load. Since this decompensation involved reducing the emit-ter-degeneration resistors in the op amp's input stage, the DC precision has been increased in the form of lower offset voltage and higher open-loop gain.
Other op amps in this family include the LM6361, LM6364, and LM6365. If unity-gain stability is required, the LM6361 should be used. The LM6364 has been decompensated for operation at gains of 5 or more, with corresponding greater gain-bandwidth product (125 MHz , typical) and DC precision. The fully-uncompensated LM6365 offers gain-bandwidth product of 725 MHz , typical, and is stable for gains of 25 or more. All parts in this family, regardless of compensation, have the same high slew rate of $300 \mathrm{~V} / \mu \mathrm{s}$ (typ).
The LM6362 is unusually tolerant of capacitive loads. Most op amps tend to oscillate when their load capacitance is greater than about 200 pF (in low-gain circuits). However, load capacitance on the LM6362 effectively increases its compensation capacitance, thus slowing the op amp's response and reducing its bandwidth. The compensation is not ideal, though, and ringing may occur in low-gain circuits with large capacitive loads.

Typical Applications

Power supply bypassing is not as critical for LM6362 as it is for other op amps in its speed class. However, bypassing will improve the stability and transient response of the LM6362, and is recommended for every design. $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic capacitors should be used (from each supply "rail" to ground); if the device is far away from its power supply source, an additional $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ of tantalum may be required for extra noise reduction.
Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling from one pin, input or lead to another, and can cause circuit gain to unintentionally vary with frequency.
Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit frequency response. At low gains (+2 or -1), a feedback capacitor C_{f} from output to inverting input will compensate for the phase lag caused by capacitance at the inverting input. Typically, values from 2 pF to 5 pF work well; however, best results can be obtained by observing the amplifier pulse response and optimizing C_{f} for the particular layout.

Typical Applications (Continued)

TL/H/11061-13

LM6164/LM6264/LM6364
 High Speed Operational Amplifier

General Description

The LM6164 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300 V per $\mu \mathrm{s}$ and 175 MHz GBW (stable down to gains as low as +5) with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5 V .
These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which produces fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

- High slew rate

$$
300 \mathrm{~V} / \mu \mathrm{s}
$$

- High GBW product 175 MHz
- Low supply current 5 mA
- Fast settling 100 ns to 0.1%
<0.1\%
$<0.1^{\circ}$
4.75 V to 32 V

Low differential phase

- Stable with unlimited capacitive load

Applications

- Video amplifier
- Wide-bandwidth signal conditioning
- Radar
- Sonar

Connection Diagrams

TL/H/9153-8
NS Package Number J08A, M08A or N08E

Temperature Range			Package	NSC Drawing
$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	Commercial $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		
	LM6264N	LM6364N	8-Pin Molded DIP	N08E
LM6164J/883 5962-8962401PA			8-Pin Ceramic DIP	J08A
		LM6364M	8-Pin Molded Surface Mt.	M08A
$\begin{aligned} & \text { LM6164E/883 } \\ & 5962-89624012 A \end{aligned}$			20-Lead LCC	E20A
LM6164W/883 5962-8962401HA			10-Pin Ceramic Flatpak	W10A

Top View
NS Package Number W10A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
36 V
Differential Input Voltage (Note 6) $\pm 8 \mathrm{~V}$
Common-Mode Input Voltage
(Note 10)
$\left(\mathrm{V}^{+}-0.7 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-7 \mathrm{~V}\right)$
Output Short Circuit to Gnd (Note 1) Continuous
Soldering Information

Dual-In-Line Package (N, J)	
Soldering (10 sec.)	$260^{\circ} \mathrm{C}$
Small Outline Package (M)	
\quad Vapor Phase $(60$ sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Max Junction Temperature (Note 2)	$150^{\circ} \mathrm{C}$
ESD Tolerance (Notes $6 \& 7$)	$\pm 700 \mathrm{~V}$

Operating Ratings

Temperature Range (Note 2)

LM6164	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LM6264	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
LM6364	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+70^{\circ} \mathrm{C}$
Supply Voltage Range	4.75 V to 32 V

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+70^{\circ} \mathrm{C} \\
4.75 \mathrm{~V} \text { to } 32 \mathrm{~V}
\end{array}
$$

DC Electrical Characteristics The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$, $R_{L} \geq 100 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{S}}=50 \Omega$ unless otherwise noted. Boldface limits apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	LM6164 Limit (Notes 3, 11)	$\begin{gathered} \hline \text { LM6264 } \\ \hline \text { Limit } \\ \text { (Note 3) } \\ \hline \end{gathered}$	LM6364 Limit (Note 3)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		2	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{gathered} 9 \\ 11 \end{gathered}$	mV max
$\begin{aligned} & V_{O S} \\ & \text { Drift } \end{aligned}$	Input Offset Voltage Average Drift		6				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
l_{b}	Input Bias Current		2.5	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\mu \mathrm{A}$ max
los	Input Offset Current		150	$\begin{aligned} & 350 \\ & \mathbf{8 0 0} \\ & \hline \end{aligned}$	$\begin{aligned} & 350 \\ & 600 \\ & \hline \end{aligned}$	$\begin{gathered} 1500 \\ 1900 \\ \hline \end{gathered}$	mA max
los Drift	Input Offset Current Average Drift		0.3				$n A /{ }^{\circ} \mathrm{C}$
RIN	Input Resistance	Differential	100				k Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance		3.0				pF
AVOL	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { (Note 9) } \end{aligned}$	2.5	$\begin{aligned} & 1.8 \\ & 0.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.1 \\ & \hline \end{aligned}$	V / mV \min
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	9				
V_{CM}	Input Common-Mode Voltage Range	Supply $= \pm 15 \mathrm{~V}$	+14.0	$\begin{array}{r} +13.9 \\ +13.8 \end{array}$	$\begin{array}{r} +13.9 \\ +13.8 \end{array}$	$\begin{array}{r} +13.8 \\ +13.7 \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			-13.5	$\begin{gathered} -13.3 \\ -13.1 \end{gathered}$	$\begin{array}{r} -13.3 \\ -13.1 \\ \hline \end{array}$	$\begin{array}{r} -13.2 \\ -13.1 \\ \hline \end{array}$	$\begin{gathered} V \\ \min \end{gathered}$
	- .	$\begin{aligned} & \text { Supply }=+5 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$	4.0	$\begin{aligned} & 3.9 \\ & \mathbf{3 . 8} \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.8 \end{aligned}$	$\begin{array}{r} 3.8 \\ 3.7 \\ \hline \end{array}$	$\begin{gathered} V \\ \min \end{gathered}$
			1.5	$\begin{aligned} & 1.7 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{gathered} V \\ \max \end{gathered}$
CMRR	Common-Mode Rejection Ratio	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	105	$\begin{array}{r} 86 \\ 80 \\ \hline \end{array}$	$\begin{array}{r} 86 \\ 82 \\ \hline \end{array}$	$\begin{array}{r} 80 \\ 78 \\ \hline \end{array}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\pm 10 \mathrm{~V} \leq \mathrm{V} \pm \leq \pm 16 \mathrm{~V}$	96	$\begin{aligned} & 86 \\ & 80 \end{aligned}$	$\begin{aligned} & 86 \\ & 82 \\ & \hline \end{aligned}$	$\begin{array}{r} 80 \\ 78 \\ \hline \end{array}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$

DC Electrical Characteristics The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$,
$R_{L} \geq 100 \mathrm{k} \Omega$ and $R_{S}=50 \Omega$ unless otherwise noted. Boldface limits apply for $T_{A}=T_{J}=T_{M I N}$ to $T_{M A X}$ all other limits
$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter	Conditions	Typ	LM6164	LM6264	LM6364	Units
				Limit (Notes 3, 11)	Limit (Note 3)	Limit (Note 3)	
V_{0}	Output Voltage Swing	$\begin{aligned} & \text { Supply }=+5 \mathrm{~V} \\ & \text { and } R_{L}=2 \mathrm{k} \Omega \end{aligned}$	+14.2	$\begin{array}{r} +13.5 \\ +13.3 \end{array}$	$\begin{array}{r} +13.5 \\ +13.3 \end{array}$	$\begin{array}{r} +13.4 \\ +13.3 \end{array}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			-13.4	$\begin{array}{r} -13.0 \\ -12.7 \end{array}$	$\begin{gathered} -13.0 \\ -12.8 \end{gathered}$	$\begin{gathered} -12.9 \\ -12.8 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
		$\begin{aligned} & \text { Supply }=+5 \mathrm{~V} \\ & \text { and } \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { (Note } 9 \text {) } \end{aligned}$	4.2	$\begin{aligned} & 3.5 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.3 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			1.3	$\begin{aligned} & 1.7 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{gathered} V \\ \max \end{gathered}$
	Output Short Circuit Current	Source	65	$\begin{array}{r} 30 \\ 20 \\ \hline \end{array}$	$\begin{array}{r} 30 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & \mathbf{2 5} \\ & \hline \end{aligned}$	mA \min
		Sink	65	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & \mathbf{2 5} \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & \hline \end{aligned}$	mA \min
Is	Supply Current		5.0	$\begin{array}{r} 6.5 \\ 6.8 \\ \hline \end{array}$	$\begin{array}{r} 6.5 \\ 6.7 \\ \hline \end{array}$	$\begin{aligned} & 6.8 \\ & 6.9 \\ & \hline \end{aligned}$	mA \min

AC Electrical Characteristics The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ ， $R_{L} \geq 100 \mathrm{k} \Omega$ and $R_{S}=50 \Omega$ unless otherwise noted．Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$ ．

Symbol	Parameter ：	Conditions	Typ	LM6164	LM6264	LM6364	Units
				Limit （Notes 3，11）	Limit （Note 3）	Limit （Note 3）	
GBW	Gain－Bandwidth Product	$\mathrm{F}=20 \mathrm{MHz}$	175	$\begin{aligned} & 140 \\ & 100 \end{aligned}$	$\begin{aligned} & 140 \\ & 120 \end{aligned}$	$\begin{aligned} & 120 \\ & 100 \end{aligned}$	MHz min
		Supply $= \pm 5 \mathrm{~V}$	120				
SR	Slew Rate	$A_{V}=+5$（Note 8）	300	$\begin{aligned} & 200 \\ & 180 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 180 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 180 \\ & \hline \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}$ min
		Supply $= \pm 5 \mathrm{~V}$	200				
PBW	Power Bandwidth	$\mathrm{V}_{\text {OUT }}=20 \mathrm{~V}_{\text {PP }}$	4.5				MHz
TS	Settling Time	$\begin{aligned} & 10 \mathrm{~V} \text { Step to } 0.1 \% \\ & \mathrm{~A}_{\mathrm{V}}=-4, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	100				ns
ϕ_{m}	Phase Margin	$A_{V}=+5$	45				Deg
A_{D}	Differential Gain	NTSC，$A_{V}=+10$	＜0．1				\％
ϕ_{D}	Differential Phase	NTSC，$A_{V}=+10$	＜0．1				Deg
$e_{\text {np－p }}$	Input Noise Voltage	$\mathrm{F}=10 \mathrm{kHz}$	8				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{I}_{\text {np－p }}$	Input Noise Current	$F=10 \mathrm{kHz}$	1.5				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1：Continuous short－circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$ ．
Note 2：The typical junction－to－ambient thermal resistance of the molded plastic DIP（N）is $105^{\circ} \mathrm{C} /$ Watt，the molded plastic SO（M）package is $155^{\circ} \mathrm{C} /$ Watt，and the cerdip（ J ）package is $125^{\circ} \mathrm{C} /$ Watt．All numbers apply for packages soldered directly into a printed circuit board．
Note 3：Limits are guaranteed by testing or correlation．
Note 4：For single supply operation，the following conditions apply： $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$ ．Pin 1 \＆Pin 8 （ V_{OS} Adjust）are each connected to Pin $4(\mathrm{~V}-)$ to realize maximum output swing．This connection will degrade V_{OS} ．
Note 5： $\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$ ．
Note 6：In order to achieve optimum AC performance，the input stage was designed without protective clamps．Exceeding the maximum differential input voltage results in reverse breakdown of the base－emitter junction of one of the input transistors and probable degradation of the input parameters（especially $\mathrm{V}_{\text {OS }}$ ，los，and Noise）．
Note 7：The average voltage that the weakest pin combinations（those involving Pin 2 or Pin 3）can withstand and still conform to the datasheet limits．The test circuit used consists of the human body model of 100 pF in series with 1500Ω ．
Note 8： $\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$ step．For supply $= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1 \mathrm{~V}$ step．
Note 9：Voltage Gain is the total output swing（ 20 V ）divided by the input signal required to produce that swing．
Note 10：The voltage between V^{+}and either input pin must not exceed 36 V ．
Note 11：A military RETS electrical test specification is available on request．At the time of printing，the LM6164J／883 RETS spec complied with the Boldface limits in this column．The LM6164J／883 may also be procured as Standard Military Drawing \＃5962－8962401PA．

Typical Performance Characteristics ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Voltage Gain vs

TL/H/9153-5

Typical Performance Characteristics

($R_{L}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Continued)

TL/H/9153-6

TL/H/9153-7
Note: Differential gain and differential phase measured for four series LM6364 op amps in series with an LM6321 buffer. Error added by LM6321 is negligible. Test performed using Tektronix Type 520 NTSC test system. Configured with a gain of +5 (each output attenuated by 80\%)

TIME (50 ns/div)

Input Noise Voltage

TL/H/9153-1

Typical Performance Characteristics

($R_{L}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Continued)

Simplified Schematic

TL/H/9153-3

Applications Tips

The LM6364 has been compensated for gains of 5 or greater (over specified ranges of temperature, power supply voltage, and load). Since this compensation involved adding emitter-degeneration resistors in the op amp's input stage, the open-loop gain was reduced as the stability increased. Gain error due to reduced Avol is most apparent at high gains; thus, the uncompensated LM6365 is appropriate for gains of 25 or more. If unity-gain operation is desired, the LM6361 should be used. The LM6361, LM6364, and LM6365 have the same high slew rate (typically $300 \mathrm{~V} / \mu \mathrm{s}$), regardless of their compensation.
The LM6364 is unusually tolerant of capacitive loads. Most op amps tend to oscillate when their load capacitance is greater than about 200 pF (in low-gain circuits). However, load capacitance on the LM6364 effectively increases its compensation capacitance, thus slowing the op amp's response and reducing its bandwidth. The compensation is not ideal, though, and ringing or oscillation may occur in low-gain circuits with large capacitive loads. To overcompensate the LM6364 for operation at gains less than 5, a

Typical Applications

Offset Voltage Adjustment

TL/H/9153-10

series resistor-capacitor network should be added between the input pins (as shown in the Typical Applications, Noise Gain Compensation) so that the high-frequency noise gain rises to at least 5.
Power supply bypassing will improve the stability and transient response of the LM6364, and is recommended for every design. $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic capacitors should be used (from each supply "rail" to ground); if the device is far away from its power supply source, an additional $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ (tantalum) may be required for extra noise reduction. Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling between adjacent nodes, so that circuit gain unintentionally varies with frequency.
Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit performance.

Noise-Gain Compensation for Gains ≤ 5

TL/H/9153-11
$R_{X} C_{X} \geq(2 \pi \bullet 25 M H z)^{-1}$
$5 R_{X}=R_{1}+R_{F}\left(1+R_{1} / R_{2}\right)$

National Semiconductor

LM6165/LM6265/LM6365 High Speed Operational Amplifier

General Description

The LM6165 family of high-speed amplifiers exhibits an excellent speed-power product in delivering $300 \mathrm{~V} / \mu \mathrm{s}$ and 725 MHz GBW (stable for gains as low as +25) with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5 V .
These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which produces fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

- High slew rate

$$
300 \mathrm{~V} / \mu \mathrm{s}
$$

- High GBW product 725 MHz
- Low supply current 5 mA
- Fast settling

80 ns to 0.1%
Low differential gain
$<0.1^{\circ}$

- Wide supply range
4.75 V to 32 V
- Stable with unlimited capacitive load

Applications

- Video amplifier
- Wide-bandwidth signal conditioning
- Radar
- Sonar

Connection Diagrams

TL/H/9152-15
Order Number LM6165E/883 See NS Package Number E20A

TL/H/9152-8

Order Number LM6165J/883 See NS Package Number J08A

Order Number LM6365M See NS Package Number M08A

Order Number LM6265N or LM6365N
See NS Package Number N08E

Temperature Range			Package	NSC
Military $-\mathbf{5 5} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+\mathbf{1 2 5}^{\circ} \mathbf{C}$	Industrial $-\mathbf{2 5} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+\mathbf{8 5}^{\circ} \mathbf{C}$	Commercial $\mathbf{0}^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+\mathbf{7 0} \mathbf{C}$		
	LM6265N	LM6365N	8-Pin Molded DIP	N08E
LM6165J/883 $5962-8962501 P A$			8-Pin Ceramic DIP	J08A
		LM6365M	8-Pin Molded Surface Mt.	M08A
LM6165E/883 $5962-89625012 A ~$			20-Lead LCC	E20A
LM6165W883 $5962-8962501 H A ~$			10-Pin Ceramic Flatpak	W10A

$$
\left(\mathrm{V}^{+}-0.7 \mathrm{~V}\right) \text { to }\left(\mathrm{V}^{-}-7 \mathrm{~V}\right)
$$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Storage Temp Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Max Junction Temperature (Note 2)	$150^{\circ} \mathrm{C}$
ESD Tolerance (Notes 6 and 7)	$\pm 700 \mathrm{~V}$

Operating Ratings

Temperature Range (Note 2)

LM6165, LM6165J/883	$-55^{\circ} \mathrm{C} \leq T_{J} \leq+125^{\circ} \mathrm{C}$
LM6265	$-25^{\circ} \mathrm{C} \leq T_{J} \leq+85^{\circ} \mathrm{C}$
LM6365	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+70^{\circ} \mathrm{C}$
Supply Voltage Range	4.75 V to 32 V

DC Electrical Characteristics

The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{S}}=50 \Omega$ unless otherwise noted. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX; }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	LM6165	LM6265	LM6365	Units
				Limit (Notes 3, 11)	Limit (Note 3)	Limit (Note 3)	
Vos	Input Offset Voltage		1	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{Max} \end{aligned}$
Vos Drift	Input Offset Voltage Average Drift		3				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ib	Input Bias Current		2.5	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\mu \mathrm{A}$ Max
los	Input Offset Current		150	$\begin{aligned} & 350 \\ & 800 \end{aligned}$	$\begin{aligned} & 350 \\ & 600 \end{aligned}$	$\begin{gathered} 1500 \\ 1900 \end{gathered}$	nA Max
los Drift	Input Offset Current Average Drift		0.3				$n A /{ }^{\circ} \mathrm{C}$
R_{IN}	Input Resistance	Differential	20				k Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance		6.0				pF
Avol	Large Signal Voltage Gain (Note 9)	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	10.5	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 5.5 \\ 5.0 \end{array}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{Min} \end{gathered}$
		$R_{L}=10 \mathrm{k} \Omega$	38				
V_{CM}	Input Common-Mode Voltage Range	Supply $= \pm 15 \mathrm{~V}$	+14.0	$\begin{array}{r} +13.9 \\ +13.8 \end{array}$	$\begin{array}{r} +13.9 \\ +13.8 \end{array}$	$\begin{array}{r} +13.8 \\ +13.7 \end{array}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
			-13.6	$\begin{gathered} -13.4 \\ -13.2 \end{gathered}$	$\begin{array}{r} -13.4 \\ -13.2 \end{array}$	$\begin{gathered} -13.3 \\ -13.2 \end{gathered}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
		$\begin{aligned} & \text { Supply }=+5 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$	4.0	$\begin{aligned} & 3.9 \\ & \mathbf{3 . 8} \end{aligned}$	$\begin{aligned} & 3.9 \\ & \mathbf{3 . 8} \end{aligned}$	$\begin{aligned} & 3.8 \\ & \mathbf{3 . 7} \end{aligned}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			1.4	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.8 \end{aligned}$	$\begin{gathered} V \\ \text { Max } \end{gathered}$
CMRR	Common-Mode Rejection Ratio	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	102	$\begin{aligned} & 88 \\ & 82 \end{aligned}$	$\begin{aligned} & 88 \\ & 84 \end{aligned}$	$\begin{aligned} & 80 \\ & 78 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \\ \hline \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\pm 10 \mathrm{~V} \leq \mathrm{V} \pm \leq \pm 16 \mathrm{~V}$	104	$\begin{aligned} & 88 \\ & 82 \end{aligned}$	$\begin{aligned} & 88 \\ & 84 \end{aligned}$	$\begin{aligned} & 80 \\ & 78 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
V_{0}	Output Voltage Swing	$\begin{aligned} & \text { Supply }= \pm 15 \mathrm{~V}, \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$	+14.2	$\begin{array}{r} +13.5 \\ +13.3 \end{array}$	$\begin{array}{r} +13.5 \\ +13.3 \end{array}$	$\begin{gathered} +13.4 \\ +13.3 \end{gathered}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
			-13.4	$\begin{array}{r} -13.0 \\ -12.7 \\ \hline \end{array}$	$\begin{array}{r} -13.0 \\ -12.8 \end{array}$	$\begin{array}{r} -12.9 \\ -12.8 \\ \hline \end{array}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$

DC Electrical Characteristics (Continued)

The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, V_{C M}=0, R_{L} \geq 100 \mathrm{k} \Omega$ and $R_{S}=50 \Omega$ unless otherwise noted.

Symbol	Parameter	Conditions	Typ	LM6165	LM6265	LM6365	Units
				Limit (Notes 3, 11)	Limit (Note 3)	Limit (Note 3)	
V_{0} (Continued)	Output Voltage Swing (Continued)	$\begin{aligned} & \text { Supply }=+5 \mathrm{~V} \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \text { (Note 4) } \end{aligned}$	4.2	$\begin{aligned} & 3.5 \\ & \mathbf{3 . 3} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.3 \end{aligned}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
			1.3	$\begin{aligned} & 1.7 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.9 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { Max } \end{gathered}$
	Output Short Circuit Current	Source	65	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 30 \\ 25 \\ \hline \end{array}$	$\begin{array}{r} 30 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \text { Min } \end{aligned}$
		Sink	65	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 30 \\ 25 \\ \hline \end{array}$	$\begin{array}{r} 30 \\ 25 \\ \hline \end{array}$	mA Min
Is	Supply Current		5.0	$\begin{aligned} & 6.5 \\ & 6.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.5 \\ 6.7 \\ \hline \end{array}$	$\begin{array}{r} 6.8 \\ 6.9 \\ \hline \end{array}$	mA Max

AC Electrical Characteristics

The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{S}}=50 \Omega$ unless otherwise noted. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Note 5)

Symbol	Parameter	Conditions	Typ	LM6165	LM6265	LM6365	Units
				Limit (Notes 3, 11)	$\begin{aligned} & \text { Limit } \\ & \text { (Note 3) } \end{aligned}$	$\begin{aligned} & \text { Limit } \\ & \text { (Note 3) } \end{aligned}$	
GBW	Gain Bandwidth Product	$\mathrm{F}=20 \mathrm{MHz}$	725	$\begin{array}{r} 575 \\ 350 \end{array}$	575	500	MHz Min
		Supply $= \pm 5 \mathrm{~V}$	500				
SR	Slew Rate	$A_{V}=+25$ (Note 8)	300	$\begin{aligned} & 200 \\ & 180 \end{aligned}$	200	200	$\mathrm{V} / \mu \mathrm{s}$ Min
		Supply $= \pm 5 \mathrm{~V}$	200				
PBW	Power Bandwidth Product	$\mathrm{V}_{\text {OUT }}=20 \mathrm{VPP}$	4.5				MHz
ts	Settling Time	$\begin{aligned} & 10 \mathrm{~V} \text { Step to } 0.1 \% \\ & A_{V}=-25, R_{L}=2 \mathrm{k} \Omega \end{aligned}$	80				ns
ϕ_{m}	Phase Margin	$A_{V}=+25$	45				Deg
A_{D}	Differential Gain	NTSC, $A_{V}=+25$	<0.1				\%
ϕ_{D}	Differential Phase	NTSC, $A_{V}=+25$	<0.1				Deg
$e_{\text {np-p }}$	Input Noise Voltage	$\mathrm{F}=10 \mathrm{kHz}$	5				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$i_{\text {np-p }}$	Input Noise Current	$\mathrm{F}=10 \mathrm{kHz}$	1.5				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 2: The typical junction-to-ambient thermal resistance of the molded plastic DIP (N) is $105^{\circ} \mathrm{C} /$ Watt, and the molded plastic SO (M) package is $155^{\circ} \mathrm{C} /$ Watt, and the cerdip (J) package is $125^{\circ} \mathrm{C} /$ Watt. All numbers apply for packages soldered directly into a printed circuit board.
Note 3: All limits guaranteed by testing or correlation.
Note 4: For single supply operation, the following conditions apply: $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{C}, \mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$. Pin $1 \&$ Pin 8 (V_{OS} Adjust) are each connected to Pin $4(\mathrm{~V}-)$ to realize maximum output swing. This connection will degrade V_{OS}.
Note 5: $\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$.
Note 6: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exeeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors and probable degradation of the input parameters (especially $\mathrm{V}_{\text {OS, }}$ los, and Noise).
Note 7: The average voltage that the weakest pin combinations (those involving Pin 2 or Pin 3) can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500Ω.
Note 8: $\mathrm{V}_{\mathbb{I N}}=0.8 \mathrm{~V}$ step. For supply $= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}=0.2 \mathrm{~V}$ step.
Note 9: Voltage Gain is the total output swing (20 V) divided by the input signal required to produce that swing.
Note 10: The voltage between V^{+}and either input pin must not exceed 36 V .
Note 11: A military RETS electrical test specification is available on request. At the time of printing, the LM6165J/883 RETS spec complied with the Boldface limits in this column. The LM6165J/883 may also be procured as Standard Military Drawing \#5962-8962501PA.

Typical Performance Characteristics $R_{L}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Output Impedance (Open-Loop)

Gain vs Supply Voltage

Typical Performance Characteristics (Continued)

$R_{L}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Typical Performance Characteristics (Continued)

$R_{L}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Common-Mode Input Saturation Voltage

Bias Current vs
Common-Mode Voltage

Simplified Schematic

TL/H/9152-3

Applications Tips

The LM6365 is stable for gains of 25 or greater. The LM6361 and LM6364, specified in separate datasheets, are compensated versions of the LM6365. The LM6361 is unitygain stable, while the LM6364 is stable for gains as low as 5. The LM6361, and LM6364 have the same high slew rate as the LM6365, typically $300 \mathrm{~V} / \mu \mathrm{s}$.
To use the LM6365 for gains less than 25 , a series resistorcapacitor network should be added between the input pins (as shown in the Typical Applications, Noise Gain Compensation) so that the high-frequency noise gain rises to at least 25.

Power supply bypassing will improve stability and transient response of the LM6365, and is recommended for every design. $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic capacitors should be
used (from each supply "rail" to ground); an additional $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ (tantalum) may be required for extra noise reduction.
Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling between adjacent nodes, and can cause circuit gain to unintentionally vary with frequency.
Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit performance.

Typical Applications

Offset Voltage Adjustment

TL/H/9152-11

Noise-Gain Compensation

TL/H/9152-12
$\mathrm{R}_{\mathrm{X}} \mathrm{C}_{\mathrm{X}} \geq 1 /(2 \pi \cdot 25 \mathrm{MHz})$
$\left[R_{1}+R_{F}\left(1+R_{1 / R}\right)\right]=25 R_{X}$

1 MHz Voltage-to-Frequency Converter
(fout $=1 \mathrm{MHz}$ for $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$)

TL/H/9152-13

LM6171 High Speed Low Power Low Distortion Voltage Feedback Amplifier

General Description

The LM6171 is a high speed unity-gain stable voltage feedback amplifier. It offers a high slew rate of $3600 \mathrm{~V} / \mu \mathrm{s}$ and a unity-gain bandwidth of 100 MHz while consuming only 2.5 mA of supply current. The LM6171 has very impressive AC and DC performance which is a great benefit for high speed signal processing and video applications.
The $\pm 15 \mathrm{~V}$ power supplies allow for large signal swings and give greater dynamic range and signal-to-noise ratio. The LM6171 has high output current drive, low SFDR and THD, ideal for ADC/DAC systems. The LM6171 is specified for $\pm 5 \mathrm{~V}$ operation for portable applications.
The LM6171 is built on National's advanced VIPTM III (Vertically Integrated PNP) complementary bipolar process.

Features (Typical Unless Otherwise Noted)
■ Easy-To-Use Voltage Feedback Topology

- Very High Slew Rate
$3600 \mathrm{~V} / \mu \mathrm{s}$
- Wide Unity-Gain-Bandwidth Product 100 MHz
- -3 dB Frequency @ $A_{V}=+2 \quad 62 \mathrm{MHz}$
- Low Supply Current 2.5 mA
- High CMRR 110 dB
- High Open Loop Gain

90 dB

- Specified for $\pm 15 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ Operation

Applications

- Multimedia Broadcast Systems
- Line Drivers, Switchers
- Video Amplifiers
- NTSC, PAL® and SECAM Systems
- ADC/DAC Buffers
- HDTV Amplifiers
- Pulse Amplifiers and Peak Detectors
- Instrumentation Amplifier
- Active Filters

Typical Performance Characteristics

Large Signal
Pulse Response
$A_{V}=+1, V_{S}= \pm 15$

Connection Diagram
8-Pin DIP/SO

Top View

Ordering Information

Package	Temperature Range	Transport Media	NSC Drawing
	Rails		
8-Pin Molded DIP	LM6171AIN LM6171BIN	Rails	M08A
8-Pin Small Outline	LM6171AIM, LM6171BIM	RM6171AIMX, LM6171BIMX	

$\pm 15 \mathrm{~V}$ DC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	LM6171AI Limit (Note 6)	LM6171B Limit (Note 6)	Units
SR	Slew Rate (Note 9)	$A_{V}=+2, \mathrm{~V}_{1 N}=13 \mathrm{~V}_{\mathrm{PP}}$	3600			$\mathrm{V} / \mu \mathrm{s}$
		$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~V}_{\mathrm{PP}}$	3000			
GBW	Unity Gain-Bandwidth Product		100			MHz
	-3 dB Frequency	$A_{V}=+1$	160			MHz
		$A_{V}=+2$	62			MHz
¢m	Phase Margin		40			deg
$\mathrm{t}_{\text {s }}$	Settling Time (0.1\%)	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}= \pm 5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	35			ns
	Propagation Delay	$\begin{aligned} & V_{I N}= \pm 5 V, R_{L}=500 \Omega \\ & A_{V}=-2 \end{aligned}$	6			ns
A_{D}	Differential Gain (Note 10)		0.03			\%
ϕ_{D}	Differential Phase (Note 10)		0.5			deg
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	12			$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	1			$\frac{\mathrm{pA}}{\sqrt{H z}}$

$\pm 5 V$ AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$. Boldface limits apply at the temperature extremes						
Symbol	Parameter	Conditions	Typ (Note 5)	LM6171AI Limit (Note 6)	LM6171BI Limit (Note 6)	Units
SR	Slew Rate (Note 9)	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\mathrm{IN}}=3.5 \mathrm{~V} \mathrm{PP}$	750			$\mathrm{V} / \mu \mathrm{s}$
GBW	Unity Gain-Bandwidth Product		70			MHz
	-3 dB Frequency	$A_{V}=+1$	130			MHz
		$A_{V}=+2$	45			
¢m	Phase Margin		57			deg
$\mathrm{t}_{\text {s }}$	Setting Time (0.1\%)	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}=+1 V, \\ & R_{\mathrm{L}}=500 \Omega \end{aligned}$	48			ns
	Propagation Delay	$\begin{aligned} & V_{I N}= \pm 1 V, R_{L}=500 \Omega, \\ & A_{V}=-2 \end{aligned}$	8			ns
A_{D}	Differential Gain (Note 10)		0.04			\%
ϕ_{D}	Differential Phase (Note 10)		0.7			deg
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	11			$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	1			$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: Large signal voltage gain is the total output swing divided by the input signal required to produce that swing. For $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}= \pm 5 \mathrm{~V}$. For $\mathrm{V}_{\mathrm{S}}=$ $+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 1 \mathrm{~V}$.

Note 8: The open loop output current is the output swing with the 100Ω load resistor divided by that resistor.
Note 9: Slew rate is the average of the rising and falling slew rates.
Note 10: Differential gain and phase are measured with $A_{V}=+2, \mathrm{~V}_{\mathbb{I N}}=1 \mathrm{~V}_{\mathrm{PP}}$ at 3.58 MHz and both input and output 75Ω terminated.
Note 11: Differential input voltage is measured at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$.

Typical Performance Characteristics Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Supply Current vs Temperature

Typical Performance Characteristics Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

Typical Performance Characteristics Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

Typical Performance Characteristics Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

TIME ($20 \mathrm{~ns} / \mathrm{div}$)

Closed Loop Frequency Response vs Capacitive $\operatorname{Load}\left(A_{v}=+1\right)$

TIME ($20 \mathrm{~ns} / \mathrm{div}$)

Small Signal Pulse Response

TIME ($20 \mathrm{~ns} / \mathrm{div}$)

TL/H/12336-7

Typical Performance Characteristics Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

LM6171 Simplified Schematic

TL/H/12336-10

Application Information

LM6171 Performance Discussion

The LM6171 is a high speed, unity-gain stable voltage feedback amplifier. It consumes only 2.5 mA supply current while providing a gain-bandwidth product of 100 MHz and a slew rate of $3600 \mathrm{~V} / \mu \mathrm{s}$. It also has other great features such as low differential gain and phase and high output current. The LM6171 is a good choice in high speed circuits.
The LM6171 is a true voltage feedback amplifier. Unlike current feedback amplifiers (CFAs) with a low inverting input impedance and a high non-inverting input impedance, both inputs of voltage feedback amplifiers (VFAs) have high impedance nodes. The low impedance inverting input in CFAs will couple with feedback capacitor and cause oscillation. As a result, CFAs cannot be used in traditional op amp circuits such as photodiode amplifiers, I-to-V converters and integrators.

LM6171 Circuit Operation

The class AB input stage in LM6171 is fully symmetrical and has a similar slewing characteristic to the current feedback amplifiers. In the LM6171 Simplfied Schematic, Q1 through Q4 form the equivalent of the current feedback input buffer, R_{E} the equivalent of the feedback resistor, and stage A buffers the inverting input. The triple-buffered output stage isolates the gain stage from the load to provide low output impedance.

LM6171 Slew Rate Characteristic

The slew rate of LM6171 is determined by the current available to charge and discharge an internal high impedance node capacitor. The current is the differential input voltage divided by the total degeneration resistor R_{E}. Therefore, the slew rate is proportional to the input voltage level, and the higher slew rates are achievable in the lower gain configurations.
When a very fast large signal pulse is applied to the input of an amplifier, some overshoot or undershoot occurs. By placing an external series resistor such as $1 \mathrm{k} \Omega$ to the input of LM6171, the bandwidth is reduced to help lower the overshoot.

Layout Consideration

PRINTED CIRCUIT BOARDS AND HIGH SPEED OP AMPS

There are many things to consider when designing PC boards for high speed op amps. Without proper caution, it is very easy and frustrating to have excessive ringing, oscillation and other degraded AC performance in high speed circuits. As a rule, the signal traces should be short and wide to provide low inductance and low impedance paths. Any unused board space needs to be grounded to reduce stray signal pickup. Critical components should also be grounded at a common point to eliminate voltage drop. Sockets add capacitance to the board and can affect frequency performance. It is better to solder the amplifier directly into the PC board without using any socket.

USING PROBES

Active (FET) probes are ideal for taking high frequency measurements because they have wide bandwidth, high input impedance and low input capacitance. However, the probe ground leads provide a long ground loop that will pro-
duce errors in measurement. Instead, the probes can be grounded directly by removing the ground leads and probe jackets and using scope probe jacks.

COMPONENTS SELECTION AND FEEDBACK RESISTOR

It is important in high speed applications to keep all component leads short because wires are inductive at high frequency. For discrete components, choose carbon composi-tion-type resistors and mica-type capacitors. Surface mount components are preferred over discrete components for minimum inductive effect.
Large values of feedback resistors can couple with parasitic capacitance and cause undesirable effects such as ringing or oscillation in high speed amplifiers. For LM6171, a feedback resistor of 510Ω gives optimal performance.

Compensation for Input Capacitance

The combination of an amplifier's input capacitance with the gain setting resistors adds a pole that can cause peaking or oscillation. To solve this problem, a feedback capacitor with a value

$$
C_{F}>\left(R_{G} \times G_{\mathbb{N}}\right) / R_{F}
$$

can be used to cancel that pole. For LM6171, a feedback capacitor of 2 pF is recommended. Figure 1 illustrates the compensation circuit.

TL/H/12336-11

FIGURE 1. Compensating for Input Capacitance

Power Supply Bypassing

Bypassing the power supply is necessary to maintain low power supply impedance across frequency. Both positive and negative power supplies should be bypassed individually by placing $0.01 \mu \mathrm{~F}$ ceramic capacitors directly to power supply pins and $2.2 \mu \mathrm{~F}$ tantalum capacitors close to the power supply pins.

TL/H/12336-12
FIGURE 2. Power Supply Bypassing

Application Information (Continued) Termination

In high frequency applications, reflections occur if signals are not properly terminated. Figure 3 shows a properly terminated signal while Figure 4 shows an improperly terminated signal.

TL/H/12336-14
FIGURE 3. Properly Terminated Signal

TL/H/12336-15
FIGURE 4. Improperly Terminated Signal
To minimize reflection, coaxial cable with matching characteristic impedance to the signal source should be used. The other end of the cable should be terminated with the same value terminator or resistor. For the commonly used cables, RG59 has 75Ω characteristic impedance, and RG58 has 50Ω characteristic impedance.

Driving Capacitive Loads

Amplifiers driving capacitive loads can osciliate or have ringing at the output. To eliminate oscillation or reduce ringing, an isolation resistor can be placed as shown below in Figure 5. The combination of the isolation resistor and the load capacitor forms a pole to increase stablility by adding more phase margin to the overall system. The desired performance depends on the value of the isolation resistor; the bigger the isolation resistor, the more damped the pulse response becomes. For LM6171, a 50Ω isolation resistor is recommended for initial evaluation. Figure 6 shows the LM6171 driving a 200 pF load with the 50Ω isolation resistor.

FIGURE 5. Isolation Resistor Used to Drive Capacitive Load

100 ns/div
TL'/H/12336-16
FIGURE 6. The LM6171 Driving a 200 pF Load with a 50Ω Isolation Resistor

Power Dissipation

The maximum power allowed to dissipate in a device is defined as:

$$
P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}
$$

Where P_{D} is the power dissipation in a device $\mathrm{T}_{\mathrm{J}(\max)}$ is the maximum junction temperature T_{A} is the ambient temperature
θ_{JA} is the thermal resistance of a particular package For example, for the LM6171 in a SO-8 package, the maximum power dissipation at $25^{\circ} \mathrm{C}$ ambient temperature is 730 mW .
Thermal resistance, θ_{JA}, depends on parameters such as die size, package size and package material. The smaller the die size and package, the higher θ_{JA} becomes. The 8 pin DIP package has a lower thermal resistance ($108^{\circ} \mathrm{C} / \mathrm{W}$) than that of 8 -pin SO $\left(172^{\circ} \mathrm{C} / \mathrm{W}\right)$. Therefore, for higher dissipation capability, use an 8-pin DIP package.
The total power dissipated in a device can be calculated as:

$$
P_{D}=P_{Q}+P_{L}
$$

P_{Q} is the quiescent power dissipated in a device with no load connected at the output. P_{L} is the power dissipated in the device with a load connected at the output; it is not the power dissipated by the load.
Furthermore,

$$
\begin{aligned}
\mathrm{P}_{\mathrm{Q}}= & \text { supply current } \times \text { total supply voltage } \\
& \text { with no load } \\
\mathrm{P}_{\mathrm{L}}= & \text { output current } \times \text { (voltage difference } \\
& \text { between supply voltage and output } \\
& \text { voltage of the same supply) }
\end{aligned}
$$

Application Information (Continued)

For example, the total power dissipated by the LM6171 with $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and output voltage of 10 V into $1 \mathrm{k} \Omega$ load resistor (one end tied to ground) is

$$
\begin{aligned}
P_{D} & =P_{Q}+P_{L} \\
& =(2.5 \mathrm{~mA}) \times(30 \mathrm{~V})+(10 \mathrm{~mA}) \times(15 \mathrm{~V}-10 \mathrm{~V}) \\
& =75 \mathrm{~mW}+50 \mathrm{~mW} \\
& =125 \mathrm{~mW}
\end{aligned}
$$

Application Circuits

Fast Instrumentation Amplifier

TL/H/12336-17

$$
\begin{aligned}
& V_{\mathbb{I N}}=V_{2}-V_{1} \\
& \text { if } R 6=R 2, R 7=R 5 \text { and } R 1=R 4
\end{aligned}
$$

$$
\frac{V_{O U T}}{V_{I N}}=\frac{R 6}{R 2}\left(1+2 \frac{R 1}{R 3}\right)=3
$$

Multivibrator

TL/H/12336-18

$$
f=\frac{1}{2\left(R 1 C \ln \left(1+2 \frac{R 2}{R 3}\right)\right)}
$$

Design Kit

A design kit is available for the LM6171. The design kit contains:

- High Speed Evaluation Board
- LM6171 in 8-pin DIP Package
- LM6171 Datasheet
- Pspice Macromodel Diskette With the LM6171 Macromodel
- An Amplifier Selection Guide

Pitch Pack

A pitch pack is available for the LM6171. The pitch pack contains:

- High Speed Evaluation Board
- LM6171 in 8-pin DIP Package
- LM6171 Datasheet
- Pspice Macromodel Diskette With the LM6171 Macromodel

Contact your local National Semiconductor sales office to obtain a pitch pack.

$$
\mathrm{f}=4 \mathrm{MHz}
$$

Nationalsemiconductor

LM6181 100 mA, 100 MHz Current Feedback Amplifier

General Description

The LM6181 current-feedback amplifier offers an unparalleled combination of bandwidth, slew-rate, and output current. The amplifier can directly drive up to 100 pF capacitive loads without oscillating and a 10 V signal into a 50Ω or 75Ω back-terminated coax cable system over the full industrial temperature range. This represents a radical enhancement in output drive capability for an 8 -pin DIP high-speed amplifier making it ideal for video applications.
Built on National's advanced high-speed VIPTM II (Vertically Integrated PNP) process, the LM6181 employs currentfeedback providing bandwidth that does not vary dramatically with gain; 100 MHz at $A_{V}=-1,60 \mathrm{MHz}$ at $A_{V}=$ -10 . With a slew rate of $2000 \mathrm{~V} / \mu \mathrm{s}$, 2nd harmonic distortion of -50 dBc at 10 MHz and settling time of $50 \mathrm{~ns}(0.1 \%)$ the LM6181 dynamic performance makes it ideal for data acquisition, high speed ATE, and precision pulse amplifier applications.

Features (Typical unless otherwise noted)
■ Slew rate $2000 \mathrm{~V} / \mu \mathrm{s}$

- Settling time (0.1\%)
- Characterized for supply ranges $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$
- Low differential gain and phase error $0.05 \%, 0.04^{\circ}$
- High output drive
$\pm 10 \mathrm{~V}$ into 100Ω
- Guaranteed bandwidth and slew rate
- Improved performance over EL2020, OP160, AD844, LT1223 and HA5004

Applications

- Coax cable driver
- Video amplifier
- Flash ADC buffer
- High frequency filter

■ Scanner and Imaging systems

Typical Application

Cable Driver

TIME (50ns/div)
TL/H/11328-2
Connection Diagrams (For Ordering Information See Back Page)

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage | $\pm 18 \mathrm{~V}$ |
| :--- | ---: | ---: |
| Differential Input Voltage | $\pm 6 \mathrm{~V}$ |
| Input Voltage | \pm Supply Voltage |
| Inverting Input Current | 15 mA |
| Soldering Information | |
| \quad Dual-In-Line Package (N) Soldering (10 sec) | $260^{\circ} \mathrm{C}$ |
| Small Outline Package (M) | |
| \quad Vapor Phase (60 seconds) | $215^{\circ} \mathrm{C}$ |
| Infrared (15 seconds) | $220^{\circ} \mathrm{C}$ |

Output Short Circuit
(Note 7)
Storage Temperature Range $\quad-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$ Maximum Junction Temperature $150^{\circ} \mathrm{C}$
ESD Rating (Note 2)
$\pm 3000 \mathrm{~V}$
Operating Ratings
Supply Voltage Range
7 V to 32 V
Junction Temperature Range (Note 3)

LM6181AM	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LM6181AI, LM6181I	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
Thermal Resistance ($\left.\theta_{\mathrm{JA}}, \theta_{\mathrm{JC}}\right)$	
8-pin DIP (N)	$102^{\circ} \mathrm{C} / \mathrm{W}, 42^{\circ} \mathrm{C} / \mathrm{W}$
8-pin SO (M-8)	$153^{\circ} \mathrm{C} / \mathrm{W}, 42^{\circ} \mathrm{C} / \mathrm{W}$
16-pin SO (M)	$70^{\circ} \mathrm{C} / \mathrm{W}, 38^{\circ} \mathrm{C} / \mathrm{W}$

\pm 15V DC Electrical Characteristics

The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=820 \Omega$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LM6181AM		LM6181AI		LM6181I		Units
			Typical (Note 4)	Limit (Note 5)	Typical (Note 4)	Limit (Note 5)	Typical (Note 4)	Limit (Note 5)	
Vos	Input Offset Voltage		2.0	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	2.0	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	3.5	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} m V \\ \max \end{gathered}$
TCV ${ }_{\text {OS }}$	Input Offset Voltage Drift		5.0		5.0		5.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Inverting Input Bias Current		2.0	$\begin{gathered} 5.0 \\ 12.0 \end{gathered}$	2.0	$\begin{gathered} 5.0 \\ 12.0 \end{gathered}$	5.0	$\begin{gathered} 10 \\ 17.0 \end{gathered}$	$\mu \mathrm{A}$ max
	Non-Inverting Input Bias Current		0.5	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	0.5	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	2.0	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	
$\mathrm{TCI}_{\mathrm{B}}$	Inverting Input Bias Current Drift		30		30		30		$n A /{ }^{\circ} \mathrm{C}$
	Non-Inverting Input Bias Current Drift		10		10		10		
I_{B} PSR	Inverting Input Bias Current Power Supply Rejection	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \pm 16 \mathrm{~V}$	0.3	$\begin{aligned} & 0.5 \\ & 3.0 \\ & \hline \end{aligned}$	0.3	$\begin{aligned} & 0.5 \\ & 3.0 \\ & \hline \end{aligned}$	0.3	$\begin{array}{r} 0.75 \\ 4.5 \\ \hline \end{array}$	$\mu \mathrm{A} / \mathrm{V}$$\max$
	Non-Inverting Input Bias Current Power Supply Rejection	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \pm 16 \mathrm{~V}$	0.05	$\begin{aligned} & 0.5 \\ & \mathbf{1 . 5} \\ & \hline \end{aligned}$	0.05	$\begin{aligned} & 0.5 \\ & \mathbf{1 . 5} \\ & \hline \end{aligned}$	0.05	$\begin{aligned} & 0.5 \\ & 3.0 \\ & \hline \end{aligned}$	
I_{B} CMR	Inverting Input Bias Current Common Mode Rejection	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	0.3	$\begin{gathered} 0.5 \\ 0.75 \\ \hline \end{gathered}$	0.3	$\begin{gathered} 0.5 \\ 0.75 \\ \hline \end{gathered}$	0.3	$\begin{array}{r} 0.75 \\ 1.0 \\ \hline \end{array}$	
	Non-Inverting Input Bias Current Common Mode Rejection	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	0.1	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	0.1	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	0.1	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	
CMRR	Common Mode Rejection Ratio	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	60	$\begin{array}{r} 50 \\ 50 \\ \hline \end{array}$	60	$\begin{aligned} & 50 \\ & \mathbf{5 0} \\ & \hline \end{aligned}$	60	$\begin{array}{r} 50 \\ 50 \\ \hline \end{array}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \pm 16 \mathrm{~V}$	80	$\begin{aligned} & 70 \\ & 70 \\ & \hline \end{aligned}$	80	$\begin{aligned} & 70 \\ & 70 \\ & \hline \end{aligned}$	80	$\begin{array}{r} 70 \\ 65 \\ \hline \end{array}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
R_{0}	Output Resistance	$A_{V}=-1, f=300 \mathrm{kHz}$	0.2		0.2		0.2		Ω
R_{IN}	Non-Inverting Input Resistance		10		10		10		$\mathrm{M} \Omega$ \min
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	12	$\begin{aligned} & 11 \\ & 11 \\ & \hline \end{aligned}$	12	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	12	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
		$R_{L}=100 \Omega$	11	$\begin{gathered} 10 \\ 7.5 \\ \hline \end{gathered}$	11	$\begin{array}{r} 10 \\ 8.0 \\ \hline \end{array}$	11	$\begin{aligned} & 10 \\ & 8.0 \end{aligned}$	
Isc	Output Short Circuit Current		130	$\begin{aligned} & 100 \\ & 75 \end{aligned}$	130	$\begin{aligned} & 100 \\ & 85 \\ & \hline \end{aligned}$	130	$\begin{aligned} & 100 \\ & \mathbf{8 5} \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$

$\pm 15 \mathrm{~V}$ DC Electrical Characteristics (Continued)
The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, R_{F}=820 \Omega$, and $R_{L}=1 \mathrm{k} \Omega$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LM6181AM		LM6181AI		LM6181I		Units
			Typical (Note 4)	Limit (Note 5)	Typical (Note 4)	Limit (Note 5)	Typical (Note 4)	Limit (Note 5)	
Z_{T}	Transimpedance	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	1.8	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	1.8	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	1.8	$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	
		$R_{L}=100 \Omega$	1.4	$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	1.4	$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	1.4	$\begin{gathered} 0.7 \\ 0.35 \end{gathered}$	min
Is	Supply Current	No Load, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	7.5	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	7.5	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	7.5	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	mA max
$\mathrm{V}_{\text {CM }}$	Input Common Mode Voltage Range		$V+-1.7 V$ $V-+1.7 V$		$V+-1.7 V$ $V-+1.7 V$		$V^{+}-1.7 V$ $V-+1.7 V$		V

$\pm 15 \mathrm{~V}$ AC Electrical Characteristics

The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, R_{F}=820 \Omega, R_{L}=1 \mathrm{k} \Omega$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LM6181AM		LM6181AI		LM6181I		Units
			Typical (Note 4)	$\begin{gathered} \text { Limit } \\ \text { (Note 5) } \\ \hline \end{gathered}$	Typical (Note 4)	Limit (Note 5)	Typical (Note 4)	Limit (Note 5)	
BW	Closed Loop Bandwidth $-3 \mathrm{~dB}$	$A_{V}=+2$	100		100		100		MHz min
		$A_{V}=+10$	80		80		80		
		$A_{V}=-1$	100	80	100	80	100	80	
		$A_{V}=-10$	60		60		60		
PBW	Power Bandwidth	$A_{V}=-1, V_{O}=5 V_{P P}$	60		60		60		
SR	Slew Rate	Overdriven	2000		2000		2000		$\mathrm{V} / \mu \mathrm{s}$ min
		$\begin{aligned} & A_{V}=-1, V_{O}= \pm 10 \mathrm{~V}, \\ & R_{L}=150 \Omega(\text { Note } 6) \end{aligned}$	1400	1000	1400	1000	1400	1000	
$\mathrm{t}_{\text {s }}$	Settling Time (0.1\%)	$\begin{aligned} & A_{V}=-1, V_{O}= \pm 5 \mathrm{~V} \\ & R_{L}=150 \Omega \end{aligned}$	50	\because	50		50		ns
t_{r}, t_{f}	Rise and Fall Time	$V_{O}=1 V_{P P}$	5		5		5		
t_{p}	Propagation Delay Time	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{PP}}$	6		6		6		
$i_{n(+)}$	Non-Inverting Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$	3		3		3		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$i_{n(-)}$	Inverting Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$	16		16		16		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}$	4		4		4		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	Second Harmonic Distortion	$2 \mathrm{VPp}, 10 \mathrm{MHz}$	-50		-50		-50		dBc
	Third Harmonic Distortion	$2 \mathrm{VPp}, 10 \mathrm{MHz}$	-55		-55		-50		
	Differential Gain	$\begin{aligned} & R_{L}=150 \Omega \\ & A_{V}=+2 \\ & \text { NTSC } \end{aligned}$	0.05		0.05		0.05		\%
	Differential Phase	$\begin{aligned} & R_{L}=150 \Omega \\ & A_{V}=+2 \\ & \text { NTSC } \\ & \hline \end{aligned}$	0.04		0.04		0.04		Deg

$\pm 5 \mathrm{~V}$ DC Electrical Characteristics

The following specifications apply for Supply Voltage $= \pm 5 \mathrm{~V}, R_{F}=820 \Omega$, and $R_{L}=1 \mathrm{k} \Omega$ unless otherwise noted. Boldface
limits apply at the temperature extremes; all other limits $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LM6181AM		LM6181AI		LM61811		Units
			Typical (Note 4)	Limit (Note 5)	Typical (Note 4)	\square Limit (Note 5)	Typical (Note 4)	Limit (Note 5)	
V_{OS}	Input Offset Voltage		1.0	$\begin{aligned} & 2.0 \\ & \mathbf{3 . 0} \end{aligned}$	1.0	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	1.0	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	mV max
TCV ${ }_{\text {OS }}$	Input Offset Voltage Drift		2.5		2.5		2.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Inverting Input Bias Current	,	5.0	$\begin{array}{r} 10 \\ 22 \end{array}$	5.0	$\begin{aligned} & 10 \\ & 22 \end{aligned}$	5.0	$\begin{aligned} & 17.5 \\ & 27.0 \end{aligned}$	$\mu \mathrm{A}$$\max$
	Non-Inverting Input Bias Current		0.25	$\begin{aligned} & 1.5 \\ & \mathbf{1 . 5} \end{aligned}$	0.25	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	0.25	$\begin{aligned} & 3.0 \\ & \mathbf{5 . 0} \end{aligned}$	
TC IB	Inverting Input Bias Current Drift		50		50		50		$n A /{ }^{\circ} \mathrm{C}$
	Non-Inverting Input Bias Current Drift		3.0		3.0		3.0		
$\begin{aligned} & \hline \mathrm{IB} \\ & \mathrm{PSR} \end{aligned}$	Inverting Input Bias Current Power Supply Rejection	$\mathrm{V}_{\mathrm{S}}= \pm 4.0 \mathrm{~V}, \pm 6.0 \mathrm{~V}$	0.3	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	0.3	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	0.3	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} / \mathrm{V} \\ & \max \end{aligned}$
	Non-Inverting Input Bias Current Power Supply Rejection	$\mathrm{V}_{\mathrm{S}}= \pm 4.0 \mathrm{~V}, \pm 6.0 \mathrm{~V}$	0.05	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	0.05	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	0.05	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	
I_{B} CMR	Inverting Input Bias Current Common Mode Rejection	$-2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+2.5 \mathrm{~V}$	0.3	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	0.3	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	0.3	$\begin{aligned} & 1.0 \\ & \mathbf{1 . 5} \end{aligned}$	
	Non-Inverting Input Bias Current Common Mode Rejection	$-2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+2.5 \mathrm{~V}$	0.12	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	0.12	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	0.12	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	
CMRR	Common Mode Rejection Ratio	$-2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+2.5 \mathrm{~V}$	57	$\begin{aligned} & 50 \\ & 47 \end{aligned}$	57	$\begin{array}{r} 50 \\ 47 \end{array}$	57	$\begin{array}{r} 50 \\ 47 \end{array}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 4.0 \mathrm{~V}, \pm 6.0 \mathrm{~V}$	80	$\begin{aligned} & 70 \\ & \mathbf{7 0} \\ & \hline \end{aligned}$	80	$\begin{array}{r} 70 \\ \mathbf{7 0} \\ \hline \end{array}$	80	$\begin{array}{r} 64 \\ 64 \\ \hline \end{array}$	
Ro	Output Resistance	$A_{V}=-1, f=300 \mathrm{kHz}$	0.25		0.25		0.25		Ω
RIN	Non-Inverting Input Resistance		8		8		8		$\mathrm{M} \Omega$ \min
Vo	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	2.6	$\begin{array}{r} 2.25 \\ 2.2 \\ \hline \end{array}$	2.6	$\begin{gathered} 2.25 \\ \mathbf{2 . 2 5} \\ \hline \end{gathered}$	2.6	$\begin{array}{r} 2.25 \\ \mathbf{2 . 2 5} \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
		$R_{L}=100 \Omega$	2.2	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	2.2	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	2.2	$\begin{array}{r} 2.0 \\ \mathbf{2 . 0} \\ \hline \end{array}$	
Isc	Output Short Circuit Current		100	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	100	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	100	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
Z_{T}	Transimpedance	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	1.4	$\begin{aligned} & 0.75 \\ & \mathbf{0 . 3 5} \\ & \hline \end{aligned}$	1.4	$\begin{aligned} & 0.75 \\ & 0.4 \\ & \hline \end{aligned}$	1.0	$\begin{aligned} & 0.6 \\ & 0.3 \end{aligned}$	M Ω min
		$R_{L}=100 \Omega$	1.0	$\begin{gathered} 0.5 \\ 0.25 \end{gathered}$	1.0	$\begin{gathered} 0.5 \\ 0.25 \end{gathered}$	1.0	$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$	
Is	Supply Current	No Load, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	6.5	$\begin{array}{r} 8.5 \\ \mathbf{8 . 5} \\ \hline \end{array}$	6.5	$\begin{array}{r} 8.5 \\ \mathbf{8 . 5} \\ \hline \end{array}$	6.5	$\begin{array}{r} 8.5 \\ \mathbf{8 . 5} \\ \hline \end{array}$	mA max
$V_{\text {CM }}$	Input Common Mode Voltage Range		$\mathrm{V}^{+}-1.7 \mathrm{~V}$ $\mathrm{~V}-+1.7 \mathrm{~V}$		$\left\lvert\, \begin{aligned} & V^{+}-1.7 V \\ & V^{-}+1.7\end{aligned}\right.$		$V^{+}-1.7 \mathrm{~V}$ $\mathrm{~V}-+1.7 \mathrm{v}$		V

$\pm 5 \mathrm{~V}$ AC Electrical Characteristics

The following specifications apply for Supply Voltage $= \pm 5 \mathrm{~V}, R_{F}=820 \Omega$, and $R_{L}=1 \mathrm{k} \Omega$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LM6181AM		LM6181AI		LM6181I		Units
			Typical (Note 4)	Limit (Note 5)	Typical (Note 4)	Limit (Note 5)	Typical (Note 4)	Limit (Note 5)	
BW	Closed Loop Bandwidth -3 dB	$A_{V}=+2$	50		50		50		$\underset{\min }{M H Z}$
		$A_{V}=+10$	40		40		40		
		$A_{V}=-1$	55	35	55	35	55	35	
		$A_{V}=-10$	35		35		35		
PBW	Power Bandwidth	$A_{V}=-1, V_{O}=4 V_{P P}$	40		40		40		
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, V_{O}= \pm 2 V \\ & R_{L}=150 \Omega(\text { Note } 6) \end{aligned}$	500	375	500	375	500	375	$\mathrm{V} / \mu \mathrm{s}$ \min
$\mathrm{t}_{\text {s }}$	Settling Time (0.1\%)	$\begin{aligned} & A_{V}=-1, V_{O}= \pm 2 V \\ & R_{L}=150 \Omega \end{aligned}$	50		50		50		ns
t_{r}, t_{f}	Rise and Fall Time	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V} \mathrm{PP}$	8.5		8.5		8.5		
t_{p}	Propagation Delay Time	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V} \mathrm{PP}$	8		8		8		
$i_{n(+)}$	Non-Inverting Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$	3		3		3		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{in}_{n(-)}$	Inverting Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$	16		16		16		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}$	4		4		4		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	Second Harmonic Distortion	2 V Pp, 10 MHz	-45		-45		-45		dBc
	Third Harmonic Distortion	$2 \mathrm{VPP}, 10 \mathrm{MHz}$	-55		-55		-55		
	Differential Gain	$\begin{aligned} & R_{L}=150 \Omega \\ & A_{V}=+2 \\ & \text { NTSC } \end{aligned}$	0.063		0.063		0.063		\%
	Differential Phase	$\begin{aligned} & R_{L}=150 \Omega \\ & A_{V}=+2 \\ & \text { NTSC } \end{aligned}$	0.16		0.16		0.16		Deg

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions the device is intended to be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: Human body model 100 pF and $1.5 \mathrm{k} \Omega$.
Note 3: The typical junction-to-ambient thermal resistance of the molded plastic DIP(N) package soldered directly into a PC board is $102^{\circ} \mathrm{C} / \mathrm{W}$. The junction-to-ambient thermal resistance of the S.O. surface mount (M) package mounted flush to the PC board is $70^{\circ} \mathrm{C} / \mathrm{W}$ when pins $1,4,8,9$ and 16 are soldered to a total 2 in ${ }^{2}$ 1 oz. copper trace. The 16 -pin S.O. (M) package must have pin 4 and at least one of pins 1, 8, 9, or 16 connected to V - for proper operation. The typical junction-to-ambient thermal resistance of the S.O. (M-8) package soldered directly into a PC board is $153^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: Typical values represent the most likely parametric norm.
Note 5: All limits guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).
Note 6: Measured from $+25 \%$ to $+75 \%$ of output waveform.
Note 7: Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 130 \mathrm{~mA}$ over a long term basis may adversely affect reliability.
Note 8: For guaranteed Military Temperature Range parameters see RETS6181X.

Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

UNIT GAIN
FREQUENCY RESPONSE
$\mathbf{V}_{\mathbf{S}}= \pm 5 \mathbf{V} ; \mathbf{A}_{\mathbf{V}}=+\mathbf{1} ;$
UNIT GAIN
FREQUENCY RESPONSE
$\mathbf{V}_{\mathbf{S}}= \pm 5 \mathrm{~V} ; \mathrm{A}_{\mathbf{V}}=+1 ;$
UNIT GAIN
FREQUENCY RESPONSE
$\mathbf{V}_{S}= \pm 5 V ; A_{V}=+1 ;$

NON-INVERTING GAIN FREQUENCY RESPONSE
$V_{S}= \pm 5 V ; A_{V}=+2 ;$

FREQUENCY RESPONSE

 vs SUPPLY VOLTAGE$A_{V}=-1 ; R_{f}=820 \Omega ;$
$R_{L}=1 \mathrm{k} \Omega$

1 M
10 M

INVERTING GAIN
FREQUENCY RESPONSE
$V_{S}= \pm 5 V ; A_{V}=-1$;
$\mathbf{R}_{\mathbf{f}}=\mathbf{8 2 0 \Omega}$
Phase shift (degrees)
VOLTAGE GAIN (3 dB/DIV)

NON-INVERTING GAIN FREQUENCY RESPONSE

Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=22^{\circ} \mathrm{C}$ unless otherwise noted (Continued)

TL/H/11328-6

Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted (Continued)

Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted (Continued)

 temperature (${ }^{\circ} \mathrm{C}$).

SMALL SIGNAL PULSE
RESPONSE vs TEMP, $A_{V}=-1$
$\mathbf{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$

SMALL SIGNAL PULSE
RESPONSE vs TEMP, $A_{V}=+2$
$V_{S}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$
 temperature (${ }^{\circ} \mathrm{C}$)

SMALL SIGNAL PULSE RESPONSE vs TEMP, $\mathbf{A}_{\mathbf{v}}=-1$
$\mathbf{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathbf{L}}=1 \mathrm{k} \Omega$

SMALL SIGNAL PULSE
RESPONSE vs TEMP, $A_{V}=-1$
$\mathbf{V}_{\mathbf{S}}= \pm \mathbf{5 V} ; \mathbf{R}_{\mathbf{L}}=100 \Omega$

SMALL SIGNAL PULSE
RESPONSE vs TEMP, $A_{V}=+2$
$\mathbf{V}_{\mathbf{S}}= \pm 5 \mathrm{~V} ; \mathrm{R}_{\mathbf{L}}=1 \mathrm{k} \Omega$

TL/H/11328-29

Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted (Continued)

SMALL SIGNAL PULSE
RESPONSE vs TEMP, $\mathbf{A V}_{v}=+10$
$V_{S}= \pm 15 V ; R_{\mathrm{L}}=100 \Omega$

SMALL SIGNAL PULSE
 RESPONSE vs TEMP, $A_{V}=-10$

SMALL SIGNAL PULSE
RESPONSE vs TEMP, $A_{V}=-10$
$V_{S}= \pm 5 V ; R_{L}=100 \Omega$

SMALL SIGNAL PULSE
RESPONSE vs TEMP, $A_{V}=+10$
$\mathbf{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$

SMALL SIGNAL PULSE
RESPONSE vs TEMP, $A_{V}=+10$
$V_{S}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$

SMALL SIGNAL PULSE
RESPONSE vs TEMP, $A_{v}=+10$
$V_{\mathbf{S}}= \pm 5 \mathrm{~V} ; \mathbf{R}_{\mathrm{L}}=100 \Omega$

1

Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted (Continued)

CMR $\mathrm{I}_{\mathrm{B}(-)}$ vs TEMPERATURE

NON-INVERTING BIAS CURRENT vs TEMPERATURE

TL/H/11328-9

Typical Performance Characteristics

${ }^{*} \theta_{\mathrm{JA}}=$ Thermal Resistance with 2 square inches of 1 ounce Copper tied to Pins 1, 8, 9 and 16.

M-8 Package

TL/H/11328-33

Typical Performance Characteristics (Continued)

Typical Applications

CURRENT FEEDBACK TOPOLOGY

For a conventional voltage feedback amplifier the resulting small-signal bandwidth is inversely proportional to the desired gain to a first order approximation based on the gainbandwidth concept. In contrast, the current feedback amplifier topology, such as the LM6181, transcends this limitation to offer a signal bandwidth that is relatively independent of the closed-loop gain. Figures $1 a$ and $1 b$ illustrate that for closed loop gains of -1 and -5 the resulting pulse fidelity suggests quite similar bandwidths for both configurations.

FIGURES 1a, 1b: Variation of Closed Loop Gain from - 1 to - 5 Yields Similar Responses

The closed-loop bandwidth of the LM6181 depends on the feedback resistance, R_{f}. Therefore, R_{S} and not R_{f}, must be varied to adjust for the desired closed-loop gain as in Figure 2.

TL/H/11328-14
FIGURE 2. R Is $_{\text {I }}$ Is Adusted to Obtain the Desired Closed Loop Gain, AvcL

POWER SUPPLY BYPASSING AND LAYOUT CONSIDERATIONS

A fundamental requirement for high-speed amplifier design is adequate bypassing of the power supply. It is critical to maintain a wideband low-impedance to ground at the amplifiers supply pins to insure the fidelity of high speed amplifier transient signals. $10 \mu \mathrm{~F}$ tantalum and $0.1 \mu \mathrm{~F}$ ceramic bypass capacitors are recommended for each supply pin. The bypass capacitors should be placed as close to the amplifier pins as possible ($0.5^{\prime \prime}$ or less).

FEEDBACK RESISTOR SELECTION: $\mathbf{R}_{\mathbf{f}}$

Selecting the feedback resistor, R_{f}, is a dominant factor in compensating the LM6181. For general applications the LM6181 will maintain specified performance with an 820Ω feedback resistor. Although this value will provide good results for most applications, it may be advantageous to adjust this value slightly. Consider, for instance, the effect on pulse responses with two different configurations where both the closed-loop gains are 2 and the feedback resistors are 820Ω, and 1640Ω, respectively. Figures $3 a$ and $3 b$ illustrate the effect of increasing R_{f} while maintaining the same closed-loop gain-the amplifier bandwidth decreases. Accordingly, larger feedback resistors can be used to slow down the LM6181 (see -3 dB bandwidth vs R_{f} typical curves) and reduce overshoot in the time domain response. Conversely, smaller feedback resistance values than 820Ω can be used to compensate for the reduction of bandwidth at high closed loop gains, due to 2nd order effects. For example Figure 4 illustrates reducing R_{f} to 500Ω to establish the desired small signal response in an amplifier configured for a closed loop gain of 25.

$3 a: \mathbf{R}_{\mathbf{f}}=\mathbf{8 2 0} \Omega$

Typical Applications (Continued)

FIGURES 3a, b: Increasing Compensation with Increasing $\mathbf{R}_{\mathbf{f}}$

FIGURE 4: Reducing \mathbf{R}_{f} for Large
Closed Loop Gains, $\mathbf{R}_{\mathbf{f}}=\mathbf{5 0 0 \Omega}$

SLEW RATE CONSIDERATIONS

The slew rate characteristics of current feedback amplifiers are different than traditional voltage feedback amplifiers. In voltage feedback amplifiers slew rate limiting or non-linear amplifier behavior is dominated by the finite availability of the 1st stage tail current charging the compensation capacitor. The slew rate of current feedback amplifiers, in contrast, is not constant. Transient current at the inverting input determines slew rate for both inverting and non-inverting gains. The non-inverting configuration slew rate is also determined by input stage limitations. Accordingly, variations of slew rates occur for different circuit topologies.

DRIVING CAPACITIVE LOADS

The LM6181 can drive significantly larger capacitive loads than many current feedback amplifiers. Although the LM6181 can directly drive as much as 100 pF without oscillating, the resulting response will be a function of the feedback resistor value. Figure 5 illustrates the small-signal pulse response of the LM6181 while driving a 50 pF load. Ringing persists for approximately 70 ns . To achieve pulse responses with less ringing either the feedback resistor can be increased (see typical curves Suggested R_{f} and R_{s} for $\left.C_{L}\right)$, or resistive isolation can be used ($10 \Omega-51 \Omega$ typically works well). Either technique, however, results in lowering the system bandwidth.

Figure 6 illustrates the improvement obtained with using a 47Ω isolation resistor.

FIGURES 5a, b: $\mathbf{A}_{\mathbf{V}}=\mathbf{- 1}$, LM6181 Can Directly Drive 50 pF of Load Capacitance with 70 ns of Ringing Resulting in Pulse Response

FIGURES 6a, b : Resistive Isolation of C_{L} Provides Higher Fidelity Pulse Response. \mathbf{R}_{f} and $\mathbf{R}_{\mathbf{S}}$ Could Be Increased to Maintain $\mathrm{A}_{\mathbf{v}}=-1$ and Improve Pulse Response Characteristics.

Typical Applications (Continued)

CAPACITIVE FEEDBACK

For voltage feedback amplifiers it is quite common to place a small lead compensation capacitor in parallel with feedback resistance, R_{f}. This compensation serves to reduce the amplifier's peaking in the frequency domain which equivalently tames the transient response. To limit the bandwidth of current feedback amplifiers, do not use a capacitor across R_{f}. The dynamic impedance of capacitors in the feedback loop reduces the amplifier's stability. Instead, reduced peaking in the frequency response, and bandwidth limiting can be accomplished by adding an RC circuit, as illustrated in Figure 76.

Typical Performance Characteristics

OVERDRIVE RECOVERY

When the output or input voltage range of a high speed amplifier is exceeded, the amplifier must recover from an overdrive condition. The typical recovery times for openloop, closed-loop, and input common-mode voltage range overdrive conditions are illustrated in Figures 9, 11 and 12, respectively.
The open-loop circuit of Figure 8 generates an overdrive response by allowing the $\pm 0.5 \mathrm{~V}$ input to exceed the linear input range of the amplifier. Typical positive and negative overdrive recovery times shown in Figure 9 are 5 ns and 25 ns , respectively.

FIGURE 8

FIGURE 9. Open-Loop Overdrive Recovery Time of $\mathbf{5} \mathbf{n s}$, and 25 ns from Test Circuit in Figure 8

Typical Performance

Characteristics (Continued)
The large closed-loop gain configuration in Figure 10 forces the amplifier output into overdrive. Figure 11 displays the typical 30 ns recovery time to a linear output value.

TIME (50 ns/div)

TL/H/11328-27

FIGURE 11. Closed-Loop Overdrive Recovery Time of 30 ns from Exceeding Output Voltage Range from Circuit in Figure 10

The common-mode input of the circuit in Figure 10 is exceeded by a 5 V pulse resulting in a typical recovery time of 310 ns shown in Figure 12. The LM6181 supply voltage is $\pm 5 \mathrm{~V}$.

FIGURE 12. Exceptional Output Recovery from an Input that Exceeds the Common-Mode Range

Ordering Information

Package	Temperature Range		NSC Drawing
	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	
8-Pin Molded DIP	LM6181AMN	LM6181AIN LM6181IN	N08E
8-Pin Small Outline Molded Package		LM6181AIM-8 LM6181IM-8	M08A
16-Pin Small Outline		LM6181AIM LM6181IM	M16A
8-Pin Ceramic DIP	LM6181AMJ/883		J08A

LM6182 Dual

100 mA Output, 100 MHz Current Feedback Amplifier

General Description

The LM6182 dual current feedback amplifier offers an unparalleled combination of bandwidth, slew-rate, and output current. Each amplifier can directly drive a 2 V signal into a 50Ω or 75Ω back-terminated coax cable system over the full industrial temperature range. This represents a radical enhancement in output drive capability for a dual 8-pin highspeed amplifier making it ideal for video applications.
Built on National's advanced high-speed VIP IITM (Vertically Integrated PNP) process, the LM6182 employs currentfeedback providing bandwidth that does not vary dramatically with gain; 100 MHz at $\mathrm{Av}=-1,60 \mathrm{MHz}$ at $\mathrm{Av}=$ -10 . With a slew rate of $2000 \mathrm{~V} / \mu \mathrm{sec}$, 2nd harmonic distortion of -50 dBc at 10 MHz and settling time of 50 ns (0.1%), the two independent amplifiers of the LM6182 offer performance that is ideal for data acquisition, high-speed ATE, and precision pulse amplifier applications.
See the LM6181 data sheet for a single amplifier with these same features.

Features (Typical unless otherwise noted)
■ Slew Rate $2000 \mathrm{~V} / \mu \mathrm{s}$
■ Closed Loop Bandwidth 100 MHz

- Settling Time (0.1\%)
- Low Differential Gain and Phase Error $0.05 \%, 0.04^{\circ}$ $R_{L}=150 \Omega$
- Low Offset Voltage 2 mV
- High Output Drive $\pm 10 \mathrm{~V}$ into 150Ω
- Characterized for Supply Ranges $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$
- Improved Performance over OP260 and LT1229

Applications

■ Coax Cable Driver

- Professional Studio Video Equipment
- Flash ADC Buffer
- PC and Workstation Video Boards
- Facsimile and Imaging Systems

Typical Application

TL/H/11926-1

TIME (50ns/DIV)

Connection Diagrams

Order Number LM6182AMJ/883 See NS Package Number J14A

*Heat Sinking Pins (Note 3)
Order Number LM6182IM or LM6182AIM
See NS Package Number M16A

$\pm 15 V$ DC Electrical Characteristics (Continued) The following specifications apply for supply voltage $=$ $\pm 15 \mathrm{~V}, \mathrm{Vcm}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=820 \Omega$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	LM6182AM	LM6182AI	LM6182I	Units
				Limit (Note 6)	Limit (Note 6)	Limit (Note 6)	
Isc	Output Short Circuit Current		100	$\begin{gathered} 70 \\ \mathbf{3 7 . 5} \end{gathered}$	$\begin{aligned} & 70 \\ & 40 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
Z_{T}	Transimpedance	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	1.8	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	$\mathrm{M} \Omega$ min
		$R_{L}=150 \Omega$	1.4	$\begin{aligned} & 0.8 \\ & 0.3 \end{aligned}$	$\begin{gathered} 0.8 \\ 0.35 \end{gathered}$	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	
Is	Supply Current	No Load, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ Both Amplifiers	15	$\begin{aligned} & 20 \\ & 22 \end{aligned}$	$\begin{aligned} & 20 \\ & 22 \end{aligned}$	$\begin{aligned} & 20 \\ & 22 \end{aligned}$	mA max
V_{CM}	Input Common Mode Voltage Range		$\begin{aligned} & V^{+}-1.7 \mathrm{~V} \\ & \mathrm{~V}^{-}+1.7 \mathrm{~V} \end{aligned}$				V

$\pm 15 \mathrm{~V}$ AC Electrical Characteristics The following specifications apply for supply voltage $= \pm 15 \mathrm{~V}$,
$\mathrm{Vcm}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=820 \Omega$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	LM6182AM	LM6182AI	LM6182I	Units
				Limit (Note 6)	Limit (Note 6)	Limit (Note 6)	
Xt	Crosstalk Rejection	(Note 7)	93				dB
BW	Closed Loop Bandwidth -3 dB	$A_{V}=+2$	100				MHz
		$A_{V}=+10$	75				
		$A_{V}=-1$	100				
		$A_{V}=-10$	60				
	Closed Loop Bandwidth 0.1 dB Flat, $\mathrm{R}_{\text {SOURCE }}=200 \Omega$	$A_{V}=+2, R_{L}=150 \Omega$	35				
PBW	Power Bandwidth	$A_{V}=-1, V_{O}=5 V_{P P}$	60				
SR	Slew Rate	Overdriven	2000				$\underset{\mathrm{min}}{\mathrm{~V} / \mu \mathrm{s}}$
		$\begin{aligned} & A_{V}=-1, V_{O}= \pm 10 \mathrm{~V} \\ & R_{L}=150 \Omega,(\text { Note } 8) \end{aligned}$	1400	1000	1000	1000	
t_{s}	Settling Time (0.1\%)	$\begin{aligned} & A_{V}=-1, V_{O}= \pm 5 V \\ & R_{L}=150 \Omega \end{aligned}$	50				ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\text {f }}$	Rise and Fall Time	$V_{O}=1 V_{P P}$	5				
t_{p}	Propagation Delay Time	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{PP}}$	6				
in(+)	Non-Inverting Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$	3				$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
in(-1	Inverting Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$	16				$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}$	4				$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	Second Harmonic Distortion	$\begin{aligned} & V_{O}=2 V_{P P}, f=10 \mathrm{MHz} \\ & A_{V}=+2 \end{aligned}$	-50				dBc
	Third Harmonic Distortion	$\begin{aligned} & V_{O}=2 V_{P P}, f=10 \mathrm{MHz} \\ & A_{V}=+2 \end{aligned}$	-55				
	Differential Gain	$\begin{aligned} & R_{L}=150 \Omega \\ & A_{V}=+2, N T S C \end{aligned}$	0.05				\%
	Differential Phase	$\begin{aligned} & R_{L}=150 \Omega \\ & A_{V}=+2, N T S C \\ & \hline \end{aligned}$	0.04				Deg
THD	Total Harmonic Distortion	$\begin{aligned} & V_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{PP}}, A_{\mathrm{V}}=+2 \\ & \mathrm{f}=10 \mathrm{MHz}, R_{\mathrm{L}}=150 \Omega \end{aligned}$	0.58				\%

$\pm 5 \mathrm{~V}$ AC Electrical Characteristics The following specifications apply for supply voltage $= \pm 5 \mathrm{~V}$, $\mathrm{Vcm}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=820 \Omega$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	LM6182AM	LM6182AI	LM61821	Units
				$\begin{gathered} \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Limit (Note 6)	$\begin{gathered} \text { Limit } \\ \text { (Note 6) } \end{gathered}$	
Xt	Crosstalk Rejection	(Note 7)	92				dB
BW	Closed Loop Bandwidth -3 dB	$A_{V}=+2$	50				MHz
		$A_{V}=+10$	40				
		$A_{V}=-1$	55				
		$A_{V}=-10$	35				
	Closed Loop Bandwidth 0.1 dB Flat, R $_{\text {SOURCE }}=200 \Omega$	$A_{V}=+2, R_{L}=150 \Omega$	15				
PBW	Power Bandwidth	$A_{V}=-1, V_{0}=4 V_{P P}$	40				
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, V_{O}= \pm 2 V \\ & R_{L}=150 \Omega,(\text { Note } 8) \end{aligned}$	500	375	375	375	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \end{aligned}$
t_{s}	Settling Time (0.1\%)	$\begin{aligned} & A_{V}=-1, V_{O}= \pm 2 V \\ & R_{L}=150 \Omega \end{aligned}$	50				ns
t_{r}, t_{f}	Rise and Fall Time	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{PP}}$	8.5				
t_{p}	Propagation Delay Time	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{PP}}$	8				
in(+)	Non-Inverting Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$	3				$\mathrm{pA} / \sqrt{ } / \mathrm{Hz}$
in $(-)$	Inverting Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$	16				$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}$	4				$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	Second Harmonic Distortion	$\begin{aligned} & V_{O}=2 V_{P P}, f=10 \mathrm{MHz} \\ & A_{V}=+2 \end{aligned}$	-45				dBc
	Third Harmonic Distortion	$\begin{aligned} & V_{O}=2 V_{P P}, f=10 \mathrm{MHz} \\ & A_{V}=+2 \end{aligned}$	-55				
	Differential Gain	$\begin{aligned} & R_{L}=150 \Omega \\ & A_{V}=+2, N T S C \end{aligned}$	0.06				\%
	Differential Phase	$\begin{aligned} & R_{L}=150 \Omega \\ & A_{V}=+2, \text { NTSC } \end{aligned}$	0.16				Deg
THD	Total Harmonic Distortion	$\begin{aligned} & V_{O}=2 V_{P P}, A_{V}=+2, \\ & f=5 \mathrm{MHz}, R_{L}=150 \Omega \end{aligned}$	0.36				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is intended to be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: Human body model 100 pF and $1.5 \mathrm{k} \Omega$.
Note 3: The typical junction-to-ambient thermal resistance of the molded plastic DIP(N) soldered directly into a PC board is $95^{\circ} \mathrm{C} / \mathrm{W}$. The junction-to-ambient thermal resistance of the S.O. surface mount (M) package mounted flush to the $P C$ board is $70^{\circ} \mathrm{C} / \mathrm{W}$ when pins $1,4,8,9$ and 16 are soldered to a total of 2 in ${ }^{2} 1$ oz copper trace. The S.O. (M) package must have pin 4 and at least one of pins $1,8,9$, or 16 connected to V - for proper operation.
Note 4: Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowable junction temperature of $150^{\circ} \mathrm{C}$. Each amplifier of the LM6182 is short circuit current limited to 100 mA typical.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (boldface type).
Note 7: Each amp excited in turn with 100 kHz to produce Vo $=2 \mathrm{Vpp}$. Results are input referred.
Note 8: Measured from $+25 \%$ to $+75 \%$ of output waveform.
Note 9: Also available per the Standard Military Drawing, 5962-9460301MCA.
Note 10: For guaranteed military specifications see military datasheet MNLM6182AM-X.

Typical Performance Characteristics

 MAXIMUM POWER DERATING CURVES

TL/H/11926-7

$$
\mathrm{T}_{\mathrm{A}}-\text { Ambient Temperature }\left({ }^{\circ} \mathrm{C}\right)
$$

Typical Performance Characteristics (Continued)

TYPICAL PERFORMANCE TEST CIRCUITS

Non-Inverting:
Small Signal Pulse Response, Slew Rate, - 3 dB Bandwidth

TL/H/11926-9
Amplifier-to-Amplifier Isolation

TL/H/11926-11
$X_{T}($ Crosstalk Rejection $)=\frac{V_{01}}{V_{02}}$

TL/H/11926-13

Inverting:
Small Signal Pulse Response, Slew Rate, - 3 dB Bandwidth

TL/H/11926-10

TL/H/11926-12

TL/H/11926-14

Typical Performance Characteristics (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unlessotherwisenoted.

Typical Performance Characteristics (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \mathrm{Vand}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless otherwisenoted.

Long Term Settling Time
Response $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$,
$R_{\mathrm{L}}=150 \Omega, A_{V}=-1, V_{O}= \pm 5 \mathrm{~V}$
Suggested \mathbf{R}_{f} and

TIME ($20 \mu \mathrm{~s} / \mathrm{DIV}$)

Output Impedance vs Frequency $A_{\mathbf{V}}=-1, R_{\mathrm{L}}=820 \Omega$

R_{s} for $C_{L} ; A_{V}=-1$

PSRR ($\mathbf{V}_{\mathbf{S}+}$) vs
Frequency, $A_{V}=2$,
$R_{\mathbf{f}}=\mathbf{R}_{\mathbf{s}}=\mathbf{8 2 0 \Omega}$

Slew Rate vs Supply Voltage

TL/H/11926-16

Typical Performance Characteristics (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \mathrm{and}_{\mathrm{A}} \mathrm{A}^{\prime}=25^{\circ} \mathrm{C}$ Unlessotherwisenoted.

Distortion vs Frequency
$V_{S}= \pm 5 \mathrm{~V}, A_{V}=-1$,
$R_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{Vp}-\mathrm{p}$

Small Signal Pulse Response vs Temperature, $A_{V}=-1$, $\mathbf{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$
 TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Crosstalk Rejection vs Frequency

Small Signal Puise Response vs Temperature, $A_{V}=+2$, $\mathbf{V}_{\mathbf{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$

temperature (${ }^{\circ} \mathrm{C}$)

Distortion vs Frequency
$\mathbf{V}_{\mathbf{S}}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathbf{V}}=+2$,
$R_{L}=150 \Omega, V_{O}=2 V p-p$

Maximum Output Voltage Swing vs Frequency (THD $\leq 1 \%$)

Small Signal Pulse Response vs Temperature, $A_{V}=-1$, $\mathbf{V}_{\mathbf{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$

Small Signal Pulse Response vs Temperature, $\mathbf{A V}_{V}=+2$, $\mathbf{V}_{\mathbf{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathbf{L}}=150 \Omega$

-60-40-20 0 20 40 60 80 100120 TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Typical Performance Characteristics (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{Cunlessotherwisenoted}$.

$\mathbf{Z}_{\mathbf{t}}$ vs Temperature

Settling Time vs
Output Step, $\mathbf{R}_{\mathbf{F}}=\mathbf{8 2 0} \Omega$
$R_{L}=150 \Omega, A_{V}=-1$

Small Signal Pulse Response vs Supply Voltage

CMRR vs Temperature

Small Signal Pulse Response vs Closed-Loop Gain $\mathrm{R}_{\mathrm{L}}=\mathbf{1 k}$

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted. (Continued)

Output Swing vs Temperature

TL/H/11926-19

Typical Applications

CURRENT FEEDBACK TOPOLOGY

For a conventional voltage feedback amplifier the resulting small-signal bandwidth is inversely proportional to the desired gain to a first order approximation based on the gainbandwidth concept. In contrast, the current feedback amplifier topology, such as the LM6182, transcends this limitation to offer a signal bandwidth that is relatively independent of the closed loop gain. Figures $1 A$ and $1 B$ illustrate that for closed loop gains of -1 and -5 the resulting pulse fidelity suggests quite similiar bandwidths for both configurations.

FIGURE 1A, 1B. Variation of Closed-Loop Gain from - 1 to - 5 Yields Similar Responses.

FEEDBACK RESISTOR SELECTION: $\mathbf{R}_{\mathbf{f}}$

Selecting the feedback resistor, R_{f}, is a dominant factor in compensating the LM6182. For general applications the LM6182 will maintain specified performance with an 820Ω feedback resistor. The closed-loop bandwidth of the LM6182 depends on the feedback resistance, R_{f}. Therefore, Rs, and not R_{f}, is varied to adjust for the desired closed-loop gain as demonstrated in Figure 2.

TL/H/11926-22
FIGURE 2. $\mathbf{R}_{\mathbf{f}}$ Sets Amplifier Bandwidth and $\mathbf{R}_{\mathbf{s}}$ is Adjusted to Obtain the Desired Closed-Loop Gain, Av.
Although this R_{f} value will provide good results for most applications, it may be advantageous to adjust this value slightly. Consider, for instance, the effect on pulse responses with two different configurations where both the closedloop gains are +2 and the feedback resistors are 820Ω, and 1640Ω, respectively. Figures $3 A$ and $3 B$ illustrate the effect of increasing R_{f} while maintaining the same closedloop gain - the amplifier bandwidth decreases. Accordingly, larger feedback resistors can be used to slow down the LM6182 and reduce overshoot in the time domain response. Conversely, smaller feedback resistance values than 820Ω can be used to compensate for the reduction of bandwidth at high closed-loop gains, due to 2nd order effects. For example Figures $4 A_{i}$ and $4 B$ illustrate reducing R_{f} to 500Ω to establish the desired small signal response in an amplifier configured for a closed-loop gain of +25 .

TIME (20ns/DIV)
TL/H/11926-23
$3 A . \mathbf{R}_{\mathbf{f}}=\mathbf{8 2 0 \Omega}$

TIME (20ns/DIV)
TL/H/11926-24
$3 B . R_{f}=1640 \Omega$
FIGURE 3A, 3B. Increase Compensation by Increasing $\mathbf{R}_{\mathrm{f}}, \mathbf{A}_{\mathbf{V}}=+\mathbf{2}$

Typical Applications (Continued)

TL/H/11926-25
$4 A . R_{f}=820 \Omega$

TL/H/11926-26
$4 B . R_{f}=500 \Omega$
FIGURE 4A, 4B. Reducing R_{f} to Increase Bandwidth for Large Closed-Loop Gains, $A_{v}=+25$
The extent of the amplifier's dependence on R_{f} is displayed in Figure 5 for one particular closed-loop gain.

TL/H/11926-27
FIGURE 5. - 3 dB Bandwidth Is Determined By Selecting $\mathbf{R}_{\mathbf{f}}$.

CAPACITIVE FEEDBACK

Current feedback amplifiers rely on feedback impedance for proper compensation. Even in unity gain current feedback amplifiers require a feedback resistor. LM6182 performance
is specified for a feedback resistance of 820Ω. Decreasing the feedback impedance below 820Ω extends the amplifier's bandwidth leading to possible instability. Capacitive feedback should therefore not be used because the impedance of a capacitor decreases with increasing frequency.

TL/H/11926-28
FIGURE 6. Current Feedback Amplifiers are Unstable with Capacitive Feedback
For voltage feedback amplifiers it is quite common to place a small lead compensation capacitor in parallel with feedback resistance, R_{f}. This compensation serves to reduce the amplifier's peaking. One application of the lead compensation capacitor is to counteract the effects of stray capacitance from the inverting input to ground in circuit board layouts. The LM6182 current feedback amplifier does not require this lead compensation capacitor and has an even simpler, more elegant solution.
To limit the bandwidth and peaking of the LM6182 current feedback amplifier, do not use a capacitor across R_{f} as in Figure 7. This actually has the opposite effect and extends the bandwidth of the amplifier leading to possible instability. Instead, simply increase the value of the feedback resistor as shown in Figure 3.
Non-inverting applications can also reduce peaking and limit bandwidth by adding an RC circuit as illustrated in Figure 8.

TL/H/11926-29
FIGURE 7. Compensation Capacitors Are Not Used with the LM6182, Instead Simply Increase $\mathbf{R}_{\mathbf{f}}$ to Compensate

Typical Applications (Continued)

TIME (20ns/DIV)
8B
FIGURE 8A, 8B. RC Limits Amplifier Bandwidth to 50 MHz , Eliminating Peaking in the Resulting Pulse Response as Compared to Figure 3A

SLEW RATE CONSIDERATIONS

The slew rate characteristics of current feedback amplifiers are different than traditional voltage feedback amplifiers. In voltage feedback amplifiers, slew rate limiting or non-linear amplifier behavior is dominated by the finite availability of the 1st stage tail current charging the compensation capacitor. The slew rate of current feedback amplifiers, in contrast, is not constant. Transient current at the inverting input is proportional to the current available to the amplifier's com-
pensation capacitor. The current feedback amplifier is therefore not traditionally slew rate limited. This enables large slew rates responses of $2000 \mathrm{~V} / \mu \mathrm{s}$. The non-inverting configuration slew rate is also determined by input stage limitations. Accordingly, variations of slew rates occur for different circuit topologies.

DRIVING CAPACITIVE LOADS

The LM6182 can drive significantly larger capacitive loads than many current feedback amplifiers. This is extremely valuable for simplifying the design of coax-cable drivers. Although the LM6182 can directly drive as much as 100 pF of load capacitance without oscillating, the resulting response will be a function of the feedback resistor value. Figure $9 B$ illustrates the small-signal pulse response of the LM6182 while driving a 50 pF load. Ringing persists for approximately 100 ns . To achieve pulse responses with less ringing either the feedback resistor can be increased (see Typical Performance Characteristics "Suggested R_{f} and Rs for C_{L} '), or resistive isolation can be used ($10 \Omega-51 \Omega$ typically works well). Either technique, however, results in lowering the system bandwidth.
Figure $10 B$ illustrates the improvement obtained by using a 47Ω isolation resistor.

TIME (20ns/DIV)
TL/H/11926-33

9B

FIGURE 9A, 9B. $A_{v}=-1$, LM6182 Can Directly Drive 50 pF of Load Capacitance with 100 ns of Ringing Resulting in Pulse Response

Typical Applications (Continued)

TIME (20ns/DIV)
10B

FIGURE 10A, 10B. Resistive Isolation of C_{L} Provides Higher Fidelity Pulse Response. \mathbf{R}_{f} and Rs Could Also Be Increased to Maintain $\mathbf{A v}_{\mathbf{V}}=\mathbf{- 1}$ and Improve Pulse Response Characteristics.

POWER SUPPLY BYPASSING AND LAYOUT CONSIDERATIONS

A fundamental requirement for high-speed amplifier design is adequate bypassing of the power supply. It is critical to maintain a wideband low-impedance to ground at the amplifiers supply pins to insure the fidelity of high speed amplifier transient signals. $0.1 \mu \mathrm{~F}$ ceramic bypass capacitors at each supply pin are sufficient for many applications. Typically $10 \mu \mathrm{~F}$ tantalum capacitors are also required if large current transients are delivered to the load. The bypass capacitors should be placed as close to the amplifier pins as possible, such as $0.5^{\prime \prime}$ or less.
Applications requiring high output power, cable drivers for example, cause increased internal power dissipation. Inter-
nal power dissipation can be minimized by operating at reduced power supply voltages, such as $\pm 5 \mathrm{~V}$.
Optimum heat dissipation is achieved by using wide circuit board traces and soldering the part directly onto the board. Large power supply and ground planes will improve power dissipation. Safe Operating Area (S.O.A.) is determined using the Maximum Power Derating Curves.
The 16-pin small outline package (M) has 5 V - heat sinking pins that enable a junction-to-ambient thermal resistance of $70^{\circ} \mathrm{C} / \mathrm{W}$ when soldered to $2 \mathrm{in}^{2} 1 \mathrm{oz}$. copper trace. A Vheat sinking pin is located on each corner of the package for ease of layout. This allows high output power and/or operation at elevated ambient temperatures without the additional cost of an integrated circuit heat sink. If the heat sinking capabilities of the S.O. package are not needed, pin 4 and at least one of pins $1,8,9$, or 16 must be connected to V - for proper operation.
Figure 11 shows recommended copper patterns used to dissipate heat from the LM6182.

FIGURE 11. Copper Heatsink Layouts

Typical Applications (Continued)

CROSSTALK REJECTION

The LM6182 has an excellant crosstalk rejection value of 62 dB at 10 MHz . This value is made possible because the LM6182 amplifiers share no common circuitry other than the supply. High frequency crosstalk that does appear is primarily caused by the magnetic and capacitive coupling of the internal bond wires. Bond wires connect the die to the package lead frame. The amount of current flowing through the bond wires is proportional to the amount of crosstalk. Therefore, crosstalk rejection ratings will degrade when driving heavy loads. Figure 12 and shows a 10 dB difference for two different loads.

FIGURE 12. Crosstalk Rejection
The LM6182 crosstalk effect is minimized in applications that cascade the amplifiers by preceding amplifier A with amplifier B.

START-UP TIME

Using the circuit in Figure 13, the LM6182 demonstrated a start-up time of 50 ns .

TL/H/11926-39
FIGURE 13. Start-Up Test Circuit

OVERDRIVE RECOVERY

The LM6182 is an excellent choice for high speed applications needing fast overdrive recovery. Nanosecond recovery times allow the LM6182 to protect subsequent stages from excessive input saturation and possible damage.
When the output or input voltage range of a high speed amplifier is exceeded, the amplifier must recover from an overdrive condition. The non-linear output voltage remains as long as the overdrive condition persists. Linear operation resumes after the overdrive condition is removed. Overdrive recovery time is the delay before an amplifier returns to linear operation. The typical recovery times for exceeding open loop, closed loop, and input commom-mode voltage ranges are illustrated in Figures 14, 15, and 16.
The open-loop circuit of Figure 14 generates an overdrive response by allowing the $\pm 0.5 \mathrm{~V}$ input to exceed the linear input range of the amplifier. Typical positive and negative overdrive recovery times are 5 ns and 30 ns , respectively.

TL/H/11926-41

TL/H/11926-42
FIGURE 14. Open Loop Overdrive Recovery Times of 5 ns and 30 ns
The large closed-loop gain configuration in Figure 15 forces the amplifier output into overdrive. The typical recovery time to a linear output value is 15 ns .

Typical Applications (Continued)

TL/H/11926-43

TL/H/11926-44
FIGURE 15. 15 ns Closed Loop Output Overdrive Recovery Time Generated by Saturating the Output Stage of the LM6182
The common-mode input range of a unity-gain circuit is exceeded by a 4 V pulse resulting in a typical recovery time of 20 ns shown in Figure 16.

TL/H/11926-46
FIGURE 16. Output Recovery from an Input that Exceeds the Common-Mode Range

SPICE MACROMODEL

A spice macromodel is available for the LM6182. Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk.

Typical Application Circuits

UNITY GAIN AMPLIFIER

The LM6182 current feedback amplifier is unity gain stable. The feedback resistor, R_{f}, is required to maintain the LM6182's dynamic performance.

TL/H/11926-47
FIGURE 17. LM6182 Is Unity Gain Stable

NON-INVERTING GAIN AMPLIFIER

Current feedback amplifiers can be used in non-inverting gain and level shifting functions. The same basic closedloop gain equation used for voltage feedback amplifiers applies to current feedback amplifiers: $1+R_{\mathcal{f}} / R s$.

TL/H/11926-48
FIGURE 18. Non-Inverting Closed Loop Gain is Determined with the Same Equation Voltage Feedback Amplifiers Use: $1+$ Refl $_{\boldsymbol{f}} /$ s

INVERTING GAIN AMPLIFIER

The inverting closed loop gain equation used with voltage feedback amplifiers also applies to current feedback amplifiers.

TL/H/11926-49
FIGURE 19. Current Feedback Amplifiers Can Be Used for Inverting Gains, Just Like a Voltage Feedback Amplifier: $-\mathbf{R}_{\boldsymbol{f}} / \mathbf{R s}$

Typical Application Circuits (Continued)

SUMMING AMPLIFIER

The current feedback topology of the LM6182 provides significant performance advantages over a conventional voltage feedback amplifier used in a standard summing circuit. Using a voltage feedback amplifier, the bandwidth of the summing circuit in Figure 20 is limited by the highest gain needed for either signal V1 or V2. If the LM6182 amplifier is used instead, wide circuit bandwidth can be maintained relatively independent of gain requirements.

TL/H/11926-50
FIGURE 20. LM6182 Allows the Summing Circuit to Meet the Requirements of Wide Bandwidth Systems Independent of Signal Gain

Ordering Information

Package	Temperature Range		NSC Drawing
	Military $-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Industrial } \\ & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	
8-pin Molded DIP	LM6182AMN	LM6182AIN LM6182IN	N08E
16-pin Small Outline		LM6182AIM LM6182IM	M16A

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office or Distributors for availability and specifications.

General Description

The LM6313 is a high-speed, high-power operational amplifier. This operational amplifier features a 35 MHz small signal bandwidth, and $250 \mathrm{~V} / \mu \mathrm{s}$ slew rate. A compensation pin is included for adjusting the open loop bandwidth. The input stage (A1) and output stage (A2) are pinned out separately, and can be used independently. The operational amplifier is designed for low impedance loads and will deliver $\pm 300 \mathrm{~mA}$. The LM6313 has both overcurrent and thermal shutdown protection with an error flag to signal both these fault conditions.
These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

\square High slew rate $\quad 250 \mathrm{~V} / \mu \mathrm{s}$
\square Wide bandwidth 35 MHz

- Peak output current $\pm 300 \mathrm{~mA}$
- Input and output stages pinned out separately
- Single or dual supply operation
- Thermal protection
- Error flag warns of faults
- Wide supply voltage range $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

Applications

- High speed ATE pin driver
- Data acquisition
- Driving capacitive loads
- Flash A-D input driver
- Precision $50 \Omega-75 \Omega$ video line driver
- Laser diode driver

Typical Application

TL/H/10521-2

Top View
Order Number LM6313N
See NS Package Number N16A
*Heat sink pins
See Note 5 and Applications.
**Do not ground or otherwise connect to this pin.

Absolute Maximum Ratings (Note 1)			
Total Supply Voltage ($+\mathrm{V}_{\mathrm{S}}$ to $-\mathrm{V}_{\mathrm{S}}$)	$36 \mathrm{~V}(\pm 18)$	Lead Temperature (Soldering, 5 seconds)	$260^{\circ} \mathrm{C}$
A1 Differential Input Voltage (Note 2)) $\pm 7 \mathrm{~V}$	ESD Tolerance (Note 4)	
A1 Input Voltage (V)	($\mathrm{V}^{+}-0.7$) to ($\mathrm{V}^{-}-7 \mathrm{~V}$)	Pins 10 and 11	$\pm 600 \mathrm{~V}$
A2 Input to Output Voltage	$\pm 7 \mathrm{~V}$	All Other Pins	$\pm 1500 \mathrm{~V}$
A2 Input Voltage	$\pm \mathrm{V}_{\mathrm{S}}$	Operating Temperature Range LM6313N	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Flag Output Voltage	GND to $+\mathrm{V}_{\mathrm{S}}$	Thermal Derating Information (Note 5)	
Short-Circuit to Ground	(Note 3)	$\boldsymbol{\theta}_{\text {JA }}$	$40^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T} \leq+150^{\circ} \mathrm{C}$	T_{J} (Max)	$125^{\circ} \mathrm{C}$

Operational Amplifier DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $T_{A}=25^{\circ} \mathrm{C}$, and Supply Voltage $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Boldface limits apply at temperature extremes. $\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$, $\mathrm{R}_{\mathrm{S}}=50 \Omega$, the circuit configured as in Figure 1.

Symbol	Parameter	Conditions	Typical	$\begin{aligned} & \mathbf{2 5}{ }^{\circ} \mathrm{C} \\ & \text { Limit } \end{aligned}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Limit	Units
V_{OS}	Input Offset Voltage		5	20	22	mV (Max)
$\Delta V_{O S} / \Delta T$	Average Input Offset Voltage Drift		10			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{b}	Input Bias Current		2	5	7	$\mu \mathrm{A}$ (Max)
los	Input Offset Current		0.15	1.5	1.9	$\mu \mathrm{A}$ (Max)
$\Delta \mathrm{loS}^{\prime} / \Delta \mathrm{T}$	Average Input Offset Current Drift		0.4			$n A /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential	325			k Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$A_{V}=+1, f=10 \mathrm{MHz}$	2.2			pF
$\mathrm{V}_{\text {CM }}$	Common-Mode Voltage Range		$\begin{array}{r} +14.2 \\ -13.2 \\ \hline \end{array}$	$\begin{array}{r} +13.8 \\ -12.8 \\ \hline \end{array}$	$\begin{array}{r} +13.7 \\ -12.7 \\ \hline \end{array}$	V (Min)
$A_{1} 1$ Av2	Voltage Gain 1 Voltage Gain 2	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 8 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 6000 \\ & 5000 \\ & \hline \end{aligned}$	$\begin{aligned} & 2500 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 2000 \\ & 1500 \end{aligned}$	V/V (Min)
CMRR	Common-Mode Rejection Ratio	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	90	72	70	dB (Min)
PSRR	Power Supply Rejection Ratio	$\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 16 \mathrm{~V}$	90	72	70	dB (Min)
$\mathrm{V}_{\mathrm{O} 1}$ $\mathrm{V}_{\mathrm{O} 2}$ $\mathrm{V}_{\mathrm{O} 3}$	Output Voltage Swing 1 Output Voltage Swing 2 Output Voltage Swing 3	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\begin{aligned} & 13.1 \\ & 12.0 \\ & 11.0 \end{aligned}$	$\begin{gathered} 11.8 \\ 10.5 \\ 9.0 \end{gathered}$	$\begin{gathered} 11.2 \\ 10.0 \\ 8.5 \end{gathered}$	$\pm \mathrm{V}$ (Min)
Is	Supply Current	$\begin{aligned} & T_{J}=0^{\circ} \mathrm{C} \\ & T_{J}=25^{\circ} \mathrm{C} \\ & T_{J}=125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	18	23	$\begin{aligned} & 24 \\ & 21 \end{aligned}$	mA (Max)
ISC	Peak Short-Circuit Output	(See Figure 3)	300			mA

TL/H/10521-3
FIGURE 1

Electrical Characteristics (Continued)
Operational Amplifier AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and Supply Voltage $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Boldface limits apply at temperature extremes. $\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$, $\mathrm{R}_{\mathrm{S}}=50 \Omega$, the circuit configured as in Figure 1 .

Symbol	Parameter	Conditions	Typical	Units
GBW	Gain-Bandwidth Product	$@ \mathrm{f}=30 \mathrm{MHz}$	35	MHz
SR	Slew Rate	$A_{V}=-1, R_{L}=50 \Omega$ (Note 6)	250	$\mathrm{V} / \mu \mathrm{s}$
PBW	Power Bandwidth	$\mathrm{V}_{\text {OUT }}=20 \mathrm{VPP}$	3.0	MHz
ts	Settling Time	10 V Step to 0.1\% (See Figure 2).	200	ns
	Phase Margin	$A_{V}=-1, R_{L}=1 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF}$	53	Deg
	Differential Gain		0.1	\%
	Differential Phase		0.1	Deg
e_{n}	Input Noise Voltage	$f=10 \mathrm{kHz}$	14	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
in_{n}	Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$	1.8	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$

A1 DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and Supply Voltage $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Boldface limits apply at temperature extremes. $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$.

Symbol	Parameter	Conditions	Typical	$25^{\circ} \mathrm{C}$ Limit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Limit	Units
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=\infty \end{aligned}$	$\begin{gathered} 650 \\ 6000 \end{gathered}$	$\begin{gathered} 300 \\ 2500 \end{gathered}$	$\begin{gathered} 250 \\ 2000 \end{gathered}$	V/V (Min)
CMRR	Common-Mode Rejection Ratio	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	90	72	70	dB (Min)
PSRR	Power Supply Rejection Ratio	$\pm 5 \mathrm{~V} \leq \pm \mathrm{V}_{S} \leq+16 \mathrm{~V}$	90	72	70	dB (Min)
Isc	Output Short Circuit Current		± 60	± 30	± 25	mA (Min)

A1 AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $T_{A}=25^{\circ} \mathrm{C}$, and Supply Voltage $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Boldface limits apply at temperature extremes. $\mathrm{R}_{\mathrm{S}}=50 \Omega$.

Symbol	Parameter	Conditions	Typical	$\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Limit	Units
GBW	Gain-Bandwidth	$\mathrm{f}=30 \mathrm{MHz}$	37	25	$\mathrm{MHz}(\mathrm{Min})$
SR	Slew Rate	$\mathrm{A}_{V}=+1, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \pm 4 \mathrm{~V}_{\mathrm{IN}}$, $\pm 2 \mathrm{~V}_{\mathrm{OUT}}$	250	150	$\mathrm{~V} / \mu \mathrm{S}(\mathrm{Min})$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test condition listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors. Degradation of the input parameters (especially V_{OS}, l OS, and Noise) is proportional to the level of the externally limited breakdown current and the accumulated duration of the breakdown condition.

Note 3: Continuous short-circuit operation of A1 at elevated temperature can result in exceeding the maximum allowed junction temperature of $125^{\circ} \mathrm{C}$. A2 contains current limit and thermal shutdown to protect against fault conditions. The device may be damaged by shorts to the supplies.
Note 4: Human body model, $\mathrm{C}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{S}}=1500 \Omega$.

Electrical Characteristics (Continued)

A2 DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $T_{A}=25^{\circ} \mathrm{C}$, and Supply Voltage $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Boldface limits apply at temperature extremes. $\mathrm{R}_{\mathrm{S}}=50 \Omega$.

Symbol	Parameter	Conditions	Typical	$\begin{aligned} & \mathbf{2 5}{ }^{\circ} \mathrm{C} \\ & \text { Limit } \end{aligned}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Limit	Units
$A_{V 1}$	Voltage Gain 1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.99	0.97	0.95	V/mV (Min)
$\mathrm{A}_{\mathrm{V} 2}$	Voltage Gain 2	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.9	0.85	0.82	V/V (Min)
$\mathrm{V}_{\text {OS }}$	Offset Voltage	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	15	70	100	mV (Max)
I_{b}	Input Bias Current	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$	1	6	8	$\mu \mathrm{A}$ (Max)
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	5			$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		3.5			pF
R_{O}	Output Resistance	$\mathrm{IOUT}= \pm 10 \mathrm{~mA}$	3.5	5.0	8.0	Ω (Min)
V_{0}	Voltage Output Swing	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & 13.7 \\ & 12.5 \\ & 11.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 10.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{gathered} 12.7 \\ 10.0 \\ 8.5 \end{gathered}$	V (Min)
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$	70	60	50	dB (Min)

A2 AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and Supply Voltage $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Boldface limits apply at temperature extremes. $\mathrm{R}_{\mathrm{S}}=50 \Omega$.

Symbol	Parameter	Conditions	Typical	$25^{\circ} \mathrm{C}$ Limit	Units
SR 1					
SR 2					

Additional (A2) Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and Supply Voltage $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Boldface limits apply at temperature extremes.

Symbol	Parameter	Conditions	Typical	$25^{\circ} \mathrm{C}$ Limit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Limit	Units
V_{OL}	Flag Pin Output Low Voltage	ISINK Flag Pin $=500 \mu \mathrm{~A}$	220	340	$\mathbf{4 0 0}$	$\mathrm{mV}(\mathrm{Max})$
IOH	Flag Pin Output High Current	V_{OH} Flag Pin $=15 \mathrm{~V}$ (Note 8)	0.01	10	$\mathbf{2 0}$	$\mu \mathrm{~A}(\mathrm{Max})$

Note 5: For operation at elevated temperature, these devices must be derated to insure $T_{J} \leq 125^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(P_{\mathrm{D}} \times \theta_{\mathrm{JA}}\right)$. θ_{JA} for the N package mounted flush to the PCB, is $40^{\circ} \mathrm{C} / \mathrm{W}$ when pins $4,5,12$ and 13 are soldered to a total of $2 \mathrm{in}^{2}$ of copper trace.
Note 6: Measured between $\pm 5 \mathrm{~V}$.
Note 7: $\mathrm{V}_{\mathrm{IN}}= \pm 9 \mathrm{~V}$ step input, measured between $\pm 5 \mathrm{~V}$ out.
Note 8: The error flag is set during current limit or thermal shut-down. The flag is an open collector, low on fault.

Simplified Schematic

Settling Time Test Circuit

TL/H/10521-6 FIGURE 3

Protection Circuit Block Diagram

Typical Performance Characteristics Op Amp
(Unless otherwise specified, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$.)

Typical Performance Characteristics A1 Only
(Unless otherwise specified, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$.)

Common-Mode Input Saturation Voltage

Typical Performance Characteristics A2 Only

(Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$.)

Gain-Bandwidth and Phase Margin vs Load Capacity

Output Resistance
(Open Loop)

TL/H/10521-9

Application Hints

The LM6313 is a high-speed, high power operational amplifier that is designed for driving low-impedance loads such as 50Ω and 75Ω cables. Available in the standard, low cost, 16-pin DIP, this amplifier will drive back terminated video cables with up to $10 \mathrm{Vp}-\mathrm{p}$. The ability to add additional compensation allows the LM6313 to drive capacitive loads of any size at bandwidths previously possible only with very expensive hybrid devices.
The LM6313 is excellent for driving high-speed flash A-to-D converters that require low-impedance drive at high frequencies. At 1 MHz , when used as a buffer, the LM6313 output impedance is below 0.1Ω. This very low output impedance also means that cables can be accurately backterminated by just placing the characteristic impedance in series with the LM6313 output.

OVER-VOLTAGE PROTECTION

If the LM6313 is being operated on supply voltages of greater than $\pm 5 \mathrm{~V}$, the possibility of damaging the output stage transistors exists. At higher supply voltages, if the output is shorted or excessive power dissipation causes the output stage to shut down, the maximum A2 input-to-output voltage, can be exceeded. This occurs when the input stage tries to drive the output while the output is at ground. To prevent this from happening, an easy solution is to place diodes around the output stage (See Figure 4). This will limit the maximum differential voltage to about 1.3V. Any signal diode, such as the 1N914 or the 1N4148 will work fine.

TL/H/10521-11

FIGURE 4

HEAT SINKING

When driving a low impedance load such as 50Ω, and operating from $\pm 15 \mathrm{~V}$ supplies, the internal power dissipation of the LM6313 can rise above 3W. To prevent overheating of the chip, which would cause the thermal protection circuitry to shüt the system down, the following guidelines should be followed:

1. Reduce the supply voltage. The LM6313 will operate with little change in performance, except output voltage swing, on $\pm 5 \mathrm{~V}$ supplies. This will reduce the dissipation to the level where no precautions against overheating are necessary for loads of 10Ω or more.
2. Solder pins $4,5,12$ and 13 to copper traces which are at least 0.100 inch wide and have a total area of at least 2 square inches, to obtain a θ_{JA} of $40^{\circ} \mathrm{C} / \mathrm{W}$. These four pins are connected to the back of the chip and will be at V -. They should not be used as a V - connection unless pin 3 is also connected to this same point.

SUPPLY BYPASSING

Because of the large currents required to drive low-impedance loads, supply bypassing as close as possible to the I.C. is important. At 50 MHz , a few inches of wire or circuit trace can have 20Ω or 30Ω of inductive reactance. This inductance in series with a $0.1 \mu \mathrm{~F}$ bypass capacitor can resonate at 1 MHz to 2 MHz and just appear as an inductor at higher frequencies. $\mathrm{A} 0.1 \mu \mathrm{~F}$ and a $10 \mu \mathrm{~F}$ to $15 \mu \mathrm{~F}$ capacitor connected in parallel and as close as possible to the LM6313 supply pins, from each supply to ground, will give best performance.

SELECTION OF COMPENSATION CAPACITOR

The compensation pin, pin 15, makes it possible to drive any load at any closed loop gain without stability problems. In most cases, where the gain is -1 or greater and the load is resistive, no compensation capacitor is required. When used at unity gain or when driving reactive loads, a small capacitor of 5 pF to 20 pF will insure optimum performance. The easiest way to determine the best value of compensation capacitor is to temporarily connect a trimmer capacitor (typical range of 2 pF to 15 pF) between pin 15, and ground, and adjust it for little or no overshoot at the output while driving the input with a square wave.
If the actual load capacitance is known, the typical graphs "Gain-Bandwidth and Phase Margin vs. Load Capacitance" can be used to select a value.

VIDEO CABLE DRIVER

The LM6313 is ideally suited for driving 50Ω or 75Ω cables. Unlike a buffer that requires a separate gain stage to make up for the losses involved in termination, the LM6313 gain can be set to 1 plus the line losses when the transmission line is end-terminated. If back-termination is needed, adding the line impedance in series with the output and raising the gain to 2 plus the expected line losses will provide a 0 dB loss system. Figure 5 illustrates the back and end terminated video system including compensation for line losses. The excellent stability of the LM6313 with changes in supply voltages allow running the amplifier on unregulated supplies. The typical change in phase shift when the supplies are changed from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ is less than 3° at 10 MHz .

TL/H/10521-12
FIGURE 5

Application Hints (Continued)

LASER DIODE MODULATOR

Figure 6 is a minimum component count example of a video modulator for a CW laser diode. This example biases the diode at 200 mA and modulates the current at $\pm 200 \mathrm{~mA}$ per volt of signal. If it is desired to reduce power consumption and $\pm 5 \mathrm{~V}$ supplies are available, all that is necessary is to change R2 to $5 \mathrm{k} \Omega$ and R4 to 15Ω.

FIGURE 6

In photo $1, C_{L}$ is 1000 pF . The LM6313 is slewing at $250 \mathrm{~V} / \mu \mathrm{s}$, from -5 V to +5 V . The slew rate is $450 \mathrm{~V} / \mu \mathrm{s}$ from +5 V to -5 V . This requires the op amp to deliver 450 mA into the load and remain stable.

Photo 1

CAPACITIVE LOAD DRIVING

Figure 7 is the circuit used to demonstrate the ability of the LM6313 to drive capacitive loads at speeds not previously possible with monolithic op amps.

FIGURE 7

In photo $2, C_{L}$ is changed to $1 \mu \mathrm{~F}$. Under these conditions, the op amp is forced into current limiting. Here the current is internally limited to about $\pm 400 \mathrm{~mA}$. Note the rapid and complete recovery to normal operation at the end of slewing.

TL/H/10521-15
Photo 2

LM7121

Tiny Very High Speed Low Power Voltage Feedback Amplifier

General Description

The LM7121 is a high performance operational amplifier which addresses the increasing AC performance needs of video and imaging applications. Its tiny size and low power make it ideal for portable applications.
The LM7121 can operate over a wide dynamic range of supply voltages, from $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$. It offers an excellent speed-power product delivering $1000 \mathrm{~V} / \mu$ s and 200 MHz unity gain stability. Another key feature of this operational amplifier is stability while driving unlimited capacitive loads. Due to its Tiny SOT23-5 package, the LM7121 is ideal for designs where space and weight are the critical parameters. The benefits of the tiny package are evident in small portable electronic devices, such as cameras, and PC video cards. Tiny amplifiers are so small that they can be placed anywhere on a board close to the signal source or near the input to an A/D converter.

Features (Typical unless otherwise noted)

- Easy to use Voltage Feedback Topology
- Stable with unlimited capacitive loads
- Tiny SOT23-5 packagetypical circuit layout takes half the space of SO-8 designs
- Unity Gain Frequency $\quad 200 \mathrm{MHz}$
- Slew Rate $1000 \mathrm{~V} / \mu \mathrm{s}$
- Characterized for Supply Voltages $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$
- Low Supply Current 5 mA

Applications

- Scanners, Color Fax, Digital copier
- Portable Video Equipment
- Cable Drivers
- Digital Cameras
- ADC/DAC Buffers

Connection Diagram

Ordering Information

Package	Temperature Range Industrial, $-40^{\circ} \mathbf{C}$ to $+85^{\circ} \mathbf{C}$	NSC Drawing Number	Transport Media
8-Pin Molded DIP	LM7121AIN, LM7121BIN	N08E	Rails
8-Pin Small Outline	LM7121AIM, LM7121BIM	M08A	Rails
	LM7121AIMX, LM7121BIMX		Tape and Reel
5-Pin SOT 23-5	LM7121AIM5, LM7121BIM5	MA05A	Rails
	LM7121AIM5X, LM7121BIM5X		

LM7131

Tiny High Speed Single Supply Operational Amplifier

General Description

The LM7131 is a high speed bipolar operational amplifier available in a tiny SOT23-5 package. This makes the LM7131 ideal for space and weight critical designs. Single supply voltages of 3 V and 5 V provides good video performance, wide bandwidth, low distortion, and high PSRR and CMRR. This makes the amplifier an excellent choice for desktop and portable video and computing applications. The amplifier is supplied in DIPs, surface mount 8 -pin packages, and tiny SOT23-5 packages.
Tiny amplifiers are so small they can be placed anywhere on a board close to the signal source or next to an A-to-D input. Good high speed performance at low voltage makes the LM7131 a preferred part for battery powered designs.

Features

- Tiny SOT23-5 package saves space-typical circuit layouts take half the space of SO-8 designs.
- Guaranteed specs at $3 \mathrm{~V}, 5 \mathrm{~V}$, and $\pm 5 \mathrm{~V}$ supplies
- Typical supply current 7.0 mA at $5 \mathrm{~V}, 6.5 \mathrm{~mA}$ at 3 V
- 4 V output swing with +5 V single supply
- Typical total harmonic distortion of 0.1% at 4 MHz
- 70 MHz Gain-Bandwidth Product
- $90 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth at 3 V and 5 V , Gain $=+1$
- Designed to drive popular video A/D converters
- 40 mA output can drive 50Ω loads
- Differential gain and phase 0.25% and 0.75° at $A_{V}=$ $+2$

Applications

- Driving video A/D converters
- Video output for portable computers and PDAs
- Desktop teleconferencing
- High fidelity digital audio
- Video cards

Connection Diagrams

Package	Ordering Information	NSC Drawing Number	Package Marking	Supplied as
8-Pin DIP	LM7131ACN	N08E	LM7131ACN	rails
8-Pin DIP	LM7131BCN	N08E	LM7131BCN	rails
8-Pin SO-8	LM7131ACM	M08A	LM7131ACM	rails
8-Pin SO-8	LM7131BCM	M08A	LM7131BCM	rails
8-Pin SO-8	LM7131ACMX	M08A	LM7131ACM	2.5 k units tape and reel
8-Pin SO-8	LM7131BCMX	M08A	LM7131BCM	2.5 k units tape and reel
5-Pin SOT 23-5	LM7131ACM5	MA05A	A02A	250 units on tape and reel
5-Pin SOT 23-5	LM7131BCM5	MA05A	A02B	250 units on tape and reel
5-Pin SOT 23-5	LM7131ACM5X	MA05A	A02A	3k units tape and reel
5-Pin SOT 23-5	LM7131BCM5X	MA05A	A02B	3k units tape and reel

Absolute Maximum Ratings (Note 1)			
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		Lead Temperature (soldering, 10 sec)	$260^{\circ} \mathrm{C}$
		Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
		Junction Temperature (Note 4)	$150^{\circ} \mathrm{C}$
ESD Tolerance (Note 2)	2000V		
Differential Input Voltage	± 2.0	Operating Ratings	
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.1 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$	Supply Voltage (V^{+}- V^{-})	$2.7 \mathrm{~V} \leq \mathrm{V} \leq 12 \mathrm{~V}$
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	12 V	Junction Temperature Range	
Current at Input Pin	$\pm 5 \mathrm{~mA}$	LM7131AC, LM7131BC	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+70^{\circ} \mathrm{C}$
Current at Output Pin (Note 3)	$\pm 80 \mathrm{~mA}$	Thermal Resistance ($\boldsymbol{\theta}_{\mathrm{JA}}$)	
Current at Power Supply Pin	$\pm 80 \mathrm{~mA}$	N Package, 8-Pin Molded DIP	$115^{\circ} \mathrm{C} / \mathrm{W}$
		SO-8 Package, 8-Pin Surface Mount	$165^{\circ} \mathrm{C} / \mathrm{W}$
		M05A Package, 5-Pin Surface Mount	$325^{\circ} \mathrm{C} / \mathrm{W}$

3V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=$ $3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}=150 \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LM7131AC Limit (Note 6)	$\begin{aligned} & \text { LM7131BC } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
Vos	Input Offset Voltage		0.02	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	mV max
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift		10			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		20	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$ max
los	Input Offset Current		0.35	$\begin{gathered} 3.5 \\ 5 \end{gathered}$	$\begin{gathered} 3.5 \\ 5 \end{gathered}$	$\mu \mathrm{A}$ \max
CMRR	Common Mode Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 0.85 \mathrm{~V}$ (Video Levels)	75	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	dB min
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0.85 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.7 \mathrm{~V} \\ & \text { (Mid-Range) } \end{aligned}$	70	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	dB \min
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=3 \mathrm{~V} \text { to } 6.5 \mathrm{~V} \end{aligned}$	75	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{-}=-3 \mathrm{~V}, \mathrm{~V}+=0 \mathrm{~V} \\ & \mathrm{~V}^{-}=-3 \mathrm{~V} \text { to }-6.5 \mathrm{~V} \end{aligned}$	75	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=3 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	0.0	$\begin{gathered} 0.0 \\ 0.00 \end{gathered}$	$\begin{gathered} 0.0 \\ 0.00 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			2.0	$\begin{aligned} & 1.70 \\ & 1.60 \end{aligned}$	$\begin{aligned} & 1.70 \\ & 1.60 \end{aligned}$	$\underset{\max }{V}$
Avol	Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\mathrm{O}}=0.250 \mathrm{~V} \\ & \text { to } 1.250 \mathrm{~V} \end{aligned}$	60	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	dB
$\mathrm{CIN}_{\text {IN }}$	Common-Mode Input Capacitance		2			pF

3V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=$ $3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}=150 \Omega$. Boldface limits apply at the temperature extremes. (Continued)

Symbol	Parameter	Conditions	Typ (Note 5)	LM7131AC Limit (Note 6)	LM7131BC Limit (Note 6)	Units
V_{0}	Output Swing High	$\begin{aligned} & \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \text { terminated at } 0 \mathrm{~V} \end{aligned}$	2.6	$\begin{aligned} & 2.3 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.0 \end{aligned}$	$\begin{gathered} V \\ \min \end{gathered}$
	Low	$V^{+}=3 V, R_{L}=150 \Omega$ terminated at 0 V	0.05	$\begin{aligned} & 0.15 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.20 \end{aligned}$	$\begin{gathered} V \\ \max \end{gathered}$
	High	$V^{+}=3 V, R_{L}=150 \Omega$ terminated at 1.5 V	2.6	$\begin{aligned} & 2.3 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.0 \end{aligned}$	$\begin{aligned} & V \\ & \min \end{aligned}$
	Low	$\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ terminated at 1.5 V	0.5	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
V_{0}	Output Swing High	$\begin{aligned} & \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \text { terminated at } 0 \mathrm{~V} \end{aligned}$	2.73			$\begin{gathered} \mathrm{V} \\ \max \\ \hline \end{gathered}$
v_{0}	Output Swing Low	$\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega$ terminated at OV	0.06			$\begin{gathered} V \\ \max \\ \hline \end{gathered}$
Isc	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	65	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	mA min
		Sinking, $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$	40	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	mA min
Is	Supply Current	$\mathrm{V}+=+3 \mathrm{~V}$	6.5	$\begin{aligned} & 8.0 \\ & \mathbf{8 . 5} \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	mA max

3V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=$ $3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}=150 \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LM7131AC Limit (Note 6)	$\begin{aligned} & \text { LM7131BC } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=4 \mathrm{MHz}, \mathrm{~A}_{\mathrm{V}}=+2 \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	0.1			\%
	Differential Gain	(Note 10)	0.45			\%
	Differential Phase	(Note 10)	0.6			-
SR	Slew Rate	$R_{L}=150 \Omega, C_{L}=5 \mathrm{pF}$ (Note 7)	120	,		$\mathrm{V} / \mu \mathrm{S}$
SR	Slew Rate	$R_{L}=150 \Omega, C_{L}=20 \mathrm{pF}$ (Note 7)	100			$\mathrm{V} / \mu \mathrm{S}$
GBW	Gain-Bandwidth Product		70			MHz
	Closed-Loop - 3 dB Bandwidth		90			MHz

5V DC Electrical Characteristics Uniess otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}+=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}=150 \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LM7131AC Limit (Note 6)	$\begin{aligned} & \text { LM7131BC } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
V_{OS}	Input Offset Voltage		0.02	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	mV max
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift		10			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		20	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$ max
los	Input Offset Current		0.35	$\begin{gathered} 3.5 \\ 5 \end{gathered}$	$\begin{gathered} 3.5 \\ 5 \end{gathered}$	$\mu \mathrm{A}$ max
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.85 \mathrm{~V}$ (Video Levels)	75	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 65 \\ & \mathbf{6 0} \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 1.85 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 3.7 \mathrm{~V} \\ & \text { (Mid-Range) } \end{aligned}$	70	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \text { to } 10 \mathrm{~V} \end{aligned}$	75	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
- PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & V^{-}=-5 V, V^{+}=0 V \\ & V^{-}=-5 V \text { to }-10 V \end{aligned}$	75	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=5 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	0.0	$\begin{gathered} -0.0 \\ 0.00 \end{gathered}$	$\begin{array}{r} -0.0 \\ 0.00 \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			4.0	$\begin{aligned} & 3.70 \\ & 3.60 \end{aligned}$	$\begin{aligned} & 3.70 \\ & 3.60 \end{aligned}$	$\underset{\max }{V}$
Avol	Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\mathrm{O}}= \\ & 0.250 \mathrm{~V} \text { to } 2.250 \mathrm{~V} \end{aligned}$	70	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
C_{IN}	Common-Mode Input Capacitance		2			pF
V_{0}	Output Swing High	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ terminated at 0 V	4.5	$\begin{aligned} & 4.3 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4.0 \end{aligned}$	$\begin{gathered} V \\ \mathrm{~min} \end{gathered}$
	Low	$V^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ terminated at 0 V	0.08	$\begin{aligned} & 0.15 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.15 \\ & \mathbf{0 . 2 0} \end{aligned}$	$\begin{gathered} V \\ \max \end{gathered}$
	High	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ terminated at 2.5 V	4.5	$\begin{array}{r} 4.3 \\ 4.0 \\ \hline \end{array}$	$\begin{array}{r} 4.3 \\ 4.0 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
	Low	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ terminated at 2.5 V	0.5	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{gathered} V \\ \max \end{gathered}$
V_{O}	Output Swing High	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega$ terminated at 0 V	4.70			$\begin{gathered} V \\ \max \end{gathered}$
V_{0}	Ouptut Swing Low	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \text { terminated at } 0 \mathrm{~V} \end{aligned}$	0.07			$\begin{gathered} V \\ \max \end{gathered}$
Isc	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	65	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	mA min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	40	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	mA \min
Is	Supply Current	$V^{+}=+5 \mathrm{~V}$	7.0	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	mA max

5V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}=150 \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions		LM7131AC Limit (Note 6)	$\begin{aligned} & \text { LM7131BC } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=4 \mathrm{MHz}, \mathrm{~A}_{\mathrm{V}}=+2 \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	0.1			\%
	Differential Gain	(Note 10)	0.25			\%
	Differential Phase	(Note 10)	0.75			-
SR	Slew Rate	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \text { (Note 8) } \end{aligned}$	150			$\mathrm{V} / \mu \mathrm{s}$
SR	Slew Rate	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ & \text { (Note 8) } \end{aligned}$	130			$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product		70			MHz
	Closed-Loop -3 dB Bandwidth		90			MHz
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	11			$\begin{aligned} & \mathrm{nV} \\ & \hline \sqrt{\mathrm{~Hz}} \\ & \hline \end{aligned}$
i_{n}	Input-Referred Current Noise	$f=1 \mathrm{kHz}$	3.3			$\frac{\mathrm{pA}}{\sqrt{\mathrm{~Hz}}}$

$\pm 5 V$ DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+$ $=5 \mathrm{~V}, \mathrm{~V}^{-}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=150 \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { LM7131AC } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	LM7131BC Limit (Note 6)	Units
V_{OS}	Input Offset Voltage		0.02	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	mV max
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift		10			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		20	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$ max
los	Input Offset Current		0.35	$\begin{gathered} 3.5 \\ 5 \end{gathered}$	$\begin{gathered} 3.5 \\ 5 \end{gathered}$	$\mu \mathrm{A}$ max
CMRR	Common Mode Rejection Ratio	$-5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 3.7 \mathrm{~V}$	75	$\begin{array}{r} 65 \\ 60 \\ \hline \end{array}$	$\begin{aligned} & 65 \\ & 60 \\ & \hline \end{aligned}$	dB min
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \text { to } 10 \mathrm{~V} \end{aligned}$	75	$\begin{aligned} & 65 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \\ & \hline \end{aligned}$	dB min
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{-}=-5 \mathrm{~V}, \mathrm{~V}^{+}=0 \mathrm{~V} \\ & \mathrm{~V}^{-}=-5 \mathrm{~V} \text { to }-10 \mathrm{~V} \end{aligned}$	75	$\begin{aligned} & 65 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	$V^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$ For CMRR $\geq 60 \mathrm{~dB}$	-5.0	$\begin{array}{r} -5.0 \\ -5.0 \\ \hline \end{array}$	$\begin{array}{r} -5.0 \\ -5.0 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			4.0	$\begin{aligned} & 3.70 \\ & \mathbf{3 . 6 0} \end{aligned}$	$\begin{aligned} & 3.70 \\ & \mathbf{3 . 6 0} \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
Avol	Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=150 \Omega, \\ & \mathrm{~V}_{\mathrm{O}}=-2.0 \text { to }+2.0 \end{aligned}$	70	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	dB

$\pm 5 \mathrm{~V}$ DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+$ $=5 \mathrm{~V}, \mathrm{~V}^{-}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=150 \Omega$. Boldface limits apply at the temperature extremes. (Continued)

Symbol	Parameter	Conditions	Typ (Note 5)	LM7131AC Limit (Note 6)	$\begin{aligned} & \text { LM7131BC } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance		2			pF
V_{O}	Output Swing High	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \text { terminated at } \mathrm{OV} \end{aligned}$	4.5	$\begin{aligned} & 4.3 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
	Low		-4.5	$\begin{array}{r} -3.5 \\ -2.5 \end{array}$	$\begin{array}{r} -3.5 \\ -2.5 \end{array}$	$\begin{gathered} V \\ \max \end{gathered}$
Isc	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=-5 \mathrm{~V}$	65	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	mA min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	40	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	mA min
Is	Supply Current	$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$	7.5	$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{gathered} 9 \\ 10 \end{gathered}$	mA max

$\pm 5 V$ AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+$
$=5 \mathrm{~V}, \mathrm{~V}^{-}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=150 \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	$\begin{aligned} & \text { LM7131AC } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \text { LM7131BC } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=4 \mathrm{MHz}, A_{V}=-2 \\ & R_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\mathrm{O}}=4.0 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	1.5			\%
	Differential Gain	(Note 10)	0.25			\%
	Differential Phase	(Note 10)	1.0			-
SR	Slew Rate	$R_{L}=150 \Omega, C_{L}=5 \mathrm{pF}$ (Note 9)	150			$\mathrm{V} / \mu \mathrm{s}$
SR	Slew Rate	$R_{L}=150 \Omega, C_{L}=20 \mathrm{pF}$ (Note 9)	130			$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product		70			MHz
	Closed-Loop - 3 dB Bandwidth		90			MHz

Note 1: Absolute maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$

Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: Connected as voltage follower with 1.5 V step input. Number specified is the slower of the positive and negative slew rates. $\mathrm{V}^{+}=3 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=150 \Omega$ connected to 1.5 V . Amp excited with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V} \mathrm{PP}$.
Note 8: Connected as Voltage Follower with 4.0 V step input. Number specified is the slower of the positive and negative slew rates. $V^{+}=5 \mathrm{~V}$ and $R_{L}=150 \Omega$ connected to 2.5 V . Amp excited with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}$ pp.
Note 9: Connected as Voltage Follower with 4.0 V step input. Number specified is the slower of the positive and negative slew rates. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$ and $R_{L}=150 \Omega$ connected to 0 V . Amp excited with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}$ Pp.
Note 10: Differential gain and phase measured with a 4.5 MHz signal into a 150Ω load, Gain $=+2.0$, between 0.6 V and 2.0 V output.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Typical Performance Characteristics (Continued)

LM7131 Single Supply Bode Plot @ 3V, 5V and 10V
Ref Level 0.000 dB /Div 1.000 dB

Application Information

GENERAL INFORMATION

The LM7131 is a high speed complementary bipolar amplifier which provides high performance at single supply voltages. The LM7131 will operate at $\pm 5 \mathrm{~V}$ split supplies, +5 V single supplies, and +3 V single supplies. It can provide improved performance for $\pm 5 \mathrm{~V}$ designs with an easy transition to +5 V single supply. The LM7131 is a voltage feedback amplifier which can be used in most operational amplifier circuits.
The LM7131 is available in three package types: DIPs for through hole designs, SO-8 surface mount packages and the SOT23-5 Tiny package for space and weight savings.
The LM7131 has been designed to meet some of the most demanding requirements for single supply amplifiers-driving analog to digital converters and video cable driving. The output stage of the LM7131 has been specially designed for the dynamic load presented by analog to digital converters. The LM7131 is capable of a 4 V output range with a +5 V single supply. The LM7131's drive capability and good differential gain and phase make quality video possible from a small package with only a +5 V supply.

BENEFITS OF THE LM7131

The LM7131 can make it possible to amplify high speed signals with a single +5 V or +3 V supply, saving the cost of split power supplies.

EASY DESIGN PATH FROM $\pm \mathbf{5 V}$ to $+\mathbf{5 V}$ SYSTEMS

The DIP and SO-8 packages and similar $\pm 5 \mathrm{~V}$ and single supply specifications means the LM7131 may be able to replace many more expensive or slower op amps, and then be used for an easy transition to 5 V single supply systems. This could provide a migration path to lower voltages for the amplifiers in system designs, reducing the effort and expense of testing and re-qualifying different op amps for each new design.
In addition to providing a design migration path, the three packages types have other advantages.
The DIPs can be used for easy prototyping and through hole boards. The SO-8 for surface mount board designs, and using the SOT23-5 for a smaller surface mount package can save valuable board space.

SPECIFIC ADVANTAGES OF SOT23-5 (TINY PACKAGE)

The SOT23-5 (Tiny) package can save board space and allow tighter layouts. The low profile can help height limited designs, such as sub-notebook computers, consumer video equipment, personal digital assistants, and some of the thicker PCMCIA cards. The small size can improve signal integrity in noisy environments by placing the amplifier closer to the signal source. The tiny amp can fit into tight spaces and weighs little. This makes it possible to design the LM7131 into places where amplifiers could not previously fit.
The LM7131 can be used to drive coils and transformers referenced to virtual ground, such as magnetic tape heads
and disk drive write heads. The small size of the SOT23-5 package can allow it to be placed with a pre-amp inside of some rotating helical scan video head (VCR) assemblies. This avoids long cable runs for low level video signals, and can result in higher signal fidelity.
Additional space savings parts are available in tiny packages from National Semiconductor, including low power amplifiers, precision voltage references, and voltage regulators.

Notes on Performance Curves and Datasheet Limits

Important:
Performance curves represent an average of parts, and are not limits.

SUPPLY CURRENT vs SUPPLY VOLTAGE

Note that this curve is nearly straight, and rises slowly as the supply voltage increases.

INPUT CURRENT vs INPUT VOLTAGE

This curve is relatively flat in the 200 mV to 4 V input range, where the LM7131 also has good common mode rejection.

COMMON MODE VOLTAGE REJECTION

Note that there are two parts to the CMRR specification of the datasheet for 3 V and 5 V . The common mode rejection ratio of the LM7131 has been maximized for signals near ground (typical of the active part of video signals, such as those which meet the RS-170 levels). This can help provide rejection of unwanted noise pick-up by cables when a balanced input is used with good input resistor matching. The mid-level CMRR is similar to that of other single supply op amps.

BODE PLOTS (GAIN vs FREQUENCY FOR $\mathbf{A v}=+1$)

The gain vs. frequency plots for a non-inverting gain of 1 show the three voltages with the 150Ω load connected in two ways. For the single supply graphs, the load is connected to the most negative rail, which is ground. For the split supply graphs, the load is connected to a voltage halfway between the two supply rails.

DRIVING CABLES

Pulse response curves for driving 75Ω back terminate cables are shown for both 3 V and 5 V supplies. Note the good pulse fidelity with straight 150 loads, five foot (1.5 meter) and 75 foot (22 meter) cable runs. The bandwidth is reduced when used in a gain of ten ($A_{V}=+10$). Even in a gain of ten configuration, the output settles to $<1 \%$ in about 100 ns , making this useful for amplifying small signals at a sensor or signal source and driving a cable to the main electronics section which may be located away from the signal source. This will reduce noise pickup.
Please refer to Figures 1-5 for schematics of test setups for cable driving.

Application Information (Continued)

TL/H/12313-9
Numbers in parentheses are measured fixture capacitances w/o DUT and load

FIGURE 1. Cable Driver $A_{V}=+1$

TL/H/12313-10

Numbers in parentheses are measured fixture capacitances w/o DUT and load.

FIGURE 2. Cable Driver $\mathbf{A v}_{\mathbf{v}}=\mathbf{+ 2}$

TL/H/12313-11

Numbers in parentheses are measured fixture capacitances w/o DUT and load.

FIGURE 3. Cable Driver 5' RG-59

Application Information (Continued)

Numbers in parentheses are measured fixture capacitances w/o DUT and load

FIGURE 4. Cable Driver 75' RG-59

TL/H/12313-13
Numbers in parentheses are measured fixture capacitances w/o DUT and load.

FIGURE 5. Cable Driver Gain of $10 \mathbf{A}_{\mathbf{V}}=+10$

Application Information (Continued)

DRIVING TYPE 1175 FLASH A/D LOADS

The circuits in Figures 6-11 show a LM7131 in a voltage follower configuration driving the passive equivalent of a typical flash A/D input. Note that there is a slight ringing on the output, which can affect accurate analog-to-digital conversion. In these graphs, we have adjusted the ringing to be a little larger than desirable in order to better show the settling time. Most settling times at low gain are about 75 ns to $<1 \%$ of final voltage. The ringing can be reduced by adding a low value (approximately 500Ω) feedback resistor from the output to the inverting input and placing a small (picofar-
ad range) capacitor across the feedback resistor. See Figures 9 and 10 for schematics and respective performance curves for flash A/D driving at $A_{V}=+5$ with and without a 2 pF feedback capacitor.
See section on feedback compensation. Ringing can also be reduced by placing an isolation resistor between the output and the analog-to-digital converter input-see sections on driving capacitive loads and analog-to-digital converters. Please refer to Figures 6-11 for schematics of test setups for driving flash A / D converters.

TL/H/12313-14
Numbers in parentheses are measured fixture capacitances w/o DUT and load.

FIGURE 6. Flash A/D $A_{v}=-1$

FIGURE 7. Flash $A^{\prime} / A_{v}=+1$

Application Information (Continued)

TL/H/12313-16
Numbers in parentheses are measured fixture capacitances w/o DUT and load.

FIGURE 8. Flash $A / D A_{v}=+2$

TL/H/12313-17

FIGURE 9. Flash A/D $A_{V}=+5$

Application Information (Continuad)

Numbers in parentheses are measured fixture capacitances w/o DUT and load.

FIGURE 10. Flash A/D $A_{v}=+5$ with Feedback Capacitor

TL/H/12313-19

Numbers in parentheses are measured fixture capacitances w/o DUT and load.

FIGURE 11. Flash $A / D A_{v}=+10$

Using the LM7131

LIMITS AND PRECAUTIONS

Supply Voltage

The absolute maximum supply voltage which may be applied to the LM7131 is 12 V . Designers should not design for more than 10 V nominal, and carefully check supply tolerances under all conditions so that the voltages do not exceed the maximum.

Differential Input Voltage

Differential input voltage is the difference in voltage between the non-inverting (+) input and the inverting input $(-)$ of the op amp. The absolute maximum differential input voltage is $\pm 2 \mathrm{~V}$ across the inputs. This limit also applies when there is no power supplied to the op amp. This may not be a problem in most conventional op amp designs, however, designers should avoid using the LM7131 as comparator or forcing the inputs to different voltages. In some designs, diode protection may be needed between the inputs. See Figure 12.

TL/H/12313-20
FIGURE 12

Output Short Circuits

The LM7131 has output short circuit protection, however, it is not designed to withstand continuous short circuits, very fast high energy transient voltage or current spikes, or shorts to any voltage beyond the power supply rails. Designs should reduce the number and energy level of any possible output shorts, especially when used with $\pm 5 \mathrm{~V}$ supplies.
A resistor in series with the output, such as the 75Ω resistor used to back terminate 75Ω cables, will reduce the effects of shorts. For outputs which will send signals off the PC board additional protection devices, such as diodes to the power rails, zener-type surge suppressors, and varistors may be useful.

Thermal Management

Note that the SOT23-5 (Tiny) package has less power dissipation capability ($325^{\circ} / \mathrm{W}$) than the S0-8 and DIP packages ($115^{\circ} / \mathrm{W}$). This may cause overheating with ± 5 supplies and heavy loads at high ambient temps. This is less of a problem when using +5 V single supplies.

Example:

Driving a 150Ω load to 2.0 V at a $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$ ambient temperature. (This is common external maximum temperature for office environments. Temperatures inside equipment may be higher.)

No load power-
No load LM7131 supply current - 9.0 mA
Supply voltage is 5.0 V
No load LM7131 power - $9.0 \mathrm{~mA} \times 5.0 \mathrm{~V}=45 \mathrm{~mW}$
Power with load-
Current out is $2.0 \mathrm{~V} / 150 \Omega=13.33 \mathrm{~mA}$
Voltage drop in LM7131 is 5.0 V (supply) - 2.0 V
(output) $=3.0 \mathrm{~V}$
Power dissipation $13.33 \mathrm{~mA} \times 3.0 \mathrm{~V}=40 \mathrm{~mW}$
Total Power $=45 \mathrm{~mW}+40 \mathrm{~mW}=85 \mathrm{~mW}=$ 0.085

Temperature Rise $=0.085 \mathrm{~W} \times 325^{\circ} / \mathrm{W}=27.625$ degrees
Junction temperature at 40° ambient $=40+$ $27.625=67.6225^{\circ}$.
This device is within the 0° to 70° specification limits.
The $325^{\circ} / \mathrm{W}$ value is based on still air and the pc board land pattern shown in this datasheet. Actual power dissipation is sensitive to PC board connections and airflow.

SOT23-5 power dissipation may be increased by airflow or by increasing the metal connected to the pads, especially the center pin (pin number 2, V-) on the left side of the SOT23-5. This pin forms the mounting paddle for the die inside the SOT23-5, and can be used to conduct heat away from the die. The land pad for pin 2 can be made larger and/or connected to power planes in a multilayer board.
Additionally, it should be noted that difficulty in meeting performance specifications for the LM7131 is most common at cold temperatures. While excessively high junction temperatures will degrade LM7131 performance, testing has confirmed that most specifications are met at a junction temperature of $85^{\circ} \mathrm{C}$.
See "Understanding Integrated Circuit Package Power Capabilities", Application Note AN-336, which may be found in the appendix of the Operational Amplifier Databook.

Layout and Power Supply Bypassing

Since the LM7131 is a high speed (over 50 MHz) device, good high speed circuit layout practices should be followed. This should include the use of ground planes, adequate power supply bypassing, removing metal from around the input pins to reduce capacitance, and careful routing of the output signal lines to keep them away from the input pins.
The power supply pins should be bypassed on both the negative and positive supply inputs with capacitors placed close to the pins. Surface mount capacitors should be used for best performance, and should be placed as close to the pins as possible. It is generally advisable to use two capacitors at each supply voltage pin. A small surface mount capacitor with a value of around 0.01 microfarad (10 nF), usually a ceramic type with good RF performance, should be placed closest to the pin. A larger capacitor, in usually in the range of $1.0 \mu \mathrm{~F}$ to $4.7 \mu \mathrm{~F}$, should also be placed near the pin. The larger capacitor should be a device with good RF characteristics and low ESR (equivalent series resistance) for best results. Ceramic and tantalum capacitors generally work well as the larger capacitor.
For single supply operation, if continuous low impedance ground planes are available, it may be possible to use bypass capacitors between the +5 V supply and ground only, and reduce or eliminate the bypass capacitors on the V pin.

Using the LM7131 (Continued)

Capacitive Load Driving

The phase margin of the LM7131 is reduced by driving large capacitive loads. This can result in ringing and slower settling of pulse signals. This ringing can be reduced by placing a small value resistor (typically in the range of $22 \Omega-100 \Omega$) between the LM7131 output and the load. This resistor should be placed as close as practical to the LM7131 output. When driving cables, a resistor with the same value as the characteristic impedance of the cable may be used to isolate the cable capacitance from the output. This resistor will reduce reflections on the cable.

Input Current

The LM7131 has typical input bias currents in the $15 \mu \mathrm{~A}$ to $25 \mu \mathrm{~A}$ range. This will not present a problem with the low input impedances frequently used in high frequency and video circuits. For a typical 75Ω input termination, $20 \mu \mathrm{~A}$ of input current will produce a voltage across the termination resistor of only 1.5 mV . An input impedance of $10 \mathrm{k} \Omega$, however, would produce a voltage of 200 mV , which may be large compared to the signal of interest. Using lower input impedances is recommended to reduce this error source.

Feedback Resistor Values and Feedback Compensation Using large values of feedback resistances (roughly $2 k$) with low gains (such gains of 2) will result in degraded pulse response and ringing. The large resistance will form a pole with the input capacitance of the inverting input, delaying feedback to the amplifier. This will produce overshoot and ringing. To avoid this, the gain setting resistors should be scaled to lower values (below 1k) At higher gains (> 5) larger values of feedback resistors can be used.
Overshoot and ringing of the LM7131 can be reduced by adding a small compensation capacitor across the feed back resistor. For the LM7131 values in pF to tens of pF range are useful initial values. Too large a value will reduce the circuit bandwidth and degrade pulse response.
Since the small stray capacitance from the circuit layout, other components, and specific circuit bandwidth requirements will vary, it is often useful to select final values based on prototypes which are similar in layout to the production circuit boards.

Reflections

The output slew rate of the LM7131 is fast enough to produce reflected signals in many cables and long circuit traces. For best pulse performance, it may be necessary to terminate cables and long circuit traces with their characteristic impedance to reduce reflected signals.
Reflections should not be confused with overshoot. Reflections will depend on cable length, while overshoot will depend on load and feedback resistance and capacitance. When determining the type of problem, often removing or drastically shortening the cable will reduce or eliminate reflections. Overshoot can exist without a cable attached to the op amp output.

Driving Flash A/D Converters (Video Converters)

The LM7131 has been optimized to drive flash analog to digital converters in a +5 V only system. Different flash A/D converters have different voltage input ranges. The LM7131 has enough gain-bandwidth product to amplify standard video level signals to voltages which match the optimum input range of many types of A/D converters.
For example, the popular 1175 type 8-bit flash A/D converter has a preferred input range from 0.6 V to 2.6 V . If the input signal has an active video range (excluding sync levels) of approximately 700 mV , a circuit like the one in Figure 13 can be used to amplify and drive an A/D. The $10 \mu \mathrm{~F}$ capacitor blocks the DC components, and allows the + input of the LM7131 to be biased through R clamp so that the minimum output is equal to V_{RB} of the A/D converter. The gain of the circuit is determined as follows:

$$
\begin{aligned}
& \text { Output Signal Range }=2.6 \mathrm{~V}(\mathrm{~V} \text { top })=0.6 \mathrm{~V}(\mathrm{~V} \text { bot- } \\
& \text { tom })=2.0 \mathrm{~V} \\
& \text { Gain }=\text { Output Signal Range } / \text { Input Signal }=2.857 \\
& =2.00 / 0.700 \\
& \text { Gain }=\left(R_{f} / R_{1}\right)+1=(249 \Omega / 133 \Omega)+1
\end{aligned}
$$

R isolation and C_{f} will be determined by the designer based on the A/D input capacitance and the desired pulse response of the system. The nominal values of 33Ω and 5.6 pF shown in the schematic may be a useful starting point, however, signal levels, A/D converters, and system performance requirements will require modification of these values.
The isolation resistor, R isolation should be placed close to the output of the LM7131, which should be close to the A/D input for best results.
R clamp is connected to a voltage level which will result in the bottom of the video signal matching the Vrb level of the A/D converter. This level will need to be set by clamping the black level of the video signal. The clamp voltage will depend on the level and polarity of the video signal. Detecting the sync signal can be done by a circuit such as the LM1881 Video Sync Separator.
Important Note: This is an illustration of a conceptual use of the LM7131, not a complete design. The circuit designer will need to modify this for inpu protection, sync, and possibly some type of gain control for varying signal levels.
Some A/D converters have wide input ranges where the lower reference level can be adjusted. With these converters, best distortion results are obtained if the lower end of the output range is about 250 mV or more above the V input of the LM7131 more. The upper limit can be as high as 4.0 V with good results.

Driving the ADC12062 + 5V 12-BIT A/D Converter

Figure 14 shows the LM7131 driving a National ADC12062 12 bit analog to digital converter. Both devices can be powered from a single +5 V supply, lowering system complexity and cost. With the lowest signal voltage limited to 300 mV and a 3.8 V peak-to-peak 100 KHz signal, bench tests have shown distortion less than -75 db , signal to noise ratios greater than 66 db , and SINAD (signal to noise + distortion) values greater than 65 db . For information on the latest single supply analog-to-digital converters, please contact your National Semiconductor representative.

Using the LM7131 (Continued)

FIGURE 13

FIGURE 14. Buffering the Input with an LM7131 High Speed Op Amp

Using the LM7131 (Continued)

CCD Amplifiers

The LM7131 has enough gain bandwidth to amplify low level signals from a CCD or similar image sensor and drive a flash analog-to-digital converter with one amplifier stage.
Signals from CCDs, which are used in scanners, copiers, and digital cameras, often have an output signal in the 100 $\mathrm{mV}-300 \mathrm{mV}$ range. See Figure 15 for a conceptual diagram. With a gain of 6 the output to the flash analog-todigital converter is 1.8 V , matching 90% of the converter's 2 V input range. With a -3 db bandwidth of 70 MHz for a gain of +1 , the bandwidth at a gain of 6 will be 11.6 MHz . This 11.6 MHz bandwidth will result in a time constant of about 13.6 ns . This will allow the output to settle to 7 bits of accuracy within 4.9 time constants, or about 66 ns . Slewing time for a 1.8 V step will be about 12 ns . The total slewing and settling time will be about 78 ns of the 150 ns pixel valid time. This will leave about 72 ns total for the flash converter signal acquisition time and tolerance for timing signals.
For scanners and copiers with moving scan bars, the SOT23-5 package is small enough to be placed next to the light sensor. The LM7131 can drive a cable to the main electronics section from the scan bar. This can reduce noise pickup by amplifying the signal before sending on the cable.

A/D Reference Drivers

The LM7131's output and drive capability make it a good choice for driving analog-to-digital references which have suddenly changing loads. The small size of the SOT23-5 package allow the LM7131 to be placed very close to the A/D reference pin, maximizing response. The small size avoids the penalty of increased board space. Often the SOT23-5 package is small enough that it can fit in space used by the large capacitors previously attached to the A / D reference. By acting as a buffer for a reference voltage, noise pickup can be reduced and the accuracy may be increased.

For additional space savings, the LM4040 precision voltage reference is available in a tiny SOT23-3 package.

Video Gain of +2

The design of the LM7131 has been optimized for gain of +2 video applications. Typical values for differential gain and phase are 0.25% differential gain and 0.75 degree differential phase. See Figure 12.

Improving Video Performance

Differential gain and phase performance can be improved by keeping the active video portion of the signal above 300 mV . The sync signal can go below 300 mV without affecting the video quality. If it is possible to $A C$ couple the signal and shift the output voltage slightly higher, much better video performance is possible. For a +5 V single supply, an output range between 2.0 V and 3.0 V can have a differential gain of 0.07% and differential phase of 0.3 degree when driving a 150Ω load. For a +3 V single supply, the output should be between 1.0 V and 2.0 V .

Cable Driving with +5 V Supplies

The LM7131 can easily drive a back-terminated 75Ω video cable (150Ω load) when powered by a +5 V supply. See Figures 2, 3 and 4. This makes it a good choice for video output for portable equipment, personal digital devices, and desktop video applications.
The LM7131 can also supply +2.00 V to a 50Ω load to ground, making it useful as driver in 50Ω systems such as portable test equipment.

Cable Driving with + 3V Supplies
The LM7131 can drive 150Ω to 2.00 V when supplied by a $3 V$ supply. This $3 V$ performance means that the LM7131 is useful in battery powered video applications, such as camcorders, portable video mixers, still video cameras, and portable scanners.

FIGURE 15. CCD Amplifier

Using the LM7131 (Continued)

Audio and High Frequency Signal Processing

The LM7131 is useful for high fidelity audio and signal processing. A typical LM7131 is capable of driving 2 V across 150Ω (referenced to ground) at less than 0.1% distortion at 4 MHz when powered by a single 5 V supply.

Use with 2.5V Virtual Ground Systems
 with +5 V Single Supply Power

Many analog systems which must work on a single +5 V supply use a 'virtual ground' - a reference voltage for the signal processing which is usually between +5 V and 0 V . This virtual ground is usually halfway between the top and bottom supply rails. This is usually +2.5 V for +5 V systems and +1.5 V for +3 V systems.
The LM7131 can be used in single supply/virtual ground systems driving loads referenced to 2.5 V . The output swing specifications in the data sheet show the tested voltage limits for driving a 150Ω load to a virtual ground supply for +3 V and +5 V . A look at the output swing specifications shows that for heavy loads like 150 ohms, the output will swing as close as one diode drop (roughly, 0.7 V) to the supply rail. This leaves a relatively wide range for +5 V systems and a somewhat narrow range for +3 V systems. One way to increase this output range is to have the output load referenced to ground-this will allow the output to swing lower. Another is to use higher load impedances. The output swing specifications show typical numbers for swing with loads of 600Ω to ground. Note that these typical numbers are similar to those for a 150Ω load. These typical numbers are an indication of the maximum DC performance of the LM7131.
The sinking output of the LM7131 is somewhat lower than the amplifier's sourcing capability. This means that the LM7131 will not drive as much current into a load tied to 2.5 V as it will drive into a load tied to OV .

Good AC performance will require keeping the output further away from the supply rails. For a +5 V supply and relatively high impedance load (analog-to-digital converter input) the following are suggested as an initial starting range for achieving high (> 60 dB) AC accuracy
Upper output level-
Approximately 0.8 V to 1 V below the positive ($\mathrm{V}+$) rail. Lower output level-
Approximately $200 \mathrm{mV}-300 \mathrm{mV}$ above the negative rail.
The LM7131 very useful in virtual ground systems as an output device for output loads which are referenced to 0 V or the lower rail. It is also useful as a driver for capacitive loads, such as sample and hold circuits, and audio analog to digital converters. If fast amplifiers with rail-to-rail output ranges are needed, please see the National Semiconductor LM6142 datasheet.

D/A Output Amplifier

The LM7131 can be used as an output amplifier for fast digital-to-analog converters. When using the LM7131 with converters with an output voltage range which may exceed the differential input voltage limit of $\pm 2 \mathrm{~V}$, it may be necessary to add protection diodes to the inputs. See Figure 16. For high speed applications, it may be useful to consider low capacitance schottky diodes. Additional feedback capacitance may be needed to control ringing due to the additional input capacitance from the D/A and protection diodes. When used with current output D/As, the input bias currents may produce a DC offset in the output. This offset may be canceled by a resistor between the positive input and ground.

Spice Macromodel

A SPICE macromodel of the LM7131 and many other National Semiconductor op amps is available at no charge from your National Semiconductor representative.

FIGURE 16. D/A Ouput Amplifier

SOT-23-5 Tape and Reel Specification

TAPE FORMAT

Tape Section	\# Cavaties	Cavity Status	Cover Tape Status
Leader (Start End)	$0(\mathrm{~min})$	Empty	Sealed
	$75(\mathrm{~min})$	Empty	Sealed
Carrier	3000	Filled	Sealed
	250	Filled	Sealed
Trailer (Hub End)	$125(\mathrm{~min})$	Empty	Sealed
	$0(\mathrm{~min})$	Empty	Sealed

TAPE DIMENSIONS

$\mathbf{8 m m}$	$\mathbf{7 . 0 0}$	$\mathbf{0 . 0 5 9}$	$\mathbf{0 . 5 1 2}$	0.795	2.165	$0.331+0.059 /-0.000$	0.567	$\mathrm{~W} 1+0.078 /-0.039$
	330.00	1.50	13.00	20.20	55.00	$8.4+\mathbf{1 . 5 0 / - 0 . 0 0}$	14.40	$\mathrm{~W} 1+2.00 /-1.00$
Tape Size	A	B	C	D	N	W 1	W 2	W

LM7171 Very High Speed High Output Current Voltage Feedback Amplifier

General Description

The LM7171 is a voltage feedback amplifier optimally designed for $A_{V}>1$ operation. It provides a very high slew rate at $4100 \mathrm{~V} / \mu \mathrm{s}$ and a wide gain-bandwidth product bandwidth of 200 MHz while consuming only 6.5 mA of supply current. It is ideal for video and high speed signal processing applications such as ultrasound and pulse amplifiers. With 100 mA output current, the LM7171 can be used for video distribution, transformer driver and laser diode driver. The $\pm 15 \mathrm{~V}$ power supplies allow for large signal swings and give greater dynamic range and signal-to-noise ratio. The LM7171 offers low SFDR and THD, ideal for ADC/DAC systems. In addition, the LM7171 is specified for $\pm 5 \mathrm{~V}$ operation for portable applications.
The LM7171 is built on Nationals advanced VIPTM III (Vertically integrated PNP) complementary bipolar process.

Features (Typical Unless Otherwise Noted)

- Easy-To-Use Voltage Feedback Topology
- Very High Slew Rate
$4100 \mathrm{~V} / \mu \mathrm{s}$
- Wide Gain-Bandwidth Product 200 MHz

■ -3 dB Frequency @ $\mathrm{A}_{\mathrm{V}}=+2220 \mathrm{MHz}$

- Low Supply Current 6.5 mA
- High Open Loop Gain 85 dB
- High Output Current 100 mA
- Differential Gain and Phase $0.01 \%, 0.02^{\circ}$
- Specified for $\pm 15 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ Operation

Applications

■ HDSL and ADSL Drivers

- Multimedia Broadcast Systems
- Professional Video Cameras
- Video Amplifiers
- Copiers/Scanners/Fax
- HDTV Amplifiers
- Pulse Amplifiers and Peak Detectors
- CATV/Fiber Optics Signal Processing

Typical Performance

Connection Diagrams
8-Pin DIP/SO

TL/H/12351-1
Top View

16-Pin Wide Body SO

Ordering Information

Package	Temperature Range		Transport Media	NSC Drawing
	$\begin{gathered} \text { Industrial } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		
8-Pin DIP	LM7171AIN, LM7171BIN		Rails	N08E
8-Pin CDIP		5962-9553601QPA*	Rails	J08A
8-Pin Small Outline	LM7171AIM, LM7171BIM		Rails	M08A
	LM7171AIMX, LM7171BIMX		Tape and Reel	
16-Pin Small Outline	LM7171AIWM, LM7171BIWM		Rails	M16B
	LM7171AWMX, LM7171BWMX		Tape and Reel	

[^12]
LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

General Description

The LM13600 series consists of two current controlled transconductance amplifiers each with differential inputs and a push-pull output. The two amplifiers share common supplies but otherwise operate independently. Linearizing diodes are provided at the inputs to reduce distortion and allow higher input levels. The result is a 10 dB signal-tonoise improvement referenced to 0.5 percent THD. Controlled impedance buffers which are especially designed to complement the dynamic range of the amplifiers are provided.

Features

- g_{m} adjustable over 6 decades
- Excellent gm_{m} linearity
- Excellent matching between amplifiers
- Linearizing diodes
- Controlled impedance buffers
- High output signal-to-noise ratio

Applications

- Current-controlled amplifiers
- Current-controlled impedances
- Current-controlled filters
- Current-controlled oscillators
- Multiplexers
- Timers
- Sample and hold circuits

Connection Diagram

Dual-In-Line and Small Outline Packages

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (Note 1)
LM13600
LM13600A

Power Dissipation (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Differential Input Voltage
$36 V_{D C}$ or $\pm 18 \mathrm{~V}$
$44 \mathrm{~V}_{\mathrm{DC}}$ or $\pm 22 \mathrm{~V}$
570 mW
$\pm 5 \mathrm{~V}$
Diode Bias Current (ld)
Amplifier Bias Current (IABC)
Output Short Circuit Duration
Buffer Output Current (Note 3)

Operating Temperature Range
DC Input Voltage
Storage Temperature Range
Soldering Information
Dual-In-Line Package Soldering (10 seconds) $260^{\circ} \mathrm{C}$
Small Outline Package $\begin{array}{ll}\text { Vapor Phase (} 60 \text { seconds) } & 215^{\circ} \mathrm{C} \\ 220^{\circ} \mathrm{C}\end{array}$ Infrared (15 seconds) $220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics (Note 4)

Parameter	Conditions	LM13600			LM13600A			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (Vos)	Over Specified Temperature Range $I_{\mathrm{ABC}}=5 \mu \mathrm{~A}$		$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	4 4		0.4 0.3	$\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$	mV mV mV
$V_{\text {OS }}$ Including Diodes	Diode Bias Current (I_{D}) $=500 \mu \mathrm{~A}$		0.5	5		0.5	2	mV
Input Offset Change	$5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A}$		0.1	3		0.1	1	mV
Input Offset Current			0.1	0.6		0.1	0.6	$\mu \mathrm{A}$
Input Bias Current	Over Specified Temperature Range		$\begin{gathered} 0.4 \\ 1 \end{gathered}$	$\begin{aligned} & 5 \\ & 8 \end{aligned}$		$\begin{gathered} 0.4 \\ 1 \end{gathered}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Forward Transconductance (g_{m})	Over Specified Temperature Range	$\begin{array}{r} 6700 \\ 5400 \\ \hline \end{array}$	9600	13000	$\begin{aligned} & 7700 \\ & 4000 \\ & \hline \end{aligned}$	9600	12000	$\mu \mathrm{mho}$ $\mu \mathrm{mho}$
gm Tracking			0.3			0.3		dB
Peak Output Current	$\begin{aligned} & R_{L}=0, I_{A B C}=5 \mu \mathrm{~A} \\ & R_{L}=0, I_{A B C}=500 \mu \mathrm{~A} \\ & R_{L}=0, \text { Over Specified Temp Range } \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ 500 \end{gathered}$	650	$\begin{gathered} 3 \\ 350 \\ 300 \end{gathered}$	$\begin{gathered} 5 \\ 500 \end{gathered}$	$\begin{gathered} 7 \\ 650 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Peak Output Voltage Positive Negative	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty, 5 \mu \mathrm{~A} \leq I_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=\infty, 5 \mu \mathrm{~A} \leq I_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & +12 \\ & -12 \end{aligned}$	$\begin{aligned} & +14.2 \\ & -14.4 \end{aligned}$		$\begin{array}{r} +12 \\ -12 \\ \hline \end{array}$	$\begin{array}{r} +14.2 \\ -14.4 \end{array}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Supply Current	$\mathrm{I}_{\text {ABC }}=500 \mu \mathrm{~A}$, Both Channels		2.6			2.6		mA
$V_{\text {OS }}$ Sensitivity Positive Negative	$\begin{aligned} & \Delta V_{\text {OS }} / \Delta V+ \\ & \Delta V_{\text {OS }} / \Delta v- \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} / \mathrm{V} \\ & \mu \mathrm{~V} / \mathrm{V} \end{aligned}$
CMRR		80	110		80	110		dB
Common Mode Range		± 12	± 13.5		± 12	± 13.5		V
Crosstalk	Referred to Input (Note 5) $20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}$		100			100		dB
Differential Input Current	$\mathrm{I}_{\text {ABC }}=0$, Input $= \pm 4 \mathrm{~V}$		0.02	100		0.02	10	nA
Leakage Current	$\mathrm{I}_{\mathrm{ABC}}=0$ (Refer to Test Circuit)		0.2	100		0.2	5	nA

Electrical Characteristics (Note 4) (Continued)

Parameter	Conditions	LM13600			LM13600A			Units
		Min	Typ	Max	Min	Typ	Max	
Input Resistance		10	26		10	26		k Ω
Open Loop Bandwidth			2			2		MHz
Slew Rate	Unity Gain Compensated		50			50		$\mathrm{V} / \mu \mathrm{s}$
Buffer Input Current	(Note 5), Except $l_{\text {ABC }}=0 \mu \mathrm{~A}$		0.2	0.4		0.2	0.4	$\mu \mathrm{A}$
Peak Buffer Output Voltage	(Note 5)	10			10			V

Note 1: For selections to a supply voltage above $\pm 22 \mathrm{~V}$, contact factory.
Note 2: For operating at high temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in still air.
Note 3: Buffer output current should be limited so as to not exceed package dissipation.
Note 4: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, amplifier bias current ($\mathrm{l}_{\mathrm{ABC}}$) $=500 \mu \mathrm{~A}$, pins 2 and 15 open unless otherwise specified. The inputs to the buffers are grounded and outputs are open.
Note 5: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{ABC}}=500 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{OUT}}=5 \mathrm{k} \Omega$ connected from the buffer output to $-\mathrm{V}_{\mathrm{S}}$ and the input of the buffer is connected to the transconductance amplifier output.

Schematic Diagram

One Operational Transconductance Amplifier

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Circuit Description

The differential transistor pair Q_{4} and Q_{5} form a transconductance stage in that the ratio of their collector currents is defined by the differential input voltage according to the transfer function:

$$
\begin{equation*}
V_{I N}=\frac{k T}{q} \ln \frac{I_{5}}{I_{4}} \tag{1}
\end{equation*}
$$

where V_{IN} is the differential input voltage, kT / q is approximately 26 mV at $25^{\circ} \mathrm{C}$ and I_{5} and I_{4} are the collector currents of transistors Q_{5} and Q_{4} respectively. With the exception of Q_{3} and Q_{13}, all transistors and diodes are identical in size. Transistors Q_{1} and Q_{2} with Diode D_{1} form a current mirror which forces the sum of currents I_{4} and I_{5} to equal $I_{A B C}$;

$$
\begin{equation*}
l_{4}+l_{5}=I_{A B C} \tag{2}
\end{equation*}
$$

where $I_{A B C}$ is the amplifier bias current applied to the gain pin.
For small differential input voltages the ratio of I_{4} and I_{5} approaches unity and the Taylor series of the in function can be approximated as:

$$
\begin{align*}
& \frac{k T}{q} \ln \frac{I_{5}}{I_{4}} \approx \frac{k T}{q} \frac{I_{5}-I_{4}}{I_{4}} \tag{3}\\
& I_{4} \approx I_{5} \approx \frac{I_{A B C}}{2} \\
& V_{\text {IN }}\left[\frac{I_{A B C}}{2 k T}\right]=I_{5}-I_{4} \tag{4}
\end{align*}
$$

Collector currents I_{4} and I_{5} are not very useful by themselves and it is necessary to subtract one current from the
other. The remaining transistors and diodes form three current mirrors that produce an output current equal to I_{5} minus I_{4} thus:

$$
\begin{equation*}
V_{I N}\left[\frac{I_{\mathrm{ABC}} \mathrm{q}}{2 \mathrm{kT}}\right]=\mathrm{I}_{\mathrm{OUT}} \tag{5}
\end{equation*}
$$

The term in brackets is then the transconductance of the amplifier and is proportional to I_{ABC}.

Linearizing Diodes

For differential voltages greater than a few millivolts, Equation 3 becomes less valid and the transconductance becomes increasingly nonlinear. Figure 1 demonstrates how the internal diodes can linearize the transfer function of the amplifier. For convenience assume the diodes are biased with current sources and the input signal is in the form of current I_{s}. Since the sum of I_{4} and I_{5} is $I_{A B C}$ and the difference is lout, currents I_{4} and I_{5} can be written as follows:

$$
I_{4}=\frac{I_{\mathrm{ABC}}}{2}-\frac{\mathrm{I}_{\mathrm{OUT}}}{2}, I_{5}=\frac{I_{\mathrm{ABC}}}{2}+\frac{\mathrm{I}_{\mathrm{OUT}}}{2}
$$

Since the diodes and the input transistors have identical geometries and are subject to similar voltages and temperatures, the following is true:

$$
\begin{align*}
& \frac{k T}{q} \ln \frac{\frac{I_{D}}{2}+I_{S}}{\frac{I_{D}}{2}-I_{S}}=\frac{k T}{q} \ln \frac{\frac{I_{A B C}}{2}+\frac{I_{\text {out }}}{2}}{\frac{I_{A B C}}{2}-\frac{I_{\text {out }}}{2}} \\
& \therefore I_{\text {out }}=I_{S}\left(\frac{2 I_{A B C}}{I_{D}}\right) \quad \text { for }\left|I_{S}\right|<\frac{I_{D}}{2} \tag{6}
\end{align*}
$$

FIGURE 1. Linearizing Diodes

Linearizing Diodes (Continued)

Notice that in deriving Equation 6 no approximations have been made and there are no temperature-dependent terms. The limitations are that the signal current not exceed $\mathrm{I}_{\mathrm{D}} / 2$ and that the diodes be biased with currents. In practice, replacing the current sources with resistors will generate insignificant errors.

Controlled Impedance Buffers

The upper limit of transconductance is defined by the maximum value of $\mathrm{I}_{\mathrm{ABC}}(2 \mathrm{~mA})$. The lowest value of $\mathrm{I}_{\mathrm{ABC}}$ for which the amplifier will function therefore determines the overall dynamic range. At very low values of $\mathrm{I}_{\mathrm{ABC}}$, a buffer which has very low input bias current is desirable. An FET follower satisfies the low input current requirement, but is somewhat non-linear for large voltage swing. The controlled impedance buffer is a Darlington which modifies its input bias current to suit the need. For low values of $I_{A B C}$, the buffer's input current is minimal. At higher levels of $\mathrm{I}_{\mathrm{ABC}}$, transistor Q_{3} biases up Q_{12} with a current proportional to $I_{A B C}$ for fast slew rate. When $I_{A B C}$ is changed, the DC level of the Darlington output buffer will shift. In audio applications where $I_{A B C}$ is changed suddenly, this shift may produce an audible "pop". For these applications the LM13700 may produce superior results.

Applications-Voltage Controlled Amplifiers

Figure 2 shows how the linearizing diodes can be used in a voltage-controlled amplifier. To understand the input biasing, it is best to consider the $13 \mathrm{k} \Omega$ resistor as a current source and use a Thevenin equivalent circuit as shown in Figure 3. This circuit is similar to Figure 1 and operates the same. The potentiometer in Figure 2 is adjusted to minimize the effects of the control signal at the output.
For optimum signal-to-noise performance, $I_{\text {ABC }}$ should be as large as possible as shown by the Output Voltage vs. Amplifier Bias Current graph. Larger amplitudes of input signal also improve the S / N ratio. The linearizing diodes help here by allowing larger input signals for the same output distortion as shown by the Distortion vs. Differential Input Voltage graph. S/N may be optimized by adjusting the magnitude of the input signal via R_{IN} (Figure 2) until the output distortion is below some desired level. The output voltage swing can then be set at any level by selecting R_{L}.
Although the noise contribution of the linearizing diodes is negligible relative to the contribution of the amplifier's internal transistors, I_{D} should be as large as possible. This minimizes the dynamic junction resistance of the diodes (r_{e}) and maximizes their linearizing action when balanced against $R_{\text {IN }}$. A value of 1 mA is recommended for I_{D} unless the specific application demands otherwise.

FIGURE 2. Voltage Controlled Amplifier
TL/H/7980-9

FIGURE 3. Equivalent VCA Input Circuit

Stereo Volume Control

The circuit of Figure 4 uses the excellent matching of the two LM13600 amplifiers to provide a Stereo Volume Control with a typical channel-to-channel gain tracking of 0.3 dB . Rp is provided to minimize the output offset voltage and may be replaced with two 510Ω resistors in AC-coupled applications. For the component values given, amplifier gain is derived for Figure 2 as being:

If V_{C} is derived from a second signal source then the circuit becomes an amplitude modulator or two-quadrant multiplier as shown in Figure 5, where:

$$
I_{O}=\frac{-2 I_{S}}{I_{D}}\left(l_{A B C}\right)=\frac{-2 I_{S}}{I_{D}} \frac{V_{I_{N} 2}}{R_{C}}-\frac{2 I_{S}}{I_{D}} \frac{(V-+1.4 V)}{R_{C}}
$$

$$
\frac{V_{O}}{V_{I N}}=940 \times I_{A B C}
$$

FIGURE 4. Stereo Volume Control

TL/H/7980-12
FIGURE 5. Amplitude Modulator

Stereo Volume Control (Continued)

The constant term in the above equation may be cancelled by feeding is $\times \mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{C}} / 2\left(\mathrm{~V}^{-}+1.4 \mathrm{~V}\right)$ into l . The circuit of Figure 6 adds R_{M} to provide this current, resulting in a fourquadrant multiplier where R_{C} is trimmed such that $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{IN} 2}=0 \mathrm{~V}$. R_{M} also serves as the load resistor for l O . Noting that the gain of the LM13600 amplifier of Figure 3 may be controlled by varying the linearizing diode current I_{D} as well as by varying $\left.\right|_{\text {ABC }}$, Figure 7 shows an AGC Amplifier using this approach. As V_{0} reaches a high enough amplitude ($3 \mathrm{~V}_{\mathrm{BE}}$) to turn on the Darlington transistors and the linearizing diodes, the increase in I_{D} reduces the amplifier gain so as to hold V_{O} at that level.

Voltage Controlled Resistors

An Operational Transconductance Amplifier (OTA) may be used to implement a Voltage Controlled Resistor as shown
in Figure 8. A signal voltage applied at R_{X} generates a $V_{I N}$ to the LM13600 which is then multiplied by the g_{m} of the amplifier to produce an output current, thus:

$$
R_{X}=\frac{R+R_{A}}{g_{m} R_{A}}
$$

where $\mathrm{g}_{\mathrm{m}} \approx 19.2 \mathrm{I}_{\mathrm{ABC}}$ at $25^{\circ} \mathrm{C}$. Note that the attenuation of V_{O} by R and R_{A} is necessary to maintain $V_{I N}$ within the linear range of the LM13600 input.
Figure 9 shows a similar VCR where the linearizing diodes are added, essentially improving the noise performance of the resistor. A floating VCR is shown in Figure 10, where each "end" of the "resistor" may be at any voltage within the output voltage range of the LM13600.

Voltage Controlled Filters

OTA's are extremely useful for implementing voltage controlled filters, with the LM13600 having the advantage that the required buffers are included on the I.C. The VC Lo-Pass Filter of Figure 11 performs as a unity-gain buffer amplifier at frequencies below cut-off, with the cut-off frequency being the point at which $\mathrm{X}_{\mathrm{C}} / \mathrm{g}_{\mathrm{m}}$ equals the closed-loop gain of (R / R_{A}). At frequencies above cut-off the circuit provides a single RC roll-off (6 dB per octave) of the input signal amplitude with a -3 dB point defined by the given equation,
where g_{m} is again $19.2 \times I_{A B C}$ at room temperature. Figure 12 shows a VC High-Pass Filter which operates in much the same manner, providing a single RC roll-off below the defined cut-off frequency.
Additional amplifiers may be used to implement higher order filters as demonstrated by the two-pole Butterworth Lo-Pass Filter of Figure 13 and the state variable filter of Figure 14. Due to the excellent g_{m} tracking of the two amplifiers and the varied bias of the buffer Darlingtons, these filters perform well over several decades of frequency.

TL/H/7980-16
FIGURE 9. Voltage Controlled Resistor with Linearizing Diodes

TL/H/7980-17
FIGURE 10. Floating Voltage Controlled Resistor

TL/H/7980-18
FIGURE 11. Voltage Controlled Low-Pass Filter

Voltage Controlled Filters (Continued)

FIGURE 13. Voltage Controlled 2-Pole Butterworth Lo-Pass Filter

TL/H/7980-21

Voltage Controlled Oscillators

The classic Triangular/Square Wave VCO of Figure 15 is one of a variety of Voltage Controlled Oscillators which may be built utilizing the LM13600. With the component values shown, this oscillator provides signals from 200 kHz to below 2 Hz as I_{C} is varied from 1 mA to 10 nA . The output amplitudes are set by $I_{A} \times R_{A}$. Note that the peak differential input voltage must be less than 5 V to prevent zenering the inputs.
A few modifications to this circuit produce the ramp/pulse VCO of Figure 16. When $\mathrm{V}_{\mathrm{O} 2}$ is high, I_{F} is added to I_{C} to
increase amplifier A1's bias current and thus to increase the charging rate of capacitor C . When $\mathrm{V}_{\mathrm{O} 2}$ is low, I_{F} goes to zero and the capacitor discharge current is set by I_{c}.
The VC Lo-Pass Filter of Figure 11 may be used to produce a high-quality sinusoidal VCO. The circuit of Figure 16 employs two LM13600 packages, with three of the amplifiers configured as lo-pass filters and the fourth as a limiter/inverter. The circuit oscillates at the frequency at which the loop phase-shift is 360° or 180° for the inverter and 60° per filter stage. This VCO operates from 5 Hz to 50 kHz with less than 1\% THD.

TL/H/7980-22
FIGURE 15. Triangular/Square-Wave VCO

Voltage Controlled Oscillators (Continued)

FIGURE 17. Sinusoidal VCO

FIGURE 18. Single Amplifier VCO
Figure 18 shows how to build a VCO using one amplifier when the other amplifier is needed for another function.

Additional Applications

Figure 19 presents an interesting one-shot which draws no power supply current until it is triggered. A positive-going trigger pulse of at least 2 V amplitude turns on the amplifier through R_{B} and pulls the non-inverting input high. The amplifier regenerates and latches its output high until capacitor C charges to the voltage level on the non-inverting input. The output then switches low, turning off the amplifier and discharging the capacitor. The capacitor discharge rate is increased by shorting the diode bias pin to the inverting input so than an additional discharge current flows through D_{1} when the amplifier output switches low. A special feature of this timer is that the other amplifier, when biased from V_{O}, can perform another function and draw zero stand-by power as well.

The operation of the multiplexer of Figure 20 is very straightforward. When $A 1$ is turned on it holds V_{O} equal to $\mathrm{V}_{\mathrm{IN} 1}$ and when A 2 is supplied with bias current then it controls V_{O}. C_{C} and R_{C} serve to stabilize the unity-gain configuration of amplifiers A1 and A2. The maximum clock rate is limited to about 200 kHz by the LM13600 slew rate into 150 pF when the $\left(\mathrm{V}_{\mathrm{IN} 1}-\mathrm{V}_{\mathrm{IN} 2}\right)$ differential is at its maximum allowable value of 5 V .
The Phase-Locked Loop of Figure 21 uses the four-quadrant multiplier of Figure 6 and the VCO of Figure 18 to produce a PLL with a $\pm 5 \%$ hold-in range and an input sensitivity of about 300 mV .

TL/H/7980-26
FIGURE 19. Zero Stand-By Power Timer

Additional Applications (Continued)

FIGURE 20. Multiplexer

The Schmitt Trigger of Figure 22 uses the amplifier output current into R to set the hysteresis of the comparator; thus $\mathrm{V}_{\mathrm{H}}=2 \times \mathrm{R} \times \mathrm{I}_{\mathrm{B}}$. Varying I_{B} will produce a Schmitt Trigger with variable hysteresis.
Figure 23 shows a Tachometer or Frequency-to-Voltage converter. Whenever A1 is toggled by a positive-going input, an amount of charge equal to $\left(V_{H}-V_{L}\right) C_{t}$ is sourced into C_{f} and R_{t}. This once-per-cycle charge is then balanced by the current of V_{O} / R_{t}. The maximum $f_{I N}$ is limited by the amount of time required to charge C_{t} from V_{L} to V_{H} with a current of I_{B}, where V_{L} and V_{H} represent the maximum low and maxi-
mum high output voltage swing of the LM13600. D1 is added to provide a discharge path for C_{t} when $A 1$ switches low. The Peak Detector of Figure 24 uses A2 to turn on A1 whenever $\mathrm{V}_{\text {IN }}$ becomes more positive than V_{O}. A1 then charges storage capacitor C to hold V_{O} equal to $V_{I N} P K$. One precaution to observe when using this circuit: the Darlington transistor used must be on the same side of the package as A2 since the A1 Darlington will be turned on and off with A1. Pulling the output of A2 low through D1 serves to turn off A1 so that V_{O} remains constant.

Additional Applications (Continued)

TL/H/7980-29
FIGURE 22. Schmitt Trigger

TL/H/7980-30
FIGURE 23. Tachometer

TL/H/7980-31
FIGURE 24. Peak Detector and Hold Circuit

Additional Applications (Continued)

The Sample-Hold circuit of Figure 25 also requires that the Darlington buffer used be from the other (A2) half of the package and that the corresponding amplifier be biased on continuously. The Ramp-and-Hold of Figure 26 sources I_{B} into capacitor C whenever the input to A 1 is brought high, giving a ramp-rate of about $1 \mathrm{~V} / \mathrm{ms}$ for the component values shown.
The true-RMS converter of Figure 27 is essentially an automatic gain control amplifier which adjusts its gain such that the AC power at the output of amplifier A1 is constant. The output power of amplifier A1 is monitored by squaring amplifier A2 and the average compared to a reference voltage with amplifier A3. The output of A3 provides bias current to the diodes of A1 to attenuate the input signal. Because the output power of A1 is held constant, the RMS value is constant and the attentuation is directly proportional to the RMS value of the input voltage. The attenuation is also proportional to the diode bias current. Amplifier A4 adjusts the ratio of currents through the diodes to be equal and therefore the voltage at the output of A4 is proportional to the RMS value of the input voltage. The calibration potentiometer is set such that V_{O} reads directly in RMS volts.

FIGURE 25. Sample-Hold Circuit

FIGURE 26. Ramp and Hold

FIGURE 27. True RMS Converter

Additional Applications (Continued)

The circuit of Figure 28 is a voltage reference of variable temperature coefficient. The $100 \mathrm{k} \Omega$ potentiometer adjusts the output voltage which has a positive TC above 1.2 V , zero TC at about 1.2 V and negative TC below 1.2 V . This is accomplished by balancing the TC of the A2 transfer function against the complementary TC of D1.
The log amplifier of Figure 29 responds to the ratio of currents through buffer transistors Q3 and Q4. Zero temperature dependence for $V_{\text {OUT }}$ is ensured because the TC of the A2 transfer function is equal and opposite to the TC of the logging transistors Q3 and Q4.
The wide dynamic range of the LM13600 allows easy control of the output pulse width in the Pulse Width Modulator of Figure 30.
For generating $l_{A B C}$ over a range of 4 to 6 decades of current, the system of Figure 31 provides a logarithmic current out for a linear voltage in.
Since the closed-loop configuration ensures that the input to A 2 is held equal to OV , the output current of A 1 is equal to $I_{3}=-V_{C} / R_{C}$.
The differential voltage between Q1 and Q2 is attenuated by the R1, R2 network so that A1 may be assumed to be
operating within its linear range. From equation (5), the input voltage to A1 is:

$$
\mathrm{V}_{\mathrm{IN}} 1=\frac{-2 k T l_{3}}{\mathrm{ql}_{2}}=\frac{2 k T V_{\mathrm{C}}}{\mathrm{ql}_{2} R_{\mathrm{C}}}
$$

The voltage on the base of Q1 is then

$$
V_{B} 1=\frac{\left(R_{1}+R_{2}\right) V_{I N} 1}{R_{1}}
$$

The ratio of the Q1 and Q2 collector currents is defined by:

$$
V_{\mathrm{B} 1}=\frac{k T}{\mathrm{q}} \ln \frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{C} 1}} \approx \frac{\mathrm{kT}}{\mathrm{q}} \ln \frac{\mathrm{I}_{\mathrm{ABC}}}{\mathrm{I}_{1}}
$$

Combining and solving for $\mathrm{I}_{\mathrm{ABC}}$ yields:

$$
I_{A B C}=I_{1} \exp \left[\frac{2\left(R_{1}+R_{2}\right) V_{C}}{R_{1} I_{2} R_{C}}\right]
$$

This logarithmic current can be used to bias the circuit of Figure 4 provide a temperature independent stereo attenuation characteristic.

FIGURE 28. Delta VBE Reference

Additional Applications (Continued)

TL/H/7980-37
FIGURE 30. Pulse Width Modulator

TL/H/7980-38
FIGURE 31. Logarithmic Current Source

LM13700/LM13700A
 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

General Description

The LM13700 series consists of two current controlled transconductance amplifiers, each with differential inputs and a push-pull output. The two amplifiers share common supplies but otherwise operate independently. Linearizing diodes are provided at the inputs to reduce distortion and allow higher input levels. The result is a 10 dB signal-tonoise improvement referenced to 0.5 percent THD. High impedance buffers are provided which are especially designed to complement the dynamic range of the amplifiers. The output buffers of the LM13700 differ from those of the LM13600 in that their input bias currents (and hence their output DC levels) are independent of $\mathrm{I}_{\mathrm{ABC}}$. This may result in performance superior to that of the LM13600 in audio applications.

Features

- g_{m} adjustable over 6 decades
- Excellent g_{m} linearity
- Excellent matching between amplifiers
- Linearizing diodes
- High impedance buffers
- High output signal-to-noise ratio

Applications

- Current-controlled amplifiers
- Current-controlled impedances
- Current-controlled filters
- Current-controlled oscillators
- Multiplexers
- Timers
- Sample-and-hold circuits

Connection Diagram

Dual In-Line and Small Outline Packages

TL/H/7981-2
Top View
Order Number LM13700M, LM13700N or LM13700AN
See NS Package Number M16A or N16A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National
Semiconductor
Office/Distributors for availability and specifications.
Supply Voltage (Note 1)
LM13700
LM13700A
Power Dissipation (Note 2) $T_{A}=25^{\circ} \mathrm{C}$
LM13700N, LM13700AN
Differential Input Voltage
Diode Bias Current (ID)
Amplifier Bias Current (IABC)
Vid or $\pm 18 \mathrm{~V}$
Output Short Circuit Duration
Buffer Output Current (Note 3)

Operating Temperature Range
LM13700N, LM13700AN
DC Input Voltage
Storage Temperature Range
Soldering Information
Dual-In-Line Package. Soldering (10 sec .) Small Outline Package Vapor Phase (60 sec .) Infrared (15 sec .)
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics (Note 4)

Parameter	Conditions	LM13700			LM13700A			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (Vos)	Over Specified Temperature Range $I_{\mathrm{ABC}}=5 \mu \mathrm{~A}$		0.4 0.3	4 4		$\begin{aligned} & 0.4 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$	mV
$V_{\text {OS }}$ Including Diodes	Diode Bias Current (ld) = 500 $\mu \mathrm{A}$		0.5	5		0.5	2	mV
Input Offset Change	$5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A}$		0.1	3		0.1	1	mV
Input Offset Current			0.1	0.6		0.1	0.6	$\mu \mathrm{A}$
Input Bias Current	Over Specified Temperature Range		0.4	5		0.4	5	$\mu \mathrm{A}$
			1	8		1.	7	
Forward Transconductance (g_{m})		6700	9600	13000	7700	9600	12000	$\mu \mathrm{mho}$
	Over Specified Temperature Range	5400			4000			
gm_{m} Tracking			0.3			0.3		dB
Peak Output Current	$\mathrm{R}_{\mathrm{L}}=0, \mathrm{I}_{\mathrm{ABC}}=5 \mu \mathrm{~A}$		5		3	5	7	$\mu \mathrm{A}$
	$\mathrm{R}_{\mathrm{L}}=0, \mathrm{l}_{\mathrm{ABC}}=500 \mu \mathrm{~A}$	350	500	650	350	500	650	
	$R_{L}=0$, Over Specified Temp Range	300			300			
Peak Output Voltage Positive Negative	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & +12 \\ & -12 \end{aligned}$	$\begin{aligned} & +14.2 \\ & -14.4 \end{aligned}$		$\begin{aligned} & +12 \\ & -12 \end{aligned}$	$\begin{aligned} & +14.2 \\ & -14.4 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Supply Current	$\mathrm{I}_{\text {ABC }}=500 \mu \mathrm{~A}$, Both Channels		2.6			2.6		mA
$\begin{aligned} & \text { VOS Sensitivity } \\ & \text { Positive } \\ & \text { Negative } \\ & \hline \end{aligned}$	$\begin{aligned} & \Delta \mathbf{V}_{\mathbf{O S}} / \Delta \mathbf{V}^{+} \\ & \Delta \mathbf{V}_{\mathbf{O S}} / \Delta \mathbf{V}^{-} \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$		$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} / \mathrm{V} \\ & \mu \mathrm{~V} / \mathrm{V} \end{aligned}$
CMRR Common Mode Range Crosstalk		80	110		80	110		dB
		± 12	± 13.5		± 12	± 13.5		V
	Referred to Input (Note 5) $20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}$		100			100		dB
Differential Input Current	$\mathrm{I}_{\mathrm{ABC}}=0$, Input $= \pm 4 \mathrm{~V}$		0.02	100		0.02	10	nA
Leakage Current	$\mathrm{I}_{\text {ABC }}=0$ (Refer to Test Circuit)		0.2	100		0.2	5	nA
Input Resistance		10	26		10	26		k Ω

Electrical Characteristics (Note 4) (Continued)

Parameter	Conditions	LM13700			LM13700A			Units
		Min	Typ	Max	Min	Typ	Max	
Open Loop Bandwidth			2			2		MHz
Slew Rate	Unity Gain Compensated		50			50		$\mathrm{V} / \mu \mathrm{s}$
Buffer Input Current	(Note 5)		0.5	2		0.5	2	$\mu \mathrm{A}$
Peak Buffer Output Voltage	(Note 5)	10			10			V

Note 1: For selections to a supply voltage above $\pm 22 \mathrm{~V}$, contact factory.
Note 2: For operation at ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance, junction to ambient, as follows: LM13700N, $90^{\circ} \mathrm{C} / \mathrm{W} ; \mathrm{LM} 13700 \mathrm{M}, 110^{\circ} \mathrm{C} / \mathrm{W}$.
Note 3: Buffer output current should be limited so as to not exceed package dissipation.
Note 4: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, amplifier bias current $\left(\mathrm{I}_{\mathrm{ABC}}\right)=500 \mu \mathrm{~A}$, pins 2 and 15 open unless otherwise specified. The inputs to the buffers are grounded and outputs are open.
Note 5: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{ABC}}=500 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{OUT}}=5 \mathrm{k} \Omega$ connected from the buffer output to $-\mathrm{V}_{\mathrm{S}}$ and the input of the buffer is connected to the transconductance amplifier output.

Schematic Diagram

Typical Performance Characteristics

Amplifier Bias Voltage vs
Amplifier Blas Current

Peak Output Voltage and
Common Mode Range

 AMPLIFIER BIAS CURRENT (IABC)

Typical Performance Characteristics (Continued)

Unity Gain Follower

TL/H/7981-5

Circuit Description

The differential transistor pair Q_{4} and Q_{5} form a transconductance stage in that the ratio of their collector currents is defined by the differential input voltage according to the transfer function:

$$
\begin{equation*}
V_{I N}=\frac{k T}{q} \ln \frac{I_{5}}{I_{4}} \tag{1}
\end{equation*}
$$

where $V_{I N}$ is the differential input voltage, kT / q is approximately 26 mV at $25^{\circ} \mathrm{C}$ and I_{5} and I_{4} are the collector currents of transistors Q_{5} and Q_{4} respectively. With the exception of Q_{3} and Q_{13}, all transistors and diodes are identical in size. Transistors Q_{1} and Q_{2} with Diode D_{1} form a current mirror which forces the sum of currents I_{4} and I_{5} to equal $\mathrm{I}_{\mathrm{ABC}}$;

$$
\begin{equation*}
I_{4}+I_{5}=I_{A B C} \tag{2}
\end{equation*}
$$

where $I_{\text {ABC }}$ is the amplifier bias current applied to the gain pin.
For small differential input voltages the ratio of I_{4} and I_{5} approaches unity and the Taylor series of the In function can be approximated as:

$$
\begin{gather*}
\frac{k T}{q} \ln \frac{l_{5}}{l_{4}} \approx \frac{k T}{q} \frac{l_{5}-l_{4}}{l_{4}} \tag{3}\\
I_{4} \approx I_{5} \approx \frac{I_{A B C}}{2} \tag{4}\\
V_{I N}\left[\frac{l_{A B C}}{2 k T}\right]=l_{5}-l_{4}
\end{gather*}
$$

Collector currents I_{4} and I_{5} are not very useful by themselves and it is necessary to subtract one current from the other. The remaining transistors and diodes form three current mirrors that produce an output current equal to I_{5} minus I_{4} thus:

$$
\begin{equation*}
V_{I N}\left[\frac{I_{A B C}{ }^{q}}{2 k T}\right]=I_{\text {OUT }} \tag{5}
\end{equation*}
$$

The term in brackets is then the transconductance of the amplifier and is proportional to $I_{A B C}$.

Linearizing Diodes

For differential voltages greater than a few millivolts, Equation 3 becomes less valid and the transconductance becomes increasingly nonlinear. Figure 1 demonstrates how the internal diodes can linearize the transfer function of the amplifier. For convenience assume the diodes are biased with current sources and the input signal is in the form of current I_{S}. Since the sum of I_{4} and I_{5} is $I_{A B C}$ and the difference is lout, currents I_{4} and I_{5} can be written as follows:

$$
I_{4}=\frac{I_{A B C}}{2}-\frac{I_{O U T}}{2}, I_{5}=\frac{I_{A B C}}{2}+\frac{I_{O U T}}{2}
$$

Since the diodes and the input transistors have identical geometries and are subject to similar voltages and temperatures, the following is true:

$$
\begin{align*}
& \frac{k T}{q} \ln \frac{\frac{I_{D}}{2}+I_{S}}{\frac{I_{D}}{2}-I_{S}}=\frac{k T}{q} \ln \frac{\frac{I_{A B C}}{2}+\frac{I_{O U T}}{2}}{\frac{I_{A B C}}{2}-\frac{I_{O U T}}{2}} \\
& \therefore I_{\text {OUT }}=I_{S}\left(\frac{2 I_{A B C}}{I_{D}}\right) \text { for }\left|I_{S}\right|<\frac{I_{D}}{2} \tag{6}
\end{align*}
$$

Notice that in deriving Equation 6 no approximations have been made and there are no temperature-dependent terms. The limitations are that the signal current not exceed $\mathrm{I}_{\mathrm{D}} / 2$ and that the diodes be biased with currents. In practice, replacing the current sources with resistors will generate insignificant errors.

Applications:
 Voltage Controlled Amplifiers

Figure 2 shows how the linearizing diodes can be used in a voltage-controlled amplifier. To understand the input biasing, it is best to consider the $13 \mathrm{k} \Omega$ resistor as a current source and use a Thevenin equivalent circuit as shown in Figure 3. This circuit is similar to Figure 1 and operates the same. The potentiometer in Figure 2 is adjusted to minimize the effects of the control signal at the output.

TL/H/7981-8
FIGURE 1. Linearizing Diodes

Applications:

Voltage Controlled Amplifiers (Continued)

For optimum signal-to-noise performance, $I_{A B C}$ should be as large as possible as shown by the Output Voltage vs. Amplifier Bias Current graph. Larger amplitudes of input signal also improve the S/N ratio. The linearizing diodes help here by allowing larger input signals for the same output distortion as shown by the Distortion vs. Differential Input Voltage graph. S/N may be optimized by adjusting the magnitude of the input signal via $\mathrm{R}_{\mathbb{I N}}$ (Figure 2) until the output
distortion is below some desired level. The output voltage swing can then be set at any level by selecting R_{L}.
Although the noise contribution of the linearizing diodes is negligible relative to the contribution of the amplifier's internal transistors, I_{D} should be as large as possible. This minimizes the dynamic junction resistance of the diodes $\left(\mathrm{r}_{\mathrm{e}}\right)$ and maximizes their linearizing action when balanced against $R_{\text {IN }}$. A value of 1 mA is recommended for I_{D} unless the specific application demands otherwise.

FIGURE 2. Voltage Controlled Amplifier

TL/H/7981-10

FIGURE 3. Equivalent VCA Input Circuit

Stereo Volume Control

The circuit of Figure 4 uses the excellent matching of the two LM13700 amplifiers to provide a Stereo Volume Control with a typical channel-to-channel gain tracking of 0.3 dB . Rp is provided to minimize the output offset voltage and may be replaced with two 510Ω resistors in AC-coupled applications. For the component values given, amplifier gain is derived for Figure 2 as being:

$$
\frac{V_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{IN}}}=940 \times \mathrm{I}_{\mathrm{ABC}}
$$

If V_{C} is derived from a second signal source then the circuit becomes an amplitude modulator or two-quadrant multiplier as shown in Figure 5, where:

$$
I_{0}=\frac{-2 I_{S}}{I_{D}}\left(l_{A B C}\right)=\frac{-2 I_{S}}{I_{D}} \frac{V_{I N 2}}{R_{C}}-\frac{2 I_{S}}{I_{D}} \frac{\left(V^{-}+1.4 V\right)}{R_{C}}
$$

The constant term in the above equation may be cancelled by feeding $\mathrm{I}_{\mathrm{S}} \times \mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{C}} / 2\left(\mathrm{~V}^{-}+1.4 \mathrm{~V}\right)$ into I_{O}. The circuit of Figure 6 adds R_{M} to provide this current, resulting in a fourquadrant multiplier where R_{C} is trimmed such that $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{IN} 2}=0 \mathrm{~V}$. R_{M} also serves as the load resistor for I O .

FIGURE 4. Stereo Volume Control

TL/H/7981-12
FIGURE 5. Amplitude Modulator

Stereo Volume Control (Continued)

FIGURE 6. Four-Quadrant Multiplier

Noting that the gain of the LM13700 amplifier of Figure 3 may be controlled by varying the linearizing diode current l_{D} as well as by varying $\mathrm{I}_{\mathrm{ABC}}$, Figure 7 shows an AGC Amplifier using this approach. As V_{O} reaches a high enough amplitude ($3 \mathrm{~V}_{\mathrm{BE}}$) to turn on the Darlington transistors and the linearizing diodes, the increase in I_{D} reduces the amplifier gain so as to hold V_{O} at that level.

Voltage Controlled Resistors

An Operational Transconductance Amplifier (OTA) may be used to implement a Voltage Controlled Resistor as shown in Figure 8. A signal voltage applied at RX_{X} generates a V_{IN}
to the LM13700 which is then multiplied by the g_{m} of the amplifier to produce an output current, thus:

$$
R_{X}=\frac{R+R_{A}}{g_{m} R_{A}}
$$

where $\mathrm{g}_{\mathrm{m}} \approx 19.2 \mathrm{l}_{\mathrm{ABC}}$ at $25^{\circ} \mathrm{C}$. Note that the attenuation of V_{O} by R and R_{A} is necessary to maintain V_{IN} within the linear range of the LM13700 input.
Figure 9 shows a similar VCR where the linearizing diodes are added, essentially improving the noise performance of the resistor. A floating VCR is shown in Figure 10, where each "end" of the "resistor" may be at any voltage within the output voltage range of the LM13700.

FIGURE 7. AGC Amplifier

Voltage Controlled Resistors (Continued)

TL/H/7981-15
FIGURE 8. Voltage Controlled Resistor, Single-Ended

TL/H/7981-16
FIGURE 9. Voltage Controlled Resistor with Linearizing Diodes

Voltage Controlled Filters

OTA's are extremely useful for implementing voltage controlled filters, with the LM13700 having the advantage that the required buffers are included on the I.C. The VC Lo-Pass Filter of Figure 11 performs as a unity-gain buffer amplifier at frequencies below cut-off, with the cut-off frequency being the point at which $\mathrm{X}_{\mathrm{C}} / \mathrm{g}_{\mathrm{m}}$ equals the closed-loop gain of (R / R_{A}). At frequencies above cut-off the circuit provides a single RC roll-off (6 dB per octave) of the input signal amplitude with a -3 dB point defined by the given equation, where g_{m} is again $19.2 \times \mathrm{I}_{\mathrm{ABC}}$ at room temperature. Figure

12 shows a VC High-Pass Filter which operates in much the same manner, providing a single RC roll-off below the defined cut-off frequency.
Additional amplifiers may be used to implement higher order filters as demonstrated by the two-pole Butterworth Lo-Pass Filter of Figure 13 and the state variable filter of Figure 14. Due to the excellent g_{m} tracking of the two amplifiers, these filters perform well over several decades of frequency.

TL/H/7981-17
FIGURE 10. Floating Voltage Controlled Resistor

TL/H/7981-18
FIGURE 11. Voltage Controlled Low-Pass Filter

Voltage Controlled Filters (Continued)

FIGURE 14. Voltage Controlled State Variable Filter

Voltage Controlled Oscillators

The classic Triangular/Square Wave VCO of Figure 15 is one of a variety of Voltage Controlled Oscillators which may be built utilizing the LM13700. With the component values shown, this oscillator provides signals from 200 kHz to below 2 Hz as I_{C} is varied from 1 mA to 10 nA . The output amplitudes are set by $\mathrm{I}_{\mathrm{A}} \times \mathrm{R}_{\mathrm{A}}$. Note that the peak differential input voltage must be less than 5 V to prevent zenering the inputs.
A few modifications to this circuit produce the ramp/pulse VCO of Figure 16. When $\mathrm{V}_{\mathrm{O} 2}$ is high, I_{F} is added to I_{C} to
increase amplifier A1's bias current and thus to increase the charging rate of capacitor C . When $\mathrm{V}_{\mathrm{O} 2}$ is low, I_{F} goes to zero and the capacitor discharge current is set by Ic .
The VC Lo-Pass Filter of Figure 11 may be used to produce a high-quality sinusoidal VCO. The circuit of Figure 16 employs two LM13700 packages, with three of the amplifiers configured as lo-pass filters and the fourth as a limiter/inverter. The circuit oscillates at the frequency at which the loop phase-shift is 360° or 180° for the inverter and 60° per filter stage. This VCO operates from 5 Hz to 50 kHz with less than 1% THD.

TL/H/7981-22
FIGURE 15. Triangular/Square-Wave VCO

TL/H/7981-23
FIGURE 16. Ramp/Pulse VCO

Voltage Controlled Oscillators (Continued)

TL/H/7981-24
FIGURE 17. Sinusoidal VCO

FIGURE 18. Single Amplifier VCO
Figure 18 shows how to build a VCO using one amplifier when the other amplifier is needed for another function.

Additional Applications

Figure 19 presents an interesting one-shot which draws no power supply current until it is triggered. A positive-going trigger pulse of at least 2 V amplitude turns on the amplifier through R_{B} and pulls the non-inverting input high. The amplifier regenerates and latches its output high until capacitor C charges to the voltage level on the non-inverting input. The output then switches low, turning off the amplifier and discharging the capacitor. The capacitor discharge rate is speeded up by shorting the diode bias pin to the inverting input so that an additional discharge current flows through D_{1} when the amplifier output switches low. A special feature of this timer is that the other amplifier, when biased from V_{O}, can perform another function and draw zero stand-by power as well.

Additional Applications (Continued)

The operation of the multiplexer of Figure 20 is very straightforward. When $A 1$ is turned on it holds V_{O} equal to $V_{I N 1}$ and when A2 is supplied with bias current then it controls V_{O}. C_{C} and R_{C} serve to stabilize the unity-gain configuration of amplifiers A1 and A2. The maximum clock rate is limited to about 200 kHz by the LM13700 slew rate into 150 pF when the $\left(\mathrm{V}_{\mathrm{IN} 1}-\mathrm{V}_{\mathrm{IN} 2}\right)$ differential is at its maximum allowable value of 5 V .

The Phase-Locked Loop of Figure 21 uses the four-quadrant multiplier of Figure 6 and the VCO of Figure 18 to produce a PLL with a $\pm 5 \%$ hold-in range and an input sensitivity of about 300 mV .

TL/H/7981-27
FIGURE 20. Multiplexer

TL/H/7981-28
FIGURE 21. Phase Lock Loop

Additional Applications (Continued)

The Schmitt Trigger of Figure 22 uses the amplifier output current into R to set the hysteresis of the comparator; thus $\mathrm{V}_{\mathrm{H}}=2 \times R \times \mathrm{I}_{\mathrm{B}}$. Varying I_{B}, will produce a Schmitt Trigger with variable hysteresis.

Figure 23 shows a Tachometer or Frequency-to-Voltage converter. Whenever A1 is toggled by a positive-going input, an amount of charge equal to $\left(\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right) \mathrm{C}_{\mathrm{t}}$ is sourced into C_{f} and R_{t}. This once per cycle charge is then balanced by the current of $\mathrm{V}_{\mathrm{O}} / \mathrm{R}_{\mathrm{t}}$. The maximum $\mathrm{F}_{\text {IN }}$ is limited by the amount of time required to charge $\mathrm{C}_{\boldsymbol{t}}$ from V_{L} to V_{H} with a current of I_{B}, where V_{L} and V_{H} represent the maximum low and maximum high output voltage swing of the LM13700. D1 is added to provide a discharge path for C_{t} when $A 1$ switches low. The Peak Detector of Figure 24 uses A2 to turn on A1 whenever V_{IN} becomes more positive than V_{O}. $A 1$ then charges storage capacitor C to hold V_{O} equal to $V_{I N} P K$. Pulling the output of A2 low through D1 serves to turn off A1 so that V_{O} remains constant.

FIGURE 22. Schmitt Trigger

TL/H/7981-30
FIGURE 23. Tachometer

TL/H/7981-31
FIGURE 24. Peak Detector and Hold Circuit

Additional Applications (Continued)

The Ramp-and-Hold of Figure 26 sources I_{B} into capacitor C whenever the input to A 1 is brought high, giving a ramprate of about $1 \mathrm{~V} / \mathrm{ms}$ for the component values shown.
The true-RMS converter of Figure 27 is essentially an automatic gain control amplifier which adjusts its gain such that the AC power at the output of amplifier A1 is constant. The output power of amplifier A1 is monitored by squaring amplifier A2 and the average compared to a reference voltage with amplifier A3. The output of A3 provides bias current to the diodes of A1 to attenuate the input signal. Because the output power of A1 is held constant, the RMS value is constant and the attenuation is directly proportional to the RMS value of the input voltage. The attenuation is also proportional to the diode bias current. Amplifier A4 adjusts the ratio of currents through the diodes to be equal and therefore the voltage at the output of A4 is proportional to the RMS value of the input voltage. The calibration potentiometer is set such that V_{O} reads directly in RMS volts.

FIGURE 25. Sample-Hold Circuit

FIGURE 26. Ramp and Hold

Additional Applications (Continued)

TL/H/7981-34
FIGURE 27. True RMS Converter

The circuit of Figure 28 is a voltage reference of variable Temperature Coefficient. The $100 \mathrm{k} \Omega$ potentiometer adjusts the output voltage which has a positive TC above 1.2V, zero TC at about 1.2 V , and negative TC below 1.2 V . This is accomplished by balancing the TC of the A2 transfer function against the complementary TC of D1.
The wide dynamic range of the LM13700 allows easy control of the output pulse width in the Pulse Width Modulator of Figure 29.
For generating $\mathrm{I}_{\mathrm{ABC}}$ over a range of 4 to 6 decades of current, the system of Figure 30 provides a logarithmic current out for a linear voltage in.
Since the closed-loop configuration ensures that the input to A 2 is held equal to OV , the output current of A 1 is equal to $I_{3}=-V_{C} / R_{C}$.
The differential voltage between Q1 and Q2 is attenuated by the R1,R2 network so that A1 may be assumed to be
operating within its linear range. From equation (5), the input voltage to A1 is:

$$
\mathrm{V}_{\mid N 1}=\frac{-2 k T I_{3}}{\mathrm{ql}_{2}}=\frac{-2 \mathrm{kTV} \mathrm{~V}_{\mathrm{C}}}{\mathrm{ql}_{2} \mathrm{R}_{\mathrm{C}}}
$$

The voltage on the base of Q1 is then

$$
V_{B} 1=\frac{\left(R_{1}+R_{2}\right) V_{I N} 1}{R_{1}}
$$

The ratio of the Q1 and Q2 collector currents is defined by:

$$
V_{B} 1=\frac{k T}{q} \ln \frac{l_{\mathrm{C} 2}}{l_{\mathrm{C} 1}} \approx \frac{k T}{q} \ln \frac{\mathrm{l}_{\mathrm{ABC}}}{\mathrm{I}_{1}}
$$

Combining and solving for $\mathrm{l}_{\mathrm{ABC}}$ yields:

$$
I_{A B C}=I_{1} \exp \frac{2\left(R_{1}+R_{2}\right) V_{C}}{R_{1} I_{2} R_{C}}
$$

This logarithmic current can be used to bias the circuit of Figure 4 to provide temperature independent stereo attenuation characteristic.

Additional Applications (Continued)

TL/H/7981-35
FIGURE 28. Delta VBE Reference

TL/H/7981-36
FIGURE 29. Pulse Width Modulator

Additional Applications (Continued)

FIGURE 30. Logarithmic Current Source

LMC660

CMOS Quad Operational Amplifier

General Description

The LMC660 CMOS Quad operational amplifier is ideal for operation from a single supply. It operates from +5 V to +15 V and features rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input V_{OS}, drift, and broadband noise as well as voltage gain into realistic loads ($2 \mathrm{k} \Omega$ and 600Ω) are all equal to or better than widely accepted bipolar equivalents.
This chip is built with National's advanced Double-Poly Sili-con-Gate CMOS process.
See the LMC662 datasheet for a dual CMOS operational amplifier with these same features.

Features

- Rail-to-rail output swing
- Specified for $2 \mathrm{k} \Omega$ and 600Ω loads
- High voltage gain 126 dB
- Low input offset voltage 3 mV

■ Low offset voltage drift $\quad 1.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

- Ultra low input bias current

2 fA

- Input common-mode range includes V -
- Operating range from +5 V to +15 V supply
- Iss $=375 \mu \mathrm{~A} /$ amplifier; independent of V^{+}
- Low distortion 0.01% at 10 kHz
- Slew rate $1.1 \mathrm{~V} / \mu \mathrm{s}$
- Available in extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$); ideal for automotive applications
- Available to Standard Military Drawing specification

Applications

- High-impedance buffer or preamplifier
- Precision current-to-voltage converter
- Long-term integrator
- Sample-and-Hold circuit
- Peak detector
- Medical instrumentation
- Industrial controls
- Automotive sensors

Connection Diagram

14-Pin DIP/SO

TL/H/8767-1

Ordering Information

Package	Temperature Range				NSC Drawing	Transport Media
	Military $-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	$\begin{gathered} \text { Extended } \\ -40^{\circ} \mathrm{C}+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Industrial } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		
$14-\mathrm{Pin}$ Ceramic DIP	LMC660AMJ/883				J14A	Rail
$14-\mathrm{Pin}$ Small Outline		LMC660EM	LMC660AIM	LMC660CM	M14A	Rail Tape and Reel
$14-\mathrm{Pin}$ Molded DIP		LMC660EN	LMC660AIN	LMC660CN	N14A	Rail
14-Pin Side Brazed Ceramic DIP	LMC660AMD				D14E	Rail

Absolute Maximum Ratings (Note 3)	
If Military/Aerospace specified devices are required,	
please contact the	National Semiconductor Sales
Office/Distributors for availability and specifications.	
Differential Input Voltage	\pm Supply Voltage
Supply Voltage	16 V
Output Short Circuit to $\mathrm{V}+$	(Note 12)
Output Short Circuit to $\mathrm{V}-$	(Note 1)
Lead Temperature (Soldering, 10 sec.$)$	$260^{\circ} \mathrm{C}$
Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage at Input/Output Pins	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
Current at Output Pin	$\pm 18 \mathrm{~mA}$
Current at Input Pin	$\pm 5 \mathrm{~mA}$
Current at Power Supply Pin	35 mA

Power Dissipation	(Note 2)
Junction Temperature	$150^{\circ} \mathrm{C}$
ESD tolerance (Note 8)	1000 V
Operating Ratings	
Temperature Range	
LMC660AMJ/883,	
LMC660AMD	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
LMC660AI	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
LMC660C	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+70^{\circ} \mathrm{C}$
LMC660E	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
Supply Voltage Range	4.75 V to 15.5 V
Power Dissipation	(Note 10)
Thermal Resistance (θ_{JAA}) (Note 11)	
14-Pin Ceramic DIP	$90^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin Molded DIP	$85^{\circ} / \mathrm{W}$
14-Pin SO	$115^{\circ} / \mathrm{W}$
14-Pin Side Brazed Ceramic DIP	$90^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ (Note 4)	LMC660AMD LMC660AMJ/883	LMC660AI	LMC660C	LMC660E	Units
			Limit (Notes 4, 9)	$\begin{aligned} & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	Limit (Note 4)	$\begin{aligned} & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	
Input Offset Voltage		1	$\begin{gathered} 3 \\ 3.5 \end{gathered}$	$\begin{gathered} 3 \\ 3.3 \end{gathered}$	$\begin{gathered} 6 \\ 6.3 \end{gathered}$	$\begin{gathered} 6 \\ 6.5 \end{gathered}$	mV max
Input Offset Voltage Average Dritt		1.3					$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current		0.002	$\begin{gathered} 20 \\ 100 \end{gathered}$	4	2	60	pA max
Input Offset Current		0.001	$\begin{gathered} 20 \\ 100 \\ \hline \end{gathered}$	2	1	60	$\begin{gathered} \mathrm{pA} \\ \max \\ \hline \end{gathered}$
Input Resistance		>1					Tera Ω
Common Mode Rejection Ratio	$\begin{aligned} & 0 V \leq V_{C M} \leq 12.0 V \\ & V+=15 V \end{aligned}$	83	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & 63 \\ & 62 \end{aligned}$	$\begin{aligned} & 63 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{array}{r} 70 \\ 68 \\ \hline \end{array}$	$\begin{aligned} & 63 \\ & 62 \end{aligned}$	$\begin{aligned} & 63 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	$\begin{aligned} & 84 \\ & 82 \end{aligned}$	$\begin{aligned} & 84 \\ & \mathbf{8 3} \end{aligned}$	$\begin{aligned} & 74 \\ & 73 \end{aligned}$	$\begin{aligned} & 74 \\ & 70 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \& 15 \mathrm{~V} \\ & \text { For CMRR } \geq 50 \mathrm{~dB} \end{aligned}$	-0.4	$\begin{gathered} -0.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$			
		V+ - 1.9	$\begin{aligned} & v^{+}-2.3 \\ & v^{+}-2.6 \end{aligned}$	$\begin{aligned} & \mathbf{v}^{+}-2.3 \\ & \mathbf{v}^{+}-2.5 \end{aligned}$	$\begin{gathered} v^{+}-2.3 \\ \mathbf{v}^{+}-2.4 \end{gathered}$	$\begin{gathered} v^{+}-2.3 \\ \mathbf{v}^{+}-2.6 \end{gathered}$	$\begin{gathered} V \\ \mathrm{~min} \end{gathered}$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { (Note } 5 \text {) }$ Sourcing Sinking	2000	$\begin{array}{r} 400 \\ \mathbf{3 0 0} \\ \hline \end{array}$	$\begin{array}{r} 440 \\ 400 \\ \hline \end{array}$	$\begin{array}{r} 300 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	V / mV min
		500	$\begin{aligned} & 180 \\ & 70 \end{aligned}$	$\begin{aligned} & 180 \\ & 120 \end{aligned}$	$\begin{aligned} & 90 \\ & \mathbf{8 0} \end{aligned}$	$\begin{aligned} & 90 \\ & 40 \end{aligned}$	V / mV min
	$R_{L}=600 \Omega(\text { Note } 5)$ Sourcing Sinking	1000	$\begin{aligned} & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{array}{r} 220 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 150 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 75 \\ & \hline \end{aligned}$	V / mV min
		250	$\begin{aligned} & 100 \\ & 35 \end{aligned}$	$\begin{aligned} & 100 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	V / mV \min

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ (Note 4)	LMC660AMD LMC660AMJ/883	LMC660AI	LMC660C	LMC660E	Units
			Limit (Notes 4, 9)	Limit (Note 4)	Limit (Note 4)	Limit (Note 4)	
Output Swing	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & R_{L}=2 \mathrm{k} \Omega \text { to } V+/ 2 \end{aligned}$	4.87	$\begin{array}{r} 4.82 \\ 4.77 \end{array}$	$\begin{aligned} & 4.82 \\ & 4.79 \end{aligned}$	$\begin{aligned} & 4.78 \\ & 4.76 \end{aligned}$	$\begin{aligned} & 4.78 \\ & 4.70 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
		0.10	$\begin{aligned} & 0.15 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.17 \end{aligned}$	$\begin{gathered} 0.19 \\ 0.21 \end{gathered}$	$\begin{aligned} & 0.19 \\ & 0.25 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
	$\begin{aligned} & V+=5 V \\ & R_{L}=600 \Omega \text { to } V+/ 2 \end{aligned}$	4.61	$\begin{array}{r} 4.41 \\ 4.24 \\ \hline \end{array}$	$\begin{array}{r} 4.41 \\ 4.31 \\ \hline \end{array}$	$\begin{array}{r} 4.27 \\ 4.21 \\ \hline \end{array}$	$\begin{array}{r} 4.27 \\ \mathbf{4 . 1 0} \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		0.30	$\begin{aligned} & 0.50 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.50 \\ & \mathbf{0 . 5 6} \end{aligned}$	$\begin{aligned} & 0.63 \\ & \mathbf{0 . 6 9} \end{aligned}$	$\begin{aligned} & 0.63 \\ & 0.75 \end{aligned}$	V max
	$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=2 \mathrm{k} \Omega \text { to } V+/ 2 \end{aligned}$	14.63	$\begin{gathered} 14.50 \\ 14.40 \end{gathered}$	$\begin{gathered} 14.50 \\ 14.44 \end{gathered}$	$\begin{gathered} 14.37 \\ \mathbf{1 4 . 3 2} \end{gathered}$	$\begin{gathered} 14.37 \\ \mathbf{1 4 . 2 5} \end{gathered}$	$\begin{gathered} V \\ \min \end{gathered}$
		0.26	$\begin{aligned} & 0.35 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.55 \end{aligned}$	$\underset{\max }{V}$
	$\begin{aligned} & V+=15 \mathrm{~V} \\ & R_{L}=600 \Omega \text { to } V+/ 2 \end{aligned}$	13.90	$\begin{gathered} 13.35 \\ 13.02 \end{gathered}$	$\begin{gathered} 13.35 \\ 13.15 \\ \hline \end{gathered}$	$\begin{gathered} 12.92 \\ 12.76 \end{gathered}$	$\begin{gathered} 12.92 \\ \mathbf{1 2 . 6 0} \end{gathered}$	$\begin{gathered} V \\ \mathrm{~min} \end{gathered}$
		0.79	$\begin{gathered} 1.16 \\ 1.42 \end{gathered}$	$\begin{gathered} 1.16 \\ \mathbf{1 . 3 2} \\ \hline \end{gathered}$	$\begin{aligned} & 1.45 \\ & \mathbf{1 . 5 8} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.75 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \\ \hline \end{gathered}$
Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=5 \mathrm{~V}$	22	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 16 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 11 \\ & \hline \end{aligned}$	13	mA min
		21	$\begin{array}{r} 16 \\ 12 \\ \hline \end{array}$	$\begin{array}{r} 16 \\ 14 \\ \hline \end{array}$	$\begin{aligned} & 13 \\ & 11 \\ & \hline \end{aligned}$	13	mA \min
Output Current$V^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 12)	40	$\begin{array}{r} 19 \\ 19 \\ \hline \end{array}$	$\begin{array}{r} 28 \\ \mathbf{2 5} \\ \hline \end{array}$	$\begin{array}{r} 23 \\ 21 \\ \hline \end{array}$	$\begin{array}{r} 23 \\ 15 \\ \hline \end{array}$	mA min
		39	$\begin{array}{r} 19 \\ 19 \\ \hline \end{array}$	$\begin{array}{r} 28 \\ 24 \\ \hline \end{array}$	$\begin{aligned} & 23 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 15 \\ & \hline \end{aligned}$	mA min
Supply Current	All Four Amplifiers $V_{O}=1.5 \mathrm{~V}$	1.5	$\begin{array}{r} 2.2 \\ 2.9 \\ \hline \end{array}$	$\begin{aligned} & 2.2 \\ & 2.6 \end{aligned}$	$\begin{array}{r} 2.7 \\ 2.9 \\ \hline \end{array}$	$\begin{aligned} & 2.7 \\ & 3.0 \end{aligned}$	mA max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	LMC660AMD LMC660AMJ/883	LMC660AI	LMC660C	LMC660E	Units
			Limit (Notes 4, 9)	Limit (Note 4)	Limit (Note 4)	Limit (Note 4)	
Slew Rate	(Note 6)	1.1	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} / \mu \mathrm{s} \\ \mathrm{~min} \end{gathered}$
Gain-Bandwidth Product		1.4	0.5				MHz
Phase Margin		50					Deg
Gain Margin		17					dB
Amp-to-Amp Isolation	(Note 7)	130					dB
Input Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22					$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002					$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, A_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V} \mathrm{VP} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	0.01					\%

Note 1: Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 2: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $\left.P_{D}=\left(T_{J(\max)}\right)-T_{A}\right) / \theta_{J A}$.
Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 4: Typical values represent the most likely parametric norm. Limits are guaranteed by testing or correlation.
Note 5: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 6: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 7: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{Pp}}$.
Note 8: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 9: A military RETS electrical test specification is available on request. At the time of printing, the LMC660AMJ/883 RETS spec complied fully with the boldface limits in this column. The LMC660AMJ/883 may also be procured to a Standard Military Drawing specification.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: All numbers apply for packages soldered directly into a PC board.
Note 12: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

Note: Avoid resistive loads of less than $\mathbf{5 0 0 \Omega}$, as they may cause instability.

Application Hints

Amplifier Topology

The topology chosen for the LMC660, shown in Figure 1, is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow rail-to-rail output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator.
As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C_{f} and Cff) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward.

TL/H/8767-4
FIGURE 1. LMC660 Circuit Topology (Each Amplifier)
The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, even with a 600Ω load. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, under heavy load (600Ω) the gain will be reduced as indicated in the Electrical Characteristics.

Compensating Input Capacitance

The high input resistance of the LMC660 op amps allows the use of large feedback and source resistor values without losing gain accuracy due to loading. However, the circuit will be especially sensitive to its layout when these large-value resistors are used.
Every amplifier has some capacitance between each input and AC ground, and also some differential capacitance between the inputs. When the feedback network around an amplifier is resistive, this input capacitance (along with any additional capacitance due to circuit board traces, the socket, etc.) and the feedback resistors create a pole in the feedback path. In the following General Operational Amplifier circuit, Figure 2 the frequency of this pole is

$$
f p=\frac{1}{2 \pi C_{S} R_{p}}
$$

where C_{S} is the total capacitance at the inverting input, including amplifier input capcitance and any stray capacitance from the IC socket (if one is used), circuit board traces, etc., and R_{P} is the parallel combination of R_{F} and $R_{I N}$. This formula, as well as all formulae derived below, apply to inverting and non-inverting op-amp configurations.
When the feedback resistors are smaller than a few $k \Omega$, the frequency of the feedback pole will be quite high, since C_{s}
is generally less than 10 pF . If the frequency of the feedback pole is much higher than the "ideal"' closed-loop bandwidth (the nominal closed-loop bandwidth in the absence of C_{S}), the pole will have a negligible effect on stability, as it will add only a small amount of phase shift.
However, if the feedback pole is less than approximately 6 to 10 times the "ideal" -3 dB frequency, a feedback capacitor, C_{F}, should be connected between the output and the inverting input of the op amp. This condition can also be stated in terms of the amplifier's low-frequency noise gain: To maintain stability a feedback capacitor will probably be needed if

$$
\left(\frac{R_{F}}{R_{I N}}+1\right) \leq \sqrt{6 \times 2 \pi \times G B W \times R_{F} \times C_{S}}
$$

where $\left(\frac{R_{F}}{R_{\text {IN }}}+1\right)$ is the amplifier's low-frequency noise gain and GBW is the amplifier's gain bandwidth product. An amplifier's low-frequency noise gain is represented by the formula $\left(\frac{R_{F}}{R_{I N}}+1\right)$ regardless of whether the amplifier is being used in inverting or non-inverting mode. Note that a feedback capacitor is more likely to be needed when the noise gain is low and/or the feedback resistor is large.
If the above condition is met (indicating a feedback capacitor will probably be needed), and the noise gain is large enough that:

$$
\left(\frac{R_{F}}{R_{I N}}+1\right) \geq 2 \sqrt{G B W \times R_{F} \times C_{S}}
$$

the following value of feedback capacitor is recommended:

$$
C_{F}=\frac{C_{S}}{2\left(\frac{R_{F}}{R_{I N}}+1\right)}
$$

If

$$
\left(\frac{R_{F}}{R_{I N}}+1\right)<2 \sqrt{G B W \times R_{F} \times C_{S}}
$$

the feedback capacitor should be:

$$
C_{F}=\sqrt{\frac{C_{S}}{G B W \times R_{F}}}
$$

Note that these capacitor values are usually significant smaller than those given by the older, more conservative formula:

TL/H/8767-6
FIGURE 2. General Operational Amplifier Circuit
C_{S} consists of the amplifier's input capacitance plus any stray capacitance from the circuit board and socket. C_{F} compensates for the pole caused by C_{S} and the feedback resistors.

Application Hints (Continued)

Using the smaller capacitors will give much higher bandwidth with little degradation of transient response. It may be necessary in any of the above cases to use a somewhat larger feedback capacitor to allow for unexpected stray capacitance, or to tolerate additional phase shifts in the loop, or excessive capacitive load, or to decrease the noise or bandwidth, or simply because the particular circuit implementation needs more feedback capacitance to be sufficiently stable. For example, a printed circuit board's stray capacitance may be larger or smaller than the breadboard's, so the actual optimum value for C_{F} may be different from the one estimated using the breadboard. In most cases, the values of C_{F} should be checked on the actual circuit, starting with the computed value.

Capacitive Load Tolerance

Like many other op amps, the LMC660 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See Typical Performance Characteristics.
The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. As shown in Figure 3a, the addition of a small resistor (50Ω to 100Ω) in series with the op amp's output, and a capacitor (5 pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit operation. Thus larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation.

FIGURE 3a. Rx, Cx Improve Capacitive Load Tolerance
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 3b). Typically a pull up resistor conducting $500 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/8767-23
FIGURE 3b. Compensating for Large Capacitive Loads with a Pull Up Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC662, typically less than 0.04 pA , it is essential to have an excellent layout. Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC660's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Figure 4. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of an input. This would cause a 100 times degradation from the LMC660's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11} \Omega$ would cause only 0.05 pA of leakage current, or perhaps a minor (2:1) degradation of the amplifier's performance. See Figures 5a, 5b, 5c for typical connections of guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be tied to ground and still provide some protection; see Figure $5 d$.

TL/H/8767-16

FIGURE 4. Example, using the LMC660, of Guard Ring in P.C. Board Layout

Application Hints (Continued)

TL/H/8767-17
(a) Inverting Amplifier

(b) Non-Inverting Amplifier

(c) Follower

(d) Howland Current Pump

FIGURE 5. Guard Ring Connections
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 6.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

FIGURE 6. Air Wiring

BIAS CURRENT TESTING

The test method of Figure 7 is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch S2 momentarily. When S2 is opened, then

$$
\mathrm{I}_{\mathrm{b}}-=\frac{\mathrm{d} \mathrm{~V}_{\text {OUT }}}{\mathrm{dt}} \times \mathrm{C} 2
$$

TL/H/8767-22
FIGURE 7. Simple Input Bias Current Test Circuit
A suitable capacitor for C 2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of $\mathrm{l}_{\mathrm{b}}{ }^{-}$, the leakage of the capacitor and socket must be taken into account. Switch S 2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C2 could cause errors.
Similarly, if S1 is shorted momentarily (while leaving S2 shorted)

$$
\mathrm{I}_{\mathrm{b}}+=\frac{\mathrm{dV}}{\mathrm{OUT}} \mathrm{dt} \times\left(\mathrm{C}_{1}+\mathrm{C}_{\mathrm{x}}\right)
$$

where C_{x} is the stray capacitance at the + input.

Typical Single-Supply Applications $\left({ }^{+}+=5.0 \mathrm{VDC}\right)$

Additional single-supply applications ideas can be found in the LM324 datasheet. The LMC660 is pin-for-pin compatible with the LM324 and offers greater bandwidth and input resistance over the LM324. These features will improve the performance of many existing single-supply applications. Note, however, that the supply voltage range of the LMC660 is smaller than that of the LM324.

Low-Leakage Sample-and-Hold

TL/H/8767-7

TL/H/8767-8
If $R 1=R 5, R 3=R 6$, and $R 4=R 7$; then

$$
\frac{V_{\mathrm{OUT}}}{V_{\mathrm{IN}}}=\frac{R 2+2 R 1}{R 2} \times \frac{R 4}{R 3}
$$

$\therefore A_{V} \approx 100$ for circuit shown.
For good CMRR over temperature, low drift resistors should be used. Matching of R3 to R6 and R4 to R7 affect CMRR. Gain may be adjusted through R2. CMRR may be adjusted through R7.

Sine-Wave Oscillator

TL/H/8767-9
Oscillator frequency is determined by $\mathrm{R} 1, \mathrm{R} 2, \mathrm{C} 1$, and C 2 :

$$
\begin{aligned}
\text { fosc }=1 / 2 \pi R C, \text { where } R & =R 1=R 2 \text { and } \\
C & =C 1=C 2 .
\end{aligned}
$$

This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.5 V .

1 Hz Square-Wave Oscillator

TL/H/8767-10

Power Amplifier

TL/H/8767-11

Typical Single-Supply Applications ($\mathrm{V}^{+}=5.0 \mathrm{VDC}$) (Continued)

TL/H/8767-12
$Q=2.1$
Gain $=-8.8$

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)

$\mathrm{f}_{\mathrm{c}}=1 \mathrm{~Hz}$
$\mathrm{~d}=1.414$
Gain $=1.57$
TL/H/8767-14

10 Hz High-Pass Filter

$\mathrm{f}_{\mathrm{c}}=10 \mathrm{~Hz} \quad 390 \mathrm{k} \quad \mathrm{TL} / \mathrm{H} / 8767-13$

TL/H/8767-13
$\mathrm{d}=0.895$
$d=0.895$
Gain $=1$
2 dB passband ripple

High Gain Amplifier with Offset Voltage Reduction

LMC662

CMOS Dual Operational Amplifier

General Description

The LMC662 CMOS Dual operational amplifier is ideal for operation from a single supply. It operates from +5 V to +15 V and features rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input V_{OS}, drift, and broadband noise as well as voltage gain into realistic loads ($2 \mathrm{k} \Omega$ and 600Ω) are all equal to or better than widely accepted bipolar equivalents.
This chip is built with National's advanced Double-Poly Sili-con-Gate CMOS process.
See the LMC660 datasheet for a Quad CMOS operational amplifier with these same features.

Features

- Rail-to-rail output swing
- Specified for $2 \mathrm{k} \Omega$ and 600Ω loads
- High voltage gain

126 dB

- Low input offset voltage 3 mV
- Low offset voltage drift
- Ultra low input bias current
- Input common-mode range includes V -
- Operating range from +5 V to +15 V supply
- ISS $=400 \mu \mathrm{~A}$ /amplifier; independent of V^{+}
- Low distortion
0.01% at 10 kHz
- Slew rate $1.1 \mathrm{~V} / \mu \mathrm{s}$
- Available in extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$); ideal for automotive applications
- Available to a Standard Military Drawing specification

Applications

- High-impedance buffer or preamplifier
- Precision current-to-voltage converter
- Long-term integrator
- Sample-and-hold circuit
- Peak detector
- Medical instrumentation
- Industrial controls
- Automotive sensors

Connection Diagram

TL/H/9763-1

Ordering Information

Package	Temperature Range				NSC Drawing	Transport Media
	Military	Extended	Industrial	Commercial		
8-Pin Ceramic DIP	LMC662AMJ/883				J08A	Rail
8-Pin Small Outline		LMC662EM	LMC662AIM	LMC662CM	M08A	Rail, Tape and Reel
8-Pin Molded DIP		LMC662EN	LMC662AIN	LMC662CN	N08E	Rail
8-Pin Side Brazed Ceramic DIP	LMC662AMD				D08C	Rail

Absolute Maximum Ratings (Note 3)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Differential Input Voltage	\pm Supply Voltage
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right.$)	16 V
Output Short Circuit to V^{+}	(Note 12)
Output Short Circuit to V^{-}	(Note 1)
Lead Temperature (Soldering, 10 sec.$)$	$260^{\circ} \mathrm{C}$
Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage at Input/Output Pins	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
Current at Output Pin	$\pm 18 \mathrm{~mA}$
Current at Input Pin	$\pm 5 \mathrm{~mA}$
Current at Power Supply Pin	35 mA
Power Dissipation	$($ Note 2$)$
Junction Temperature	$150^{\circ} \mathrm{C}$
ESD Tolerance (Note 8)	1000 V

Operating Ratings (Note 3)
Temperature Range
LMC662AMJ/883,
LMC662AMD
LMC662AI

$$
-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}
$$

LMC662C

$$
0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+70^{\circ} \mathrm{C}
$$

LMC662E

$$
-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}
$$

Supply Voltage Range
Power Dissipation
Thermal Resistance (θ_{JA}) (Note 11)
8 -Pin Ceramic DIP

$$
-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}
$$

4.75 V to 15.5 V
(Note 10)
$100^{\circ} \mathrm{C} / \mathrm{W}$ $101^{\circ} \mathrm{C} / \mathrm{W}$ $165^{\circ} \mathrm{C} / \mathrm{W}$ $100^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	LMC662AMJ/883 LMC662AMD	LMC662AI	LMC662C	LMC662E	Units
			Limit (Note 4, 9)	$\begin{aligned} & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	Limit (Note 4)	Limit (Note 4)	
Input Offset Voltage		1	$\begin{gathered} 3 \\ 3.5 \end{gathered}$	$\begin{gathered} 3 \\ 3.3 \end{gathered}$	$\begin{gathered} 6 \\ 6.3 \end{gathered}$	$\begin{gathered} 6 \\ 6.5 \end{gathered}$	mV max
Input Offset Voltage Average Drift		1.3					$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current		0.002	$\begin{gathered} 20 \\ 100 \end{gathered}$	4	2	60	pA max
Input Offset Current		0.001	$\begin{gathered} 20 \\ 100 \end{gathered}$	2	1	60	pA \max
Input Resistance		>1					Teras
Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	$\begin{array}{r} 70 \\ 68 \end{array}$	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & 63 \\ & 62 \end{aligned}$	$\begin{aligned} & 63 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	83	$\begin{array}{r} 70 \\ 68 \\ \hline \end{array}$	$\begin{array}{r} 70 \\ \mathbf{6 8} \\ \hline \end{array}$	$\begin{array}{r} 63 \\ 62 \end{array}$	$\begin{aligned} & 63 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
Negative Power Supply Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	$\begin{array}{r} 84 \\ 82 \\ \hline \end{array}$	$\begin{aligned} & 84 \\ & 83 \end{aligned}$	$\begin{array}{r} 74 \\ \mathbf{7 3} \\ \hline \end{array}$	$\begin{aligned} & 74 \\ & 70 \\ & \hline \end{aligned}$	dB \min
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { \& } 15 \mathrm{~V} \\ & \text { For CMRR } \geq 50 \mathrm{~dB} \end{aligned}$	-0.4	$\begin{gathered} -0.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \\ \hline \end{gathered}$			
		V+ - 1.9	$\begin{aligned} & v^{+}-2.3 \\ & v^{+}-2.6 \end{aligned}$	$\begin{aligned} & \mathbf{v}^{+}-2.3 \\ & \mathbf{v}^{+}-2.5 \end{aligned}$	$\begin{aligned} & v^{+}-2.3 \\ & \mathbf{v}^{+}-2.4 \end{aligned}$	$\begin{aligned} & \mathbf{v}^{+}-2.3 \\ & \mathbf{v}^{+}-2.6 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
Large Signal Voltage Gain	$R_{L}=2 \mathrm{k} \Omega \text { (Note } 5 \text {) }$ Sourcing Sinking	2000	$\begin{aligned} & 400 \\ & \mathbf{3 0 0} \\ & \hline \end{aligned}$	$\begin{array}{r} 440 \\ 400 \end{array}$	$\begin{aligned} & 300 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
		500	$\begin{aligned} & 180 \\ & \mathbf{7 0} \\ & \hline \end{aligned}$	$\begin{gathered} 180 \\ \mathbf{1 2 0} \\ \hline \end{gathered}$	$\begin{array}{r} 90 \\ \mathbf{8 0} \\ \hline \end{array}$	$\begin{array}{r} 90 \\ 40 \\ \hline \end{array}$	V / mV min
	$R_{L}=600 \Omega(\text { Note } 5)$ Sourcing Sinking	1000	$\begin{aligned} & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 220 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} 100 \\ 75 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \\ \hline \end{gathered}$
		250	$\begin{array}{r} 100 \\ 35 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & \hline \end{aligned}$	V / mV min

DC Electrical Characteristics (Continued)

unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	LMC662AMJ/883 LMC662AMD	LMC662AI	LMC662C	LMC662E	Units
			Limit (Note 4, 9)	$\begin{aligned} & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	$\begin{aligned} & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	Limit (Note 4)	
Output Swing	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & R_{L}=2 \mathrm{k} \Omega \text { to } V+/ 2 \end{aligned}$	4.87	$\begin{array}{r} 4.82 \\ 4.77 \end{array}$	$\begin{array}{r} 4.82 \\ 4.79 \\ \hline \end{array}$	$\begin{array}{r} 4.78 \\ 4.76 \end{array}$	$\begin{array}{r} 4.78 \\ 4.70 \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		0.10	$\begin{aligned} & 0.15 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.21 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.25 \end{aligned}$	V max
	$\begin{aligned} & V^{+}=5 V \\ & R_{L}=600 \Omega \text { to } V+/ 2 \end{aligned}$	4.61	$\begin{array}{r} 4.41 \\ 4.24 \\ \hline \end{array}$	$\begin{array}{r} 4.41 \\ 4.31 \\ \hline \end{array}$	$\begin{array}{r} 4.27 \\ \mathbf{4 . 2 1} \\ \hline \end{array}$	$\begin{array}{r} 4.27 \\ \mathbf{4 . 1 0} \\ \hline \end{array}$	$\begin{gathered} V \\ \min \end{gathered}$
		0.30	$\begin{aligned} & 0.50 \\ & \mathbf{0 . 6 3} \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.56 \end{aligned}$	$\begin{aligned} & 0.63 \\ & 0.69 \end{aligned}$	$\begin{aligned} & 0.63 \\ & 0.75 \end{aligned}$	V max
	$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=2 \mathrm{k} \Omega \text { to } V+/ 2 \end{aligned}$	14.63	$\begin{gathered} 14.50 \\ 14.40 \end{gathered}$	$\begin{gathered} 14.50 \\ 14.44 \end{gathered}$	$\begin{gathered} 14.37 \\ \mathbf{1 4 . 3 2} \end{gathered}$	$\begin{gathered} 14.37 \\ 14.25 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		0.26	$\begin{aligned} & 0.35 \\ & \mathbf{0 . 4 3} \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.40 \end{aligned}$	$\begin{gathered} 0.44 \\ 0.48 \end{gathered}$	$\begin{array}{r} 0.44 \\ 0.55 \\ \hline \end{array}$	V max
	$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=600 \Omega \text { to } V+/ 2 \end{aligned}$	13.90	$\begin{gathered} 13.35 \\ 13.02 \\ \hline \end{gathered}$	$\begin{gathered} 13.35 \\ 13.15 \\ \hline \end{gathered}$	$\begin{gathered} 12.92 \\ 12.76 \end{gathered}$	$\begin{gathered} 12.92 \\ 12.60 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		0.79	$\begin{array}{r} 1.16 \\ 1.42 \\ \hline \end{array}$	$\begin{gathered} 1.16 \\ \mathbf{1 . 3 2} \\ \hline \end{gathered}$	$\begin{gathered} 1.45 \\ \mathbf{1 . 5 8} \\ \hline \end{gathered}$	$\begin{array}{r} 1.45 \\ 1.75 \\ \hline \end{array}$	V max
Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=5 \mathrm{~V}$	22	$\begin{aligned} & 16 \\ & 12 \\ & \hline \end{aligned}$	$\begin{array}{r} 16 \\ 14 \\ \hline \end{array}$	$\begin{array}{r} 13 \\ 11 \end{array}$	$\begin{gathered} 13 \\ 9 \\ \hline \end{gathered}$	mA min
		21	$\begin{array}{r} 16 \\ 12 \\ \hline \end{array}$	$\begin{array}{r} 16 \\ 14 \\ \hline \end{array}$	$\begin{aligned} & 13 \\ & 11 \\ & \hline \end{aligned}$	$\begin{gathered} 13 \\ 9 \\ \hline \end{gathered}$	mA min
Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 12)	40	$\begin{array}{r} 19 \\ 19 \\ \hline \end{array}$	$\begin{aligned} & 28 \\ & 25 \end{aligned}$	$\begin{array}{r} 23 \\ 21 \\ \hline \end{array}$	$\begin{array}{r} 23 \\ 15 \\ \hline \end{array}$	mA min
		39	$\begin{array}{r} 19 \\ 19 \\ \hline \end{array}$	$\begin{array}{r} 28 \\ 24 \\ \hline \end{array}$	$\begin{aligned} & 23 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 15 \\ & \hline \end{aligned}$	mA min
Supply Current	Both Amplifiers $V_{O}=1.5 \mathrm{~V}$	0.75	$\begin{aligned} & 1.3 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	$\begin{array}{r} 1.6 \\ 1.9 \end{array}$	mA max

AC Electrical Characteristics

unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	LMC662AMJ/883 LMC662AMD	LMC662AI	LMC662C	LMC662E	Units
			Limit (Note 4, 9)	$\begin{aligned} & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	Limit (Note 4)	Limit (Note 4)	
Slew Rate	(Note 6)	1.1	$\begin{aligned} & 0.8 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \end{aligned}$
Gain-Bandwidth Product		1.4					MHz
Phase Margin		50					Deg
Gain Margin	,	17					dB
Amp-to-Amp Isolation	(Note 7)	130					dB
Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22					$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002					$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Total Harmonic Distortion	$\begin{array}{\|l\|} \hline \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-10 \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V} \mathrm{VP} \\ \mathrm{~V}+=15 \mathrm{~V} \\ \hline \end{array}$	0.01					\%

Note 1: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability. Note 2: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\text { max })}-T_{A}\right) / \theta_{J A}$.
Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 4: Typical values represent the most likely parametric norm. Limits are guaranteed by testing or correlation.
Note 5: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 6: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 7: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{PP}}$.
Note 8: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 9: A military RETS electrical test specification is available on request. At the time of printing, the LMC662AMJ/883 RETS spec complied fully with the boldface limits in this column. The LMC662AMJ/883 may also be procured to a Standard Military Drawing specification.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\boldsymbol{\theta}_{\mathrm{JA}}$ with $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{A}}\right) / \boldsymbol{\theta}_{\mathrm{JA}}$.
Note 11: All numbers apply for packages soldered directly into a PC board.
Note 12: Do not connect output to V^{+}when $\mathrm{V}+$ is greater than 13 V or reliability may be adversely affected.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Output Characteristics Current Sinking

Open-Loop Frequency
Response

Stability vs
Capacitive Load

Note: Avoid resistive loads of less than 500Ω, as they may cause instability.

Stability vs Capacitive Load

TL/H/9763-3
Note: Avoid resistive loads of less than 500Ω, as they may cause instability.

Application Hints

AMPLIFIER TOPOLOGY

The topology chosen for the LMC662, shown in Figure 1, is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow rail-to-rail output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator.
As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C_{f} and C_{ff}) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward.

TL/H/9763-4
FIGURE 1. LMC662 Circuit Topology (Each Amplifier)
The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, even with a 600Ω load. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, under heavy load (600Ω) the gain will be reduced as indicated in the Electrical Characteristics.

COMPENSATING INPUT CAPACITANCE

The high input resistance of the LMC662 op amps allows the use of large feedback and source resistor values without losing gain accuracy due to loading. However, the circuit will be especially sensitive to its layout when these large-value resistors are used.
Every amplifier has some capacitance between each input and AC ground, and also some differential capacitance between the inputs. When the feedback network around an amplifier is resistive, this input capacitance (along with any additional capacitance due to circuit board traces, the socket, etc.) and the feedback resistors create a pole in the feedback path. In the following General Operational Amplifier Circuit, Figure 2, the frequency of this pole is

$$
f_{p}=\frac{1}{2 \pi C_{S} R_{P}}
$$

where C_{S} is the total capacitance at the inverting input, including amplifier input capacitance and any stray capaci-
tance from the IC socket (if one is used), circuit board traces, etc., and R_{P} is the parallel combination of R_{F} and RIN. This formula, as well as all formulae derived below, apply to inverting and non-inverting op-amp configurations.
When the feedback resistors are smaller than a few $k \Omega$, the frequency of the feedback pole will be quite high, since C_{S} is generally less than 10 pF . If the frequency of the feedback pole is much higher than the "ideal" closed-loop bandwidth (the nominal closed-loop bandwidth in the absence of C_{S}), the pole will have a negligible effect on stability, as it will add only a small amount of phase shift.
However, if the feedback pole is less than approximately 6 to 10 times the "ideal" -3 dB frequency, a feedback capacitor, C_{F}, should be connected between the output and the inverting input of the op amp. This condition can also be stated in terms of the amplifier's low-frequency noise gain: To maintain stability, a feedback capacitor will probably be needed if

$$
\left(\frac{R_{F}}{R_{I N}}+1\right) \leq \sqrt{6 \times 2 \pi \times G B W \times R_{F} \times C_{S}}
$$

where

$$
\left(\frac{R_{F}}{R_{I N}}+1\right)
$$

is the amplifier's low-frequency noise gain and GBW is the amplifier's gain bandwidth product. An amplifier's low-frequency noise gain is represented by the formula

$$
\left(\frac{R_{F}}{R_{I N}}+1\right)
$$

regardless of whether the amplifier is being used in an inverting or non-inverting mode. Note that a feedback capacitor is more likely to be needed when the noise gain is low and/or the feedback resistor is large.
If the above condition is met (indicating a feedback capacitor will probably be needed), and the noise gain is large enough that:

$$
\left(\frac{R_{F}}{R_{I N}}+1\right) \geq 2 \sqrt{G B W \times R_{F} \times C_{S}},
$$

the following value of feedback capacitor is recommended:

$$
C_{F}=\frac{C_{S}}{2\left(\frac{R_{F}}{R_{I N}}+1\right)}
$$

If

$$
\left(\frac{R_{F}}{R_{I N}}+1\right)<2 \sqrt{G B W} \times R_{F} \times C_{S},
$$

the feedback capacitor should be:

$$
C_{F}=\sqrt{\frac{C_{S}}{G B W \times R_{F}}}
$$

Note that these capacitor values are usually significantly smaller than those given by the older, more conservative formula:

$$
C_{F}=\frac{C_{S} R_{I N}}{R_{F}}
$$

Application Hints (Continued)

TL/H/9763-6
FIGURE 2. General Operational Amplifier Circuit
C_{S} consists of the amplifier's input capacitance plus any stray capacitance from the circuit board and socket. C_{F} compensates for the pole caused by C_{S} and the feedback resistor.

Using the smaller capacitors will give much higher bandwidth with little degradation of transient response. It may be necessary in any of the above cases to use a somewhat larger feedback capacitor to allow for unexpected stray capacitance, or to tolerate additional phase shifts in the loop, or excessive capacitive load, or to decrease the noise or bandwidth, or simply because the particular circuit implementation needs more feedback capacitance to be sufficiently stable. For example, a printed circuit board's stray capacitance may be larger or smaller than the breadboard's, so the actual optimum value for C_{F} may be different from the one estimated using the breadboard. In most cases, the value of C_{F} should be checked on the actual circuit, starting with the computed value.

CAPACITIVE LOAD TOLERANCE

Like many other op amps, the LMC662 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See the Typical Performance Characteristics.
The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. As shown in Figure 3a, the addition of a small resistor (50Ω to 100Ω) in series with the op amp's output, and a capacitor (5 pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit operation. Thus, larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation.

TL/H/9763-5
FIGURE 3a. Rx, Cx Improve Capacitive Load Tolerance
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 3b). Typically a pull up resistor conducting $500 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/9763-23
FIGURE 3b. Compensating for Large Capacitive Loads with a Pull Up Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC662, typically less than 0.04 pA , it is essential to have an excellent layout. Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC662's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Figure 4. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of an input. This would cause a 100 times degradation from the LMC662's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11} \Omega$ would cause only 0.05 pA of leakage current, or perhaps a minor (2:1) degradation of the amplifier's performance. See Figures 5a, 5b, 5c for typical connections of guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be tied to ground and still provide some protection; see Figure $5 d$.

FIGURE 4. Example, using the LMC660, of Guard Ring in P.C. Board Layout

FIGURE 5. Guard Ring Connections
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 6.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

FIGURE 6. Alr Wiring

BIAS CURRENT TESTING

The test method of Figure 7 is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch S2 momentarily. When S2 is opened, then

$$
\mathrm{I}_{\mathrm{b}}{ }^{-}=\frac{\mathrm{d} \mathrm{~V}_{\text {OUT }}}{\mathrm{dt}} \times \mathrm{C} 2 .
$$

TL/H/9763-22
FIGURE 7. Simple Input Bias Current Test Circuit
A suitable capacitor for C 2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of $\mathrm{l}_{\mathrm{b}}{ }^{-}$, the leakage of the capacitor and socket must be taken into account. Switch S 2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C2 could cause errors.
Similarly, if S 1 is shorted momentarily (while leaving S 2 shorted)

$$
\mathrm{I}_{\mathrm{b}}+=\frac{\mathrm{dV} \text { OUT }}{\mathrm{dt}} \times\left(\mathrm{C} 1+\mathrm{C}_{\mathrm{x}}\right)
$$

where C_{x} is the stray capacitance at the + input.

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{v}_{\mathrm{DC}}\right)$

Additional single-supply applications ideas can be found in the LM358 datasheet. The LMC662 is pin-for-pin compatible with the LM358 and offers greater bandwidth and input resistance over the LM358. These features will improve the performance of many existing single-supply applications. Note, however, that the supply voltage range of the LM662 is smaller than that of the LM358.

Low-Leakage Sample-and-Hold

TL/H/9763-15

TL/H/9763-7

If $R_{1}=R_{5}, R_{3}=R_{6}$, and $R_{4}=R_{7}$; then
$\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{IN}}}=\frac{\mathrm{R} 2+2 \mathrm{R} 1}{\mathrm{R} 2} \times \frac{\mathrm{R} 4}{\mathrm{R} 3}$
$\therefore A_{V} \approx 100$ for circuit shown.
For good CMRR over temperature, low drift resistors should be used. Matching of R3 to R6 and R4 to R7 affects CMRR. Gain may be adjusted through R2. CMRR may be adjusted through R7.

Sine-Wave Oscillator

TL/H/9763-8
Oscillator frequency is determined by R1, R2, C1, and C2:

$$
\mathrm{fOSC}^{\prime}=1 / 2 \pi \mathrm{RC}
$$

where $\mathrm{R}=\mathrm{R} 1=\mathrm{R} 2$ and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2$.
This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.5 V

Typical Single-Supply Applications $\mathrm{N}^{+}=5.0 \mathrm{~V}$ DC) (Continued)

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)

TL/H/9763-13

10 Hz High-Pass Filter

High Gain Amplifier with Offset Voltage Reduction

Gain $=-46.8$
Output offset voltage reduced to the level of the input offset voltage of the bottom amplifier (typically 1 mV).

LMC6001 Ultra Ultra-Low Input Current Amplifier

General Description

Featuring 100% tested input currents of 25 fA max., low operating power, and ESD protection of 2000 V , the LMC6001 achieves a new industry benchmark for low input current operational amplifiers. By tightly controlling the molding compound, National is able to offer this ultra-low input current in a lower cost molded package.
To avoid long turn-on settling times common in other low input current opamps, the LMC6001A is tested 3 times in the first minute of operation. Even units that meet the 25 fA limit are rejected if they drift.
Because of the ultra-low input current noise of $0.13 \mathrm{fA} / \sqrt{\mathrm{Hz}}$, the LMC6001 can provide almost noiseless amplification of high resistance signal sources. Adding only 1 dB at $100 \mathrm{k} \Omega$, 0.1 dB at $1 \mathrm{M} \Omega$ and 0.01 dB or less from $10 \mathrm{M} \Omega$ to 2,000 $\mathrm{M} \Omega$, the LMC6001 is an almost noiseless amplifier.
The LMC6001 is ideally suited for electrometer applications requiring ultra-low input leakage such as sensitive photode-
tection transimpedance amplifiers and sensor amplifiers. Since input referred noise is only $22 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, the LMC6001 can achieve higher signal to noise ratio than JFET input type electrometer amplifiers. Other applications of the LMC6001 include long interval integrators, ultra-high input impedance instrumentation amplifiers, and sensitive electri-cal-field measurement circuits.

Features (Max limit, $25^{\circ} \mathrm{C}$ unless otherwise noted)

- Input current (100% tested)

25 fA

- Input current over temp. 2 pA
■ Low power $750 \mu \mathrm{~A}$
- Low Vos
$350 \mu \mathrm{~V}$
- Low noise
$22 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ @1 kHz Typ.

Applications

- Electrometer amplifier
- Photodiode preamplifier
- Ion detector
- A.T.E. leakage testing

Connection Diagrams

TL/H/11887-2
Top View

Ordering Information

Package	Industrial Temperature Range $-\mathbf{4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5} \mathbf{C}$	NSC Package Drawing
8-Pin Molded DIP	LMC6001AIN, LMC6001BIN, LMC6001CIN	N08E
8-Pin Metal Can	LMC6001AIH, LMC6001BIH	H08C

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales	
Differential Input Voltage	\pm Supply Voltage
Voltage at Input/Output Pin (V^{+})	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)^{\prime \prime}-0.3 \mathrm{~V}$
Supply Voltage (V^{+}- V^{-})	-0.3 V to +16 V
Output Short Circuit to V^{+}	(Notes 2, 10)
Output Short Circuit to V-	(Note 2)
Lead Temperature (Soldering, 10 Sec.$)$	Sec.) $260^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Current at Input Pin	$\pm 10 \mathrm{~mA}$

Current at Output Pin	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Power Dissipation	(Note 3)
ESD Tolerance (Note 9)	2 kV
Operating Ratings (Note 1)	
$\begin{aligned} & \text { Temperature Range } \\ & \text { LMC6001AI, LMC6001BI, LMC6001CI } \\ & -40^{\circ} \mathrm{C} \leq \mathrm{TJ}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	
Supply Voltage	$4.5 \mathrm{~V} \leq \mathrm{V}+\leq 15.5 \mathrm{~V}$
Thermal Resistance (Note 11)	
$\theta_{\text {JA, }}$ N Package	$100^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA }}, \mathrm{H}$ Package	$145^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc}, H Package	$45^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation	(Note 8)

DC Electrical Characteristics

Limits in standard typeface guaranteed for $T_{J}=25^{\circ} \mathrm{C}$ and limits in boldface type apply at the temperature extremes. Unless otherwise specified, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$.

Symbol	Parameter	Conditions	Typical (Note 4)	Limits (Note 5)			Units
				LMC6001AI	LMC6001BI	LMC6001CI	
I_{B}	Input Current	Either Input, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, $V_{S}= \pm 5 \mathrm{~V}$	10	$\begin{gathered} 25 \\ 2000 \end{gathered}$	$\begin{gathered} 100 \\ 4000 \end{gathered}$	$\begin{array}{r} 1000 \\ 4000 \end{array}$	fA
los	Input Offset Current		5	1000	2000	2000	
V_{OS}	Input Offset Voltage			$\begin{array}{r} 0.35 \\ 1.0 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	mV
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$		$\begin{gathered} 0.7 \\ 1.35 \end{gathered}$	$\begin{aligned} & 1.35 \\ & 2.0 \end{aligned}$	1.35	
TCV ${ }_{\text {os }}$	Input Offset Voltage Drift		2.5	10	10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {IN }}$	Input Resistance		>1				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=10 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 72 \\ & 68 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
+ PSRR	Positive Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}$	83	$\begin{aligned} & 73 \\ & 70 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	
-PSRR	Negative Power Supply Rejection Ratio	$\mathrm{OV} \geq \mathrm{V}-\geq-10 \mathrm{~V}$	94	$\begin{aligned} & 80 \\ & 77 \end{aligned}$	$\begin{aligned} & 74 \\ & \mathbf{7 1} \end{aligned}$	$\begin{aligned} & 74 \\ & 71 \end{aligned}$	
A_{V}	Large Signal Voltage Gain	Sourcing, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (Note 6)	1400	$\begin{aligned} & 400 \\ & 300 \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
		Sinking, $R_{L}=2 k \Omega$ (Note 6)	350	$\begin{aligned} & 180 \\ & 100 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	

DC Electrical Characteristics

Limits in standard typeface guaranteed for $T_{J}=25^{\circ} \mathrm{C}$ and limits in boldface type apply at the temperature extremes. Unless otherwise specified, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. (Continued)

Symbol	Parameter	Conditions	Typical (Note 4)	Limits (Note 5)			Units
				LM6001AI	LM6001BI	LM6001CI	
$\mathrm{V}_{C M}$	Input Common-Mode Voltage	$\mathrm{V}^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V}$ For CMRR $\geq 60 \mathrm{~dB}$	-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			V+ - 1.9	$\begin{gathered} v^{+}-2.3 \\ v^{+}-2.5 \end{gathered}$	$\begin{aligned} & \mathbf{v}+-2.3 \\ & \mathbf{v}+-2.5 \end{aligned}$	$\begin{gathered} \mathbf{V}^{+}-2.3 \\ \mathbf{v}+-2.5 \end{gathered}$	$\begin{gathered} V \\ \min \end{gathered}$
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.87	$\begin{array}{r} 4.80 \\ 4.73 \\ \hline \end{array}$	$\begin{array}{r} 4.75 \\ 4.67 \\ \hline \end{array}$	$\begin{array}{r} 4.75 \\ 4.67 \\ \hline \end{array}$	$\begin{gathered} V \\ \min \end{gathered}$
			0.10	$\begin{gathered} 0.14 \\ 0.17 \end{gathered}$	$\begin{gathered} 0.20 \\ 0.24 \end{gathered}$	$\begin{gathered} 0.20 \\ 0.24 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.63	$\begin{gathered} 14.50 \\ 14.34 \\ \hline \end{gathered}$	$\begin{gathered} 14.37 \\ 14.25 \\ \hline \end{gathered}$	$\begin{gathered} 14.37 \\ \mathbf{1 4 . 2 5} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			0.26	$\begin{aligned} & 0.35 \\ & 0.45 \end{aligned}$	$\begin{gathered} 0.44 \\ 0.56 \\ \hline \end{gathered}$	$\begin{gathered} 0.44 \\ 0.56 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
lo	Output Current	Sourcing, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA \min
		Sinking, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{array}{r} 16 \\ \mathbf{1 3} \\ \hline \end{array}$	$\begin{array}{r} 13 \\ \mathbf{1 0} \\ \hline \end{array}$	$\begin{aligned} & 13 \\ & 10 \end{aligned}$	
		Sourcing, $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$	30	$\begin{aligned} & 28 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \\ & \hline \end{aligned}$	$\begin{array}{r} 23 \\ 18 \end{array}$	
		Sinking, $V^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 10)	34	$\begin{aligned} & 28 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	
Is	Supply Current	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	450	$\begin{array}{r} 750 \\ \mathbf{9 0 0} \\ \hline \end{array}$	$\begin{array}{r} 750 \\ \mathbf{9 0 0} \\ \hline \end{array}$	$\begin{array}{r} 750 \\ \mathbf{9 0 0} \\ \hline \end{array}$	$\mu \mathrm{A}$ max
		$\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$	550	$\begin{aligned} & 850 \\ & 950 \end{aligned}$	$\begin{gathered} 850 \\ \mathbf{9 5 0} \end{gathered}$	$\begin{aligned} & 850 \\ & \mathbf{9 5 0} \end{aligned}$	

AC Electrical Characteristics

Limits in standard typeface guaranteed for $T_{J}=25^{\circ} \mathrm{C}$ and limits in boldface type apply at the temperature extremes. Unless otherwise specified, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$.

Symbol	Parameter	Conditions	Typical (Note 4)	Limits (Note 5)			Units
				LM6001AI	LM6001BI	LM6001CI	
SR	Slew Rate	(Note 7)	1.5	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}$ min
GBW	Gain-Bandwidth Product		1.3				MHz
ϕf_{m}	Phase Margin		50				Deg
G_{M}	Gain Margin		17				dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.13				$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
THD	Total Harmonic Distortion	$\begin{aligned} & F=10 \mathrm{kHz}, A_{V}=-10, \\ & R_{L}=100 \mathrm{k} \Omega, V_{O}=8 V_{P P} \end{aligned}$	0.01				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \boldsymbol{\theta}_{J A}$.
Note 4: Typical values represent the most likely parametric norm.
Note 5: All limits are guaranteed by testing or statistical analysis.
Note $6: V^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Limit specified is the lower of the positive and negative slew rates.
Note 8: For operating at elevated temperatures the device must be derated based on the thermal resistance θ_{JA} with $\mathrm{P}_{\mathrm{D}}=\left(T_{J}-T_{A}\right) / \theta_{\mathrm{JA}}$.
Note 9: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 10: Do not connect the output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 11: All numbers apply for packages soldered directly into a printed circuit board.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Common Mode Rejection
Ratio vs Frequency

Noise Figure
vs Source Resistance

Gain and Phase Response vs Temperature
$\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Supply Current vs Supply Voltage

Power Supply Rejection Ratio vs Frequency

Output Characteristics Sourcing Current

Gain and Phase
Response vs Capacitive Load with $R_{\mathrm{L}}=\mathbf{5 0 0} \mathbf{k} \Omega$

TL/H/11887-3

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

TIME ($1 \mu \mathrm{~s} / \mathrm{Div}$)

Inverting Large Signal Pulse Response

Applications Hints

AMPLIFIER TOPOLOGY

The LMC6001 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional op-amps. These features make the LMC6001 both easier to design with, and provide higher speed than products typically found in this low power class.

COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6001.
Although the LMC6001 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors with even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.
When high input impedances are demanded, guarding of the LMC6001 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work).
The effect of input capacitance can be compensated for by adding a capacitor, C_{f}, around the feedback resistors (as in Figure 1) such that:

$$
\begin{gathered}
\frac{1}{2 \pi R_{1} \mathrm{C}_{\mathrm{IN}}} \geq \frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{f}} \\
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}
\end{gathered}
$$

Since it is often difficult to know the exact value of $\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{f}$ can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and LMC662 for a more detailed discussion on compensating for input capacitance.

TL/H/11887-5
FIGURE 1. Cancelling the Effect of Input Capacitance

CAPACITIVE LOAD TOLERANCE

All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is normally included in this integrator stage. The frequency location of the dominant pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see Typical Curves).

Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure $2 a$.

TL/H/11887-6
FIGURE 2a. LMC6001 Noninverting Gain of $\mathbf{1 0}$ Amplifier, Compensated to Handle Capacitive Loads
In the circuit of Figure 2a, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.
Capacitive load driving capability is enhanced by using a pullup resistor to V^{+}(Figure 2b). Typically a pullup resistor conducting $500 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pullup resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pullup resistor (see Electrical Characteristics).

TL/H/11887-7
FIGURE 2b. Compensating for Large Capacitive Loads with a Pullup Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6001, typically less than 10 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface

Applications Hints (Continued)

leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6001's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc., connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input.
This would cause a 500 times degradation from the LMC6001's actual performance. If a guard ring is used and held within 1 mV of the inputs, then the same resistance of $10^{12} \Omega$ will only cause 10 fA of leakage current. Even this small amount of leakage will degrade the extremely low input current performance of the LMC6001. See Figures 4a, $4 b, 4 c$ for typical connections of guard rings for standard opamp configurations.

TL/H/11887-8
FIGURE 3. Examples of Guard Ring in PC Board Layout

TL/H/11887-9
(a) Inverting Amplifier

TL/H/11887-10
(b) Non-Inverting Amplifier

TL/H/11887-11
(c) Follower

FIGURE 4. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5.

TL/H/11887-12
(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board).

FIGURE 5. Air Wiring

Another potential source of leakage that might be overlooked is the device package. When the LMC6001 is manufactured, the device is always handled with conductive finger cots. This is to assure that salts and skin oils do not cause leakage paths on the surface of the package. We recommend that these same precautions be adhered to, during all phases of inspection, test and assembly.

Latchup

CMOS devices tend to be susceptible to latchup due to their internal parasitic SCR effects. The (I/O) input and output pins look similar to the gate of the SCR. There is a minimum current required to trigger the SCR gate lead. The LMC6001 is designed to withstand 100 mA surge current on the I/O pins. Some resistive method should be used to isolate any capacitance from supplying excess current to the I/O pins. In addition, like an SCR, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchup susceptibility.

Typical Applications

The extremely high input resistance, and low power consumption, of the LMC6001 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, electrostatic field detectors and gas chromotographs.

Two Opamp, Temperature Compensated pH Probe Amplifier

The signal from a pH probe has a typical resistance between $10 \mathrm{M} \Omega$ and $1000 \mathrm{M} \Omega$. Because of this high value, it is very important that the amplifier input currents be as small as possible. The LMC6001 with less than 25 fA input current is an ideal choice for this application.
The theoretical output of the standard $\mathrm{Ag} / \mathrm{AgCl} \mathrm{pH}$ probe is $59.16 \mathrm{mV} / \mathrm{pH}$ at $25^{\circ} \mathrm{C}$ with OV out at a pH of 7.00 . This output is proportional to absolute temperature. To compensate for this, a temperature compensating resistor, R1, is
placed in the feedback loop. This cancels the temperature dependence of the probe. This resistor must be mounted where it will be at the same temperature as the liquid being measured.

The LMC6001 amplifies the probe output providing a scaled voltage of $\pm 100 \mathrm{mV} / \mathrm{pH}$ from a pH of 7 . The second opamp, a micropower LMC6041 provides phase inversion and offset so that the output is directly proportional to pH , over the full range of the probe. The pH reading can now be directly displayed on a low cost, low power digital panel meter. Total current consumption will be about 1 mA for the whole system.
The micropower dual operational amplifier, LMC6042, would optimize power consumption but not offer these advantages:

1. The LMC6001A guarantees a 25 fA limit on input current at $25^{\circ} \mathrm{C}$.
2. The input ESD protection diodes in the LMC6042 are only rated at 500V while the LMC6001 has much more robust protection that is rated at 2000 V .
The setup and calibration is simple with no interactions to cause problems.
3. Disconnect the pH probe and with R3 set to about midrange and the noninverting input of the LMC6001 grounded, adjust R8 until the output is 700 mV .
4. Apply -414.1 mV to the noninverting input of the LMC6001. Adjust R3 for and output of 1400 mV . This completes the calibration. As real pH probes may not perform exactly to theory, minor gain and offset adjustments should be made by trimming while measuring a precision buffer solution.

R1 $100 \mathrm{k}+3500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}^{*}$
R2 68.1k
R3, 8 5k
R4, 9 100k
R5 36.5k
R6 619k
R7 97.6k
D1 LM4040D1Z-2.5
C1 $2.2 \mu \mathrm{~F}$
*(Micro-ohm style 144 or similar)

TL/H/11887-15

FIGURE 6. pH Probe Amplifier

Ultra-Low Input Current Instrumentation Amplifier

Figure 7 shows an instrumentation amplifier that features high differential and common mode input resistance ($>10^{14 \Omega}$), 0.01% gain accuracy at $A_{V}=1000$, excellent CMRR with $1 \mathrm{M} \Omega$ imbalance in source resistance. Input current is less than $20 f A$ and offset drift is less than $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
R_{2} provides a simple means of adjusting gain over a wide range without degrading CMRR. R_{7} is an initial trim used to maximize CMRR without using super precision matched resistors. For good CMRR over temperature, low drift resistors should be used.

FIGURE 7. Instrumentation Amplifier

LMC6022

Low Power CMOS Dual Operational Amplifier

General Description

The LMC6022 is a CMOS dual operational amplifier which can operate from either a single supply or dual supplies. Its performance features include an input common-mode range that reaches V^{-}, low input bias current, and voltage gain (into 100 k and $5 \mathrm{k} \Omega$ loads) that is equal to or better than widely accepted bipolar equivalents, while the power supply requirement is less than 0.5 mW .
This chip is built with National's advanced Double-Poly Sili-con-Gate CMOS process.
See the LMC6024 datasheet for a CMOS quad operational amplifier with these same features.

Features

- Specified for $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads
- High voltage gain 120 dB
- Low offset voltage drift $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Ultra low input bias current 40 fA

Connection Diagram

Ordering Information

Temperature Range	Package	NSC Drawing	Transport Media				
Industrial $-\mathbf{4 0} \mathbf{C} \leq \mathbf{T}_{\mathbf{J}} \leq+\mathbf{8 5}^{\circ} \mathbf{C}$	RMC6022IN	8-Pin Molded DIP	N08E	Rail	LMC6022IM	8-Pin Small Outline	M08A
:---:	:---:	:---:					
Rail Tape and Reel							

Absolute Maximum Ratings (Note 1)

Differential Input Voltage	\pm Supply Voltage
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}-\right)$	16 V
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)	1000 V
Voltage at Output/Input Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
Current at Output Pin	$\pm 18 \mathrm{~mA}$
Current at Power Supply Pin	35 mA
Power Dissipation	(Note 3)

Current at Input Pin $\pm 5 \mathrm{~mA}$
Output Short Circuit to VOutput Short Circuit to V^{+}
(Note 2)
(Note 12)

Operating Ratings

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$	
Temperature Range	4.75 V to 15.5 V
Supply Voltage Range	(Note 10)
Power Dissipation	
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$, (Note 11)	$101^{\circ} \mathrm{C} / \mathrm{W}$
$\quad 8$-Pin DIP	$165^{\circ} \mathrm{C} / \mathrm{W}$

$165^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ uniess otherwise noted. Boldface limits apply at the temperature extremes; all other limits $T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{gathered} \text { LMC6022I } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
Vos	Input Offset Voltage		1	$\begin{gathered} 9 \\ 11 \end{gathered}$	mV max
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Input Offset Voltage Average Drift		2.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.04	200	pA max
los	Input Offset Current		0.01	100	pA \max
$\mathrm{R}_{\text {IN }}$	Input Resistance		>1		Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 V \leq V_{C M} \leq 12 V \\ & V^{+}=15 V \end{aligned}$	83	$\begin{aligned} & 63 \\ & 61 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
+ PSRR	Positive Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}+\leq 15 \mathrm{~V}$	83	$\begin{aligned} & 63 \\ & 61 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\mathrm{O} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	$\begin{aligned} & 74 \\ & 73 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \& 15 \mathrm{~V} \\ & \text { For CMRR } \geq 50 \mathrm{~dB} \end{aligned}$	-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\underset{\max }{V}$
			V+ - 1.9	$\begin{gathered} \mathbf{V}^{+}-2.3 \\ \mathbf{v}^{+}-2.5 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\left.\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { (Note } 7\right)$ Sourcing Sinking	1000	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	V / mV min
			500	$\begin{aligned} & 90 \\ & 40 \end{aligned}$	V / mV min
		$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega(\text { Note } 7)$ Sourcing Sinking	1000	$\begin{aligned} & 100 \\ & 75 \end{aligned}$	V / mV min
			250	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	V / mV min

DC Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	LMC6022I Limit (Note 6)	Units

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless other otherwise noted. Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	LMC6022I Limit (Note 6)	Units
SR	Slew Rate	(Note 8)	0.11	0.05 0.03	$\mathrm{V} / \mu \mathrm{s}$ min
GBW	Gain-Bandwidth Product		0.35		MHz
ϕ_{M}	Phase Margin		50		Deg
G_{M}	Gain Margin		17		dB
	Amp-to-Amp Isolation	$($ Note 9$)$	130		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	42		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002		$\mathrm{PA} / \sqrt{\mathrm{Hz}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to component may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$ and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or correlation.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$, and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{Pp}}$.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: All numbers apply for packages soldered directly into a PC board.
Note 12: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Input Common-Mode
Voltage Range vs Temperature

Input Voltage Noise vs Frequency

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

TL/H/11236-4
Note: Avoid resistive loads of less than 500Ω, as they may cause instability.

Application Hints

AMPLIFIER TOPOLOGY

The topology chosen for the LMC6022 is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow rail-to-rail output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator.
As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C_{f} and C_{ff}) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward.

TL/H/11236-6
FIGURE 1. LMC6022 Circuit Topology (Each Amplifier)

TL/H/11236-5

The large signal voltage gain while sourcing is comparable to traditional bipolar op amps for load resistance of at least $5 \mathrm{k} \Omega$. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, when driving load resistance of $5 \mathrm{k} \Omega$ or less, the gain will be reduced as indicated in the Electrical Characteristics. The op amp can drive load resistance as low as 500Ω without instability.

COMPENSATING INPUT CAPACITANCE

Refer to the LMC660 or LMC662 datasheets to determine whether or not a feedback capacitor will be necessary for compensation and what the value of that capacitor would be.

CAPACITIVE LOAD TOLERANCE

Like many other op amps, the LMC6022 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See the Typical Performance Characteristics.
The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. The addition of a small resistor $(50 \Omega$ to $100 \Omega)$ in series with the op amp's output, and a capacitor (5 pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit

Application Hints (Continued)

operation. Thus, larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation.

TL/H/11236-7
FIGURE 2a. Rx, Cx Improve Capacitive Load Tolerance
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 2b). Typically a pull up resistor conducting $50 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/11236-26
FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6022, typically less than 0.04 pA , it is essential to have an excellent layout. Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6022's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of an input. This would cause a 100 times degradation from the LMC6022's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $1^{11} \Omega$ would cause only 0.05 pA of leakage current, or perhaps a minor (2:1) degradation of the amplifier's performance. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be tied to ground and still provide some protection; see Figure 4d.

TL/H/11236-8
FIGURE 3. Example of Guard Ring in P.C. Board Layout (Using the LMC6024)

Application Hints (Continued)

The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

FIGURE 5. Air Wiring

BIAS CURRENT TESTING

The test method of Figure 6 is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch S2 momentarily. When S2 is opened, then

$$
1^{-}=\frac{d V_{\mathrm{OUT}}}{\mathrm{dt}} \times \mathrm{C} 2 .
$$

TL/H/11236-14
FIGURE 6. Simple Input Bias Current Test Circuit

Application Hints (Continued)

A suitable capacitor for C2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of I^{-}, the leakage of the capacitor and socket must be taken into account. Switch S2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C2 could cause errors.

Similarly, if S1 is shorted momentarily (while leaving S2 shorted)

$$
\mathrm{I}^{+}=\frac{\mathrm{dV} \mathrm{VUT}}{\mathrm{dt}} \times\left(\mathrm{C}_{1}+\mathrm{C}_{\mathrm{x}}\right)
$$

where C_{x} is the stray capacitance at the + input.

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Note: A 5 V bias on the photodiode can cut its capacitance by a factor of 2 or 3, leading to improved response and lower noise. However, this bias on the photodiode will cause photodiode leakage (also known as its dark current).

Micropower Current Source
LM385 (1.2V)

TL/H/11236-16
(Upper limit of output range dictated by input common-mode range; lower limit dictated by minimum current requirement of LM385.)

Typical Single-Supply Applications $\mathrm{N}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}$ (Continued)

Oscillator frequency is determined by $\mathrm{R} 1, \mathrm{R} 2, \mathrm{C} 1$, and C 2 :

$$
f_{O S C}=1 / 2 \pi R C
$$

where $\mathrm{R}=\mathrm{R} 1=\mathrm{R} 2$ and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2$.
This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.5 V .

1 Hz Square-Wave Oscillator

TL/H/11236-20

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)

TL/H/11236-24

High Gain Amplifier with Offset Voltage Reduction

Output offset voltage reduced to the level of the input offset voltage of the bottom amplifier (typically 1 mV), referred to $\mathrm{V}_{\mathrm{BIAS}}$.

LMC6024

Low Power CMOS Quad Operational Amplifier

General Description

The LMC6024 is a CMOS quad operational amplifier which can operate from either a single supply or dual supplies. Its performance features include an input common-mode range that reaches V^{-}, low input bias current and voltage gain (into $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads) that is equal to or better than widely accepted bipolar equivalents, while the power supply requirement is less than 1 mW .
This chip is built with National's advanced Double-Poly Sili-con-Gate CMOS process.
See the LMC6022 datasheet for a CMOS dual operational amplifier with these same features.

Features

- Specified for $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads
- High voltage gain

- Low offset voltage drift	$2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Ultra low input bias current	40 fA
- Input common-mode range includes V -	
- Operating range from +5 V to +15 V supply	
- Low distortion	0.01% at 1 kHz
- Slew rate	$0.11 \mathrm{~V} / \mu \mathrm{s}$
- Micropower operation	1 mW

Applications

- High-impedance buffer or preamplifier
- Current-to-voltage converter
- Long-term integrator
- Sample-and-hold circuit
- Peak detector
- Medical instrumentation
- Industrial controls

Connection Diagram

TL/H/11235-1

Ordering Information

Temperature Range	Package	NSC Drawing	Transport Media
Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$	LMC6024IN	14-Pin Molded DIP	N14A
LMC6024IM	14-Pin Small Outline	M14A	Rail Tape and Reel

Absolute Maximum Ratings (Note 1)		
If Military/Aerospace specified devices are required,	Junction Temperature	$150^{\circ} \mathrm{C}$
please contact the National Semiconductor Sales	ESD Tolerance (Note 4)	1000 V
Office/Distributors for availability and specifications.	Power Dissipation	(Note 3)
Differential Input Voltage \pm Supply Voltage		
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$) 16V	Operating Ratings	
Lead Temperature (Soldering, 10 sec .) $\quad 260^{\circ} \mathrm{C}$	Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Supply Voltage Range	4.75 V to 15.5 V
Voltage at Output/Input Pin $\quad\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$	Power Dissipation	(Note 10)
Current at Input Pin $\pm 5 \mathrm{~mA}$	Thermal Resistance (θ_{JA}), (Note 11)	
Current at Output Pin $\pm 18 \mathrm{~mA}$	14 -Pin DIP	$85^{\circ} \mathrm{C} / \mathrm{W}$
Current at Power Supply Pin 35 mA	14-Pin SO	$115^{\circ} \mathrm{C} / \mathrm{W}$
Output Short Circuit to ${ }^{+}{ }^{+}$(Note 12)		
Output Short Circuit to V- (Note 2)		

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{aligned} & \text { LMC6024I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1	$\begin{gathered} 9 \\ 11 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{Max} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Input Offset Voltage Average Drift		2.5	*	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.04	200	pA Max
los	Input Offset Current		0.01	100	pA Max
R_{IN}	Input Resistance		>1		Teras
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 V \leq V_{C M} \leq 12 V \\ & V+=15 V \end{aligned}$	83	$\begin{aligned} & 63 \\ & 61 \end{aligned}$	$\begin{gathered} \text { dB } \\ \text { Min } \end{gathered}$
+ PSRR	Positive Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}+\leq 15 \mathrm{~V}$	83	$\begin{array}{r} 63 \\ 61 \\ \hline \end{array}$	dB Min
-PSRR	Negative Power Supply Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	$\begin{array}{r} 74 \\ 73 \\ \hline \end{array}$	dB Min
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}+=5 \mathrm{~V} \text { and } 15 \mathrm{~V}$ For CMRR ≥ 50 DB	-0.4	$\begin{gathered} -0.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Max } \end{gathered}$
			$\mathrm{V}+$ - 1.9	$\begin{aligned} & v^{+}-2.3 \\ & v^{+}-2.5 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
A_{V}	Large Signal Voltage Gain	$R_{L}=100 \mathrm{k} \Omega \text { (Note } 7 \text {) }$ Sourcing	1000	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	V/mV Min
			500	$\begin{array}{r} 90 \\ 40 \\ \hline \end{array}$	V/mV Min
		$R_{\mathrm{L}}=5 \mathrm{k} \Omega \text { (Note } 7 \text {) }$ Sourcing	1000	$\begin{aligned} & 100 \\ & 75 \\ & \hline \end{aligned}$	V/mV Min
			250	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	V / mV Min

DC Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{aligned} & \text { LMC6024I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
V_{0}	Output Voltage Swing	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.987	$\begin{array}{r} 4.40 \\ 4.43 \end{array}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.004	$\begin{aligned} & 0.06 \\ & 0.09 \end{aligned}$	$\begin{gathered} V \\ M a x \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.940	$\begin{array}{r} 4.20 \\ 4.00 \\ \hline \end{array}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
			0.040	$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	V Max
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.970	$\begin{gathered} 14.00 \\ 13.90 \end{gathered}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
			0.007	$\begin{aligned} & 0.06 \\ & 0.09 \end{aligned}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.840	$\begin{gathered} 13.70 \\ 13.50 \\ \hline \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.110	$\begin{gathered} 0.32 \\ 0.40 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Max } \end{gathered}$
10	Output Current	$\mathrm{V}^{+}=5 \mathrm{~V}$ Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$ (Note 2)	22	13	mA Min
			21	13	mA Min
		$V^{+}=15 \mathrm{~V}$ Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 12)	40	$\begin{array}{r} 23 \\ 15 \\ \hline \end{array}$	mA Min
			39	$\begin{aligned} & 23 \\ & 15 \end{aligned}$	mA Min
Is	Supply Current	All Four Amplifiers $V_{O}=1.5 \mathrm{~V}$	160	$\begin{aligned} & 240 \\ & 280 \end{aligned}$	$\mu \mathrm{A}$ Max

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	LMC6024I Limit (Note 6)	Units
SR	Slew Rate	(Note 8)	0.11	0.05 0.03	$\mathrm{V} / \mu \mathrm{s}$ Min
GBW	Gain-Bandwidth Product		0.35		MHz
θ_{M}	Phase Margin		50		Deg
G_{M}	Gain Margin		17		dB
	Amp-to-Amp Isolation	$($ Note 9$)$	130		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	42		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversly affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, 100 pF discharge through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or correlation.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$, and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred, $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{Pp}}$.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: All numbers apply for packages soldered directly into a PC board.
Note 12: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

TL/H/11235-4
Note: Avoid resistive loads of less than 500Ω, as they may cause instability.

Application Hints

AMPLIFIER TOPOLOGY

The topology chosen for the LMC6024 is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow rail-to-rail output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator.
As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C_{f} and C_{ff}) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward.

TL/H/11235-6
FIGURE 1. LMC6024 Circuit Topology (Each Amplifier)

TL/H/11235-5

The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, for load resistance of at least $5 \mathrm{k} \Omega$. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, when driving load resistance of $5 \mathrm{k} \Omega$ or less, the gain will be reduced as indicated in the Electrical Characterisitics. The op amp can drive load resistance as low as 500Ω without instability.

COMPENSATING INPUT CAPACITANCE

Refer to the LMC660 or LMC662 datasheets to determine whether or not a feedback capacitor will be necessary for compensation and what the value of that capacitor would be.

CAPACITIVE LOAD TOLERANCE

Like many other op amps, the LMC6024 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See the Typical Performance Characteristics.
The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. The addition of a small resistor (50Ω to 100Ω) in series with the op amp's output, and a capacitor (5 pF to 10 pF) from

Application Hints (Continued)

inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit operation. Thus, larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capcitance is near the threshold for oscillation.

FIGURE 2a. Rx, Cx Improve Capacitive Load Tolerance
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 2b). Typically a pull up resistor conducting $50 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/11235-26

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6024, typically less than 0.04 pA , it is essential to have an excellent layout. Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6024's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 10^{12} ohms, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of an input. This would cause a 100 times degradation from the LMC6024's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 10^{11} ohms would cause only 0.05 pA of leakage current, or perhaps a minor (2:1) degradation of the amplifier's performance. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be tied to ground and still provide some protection; see Figure 4d.

FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor

FIGURE 3. Example of Guard Ring in P.C. Board Layout (Using the LMC6024)

Application Hints (Continued)

FIGURE 4. Guard Ring Connections

The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

BIAS CURRENT TESTING

The test method of Figure 6 is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch S2 momentarily. When S2 is opened, then

$$
\mathrm{I}^{-}=\frac{\mathrm{dV}}{\mathrm{OUT}} \mathrm{dt} \times \mathrm{C} 2
$$

TL/H/11235-14
FIGURE 6. Simple Input Bias Current Test Circuit

Application Hints (Continued)

A suitable capacitor for C 2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of $\mathrm{I}^{- \text {- }}$, the leakage of the capacitor and socket must be taken into account. Switch S 2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C2 could cause errors.

Similarly, if S1 is shorted momentarily (while leaving S shorted)

$$
1+=\frac{\mathrm{dV}_{\mathrm{OUT}}}{\mathrm{dt}} \times\left(\mathrm{C}_{1}+\mathrm{C}_{\mathrm{x}}\right)
$$

where C_{x} is the stray capacitance at the + input.

Typical Single-Supply Applications $\left(\mathrm{v}+=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Photodiode Current-to-Voltage Converter

TL/H/11235-15
Note: A 5 V bias on the photodiode can cut its capacitance by a factor of 2 or 3 , leading to improved response and lower noise. However, this bias on the photodiode will cause photodiode leakage (also known as its dark current).

Micropower Current Source

TL/H/11235-16
(Upper limit of output range dictated by input common-mode range; lower limit dictated by minimum current requirement of LM385.)

Low-Leakage Sample-and-Hoid

TL/H/11235-17

Instrumentation Amplifier

If $\mathrm{R} 1=\mathrm{R} 5, \mathrm{R} 3=\mathrm{R} 6$, and $\mathrm{R} 4=\mathrm{R} 7$;
Then

$$
\frac{V_{\text {OUT }}}{V_{I N}}=\frac{R 2+2 R 1}{R 2} \times \frac{R 4}{R 3}
$$

$\therefore A_{V} \approx 100$ for circuit shown.
For good CMRR over temperature, low drift resistors should be used. Matching of R3 to R6 and R4 to R7 affects CMRR. Gain may be adjusted through R2. CMRR may be adjusted through R7.

Typical Single-Supply Applications $\left({ }^{+}+=5.0 \mathrm{~V}_{\text {DC) }}\right.$ (Continued)

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)

TL/H/11235-21

High Gain Amplifier with Offset Voltage Reduction

Gain $=-46.8$
TL/H/11235-22
Output offset voltage reduced to the
level of the input offset voltage of
the bottom amplifier (typically 1 mV), referred to $V_{\text {BIAS }}$.

LMC6032

CMOS Dual Operational Amplifier

General Description

The LMC6032 is a CMOS dual operational amplifier which can operate from either a single supply or dual supplies. Its performance features include an input common-mode range that reaches ground, low input bias current, and high voltage gain into realistic loads, such as $2 \mathrm{k} \Omega$ and 600Ω.
This chip is built with National's advanced Double-Poly Sili-con-Gate CMOS process.
See the LMC6034 datasheet for a CMOS quad operational amplifier with these same features. For higher performance characteristics refer to the LMC662.

Features

- Specified for $2 \mathrm{k} \Omega$ and 600Ω loads
- High voltage gain

126 dB

- Low offset voltage drift

■ Ultra low input bias current $\quad 40 f A$

- Input common-mode range includes V^{-}
- Operating range from +5 V to +15 V supply
- ISS $=400 \mu \mathrm{~A}$ /amplifier; independent of V^{+}
- Low distortion
0.01% at 10 kHz
- Slew rate
$1.1 \mathrm{~V} / \mu \mathrm{s}$
- Improved performance over TLC272

Applications

- High-impedance buffer or preamplifier
- Current-to-voltage converter
- Long-term integrator
- Sample-and-hold circuit
- Medical instrumentation

Connection Diagram

Ordering Information

Temperature Range	Package	NSC Drawing	Transport Media				
Industrial $-40^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{J}} \leq+85^{\circ} \mathbf{C}$	LMC6032IN	8-Pin Molded DIP	N08E	Rail	LMC6032IM	8-Pin Small Outline	M08A
:---:	:---:	:---:					
Rail Tape and Reel							

Absolute Maximum Ratings (Note 1)			
If Military/Aerospace specified dev	ces are required,	Power Dissipation	(Note 3)
please contact the National Se Office/Distributors for availability a	conductor Sales specifications.	Voltage at Output/Input Pin	$\begin{aligned} & \left(V^{+}\right)+0.3 V \\ & \left(V^{-}\right)-0.3 V \end{aligned}$
Differential Input Voltage	\pm Supply Voltage	Current at Output Pin	$\pm 18 \mathrm{~mA}$
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	16 V	Current at Input Pin	$\pm 5 \mathrm{~mA}$
Output Short Circuit to V +	(Note 10)	Current at Power Supply Pin	35 mA
Output Short Circuit to V^{-}	(Note 2)	Operating Ratings (Note 1)	
Lead Temperature (Soldering, 10 sec .)	$260^{\circ} \mathrm{C}$	Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Supply Voltage Range	4.75 V to 15.5 V
Junction Temperature	$150^{\circ} \mathrm{C}$	Power Dissipation	(Note 11)
ESD Tolerance (Note 4)	1000 V	Thermal Resistance (θ_{JA}),	
		$\begin{aligned} & \text { 8-Pin DIP } \\ & \text { 8-Pin SO } \end{aligned}$	$\begin{aligned} & 101^{\circ} \mathrm{C} / \mathrm{W} \\ & 165^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{aligned} & \text { LMC6032I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
Vos	Input Offset Voltage		1	$\begin{gathered} 9 \\ 11 \end{gathered}$	mV max
$\Delta V_{O S} / \Delta T$	Input Offset Voltage Average Drift		2.3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.04	200	pA max
los	Input Offset Current		0.01	100	pA max
$\mathrm{R}_{\text {IN }}$	Input Resistance		>1		Teras
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 V \leq V_{C M} \leq 12 V \\ & V+=15 V \end{aligned}$	83	$\begin{aligned} & 63 \\ & 60 \\ & \hline \end{aligned}$	dB min
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 63 \\ & 60 \\ & \hline \end{aligned}$	dB min
-PSRR	Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	$\begin{aligned} & 74 \\ & \mathbf{7 0} \\ & \hline \end{aligned}$	dB min
V_{CM}	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \& 15 \mathrm{~V} \\ & \text { For CMRR } \geq 50 \mathrm{~dB} \end{aligned}$	-0.4	$\begin{gathered} -0.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} V \\ \max \\ \hline \end{gathered}$
			$\mathrm{V}+$ - 1.9	$\begin{gathered} v^{+}-2.3 \\ \mathbf{v}^{+}-2.6 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
A_{V}	Large Signal Voltage Gain	$R_{L}=2 \mathrm{k} \Omega \text { (Note } 7 \text {) }$ Sourcing Sinking	2000	$\begin{gathered} 200 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			500	$\begin{aligned} & 90 \\ & 40 \\ & \hline \end{aligned}$	V / mV min
		$\mathrm{R}_{\mathrm{L}}=600 \Omega \text { (Note 7) }$ Sourcing Sinking	1000	$\begin{aligned} & 100 \\ & \mathbf{7 5} \\ & \hline \end{aligned}$	V/mV min
			250	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	V/mV \min

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{gathered} \text { LMC60321 } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
V_{0}	Output Voltage Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.87	$\begin{aligned} & 4.20 \\ & 4.00 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.10	$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	V max
		$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & R_{\mathrm{L}}=600 \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.61	$\begin{aligned} & 4.00 \\ & \mathbf{3 . 8 0} \end{aligned}$	$\begin{gathered} V \\ \min \end{gathered}$
			0.30	$\begin{aligned} & 0.63 \\ & 0.75 \end{aligned}$	V max
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.63	$\begin{gathered} 13.50 \\ 13.00 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.26	$\begin{aligned} & 0.45 \\ & 0.55 \end{aligned}$	V max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	13.90	$\begin{gathered} 12.50 \\ 12.00 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			0.79	$\begin{aligned} & 1.45 \\ & 1.75 \end{aligned}$	$\begin{gathered} V \\ \max \end{gathered}$
10	Output Current	$\mathrm{V}^{+}=5 \mathrm{~V}$ Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=5 \mathrm{~V}$	22	13	mA min
			21	13	mA min
		$\mathrm{V}^{+}=15 \mathrm{~V}$ Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 10)	40	$\begin{aligned} & 23 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
			39	$\begin{aligned} & 23 \\ & 15 \end{aligned}$	mA min
Is	Supply Current	Both Amplifiers $V_{O}=1.5 \mathrm{~V}$	0.75	$\begin{aligned} & 1.6 \\ & 1.9 \\ & \hline \end{aligned}$	mA max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{aligned} & \text { LMC6032I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
SR	Slew Rate	(Note 8)	1.1	$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mu \mathrm{s} \\ \mathrm{~min} \end{gathered}$
GBW	Gain-Bandwidth Product		1.4		MHz
ϕ_{M}	Phase Margin		50		Deg
G_{M}	Gain Margin		17		dB
	Amp-to-Amp Isolation	(Note 9)	130		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V} \mathrm{PP} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01		\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to component may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $\mathrm{P}_{\mathrm{D}}=$ ($\left.T_{J(\text { max })}-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold type face).
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$, and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred. $V^{+}=15 \mathrm{~V}$ and $R_{L}=10 \mathrm{k} \Omega$ connected to $V^{+} / 2$. Each amp excited in turn with 1 kHz to produce $V_{O}=13 V_{p p}$.
Note 10: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability may be adversely affected.
Note 11: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 12: All numbers apply for packages soldered directly into a PC board.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Note: Avoid resistive loads of less than 500Ω, as they may cause instability.

Application Hints

AMPLIFIER TOPOLOGY

The topology chosen for the LMC6032, shown in Figure 1, is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow a larger output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator.
As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C_{f} and C_{ff}) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward.

TL/H/11135-3
FIGURE 1. LMC6032 Circuit Topology (Each Amplifier)
The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, even with a 600Ω load. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, under heavy load (600Ω) the gain will be reduced as indicated in the Electrical Characteristics.

COMPENSATING INPUT CAPACITANCE

The high input resistance of the LMC6032 op amps allows the use of large feedback and source resistor values without losing gain accuracy due to loading. However, the circuit will be especially sensitive to its layout when these large-value resistors are used.
Every amplifier has some capacitance between each input and AC ground, and also some differential capacitance between the inputs. When the feedback network around an amplifier is resistive, this input capacitance (along with any additional capacitance due to circuit board traces, the socket, etc.) and the feedback resistors create a pole in the feedback path. In the following General Operational Amplifier Circuit, Figure 2, the frequency of this pole is

$$
f_{p}=\frac{1}{2 \pi C_{S} R_{p}}
$$

where $\mathrm{C}_{\mathbf{S}}$ is the total capacitance at the inverting input, including amplifier input capacitance and any stray capaci-
tance from the IC socket (if one is used), circuit board traces, etc., and R_{p} is the parallel combination of R_{F} and R_{IN}. This formula, as well as all formulae derived below, apply to inverting and non-inverting op-amp configurations.
When the feedback resistors are smaller than a few $k \Omega$, the frequency of the feedback pole will be quite high, since C_{s} is generally less than 10 pF . If the frequency of the feedback pole is much higher than the "ideal" closed-loop bandwidth (the nominal closed-loop bandwidth in the absence of C_{S}), the pole will have a negligible effect on stability, as it will add only a small amount of phase shift.
However, if the feedback pole is less than approximately 6 to 10 times the "ideal" -3 dB frequency, a feedback capacitor, C_{F}, should be connected between the output and the inverting input of the op amp. This condition can also be stated in terms of the amplifier's low-frequency noise gain: To maintain stability, a feedback capacitor will probably be needed if

$$
\left(\frac{R_{F}}{R_{I N}}+1\right) \leq \sqrt{6 \times 2 \pi \times G B W \times R_{F} \times C_{S}}
$$

where

$$
\left(\frac{R_{F}}{R_{I N}}+1\right)
$$

is the amplifier's low-frequency noise gain and GBW is the amplifier's gain bandwidth product. An amplifier's low-frequency noise gain is represented by the formula

$$
\left(\frac{R_{F}}{R_{I N}}+1\right)
$$

regardless of whether the amplifier is being used in an inverting or non-inverting mode. Note that a feedback capacitor is more likely to be needed when the noise gain is low and/or the feedback resistor is large.
If the above condition is met (indicating a feedback capacitor will probably be needed), and the noise gain is large enough that:

$$
\left(\frac{R_{F}}{R_{I N}}+1\right) \geq 2 \sqrt{G B W \times R_{F} \times C_{S}},
$$

the following value of feedback capacitor is recommended:

$$
C_{F}=\frac{C_{S}}{2\left(\frac{R_{F}}{R_{I N}}+1\right)}
$$

If

$$
\left(\frac{R_{F}}{R_{I N}}+1\right)<2 \sqrt{G B W \times R_{F} \times C_{S}},
$$

the feedback capacitor should be:

$$
C_{F}=\sqrt{\frac{C_{S}}{G B W \times R_{F}}}
$$

Note that these capacitor values are usually significantly smaller than those given by the older, more conservative formula:

$$
C_{F}=\frac{C_{S} R_{\mathbb{I N}}}{R_{F}}
$$

Application Hints (Continued)

TL/H/11135-4
FIGURE 2. General Operational Amplifier Circuit
C_{S} consists of the amplifier's input capacitance plus any stray capacitance from the circuit board and socket. C_{F} compensates for the pole caused by C_{S} and the feedback resistor.

Using the smaller capacitors will give much higher bandwidth with little degradation of transient response. It may be necessary in any of the above cases to use a somewhat larger feedback capacitor to allow for unexpected stray capacitance, or to tolerate additional phase shifts in the loop, or excessive capacitive load, or to decrease the noise or bandwidth, or simply because the particular circuit implementation needs more feedback capacitance to be sufficiently stable. For example, a printed circuit board's stray capacitance may be larger or smaller than the breadboard's, so the actual optimum value for C_{F} may be different from the one estimated using the breadboard. In most cases, the value of C_{F} should be checked on the actual circuit, starting with the computed value.

CAPACITIVE LOAD TOLERANCE

Like many other op amps, the LMC6032 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See the Typical Performance Characteristics.
The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. As shown in Figure 3a, the addition of a small resistor (50Ω to 100Ω) in series with the op amp's output, and a capacitor (5 pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit operation. Thus, larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation.

TL/H/11135-5
FIGURE 3a. Rx, Cx Improve Capacitive Load Tolerance
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 3b). Typically a pull up resistor conducting $500 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open
loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/11135-22

FIGURE 3b. Compensating for Large Capacitive Loads with a Pull Up Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6032, typically less than 0.04 pA , it is essential to have an excellent layout. Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6032's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Figure 4. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of an input. This would cause a 100 times degradation from the LMC6032's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011Ω would cause only 0.05 pA of leakage current, or perhaps a minor ($2: 1$) degradation of the amplifier's performance. See Figures 5a, 5b, 5c for typical connections of guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be tied to ground and still provide some protection; see Figure 5d.

FIGURE 4. Example of Guard Ring in P.C. Board Layout

Application Hints (Continued)

FIGURE 5. Guard Ring Connections
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an
insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 6.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

FIGURE 6. Air Wiring

BIAS CURRENT TESTING

The test method of Figure 7 is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch S2 momentarily. When S2 is opened, then

$$
\mathrm{I}_{\mathrm{b}}^{-}=\frac{\mathrm{dV}}{\mathrm{OUT}} \mathrm{dt} \times \mathrm{C} 2
$$

TL/H/11135-12
FIGURE 7. Simple Input Bias Current Test Circuit
A suitable capacitor for C 2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of $\mathrm{I}_{\mathrm{b}}{ }^{-}$, the leakage of the capacitor and socket must be taken into account. Switch S2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C2 could cause errors.
Similarly, if S1 is shorted momentarily (while leaving S2 shorted)

$$
\mathrm{I}_{\mathrm{b}}+=\frac{\mathrm{dV} \mathrm{VOUT}^{d t}}{\mathrm{dt}} \times\left(\mathrm{C} 1+\mathrm{C}_{\mathrm{x}}\right)
$$

where C_{x} is the stray capacitance at the + input.

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Additional single-supply applications ideas can be found in the LM358 datasheet. The LMC6032 is pin-for-pin compatible with the LM358 and offers greater bandwidth and input resistance over the LM358. These features will improve the performance of many existing single-supply applications. Note, however, that the supply voltage range of the LMC6032 is smaller than that of the LM358.

TL/H/11135-14

$$
\begin{aligned}
\frac{V_{\text {OUT }}}{V_{I N}} & =\frac{R 2+2 R 1}{R 2} \times \frac{R 4}{R 3} \quad \begin{array}{rl}
\text { if } R 1=R 5 ; \\
R 3 & R=R 6, \\
\text { and } R 4=R 7 .
\end{array} \\
& =100 \text { for circuit shown. }
\end{aligned}
$$

For good CMRR over temperature, low drift resistors should be used. Matching of R3 to R6 and R4 to R7 affects CMRR. Gain may be adjusted through R2. CMRR may be adjusted through R7.

Sine-Wave Oscillator

TL/H/11135-15
Oscillator frequency is determined by $\mathrm{R} 1, \mathrm{R} 2, \mathrm{C} 1$, and C 2 :

$$
\mathrm{f}_{\mathrm{OSC}}=1 / 2 \pi \mathrm{RC}
$$

where $\mathrm{R}=\mathrm{R} 1=\mathrm{R} 2$ and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2$.
This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.0V.

Low-Leakage Sample-and-Hold

TL/H/11135-13

1 Hz Square-Wave Oscillator

TL/H/11135-16

TL/H/11135-17

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right.$ (Continued)

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)

High Gain Amplifier with Offset Voltage Reduction

Gain $=-46.8$
Output offset voltage reduced to the level of the input offset voltage of the bottom amplifier (typically 1 mV).

LMC6034

CMOS Quad Operational Amplifier

General Description

The LMC6034 is a CMOS quad operational amplifier which can operate from either a single supply or dual supplies. Its performance features include an input common-mode range that reaches ground, low input bias current, and high voltage gain into realistic loads, such as $2 \mathrm{k} \Omega$ and 600Ω.
This chip is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC6032 datasheet for a CMOS dual operational amplifier with these same features. For higher performance characteristics refer to the LMC660.

Features

■ Specified for $2 \mathrm{k} \Omega$ and 600Ω loads

- High voltage gain
- Low offset voltage drift
- Ultra low input bias current

Connection Diagram

Ordering Information

Temperature Range	Package	NSC Drawing	Transport Media
Industrial $-40^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{J}} \leq+85^{\circ} \mathrm{C}$		N14A	Rail
LMC6034IN	14-Pin Small Outline	M14A	Rail Tape and Reel

If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Differential Input Voltage
Supply Voltage ($\mathbf{V}^{+}-\mathbf{V}^{-}$)
Output Short Circuit to V^{+}
Output Short Circuit to V^{-}
Lead Temperature (Soldering, 10 sec.)
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation
Voltage at Output/Input Pin
Current at Output Pin
$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
$\pm 18 \mathrm{~mA}$
$\pm 5 \mathrm{~mA}$

Current at Power Supply Pin	35 mA
Junction Temperature (Note 3)	$150^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)	1000 V

Operating Ratings (Note 1)

Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Supply Voltage Range	4.75 V to 15.5 V
Power Dissipation	(Note 11)
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$, (Note 12)	
14-Pin DIP	$85^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin SO	$115^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=\mathrm{VV}, \mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{aligned} & \text { LMC6034I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
Vos	Input Offset Voltage		1	$\begin{gathered} 9 \\ 11 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \max \end{gathered}$
$\Delta V_{\text {OS }} / \Delta T$	Input Offset Voltage Average Drift		2.3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.04	200	pA max
los	Input Offset Current		0.01	100	pA \max
$\mathrm{R}_{\text {IN }}$	Input Resistance		>1		Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & O V \leq V_{C M} \leq 12 V \\ & V+=15 V \end{aligned}$	83	$\begin{aligned} & 63 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}+\leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 63 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	$\begin{aligned} & 74 \\ & 70 \end{aligned}$	dB min
V_{CM}	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \& 15 \mathrm{~V} \\ & \text { For CMRR } \geq 50 \mathrm{~dB} \end{aligned}$	-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} V \\ \max \end{gathered}$
			V+ - 1.9	$\begin{aligned} & v^{+}-2.3 \\ & \mathbf{v}^{+}-2.6 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega(\text { Note } 7)$ Sourcing Sinking	2000	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	V / mV min
			500	$\begin{aligned} & 90 \\ & 40 \end{aligned}$	V / mV min
		$\mathrm{R}_{\mathrm{L}}=600 \Omega \text { (Note 7) }$ Sourcing Sinking	1000	$\begin{aligned} & 100 \\ & \mathbf{7 5} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \\ \hline \end{gathered}$
			250	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	V / mV min

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{gathered} \text { LMC60341 } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
V_{0}	Output Voltage Swing	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.87	$\begin{gathered} 4.20 \\ 4.00 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.10	$\begin{array}{r} 0.25 \\ 0.35 \end{array}$	V max
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.61	$\begin{aligned} & 4.00 \\ & 3.80 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			0.30	$\begin{aligned} & 0.63 \\ & 0.75 \end{aligned}$	$\begin{gathered} V \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.63	$\begin{gathered} 13.50 \\ 13.00 \end{gathered}$	$\begin{gathered} \vee \\ \mathrm{min} \end{gathered}$
			0.26	$\begin{aligned} & 0.45 \\ & 0.55 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=600 \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	13.90	$\begin{gathered} 12.50 \\ 12.00 \end{gathered}$	$\begin{gathered} \vee \\ \mathrm{min} \end{gathered}$
			0.79	$\begin{aligned} & 1.45 \\ & 1.75 \end{aligned}$	V max
10	Output Current	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & \text { Sourcing, } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\ & \text { Sinking, } \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V} \end{aligned}$	22	$\begin{gathered} 13 \\ 9 \\ \hline \end{gathered}$	mA \min
			21	$\begin{gathered} 13 \\ 9 \end{gathered}$	mA min
		$V^{+}=15 \mathrm{~V}$ Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 10)	40	$\begin{array}{r} 23 \\ 15 \\ \hline \end{array}$	mA min
			39	$\begin{aligned} & 23 \\ & 15 \end{aligned}$	mA min
Is	Supply Current	All Four Amplifiers $V_{O}=1.5 \mathrm{~V}$	1.5	$\begin{aligned} & 2.7 \\ & \mathbf{3 . 0} \end{aligned}$	mA max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{aligned} & \text { LMC6034I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
SR	Slew Rate	(Note 8)	1.1	$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~min} \end{aligned}$
GBW	Gain-Bandwidth Product		1.4		MHz
ϕ_{M}	Phase Margin		50		Deg
G_{M}	Gain Margin		17		dB
	Amp-to-Amp Isolation	(Note 9)	130		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{VPP} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01		\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}, T_{A}$. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(m a x)}-\right.$ $\left.\mathrm{T}_{\mathrm{A}}\right) / \boldsymbol{\theta}_{\mathrm{JA}}$.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold type face).
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$, and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{Pp}}$.
Note 10: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability may be adversely affected.
Note 11: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$. Note 12: All numbers apply for packages soldered directly into a PC board.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

[^13]
Applications Hint

Amplifier Topolgy

The topology chosen for the LMC6034, shown in Figure 1, is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow a larger output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator.
As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C_{f} and Cff) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward.

TL/H/11134-3
FIGURE 1. LMC6034 Circuit Topology (Each Amplifier)
The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, even with a 600Ω load. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, under heavy load (600Ω) the gain will be reduced as indicated in the Electrical Characteristics.

Compensating Input Capacitance

The high input resistance of the LMC6034 op amps allows the use of large feedback and source resistor values without losing gain accuracy due to loading. However, the circuit will be especially sensitive to its layout when these large-value resistors are used.
Every amplifier has some capacitance between each input and AC ground, and also some differential capacitance between the inputs. When the feedback network around an amplifier is resistive, this input capacitance (along with any additional capacitance due to circuit board traces, the socket, etc.) and the feedback resistors create a pole in the feedback path. In the following General Operational Amplifier circuit, Figure 2 the frequency of this pole is

$$
f p=\frac{1}{2 \pi C_{S} R_{P}}
$$

where C_{S} is the total capacitance at the inverting input, including amplifier input capcitance and any stray capacitance from the IC socket (if one is used), circuit board traces, etc., and R_{P} is the parallel combination of R_{F} and $R_{I N}$. This formula, as well as all formulae derived below, apply to inverting and non-inverting op-amp configurations.
When the feedback resistors are smaller than a few $k \Omega$, the frequency of the feedback pole will be quite high, since C_{s}
is generally less than 10 pF . If the frequency of the feedback pole is much higher than the "ideal" closed-loop bandwidth (the nominal closed-loop bandwidth in the absence of C_{S}), the pole will have a negligible effect on stability, as it will add only a small amount of phase shift.
However, if the feedback pole is less than approximately 6 to 10 times the "ideal" -3 dB frequency, a feedback capacitor, C_{F}, should be connected between the output and the inverting input of the op amp. This condition can also be stated in terms of the amplifier's low-frequency noise gain: To maintain stability a feedback capacitor will probably be needed if

$$
\left(\frac{R_{F}}{R_{I N}}+1\right) \leq \sqrt{6 \times 2 \pi \times G B W \times R_{F} \times C_{S}}
$$

where $\left(\frac{R_{F}}{R_{I N}}+1\right)$ is the amplifier's low-frequency noise gain and GBW is the amplifier's gain bandwidth product. An amplifier's low-frequency noise gain is represented by the formula $\left(\frac{R_{F}}{R_{I N}}+1\right)$ regardless of whether the amplifier is being used in inverting or non-inverting mode. Note that a feedback capacitor is more likely to be needed when the noise gain is low and/or the feedback resistor is large.
If the above condition is met (indicating a feedback capacitor will probably be needed), and the noise gain is large enough that:

$$
\left(\frac{R_{F}}{R_{I N}}+1\right) \geq 2 \sqrt{G B W \times R_{F} \times C_{S}}
$$

the following value of feedback capacitor is recommended:

$$
C_{F}=\frac{C_{S}}{2\left(\frac{R_{F}}{R_{I N}}+1\right)}
$$

If

$$
\left(\frac{R_{F}}{R_{I N}}+1\right)<2 \sqrt{G B W \times R_{F} \times C_{S}}
$$

the feedback capacitor should be:

$$
C_{F}=\sqrt{\frac{C_{S}}{G B W \times R_{F}}}
$$

Note that these capacitor values are usually significant smaller than those given by the older, more conservative formula:

TL/H/11134-4
FIGURE 2. General Operational Amplifier Circuit
C_{S} consists of the amplifier's input capacitance plus any stray capacitance from the circuit board and socket. C_{F} compensates for the pole caused by C_{S} and the feedback resistors.

Applications Hint (Continued)

Using the smaller capacitors will give much higher bandwidth with little degradation of transient response. It may be necessary in any of the above cases to use a somewhat larger feedback capacitor to allow for unexpected stray capacitance, or to tolerate additional phase shifts in the loop, or excessive capacitive load, or to decrease the noise or bandwidth, or simply because the particular circuit implementation needs more feedback capacitance to be sufficiently stable. For example, a printed circuit board's stray capacitance may be larger or smaller than the breadboard's, so the actual optimum value for C_{F} may be different from the one estimated using the breadboard. In most cases, the values of C_{F} should be checked on the actual circuit, starting with the computed value.

Capacitive Load Tolerance

Like many other op amps, the LMC6034 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See Typical Performance Characteristics.
The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. As shown in Figure 3a, the addition of a small resistor (50Ω to 100Ω) in series with the op amp's output, and a capacitor (5 pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit operation. Thus larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation.

TL/H/11134-5
FIGURE 3a. Rx, Cx Improve Capacitive Load Tolerance
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 3b). Typically a pull up resistor conducting $500 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/11134-22
FIGURE 3b. Compensating for Large Capacitive Loads with a Pull Up Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6034, typically less than 0.04 pA , it is essential to have an excellent layout. Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6034's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Figure 4. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of an input. This would cause a 100 times degradation from the LMC6034's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11} \Omega$ would cause only 0.05 pA of leakage current, or perhaps a minor ($2: 1$) degradation of the amplifier's performance. See Figures 5a, 5b, 5c for typical connections of guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be tied to ground and still provide some protection; see Figure $5 d$.

TL/H/11134-6
FIGURE 4. Example of Guard Ring in P.C. Board Layout

Application Hints (Continued)

(c) Follower

(d) Howland Current Pump

FIGURE 5. Guard Ring Connections
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may
have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 6.

TL/H/11134-11
(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

FIGURE 6. Air Wiring

BIAS CURRENT TESTING

The test method of Figure 7 is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch S2 momentarily. When S2 is opened, then

TL/H/11134-12
FIGURE 7. Simple Input Bias Current Test Circuit
A suitable capacitor for C 2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of $\mathrm{I}_{\mathrm{b}}{ }^{-}$, the leakage of the capacitor and socket must be taken into account. Switch S 2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C 2 could cause errors.
Similarly, if S1 is shorted momentarily (while leaving S2 shorted)

$$
\mathrm{I}_{\mathrm{b}}+=\frac{\mathrm{dV} \text { OUT }}{\mathrm{dt}} \times\left(\mathrm{C} 1+\mathrm{C}_{\mathrm{x}}\right)
$$

where C_{x} is the stray capacitance at the + input.

Typical Single-Supply Applications ($\mathrm{v}^{+}=5.0 \mathrm{VDC}$)

Additional single-supply applications ideas can be found in the LM324 datasheet. The LMC6034 is pin-for-pin compatible with the LM324 and offers greater bandwidth and input resistance over the LM324. These features will improve the performance of many existing single-supply applications. Note, however, that the supply voltage range of the LMC6034 is smaller than that of the LM324.

TL/H/11134-13

TL/H/11134-14

$$
\begin{aligned}
\frac{V_{\text {OUT }}}{V_{\text {IN }}} & =\frac{R 2+2 R 1}{R 2} \times \frac{R 4}{R 3} \begin{array}{c}
\text { if } R 1=R 5 \\
R 3=R 6, \\
\text { and } R 4=R 7 .
\end{array} \\
& =100 \text { for circuit as shown. }
\end{aligned}
$$

For good CMRR over temperature, low drift resistors should be used. Matching of R3 to R6 and R4 to R7 affect CMRR. Gain may be adjusted through R2. CMRR may be adjusted through R7.

Sine-Wave Oscillator

TL/H/11134-15
Oscillator frequency is determined by $\mathrm{R} 1, \mathrm{R} 2, \mathrm{C} 1$, and C 2 :

$$
\text { fosc }=1 / 2 \pi R C \text {, where } R=R 1=R 2 \text { and }
$$

$$
\mathrm{C}=\mathrm{C}_{1}=\mathrm{C} 2 .
$$

This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.0 V .

1 Hz Square-Wave Oscillator

TL/H/11134-16

Power Amplifier

TL/H/11134-17

Typical Single-Supply Applications $(\mathrm{v}+=5.0 \mathrm{vDC})$ (Continued)

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)

$f_{c}=1 \mathrm{~Hz}$
$\mathrm{d}=1.414$
Gain $=1.57$

TL/H/11134-19

High Gain Amplifier with Offset Voltage Reduction

Output offset voltage reduced to the level of the input offiset voltage of the bottom amplifier (typically 1 mV).

LMC6041

CMOS Single Micropower Operational Amplifier

General Description

Ultra-low power consumption and low input-leakage current are the hallmarks of the LMC6041. Providing input currents of only 2 fA typical, the LMC6041 can operate from a single supply, has output swing extending to each supply rail, and an input voltage range that includes ground.
The LMC6041 is ideal for use in systems requiring ultra-low power consumption. In addition, the insensitivity to latch-up, high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for single-supply battery-powered systems.
Other applications for the LMC6041 include bar code reader amplifiers, magnetic and electric field detectors, and handheld electrometers.
This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC6042 for a dual, and the LMC6044 for a quad amplifier with these features.

Features

■ Low supply current $\quad 14 \mu \mathrm{~A}$ (Typ)
■ Operates from 4.5 V to 15.5 V single supply

- Ultra low input current 2 fA (Typ)
- Rail-to-rail output swing
- Input common-mode range includes ground

Applications

- Battery monitoring and power conditioning
- Photodiode and infrared detector preamplifier
- Silicon based transducer systems
- Hand-held analytic instruments
- pH probe buffer amplifier
- Fire and smoke detection systems
- Charge amplifier for piezoelectric transducers

Connection Diagram

TL/H/11136-1

Ordering Information

Package	Temperature Range	NSC Drawing	Transport Media
	$\begin{gathered} \text { Industrial } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
8-Pin Small Outline	LMC6041AIM LMC6041IM	M08A	Rail Tape and Reel
8 -Pin Molded DIP	LMC6041AIN LM6041IN	N08E	Rail

Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	LMC6041AI	LMC60411	Units (Limit)
				$\begin{gathered} \text { Limit } \\ \text { (Note 6) } \end{gathered}$	Limit (Note 6)	
V_{0}	Output Swing	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & R_{L}=100 \mathrm{k} \Omega \text { to } V+/ 2 \end{aligned}$	4.987	$\begin{gathered} 4.970 \\ \mathbf{4 . 9 5 0} \end{gathered}$	$\begin{gathered} 4.940 \\ 4.910 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.004	$\begin{gathered} 0.030 \\ 0.050 \end{gathered}$	$\begin{gathered} 0.060 \\ 0.090 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	4.980	$\begin{gathered} 4.920 \\ 4.870 \\ \hline \end{gathered}$	$\begin{gathered} 4.870 \\ 4.820 \\ \hline \end{gathered}$	$\begin{gathered} V \\ \min \end{gathered}$
			0.010	$\begin{gathered} 0.080 \\ \mathbf{0 . 1 3 0} \end{gathered}$	$\begin{gathered} 0.130 \\ 0.180 \end{gathered}$	$\underset{\max }{V}$
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=100 \mathrm{k} \Omega \text { to } V+/ 2 \end{aligned}$	14.970	$\begin{gathered} 14.920 \\ 14.880 \end{gathered}$	$\begin{gathered} 14.880 \\ 14.820 \end{gathered}$	$\begin{gathered} V \\ \mathrm{~min} \end{gathered}$
			0.007	$\begin{gathered} 0.030 \\ \mathbf{0 . 0 5 0} \\ \hline \end{gathered}$	$\begin{gathered} 0.060 \\ 0.090 \\ \hline \end{gathered}$	$\begin{gathered} V \\ \max \\ \hline \end{gathered}$
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.950	$\begin{gathered} 14.900 \\ 14.850 \end{gathered}$	$\begin{gathered} 14.850 \\ 14.800 \end{gathered}$	$\begin{gathered} V \\ \mathrm{~min} \end{gathered}$
			0.022	$\begin{gathered} 0.100 \\ \mathbf{0 . 1 5 0} \\ \hline \end{gathered}$	$\begin{aligned} & 0.150 \\ & 0.200 \\ & \hline \end{aligned}$	$\begin{gathered} V \\ \max \\ \hline \end{gathered}$
Isc	Output Current$V^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA min
Isc	Output Current$V^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	40	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 11)	39	$\begin{gathered} 24 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
Is	Supply Current	$\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	14	$\begin{aligned} & 20 \\ & 24 \end{aligned}$	$\begin{aligned} & 26 \\ & \mathbf{3 0} \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \max \end{aligned}$
		$\mathrm{V}+=15 \mathrm{~V}$	18	$\begin{array}{r} 26 \\ 31 \end{array}$	$\begin{aligned} & 34 \\ & 39 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC6041AI	LMC6041I	Units (Limit)
				Limit (Note 6)	Limit (Note 6)	
SR	Slew Rate	(Note 8)	0.02	$\begin{aligned} & 0.015 \\ & 0.010 \end{aligned}$	$\begin{gathered} 0.010 \\ 0.007 \end{gathered}$	$\begin{gathered} \mathrm{V} / \mu \mathrm{s} \\ \mathrm{~min} \end{gathered}$
GBW	Gain-Bandwidth Product		75			kHz
ϕ_{m}	Phase Margin		60			Deg
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	83			$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002			$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, A_{V}=-5 \\ & R_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{pp}} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01			\%

Note 1: Absolute Maxium Ratings indicate limits beyond which damage to the device may occur. Operating conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $110^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\text { max })}-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified in the slower of the positive and negative slew rates.
Note 9: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 10: All numbers apply for packages soldered directly into a PC board.
Note 11: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Open-Loop Frequency Response
 frequency (Hz)

Non-Inverting Slew Rate vs Temperature

Gain and Phase
Responses vs Temperature

FREQUENCY (Hz)
Common-Mode Error vs Common-Mode Voltage of Three Representative Units

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

TL/H/11136-4

Applications Hints

AMPLIFIER TOPOLOGY

The LMC6041 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6041 both easier to design with, and provide higher speed than products typically found in this ultra-low power class.

COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance with amplifiers with ultra-low input current, like the LMC6041.

Although the LMC6041 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuits board parasitics, reduce phase margins. When high input impedance are demanded, guarding of the LMC6041 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work.)

TL/H/11136-5
FIGURE 1. Cancelling the Effect of Input Capacitance
The effect of input capacitance can be compensated for by adding a capacitor. Adding a capacitor, C_{f}, around the feedback resistor (as in Figure 1) such that:

$$
\begin{gathered}
\frac{1}{2 \pi R_{1} \mathrm{C}_{I N}} \geq \frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{f}} \\
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{f}
\end{gathered}
$$

Since it is often difficult to know the exact value of $\mathrm{C}_{\mathbf{I N}}, \mathrm{C}_{\mathrm{f}}$ can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and the LMC662 for a more detailed discussion on compensating for input capacitance.

CAPACITIVE LOAD TOLERANCE

Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 2 a.

TL/H/11136-6
FIGURE 2a. LMC6041 Noninverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads
In the circuit of Figure 2a, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure $2 b$). Typically a pull up resistor conducting $10 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/11136-18
FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor

Application Hints (Continued)

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6041, typically less than 2fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6041's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifer inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6041's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11} \Omega$ would cause only 0.05 pA of leakage current. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations.

TL/H/11136-7
FIGURE 3. Example of Guard Ring in P.C. Board Layout

FIGURE 4. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

FIGURE 5. Air Wiring

Typical Single-Supply Applications

$\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

The extremely high input impedance, and low power consumption, of the LMC6041 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these type of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers.

TL/H/11136-12
FIGURE 6. Two Op-Amp Instrumentation Amplifier
The circuit in Figure 6 is recommended for applications where the common-mode input range is relatively low and the differential gain will be in the range of 10 to 1000. This two op-amp instrumentation amplifier features an independent adjustment of the gain and common-mode rejection trim, and a total quiescent supply current of less than $28 \mu \mathrm{~A}$. To maintain ultra-high input impedance, it is advisable to use ground rings and consider PC board layout an important part of the overall system design (see Printed-Circuit-Board Layout for High Impedance Work). Referring to Figure 6, the input voltages are represented as a common-mode input $V_{C M}$ plus a differential input V_{D}.

Rejection of the common-mode component of the input is accomplished by making the ratio of R1/R2 equal to R3/ R4. So that where,

$$
\begin{gathered}
\frac{R 3}{R 4}=\frac{R 2}{R 1} \\
V_{\text {OUT }}=\frac{R 4}{R 3}\left(1+\frac{R 3}{R 4}+\frac{R 2+R 3}{R_{O}}\right) V_{D}
\end{gathered}
$$

A suggested design guideline is to minimize the difference of value between R1 through R4. This will often result in improved resistor tempco, amplifier gain, and CMRR over temperature. If RN $=\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=\mathrm{R} 4$ then the gain equation can be simplified:

$$
V_{\text {OUT }}=2\left(1+\frac{R N}{R_{O}}\right) V_{D}
$$

Due to the "zero-in, zero-out" performance of the LMC6041, and output swing rail-rail, the dynamic range is only limited to the input common-mode range of OV to V_{S} 2.3 V , worst case at room temperature. This feature of the LMC6041 makes it an ideal choice for low-power instrumentation systems.
A complete instrumentation amplifier designed for a gain of 100 is shown in Figure 7. Provisions have been made for low sensitivity trimming of CMRR and gain.

FIGURE 7. Low-Power Two-Op-Amp Instrumentation Amplifier

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

TL/H/11136-14
FIGURE 8. Low-Leakage Sample and Hold

TL/H/11136-16
FIGURE 10. 1 Hz Square-Wave Oscillator

LMC6042

CMOS Dual Micropower Operational Amplifier

General Description

Ultra-low power consumption and low input-leakage current are the hallmarks of the LMC6042. Providing input currents of only 2 fA typical, the LMC6042 can operate from a single supply, has output swing extending to each supply rail, and an input voltage range that includes ground.
The LMC6042 is ideal for use in systems requiring ultra-low power consumption. In addition, the insensitivity to latch-up, high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for single-supply battery-powered systems.
Other applications for the LMC6042 include bar code reader amplifiers, magnetic and electric field detectors, and handheld electrometers.
This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC6041 for a single, and the LMC6044 for a quad amplifier with these features.

Features

■ Low supply current $10 \mu \mathrm{~A} / \mathrm{Amp}$ (typ)
■ Operates from 4.5 V to 15 V single supply

- Ultra low input current

2 fA (typ)

- Rail-to-rail output swing
- Input common-mode range includes ground

Applications

- Battery monitoring and power conditioning
- Photodiode and infrared detector preamplifier
- Silicon based transducer systems
- Hand-held analytic instruments
- pH probe buffer amplifier
- Fire and smoke detection systems
- Charge amplifier for piezoelectric transducers

Connection Diagram

TL/H/11137-1
Ordering Information

Package	Temperature Range	NSC Drawing	Transport Media
	Industrial $-40^{\circ} \mathbf{C}$ to $+85^{\circ} \mathrm{C}$		
	LMC6042AIM LMC6042IM	M08A	Rail Tape and Reel
8-Pin Molded DIP	LMC6042AIN LMC6042IN	N08E	Rail

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Differential Input Voltage \pm Supply Voltage
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Output Short Circuit to V^{+}
(Note 12)
(Note 2)
Lead Temperature
(Soldering, 10 seconds)
Current at Input Pin
Current at Outpút Pin
Current at Power Supply Pin

Power Dissipation
(Note 3)
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 3) $110^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)
500 V
Voltage at Input/Output Pin
$\left(V^{+}\right)+0.3 V,\left(V^{-}\right)-0.3 V$
Operating Ratings
Temperature Range
LMC6042AI, LMC6042I
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
$4.5 \mathrm{~V} \leq \mathrm{V}+\leq 15.5 \mathrm{~V}$
(Note 10)
$101^{\circ} \mathrm{C} / \mathrm{W}$
$165^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		Typical (Note 5)	$\begin{gathered} \hline \text { LMC6042AI } \\ \hline \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LMC6042I } \\ \hline \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units (Limit)
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			1	$\begin{gathered} 3 \\ 3.3 \end{gathered}$	$\begin{gathered} 6 \\ 6.3 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{Max} \end{aligned}$
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift			1.3			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.002	4	4	PA (Max)
los	Input Offset Current			0.001	2	2	PA (Max)
$\mathrm{R}_{\text {IN }}$	Input Resistance			>10			Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 V \leq V_{C M} \leq 12.0 \mathrm{~V} \\ & V^{+}=15 \mathrm{~V} \end{aligned}$		75	$\begin{array}{r} 68 \\ 66 \\ \hline \end{array}$	$\begin{aligned} & 62 \\ & \mathbf{6 0} \\ & \hline \end{aligned}$	dB Min
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}+\leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \\ & \hline \end{aligned}$		75	$\begin{aligned} & 68 \\ & 66 \end{aligned}$	$\begin{array}{r} 62 \\ 60 \\ \hline \end{array}$	dB Min
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & O V \leq V^{-} \leq-10 V \\ & V_{O}=2.5 \mathrm{~V} \end{aligned}$		94	$\begin{aligned} & 84 \\ & 83 \\ & \hline \end{aligned}$	$\begin{aligned} & 74 \\ & 73 \end{aligned}$	dB Min
CMR	Input Common-Mode Voltage Range	$\begin{aligned} & V^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { For } \mathrm{CMRR} \geq 50 \mathrm{~dB} \end{aligned}$		-0.4	$\begin{gathered} -0.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} V \\ M a x \end{gathered}$
				$\mathrm{V}+-1.9 \mathrm{~V}$	$\begin{gathered} v^{+}-2.3 V \\ v+-2.5 v \\ \hline \end{gathered}$	$\begin{gathered} v^{+}-2.3 V \\ v+-2.4 v \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ (Note 7)	Sourcing	1000	$\begin{array}{r} 400 \\ 300 \\ \hline \end{array}$	$\begin{array}{r} 300 \\ 200 \\ \hline \end{array}$	V / mV Min
			Sinking	500	$\begin{gathered} 180 \\ 120 \\ \hline \end{gathered}$	$\begin{array}{r} 90 \\ 70 \\ \hline \end{array}$	V / mV Min
		$\mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega$ (Note 7)	Sourcing	1000	$\begin{aligned} & 200 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 80 \\ & \hline \end{aligned}$	V / mV Min
			Sinking	250	$\begin{aligned} & 100 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	V / mV Min

Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified. (Continued)

Symbol	Parameter	Conditions	Typical (Note 5)	LMC6042AI	LMC60421	Units (Limit)
				$\begin{gathered} \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 6) } \end{gathered}$	
V_{0}	Output Swing	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & R_{L}=100 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	4.987	$\begin{gathered} 4.970 \\ \mathbf{4 . 9 5 0} \end{gathered}$	$\begin{array}{r} 4.940 \\ \mathbf{4 . 9 1 0} \\ \hline \end{array}$	$\begin{gathered} \text { V } \\ \mathrm{Min} \end{gathered}$
			0.004	$\begin{gathered} 0.030 \\ \mathbf{0 . 0 5 0} \end{gathered}$	$\begin{gathered} 0.060 \\ \mathbf{0 . 0 9 0} \end{gathered}$	$\begin{gathered} V \\ \text { Max } \end{gathered}$
		$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	4.980	$\begin{gathered} 4.920 \\ 4.870 \end{gathered}$	$\begin{gathered} 4.870 \\ 4.820 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.010	$\begin{gathered} 0.080 \\ \mathbf{0 . 1 3 0} \end{gathered}$	$\begin{gathered} 0.130 \\ 0.180 \end{gathered}$	$\begin{gathered} V \\ \text { Max } \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.970	$\begin{gathered} 14.920 \\ 14.880 \end{gathered}$	$\begin{gathered} 14.880 \\ 14.820 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.007	$\begin{gathered} 0.030 \\ \mathbf{0 . 0 5 0} \end{gathered}$	$\begin{gathered} 0.060 \\ \mathbf{0 . 0 9 0} \end{gathered}$	$\begin{gathered} V \\ \text { Max } \end{gathered}$
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=25 \mathrm{k} \Omega \text { to } V+/ 2 \end{aligned}$	14.950	$\begin{gathered} 14.900 \\ 14.850 \\ \hline \end{gathered}$	$\begin{gathered} 14.850 \\ 14.800 \\ \hline \end{gathered}$	$\begin{gathered} V \\ \mathrm{Min} \\ \hline \end{gathered}$
			0.022	$\begin{gathered} 0.100 \\ \mathbf{0 . 1 5 0} \end{gathered}$	$\begin{gathered} 0.150 \\ 0.200 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Max } \end{gathered}$
Isc	Output Current$V^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{array}{r} 16 \\ \mathbf{1 0} \\ \hline \end{array}$	$\begin{gathered} 13 \\ \mathbf{8} \end{gathered}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{array}{r} 16 \\ \mathbf{8} \\ \hline \end{array}$	$\begin{gathered} 13 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \\ & \hline \end{aligned}$
Isc	Output Current$V^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	40	$\begin{aligned} & 15 \\ & \mathbf{1 0} \\ & \hline \end{aligned}$	$\begin{array}{r} 15 \\ \mathbf{1 0} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \\ & \hline \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 12)	39	$\begin{array}{r} 24 \\ 8 \\ \hline \end{array}$	$\begin{array}{r} 21 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \\ & \hline \end{aligned}$
Is	Supply Current	Both Amplifiers $V_{0}=1.5 \mathrm{~V}$	20	$\begin{aligned} & 34 \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & \mathbf{5 0} \\ & \hline \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{Max} \\ \hline \end{gathered}$
		Both Amplifiers $\mathrm{V}^{+}=15 \mathrm{~V}$	26	$\begin{aligned} & 44 \\ & 51 \end{aligned}$	$\begin{aligned} & 56 \\ & 65 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{Max} \end{gathered}$

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}_{i} \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6042AI	LMC60421	Units (Limit)
				Limit (Note 6)	Limit (Note 6)	
SR	Slew Rate	(Note 8)	0.02	$\begin{gathered} 0.015 \\ 0.010 \end{gathered}$	$\begin{gathered} 0.010 \\ 0.007 \end{gathered}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{Min} \end{aligned}$
GBW	Gain-Bandwidth Product		100			kHz
ϕ_{m}	Phase Margin		60			Deg
	Amp-to-Amp Isolation	(Note 9)	115			dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	83			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.0002			$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{AV}_{\mathrm{V}}=-5 \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \mathrm{VP} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01			\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $110^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\text { Max })}-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred $V^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}+/ 2$. Each amp excited in turn with 100 Hz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: All numbers apply for packages soldered directly into a PC board.
Note 12: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Typical Performance Characteristics
$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Gain and Phase

frequency (Hz)

Open-Loop Frequency Response

Common-Mode Error vs Common-Mode Voltage of 3 Representative Units

Non-Inverting Large Signal Pulse Response $\left(A_{V}=+1\right)$

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

LOAD CURRENT (mA)

Applications Hints

AMPLIFIER TOPOLOGY

The LMC6042 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6042 both easier to design with, and provide higher speed than products typically found in this ultra-low power class.

COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance with amplifiers with ultra-low input curent, like the LMC6042.
Although the LMC6042 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.
When high input impedances are demanded, guarding of the LMC6042 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work).

TL/H/11137-5
FIGURE 1. Cancelling the Effect of Input Capacitance

Stability vs Capacitive Load

TL/H/11137-4

The effect of input capacitance can be compensated for by adding a capacitor. Place a capacitor, C_{f}, around the feedback resistor (as in Figure 1) such that:

$$
\begin{gathered}
\frac{1}{2 \pi R 1 C_{I N}} \geq \frac{1}{2 \pi R 2 C_{f}} \\
\text { or } \\
R 1 C_{I N} \leq R 2 C_{f}
\end{gathered}
$$

Since it is often difficult to know the exact value of $\mathrm{C}_{\mathbf{I N}}, \mathrm{C}_{\boldsymbol{f}}$ can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and the LMC662 for a more detailed discussion on compensating for input capacitance.

CAPACITIVE LOAD TOLERANCE

Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 2a.

TL/H/11137-6
FIGURE 2a. LMC6042 Noninverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads

Applications Hints (Continued)

In the circuit of Figure 2a, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 2b). Typically a pull up resistor conducting $10 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/11137-18
FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6042, typically less than 2 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6042's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6042's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11} \Omega$ would cause only 0.05 pA of leakage current. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations.

TL/H/11137-7
FIGURE 3. Example of Guard Ring in P.C. Board Layout

TL/H/11137-8
(a) Inverting Amplifier

TL/H/11137-10 (b) Non-Inverting Amplifier

TL/H/11137-9
(c) Follower

FIGURE 4. Typical Connections of Guard Rings

Application Hints (Continued)

The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5.

TL/H/11137-11
(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

FIGURE 5. Air Wiring

Typical Single-Supply Applications
 $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

The extremely high input impedance, and low power consumption, of the LMC6042 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers.

The circuit in Figure 6 is recommended for applications where the common-mode input range is relatively low and the differential gain will be in the range of 10 to 1000 . This two op-amp instrumentation amplifier features an independent adjustment of the gain and common-mode rejection trim, and a total quiescent supply current of less than $20 \mu \mathrm{~A}$. To maintain ultra-high input impedance, it is advisable to use ground rings and consider PC board layout an important part of the overall system design (see Printed-Circuit-Board Layout for High Impedance Work). Referring to Figure 6, the input voltages are represented as a common-mode input $V_{C M}$ plus a differential input V_{D}.
Rejection of the common-mode component of the input is accomplished by making the ratio of R1/R2 equal to R3/R4. So that where,

$$
\begin{gathered}
\frac{\mathrm{R} 3}{\mathrm{R} 4}=\frac{\mathrm{R} 2}{\mathrm{R} 1} \\
V_{\text {OUT }}=\frac{\mathrm{R} 4}{\mathrm{R} 3}\left(1+\frac{\mathrm{R} 3}{\mathrm{R} 4}+\frac{\mathrm{R} 2+\mathrm{R} 3}{\mathrm{R} 0}\right) \mathrm{V}_{\mathrm{D}}
\end{gathered}
$$

A suggested design guideline is to minimize the difference of value between R1 through R4. This will often result in improved resistor tempco, amplifier gain, and CMRR over temperature. If RN $=\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=\mathrm{R} 4$ then the gain equation can be simplified:

$$
V_{\text {OUT }}=2\left(1+\frac{R N}{R 0}\right) V_{D}
$$

Due to the "zero-in, zero-out" performance of the LMC6042, and output swing rail-rail, the dynamic range is only limited to the input common-mode range of OV to $\mathrm{V}_{\mathrm{S}}-2.3 \mathrm{~V}$, worst case at room temperature. This feature of the LMC6042 makes it an ideal choice for low-power instrumentation systems.
A complete instrumentation amplifier designed for a gain of 100 is shown in Figure 7. Provisions have been made for low sensitivity trimming of CMRR and gain.

Typical Single-Supply Applications $\left({ }^{+}+=5.0 \mathrm{~V}_{\mathrm{DC}}\right)($ (Continued)

FIGURE 7. Low-Power Two-Op-Amp Instrumentation Amplifier

TL/H/11137-14
FIGURE 8. Low-Leakage Sample and Hold

FIGURE 9. Instrumentation Amplifier

TL/H/11137-16

FIGURE 11. AC Coupled Power Amplifier

FIGURE 10. 1 Hz Square Wave Oscillator

LMC6044 CMOS Quad Micropower Operational Amplifier

General Description

Ultra-low power consumption and low input-leakage current are the hallmarks of the LMC6044. Providing input currents of only 2 fA typical, the LMC6044 can operate from a single supply, has output swing extending to each supply rail, and an input voltage range that includes ground.
The LMC6044 is ideal for use in systems requiring ultra-low power consumption. In addition, the insensitivity to latch-up, high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for single-supply battery-powered systems.
Other applications for the LMC6044 include bar code reader amplifiers, magnetic and electric field detectors, and handheld electrometers.
This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.
See the LMC6041 for a single, and the LMC6042 for a dual amplifier with these features.

Features

- Low supply current $10 \mu \mathrm{~A} / \mathrm{Amp}$ (Typ)
- Operates from 4.5 V to 15.5 V single supply
- Ultra low input current

2 fA (Typ)

- Rail-to-rail output swing
- Input common-mode range includes ground

Applications

- Battery monitoring and power conditioning
- Photodiode and infrared detector preamplifier
- Silicon based transducer systems
- Hand-held analytic instruments
- pH probe buffer amplifier
- Fire and smoke detection systems
- Charge amplifier for piezoelectric transducers

Connection Diagram

Ordering Information

Package	Temperature Range	NSC Drawing	Transport Media
Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
14-Pin Small Outline	LMC6044AIM LMC6044IM	M14A	Rail Tape and Reel
14-Pin Molded DIP	LMC6044AIN LMC6044IN	N14A	Rail

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Differential Input Voltage	\pm Supply Voltage
Supply Voltage (V ${ }^{+}-\mathrm{V}^{-}$)	16 V
Output Short Circuit to V^{+}	(Note 12)
Output Short Circuit to V^{-}	(Note 2)
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Current at Input Pin	$\pm 5 \mathrm{~mA}$
Current at Output Pin	$\pm 18 \mathrm{~mA}$
Current at Power Supply Pin	35 mA
Power Dissipation	(Note 3)
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Junction Temperature (Note 3)	$110^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)	500 V
Voltage at $\mathrm{I} / \mathrm{OPin}\left(\mathrm{V}^{+}\right)$	$+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$

Operating Ratings

Temperature Range LMC6044AI, LMC6044I $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
Supply Voltage $\quad 4.5 \mathrm{~V} \leq \mathrm{V}+\leq 15.5 \mathrm{~V}$
Power Dissipation
(Note 10)
Thermal Resistance (θ_{JA}), (Note 11)
14-Pin DIP
$85^{\circ} \mathrm{C} / \mathrm{W}$
$115^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{j}^{\prime \prime}=25^{\circ}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		Typical (Note 5)	LMC6044AI	LMC6044I	Units (Limit)	
				Limit (Note 6)	Limit (Note 6)			
Vos	Input Offset Voltage				1	$\begin{gathered} 3 \\ 3.3 \end{gathered}$	$\begin{gathered} 6 \\ 6.3 \end{gathered}$	mV max
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift			1.3			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
I_{B}	Input Bias Current			0.002	4	4	pA max	
los	Input Offset Current			0.001	2	2	pA max	
RIN	Input Resistance			>10			Teras	
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}+=15 \mathrm{~V} \end{aligned}$		75	$\begin{aligned} & 68 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & 62 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$	
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		75	$\begin{aligned} & 68 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & 62 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$	
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & 0 V \leq V^{-} \leq-10 V \\ & V_{O}=2.5 \mathrm{~V} \end{aligned}$		94	$\begin{aligned} & 84 \\ & 83 \\ & \hline \end{aligned}$	$\begin{aligned} & 74 \\ & 73 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$	
CMR	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \& 15 \mathrm{~V} \\ & \text { For CMRR } \geq 50 \mathrm{~dB} \end{aligned}$		-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\underset{\max }{V}$	
				$\mathrm{V}+$ - 1.9 V	$\begin{gathered} v^{+}-2.3 V \\ \mathbf{v}+-\mathbf{2 . 5 v} \\ \hline \end{gathered}$	$\begin{gathered} v^{+}-2.3 V \\ v+-2.4 v \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$	
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ (Note 7)	Sourcing	1000	$\begin{aligned} & 400 \\ & \mathbf{3 0 0} \end{aligned}$	$\begin{array}{r} 300 \\ 200 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \\ \hline \end{gathered}$	
			Sinking	500	$\begin{aligned} & 180 \\ & 120 \\ & \hline \end{aligned}$	$\begin{array}{r} 90 \\ \mathbf{7 0} \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \\ \hline \end{gathered}$	
		$\mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega$ (Note 7)	Sourcing	1000	$\begin{gathered} 200 \\ 160 \\ \hline \end{gathered}$	$\begin{aligned} & 100 \\ & \mathbf{8 0} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \\ \hline \end{gathered}$	
			Sinking	250	$\begin{aligned} & 100 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	V / mV min	

Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. V^{+} $=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified. (Continued)

Symbol	Parameter	Conditions	Typical (Note 5)	LMC6044AI	LMC6044I	Units (Limit)
				Limit (Note 6)	Limit (Note 6)	
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.987	$\begin{gathered} 4.970 \\ \mathbf{4 . 9 5 0} \end{gathered}$	$\begin{gathered} 4.940 \\ 4.910 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.004	$\begin{gathered} 0.030 \\ \mathbf{0 . 0 5 0} \end{gathered}$	$\begin{gathered} 0.060 \\ \mathbf{0 . 0 9 0} \end{gathered}$	$\begin{gathered} V \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.980	$\begin{gathered} 4.920 \\ \mathbf{4 . 8 7 0} \\ \hline \end{gathered}$	$\begin{gathered} 4.870 \\ \mathbf{4 . 8 2 0} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.010	$\begin{gathered} 0.080 \\ \mathbf{0 . 1 3 0} \end{gathered}$	$\begin{gathered} 0.130 \\ 0.180 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=100 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.970	$\begin{gathered} 14.920 \\ 14.880 \end{gathered}$	$\begin{gathered} 14.880 \\ 14.820 \\ \hline \end{gathered}$	$\begin{gathered} V \\ \mathrm{~min} \end{gathered}$
			0.007	$\begin{gathered} 0.030 \\ \mathbf{0 . 0 5 0} \end{gathered}$	$\begin{gathered} 0.060 \\ \mathbf{0 . 0 9 0} \end{gathered}$	$\underset{\max }{V}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.950	$\begin{gathered} 14.900 \\ 14.850 \end{gathered}$	$\begin{gathered} 14.850 \\ 14.800 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.022	$\begin{gathered} 0.100 \\ \mathbf{0 . 1 5 0} \\ \hline \end{gathered}$	$\begin{gathered} 0.150 \\ \mathbf{0 . 2 0 0} \\ \hline \end{gathered}$	$\begin{gathered} V \\ \max \\ \hline \end{gathered}$
Isc	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	22	$\begin{aligned} & 16 \\ & \mathbf{1 0} \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & \mathbf{8} \\ & \hline \end{aligned}$	mA min
			21	$\begin{aligned} & 16 \\ & 8 \end{aligned}$	$\begin{gathered} 13 \\ \mathbf{8} \end{gathered}$	mA \min
Isc	Output Current$V^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	40	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	mA min
		Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 12)	39	$\begin{gathered} 24 \\ \mathbf{8} \\ \hline \end{gathered}$	$\begin{array}{r} 21 \\ \mathbf{8} \\ \hline \end{array}$	mA min
Is	Supply Current	Four Amplifiers $V_{O}=1.5 \mathrm{~V}$	40	$\begin{aligned} & 65 \\ & 72 \end{aligned}$	$\begin{aligned} & 75 \\ & \mathbf{8 2} \end{aligned}$	$\mu \mathrm{A}$ max
		Four Amplifiers $\mathrm{V}^{+}=15 \mathrm{~V}$	52	$\begin{aligned} & 85 \\ & 94 \end{aligned}$	$\begin{gathered} 98 \\ 107 \end{gathered}$	$\mu \mathrm{A}$ \max

AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical (Note 5)	LMC6044AI	LMC6044I	Units (Limit)
				Limit (Note 6)	Limit (Note 6)	
SR	Slew Rate	(Note 8)	0.02	$\begin{gathered} 0.015 \\ \mathbf{0 . 0 1 0} \\ \hline \end{gathered}$	$\begin{gathered} 0.010 \\ 0.007 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
GBW	Gain-Bandwidth Product		0.10			MHz
ϕ_{m}	Phase Margin		60			Deg
	Amp-to-Amp Isolation	(Note 9)	115			dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	83			$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002			$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, \mathrm{AV}_{\mathrm{V}}=-5 \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{pp}} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01			\%

Note 1: Absolute Maximum Ratings indicate limts beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $110^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\text { max })}-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).
Note 7: $V^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified in the slower of the positive and negative slew rates.
Note 9: Input referred $V^{+}=15 \mathrm{~V}$ and $R_{L}=100 \mathrm{k} \Omega$ connected to $V+/ 2$. Each amp excited in turn with 100 Hz to produce $V_{O}=12 V_{P p}$
Note 10: For operating at elevated temperatures, the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: All numbers apply for packages soldered directly into a PC poard.
Note 12: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

Typical Performance Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

LOAD CURRENT (mA)

Application Hints

AMPLIFIER TOPOLOGY

The LMC6044 incorporates a novel op-amp design topology that enables it to maintain rail to rail output swing even when driving a large load. Instead of relying on a push-pull unity gain outupt buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6044 both easier to design with, and provide higher speed than products typically found in this ultra-low power class.

COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance with amplifiers with ultra-low input current, like the LMC6044.
Although the LMC6044 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuits board parasitics, reduce phase margins.
When high input impedance are demanded, guarding of the LMC6044 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work.)

TL/H/11138-5
FIGURE 1. Canceling the Effect of Input Capacitance
The effect of input capacitance can be compensated for by adding a capacitor. Adding a capacitor, C_{f}, around the feedback resistor (as in Figure 1) such that:

TL/H/11138-4

$$
\begin{gathered}
\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}}} \geq \frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}} \\
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}
\end{gathered}
$$

Since it is often difficult to know the exact value of $\mathrm{C}_{\mathrm{IN}^{\prime}}, \mathrm{C}_{f}$ can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and the LMC662 for a more detailed discussion on compensating for input capacitance.

CAPACITIVE LOAD TOLERANCE

Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure $2 a$.

TL/H/11138-6
FIGURE 2a. LMC6044 Noninverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads
In the circuit of Figure 2a, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

Application Hints (Continued)

Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 2b). Typically, a pull up resistor conducting $10 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/11138-18
FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6044, typically less than 2 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6044's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifer inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$,

FIGURE 3. Example of Guard Ring in P.C. Board Layout
which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6044's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11} \Omega$ would cause only 0.05 pA of leakage current. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations.

FIGURE 4. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5.

Typical Single-Supply Applications ($\mathrm{V}+=5.0 \mathrm{~V} \mathrm{VC})$

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

FIGURE 5. Air Wiring

The extremely high input impedance, and low power consumption, of the LMC6044 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these type of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers.
The circuit in Figure 6 is recommended for applications where the common-mode input range is relatively low and the differential gain will be in the range of 10 to 1000. This two op-amp instrumentation amplifier features an independent adjustment of the gain and common-mode rejection trim, and a total quiescent supply current of less than $40 \mu \mathrm{~A}$. To maintain ultra-high input impedance, it is advisable to
use ground rings and consider PC board layout an important part of the overall system design (see Printed-Circuit-Board Layout for High Impedance Work). Referring to Figure 6, the input voltages are represented as a common-mode input V_{CM} plus a differential input V_{D}. Rejection of the commonmode component of the input is accomplished by making the ratio of R1/R2 equal to R3/R4. So that where,

$$
\begin{gathered}
\frac{R 3}{R 4}=\frac{R 2}{R 1} \\
V_{\text {OUT }}=\frac{R 4}{R 3}\left(1+\frac{R 3}{R 4}+\frac{R 2+R 3}{R O}\right) V_{D}
\end{gathered}
$$

A suggested design guideline is to minimize the difference of value between R1 through R4. This will often result in improved resistor tempco, amplifier gain, and CMRR over temperature. If RN = R1 = R2 = R3 = R4 then the gain equation can be simplified:

$$
V_{\text {OUT }}=2\left(1+\frac{R N}{R O}\right) V_{D}
$$

Due to the "zero-in, zero-out" performance of the LMC6044, and output swing rail-rail, the dynamic range is only limited to the input common-mode range of OV to $\mathrm{V}_{\mathrm{S}}-$ 2.3 V , worst case at room temperature. This feature of the LMC6044 makes it an ideal choice for low-power instrumentation systems.
A complete instrumentation amplifier designed for a gain of 100 is shown in Figure 7. Provisions have been made for low sensitivity trimming of CMRR and gain.

Typical Single-Supply Applications $(\mathrm{V}+=5.0 \mathrm{~V} \mathrm{DC})($ (Continued)

TL/H/11138-14
FIGURE 8. Low-Leakage Sample-and-Hold

TL/H/11138-15
FIGURE 9. Instrumentation Amplifier

TL/H/11138-16
FIGURE 10. 1 Hz Square-Wave Oscillator

TL/H/11138-17
FIGURE 11. AC Coupled Power Amplifier

LMC6061 Precision CMOS Single Micropower Operational Amplifier

General Description

The LMC6061 is a precision single low offset voltage, micropower operational amplifier, capable of precision single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low power consumption, make the LMC6061 ideally suited for battery powered applications.
Other applications using the LMC6061 include precision fullwave rectifiers, integrators, references, sample-and-hold circuits, and true instrumentation amplifiers.
This device is built with National's advanced double-Poly Silicon-Gate CMOS process.
For designs that require higher speed, see the LMC6081 precision single operational amplifier.
For a dual or quad operational amplifier with similar features, see the LMC6062 or LMC6064 respectively.

Features (Typical Unless Otherwise Noted)

- Low offset voltage $100 \mu \mathrm{~V}$
- Ultra low supply current $20 \mu \mathrm{~A}$
- Operates from 4.5 V to 15 V single supply
- Ultra low input bias current

10 fA

- Output swing within 10 mV of supply rail, 100k load
- Input common-mode range includes V -
- High voltage gain

140 dB

- Improved latchup immunity

Applications

- Instrumentation amplifier
- Photodiode and infrared detector preamplifier
- Transducer amplifiers
- Hand-held analytic instruments
- Medical instrumentation
- D/A converter
- Charge amplifier for piezoelectric transducers

PATENT PENDING

Connection Diagram

Ordering Information

Package	Temperature Range		NSC Drawing	Transport Media
	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Industrial } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
8-Pin Molded DIP	LMC6061AMN	LMC6061AIN LMC6061IN	N08E	Rail
8-Pin Small Outline		LMC6061AIM LMC6061IM	M08A	Rail Tape and Reel
$\begin{aligned} & \text { 8-Pin } \\ & \text { Ceramic DIP } \end{aligned}$	LMC6061AMJ/883		J08A	Rail

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Differential Input Voltage	\pm Supply Voltage
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V}$,
	$\left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V}$
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}-\right)$	16 V
Output Stort Circuit to V^{+}	$($Note 10$)$
Output Short Circuit to V^{-}	(Note 2$)$
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$
Junction Temperature	$15^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)	2 kV

Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Power Dissipation	(Note 3)

Operating Ratings (Note 1)

Temperature Range	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LMC6061AM	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
LMC6061AI, LMC6082	$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15.5 \mathrm{~V}$
Supply Voltage	
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ (Note 11)	$115^{\circ} \mathrm{C} / \mathrm{W}$
N Package, 8-Pin Molded DIP	$193^{\circ} \mathrm{C} / \mathrm{W}$
M Package, 8-Pin Surface Mount	(Note 9$)$
Power Dissipation	

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { LMC6061AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6061AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { LMC6061I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			100	$\begin{gathered} 350 \\ 1200 \end{gathered}$	$\begin{aligned} & 350 \\ & \mathbf{9 0 0} \end{aligned}$	$\begin{gathered} 800 \\ 1300 \end{gathered}$	$\begin{gathered} \mu V \\ M a x \end{gathered}$
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift			1.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.010	100	4	4	pA Max
los	Input Offset Current			0.005	100	2	2	$\begin{gathered} \mathrm{pA} \\ \mathrm{Max} \end{gathered}$
$\mathrm{R}_{\text {IN }}$	Input Resistance			>10				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}+\leq .15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 70 \\ & \hline \end{aligned}$	$\begin{array}{r} 75 \\ \mathbf{7 2} \\ \hline \end{array}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	dB Min
-PSRR	Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$		100	$\begin{array}{r} 84 \\ 70 \\ \hline \end{array}$	$\begin{array}{r} 84 \\ \mathbf{8 1} \\ \hline \end{array}$	$\begin{array}{r} 74 \\ \mathbf{7 1} \\ \hline \end{array}$	dB Min
V_{CM}	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { for CMRR } \geq 60 \mathrm{~dB} \end{aligned}$		-0.4	$\begin{gathered} -0.1 \\ \mathbf{0} \\ \hline \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} V \\ \text { Max } \end{gathered}$
				V+-1.9	$\begin{gathered} v^{+}-2.3 \\ v^{+}-2.6 \end{gathered}$	$\begin{gathered} v+-2.3 \\ v+-2.5 \end{gathered}$	$\begin{aligned} & v^{+}-2.3 \\ & \mathbf{v}^{+}-2.5 \end{aligned}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
A_{V}	Large Signal Voltage Gain	$R_{L}=100 \mathrm{k} \Omega$ (Note 7)	Sourcing	4000	$\begin{array}{r} 400 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 400 \\ 300 \\ \hline \end{array}$	$\begin{array}{r} 300 \\ 200 \\ \hline \end{array}$	V / mV Min
			Sinking	3000	$\begin{aligned} & 180 \\ & \mathbf{7 0} \\ & \hline \end{aligned}$	$\begin{aligned} & 180 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \\ & \hline \end{aligned}$	V / mV Min
		$R_{L}=25 \mathrm{k} \Omega$ (Note 7)	Sourcing	3000	$\begin{aligned} & 400 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \\ & \hline \end{aligned}$	$\begin{array}{r} 200 \\ 80 \\ \hline \end{array}$	V / mV Min
			Sinking	2000	$\begin{aligned} & 100 \\ & 35 \end{aligned}$	$\begin{array}{r} 100 \\ 50 \end{array}$	$\begin{aligned} & 70 \\ & \mathbf{3 5} \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{Min} \end{gathered}$

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6061AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6061AI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \text { LMC6061I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
V_{0}	Output Swing	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.995	$\begin{gathered} 4.990 \\ 4.970 \end{gathered}$	$\begin{gathered} 4.990 \\ 4.980 \end{gathered}$	$\begin{gathered} 4.950 \\ 4.925 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.005	$\begin{gathered} 0.010 \\ 0.030 \end{gathered}$	$\begin{gathered} 0.010 \\ 0.020 \end{gathered}$	$\begin{gathered} 0.050 \\ 0.075 \end{gathered}$	V Max
		$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.990	$\begin{gathered} 4.975 \\ 4.955 \end{gathered}$	$\begin{gathered} 4.975 \\ 4.965 \end{gathered}$	$\begin{gathered} 4.950 \\ \mathbf{4 . 8 5 0} \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.010	$\begin{gathered} 0.020 \\ 0.045 \end{gathered}$	$\begin{gathered} 0.020 \\ 0.035 \end{gathered}$	$\begin{gathered} 0.050 \\ \mathbf{0 . 1 5 0} \end{gathered}$	V Max
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=100 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.990	$\begin{gathered} 14.975 \\ 14.955 \end{gathered}$	$\begin{gathered} \hline 14.975 \\ 14.965 \\ \hline \end{gathered}$	$\begin{gathered} 14.950 \\ 14.925 \\ \hline \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \\ \hline \end{gathered}$
			0.010	$\begin{gathered} 0.025 \\ 0.050 \end{gathered}$	$\begin{gathered} 0.025 \\ \mathbf{0 . 0 3 5} \end{gathered}$	$\begin{aligned} & 0.050 \\ & 0.075 \end{aligned}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.965	$\begin{gathered} 14.900 \\ 14.800 \end{gathered}$	$\begin{gathered} 14.900 \\ 14.850 \end{gathered}$	$\begin{gathered} 14.850 \\ 14.800 \\ \hline \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.025	$\begin{gathered} 0.050 \\ 0.200 \end{gathered}$	$\begin{gathered} 0.050 \\ \mathbf{0 . 1 5 0} \end{gathered}$	$\begin{gathered} 0.100 \\ 0.200 \end{gathered}$	V Max
10	Output Current$\mathrm{V}+=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{aligned} & 16 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{aligned} & 16 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & \mathbf{8} \end{aligned}$	$\begin{gathered} 16 \\ 8 \end{gathered}$	mA Min
10	Output Current$V^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	25	$\begin{aligned} & 15 \\ & 9 \end{aligned}$	$\begin{array}{r} 15 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 10 \\ & \hline \end{aligned}$	mA Min
		Sinking, $V_{O}=13 \mathrm{~V}$ (Note 10)	35	$\begin{aligned} & 24 \\ & 7 \\ & \hline \end{aligned}$	$\begin{array}{r} 24 \\ 8 \\ \hline \end{array}$	$\begin{array}{r} 24 \\ \mathbf{8} \\ \hline \end{array}$	mA Min
Is	Supply Current	$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	20	$\begin{aligned} & 24 \\ & 35 \end{aligned}$	$\begin{array}{r} 24 \\ 32 \\ \hline \end{array}$	$\begin{aligned} & 32 \\ & 40 \\ & \hline \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{Max} \end{gathered}$
		$\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$	24	$\begin{array}{r} 30 \\ 40 \\ \hline \end{array}$	$\begin{array}{r} 30 \\ 38 \\ \hline \end{array}$	$\begin{array}{r} 40 \\ 48 \\ \hline \end{array}$	$\mu \mathrm{A}$ Max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$, Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6061AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6061AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { LMC60611 } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{array}$	Units
SR	Slew Rate	(Note 8)	35	$\begin{gathered} 20 \\ 8 \end{gathered}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 7 \end{aligned}$	V / ms Min
GBW	Gain-Bandwidth Product		100				kHz
θ_{m}	Phase Margin		50				Deg
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	83				$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$F=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, A_{\mathrm{V}}=-5 \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{VPP} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(M a x)}-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 10: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability witll be adversely affected.
Note 11: All numbers apply for packages soldered directly into a PC board.
Note 12: For guaranteed Military Temperature Range parameters see RETSMC6061X.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified

Output Characteristics Sinking Current

Distribution of LMC6061 Input Offset Voltage

offset voltage (mv)
Input Voltage vs Output Voltage

Gain and Phase Response
vs Temperature
($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

TL/H/11422-2

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified

Applications Hints

AMPLIFIER TOPOLOGY

The LMC6061 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6061 both easier to design with, and provide higher speed than products typically found in this ultra-low power class.

COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6061.
Although the LMC6061 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins. When high input impedances are demanded, guarding of the LMC6061 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work).
The effect of input capacitance can be compensated for by adding a capacitor. Place a capacitor, C_{f}, around the feedback resistor (as in Figure 1) such that:

$$
\begin{gathered}
\frac{1}{2 \pi R_{1} \mathrm{C}_{\mathrm{IN}}} \geq \frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}} \\
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}
\end{gathered}
$$

Since it is often difficult to know the exact value of $\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{\boldsymbol{f}}$ can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and the LMC662 for a more detailed discussion on compensating for input capacitance.

TL/H/11422-5
FIGURE 1. Canceling the Effect of Input Capacitance

CAPACITIVE LOAD TOLERANCE

All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is normally included in this integrator stage. The frequency location of the dominate pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see typical curves).

Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure $2 a$.

TL/H/11422-4
FIGURE 2a. LMC6061 Noninverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads
In the circuit of Figure 2a, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 2b). Typically a pull up resistor conducting $10 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see electrical characteristics).

TL/H/11422-14
FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6061, typically less than 10 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are

Applications Hints (Continued)

quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6061's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6061's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11} \Omega$ would cause only 0.05 pA of leakage current. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations.

TL/H/11422-6
FIGURE 3. Example of Guard Ring in P.C. Board Layout

FIGURE 4. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5.

TL/H/11422-10
(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board).

FIGURE 5. Air Wiring

Latchup

CMOS devices tend to be susceptible to latchup due to their internal parasitic SCR effects. The (I/O) input and output pins look similar to the gate of the SCR. There is a minimum current required to trigger the SCR gate lead. The LMC6061 and LMC6081 are designed to withstand 100 mA surge current on the I/O pins. Some resistive method should be used to isolate any capacitance from supplying excess current to the I/O pins. In addition, like an SCR, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchup susceptibility.

Typical Single-Supply
 Applications ($\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}$)

The extremely high input impedance, and low power consumption, of the LMC6061 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers.
Figure 6 shows an instrumentation amplifier that features high differential and common mode input resistance ($>10^{14} \Omega$), 0.01% gain accuracy at $A_{V}=100$, excellent CMRR with $1 \mathrm{k} \Omega$ imbalance in bridge source resistance. Input current is less than 100 fA and offset drift is less than $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. R_{2} provides a simple means of adjusting gain over a wide range without degrading CMRR. R_{7} is an initial trim used to maximize CMRR without using super precision matched resistors. For good CMRR over temperature, low drift resistors should be used.

TL/H/11422-11
If $R_{1}=R_{5}, R_{3}=R_{6}$, and $R_{4}=R_{7}$; then
$\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{R_{2}+2 R_{1}}{R_{2}} \times \frac{R_{4}}{R_{3}}$
$\therefore A_{V} \approx 100$ for circuit shown ($R_{2}=9.822 k$).
FIGURE 6. Instrumentation Amplifier

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)($ (Continued)

FIGURE 7. Low-Leakage Sample and Hold

FIGURE 8. 1 Hz Square Wave Oscillator

LMC6062 Precision CMOS Dual Micropower Operational Amplifier

General Description

The LMC6062 is a precision dual low offset voltage, micropower operational amplifier, capable of precision single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low power consumption, make the LMC6062 ideally suited for battery powered applications.
Other applications using the LMC6062 include precision fullwave rectifiers, integrators, references, sample-and-hold circuits, and true instrumentation amplifiers.

This device is built with National's advanced double-Poly Silicon-Gate CMOS process.
For designs that require higher speed, see the LMC6082 precision dual operational amplifier.

Features (Typical Unless Otherwise Noted)
■ Low offset voltage $100 \mu \mathrm{~V}$

- Ultra low supply current $16 \mu \mathrm{~A} /$ Amplifier
- Operates from 4.5 V to 15 V single supply
- Ultra low input bias current
- Output swing within 10 mV of supply rail, 100k load
- Input common-mode range includes V^{-}
- High voltage gain

140 dB

- Improved latchup immunity

Applications

- Instrumentation amplifier
- Photodiode and infrared detector preamplifier
- Transducer amplifiers
- Hand-held analytic instruments
- Medical instrumentation
- D/A converter
- Charge amplifier for piezoelectric transducers

PATENT PENDING

Connection Diagram

Ordering Information

Package	Temperature Range		NSC Drawing	Transport Media
	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Industrial } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
8-Pin Molded DIP	LMC6062AMN	LMC6062AIN LMC6062IN	N08E	Rail
8-Pin Small Outline		LMC6062AIM LMC6062IM	M08A	Rail Tape and Reel
8-Pin Ceramic DIP	LMC6062AMJ/883		J08A	Rail

Absolute Maximum Ratings (Note 1$)$	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Differential Input Voltage	\pm Supply Voltage
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V}$,
	$\left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V}$
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}\right.$-)	16 V
Output Short Circuit to V^{+}	$($Note 11$)$
Output Short Circuit to V^{-}	(Note 2$)$
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)	2 kV

Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Power Dissipation	(Note 3)

Operating Ratings (Note 1)
Temperature Range

LMC6062AM	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LMC6062AI, LMC6082I	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Supply Voltage	$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15.5 \mathrm{~V}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ (Note 12)	
8-Pin Molded DIP	$115^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SO	$193^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation	(Note 10)

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		Typ (Note 5)	$\begin{aligned} & \text { LMC6062AM } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \text { LMC6062AI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \text { LMC60621 } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			100	$\begin{gathered} 350 \\ 1200 \end{gathered}$	$\begin{aligned} & 350 \\ & 900 \end{aligned}$	$\begin{gathered} 800 \\ \mathbf{1 3 0 0} \end{gathered}$	$\begin{gathered} \mu \mathrm{V} \\ \mathrm{Max} \end{gathered}$
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift			1.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.010	100	4	4	pA Max
los	Input Offset Current			0.005	100	2	2	pA Max
$\mathrm{R}_{\text {IN }}$	Input Resistance			>10				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 1 \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{array}{r} 75 \\ \mathbf{7 2} \\ \hline \end{array}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \\ \hline \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}-\leq-$		100	$\begin{aligned} & 84 \\ & 70 \end{aligned}$	$\begin{aligned} & 84 \\ & 81 \end{aligned}$	$\begin{aligned} & 74 \\ & 71 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { and } \\ & \text { for } \mathrm{CMRR} \geq 6 \end{aligned}$		-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Max } \end{gathered}$
				$\mathrm{V}+$ - 1.9	$\begin{aligned} & \mathbf{v}^{+}-2.3 \\ & \mathbf{v}^{+}-2.6 \end{aligned}$	$\begin{aligned} & \mathbf{V}^{+}-2.3 \\ & \mathbf{v}+-2.5 \end{aligned}$	$\begin{aligned} & v^{+}-2.3 \\ & v^{+}-2.5 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & (\text { Note } 7) \end{aligned}$	Sourcing	4000	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	$\begin{aligned} & 400 \\ & 300 \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \end{aligned}$	V / mV Min
			Sinking	3000	$\begin{aligned} & 180 \\ & 70 \end{aligned}$	$\begin{aligned} & 180 \\ & 100 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	V / mV Min
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \\ & \text { (Note 7) } \end{aligned}$	Sourcing	3000	$\begin{aligned} & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & 200 \\ & \mathbf{8 0} \end{aligned}$	V / mV Min
			Sinking	2000	$\begin{aligned} & 100 \\ & 35 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 70 \\ & 35 \end{aligned}$	V/mV Min

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { LMC6062AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6062AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { LMC6062I } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.995	$\begin{gathered} 4.990 \\ \mathbf{4 . 9 7 0} \end{gathered}$	$\begin{gathered} 4.990 \\ \mathbf{4 . 9 8 0} \end{gathered}$	$\begin{gathered} 4.950 \\ \mathbf{4 . 9 2 5} \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.005	$\begin{gathered} 0.010 \\ 0.030 \end{gathered}$	$\begin{gathered} 0.010 \\ 0.020 \end{gathered}$	$\begin{gathered} 0.050 \\ 0.075 \end{gathered}$	V Max
		$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & R_{L}=25 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.990	$\begin{gathered} 4.975 \\ \mathbf{4 . 9 5 5} \\ \hline \end{gathered}$	$\begin{gathered} 4.975 \\ \mathbf{4 . 9 6 5} \\ \hline \end{gathered}$	$\begin{gathered} 4.950 \\ \mathbf{4 . 8 5 0} \\ \hline \end{gathered}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
			0.010	$\begin{gathered} 0.020 \\ 0.045 \end{gathered}$	$\begin{gathered} 0.020 \\ 0.035 \end{gathered}$	$\begin{gathered} 0.050 \\ \mathbf{0 . 1 5 0} \end{gathered}$	V Max
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.990	$\begin{gathered} 14.975 \\ 14.955 \end{gathered}$	$\begin{gathered} 14.975 \\ 14.965 \end{gathered}$	$\begin{gathered} 14.950 \\ 14.925 \end{gathered}$	$\begin{gathered} V \\ M i n \end{gathered}$
			0.010	$\begin{gathered} 0.025 \\ \mathbf{0 . 0 5 0} \\ \hline \end{gathered}$	$\begin{gathered} 0.025 \\ \mathbf{0 . 0 3 5} \\ \hline \end{gathered}$	$\begin{gathered} 0.050 \\ \mathbf{0 . 0 7 5} \\ \hline \end{gathered}$	V Max
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=25 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.965	$\begin{gathered} 14.900 \\ 14.800 \end{gathered}$	$\begin{gathered} 14.900 \\ 14.850 \end{gathered}$	$\begin{gathered} 14.850 \\ 14.800 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.025	$\begin{gathered} 0.050 \\ 0.200 \end{gathered}$	$\begin{gathered} 0.050 \\ \mathbf{0 . 1 5 0} \\ \hline \end{gathered}$	$\begin{gathered} 0.100 \\ 0.200 \\ \hline \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Max } \end{gathered}$
10	Output Current$V^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{array}{r} 16 \\ \mathbf{1 0} \\ \hline \end{array}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{aligned} & 16 \\ & 7 \\ & \hline \end{aligned}$	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{gathered} 16 \\ 8 \end{gathered}$	mA Min
10	Output Current$V^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	25	$\begin{aligned} & 15 \\ & 9 \end{aligned}$	$\begin{aligned} & 15 \\ & \mathbf{1 0} \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \\ & \hline \end{aligned}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 11)	35	$\begin{aligned} & 24 \\ & 7 \end{aligned}$	$\begin{gathered} 24 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ 8 \end{gathered}$	mA Min
Is	Supply Current	Both Amplifiers $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	32	$\begin{aligned} & 38 \\ & 60 \end{aligned}$	$\begin{aligned} & 38 \\ & 46 \end{aligned}$	$\begin{aligned} & 46 \\ & 56 \end{aligned}$	$\mu \mathrm{A}$ Max
		Both Amplifiers $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$	40	$\begin{aligned} & 47 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 47 \\ & 55 \end{aligned}$	$\begin{aligned} & 57 \\ & 66 \end{aligned}$	$\mu \mathrm{A}$ Max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$, Boldface limits apply at the temperature extremes. $\mathrm{V}+=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{gathered} \text { LMC6062AM } \\ \text { Limit } \\ \text { (Note 6) } \end{gathered}$	LMC6062AI Limit (Note 6)	$\begin{aligned} & \text { LMC6062I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
SR	Slew Rate	(Note 8)	35	$\begin{gathered} 20 \\ \mathbf{8} \end{gathered}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 7 \end{aligned}$	V / ms Min
GBW	Gain-Bandwidth Product		100				kHz
θ_{m}	Phase Margin		50				Deg
	Amp-to-Amp Isolation	(Note 9)	155				dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	83				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & F=1 \mathrm{kHz}, A_{V}=-5 \\ & R_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{VPP} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $\mathrm{P}_{\mathrm{D}}=$ $\left(T_{J(M a x)}-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $V^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred $V^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 100 Hz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability witll be adversely affected.
Note 12: All numbers apply for packages soldered directly into a PC board.
Note 13: For guaranteed Military Temperature Range parameters, see RETSMC6062X.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified

Applications Hints

AMPLIFIER TOPOLOGY

The LMC6062 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6062 both easier to design with, and provide higher speed than products typically found in this ultra-low power class.

COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6062.
Although the LMC6062 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.
When high input impedances are demanded, guarding of the LMC6062 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work).
The effect of input capacitance can be compensated for by adding a capacitor. Place a capacitor, C_{f}, around the feedback resistor (as in Figure 1) such that:

$$
\begin{gathered}
\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}}} \geq \frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}} \\
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}
\end{gathered}
$$

Since it is often difficult to know the exact value of $\mathrm{C}_{\mathbb{N}}, \mathrm{C}_{f}$ can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and the LMC662 for a more detailed discussion on compensating for input capacitance.

TL/H/11298-4
FIGURE 1. Canceling the Effect of Input Capacitance

CAPACITIVE LOAD TOLERANCE

All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is normally included in this integrator stage. The frequency location of the dominate pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see typical curves).

Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure $2 a$.

TL/H/11298-5
FIGURE 2a. LMC6062 Noninverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads
In the circuit of Figure 2a, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 2b). Typically a pull up resistor conducting $10 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/11298-14
FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor
PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK
It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6062, typically less than 10 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are

Applications Hints (Continued)

quite simple. First; the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6062's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6062's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $1^{11} \Omega$ would cause only 0.05 pA of leakage current. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations.

TL/H/11298-6
FIGURE 3. Example of Guard Ring in P.C. Board Layout

TL/H/11298-7
(a) Inverting Amplifier

(b) Non-Inverting Amplifier

TL/H/11298-9
(c) Follower

FIGURE 4. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5.

Latchup

CMOS devices tend to be susceptible to latchup due to their internal parasitic SCR effects. The (I/O) input and output pins look similar to the gate of the SCR. There is a minimum current required to trigger the SCR gate lead. The LMC6062 and LMC6082 are designed to withstand 100 mA surge current on the I/O pins. Some resistive method should be used to isolate any capacitance from supplying excess current to the I/O pins. In addition, like an SCR, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchup susceptibility.

Typical Single-Supply Applications

$\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

The extremely high input impedance, and low power consumption, of the LMC6062 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers.
Figure 6 shows an instrumentation amplifier that features high differential and common mode input resistance ($>10^{14} \Omega$), 0.01% gain accuracy at $A_{V}=100$, excellent CMRR with $1 \mathrm{k} \Omega$ imbalance in bridge source resistance. Input current is less than 100 fA and offset drift is less than $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. R_{2} provides a simple means of adjusting gain over a wide range without degrading CMRR. R_{7} is an initial trim used to maximize CMRR without using super precision matched resistors. For good CMRR over temperature, low drift resistors should be used.
(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board).

FIGURE 5. Air Wiring

TL/H/11298-11
If $R_{1}=R_{5}, R_{3}=R_{6}$, and $R_{4}=R_{7}$; then $\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{R_{2}+2 R_{1}}{R_{2}} \times \frac{R_{4}}{R_{3}}$
$\therefore A_{V} \approx 100$ for circuit shown ($R_{2}=9.822 \mathrm{k}$).
FIGURE 6. Instrumentation Amplifier

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)($ Continued)

FIGURE 7. Low-Leakage Sample and Hold

FIGURE 8. 1 Hz Square Wave Oscillator

LMC6064 Precision CMOS Quad Micropower Operational Amplifier

General Description

The LMC6064 is a precision quad low offset voltage, micropower operational amplifier, capable of precision single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low power consumption make the LMC6064 ideally suited for battery powered applications.
Other applications using the LMC6064 include precision fullwave rectifiers, integrators, references, sample-and-hold circuits, and true instrumentation amplifiers.
This device is built with National's advanced double-Poly Silicon-Gate CMOS process.
For designs that require higher speed, see the LMC6084 precision quad operational amplifier.
For single or dual operational amplifier with similar features, see the LMC6061 or LMC6062 respectively.

PATENT PENDING

Features (Typical Unless Otherwise Noted)

- Low offset voltage $100 \mu \mathrm{~V}$
- Ultra low supply current $16 \mu \mathrm{~A} /$ Amplifier
- Operates from 4.5 V to 15 V single supply
- Ultra low input bias current
- Output swing within 10 mV of supply rail, 100 k load
- Input common-mode range includes V^{-}
- High voltage gain

140 dB

- Improved latchup immunity

Applications

- Instrumentation amplifier
- Photodiode and infrared detector preamplifier
- Transducer amplifiers
- Hand-held analytic instruments
- Medical instrumentation
- D/A converter
- Charge amplifier for piezoelectric transducers

Connection Diagram

TL/H/11466-1

Ordering Information

Package	Temperature Range		NSC Drawing	Transport Media
	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$		
14-Pin Molded DIP	LMC6064AMN	LMC6064AIN LMC6064IN	N14A	Rail
14-Pin Small Outline		LMC6064AIM LMC6064IM	M14A	Rail Tape and Reel
14-Pin Ceramic DIP	LMC6064AMJ		J14A	Rail

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Differential Input Voltage	\pm Supply Voltage
Voltage at Input/Output Pin	$\left(V^{+}\right)+0.3 \mathrm{~V}$,
	$\left(V^{-}\right)-0.3 \mathrm{~V}$
Supply Voltage (V+ - V-)	16 V
Output Short Circuit to V^{+}	(Note 11$)$
Output Short Circuit to V^{-}	(Note 2)
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)	2 kV

Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Power Dissipation	(Note 3)
Operating Ratings (Note 1)	
Temperature Range	
LMC6064AM	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LMC6064AI, LMC6064I	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
Supply Voltage	$4.5 \mathrm{~V} \leq \mathrm{V}+\leq 15.5 \mathrm{~V}$
Thermal Resistance ($\theta_{\text {JA }}$) (Note 12)	
14-Pin Molded DIP	$81^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin SO	$126^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation	(Note 10)

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		Typ (Note 5)	$\begin{aligned} & \text { LMC6064AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6064AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6064I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			100	$\begin{gathered} 350 \\ 1200 \end{gathered}$	$\begin{aligned} & 350 \\ & 900 \end{aligned}$	$\begin{gathered} 800 \\ 1300 \end{gathered}$	$\mu \mathrm{V}$ Max
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift			1.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.010	100	4	4	$\begin{gathered} \mathrm{pA} \\ \mathrm{Max} \end{gathered}$
los	Input Offset Current			0.005	100	2	2	pA Max
R_{IN}	Input Resistance			>10				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 V \leq V_{C M} \leq 1 \\ & V^{+}=15 V \end{aligned}$		85	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq V^{+} \leq 15 \\ & V_{O}=2.5 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 70 \\ & \hline \end{aligned}$	$\begin{array}{r} 75 \\ \mathbf{7 2} \\ \hline \end{array}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	dB Min
-PSRR	Negative Power Supply Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}^{-} \leq-$		100	$\begin{array}{r} 84 \\ 70 \\ \hline \end{array}$	$\begin{array}{r} 84 \\ \mathbf{8 1} \\ \hline \end{array}$	$\begin{array}{r} 74 \\ \mathbf{7 1} \\ \hline \end{array}$	dB Min
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	$\begin{aligned} & V^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { for CMRR } \geq 60 \mathrm{~dB} \end{aligned}$		-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Max } \end{gathered}$
				$\mathrm{V}+$ - 1.9	$\begin{gathered} \mathbf{v}+-2.3 \\ \mathbf{v}+-2.6 \end{gathered}$	$\begin{gathered} \mathbf{v}^{+}-2.3 \\ \mathbf{v}+-2.5 \end{gathered}$	$\begin{gathered} \mathbf{V}^{+}-2.3 \\ \mathbf{v}^{+}-2.5 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
A_{V}	Large Signal Voltage Gain	$R_{L}=100 \mathrm{k} \Omega$ (Note 7)	Sourcing	4000	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	$\begin{aligned} & 400 \\ & 300 \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{Min} \end{gathered}$
			Sinking	3000	$\begin{aligned} & 180 \\ & 70 \end{aligned}$	$\begin{aligned} & 180 \\ & 100 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{Min} \end{gathered}$
		$R_{L}=25 \mathrm{k} \Omega$ (Note 7)	Sourcing	3000	$\begin{array}{r} 400 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & 400 \\ & \mathbf{1 5 0} \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 80 \\ & \hline \end{aligned}$	V / mV Min
			Sinking	2000	$\begin{aligned} & 100 \\ & 35 \end{aligned}$	$\begin{array}{r} 100 \\ 50 \end{array}$	$\begin{aligned} & 70 \\ & 35 \end{aligned}$	V / mV Min

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6064AM } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \text { LMC6064AI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \text { LMC6064I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.995	$\begin{gathered} 4.990 \\ 4.970 \end{gathered}$	$\begin{gathered} 4.990 \\ 4.980 \end{gathered}$	$\begin{gathered} 4.950 \\ 4.925 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.005	$\begin{aligned} & 0.010 \\ & 0.030 \end{aligned}$	$\begin{gathered} 0.010 \\ \mathbf{0 . 0 2 0} \end{gathered}$	$\begin{gathered} 0.050 \\ 0.075 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Max } \end{gathered}$
		$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.990	$\begin{gathered} 4.975 \\ 4.955 \end{gathered}$	$\begin{gathered} 4.975 \\ 4.965 \end{gathered}$	$\begin{gathered} 4.950 \\ \mathbf{4 . 8 5 0} \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.010	$\begin{gathered} 0.020 \\ 0.045 \end{gathered}$	$\begin{gathered} 0.020 \\ 0.035 \end{gathered}$	$\begin{gathered} 0.050 \\ \mathbf{0 . 1 5 0} \end{gathered}$	$\begin{gathered} V \\ \text { Max } \end{gathered}$
		$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.990	$\begin{gathered} 14.975 \\ 14.955 \end{gathered}$	$\begin{gathered} 14.975 \\ 14.965 \end{gathered}$	$\begin{gathered} 14.950 \\ 14.925 \\ \hline \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.010	$\begin{aligned} & 0.025 \\ & 0.050 \end{aligned}$	$\begin{gathered} 0.025 \\ \mathbf{0 . 0 3 5} \end{gathered}$	$\begin{gathered} 0.050 \\ 0.075 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.965	$\begin{gathered} 14.900 \\ 14.800 \end{gathered}$	$\begin{gathered} 14.900 \\ 14.850 \end{gathered}$	$\begin{gathered} 14.850 \\ 14.800 \end{gathered}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
			0.025	$\begin{aligned} & 0.050 \\ & 0.200 \end{aligned}$	$\begin{gathered} 0.050 \\ \mathbf{0 . 1 5 0} \end{gathered}$	$\begin{gathered} 0.100 \\ 0.200 \end{gathered}$	$\begin{gathered} V \\ \text { Max } \end{gathered}$
Io	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{gathered} 16 \\ \mathbf{8} \\ \hline \end{gathered}$	$\begin{aligned} & 16 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{aligned} & 16 \\ & 7 \\ & \hline \end{aligned}$	$\begin{gathered} 16 \\ \mathbf{8} \\ \hline \end{gathered}$	$\begin{aligned} & 16 \\ & \mathbf{8} \\ & \hline \end{aligned}$	mA Min
10	Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	25	$\begin{gathered} 15 \\ 9 \end{gathered}$	$\begin{array}{r} 15 \\ \mathbf{1 0} \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 10 \\ & \hline \end{aligned}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 11)	35	$\begin{aligned} & 24 \\ & 7 \\ & \hline \end{aligned}$	$\begin{gathered} 24 \\ 8 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{8} \\ \hline \end{gathered}$	mA Min
Is	Supply Current	All Four Amplifiers $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	64	$\begin{gathered} 76 \\ 120 \\ \hline \end{gathered}$	$\begin{array}{r} 76 \\ 92 \end{array}$	$\begin{gathered} 92 \\ \mathbf{1 1 2} \\ \hline \end{gathered}$	$\mu \mathrm{A}$ Max
		All Four Amplifiers $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$	80	$\begin{gathered} 94 \\ 140 \end{gathered}$	$\begin{gathered} 94 \\ 110 \end{gathered}$	$\begin{gathered} 114 \\ 132 \end{gathered}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{Max} \\ \hline \end{gathered}$

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$, Boldface limits apply at the temperature extremes. $\mathrm{V}+{ }^{\circ}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	- Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6064AM } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \text { LMC6064AI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \text { LMC6064I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
SR	Slew Rate	(Note 8)	35	$\begin{gathered} 20 \\ 8 \end{gathered}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 7 \end{aligned}$	V / ms Min
GBW	Gain-Bandwidth Product		100				kHz
θ_{m}	Phase Margin		50				Deg
	Amp-to-Amp Isolation	(Note 9)	155				dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	83				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & F=1 \mathrm{kHz}, A_{V}=-5 \\ & R_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{VPP} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\text { Max })}-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred $V^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 100 Hz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 11: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability witll be adversely affected.
Note 12: All numbers apply for packages soldered directly into a PC board.
Note 13: For guaranteed Military Temperature Range parameters see RETSMC6064X.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified

Distribution of LMC6064 Input Offset Voltage $\left(T_{A}=-55^{\circ} \mathrm{C}\right)$

Distribution of LMC6064 Input Offset Voltage ($\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$)
 OFFSET VOLTAGE (mV)

Gain and Phase Response vs Temperature $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

TL/H/11466-2

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified

Applications Hints

AMPLIFIER TOPOLOGY

The LMC6064 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6064 both easier to design with, and provide higher speed than products typically found in this ultra-low power class.

COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6064.
Although the LMC6064 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.
When high input impedances are demanded, guarding of the LMC6064 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work).
The effect of input capacitance can be compensated for by adding a capacitor. Place a capacitor, C_{f}, around the feedback resistor (as in Figure 1) such that:

$$
\begin{gathered}
\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}}} \geq \frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}} \\
\quad \text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}
\end{gathered}
$$

Since it is often difficult to know the exact value of $\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{f}$ can be experimentally adjusted so that the desired pulse response is achieved. Refer to the. LMC660 and the LMC662 for a more detailed discussion on compensating for input capacitance.

TL/H/11466-4
FIGURE 1. Canceling the Effect of Input Capacitance

CAPACITIVE LOAD TOLERANCE

All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is normally included in this integrator stage. The frequency location of the dominate pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see typical curves).

Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 2a.

TL/H/11466-5
FIGURE 2a. LMC6064 Noninverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads

In the circuit of Figure $2 a, \mathrm{R} 1$ and C 1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 2b). Typically a pull up resistor conducting $10 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/11466-6
FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6064, typically less than 10 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are

Applications Hints (Continued)

quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6064's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6064's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11} \Omega$ would cause only 0.05 pA of leakage current. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations.

TL/H/11466-7
FIGURE 3. Example of Guard Ring in P.C. Board Layout

TL/H/11466-8
(a) Inverting Amplifier

TL/H/11466-9
(b) Non-Inverting Amplifier

TL/H/11466-10
(c) Follower

FIGURE 4. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5.

Latchup

CMOS devices tend to be susceptible to latchup due to their internal parasitic SCR effects. The (I/O) input and output pins look similar to the gate of the SCR. There is a minimum current required to trigger the SCR gate lead. The LMC6064 and LMC6082 are designed to withstand 100 mA surge current on the I/O pins. Some resistive method should be used to isolate any capacitance from supplying excess current to the I/O pins. In addition, like an SCR, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchup susceptibility.

TL/H/11466-11
(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board).

Typical Single-Supply Applications

($\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}$)

The extremely high input impedance, and low power consumption, of the LMC6064 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers.
Figure 6 shows an instrumentation amplifier that features high differential and common mode input resistance ($>10^{14} \Omega$), 0.01% gain accuracy at $A_{V}=100$, excellent CMRR with $1 \mathrm{k} \Omega$ imbalance in bridge source resistance. Input current is less than 100 fA and offset drift is less than $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. R_{2} provides a simple means of adjusting gain over a wide range without degrading CMRR. R_{7} is an initial trim used to maximize CMRR without using super precision matched resistors. For good CMRR over temperature, low drift resistors should be used.

FIGURE 5. Air Wiring

If $R_{1}=R_{5}, R_{3}=R_{6}$, and $R_{4}=R_{7}$; then
$\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{R_{2}+2 R_{1}}{R_{2}} \times \frac{R_{4}}{R_{3}}$
$\therefore A_{V} \approx 100$ for circuit shown ($R_{2}=9.822 \mathrm{k}$).

FIGURE 6. Instrumentation Amplifier

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

FIGURE 7. Low-Leakage Sample and Hold

FIGURE 8. 1 Hz Square Wave Oscillator

LMC6081 Precision CMOS Single Operational Amplifier

General Description

The LMC6081 is a precision low offset voltage operational amplifier, capable of single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low offset voltage, make the LMC6081 ideally suited for precision circuit applications.
Other applications using the LMC6081 include precision fullwave rectifiers, integrators, references, and sample-andhold circuits.
This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.
For designs with more critical power demands, see the LMC6061 precision micropower operational amplifier.
For a dual or quad operational amplifier with similar features, see the LMC6082 or LMC6084 respectively.

Features (Typical unless otherwise stated)

- Low offset voltage
$150 \mu \mathrm{~V}$
- Operates from 4.5 V to 15 V single supply
- Ultra low input bias current

■ Output swing to within 20 mV of supply rail, 100k load

- Input common-mode range includes V -
- High voltage gain

130 dB

- Improved latchup immunity

Applications

- Instrumentation amplifier
- Photodiode and infrared detector preamplifier
- Transducer amplifiers
- Medical instrumentation
- D/A converter
- Charge amplifier for piezoelectric transducers

PATENT PENDING

Connection Diagram

Ordering Information

Package	Temperature Range		NSC Drawing	Transport Media
	Military $-55^{\circ} \mathrm{C}$ to $+\mathbf{1 2 5} 5^{\circ} \mathrm{C}$	Industrial $-\mathbf{4 0}^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
8-Pin Molded DIP	LMC6081AMN	LMC6081AIN LMC6081IN	N08E	R
8-Pin Small Outline		LMC6081AIM LMC6081IM	M08A	Rail Tape and Reel

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Differential Input Voltage	\pm Supply Voltage
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V}$,
	$\left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V}$
Supply Voltage (V+ $-\mathrm{V}-)$	16 V
Output Short Circuit to V^{+}	$($Note 10)
Output Short Circuit to V^{-}	(Note 2)
Lead Temperature (Soldering, 10 Sec.)	$260^{\circ} \mathrm{C}$
Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

ESD Tolerance (Note 4)	2 kV
Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Power Dissipation	(Note 3)
Operating Ratings (Note 1)	
Temperature Range	
LMC6081AM	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
LMC6081AI, LMC6081I	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
Supply Voltage	$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15.5 \mathrm{~V}$
Thermal Resistance ($\theta_{\text {JA }}$), (Note 11)	
N Package, 8-Pin Molded DIP	$115^{\circ} \mathrm{C} / \mathrm{W}$
M Package, 8-Pin Surface Mount	$193{ }^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation (Note 9)	

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

| Symbol | Parameter | Conditions | $\begin{array}{c}\text { Typ } \\ \text { (Note 5) }\end{array}$ | $\begin{array}{c}\text { LMC6081AM } \\ \text { Limit } \\ \text { (Note 6) }\end{array}$ | $\begin{array}{c}\text { LMC6081AI } \\ \text { Limit } \\ \text { (Note 6) }\end{array}$ | $\begin{array}{c}\text { LMC6081I } \\ \text { Limit } \\ \text { (Note 6) }\end{array}$ | Units |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |$]$

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6081AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6081AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6081I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.87	$\begin{aligned} & 4.80 \\ & 4.70 \end{aligned}$	$\begin{array}{r} 4.80 \\ 4.73 \end{array}$	$\begin{aligned} & 4.75 \\ & 4.67 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.10	$\begin{aligned} & 0.13 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.24 \end{aligned}$	V Max
		$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.61	$\begin{array}{r} 4.50 \\ 4.24 \end{array}$	$\begin{array}{r} 4.50 \\ 4.31 \end{array}$	$\begin{aligned} & 4.40 \\ & 4.21 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.30	$\begin{aligned} & 0.40 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.40 \\ & \mathbf{0 . 5 0} \end{aligned}$	$\begin{aligned} & 0.50 \\ & \mathbf{0 . 6 3} \end{aligned}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.63	$\begin{gathered} 14.50 \\ \mathbf{1 4 . 3 0} \\ \hline \end{gathered}$	$\begin{gathered} 14.50 \\ 14.34 \\ \hline \end{gathered}$	$\begin{gathered} 14.37 \\ \mathbf{1 4 . 2 5} \\ \hline \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.26	$\begin{aligned} & 0.35 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.56 \end{aligned}$	V Max
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=600 \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	13.90	$\begin{gathered} 13.35 \\ 12.80 \\ \hline \end{gathered}$	$\begin{gathered} 13.35 \\ 12.86 \\ \hline \end{gathered}$	$\begin{gathered} 12.92 \\ 12.44 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.79	$\begin{aligned} & 1.16 \\ & 1.42 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.32 \end{aligned}$	$\begin{gathered} 1.33 \\ 1.58 \end{gathered}$	V Max
lo	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{array}{r} 16 \\ 11 \\ \hline \end{array}$	$\begin{array}{r} 16 \\ 13 \\ \hline \end{array}$	$\begin{array}{r} 13 \\ \mathbf{1 0} \\ \hline \end{array}$	mA Min
10	Output Current$\mathrm{V}+=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	30	$\begin{array}{r} 28 \\ 18 \\ \hline \end{array}$	$\begin{array}{r} 28 \\ 22 \\ \hline \end{array}$	$\begin{array}{r} 23 \\ 18 \\ \hline \end{array}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 10)	34	$\begin{array}{r} 28 \\ 19 \end{array}$	$\begin{array}{r} 28 \\ 22 \\ \hline \end{array}$	$\begin{aligned} & 23 \\ & 18 \\ & \hline \end{aligned}$	mA Min
Is	Supply Current	$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	450	$\begin{array}{r} 750 \\ 900 \\ \hline \end{array}$	$\begin{array}{r} 750 \\ \mathbf{9 0 0} \\ \hline \end{array}$	$\begin{array}{r} 750 \\ \mathbf{9 0 0} \\ \hline \end{array}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{Max} \end{gathered}$
		$\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$	550	$\begin{aligned} & 850 \\ & \mathbf{9 5 0} \\ & \hline \end{aligned}$	$\begin{aligned} & 850 \\ & \mathbf{9 5 0} \end{aligned}$	$\begin{aligned} & 850 \\ & \mathbf{9 5 0} \end{aligned}$	$\mu \mathrm{A}$ Max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$, Boldface limits apply at the temperature extremes. $\mathrm{V}+=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6081AM } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \text { LMC6081AI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \text { LMC6081 } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
SR	Slew Rate	(Note 8)	1.5	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{Min} \end{aligned}$
GBW	Gain-Bandwidth Product		1.3				MHz
ϕ_{m}	Phase Margin		50				Deg
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V} \mathrm{PP} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$
$\left(T_{J(M a x)}-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 10: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 11: All numbers apply for packages soldered directly into a PC board.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified

Common Mode
Rejection Ratio vs Frequency

Distribution of LMC6081 Input Offset Voltage ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$)
 offset voltage (mV)

Distribution of LMC6081 Input Offset Voltage ($\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$)

Gain and Phase Response vs Temperature ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

Typical Performance Characteristics (Continued)
$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified

Applications Hints

AMPLIFIER TOPOLOGY

The LMC6081 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6081 both easier to design with, and provide higher speed than products typically found in this ultra-low power class.

COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6081.
Although the LMC6081 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.
When high input impedances are demanded, guarding of the LMC6081 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work).
The effect of input capacitance can be compensated for by adding a capacitor, C_{f}, around the feedback resistors (as in Figure 1) such that:

$$
\begin{gathered}
\frac{1}{2 \pi R_{1} C_{I N}} \geq \frac{1}{2 \pi R_{2} C_{f}} \\
\text { or } \\
R_{1} C_{I N} \leq R_{2} C_{f}
\end{gathered}
$$

Since it is often difficult to know the exact value of $\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{\mathrm{f}}$ can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and LMC662 for a more detailed discussion on compensating for input capacitance.

TL/H/11423-4
FIGURE 1. Cancelling the Effect of Input Capacitance

CAPACITIVE LOAD TOLERANCE

All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is normally included in this integrator stage. The frequency location of the dominant pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see typical curves).

Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 2a.

TL/H/11423-5
FIGURE 2a. LMC6081 Noninverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads
In the circuit of Figure 2a, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 2b). Typically a pull up resistor conducting $500 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see electrical characteristics).

> TL/H/11423-14

FIGURE 2b: Compensating for Large Capacitive Loads with a Pull Up Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6081, typically less than 10 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface

Applications Hints (Continued)

leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6081's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6081's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of ${ }^{1011} \Omega$ would cause only 0.05 pA of leakage current. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations.

TL/H/11423-6
FIGURE 3. Example of Guard Ring in P.C. Board Layout

FIGURE 4. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5 .

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board).

FIGURE 5. Air Wiring

Latchup

CMOS devices tend to be susceptible to latchup due to their internal parasitic SCR effects. The (I/O) input and output pins look similar to the gate of the SCR. There is a minimum current required to trigger the SCR gate lead. The LMC6061 and LMC6081 are designed to withstand 100 mA surge current on the I/O pins. Some resistive method should be used to isolate any capacitance from supplying excess current to the I/O pins. In addition, like an SCR, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchup susceptibility.

Typical Single-Supply Applications

($\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}$)
The extremely high input impedance, and low power consumption, of the LMC6081 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers.
Figure 6 shows an instrumentation amplifier that features high differential and common mode input resistance ($>10^{14} \Omega$), 0.01% gain accuracy at $A_{V}=1000$, excellent CMRR with $1 \mathrm{k} \Omega$ imbalance in bridge source resistance. Input current is less than 100 fA and offset drift is less than $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} . \mathrm{R}_{2}$ provides a simple means of adjusting gain over a wide range without degrading CMRR. R_{7} is an initial trim used to maximize CMRR without using super precision matched resistors. For good CMRR over temperature, low drift resistors should be used.

TL/H/11423-11
If $R_{1}=R_{5}, R_{3}=R_{6}$, and $R_{4}=R_{7}$; then

$$
\frac{V_{\mathrm{OUT}}}{V_{I N}}=\frac{R_{2}+2 R_{1}}{R_{2}} \times \frac{R_{4}}{R_{3}}
$$

$\therefore A_{V} \approx 100$ for circuit shown $\left(R_{2}=9.822 k\right)$.

FIGURE 6. Instrumentation Amplifier
冨

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

TL/H/11423-12
FIGURE 7. Low-Leakage Sample and Hold

TL/H/11423-13
FIGURE 8. 1 Hz Square Wave Oscillator

LMC6082 Precision CMOS Dual Operational Amplifier

General Description

The LMC6082 is a precision dual low offset voltage operational amplifier, capable of single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low offset voltage, make the LMC6082 ideally suited for precision circuit applications.
Other applications using the LMC6082 include precision fullwave rectifiers, integrators, references, and sample-andhold circuits.
This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.

For designs with more critical power demands, see the LMC6062 precision dual micropower operational amplifier.

Features (Typical unless otherwise stated)
■ Low offset voltage $150 \mu \mathrm{~V}$

- Operates from 4.5 V to 15 V single supply
- Ultra low input bias current

10 fA

- Output swing to within 20 mV of supply rail, 100 k load
- Input common-mode range includes V^{-}
- High voltage gain 130 dB
- Improved latchup immunity

Applications

- instrumentation amplifier
- Photodiode and infrared detector preamplifier
- Transducer amplifiers
- Medical instrumentation
- D/A converter
- Charge amplifier for piezoelectric transducers

PATENT PENDING

Connection Diagram

Ordering Information

Package	Temperature Range		NSC Drawing	Transport Media
	Military $-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	Industrial $-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$		
8-Pin Molded DIP	LMC6082AMN	LMC6082AIN LMC6082IN	N08E	Rail
8-Pin Small Outline		LMC6082AIM LMC6082IM	M08A	Rail Tape and Reel

For MIL-STD-883C qualified products, please contact your local National Semiconductor Sales Office or Distributor for availability and specification information.

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Differential Input Voltage	\pm Supply Voltage
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V}$,
	$\left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V}$
Supply Voltage (V+ $-\mathrm{V}-)$	16 V
Output Short Circuit to $\mathrm{V}+$	(Note 11$)$
Output Short Circuit to $\mathrm{V}-$	$($ Note 2$)$
Lead Temperature (Soldering, 10 Sec.)	$260^{\circ} \mathrm{C}$
Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)	2 kV

Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Power Dissipation	(Note 3)

Operating Ratings (Note 1)
Temperature Range

LMC6082AM	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LMC6082AI, LMC6082I	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Supply Voltage	$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15.5 \mathrm{~V}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ (Note 12)	
8-Pin Molded DIP	$115^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SO	$193^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation	(Note 10)

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	$\begin{aligned} & \text { LMC6082AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6082AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6082I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			150	$\begin{gathered} 350 \\ 1000 \end{gathered}$	$\begin{aligned} & 350 \\ & \mathbf{8 0 0} \end{aligned}$	$\begin{gathered} 800 \\ \mathbf{1 3 0 0} \end{gathered}$	$\begin{gathered} \mu V \\ \operatorname{Max} \\ \hline \end{gathered}$
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift			1.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.010	100	4	4	pA Max
los	Input Offset Current			0.005	100	2	2	pA Max
$\mathrm{R}_{\text {IN }}$	Input Resistance			>10				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \\ & \mathrm{~V}+=15 \mathrm{~V} \end{aligned}$	$2.0 \mathrm{~V}$	85	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq \\ & \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		85	$\begin{array}{r} 75 \\ 72 \\ \hline \end{array}$	$\begin{array}{r} 75 \\ 72 \\ \hline \end{array}$	$\begin{array}{r} 66 \\ 63 \\ \hline \end{array}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}^{-} \leq$	10V	94	$\begin{array}{r} 84 \\ \mathbf{8 1} \\ \hline \end{array}$	$\begin{aligned} & 84 \\ & \mathbf{8 1} \\ & \hline \end{aligned}$	$\begin{aligned} & 74 \\ & \mathbf{7 1} \\ & \hline \end{aligned}$	dB Min
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}+=5 \mathrm{~V} \text { and } 15 \mathrm{~V}$ for CMRR $\geq 60 \mathrm{~dB}$		-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} V \\ \text { Max } \end{gathered}$
				$\mathrm{V}+$ - 1.9	$\begin{aligned} & v^{+}-2.3 \\ & \mathbf{v}+-2.6 \end{aligned}$	$\begin{aligned} & \mathbf{v}^{+}-2.3 \\ & \mathbf{v}+-2.5 \end{aligned}$	$\begin{gathered} v^{+}-2.3 \\ \mathbf{v}^{+}-2.5 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
A_{V}	Large Signal Voltage Gain	$R_{L}=2 \mathrm{k} \Omega$ (Note 7)	Sourcing	1400	$\begin{aligned} & 400 \\ & 300 \end{aligned}$	$\begin{aligned} & 400 \\ & 300 \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \end{aligned}$	V / mV Min
			Sinking	350	$\begin{aligned} & 180 \\ & 70 \end{aligned}$	$\begin{gathered} 180 \\ 100 \end{gathered}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	V / mV Min
		$R_{L}=600 \Omega$ (Note 7)	Sourcing	1200	$\begin{aligned} & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & 200 \\ & 80 \end{aligned}$	V / mV Min
			Sinking	150	$\begin{aligned} & 100 \\ & 35 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 70 \\ & \mathbf{3 5} \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{Min} \end{aligned}$

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { LMC6082AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6082AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6082I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.87	$\begin{array}{r} 4.80 \\ 4.70 \\ \hline \end{array}$	$\begin{array}{r} 4.80 \\ 4.73 \\ \hline \end{array}$	$\begin{array}{r} 4.75 \\ \mathbf{4 . 6 7} \\ \hline \end{array}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.10	$\begin{gathered} 0.13 \\ 0.19 \end{gathered}$	$\begin{aligned} & 0.13 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.24 \end{aligned}$	$\begin{gathered} V \\ \text { Max } \end{gathered}$
		$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.61	$\begin{array}{r} 4.50 \\ \mathbf{4 . 2 4} \\ \hline \end{array}$	$\begin{aligned} & 4.50 \\ & \mathbf{4 . 3 1} \end{aligned}$	$\begin{aligned} & 4.40 \\ & \mathbf{4 . 2 1} \end{aligned}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.30	$\begin{gathered} 0.40 \\ \mathbf{0 . 6 3} \end{gathered}$	$\begin{gathered} 0.40 \\ 0.50 \\ \hline \end{gathered}$	$\begin{aligned} & 0.50 \\ & 0.63 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { Max } \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.63	$\begin{gathered} 14.50 \\ 14.30 \end{gathered}$	$\begin{gathered} 14.50 \\ 14.34 \\ \hline \end{gathered}$	$\begin{gathered} 14.37 \\ \mathbf{1 4 . 2 5} \end{gathered}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
			0.26	$\begin{aligned} & 0.35 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.45 \end{aligned}$	$\begin{gathered} 0.44 \\ 0.56 \end{gathered}$	V Max
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	13.90	$\begin{gathered} 13.35 \\ 12.80 \end{gathered}$	$\begin{gathered} 13.35 \\ \mathbf{1 2 . 8 6} \end{gathered}$	$\begin{gathered} 12.92 \\ 12.44 \\ \hline \end{gathered}$	$\begin{gathered} V \\ \mathrm{Min} \\ \hline \end{gathered}$
			0.79	$\begin{array}{r} 1.16 \\ 1.42 \\ \hline \end{array}$	$\begin{array}{r} 1.16 \\ 1.32 \\ \hline \end{array}$	$\begin{aligned} & 1.33 \\ & 1.58 \\ & \hline \end{aligned}$	$\begin{gathered} V \\ M a x \\ \hline \end{gathered}$
10	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{array}{r} 16 \\ 11 \\ \hline \end{array}$	$\begin{array}{r} 16 \\ 13 \\ \hline \end{array}$	$\begin{aligned} & 13 \\ & \mathbf{1 0} \\ & \hline \end{aligned}$	mA Min
10	Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	30	$\begin{array}{r} 28 \\ 18 \\ \hline \end{array}$	$\begin{array}{r} 28 \\ 22 \\ \hline \end{array}$	$\begin{array}{r} 23 \\ 18 \\ \hline \end{array}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 11)	34	$\begin{array}{r} 28 \\ 19 \\ \hline \end{array}$	$\begin{aligned} & 28 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \\ & \hline \end{aligned}$	mA Min
Is	Supply Current	Both Amplifiers $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	0.9	$\begin{aligned} & 1.5 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & \mathbf{1 . 8} \\ & \hline \end{aligned}$	mA Max
		Both Amplifiers $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$	1.1	$\begin{gathered} 1.7 \\ 2 \end{gathered}$	$\begin{gathered} 1.7 \\ 2 \end{gathered}$	$\begin{gathered} 1.7 \\ 2 \end{gathered}$	mA Max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$, Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { LMC6082AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6082AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC60821 } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
SR	Slew Rate	(Note 8)	1.5	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{Min} \end{aligned}$
GBW	Gain-Bandwidth Product		1.3				MHz
ϕ_{m}	Phase Margin		50				Deg
	Amp-to-Amp Isolation	(Note 9)	140				dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V} \mathrm{PP} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\text { Max })}-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turm with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 11: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 12: All numbers apply for packages soldered directly into a PC board.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified

Common Mode Rejection Ratio vs Frequency

Output Characteristics Sourcing Current

Distribution of LMC6082 Input Offset Voltage ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$)
 offset voltage (mV)

Output Characteristics

Distribution of LMC6082
Input Offset Voltage
($\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$)

Gain and Phase Response vs Temperature $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

TL/H/11297-2

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified

Applications Hints

AMPLIFIER TOPOLOGY

The LMC6082 incorporates a novel op-amp design topology that enables it to maintain rail to rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6082 both easier to design with, and provide higher speed than products typically found in this ultra-low power class.

COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6082.
Although the LMC6082 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.
When high input impedances are demanded, guarding of the LMC6082 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work).
The effect of input capacitance can be compensated for by adding a capacitor, C_{f}, around the feedback resistors (as in Figure 1) such that:

$$
\begin{gathered}
\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{I N}} \geq \frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{f}} \\
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{I N} \leq \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}
\end{gathered}
$$

Since it is often difficult to know the exact value of $\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{\mathrm{f}}$ can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and LMC662 for a more detailed discussion on compensating for input capacitance.

TL/H/11297-4
FIGURE 1. Cancelling the Effect of Input Capacitance

CAPACITIVE LOAD TOLERANCE

All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is normally included in this integrator stage. The frequency location of the dominant pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see typical curves).

Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 2a.

TL/H/11297-5
FIGURE 2a. LMC6082 Noninverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads
In the circuit of Figure 2a, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 2b). Typically a pull up resistor conducting $500 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/11297-14
FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6082, typically less than 10 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface

Applications Hints

leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6082's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 1012Ω, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6082's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011Ω would cause only 0.05 pA of leakage current. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations.

TL/H/11297-6
FIGURE 3. Example of Guard Ring in P.C. Board Layout

The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5.

Latchup

CMOS devices tend to be susceptible to latchup due to their internal parasitic SCR effects. The (I/O) input and output pins look similar to the gate of the SCR. There is a minimum current required to trigger the SCR gate lead. The LMC6062 and LMC6082 are designed to withstand 100 mA surge current on the I/O pins. Some resistive method should be used to isolate any capacitance from supplying excess current to the I/O pins. In addition, like an SCR, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchup susceptibility.

(Input pins are lifted out of PC board and soldered directly to components All other pins connected to PC board).

Typical Single-Supply Applications

$\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$
The extremely high input impedance, and low power consumption, of the LMC6082 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers.
Figure 6 shows an instrumentation amplifier that features high differential and common mode input resistance ($>10^{14} \Omega$), 0.01% gain accuracy at $A_{V}=1000$, excellent CMRR with $1 \mathrm{k} \Omega$ imbalance in bridge source resistance. Input current is less than 100 fA and offset drift is less than $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. R_{2} provides a simple means of adjusting gain over a wide range without degrading CMRR. R_{7} is an initial trim used to maximize CMRR without using super precision matched resistors. For good CMRR over temperature, low drift resistors should be used.

FIGURE 5. Air Wiring

If $R_{1}=R_{5}, R_{3}=R_{6}$, and $R_{4}=R_{7}$; then

$$
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{R_{2}+2 R_{1}}{R_{2}} \times \frac{R_{4}}{R_{3}}
$$

$\therefore A_{V} \approx 100$ for circuit shown $\left(R_{2}=9.822 \mathrm{k}\right)$.
FIGURE 6. Instrumentation Amplifier

Typical Single-Supply Applications $\left({ }^{+}+=5.0 \mathrm{v}_{\mathrm{DC}}\right)$

FIGURE 7. Low-Leakage Sample and Hold

FIGURE 8. 1 Hz Square Wave Oscillator

LMC6084

Precision CMOS Quad Operational Amplifier

General Description

The LMC6084 is a precision quad low offset voltage operational amplifier, capable of single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low offset voltage, make the LMC6084 ideally suited for precision circuit applications.
Other applications using the LMC6084 include precision fullwave rectifiers, integrators, references, and sample-andhold circuits.
This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.
For designs with more critical power demands, see the LMC6064 precision quad micropower operational amplifier. For a single or dual operational amplifier with similar features, see the LMC6081 or LMC6082 respectively.

Features (Typical unless otherwise stated)

- Low offset voltage
$150 \mu \mathrm{~V}$
- Operates from 4.5 V to 15 V single supply
- Ultra low input bias current 10 fA
■ Output swing to within 20 mV of supply rail, 100k load
- Input common-mode range includes V -
- High voltage gain

130 dB

- Improved latchup immunity

Applications

- Instrumentation amplifier
- Photodiode and infrared detector preamplifier
- Transducer amplifiers
- Medical instrumentation
- D/A converter
- Charge amplifier for piezoelectric transducers

PATENT PENDING

Connection Diagram

Ordering Information

Package	Temperature Range		NSC Drawing	Transport Media
	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$		
14-Pin Molded DIP	LMC6084AMN	LMC6084AIN LMC6084IN	N14A	Rail
14-Pin Small Outline		LMC6084AIM LMC6084IM	M14A	Rail Tape and Reel

[^14]| Absolute Maximum Ratings (Note 1) | |
| :---: | :---: |
| If Military/Aerospace specified de please contact the National Se Office/Distributors for availability a | ces are required, conductor Sales specifications. |
| Differential Input Voltage | \pm Supply Voltage |
| Voltage at Input/Output Pin | $\begin{aligned} & \left(V^{+}\right)+0.3 V \\ & \left(V^{-}\right)-0.3 V \end{aligned}$ |
| Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$) | 16 V |
| Output Short Circuit to V^{+} | (Note 11) |
| Output Short Circuit to V- | (Note 2) |
| Lead Temperature (Soldering, 10 Sec .) | $260^{\circ} \mathrm{C}$ |
| Storage Temp. Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Junction Temperature | $150^{\circ} \mathrm{C}$ |
| ESD Tolerance (Note 4) | 2 kV |

Current at Input Pin	$\pm 10 \mathrm{~mA}$
Current at Output Pin	$\pm 30 \mathrm{~mA}$
Current at Power Supply Pin	40 mA
Power Dissipation	(Note 3)

Operating Ratings (Note 1)
Temperature Range

LMC6084AM	$-55^{\circ} \mathrm{C} \leq T_{J} \leq+125^{\circ} \mathrm{C}$
LMC6084AI, LMC6084I	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$

Supply Voltage
$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15.5 \mathrm{~V}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ (Note 12)
14-Pin Molded DIP $81^{\circ} \mathrm{C} / \mathrm{W}$

14-Pin SO $126^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation (Note 10)

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions		Typ (Note 5)	$\begin{aligned} & \text { LMC6084AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6084AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6084I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			150	$\begin{gathered} 350 \\ 1000 \end{gathered}$	$\begin{aligned} & 350 \\ & 800 \end{aligned}$	$\begin{gathered} 800 \\ 1300 \end{gathered}$	$\begin{gathered} \mu \mathrm{V} \\ \mathrm{Max} \end{gathered}$
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift			1.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.010	100	4	4	pA Max
los	Input Offset Current			0.005	100	2	2	$\begin{gathered} \mathrm{pA} \\ \mathrm{Max} \end{gathered}$
RIN	Input Resistance			>10				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}+=15 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$		85	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 66 \\ & 63 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$		94	$\begin{aligned} & 84 \\ & 81 \end{aligned}$	$\begin{aligned} & 84 \\ & \mathbf{8 1} \end{aligned}$	$\begin{aligned} & 74 \\ & 71 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	$\begin{aligned} & V^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { for CMRR } \geq 60 \mathrm{~dB} \end{aligned}$		-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Max } \end{gathered}$
				V+-1.9	$\begin{aligned} & \mathbf{v}^{+}-2.3 \\ & \mathbf{v}^{+}-2.6 \end{aligned}$	$\begin{aligned} & \mathbf{v}^{+}-2.3 \\ & \mathbf{v}^{+}-2.5 \end{aligned}$	$\begin{gathered} v^{+}-2.3 \\ v^{+}-2.5 \end{gathered}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
A_{V}	Large Signal Voltage Gain	$R_{L}=2 \mathrm{k} \Omega$ (Note 7)	Sourcing	1400	$\begin{aligned} & 400 \\ & 300 \end{aligned}$	$\begin{aligned} & 400 \\ & 300 \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \end{aligned}$	V / mV Min
			Sinking	350	$\begin{aligned} & 180 \\ & 70 \end{aligned}$	$\begin{gathered} 180 \\ 100 \end{gathered}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	V / mV Min
		$R_{\mathrm{L}}=600 \Omega$ (Note 7)	Sourcing	1200	$\begin{gathered} 400 \\ 150 \end{gathered}$	$\begin{aligned} & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & 200 \\ & \mathbf{8 0} \end{aligned}$	V / mV Min
			Sinking	150	$\begin{aligned} & 100 \\ & 35 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 70 \\ & 35 \end{aligned}$	V / mV Min

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6084AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6084AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6084I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.87	$\begin{array}{r} 4.80 \\ 4.70 \\ \hline \end{array}$	$\begin{array}{r} 4.80 \\ 4.73 \\ \hline \end{array}$	$\begin{aligned} & 4.75 \\ & 4.67 \end{aligned}$	$\begin{gathered} V \\ M i n \end{gathered}$
			0.10	$\begin{array}{r} 0.13 \\ 0.19 \end{array}$	$\begin{aligned} & 0.13 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.24 \end{aligned}$	$\begin{gathered} V \\ \text { Max } \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.61	$\begin{array}{r} 4.50 \\ 4.24 \end{array}$	$\begin{array}{r} 4.50 \\ 4.31 \end{array}$	$\begin{array}{r} 4.40 \\ 4.21 \end{array}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
			0.30	$\begin{aligned} & 0.40 \\ & \mathbf{0 . 6 3} \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.63 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { Max } \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.63	$\begin{gathered} 14.50 \\ 14.30 \end{gathered}$	$\begin{gathered} 14.50 \\ 14.34 \end{gathered}$	$\begin{gathered} 14.37 \\ \mathbf{1 4 . 2 5} \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.26	$\begin{aligned} & 0.35 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.45 \end{aligned}$	$\begin{array}{r} 0.44 \\ 0.56 \end{array}$	$\begin{gathered} V \\ \text { Max } \end{gathered}$
		$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	13.90	$\begin{gathered} 13.35 \\ 12.80 \end{gathered}$	$\begin{gathered} 13.35 \\ \mathbf{1 2 . 8 6} \end{gathered}$	$\begin{gathered} 12.92 \\ 12.44 \end{gathered}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
			0.79	$\begin{aligned} & 1.16 \\ & 1.42 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 1.58 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { Max } \end{gathered}$
10	Output Current$\mathrm{V}+=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{aligned} & 16 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{aligned} & 16 \\ & 11 \end{aligned}$	$\begin{aligned} & 16 \\ & 13 \end{aligned}$	$\begin{aligned} & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{Min} \end{aligned}$
10	Output Current$V^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	30	$\begin{aligned} & 28 \\ & 18 \end{aligned}$	$\begin{array}{r} 28 \\ 22 \\ \hline \end{array}$	$\begin{array}{r} 23 \\ 18 \\ \hline \end{array}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 11)	34	$\begin{array}{r} 28 \\ 19 \\ \hline \end{array}$	$\begin{array}{r} 28 \\ 22 \\ \hline \end{array}$	$\begin{aligned} & 23 \\ & 18 \end{aligned}$	mA Min
Is	Supply Current	All Four Amplifiers $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	1.8	$\begin{aligned} & 3.0 \\ & 3.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.6 \\ & \hline \end{aligned}$	mA Max
		All Four Amplifiers $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V}$	2.2	$\begin{aligned} & 3.4 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 4.0 \end{aligned}$	mA Max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$, Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { LMC6084AM } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6084AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6084I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
SR	Slew Rate	(Note 8)	1.5	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}$ Min
GBW	Gain-Bandwidth Product		1.3				MHz
ϕ_{m}	Phase Margin		50				Deg
	Amp-to-Amp Isolation	(Note 9)	140				dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V} \mathrm{VP} \\ & \pm 5 \mathrm{~V} \text { Supply } \end{aligned}$	0.01				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 3: The maximum power dissipation is a function of $T_{J(M a x)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\text { Max })}-T_{A}\right) / \theta_{J A}$.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $V^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred $V^{+}=15 \mathrm{~V}$ and $R_{L}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turm with 1 kHz to produce $V_{O}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 11: Do not connect output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 12: All numbers apply for packages soldered directly into a PC board.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified

Common Mode Rejection Ratio vs Frequency

Output Characteristics Sourcing Current

Distribution of LMC6084 Input Offset Voltage ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$)

Distribution of LMC6084
Input Offset Voltage
($\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$)

Input Voltage vs Output Voltage

Typical Performance Characteristics
$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified (Continued)

Inverting Small Signal
Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{Div}$)

Non-Inverting Large Signal Pulse Response

OUTPUT SIGNAL INPUT SIGNAL

TIME ($1 \mu \mathrm{~s} / \mathrm{Div}$)

Gain and Phase
Response vs Capacitive Load with $R_{\mathrm{L}}=\mathbf{5 0 0} \mathbf{k} \Omega$

Inverting Large Signal Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{Div}$)

Open Loop
Frequency Response

Non-Inverting Small Signal Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{Div}$)

Stability vs Capacitive
Load, $R_{L}=\mathbf{6 0 0 \Omega}$

Applications Hints

AMPLIFIER TOPOLOGY

The LMC6084 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6084 both easier to design with, and provide higher speed than products typically found in this ultra-low power class.

COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6084.
Although the LMC6084 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors and even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.
When high input impedances are demanded, guarding of the LMC6084 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work).
The effect of input capacitance can be compensated for by adding a capacitor, C_{f}, around the feedback resistors (as in Figure 1) such that:

$$
\begin{gathered}
\frac{1}{2 \pi R_{1} C_{I N}} \geq \frac{1}{2 \pi R_{2} C_{f}} \\
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}
\end{gathered}
$$

Since it is often difficult to know the exact value of $\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{f}$ can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and LMC662 for a more detailed discussion on compensating for input capacitance.

TL/H/11467-4
FIGURE 1. Cancelling the Effect of Input Capacitance

CAPACITIVE LOAD TOLERANCE

All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is normally included in this integrator stage. The frequency location of the dominant pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see typical curves).

Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure $2 a$.

TL/H/11467-5
FIGURE 2a. LMC6084 Noninverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads

In the circuit of Figure 2a, R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 2b). Typically a pull up resistor conducting $500 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/11467-6
FIGURE 2b. Compensating for Large Capacitive Loads with a Pull Up Resistor

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6084, typically less than 10 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface

Applications Hints (Continued)

leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6084's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 100 times degradation from the LMC6084's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11} \Omega$ would cause only 0.05 pA of leakage current. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations.

TL/H/11467-7
FIGURE 3. Example of Guard Ring in P.C. Board Layout

The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5 .

Latchup

CMOS devices tend to be susceptible to latchup due to their internal parasitic SCR effects. The (I/O) input and output pins look similar to the gate of the SCR. There is a minimum current required to trigger the SCR gate lead. The LMC6084 is designed to withstand 100 mA surge current on the I/O pins. Some resistive method should be used to isolate any capacitance from supplying excess current to the I/O pins. In addition, like an SCF, there is a minimum holding current for any latchup mode. Limiting current to the supply pins will also inhibit latchup susceptibility.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board).

Typical Single-Supply Applications

$\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$
The extremely high input impedance, and low power consumption, of the LMC6084 make it ideal for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are hand-held pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon based pressure transducers.
Figure 6 shows an instrumentation amplifier that features high differential and common mode input resistance ($>10^{14} \Omega$), 0.01% gain accuracy at $A_{V}=1000$, excellent CMRR with $1 \mathrm{k} \Omega$ imbalance in bridge source resistance. Input current is less than 100 fA and offset drift is less than $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} . \mathrm{R}_{2}$ provides a simple means of adjusting gain over a wide range without degrading CMRR. R_{7} is an initial trim used to maximize CMRR without using super precision matched resistors. For good CMRR over temperature, low drift resistors should be used.

FIGURE 5. Air Wiring

TL/H/11467-12

$$
\begin{aligned}
& \text { If } R_{1}=R_{5}, R_{3}=R_{6} \text {, and } R_{4}=R_{7} \text {; then } \\
& \qquad \frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{R_{2}+2 R_{1}}{R_{2}} \times \frac{R_{4}}{R_{3}}
\end{aligned}
$$

$$
\therefore A_{V} \approx 100 \text { for circuit shown }\left(R_{2}=9.822 k\right)
$$

FIGURE 6. Instrumentation Amplifier

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

FIGURE 7. Low-Leakage Sample and Hold

FIGURE 8. 1 Hz Square Wave Oscillator

LMC6462 Dual／LMC6464 Quad Micropower，Rail－to－Rail Input and Output CMOS Operational Amplifier

General Description

The LMC6462／4 is a micropower version of the popular LMC6482／4，combining Rail－to－Rail Input and Output Range with very low power consumption．
The LMC6462／4 provides an input common－mode voltage range that exceeds both rails．The rail－to－rail output swing of the amplifier，guaranteed for loads down to $25 \mathrm{k} \Omega$ ，assures maximum dynamic sigal range．This rail－to－rail performance of the amplifier，combined with its high voltage gain makes it unique among rail－to－rail amplifiers．The LMC6462／4 is an excellent upgrade for circuits using limited common－mode range amplifiers．
The LMC6462／4，with guaranteed specifications at $3 V$ and 5 V ，is especially well－suited for low voitage applications．A quiescent power consumption of $60 \mu \mathrm{~W}$ per amplifier（at V_{S} $=3 \mathrm{~V}$ ）can extend the useful life of battery operated sys－ tems．The amplifier＇s 150 fA input current，low offset voltage of 0.25 mV ，and 85 dB CMRR maintain accuracy in battery－ powered systems．

Features（Typical unless otherwise noted）
■ Ultra Low Supply Current $20 \mu \mathrm{~A} /$ Amplifier
－Guaranteed Characteristics at 3 V and 5 V
－Rail－to－Rail Input Common－Mode Voltage Range
－Rail－to－Rail Output Swing （within 10 mV of rail， $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega$ ）
－Low Input Current
150 fA
－Low Input Offset Voltage
0.25 mV

Applications

－Battery Operated Circuits
－Transducer Interface Circuits
－Portable Communication Devices
－Medical Applications
－Battery Monitoring

Connection Diagrams

14－Pin DIP／SO

TL／H／12051－2
Top View

Ordering Information

Package	Temperature Range		NSC Drawing	Transport Media
	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Industrial } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
8－Pin Molded DIP	LMC6462AMN	LMC6462AIN，LMC6462BIN	N08E	Rails
8 －Pin SO－8		LMC6462AIM，LMC6462BIM LMC6462AIMX，LMC6462BIMX	M08A M08A	Rails Tape and Reel
14－Pin Molded DIP	LMC6464AMN	LMC6464AIN，LMC6464BIN	N14A	Rails
14－Pin SO－14		LMC6464AIM，LMC6464BIM LMC6464AIMX，LMC6464BIMX	$\begin{aligned} & \text { M14A } \\ & \text { M14A } \end{aligned}$	Rails Tape and Reel

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required,	
please contact the	National
Semiconductor	Sales

Operating Ratings (Note 1)

Supply Voltage	$3.0 \mathrm{~V} \leq \mathrm{V}+\leq 15.5 \mathrm{~V}$
Junction Temperature Range	
LMC6462AM, LMC6464AM	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
LMC6462AI, LMC6464AI	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
LMC6462BI, LMC6464BI	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA})	
N Package, 8-Pin Molded DIP	
M Package, 8-Pin Surface Mount	$115^{\circ} \mathrm{C} / \mathrm{W}$
N Package, 14-Pin Molded DIP	$193^{\circ} \mathrm{C} / \mathrm{W}$
M Package, 14-Pin Surface Mount	$81^{\circ} \mathrm{C} / \mathrm{W}$
	$126^{\circ} \mathrm{C} / \mathrm{W}$

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6462AI } \\ & \text { LMC6464AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	LMC6462BI LMC6464BI Limit (Note 6)	LMC6462AM LMC6464AM Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		0.25	$\begin{aligned} & 0.5 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 3.0 \\ & \mathbf{3 . 7} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$	mV max
TCV ${ }_{\text {Os }}$	Input Offset Voltage Average Drift		1.5				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current	(Note 13)	0.15	10	10	200	pA max
los	Input Offset Current	(Note 13)	0.075	5	5	100	pA max
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance		3				pF
$\mathrm{R}_{\text {IN }}$	Input Resistance		>10				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15.0 \mathrm{~V}, \\ & \mathrm{~V}+=15 \mathrm{~V} \end{aligned}$	85	$\begin{aligned} & 70 \\ & \mathbf{6 7} \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
		$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5.0 \mathrm{~V} \\ & \mathrm{~V}+=5 \mathrm{~V} \end{aligned}$	85	$\begin{array}{r} 70 \\ \mathbf{6 7} \end{array}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \\ & \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	85	$\begin{array}{r} 70 \\ \mathbf{6 7} \\ \hline \end{array}$	$\begin{array}{r} 65 \\ 62 \\ \hline \end{array}$	$\begin{array}{r} 70 \\ 65 \\ \hline \end{array}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -5 \mathrm{~V} \leq \mathrm{V}^{-} \leq-15 \mathrm{~V}, \\ & \mathrm{~V}^{+}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-2.5 \mathrm{~V} \end{aligned}$	85	$\begin{array}{r} 70 \\ 67 \\ \hline \end{array}$	$\begin{array}{r} 65 \\ 62 \end{array}$	$\begin{array}{r} 70 \\ 65 \\ \hline \end{array}$	dB min
V_{CM}	Input Common-Mode Voltage Range	$V^{+}=5 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.2	$\begin{gathered} -0.10 \\ 0.00 \end{gathered}$	$\begin{gathered} -0.10 \\ 0.00 \end{gathered}$	$\begin{gathered} -0.10 \\ 0.00 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			5.30	$\begin{aligned} & 5.25 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 5.00 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		$\mathrm{V}+=15 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.2	$\begin{aligned} & -0.15 \\ & 0.00 \end{aligned}$	$\begin{gathered} -0.15 \\ 0.00 \end{gathered}$	$\begin{aligned} & -0.15 \\ & 0.00 \end{aligned}$	$\begin{gathered} V \\ \max \end{gathered}$
			15.30	$\begin{gathered} 15.25 \\ 15.00 \end{gathered}$	$\begin{gathered} 15.25 \\ 15.00 \end{gathered}$	$\begin{gathered} 15.25 \\ 15.00 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$

5V DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$.
Boldface limits apply at the temperature extremes. (Continued)

Symbol	Parameter	Conditions		Typ (Note 5)	LMC6462AI LMC6464AI Limit	$\begin{aligned} & \text { LMC6462BI } \\ & \text { LMC6464BI } \\ & \text { Limit } \end{aligned}$	LMC6462AM LMC6464AM Limit	Units
A_{V}	Large Signal Voltage Gain	$R_{L}=100 \mathrm{k} \Omega$ (Note 7)	Sourcing	3000				$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			Sinking	400				$\underset{\mathrm{min}}{\mathrm{~V} / \mathrm{mV}}$
		$\mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega$ (Note 7)	Sourcing	2500				V / mV min
			Sinking	200				V / mV min
V_{O}	Output Swing	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & R_{L}=100 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$		4.995	$\begin{gathered} 4.990 \\ 4.980 \end{gathered}$	$\begin{gathered} 4.950 \\ 4.925 \end{gathered}$	$\begin{gathered} 4.990 \\ 4.970 \end{gathered}$	$\begin{gathered} V \\ \min \end{gathered}$
				0.005	$\begin{gathered} 0.010 \\ 0.020 \end{gathered}$	$\begin{gathered} 0.050 \\ 0.075 \end{gathered}$	$\begin{gathered} 0.010 \\ 0.030 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$		4.990	$\begin{gathered} 4.975 \\ 4.965 \end{gathered}$	$\begin{gathered} 4.950 \\ \mathbf{4 . 8 5 0} \end{gathered}$	$\begin{gathered} 4.975 \\ \mathbf{4 . 9 5 5} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
				0.010	$\begin{gathered} 0.020 \\ \mathbf{0 . 0 3 5} \end{gathered}$	$\begin{gathered} 0.050 \\ \mathbf{0 . 1 5 0} \end{gathered}$	$\begin{gathered} 0.020 \\ 0.045 \end{gathered}$	$\begin{gathered} V \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$		14.990	$\begin{gathered} 14.975 \\ 14.965 \end{gathered}$	$\begin{gathered} 14.950 \\ 14.925 \end{gathered}$	$\begin{gathered} 14.975 \\ 14.955 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
				0.010	$\begin{gathered} 0.025 \\ \mathbf{0 . 0 3 5} \end{gathered}$	$\begin{gathered} 0.050 \\ \mathbf{0 . 0 7 5} \end{gathered}$	$\begin{gathered} 0.025 \\ \mathbf{0 . 0 5 0} \end{gathered}$	$\underset{\max }{V}$
		$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$		14.965	$\begin{gathered} 14.900 \\ 14.850 \end{gathered}$	$\begin{gathered} 14.850 \\ 14.800 \end{gathered}$	$\begin{gathered} 14.900 \\ 14.800 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
				0.025	$\begin{gathered} 0.050 \\ \mathbf{0 . 1 5 0} \end{gathered}$	$\begin{gathered} 0.100 \\ 0.200 \end{gathered}$	$\begin{gathered} 0.050 \\ \mathbf{0 . 2 0 0} \end{gathered}$	$\underset{\max }{V}$
Isc	Output Short Circuit Current$\mathrm{V}+=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		27	$\begin{aligned} & 19 \\ & 15 \end{aligned}$	$\begin{aligned} & 19 \\ & 15 \end{aligned}$	$\begin{aligned} & 19 \\ & 15 \end{aligned}$	mA \min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		27	$\begin{aligned} & 22 \\ & 17 \end{aligned}$	$\begin{aligned} & 22 \\ & 17 \end{aligned}$	$\begin{aligned} & 22 \\ & 17 \end{aligned}$	mA min
Isc	Output Short Circuit Current$V^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		38	$\begin{aligned} & 24 \\ & 17 \end{aligned}$	$\begin{aligned} & 24 \\ & 17 \end{aligned}$	$\begin{aligned} & 24 \\ & 17 \end{aligned}$	mA min
		Sinking, $V_{O}=12 \mathrm{~V}$ (Note 8)		75	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	mA min
Is	Supply Current	Dual, LMC6462$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+12$		40	$\begin{aligned} & 55 \\ & 70 \end{aligned}$	$\begin{aligned} & 55 \\ & 70 \end{aligned}$	$\begin{aligned} & 55 \\ & 75 \end{aligned}$	$\mu \mathrm{A}$ max
		Quad, LMC6464$\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$		80	$\begin{aligned} & 110 \\ & 140 \end{aligned}$	$\begin{aligned} & 110 \\ & 140 \end{aligned}$	$\begin{aligned} & 110 \\ & 150 \end{aligned}$	$\mu \mathrm{A}$ max
		Dual, LMC6462$\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$		50	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 60 \\ & 75 \end{aligned}$	$\mu \mathrm{A}$ max
		Quad, LMC6464$\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$		90	$\begin{aligned} & 120 \\ & 140 \end{aligned}$	$\begin{aligned} & 120 \\ & 140 \end{aligned}$	$\begin{gathered} 120 \\ 150 \end{gathered}$	$\mu \mathrm{A}$ \max

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6462AI LMC6464AI Limit (Note 6)	LMC6462BI LMC6464BI Limit (Note 6)	LMC6462AM LMC6464AM Limit (Note 6)	Units
SR	Slew Rate	(Note 9)	28	$\begin{gathered} 15 \\ 8 \end{gathered}$	$\begin{gathered} 15 \\ 8 \end{gathered}$	$\begin{gathered} 15 \\ 8 \end{gathered}$	V/ms min
GBW	Gain-Bandwidth Product	$\mathrm{V}^{+}=15 \mathrm{~V}$	50				kHz
ϕ_{m}	Phase Margin		50				Deg
G_{m}	Gain Margin		15				dB
	Amp-to-Amp Isolation	(Note 10)	130				dB
e_{n}	Input-Referred Voltage Noise	$\begin{aligned} & f=1 \mathrm{kHz} \\ & V_{C M}=1 \mathrm{~V} \end{aligned}$	80				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.03				$\mathrm{pA} / \sqrt{\text { Hz }}$

3V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6462AI LMC6464AI Limit (Note 6)	LMC6462BI LMC6464BI Limit (Note 6)	LMC6462AM LMC6464AM Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		0.9	$\begin{aligned} & 2.0 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 2.0 \\ & \mathbf{3 . 0} \end{aligned}$	mV max
TCV ${ }_{\text {os }}$	Input Offset Voltage Average Drift		2.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current	(Note 13)	0.15	10	10	200	pA
los	Input Offset Current	(Note 13)	0.075	5	5	100	pA
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 3 \mathrm{~V}$	74	60	60	60	dB min
PSRR	Power Supply Rejection Ratio	$3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	80	60	60	60	dB min
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.10	0.0	0.0	0.0	$\begin{gathered} V \\ \max \end{gathered}$
			3.0	3.0	3.0	3.0	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega$ to $\mathrm{V}+/ 2$	2.95	2.9	2.9	2.9	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.15	0.1	0.1	0.1	$\underset{\max }{V}$
Is	Supply Current	Dual, LMC6462 $\mathrm{v}_{\mathrm{O}}=\mathrm{v}+/ 2$	40	$\begin{aligned} & 55 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & 70 \\ & \hline \end{aligned}$	$\begin{array}{r} 55 \\ \mathbf{7 0} \\ \hline \end{array}$	$\mu \mathrm{A}$
		Quad, LMC6464 $v_{O}=v+/ 2$	80	$\begin{aligned} & 110 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 140 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ max

3V AC Electrical Characteristics

Unless otherwise specified, $\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6462AI LMC6464AI Limit (Note 6)	LMC6462BI LMC6464BI Limit (Note 6)	LMC6462AM LMC6464AM Limit (Note 6)	Units
SR	Slew Rate	(Note 11)	23				$\mathrm{~V} / \mathrm{ms}$
GBW	Gain-Bandwidth Product		50				kHz

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . All pins rated per method 3015.6 of MIL-STD-883. This is a class 2 device rating.
Note 3: Applies to both single supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{(\max)}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: Do not short circuit output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 9: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of either the positive or negative slew rates.
Note 10: Input referred, $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{Pp}}$.
Note 11: Connected as Voltage Follower with 2 V step input. Number specified is the slower of either the positive or negative slew rates.
Note 12: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
Note 13: Guaranteed limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value.
Note 14: For guaranteed Military Temperature Range parameters see RETSMC6462/4X.

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Typical Performance Characteristics (Continued)

$V_{S}=+5 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

TIME ($115 \mu \mathrm{~s} / \mathrm{DIV}$)

Non-Inverting Small Signal Pulse Response

TIME ($115 \mu \mathrm{~s} / \mathrm{DIV}$)

Slew Rate vs Supply Voltage

Non-Inverting Large Signal Pulse Response

TIME ($115 \mu \mathrm{~s} / \mathrm{DIV}$)

Non-Inverting Small Signal Pulse Response

TIME ($115 \mu \mathrm{~s} / \mathrm{DIV}$)

Non-Inverting Large Signal Pulse Response

TIME ($115 \mu \mathrm{~s} / \mathrm{DIV}$)

Non-Inverting Small Signal Pulse Response

TIME ($115 \mu \mathrm{~s} / \mathrm{DIV}$)

Inverting Large Signal Pulse Response

TIME ($115 \mu \mathrm{~s} / \mathrm{DIV}$)

Typical Performance Characteristics (Continued)
 $V_{S}=+5 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

TIME ($115 \mu \mathrm{~s} / \mathrm{DIV}$)

TIME ($115 \mu \mathrm{~s} / \mathrm{DIV}$)

TIME ($115 \mu \mathrm{~s} / \mathrm{DIV}$)

Inverting Small Signal
Pulse Response

TIME ($115 \mu \mathrm{~s} / \mathrm{DIV}$)

Application Information

1．0 Input Common－Mode Voltage Range

The LMC6462／4 has a rail－to－rail input common－mode volt－ age range．Figure 1 shows an input voltage exceeding both supplies with no resulting phase inversion on the output．

TL／H／12051－5
FIGURE 1．An Input Voltage Signal Exceeds the LMC6462／4 Power Supply Voltage with No Output Phase Inversion
The absolute maximum input voltage at $\mathrm{V}+=3 \mathrm{~V}$ is 300 mV beyond either supply rail at room temperature．Voltages greatly exceeding this absolute maximum rating，as in Fig－ ure 2，can cause excessive current to flow in or out of the input pins，possibly affecting reliability．The input current can be externally limited to $\pm 5 \mathrm{~mA}$ ，with an input resistor，as shown in Figure 3.

FIGURE 2．A $\pm 7.5 \mathrm{~V}$ Input Signal Greatly Exceeds the $3 V$ Supply in Figure 3 Causing No Phase Inversion Due to $\mathbf{R}_{\mathbf{I}}$

TL／H／12051－7
FIGURE 3．Input Current Protection for Voltages Exceeding the Supply Voltage

2．0 Rail－to－Rail Output

The approximated output resistance of the LMC6462／4 is 180Ω sourcing，and 130Ω sinking at $V_{S}=3 \mathrm{~V}$ ，and 110Ω sourcing and 83Ω sinking at $V_{S}=5 \mathrm{~V}$ ．The maximum output swing can be estimated as a function of load using the cal－ culated output resistance．

3．0 Capacitive Load Tolerance

The LMC6462／4 can typically drive a 200 pF load with $\mathrm{V}_{\mathrm{S}}=$ 5 V at unity gain without oscillating．The unity gain follower is the most sensitive configuration to capacitive load．Direct capacitive loading reduces the phase margin of op－amps． The combination of the op－amp＇s output impedance and the capacitive load induces phase lag．This results in either an underdamped pulse response or oscillation．
Capacitive load compensation can be accomplished using resistive isolation as shown in Figure 4．If there is a resistive component of the load in parallel to the capacitive compo－ nent，the isolation resistor and the resistive load create a voltage divider at the output．This introduces a DC error at the output．

FIGURE 4．Resistive Isolation of a $\mathbf{3 0 0}$ pF Capacitive Load

TL／H／12051－9
FIGURE 5．Pulse Response of the LMC6462 Circuit Shown in Figure 4
Figure 5 displays the pulse response of the LMC6462／4 circuit in Figure 4.
Another circuit，shown in Figure 6，is also used to indirectly drive capacitive loads．This circuit is an improvement to the circuit shown in Figure 4 because it provides DC accuracy as well as AC stability．R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency compo－ nent of the output signal back to the amplifiers inverting input，thereby preserving phase margin in the overall feed－ back loop．The values of R1 and C1 should be experimen－ tally determined by the system designer for the desired pulse response．Increased capacitive drive is possible by increasing the value of the capacitor in the feedback loop．

Application Information（Continued）

FIGURE 6．LMC6462 Non－Inverting Amplifier， Compensated to Handle a $\mathbf{3 0 0}$ pF Capacitive and $100 \mathrm{k} \Omega$ Resistive Load

FIGURE 7．Pulse Response of LMC6462 Circuit in Figure 6
The pulse response of the circuit shown in Figure 6 is shown in Figure 7.

4．0 Compensating for Input Capacitance

It is quite common to use large values of feedback resist－ ance with amplifiers that have ultra－low input current，like the LMC6462／4．Large feedback resistors can react with small values of input capacitance due to transducers，pho－ todiodes，and circuits board parasitics to reduce phase mar－ gins．

TL／H／12051－12
FIGURE 8．Canceling the Effect of Input Capacitance
The effect of input capacitance can be compensated for by adding a feedback capacitor．The feedback capacitor（as in Figure 8 ）， C_{F} ，is first estimated by：

$$
\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}}} \geq \frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{\mathrm{F}}}
$$

$$
\begin{gathered}
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{\mathrm{F}}
\end{gathered}
$$

which typically provides significant overcompensation．
Printed circuit board stray capacitance may be larger or smaller than that of a breadboard，so the actual optimum value for C_{F} may be different．The values of C_{F} should be checked on the actual circuit．（Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion．）

5．0 Offset Voltage Adjustment

Offset voltage adjustment circuits are illustrated in Figures 9 and 10．Large value resistances and potentiometers are used to reduce power consumption while providing typically $\pm 2.5 \mathrm{mV}$ of adjustment range，referred to the input，for both configurations with $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ ．

TL／H／12051－13
FIGURE 9．Inverting Configuration Offset Voltage Adjustment

FIGURE 10．Non－Inverting Configuration Offset Voltage Adjustment

6．0 Spice Macromodel

A Spice macromodel is available for the LMC6462／4．This model includes a simulation of：
－Input common－mode voltage range
－Frequency and transient response
－GBW dependence on loading conditions
－Quiescent and dynamic supply current
－Output swing dependence on loading conditions and many more characteristics as listed on the macromodel disk．
Contact the National Semiconductor Customer Response Center to obtain an operational amplifier Spice model library disk．

Application Information (Continued)

7.0 Printed-Circuit-Board Layout for High-Impedance Work

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low input current of the LMC6462/4, typically 150 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6462's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 11. To have a significant effect, guard rings should be placed in both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 30 times degradation from the LMC6462/4's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11} \Omega$ would cause only 0.05 pA of leakage current. See Figures 12a, 12b and 12c for typical connections of guard rings for standard op-amp configurations.

TL/H/12051-15
FIGURE 11. Example of Guard Ring in P.C. Board Layout

FIGURE 12. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 13.

TL/H/12051-19
(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

Application Information (Continued)

8.0 Instrumentation Circuits

The LMC6464 has the high input impedance, large com-mon-mode range and high CMRR needed for designing instrumentation circuits. Instrumentation circuits designed with the LMC6464 can reject a larger range of commonmode signals than most in-amps. This makes instrumentation circuits designed with the LMC6464 an excellent choice for noisy or industrial environments. Other applications that
benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and siliconbased transducers.

A small valued potentiometer is used in series with Rg to set the differential gain of the three op-amp instrumentation circuit in Figure 14. This combination is used instead of one large valued potentiometer to increase gain trim accuracy and reduce error due to vibration.

TL/H/12051-20
FIGURE 14. Low Power Three Op-Amp Instrumentation Amplifier

A two op-amp instrumentation amplifier designed for a gain of 100 is shown in Figure 15. Low sensitivity trimming is made for offset voltage, CMRR and gain. Low cost and low power consumption are the main advantages of this two opamp circuit.

Higher frequency and larger common-mode range applications are best facilitated by a three op-amp instrumentation amplifier.

TL/H/12051-21
FIGURE 15. Low-Power Two-Op-Amp Instrumentation Amplifier

Application Information (Continued)

Typical Single-Supply Applications

 TRANSDUCER INTERFACE CIRCUITS

TL/H/12051-22
FIGURE 16. Photo Detector Circuit
Photocells can be used in portable light measuring instruments. The LMC6462, which can be operated off a battery, is an excellent choice for this circuit because of its very low input current and offset voltage.

LMC6462 AS A COMPARATOR

TL/H/12051-23
FIGURE 17. Comparator with Hysteresis
Figure 17 shows the application of the LMC6462 as a comparator. The hysteresis is determined by the ratio of the two resistors. The LMC6462 can thus be used as a micropower comparator, in applications where the quiescent current is an important parameter.

HALF-WAVE AND FULL-WAVE RECTIFIERS

TL/H/12051-24
FIGURE 18. Half-Wave Rectifier with Input Current Protection ($\mathbf{R}_{\mathbf{1}}$)

TL/H/12051-25
FIGURE 19. Full-Wave Rectifier with Input Current Protection (\mathbf{R}_{1})
In Figures 18 and 19, R_{l} limits current into the amplifier since excess current can be caused by the input voltage exceeding the supply voltage.

PRECISION CURRENT SOURCE

TL/H/12051-26
FIGURE 20. Precision Current Source
The output current lout is given by:

$$
\text { IOUT }=\left(\frac{V^{+}-V_{\mathbb{I N}}}{R}\right)
$$

OSCILLATORS

TL/H/12051-27
FIGURE 21. 1 Hz Square-Wave Oscillator

Application Information (Continued)

For single supply 5 V operation, the output of the circuit will swing from $0 V$ to 5 V . The voltage divider set up $\mathrm{R}_{2}, \mathrm{R}_{3}$ and R_{4} will cause the non-inverting input of the LMC6462 to move from $1.67 \mathrm{~V}(1 / 3$ of 5 V$)$ to $3.33 \mathrm{~V}(2 / 3$ of 5 V$)$. This voltage behaves as the threshold voltage.
R_{1} and C_{1} determine the time constant of the circuit. The frequency of oscillation, fosc is $\left(\frac{1}{2 \Delta t}\right)$, where Δt is the time the amplifier input takes to move from 1.67 V to 3.33 V . The calculations are shown below.

$$
1.67=5\left(1-e^{-\frac{t_{1}}{\tau}}\right)
$$

where $\tau=\mathrm{RC}=0.68$ seconds
$\rightarrow t_{1}=0.27$ seconds.
and

$$
\begin{aligned}
& 3.33=5\left(1-e^{-\frac{t_{2}}{\tau}}\right) \\
& \rightarrow t_{2}=0.75 \text { seconds } \\
& \text { Then, fosc }
\end{aligned}=\left(\frac{1}{2 \Delta t}\right) .
$$

LOW FREQUENCY NULL

FIGURE 22. High Gain Amplifier with Low Frequency Null

Output offset voltage is the error introduced in the output voltage due to the inherent input offset voltage V_{OS}, of an amplifier.
Output Offset Voltage $=$ (Input Offset Voltage) (Gain)
In the above configuration, the resistors R_{5} and R_{6} determine the nominal voltage around which the input signal, V_{IN} should be symmetrical. The high frequency component of the input signal $\mathrm{V}_{\mathbb{I N}}$ will be unaffected while the low frequency component will be nulled since the DC level of the output will be the input offset voltage of the LMC6462 plus the bias voltage. This implies that the output offset voltage due to the top amplifier will be eliminated.

LMC6482 CMOS Dual
 Rail-To-Rail Input and Output Operational Amplifier

General Description

The LMC6482 provides a common-mode range that extends to both supply rails. This rail-to-rail performance combined with excellent accuracy, due to a high CMRR, makes it unique among rail-to-rail input amplifiers.
It is ideal for systems, such as data acquisition, that require a large input signal range. The LMC6482 is also an excellent upgrade for circuits using limited common-mode range amplifiers such as the TLC272 and TLC277.
Maximum dynamic signal range is assured in low voltage and single supply systems by the LMC6482's rail-to-rail output swing. The LMC6482's rail-to-rail output swing is guaranteed for loads down to 600Ω.
Guaranteed low voltage characteristics and low power dissipation make the LMC6482 especially well-suited for batteryoperated systems.
See the LMC6484 data sheet for a Quad CMOS operational amplifier with these same features.

Features (Typical unless otherwise noted)

- Rail-to-Rail Input Common-Mode Voltage Range (Guaranteed Over Temperature)
- Rail-to-Rail Output Swing (within 20 mV of supply rail, $100 \mathrm{k} \Omega$ load)
- Guaranteed 3V, 5 V and 15 V Performance
- Excellent CMRR and PSRR 82 dB
- Ultra Low Input Current

20 fA

- High Voltage Gain ($\mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$)
- Specified for $2 \mathrm{k} \Omega$ and 600Ω loads

Applications

- Data Acquisition Systems
- Transducer Amplifiers
- Hand-held Analytic Instruments
- Medical Instrumentation
- Active Filter, Peak Detector, Sample and Hold, pH Meter, Current Source
- Improved Replacement for TLC272, TLC277

3V Single Supply Buffer Circuit

Connection Diagram

TL/H/11713-2

Rail-To-Rail Output
$3 V$

Ordering Information

Package	Temperature Range		NSC Drawing	Transport Media
	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$		
8-Pin Molded DIP	LMC6482MN	LMC6482AIN LMC6482IN	N08E	Rail
8-pin Small Outline		LMC6482AIM LMC6482IM	M08A	Rail Tape and Reel
8-pin Ceramic DIP	LMC6482AMJ/883		J08A	Rail

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
ESD Tolerance (Note 2)
Differential Input Voltage
\pm Supply Voltage
Voltage at Input/Output Pin
Supply Voltage (V^{+}- V^{-})
Current at Input Pin (Note 12)
$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$

Current at Output Pin (Notes 3, 8)
Current at Power Supply Pin Lead Temperature (Soldering, 10 sec .)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 4)

Operating Ratings (Note 1)

Supply Voltage	$3.0 \mathrm{~V} \leq \mathrm{V}+\leq 15.5 \mathrm{~V}$
Junction Temperature Range	
LMC6482AM	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
LMC6482AI, LMC6482	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$

$90^{\circ} \mathrm{C} / \mathrm{W}$
$155^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions		Typ (Note 5)	$\begin{array}{\|c\|} \hline \text { LMC6482AI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{array}$	$\begin{aligned} & \text { LMC6482I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { LMC6482M } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{array}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			0.11	$\begin{aligned} & 0.750 \\ & 1.35 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.8 \end{aligned}$	mV max
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift			1.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current	(Note 13)		0.02	4.0	4.0	10.0	pA max
los	Input Offset Current	(Note 13)		0.01	2.0	2.0	5.0	pA max
$\mathrm{Cl}_{\text {IN }}$	Common-Mode Input Capacitance			3				pF
$\mathrm{R}_{\text {IN }}$	Input Resistance			>10				Teras
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15.0 \mathrm{~V} \\ & \mathrm{~V}+=15 \mathrm{~V} \end{aligned}$		82	$\begin{aligned} & 70 \\ & 67 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
		$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5.0 \mathrm{~V} \\ & \mathrm{~V}+=5 \mathrm{~V} \end{aligned}$		82	$\begin{aligned} & 70 \\ & 67 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}+\leq 15 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \\ & \hline \end{aligned}$		82	$\begin{array}{r} 70 \\ 67 \end{array}$	$\begin{array}{r} 65 \\ 62 \end{array}$	$\begin{aligned} & 65 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -5 \mathrm{~V} \leq \mathrm{V}^{-} \leq-15 \mathrm{~V}, \mathrm{~V}^{+}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=-2.5 \mathrm{~V} \end{aligned}$		82	$\begin{array}{r} 70 \\ 67 \end{array}$	$\begin{array}{r} 65 \\ 62 \end{array}$	$\begin{aligned} & 65 \\ & 60 \\ & \hline \end{aligned}$	dB min
V_{CM}	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { For } \mathrm{CMRR} \geq 50 \mathrm{~dB} \end{aligned}$		$v--0.3$	$\begin{gathered} -0.25 \\ 0 \end{gathered}$	$\begin{gathered} -0.25 \\ 0 \end{gathered}$	$\begin{gathered} -0.25 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
				$\mathrm{V}^{+}+0.3 \mathrm{~V}$	$\begin{gathered} \mathbf{V}^{+}+0.25 \\ \mathbf{v}+ \end{gathered}$	$\begin{gathered} \mathbf{v}^{+}+0.25 \\ \mathbf{v}+ \end{gathered}$	$\begin{gathered} \mathrm{V}+\mathrm{t}^{+} 0.25 \\ \mathbf{v}+ \end{gathered}$	$\underset{\min }{V}$
A_{V}	Large Signal Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & (\text { Notes } 7,13) \end{aligned}$	Sourcing	666	$\begin{aligned} & 140 \\ & 84 \end{aligned}$	$\begin{aligned} & 120 \\ & 72 \end{aligned}$	$\begin{aligned} & 120 \\ & 60 \end{aligned}$	V / mV min
			Sinking	75	$\begin{aligned} & 35 \\ & 20 \end{aligned}$	$\begin{aligned} & 35 \\ & 20 \end{aligned}$	$\begin{aligned} & 35 \\ & 18 \end{aligned}$	V / mV \min
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & (\text { Notes } 7,13) \end{aligned}$	Sourcing	300	$\begin{aligned} & 80 \\ & 48 \end{aligned}$	$\begin{aligned} & 50 \\ & \mathbf{3 0} \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			Sinking	35	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{aligned} & 15 \\ & \mathbf{1 0} \end{aligned}$	$\begin{gathered} 15 \\ 8 \end{gathered}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6482AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC64821 } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6482M } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
V_{0}	Output Swing	$\begin{aligned} & V^{+}=5 V \\ & R_{L}=2 \mathrm{k} \Omega \text { to } V+/ 2 \end{aligned}$	4.9	$\begin{array}{r} 4.8 \\ 4.7 \\ \hline \end{array}$	$\begin{array}{r} 4.8 \\ 4.7 \\ \hline \end{array}$	$\begin{array}{r} 4.8 \\ 4.7 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			0.1	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{gathered} 0.18 \\ 0.24 \end{gathered}$	$\begin{gathered} V \\ \max \end{gathered}$
		$\begin{aligned} & V^{+}=5 V \\ & R_{L}=600 \Omega \text { to } V+/ 2 \end{aligned}$	4.7	$\begin{gathered} 4.5 \\ 4.24 \end{gathered}$	$\begin{gathered} 4.5 \\ 4.24 \end{gathered}$	$\begin{gathered} 4.5 \\ 4.24 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			0.3	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\underset{\max }{V}$
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.7	$\begin{gathered} 14.4 \\ 14.2 \end{gathered}$	$\begin{gathered} 14.4 \\ 14.2 \end{gathered}$	$\begin{gathered} 14.4 \\ 14.2 \end{gathered}$	$\begin{gathered} V \\ \min \end{gathered}$
			0.16	$\begin{aligned} & 0.32 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.45 \end{aligned}$	$\begin{gathered} V \\ \max \end{gathered}$
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=600 \Omega \text { to } V+/ 2 \end{aligned}$	14.1	$\begin{gathered} 13.4 \\ 13.0 \\ \hline \end{gathered}$	$\begin{gathered} 13.4 \\ 13.0 \\ \hline \end{gathered}$	$\begin{gathered} 13.4 \\ 13.0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			0.5	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
Isc	Output Short Circuit Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	20	$\begin{aligned} & 16 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 16 \\ & 10 \\ & \hline \end{aligned}$	mA min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	15	$\begin{aligned} & 11 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 11 \\ & 9.5 \end{aligned}$	$\begin{gathered} 11 \\ 8.0 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
Isc	Output Short Circuit Current$V^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	30	$\begin{aligned} & 28 \\ & 22 \end{aligned}$	$\begin{array}{r} 28 \\ 22 \\ \hline \end{array}$	$\begin{array}{r} 28 \\ 20 \\ \hline \end{array}$	mA \min
		Sinking, $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$ (Note 8)	30	$\begin{array}{r} 30 \\ 24 \\ \hline \end{array}$	$\begin{array}{r} 30 \\ 24 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 22 \\ & \hline \end{aligned}$	mA \min
Is	Supply Current	Both Amplifiers $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$	1.0	$\begin{array}{r} 1.4 \\ 1.8 \\ \hline \end{array}$	$\begin{array}{r} 1.4 \\ 1.8 \\ \hline \end{array}$	$\begin{aligned} & 1.4 \\ & \mathbf{1 . 9} \\ & \hline \end{aligned}$	mA max
		Both Amplifiers $V^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$	1.3	$\begin{aligned} & 1.6 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.0 \end{aligned}$	mA max

AC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	-. Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6482AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6482I } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC6482M } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
SR	Slew Rate	(Note 9)	1.3	$\begin{aligned} & 1.0 \\ & 0.7 \end{aligned}$	$\begin{gathered} 0.9 \\ \mathbf{0 . 6 3} \end{gathered}$	$\begin{gathered} 0.9 \\ 0.54 \end{gathered}$	$\begin{gathered} \mathrm{V} / \mu \mathrm{s} \\ \mathrm{~min} \end{gathered}$
GBW	Gain-Bandwidth Product	$\mathrm{V}+=15 \mathrm{~V}$	1.5				MHz
ϕ_{m}	Phase Margin		50				Deg
G_{m}	Gain Margin		15				dB
	Amp-to-Amp Isolation	(Note 10)	150				dB
e_{n}	Input-Referred Voltage Noise	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{cm}}=1 \mathrm{~V} \\ & \hline \end{aligned}$	37				$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.03				$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-2 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{~V}_{\mathrm{O}}=4.1 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	0.01				\%
		$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, A_{\mathrm{V}}=-2 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8.5 \mathrm{~V} \mathrm{PP} \\ & \mathrm{~V}^{+}=10 \mathrm{~V} \end{aligned}$	0.01				\%

DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	$\begin{aligned} & \text { LMC6482AI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \text { LMC6482I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \text { LMC6482M } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		0.9	$\begin{aligned} & 2.0 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.8 \end{aligned}$	mV max
TCV ${ }_{\text {Os }}$	Input Offset Voltage Average Drift		2.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.02				pA
los	Input Offset Current		0.01				pA
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 3 \mathrm{~V}$	74	64	60	60	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
PSRR	Power Supply Rejection Ratio	$3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	80	68	60	60	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	V--0.25	0	0	0	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			$\mathrm{V}^{+}+0.25$	V+	V+	V+	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}+/ 2$	2.8				V
			0.2				V
		$R_{L}=600 \Omega$ to $\mathrm{V}+/ 2$	2.7	2.5	2.5	2.5	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.37	0.6	0.6	0.6	$\begin{gathered} V \\ \max \end{gathered}$
Is	Supply Current	Both Amplifiers	0.825	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.6 \end{aligned}$	mA max

AC Electrical Characteristics

Unless otherwise specified, $\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6482AI Limit (Note 6)	LMC64821 Limit (Note 6)	LMC6482M Limit (Note 6)	Units
SR	Slew Rate	(Note 11)	0.9				$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product		1.0				MHz
T.H.D.	Total Harmonic Distortion	$\mathrm{F}=10 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=-2$ $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V} \mathrm{VP}$	0.01				$\%$

Note 1: Absolute Maximum Ratings indicate limts beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . All pins rated per method 3015.6 of MIL-STD-883. This is a Class 1 device rating.
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: Do not short circuit output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 9: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of either the positive or negative slew rates.
Note 10: Input referred, $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 11: Connected as voltage Follower with 2 V step input. Number specified is the slower of either the positive or negative slew rates.
Note 12: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
Note 13: Guaranteed limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value.
Note 14: For guaranteed Military Temperature parameters see RETS6482X.

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Typical Performance Characteristics
$V_{S}=+15 \mathrm{~V}$, Single Supply, $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Typical Performance Characteristics
$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Open Loop Output Impedance vs Frequency

Non-Inverting Large
Signal Puise Response

TIME ($1 \mu \mathrm{~s} / \mathrm{dIV}$)

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

Non-Inverting Small Signal Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

Inverting Large Signal Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV})$

TIME ($1 \mu \mathrm{~s} / \mathrm{DiV}$)

Non-Inverting Small Signal Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

Inverting Large Signal Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV})$

Inverting Small Signal Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

Non-Inverting Small Signal Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

Inverting Small Signal Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

Stability vs
Capacitive Load

$V_{\text {OUT }}(V)$

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Application Information

1.0 Amplifier Topology

The LMC6482 incorporates specially designed wide-compliance range current mirrors and the body effect to extend input common mode range to each supply rail. Complementary paralleled differential input stages, like the type used in other CMOS and bipolar rail-to-rail input amplifiers, were not used because of their inherent accuracy problems due to CMRR, cross-over distortion, and open-loop gain variation. The LMC6482's input stage design is complemented by an output stage capable of rail-to-rail output swing even when driving a large load. Rail-to-rail output swing is obtained by taking the output directly from the internal integrator instead of an output buffer stage.

2.0 Input Common-Mode Voltage Range

Unlike Bi-FET amplifier designs, the LMC6482 does not exhibit phase inversion when an input voltage exceeds the negative supply voltage. Figure 1 shows an input voltage exceeding both supplies with no resulting phase inversion on the output.

TL/H/11713-10
FIGURE 1. An Input Voltage Signal Exceeds the LMC6482 Power Supply Voltages with No Output Phase Inversion
The absolute maximum input voltage is 300 mV beyond either supply rail at room temperature. Voltages greatly exceeding this absolute maximum rating, as in Figure 2, can cause excessive current to flow in or out of the input pins possibly affecting reliability.

FIGURE 2. A $\pm 7.5 \mathrm{~V}$ Input Signal Greatly Exceeds the 3V Supply in Figure 3 Causing No Phase Inversion Due to $\mathbf{R}_{\mathbf{I}}$
Applications that exceed this rating must externally limit the maximum input current to $\pm 5 \mathrm{~mA}$ with an input resistor $\left(\mathrm{R}_{1}\right)$ as shown in Figure 3.

TL/H/11713-11
FIGURE 3. R1 Input Current Protection for Voltages Exceeding the Supply Voltages

3.0 Rail-To-Rail Output

The approximated output resistance of the LMC6482 is 180Ω sourcing and 130Ω sinking at $\mathrm{Vs}=3 \mathrm{~V}$ and 110Ω sourcing and 80Ω sinking at $\mathrm{Vs}=5 \mathrm{~V}$. Using the calculated output resistance, maximum output voltage swing can be estimated as a function of load.

4.0 Capacitive Load Tolerance

The LMC6482 can typically directly drive a 100 pF load with $V_{S}=15 \mathrm{~V}$ at unity gain without oscillating. The unity gain follower is the most sensitive configuration. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-amp's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation.
Capacitive load compensation can be accomplished using resistive isolation as shown in Figure 4. This simple technique is useful for isolating the capacitive inputs of multiplexers and A / D converters.

TL/H/11713-17
FIGURE 4. Resistive Isolation of a 330 pF Capacitive Load

Application Information (Continued)

FIGURE 5. Pulse Response of the LMC6482 Circuit in Figure 4
Improved frequency response is achieved by indirectly driving capacitive loads, as shown in Figure 6.

TL/H/11713-15
FIGURE 6. LMC6482 Noninverting Amplifier, Compensated to Handle a 330 pF Capacitive Load
R1 and C1 serve to counteract the loss of phase margin by feeding forward the high frequency component of the output signal back to the amplifiers inverting input, thereby preserving phase margin in the overall feedback loop. The values of R1 and C1 are experimentally determined for the desired pulse response. The resulting pulse response can be seen in Figure 7.

5.0 Compensating for Input Capacitance

It is quite common to use large values of feedback resistance with amplifiers that have ultra-low input current, like the LMC6482. Large feedback resistors can react with small values of input capacitance due to transducers, photodiodes, and circuits board parasitics to reduce phase margins.

TL/H/11713-19
FIGURE 8. Canceling the Effect of Input Capacitance
The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in Figure 8), C_{f}, is first estimated by:

$$
\begin{gathered}
\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}}}<\frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{f}} \\
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}
\end{gathered}
$$

which typically provides significant overcompensation. Printed circuit board stray capacitance may be larger or smaller than that of a bread-board, so the actual optimum value for C_{f} may be different. The values of C_{f} should be checked on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.)

Application Information (Continued)

6.0 Printed-Circuit-Board Layout

 for High-Impedance WorkIt is generally recognized that any circuit which must operrate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low input current of the LMC6482, typically less than 20 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even through it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LM6482's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 9. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 250 times degradation from the LMC6482's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10{ }^{11} \Omega$ would cause only 0.05 pA of leakage current. See Figures 10a, 10b, 10c for typical connections of guard rings for standard op-amp configurations.

TL/H/11713-20
FIGURE 9. Example of Guard Ring in P.C. Board Layout

TL/H/11713-21
(a) Inverting Amplifier

TL/H/11713-22
(b) Non-Inverting Amplifier

TL/H/11713-23
(c) Follower

FIGURE 10. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 11.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

FIGURE 11. Air Wiring

Application Information (Continued)

7.0 Offset Voltage Adjustment

Offset voltage adjustment circuits are illustrated in Figure 12 and 13. Large value resistances and potentiometers are used to reduce power consumption while providing typically $\pm 2.5 \mathrm{mV}$ of adjustment range, referred to the input, for both configurations with $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$.

TL/H/11713-25
FIGURE 12. Inverting Configuration Offset Voltage Adjustment

TL/H/11713-26
FIGURE 13. Non-Inverting Configuration Offset Voltage Adjustment

TL/H/11713-28
FIGURE 14. Operating from the same Supply Voltage, the LMC6482 buffers the ADC12038 maintaining excellent accuracy

Application Information (Continued)

10.0 Instrumentation Circuits

The LMC6482 has the high input impedance, large com-mon-mode range and high CMRR needed for designing instrumentation circuits. Instrumentation circuits designed with the LMC6482 can reject a larger range of commonmode signals than most in-amps. This makes instrumentation circuits designed with the LMC6482 an excellent choice of noisy or industrial environments. Other applications that
benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and siliconbased tranducers.
A small valued potentiometer is used in series with R_{g} to set the differential gain of the 3 op -amp instrumentation circuit in Figure 15. This combination is used instead of one large valued potentiometer to increase gain trim accuracy and reduce error due to vibration.

FIGURE 15. Low Power 3 Op-Amp Instrumentation Amplifier

A 2 op-amp instrumentation amplifier designed for a gain of 100 is shown in Figure 16. Low sensitivity trimming is made for offset voltage, CMRR and gain. Low cost and low power consumption are the main advantages of this two op-amp circuit.

Higher frequency and larger common-mode range applications are best facilitated by a three op-amp instrumentation amplifier.

TL/H/11713-29

Application Information (Continued)

11.0 Spice Macromodel

A spice macromodel is available for the LMC6482. This model includes accurate simulation of:

- Input common-mode voltage range
- Frequency and transient response
- GBW dependence on loading conditions
- Quiescent and dynamic supply current
- Output swing dependence on loading conditions
and many more characteristics as listed on the macromodel disk.
Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk.

Typical Single-Supply Applications

TL/H/11713-31
FIGURE 17. Half-Wave Rectifier with Input Current Protection (RI)

TL/H/11713-32
FIGURE 17A. Half-Wave Rectifier Waveform
The circuit in Figure 17 uses a single supply to half wave rectify a sinusoid centered about ground. R_{l} limits current into the amplifier caused by the input voltage exceeding the supply voltage. Full wave rectification is provided by the circuit in Figure 18.

TL/H/11713-33
FIGURE 18. Full Wave Rectifier with Input Current Protection ($\mathbf{R}_{\mathbf{1}}$)

TL/H/11713-34
FIGURE 18A. Full Wave Rectifier Waveform

TL/H/11713-35
FIGURE 19. Large Compliance Range Current Source

Typical Single-Supply Applications

TL/H/11713-36
FIGURE 20. Positive Supply Current Sense

TL/H/11713-37
FIGURE 21. Low Voltage Peak Detector with Rail-to-Rail Peak Capture Range
In Figure 21 dielectric absorption and leakage is minimized by using a polystyrene or polyethylene hold capacitor. The droop rate is primarily determined by the value of C_{H} and diode leakage current. The ultra-low input current of the LMC6482 has a negligible effect on droop.

TL/H/11713-38
FIGURE 22. Rail-to-Rail Sample and Hold
The LMC6482's high CMRR (82 dB) allows excellent accuracy throughout the circuit's rail-to-rail dynamic capture range.

TL/H/11713-27
$\mathrm{R} 1=\mathrm{R} 2, \mathrm{C} 1=\mathrm{C} 2 ; \mathrm{f}=\frac{1}{2 \pi \mathrm{R} 1 \mathrm{C} 1} ; \mathrm{DF}=1 / 2 \sqrt{\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}} \sqrt{\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}}$
FIGURE 23. Rail-to-Rail Single Supply Low Pass Filter
The low pass filter circuit in Figure 23 can be used as an anti-aliasing filter with the same voltage supply as the A/D converter. Filter designs can also take advantage of the LMC6482 ultra-low input current. The ultra-low input current yields negligible offset error even when large value resistors are used. This in turn allows the use of smaller valued capacitors which take less board space and cost less.

LMC6484 CMOS Quad Rail-to-Rail Input and Output Operational Amplifier

General Description

The LMC6484 provides a common-mode range that extends to both supply rails. This rail-to-rail performance combined with excellent accuracy, due to a high CMRR, makes it unique among rail-to-rail input amplifiers.
It is ideal for systems, such as data acquisition, that require a large input signal range. The LMC6484 is also an excellent upgrade for circuits using limited common-mode range amplifiers such as the TLC274 and TLC279.
Maximum dynamic signal range is assured in low voltage and single supply systems by the LMC6484's rail-to-rail output swing. The LMC6484's rail-to-rail output swing is guaranteed for loads down to 600Ω.
Guaranteed low voltage characteristics and low power dissipation make the LMC6484 especially well-suited for batteryoperated systems.
See the LMC6482 data sheet for a Dual CMOS operational amplifier with these same features.

Features (Typical unless otherwise noted)

- Rail-to-Rail Input Common-Mode Voltage Range (Guaranteed Over Temperature)
- Rail-to-Rail Output Swing (within 20 mV of supply rail, $100 \mathrm{k} \Omega$ load)
- Guaranteed $3 \mathrm{~V}, 5 \mathrm{~V}$ and 15 V Performance
- Excellent CMRR and PSRR 82 dB
- Ultra Low Input Current 20 fA
- High Voltage Gain ($\left.R_{L}=500 \mathrm{k} \Omega\right) \quad 130 \mathrm{~dB}$
- Specified for $2 \mathrm{k} \Omega$ and 600Ω loads

Applications

■ Data Acquisition Systems

- Transducer Amplifiers
- Hand-held Analytic Instruments
- Medical Instrumentation
- Active Filter, Peak Detector, Sample and Hold, pH Meter, Current Source
- Improved Replacement for TLC274, TLC279

3V Single Supply Buffer Circuit

TL/H/11714-2
3V
ov

Connection Diagram

Ordering Information

Package	Temperature Range		NSC Drawing	Transport Media
	Military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
14-pin Molded DIP	LMC6484MN	LMC6484AIN LMC6484IN	N14A	Rail
14-pin Small Outline		LMC6484AIM LMC6484IM	M14A	Rail Tape and Reel
14-pin Ceramic DIP	LMC6484AMJ/883		J14A	Rail

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$. Boldface limits apply at the temperature extremes. (Continued)

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6484AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { LMC6484I } \\ \text { Limit } \\ \text { (Note 6) } \end{gathered}$	$\begin{aligned} & \text { LMC6484M } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
V_{O}	Output Swing	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	4.9	$\begin{aligned} & 4.8 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.7 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			0.1	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\underset{\max }{V}$
		$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	4.7	$\begin{gathered} 4.5 \\ 4.24 \end{gathered}$	$\begin{gathered} 4.5 \\ 4.24 \end{gathered}$	$\begin{gathered} 4.5 \\ 4.24 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.3	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.7	$\begin{aligned} & 14.4 \\ & 14.2 \end{aligned}$	$\begin{array}{r} 14.4 \\ 14.2 \end{array}$	$\begin{aligned} & 14.4 \\ & 14.2 \end{aligned}$	$\begin{gathered} V \\ \mathrm{~min} \end{gathered}$
			0.16	$\begin{aligned} & 0.32 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.45 \end{aligned}$	$\underset{\max }{\mathrm{V}}$
		$\begin{aligned} & V+=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.1	$\begin{gathered} 13.4 \\ 13.0 \end{gathered}$	$\begin{gathered} 13.4 \\ 13.0 \end{gathered}$	$\begin{aligned} & 13.4 \\ & 13.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.5	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$\stackrel{V}{\max }$
Isc	Output Short Circuit Current$\mathrm{V}+=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	20	$\begin{array}{r} 16 \\ 12 \\ \hline \end{array}$	$\begin{array}{r} 16 \\ 12 \end{array}$	$\begin{aligned} & 16 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	15	$\begin{aligned} & 11 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 11 \\ & 9.5 \end{aligned}$	$\begin{gathered} 11 \\ \mathbf{8 . 0} \end{gathered}$	mA min
Isc	Output Short Circuit Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	30	$\begin{aligned} & 28 \\ & 22 \\ & \hline \end{aligned}$	$\begin{array}{r} 28 \\ 22 \\ \hline \end{array}$	$\begin{aligned} & 28 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
		Sinking, $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$ (Note 8)	30	$\begin{aligned} & 30 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 24 \\ & \hline \end{aligned}$	$\begin{array}{r} 30 \\ 22 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
Is	Supply Current	All Four Amplifiers $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$	2.0	$\begin{aligned} & 2.8 \\ & \mathbf{3 . 6} \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 2.8 \\ & \mathbf{3 . 8} \end{aligned}$	mA \max
		All Four Amplifiers $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$	2.6	$\begin{aligned} & 3.0 \\ & \mathbf{3 . 8} \end{aligned}$	$\begin{aligned} & 3.0 \\ & \mathbf{3 . 8} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	mA max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6484A } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \hline \text { LMC6484I } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \text { LMC6484M } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
SR	Slew Rate	(Note 9)	1.3	$\begin{aligned} & 1.0 \\ & 0.7 \end{aligned}$	$\begin{gathered} 0.9 \\ 0.63 \end{gathered}$	$\begin{gathered} 0.9 \\ 0.54 \end{gathered}$	$\begin{gathered} \mathrm{V} / \mu \mathrm{s} \\ \mathrm{~min} \\ \hline \end{gathered}$
GBW	Gain-Bandwidth Product	$\mathrm{V}^{+}=15 \mathrm{~V}$	1.5				MHz
ϕ_{m}	Phase Margin		50				Deg
G_{m}	Gain Margin		15				dB
	Amp-to-Amp Isolation	(Note 10)	150				dB
e_{n}	Input-Referred Voltage Noise	$\begin{aligned} & \hline f=1 \mathrm{kHz} \\ & V_{C M}=1 \mathrm{~V} \\ & \hline \end{aligned}$	37				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.03				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{AV}_{\mathrm{V}}=-2 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=4.1 \mathrm{~V} \mathrm{PP} \end{aligned}$	0.01				\%
		$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-2 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{~V}_{\mathrm{O}}=8.5 \mathrm{~V} \mathrm{PP} \\ & \mathrm{~V}^{+}=10 \mathrm{~V} \end{aligned}$	0.01				\%

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { LMC6484AI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{gathered} \text { LMC6484I } \\ \text { Limit } \\ \text { (Note 6) } \end{gathered}$	$\begin{aligned} & \text { LMC6484M } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
Vos	Input Offset Voltage		0.9	$\begin{aligned} & 2.0 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & \mathbf{3 . 8} \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \max \end{gathered}$
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift		2.0				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.02				pA
los	Input Offset Current		0.01				pA
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 3 \mathrm{~V}$	74	64	60	60	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
PSRR	Power Supply Rejection Ratio	$3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	80	68	60	60	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	V- - 0.25	0	0	0	$\begin{gathered} V \\ \max \end{gathered}$
			$\mathrm{V}^{+}+0.25$	V+	V+	V+	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
V_{O}	Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}+/ 2$	2.8				V
			0.2				$\begin{gathered} V \\ V \\ \min \\ V \\ \max \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to $\mathrm{V}+/ 2$	2.7	2.5	2.5	2.5	
			0.37	0.6	0.6	0.6	
Is	Supply Current	All Four Amplifiers	1.65	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.2 \end{aligned}$	mA max

AC Electrical Characteristics

Unless otherwise specified, $\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6484AI Limit (Note 6)	LMC6484I Limit (Note 6)	LMC6484M Limit (Note 6)	Units
SR	Slew Rate	(Note 11)	0.9				$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product		1.0				MHz
T.H.D.	Total Harmonic Distortion	$\mathrm{f}=10 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=-2$ $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V} P \mathrm{PP}$	0.01				$\%$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . All pins rated per method 3015.6 of MIL-STD-883. This is a class 2 device rating.
Note 3: Applies to both single supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: Do not short circuit output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.
Note 9: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of either the positive or negative slew rates.
Note 10: Input referred, $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{PP}}$.
Note 11: Connected as Voltage Follower with 2 V step input. Number specified is the slower of either the positive or negative slew rates.
Note 12: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
Note 13: Guaranteed limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value.
Note 14: For guaranteed Military Temperature Range parameters see RETSMC6484X.

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Input Voltage Noise
vs Input Voltage

Positive PSRR vs Frequency

TL/H/11714-6

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Open Loop Output Impedance vs Frequency

Slew Rate vs Supply Voltage

Maximum Output Swing vs Frequency

- FREQUENCY (kHz)

Non-Inverting Large Signal Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Application Information (Continued)

1.0 Amplifier Topology

The LMC6484 incorporates specially designed wide-compliance range current mirrors and the body effect to extend input common mode range to each supply rail. Complementary paralleled differential input stages, like the type used in other CMOS and bipolar rail-to-rail input amplifiers, were not used because of their inherent accuracy problems due to CMRR, cross-over distortion, and open-loop gain variation.
The LMC6484's input stage design is complemented by an output stage capable of rail-to-rail output swing even when driving a large load. Rail-to-rail output swing is obtained by taking the output directly from the internal integrator instead of an output buffer stage.

2.0 Input Common-Mode Voltage Range

Unlike Bi-FET amplifier designs, the LMC6484 does not exhibit phase inversion when an input voltage exceeds the negative supply voltage. Figure 1 shows an input voltage exceeding both supplies with no resulting phase inversion on the output.

FIGURE 1. An Input Voltage Signal Exceeds the LMC6484 Power Supply Voltages with No Output Phase Inversion
The absolute maximum input voltage is 300 mV beyond either supply rail at room temperature. Voltages greatly exceeding this absolute maximum rating, as in Figure 2, can cause excessive current to flow in or out of the input pins possibly affecting reliability.

TL/H/11714-12
FIGURE 2. A $\pm 7.5 \mathrm{~V}$ Input Signal Greatly
Exceeds the 3V Supply in Figure 3 Causing No Phase Inversion Due to $\mathbf{R}_{\mathbf{I}}$
Applications that exceed this rating must externally limit the maximum input current to $\pm 5 \mathrm{~mA}$ with an input resistor as shown in Figure 3.

TL/H/11714-11
FIGURE 3. RII Input Current Protection for Voltages Exceeding the Supply Voltage

3.0 Rail-To-Rail Output

The approximated output resistance of the LMC6484 is 180Ω sourcing and 130Ω sinking at $V_{S}=3 V$ and 110Ω sourcing and 83Ω sinking at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$. Using the calculated output resistance, maximum output voltage swing can be estimated as a function of load.

4.0 Capacitive Load Tolerance

The LMC6484 can typically directly drive a 100 pF load with $\mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}$ at unity gain without oscillating. The unity gain follower is the most sensitive configuration. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-amp's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation.
Capacitive load compensation can be accomplished using resistive isolation as shown in Figure 4. This simple technique is useful for isolating the capacitive input of multiplexers and A/D converters.

TL/H/11714-17
FIGURE 4. Resistive Isolation of a $\mathbf{3 3 0} \mathbf{~ p F}$ Capacitive Load

Application Information (Continued)

FIGURE 5. Pulse Response of the LMC6484 Circuit in Figure 4
Improved frequency response is achieved by indirectly driving capacitive loads as shown in Figure 6.

TL/H/11714-15
FIGURE 6. LMC6484 Non-Inverting Amplifier, Compensated to Handle a 330 pF Capacitive Load
R1 and C 1 serve to counteract the loss of phase margin by feeding forward the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. The values of R1 and C1 are experimentally determined for the desired pulse response. The resulting pulse response can be seen in Figure 7.

5.0 Compensating for Input Capacitance

It is quite common to use large values of feedback resistance with amplifiers that have ultra-low input current, like the LMC6484. Large feedback resistors can react with small values of input capacitance due to transducers, photodiodes, and circuit board parasitics to reduce phase margins.

TL/H/11714-19
FIGURE 8. Canceling the Effect of Input Capacitance
The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in Figure 8), C_{f}, is first estimated by:

$$
\begin{gathered}
\frac{1}{2 \pi R_{1} C_{I N}} \geq \frac{1}{2 \pi R_{2} C_{f}} \\
\quad \text { or } \\
R_{1} C_{I N} \leq R_{2} C_{f}
\end{gathered}
$$

which typically provides significant overcompensation.
Printed circuit board stray capacitance may be larger or smaller than that of a breadboard, so the actual optimum value for C_{f} may be different. The values of C_{f} should be checked on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.)

Application Information (Continued)

6.0 Printed-Circuit-Board Layout for High-Impedance Work

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. when one wishes to take advantage of the ultra-low input current of the LMC6484, typically less than 20 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6484's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 9 . To have a significant effect, guard rings should be placed in both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 250 times degradation from the LMC6484's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11} \Omega$ would cause only 0.05 pA of leakage current. See Figures 10a, 10b and 10c for typical connections of guard rings for standard op-amp configurations.

TL/H/11714-20
FIGURE 9. Example of Guard Ring in P.C. Board Layout

TL/H/11714-22
(b) Non-Inverting Amplifier

TL/H/11714-23
(c) Follower

FIGURE 10. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 11.

TL/H/11714-24
(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

Application Information (Continued)

7.0 Offset Voltage Adjustment

Offset voltage adjustment circuits are illustrated in Figures 13 and 14. Large value resistances and potentiometers are used to reduce power consumption while providing typically $\pm 2.5 \mathrm{mV}$ of adjustment range, referred to the input, for both configurations with $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$.

TL/H/11714-25

FIGURE 12. Inverting Configuration Offset Voltage Adjustment

TL/H/11714-26
FIGURE 13. Non-Inverting Configuration

Offset Voltage Adjustment

TL/H/11714-28
FIGURE 14. Operating from the same Supply Voltage, the LMC6484 buffers the ADC12038 maintaining excellent accuracy

Application Information (Continued)

10.0 Instrumentation Circuits

The LMC6484 has the high input impedance, large com-mon-mode range and high CMRR needed for designing instrumentation circuits. Instrumentation circuits designed with the LMC6484 can reject a larger range of commonmode signals than most in-amps. This makes instrumentation circuits designed with the LMC6484 an excellent choice for noisy or industrial environments. Other applications that
benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and siliconbased transducers.
A small valued potentiometer is used in series with Rg to set the differential gain of the 3 op -amp instrumentation circuit in Figure 15. This combination is used instead of one large valued potentiometer to increase gain trim accuracy and reduce error due to vibration.

TL/H/11714-29
FIGURE 15. Low Power 3 Op-Amp Instrumentation Amplifier

A 2 op-amp instrumentation amplifier designed for a gain of 100 is shown in Figure 16. Low sensitivity trimming is made for offset voltage, CMRR and gain. Low cost and low power consumption are the main advantages of this two op-amp circuit.

Higher frequency and larger common-mode range applications are best facilitated by a three op-amp instrumentation amplifier.

TL/H/11714-30
FIGURE 16: Low-Power Two-Op-Amp Instrumentation Amplifier

Application Information (Continued)

11.0 Spice Macromodel

A spice macromodel is available for the LMC6484. This model includes accurate simulation of:

- input common-mode voltage range
- frequency and transient response
- GBW dependence on loading conditions
- quiescent and dynamic supply current
- output swing dependence on loading conditions and many more characteristics as listed on the macromodel disk.
Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk.

Typical Single-Supply Applications

TL/H/11714-31
FIGURE 17. Half-Wave Rectifier with Input Current Protection (RI)

TL/H/11714-32
figure 17a. Half-Wave Rectifier Waveform
The circuit in Figure 17 uses a single supply to half wave rectify a sinusoid centered about ground. RI limits current into the amplifier caused by the input voltage exceeding the supply voltage. Full wave rectification is provided by the circuit in Figure 18.

TL/H/11714-33
FIGURE 18. Full Wave Rectifier with Input Current Protection ($\mathbf{R}_{\mathbf{I}}$)

TL/H/11714-34
FIGURE 18a. Full Wave Rectifier Waveform

$I_{\text {OUT }}=\left(\frac{V+-V_{I N}}{R}\right)$
TL/H/11714-35
FIGURE 19. Large Compliance Range Current Source

Typical Single-Supply Applications (Continued)

TL/H/11714-36
FIGURE 20. Positive Supply Current Sense

TL/H/11714-37
FIGURE 21. Low Voltage Peak Detector with Rail-to-Rail Peak Capture Range
In Figure 21 dielectric absorption and leakage is minimized by using a polystyrene or polyethylene hold capacitor. The droop rate is primarily determined by the value of C_{H} and diode leakage current. The ultra-low input current of the LMC6484 has a negligible effect on droop.

TL/H/11714-38
FIGURE 22. Rail-to-Rail Sample and Hold
The LMC6484's high CMRR (85 dB) allows excellent accuracy throughout the circuit's rail-to-rail dynamic capture range.

$$
R_{1}=R 2, C 1=C 2 ; f=\frac{1}{2 \pi R 1 C 1} ; D F=\frac{1}{2} \sqrt{\frac{C_{2}}{C_{1}}} \sqrt{\frac{R_{2}}{R_{1}}}
$$

FIGURE 23. Rail-to-Rail Single Supply Low Pass Filter
The low pass filter circuit in Figure 23 can be used as an anti-aliasing filter with the same voltage supply as the A/D converter. Filter designs can also take advantage of the LMC6484 ultra-low input current. The ultra-low input current yields negligible offset error even when large value resistors are used. This in turn allows the use of smaller valued capacitors which take less board space and cost less.

LMC6492 Dual/LMC6494 Quad CMOS Rail-to-Rail Input and Output Operational Amplifier

General Description

The LMC6492/LMC6494 amplifiers were specifically developed for single supply applications that operate from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. This feature is well-suited for automotive systems because of the wide temperature range. A unique design topology enables the LMC6492/LMC6494 commonmode voltage range to accommodate input signals beyond the rails. This eliminates non-linear output errors due to input signals exceeding a traditionally limited common-mode voltage range. The LMC6492/LMC6494 signal range has a high CMRR of 82 dB for excellent accuracy in non-inverting circuit configurations.
The LMC6492/LMC6494 rail-to-rail input is complemented by rail-to-rail output swing. This assures maximum dynamic signal range which is particularly important in 5 V systems.
Ultra-low input current of 150 fA and 120 dB open loop gain provide high accuracy and direct interfacing with high impedance sources.

Features (Typical unless otherwise noted)

- Rail-to-Rail input common-mode voltage range, guaranteed over temperature
- Rail-to-Rail output swing within 20 mV of supply rail, $100 \mathrm{k} \Omega$ load
- Operates from 5 V to 15 V supply

E Excellent CMRR and PSRR 82 dB

- Ultra low input current 150 fA
- High voltage gain ($R_{L}=100 \mathrm{k} \Omega$) 120 dB
- Low supply current (@ $V_{S}=5 \mathrm{~V}$) $500 \mu \mathrm{~A} /$ Amplifier
- Low offset voltage drift
$1.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Applications

- Automotive transducer amplifier
- Pressure sensor
- Oxygen sensor
- Temperature sensor
- Speed sensor

Connection Diagrams

Ordering Information

Package	Temperature Range	Transport Media	NSC Drawing
	Extended $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
8-Pin Small Outline	LMC6492AEM LMC6492BEM	Rails	M08A
	LMC6492AEMX LMC6492BEMX	Tape and Reel	
8-Pin Molded DIP	LMC6492AEN LMC6492BEN	Rails	N08A
14-Pin Small Outline	LMC6494AEM LMC6494BEM	Rails	M14A
	LMC6494AEMX LMC6494BEMX	Tape and Reel	
14-Pin Molded DIP	LMC6494AEN LMC6494BEN	Rails	N14A

Top View

DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{+}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}} \geqslant 1 \mathrm{M} \Omega$.
Boldface limits apply at the temperature extremes (Continued)

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6492AE LMC6494AE Limit (Note 6)	LMC6492BE LMC6494BE Limit (Note 6)	Units
V_{0}	Output Swing	$\begin{aligned} & V+=5 V \\ & R_{L}=2 \mathrm{k} \Omega \text { to } V+/ 2 \end{aligned}$	4.9	$\begin{array}{r} 4.8 \\ 4.7 \\ \hline \end{array}$	$\begin{array}{r} 4.8 \\ 4.7 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			0.1	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{gathered} 0.18 \\ 0.24 \end{gathered}$	$\begin{gathered} V \\ \max \end{gathered}$
		$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & R_{L}=600 \Omega \text { to } V+/ 2 \end{aligned}$	4.7	$\begin{gathered} 4.5 \\ 4.24 \end{gathered}$	$\begin{array}{r} 4.5 \\ 4.24 \end{array}$	$V_{\min }$
			0.3	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} V \\ \max \end{gathered}$
		$\begin{aligned} & V+=15 \mathrm{~V} \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.7	$\begin{aligned} & 14.4 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 14.0 \end{aligned}$	$\underset{\min }{v}$
			0.16	$\begin{aligned} & 0.35 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.5 \end{aligned}$	$\stackrel{\vee}{\max }$
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=600 \Omega \text { to } V+/ 2 \end{aligned}$	14.1	$\begin{gathered} 13.4 \\ 13.0 \\ \hline \end{gathered}$	$\begin{gathered} 13.4 \\ 13.0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			0.5	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
Isc	Output Short Circuit Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	25	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	22	$\begin{gathered} 11 \\ 8 \end{gathered}$	$\begin{gathered} 11 \\ 8 \end{gathered}$	mA
ISC	Output Short Circuit Current$\mathrm{V}+=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	30	$\begin{aligned} & 28 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 28 \\ 20 \\ \hline \end{array}$	min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$ (Note 8)	30	$\begin{aligned} & 30 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 22 \\ & \hline \end{aligned}$	
Is	Supply Current	LMC6492 $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$	1.0	$\begin{array}{r} 1.75 \\ 2.1 \\ \hline \end{array}$	$\begin{aligned} & 1.75 \\ & 2.1 \\ & \hline \end{aligned}$	mA max
		LMC6492 $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$	1.3	$\begin{array}{r} 1.95 \\ 2.3 \\ \hline \end{array}$	$\begin{array}{r} 1.95 \\ 2.3 \\ \hline \end{array}$	mA max
		LMC6494 $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$	2.0	$\begin{array}{r} 3.5 \\ 4.2 \\ \hline \end{array}$	$\begin{array}{r} 3.5 \\ 4.2 \\ \hline \end{array}$	mA max
		LMC6494 $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$	2.6	$\begin{aligned} & 3.9 \\ & 4.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.9 \\ 4.6 \\ \hline \end{array}$	mA max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~J}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6492AE } \\ & \text { LMC6494AE } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	LMC6492BE LMC6494BE Limit (Note 6)	Units
SR	Slew Rate	(Note 9)	1.3	$\begin{aligned} & 0.7 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.5 \end{aligned}$	$\mathrm{V} \mu \mathrm{s}$ min
GBW	Gain-Bandwidth Product	$\mathrm{V}^{+}=15 \mathrm{~V}$	1.5			MHz
ϕ_{m}	Phase Margin		50			Deg
G_{m}	Gain Margin		15			dB
	Amp-to-Amp Isolation	(Note 10)	150			dB
e_{n}	Input-Referred Voltage Noise	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V} \end{aligned}$	37			$\frac{n V}{\sqrt{H Z}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.06			$\frac{p A}{\sqrt{H Z}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-2 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=-4.1 \mathrm{~V} \mathrm{PP} \end{aligned}$	0.01			\%
		$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-2 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8.5 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{~V}+=10 \mathrm{~V} \end{aligned}$	0.01	:		

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.

Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}$ and T_{A}. The maximum allowable power dissipation at any ambient temperature is $\mathrm{P}_{\mathrm{D}}=$ $\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$. Note 8: Do not short circuit output to V^{+}, when V^{+}is greater than 13 V or reliability will be adversely affected.

Note 9: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as voltage follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 10: Input referred, $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}_{\mathrm{Pp}}$.
Note 11: Guaranteed limits are dictated by tester limits and not device performance. Actual performance is reflected in the typical value.

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Crosstalk Rejection vs Frequency

Negative PSRR vs Frequency

CMRR vs Input Voltage

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

FREQUENCY (Hz)

frequency (hz)

Open Loop
Frequency Response

Maximum Output Swing vs Frequency

Non-Inverting Large Signal Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

Inverting Large Signal Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

time ($1 \mu \mathrm{~s} / \mathrm{diV}$)

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

Inverting Large Signal Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

TIME ($1 \mu \mathrm{~s} / \mathrm{dIV}$)

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

Stability vs
Capacitive Load

$v_{\text {OUT }}(v)$

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

TL/H/12049-7

Application Notes

Input Common-Mode Voltage Range

Unlike Bi-FET amplifier designs, the LMC6492/4 does not exhibit phase inversion when an input voltage exceeds the negative supply voltage. Figure 1 shows an input voltage exceeding both supplies with no resulting phase inversion on the output.

TL/H/12049-8
FIGURE 1. An Input Voltage Signal Exceeds the LMC6492/4 Power Supply Voltages with No Output Phase Inversion
The absolute maximum input voltage is 300 mV beyond either supply rail at room temperature. Voltages greatly exceeding this absolute maximum rating, as in Figure 2, can cause excessive current to flow in or out of the input pins possibly affecting reliability.

FIGURE 2. A $\pm 7.5 \mathrm{~V}$ Input Signal Greatly Exceeds the 5V Supply in Figure 3 Causing No Phase Inversion Due to R_{1}
Applications that exceed this rating must externally limit the maximum input current to $\pm 5 \mathrm{~mA}$ with an input resistor $\left(R_{l}\right)$ as shown in Figure 3.

TL/H/12049-10
FIGURE 3. RII Input Current Protection for Voltages Exceeding the Supply Voltages

Rail-To-Rail Output

The approximate output resistance of the LMC6492/4 is 110Ω sourcing and 80Ω sinking at $\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$. Using the calculated output resistance, maximum output voltage swing can be esitmated as a function of load.

Compensating for Input Capacitance

It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6492/4.

Although the LMC6492/4 is highly stable over a wide range of operating conditions, certain precautions must be met to achieve the desired pulse response when a large feedback resistor is used. Large feedback resistors with even small values of input capacitance, due to transducers, photodiodes, and circuit board parasitics, reduce phase margins.
When high input impedances are demanded, guarding of the LMC6492/4 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work)
The effect of input capacitance can be compensated for by adding a capacitor, C_{f}, around the feedback resistors (as in Figure 1) such that:

$$
\begin{gathered}
\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}}} \geq \frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}} \\
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}
\end{gathered}
$$

Since it is often difficult to know the exact value of $\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{f}$ can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and LMC662 for a more detailed discussion on compensating for input capacitance.

TL/H/12049-11
FIGURE 4. Cancelling the Effect of Input Capacitance

Capacitive Load Tolerance

All rail-to-rail output swing operational amplifiers have voltage gain in the output stage. A compensation capacitor is normally included in this integrator stage. The frequency location of the dominant pole is affected by the resistive load on the amplifier. Capacitive load driving capability can be optimized by using an appropriate resistive load in parallel with the capacitive load (see Typical Curves).
Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 5.

Application Notes (Continued)

TL/H/12049-12
FIGURE 5. LMC6492/4 Noninverting Amplifier, Compensated to Handle Capacitive Loads

Printed-Circuit-Board Layout for High-Impedance Work

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6492/4, typically 150 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6492/4's inputs and the terminals of components connected to the op-amp's inputs, as in Figure 6. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input.
This would cause a 33 times degradation from the LMC6492/4's actual performance. If a guard ring is used and held within 5 mV of the inputs, then the same resistance of ${ }^{1011} \Omega$ will only cause 0.05 pA of leakage current. See Figures 7a, 7b, $7 c$ for typical connections of guard rings for standard op-amp configurations.

TL/H/12049-13

FIGURE 6. Examples of Guard Ring in PC Board Layout

TL/H/12049-14
(a) Inverting Amplifier

TL/H/12049-15
(b) Non-Inverting Amplifier

TL/H/12049-16
(c) Follower

FIGURE 7.Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 8.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board).

FIGURE 8. Air Wiring

Application Circuits

DC Summing Amplifier
$\left(\mathbf{V}_{\mathbf{I N}} \geq \mathbf{O} \mathbf{V}_{\mathrm{DC}}\right.$ and $\left.\mathrm{V}_{\mathbf{O}} \geq \mathrm{V}_{\mathrm{DC}}\right)$

TL/H/12049-18
Where: $V_{0}=V_{1}+V_{2}-V_{3}-V_{4}$
$\left(V_{1}+V_{2} \geq\left(V_{3}+V_{4}\right)\right.$ to keep $V_{0}>0 V_{D C}$

High Input Z, DC Differential Amplifier

TL/H/12049-19
For $\frac{R 1}{R 2}=\frac{R 4}{R 3}$ (CMRR depends on this resistor ratio match)
$V_{O}=1+\frac{R 4}{R 3}\left(V_{2}-V_{1}\right)$
As shown: $V_{O}=2\left(V_{2}-V_{1}\right)$

Photo Voltaic-Cell Amplifier

TL/H/12049-20

Instrumentation Amplifier

TL/H/12049-21
R1 $=R 5$, R3 $=R 6$, and R4 $=R 7$; then
$\frac{V_{\text {OUT }}}{V_{I N}}=\frac{R 2+2 R 1}{R 2} \times \frac{R 4}{R 3}$
$\therefore A_{V} \approx 100$ for circuit shown ($R_{2}=9.3 \mathrm{k}$).
Rail-to-Rail Single Supply Low Pass Filter

This low-pass filter circuit can be used as an anti-aliasing filter with the same supply as the A/D converter. Filter designs can also take advantage of the LMC6492/4 ultra-low input current. The ultra-low input current yields negligible offset error even when large value resistors are used. This in turn allows the use of smaller valued capacitors which take less board space and cost less.

Low Voltage Peak Detector with Rail-to-Rail Peak Capture Range

TL/H/12049-23
Dielectric absorption and leakage is minimized by using a polystyrene or polypropylene hold capacitor. The droop rate is primarily determined by the value of C_{H} and diode leakage current. Select low-leakage current diodes to minimize drooping.

Application Circuits (Continued)

Pressure Sensor

TL/H/12049-24
$R_{f}=R x$
$R_{f} \gg R 1, R 2, R 3$, and R4
$V_{O}=\left(\frac{R 2}{R 1+R 2}-\frac{R 3}{R 4+R 3}\right) \frac{R_{f}(R 3+R 4)}{R 3 R 4} V_{R E F}$

In a manifold absolute pressure sensor application, a strain gauge is mounted on the intake manifold in the engine unit. Manifold pressure causes the sensing resistors, R1, R2, R3 and R4 to change. The resistors change in a way such that R2 and R4 increase by the same amount R1 and R3 decrease. This causes a differential voltage between the input of the amplifier. The gain of the amplifier is adjusted by R_{f}.

Spice Macromodel

A spice macromodel is available for the LMC6492/4. This model includes accurate simulation of:

- Input common-model voltage range
- Frequency and transient response
- GBW dependence on loading conditions
- Quiescent and dynamic supply current
- Output swing dependence on loading conditions and many other characteristics as listed on the macromodel disk.
Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk.

LMC6574 Quad/LMC6572 Dual Low Voltage (2.7V and 3V) Operational Amplifier

General Description

Low voltage operation and low power dissipation make the LMC6574/2 ideal for battery-powered systems.
3 V amplifier performance is backed by 2.7 V guarantees to ensure operation throughout battery lifetime. These guarantees also enable analog circuits to operate from the same 3.3 V supply used for digital logic.

Battery life is maximized because each amplifier dissipates only micro-watts of power.
The LMC6574/2 does not sacrifice functionality for low voltage operation. The LMC6574/2 generates 120 dB of openloop gain just like a conventional amplifier, but the LMC6574/2 can do this from a 2.7 V supply.
These amplifiers are designed with features that optimize low voltage operation. The output voltage swings rail-to-rail to maximize signal-to-noise ratio and dynamic signal range. The common-mode input voltage range extends from 800 mV below the positive supply to 100 mV below ground.
This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.

Features (Typical unless otherwise noted)

- Guaranteed 2.7V and 3V Performance

■ Rail-to-Rail Output Swing (within 5 mV of supply rail, $100 \mathrm{k} \Omega$ load)

- Ultra-Low Supply Current $40 \mu \mathrm{~A} /$ Amplifier
- Low Cost
- Ultra-Low Input Curren 20 fA
- High Voltage Gain @ $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega 120 \mathrm{~dB}$
- Specified for $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads

Applications

- Transducer Amplifier
- Portable or Remote Equipment
- Battery-Operated Instruments
- Data Acquisition Systems
- Medical Instrumentation
- Improved Replacement for TLV2322 and TLV2324

Connection Diagrams

TL/H/11934-1
Order Number LMC6572AIN, LMC6572BIN, LMC6572AIM or LMC6572BIM
See NS Package Number N08E or M08A

14-Pin DIP/SO
InPUT $4^{-} \quad \mathrm{V}^{-} \quad$ Input 3^{-}

TL/H/11934-2
Order Number LMC6574AIN, LMC6574BIN, LMC6574AIM or LMC6574BIM See NS Package Number N14A or M14A

Ordering Information

Package	Temperature Range Industrial, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	NSC Drawing	Transport Media
8-Pin Molded DIP	LMC6572AIN, LMC6572BIN		Rail
8-Pin Small Outline	LMC6572AIM, LMC6572BIM	M08A	Rail
	LMC6572AIMX, LMC6572BIMX		Tape and Reel
14-Pin Molded DIP	LMC6574AIN, LMC6574BIN	N14A	Rail
14-Pin Small Outline	LMC6574AIM, LMC6574BIM		Rail
	LMC6574AIMX, LMC6574BIMX		Tape and Reel

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National	Semiconductor Sales
Office/Distributors for availability and specifications.	
ESD Tolerance (Note 2)	2000 V
Differential Input Voltage	\pm Supply Voltage
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V}$,
	$\left.\mathrm{V}^{-}\right)-0.3 \mathrm{~V}$
Supply Voltage (V+ $-\mathrm{V}-$)	12 V
Current at Input Pin	$\pm 5 \mathrm{~mA}$
Current at Output Pin (Note 3)	$\pm 10 \mathrm{~mA}$
Current at Power Supply Pin	35 mA
Lead Temperature (Soldering, 10 Seconds)	$260^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 4)	$150^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Supply Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}+\leq 11 \mathrm{~V}$
Junction Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
LMC6572AI, LMC6572BI	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$

Thermal Resistance (θ_{JA}) N Package, 8-Pin Molded DIP
$115^{\circ} \mathrm{C} / \mathrm{W}$ M Package, 8 -Pin Surface Mount $193^{\circ} \mathrm{C} / \mathrm{W}$ N Package, 14-Pin Molded DIP M Package, 14-Pin Surface Mount $81^{\circ} \mathrm{C} / \mathrm{W}$
$126^{\circ} \mathrm{C} / \mathrm{W}$

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions		Typ (Note 5)	LMC6574AI LMC6572AI Limit (Note 6)	LMC6574BI LMC6572BI Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}^{+}=2.7 \mathrm{~V}$ and 3 V		0.5	$\begin{gathered} 3 \\ 3.5 \end{gathered}$	$\begin{aligned} & 7 \\ & 7.5 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{Max} \end{gathered}$
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift			1.5			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current			0.02	10	10	pA Max
los	Input Offset Current			0.01	6	6	$\begin{gathered} \mathrm{pA} \\ \mathrm{Max} \end{gathered}$
$\mathrm{R}_{\text {IN }}$	Input Resistance			>1			Tera Ω
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance			3			pF
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 3.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \end{aligned}$		75	$\begin{aligned} & 63 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 57 \end{aligned}$	dB Min
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & \mathrm{~V}^{-}=0 \mathrm{~V} \end{aligned}$		75	$\begin{array}{r} 67 \\ 65 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 58 \end{aligned}$	dB Min
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -2.7 \mathrm{~V} \leq \mathrm{V}^{-} \leq-5 \mathrm{~V}, \\ & \mathrm{~V}^{+}=0 \mathrm{~V} \end{aligned}$		83	$\begin{aligned} & 75 \\ & 73 \end{aligned}$	$\begin{aligned} & 67 \\ & 65 \end{aligned}$	dB Min
V_{CM}	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} \text { and } 3 \mathrm{~V} \\ & \text { for } \mathrm{CMRR} \geq 50 \mathrm{~dB} \end{aligned}$		-0.1	$\begin{gathered} -0.05 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} -0.05 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{Max} \end{gathered}$
				$\mathrm{V}+-0.8$	$\begin{gathered} v^{+}-1.0 \\ \mathbf{v}^{+}-\mathbf{1 . 3} \end{gathered}$	$\begin{gathered} v^{+}-1.0 \\ \mathbf{v}^{+}-1.3 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ (Note 7)	Sourcing	1000			V/mV
			Sinking	500			V/mV

2.7V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC6574AI LMC6572AI Limit (Note 6)	LMC6574BI LMC6572BI Limit (Note 6)	Units
V_{0}	Output Swing	$\begin{aligned} & V^{+}=2.7 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	2.695	$\begin{aligned} & 2.68 \\ & 2.66 \end{aligned}$	$\begin{aligned} & 2.65 \\ & 2.62 \end{aligned}$	$\begin{gathered} V \\ \mathrm{Min} \end{gathered}$
			0.005	$\begin{aligned} & 0.03 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.09 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { Max } \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	2.66	$\begin{aligned} & 2.55 \\ & 2.45 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.35 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
			0.04	$\begin{aligned} & 0.15 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	$\begin{gathered} V \\ \text { Max } \end{gathered}$
		$\begin{aligned} & \mathrm{V}^{+}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	2.995	$\begin{aligned} & 2.98 \\ & 2.96 \end{aligned}$	$\begin{array}{r} 2.95 \\ 2.93 \end{array}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
			0.005	$\begin{aligned} & 0.03 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.09 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { Max } \end{gathered}$
		$\begin{aligned} & \mathrm{V}+=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	2.96	$\begin{array}{r} 2.85 \\ 2.75 \\ \hline \end{array}$	$\begin{array}{r} 2.75 \\ \mathbf{2 . 6 5} \\ \hline \end{array}$	$\begin{gathered} V \\ \mathrm{Min} \\ \hline \end{gathered}$
			0.04	$\begin{aligned} & 0.15 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.25 \\ & \mathbf{0 . 3 5} \end{aligned}$	$\begin{gathered} V \\ \text { Max } \end{gathered}$
Isc	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	6.0	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	mA Min
		Sinking, $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$	4.0	$\begin{array}{r} 3.0 \\ \mathbf{2 . 0} \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ \mathbf{1 . 5} \\ \hline \end{array}$	mA Min
Is	Supply Current	Quad Package $\mathrm{V}^{+}=+2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$	160	$\begin{array}{r} 240 \\ 280 \\ \hline \end{array}$	$\begin{array}{r} 240 \\ 280 \\ \hline \end{array}$	$\mu \mathrm{A}$ Max
		Quad Package $\mathrm{V}+=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$	160	$\begin{array}{r} 240 \\ 280 \\ \hline \end{array}$	$\begin{array}{r} 240 \\ 280 \\ \hline \end{array}$	$\mu \mathrm{A}$ Max
		Dual Package $\mathrm{V}^{+}=+2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$	80	$\begin{aligned} & 120 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 140 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ Max
		Dual Package $\mathrm{V}+=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$	80	$\begin{aligned} & 120 \\ & 140 \end{aligned}$	$\begin{aligned} & 120 \\ & 140 \end{aligned}$	$\mu \mathrm{A}$ Max

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6574AI } \\ & \text { LMC6572AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	LMC6574BI LMC6572BI Limit (Note 6)	Units
SR	Slew Rate	$\mathrm{V}^{+}=2.7 \mathrm{~V} \text { and } 3 \mathrm{~V}$ (Note 8)	90	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	V / ms Min
GBW	Gain-Bandwidth Product	$\mathrm{V}+=3 \mathrm{~V}$	0.22			MHz
ϕ_{m}	Phase Margin		60			Deg
G_{m}	Gain Margin		12			dB
	Amp-to-Amp Isolation	(Note 9)	120			dB
${ }^{\boldsymbol{n}}$	Input-Referred Voltage Noise	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V} \end{aligned}$	45			$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.002			$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, A_{\mathrm{V}}=-2 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	0.05			\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 4: The maximum power dissipation is a function of $T_{J(M a x)}, \boldsymbol{\theta}_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M a x)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ and R_{L} connected to 1.5 V . For Sourcing tests, $1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.5 \mathrm{~V}$. For Sinking tests, $0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}$. Note 8: Connected as Voltage Follower with 1.0 V step input. Number specified is the slower of the positive and negative slew rates.
Note 9: Input referred, $\mathrm{V}^{+}=3 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 1.5 V . Each amp excited in turn with 1 KHz to produce $\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{PP}}$.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unloss otherwise specified

Input Current vs Temperature

Output Voltage Swing vs

Input Voltage vs
Output Voltage $\left(\mathbf{V}_{\mathbf{S}}= \pm \mathbf{1 . 5}\right)$

Sourcing Current vs Output Voltage

Input Voltage Noise vs Frequency

Open Loop Frequency Response

TL/H/11934-3

Typical Performance Characteristics (Continued) $\mathrm{V}_{\mathrm{S}}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified

Time ($5 \mu \mathrm{~s} / \mathrm{DIV}$)

Non-Inverting Large Signal Pulse Response

Non-Inverting Small Signal Pulse Response

Typical Performance Characteristics (Continued) $\mathrm{V}_{\mathrm{S}}=+3 \mathrm{~V}_{,} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless othemwise specified

TL/H/11934-5

Applications Hints

1.0 LOW VOLTAGE AMPLIFIER TOPOLOGY

The LMC6574/2 incorporates a novel op-amp design topology that enables it to maintain rail-to-rail output swing even when driving a large load. Instead of relying on a push-pull unity gain output buffer stage, the output stage is taken directly from the internal integrator, which provides both low output impedance and large gain. Special feed-forward compensation design techniques are incorporated to maintain stability over a wider range of operating conditions than traditional micropower op-amps. These features make the LMC6574/2 both easier to design with, and provide higher speed than products typically found in this ultra-low power class.

2.0 COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance for amplifiers with ultra-low input current, like the LMC6574/2.
Although the LMC6574/2 is highly stable over a wide range of operating conditions, a large feedback resistor will react even with small values of capacitance at the input of the opamp to reduce phase margin. The capacitance at the input of the op-amp comes from transducers, photodiodes and circuit board parasitics.
The effect of input capacitance can be compensated for by adding a capacitor, C_{f}, around the feedback resistors (as in Figure 1) such that:

$$
\begin{gathered}
\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}}} \geq \frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}} \\
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{\mathrm{f}}
\end{gathered}
$$

Since it is often difficult to know the exact value of $\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{f}$ can be experimentally adjusted so that the desired pulse response is achieved. Refer to the LMC660 and LMC662 for a more detailed discussion on compensating for input capacitance.
When high input impedances are demanded, guarding of the LMC6574/2 is suggested. Guarding input lines will not only reduce leakage, but lowers stray input capacitance as well. (See Printed-Circuit-Board Layout for High Impedance Work).

TL/H/11934-6
FIGURE 1. Cancelling the Effect of Input Capacitance

3.0 CAPACITIVE LOAD TOLERANCE

Direct capacitive loading will reduce the phase margin of many op-amps. A pole in the feedback loop is created by the combination of the op-amp's output impedance and the capacitive load. This pole induces phase lag at the unitygain crossover frequency of the amplifier resulting in either an oscillatory or underdamped pulse response. With a few external components, op amps can easily indirectly drive capacitive loads, as shown in Figure 2.

FIGURE 2. LMC6574/2 Noninverting Gain of 10 Amplifier, Compensated to Handle Capacitive Loads
In the circuit of Figure 2, R1 and C1 serve to counteract the loss of-phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

Applications Hints (Continued)

4.0 PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LMC6574/2, typically less than 20 fA , it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6574/2's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of the input. This would cause a 250 times degradation from the LMC6574/2's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11} \Omega$ would cause only 0.05 pA of leakage current. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations.

TL/H/11934-8
FIGURE 3. Example of Guard Ring in P.C. Board Layout

FIGURE 4. Typical Connections of Guard Rings
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5.

TL/H/11934-12
(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board).

FIGURE 5. Air Wiring

Applications Hints (Continued)

5.0 SPICE MACROMODEL

A spice macromodel is available for the LMC6574/2. This model includes accurate simulation of:

- input common-mode voltage range
- frequency and transient response
- GBW dependence on loading conditions
- quiescent and dynamic supply current
- output swing dependence on loading conditions
and many more characteristics as listed on the macromodel disk.
Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk.

Typical Single-Supply Applications

FIGURE 6. Low-Power Two-Op-Amp Instrumentation Amplifier

FIGURE 7. Sample and Hold

TL/H/11934-15
FIGURE 8. 1 Hz Square Wave Oscillator

$$
v_{\text {OUT }}=V_{1}+V_{2}-V_{3}-V_{4}
$$

TL/H/11934-16
FIGURE 9. Adder/Subtractor Circuit

FIGURE 10. Low Pass Filter

National Semiconductor

LMC6582 Dual/LMC6584 Quad Low Voltage, Rail-To-Rail Input and Output CMOS Operational Amplifier

General Description

The LMC6582/4 is a high performance operational amplifier which can operate over a wide range of supply voltages, from 1.8 V to 10 V . It has guaranteed specs at $1.8 \mathrm{~V}, 2.2 \mathrm{~V}, 3 \mathrm{~V}$, 5 V , and 10 V .
The LMC6582/4 provides an input common-mode voltage range that exceeds both rails. The rail-to-rail output swing of the amplifier assures maximum dynamic signal range. This rail-to-rail performance of the amplifier, combined with its high open-loop voltage gain makes it unique among rail-torail CMOS amplifiers. The LMC6582/4 is an excellent upgrade for circuits using limited common-mode range amplifiers.
The LMC6582/4 has been designed specifically to improve system performance in low voltage applications. Guaranteed operation down to 1.8 V means that this family of amplifiers can operate at the end of discharge (EOD) voltages of several popular batteries. The amplifier's 80 fA input current, 0.5 mV offset voltage, and 82 dB CMRR maintain accuracy in battery-powered systems.
For a single, dual or quad CMOS amplifier with similar specs and a powerdown mode, refer to the LMC6681/2/4 datasheet.

Features (Typical uniess otherwise noted)

- Guaranteed Specs at $1.8 \mathrm{~V}, 2.2 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$
- Rail-to-Rail Input Common-Mode Voltage Range
- Rail-to-Rail Output Swing (within 10 mV of supply rail, @ $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$)
- CMRR and PSRR 82 dB
- Ultra Low Input Current 80 fA
- High Voltage Gain ($\left.\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right) \quad 120 \mathrm{~dB}$

■ Unity Gain Bandwidth $\quad 1.2 \mathrm{MHz}$

Applications

- Battery Operated Systems
- Sensor Amplifiers
- Portable Communication Devices
- Medical Instrumentation
- Level Detectors, Sample-and-Hold Circuits
- Battery Monitoring

Connection Diagrams

TL/H/12041-2

Top View

Ordering Information

Package	Temperature Range Industrial, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	NSC Drawing	Transport Media
8-pin Molded DIP	LMC6582AIN, LMC6582BIN	N08E	Rails
8-pin Small Outline	LMC6582AIM, LMC6582BIM LMC6582AIMX, LMC6582BIMX	M08A M08A	Rails Tape and Reel
14-pin Molded DIP	LMC6584AIN, LMC6584BIN	N14A	Rails
14-pin Small Outline	LMC6584AIM, LMC6584BIM LMC6584AIMX, LMC6584BIMX	M14A M14A	Rails Tape and Reel

LMC6681 Single/LMC6682 Dual/LMC6684 Quad Low Voltage, Rail-To-Rail Input and Output CMOS Amplifier with Powerdown

General Description

The LMC6681/2/4 is a high performance operational amplifier which can operate over a wide range of supply voltages, from 1.8 V to 10 V . It has guaranteed specs at $1.8 \mathrm{~V}, 2.2 \mathrm{~V}, 3 \mathrm{~V}$, 5 V , and 10 V .
The LMC6681/2/4 provides an input common-mode voltage range that exceeds both rails. The rail-to-rail output swing of the amplifier assures maximum dynamic signal range. This rail-to-rail performance of the amplifier, combined with its high open-loop voltage gain makes it unique among CMOS rail-to-rail amplifiers. The LMC6681/2/4 is an excellent upgrade for circuits using limited common-mode range amplifiers.
The LMC6681/2/4 has a powerdown mode which can be triggered externally. In this powerdown mode, the supply current decreases from 1.4 mA (for two amplfiers) to $1.5 \mu \mathrm{~A}$ (for two amplifiers). The LMC6684 has two powerdown options. Each of the powerdown pins disables two amplifiers.
The LMC6681/2/4 has been designed specifically to improve system performance in low voltage applications. The amplifier's 80 fA input current, 0.5 mV offset voltage, and 82 dB CMRR maintain accuracy in battery-powered systems.

Features (Typical unless otherwise noted)
■ Guaranteed Specs at $1.8 \mathrm{~V}, 2.2 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$

- Rail-to-Rail Input Common-Mode Voltage Range
- Rail-to-Rail Output Swing
(within 10 mV of supply rail, @ $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$)
- Powerdown Mode IS OFF $\leq 1.5 \mu \mathrm{~A} /$ Amplifier (Guaranteed at $\mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V}, 2.2 \mathrm{~V}, 3 \mathrm{~V}$, and 5 V)
- Ultra Low Input Current
- High Voltage Gain ($\left.\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right) \quad 120 \mathrm{~dB}$

■ Unity Gain Bandwidth $\quad 1.2 \mathrm{MHz}$

Applications

- Battery Operated Circuits
- Sensor Amplifiers
- Portable Communication Devices
- Medical Instrumentation
- Battery Monitoring Circuits
- Level Detectors, Sample-and-Hold Circuits

Connection Diagrams

8-Pin DIP/SO

14-Pin DIP/SO

16-Pin DIP/SO

Ordering Information

Package	Temperature Range Industrial, $-\mathbf{4 0}$ 承 to $+85^{\circ} \mathbf{C}$	NSC Drawing	Transport Media
8-Pin Molded DIP	LMC6681AIN, LMC6681BIN	N08E	Rails
8-Pin Small Outline	LMC6681AIM, LMC6681BIM LMC6681AIMX, LMC6681B1MX	M08A M08A	Rails Tape and Reel
14-Pin Molded DIP	LMC6682AIN, LMC6682BIN	N14A	Rails
14-Pin Small Outline	LMC6682AIM, LMC6682BIM LMC6682AIMX, LMC6682BIMX	M14A M14A	Rails Tape and Reel
16-Pin Molded DIP	LMC6684AIN, LMC6684BIN	N16A	Rails
16-Pin Small Outline	LMC6684AIM, LMC6684BIM LMC6684AIMX, LMC6684BIMX	M16A M16A	Rails Tape and Reel

LMC7101 Tiny Low Power Operational Amplifier with Rail-To-Rail Input and Output

General Description

The LMC7101 is a high performance CMOS operational amplifier available in the space saving SOT 23-5 Tiny package. This makes the LMC7101 ideal for space and weight critical designs. The performance is similar to a single amplifier of the LMC6482/4 type, with rail-to-rail input and output, high open loop gain, low distortion, and low supply currents.
The main benefits of the Tiny package are most apparent in small portable electronic devices, such as mobile phones, pagers, notebook computers, personal digital assistants, and PCMCIA cards. The tiny amplifiers can be placed on a board where they are needed, simplifying board layout.

Features

- Tiny SOT23-5 package saves space-typical circuit layouts take half the space of SO-8 designs
- Guaranteed specs at $2.7 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}$ supplies
- Typical supply current 0.5 mA at 5 V
- Typical total harmonic distortion of 0.01% at 5 V
- 1.0 MHz gain-bandwidth
- Similar to popular LMC6482/4
- Input common-mode range includes V^{-}and $\mathrm{V}+$
- Tiny package outside dimensions- $120 \times 118 \times 56$ mils, $3.05 \times 3.00 \times 1.43 \mathrm{~mm}$

Applications

- Mobile communications
- Notebooks and PDAs
- Battery powered products
- Sensor interface

Connection Diagrams

Package	Ordering Information	NSC Drawing Number	Package Marking	Supplied As
8-Pin DIP	LMC7101AIN	N08E	LMC7101AIN	Rails
8-Pin DIP	LMC7101BIN	N08E	LMC7101BIN	Rails
5-Pin SOT 23-5	LMC7101AIM5	MA05A	A00A	250 Units on Tape and Reel
5-Pin SOT 23-5	LMC7101BIM5	MA05A	A00B	250 Units on Tape and Reel
5-Pin SOT 23-5	LMC7101AIM5X	MA05A	A00A	3k Units Tape and Reel
5-Pin SOT 23-5	LMC7101BIM5X	MA05A	A00B	3k Units Tape and Reel

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National	Semiconductor Sales
Office/Distributors for availability and specifications.	
ESD Tolerance (Note 2)	2000 V
Difference Input Voltage	\pm Supply Voltage
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},(\mathrm{~V}-)-0.3 \mathrm{~V}$
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	16 V
Current at Input Pin	$\pm 5 \mathrm{~mA}$
Current at Output Pin (Note 3)	$\pm 35 \mathrm{~mA}$
Current at Power Supply Pin	35 mA
Lead Temp. (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 4)	$150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 1)

Supply Voltage Junction Temperature Range LMC7101AI, LMC7101BI	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$

Thermal Resistance ($\boldsymbol{\theta}_{\mathrm{JA}}$)

N Package, 8-Pin Molded DIP	$115^{\circ} \mathrm{C} / \mathrm{W}$
M05A Package, 5 -Pin Surface Mt.	$325^{\circ} \mathrm{C} / \mathrm{W}$

2.7V Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}$, $\mathrm{V}^{-}=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC7101AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC7101BI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}+=2.7 \mathrm{~V}$	0.11	6	9	mV max
TCV ${ }_{\text {os }}$	Input Offset Voltage Average Drift		1			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		1.0	64	64	pA max
los	Input Offset Current		0.5	32	32	pA max
$\mathrm{R}_{\text {IN }}$	Input Resistance		>1			Tera Ω
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.7 \mathrm{~V} \\ & \mathrm{~V}+=2.7 \mathrm{~V} \end{aligned}$	70	55	50	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=\mathrm{V}$ For CMRR $\geq 50 \mathrm{~dB}$	0.0	0.0	0.0	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			3.0	2.7	2.7	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=1.35 \mathrm{~V} \text { to } 1.65 \mathrm{~V} \\ & \mathrm{~V}^{-}=-1.35 \mathrm{~V} \text { to }-1.65 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \end{aligned}$	60	50	45	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance		3			pF
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	2.45	2.15	2.15	V min
			0.25	0.5	0.5	V max
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	2.68	2.64	2.64	$V_{\text {min }}$
			0.025	0.06	0.06	V max
Is	Supply Current		0.5	$\begin{aligned} & 0.81 \\ & 0.95 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.81 \\ & 0.95 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{max} \\ & \hline \end{aligned}$
SR	Slew Rate	(Note 8)	0.7			V/ $\mu \mathrm{s}$
GBW	Gain-Bandwidth Product		0.6			MHz

3V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{j}}^{\prime}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=$ $3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	LMC7101A Limit (Note 6)	$\begin{aligned} & \text { LMC7101BI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		0.11	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 7 \\ & 9 \end{aligned}$	mV max
$\mathrm{TCV}_{\text {OS }}$	Input Offset Voltage Average Drift		1			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current		1.0	64	64	pA max
los	Input Offset Current		0.5	32	32	pA max
RIN	Input Resistance		>1			Tera Ω
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 3 \mathrm{~V} \\ & \mathrm{~V}+=3 \mathrm{~V} \end{aligned}$	74	64	60	db min
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	0.0	0.0	0.0	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			3.3	3.0	3.0	$\underset{\max }{V}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=1.5 \mathrm{~V} \text { to } 7.5 \mathrm{~V} \\ & \mathrm{~V}^{-}=-1.5 \mathrm{~V} \text { to }-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CM}}=0 \end{aligned}$	80	68	60	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
$\mathrm{Cl}_{\text {IN }}$	Common-Mode Input Capacitance		3			pF
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	2.8	2.6	2.6	$V_{\text {min }}$
			0.2	0.4	0.4	\checkmark max
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$	2.7	2.5	2.5	$V_{\text {min }}$
			0.37	0.6	0.6	\checkmark max
Is	Supply Current		0.5	$\begin{aligned} & 0.81 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.81 \\ & 0.95 \end{aligned}$	mA max

5V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC7101AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC7101BI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
V_{OS}	Input Offset Voltage	$\mathrm{V}^{+}=5 \mathrm{~V}$	0.11	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 7 \\ & 9 \end{aligned}$	mV \max
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift		1.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current		1	64	64	pA max
los	Input Offset Current		0.5	32	32	pA max
R_{IN}	Input Resistance		>1			Tera Ω
CMRR	Common-Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$	82	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{gathered} \mathrm{db} \\ \mathrm{~min} \\ \hline \end{gathered}$
+ PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { to } 15 \mathrm{~V} \\ & \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	82	$\begin{array}{r} 70 \\ 65 \\ \hline \end{array}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	dB min
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{-}=-5 \mathrm{~V} \text { to }-15 \mathrm{~V} \\ & \mathrm{~V}^{+}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-1.5 \mathrm{~V} \end{aligned}$	82	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.3	$\begin{aligned} & -0.20 \\ & \mathbf{0 . 0 0} \end{aligned}$	$\begin{aligned} & -0.20 \\ & \mathbf{0 . 0 0} \end{aligned}$	$\begin{gathered} \vee \\ \mathrm{min} \end{gathered}$
			5.3	$\begin{aligned} & 5.20 \\ & 5.00 \end{aligned}$	$\begin{gathered} 5.20 \\ 5.00 \end{gathered}$	$\begin{gathered} V \\ \max \end{gathered}$
$\mathrm{Cl}_{\text {IN }}$	Common-Mode Input Capacitance		3			pF
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	4.9	$\begin{aligned} & 4.7 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.6 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			0.1	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.24 \end{aligned}$	$\begin{gathered} V \\ \max \end{gathered}$
		$R_{L}=600 \Omega$	4.7	$\begin{gathered} 4.5 \\ 4.24 \\ \hline \end{gathered}$	$\begin{gathered} 4.5 \\ 4.24 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			0.3	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.65 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
Isc	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	24	$\begin{aligned} & 16 \\ & \mathbf{1 1} \end{aligned}$	$\begin{aligned} & 16 \\ & \mathbf{1 1} \end{aligned}$	mA min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	19	$\begin{aligned} & 11 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 11 \\ & 7.5 \end{aligned}$	mA min
Is	Supply Current		0.5	$\begin{aligned} & 0.85 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 1.0 \end{aligned}$	mA \max

5V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=$ $5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC7101AI Limit (Note 6)	LMC7101BI Limit (Note 6)	Units
T.H.D.	Total Harmonic Distortion	$\mathrm{F}=10 \mathrm{kHz}, \mathrm{AV}_{2}=-2$ $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=4.0 \mathrm{VPP}^{2}$	0.01			$\%$
SR	Slew Rate		1.0			$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain_Bandwidth Product		1.0			MHz

15V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=$
$15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { LMC7101AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC7101BI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
V_{OS}	Input Offset Voltage		0.11			mV max
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift		1.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Current		1.0	64	64	pA max
los	Input Offset Current		0.5	32	32	pA max
RIN	Input Resistance		>1			Tera Ω
CMRR	Common-Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$	82	$\begin{array}{r} 70 \\ 65 \end{array}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	dB min
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { to } 15 \mathrm{~V} \\ & \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	82	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{-}=-5 \mathrm{~V} \text { to }-15 \mathrm{~V} \\ & \mathrm{~V}^{+}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-1.5 \mathrm{~V} \end{aligned}$	82	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
$V_{C M}$	Input Common-Mode Voltage Range	$\mathrm{V}^{+}=5 \mathrm{~V}$ For CMRR $\geq 50 \mathrm{~dB}$	-0.3	$\begin{gathered} -0.20 \\ \mathbf{0 . 0 0} \\ \hline \end{gathered}$	$\begin{array}{r} -0.20 \\ 0.00 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			15.3	$\begin{gathered} 15.20 \\ 15.00 \end{gathered}$	$\begin{gathered} 15.20 \\ \mathbf{1 5 . 0 0} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
A_{V}	Large Signal Voltage Gain	$R_{L}=2 k \Omega$ Sourcing (Note 7) Sinking	$\begin{aligned} & 340 \\ & 24 \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \\ & 15 \\ & 10 \end{aligned}$	V/mV
		$\begin{array}{lr} R_{\mathrm{L}}=600 \Omega & \text { Sourcing } \\ \text { (Note 7) } & \text { Sinking } \\ \hline \end{array}$	$\begin{gathered} 300 \\ 15 \end{gathered}$	$\begin{gathered} 34 \\ 6 \end{gathered}$	$\begin{gathered} 34 \\ 6 \end{gathered}$	V/mV
$\mathrm{C}_{\text {IN }}$	Input Capacitance		3			pF
V_{0}	Output Swing	$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	14.7	$\begin{array}{r} 14.4 \\ 14.2 \\ \hline \end{array}$	$\begin{gathered} 14.4 \\ 14.2 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			0.16	$\begin{aligned} & 0.32 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.45 \end{aligned}$	$\begin{gathered} V \\ \max \end{gathered}$
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=600 \Omega \end{aligned}$	14.1	$\begin{gathered} 13.4 \\ 13.0 \\ \hline \end{gathered}$	$\begin{gathered} 13.4 \\ 13.0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \\ \hline \end{gathered}$
			0.5	$\begin{aligned} & 1.0 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \\ \hline \end{gathered}$
ISC	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ (Note 9)	50	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	mA \min
		Sinking, $\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$ (Note 9)	50	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 30 \\ 20 \\ \hline \end{array}$	mA min
Is	Supply Current		0.8	$\begin{aligned} & 1.50 \\ & 1.71 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 1.71 \end{aligned}$	mA max

15V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=$ $15 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	$\begin{aligned} & \text { LMC7101AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC7101BI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
SR	Slew Rate	$\mathrm{V}+=15 \mathrm{~V}$ (Note 8)	1.1	$\begin{aligned} & 0.5 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.4 \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}$ min
GBW	Gain-Bandwidth Product	$\mathrm{V}^{+}=15 \mathrm{~V}$	1.1			MHz
ϕ_{m}	Phase Margin		45			Deg
G_{m}	Gain Margin		10			dB
e_{n}	Input-Referred Voltage Noise	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V} \end{aligned}$	37			$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	1.5			$\frac{f A}{\sqrt{H z}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-2 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8.5 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	0.01			\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at $150^{\circ} \mathrm{C}$.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$ and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P D=$ $\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ and R_{L} connect to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 12.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 8: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as a Voltage Follower with a 10 V step input. Number specified is the slower of the positive and negative slew rates. $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to 7.5 V . Amp excited with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}$ Pp.
Note 9: Do not short circuit output to V^{+}when V^{+}is greater than 12 V or reliability will be adversely affected.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}=+2.7 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless specified
2.7V PERFORMANCE

Typical Performance Characteristics

Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless specified (Continued)
3V PERFORMANCE

Sourcing Current vs Output Voltage (3V)

5V PERFORMANCE

Sinking Current vs Output Voltage (3V)

COMMON MODE INPUT VOLTAGE (V)

CMRR vs Input Voltage (5V)

INPUT VOLTAGE (V)
$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless specified (Continued)

Sinking Current vs Output Voltage (15V)

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless specified (Continued)

$\mathrm{V}_{S}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless specified (Continued)

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, Single Supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless specified (Continued)
Stability vs
Capacitive Load

$\mathrm{v}_{\text {OUT }}(\mathrm{V})$

$\mathrm{V}_{\text {OUT }}(\mathrm{V})$

$\mathrm{V}_{\text {OUT }}(\mathrm{V})$

Application Information

1.0 Benefits of the LMC7101 Tiny Amp

Size. The small footprint of the SOT 23-5 packaged Tiny $\mathrm{amp},(0.120 \times 0.118$ inches, $3.05 \times 3.00 \mathrm{~mm}$) saves space on printed circuit boards, and enable the design of smaller electronic products. Because they are easier to carry, many customers prefer smaller and lighter products.
Height. The height (0.056 inches, 1.43 mm) of the Tiny amp makes it possible to use it in PCMCIA type III cards.
Signal Integrity. Signals can pick up noise between the signal source and the amplifier. By using a physically smaller amplifier package, the Tiny amp can be placed closer to the signal source, reducing noise pickup and increasing signal integrity. The Tiny amp can also be placed next to the signal destination, such as a buffer for the reference of an analog to digital converter.
Simplified Board Layout. The Tiny amp can simplify board layout in several ways. First, by placing an amp where amps are needed, instead of routing signals to a dual or quad device, long pc traces may be avoided.
By using multiple Tiny amps instead of duals or quads, complex signal routing and possibly crosstalk can be reduced.
DIPs available for prototyping. LMC7101 amplifiers packaged in conventional 8-pin dip packages can be used for prototyping and evaluation without the need to use surface mounting in early project stages.
Tapes of ten for prototyping. The SOT23-5 packaged devices are available in convenient and economical ten unit tapes for prototypes, evaluation, and small production runs.
Low THD. The high open loop gain of the LMC7101 amp allows it to achieve very low audio distortion-typically 0.01% at 10 kHz with a $10 \mathrm{k} \Omega$ load at 5 V supplies. This makes the Tiny an excellent for audio, modems, and low frequency signal processing.
Low Supply Current. The typical 0.5 mA supply current of the LMC7101 extends battery life in portable applications, and may allow the reduction of the size of batteries in some applications.
Wide Voltage Range. The LMC7101 is characterized at $15 \mathrm{~V}, 5 \mathrm{~V}$ and 3 V . Performance data is provided at these popular voltages. This wide voltage range makes the LMC7101 a good choice for devices where the voltage may vary over the life of the batteries.

2.0 Input Common Mode Voltage Range

The LMC7101 does not exhibit phase inversion when an input voltage exceeds the negative supply voltage. Figure 1 shows an input voltage exceeding both supplies with no resulting phase inversion of the output.
The absolute maximum input voltage is 300 mV beyond either rail at room temperature. Voltages greatly exceeding this maximum rating, as in Figure 2, can cause excessive current to flow in or out of the input pins, adversely affecting reliability.

TL/H/11991-8
FIGURE 1. An Input Voltage Signal Exceeds the LMC7101 Power Supply Voltages with No Output Phase Inversion

TL/H/11991-9
FIGURE 2. A $\pm 7.5 \mathrm{~V}$ Input Signal Greatly Exceeds the 3V Supply in Figure 3 Causing No Phase Inversion Due to $\mathrm{R}_{\mathbf{I}}$

Applications that exceed this rating must externally limit the maximum input current to $\pm 5 \mathrm{~mA}$ with an input resistor as shown in Figure 3.

TL/H/11991-10
FIGURE 3. RI Input Current Protection for Voltages Exceeding the Supply Voltage

3.0 Rail-To-Rail Output

The approximate output resistance of the LMC7101 is 180Ω sourcing and 130Ω sinking at $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ and 110Ω sourcing and 80Ω sinking at $V_{S}=5 \mathrm{~V}$. Using the calculated output resistance, maximum output voltage swing can be estimated as a function of load.

4.0 Capacitive Load Tolerance

The LMC7101 can typically directly drive a 100 pF load with $\mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}$ at unity gain without oscillating. The unity gain follower is the most sensitive configuration. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-amp's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation.
Capacitive load compensation can be accomplished using resistive isolation as shown in Figure 4. This simple technique is useful for isolating the capacitive input of multiplexers and A/D converters.

TL/H/11991-11
FIGURE 4. Resistive Isolation of a $\mathbf{3 3 0}$ pF Capacitive Load

5.0 Compensating for Input Capacitance when Using Large Value Feedback Resistors

When using very large value feedback resistors, (usually $>500 \mathrm{k} \Omega$) the large feed back resistance can react with the input capacitance due to transducers, photodiodes, and circuit board parasitics to reduce phase margins.

The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in Figure 5), C_{f} is first estimated by:

$$
\begin{gathered}
\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{\mathrm{N}}} \geq \frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{f}} \\
\text { or } \\
\mathrm{R}_{1} \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{2} \mathrm{C}_{f}
\end{gathered}
$$

which typically provides significant overcompensation.
Printed circuit board stray capacitance may be larger or smaller than that of a breadboard, so the actual optimum value for C_{F} may be different. The values of C_{F} should be checked on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.)

TL/H/11991-12
FIGURE 5. Cancelling the Effect of Input Capacitance

SOT-23-5 Tape and Reel Specification

TAPE FORMAT

Tape Section	\# Cavities	Cavity Status	Cover Tape Status
Leader (Start End)	$0(\mathrm{~min})$	Empty	Sealed
	$75(\mathrm{~min})$	Empty	Sealed
	3000	Filled	Sealed
	250	Filled	Sealed
Trailer (Hub End)	$125(\mathrm{~min})$	Empty	Sealed
	$0(\mathrm{~min})$	Empty	Sealed

TAPE DIMENSIONS

SOT-23-5 Tape and Reel Specification (Continued)
 REEL DIMENSIONS

TL/H/11991-14

8 mm	$\mathbf{7 . 0 0}$	0.059	$\mathbf{0 . 5 1 2}$	0.795	2.165	$0.331+0.059 /-0.000$	0.567	$\mathrm{~W} 1+0.078 /-\mathbf{0 . 0 3 9}$
	330.00	1.50	13.00	20.20	55.00	$8.40+1.50 /-\mathbf{0 . 0 0}$	14.40	$\mathrm{~W} 1+2.00 /-1.00$
Tape Size	A	B	C	D	N	W 1	W 2	W 3

6.0 SPICE Macromodel

A SPICE macromodel is available for the LMC7101. This model includes simulation of:

- Input common-mode voltage range
- Frequency and transient response
- GBW dependence on loading conditions
- Quiescent and dynamic supply current
- Output swing dependence on loading conditions and many more characteristics as listed on the macro model disk. Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk. brary disk.

LMC7111

Tiny CMOS Operational Amplifier with Rail-to-Rail Input and Output

General Description

The LMC7111 is a micropower CMOS operational amplifier available in the space saving SOT 23-5 package. This makes the LMC7111 ideal for space and weight critical designs. The wide common-mode input range makes it easy to design battery monitoring circuits which sense signals above the V^{+}supply. For easy prototyping, the LMC7111 is available in a conventional 8 -pin DIP package. The LMC7111 is available in two offset voltage grades, 3 mV and 7 mV . The main benefits of the Tiny package are most apparent in small portable electronic devices, such as mobile phones, pagers, and portable computers. The tiny amplifiers can be placed on a board where they are needed, simplifying board layout.

Features

- Tiny SOT23-5 package saves space
- Very wide common mode input range
- Specified at $2.2 \mathrm{~V}, 2.7 \mathrm{~V}, 3 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$, and 10 V
- Typical supply current $25 \mu \mathrm{~A}$ at 5 V
- 50 kHz gain-bandwidth at 5 V
- Similar to popular LMC6462
- Output to within 20 mV of supply rail at 100 K load
- Low input current 100 fA

Applications

- Mobile communications
- Notebooks and PDAs
- Current sensing for battery chargers
- Portable electronics
- Sensor interface
- Battery monitoring

Connection Diagrams

TL/H/12352-2
Top View

Ordering Information

Package	Ordering Information	NSC Drawing Number	Package Marking	Transport Media
8-Pin DIP	LMC7111AIN	N08E	LMC7111AIN	Rails
8-Pin DIP	LMC7111BIN	N08E	LMC7111BIN	Rails
5-Pin SOT23-5	LMC7111AIM5	MA05A	A01A	250 Units on Tape and Reel
5-Pin SOT23-5	LMC7111BIM5	MA05A	A01B	250 Units on Tape and Reel
5-Pin SOT23-5	LMC7111AIM5X	MA05A	A01A	3K Units on Tape and Reel
5-Pin SOT23-5	LMC7111BIM5X	MA05A	A01B	3K Units on Tape and Reel

LPC660

Low Power CMOS Quad Operational Amplifier

General Description

The LPC660 CMOS Quad operational amplifier is ideal for operation from a single supply. It features a wide range of operating voltage from +5 V to +15 V and features rail-torail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input V_{OS}, drift, and broadband noise as well as voltage gain (into $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$) are all equal to or better than widely accepted bipolar equivalents, while the power supply requirement is typically less than 1 mW .
This chip is built with National's advanced Double-Poly Sili-con-Gate CMOS process.
See the LPC662 datasheet for a Dual CMOS operational amplifier and LPC661 datasheet for a single CMOS operational amplifier with these same features.

Applications

- High-impedance buffer
- Precision current-to-voltage converter
- Long-term integrator
- High-impedance preamplifier
- Active filter
- Sample-and-Hold circuit
- Peak detector

Features

■ Rail-to-rail output swing

- Micropower operation
- Specified for $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads
- High voltage gain
- Low input offset voltage 120 dB
- Low offset voltage drift
- Ultra low input bias current
- Input common-mode includes V -
- Operation range from +5 V to +15 V
- Low distortion
0.01% at 1 kHz
- Slew rate
$0.11 \mathrm{~V} / \mu \mathrm{s}$
- Full military temp. range available

Connection Diagram

14-Pin DIP/SO

Ordering Information

Package	Temperature Range		NSC Drawing	Transport Media
	Milltary	Industrial		Rail
14-Pin Side Brazed Ceramic DIP	LPC660AMD		D14E	Rail
14-Pin Small Outline		LPC660AIM or LPC660IM	M14A	Rail Tape and Reel
14-Pin Molded DIP		LPC660AIN or LPC660IN	N14A	Rail
14-Pin Ceramic DIP	LPC660AMJ/883		J14A	Rail

Absolute Maximum Ratings (Note 3)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Differential Input Voltage	\pm Supply Voltage
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	16 V
Output Short Circuit to V^{+}	(Note 11)
Output Short Circuit to V^{-}	(Note 1)
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 2)	$150^{\circ} \mathrm{C}$
ESD Rating (C = 100 pF, $R=1.5 \mathrm{k} \Omega)$	1000 V
Power Dissipation	$($ Note 2$)$
Current at Input Pin	$\pm 5 \mathrm{~mA}$
Current at Output Pin	$\pm 18 \mathrm{~mA}$
Voltage at Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},(\mathrm{~V}-)-0.3 \mathrm{~V}$
Current at Power Supply Pin	35 mA

Operating Ratings (Note 3)
Temperature Range

LPC660AM	$-55^{\circ} \mathrm{C} \leq T_{J} \leq+125^{\circ} \mathrm{C}$
LPC660AI	$-40^{\circ} \mathrm{C} \leq T_{J} \leq+85^{\circ} \mathrm{C}$
LPC660I	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$
upply Range	4.75 V to 15.5 V

Power Dissipation
(Note 9)
Thermal Resistance (θ_{JA}), (Note 10)

14-Pin Ceramic DIP	$90^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin Molded DIP	$85^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin SO	$115^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin Side Brazed Ceramic DIP	$90^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	$\begin{gathered} \text { LPC660AM } \\ \text { LPC660AMJ/883 } \end{gathered}$	LPC660AI	LPC6601	Units
			Limit (Notes 4, 8)	$\begin{aligned} & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	$\begin{aligned} & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	
Input Offset Voltage		1	3	3	6	mV max
			3.5	3.3	6.3	
Input Offset Voltage Average Drift		1.3				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current		0.002	20			pA max
			100	4	4	
Input Offset Current		0.001	20			$\begin{gathered} \mathrm{pA} \\ \max \end{gathered}$
			100	2	2	
Input Resistance		>1				Tera Ω
Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	70	70	63	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
			68	68	61	
Positive Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}+\leq 15 \mathrm{~V}$	83	70	70	63	$\begin{aligned} & \mathrm{dB} \\ & \text { min } \end{aligned}$
			68	68	61	
Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	84	84	74	$\begin{gathered} d B \\ \min \end{gathered}$
			82	83	73	
Input Common Mode Voltage Range	$\begin{aligned} & V^{+}=5 \mathrm{~V} \& 15 \mathrm{~V} \\ & \text { For CMRR }>50 \mathrm{~dB} \end{aligned}$	-0.4	-0.1	-0.1	-0.1.	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0	0	0	
		$\mathrm{V}+-1.9$	$\mathrm{V}^{+}-2.3$	$\mathrm{V}+$ - 2.3	$\mathrm{V}+$ - 2.3	$\begin{gathered} V \\ \min \end{gathered}$
			v+ - 2.6	v+-2.5	v+ - 2.5	

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}+=5 \mathrm{~V}$,
$\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified. (Continued)

Parameter	Conditions	Typ	LPC660AM LPC660AMJ/883	LPC660AI	LPC6601	Units
			Limit (Notes 4, 8)	Limit (Note 4)	Limit (Note 4)	
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega(\text { Note } 5)$ Sourcing Sinking	1000	400	400	300	V / mV min
			250	300	200	
		500	180	180	90	V / mV min
			70	120	70	
	$\left.\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { (Note } 5\right)$ Sourcing Sinking	1000	200	200	100	$\underset{\min }{\mathrm{V} / \mathrm{mV}}$
			150	160	80	
		250	100	100	50	V / mV min
			35	60	40	
Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	4.987	4.970	4.970	4.940	$\begin{gathered} V \\ \min \end{gathered}$
			4.950	4.950	4.910	
		0.004	0.030	0.030	0.060	$\begin{gathered} V \\ \max \end{gathered}$
			0.050	0.050	0.090	
	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	4.940	4.850	4.850	4.750	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			4.750	4.750	4.650	
		0.040	0.150	0.150	0.250	$\begin{gathered} \vee \\ \max \end{gathered}$
			0.250	0.250	0.350	
	$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.970	14.920	14.920	14.880	$\begin{gathered} V \\ \min \end{gathered}$
			14.880	14.880	14.820	
		0.007	0.030	0.030	0.060	$\begin{gathered} V \\ \max \end{gathered}$
			0.050	0.050	0.090	
	$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.840	14.680	14.680	14.580	$\begin{gathered} V \\ \min \end{gathered}$
			14.600	14.600	14.480	
		0.110	0.220	0.220	0.320	$\begin{gathered} V \\ \max \end{gathered}$
			0.300	0.300	0.400	
Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	22	16	16	13	mA min
			12	14	11	
		21	16	16	13	mA min
			12	14	11	
Output Current$V^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=13 \mathrm{~V}$ (Note 11)	40	19	28	23	mA min
			19	25	20	
		39	19	28	23	mA
			19	24	19	\min
Supply Current	All Four Amplifiers$V_{O}=1.5 \mathrm{~V}$	160	200	200	240	$\mu \mathrm{A}$ max
			250	230	270	

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LPC660AM LPC660AMJ/883	LPC660AI	LPC6601	Units
			Limit (Notes 4, 8)	Limit (Note 4)	Limit (Note 4)	
Slew Rate	(Note 6)	0.11	0.07	0.07	0.05	$\mathrm{V} / \mu \mathrm{s}$ min
			0.04	0.05	0.03	
Gain-Bandwidth Product		0.35				MHz
Phase Margin		50				Deg
Gain Margin		17				dB
Amp-to-Amp Isolation	(Note 7)	130				dB
Input Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	42				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Total Harmonic Distortion	$\begin{aligned} & F=1 \mathrm{kHz}, A_{V}=-10 \\ & R_{\mathrm{L}}=100 \mathrm{k} \Omega, V_{\mathrm{O}}=8 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	0.01				\%

Note 1: Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 2: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}$ and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\max)}-T_{A}\right) \theta_{J A}$.
Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 4: Limits are guaranteed by testing or correlation.
Note 5: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 6: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 7: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{PP}}$.
Note 8: A military RETS electrical test specification is available on request. At the time of printing, the LPC660AMJ/883 RETS specification complied fully with the boldface limits in this column. The LPC660AMJ/883 may also be procured to a Standard Military Drawing specification.
Note 9: For operating at elevated temperatures, the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 10: All numbers apply for packages soldered directly into a PC board.
Note 11: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Common-Mode Voltage Range vs Temperature

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise speciied (Continued)

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

TL/H/10547-4
Note: Avoid resistive loads of less than 500Ω, as they may cause instability.

Application Hints

AMPLIFIER TOPOLOGY

The topology chosen for the LPC660 is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow rail-to-rail output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator.
As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C_{f} and C_{ff}) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward.

TL/H/10547-6
FIGURE 1. LPC660 Circuit Topology (Each Amplifier)

TL/H/10547-5

The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, for load resistance of at least $5 \mathrm{k} \Omega$. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, when driving load resistance of $5 \mathrm{k} \Omega$ or less, the gain will be reduced as indicated in the Electrical Characteristics. The op amp can drive load resistance as low as 500Ω without instability.

COMPENSATING INPUT CAPACITANCE

Refer to the LMC660 or LMC662 datasheets to determine whether or not a feedback capacitor will be necessary for compensation and what the value of that capacitor would be.

CAPACITIVE LOAD TOLERANCE

Like many other op amps, the LPC660 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See the Typical Performance Characteristics.
The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. The addition of a small resistor (50Ω to 100Ω) in series with the op amp's output, and a capacitor (5 pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit

Application Hints (Continued)

operation. Thus, larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation.

TL/H/10547-7
FIGURE 2a. Rx, Cx Improve Capacitive Load Tolerance
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 2b). Typically a pull up resistor conducting $50 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/10547-26

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LPC660, typically less than 0.04 pA , it is essential to have an excellent layout. Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LPC660's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 10^{12} ohms, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of an input. This would cause a 100 times degradation from the LPC660's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 1011 ohms would cause only 0.05 pA of leakage current, or perhaps a minor (2:1) degradation of the amplifier's performance. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be tied to ground and still provide some protection; see Figure 4d.

FIGURE 2b. Compensating for Large Capacitive Loads with A Pull Up Resistor

FIGURE 3. Example of Guard Ring in P.C. Board Layout using the LPC660

Application Hints (Continued)

TL/H/10547-20
(a) Inverting Amplifier

TL/H/10547-22
(c) Follower

TL/H/10547-21
(b) Non-Inverting Amplifier

(d) Howland Current Pump
FIGURE 4. Guard Ring Connections

The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

BIAS CURRENT TESTING

The test method of Figure 6 is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch S2 momentarily. When S2 is opened, then $\quad 1^{-}=\frac{d V_{\text {OUT }}}{d t} \times \mathrm{C} 2$.

TL/H/10547-25
FIGURE 6. Simple Input Bias Current Test Circuit

Application Hints (Continued)

A suitable capacitor for C 2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of I^{-}, the leakage of the capacitor and socket must be taken into account. Switch S 2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C2 could cause errors.

Similarly, if S1 is shorted momentarily (while leaving S2 shorted)

$$
\mathrm{I}+=\frac{\mathrm{dV}}{\mathrm{OUT}} \mathrm{dt} \times\left(\mathrm{C}_{1}+\mathrm{C}_{\mathrm{x}}\right)
$$

where C_{x} is the stray capacitance at the + input.

Typical Single-Supply Applications $\left(\mathrm{N}^{+}=5.0 \mathrm{~V} \mathrm{VC}\right)$

Photodiode Current-to-Voltage Converter

TL/H/10547-17
Note: A 5 V bias on the photodiode can cut its capacitance by a factor of 2 or 3, leading to improved response and lower noise. However, this bias on the photodiode will cause photodiode leakage (also known as its dark current).

Micropower Current Source

(Upper limit of output range dictated by input common-mode range; lower limit dictated by minimum current requirement of LM385.)

Low-Leakage Sample-and-Hold

TL/H/10547-8
Instrumentation Amplifier

If $\mathrm{R} 1=\mathrm{R} 5, \mathrm{R} 3=\mathrm{R} 6$, and $\mathrm{R} 4=\mathrm{R} 7$;
then $\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{R 2+2 R 1}{R 1} \times \frac{R 4}{R 3}$
$\therefore A_{V} \approx 100$ for circuits shown.
For good CMRR over temperature, low drift resistors should be used. Matching of R3 to R6 and R4 to R7 affects CMRR. Gain may be adjusted through R2. CMRR may be adjusted through R7.

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

Oscillator frequency is determined by $\mathrm{R} 1, \mathrm{R} 2, \mathrm{C} 1$, and C 2 :

$$
f_{\text {OSC }}=1 / 2 \pi R C
$$

where $\mathrm{R}=\mathrm{R} 1=\mathrm{R} 2$ and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2$.
This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.5 V

Typical Single-Supply Applications $\mathrm{N}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}$ (Continued)

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)

TL/H/10547-15

High Gain Amplifier with Offset Voltage Reduction

Gain $=-46.8$
Output offset voltage reduced to the level of the input offset voltage of the bottom amplifier (typically 1 mV), referred to $\mathrm{V}_{\text {BIAS }}$.

LPC661

Low Power CMOS Operational Amplifier

General Description

The LPC661 CMOS operational amplifier is ideal for operation from a single supply. It features a wide range of operating supply voltage from +5 V to +15 V , rail-to-rail output swing and an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input VOS, drift, and broadband noise as well as voltage gain (into $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$) are all equal to or better than widely accepted bipolar equivalents, while the supply current requirement is typically $55 \mu \mathrm{~A}$.
This chip is built with National's advanced Double-Poly Sili-con-Gate CMOS process.
See the LPC660 datasheet for a Quad CMOS operational amplifier or the LPC662 data sheet for a Dual CMOS operational amplifier with these same features.

Features (Typical unless otherwise noted)

- High voltage gain
- Low input offset voltage

120 dB

- Low offset voltage drift 3 mV
- Ultra low input bias current
$1.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Input common-mode range includes GND
- Operating range from +5 V to +15 V
- Low distortion
0.01% at 1 kHz
- Slew rate $0.11 \mathrm{~V} / \mu \mathrm{s}$

Applications

- High-impedance buffer
- Precision current-to-voltage converter
- Long-term integrator
- High-impedance preamplifier
- Active filter
- Sample-and-Hold circuit
- Peak detector
- Rail-to-rail output swing
- Low supply current $55 \mu \mathrm{~A}$

■ Specified for $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads

Connection Diagram

TL/H/11227-1

Ordering Information

Package	Temperature Range		NSC Drawing	Transport Media
	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Industrial } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
8-Pin Small Outline		$\begin{aligned} & \text { LPC661AIM } \\ & \text { LPC661IM } \end{aligned}$	M08A	Tape and Reel Rail
8-Pin Molded DIP	LPC661AMN	$\begin{aligned} & \text { LPC661AIN } \\ & \text { LPC661IN } \end{aligned}$	N08E	Rail

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Differential Input Voltage
\pm Supply Voltage
(Note 9)
(Note 2)
Output Short Circuit to V^{-}
$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
Junction Temperature (Note 3)
Power Dissipation
$150^{\circ} \mathrm{C}$
(Note 3)
ESD Rating ($\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$)

Current at Input Pin	$\pm 5 \mathrm{~mA}$
Current at Output Pin	$\pm 18 \mathrm{~mA}$
Voltage Input/Output Pin	$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
Current at Power Supply Pin	

Operating Ratings (Note 1)

Supply Voltage	$4.75 \mathrm{~V} \leq \mathrm{V}+\leq 15.5 \mathrm{~V}$
Junction Temperature Range	
LPC661AM	$-55^{\circ} \mathrm{C} \leq \mathrm{TJ}^{\circ} \leq+125^{\circ} \mathrm{C}$
LPC661AI	$-40^{\circ} \mathrm{C} \leq \mathrm{TJ} \leq+85^{\circ} \mathrm{C}$
LPC6611	$-40^{\circ} \mathrm{C} \leq \mathrm{TJ} \leq+85^{\circ} \mathrm{C}$
Power Dissipation	
(Note 7)	
Thermal Resistance $\left(\theta_{J A}\right)$ (Note 8)	
8-Pin DIP	$: 101^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SO	$165^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	$\begin{aligned} & \text { LPC661AM } \\ & \text { Limit } \\ & \text { (Note 4) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { LPC661AI } \\ \text { Limit } \\ \text { (Note 4) } \\ \hline \end{gathered}$		Units (Limit)
Vos	Input Offset Voltage		1	$\begin{gathered} 3 \\ 3.5 \end{gathered}$	$\begin{gathered} 3 \\ 3.3 \end{gathered}$	$\begin{gathered} 6 \\ 6.3 \end{gathered}$	mV
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift		1.3				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		0.002	$\begin{gathered} 20 \\ 100 \end{gathered}$	4	4	pA max
los	Input Offset Current		0.001	$\begin{gathered} 20 \\ 100 \end{gathered}$	2	2	pA \max
$\mathrm{R}_{\text {IN }}$	Input Resistance		>1				Tera Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}+=15 \mathrm{~V} \end{aligned}$	83	$\begin{aligned} & 70 \\ & \mathbf{6 8} \end{aligned}$	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & 63 \\ & 61 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
+PSRR	Positive Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}+\leq 15 \mathrm{~V}$	83	$\begin{aligned} & 70 \\ & \mathbf{6 8} \end{aligned}$	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & 63 \\ & 61 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
-PSRR	Negative Power Supply Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	$\begin{aligned} & 84 \\ & 82 \end{aligned}$	$\begin{aligned} & 84 \\ & 83 \end{aligned}$	$\begin{aligned} & 74 \\ & 73 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
V_{CM}	Input Common Mode Voltage Range	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { for CMRR } \geq 50 \mathrm{~dB} \end{aligned}$	-0.4	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			$\mathrm{V}+-1.9$	$\begin{aligned} & V^{+}-2.3 \\ & \mathbf{v}^{+}-2.6 \end{aligned}$	$\begin{aligned} & v^{+}-2.3 \\ & \mathbf{v}^{+}-2.5 \end{aligned}$	$\begin{gathered} v^{+}-2.3 \\ \mathbf{v}+-2.5 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
A_{V}	Large Signal Voltage Gain	Sourcing $R_{\mathrm{L}}=100 \mathrm{k} \Omega \text { (Note 5) }$	1000	$\begin{array}{r} 400 \\ 250 \end{array}$	$\begin{aligned} & 400 \\ & 300 \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \end{aligned}$	V / mV min
		Sinking $R_{\mathrm{L}}=100 \mathrm{k} \Omega \text { (Note 5) }$	500	$\begin{aligned} & 180 \\ & 70 \end{aligned}$	$\begin{gathered} 180 \\ 120 \end{gathered}$	$\begin{aligned} & 90 \\ & 70 \end{aligned}$	V / mV min
		Sourcing $\left.R_{L}=5 \mathrm{k} \Omega \text { (Note } 5\right)$	1000	$\begin{aligned} & 200 \\ & 150 \end{aligned}$	$\begin{gathered} 200 \\ 160 \end{gathered}$	$\begin{aligned} & 100 \\ & 80 \end{aligned}$	V / mV min
		Sinking $\left.R_{L}=5 \mathrm{k} \Omega \text { (Note } 5\right)$	250	$\begin{aligned} & 100 \\ & 35 \end{aligned}$	$\begin{aligned} & 100 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ uniess otherwise noted.
Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter	Conditions	Typ	$\begin{aligned} & \text { LPC661AM } \\ & \text { Limit } \\ & \text { (Note 4) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LPC661AI } \\ & \text { Limit } \\ & \text { (Note 4) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LPC661I } \\ & \text { Limit } \\ & \text { (Note 4) } \\ & \hline \end{aligned}$	Units (Limit)
V_{0}	Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.987	$\begin{gathered} 4.970 \\ 4.950 \end{gathered}$	$\begin{gathered} 4.970 \\ 4.950 \end{gathered}$	$\begin{gathered} 4.940 \\ 4.910 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			0.004	$\begin{gathered} 0.030 \\ 0.050 \end{gathered}$	$\begin{gathered} 0.030 \\ \mathbf{0 . 0 5 0} \end{gathered}$	$\begin{gathered} 0.060 \\ 0.090 \end{gathered}$	$\underset{\max }{V}$
		$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	4.940	$\begin{gathered} 4.850 \\ 4.750 \\ \hline \end{gathered}$	$\begin{gathered} 4.850 \\ \mathbf{4 . 7 5 0} \end{gathered}$	$\begin{gathered} 4.750 \\ \mathbf{4 . 6 5 0} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			0.040	$\begin{gathered} 0.150 \\ 0.250 \end{gathered}$	$\begin{gathered} 0.150 \\ 0.250 \end{gathered}$	$\begin{gathered} 0.250 \\ 0.350 \end{gathered}$	$\begin{gathered} V \\ \max \end{gathered}$
		$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=100 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.970	$\begin{gathered} 14.920 \\ 14.880 \end{gathered}$	$\begin{gathered} 14.920 \\ 14.880 \end{gathered}$	$\begin{gathered} 14.880 \\ 14.820 \end{gathered}$	$\begin{gathered} \text { V } \\ \min \end{gathered}$
			0.007	$\begin{gathered} 0.030 \\ 0.050 \end{gathered}$	$\begin{gathered} 0.030 \\ 0.050 \end{gathered}$	$\begin{gathered} 0.060 \\ 0.090 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } 7.5 \mathrm{~V} \end{aligned}$	14.840	$\begin{gathered} 14.680 \\ 14.600 \\ \hline \end{gathered}$	$\begin{gathered} 14.680 \\ 14.600 \end{gathered}$	$\begin{gathered} 14.580 \\ 14.480 \end{gathered}$	$\begin{gathered} V \\ \min \end{gathered}$
			0.110	$\begin{gathered} 0.220 \\ 0.300 \end{gathered}$	$\begin{gathered} 0.220 \\ 0.300 \end{gathered}$	$\begin{aligned} & 0.320 \\ & 0.400 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
10	Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 13 \\ & 11 \end{aligned}$	mA min
		Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	$\begin{aligned} & 16 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 11 \\ & \hline \end{aligned}$	mA min
10	Output Current$V^{+}=15 V$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	40	$\begin{aligned} & 19 \\ & 19 \end{aligned}$	$\begin{array}{r} 28 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & 23 \\ & 20 \\ & \hline \end{aligned}$	mA \min
		Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 9)	39	$\begin{aligned} & 19 \\ & 19 \end{aligned}$	$\begin{aligned} & 28 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 19 \end{aligned}$	mA \min
Is	Supply Current	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	55	$\begin{aligned} & 60 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \\ & \hline \end{aligned}$	$\begin{array}{r} 70 \\ \mathbf{8 5} \\ \hline \end{array}$	$\mu \mathrm{A}$ \max
		$\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	58	$\begin{array}{r} 75 \\ \mathbf{8 5} \\ \hline \end{array}$	$\begin{aligned} & 75 \\ & \mathbf{8 5} \\ & \hline \end{aligned}$	$\begin{gathered} 90 \\ 105 \end{gathered}$	$\mu \mathrm{A}$ max

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M}$ unless otherwise noted. Boldface limits apply at the temperature extremes; all other limits $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	$\begin{aligned} & \text { LPC661AM } \\ & \text { Limit } \\ & \text { (Note 4) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LPC661AI } \\ & \text { Limit } \\ & \text { (Note 4) } \\ & \hline \end{aligned}$		Units (Limit)
SR	Slew Rate	(Note 6)	0.11	$\begin{aligned} & 0.07 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.03 \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}$ min
GBW	Gain-Bandwidth Product		350				kHz
$\phi \mathrm{m}$	Phase Margin		50				Deg
G_{M}	Gain Margin		17				dB
θ_{n}	Input Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	42				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
T.H.D.	Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, A_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	0.01				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 2: Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.

Note 3: The maximum power dissipation is a function of $T_{J(m a x)}, \theta_{J A}$ and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\text { max })}-T_{A}\right) / \theta_{J A}$.
Note 4: Limits are guaranteed by testing or correlation.
Note 5: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 6: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 7: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$
Note 8: All numbers apply for packages soldered directly into a PC board.
Note 9: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unloss otherwise specified

Output Characteristics Current Sourcing

Common-Mode Voltage Range vs Temperature

Input Voltage Noise vs Frequency

Power Supply Rejection Ratio vs Frequency

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Open-Loop Voltage Gain vs Temperature

Inverting Slew Rate vs Temperature

Open-Loop
Frequency Response

Gain Error (Vos vs $\mathrm{V}_{\text {OUT }}$)

Large-Signal Pulse Non-Inverting Response

$$
\text { § } \quad\left(A_{V}=+1\right)
$$

Gain and Phase Responses

Non-Inverting Slew Rate vs Temperature

Non-Inverting Small Signal Pulse Response

TL/H/11227-3

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

TL/H/11227-4
Note: Avoid resistive loads of less than 500Ω, as they may cause instability.

Application Hints

AMPLIFIER TOPOLOGY

The topology chosen for the LPC661 is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow rail-to-rail output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator.
As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C_{f} and C_{ff}) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward.

TL/H/11227-6

TL/H/11227-5

The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, for load resistance of at least $5 \mathrm{k} \Omega$. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, when driving load resistance of $5 \mathrm{k} \Omega$ or less, the gain will be reduced as indicated in the Electrical Characteristics. The op amp can drive load resistance as low as 500Ω without instability.

COMPENSATING INPUT CAPACITANCE

Refer to the LMC660 or LMC662 datasheets to determine whether or not a feedback capacitor will be necessary for compensation and what the value of that capacitor would be.

CAPACITIVE LOAD TOLERANCE

Like many other op amps, the LPC661 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See the Typical Performance Characteristics.
The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. The addition of a small resistor (50Ω to 100Ω) in series with the op amp's output, and a capacitor (5 pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit

FIGURE 1. LPC661 Circuit Topology

Application Hints (Continued)

operation. Thus, larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation.

FIGURE 2a. Rx, Cx Improve Capacitive Load Tolerance Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 2b). Typically a pull up resistor conducting $50 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/11227-24

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LPC661, typically less than 0.04 pA , it is essential to have an excellent layout. Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LPC661's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12} \Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of an input. This would cause a 100 times degradation from the LPC660's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11} \Omega$ would cause only 0.05 pA of leakage current, or perhaps a minor ($2: 1$) degradation of the amplifier's performance. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be tied to ground and still provide some protection; see Figure 4d.

FIGURE 2b. Compensating for Large Capacitive Loads with A Pull Up Resistor

FIGURE 3. Example of Guard Ring in P.C. Board Layout, Using the LPC660

Application Hints (Continued)

FIGURE 4. Guard Ring Connections

The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

BIAS CURRENT TESTING

The test method of Figure 6 is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch S2 momentarily. When S2 is opened, then

TL/H/11227-14
FIGURE 6. Simple Input Blas Current Test Circuit

FIGURE 5. Air Wiring

Application Hints (Continued)

A suitable capacitor for C 2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of 1^{-}, the leakage of the capacitor and socket must be taken into account. Switch S2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C2 could cause errors.

Similarly, if S1 is shorted momentarily (while leaving S2 shorted)

$$
I^{+}=\frac{\mathrm{dV}_{\mathrm{OUT}}}{\mathrm{dt}} \times\left(\mathrm{C}_{1}+\mathrm{C}_{\mathrm{x}}\right)
$$

where C_{x} is the stray capacitance at the + input.

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{v}_{\mathrm{DC}}\right)$

TL/H/11227-15
Note: A 5V bias on the photodiode can cut its capacitance by a factor of 2 or 3 , leading to improved response and lower noise. However, this bias on the photodiode will cause photodiode leakage (also known as its dark current).

(Upper limit of output range dictated by input common-mode range; lower limit dictated by minimum current requirement of LM385.)

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V} \mathrm{VCl}\right.$ (Continued)

Oscillator frequency is determined by R1, R2, C1, and C2:

$$
\mathrm{fOSC}=1 / 2 \pi \mathrm{RC}
$$

where $\mathrm{R}=\mathrm{R} 1=\mathrm{R} 2$ and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2$.
This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.5 V

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)

LPC662

Low Power CMOS Dual Operational Amplifier

General Description

The LPC662 CMOS Dual operational amplifier is ideal for operation from a single supply. It features a wide range of operating voltage from +5 V to +15 V , rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input V_{OS}, drift, and broadband noise as well as voltage gain (into $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$) are all equal to or better than widely accepted bipolar equivalents, while the power supply requirement is typically less than 0.5 mW .
This chip is built with National's advanced Double-Poly Sili-con-Gate CMOS process.
See the LPC660 datasheet for a Quad CMOS operational amplifier and LPC661 for a single CMOS operational amplifier with these same features.

Applications

- High-impedance buffer
- Precision current-to-voltage converter
- Long-term integrator
- High-impedance preamplifier
- Active filter
- Sample-and-Hold circuit
- Peak detector

Features

- Rail-to-rail output swing
- Micropower operation (<0.5 mW)
- Specified for $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads
- High voltage gain 120 dB

■ Low input offset voltage 3 mV

- Low offset voltage drift
- Ultra low input bias current
- Input common-mode includes GND
- Operating range from +5 V to +15 V
- Low distortion
0.01% at 1 kHz
- Slew rate
- Full military temperature range available

Connection Diagram

TL/H/10548-1

Ordering Information

Package	Temperature Range		NSC Drawing	Transport Media
	Industrial	D08C		
Side Brazed Ceramic DIP	LPC662AMD		Rail	
8-Pin Small Outline		LPC662AIM or LPC662IM	M08A	Rail Tape and Reel
8-Pin Molded DIP		LPC662AIN or LPC662IN	N08E	Rail
8-Pin Ceramic DIP	LPC662AMJ/883		J08A	Rail

Absolute Maximum Ratings (Note 3)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Differential Input Voltage
\pm Supply Voltage
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
16V
Output Short Circuit to V^{+}
(Note 11)
Output Short Circuit to V -
Lead Temperature (Soldering, 10 sec .)
(Note 1)
$260^{\circ} \mathrm{C}$
Storage Temp. Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature
$150^{\circ} \mathrm{C}$
ESD Rating ($\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$)
1000 V
Power Dissipation
(Note 2)
Current at Input Pin
$\pm 5 \mathrm{~mA}$
Current at Output Pin
$\pm 18 \mathrm{~mA}$
Current at Power Supply Pin
35 mA
Voltage at Input/Output Pin
$\left(V^{+}\right)+0.3 V,\left(V^{-}\right)-0.3 V$

Operating Ratings (Note 3)
Temperature Range

LPC662AMJ/883
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
LPC662AM
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq T_{J} \leq+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq T_{J} \leq+85^{\circ} \mathrm{C}$
4.75 V to 15.5 V
(Note 9)
Power Dissipation
$100^{\circ} \mathrm{C} / \mathrm{W}$
$101^{\circ} \mathrm{C} / \mathrm{W}$

8 -Pin Molded DIP	$101^{\circ} \mathrm{C} / \mathrm{W}$
8 -Pin SO	$165^{\circ} \mathrm{C} / \mathrm{W}$

8 -Pin Side Brazed Ceramic DIP $100^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	$\begin{aligned} & \text { LPC662AM } \\ & \text { LPC662AMJ/883 } \\ & \text { Limit } \\ & \text { (Notes 4, 8) } \end{aligned}$	$\begin{aligned} & \text { LPC662AI } \\ & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$		Units
Input Offset Voltage		1	3	3	6	mV max
			3.5	3.3	6.3	
Input Offset Voltage Average Drift		1.3				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current			$\begin{gathered} 20 \\ 100 \end{gathered}$	4	4	pA max
Input Offset Current			20	2	2	pA max
			100			
Input Resistance		>1				Tera Ω
Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	70	70	63	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
			68	68	61	
Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	83	70	70	63	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
			68	68	61	
Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	84	84	74	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
			82	83	73	
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { For CMRR } \geq 50 \mathrm{~dB} \end{aligned}$	-0.4	-0.1	-0.1	-0.1	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0	0	0	
		$V^{+}-1.9$	$v+-2.3$	$\mathrm{V}+-2.3$	$\mathrm{V}+-2.3$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			v+-2.6	v+ - 2.5	v+-2.5	

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}+=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified. (Continued)

Parameter	Conditions	Typ	$\begin{aligned} & \text { LPC662AM } \\ & \text { LPC662AMJ/883 } \\ & \text { Limit } \\ & \text { (Notes 4, 8) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LPC662AI } \\ & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	$\begin{aligned} & \text { LPC662I } \\ & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	Units
Large Signal Voltage Gain	$R_{\mathrm{L}}=100 \mathrm{k} \Omega \text { (Note 5) }$ Sourcing Sinking	1000	400	400	300	V/mV min
			250	300	200	
		500	180	180	90	V / mV min
			70	120	70	
	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { (Note } 5 \text {) }$ Sourcing Sinking	1000	200	200	100	V / mV min
			150	160	80	
		250	100	100	50	V / mV min
			35	60	40	
Output Swing	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	4.987	4.970	4.970	4.940	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			4.950	4.950	4.910	
		0.004	0.030	0.030	0.060	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.050	0.050	0.090	
	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	4.940	4.850	4.850	4.750	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			4.750	4.750	4.650	
		0.040	0.150	0.150	0.250	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.250	0.250	0.350	
	$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=100 \mathrm{k} \Omega \text { to } V+/ 2 \end{aligned}$	14.970	14.920	14.920	14.880	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			14.880	14.880	14.820	
		0.007	0.030	0.030	0.060	$\begin{gathered} V \\ \max \end{gathered}$
			0.050	0.050	0.090	
	$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.840	14.680	14.680	14.580	$\begin{gathered} \vee \\ \min \end{gathered}$
			14.600	14.600	14.480	
		0.110	0.220	0.220	0.320	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.300	0.300	0.400	
Output Current$V^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	16	16	13	mA min
			12	14	11	
	Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	16	16	13	mA \min
			12	14	11	
Output Current$V^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	40	19	28	23	mA min
			19	25	20	
	Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$ (Note 11)	39	19	28	23	mA min
			19	24	19	
Supply Current	Both Amplifiers$V_{O}=1.5 \mathrm{~V}$	86	120	120	140	$\mu \mathrm{A}$ max
			145	140	160	

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LPC662AM LPC662AMJ/883 Limit (Notes 4, 8)	$\begin{aligned} & \text { LPC662AI } \\ & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	$\begin{aligned} & \text { LPC662I } \\ & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	Units
Slew Rate	(Note 6)	0.11	0.07	0.07	0.05	$\mathrm{V} / \mu \mathrm{s}$ min
			0.04	0.05	0.03	
Gain-Bandwidth Product		0.35				MHz
Phase Margin		50				Deg
Gain Margin		17				dB
Amp-to-Amp Isolation	(Note 7)	130				dB
Input Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	42				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Referred Current Noise	$F=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Total Harmonic Distortion	$\begin{aligned} & F=1 \mathrm{kHz}, A_{V}=-10, \mathrm{~V}+=15 \mathrm{~V} \\ & R_{\mathrm{L}}=100 \mathrm{k} \Omega, V_{O}=8 V_{P P} \end{aligned}$	0.01				\%

Note 1: Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of $\pm 30 \mathrm{~mA}$ over long term may adversely affect reliability.
Note 2: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation of any ambient temperature is $P_{D}=\left(T_{J(\text { max })}-T_{A}\right) / \theta_{J A}$.
Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 4: Limits are guaranteed by testing or correlation.
Note 5: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 6: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 7: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{PP}}$.
Note 8: A military RETS electrical test specification is available on request. At the time of printing, the LPC662AMJ/883 RETS specification complied fully with the boldface limits in this column. The LPC662AMJ/883 may also be procured to a Standard Military Drawing specification.
Note 9: For operating at elevated temperatures the device must be derated based on the thermal resistance $\theta_{J A}$ with $P_{D}=\left(T_{J}-T_{A}\right) / \theta_{J A}$.
Note 10: All numbers apply for packages soldered directly into a PC board.
Note 11: Do not connect output to V^{+}when V^{+}is greater than 13 V or reliability may be adversely affected.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Power Supply Rejection Ratio vs Frequency

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

TL/H/10548-4
Note: Avoid resistive loads of less than 500Ω, as they may cause instability.

Application Hints

AMPLIFIER TOPOLOGY

The topology chosen for the LPC662 is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow rail-to-rail output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator.
As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C_{f} and $\mathrm{C}_{f f}$) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward.

TL/H/10548-6
FIGURE 1. LPC662 Circuit Topology (Each Amplifier)

The large signal voltage gain while sourcing is comparable to traditional bipolar op amps for load resistance of at least $5 \mathrm{k} \Omega$. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, when driving load resistance of $5 \mathrm{k} \Omega$ or less, the gain will be reduced as indicated in the Electrical Characteristics. The op amp can drive load resistance as low as 500Ω without instability.

COMPENSATING INPUT CAPACITANCE

Refer to the LMC660 or LMC662 datasheets to determine whether or not a feedback capacitor will be necessary for compensation and what the value of that capacitor would be.

CAPACITIVE LOAD TOLERANCE

Like many other op amps, the LPC662 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See the Typical Performance Characteristics.
The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. The addition of a small resistor (50Ω to 100Ω) in series with the op amp's output, and a capacitor (5 pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit

Application Hints (Continued)

operation. Thus, larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation.

TL/H/10548-7
FIGURE 2a. Rx, Cx Improve Capacitive Load Tolerance
Capacitive load driving capability is enhanced by using a pull up resistor to V^{+}(Figure 2b). Typically a pull up resistor conducting $50 \mu \mathrm{~A}$ or more will significantly improve capacitive load responses. The value of the pull up resistor must be determined based on the current sinking capability of the amplifier with respect to the desired output swing. Open loop gain of the amplifier can also be affected by the pull up resistor (see Electrical Characteristics).

TL/H/10548-26

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low bias current of the LPC662, typically less than 0.04 pA , it is essential to have an excellent layout. Fortunately, the techniques for obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.
To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LPC662's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs. See Figure 3. To have a significant effect, guard rings should be placed on both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of 10^{12} ohms, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5 V bus adjacent to the pad of an input. This would cause a 100 times degradation from the LPC662's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of 10^{11} ohms would cause only 0.05 pA of leakage current, or perhaps a minor (2:1) degradation of the amplifier's performance. See Figures $4 a, 4 b, 4 c$ for typical connections of guard rings for standard op-amp configurations. If both inputs are active and at high impedance, the guard can be tied to ground and still provide some protection; see Figure 4d.

FIGURE 2b. Compensating for Large Capacitive Loads with A Pull Up Resistor

FIGURE 3. Example of Guard Ring in P.C. Board Layout, using the LPC660

Application Hints (Continued)

FIGURE 4. Guard Ring Connections

The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 5.

(Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.)

FIGURE 5. Air Wiring

BIAS CURRENT TESTING

The test method of Figure 6 is appropriate for bench-testing bias current with reasonable accuracy. To understand its operation, first close switch S2 momentarily. When S2 is opened, then

$$
\mathrm{I}^{-}=\frac{\mathrm{dV}_{\mathrm{OUT}}}{\mathrm{dt}} \times \mathrm{C} 2 .
$$

TL/H/10548-25
FIGURE 6. Simple Input Bias Current Test Circuit

Application Hints (Continued)

A suitable capacitor for C 2 would be a 5 pF or 10 pF silver mica, NPO ceramic, or air-dielectric. When determining the magnitude of I^{-}, the leakage of the capacitor and socket must be taken into account. Switch S2 should be left shorted most of the time, or else the dielectric absorption of the capacitor C 2 could cause errors.

Similarly, if S1 is shorted momentarily (while leaving S2 shorted)

$$
I^{+}=\frac{\mathrm{dV}_{\mathrm{OUT}}}{\mathrm{dt}} \times\left(\mathrm{C} 1+\mathrm{C}_{\mathrm{x}}\right)
$$

where C_{x} is the stray capacitance at the + input.

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Photodiode Current-to-Voltage Converter

TL/H/10548-17
Note: A 5 V bias on the photodiode can cut its capacitance by a factor of 2 or 3 , leading to improved response and lower noise. However, this bias on the photodiode will cause photodiode leakage (also known as its dark current).

Micropower Current Source

Upper limit of output range dictated by input common-mode range; lower limit dictated by minimum current requirement of LM385.)

Low-Leakage Sample-and-Hold

TL/H/10548-8
Instrumentation Amplifier

If R1 $=$ R5, R3 $=$ R6 and R4 $=$ R7; then

$$
\frac{V_{\text {OUT }}}{V_{I N}}=\frac{R 2+2 R 1}{R 2} \times \frac{R 4}{R 3}
$$

$\therefore A_{V} \approx 100$ for circuit shown.
For good CMRR over temperature, low drift resistors should be used. Matching of R3 to R6 and R4 to R7 affects CMRR. Gain may be adjusted through R2. CMRR may be adjusted through R7.

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right.$ (Continued)

Oscillator frequency is determined by $\mathrm{R} 1, \mathrm{R} 2, \mathrm{C} 1$, and C 2 :

$$
\mathrm{fOSC}=1 / 2 \pi \mathrm{RC}
$$

where $\mathrm{R}=\mathrm{R} 1=\mathrm{R} 2$ and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2$.
This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.5 V

1 Hz Square-Wave Oscillator

TL/H/10548-11

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right.$ (Continued)

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)

TL/H/10548-15

10 Hz High-Pass Filter (2 dB Dip)

High Gain Amplifier with Offset Voltage Reduction

Output offset voltage reduced to the level of the input offset voltage of the bottom amplifier (typically 1 mV), referred to $V_{\text {BIAS }}$

OP-07 Low Offset, Low Drift Operational Amplifier

General Description

The OP-07 has very low input offset voltage which is obtained by trimming at the wafer stage. These low offset voltages generally eliminate any need for external nulling. The OP-07 also features low input bias current and high openloop gain. The low offsets and high open-loop gain make the OP-07 particularly useful for high-gain applications.
The wide input voltage range of $\pm 13 \mathrm{~V}$ minimum combined with high CMRR of 110 dB and high input impedance provide high accuracy in the non-inverting circuit configuration. Excellent linearity and gain accuracy can be maintained even at high closed-loop gains.
Stability of offsets and gain with time or variation in temperature is excellent.
The OP-07 is available in TO-99 metal can, ceramic or molded DIP.

For improved specifications, see the LM607.

Features

- Low Vos
- Low Vos Drift
- Ultra-Stable vs Time
- Low Noise
- Wide Input Voltage Range
- Wide Supply Voltage Range
$\pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Fits 725/108A/308A, 741, AD510 Sockets
- Replaces the $\mu \mathrm{A} 714$

Applications

- Strain Gauge Amplifiers
- Thermocouple Amplifiers
- Precision Reference Buffer
- Analog Computing Functions

Connection Diagram

Ordering Information

$\mathbf{T}_{\mathbf{A}}=25^{\circ} \mathbf{C}$ $\mathbf{V}_{\text {OSMax }}$ $(\mu \mathbf{V})$	N08E Plastic	Operating Temperature Range
75	OP07EP	COM
150	OP07CP	COM
150	OP07DP	COM

*Also available per SMD \#8203602

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
Internal Power Dissipation (Note 5)
Differential Input Voltage
$\pm 22 \mathrm{~V}$

Input Voltage (Note 6)
Output Short-Circuit Duration

Simplified Schematic

*R2A and R2B are electronically trimmed on chip at the factory for minimum offset voltage.

Electrical Characteristics

Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Boldface type refers to limits over $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	OP-07E			OP-07C			Units
			Min	Typ	Max	Min	Typ	Max	
Vos	Input Offset Voltage	(Note 1)		$\begin{array}{r} 30 \\ 45 \end{array}$	$\begin{gathered} 75 \\ 130 \end{gathered}$		$\begin{array}{r} 60 \\ \mathbf{8 5} \end{array}$	$\begin{gathered} 150 \\ 250 \end{gathered}$	$\mu \mathrm{V}$
Vos/t	Long-Term Vos Stability	(Note 2)		0.3	1.5		0.4	2.0	$\mu \mathrm{V} / \mathrm{Mo}$
los	Input Offset Current			$\begin{aligned} & 0.5 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 5.3 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 6.0 \\ & \mathbf{8 . 0} \end{aligned}$	nA
I_{B}	Input Bias Current			$\begin{gathered} \pm 1.2 \\ \pm 1.5 \end{gathered}$	$\begin{array}{r} \pm 4.0 \\ \pm \mathbf{5 . 5} \end{array}$		$\begin{gathered} \pm 1.8 \\ \pm 2.2 \end{gathered}$	$\begin{array}{r} \pm 7.0 \\ \pm 9.0 \end{array}$	nA
$e_{\text {np-p }}$	Input Noise Voltage	0.1 Hz to 10 Hz (Note 3)		0.35	0.6		0.38	0.65	μV_{p-p}
e_{n}	Input Noise Voltage Density	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note } 3) \\ & \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz} \\ & \hline \end{aligned}$		$\begin{gathered} 10.3 \\ 10.0 \\ 9.6 \\ \hline \end{gathered}$	$\begin{aligned} & 18.0 \\ & 13.0 \\ & 11.0 \\ & \hline \end{aligned}$		$\begin{gathered} 10.5 \\ 10.2 \\ 9.8 \end{gathered}$	$\begin{aligned} & 20.0 \\ & 13.5 \\ & 11.5 \\ & \hline \end{aligned}$	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{i}_{\text {np-p }}$	Input Noise Current	0.1 Hz to 10 Hz (Note 3)		14	30		15	35	$p A_{p-p}$
i_{n}	Input Noise Current Density	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note 3) } \\ & \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.32 \\ & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.23 \\ & 0.17 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.15 \\ & 0.13 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.27 \\ & 0.18 \\ & \hline \end{aligned}$	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
R_{IN}	Input Resistance Differential-Mode	(Note 4)	15	50		8	33		M Ω
$\mathrm{R}_{\text {INCM }}$	Input Resistance Common-Mode			160			120		G Ω
IVR	Input Voltage Range		± 13.0	± 14.0		± 13	± 14		V
CMRR	Common-Mode Rejection Ratio	$V_{C M}= \pm 13 \mathrm{~V}$	$\begin{gathered} 106 \\ 103 \\ \hline \end{gathered}$	$\begin{array}{r} 123 \\ 123 \\ \hline \end{array}$		$\begin{aligned} & 100 \\ & 97 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \\ & \hline \end{aligned}$		dB
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 5 \\ & 7 \\ & \hline \end{aligned}$	$\begin{array}{r} 20 \\ 32 \\ \hline \end{array}$		$\begin{gathered} 7 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 32 \\ & \mathbf{5 1} \\ & \hline \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$
Avo	Large Signal Voltage Gain	$\begin{aligned} & R_{L} \geq 2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & R_{\mathrm{L}} \geq 500 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V}, \\ & \left.\mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V} \text { (Note } 4\right) \\ & \hline \end{aligned}$	$\begin{gathered} 200 \\ 180 \\ 150 \end{gathered}$	$\begin{gathered} 500 \\ 450 \\ 400 \end{gathered}$		$\begin{gathered} 120 \\ 100 \\ 100 \end{gathered}$	$\begin{gathered} 400 \\ 400 \\ 400 \end{gathered}$		V/mV
V_{0}	Output Voltage Swing	$\begin{aligned} & R_{L} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{gathered} \pm 12.5 \\ \pm 12.0 \\ \pm 12.0 \\ \pm 10.5 \\ \hline \end{gathered}$	$\begin{gathered} \pm 13.0 \\ \pm 12.8 \\ \pm 12.6 \\ \pm 12.0 \\ \hline \end{gathered}$		$\begin{gathered} \pm 12.0 \\ \pm 11.5 \\ \pm 11.0 \end{gathered}$	$\begin{gathered} \pm 13.0 \\ \pm 12.8 \\ \pm 12.6 \\ \pm 12.0 \end{gathered}$		V
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$ (Note 3)	0.1	0.3		0.1	0.3		$\mathrm{V} / \mu \mathrm{s}$
BW	Closed-Loop Bandwidth	$\mathrm{A}_{\mathrm{VCL}}=+1$ (Note 3)	0.4	0.6		0.4	0.6		MHz
R_{O}	Output Resistance	$\mathrm{V}_{\mathrm{O}}=0, \mathrm{I}_{0}=0$		60			60		Ω
P_{d}	Power Consumption	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \text { No Load } \\ & \mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \text { No Load } \end{aligned}$		$\begin{gathered} 75 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 120 \\ 6 \\ \hline \end{gathered}$		$\begin{gathered} 80 \\ 4 \end{gathered}$	$\begin{gathered} 150 \\ 8 \end{gathered}$	mW
	Offset Adj. Range	$\mathrm{R}_{\mathrm{P}}=20 \mathrm{k} \Omega$		± 4			± 4		mV
$\begin{aligned} & \mathrm{TCV}_{\mathrm{OS}} \\ & \mathrm{TCV}_{\mathrm{OS}} \mathrm{n} \end{aligned}$	Average Input Offset Voltage Drift Without External Trim With External Trim	(Note 4) $\left.\mathrm{R}_{\mathrm{P}}=20 \mathrm{k} \Omega \text { (Note } 4\right)$		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	1.3 1.3		$\begin{aligned} & 0.5 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.6 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
TClos	Average Input Offset Current Drift	(Note 3)		8	35		12	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{TCl}_{\mathrm{B}}$	Average Input Bias Current Drift	(Note 3)		13	35		18	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$

Electrical Characteristics

Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Boldface type refers to limits over $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	OP-07D			Units
			Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	(Note 1)		$\begin{aligned} & 60 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 250 \end{aligned}$	$\mu \mathrm{V}$
$\mathrm{V}_{\text {os/t }}$	Long-Term V ${ }_{\text {OS }}$ Stability	(Note 2)		0.5	3.0	$\mu \mathrm{V} / \mathrm{Mo}$
los	Input Offset Current			$\begin{aligned} & 0.8 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.0 \\ \mathbf{8 . 0} \\ \hline \end{array}$	nA
I_{B}	Input Bias Current			$\begin{array}{r} \pm 2.0 \\ \pm \mathbf{3 . 0} \end{array}$	$\begin{gathered} \pm 12.0 \\ \pm 14.0 \\ \hline \end{gathered}$	nA
$\theta_{\text {np-p }}$	Input Noise Voltage	0.1 Hz to 10 Hz (Note 3)		0.38	0.65	$\mu \mathrm{Vp}$-p
θ_{n}	Input Noise Voltage Density	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{fo}_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note } 3) \\ & \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz} \\ & \hline \end{aligned}$		$\begin{gathered} 10.5 \\ 10.3 \\ 9.8 \end{gathered}$	$\begin{aligned} & 20.0 \\ & 13.5 \\ & 11.5 \end{aligned}$	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$i_{\text {np-p }}$	Input Noise Current	0.1 Hz to 10 Hz (Note 3)		15	35	pAp-p
i_{n}	Input Noise Current Density	$\begin{aligned} \mathrm{f}_{\mathrm{O}} & =10 \mathrm{~Hz} \\ \mathrm{f}_{\mathrm{O}} & =100 \mathrm{~Hz} \text { (Note 3) } \\ \mathrm{f}_{\mathrm{O}} & =1000 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.27 \\ & 0.18 \end{aligned}$	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance Differential-Mode	(Note 4)	7	31		$\mathrm{M} \Omega$
RINCM	Input Resistance Common-Mode	:'		120		$\mathrm{G} \Omega$
IVR	Input Voltage Range		± 13	± 14		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 13 \mathrm{~V}$	$\begin{aligned} & 94 \\ & 94 \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 106 \end{aligned}$		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$		$\begin{gathered} 7 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 32 \\ & \mathbf{5 1} \\ & \hline \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$
Avo	Large Signal Voltage Gain	$\begin{aligned} & R_{\mathrm{L}} \leq 2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 500 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}} \pm 3 \mathrm{~V}(\text { Note } 4) \end{aligned}$	$\begin{aligned} & 120 \\ & 100 \end{aligned}$	$\begin{gathered} 400 \\ 400 \\ 400 \end{gathered}$		V/mV
V_{0}	Output Voltage Swing	$\begin{aligned} & R_{L} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 12.0 \\ \pm 11.5 \\ \pm 11.0 \end{array}$	$\begin{gathered} \pm 13.0 \\ \pm 12.8 \\ \pm 12.6 \\ \pm 12.0 \end{gathered}$		V
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$ (Note 3)	0.1	0.3		$\mathrm{V} / \mathrm{\mu s}$
BW	Closed-Loop Bandwidth	$\mathrm{A}_{\mathrm{VCL}}=+1$ (Note 3)	0.4	0.6		MHz
RO	Output Resistance	$\mathrm{V}_{\mathrm{O}}=0, \mathrm{l}_{0}=0$		60		Ω
P_{d}	Power Consumption	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \text { No Load } \\ & \mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \text { No Load } \end{aligned}$		$\begin{gathered} 80 \\ 4 \end{gathered}$	$\begin{gathered} 150 \\ 8 \\ \hline \end{gathered}$	mW
	Offset Adj. Range	$\mathrm{R}_{\mathrm{P}}=20 \mathrm{k} \Omega$		± 4		mV
$\begin{aligned} & \mathrm{TCV}_{\mathrm{OS}} \\ & \mathrm{TCV}_{\text {osn }} \end{aligned}$	Average Input Offset Voltage Drift Without External Trim With External Trim	(Note 4) $R_{P}=20 \mathrm{k} \Omega \text { (Note 4) }$		$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	2.5 2.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
TClos	Average Input Offset Current Drift	(Note 3)		12	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{TCl}_{\mathrm{B}}$	Average Input Bias Current Drift	(Note 3)		18	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$

Note 1: $V_{O S}$ is measured approximately 0.5 second after application of power.
Note 2: Long-Term Offset Voltage Stability refers to the averaged trend line of $V_{\text {OS }}$ vs Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically $2.5 \mu \mathrm{~V}$. Parameter is sample tested.
Note 3: Sample Tested.
Note 4: Guaranteed by design.

Test Circuits

TL/H/10550-4

TL/H/10550-5

Optional Offset Nulling Circuit

TL/H/10550-6

General Description

The TL081 is a low cost high speed JFET input operational amplifier with an internally trimmed input offset voltage (BI-FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The TL081 is pin compatible with the standard LM741 and uses the same offset voltage adjustment circuitry. This feature allows designers to immediately upgrade the overall performance of existing LM741 designs.
The TL081 may be used in applications such as high speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices has low noise and offset voltage drift, but for applications where these requirements

Typical Connection

Connection Diagram

are critical, the LF356 is recommended. If maximum supply current is important, however, the TL081C is the better choice.

Features

- Internally trimmed offset voltage 15 mV
- Low input bias current 50 pA
- Low input noise voltage
$25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low input noise current
$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Wide gain bandwidth

4 MHz

- High slew rate $13 \mathrm{~V} / \mu \mathrm{s}$

■ Low supply current 1.8 mA

- High input impedance 1012Ω
- Low total harmonic distortion $A_{V}=10, \quad<0.02 \%$
$R_{L}=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}$,
$\mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$
- Low 1/f noise corner 50 Hz
- Fast settling time to 0.01%
$2 \mu \mathrm{~s}$

Simplified Schematic

TL/H/8358-2

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,	Input Voltage Range (Note 2)	$\pm 15 \mathrm{~V}$	
please contact the National Semiconductor Sales	Output Short Circuit Duration	Continuous	
Office/Distributors for availability and specifications.	$\pm 18 \mathrm{~V}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage	670 mW	Lead Temp. (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
Power Dissipation (Notes 1 and 6)	$\boldsymbol{\theta}_{j \mathrm{~A}}$	$120^{\circ} \mathrm{C} / \mathrm{W}$	
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ESD rating to be determined.	
$\mathrm{T}_{j(M A X)}$	$115^{\circ} \mathrm{C}$		
Differential Input Voltage	$\pm 30 \mathrm{~V}$		

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	TL081C			Units
			Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$R_{S}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ Over Temperature		5	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta V_{O S} / \Delta T$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & T_{j} \leq 70^{\circ} \mathrm{C} \end{aligned}$		25	$\begin{gathered} 100 \\ 4 \\ \hline \end{gathered}$	pA nA
I_{B}	Input Bias Current	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & T_{\mathrm{j}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		50	$\begin{gathered} 200 \\ 8 \end{gathered}$	pA nA
R_{IN}	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ Over Temperature	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100		V / mV V / mV
V_{O}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15 \\ & -12 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 5)	70	100		dB
Is	Supply Current			1.8	2.8	mA

AC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	TL081C			Units
			Min	Typ	Max	
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		13		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1000 \mathrm{~Hz} \end{aligned}$		25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: For operating at elevated temperature, the device must be derated based on a thermal resistance of $120^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for N package.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$ and l_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 4: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 5: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice from $V_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.
Note 6: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Pulse Response

Application Hints

The TL081 is an op amp with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this
will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output.
Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the

Application Hints (Continued)

common-mode range again puts the input stage and thus the amplifier in « normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
The TL081 is biased by a zener reference which allows normal circuit operation on $\pm 4 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The TL081 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the
resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Detailed Schematic

Typical Applications

TL/H/8358-10
Parasitic input capacitance $\mathrm{C} 1 \cong(3 \mathrm{pF}$ for TL081 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate, add C2 such that: $R 2 C 2 \cong R 1 C 1$.

Ultra-Low (or High) Duty Cycle Pulse Generator

- toutPut high \approx R1C $\ell n \frac{4.8-2 V_{S}}{4.8-V_{S}}$
- toutput low \approx R2C $\ell n \frac{2 V_{S}-7.8}{V_{S}-7.8}$
where $\mathrm{V}_{\mathrm{S}}=\mathrm{V}++|\mathbf{V}-|$
*low leakage capacitor

TL/H/8358-12

* Low leakage capacitor
- 50 k pot used for less sensitive $\mathrm{V}_{\text {OS }}$ adjust

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

General Description

These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET IITM technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The TL082 is pin compatible with the standard LM1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and most LM358 designs.
These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

Features

Internally trimmed offset voltage	15 mV
- Low input bias current	50 pA
- Low input noise voltage	$16 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
- Low input noise current	$0.01 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$
- Wide gain bandwidth	4 MHz
- High slew rate	$13 \mathrm{~V} / \mu \mathrm{s}$
- Low supply current	3.6 mA
- High input impedance	$10^{12} \Omega$
$\begin{aligned} & \text { Low total harmonic distortion } A_{V}=10, \\ & R_{L}=10 \mathrm{k}, \mathrm{~V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \\ & \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz} \end{aligned}$	<0.02\%
- Low 1/f noise corner	50 Hz
- Fast settling time to 0.01%	$2 \mu \mathrm{~s}$

Typical Connection

Connection Diagram

TL/H/8357-3
Order Number TL082CM or TL082CP See NS Package Number M08A or N08E

Simplified Schematic

Absolute Maximum Ratings
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
 Supply Voltage
 $\pm 18 \mathrm{~V}$
 Power Dissipation
 (Note 1)
 Operating Temperature Range
 $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
 $\mathrm{T}_{\mathrm{j}(\mathrm{MAX})} \quad 150^{\circ} \mathrm{C}$

Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 2)	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	Continuous
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
ESD rating to be determined.	

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	TL082C			Units
			Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$R_{S}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		5	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10		${ }^{\mu} \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 4,5) \\ & T_{j} \leq 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		25	$\begin{gathered} 200 \\ 4 \end{gathered}$	pA nA
I_{B}	Input Bias Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 4,5) \\ & T_{j} \leq 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		50	$\begin{gathered} 400 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
RIN	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ Over Temperature	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100		V / mV V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15 \\ & -12 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	70	100		dB
Is	Supply Current			3.6	5.6	mA

AC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	TL082C			Units
			Min	Typ	Max	
	Amplifier to Amplifier Coupling	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}$ 20 kHz (Input Referred)		-120		dB
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8	13		V/ $\mu \mathrm{s}$
GBW	Gain Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1000 \mathrm{~Hz} \end{aligned}$		25		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Note 1: For operating at elevated temperature, the device must be derated based on a thermal resistance of $115^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for the N package. Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage. Note 3: The power dissipation limit, however, cannot be exceeded. Note 4: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. V_{OS}, I_{B} and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$. Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} \cdot T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.						

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Open Loop Voltage Gain (V/V)

Open Loop Frequency Response

Pulse Response

Application Hints

These devices are op amps with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages
should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case

Application Hints (Continued)

does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 6 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The amplifiers will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards
in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Detailed Schematic

Typical Applications

Three-Band Active Tone Control

TL/H/8357-13
Note 1: All controls flat.
Note 2: Bass and treble boost, mid flat.
Note 3: Bass and treble cut, mid flat.
Note 4: Mid boost, bass and treble flat.
Note 5: Mid cut, bass and treble flat.

- All potentiometers are linear taper
- Use the LF347 Quad for stereo applications

Typical Applications (Continued)

$A_{V}=\left(\frac{2 R 2}{R 1}+1\right) \frac{R 5}{R 4}$
in and \ddagger are separate isolated grounds
Matching of R2's, R4's and R5's control CMRR
With $A_{V_{T}}=1400$, resistor matching $=0.01 \%$: CMRR $=136 \mathrm{~dB}$

- Very high input impedance
- Super high CMRR

Fourth Order Low Pass Butterworth Filter

TL/H/8357-15

- Corner frequency $\left(\mathrm{f}_{\mathrm{c}}\right)=\sqrt{\frac{1}{\mathrm{R} 1 \mathrm{R} 2 \mathrm{CC} 1}} \cdot \frac{1}{2 \pi}=\sqrt{\frac{1}{\mathrm{R}^{\prime} \mathrm{R}^{\prime} \mathrm{CC1}}} \bullet \frac{1}{2 \pi}$
- Passband gain $\left(H_{0}\right)=(1+R 4 / R 3)\left(1+R 4^{\prime} / R 3^{\prime}\right)$
- First stage $Q=1.31$
- Second stage $Q=0.541$
- Circuit shown uses nearest 5% tolerance resistor values for a filter with a corner frequency of 100 Hz and a passband gain of 100
- Offset nulling necessary for accurate DC performance

Typical Applications (Continued)

Fourth Order High Pass Butterworth Filter

TL/H/8357-16

- Corner frequency $\left(f_{c}\right)=\sqrt{\frac{1}{\mathrm{R}_{\mathrm{C}} \mathrm{R}^{2} \mathrm{C}^{2}}} \cdot \frac{1}{2 \pi}=\sqrt{\frac{1}{\mathrm{R}^{\prime} \mathrm{R}^{\prime} \mathrm{C}^{2}}} \cdot \frac{1}{2 \pi}$
- Passband gain $\left(\mathrm{H}_{\mathrm{O}}\right)=(1+\mathrm{R} 4 / \mathrm{R} 3)\left(1+\right.$ R4'/R3 $\left.^{\prime}\right)$
- First stage $Q=1.31$
- Second stage $Q=0.541$
- Circuit shown uses closest 5% tolerance resistor values for a filter with a corner frequency of 1 kHz and a passband gain of 10

Ohms to Volts Converter

$\mathrm{V}_{\mathrm{O}}=\frac{1 \mathrm{~V}}{\mathrm{R}_{\text {LADDER }}} \times \mathrm{R}_{\mathrm{X}}$
Where R LADDER is the resistance from switch S1 pole to pin 7 of the TL082CP.

Section 2 Buffers

Section 2 Contents
Buffers Definition of Terms 2-3
Buffers Selection Guide 2-4
LH0002 Buffer 2-5
LH0033/LH0063 Fast and Ultra Fast Buffers 2-8
LH4001 Wideband Current Buffer 2-19
LH4002 Wideband Video Buffer 2-23
LM102/LM302 Voltage Followers 2-27
LM110/LM210/LM310 Voltage Followers 2-33
LM6121/LM6221/LM6321 High Speed Buffers 2-46
LM6125/LM6225/LM6325 High Speed Buffers 2-52

Buffers Definition of Terms

Bandwidth: That frequency at which the voltage gain is reduced to $1 / \sqrt{2}$ times the low frequency value.
Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental.

$$
\begin{gathered}
\% \text { harmonic } \\
\text { distortion }
\end{gathered}=\frac{\left(V 2^{2}+V 3^{2}+V 4^{2}+\ldots\right)^{1 / 2}(100 \%)}{V 1}
$$

where V 1 is the rms amplitude of the fundamental and V 2 , V3, V4, \ldots. are the rms amplitudes of the individual harmonics.
Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance $\left(\mathrm{R}_{\mathrm{S}}\right)$ and load resistance (R_{L}).
Input Offset Voltage: That voltage which must be applied to the input terminal to obtain zero output voltage.
Input Resistance: The ratio of the change in input voltage to the change in input current.
Input Voltage Range: The range of voltages on the input terminal for which the buffer operates within specifications.
Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage.
Output Impedance: The ratio of change in output voltage to output current under the stated conditions.

Output Resistance: The small signal resistance seen at the output with the output voltage near zero.
Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.
Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.
Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.
Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.
Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.
Supply Current: The current required from the power supply to operate the buffer with no load and the output midway between the supplies.
Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.
Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).

National Semiconductor

Buffer Selection Guide ${ }_{\text {(Notes } 1 \text { and } 2)}$

Device Type	Key Features	Slew Rate $(V / \mu s)$	$\begin{gathered} \text { Bandwidth } \\ -3 \mathrm{~dB}(\mathrm{MHz}) \end{gathered}$	Gain $\left(A_{V}\right)$	Output $(V, m A)$	$\begin{gathered} \text { Full Power BW } \\ \left(\mathbf{M H z} @ \mathbf{V P P}_{\mathbf{P P}}, \mathbf{R}_{\mathrm{L}}\right) \end{gathered}$	Test Conditions
LH0063	FET Input, Very Fast	2400	200	0.93	$\pm 13, \pm 260$	40 @ 20, 50	$\mathrm{R}_{\mathrm{L}}=50, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
LH0033	FET Input, High Speed	1500	100	0.98	$\pm 9, \pm 90$	24 @ 20, 1k	$R_{L}=1 \mathrm{k}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
LH4002	Wideband Video Buffer	1250	200	0.97	$\pm 2.2, \pm 44$	100 @ 4, 50	$\mathrm{R}_{\mathrm{L}}=50, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$
LH2003/2033	Wideband Video Buffer	1200	100	0.9	$\pm 11.3, \pm 113$	2 @ 20, 100	$R_{L}=1 \mathrm{k}, 50, \mathrm{~V}_{S}= \pm 15$
LM6121/6125	High Speed VIPTM Buffer	800	50	0.90	$\pm 12, \pm 240$	10.6 @ 12, 50	$\mathrm{R}_{\mathrm{L}}=50, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
LH0002	Medium Speed	200	30	0.97	$\pm 10, \pm 100$	3 @ 20, 1k	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{\mathrm{S}}= \pm 12 \mathrm{~V}$
LH4001	Low Cost LH0002	125	25	0.97	$\pm 10, \pm 100$	4 @ 10, 100	$\mathrm{R}_{\mathrm{L}}=100, \mathrm{~V}_{\mathrm{S}}= \pm 12 \mathrm{~V}$
LM110, 210, 310	Voltage Follower	30	20	0.9999	$\pm 10, \pm 10$	0.5 @ 20, 10k	$R_{L}=10 \mathrm{k}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Note 1: Datasheet should be referred to for test conditions and more detailed information.
Note 2: $200^{\circ} \mathrm{C}$ Temp Range Parts are available. Consult local sales office for information.

LH0002 Buffer

General Description

The LH0002 is a general purpose buffer. Its features make it ideal to integrate with operational amplifiers inside a closed loop configuration to increase current output. The symmetrical output portion of the circuit also provides a low output impedance for both the positive and negative slopes of output pulses.
The LH0002 is available in an 8-lead TO-99 can. The LH0002C is available in an 8-lead TO-99, and a 10 -pin molded dual-in-line package.
The LH0002 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0002C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- High input impedance $400 \mathrm{k} \Omega$
- Low output impedance 6Ω
- High power efficiency
- Low harmonic distortion
- DC to 30 MHz bandwidth
- Output voltage swing that approaches supply voltage
- 400 mA pulsed output current
- Slew rate is typically $200 \mathrm{~V} / \mu \mathrm{s}$
- Operation from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$

Applications

- Line driver
- 30 MHz buffer
- High speed D/A conversion

Schematic and Connection Diagrams

Pin numbers in parentheses denote pin connections for dual-in-line package.

Dual-In-Line Package

TL/H/5560-2
Order Number LH0002CN See NS Package Number N10A

Metal Can Package

OUTPUT
TL/H/5560-3
Order Number LH0002H, LH0002H-MIL or LH0002CH LH0002H/883* See NS Package Number H08D

Absolute Maximum Ratings (Note3)	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 2)	
Supply Voltage	$\pm 22 \mathrm{~V}$
Power Dissipation (Note 4)	600 mW
Input Voltage (Equal to Power	(Equal to Power Supply Volage)
Storage Temperature Range -6	ge $\quad-65^{\circ} \mathrm{C}$ to +150
Junction Temperature	
N Package	150°
H Package	+175
Steady State Output Current	nt . $\pm 100 \mathrm{~m}$
Pulsed Output Current ($50 \mathrm{~ms} \mathrm{On/1} \mathrm{sec}. \mathrm{Off)}$	$\mathrm{ms} \mathrm{On/1} \mathrm{sec}. \mathrm{Off)} \pm 400 \mathrm{~mA}$
Lead Temperature Soldering (10 seconds)	ing (10 seconds)
Metal Can	$300^{\circ} \mathrm{C}$
Plastic	260
ESD Rating (Note 6)	

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales (Note 2)

Electrical Characteristics (Note 1)

Parameter	Conditions	Min	Typ	Max	Units
Voltage Gain	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.95	0.97		
Input Impedance	$\mathrm{R}_{\mathrm{S}}=200 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$	180	400		$\mathrm{k} \Omega$
Output Impedance	$\mathrm{V}_{\mathrm{IN}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		6.0	10	Ω
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 12 \mathrm{~V}$	± 10	± 11		V
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 10			V
DC Output Offset Voltage	$\mathrm{R}_{\mathrm{S}}=300 \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$		± 10	± 30	mV
DC Input Bias Current	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$		± 6.0	± 10	$\mu \mathrm{~A}$
Harmonic Distortion	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{Vrms}, \mathrm{f}=1.0 \mathrm{kHz}$		0.1		$\%$
Rise Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \Delta \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}$		7.0	12	ns
Positive Supply Current	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$		+6.0	+10	mA
Negative Supply Current	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$		-6.0	-10	mA

Note 1: Specification applies for $T_{A}=25^{\circ} \mathrm{C}$ with +12 V on Pins 1 and $2 ;-12 \mathrm{~V}$ on Pins 6 and 7 for the metal can package and +12 V on Pins 1 and $2 ;-12 \mathrm{~V}$ on Pins 4 and 5 for the dual-in-line package, unless otherwise specified. The parameter guarantees for LH0002C apply over the temperature range of $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, while parameters for the LH0002 are guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified.
Note 2: Refer to RETS0002X for LH0002 military specifications.
Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 4: The maximum power dissipation is a function of maximum junction temperature ($\left.\mathrm{T}_{\jmath} \mathrm{Max}\right)$, total thermal resistance $\left(\theta_{\mathrm{JA}}\right)$, and ambient temperature (T_{A}). The maximum allowable power dissipation at any ambient is $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{\mathrm{J}} \mathrm{Max}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$
Note 5: For operating at elevated temperatures, the device must be derated based on the thermal resistance $\theta_{J A}$ and $T_{J M a x} . T_{J}=T_{A}+P_{D} \theta_{J A}$
Note 6: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Applications

High Current Operational Amplifier

TL/H/5560-4

*Previously called NH0002/NH0002C

Typical Performance Characteristics

LH0033/LH0063
 Fast and Ultra Fast Buffers

General Description

The LH0033 and LH0063 are high speed, FET input, voltage follower/buffers designed to provide high current drive at frequencies from DC to over 100 MHz . The LH0033 will provide $\pm 10 \mathrm{~mA}$ into $1 \mathrm{k} \Omega$ loads ($\pm 100 \mathrm{~mA}$ peak) at slew rates of $1500 \mathrm{~V} / \mu \mathrm{s}$. The LH0063 will provide $\pm 250 \mathrm{~mA}$ into 50Ω loads ($\pm 500 \mathrm{~mA}$ peak) at slew rates up to $6000 \mathrm{~V} / \mu \mathrm{s}$. In addition, both exhibit excellent phase linearity up to 20 MHz .
Both are intended to fulfill a wide range of buffer applications such as high speed line drivers, video impedance transformation, nuclear instrumentation amplifiers, op amp isolation buffers for driving reactive loads and high impedance input buffers for high speed A to Ds and comparators. In addition, the LH0063 can continuously drive 50 2 coaxial cables or be used as a yoke driver for high resolution CRT displays. For additional applications information, see AN-48. These devices are constructed using specially selected junction FETs and active laser trimming to achieve guaranteed performance specifications. The LH0033 is specified for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; the LH0033C and the

LH0063C are specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The LH0033 is available in either a 1.5 W metal TO-8 package or an 8 -pin ceramic dual-in-line package. The LH0063 is available in a 5W 8-pin TO-3 package.

Features

- Ultra fast (LH0063): $6000 \mathrm{~V} / \mu \mathrm{s}$
- Wide range single or dual supply operation
- Wide power bandwidth: DC to 100 MHz
- High output drive: $\pm 10 \mathrm{~V}$ with 50Ω load
- Low phase non-linearity: 2 degrees
- Fast rise times: 2 ns
- High input resistance: $1^{1010} \Omega$

Advantages

- Only 10 V supply needed for $5 \mathrm{Vp}-\mathrm{p}$ video out
- Speed does not degrade system performance
- Wide data rate range for phase encoded systems

Connection Diagrams

TOP VIEW
Case is electrically isolated

Order Number LH0033G, LH0033G-MIL
or LH0033CG
See NS Package Number G12B

LH0033J
Dual-In-Line Package

TL/K/5507-2
Order Number LH0033J or LH0033CJ See NS Package Number HY08A

LH0063K
Metal Can Package

TL/K/5507-3
Top View
Case is electrically isolated
Order Number LH0063CK See NS Package Number K08A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+} \mathrm{V}^{-}$)
40 V
Power Dissipation (See Curves)
$\begin{array}{lr}\text { LH0063C } & 5 \mathrm{~W} \\ \text { LH0033/LH0033C } & 2.2 \mathrm{~W}\end{array}$
2.2W

Junction Temperature $175^{\circ} \mathrm{C}$
Input Voltage $\pm \mathrm{V}_{\mathrm{S}}$
Continuous Output Current

```
LH0063C }\pm250\textrm{mA
LH0033/LH0033C }\pm100\textrm{mA
```

DC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\text {MiN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$, unless otherwise specified, (Note 1)

Parameter	Conditions	LH0033			LH0033C			Units
		Min	Typ	Max	Min	Typ	Max	
Output Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{1 N}=0 \mathrm{~V}(\text { Note 2) } \\ & \mathrm{R}_{\mathrm{S}}=100 \Omega \\ & \hline \end{aligned}$		5.0	$\begin{aligned} & \hline 10 \\ & 15 \\ & \hline \end{aligned}$		12	$\begin{aligned} & 20 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Average Temperature Coefficient of Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{~V}_{I N}=0 \mathrm{~V} \\ & \text { (Note 3) } \end{aligned}$		50	100		50	100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \text { (Note 2) } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { (Note 4) } \\ & \mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \hline \end{aligned}$			$\begin{array}{r} 250 \\ 2.5 \\ 10 \\ \hline \end{array}$			$\begin{aligned} & 500 \\ & 5.0 \\ & 20 \\ & \hline \end{aligned}$	pA nA nA
Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega \\ & \hline \end{aligned}$	0.97	0.98	1.00	0.96	0.98	1.00	V/V
Input Impedance	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	1010	1011		1010	1011		Ω
Output Impedance	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 1.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \end{aligned}$		6.0	10		6.0	10	Ω
Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{1}= \pm 14 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \\ & \mathrm{~V}_{1}= \pm 10.5 \mathrm{~V}, \\ & R_{\mathrm{L}}=100 \Omega, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} \pm 12 \\ \pm 9.0 \\ \hline \end{array}$			$\begin{gathered} \pm 12 \\ \pm 9.0 \\ \hline \end{gathered}$			V
Supply Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ (Note 5)		20	22		21	24	mA
Power Consumption	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		600	660		630	720	mW

AC Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{~K} \Omega$ (Note 6)

Parameter	Conditions	LH0033			LH0033C			Units
		Min	Typ	Max	Min	Typ	Max	
Slew Rate	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	1000	1500		1000	1400		V/ $\mu \mathrm{s}$
Bandwidth	$\mathrm{V}_{\text {IN }}=1.0 \mathrm{Vrms}$		100			100		MHz
Phase Non-Linearity	$\mathrm{BW}=1.0 \mathrm{~Hz}$ to 20 MHz		2.0			2.0		degrees
Rise Time	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		2.9			3.2		ns
Propagation Delay	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		1.2			1.5		ns
Harmonic Distortion	$\mathrm{f}>1 \mathrm{kHz}$		<0.1			<0.1		\%

Note 1: LH0033 is 100% production tested as specified at $25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$. LH0033AC/C are 100% production tested at $25^{\circ} \mathrm{C}$ only. Specifications at temperature extremes are verified by sample testing, but these limited are not used to calculate outgoing quality level.
Note 2: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed the value at $T_{j}=25^{\circ} \mathrm{C}$. When supply voltages are $\pm 15 \mathrm{~V}$, no-load operating junction temperature may rise $40-60^{\circ} \mathrm{C}$ above ambient, and more under load conditions. Accordingly, V_{OS} may change one to several mV , and I_{B} will change significantly during warm-up. Refer to I_{B} vs temperature graph for expected values.
Note 3: LH0033 is 100% production tested for this parameter. LH0033C is sample tested only. Limits are not used to calculate outgoing quality levels. $\Delta V_{\text {OS }} / \Delta T$ is the average value calculated from measurements at $25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {MAX }}$.
Note 4: Measured in still air 7 minutes after application of power. Guaranteed through correlated automatic pulse testing.
Note 5: Guaranteed through correlated automatic pulse testing at $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$.
Note 6: Not 100% production tested; verified by sample testing only. Limits are not used to calculate outgoing quality level.
Note 7: Refer to RETS0033 for the LH0033G military specifications.

DC Electrical Characteristics $\mathrm{v}_{\mathbf{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ unless otherwise specified (Note 1)

Parameter	Conditions	LH0063C			Units
		Min	Typ	Max	
Output Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ (Note 2)		10	50	mV
				100	mV
Average Temperature Coefficient of Output Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		300		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 2)		10	30	nA nA
				100	
Voltage Gain	$\mathrm{V}_{1 \mathrm{~N}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.94	0.96	1.0	V/V
Voltage Gain	$\begin{aligned} & V_{I N}= \pm 10 \mathrm{~V}, R_{S} \leq 100 \mathrm{k} \Omega, R_{\mathrm{L}}=50 \Omega \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	0.91	0.93	0.98	V/V
Input Capacitance	Case Shorted to Output		8.0		pF
Output Impedance	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$		1.0	4.0	Ω
Output Current Swing	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{R}_{S} \leq 100 \mathrm{k} \Omega$	0.2	0.25		A
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	± 10	± 13		V
Output Voltage Swing	$\mathrm{V}_{S}= \pm 5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	5.09	7.0		Vp-p
Supply Current	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		50	65	mA
Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$		40		mA
Power Consumption	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		1.5	1.95	W
Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$		400		mW

AC Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$ (Note 3)

Parameter	Conditions		LH0063C		Units
		Min	Typ	Max	
Slew Rate	$\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$		6000		$\mathrm{~V} / \mu \mathrm{s}$
Slew Rate	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	2000	2400		$\mathrm{~V} / \mu \mathrm{s}$
Bandwidth	$\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{Vrms}$		200		MHz
Phase Non-Linearity	$\mathrm{BW}=1.0 \mathrm{~Hz}$ to 20 MHz		2.0		degrees
Rise Time	$\Delta \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$		1.9		ns
Propagation Delay	$\Delta \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$		2.1		ns
Harmonic Distortion			<0.1		$\%$

Note 1: LH0063C is 100% production tested at $25^{\circ} \mathrm{C}$ only. Specifications at temperature extremes are verified by sample testing, but these limits are not used to calculate outgoing quality level.

Note 2: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed the value at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. When supply voltages are $\pm 15 \mathrm{~V}$, no-load operating junction temperature may rise $40-60^{\circ} \mathrm{C}$ above ambient, and more under load conditions. Accordingly, V_{OS} may change one to several mV , and I_{B} will change significantly during warm-up. Refer to I_{B} vs temperature graph for expected values.
Note 3: Not 100% production tested; verified by sample testing only. Limits are not used to calculate outgoing quality level.

Typical Performance Characteristics

LH0033 Output Voltage vs Supply Voltage

LH0033 Positive Pulse

LH0063 Large Signal Pulse Response

Typical Performance Characteristics (Continued) LH0033 Input Bias Current

LH0033 Normalized Input Bias Current During Warm-Up

LH0063 Small Signal Rise Time

LH0063 Frequency

LH0033 Input Bias Current vs Input Voltage

10864 20-2-6 - 10 INPUT VOLTAGE (V)

TL/K/5507-5

Application Hints

RECOMMENDED LAYOUT PRECAUTIONS

RF/video printed circuit board layout rules should be followed when using the LH0033 and LH0063 since they will provide power gain to frequencies over 100 MHz . Ground planes are recommended and power supplies should be decoupled at each device with low inductance capacitors. In addition, ground plane shielding may be extended to the metal case of the device since it is electrically isolated from internal circuitry. Alternatively the case should be connected to the output to minimize input capacitance.

OFFSET VOLTAGE ADJUSTMENT

Both the LH0033's and LH0063's offset voltages have been actively trimmed by laser to meet guaranteed specifications when the offset preset pin is shorted to the offset adjust pin. This pre-calibration allows the devices to be used in most DC or AC applications without individually offset nulling each device. If offset null is desirable, it is simply obtained by leaving the offset preset pin open and connecting a trim pot of 100Ω for the LH0033 or $1 \mathrm{k} \Omega$ for the LH0063 between the offset adjust pin and V^{-}, as illustrated in Figures 1 and 2.

TL/K/5507-6
FIGURE 1. Offset Zero Adjust for LH0033 (Pin numbers shown for TO-8)

TL/K/5507-7
FIGURE 2. Offset Zero Adjust for LH0063

Application Hints (Continued)

OPERATION FROM SINGLE OR ASYMMETRICAL POWER SUPPLIES

Both device types may be readily used in applications where symmetrical supplies are unavailable or not desirable. A typical application might be an interface to a MOS shift register where $\mathrm{V}^{+}=+5 \mathrm{~V}$ and $\mathrm{V}^{-}=-12 \mathrm{~V}$. In this case, an apparent output offset occurs due to the device's voltage gain of less than unity. This additional output offset error may be predicted by:

$$
\Delta V_{O} \cong(1-A V) \frac{\left(V^{+}-V^{-}\right)}{2}=0.005\left(V^{+}-V^{-}\right)
$$

where:
$A_{V}=$ No load voltage gain, typically 0.99
$\mathrm{V}^{+}=$Positive supply voltage
$\mathrm{V}^{-}=$Negative supply voltage
For the above example, ΔV_{O} would be -35 mV . This may be adjusted to zero as described in Figure 2. For AC coupled applications, no additional offset occurs if the DC input is properly biased as illustrated in the Typical Applications section.

TL/K/5507-8

FIGURE 3. LH0033 Using Resistor Current Limiting

SHORT CIRCUIT PROTECTION

In order to optimize transient response and output swing, output current limit has been omitted from the LHOO33 and LH0063. Short circuit protection may be added by inserting appropriate value resistors between V^{+}and $\mathrm{V}_{\mathrm{C}}{ }^{+}$pins and V^{-}and $\mathrm{V}_{\mathrm{C}^{-}}$pins as illustrated in Figures 3 and 4. Resistor values may be predicted by:
$\mathrm{R}_{\mathrm{LIM}} \cong \frac{\mathrm{V}^{+}}{\mathrm{ISC}}=\frac{\mathrm{V}^{-}}{\mathrm{ISC}}$
where:
Isc ≤ 100 mA for LH0033
Isc $\leq 250 \mathrm{~mA}$ for LH0063

TL/K/5507-9

FIGURE 4. LH0063 Using Resistor Current Limiting

Application Hints (Continued)

The inclusion of limiting resistors in the collectors of the output transistors reduces output voltage swing. Decoupling $\mathrm{V}_{\mathrm{C}^{+}}$and $\mathrm{V}_{\mathrm{C}^{-}}$pins with capacitors to ground will retain full output swing for transient pulses. Alternate active current limit techniques that retain full DC output swing are shown in Figures 5 and 6. In Figures 5 and 6, the current sources are saturated during normal operation, thus apply full supply voltage to the V_{C} pins. Under fault conditions, the voltage decreases as required by the overload.
For Figure 5:

$$
R_{\mathrm{LIM}}=\frac{V_{B E}}{I \mathrm{SC}}=\frac{0.6 \mathrm{~V}}{60 \mathrm{~mA}}=10 \Omega
$$

In Figure 6, quad transistor arrays are used to minimize can count and:

$$
\mathrm{R}_{\mathrm{LIM}}=\frac{\mathrm{V}_{\mathrm{BE}}}{1 / 3(\mathrm{lsC})}=\frac{0.6 \mathrm{~V}}{1 / 3(200 \mathrm{~mA})}=8.2 \Omega
$$

TL/K/5507-10

FIGURE 5. LH0033 Current Limiting

 Using Current Sources

TL/K/5507-11
FIGURE 6. LH0063 Current Limiting Using Current Sources

CAPACITIVE LOADING

Both the LH0033 and LH0063 are designed to drive capacitive loads such as coaxial cables in excess of several thousand picofarads without susceptibility to oscillation. However, peak current resulting from ($C \times d_{v} / d_{t}$) should be limited below absolute maximum peak current ratings for the devices.
Thus for the LH0033:

$$
\left(\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta \mathrm{t}}\right) \times \mathrm{C}_{\mathrm{L}} \leq \mathrm{I}_{\text {OUT }} \leq \pm 250 \mathrm{~mA}
$$

and for the LH0063:

$$
\left(\frac{\Delta V_{I N}}{\Delta t}\right) \times C_{L} \leq I_{\text {OUT }} \leq \pm 500 \mathrm{~mA}
$$

In addition, power dissipation resulting from driving capacitive loads plus standby power should be kept below total package power rating:

$$
\begin{aligned}
& P_{D P k g .} \geq P_{D C}+P_{A C} \\
& P_{D P k g} .2\left(V^{+}-V^{-}\right) \times l_{S}+P_{A C} \\
& P_{A C} \cong(V p-p)^{2} \times f \times C_{L}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \text { Vp-p }=\text { Peak-to-peak output voltage swing } \\
& f \quad=\text { Frequency } \\
& C_{L}=\text { Load Capacitance }
\end{aligned}
$$

OPERATION WITHIN AN OP AMP LOOP

Both devices may be used as a current booster or isolation buffer within a closed loop with op amps such as LM6218, LM6361 or LH0032. An isolation resistor of 47Ω should be used between the op amp output and the input of LH0033. The wide bandwidths and high slew rates of the LH0033 and LH0063 assure that the loop has the characteristics of the op amp and that additional rolloff is not required.

HARDWARE

In order to utilize the full drive capabilities of both devices, each should be mounted with a heat sink particularly for extended temperature operation. The cases of both are isolated from the circuit and may be connected to the system chassis.

DESIGN PRECAUTION

Power supply bypassing is necessary to prevent oscillation with both the LH0O33 and LH0063 in all circuits. Low inductance ceramic disc capacitors with the shortest practical lead lengths must be connected from each supply lead (within $<1 / 4$ to $1 / 2^{\prime \prime}$ of the device package) to a ground plane. Capacitors should be one or two $0.1 \mu \mathrm{~F}$ in parallel for the LH0033; adding a $4.7 \mu \mathrm{~F}$ solid tantalum capacitor will help in troublesome instances. For the LH0063, two $0.1 \mu \mathrm{~F}$ ceramic and one $4.7 \mu \mathrm{~F}$ solid tantalum capacitors in parallel will be necessary on each supply lead.

Schematic Diagrams

LH0033/LH0033A

LH0063

TL/K/5507-13

Pin numbers shown for TO-8 (" G ") package.

Typical Applications

High Speed Automatic Test Equipment
Forcing Function Generator

Typical Applications (Continued)
Gamma Ray Pulse Integrator

Nuclear Particle Detector

High Input Impedance AC Coupled Amplifier

Typical Applications (Continued)

High Input Impedance Comparator with Offset Adjust

TL/K/5507-21

Instrumentation Shield/Line Driver

TL/K/5507-22

Typical Applications (Continued)

LH4001 Wideband Current Buffer

General Description

The LH4001 is a high speed unity gain buffer designed to provide high current drive capability at frequencies from DC to over 25 MHz . It is capable of providing a continuous output current of $\pm 100 \mathrm{~mA}$ and a peak of $\pm 200 \mathrm{~mA}$.
The LH4001 is designed to fulfill a wide range of applications such as impedance transformation, high impedance input buffers for A/D converters and comparators, as well as high speed line drivers. It is also suitable for use in current booster applications within an op amp loop. This allows the output current capability of existing op amps to be increased to $\pm 100 \mathrm{~mA}$.

Features

- DC to 25 MHz bandwidth
- $125 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Drives $\pm 10 \mathrm{~V}$ into 50Ω
- Operates from ± 5 to $\pm 20 \mathrm{~V}$ supplies
- Output swing approaches supply voltage

Applications

- Boost op amp output
- Buffer amplifiers
- Isolate capacitive loads
- Drive long cables

Typical Applications and Connection Diagram

*Note: Electrically connected internally. No connection should be made to these pins.
Order Number LH4001CN
See NS Package Number N10A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage, V_{S}
$\pm 22 \mathrm{~V}$
Continuous Output Current, lo
Peak Output Current, IO(peak)
($50 \mathrm{~ms} \mathrm{On} / 1 \mathrm{Sec}$ Off)
Input Voltage Range, V_{IN}
Power Dissipation
$\pm 100 \mathrm{~mA}$
$\pm 200 \mathrm{~mA}$
$\pm V_{S}$ 500 mW

Storage Temperature Range, TSTG $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Junction Temperature, $\mathrm{T}_{\mathrm{J}} \quad \cdots 150^{\circ} \mathrm{C}$ Lead Temp. (Soldering, <10 seconds) $260^{\circ} \mathrm{C}$ ESD rating is to be determined.

Operating Ratings

Temperature Range, T_{A}	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Thermal Resistance θ_{JA}	$120^{\circ} \mathrm{C} / \mathrm{W}$

Temperature Range, T_{A}
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$120^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics (Note 1)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
A_{V}	Voltage Gain	$\begin{aligned} & R_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V} \end{aligned}$	0.95	0.97	1	V/V
R_{IN}	Input Impedance	$\begin{aligned} & R_{S}=200 \mathrm{k} \Omega, R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 1.0 \mathrm{~V} \end{aligned}$	180	400		k $\boldsymbol{\Omega}$
R OUT	Output Impedance	$\begin{aligned} & R_{S}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 1.0 \mathrm{~V} \end{aligned}$		6	10	Ω
V_{0}	Output Swing	$\begin{aligned} & V_{S}= \pm 15 V, R_{S}=50 \Omega \\ & R_{L}=100 \Omega, V_{I N}= \pm 12 V \end{aligned}$	± 10	± 11		V
I_{B}	Input Bias Current	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		± 10	± 50	$\mu \mathrm{A}$
t_{r}	Rise Time	$R_{L}=100 \Omega, \Delta V_{I N}=100 \mathrm{mV}$		7		ns
SR	Slew Rate	$\mathrm{V}_{\mathrm{IN}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		125		$\mathrm{V} / \mu \mathrm{s}$
Is	Supply Current	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		± 6	± 10	mA
Vos	Offset Voltage	$\mathrm{R}_{\mathrm{S}}=300 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		± 10	± 50	mV

Note 1: Specification applies for $T_{A}=25^{\circ} \mathrm{C}$ with +12 V on Pins $1 \& 2 ;-12 \mathrm{~V}$ on Pins $4 \& 5$ unless otherwise specified.

Typical Performance Characteristics

Pulse Response

TOP TRACE $=$ INPUT BOTTOM TRACE $=$ OUTPUT

$$
\mathrm{V}_{\mathrm{IN}}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega
$$

Applications Information

Figure 1 shows a simple implementation of a non-inverting buffer amplifier of unity gain. Popular industry standard operational amplifiers such as LF156, LF351, LF411, LF441, LM11, LM741, etc. can be used in this configuration. Due to the high bandwidth of the LH4001, it is suitable for use with most monolithic op amps.
Figure 2 shows an implementation of an inverting amplifier with output current capability in excess of $\pm 100 \mathrm{~mA}$. The gain of this amplifier is determined by the values of R_{F} and R_{IN}. The resistor between the non-inverting input and ground is used to minimize the output offset voltage resulting from the input bias current.
Because of its high current drive capability, the LH4001 buffer amplifier is suitable for driving terminated or unterminated co-axial cables, and high current or reactive loads.

Figure 3 shows a co-axial cable drive circuit. The 43Ω resistor matches the driving source to the cable, however, its inclusion rarely will result in substantial improvement in pulse response into a terminated cable. If the 43Ω resistor is included, the output voltage to the load is about half what it would be without the near end termination.
Figure 4 shows a non-inverting amplifier with gain and output current capability in excess of $\pm 100 \mathrm{~mA}$. It is capable of providing $\pm 10 \mathrm{~mA}$ into a $1 \mathrm{k} \Omega$ load or $\pm 100 \mathrm{~mA}$ into a 100Ω load ($\pm 10 \mathrm{~V}$ swing). Figures 5 and 6 show two different methods of providing current limit or short circuit protection for the LH4001. In Figure 6, the 10Ω resistor limits the output current to approximately 70 mA . This circuit is highly recommended if there is a potential for a short circuit to occur.

FIGURE 2. Inverting Buffer Amplifier with Current Limit

Applications Information (Continued)

FIGURE 3. Coaxial Cable Drive Circuit

FIGURE 4. Non-Inverting Buffer Amplifier with Gain

TL/K/8628-8
FIGURE 5. LH4001 Using Resistor Current Limiting

$0.1 \mu \mathrm{~F} 工 \begin{aligned} & \mathrm{I} \\ & \mathrm{Q}_{1}, \mathrm{Q}_{2}=2 \mathrm{~N} 2905 \\ & \mathrm{Q}_{3}, \mathrm{Q}_{4}=2 \mathrm{~N} 2219\end{aligned}$
TL/K/8628-9
FIGURE 6. Current Limit Using Current Sources

LH4002 Wideband Video Buffer

General Description

The LH4002 is a high speed voltage follower designed to drive video signals from DC up to 200 MHz . At voltage supplies of $\pm 5 \mathrm{~V}$, the LH4002 will provide up to 40 mA into 50Ω at slew rates in excess of $1000 \mathrm{~V} / \mu \mathrm{s}$.
The device is intended to fulfill a wide range of high speed applications including video distribution, impedance transformation, and load isolation. It is also suitable for use in current booster applications within an op amp loop. This allows the output current capability of existing op amps to be increased.

Features

- DC to 200 MHz Bandwidth with $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$
- $1250 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate into 50Ω
- 150 MHz Bandwidth with $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ and Voltage Swing $=2$ VP-P

Applications

- Wideband Amplifier Buffer
- Wideband Line Driver

Schematic and Connection Diagrams

TL/K/8686-15

Absolute Maximum Ratings	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage, V_{S}	$\pm 6 \mathrm{~V}$
Input Voltage Range, $\mathrm{V}_{\text {IN }}$	$\pm \mathrm{V}_{\mathrm{S}}$
Continuous Output Current, lo	$\pm 6 \mathrm{~mA}$
Storage Temperature Range, TSTG	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range, T_{A}

LH4002C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature, T_{J}	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

ESD rating is to be determined.

DC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\text {min }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {max }}$ unless otherwise stated.

Symbol	Parameter	Conditions		Min	Typ	Max	Units
Vos	Input Offset Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{S}}=150 \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$			20	50	mV
I_{B}	Input Bias Current	$\mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$			100	200	$\mu \mathrm{A}$
A_{V}	DC Voltage Gain	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 2 \mathrm{~V}$		0.95	0.97		V/V
V_{O}	Output Voltage Swing	$\mathrm{R}_{\mathrm{S}}=150 \Omega, \mathrm{~V}_{\mathrm{IN}}= \pm 2.5 \mathrm{~V}$	$R_{L}=1 \mathrm{k} \Omega$	± 2.2	± 2.4		V
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	± 2.0	± 2.2		V
Is	Supply Current	$R_{S}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=25^{\circ} \mathrm{C}$			20	35	mA
ROUT	Output Resistance	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$			6	10	Ω
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$		10	18		k Ω

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions		Min	Typ	Max	Units
S_{R}	Slew Rate	$\begin{aligned} & R_{L}=50 \Omega, R_{S}=50 \Omega \\ & V_{I N}= \pm 2 V \end{aligned}$		1000	1250		$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{f}_{3 \mathrm{~dB}}$	Bandwidth, -3 dB (Note 2)	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=50 \Omega \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\mathrm{V}_{\text {OUT }}=4 \mathrm{~V}_{\text {P-P }}$		125		MHz
			$V_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$	100	150		MHz
			$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV} \mathrm{P}_{\text {P-P }}$		200		MHz
	Phase Non-Linearity	$\mathrm{BW}=1.0-20 \mathrm{MHz}$			2.0		degrees
t_{r}	Rise Time	$\Delta V_{\text {IN }}=0.5 \mathrm{~V}$			3		ns
t_{d}	Propagation Delay	$\Delta \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$			1.2		ns
THD	Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}$			0.1		\%

Note 1: Under normal operating conditions $+\mathrm{V}_{\mathrm{CC}}$ and $+\mathrm{V}_{\mathrm{CC}}$ should be connected together, and $-\mathrm{V}_{\mathrm{CC}}$ and $-\mathrm{V}_{\mathrm{CC}}$ should be connected together.
Note 2: Guaranteed by design. This parameter is sample tested.

Typical Performance Characteristics

Pulse Response

TL/K/8686-7

FIGURE 1. Wideband Unity Gain Amplifier Using LH4002CN

FIGURE 2. Compensation for Capacitive Loads

Applications Information

The high speed performance of the LH4002 can only be realized by taking certain precautions in circuit layout and power supply decoupling. Low inductance ceramic chip or disc power supply decoupling capacitors of $0.01 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$ should be connected with the shortest practical lead length between device supply leads and a ground plane. Failure to follow these rules can result in oscillations. When driving a capacitive load such as inputs to flash converters, the circuits in Figure 2 and 3 can be used to minimize the amount of overshoot and ringing at the outputs. Figure 2 indicates that a 50Ω should be placed in parallel with the load and Figure 3 recommends that a 100 resistor be placed in series with the input to the LH4002.

Short Circuit Protection

In order to optimize transient response and output swing, output current limits have been omitted from the LH4002. Short circuit protection may be added by inserting appropriate value resistors between $+\mathrm{V}_{\mathrm{CC} 1}$ and $+\mathrm{V}_{\mathrm{CC} 2}$ pins and between $-\mathrm{V}_{\mathrm{CC}}$ and $-\mathrm{V}_{\mathrm{CC}}$ pins as illustrated in Figure 4. Resistor values may be predicted by:

$$
R_{\mathrm{LIM}}=\frac{+V_{\mathrm{CC} 1}}{I_{\mathrm{SC}}}=\frac{-V_{\mathrm{CC} 1}}{I_{\mathrm{SC}}}
$$

TL/K/8686-10
FIGURE 3. Compensation for Capacitive Loads
where IsC $\leq 100 \mathrm{~mA}$. The inclusion of 50Ω limiting resistors in the collectors of the output transistors limits the short circuit current to approximately 100 mA without reducing the output voltage swing.

TL/K/8686-20
FIGURE 4. LH4002 Using Resistor Current Limiting

LM102/LM302 Voltage Followers

General Description

The LM102 series are high-gain operational amplifiers designed specifically for unity-gain voltage follower applications. Built on a single silicon chip, the devices incorporate advanced processing techniques to obtain very low input current and high input impedance. Further, the input transistors are operated at zero collector-base voltage to virtually eliminate high temperature leakage currents. It can therefore be operated in a temperature stabilized component oven to get extremely low input currents and low offset voltage drift.
The LM102, which is designed to operate with supply voltages between $\pm 12 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$, also features low input capacitance as well as excellent small signal and large signal frequency response-all of which minimize high fre-
quency gain error. Because of the low wiring capacitances inherent in monolithic construction, this fast operation can be realized without increasing power consumption.

Features

- Fast slewing - $10 \mathrm{~V} / \mu \mathrm{s}$
- Low input current - 10 nA (max)
- High input resistance - 10,000 M Ω
- No external frequency compensation required
- Simple offset balancing with optional $1 \mathrm{k} \Omega$ potentiometer
- Plug-in replacement for both the LM101 and LM709 in voltage follower applications

Schematic Diagram

Operating Free Air Temperature Range

LM102	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM302	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$
ESD rating to be determined.	

Electrical Characteristics (Note 4)

Parameter	Conditions	LM102			LM302			Units
		Min	Typ	Max	Min	Type	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	5		5	15	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3	10		10	30	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1010	1012		109	1012		Ω
Input Capacitance				3.0		3.0		pF
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}} \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \mathrm{k} \Omega \end{aligned}$	0.999	0.9996		0.9985	0.9995	1.0	V/V
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.8	2.5	,	0.8	2.5	Ω
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.5	5.5		3.5	5.5	mA
Input Offset Voltage				' 7.5			20	mV
Offset Voltage Temperature Drift			6			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\begin{aligned} & T_{A}=T_{A} M A X \\ & T_{A}=T_{A} M I N \end{aligned}$	*	$\begin{gathered} 3 \\ 30 \end{gathered}$	$\begin{gathered} \hline 10 \\ 100 \\ \hline \end{gathered}$		$\begin{aligned} & 3.0 \\ & 20 \end{aligned}$	$\begin{aligned} & 15 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	0.999						
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ (Note 5)	± 10			± 10			V
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		2.6	4.0				mA
Supply Voltage Rejection Ratio	$\pm 12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$	60			60			dB

Note 1: The maximum junction temperature of the LM102 is $150^{\circ} \mathrm{C}$, while that of the LM302 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 08 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: It is necessary to insert a resistor (at least 5 k and preferably 10 k) in series with the input pin when the amplifier is driven from low impedance sources to prevent damage when the output is shorted and to ensure stability.
Note 4: These specifications apply for $\pm 12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the LM 102 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for the LM302 unless otherwise specified.

Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V^{-}terminals. See curve.
Note 6: Refer to RETS102X for the LM102H military specifications.

APPLICATION HINT

The input must be driven from a source impedance of typically $10 \mathrm{k} \Omega(5 \mathrm{k} \Omega \mathrm{Min})$ to maintain stability. The total source impedance will be reduced at high frequencies if there is stray capacitance at the input pin. In these cases, a $10 \mathrm{k} \Omega$ resistor should be inserted in series with the input, physically close to the input pin to minimize the stray capacitance and prevent oscillation.

Guaranteed Performance Characteristics LM102

Typical Performance Characteristics LM102

Guaranteed Performance Characteristics Lмз02

Typical Performance Characteristics Ln302

Maximum Power Dissipation

TL/H/7753-10

Typical Applications

High Input Impedance AC Amplifier

TL/H/7753-2

Order Number LM102H/883

See NS Package Number H08C

LM110/LM210/LM310 Voltage Follower

General Description

The LM110 series are monolithic operational amplifiers internally connected as unity-gain non-inverting amplifiers. They use super-gain transistors in the input stage to get low bias current without sacrificing speed. Directly interchangeable with 101, 741 and 709 in voltage follower applications, these devices have internal frequency compensation and provision for offset balancing.
The LM110 series are useful in fast sample and hold circuits, active filters, or as general-purpose buffers. Further, the frequency response is sufficiently better than standard IC amplifiers that the followers can be included in the feedback loop without introducing instability. They are plug-in replacements for the LM102 series voltage followers, offer-
ing lower offset voltage, drift, bias current and noise in addition to higher speed and wider operating voltage range.
The LM110 is specified over a temperature range $-55^{\circ} \mathrm{C} \leq$ $T_{A} \leq+125^{\circ} \mathrm{C}$, the LM 210 from $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and the LM310 from $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.

Features

- Input current

10 nA max over temperature

- Small signal bandwidth 20 MHz
Slew rate $30 \mathrm{~V} / \mu \mathrm{s}$ $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

Schematic Diagram

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 6)

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration (Note 3)	Indefinite
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM110	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM210	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Soldering Information	
\quad Dual-In-Line Package	
\quad Soldering (10 sec.)	$260^{\circ} \mathrm{C}$
Small Outline Package	
\quad Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating to be determined.

Electrical Characteristics (Note 4)

Parameter	Conditions	LM110			LM210			LM310			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	4.0		1.5	4.0		2.5	7.5	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0	3.0		1.0	3.0		2.0	7.0	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10^{10}	10^{12}		10^{10}	1012		1010	1012		Ω
Input Capacitance			1.5			1.5			1.5		pF
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \mathrm{k} \Omega \\ & \hline \end{aligned}$	0.999	0.9999		0.999	0.9999		0.999	0.9999		V/V
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.75	2.5		0.75	2.5		0.75	2.5	Ω
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.9	5.5		3.9	5.5		3.9	5.5	mA
Input Offset Voltage				6.0			6.0			10	mV
Offset Voltage Temperature Drift	$\begin{aligned} & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & +85 \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{gathered} 6 \\ 12 \end{gathered}$			6			10		$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\mathrm{C}} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
Input Bias Current				10			10			10	nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	0.999			0.999			0.999			V/V
Output Voltage Swing (Note 5)	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 10			± 10			± 10			V
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		2.0	4.0		2.0	4.0				mA
Supply Voltage Rejection Ratio	$\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$	70	80		70	80		70	80		dB

Note 1: The maximum junction temperature of the LM110 is $150^{\circ} \mathrm{C}$, of the LM 210 is $100^{\circ} \mathrm{C}$, and of the LM 310 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the HO8 package must be derated based on a thermal resistance of $165^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $22^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit for the LM110 and LM210 is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $70^{\circ} \mathrm{C}$, and for the $\mathrm{LM} 310,70^{\circ} \mathrm{C}$ case temperature or $55^{\circ} \mathrm{C}$ ambient temperature. It is necessary to insert a resistor greater than $2 \mathrm{k} \Omega$ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted. $\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \min , 10 \mathrm{k}$ typical is recommended for dynamic stability in all applications.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} 125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 110,-25^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$ for the LM 210 , and $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ for the LM310 unless otherwise specified.
Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V^{-}terminals. See curve.
Note 6: Refer to RETS110X for LM110H, LM110J military specifications.

Application Hint

The input must be driven from a source impedance of typically $10 \mathrm{k} \Omega(5 \mathrm{k} \Omega \mathrm{min}$) to maintain stability. The total source impedance will be reduced at high frequencies if there is stray capacitance at the input pin. In these cases, a $10 \mathrm{k} \Omega$ resistor should be inserted in series with the input, physically close to the input pin to minimize the stray capacitance and prevent oscillation.

Typical Performance Characteristics (LM110/LM210)

Typical Performance Characteristics (LМ310)

Auxiliary Circuits

Increasing Negative Swing Under Load

TL/H/7761-3
*May be added to reduce internal dissipation

Typical Applications

TL/H/7761-2

Differential Input Instrumentation Amplifier

TL/H/7761-4

Typical Applications (Continued)

TL/H/7761-6

TL/H/7761-7

Typical Applications (Continued)

TL/H/7761-8

Buffer for Analog Switch*

TL/H/7761-10
*Switch substrates are boot-strapped to reduce output capacitance of switch.

Typical Applications (Continued)
Comparator for AC Coupled Signals

TL/H/7761-11
High Input Impedance AC Amplifier

Comparator for A/D Converter Using a Binary-Weighted Network

Typical Applications (Continued)

Typical Applications (Continued)

TL/H/7761-18
*Values are for 10 kHz cutoff. Use silvered mica capacitors for good temperature stability.

High Pass Active Filter

TL/H/7761-19
*Values are for 100 Hz cutoff. Use metalized polycarbonate capacitors for good temperature stability.
Simulated Inductor

Typical Applications (Continued)

Adjustable Q Notch Filter

+Use capacitor with polycarbonate teflon or polythylene dietetric

Typical Applications (Continued)

Low Drift Sample and Hold*

Connection Diagrams

TL/H/7761-30
Package is connected to Pin $4\left(\mathrm{~V}^{-}\right)$
Top View
Order Number LM110H, LM210H or LM310H
LM110H/883*
See NS Package Number H08C

National Semiconductor

LM6121/LM6221/LM6321 High Speed Buffer

General Description

These high speed unity gain buffers slew at $800 \mathrm{~V} / \mu \mathrm{s}$ and have a small signal bandwidth of 50 MHz while driving a 50Ω load. They can drive $\pm 300 \mathrm{~mA}$ peak and do not oscillate while driving large capacitive loads. The LM6121 family are monolithic ICs which offer performance similar to the LH0002 with the additional features of current limit and thermal shutdown.
These buffers are built with National's VIPTM (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Simplified Schematic

Numbers in () are for 8-pin N DIP.

Features

- High slew rate	$800 \mathrm{~V} / \mu \mathrm{s}$
- Wide bandwidth	50 MHz
- Slew rate and bandwidth 100% tested	
- Peak output current	$\pm 300 \mathrm{~mA}$
- High input impedance	$5 \mathrm{M} \Omega$
- LH0002H pin compatible	
- No oscillations with capacitive loads	
- 5 V to $\pm 15 \mathrm{~V}$ operation guaranteed	
- Current and thermal limiting	
- Fully specified to drive 50Ω lines	

Applications

- Line Driving
- Radar
- Sonar

Connection Diagrams

*Heat-sinking pins. See Application section on heat sinking requirements.
Order Number LM6221N, LM6321N or LM6121J/883 See NS Package Number J08A or N08E

TL/H/9223-3
Top View
Note: Pin 6 connected to case.
Order Number LM6221H or LM6121H/883 See NS Package Number H08C

TL/H/9223-7
*Pin 3 must be connected to the negative supply.
**Heat-sinking pins. See Application section on heat-sinking requirements. These pins are at V^{-}potential.

Order Number LM6321M
See NS Package Number M14A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage $\quad 36 \mathrm{~V}(\pm 18)$
Input to Output Voltage (Note 2)
$\pm 7 \mathrm{~V}$
Input Voltage
Output Short-Circuit to GND
(Note 3)
Storage Temperature Range
Lead Temperature
(Soldering, 10 seconds)
Power Dissipation

ESD Tolerance (Note 8)	$\pm 2000 \mathrm{~V}$
Junction Temperature $\left(T_{J(m a x)}\right)$	$150^{\circ} \mathrm{C}$
Operating Ratings	
Operating Temperature Range	
LM6121H/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM6221	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM6321	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating Supply Range	4.75 to $\pm 16 \mathrm{~V}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right),($ Note 4)	
H Package	$150^{\circ} \mathrm{C} / \mathrm{W}$
N Package	$47^{\circ} \mathrm{C} / \mathrm{W}$
M Package	$69^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance $\left(\theta_{\mathrm{JC}}\right)$, H Package	$17^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, R_{\mathrm{L}} \geq 100 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{S}}=50 \Omega$ unless otherwise noted. Boldface limits apply for $T_{A}=T_{J}=T_{M I N}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	LM6121	LM6221	LM6321	Units
				Limit (Notes 5, 9)	Limit (Note 5)	Limit (Note 5)	
$A_{V 1}$	Voltage Gain 1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.990	$\begin{gathered} 0.980 \\ 0.970 \end{gathered}$	$\begin{gathered} 0.980 \\ 0.950 \end{gathered}$	$\begin{gathered} 0.970 \\ 0.950 \end{gathered}$	V/V Min
$A_{\text {V2 }}$	Voltage Gain 2	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.900	$\begin{gathered} 0.860 \\ \mathbf{0 . 8 0 0} \end{gathered}$	$\begin{gathered} 0.860 \\ 0.820 \end{gathered}$	$\begin{gathered} 0.850 \\ 0.820 \end{gathered}$	
Av3	Voltage Gain 3 (Note 6)	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \quad \mathrm{~V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{pp}} \quad\left(1.5 \mathrm{~V}_{\mathrm{pp}}\right) \end{aligned}$	0.840	$\begin{gathered} 0.780 \\ 0.750 \end{gathered}$	$\begin{aligned} & 0.780 \\ & 0.700 \end{aligned}$	$\begin{gathered} 0.750 \\ 0.700 \end{gathered}$	
V_{OS}	Offset Voltage	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	15	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	mV Max
${ }^{\prime} \mathrm{B}$	Input Bias Current	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$	1	$\begin{aligned} & 4 \\ & 7 \end{aligned}$	$\begin{aligned} & 4 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\mu \mathrm{A}$ Max
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	5				$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		3.5				pF
R_{0}	Output Resistance	lout $= \pm 10 \mathrm{~mA}$	3	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{gathered} \Omega \\ M a x \end{gathered}$
$\mathrm{I}_{1} 1$	Supply Current 1	$\mathrm{R}_{\mathrm{L}}=\infty$	15	$\begin{aligned} & 18 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 22 \\ & \hline \end{aligned}$	mA
Is2	Supply Current 2	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=5 \mathrm{~V}$	14	$\begin{aligned} & 16 \\ & 18 \end{aligned}$	$\begin{aligned} & 16 \\ & 18 \end{aligned}$	$\begin{aligned} & 18 \\ & 20 \end{aligned}$	Max
VO1	Output Swing 1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$	13.5	$\begin{gathered} 13.3 \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} 13.3 \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} 13.2 \\ 13 \\ \hline \end{gathered}$	
$\mathrm{V}_{\mathrm{O} 2}$	Output Swing 2	$R_{L}=100 \Omega$	12.7	$\begin{gathered} 11.5 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 11.5 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 11 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm \mathrm{V} \\ & \mathrm{Min} \end{aligned}$
VO3	Output Swing 3	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	12	11	11	$\begin{aligned} & 10 \\ & 9 \\ & \hline \end{aligned}$	
VO4	Output Swing 4	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \quad \mathrm{~V}^{+}=5 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	1.8	$\begin{aligned} & 1.6 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & \mathbf{1 . 5} \\ & \hline \end{aligned}$	$V_{P P}$ Min
PSSR	Power Supply Rejection Ratio	$\mathrm{V} \pm= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	70	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$

AC Electrical Characteristics

The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, R_{L} \geq 100 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{S}}=50 \Omega$ unless otherwise noted. Boldface limits apply for $T_{A}=T_{J}=T_{M I N}$ to $T_{M A X}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	LM6121	LM6221	LM6321	Units
				Limit (Note 5)	Limit (Note 5)		
SR_{1}.	Slew Rate 1	$\mathrm{V}_{\mathrm{IN}}= \pm 11 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	1200	550	550	550	$\mathrm{V} / \mu \mathrm{s}$
SR_{2}	Slew Rate 2	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 11 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \text { (Note 7) } \end{aligned}$	800	550	550	550	
SR_{3}	Slew Rate 3	$\begin{aligned} & V_{I N}=2 V_{P P}, R_{L}=50 \Omega \\ & V^{+}=5 V(\text { Note } 6) \end{aligned}$	50	550	550	550	
BW	-3 dB Bandwidth	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 100 \mathrm{mV} \mathrm{PP}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \end{aligned}$	50	30	30	30	MHz Min
t_{r}, t_{f}	Rise Time Fall Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=100 \mathrm{mV} \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	7.0				ns
${ }^{\text {tpd }}$	Propagation Delay Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=100 \mathrm{mV} \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	4.0				ns
Os	Overshoot	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	10				\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: During current limit or thermal limit, the input current will increase if the input to output differential voltage exceeds 8 V . For input to output differential voltages in excess of 8 V the input current should be limited to $\pm 20 \mathrm{~mA}$.
Note 3: The LM6121 series buffers contain current limit and thermal shutdown to protect against fault conditions.
Note 4: The thermal resistance $\theta_{J A}$ of the device in the N package is measured when soldered directly to a printed circuit board, and the heat-sinking pins (pins 1, 4,5 and 8) are connected to 2 square inches of 2 oz : copper. When installed in a socket, the thermal resistance θ_{JA} of the N package is $84^{\circ} \mathrm{C} / \mathrm{W}$. The thermal resistance $\boldsymbol{\theta}_{\mathrm{JA}}$ of the device in the M package is measured when soldered directly to a printed circuit board, and the heat-sinking pins (pins $1,2,6,7,8,9,13,14$) are connected to 1 square inch of 2 oz . copper.
Note 5: Limits are guaranteed by testing or correlation.
Note 6: The input is biased to 2.5 V and V_{IN} swings V_{pp} about this value. The input swing is $2 \mathrm{~V}_{\mathrm{pp}}$ at all temperatures except for the $\mathrm{A}_{\mathrm{V}} 3$ test at $-55^{\circ} \mathrm{C}$ where it is reduced to $1.5 \mathrm{~V}_{\mathrm{pp}}$.
Note 7: Slew rate is measured with a $\pm 11 \mathrm{~V}$ input pulse and 50Ω source impedance at $25^{\circ} \mathrm{C}$. Since voltage gain is typically 0.9 driving a 50Ω load, the output swing will be approximately $\pm 10 \mathrm{~V}$. Slew rate is calculated for transitions between $\pm 5 \mathrm{~V}$ levels on both rising and falling edges. A high speed measurement is done to minimize device heating. For slew rate versus junction temperature see typical performance curves. The input pulse amplitude should be reduced to $\pm 10 \mathrm{~V}$ for measurements at temperature extremes. For accurate measurements, the input slew rate should be at least $1700 \mathrm{~V} / \mu \mathrm{s}$.
Note 8: The test circuit consists of the human body model of 120 pF in series with 1500Ω.
Note 9: For specification limits over the full Military Temperature Range, see RETS6121X.
Note 10: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$ $\left(T_{J(\text { max })}-T_{A}\right) / \theta_{J A}$.

Typical Performance Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Power Bandwidth

Typical Performance Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified (Continued)

Forward Transmission

Application Hints

POWER SUPPLY DECOUPLING

The method of supply bypassing is not critical for stability of the LM6121 series buffers. However, their high current output combined with high slew rate can result in significant voltage transients on the power supply lines if much inductance is present. For example, a slew rate of $900 \mathrm{~V} / \mu \mathrm{s}$ into a 50Ω load produces a di/dt of $18 \mathrm{~A} / \mu \mathrm{s}$. Multiplying this by a wiring inductance of 50 nH (which corresponds to approximately $11 / 2^{\prime \prime}$ of 22 gauge wire) result in a 0.9 V transient. To minimize this problem use high quality decoupling very close to the device. Suggested values are a $0.1 \mu \mathrm{~F}$ ceramic in parallel with one or two $2.2 \mu \mathrm{~F}$ tantalums. A ground plane is recommended.

LOAD IMPEDANCE

The LM6121 is stable to any load when driven by a 50Ω source. As shown in the Overshoot vs Capacitive Load graph, worst case is a purely capacitive load of about 1000 pF . Shunting the load capacitance with a resistor will reduce overshoot.

SOURCE INDUCTANCE

Like any high frequency buffer, the LM6121 can oscillate at high values of source inductance. The worst case condition occurs at a purely capacitive load of 50 pF where up to 100 nH of source inductance can be tolerated. With a 50Ω load, this goes up to 200 nH . This sensitivity may be reduced at the expense of a slight reduction in bandwidth by adding a resistor in series with the buffer input. A 100Ω resistor will ensure stability with source inductances up to 400 nH with any load.

OVERVOLTAGE PROTECTION

The LM6121 may be severely damaged or destroyed if the Absolute Maximum Rating of 7V between input and output pins is exceeded.

If the buffer's input-to-output differential voltage is allowed to exceed 7 V , a base-emitter junction will be in reversebreakdown, and will be in series with a forward-biased baseemitter junction. Referring to the LM6121 simplified schematic, the transistors involved are Q1 and Q3 for positive inputs, and Q2 and Q4 for negative inputs. If any current is allowed to flow through these junctions, localized heating of the reverse-biased junction will occur, potentially causing damage. The effect of the damage is typically increased offset voltage, increased bias current, and/or degraded AC performance. Furthermore, this will defeat the short-circuit and over-temperature protection circuitry. Exceeding $\pm 7 \mathrm{~V}$ input with a shorted output will destroy the device.
The device is best protected by the insertion of the parallel combination of a $100 \mathrm{k} \Omega$ resistor (R1) and a small capacitor (C1) in series with the buffer input, and a $100 \mathrm{k} \Omega$ resistor (R2) from input to output of the buffer (see Figure 1). This network normally has no effect on the buffer output. However, if the buffer's current limit or shutdown is activated, and the output has a ground-referred load of significantly less than $100 \mathrm{k} \Omega$, a large input-to-output voltage may be present. R1 and R2 then form a voltage divider, keeping the input-output differential below the 7V Maximum Rating for input voltages up to 14 V . This protection network should be sufficient to protect the LM6121 from the output of nearly any op amp which is operated on supply voltages of $\pm 15 \mathrm{~V}$ or lower.

TL/H/9223-6
FIGURE 1. LM6121 with Overvoltage Protection

Application Hints

HEATSINK REQUIREMENTS

A heatsink may be required with the LM6321 depending on the maximum power dissipation and maximum ambient temperature of the application. Under all possible operating conditions, the junction temperature must be within the range specified under Absolute Maximum Ratings.
To determine if a heatsink is required, the maximum power dissipated by the buffer, $P(\max)$, must be calculated. The formula for calculating the maximum allowable power dissipation in any application is $P_{D}=\left(T_{J}(\max)-T_{A}\right) / \theta_{J A}$. For the simple case of a buffer driving a resistive load as in Figure 2, the maximum DC power dissipation occurs when the output is at half the supply. Assuming equal supplies, the formula is $\mathrm{P}_{\mathrm{D}}=\mathrm{I}_{\mathrm{S}}\left(2 \mathrm{~V}^{+}\right)+\mathrm{V}+2 / 2 \mathrm{R}_{\mathrm{L}}$.

FIGURE 2
TL/H/9223-8

The next parameter which must be calculated is the maximum allowable temperature rise, $\mathrm{T}_{\mathrm{R}}(\max)$. This is calculated by using the formula:

$$
T_{R}(\max)=T_{J}(\max)-T_{A}(\max)
$$

where: $T_{J}(\max)$ is the maximum allowable junction temperature
$T_{A}(\max)$ is the maximum ambient temperature
Using the calculated values for $T_{R}(\max)$ and $P(\max)$, the required value for junction-to-ambient thermal resistance, $\theta_{(\mathrm{J}-\mathrm{A})}$, can now be found:

$$
\theta_{(J-A)}=T_{R}(\max) / P(\max)
$$

The heatsink for the LM6321 is made using the PC board copper. The heat is conducted from the die, through the lead frame (inside the part), and out the pins which are soldered to the PC board. The pins used for heat conduction are:

TABLE I

Part	Package	Pins
LM6321N	8-Pin DIP	$1,4,5,8$
LM6321M	14-Pin SO	$1,2,3,6,7$,
		$8,9,13,14$

Figure 3 shows copper patterns which may be used to dissipate heat from the LM6321.

*For best results, use $L=2 H$
FIGURE 3. Copper Heatsink Patterns

Table II shows some values of junction-to-ambient thermal resistance $\left(\theta_{J}-A\right)$ for values of L and W for $20 z$. copper:

TABLE II

Package	\mathbf{L} (in.)	H (in.)	$\theta_{\mathrm{J}-\mathrm{A}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
8-Pin DIP	2	0.5	47
14-Pin SO	1	0.5	69
	2	1	57

LM6125/LM6225/LM6325 High Speed Buffer

General Description

The LM6125 family of high speed unity gain buffers slew at $800 \mathrm{~V} / \mu \mathrm{s}$ and have a small signal bandwidth of 50 MHz while driving a 50Ω load. These buffers drive $\pm 300 \mathrm{~mA}$ peak and do not oscillate while driving large capacitive loads. The LM6125 contains unique features not found in power buffers; these include current limit, thermal shutdown, electronic shutdown, and an error flag that warns of fault conditions.
These buffers are built with National's VIPTM (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

- High slew rate $800 \mathrm{~V} / \mu \mathrm{s}$
- High output current $\pm 300 \mathrm{~mA}$
- Stable with large capacitive loads
- Current and thermal limiting
- Electronic shutdown
- 5 V to $\pm 15 \mathrm{~V}$ operation guaranteed
- Fully specified to drive 50Ω lines

Applications

- Line Driving
- Radar
- Sonar

Simplified Schematic and Block Diagram

TL/H/9222-2

Numbers in () are for 14-pin N DIP.

Pin Configurations

*Heat sinking pins.
Internally connected to V -.
Order Number LM6225N or LM6325N See NS Package Number N14A

TL/H/9222-4
Top View
Note: Pin 4 connected to case
Order Number LM6125H/883*
or LM6125H
See NS Package Number H08C

[^15]
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
$36 \mathrm{~V}(\pm 18 \mathrm{~V})$
Input to Output Voltage (Note 2)
Input Voltage
$\pm 7 \mathrm{~V}$
\pm Vsupply
Output Short-Circuit to GND (Note 3)
Flag Output Voltage
GND \leq Vflag $\leq+$ Vsupply
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range
Lead Temperature
(Soldering, 10 seconds)
$260^{\circ} \mathrm{C}$

ESD Tolerance (Note 9)	$\pm 1500 \mathrm{~V}$
$\theta_{\text {JA (Note 4) }}$	
H Package	$150^{\circ} \mathrm{C} / \mathrm{W}$
N Package	$40^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature (TJ)	$150^{\circ} \mathrm{C}$
Operating Temperature Range	
LM6125	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM6225	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM6325	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating Supply Voltage Range	4.75 V to $\pm 16 \mathrm{~V}$

DC Electrical Characteristics

The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{C M}=0, R_{L} \geq 100 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{S}}=50 \Omega$ unless otherwise noted. Boldface limits apply for $T_{A}=T_{J}=T_{M I N}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	LM6125	LM6225	LM6325	Units
				Limit (Notes 5, 10)	Limit (Note 5)	Limit (Note 5)	
$A_{V 1}$	Voltage Gain 1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.990	$\begin{gathered} 0.980 \\ 0.970 \end{gathered}$	$\begin{gathered} 0.980 \\ \mathbf{0 . 9 5 0} \end{gathered}$	$\begin{gathered} 0.970 \\ \mathbf{0 . 9 5 0} \end{gathered}$	V/V Min
Av2	Voltage Gain 2	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.900	$\begin{gathered} 0.860 \\ \mathbf{0 . 8 0 0} \end{gathered}$	$\begin{gathered} 0.860 \\ \mathbf{0 . 8 2 0} \end{gathered}$	$\begin{gathered} 0.850 \\ \mathbf{0 . 8 2 0} \end{gathered}$	
Av3	Voltage Gain 3 (Note 6)	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{~V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{PP}}\left(1.5 \mathrm{~V}_{\mathrm{PP}}\right) \end{aligned}$	0.840	$\begin{gathered} 0.780 \\ \mathbf{0 . 7 5 0} \\ \hline \end{gathered}$	$\begin{aligned} & 0.780 \\ & 0.700 \end{aligned}$	$\begin{gathered} 0.750 \\ 0.700 \end{gathered}$	
$\mathrm{V}_{\text {OS }}$	Offset Voltage	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	15	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \end{aligned}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{gathered} m V \\ M a x \end{gathered}$
I_{B}	Input Bias Current	$R_{L}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$	1	$\begin{array}{r} 4 \\ 7 \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & 7 \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\mu \mathrm{A}$ Max
$\mathrm{R}_{\text {IN }}$	Input Resistance	$R_{L}=50 \Omega$	5				$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		3.5				pF
R_{O}	Output Resistance	IOUT $= \pm 10 \mathrm{~mA}$	3	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{gathered} \Omega \\ \operatorname{Max} \end{gathered}$
$\mathrm{I}_{\text {S } 1}$	Supply Current 1	$\mathrm{R}_{\mathrm{L}}=\infty$	15	$\begin{array}{r} 18 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 18 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 22 \\ & \hline \end{aligned}$	mA Max
is2	Supply Current 2	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=5 \mathrm{~V}$	14	$\begin{aligned} & 16 \\ & 18 \end{aligned}$	$\begin{aligned} & 16 \\ & 18 \end{aligned}$	$\begin{aligned} & 18 \\ & 20 \end{aligned}$	
IS/D	Supply Current in Shutdown	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{ \pm}= \pm 15 \mathrm{~V}$	1.1	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	
V O1	Output Swing 1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	13.5	$\begin{gathered} 13.3 \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} 13.3 \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} 13.2 \\ 13 \\ \hline \end{gathered}$	$\begin{aligned} & \pm V \\ & \text { Min } \end{aligned}$
$\mathrm{V}_{\mathrm{O} 2}$	Output Swing 2	$R_{L}=100 \Omega$	12.7	$\begin{gathered} 11.5 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 11.5 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	
$\mathrm{V}_{\mathrm{O} 3}$	Output Swing 3	$R_{L}=50 \Omega$	12	$\begin{gathered} 11 \\ 9 \end{gathered}$	$\begin{gathered} 11 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 9 \\ \hline \end{gathered}$	
V_{04}	Output Swing 4	$R_{L}=50 \Omega$	1.8	$\begin{array}{r} 1.6 \\ 1.3 \\ \hline \end{array}$	$\begin{array}{r} 1.6 \\ 1.4 \\ \hline \end{array}$	$\begin{aligned} & 1.6 \\ & 1.5 \\ & \hline \end{aligned}$	$V_{P P}$ Min
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=5 \mathrm{~V}$ (Note 6)	70	$\begin{array}{r} 60 \\ 55 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
V_{OL}	Flag Pin Output Low Voltage	$\begin{aligned} & \mathrm{V}^{ \pm}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S} / \mathrm{D}}=0 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 300 \\ 400 \\ \hline \end{array}$	$\begin{array}{r} 300 \\ 400 \\ \hline \end{array}$	$\begin{aligned} & 340 \\ & 400 \end{aligned}$	mV Max
IOH	Flag Pin Output High Current	$\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}} \text { Flag Pin }=15 \mathrm{~V} \\ & \text { (Note } 7) \end{aligned}$	0.01	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ Max

DC Electrical Characteristics (Continued)
The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, R_{L} \geq 100 \mathrm{k} \Omega$ and $\mathrm{R}_{S}=50 \Omega$ unless otherwise noted. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX; }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	LM6125	LM6225	LM6325	Units
				Limit (Notes 5, 10)	Limit (Note 5)	Limit (Note 5)	
$\mathrm{V}_{\text {TH }}$	Shutdown Threshold		1.4				V
V_{IH}	Shutdown Pin Trip Point High			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} V \\ \text { Min } \end{gathered}$
V_{IL}	Shutdown Pin Trip Point Low			$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{gathered} V \\ \text { Max } \end{gathered}$
IIL	Shutdown Pin Input Low Current	$\mathrm{V}_{\mathrm{S} / \mathrm{D}}=0 \mathrm{~V}$	-0.07	$\begin{aligned} & -10 \\ & -20 \end{aligned}$	$\begin{aligned} & -10 \\ & -20 \end{aligned}$	$\begin{array}{r} -10 \\ -20 \end{array}$	$\mu \mathrm{A}$ Max
I_{H}	Shutdown Pin Input High Current	$\mathrm{V}_{S / D}=5 \mathrm{~V}$	-0.05	$\begin{aligned} & -10 \\ & -20 \\ & \hline \end{aligned}$	$\begin{array}{r} -10 \\ -20 \end{array}$	$\begin{aligned} & -10 \\ & -20 \end{aligned}$	$\mu \mathrm{A}$ Max
10	Bi-State Output Current	Shutdown Pin $=0 \mathrm{~V}$ $\mathrm{V}_{\text {OUT }}=+5 \mathrm{~V}$ or -5 V	1	$\begin{gathered} 50 \\ 2000 \end{gathered}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\mu \mathrm{A}$

AC Electrical Characteristics

The following specifications apply for Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{S}}=50 \Omega$ unless otherwise noted.
Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	LM6125	LM6225	LM6325	Units
				Limit (Note 5)	Limit (Note 5)	Limit (Note 5)	
SR_{1}	Slew Rate 1	$\mathrm{V}_{\mathrm{IN}}= \pm 11 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	1200				$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{Min} \end{aligned}$
SR_{2}	Slew Rate 2	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 11 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \text { (Note 8) } \end{aligned}$	800	550	550	550	
SR_{3}	Slew Rate 3	$\begin{aligned} & V_{I N}=2 V_{P P}, R_{L}=50 \Omega \\ & V^{+}=5 V(\text { Note 6) } \end{aligned}$	50				
BW	-3 dB Bandwidth	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \end{aligned}$	50	30	30	30	MHz Min
t_{r}, t_{f}	Rise Time Fall Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	8.0				ns
$t_{\text {PD }}$	Propagation Delay Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=100 \mathrm{mV} \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	4.0				ns
O_{5}	Overshoot	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	10		.		\%
V_{FT}	$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$ Feedthrough in Shutdown	$\begin{aligned} & \text { Shutdown Pin }=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=4 \mathrm{~V} \mathrm{PP}, 1 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	-50	.			dB
COUT	Output Capacitance in Shutdown	Shutdown Pin $=0 \mathrm{~V}$	30				pF
${ }^{\text {tSD }}$	Shutdown Response Time		700				ns

Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: During current limit, thermal limit, or electronic shutdown the input current will increase if the input to output differential voltage exceeds 8 V . See Overvoltage Protection in Application Hints.
Note 3: The LM6125 series buffers contain current limit and thermal shutdown to protect against fault conditions.
Note 4: For operation at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{J A}$ and $T_{J} \max , T_{J}=T_{A}+\theta_{J A} P_{D} . \theta_{J C}$ for the LM6125H and LM6225H is $17^{\circ} \mathrm{C} / \mathrm{W}$. The thermal impedance θ_{JA} of the device in the N package is $40^{\circ} \mathrm{C} / \mathrm{W}$ when soldered directly to a printed circuit board, and the heat-sinking pins (pins $3,4,5,10,11$, and 12) are connected to 2 square inches of 2 oz . copper. When installed in a socket, the thermal impedance $\boldsymbol{\theta}_{\mathrm{JA}}$ of the N package is $60^{\circ} \mathrm{C} / \mathrm{W}$.
Note 5: Limits are guaranteed by testing or correlation.
Note 6: The input is biased to +2.5 V , and $\mathrm{V}_{I N}$ swings V_{PP} about this value. The input swing is $2 \mathrm{~V}_{\mathrm{PP}}$ at all temperatures except for the $\mathrm{AV}^{2} 3$ test at $-55^{\circ} \mathrm{C}$ where it is reduced to 1.5 Vpp .
Note 7: The Error Flag is set (low) during current limit or thermal fault detection in addition to being set by the Shutdown pin. It is an open-collector output which requires an external pullup resistor.
Note 8: Slew rate is measured with a $\pm 11 \mathrm{~V}$ input pulse and 50Ω source impedance at $25^{\circ} \mathrm{C}$. Since voltage gain is typically 0.9 driving a 50Ω load, the output swing will be approximately $\pm 10 \mathrm{~V}$. Slew rate is calculated for transitions between $\pm 5 \mathrm{~V}$ levels on both rising and falling edges. A high speed measurement is done to minimize device heating. For slew rate versus junction temperature see typical performance curves. The input pulse amplitude should be reduced to $\pm 10 \mathrm{~V}$ for measurements at temperature extremes. For accurate measurements, the input slew rate should be at least $1700 \mathrm{~V} / \mu \mathrm{s}$.
Note 9: The test circuit consists of the human body model of 120 pF in series with 1500Ω.
Note 10: A military RETS specification is available on request. At the time of printing, the LM6125H/883 RETS spec complied with the Boldface limits in this column. The LM6125H/883 may also be procured as Standard Military Drawing specification \#5962-9081501MXX.

Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise specified

Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise specified (Continued)

Power Bandwidth

Input Return Gain
(S11)

TL/H/9222-7

Typical Connection Diagram

Application Hints

POWER SUPPLY DECOUPLING

The method of supply bypassing is not critical for stability of the LM6125 series buffers. However, their high current output combined with high slew rate can result in significant voltage transients on the power supply lines if much inductance is present. For example, a slew rate of $900 \mathrm{~V} / \mu \mathrm{s}$ into a 50Ω load produces a di/dt of $18 \mathrm{~A} / \mu \mathrm{s}$. Multiplying this by a wiring inductance of 50 nH results in a 0.9 V transient. To minimize this problem use high quality decoupling very close to the device. Suggested values are a $0.1 \mu \mathrm{~F}$ ceramic in parallel with one or two $2.2 \mu \mathrm{~F}$ tantalums. A ground plane is recommended.

LOAD IMPEDANCE

The LM6125 is stable into any load when driven by a 50Ω source. As shown in the Overshoot vs Capacitive Load graph, worst case is a purely capacitive load of about 1000 pF . Shunting the load capacitance with a resistor will reduce overshoot.

SOURCE INDUCTANCE

Like any high-frequency buffer, the LM6125 can oscillate at high values of source inductance. The worst case condition occurs at a purely capacitive load of 50 pF where up to 100 nH of source inductance can be tolerated. With a 50Ω load, this goes up to 200 nH . This sensitivity may be reduced at the expense of a slight reduction in bandwidth by adding a resistor in series with the buffer input. A 100Ω resistor will ensure stability with source inductances up to 400 nH with any load.

ERROR FLAG LOGIC

The Error Flag pin is an open-collector output which requires an external pull-up resistor. Flag voltage is HIGH during operation, and is LOW during a fault condition. A fault condition occurs if either the internal current limit or the thermal shutdown is activated, or the shutdown (S/D) pin is driven low by external logic. Flag voltage returns to its HIGH state when normal operation resumes.
If the S/D pin is not to be used, it should be connected to V ${ }^{+}$.

OVERVOLTAGE PROTECTION

The LM6125 may be severely damaged or destroyed if the Absolute Maximum Rating of 7 V between input and output pins is exceeded.

If the buffer's input-to-output differential voltage is allowed to exceed 7V, a base-emitter junction will be in reversebreakdown, and will be in series with a forward-biased baseemitter junction. Referring to the LM6125 simplified schematic, the transistors involved are Q1 and Q3 for positive inputs, and Q2 and Q4 for negative inputs. If any current is allowed to flow through these junctions, localized heating of the reverse-biased junction will occur, potentially causing damage. The effect of the damage is typically increased offset voltage, increased bias current, and/or degraded AC performance. The damage is cumulative, and may eventually result in complete device failure.
The device is best protected by the insertion of the parallel combination of a $100 \mathrm{k} \Omega$ resistor (R1) and a small capacitor (C1) in series with the buffer input, and a $100 \mathrm{k} \Omega$ resistor (R2) from input to output of the buffer (see Figure 1). This network normally has no effect on the buffer output. However, if the buffer's current limit or shutdown is activated, and the output has a ground-referred load of significantly less than $100 \mathrm{k} \Omega$, a large input-to-output voltage may be present. R1 and R2 then form a voltage divider, keeping the input-output differential below the 7V Maximum Rating for input voltages up to 14 V . This protection network should be sufficient to protect the LM6125 from the output of nearly any op amp which is operated on supply voltages of $\pm 15 \mathrm{~V}$ or lower.

TL/H/9222-8
FIGURE 1. LM6125 with Overvoltage Protection

Section 3
Voltage Comparators
Section 3 Contents
Voltage Comparators Definition of Terms 3-3
Voltage Comparators Selection Guide 3-4
LF111/LF211/LF311 Voltage Comparators 3-5
LH2111/LH2311 Dual Voltage Comparators 3-14
LM106/LM306 Voltage Comparators 3-17
LM111/LM211/LM311 Voltage Comparators 3-21
LM119/LM219/LM319 High Speed Dual Comparators 3-35
LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators 3-42
LM160/LM360 High Speed Differential Comparators 3-54
LM161/LM261/LM361 High Speed Differential Comparators 3-58
LM193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators 3-63
LM612 Dual-Channel Comparator and Reference 3-72
LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference 3-80
LM615 Quad Comparator and Adjustable Reference 3-96
LM710 Voltage Comparator 3-107
LM760 High Speed Differential Comparator 3-111
LM1801 Battery Operated Power Comparator 3-118
LM6511 180 ns 3V Comparator 3-126
LMC6762 Dual/LMC6764 Quad Micropower, Rail-to-Rail Input and Output CMOS Comparator 3-131
LMC6772 Dual, LMC6774 Quad, Micropower Rail-to-Rail Input and Open Drain Output CMOS Comparator 3-132
LMC7211 Tiny CMOS Comparator with Rail-to-Rail Input 3-133
LMC7221 Tiny CMOS Comparator with Rail-to-Rail Input and Open Drain Output 3-144
LP311 Voltage Comparator 3-145
LP339 Ultra-Low Power Quad Comparator 3-149

Voltage Comparators Definition of Terms

Input Bias Current: The average of the two input currents. Input Offset Current: The absolute value of the difference between the two input currents for which the output will be driven higher than or lower than specified voltages.
Input Offset Voltage: The absolute value of the voltage between the input terminals required to make the output voltage greater than or less than specified voltages.
Input Voltage Range: The range of voltage on the input terminals (common-mode) over which the offset specifications apply.
Logic Threshold Voltage: The voltage at the output of the comparator at which the loading logic circuitry changes its digital state.
Negative Output Level: The negative DC output voltage with the comparator saturated by a differential input equal to or greater than a specified voltage.
Output Leakage Current: The current into the output terminal with the output voltage within a given range and the input drive equal to or greater than a given value.
Output Resistance: The resistance seen looking into the output terminal with the DC output level at the logic threshold voltage.
Output Sink Current: The maximum negative current that can be delivered by the comparator.
Positive Output Level: The high output voltage level with a given load and the input drive equal to or greater than a specified value.
Power Consumption: The power required to operate the comparator with no output load. The power will vary with signal level, but is specified as a maximum for the entire range of input signal conditions.

Response Time: The interval between the application of an input step function and the time when the output crosses the logic threshold voltage. The input step drives the comparator from some initial, saturated input voltage to an input level just barely in excess of that required to bring the output from saturation to the logic threshold voltage. This excess is referred to as the voltage overdrive.
Saturation Voltage: The low-output voltage level with the input drive equal to or greater than a specified value.
Strobe Current: The current out of the strobe terminal when it is at the zero logic level.
Strobe Output Level: The DC output voltage, independent of input conditions, with the voltage on the strobe terminal equal to or less than the specified low state.
Strobe "ON" Voltage: The maximum voltage on either strobe terminal required to force the output to the specified high state independent of the input voltage.
Strobe "OFF" Voltage: The minimum voltage on the strobe terminal that will guarantee that it does not interfere with the operation of the comparator.
Strobe Release Time: The time required for the output to rise to the logic threshold voltage after the strobe terminal has been driven from zero to the one logic level.
Supply Current: The current required from the positive or negative supply to operate the comparator with no output load. The power will vary with input voltage, but is specified as a maximum for the entire range of input voltage conditions.
Voltage Gain: The ratio of the change in output voltage to the change in voltage between the input terminals producing it.

National Semiconductor Voltage Comparators Selection Guide					
	Response Time (Typ) ns	$\begin{gathered} \mathbf{V O S}_{\text {O }} \\ \mathrm{mV}(\text { Max }) \end{gathered}$	$\underset{\text { mA(Max) }}{\text { Is }}$	$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{nA}(\operatorname{Max}) \end{gathered}$	Special Features
$\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$ (Notes 1 and 2)					
LM6685	2.6	1.9	23	9,000	Single, Very High Speed ECL Output Dual, Very High Speed ECL Output High Speed, Complementary Outputs High Speed w/Strobes High Speed, High Drive
LM6687	2.6	1.9	38	9,000	
LM360	14	5	32	20,000	
LM361	14	5	20	30,000	
LM306	28	5	10	25,000	
LM319	80	8	12.5	1000	High Speed Dual
LM6511	180	5	3.5	130	
LF311	200	10	7.5	0.15	FET Input General Purpose Single
LM311	200	7.5	7.5	250	
LH2311	200	7.5	7.5	250	Dual LM311 Low Power Single General Purpose Quad One Comparator Plus One Op Amp General Purpose Dual
LP311	1200	7.5	0.3	100	
LM339	1300	5	2.5	250	
LM392	1300	10	1	400	
LM393	1300	5	2.5	250	
LM2901	1300	7	2.5	250	Automotive Quad Super-BlockTM Dual Comparator + Reference Super-BlockTM Dual Comparator + Dual Op Amp + Reference Super-BlockTM Quad Comparator + Reference Automotive Dual
LM612	1500	5	0.250	35	
LM613	1500	5	1	35	
LM613	1500	5			
LM615	1500	5	0.600	35	
LM2903	1500	7	2.5	250	
LP365	4000	6	0.275	75	Programmable Quad Low Power Quad Output CMOS Comparator
LP339	8000	5	0.1	25	
LMC676214	4000	5	0.01		
LMC6762	4000	5	$20 \mu \mathrm{~A}$	0.02 pA (typ)	MicroPower Dual
LMC6764	4000	5	$40 \mu \mathrm{~A}$	0.02 pA (typ)	MicroPower Quad
LMC6772	4000	5	$20 \mu \mathrm{~A}$	0.02 pA (typ)	MicroPower Dual, Open Drain Output
LMC6774	4000	5	$40 \mu \mathrm{~A}$	0.02 pA (typ)	MicroPower Quad, Open Drain Output
LMC7211	4000	15	$7 \mu \mathrm{~A}$	0.02 pA (typ)	TinyPakTM SOT23-5 MicroPower Comparator
LMC7221	4000	15	$7 \mu \mathrm{~A}$	0.02 pA (typ)	TinyPak SOT23-5 MicroPower Comparator, Open Drain Output
Note 1: Datasheet should be referred to for test conditions and more detailed information. Note 2: This selection guide should be used to select for Response Time required. Industrial and Military Temperature Range types are available. The DC specs are for the lowest Commercial Grade available.					

National Semiconductor

LF111/LF211/LF311 Voltage Comparators

General Description

The LF111, LF211 and LF311 are FET input voltage comparators that virtually eliminate input current errors. Designed to operate over a 5.0 V to $\pm 15 \mathrm{~V}$ range the LF111 can be used in the most critical applications.
The extremely low input currents of the LF111 allows the use of a simple comparator in applications usually requiring input current buffering. Leakage testing, long time delay circuits, charge measurements, and high source impedance voltage comparisons are easily done.

Further, the LF111 can be used in place of the LM111 eliminating errors due to input currents. See the "application hints" of the LM311 for application help.

Features

- Eliminates input current errors
- Interchangeable with LM111
- No need for input current buffering

Schematic Diagram

Connection Diagram
TL/H/5703-2
Metal Can Package

TL/H/5703-1
Top View
Order Number LF111H, LF111H-MIL or LF311H
See NS Package Number H08C

Absolute Maximum Ratings					
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.			Operating Temp.	LF111/LF211	LF311
			Range		
(Note 8)			LF111	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
	LF111/LF211	LF311	LF211	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Total Supply Voltage (V_{84})	36 V	36V	LF311		$0^{\circ} \mathrm{C}$ to $+70^{\circ}$
Output to Negative Supply Voltage (V_{74})	50 V	40 V	Storage Temp.		
Ground to Negative Supply Voltage (V_{14})	30 V	30 V	Range Lead Temp.	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	(Soldering,		
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	10 seconds)	$260^{\circ} \mathrm{C}$	26
Power Dissipation (Note 2)	500 mW	500 mW	ESD rating to be	determined.	
Output Short Circuit Duration	10 seconds	10 seconds			

Electrical Characteristics (LF111/LF211) (Note 3)

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		0.7	4.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0$ (Note 6)		5.0	25	pA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0$ (Note 6)		20	50	pA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\mathrm{V}_{\text {IN }} \leq-5.0 \mathrm{mV}, \mathrm{l}_{\text {OUT }}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.75	1.5	V
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$\mathrm{V}_{\text {IN }} \leq 5.0 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.2	10	nA
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$			6.0	mV
Input Offset Current (Note 4)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		2.0	3.0	nA
Input Bias Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		5.0	7.0	nA
Input Voltage Range		-13.5	± 14	13.0	V
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-6.0 \mathrm{mV}, \text { louT } \leq 8.0 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 5.0 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		0.1	0.5	$\mu \mathrm{A}$
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	6.0	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LF111 is $+150^{\circ} \mathrm{C}$, the LF211 is $+110^{\circ} \mathrm{C}$ and the LF311 is $+85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 08 package must be derated based on a thermal resistance of $+65^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient (in 400 linear feet $/ \mathrm{min}$ air flow), $+165^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient (in static air), or $+20^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.

Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$, and the Ground pin at ground, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LF111, unless otherwise stated. With the LF211, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq \pm 85^{\circ} \mathrm{C}$ and for the $\mathrm{LF} 3110^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5.0 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5.0 mV overdrive.
Note 6: For input voltages greater than 15 V above the negative supply the bias and offset currents will increase-see typical performance curves.
Note 7: This specification gives the current that must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA .

Note 8: Refer to RETSF111X for LF111H military specifications.

Electrical Characteristics (LF311) (Note 3)

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		2.0	10	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0$ (Note 6)		5.0	75	pA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C M}=0$ (Note 6)		25	150	pA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}$, $\mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.75	1.5	V
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		0.2	10	nA
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$			15	mV
Input Offset Current (Note 4)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		1.0		nA
Input Bias Current	$\mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		3.0		nA
Input Voltage Range			$\begin{gathered} +14 \\ -13.5 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \hline \end{aligned}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}-=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{l}_{\mathrm{OUT}} \leq 8.0 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	7.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LF111 is $+150^{\circ} \mathrm{C}$, the LF211 is $+110^{\circ} \mathrm{C}$ and the LF311 is $+85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 08 package must be derated based on a thermal resistance of $+165^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $+20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ for the LF111, unless otherwise stated. With the LF211, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ and for the $\mathrm{LF} 3110^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5.0 mV supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5.0 mV overdrive.
Note 6: For input voltages greater than 15 V above the negative supply the bias and offset currents will increase-see typical performance curves.
Note 7: This specification gives the current that must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA .

Auxiliary Circuits

Note: Do Not Ground Strobe Pin.

Typical Performance Characteristics

Input Bias Current

 vs Common Mode

Input Bias Current vs Temperature

Response Time for Various

Response Time for Various

Transfer Function

OUTPUT CURRENT (mA)

TL/H/5703-4

Typical Applications

10 Hz to 10 kHz Voltage Controlled Oscillator

Typical Applications（Continued）

TL／H／5703－9
Zero Crossing Detector Driving MOS Logic

Driving Ground－Referred Load

tiL／H／5703－11
＊Input polarity is reversed when using pin 1 as output．

Comparator and Solenoid Driver

Typical Applications (Continued)

TL/H/5703-16

Typical Applications (Continued)

Relay Driver with Strobe

*Solid tantalum

TL/H/5703-19

[^16]
Typical Applications（Continued）

LH2111/LH2311 Dual Voltage Comparators

General Description

The LH2111 series of dual voltage comparators are two LM111 type comparators in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost and smaller size than two singles. For additional information see the LM111 data sheet and National's Linear Application Handbook.
The LH2111 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH2311 is specified for operation over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

Features

- Wide operating supply range	$\pm 15 \mathrm{~V}$ to a single +5 V				
- Low input currents	6 nA	$	$	- High sensitivity	$\pm 0 \mu \mathrm{~V}$
:---	---:				
- Wide differential input range	$\pm 30 \mathrm{~V}$				
- High output drive	$50 \mathrm{~mA}, 50 \mathrm{~V}$				

Connection Diagram

Order Number LH2111D, LH2111D/883 or LH2311D See NS Package Number D16C

Absolute Maximum Ratings	
If Military／Aerospace specified devices are required，	
please contact the National Semiconductor Sales	
Office／Distributors for availability and specifications．	
Total Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	36 V
Output to Negative Supply Voltage（VOUT $-\mathrm{V}^{-}$）	50 V
Ground to Negative Supply Voltage（GND $-\mathrm{V}^{-}$）	30 V
Differential Input Voltage	$\pm 30 \mathrm{~V}$

Absolute Maximum Ratings
If Military／Aerospace specified devices are required，
please contact the National Semiconductor Sales
Office／Distributors for availability and specifications．
Total Supply Voltage（ $\mathrm{V}^{+}-\mathrm{V}^{-}$）
36 V
Output to Negative Supply Voltage（VOUT $-\mathrm{V}^{-}$） 50 V
Ground to Negative Supply Voltage（GND－V－）30V
ential Input Voltage

Input Voltage（Note 1）	$\pm 15 \mathrm{~V}$
Power Dissipation（Note 2）	500 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range LH2111	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	LH2311
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature（Soldering， 10 sec ）	$300^{\circ} \mathrm{C}$

Auxiliary Circuits

TL／K／10116－3

Increasing Input Stage Current＊

TL／K／10116－4
＊Increases typical common mode slew from 7．0 V／$\mu \mathrm{s}$ to $18 \mathrm{~V} / \mu \mathrm{s}$

Comparator and Solenoid Driver

Using Clamp Diodes to Improve Responses

TL／K／10116－5

TL／K／10116－8
＊Typical input current is 50 pA with inputs strobed off
TTL Interface with High Level Logic

LM106/LM306 Voltage Comparator

General Description

The LM106 series are high-speed voltage comparators designed to accurately detect low-level analog signals and drive a digital load. They are equivalent to an LM710, combined with a two input NAND gate and an output buffer. The circuits can drive RTL, DTL or TTL integrated circuits directly. Furthermore, their outputs can switch voltages up to 24 V at currents as high as 10 mA .
The devices have short-circuit protection which limits the inrush current when it is used to drive incandescent lamps, in addition to preventing damage from accidental shorts to the positive supply. The speed is equivalent to that of an LM710. However, they are even faster where buffers and additional logic circuitry can be eliminated by the increased flexibility of the LM106 series. They can also be operated from any negative supply voltage between -3 V and -12 V with little effect on performance.

The LM106 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM306 is specified for operation over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Improved accuracy
- Fan-out of 10 with DTL or TTL
- Added logic or strobe capability
- Useful as a relay or lamp driver
- Plug-in replacement for the LM710
- 40 ns maximum response time

Schematic and Connection Diagrams

TL/H/7756-2
Top View
Note: Pin 4 connected to case.

> Order Number LM106H, LM106H/883 \dagger or LM306H See NS Package Number H08A

\section*{Absolute Maximum Ratings
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 6)
 | Positive Supply Voltage | 15 V |
| :--- | ---: |
| Negative Supply Voltage | -15 V |
| Output Voltage | 24 V |
| Output to Negative Supply Voltage | 30 V |
| Differential Input Voltage | $\pm 5 \mathrm{~V}$ |
| Input Voltage | $\pm 7 \mathrm{~V}$ |}

Electrical Characteristics (Note 2)

Parameter	Conditions	LM106			LM306			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	(Note 3)		0.5	2.0		1.6	5.0	mV
Input Offset Current	(Note 3)		0.7	3.0		1.8	5.0	$\mu \mathrm{A}$
Input Bias Current	.		10	20		16	25	$\mu \mathrm{A}$
Response Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=390 \Omega \text { to } 5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF},(\text { Note } 4) \end{aligned}$		28	40		28	40	ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq-5 \mathrm{mV}, \text { IOUT }=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}} \leq-7 \mathrm{mV}, \text { IOUT }=100 \mathrm{~mA} \end{aligned}$		1.0	1.5		0.8	2.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \geq 5 \mathrm{mV}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq 7 \mathrm{mV}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V} \end{aligned}$		0.02	1.0		0.02	2.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$

THE FOLLOWING SPECIFICATIONS APPLY FOR $\mathbf{T}_{\text {MIN }} \leq \mathbf{T}_{\mathbf{A}} \leq \mathrm{T}_{\text {MAX }}$ (Note 5)

Input Offset Voltage	(Note 3)			3.0			6.5	mV
Average Temperature Coefficient of Input Offset Voltage			3.0	10		5	20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\begin{aligned} & T_{L} \leq T_{A} \leq 25^{\circ} \mathrm{C}, \text { (Note } 3 \text {) } \\ & 25^{\circ} \mathrm{C} \leq T_{A} \leq T_{H} \end{aligned}$		$\begin{gathered} 1.8 \\ 0.25 \end{gathered}$	$\begin{aligned} & 7.0 \\ & 3.0 \end{aligned}$		2.4	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq \mathrm{T}_{H} \\ & \mathrm{~T}_{\mathrm{L}} \leq \mathrm{T}_{A} \leq 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{r} 5.0 \\ 15 \end{array}$	$\begin{aligned} & 25 \\ & 75 \end{aligned}$		$\begin{aligned} & 15 \\ & 24 \end{aligned}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	$n A /{ }^{\circ} \mathrm{C}$ $n A /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{L}} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{H}} \end{aligned}$			$\begin{aligned} & 45 \\ & 20 \end{aligned}$		25	$\begin{aligned} & 40 \\ & 25 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Voltage Range	$-7 \mathrm{~V} \geq \mathrm{V}-\geq-12 \mathrm{~V}$	± 5.0			± 5.0			V
Differential Input Voltage Range		± 5.0			± 5.0			V
Saturation Voltage	$\mathrm{V}_{\mathrm{IN}} \leq-5 \mathrm{mV}$, IOUT $=50 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{IN}} \leq-8 \mathrm{mV}$ For LM306			1.0			1.0	V
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq-5 \mathrm{mV}, \text { IOUT }=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}} \leq-8 \mathrm{mV} \text { For LM306 } \end{aligned}$			0.4			0.4	V
Positive Output Level	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV} \text {, IOUT }=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }} \geq 8 \mathrm{mV} \text { For LM306 } \end{aligned}$	2.5		5.5	2.5		5.5	V
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \geq 5 \mathrm{mV}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq 8 \mathrm{mV} \text { For LM } 306 \\ & \mathrm{~T}_{\mathrm{L}} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{H} \\ & \hline \end{aligned}$			$\begin{aligned} & 1.0 \\ & 100 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 100 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Strobe Current	$\mathrm{V}_{\text {STROBE }}=0.4 \mathrm{~V}$		-1.7	-3.2		-1.7	-3.2	mA

Electrical Characteristics (Note 2) (Continued)

Parameter	Conditions	LM106			LM306			Units
		Min	Typ	Max	Min	Typ	Max	
Strobe "ON" Voltage		0.9	1.4		0.9	1.4		V
Strobe "OFF" Voltage	$\mathrm{I}_{\text {SINK }} \leq 16 \mathrm{~mA}$		1.4	2.2		1.4	2.2	V
Positive Supply Current	$\begin{aligned} & V_{\mathbb{I N}}=-5 \mathrm{mV} \\ & V_{\mathbb{I N}}=-8 \mathrm{mV} \text { for LM306 } \end{aligned}$		5.5	10		5.5	10	mA
Negative Supply Current			-1.5	-3.6		-1.5	-3.6	mA

Note 1: The maximum junction temperature of LM106 is $150^{\circ} \mathrm{C}$, LM306 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices must be derated based on a thermal resistance of $170^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $23^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: These specifications apply for $-3 \mathrm{~V} \geq \mathrm{V}-\geq-12 \mathrm{~V}, \mathrm{~V}+=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. All currents into device pins are considered positive.
Note 3: The offset voltages and offset currents given are the maximum values required to drive the output down to 0.5 V or up to 4.4 V (0.5 V or up to 4.8 V for the LM306). Thus, these parameters actually define an error band and take into account the worst-case effects of voltage gain, specified supply voltage variations, and common mode voltage variations.
Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 5: All currents into device pins are considered positive.
Note 6: Refer to RETS106X for LM106 military specifications.

Typical Applications

Fast Response Peak Detector

TL/H/7756-5

Adjustable Threshold Line Receiver

Typical Performance Characteristics

National Semiconductor

LM111／LM211／LM311 Voltage Comparator General Description

The LM111，LM211 and LM311 are voltage comparators that have input currents nearly a thousand times lower than devices like the LM106 or LM710．They are also designed to operate over a wider range of supply voltages：from stan－ dard $\pm 15 \mathrm{~V}$ op amp supplies down to the single 5 V supply used for IC logic．Their output is compatible with RTL，DTL and TTL as well as MOS circuits．Further，they can drive lamps or relays，switching voltages up to 50 V at currents as high as 50 mA ．
Both the inputs and the outputs of the LM111，LM211 or the LM311 can be isolated from system ground，and the output can drive loads referred to ground，the positive supply or the negative supply．Offset balancing and strobe capability are provided and outputs can be wire OR＇ed．Although slower than the LM106 and LM710（200 ns response time vs

40 ns ）the devices are also much less prone to spurious oscillations．The LM111 has the same pin configuration as the LM106 and LM710．
The LM211 is identical to the LM111，except that its per－ formance is specified over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．The LM311 has a tem－ perature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ．

Features

－Operates from single 5 V supply
－Input current： 150 nA max．over temperature
－Offset current： 20 nA max．over temperature
－Differential input voltage range：$\pm 30 \mathrm{~V}$
－Power consumption： 135 mW at $\pm 15 \mathrm{~V}$

Typical Applications＊＊

Relay Driver with Strobe

Note：Do Not Ground Strobe Pin．

from Strobe Pin.
＊＊Note：Pin connections shown on schematic di－ agram and typical applications are for H08 metal can package．
Increasing Input Stage Current＊

＊Increases typical common mode slew from $7.0 \mathrm{~V} / \mu \mathrm{s}$ to $18 \mathrm{~V} / \mu \mathrm{s}$ ．

```
Absolute Maximum Ratings for the LM111/LM211
```

If Military／Aerospace specified devices are required， please contact the National Semiconductor Sales Office／Distributors for avallability and specifications． （Note 7）

Total Supply Voltage $\left(V_{84}\right)$	36 V
Output to Negative Supply Voltage $\left(\mathrm{V}_{74}\right)$	50 V
Ground to Negative Supply Voltage $\left(\mathrm{V}_{14}\right)$	30 V
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage（Note 1）	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	10 sec
Operating Temperature Range LM111	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	LM211
	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Output to Negative Supply Voltage $\left(V_{74}\right)$ 50V
Ground to Negative Supply Voltage（ V_{14} ）30V
Differential Input Voltage $\pm 30 \mathrm{~V}$
Input Voltage（Note 1）$\pm 15 \mathrm{~V}$
Output Short Circuit Duration 10 sec

LM211 $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Lead Temperature（Soldering， 10 sec ）	$260^{\circ} \mathrm{C}$
Voltage at Strobe Pin	$\mathrm{V}+-5 \mathrm{~V}$
Soldering Information	
Dual－In－Line Package	
Soldering（10 seconds）	． $260^{\circ} \mathrm{C}$
Small Outline Package	
Vapor Phase（60 seconds）	． $215^{\circ} \mathrm{C}$
Infrared（15 seconds）	．220％
See AN－450＂Surface Mounting Methods and Their Effect on Product Reliability＂for other methods of soldering sur－ face mount devices．	
ESD Rating（Note 8）	300 V

Electrical Characteristics for the LM111 and LM211（Note 3）

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage（Note 4）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		0.7	3.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.0	10	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60	100	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	200		V／mV
Response Time（Note 5）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq-5 \mathrm{mV}, \text { I OUT }=50 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Strobe ON Current（Note 6）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0	mA
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {STROBE }}=3 \mathrm{~mA} \end{aligned}$		0.2	10	nA
Input Offset Voltage（Note 4）	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$			4.0	mV
Input Offset Current（Note 4）				20	nA
Input Bias Current				150	nA
Input Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \text { Pin } 7 \\ & \text { Pull-Up May Go To } 5 \mathrm{~V} \end{aligned}$	－14．5	13．8，－14．7	13.0	V
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{VIN} \leq-6 \mathrm{mV}, \mathrm{l}_{\mathrm{OUT}} \leq 8 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		0.1	0.5	$\mu \mathrm{A}$
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	6.0	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1：This rating applies for ± 15 supplies．The positive input voltage limit is 30 V above the negative supply．The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply，whichever is less．
Note 2：The maximum junction temperature of the LM111 is $150^{\circ} \mathrm{C}$ ，while that of the LM211 is $110^{\circ} \mathrm{C}$ ．For operating at elevated temperatures，devices in the H08 package must be derated based on a thermal resistance of $165^{\circ} \mathrm{C} / \mathrm{W}$ ，junction to ambient，or $20^{\circ} \mathrm{C} / \mathrm{W}$ ，junction to case．The thermal resistance of the dual－in－line package is $110^{\circ} \mathrm{C} / \mathrm{W}$ ，junction to ambient．
Note 3：These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and Ground pin at ground，and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ ，unless otherwise stated．With the LM211，however，all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ ．The offset voltage，offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies．
Note 4：The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load．Thus， these parameters define an error band and take into account the worst－case effects of voltage gain and R_{S} ．
Note 5：The response time specified（see definitions）is for a 100 mV input step with 5 mV overdrive．
Note 6：This specification gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled．Do not short the strobe pin to ground；it should be current driven at 3 to 5 mA ．
Note 7：Refer to RETS111X for the LM111H，LM111J and LM111J－8 military specifications．
Note 8：Human body model， $1.5 \mathrm{k} \Omega$ in series with 100 pF ．

Absolute Maximum Ratings for the LM311	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for avallability and specifications.	
Total Supply Voltage (V84)	36 V
Output to Negative Supply Voltage V_{74})	40 V
Ground to Negative Supply Voltage V_{14})	30 V
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Noté 1)	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	500 mW
ESD Rating (Note 7)	300 V

Output Short Circuit Duration	10 sec
Operating Temperature Range	0° to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)	$260^{\circ} \mathrm{C}$
Voltage at Strobe Pin	$\mathrm{V}^{+}-5 \mathrm{~V}$
Soldering Information	
Dual-In-Line Package	
Soldering (10 seconds).	. $260^{\circ} \mathrm{C}$
Small Outline Package	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	. $220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Meth on Product Reliability" for other meth face mount devices.	and Their Effect of soldering sur-

Electrical Characteristics for the LM311 (Note 3)

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		2.0	7.5	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6.0	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	250	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	200		V/mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{1 N} \leq-10 \mathrm{mV}, \text { loUT }=50 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Strobe ON Current (Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0	mA
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {STROBE }}=3 \mathrm{~mA} \\ & \mathrm{~V}^{-}=\operatorname{Pin} 1=-5 \mathrm{~V} \\ & \hline \end{aligned}$		0.2	50	nA
Input Offset Voltage (Note 4)	RS $\leq 50 \mathrm{~K}$			10	mV
Input Offset Current (Note 4) -				70	nA
Input Bias Current				300	nA
Input Voltage Range	,	-14.5	13.8,-14.7	13.0	V
Saturation Voltage	$\begin{aligned} & \mathrm{V}+24.5 \mathrm{~V}, \mathrm{~V}-=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{l}_{\mathrm{OUT}} \leq 8 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	7.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LM311 is $110^{\circ} \mathrm{C}$. For operating at elevated temperature, devices in the H08 package must be derated based on a thermal resistance of $165^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermial resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and Pin 1 at ground, and $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$, uniess otherwise specified. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with 1 mA load. Thus, these parameters define an error band and take into account the worst-case effects of voltage gain and $R_{\mathbf{S}}$.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 6: This specification gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA .
Note 7: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

LM111/LM211 Typical Performance Characteristics

Response Time for Various

TL/H/5704-2

LM111／LM211 Typical Performance Characteristics（Continued）

TL／H／5704－3

LM311 Typical Performance Characteristics

LM311 Typical Performance Characteristics (Continued)

Application Hints

CIRCUIT TECHNIQUES FOR AVOIDING

OSCILLATIONS IN COMPARATOR APPLICATIONS

When a high－speed comparator such as the LM111 is used with fast input signals and low source impedances，the out－ put response will normally be fast and stable，assuming that the power supplies have been bypassed（with $0.1 \mu \mathrm{~F}$ disc capacitors），and that the output signal is routed well away from the inputs（pins 2 and 3 ）and also away from pins 5 and 6.

However，when the input signal is a voltage ramp or a slow sine wave，or if the signal source impedance is high（ $1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ ），the comparator may burst into oscillation near the crossing－point．This is due to the high gain and wide band－ width of comparators like the LM111．To avoid oscillation or instability in such a usage，several precautions are recom－ mended，as shown in Figure 1 below．
1．The trim pins（pins 5 and 6）act as unwanted auxiliary inputs．If these pins are not connected to a trim－pot，they should be shorted together．If they are connected to a trim－pot，a $0.01 \mu \mathrm{~F}$ capacitor C 1 between pins 5 and 6 will minimize the susceptibility to AC coupling．A smaller ca－ pacitor is used if pin 5 is used for positive feedback as in Figure 1.
2．Certain sources will produce a cleaner comparator output waveform if a 100 pF to 1000 pF capacitor C 2 is connect－ ed directly across the input pins．
3．When the signal source is applied through a resistive net－ work， R_{S} ，it is usually advantageous to choose an $\mathrm{R}_{\mathrm{S}^{\prime}}$ of substantially the same value，both for DC and for dynamic （AC）considerations．Carbon，tin－oxide，and metal－film re－ sistors have all been used successfully in comparator in－ put circuitry．Inductive wirewound resistors are not suit－ able．

4．When comparator circuits use input resistors（eg．sum－ ming resistors），their value and placement are particularly important．In all cases the body of the resistor should be close to the device or socket．In other words there should be very little lead length or printed－circuit foil run between comparator and resistor to radiate or pick up signals．The same applies to capacitors，pots，etc．For example，if $\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$ ，as little as 5 inches of lead between the re－ sistors and the input pins can result in oscillations that are very hard to damp．Twisting these input leads tightly is the only（second best）alternative to placing resistors close to the comparator．
5．Since feedback to almost any pin of a comparator can result in oscillation，the printed－circuit layout should be engineered thoughtfully．Preferably there should be a groundplane under the LM111 circuitry，for example，one side of a double－layer circuit card．Ground foil（or，positive supply or negative supply foil）should extend between the output and the inputs，to act as a guard．The foil connec－ tions for the inputs should be as small and compact as possible，and should be essentially surrounded by ground foil on all sides，to guard against capacitive coupling from any high－level signals（such as the output）．If pins 5 and 6 are not used，they should be shorted together．If they are connected to a trim－pot，the trim－pot should be located，at most，a few inches away from the LM111，and the 0.01 $\mu \mathrm{F}$ capacitor should be installed．If this capacitor cannot be used，a shielding printed－circuit foil may be advisable between pins 6 and 7 ．The power supply bypass capaci－ tors should be located within a couple inches of the LM111．（Some other comparators require the power－sup－ ply bypass to be located immediately adjacent to the comparator．）

TL／H／5704－29
Pin connections shown are for LM111H in the H08 hermetic package
FIGURE 1．Improved Positive Feedback

Application Hints (Continued)

6. It is a standard procedure to use hysteresis (positive feedback) around a comparator, to prevent oscillation, and to avoid excessive noise on the output because the comparator is a good amplifier for its own noise. In the circuit of Figure 2, the feedback from the output to the positive input will cause about 3 mV of hysteresis. However, if R_{S} is larger than 100Ω, such as $50 \mathrm{k} \Omega$, it would not be reasonable to simply increase the value of the positive feedback resistor above $510 \mathrm{k} \Omega$. the circuit of Figure 3 could be used, but it is rather awkward. See the notes in paragraph 7 below.
7. When both inputs of the LM111 are connected to active signals, or if a high-impedance signal is driving the positive input of the LM111 so that positive feedback would be disruptive, the circuit of Figure 1 is ideal. The positive
feedback is to pin 5 (one of the offset adjustment pins). It is sufficient to cause 1 to 2 mV hysteresis and sharp transitions with input triangle waves from a few Hz to hundreds of kHz . The positive-feedback signal across the 82Ω resistor swings 240 mV below the positive supply. This signal is centered around the nominal voltage at pin 5, so this feedback does not add to the Vos of the comparator. As much as 8 mV of V_{OS} can be trimmed out, using the $5 \mathrm{k} \Omega$ pot and $3 \mathrm{k} \Omega$ resistor as shown.
8. These application notes apply specifically to the LM111, LM211, LM311, and LF111 families of comparators, and are applicable to all high-speed comparators in general, (with the exception that not all comparators have trim pins).

TL/H/5704-30
Pin connections shown are for LM111H in the H08 hermetic package
FIGURE 2. Conventional Positive Feedback

TL/H/5704-31
FIGURE 3. Positive Feedback with High Source Resistance

Typical Applications（Continued）（Pin numbers refer to H08 package）

Zero Crossing Detector Driving MOS Switch

100 kHz Free Running Multivibrator

TL／H／5704－13

TL／H／5704－14

10 Hz to 10 kHz Voltage Controlled Oscillator

TL／H／5704－15

Using Clamp Diodes to Improve Response

TL／H／5704－17
＊Input polarity is reversed when using pin 1 as output．

TL／H／5704－16

Typical Applications (Continued) (Pin numbers refer to H08 package)
TTL Interface with High Level Logic

*Values shown are for a 0 to 30 V logic swing and a 15 V threshold.
†May be added to control speed and reduce
susceptibility to noise spikes.

Crystal Oscillator

Comparator and Solenoid Driver

TL/H/5704-20

TL/H/5704-19

Typical Applications（Continued）（Pin numbers refer to H08 package）

Zero Crossing Detector Driving MOS Logic

TL／H／5704－24

Negative Peak Detector

TL／H／5704－25

Precision Photodiode Comparator

TL／H／5704－26
＊R2 sets the comparison level． At comparison，the photodiode has less than 5 mV across it， decreasing leakages by an order of magnitude．

Typical Applications (Continued) (Pin numbers refer to H08 package)

Switching Power Amplifier

TL/H/5704-27
Switching Power Amplifier

Schematic Diagram**

**Pin connections shown on schematic diagram are for H08 package.

Connection Diagrams*

Connection Diagrams (Continued)

*Also available per JM38510/10304

LM119/LM219/LM319
 High Speed Dual Comparator

General Description

The LM119 series are precision high speed dual comparators fabricated on a single monolithic chip. They are designed to operate over a wide range of supply voltages down to a single 5V logic supply and ground. Further, they have higher gain and lower input currents than devices like the LM710. The uncommitted collector of the output stage makes the LM119 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25 mA .
The LM319A offers improved precision over the standard LM319, with tighter tolerances on offset voltage, offset current, and voltage gain.

Features

- Two independent comparators
- Operates from a single 5 V supply
- Typically 80 ns response time at $\pm 15 \mathrm{~V}$
- Minimum fan-out of 2 each side
- Maximum input current of $1 \mu \mathrm{~A}$ over temperature
- Inputs and outputs can be isolated from system ground - High common mode slew rate

Although designed primarily for applications requiring operation from digital logic supplies, the LM119 series are fully specified for power supplies up to $\pm 15 \mathrm{~V}$. It features faster response than the LM111 at the expense of higher power dissipation. However, the high speed, wide operating voltage range and low package count make the LM119 much more versatile than older devices like the LM711.
The LM119 is specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM219 is specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the LM319A and LM319 are specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Connection Diagrams

TL/H/5705-7
Case is connected to pin $5\left(\mathrm{~V}^{-}\right)$

Order Number LM119E/883 See NS Package Number E20A

TL/H/5705-9

> Order Number LM119W/883 See NS Package Number W10A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications. (Note 7)

Total Supply Voltage	36 V
Output to Negative Supply Voltage	36 V
Ground to Negative Supply Voltage	25 V
Ground to Positive Supply Voltage	18 V
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$
ESD rating (1.5 k Ω in series with 100 pF$)$	800 V
Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 sec

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Soldering Information	
\quad Dual-In-Line Package	
\quad Soldering (10 seconds)	
Small Outline Package	
\quad Vapor Phase (60 seconds)	
Infrared (15 seconds)	$215^{\circ} \mathrm{C}$
	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Operating Temperature Range

LM119	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LM219	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

Parameter	Conditions	LM119/LM219			Units
		Min	Typ	Max	
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$		0.7	4.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	75	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		150	500	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)	10	40		V / mV
Response Time (Note 5)	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		80		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq-5 \mathrm{mV}, \text { IOUT }=25 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	2	$\mu \mathrm{A}$
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$			7	mV
Input Offset Current (Note 4)				100	nA
Input Bias Current				1000	nA
Input Voltage Range	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \end{aligned}$	$\begin{gathered} -12 \\ 1 \\ \hline \end{gathered}$	± 13	$\begin{gathered} +12 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}+\geq 4.5 \mathrm{~V}, \mathrm{~V}-=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-6 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 3.2 \mathrm{~mA} \\ & T_{\mathrm{A}} \geq 0^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}} \leq 0^{\circ} \mathrm{C} \end{aligned}$		0.23	$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \geq 5 \mathrm{mV}, \mathrm{~V}_{\mathrm{OUT}}=35 \mathrm{~V}, \\ & \mathrm{~V}^{-}=\mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V} \end{aligned}$		1	10	$\mu \mathrm{A}$
Differential Input Voltage				± 5	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0$		4.3		mA
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		8	11.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		3	4.5	mA

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$ the absolute maximum input voltage is equal to the supply voltage.
Note 2: The maximum junction temperature of the LM119 is $150^{\circ} \mathrm{C}$, while that of the LM219 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 10 package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $19^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the J14 and N14 packages is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$, and the Ground pin at ground, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise stated. With the LM219, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies. Do not operate the device with more than 16 V from ground to V_{S}.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 6: Output is pulled up to 15 V through a $1.4 \mathrm{k} \Omega$ resistor.
Note 7: Refer to RETS119X for LM119H/883 and LM119J/883 specifications.

Absolute Maximum Ratings Lмз19А/319
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallablity and specifications.
Total Supply Voltage
Output to Negative Supply Voltage
Ground to Negative Supply Voltage
Ground to Positive Supply Voltage
Differential Input Voltage $\pm 5 \mathrm{~V}$
Input Voltage (Note 1) $\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)
500 mW
10 sec
Output Short Circuit Duration
ESD rating ($1.5 \mathrm{k} \Omega$ in series with 100 pF)

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $260^{\circ} \mathrm{C}$
Soldering Information
Dual-In-Line Package Soldering (10 sec.)
$260^{\circ} \mathrm{C}$
Small Outline Package Vapor Phase (60 sec.)
$215^{\circ} \mathrm{C}$ Infrared (15 sec.) $220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Operating Temperature Range LM319A, LM319
 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

Parameter	Conditions	LM319A			LM319			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{S} \leq 5 \mathrm{k}$		0.5	1.0		2.0	8.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20	40		80	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		150	500		250	1000	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)	20	40		8	40		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		80			80		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{OUT}}=25 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5		0.75	1.5	V
Output Leakage Current	$\begin{aligned} & V_{I N} \geq 10 \mathrm{mV}, \mathrm{~V}_{\mathrm{OUT}}=35 \mathrm{~V}, \\ & \mathrm{~V}^{-}=\mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	10		0.2	10	$\mu \mathrm{A}$
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$			10			10	mV
Input Offset Current (Note 4)				300			300	nA
Input Bias Current				1000			1200	nA
Input Voltage Range	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \end{aligned}$	1	± 13	3	1	± 13	3	$\begin{aligned} & v \\ & v \end{aligned}$
Saturation Voltage	$\begin{aligned} & V^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}-=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 3.2 \mathrm{~mA} \end{aligned}$		0.3	0.4		0.3	0.4	V
Differential Input Voltage				± 5			± 5	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0$		4.3			4.3		mA
Positive Supply Current	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		8	12.5		8	12.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		3	5		3	5	mA

Note 1: For supply voltages less than ± 15 the absolute maximum input voltage is equal to the supply voltage.
Note 2: The maximum junction temperature of the LM319A and LM319 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H10 package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $19^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the N14 and J14 package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient. The thermal resistance of the M14 package is $115^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.

Note 3: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise stated. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies. Do not operate the device with more than 16 V from ground to V_{S}.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.
Note 6: Output is pulled up to 15 V through a $1.4 \mathrm{k} \Omega$ resistor.

Typical Performance Characteristics LM119A/LM119/LM219

Typical Performance Characteristics Lмз19A, Lм319

Response Time for Various Input Overdrives

Response Time for Various

Common Mode Limits

Output Limiting

 Characteristics

Typical Applications*

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

General Description

The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.
Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic- where the low power drain of the LM339 is a distinct advantage over standard comparators.

Advantages

High precision comparators
Reduced V_{OS} drift over temperature

Connection Diagrams

Order Number LM139J, LM139J/883*, LM139AJ, LM139AJ/883**, LM239J, LM239AJ, LM339J,

See NS Package Number J14A
Order Number LM339AM, LM339M or LM2901M
See NS Package Number M14A
Order Number LM339N, LM339AN, LM2901N or LM3302N
See NS Package Number N14A
*Available per JM38510/11201
**Available per SMD\# 5962-8873901

- Eliminates need for dual supplies
- Allows sensing near GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Wide supply voltage range

LM139 series,
LM139A series, LM2901
LM3302 of supply voltage

- Low input biasing current 25 nA
- Low input offset current $\pm 5 \mathrm{nA}$ and offset voltage $\pm 3 \mathrm{mV}$
- Input common-mode voltage range includes GND
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage $\quad 250 \mathrm{mV}$ at 4 mA
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

$$
\begin{array}{r}
2 V_{D C} \text { to } 36 V_{D C} \text { or } \\
\pm 1 V_{D C} \text { to } \pm 18 V_{D C} \\
2 V_{D C} \text { to } 28 V_{D C} \\
\text { or } \pm 1 V_{D C} \text { to } \pm 14 V_{D C}
\end{array}
$$

TL/H/5706-26
Order Number LM139AE/883 or LM139E/883 See NS Package Number E20A

TL/H/5706-27
Order Number LM139AW/883 or LM139W/883* See NS Package Number W14B

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 10)

LM139/LM239/LM339 LM139A/LM239A/LM339A LM2901
Supply Voltage, ${ }^{+}+$
Differential Input Voltage (Note 8)
Input Voltage
Input Current $\left(\mathrm{V}_{\mathrm{IN}}<-0.3 \mathrm{~V}_{\mathrm{DC}}\right)$,
(Note 3)
Power Dissipation (Note 1)
Molded DIP
Cavity DIP
Small Outline Package
Output Short-Circuit to GND, (Note 2)
Storage Temperature Range
Lead Temperature
(Soldering, 10 seconds)

$36 V_{D C}$ or $\pm 18 V_{D C}$	$28 V_{D C}$ or $\pm 14 V_{D C}$
$36 V_{D C}$	$28 V_{D C}$
$-0.3 V_{D C}$ to $+36 V_{D C}$	$-0.3 V_{D C}$ to $+28 V_{D C}$
50 mA	50 mA
1050 mW	1050 mW
1190 mW	
760 mW	Continuous
Continuous	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$

Operating Temperature Range
LM339/LM339A
LM239/LM239A
LM2901
LM139/LM139A
Soldering Information
Dual-In-Line Package
Soldering (10 seconds)

Small Outline Package
Vapor Phase (60 seconds) Infrared (15 seconds)

LM139/LM239/LM339
LM139A/LM239A/LM339A LM2901

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating ($1.5 \mathrm{k} \Omega$ in series with 100 pF) 600V 600V

Electrical Characteristics $\left(\mathrm{v}+=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise stated)

Parameter	Conditions	LM139A		LM239A, LM339A			LM139		LM239, LM339			LM2901		LM3302		Units
		Min Typ	Max	Min	Typ	Max	Min Typ	Max	Min	Typ	Max	Min Typ	Max	Min Typ	Max	
Input Offset Voltage	(Note 9)	1.0	2.0		1.0	2.0	2.0	5.0		2.0	5.0	2.0	7.0	3	20	$m V_{D C}$
Input Bias Current	$\operatorname{lin}(+)$ or $\operatorname{lin(-)}$ with Output in Linear Range, (Note 5), $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	25	100		25	250	25	100		25	250	25	250	25	500	$n A_{D C}$
Input Offset Current	$\ln (+)-\operatorname{lin}(-), \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	3.0	25		5.0	50	3.0	25		5.0	50	5	50	3	100	$n A_{D C}$
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}+=30 \mathrm{~V}_{\mathrm{DC}}\left(\mathrm{LM} 3302, \mathrm{~V}^{+}=28 \mathrm{~V}_{\mathrm{DC}}\right) \\ & (\text { Note 6) } \end{aligned}$	0	V+-1.5	0		$\mathrm{V}^{+}-1.5$	0	$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	0	$\mathrm{V}^{+-1.5}$	0	$\mathrm{V}^{+}-1.5$	$\mathrm{V}_{D C}$
Supply Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \text { on all Comparators, } \\ & \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=36 \mathrm{~V}, \\ & \left(\mathrm{LM} 3302, \mathrm{~V}^{+}=28 \mathrm{~V}_{\mathrm{DC}}\right) \\ & \hline \end{aligned}$	0.8	2.0		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & m A_{D C} \\ & m A_{D C} \end{aligned}$
Voltage Gain	$\begin{aligned} & R_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{DC}} \text { to } 11 \mathrm{~V}_{\mathrm{DC}} \\ & \hline \end{aligned}$	50200			200		50200		50	200		25100		230		V / mV
Large Signal Response Time	$\mathrm{V}_{\mathrm{IN}}=$ TTL Logic Swing, $\mathrm{V}_{\text {REF }}=$ $1.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega$,	300			300		300			300		300		300		ns
Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \text { (Note 7) } \end{aligned}$	1.3			1.3		1.3			1.3		1.3		1.3		$\mu \mathrm{s}$
Output Sink Current	$\begin{aligned} & \mathrm{V}_{I N(-)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0, \\ & \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	6.016		6.0	16		6.016		6.0	16		6.016		6.016		$m A_{D C}$

Electrical Characteristics $\left(\mathrm{v}^{+}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise stated) (Continued)

Parameter	Conditions	LM139A			LM239A, LM339A			LM139			LM239, LM339			LM2901			LM3302			Units
		Min	Typ	Max																
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{N}(-)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0, \\ & \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA} \end{aligned}$		250	400		250	400		250	400		250	400		250	400		250	500	$m V_{D C}$
Output Leakage Current	$\begin{aligned} & V_{I N(+)}=1 V_{D C} V_{I N(-)}=0, \\ & V_{O}=5 V_{D C} \end{aligned}$		0.1			0.1			0.1			0.1			0.1			0.1		$n A_{D C}$

Electrical Characteristics ($\mathrm{V}+=5.0 \mathrm{~V}_{\mathrm{DC}}$, Note 4)

Parameter	Conditions	LM139A		LM239A, LM339A			LM139		LM239, LM339		LM2901		LM3302		Units
		Min Typ	Max	Min	Typ	Max	Min Typ	Max							
Input Offset Voltage	(Note 9)		4.0			4.0		9.0		9.0	9	15		40	$m V_{D C}$
Input Offset Current	$\ln (+)^{-1} \ln (-), \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		100			150		100		150	50	200		300	$n^{A_{D C}}$
Input Bias Current	${ }^{\operatorname{IN}(+)}$ or $\operatorname{l} \operatorname{N(-)}$ with Output in Linear Range, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ (Note 5)		300			400		300		400	200	500		1000	$n A_{D C}$
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}+=30 \mathrm{~V}_{\mathrm{DC}}\left(\mathrm{LM} 3302, \mathrm{~V}^{+}=28 \mathrm{~V} \mathrm{VC}\right) \\ & \text { (Note 6) } \end{aligned}$	0 V	$\mathrm{V}^{+}-2.0$	0	V	V+-2.0	0	$V^{+}-2.0$		V+-2.0	0	V+-2.0	0	V+-2.0	$V_{D C}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(-)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0, \\ & \operatorname{lSINK}=4 \mathrm{~mA} \end{aligned}$		700			700		700		700	400	700		700	$\mathrm{mV}_{D C}$
Output Leakage Current	$\begin{aligned} & V_{I N(+)}=1 V_{D C}, V_{I N(-)}=0, \\ & V_{O}=30 V_{D C},\left(L M 3302, V_{O}=28 V_{D C}\right) \end{aligned}$		1.0			1.0		1.0		1.0		1.0		1.0	$\mu A_{D C}$
Differential Input Voltage	Keep all $\mathrm{V}_{\text {IN's }} \geq 0 \mathrm{~V}_{\mathrm{DC}}$ (or V^{-}, if used), (Note 8)		36			36		36		36		36		28	V_{DC}

Note 1: For operating at high temperatures, the LM339/LM339A, LM2901, LM3302 must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $95^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM239 and LM139 must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very small ($\mathrm{P}_{\mathrm{D}} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.
Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 20 mA independent of the magnitude of V^{+} Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration. that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than - $0.3 \mathrm{~V}_{\mathrm{DC}}$ (at 25°) C. Note 4: These specifications are limited to $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, for the $\mathrm{LM} 139 / \mathrm{LM139A}$. With the $\mathrm{LM} 239 / \mathrm{LM} 239 \mathrm{~A}$, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, the $\mathrm{LM} 339 / \mathrm{LM} 339 \mathrm{~A}$ temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$, and the $L M 2901, L M 3302$ temperature range is $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$.
Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.
Note 6: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}+-1.5 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$, but either or both inputs can go to $+30 \mathrm{~V}_{\mathrm{DC}}$ without damage (25 V for LM3302), independent of the magnitude of V^{+}.
Note 7: The response time specified is a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section
Note 8: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (or $0.3 \mathrm{~V}_{\mathrm{DC}}$ below the magnitude of the negative power supply; if used) (at $25^{\circ} \mathrm{C}$).
Note 9: At output switch point, $V_{O} \cong 1.4 V_{D C}, R_{S}=0 \Omega$ with $V+$ from $5 V_{D C}$ to $30 V_{D C}$; and over the full input common-mode range ($0 V_{D C}$ to $V^{+}-1.5 V_{D C}$), at $25^{\circ} C$. For $L M 3302, V+$ from $5 V_{D C}$ to $28 V_{D C}$ Note 10: Refer to RETS139AX for LM139A military specifications and to RETS139X for LM139 military specifications.

Typical Performance Characteristics Lм139/Lм239/Lм339, Lм139A/Lм239A/Lм339A, Lм3302

Typical Performance Characteristics Lм2901

$\mathbf{v}^{\mathbf{+}}$, supply voltage ($\mathbf{V}_{\mathbf{D C}}$)

$\mathbf{V}^{\mathbf{*}}$, SUPPLY VOLTAGE (V $\left.\mathbf{D C}\right)$

Response Time for Various Input Overdrives-Negative Transition

Response Time for Various
Input Overdrives-Positive
Transition

TL/H/5706-7

Application Hints

The LM139 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing this input resistors to $<10 \mathrm{k} \Omega$ reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.
All pins of any unused comparators should be grounded.
The bias network of the LM139 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$.
It is usually unnecessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than $\mathrm{V}+$ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3 $V_{D C}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode can be used as shown in the applications section.
The output of the LM139 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V^{+} terminal of the LM139A package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^{+}) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60Ω RSAT of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp essentially to ground level for small load currents.

Typical Applications $\left(v^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

TL/H/5706-3

Driving CMOS

TL/H/5706-4

TL/H/5706-8
TL/H/5706-9

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)($ (Continued)

Bi-Stable Multivibrator

TL/H/5706-11
One-Shot Multivibrator with Input Lock Out

Typical Applications $\left(v^{+}=15 \mathrm{~V} \mathrm{VC}\right)($ Continued $)$

TL/H/5706-13

Pulse Generator

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)($ (Continued)

Non-Inverting Comparator with Hysteresis

Inverting Comparator with Hysteresis

Typical Applications $\left(v^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)($ Continued $)$

Output Strobing

TL/H/5706-22
*Or open-collector logic gate without pull-up resistor
Crystal Controlled Oscillator

Typical Applications $\left(\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

TL/H/5706-28

Zero Crossing Detector (Single Power Supply)

Split-Supply Applications $\left(v^{+}=+15 \mathrm{~V}_{D C}\right.$ and $\left.\mathrm{V}-=-15 \mathrm{~V} \mathrm{VC}\right)$

TL/H/5706-31

Split-Supply Applications $\left(\mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}}\right.$ and $\left.\mathrm{V}^{-}=-15 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

TL/H/5706-33

Schematic Diagram

TL/H/5706-1

LM160/LM360 High Speed Differential Comparator General Description Features

The LM160/LM360 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the $\mu \mathrm{A} 760 / \mu \mathrm{A} 760 \mathrm{C}$, for which it is a pin-for-pin replacement. The device has been optimized for greater speed, input impedance and fan-out, and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 mV to 400 mV .
Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital conver-

- Guaranteed high speed 20 ns max
- Tight delay matching on both outputs
- Complementary TTL outputs
- High input impedance
- Low speed variation with overdrive variation
- Fan-out of 4
- Low input offset voltage
tors and zero-crossing detectors in disk file systems.

Connection Diagrams

TOP VIEW

Order Number LM160H/883* or LM360H See NS Package Number H08C

Dual-In-Line Package

TOP VIEw
TL/H/5707-5

Order Number LM160J/883*,
LM360M or LM360N
See NS Package Number J08A, M08A or N08E

Dual-In-Package

TOP view
TL/H/5707-6
Order Number LM160J-14/883*
See NS Package Number J14A

Absolute Maximum Ratings (Note 5)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 7)
$\begin{array}{lr}\text { Positive Supply Voltage } & +8 \mathrm{~V} \\ \text { Negative Supply Voltage } & -8 \mathrm{~V} \\ \text { Peak Output Current } & 20 \mathrm{~mA} \\ \text { Differential Input Voltage } & \pm 5 \mathrm{~V} \\ \text { Input Voltage } & \mathrm{V}^{+} \geq \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}^{-} \\ \text {ESD Tolerance (Note 8) } & 1600 \mathrm{~V}\end{array}$

Operating Temperature Range

$\begin{aligned} & \text { LM160 } \\ & \text { LM360 } \end{aligned}$	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{array}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)	$260^{\circ} \mathrm{C}$
Soldering Information	
Dual-In-Line Package	
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$
Small Outline Package	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	220°

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics ($\left.\mathrm{T}_{\mathrm{MN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}\right)$

Parameter	Conditions	Min	Typ	Max	Units
Operating Conditions Supply Voltage $\mathrm{V}_{\mathrm{CC}}{ }^{+}$ Supply Voltage $\mathrm{V}_{\mathrm{CC}}{ }^{-}$		$\begin{gathered} 4.5 \\ -4.5 \end{gathered}$	$\begin{gathered} 5 \\ -5 \end{gathered}$	$\begin{gathered} 6.5 \\ -6.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega$		2	5	mV
Input Offset Current			0.5	3	$\mu \mathrm{A}$
Input Bias Current			5	20	$\mu \mathrm{A}$
Output Resistance (Either Output)	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OH }}$		100		Ω
Response Time	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}(\text { Notes } 1,6) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}(\text { Notes } 2,6) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}(\text { Notes } 3,6) \end{aligned}$		$\begin{aligned} & 13 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	ns ns ns
Response Time Difference between Outputs $\begin{aligned} & \left(t_{p d} \text { of }+V_{I N 1}\right)-\left(t_{p d} \text { of }-V_{I N 2}\right) \\ & \left(t_{p d} \text { of }+V_{I N 2}\right)-\left(t_{p d} \text { of }-V_{I N 1}\right) \\ & \left(t_{p d} \text { of }+V_{I N 1}\right)-\left(t_{p d} \text { of }+V_{I N 2}\right) \\ & \left(t_{p d} \text { of }-V_{I N 1}\right)-\left(t_{p d} \text { of }-V_{I N 2}\right) \end{aligned}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}(\text { Notes } 1,6) \\ & T_{A}=25^{\circ} \mathrm{C}(\text { Notes } 1,6) \\ & T_{A}=25^{\circ} \mathrm{C}(\text { Notes } 1,6) \\ & T_{A}=25^{\circ} \mathrm{C}(\text { Notes } 1,6) \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Input Resistance	$\mathrm{f}=1 \mathrm{MHz}$		17		k Ω
Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$		3		pF
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		8		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current			7		$n A /{ }^{\circ} \mathrm{C}$
Common Mode Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 6.5 \mathrm{~V}$	± 4	± 4.5		V
Differential Input Voltage Range		± 5			V
Output High Voltage (Either Output)	$\mathrm{IOUT}=-320 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}$	2.4	3		V
Output Low Voltage (Either Output)	$\mathrm{I}_{\mathrm{SINK}}=6.4 \mathrm{~mA}$		0.25	0.4	V
Positive Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 6.5 \mathrm{~V}$		18	32	mA
Negative Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 6.5 \mathrm{~V}$		-9	-16	mA

Note 1: Response time measured from the 50% point of a $30 \mathrm{mVp}-\mathrm{p} 10 \mathrm{MHz}$ sinusoidal input to the 50% point of the output.
Note 2: Response time measured from the 50% point of a $2 \mathrm{Vp-p} 10 \mathrm{MHz}$ sinusoidal input to the 50% point of the output.
Note 3: Response time measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output crosses the logic threshold.
Note 4: Typical thermal impedances are as follows:

Cavity DIP (J):	$\boldsymbol{\theta}_{\mathrm{j}} \mathrm{A}$	$135^{\circ} \mathrm{C} / \mathrm{W}$	Header (H)	$\boldsymbol{\theta}_{\mathrm{j} A}$	$165^{\circ} \mathrm{C} / \mathrm{W}$	(Still Air)
Molded DIP (N):	$\boldsymbol{\theta}_{\mathrm{j} A}$	$130^{\circ} \mathrm{C} / \mathrm{W}$			$67^{\circ} \mathrm{C} / \mathrm{W}$	(400 LF/min Air Flow)
				$\boldsymbol{\theta}_{\mathrm{j}} \mathrm{C}$	$25^{\circ} \mathrm{C} / \mathrm{W}$	

Note 5: The device may be damaged if used beyond the maximum ratings.
Note 6: Measurements are made in AC Test Circuit, Fanout $=1$
Note 7: Refer to RETS 160X for LM160H, LM160J-14 and LM160J military specifications.
Note 8: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics

AC Test Circuit

LM161/LM261/LM361
 High Speed Differential Comparators

General Description

The LM161/LM261/LM361 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the SE529/NE529 for which it is a pin-for-pin replacement. The device has been optimized for greater speed performance and lower input offset voltage. Typically delay varies only 3 ns for over-drive variations of 5 mV to 500 mV . It may be operated from op amp supplies ($\pm 15 \mathrm{~V}$).
Complementary outputs having maximum skew are provided. Applications involve high speed analog to digital converters and zero-crossing detectors in disk file systems.

Connection Diagrams

Dual-In-Line Package

TL/H/5708-3
Order Number LM161H/883*, or LM361H See NS Package Number H10C
*Output is low when current is drawn from strobe pin.

Electrical Characteristics $\left(\mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}\right.$, unless noted)

Parameter	Conditions	Limits						Units
		LM161/LM261			LM361			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage			1	3		1	5	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	20		10	30	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	3		2	5	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3			3		V / mV
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		20			20		k Ω
Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\text {SOURCE }}=-0.5 \mathrm{~mA} \end{aligned}$	2.4	3.3		2.4	3.3		V
Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{SINK}}=6.4 \mathrm{~mA} \end{aligned}$			0.4			0.4	V
Strobe Input "1" Current (Output Enabled)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{STROBE}}=2.4 \mathrm{~V} \end{aligned}$			200			200	$\mu \mathrm{A}$
Strobe Input "0" Current (Output Disabled)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\text {STROBE }}=0.4 \mathrm{~V} \end{aligned}$			-1.6			-1.6	mA
Strobe Input "0" Voltage	$\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}$			0.8			0.8	V
Strobe Input " 1 " Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	2			2			V
Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	-18		-55	-18		-55	mA

Electrical Characteristics (Continued)
$\left(\mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}\right.$, unless noted)

Parameter	Conditions	Limits						Units
		LM161/LM261			LM361			
		Min	Typ	Max	Min	Typ	Max	
Supply Current ${ }^{+}$	$\begin{aligned} & \mathrm{V}+=10 \mathrm{~V}, \mathrm{~V}-=-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			4.5				mA
Supply Current ${ }^{+}$	$\begin{aligned} & \mathrm{V}+=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$						5	mA
Supply Current 1-	$\begin{aligned} & \mathrm{V}+=10 \mathrm{~V}, \mathrm{~V}-=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			10				mA
Supply Current ${ }^{-}$	$\begin{aligned} & \mathrm{V}+=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$						10	mA
Supply Current ICC	$\begin{aligned} & \mathrm{V}+=10 \mathrm{~V}, \mathrm{~V}-=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			18				mA
Supply Current ICC	$\begin{aligned} & \mathrm{V}+=10 \mathrm{~V}, \mathrm{~V}-=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$						20	mA
Transient Response	$\mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}$ overdrive (Note 3)							
Propagation Delay Time ($\mathrm{t}_{\mathrm{pd}(0)}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		14	20		14	20	ns
Propagation Delay Time ($\mathrm{t}_{\mathrm{pd}(1)}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		14	20		14	20	ns
Delay Between Output A and B	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	5		2	5	ns
Strobe Delay Time ($\mathrm{t}_{\mathrm{pd}(0)}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8			8		ns
Strobe Delay Time ($\mathrm{t}_{\mathrm{pd}(1)}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8			8		ns

Note 1: The device may be damaged by use beyond the maximum ratings.
Note 2: Typical thermal impedances are as follows:

	H Package	J Package	N Package
$\boldsymbol{\theta}_{\mathrm{j} A}$	$165^{\circ} \mathrm{C} / \mathrm{W}$ (Still Air) $67^{\circ} \mathrm{C} / \mathrm{W}$ (400 LF/Min Air Flow)	$112^{\circ} \mathrm{C} / \mathrm{W}$	$105^{\circ} \mathrm{C} / \mathrm{W}$
$\boldsymbol{\theta}_{\mathrm{j}} \mathrm{C}$	$25^{\circ} \mathrm{C} / \mathrm{W}$		

Note 3: Measurements using AC Test circuit, Fanout = 1. The devices are faster at low supply voltages.
Note 4: Refer to RETS161X for LM161H and LM161J military specifications.
Note 5: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics

Propagation Delay vs

 Supply Voltage $\mathbf{v}^{+}, \mathbf{V}^{\boldsymbol{-}}$ - SUPPLY VOLTAGE (V)

Schematic Diagram

LM161

TL/H/5708-1
R10, R16: 85
R11, R17: 205

National Semiconductor

LM193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators

General Description

The LM193 series consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.
Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM193 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the LM193 series will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

- Eliminates need for dual supplies
- Allows sensing near ground
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Wide supply

$$
\begin{array}{lr}
\text { Voltage range } & 2.0 \mathrm{~V} \text { to } 36 \mathrm{~V} \\
\text { single or dual supplies } & \pm 1.0 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}
\end{array}
$$

- Very low supply current drain (0.4 mA) - independent of supply voltage
- Low input biasing current 25 nA
- Low input offset current $\pm 5 \mathrm{nA}$ and maximum offset voltage $\pm 3 \mathrm{mV}$
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage,

250 mV at 4 mA

- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

Advantages

- High precision comparators
- Reduced V_{OS} drift over temperature

Schematic and Connection Diagrams

Metal Can Package

Order Number LM193H, LH193H/883*, LM193AH, LM193AH/883, LM293H, LM293AH, LM393H or LM393AH
See NS Package Number H08C

Order Number LM193J/883*, LM193AJ/883, LM393J, LM393AJ, LM393M, LM2903M, LM393N, LM2903J or LM2903N See NS Package Number J08A, M08A or N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 10)
Supply Voltage, ${ }^{+}+$
36 V
Differential Input Voltage (Note 8) 36V
Input Voltage $\quad-0.3 \mathrm{~V}$ to +36 V
Input Current ($\mathrm{V}_{\mathrm{IN}}<-0.3 \mathrm{~V}$) (Note 3)
Power Dissipation (Note 1)
Molded DIP
Metal Can
Small Outline Package
Output Short-Circuit to Ground (Note 2)

Operating Temperature Range
LM393/LM393A
LM293/LM293A

LM193/LM193A

LM2903
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
Soldering Information
Dual-In-Line Package
Soldering (10 seconds) $\quad 260^{\circ} \mathrm{C}$
Small Outline Package
Vapor Phase (60 seconds) $\quad 215^{\circ} \mathrm{C}$ Infrared (15 seconds)
$220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating ($1.5 \mathrm{k} \Omega$ in series with 100 pF)

Electrical Characteristics ($\mathrm{V}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated)

Parameter	Conditions		LM193A			LM293A, LM393A			LM193			LM293, LM393			LM2903			Units
			Min	Typ	Max													
Input Offset Voltage	(Note 9)			1.0	2.0		1.0	2.0		1.0	5.0		1.0	5.0		2.0	7.0	mV
Input Bias Current	$\operatorname{liN}^{N}(+)$ or $l_{\mathbb{N}}(-)$ with Output In Linear Range, $\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$ (Note 5)			25	100		25	250		25	100		25	250		25	250	nA
Input Offset Current	$\operatorname{liN}(+)-\operatorname{liN}(-) V_{C M}=0 \mathrm{~V}$			3.0	25		5.0	50		3.0	25		5.0	50		5.0	50	nA
Input Common Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}$ (Note 6)		0		V+-1.5	0		$\mathrm{v}^{+}-1.5$	0		$\mathrm{v}^{+}-1.5$	0		$\mathrm{v}^{+}-1.5$	0		${ }^{+}-1.5$	V
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$	$\mathrm{V}+=5 \mathrm{~V}$	$\begin{gathered} 0.4 \\ 1 \\ \hline \end{gathered}$		1		0.4	1		0.4	- 1		0.4	1		0.4	1.0	mA
		$\mathrm{V}+=36 \mathrm{~V}$												2.5		1	2.5	mA
Voltage Gain	$\begin{aligned} & R_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{~V}+=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { to } 11 \mathrm{~V} \\ & \hline \end{aligned}$		50	200		50	200		50	200		50	200		25	100		V/mV
Large Signal Response Time	$\begin{aligned} & V_{\mathrm{IN}}=T \mathrm{TL} \text { Logic Swing, } \mathrm{V}_{\mathrm{REF}}=1.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{RL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega \\ & \hline \end{aligned}$			300			300			300			300			300		ns
Response Time	$\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega$ (Note 7)			1.3			1.3			1.3			1.3			1.5		$\mu \mathrm{s}$
Output Sink Current	$\mathrm{V}_{\mathrm{IN}}(-)=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}(+)=0, \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}$		6.0	16		6.0	16		6.0	16		6.0	16		6.0	16		mA
Saturation Voltage	$\mathrm{V}_{\mathbb{I N}(-)}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}(+)=0, \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA}$			250	400		250	400		250	400		250	400		250	400	mV
Output Leakage Current	$\mathrm{V}_{\mathrm{IN}}(-)=0, \mathrm{~V}_{\mathrm{IN}}(+)=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}$			0.1			0.1			0.1			0.1			0.1		nA

Electrical Characteristics $\mathrm{N}^{+}=5 \mathrm{~V}$ (Note 4)

Parameter	Conditions	LM193A		LM293A, LM393A		LM193		LM293, LM393		LM2903		Units
		Min Typ	Max									
Input Offset Voltage	(Note 9)		4.0		4.0		9		9	9	15	mV
Input Offset Current	$\operatorname{lin(+)}-\operatorname{lin}(-), V_{C M}=0 \mathrm{~V}$		100		150		100		150	50	200	nA
Input Bias Current	$\mathbb{I}_{\mathbb{N}}(+)$ or $\mathbb{I}_{\mathbb{N}}(-)$ with Output in Linear Range, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ (Note 5)		300		400		300		400	200	500	nA
Input Common Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}$ (Note 6)	0	$\mathrm{V}+$-2.0	0	$\mathrm{V}+-2.0$	0	$\mathrm{V}^{+}-2.0$	0	V+-2.0	0	$\mathrm{V}^{+}-2.0$	V
Saturation Voltage	$\mathrm{V}_{\mathrm{IN}}(-)=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}(+)=0, \mathrm{ISINK} \leq 4 \mathrm{~mA}$		700		700		700		700	400	700	mV
Output Leakage Current	$\mathrm{V}_{\mathrm{IN}}(-)=0, \mathrm{~V}_{\mathrm{IN}(+)}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}$		1.0		1.0		1.0		1.0		1.0	$\mu \mathrm{A}$
Differential Input Voltage	Keep All $\mathrm{V}_{\text {IN }}$'s $\geq 0 \mathrm{~V}$ (or V^{-}, if Used), (Note 8)		36		36		36		36		36	V

Note 1: For operating at high temperatures, the LM393/LM393A and LM2903 must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $170^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM193/LM193A/LM293/LM293A must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very smail ($\mathrm{PD}_{\mathrm{D}} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.
Note 2: Short circuits from the output to \mathbf{V}^{+}can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 20 mA independent of the magnitude of \mathbf{V}^{+}
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than - 0.3 V
Note 4: These specifications are limited to $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$, for the LM193/LM193A, With the LM293/LM293A all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ and the $\mathrm{LM} 393 / L M 393 A$ temperature specificaions are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. The L 22903 is limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.
Note 6: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}+-1.5 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$, but either or both inputs can go to 36 V without damage, independent of the magnitude of $\mathrm{V}+$

Note 7: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.
Note 8: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3 V (or 0.3 V below the magnitude of the negative power supply, if used).
Note 9: At output switch point, $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with $\mathrm{V}+$ from 5 V to 30 V ; and over the full input common-mode range (0 V to $\mathrm{V}+-1.5 \mathrm{~V}$), at $25^{\circ} \mathrm{C}$
Note 10: Refer to RETS193AX for LM193AH military specifications and to RETS193X for LM193H military specifications.

Typical Performance Characteristics Lм193/Lм293/LM393, LM193A/LM293A/LM393A

Supply Current

Response Time for Various Input Overdrives-Negative Transition

Response Time for Various Input Overdrives-Positive Transition

TL/H/5709-3

Typical Performance Characteristics LM2903

Application Hints

The LM193 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator change states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to $<10 \mathrm{k} \Omega$ reduces the feedback signal levels and finally, adding even a small amount (1.0 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

All pins of any unused comparators should be grounded.
The bias network of the LM193 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2.0 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$.
It is usually unnecessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than $\mathrm{V}+$ without damaging the device (see Note 8). Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode can be used as shown in the applications section.
The output of the LM193 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V^{+} terminal of the LM193 package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^{+}) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60Ω rSAT of the output transistor. The low offset voltage of the output transistor (1.0 mV) allows the output to clamp essentially to ground level for small load currents.

Typical Applications $\left(v^{+}=5.0 \mathrm{v}_{\mathrm{DC}}\right)$

Basic Comparator

Driving CMOS

Driving TTL

Typical Applications (Continued)

Two-Decade High-Frequency VCO

TL/H/5709-5

Basic Comparator

Non-Inverting Comparator with Hysteresis

Inverting Comparator with Hysteresis

Typical Applications (Continued) $\left(\mathrm{v}^{+}=\mathrm{v}_{\mathrm{DC}}\right)$

TL/H/5709-7
Split-Supply Applications $\left(\mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}}\right.$ and $\left.\mathrm{V}-=-15 \mathrm{~V} \mathrm{VC}\right)$

LM612

Dual-Channel Comparator and Reference

General Description

The dual-channel comparator consists of two individual comparators, having an input voltage range that extends down to the negative supply voltage V^{-}. The common open-collector output can be driven low by either half of the LM612. This configuration makes the LM612 ideal for use as a window comparator. The input stages of the comparator have lateral PNP input transistors which maintain low input currents for large differential input voltages and swings above V^{+}

The 1.2 V voltage reference, referred to the V - terminal, is a two-terminal shunt-type band-gap similar to the LM185-1.2 series, with voltage accuracy of $\pm 0.6 \%$ available. The reference features operation over a shunt current range of $17 \mu \mathrm{~A}$ to 20 mA , low dynamic impedance, and broad capacitive load range.
As a member of National's Super-BlockTM family, the LM612 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance.

Features

COMPARATORS

- Low operating current
$300 \mu \mathrm{~A}$
- Wide supply voltage range 4 V to 36 V
- Open-collector outputs
- Input common-mode rang
V^{-}to ($V^{+}-1.8 \mathrm{~V}$)
- Wide differential input voltage
$\pm 36 \mathrm{~V}$
REFERENCE
- Fixed output voltage
1.24 V
$\pm 0.6 \%\left(25^{\circ} \mathrm{C}\right)$
$17 \mu \mathrm{~A}$ to 20 mA
- Wide operating current range
- Tolerant of load capacitance

Applications

- Voltage window comparator
- Power supply voltage monitor
- Dual-channel fault monitor

Connection Diagram

Top View

TL/H/11058-1

Ordering Information

For information about surface-mount packaging of this device, please contact the Analog Product Marketing group at National Semiconductor Corporation headquarters.

Reference Tolerances	Temperature Range		Package	NSC Package Number
	$\begin{gathered} \text { Military } \\ -\mathbf{5 5 ^ { \circ }} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}}+85^{\circ} \mathrm{C}$		
$\begin{aligned} & \pm 0.6 \% \text { at } 25^{\circ} \mathrm{C}, \\ & 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { Max } \end{aligned}$	LM612AMN	LM612AIN	$\begin{gathered} \text { 8-Pin } \\ \text { Molded DIP } \end{gathered}$	N08E
	LM612AMJ/883 (Note 13)		$\begin{gathered} \text { 8-Pin } \\ \text { Ceramic DIP } \end{gathered}$	J08A
$\begin{aligned} & \pm 2.0 \% \text { at } 25^{\circ} \mathrm{C}, \\ & 150 \mathrm{ppm} /^{\circ} \mathrm{C} \mathrm{Max} \end{aligned}$	LM612MN	LM612IN	8-Pin Molded DIP	N08E
		LM612IM	8-Pin Narrow Surface Mount	M08A

Thermal Resistance, Junction-to-Ambient (Note 5) N Package $100^{\circ} \mathrm{C} / \mathrm{W}$
Soldering Information

N Package	
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$
ESD Tolerance (Note 6)	$\pm 1 \mathrm{kV}$

Operating Temperature Range

LM612AI, LM6121
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$

Electrical Characteristics These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=\mathrm{OV}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}+/ 2$, $I_{R}=100 \mu A$, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 7)	LM612AM LM612AI Limits (Note 8)	LM612M LM612I Limits (Note 8)	Units

COMPARATORS

Is	Total Supply Current	$\begin{aligned} & V+\text { Current, } R_{\text {LOAD }}=\infty, \\ & 3 V \leq V+\leq 36 V \end{aligned}$	$\begin{gathered} 150 \\ 170 \end{gathered}$	$\begin{aligned} & 250 \\ & \mathbf{3 0 0} \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	$\mu \mathrm{A}$ Max $\mu \mathrm{A}$ Max
$\mathrm{V}_{\text {OS }}$	Offset Voltage over V+ Range	$4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	mV Max mV Max
$\mathrm{V}_{\text {OS }}$	Offset Voltage over V_{CM} Range	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right) \\ & \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	mV Max mV Max
$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Average Offset Voltage Drift		15			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	nA Max nA Max
los	Input Offset Current		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	nA Max nA Max
A_{V}	Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 36 \mathrm{~V}, \\ & 2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 27 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 500 \\ & 100 \end{aligned}$	50	50	V / mV Min V/mV
t_{R}	Large Signal Response Time	$\begin{aligned} & V_{+\mathbb{N}}=1.4 \mathrm{~V}, \mathrm{~V}_{-\mathbb{N}}=\mathrm{TTL} \\ & \text { Swing, } \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$			$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~s} \end{aligned}$
IsINK	Output Sink Current	$\begin{aligned} & V_{+I N}=O V, V_{-I N}=1 \mathrm{~V} \\ & V_{\text {OUT }} \end{aligned}=1.5 \mathrm{~V} .$	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{gathered} 10 \\ 8 \end{gathered}$	$\begin{gathered} 10 \\ 8 \end{gathered}$	mA Min mA Min
			$\begin{aligned} & 2.8 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	mA Min mA Min
L	Output Leakage Current	$\begin{aligned} & V_{+\mathbb{N}}=1 \mathrm{~V}, \mathrm{~V}_{-\mathbb{I N}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=36 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	10	10	$\mu \mathrm{A}$ Max $\mu \mathrm{A}$

Electrical Characteristics These specifications apply for $\mathrm{V}-=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}+/ 12$, $I_{R}=100 \mu A$, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range. (Continued)

Symbol	Parameter	Conditions	Typical (Note 7)	LM612AM LM612AI Limits (Note 8)	LM612M LM612I Limits (Note 8)	Units
VOLTAGE REFERENCE (Note 9)						
V_{R}	Reference Voltage		1.244	$\begin{gathered} 1.2365 \\ 1.2515 \\ (\pm 0.6 \%) \end{gathered}$	$\begin{aligned} & 1.2191 \\ & 1.2689 \\ & (\pm 2 \%) \end{aligned}$	V Min V Max
$\frac{\Delta V_{R}}{\Delta T}$	Average Drift with Temperature	(Note 10)	18	80	150	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max
$\frac{\Delta V_{R}}{k H}$	Average Drift with Time	$\begin{aligned} & T_{J}=40^{\circ} \mathrm{C} \\ & T_{J}=150^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 400 \\ 1000 \\ \hline \end{gathered}$			ppm/kH ppm/kH
$\frac{\Delta V_{R}}{\Delta T_{J}}$	Hysteresis	(Note 11)	3.2	*		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{I}_{\mathrm{R}}}$	V_{R} Change with Current	$\mathrm{V}_{\mathrm{R}[100 \mu \mathrm{~A}]}-\mathrm{V}_{\mathrm{R}[17 \mu \mathrm{~A}]}$	$\begin{aligned} & 0.05 \\ & 0.1 \end{aligned}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	mV Max mV Max
		$\begin{aligned} & \mathrm{V}_{\mathrm{R}[10 \mathrm{~mA}]}-\mathrm{V}_{\mathrm{R}[100 \mu \mathrm{~A}]} \\ & \text { (Note 12) } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	mV Max mV Max
R	Resistance	$\Delta \mathrm{V}_{\mathrm{R}}[10 \mathrm{~mA}$ to 0.1 mA$] / 9.9 \mathrm{~mA}$ $\Delta \mathrm{V}_{\mathrm{R}}[100 \mu \mathrm{~A}$ to $17 \mu \mathrm{~A}] / 83 \mu \mathrm{~A}$	$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{gathered} 0.56 \\ 13 \end{gathered}$	$\begin{gathered} 0.56 \\ 13 \end{gathered}$	Ω Max Ω Max
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~V}^{+}}$	V_{R} Change with V+ Change	$\left.\mathrm{V}_{\mathrm{R}[\mathrm{V}+}=5 \mathrm{~V}\right]-\mathrm{V}_{\mathrm{R}}[\mathrm{V}+=36 \mathrm{~V}]$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	mV Max mV Max
		$\left.\mathrm{V}_{\mathrm{R}}[\mathrm{V}+=5 \mathrm{~V}]-\mathrm{V}_{\mathrm{R}} \mathrm{V}+\mathrm{+}=3 \mathrm{~V}\right]$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	mV Mäx mV Max
e_{n}	Voltage Noise	$\mathrm{BW}=10 \mathrm{~Hz}$ to 10 kHz	30			$\mu V_{\text {RMS }}$

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: Input voltage above V^{+}is not allowed. As long as one input pin voltage remains inside the common-mode range, the comparator will deliver the correct output.
Note 3: More accurately, it is excessive current flow, with resulting excess heating, that limits the voltages on all pins. When any pin is pulled a diode drop below V^{-}, a parasitic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operation is undefined and unpredictable when any parasitic diode or transistor is conducting.
Note 4: Shorting the Output to V^{-}will not cause power dissipation, so it may be continuous. However, shorting the Output to any more positive voltage (including V^{+}), will cause 80 mA (typ.) to be drawn through the output transistor. This current multiplied by the applied voltage is the power dissipation in the output transistor. If this total power causes the junction temperature to exceed $150^{\circ} \mathrm{C}$, degraded reliability or destruction of the device may occur. To determine junction temperature, see Note 5.
Note 5: Junction temperature may be calculated using $T_{J}=T_{A}+P_{D} \theta_{J A}$. The given thermal resistance is worst-case for packages in sockets in still air. For packages soldered to copper-clad board with dissipation from one comparator or reference output transistor, nominal θ_{JA} is $90^{\circ} \mathrm{C} / \mathrm{W}$ for the N package.
Note 6: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: Typical values in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; values in boldface type apply for the full operating temperature range. These values represent the most likely parametric norm.
Note 8: All limits are guaranteed for $T_{J}=25^{\circ} \mathrm{C}$ (standard type face) or over the full operating temperature range (bold type face).
Note 9: V_{R} is the reference output voltage, nominally 1.24 V .
Note 10: Average reference drift is calculated from the measurement of the reference voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes. The drift, in ppm $/{ }^{\circ} \mathrm{C}$, is $10^{6} \cdot \Delta V_{R} / V_{R\left[25^{\circ} \mathrm{C}\right]} \bullet \Delta T_{J}$, where $\Delta \mathrm{V}_{\mathrm{R}}$ is the lowest value subtracted from the highest, $\mathrm{V}_{\mathrm{R}\left[25^{\circ} \mathrm{C}\right]}$ is the value at $25^{\circ} \mathrm{C}$, and $\Delta \mathrm{T}_{J}$ is the temperature range. This parameter is guaranteed by design and sample testing.
Note 11: Hysteresis is the change in V_{R} caused by a change in T_{J}, after the reference has been "dehysterized". To dehysterize the reference; that is minimize the hysteresis to the typical value, its junction temperature should be cycled in the following pattern, spiralling in toward $25^{\circ} \mathrm{C}: 25^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$.
Note 12: Low contact resistance is required for accurate measurement.
Note 13: A military RETS 612AMX electrical test specification is available on request. The military screened parts can also be procured as a Standard Military Drawing.

Typical Performance Characteristics (Reference)

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted

Reference Voltage vs Current and Temperature

Reference Voltage vs Reference Current

Reference Noise Voltage vs Frequency

Reference Voltage with $100 \sim 12 \mu A$ Current Step

Accelerated Reference Voltage Drift vs Time

Reference Voltage Change with Supply Voltage Step

Reference Small-Signal

Reference Step Response for $100 \mu \mathrm{~A} \sim 10 \mathrm{~mA}$ Current Step

TIME ($\mu \mathrm{s}$)

Typical Performance Characteristics (Comparators)

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$

Application Information

VOLTAGE REFERENCE

Reference Biasing

The voltage reference is of a shunt regulator topology that models as a simple zener diode. With current I_{R} flowing in the "forward" direction there is the familiar diode transfer function. I_{R} flowing in the reverse direction forces the reference voltage to be developed from cathode to anode.

TL/H/11058-8
FIGURE 1. 1.24V Reference is Developed between Cathode and Anode; Current Source I_{R} is External
The reference equivalent circuit reveals how V_{R} is held at the constant 1.2 V by feedback for a wide range of reverse current.

TL/H/11058-9
FIGURE 2. Reference Equivalent Circuit
To generate the required reverse current, typically a resistor is connected from a supply voltage higher than the reference voltage to the Reference Output pin. Varying that voltage, and so varying I_{R}, has small effect with the equivalent series resistance of less than an ohm at the higher currents. Alternatively, an active current source, such as the LM134 series, may generate I_{R}.

TL/H/11058-10
FIGURE 3. 1.2V Reference

Capacitors in parallel with the reference are allowed. See the Reference AC Stability Range typical curve for capacitance values-from $20 \mu \mathrm{~A}$ to 3 mA the reference is stable for any value of capacitance. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering when necessary.

Reference Hysteresis

The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products vary-always check the datasheet for any given device. Do not assume that no specification means no hysteresis.

COMPARATORS

Either comparator or the reference may be biased in any way with no effect on the other sections of the LM612, except when a substrate diode conducts (see Electrical Characteristics Note 3). For example, one or both inputs of one comparator may be outside the input voltage range limits, the reference may be unpowered, and the other comparator will still operate correctly. The inverting input of an unused comparator should be tied to V - and the non-inverting tied to V^{+}.

Hysteresis

Any comparator may oscillate or produce a noisy output if the applied differential input voltage is near the comparator's offset voltage. This usually happens when the input signal is moving very slowly across the comparator's switching threshold. This problem can be prevented by the addition of hysteresis, or positive feedback, as shown in Figure 4.

TL/H/11058-11
FIGURE 4. $\mathbf{R}_{\mathbf{S}}$ and R $_{\text {F }}$ Add Hysteresis to Comparator
The amount of hysteresis added in Figure 4 is

$$
\begin{aligned}
V_{H} & =V+\times \frac{R_{S}}{\left(R_{F}+R_{S}\right)} \\
& \approx V+\times \frac{R_{S}}{R_{F}} \quad \text { for } R_{F} \gg R_{S}
\end{aligned}
$$

A good rule of thumb is to add hysteresis of at least the maximum specified offset voltage. More than about 50 mV

Application Information (Continued)

of hysteresis can substantially reduce the accuracy of the comparator, since the offset voltage is effectively being increased by the hysteresis when the comparator output is high.
It is often a good idea to decrease the amount of hysteresis until oscillations are observed, then use three times that minimum hysteresis in the final circuit. Note that the amount of hysteresis needed is greatly affected by layout. The amount of hysteresis should be rechecked each time the layout is changed, such as changing from a breadboard to a P.C. board.

Input Stage

The input stage uses lateral PNP input transistors which, unlike those of many op amps, have breakdown voltage $B V_{E B O}$ equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages.

The guaranteed common-mode input voltage range for an LM612 is $\mathrm{V}^{-} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right)$, over temperature. This is the voltage range in which the comparisons must be made. If both inputs are within this range, the output will be at the correct state. If one input is within this range, and the other input is less than $\left(\mathrm{V}^{-}+32 \mathrm{~V}\right)$, even if this is greater than V^{+}, the output will be at the correct state. If, however, either or both inputs are driven below V^{-}, and either input current exceeds $10 \mu \mathrm{~A}$, the output state is not guaranteed to be correct. If both inputs are above ($\mathrm{V}^{+}-1.8 \mathrm{~V}$), the output state is also not guaranteed to be correct.

Output Stage

The comparators have a common open-collector output stage which requires a pull-up resistor to a positive supply voltage for the output to switch properly. When the internal output transistor is off, the output (HIGH) voltage will be pulled up to this external positive voltage.
To ensure that the LOW output voltage is under the TTL-low threshold, the output transistor's load current must be less than 0.8 mA (over temperature) when it turns on. This impacts the minimum value of the pull-up resistor.

Typical Applications

TL/H/11058-12
Power Supply Monitor with Indicator

LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference

General Description

The LM613 consists of dual op-amps, dual comparators, and a programmable voltage reference in a 16 -pin package. The op-amps out-performs most single-supply op-amps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement, and data acquisition systems.
Combining a stable voltage reference with wide output swing op-amps makes the LM613 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (1Ω typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2 V to 6.3 V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems.
As a member of National's Super-BlockTM family, the LM613 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance.

Features

OP AMP
■ Low operating current (Op Amp) $300 \mu \mathrm{~A}$

- Wide supply voltage range 4 V to 36 V
- Wide common-mode range $\quad \mathrm{V}^{-}$to ($\mathrm{V}^{+}-1.8 \mathrm{~V}$)
- Wide differential input voltage $\pm 36 \mathrm{~V}$
- Available in plastic package rated for Military Temp. Range Operation
REFERENCE
- Adjustable output voltage
1.2 V to 6.3 V
- Tight initial tolerance available
$\pm 0.6 \%$
- Wide operating current range
$17 \mu \mathrm{~A}$ to 20 mA
- Tolerant of load capacitance

Applications

- Transducer bridge driver
- Process and mass flow control systems
- Power supply voltage monitor
- Buffered voltage references for A/D's

Connection Diagrams

Ordering Information

Reference Tolerance \& VOS	Temperature Range			Package	NSC Drawing
	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	Commercial $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		
$\pm 0.6 \%$ $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max. $\mathrm{V}_{\mathrm{OS}} \leq 3.5 \mathrm{mV}$	LM613AMN	LM613AIN	-	16-Pin Molded DIP	N16E
	LM613AMJ/883 (Note 14)	-	-	$\begin{gathered} \text { 16-Pin } \\ \text { Ceramic DIP } \end{gathered}$	J16A
	LM613AME/883 (Note 14)	-	-	$\begin{gathered} \text { 20-Pin } \\ \text { LCC } \end{gathered}$	E20A
$\pm 2.0 \%$ 150 ppm/ ${ }^{\circ} \mathrm{C}$ Max. $\mathrm{V}_{\mathrm{OS}} \leq 5.0 \mathrm{mV}$ Max.	LM613MN	LM613IN	LM613CN	16-Pin Molded DIP	N16E
	-	LM613IWM		16-Pin Wide Surface Mount	M16B

Thermal Resistance, Junction-to-Ambient (Note 5)	
N Package	$100^{\circ} \mathrm{C} / \mathrm{W}$
WM Package	$150^{\circ} \mathrm{C} / \mathrm{W}$
Soldering Information (10 Seconds)	
N Package	$260^{\circ} \mathrm{C}$
WM Package	$220^{\circ} \mathrm{C}$
ESD Tolerance (Note 6)	$\pm 1 \mathrm{kV}$

Operating Temperature Range

LM613AI, LM613BI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM613AM, LM613M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM613C	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+70^{\circ} \mathrm{C}$

Electrical Characteristics These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=\mathrm{OV}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$, $I_{R}=100 \mu A$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 7)	LM613AM LM613AI Limits (Note 8)	LM613M LM613I LM613C Limits (Note 8)	Units
Is	Total Supply Current	$\begin{aligned} & R_{\text {LOAD }}=\infty, \\ & 4 \mathrm{~V} \leq \mathrm{V}+\leq 36 \mathrm{~V}(32 \mathrm{~V} \text { for LM613C) } \end{aligned}$	$\begin{aligned} & 450 \\ & 550 \end{aligned}$	$\begin{gathered} 940 \\ 1000 \end{gathered}$	$\begin{gathered} 1000 \\ 1070 \end{gathered}$	$\mu \mathrm{A}$ (Max) $\mu \mathrm{A}$ (Max)
V_{S}	Supply Voltage Range		$\begin{aligned} & 2.2 \\ & 2.9 \end{aligned}$	$\begin{gathered} 2.8 \\ 3 \end{gathered}$	$\begin{gathered} 2.8 \\ 3 \end{gathered}$	V (Min) V (Min)
			$\begin{aligned} & 46 \\ & 43 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	V (Max) V (Max)

OPERATIONAL AMPLIFIERS

VOS1	Vos Over Supply	$\begin{aligned} & 4 V \leq V^{+} \leq 36 V \\ & \left(4 V \leq V^{+} \leq 32 V \text { for } L M 613 C\right) \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	mV (Max) mV (Max)
$\mathrm{V}_{\text {OS2 }}$	$\mathrm{V}_{\text {OS }}$ Over $\mathrm{V}_{\text {CM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { through } \mathrm{V}_{\mathrm{CM}}= \\ & \left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right), \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$m V$ (Max) mV (Max)
$\frac{V_{\mathrm{OS} 3}}{\Delta T}$	Average $\mathrm{V}_{\text {OS }}$ Drift	(Note 8)	15			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ (Max)
I_{B}	Input Bias Current		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	nA (Max) nA (Max)
los	Input Offset Current		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	nA (Max) nA (Max)
$\frac{\operatorname{los} 1}{\Delta T}$	Average Offset Current		4			$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential	1000			M Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Common-Mode	6			pF
e_{n}	Voltage Noise	$\mathrm{f}=100 \mathrm{~Hz}$, Input Referred	74			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
In	Current Noise	$\mathrm{f}=100 \mathrm{~Hz}$, Input Referred	58			$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
CMRR	Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right) \\ & \mathrm{CMRR}=20 \log \left(\Delta \mathrm{~V}_{\mathrm{CM}} / \Delta \mathrm{V}_{\mathrm{OS}}\right) \end{aligned}$	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	dB (Min) dB (Min)
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 4 V \leq V+\leq 30 V, V_{C M}=V+/ 2 \\ & P S R R=20 \log \left(\Delta V+/ V_{O S}\right) \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$d B$ (Min) dB (Min)
A_{V}	Open Loop Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND}, \mathrm{~V}+=30 \mathrm{~V}, \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq 25 \mathrm{~V} \end{aligned}$	$\begin{gathered} 500 \\ 50 \end{gathered}$	$\begin{aligned} & 100 \\ & 40 \end{aligned}$	$\begin{aligned} & 94 \\ & 40 \end{aligned}$	V/mV (Min)

Electrical Characteristics These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$, $I_{R}=100 \mu A$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over Operating Temperature Range. (Continued)

Symbol	Parameter	Conditions	Typical (Note 7)	LM613AM LM613AI Limits (Note 8)	LM613M LM613I LM613C Limits (Note 8)	Units

OPERATIONAL AMPLIFIERS (Continued)

SR	Slew Rate	$\mathrm{V}^{+}=30 \mathrm{~V}$ (Note 9)	$\begin{aligned} & 0.70 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.45 \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth	$C_{L}=50 \mathrm{pF}$	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$.	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
V_{01}	Output Voltage Swing High	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND}, \\ & \mathrm{~V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}) \end{aligned}$	$\begin{gathered} v^{+}-1.4 \\ \mathbf{v}^{+}-1.6 \end{gathered}$	$\begin{aligned} & v^{+}-1.7 \\ & \mathbf{v}^{+}-1.9 \end{aligned}$	$\begin{gathered} v^{+}-1.8 \\ \mathbf{v}^{+}-1.9 \end{gathered}$	V (Min) V (Min)
$\mathrm{V}_{\mathrm{O} 2}$	Output Voltage Swing Low	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}^{+}, \\ & \mathrm{V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}) \end{aligned}$	$\begin{aligned} & v^{-}+0.8 \\ & \mathbf{v}^{-}+\mathbf{0 . 9} \end{aligned}$	$\begin{aligned} & v^{-}+0.9 \\ & \mathbf{v}^{-}+\mathbf{1 . 0} \end{aligned}$	$\begin{aligned} & \mathbf{v}^{-}+0.95 \\ & \mathbf{v}^{-}+\mathbf{1 . 0} \end{aligned}$	V (Max) V (Max)
IOUT	Output Source Current	$\begin{aligned} & V_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{~V}^{+}{ }_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{-} \mathrm{IN}=-0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{aligned} & 16 \\ & 13 \end{aligned}$	mA (Min) mA (Min)
ISINK	Output Sink Current	$\begin{aligned} & V_{\mathrm{OUT}}=1.6 \mathrm{~V}, \mathrm{~V}^{+}{ }_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{-} \mathrm{IN}=0.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 17 \\ 9 \end{gathered}$	$\begin{gathered} 14 \\ 8 \end{gathered}$	$\begin{gathered} 13 \\ 8 \end{gathered}$	mA (Min) mA (Min)
ISHORT	Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}, \mathrm{~V}^{+}{ }_{\mathrm{IN}}=3 \mathrm{~V}, \\ & \mathrm{~V}^{-} \mathrm{IN}=2 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 30 \\ 40 \\ \hline \end{array}$	$\begin{array}{r} 50 \\ 60 \\ \hline \end{array}$	$\begin{array}{r} 50 \\ 60 \\ \hline \end{array}$	mA (Max) mA (Max)
		$\begin{aligned} & V_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}^{+} \mathbb{I N}=2 \mathrm{~V}, \\ & \mathrm{~V}^{-} \mathbb{I N}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 30 \\ & 32 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & \mathbf{8 0} \end{aligned}$	$\begin{array}{r} 70 \\ 90 \\ \hline \end{array}$	mA (Max) mA (Max)

COMPARATORS

$\mathrm{V}_{\text {OS }}$	Offset Voltage	$\begin{aligned} & 4 V \leq V+\leq 36 V(32 V \text { for } L M 613 C), \\ & R_{L}=15 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & \mathbf{7 . 0} \end{aligned}$	$\begin{aligned} & \mathrm{mV} \text { (Max) } \\ & \mathrm{mV} \text { (Max) } \end{aligned}$
$\frac{\mathrm{V}_{\mathrm{OS}}}{\mathrm{~V}_{\mathrm{CM}}}$	Offset Voltage over V_{CM}	$\begin{aligned} & 0 V \leq V_{C M} \leq 36 \mathrm{~V} \\ & V^{+}=36 \mathrm{~V},(32 \mathrm{~V} \text { for LM613C) } \end{aligned}$	$\begin{array}{r} 1.0 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \text { (Max) } \\ & \mathrm{mV} \text { (Max) } \end{aligned}$
$\frac{V_{\mathrm{OS}}}{\Delta T}$	Average Offset Voltage Drift		15			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ (Max)
I_{B}	Input Bias Current		$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{array}{r} 35 \\ 40 \end{array}$	nA (Max) nA (Max)
los	Input Offset Current		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\begin{array}{r} 4 \\ 5 \end{array}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	nA (Max) nA (Max)
A_{V}	Voltage Gain	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } 36 \mathrm{~V}(32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}) \\ & 2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 27 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 500 \\ & 100 \end{aligned}$			$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
t_{r}	Large Signal Response Time	$\begin{aligned} & V^{+}{ }_{i N}=1.4 \mathrm{~V}, \mathrm{~V}^{-}{ }_{\mathrm{IN}}=\text { TTL Swing, } \\ & \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$			$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~s} \end{aligned}$
ISINK	Output Sink Current	$\begin{aligned} & V^{+}{ }_{I N}=0 \mathrm{~V}, \mathrm{~V}^{-}{ }_{I N}=1 \mathrm{~V}, \\ & V_{\text {OUT }}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{gathered} 10 \\ 8 \end{gathered}$	$\begin{gathered} 10 \\ 8 \end{gathered}$	mA (Min) mA (Min)
		$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	$\begin{aligned} & 2.8 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	mA (Min) mA (Min)
lieak	Output Leakage Current	$\begin{aligned} & V+{ }_{I N}=1 V, V-{ }_{I N}=0 V \\ & V_{O U T}=36 V(32 V \text { for } L M 613 C) \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	10	10	$\begin{aligned} & \mu \mathrm{A}(\text { Max }) \\ & \mu \mathrm{A}(\mathrm{Max}) \end{aligned}$

Electrical Characteristics These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$, $I_{R}=100 \mu A$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over Operating Temperature Range. (Continued)

Symbol	Parameter	Conditions	Typical (Note 7)	$\begin{gathered} \text { LM613AM } \\ \text { LM613AI } \\ \text { Limits } \\ \text { (Note 8) } \end{gathered}$	LM613M LM613I LM613C Limits (Note 8)	Units
VOLTAGE REFERENCE						
V_{R}	Voltage Reference	(Note 10)	1.244	$\begin{gathered} 1.2365 \\ 1.2515 \\ (\pm 0.6 \%) \\ \hline \end{gathered}$	$\begin{aligned} & 1.2191 \\ & 1.2689 \\ & (\pm 2 \%) \\ & \hline \end{aligned}$	V (Min) V (Max)
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~T}}$	Average Temp. Drift	(Note 11)	10	80	150	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (Max)
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Hysteresis	(Note 12)	3.2			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{I}_{\mathrm{R}}}$	V_{R} Change with Current	$\mathrm{V}_{\mathrm{R}(100 \mu \mathrm{~A})}-\mathrm{V}_{\mathrm{R}(17 \mu \mathrm{~A})}$	$\begin{aligned} & 0.05 \\ & 0.1 \end{aligned}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \text { (Max) } \\ & \mathrm{mV} \text { (Max) } \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{R}(10 \mathrm{~mA})}-\mathrm{V}_{\mathrm{R}(100 \mu \mathrm{~A})} \\ & \text { (Note 13) } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \text { (Max) } \\ & \mathrm{mV} \text { (Max) } \end{aligned}$
R	Resistance	$\begin{aligned} & \Delta V_{R(10 \rightarrow 0.1 \mathrm{~mA})} / 9.9 \mathrm{~mA} \\ & \Delta V_{R(100 \rightarrow 17 \mu \mathrm{~A})} / 83 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{gathered} 0.56 \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} 0.56 \\ 13 \end{gathered}$	$\begin{aligned} & \Omega \text { (Max) } \\ & \Omega \text { (Max) } \\ & \hline \end{aligned}$
$\frac{\mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~V}_{\mathrm{RO}}}$	V_{R} Change with High V_{RO}	$\left.\mathrm{V}_{\mathrm{R}\left(\mathrm{V}_{\mathrm{ro}}\right.}=\mathrm{V}_{\mathrm{r})}-\mathrm{V}_{\mathrm{R}(\mathrm{Vro}}=6.3 \mathrm{~V}\right)$ (5.06V between Anode and FEEDBACK)	$\begin{aligned} & 2.5 \\ & \mathbf{2 . 8} \end{aligned}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{gathered} 7 \\ 10 \end{gathered}$	mV (Max) mV (Max)
$\frac{\mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~V}^{+}}$	V_{R} Change with $\mathrm{V}_{\text {ANODE }}$ Change	$\begin{aligned} & \left.\mathrm{V}_{\mathrm{R}} \mathrm{~V}^{+}=5 \mathrm{~V}\right)-\mathrm{V}_{\mathrm{R}\left(\mathrm{~V}^{+}+=36 \mathrm{~V}\right.} \\ & \left(\mathrm{V}^{+}=32 \mathrm{~V}^{\text {for } \mathrm{LM} 613 \mathrm{C})}\right. \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & \mathbf{1 . 3} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \text { (Max) } \\ & \mathrm{mV} \text { (Max) } \\ & \hline \end{aligned}$
		$\mathrm{V}_{\mathrm{R}\left(\mathrm{V}^{+}=5 \mathrm{~V}\right)} \mathrm{V}_{\mathrm{R}\left(\mathrm{V}^{+}=3 \mathrm{~V}\right.}$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \text { (Max) } \\ & \mathrm{mV} \text { (Max) } \end{aligned}$
$I_{\text {FB }}$	FEEDBACK Bias Current	$\mathrm{V}_{\text {ANODE }} \leq \mathrm{V}_{\mathrm{FB}} \leq 5.06 \mathrm{~V}$	$\begin{aligned} & 22 \\ & 29 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	nA (Max) nA (Max)
e_{n}	V_{R} Noise	$\begin{aligned} & 10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{RO}}=\mathrm{V}_{\mathrm{R}} \end{aligned}$	30			$\mu \mathrm{V}_{\text {RMS }}$

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: Input voltage above V^{+}is allowed. As long as one input pin voltage remains inside the common-mode range, the comparator will deliver the correct output.
Note 3: More accurately, it is excessive current flow, with resulting excess heating, that limits the voltages on all pins. When any pin is pulled a diode drop below $\mathbf{V}-$, a parasitic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operation is undefined and unpredictable when any parasitic diode or transistor is conducting.
Note 4: Simultaneous short-circuit of multiple comparators while using high supply voltages may force junction temperature above maximum, and thus should not be continuous.
Note 5: Junction temperature may be calculated using $T_{J}=T_{A}+P_{D} \theta_{J A}$. The given thermal resistance is worst-case for packages in sockets in still air. For packages soldered to copper-clad board with dissipation from one comparator or reference output transistor, nominal θ_{JA} is $90^{\circ} \mathrm{C} / \mathrm{W}$ for the N package, and $135^{\circ} \mathrm{C} / \mathrm{W}$ for the WM package.
Note 6: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: Typical values in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; values in bold face type apply for the full operating temperature range. These values represent the most likely parametric norm.
Note 8: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold type face).
Note 9: Slew rate is measured with the op amp in a voltage follower configuration. For rising slew rate, the input voltage is driven from 5 V to 25 V , and the output voltage transition is sampled at 10 V and @ 20 V . For falling slew rate, the input voltage is driven from 25 V to 5 V , and the output voltage transition is sampled at 20 V and 10 V .
Note 10: V_{R} is the Cathode-to-feedback voltage, nominally 1.244 V .
Note 11: Average reference drift is calculated from the measurement of the reference voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes. The drift, in ppm/ ${ }^{\circ} \mathrm{C}$, is $10^{6} \Delta \Delta V_{R} /\left(V_{R\left[25^{\circ} C\right]}{ }^{\bullet} \Delta T_{J}\right)$, where ΔV_{R} is the lowest value subtracted from the highest, $V_{R}\left[25^{\circ} \mathrm{C}\right]$ is the value at $25^{\circ} C$, and ΔT_{J} is the temperature range. This parameter is guaranteed by design and sample testing.
Note 12: Hysteresis is the change in V_{R} caused by a change in T_{J}, after the reference has been "dehysterized". To dehysterize the reference; that is minimize the hysteresis to the typical value, its junction temperature should be cycled in the following pattern, spiraling in toward $25^{\circ} \mathrm{C}$: $25^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$.
Note 13: Low contact resistance is required for accurate measurement.
Note 14: A military RETS 613AMX electrical test specification is available on request. The Military screened parts can also be procured as a Standard Military Drawing.

Simplified Schematic Diagrams

TL/H/9226-2

TL/H/9226-3

TL/H/9226-4

Typical Performance Characteristics (Reference)

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted

Reference Voltage vs Current and Temperature

Reference Voltage vs Reference Current

Reference Voltage vs Current and Temperature

Reference Noise Voltage vs Frequency

Accelerated Reference
Voltage Drift vs Time

Reference Voltage vs Reference Current

FEEDBACK Current vs FEEDBACK-to-Anode Voltage

Typical Performance Characteristics (Reference) (Continued)
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted

Typical Performance Characteristics (Op Amps)

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}+/ 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

TL/H/9226-7

Typical Performance Characteristics (Op Amps) (Continued)

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}+/ 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Output Sink Current vs Output Voltage

Follower Small-Signal Frequency Response

Output Swing, Large Signal

Small-Signal Voltage Gain vs
Frequency and Temperature

Typical Performance Characteristics (Op Amps) (Continued)
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\text {OUT }}=\mathrm{V}+/ 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)

JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)

JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)

TL/H/9226-9

Typical Performance Characteristics (Comparators)

TL/H/9226-11

Typical Performance Characteristics (Comparators) (Continued)

TL/H/9226-12

Comparator
Response Times-Non-Inverting Input, Positive Transition

TL/H/9226-14

Comparator
Response Times-Inverting Input, Negative Transition

TL/H/9226-13

TL/H/9226-15

TL/H/9226-17

Typical Performance Characteristics (Comparators) (Continued)

TL/H/9226-18

Typical Performance Distributions

TL/H/9226-20

TL/H/9226-22
TL/H/9226-19

los DRIFT (pA/c)
TL/H/9226-23

Typical Performance Distributions (Continued)

TL/H/9226-24

Op Amp Voltage Noise Distribution

TL/H/9226-27

Op Amp Current Noise Distribution

TL/H/9226-28

Application Information

 VOLTAGE REFERENCEReference Biasing
The voltage reference is of a shunt regulator topology that models as a simple zener diode. With current I_{r} flowing in the "forward" direction there is the familiar diode transfer function. I_{r} flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The cathode may swing from a diode drop below V - to the reference voltage or to the avalanche voltage of the parallel protection diode, nominally 7 V . A 6.3 V reference with $\mathrm{V}^{+}=$ 3 V is allowed.

TL/H/9226-29
FIGURE 1. Voltage Associated with Reference (current source I_{r} is external)

Application Information (Continued)

The reference equivalent circuit reveals how V_{r} is held at the constant 1.2 V by feedback, and how the FEEDBACK pin passes little current.
To generate the required reverse current, typically a resistor is connected from a supply voltage higher than the reference voltage. Varying that voltage, and so varying I_{r}, has small effect with the equivalent series resistance of less than an ohm at the higher currents. Alternatively, an active current source, such as the LM134 series, may generate I_{r}.

TL/H/9226-30
FIGURE 2. Reference Equivalent Circuit

TL/H/9226-31
FIGURE 3. 1.2V Reference
Capacitors in parallel with the reference are allowed. See the Reference AC Stability Range typical curve for capacitance values-from $20 \mu \mathrm{~A}$ to 3 mA any capacitor value is stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering.

Adjustable Reference

The FEEDBACK pin allows the reference output voltage, $V_{\text {ro }}$, to vary from 1.24 V to 6.3 V . The reference attempts to hold V_{r} at 1.24 V . If V_{r} is above 1.24 V , the reference will conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then $\mathrm{V}_{\mathrm{ro}}=\mathrm{V}_{\mathrm{r}}=1.24 \mathrm{~V}$. For higher voltages FEEDBACK is held at a constant voltage above Anode-say 3.76 V for $\mathrm{V}_{\mathrm{rO}}=5 \mathrm{~V}$. Connecting a resistor across the constaint V_{r} generates a current $\mathrm{I}=\mathrm{R} 1 / \mathrm{V}_{\mathrm{r}}$ flowing from Cathode into FEEDBACK node. A Thevenin equivalent 3.76 V is generated from FEEDBACK to Anode with R2=3.76/I. Keep I greater than one thousand times larger than FEEDBACK bias current for $<0.1 \%$ error- $\mathrm{l} \geq 32 \mu \mathrm{~A}$ for the military grade over the military temperature range ($1 \geq 5.5 \mu \mathrm{~A}$ for a 1% untrimmed error for a commercial part).

TL/H/9226-32
FIGURE 4. Thevenin Equivalent of Reference with 5V Output

TL/H/9226-33
$R 1=V r / I=1.24 / 32 \mu=39 k$
$R 2=R 1\{(V r o / V r)-1\}=39 k\{(5 / 1.24)-1)\}=118 k$
FIGURE 5. Resistors R1 and R2 Program Reference Output Voltage to be 5V
Understanding that V_{r} is fixed and that voltage sources, resistors, and capacitors may be tied to the FEEDBACK pin, a range of V_{r} temperature coefficients may be synthesized.

TL/H/9226-34
FIGURE 6. Output Voltage has Negative Temperature Coefficient (TC) if R2 has Negative TC

TL/H/9226-35
FIGURE 7. Output Voltage has Positive TC if R1 has Negative TC

Application Information (Continued)

TL/H/9226-36
FIGURE 8. Diode in Series with R1 Causes Voltage Across R1 and R2 to be Proportional to Absolute Temperature (PTAT)
Connecting a resistor across Cathode-to-FEEDBACK creates a 0 TC current source, but a range of TCs may be synthesized.

TL/H/9226-37
$\mathrm{I}=\mathrm{Vr} / \mathrm{R} 1=1.24 / \mathrm{R} 1$
FIGURE 9. Current Source is Programmed by R1

TL/H/9226-38
FIGURE 10. Proportional-to-Absolute-Temperature Current Source

TL/H/9226-39
FIGURE 11. Negative-TC Current Source

Reference Hysteresis

The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products varyalways check the data sheet for any given device. Do not assume that no specification means no hysteresis.

OPERATIONAL AMPLIFIERS AND COMPARATORS

Any amp, comparator, or the reference may be biased in any way with no effect on the other sections of the LM613, except when a substrate diode conducts (see Electrical Characteristics Note 1). For example, one amp input may be outside the common-mode range, another amp may be operating as a comparator, and all other sections may have all terminals floating with no effect on the others. Tying inverting input to output and non-inverting input to V^{-}on unused amps is preferred. Unused comparators should have non-inverting input and output tied to V^{+}, and inverting input tied to V^{-}. Choosing operating points that cause oscillation, such as driving too large a capacitive load, is best avoided.

Op Amp Output Stage

These op amps, like the LM124 series, have flexible and relatively wide-swing output stages. There are simple rules to optimize output swing, reduce cross-over distortion, and optimize capacitive drive capability:

1) Output Swing: Unloaded, the $42 \mu \mathrm{~A}$ pull-down will bring the output within 300 mV of V^{-}over the military temperature range. If more than $42 \mu \mathrm{~A}$ is required, a resistor from output to V^{-}will help. Swing across any load may be improved slightly if the load can be tied to V^{+}, at the cost of poorer sinking open-loop voltage gain.
2) Cross-Over Distortion: The LM613 has lower cross-over distortion (a $1 \mathrm{~V}_{\mathrm{BE}}$ deadband versus $3 \mathrm{~V}_{\mathrm{BE}}$ for the LM124), and increased slew rate as shown in the characteristic curves. A resistor pull-up or pull-down will force class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-over distortion.
3) Capacitive Drive: Limited by the output pole caused by the output resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN r_{e} until the output resistance is that of the current limit $25 \Omega .200 \mathrm{pF}$ may then be driven without oscillation.

Comparator Output Stage

The comparators, like the LM139 series, have open-collector output stages. A pull-up resistor must be added from each output pin to a positive voltage for the output transistor to switch properly. When the output transistor is OFF, the output voltage will be this external positive voltage.
For the output voltage to be under the TTL-low voltage threshold when the output transistor is ON, the output current must be less than 8 mA (over temperature). This impacts the minimum value of pull-up resistor.
The offset voltage may increase when the output voltage is low and the output current is less than $30 \mu \mathrm{~A}$. Thus, for best accuracy, the pull-up resistor value should be low enough to allow the output transistor to sink more than $30 \mu \mathrm{~A}$.

Op Amp and Comparator Input Stage

The lateral PNP input transistors, unlike those of most op amps, have $B V_{E B O}$ equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages.

Typical Applications

TL/H/9226-40
FIGURE 12. High Current, High Voltage Switch

TL/H/9226-41
FIGURE 13. High Speed Level Shifter. Response time is approximately $1.5 \mu \mathrm{~s}$, where output is either approximately $+\mathbf{V}$ or -V .

TL/H/9226-42
FIGURE 14. Low Voltage Regulator. Dropout voltage is approximately 0.2 V .
*10k must be low t.c. trimpot

TL/H/9226-43

FIGURE 15. Ultra Low Noise, 10.00 V Reference. Total output noise is typically $14 \mu \mathrm{~V}_{\text {RMS }}$.

Typical Applications (Continued)

FIGURE 16. Basic Comparator

FIGURE 18. Wide-Input Range Comparator with TTL Output

TL/H/9226-47
FIGURE 19. Comparator with Hysteresis ($\Delta \mathbf{V}_{\mathbf{H}}=+\mathbf{V}(\mathbf{1 k} / \mathbf{1 M})$)

LM615 Quad Comparator and Adjustable Reference

General Description

The comparators have an input range which extends to the negative supply, and have open-collector outputs. Improved over the LM139 series, the input stages of the comparators have lateral PNP input transistors which enable low input currents for large differential input voltages and swings above V^{+}.
The voltage reference is a three-terminal shunt-type bandgap, and is referred to the V - terminal. Two resistors program the reference from 1.24 V to 6.3 V , with accuracy of $\pm 0.6 \%$ available. The reference features operation over a shunt current range of $17 \mu \mathrm{~A}$ to 20 mA , low dynamic impedance, broad capacitive load range, and cathode terminal voltage ranging from a diode-drop below V^{-}to above V^{+}. As a member of National's Super-Block ${ }^{\text {TM }}$ family, the LM615 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance.

Features

COMPARATORS

Low operating current	$600 \mu \mathrm{~A}$
Wide supply voltage range	4 V to 36 V
■ Open-collector outputs	
■ Input common-mode range	V - to $(\mathrm{V}+-1.8 \mathrm{~V})$
Wide differential input voltage	$\pm 36 \mathrm{~V}$
REFERENCE	
Adjustable output voltage	1.24 V to 6.3 V
- Tight initial tolerance available	$\pm 0.6 \%\left(25^{\circ} \mathrm{C}\right)$
Wide operating current range	$17 \mu \mathrm{~A}$ to 20 mA
Tolerant of load capacitance	

Applications

- Adjustable threshold detector
- Time-delay generator
- Voltage window comparator
- Power supply monitor
- RGB level detector

Connection Diagram

Ordering Information
For information about surface-mount packaging of this device, please contact the Analog Product Marketing group at National Semiconductor Corp. headquarters.

Reference Tolerances	Temperature Range		Package	NSC Package Number
	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C} \end{gathered}$	Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$		
$\begin{aligned} & \pm 0.6 \% \text { at } 25^{\circ} \mathrm{C}, \\ & 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { max } \end{aligned}$	LM615AMN	LM615AIN	16-Pin Molded DIP	N16A
	LM615AMJ/883 (Note 13)		16-Pin Ceramic DIP	J16A
$\pm 2.0 \%$ at $25^{\circ} \mathrm{C}$, $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max	LM615MN	LM615IN	16-Pin Molded DIP	N16A
		LM615IM	16-Pin Narrow Surface Mount	M16A

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Voltage on Any Pin Except V_{RO}
(referred to V-pin)
(Note 2)
36V (Max)
$-0.3 V(\mathrm{Min})$
Current through Any Input Pin and V_{RO} Pin
Differential Input Voltage
Output Short-Circuit Duration
$\pm 20 \mathrm{~mA}$
$\pm 36 \mathrm{~V}$
(Note 4)
Storage Temperature Range $\quad-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$

Maximum Junction Temperature $\quad 150^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Ambient (Note 5) $95^{\circ} \mathrm{C} / \mathrm{W}$
N Package

Soldering Information	
N Package Soldering (10 seconds)	$260^{\circ} \mathrm{C}$
ESD Tolerance (Note 6)	$\pm 1 \mathrm{kV}$

Operating Temperature Range

LM615AI, LM615I
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$

Electrical Characteristics

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=\mathrm{OV}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}+12, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 7)	LM615AM LM615AI Limits (Note 8)	LM615M LM615I Limits (Note 8)	Units
COMPARATORS						
Is	Total Supply Current	$\begin{aligned} & \mathrm{V}^{+} \text {Current, } \mathrm{R}_{\text {LOAD }}=\infty, \\ & 3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 250 \\ & 350 \end{aligned}$	$\begin{aligned} & 550 \\ & 600 \end{aligned}$	$\begin{aligned} & 600 \\ & 650 \end{aligned}$	$\mu \mathrm{A}$ max $\mu A \max$
V_{OS}	Offset Voltage over V+ Range	$4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	mV max $m V \max$
V OS	Offset Voltage over V_{CM} Range	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq(\mathrm{V}+-1.8 \mathrm{~V}) \\ & \mathrm{V}+=30 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$m V$ max mV max
$\frac{\Delta V_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Average Offset Voltage Drift		15			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		$\begin{array}{r} -5 \\ -8 \end{array}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$n A$ max nA max
los	Input Offset Current		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	4	4	$n A$ max nA max
A_{V}	Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 36 \mathrm{~V}, \\ & 2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 27 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 500 \\ 100 \\ \hline \end{array}$	50	50	V / mV min V / mV
t_{R}	Large Signal Response Time	$\begin{aligned} & V_{+\mathbb{N}}=1.4 \mathrm{~V}, \mathrm{~V}_{-\mathbb{N}}=\mathrm{TTL} \\ & \text { Swing, }^{R_{L}}=5.1 \mathrm{k} \Omega \end{aligned}$	$\begin{array}{r} 1.5 \\ 2.0 \\ \hline \end{array}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
ISINK	Output Sink Current	$V_{+ \text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{-1 \mathrm{~N}}=1 \mathrm{~V}, \quad \begin{array}{ll} \\ & \mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=0.4 \mathrm{~V}\end{array}$	$\begin{array}{r} 20 \\ 13 \\ \hline \end{array}$	$\begin{gathered} 10 \\ \mathbf{8} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 8 \end{gathered}$	mA min mA min
			$\begin{aligned} & 2.8 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	mA min mA min
L	Output Leakage Current	$\begin{aligned} & V_{+I N}=1 V, V-I N=0 V \\ & V_{\text {OUT }}=36 V \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	10	10	$\mu \mathrm{A}$ max $\mu \mathrm{A}$

Electrical Characteristics

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply over the Operating Temperature Range. (Continued)

Symbol	Parameter	Conditions	Typical (Note 7)	LM615AM LM615AI Limits (Note 8)	LM615M LM615I Limits (Note 8)	Units

VOLTAGE REFERENCE (Note 9)

V_{R}	Reference Voltage		1.244	$\begin{gathered} 1.2365 \\ 1.2515 \\ (\pm 0.6 \%) \end{gathered}$	$\begin{aligned} & 1.2191 \\ & 1.2689 \\ & (\pm 2 \%) \end{aligned}$	V min $V_{\text {max }}$
$\frac{\Delta V_{R}}{\Delta T}$	Average Drift with Temperature	(Note 10)	18	80	150	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max
$\frac{\Delta V_{R}}{k H}$	Average Drift with Time	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=40^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 400 \\ 1000 \end{gathered}$			ppm/kH ppm/kH
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Hysteresis	(Note 11)	3.2			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{I}_{\mathrm{R}}}$	V_{R} Change with Current	$\mathrm{V}_{\mathrm{R}[100 \mu \mathrm{~A}]}-\mathrm{V}_{\mathrm{R}[17 \mu \mathrm{~A}]}$	$\begin{aligned} & 0.05 \\ & 0.1 \end{aligned}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	$\begin{gathered} 1 \\ 1.1 \end{gathered}$	mV max mV max
		$\begin{aligned} & V_{R[10 \mathrm{~mA}]}-V_{R[100 \mu \mathrm{~A}]} \\ & \text { (Note 12) } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	mV max $m V$ max
R	Resistance	$\left.\Delta V_{R[10 ~ m A ~ t o ~} 0.1 \mathrm{~mA}\right] / 9.9 \mathrm{~mA}$ $\Delta \mathrm{V}_{\mathrm{R}[100 \mu \mathrm{~A}}$ to $\left.17 \mu \mathrm{~A}\right] / 83 \mu \mathrm{~A}$	$\begin{aligned} & 0.2 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{gathered} 0.56 \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} 0.56 \\ 13 \\ \hline \end{gathered}$	Ω max Ω max
$\frac{\Delta V_{R}}{\Delta V_{\mathrm{RO}}}$	V_{R} Change with $V_{R O}$	$\left.\left.\mathrm{V}_{\mathrm{R}\left[\mathrm{V}_{\mathrm{RO}}\right.}=\mathrm{V}_{\mathrm{R}}\right]-\mathrm{V}_{\mathrm{R}\left[\mathrm{V}_{\mathrm{RO}}\right.}=6.3 \mathrm{~V}\right]$	$\begin{array}{r} 2.5 \\ 2.8 \\ \hline \end{array}$	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	mV max mV max
$\frac{\Delta \mathrm{V}_{\mathrm{R}}}{\Delta \mathrm{~V}^{+}}$	V_{R} Change with V+ Change	$\left.\mathrm{V}_{\mathrm{R}[\mathrm{V}}+=5 \mathrm{~V}\right]-\mathrm{V}_{\mathrm{R}[\mathrm{V}+=36 \mathrm{~V}]}$	$\begin{aligned} & 0.1 \\ & \mathbf{0 . 1} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \\ & \hline \end{aligned}$	mV max mV max
		$\left.\mathrm{V}_{\mathrm{R}}[\mathrm{V}+=5 \mathrm{~V}]-\mathrm{V}_{\mathrm{R}} \mathrm{V}++=3 \mathrm{~V}\right]$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$m V$ max mV max
${ }^{\text {F }}$ FB	FEEDBACK Bias Current	$\mathrm{V}^{-} \leq \mathrm{V}_{\mathrm{FB}} \leq 5.06 \mathrm{~V}$	$\begin{aligned} & 22 \\ & 29 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	nA max nA max
e_{n}	Voltage Noise	$B W=10 \mathrm{~Hz}$ to 10 kHz	30			$\mu \mathrm{V}_{\text {RMS }}$

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: Input voltage above V^{+}is allowed. As long as one input pin voltage remains inside the common-mode range, the comparator will deliver the correct output.
Note 3: More accurately, it is excessive current flow, with resulting excess heating, that limits the voltages on all pins. When any pin is pulled a diode drop below V-, a parasitic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operation is undefined and unpredictable when any parasitic diode or transistor is conducting.
Note 4: Shorting an Output to V - will not cause power dissipation, so it may be continuous. However, shorting an Output to any more positive voltage (including V^{+}), will cause 80 mA (typ.) to be drawn through the output transistor. This current multiplied by the applied voltage is the power dissipation in the output transistor. If the total power from all shorted outputs causes the junction temperature to exceed $150^{\circ} \mathrm{C}$, degraded reliability or destruction of the device may occur. To determine junction temperature, see Note 5.

Note 5: Junction temperature may be calculated using $T_{J}=T_{A}+P_{D} \theta_{J A}$. The given thermal resistance is worst-case for packages in sockets in still air. For packages soldered to copper-clad board with dissipation from one comparator or reference output transistor, nominal θ_{JA} is $80^{\circ} \mathrm{C} / \mathrm{W}$ for the N package.

Note 6: Human body model, 100 pF discharge through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: Typical values in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; values in boldface type apply for the full operating temperature range. These values represent the most likely parametric norm.

Note 8: All limits are guaranteed for $T_{J}=+25^{\circ} \mathrm{C}$ (standard type face) or over the full operating temperature range (bold type face).
Note 9: V_{RO} is the reference output voltage, which may be set for 1.2 V to 6.3 V (see Application Information). V_{R} is the V_{RO}-to-FEEDBACK voltage (nominally 1.244V).

Note 10: Average reference drift is calculated from the measurement of the reference voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes. The drift, in ppm/ ${ }^{\circ} \mathrm{C}$, is $10^{6} \bullet \Delta V_{R} / V_{R\left[25^{\circ} \mathrm{C}\right]} \bullet \Delta T_{J}$, where ΔV_{R} is the lowest value subtracted from the highest, $V_{R\left[25^{\circ} \mathrm{C}\right]}$ is the value at $25^{\circ} \mathrm{C}$, and ΔT_{J} is the temperature range. This parameter is guaranteed by design and sample testing.

Note 11: Hysteresis is the change in $V_{R O}$ caused by a change in T_{J}, after the reference has been "dehysterized." To dehysterize the reference; that is minimize the hysteresis to the typical value, its junction temperature should be cycled in the following pattern, spiraling in toward $25^{\circ} \mathrm{C}: 25^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$.

Note 12: Low contact resistance is required for accurate measurement.
Note 13: A military RETS electrical test specification is available on request. The LM615AMJ/883 may also be procured as a Standard Military Drawing.

Typical Performance Characteristics (Reference)
$T_{J}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted.

Reference Voltage vs Current and Temperature

Reference Voltage vs Reference Current

FEEDBACK Current vs FEEDBACK-to-VVoltage

Reference Voltage vs Current
and Temperature

Reference AC
Stability Range

Reference Noise
Voltage vs Frequency

Accelerated Reference Voltage Drift vs Time

Reference Voltage vs Reference Current

FEEDBACK Current vs FEEDBACK-to-VVoltage

Reference Small-Signal Resistance vs Frequency

Typical Performance Characteristics (Reference) (Continued)

$T_{J}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted.

Typical Performance Characteristics (Comparators)

$T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$, unless otherwise noted

Typical Performance Characteristics (Comparators) (Continued)

Large-Signal Response Times-Inverting Input, Negative Transition

 Times-Non-Inverting Input, Negative Transition

Large-Signal Response
Times-Non-Inverting Input, Positive Transition

Small-Signal Response Times-Inverting Input, Positive Transition

Large-Signal Response
Times-Inverting Input,
Positive Transition

Large-Signal Response
Times-Non-Inverting Input, Negative Transition

Application Information

VOLTAGE REFERENCE

Reference Blasing

The voltage reference is of a shunt regulator topology that models as a simple zener diode. With current I_{r} flowing in the "forward" direction there is the familiar diode transfer function. I_{r} flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The cathode may swing from a diode drop below V - to the reference voltage or to the avalanche voltage of the parallel protection diode, nominally 7 V . A 6.3 V reference with $\mathrm{V}^{+}=$ 3 V is allowed.

TL/H/11057-9
FIGURE 1. Voltage Associated with Reference (Current Source I_{r} is External)
The reference equivalent circuit reveals how V_{r} is held at the constant 1.2 V by feedback, and how the FEEDBACK pin passes little current.
To generate the required reverse current, typically a resistor is connected from a supply voltage higher than the reference voltage. Varying that voltage, and so varying I_{r}, has small effect with the equivalent series resistance of less than an ohm at the higher currents. Alternatively, an active current source, such as the LM134 series, may generate I_{r}.

TL/H/11057-10
FIGURE 2. Reference Equivalent Circuit

TL/H/11057-11
FIGURE 3. 1.2V Reference

Capacitors in parallel with the reference are allowed. See the Reference AC Stability Range typical curve for capacitance values-from $20 \mu \mathrm{~A}$ to 3 mA any capacitor value is stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering.

Adjustable Reference

The FEEDBACK pin allows the reference output voltage, V_{ro}, to vary from 1.24 V to 6.3 V . The reference attempts to hold V_{r} at 1.24 V . If V_{r} is above 1.24 V , the reference will conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then $V_{r o}=V_{r}=1.24 \mathrm{~V}$. For higher voltages FEEDBACK is held at a constant voltage above Anode-say 3.76 V for $\mathrm{V}_{\mathrm{ro}}=5 \mathrm{~V}$. Connecting a resistor across the constant V_{r} generates a current $\mathrm{I}=\mathrm{R} 1 / \mathrm{V}_{\mathrm{r}}$ flowing from Cathode into FEEDBACK node. A Thevenin equivalent 3.76 V is generated from FEEDBACK to Anode with R2 $=3.76 / \mathrm{l}$. Keep I greater than one thousand times larger than FEEDBACK bias current for $<0.1 \%$ error- $1 \geq 32 \mu \mathrm{~A}$ for the military grade over the military temperature range $(1 \geq 5.5 \mu \mathrm{~A}$ for a 1% untrimmed error for an industrial temperature range part).

TL/H/11057-12
FIGURE 4. Thevenin Equivalent of Reference with 5V Output

TL/H/11057-13
$\mathrm{R} 1=\mathrm{V}_{\mathrm{r}} / \mathrm{I}=1.24 / 32 \mu=39 \mathrm{k}$
$R 2=R 1\left[\left(V_{r o} / V_{r}\right)-1\right]=39 k[(5 / 1.24)-1]=118 k$
FIGURE 5. Resistors R1 and R2 Program Reference Output Voltage to be 5 V

Application Information (Continued)

Understanding that V_{r} is fixed and that voltage sources, resistors, and capacitors may be tied to the FEEDBACK pin, a range of V_{r} temperature coefficients may be synthesized.

TL/H/11057-14
FIGURE 6. Output Voltage has Negative Temperature Coefficient (TC) if R2 has Negative TC

TL/H/11057-15
FIGURE 7. Output Voltage has Positive TC if R1 has Negative TC

TL/H/11057-16
FIGURE 8. Diode in Series with R1 Causes Voltage Across R1 and R2 to be Proportional to Absolute Temperature (PTAT)

Connecting a resistor across $\mathrm{V}_{\text {RO-to-FEEDBACK }}$ creates a 0 TC current source, but a range of TCs may be synthesized.

TL/H/11057-17
$1=V_{r} / R 1=1.24 / R 1$
FIGURE 9. Current Source is Programmed by R1

TL/H/11057-18
FIGURE 10. Proportional-to-Absolute-Temperature Current Source

TL/H/11057-19
FIGURE 11. Negative-TC Current Source

Reference Hysteresis

The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products vary-always check the data sheet for any given device. Do not assume that no specification means no hysteresis.

Application Information (Continued)

COMPARATORS

Any of the comparators or the reference may be biased in any way with no effect on the other sections of the LM615, except when a substrate diode conducts (see Electrical Characteristics Note 3). For example, one or both inputs of one comparator may be outside the input voltage range limits, the reference may be unpowered, and the other comparators will still operate correctly. Unused comparators should have inverting input and output tied to V^{-}, and non-inverting input tied to $\mathrm{V}+$.

Hysteresis

Any comparator may oscillate or produce a noisy output if the applied differential input voltage is near the comparator's offset voltage. This usually happens when the input signal is moving very slowly across the comparator's switching threshold. This problem can be prevented by the addition of hysteresis, or positive feedback, as shown in Figure 12.

TL/H/11057-20
FIGURE 12. RS and $\mathbf{R}_{\mathbf{F}}$ Add Hysteresis to Comparator The amount of hysteresis added in Figure 12 is

$$
\begin{aligned}
V_{H} & =V+x \frac{R_{S}}{\left(R_{F}+R_{S}\right)} \\
& \approx V+x \frac{R_{S}}{R_{F}} \quad \text { for } R_{F} \gg R_{S}
\end{aligned}
$$

A good rule of thumb is to add hysteresis of at least the maximum specified offset voltage. More than about 50 mV of hysteresis can substantially reduce the accuracy of the comparator, since the offset voltage is effectively being increased by the hysteresis when the comparator output is high.

It is often a good idea to decrease the amount of hysteresis until oscillations are observed, then use three times that minimum hysteresis in the final circuit. Note that the amount of hysteresis needed is greatly affected by layout. The amount of hysteresis should be rechecked each time the layout is changed, such as changing from a breadboard to a P.C. board.

Input Stage

The input stage uses lateral PNP input transistors which, unlike those of many op amps, have breakdown voltage $\mathrm{BV}_{\text {EBO }}$ equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages.
The guaranteed common-mode input voltage range for an LM615 is $\mathrm{V}^{-} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right)$, over temperature. This is the voltage range in which the comparisons must be made. If both inputs are within this range, the output will be at the correct state. If one input is within this range, and the other input is less than $\left(\mathrm{V}^{-}+32 \mathrm{~V}\right)$, even if this is greater than V^{+}, the output will be at the correct state. If, however, either or both inputs are driven below V^{-}, and either input current exceeds $10 \mu \mathrm{~A}$, the output state is not guaranteed to be correct. If both inputs are above ($\mathrm{V}^{+}-1.8 \mathrm{~V}$), the output state is also not guaranteed to be correct.

Output Stage

The comparators have open-collector output stages which require a pull-up resistor from each output pin to a positive supply voltage of the output to switch properly. When the internal output transistor is off, the output (HIGH) voltage will be pulled up to this external positive voltage.
To ensure that the LOW output voltage is under the TTL-low threshold, the output transistor's load current must be less than 0.8 mA (over temperature) when it turns on. This impacts the minimum value of the pull-up resistor.

Typical Applications

LM710 Voltage Comparator

General Description

The LM710 series are high-speed voltage comparators intended for use as an accurate, low-level digital level sensor or as a replacement for operational amplifiers in comparator applications where speed is of prime importance. The circuit has a differential input and a single-ended output, with saturated output levels compatible with practically all types of integrated logic.
The device is built on a single silicon chip which insures low offset and thermal drift. The use of a minimum number of stages along with minority-carrier lifetime control (gold doping) makes the circuit much faster than operational amplifiers in saturating comparator applications. In fact, the low
stray and wiring capacitances that can be realized with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.
The LM710 series are useful as pulse height discriminators, voltage comparators in high-speed A/D converters or go, no-go detectors in automatic test equipment. They also have applications in digital systems as an adjustable-threshold line receiver or an interface between logic types. In addition, the low cost of the units suggests them for applications replacing relatively simple discrete component circuitry.

Schematic and Connection Diagrams

TL/H/10410-9
Order Number LM710AMW/883* See NS Package Number W10A

TL/H/10410-2
Top View
Note: Pin 4 is connected to case.
Order Number LM710AMH/883*, LM710H, LM710H/883 or LM710CH See NS Package Number H08C

Dual-In-Line Package

TL/H/10410-3
Top View
Order Number
LM710AMJ/883* or LM710CN See NS Package Number N14A or J14A

Absolute Maximum Ratings	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Positive Supply Voltage	+14 V
Negative Supply Voltage	-7 V
Peak Output Current	10 mA
Output Short Circuit Duration	10 seconds
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage	$\pm 7 \mathrm{~V}$

Power Dissipation
TO-99 (Note 1)
700 mW
Plastic Dual-In-Line Package (Note 2)
Operating Temperature Range

LM710	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM710C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$	$260^{\circ} \mathrm{C}$

$5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

Parameter	Conditions	LM710			LM710C			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.6	2.0		1.6	5.0	mV
Input Offset Current	$\mathrm{V}_{\text {OUT }}=1.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.75	3.0		1.8	5.0	$\mu \mathrm{A}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		13	20		16	25	$\mu \mathrm{A}$
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1250	1700		1000	1500		
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200			200		Ω
Output Sink Current	$\begin{aligned} & V_{\text {OUT }}=0, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\text {IN }} \geq 5 \mathrm{mV} \\ & \Delta \mathrm{~V}_{\text {IN }} \geq 10 \mathrm{mV} \end{aligned}$	2.0	2.5		1.6	2.5		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Response Time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)		40			40		ns
Input Offset Voltage	$\mathrm{R}_{S} \leq 200 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$			3.0			6.5	mV
Average Temperature Coefficient of Input Offset Voltage	$\begin{aligned} & T_{M I N} \leq T_{A} \leq T_{M A X} \\ & R_{S} \leq 50 \Omega \\ & \hline \end{aligned}$		3.0	10	'	5.0	20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\begin{aligned} & T_{A}=T_{A M A X} \\ & T_{A}=T_{A M I N} \end{aligned}$		$\begin{gathered} 0.25 \\ 1.8 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 7.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 5.0 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 75 \\ & \hline \end{aligned}$		$\begin{array}{r} 15 \\ 24 \\ \hline \end{array}$	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	$n A /^{\circ} \mathrm{C}$ $n A /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$		27	45		25	40	$\mu \mathrm{A}$
Input Voltage Range	$\mathrm{V}-=-7 \mathrm{~V}$	± 5.0			± 5.0			V
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega$	80	100		70	98		dB
Differential Input Voltage Range		± 5.0			± 5.0			V
Voltage Gain		1000			800			V/V
Positive Output Level	$\begin{aligned} & -5 \mathrm{~mA} \leq \text { lout } \leq 0 \\ & V_{I N} \geq 5 \mathrm{mV} \\ & V_{I N} \geq 10 \mathrm{mV} \end{aligned}$	2.5	3.2	4.0	2.5	3.2	4.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Negative Output Level	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}} \geq 5 \mathrm{mV} \\ & \mathrm{~V}_{\mathbb{I N}} \geq 10 \mathrm{mV} \end{aligned}$	-1.0	-0.5	0	-1.0	-0.5	0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Sink Current	$\begin{aligned} & \mathrm{V}_{\mathbb{I}} \geq 5 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=0 \\ & T_{A}=125^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.3 \end{aligned}$					$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	$\begin{aligned} & V_{\mathbb{I N}} \geq 10 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=0 \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$				0.5			mA

Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	LM710			LM710C			Units
		Min	Typ	Max	Min	Typ	Max	
Positive Supply Current	$\begin{aligned} & V_{I N} \geq 5 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{IN}} \geq 10 \mathrm{mV} \end{aligned}$		5.2	9.0		5.2	9.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Negative Supply Current	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}} \geq 5 \mathrm{mV} \\ & \mathrm{~V}_{\mathbb{I N}} \geq 10 \mathrm{mV} \end{aligned}$		4.6	7.0		4.6	7.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Power Consumption	$\begin{aligned} & \text { lout }=0 \\ & \mathrm{~V}_{\mathrm{IN}} \geq 5 \mathrm{mV} \\ & \mathrm{~V}_{\mathbb{I N}} \geq 10 \mathrm{mV} \end{aligned}$		90	150			150	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

Note 1: Rating applies for ambient temperatures of $25^{\circ} \mathrm{C}$; derate linearly at $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $25^{\circ} \mathrm{C}$.
Note 2: Derate linearly at $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $25^{\circ} \mathrm{C}$.
Note 3: These specifications appy for $\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for LM 710 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for LM 710 C unless otherwise specified: The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.8 V at $-55^{\circ} \mathrm{C}, 1.4 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$, and 1 V at $125^{\circ} \mathrm{C}$ for LM 710 and 1.5 V at $0^{\circ} \mathrm{C}, 1.4 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$, and 1.2 V at $70^{\circ} \mathrm{C}$ for LM 710 C .
Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive (LM710) or a 10 mV overdrive (LM710C).

Typical Applications

Line Receive with Increased Output Sink Current

TL/H/10410-5

Level Detector with Lamp Driver

Voltage Gain

Supply Current

TL/H/10410-8

LM760
 High Speed Differential Comparator

General Description

The LM760 is a differential voltage comparator offering considerable speed improvement over the LM710 family and operates from symmetric supplies of $\pm 4.5 \mathrm{~V}$ to $\pm 6.5 \mathrm{~V}$. The LM760 can be used in high speed analog-to-digital conversion systems and as a zero crossing detector in disc file and tape amplifiers. The LM760 output features balanced rise and fall times for minimum skew and close matching between the complementary outputs. The outputs are TTL compatible with a minimum sink capability of two gate loads.

Features

- Guaranteed high speed- 25 ns response time
- Guaranteed delay matching on both outputs
- Complementary TTL compatible outputs
- High sensitivity
- Standard supply voltages

Applications

- High speed A-to-D
- Peak or zero detector

Connection Diagram

Ordering Information

Temperature Range Commercial $\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Package Type	NSC Package Drawing
LM760CN	8-lead Plastic DIP	N08E

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, Office/Distributors for availability and specifications.
Storage Temperature Range
Metal Can and Ceramic DIP Molded DIP
Operating Temperature Range Military (LM760) Commercial (LM760C)
Lead Temperature Metal Can and Ceramic DIP
(Soldering, 60 sec .)
Molded DIP (Soldering, 10 sec .)
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Positive Supply Voltage	+8.0 V
Negative Supply Voltage	-8.0 V
Peak Output Current	10 mA
Differential Input Voltage	$\pm 5.0 \mathrm{~V}$
Input Voltage	$\mathrm{V}+\geq \mathrm{V}_{1} \geq \mathrm{V}-$
ESD Susceptibility	TBD

LM760

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}= \pm 4.5 \mathrm{~V}$ to $\pm 6.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for typical figures, unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{10}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega$		1.0	6.0	mV
10	Input Offset Current			0.5	7.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {B }}$	Input Bias Current			8.0	60	$\mu \mathrm{A}$
R_{O}	Output Resistance (Either Output)	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}$		100		Ω
${ }_{\text {tPD }}$	Response Time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)		18	30	ns
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)			25	
		(Note 5)		16		
$\Delta t_{\text {PD }}$	Response Time Difference between Outputs (Note 1) (tpD^{2} of $+\mathrm{V}_{11}$) - ($\mathrm{t}_{\text {PD }}$ of $-\mathrm{V}_{12}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			5.0	ns
	(tPD $^{\text {of }}+\mathrm{V}_{12}$) - (tPD of $\left.-\mathrm{V}_{11}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			5.0	
	(tPD of $+\mathrm{V}_{11}$) - (tPD of $\left.+\mathrm{V}_{12}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			7.5	
	(tPD of $-\mathrm{V}_{11}$) - ($\mathrm{tPD}^{\text {of }}-\mathrm{V}_{12}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			7.5	
R_{1}	Input Resistance	$\mathrm{f}=1.0 \mathrm{MHz}$		12		$\mathrm{k} \Omega$
C_{1}	Input Capacitance	$\mathrm{f}=1.0 \mathrm{MHz}$		8.0		pF
$\Delta V_{10} / \Delta T$	Average Temperature Coefficient of Input Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		3.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta l_{10} / \Delta T$	Average Temperature Coefficient of Input Offset Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		2.0		$n A /{ }^{\circ} \mathrm{C}$
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$		7.0		
$\mathrm{V}_{\text {IR }}$	Input Voltage Range	$\mathrm{V}_{\mathrm{CC}}= \pm 6.5 \mathrm{~V}$	± 4.0	± 4.5		V
VIDR	Differential Input Voltage Range			± 5.0		V
V_{OH}	Output Voltage HIGH (Either Output)	$\begin{aligned} & 0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OH}} \leq 5.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{aligned}$	2.4	3.2		V
		$\mathrm{I}_{\mathrm{OH}}=80 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}= \pm 4.5 \mathrm{~V}$	2.4	3.0		
V_{OL}	Output Voltage LOW (Either Output)	$\mathrm{IOL}=3.2 \mathrm{~mA}$		0.25	0.4	V
$1+$	Positive Supply Current	$\mathrm{V}_{\mathrm{CC}}= \pm 6.5 \mathrm{~V}$		18	32	mA
$1-$	Negative Supply Current	$\mathrm{V}_{\mathrm{CC}}= \pm 6.5 \mathrm{~V}$		9.0	16	mA

LM760C Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}= \pm 4.5 \mathrm{~V}$ to $\pm 6.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for typical figures, unless otherwise specified						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{10}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega$		1.0	6.0	mV
10	Input Offset Current			0.5	7.5	$\mu \mathrm{A}$
I_{B}	Input Bias Current			8.0	60	$\mu \mathrm{A}$
R_{0}	Output Resistance (Either Output)	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}$		100		Ω
${ }_{\text {tPD }}$	Response Time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)		18	30	ns
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)			25	
		(Note 5)		16		
$\Delta t_{\text {PD }}$	Response Time Difference between Outputs (Note 1) (tPD of $+\mathrm{V}_{11}$) - (tpD of $-\mathrm{V}_{12}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			5.0	ns
	(tPD of $+\mathrm{V}_{12}$) - ($\mathrm{tPD}^{\text {of }}-\mathrm{V}_{11}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			5.0	
	(tPD of $+\mathrm{V}_{11}$) - (tPD of $\left.+\mathrm{V}_{12}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10	
	(PD of $-V_{11}$) - (tPD of $-V_{12}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10	
R_{1}	Input Resistance	$\mathrm{f}=1.0 \mathrm{MHz}$		12		$\mathrm{k} \Omega$
C_{1}	Input Capacitance	$\mathrm{f}=1.0 \mathrm{MHz}$		8.0		pF
$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	Average Temperature Coefficient of Input Offset Voltage	$\begin{aligned} & R_{S}=50 \Omega, \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$		3.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta l_{10} / \Delta T$	Average Temperature Coefficient of Input Offset Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		5.0		nA/ ${ }^{\circ} \mathrm{C}$
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$		10		
$\mathrm{V}_{\text {IR }}$	Input Voltage Range	$\mathrm{V}_{\mathrm{CC}}= \pm 6.5 \mathrm{~V}$	± 4.0	± 4.5		V
$\mathrm{V}_{\text {IDR }}$	Differential Input Voltage Range			± 5.0		V
V_{OH}	Output Voltage HIGH (Either Output)	$\begin{aligned} & 0 \mathrm{~mA} \leq \mathrm{IOH}_{\mathrm{OH}} \leq 5.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{aligned}$	2.4	3.2		V
		$\mathrm{I}_{\mathrm{OH}}=80 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}= \pm 4.5 \mathrm{~V}$	2.5	3.0		
V_{OL}	Output Voltage LOW (Either Output)	$\mathrm{IOL}=3.2 \mathrm{~mA}$		0.25	0.4	V
$1+$	Positive Supply Current	$\mathrm{V}_{\mathrm{CC}}= \pm 6.5 \mathrm{~V}$		18	34	mA
$1-$	Negative Supply Current	$\mathrm{V}_{\mathrm{CC}}= \pm 6.5 \mathrm{~V}$		9.0	16	mA
Note 1: $\mathrm{T}_{\mathrm{J} \text { Max }}=150^{\circ} \mathrm{C}$. Note 2: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Note 3: Response time measured from the 50% point of a 30 mV P-p 10 MHz sinusoidal input to the 50% point of the output. Note 4: Response time measured from the 50% point of a 2.0 V P-p 10 MHz sinusoidal input to the 50% point of the output. Note 5: Response time measured from the start of a 100 mV input step with 5.0 mV overdrive to the time when the output crosses the logic thresho						

Typical Performance Characteristics

Response Time for Various Input Overdrives

Voltage Transfer Characteristic

Response Time vs Input Voltage

Output Voltage Levels vs Temperature

Typical Performance Characteristics (Continued)

TL/H/10067-6

Equivalent Circuit

Typical Applications (Note 1)

TL/H/10067-7

Line Receiver with High Common Mode Range

Common mode range $= \pm 4 \times \frac{\mathrm{R}_{\mathrm{S}}}{50} \mathrm{~V}$
Differential Input Sensitivity $=5 \times \frac{\mathrm{R}_{\mathrm{S}}}{50} \mathrm{mV}$
P_{1} must be adjusted for optimum common mode rejection.
For $R_{S}=200 \Omega$:
Common mode range $= \pm 16 \mathrm{~V}$
Sensitivity $=\mathbf{2 0} \mathbf{~ m V}$

Total delay $=30 \mathrm{~ns}$
Input Frequency $=300 \mathrm{~Hz}$ to 3.0 MHz
Minimum input voltage $=20 \mathrm{mV}$ p-p

Note 1: Lead numbers shown are for Metal Package only.
Note 2: All resistor values in ohms.

Typical Applications (Note 1) (Continued)

High Speed 3-Bit A/D Converter

TL/H/10067-11
Typical conversion speed $=30 \mathrm{~ns}$

National Semiconductor

LM1801 Battery Operated Power Comparator

General Description

The LM1801 is an extremely low power comparator with a high current, open-collector output stage. The typical supply current is only $7 \mu \mathrm{~A}$, yet in its switched state the comparator can source or sink 0.5A. The LM1801 is designed to operate in a standby mode for 1 year, powered by a 9 V alkaline battery. Provision is made for operation from supplies of up to 14 V . An internal 14.5 V zener clamp may be used for supply regulation in line operated applications.
The low battery detector and stand-by current drain are externally programmed by resistors. A parallel output is provided to "OR" as many as 9 comparators, and a feedback pin allows adding hysteresis or latching functions. Two on-chip voltage sources can serve as bias points for the comparator inputs or as references for other circuit functions.

Features

- 8 V to 14 V operation
- Direct drive to horn
- Internal zener for supply regulation
- Parallel comparator capability
- Extremely low stand-by current drain
- 2 references on chip
- Low battery detector
- 0.5A output transistor
- Output clamp diodes on chip

Applications

- Intrusion alarms
- Water leak detectors
- Gas leak detectors
- Overvoltage crowbars
- Battery operated monitors

TL/H/9139-1
*Alarm sounds when probe conductors are bridged with water droplets. A suitable probe can be etched in copper clad board.
FIGURE 1. Water Leak Detector
Order Number LM1801N
See NS Package Number N14A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,	Power Dissipation (Note 1)	1176 mW	
please contact the National Semiconductor Sales	Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Office/Distributors for availability and specifications.	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Supply Voltage	14 V	Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Input Voltage	-0.3 V to 14 V	ESD rating to be determined.	
Input Differential Voltage	$\pm 14 \mathrm{~V}$		

Electrical Characteristics (Note 2)

Parameter	Conditions	Min	Typ	Max	Units
Comparator					
Input Offset Voltage			5	15	mV
Input Bias Current			2	10	nA
Input Offset Current			0.5	8	nA
Pin 6 Output Low	$\mathrm{ISINK}=100 \mu \mathrm{~A}$		1.5		V
Output Stage (Pin 8)					
Leakage Current			5	100	nA
Saturation Voltage	$\mathrm{I}_{8}=200 \mathrm{~mA}$		0.7	1.3	V
Saturation Voltage	$\mathrm{I}_{8}=500 \mathrm{~mA}$		1.9		V
Common Alarm Line (Pin 10)					
Drive Capabilities	$\mathrm{V} 4>\mathrm{V} 5$				
Output Voltage High			6.8		V
Output Current	$\mathrm{V} 10=0.0 \mathrm{~V}$		6.5		mA
Driver Requirements	$\mathrm{V} 5>\mathrm{V} 4$				
Input Voltage			3.6		V
Input Current	$\mathrm{V} 8=1.5 \mathrm{~V}, \mathrm{l}_{8}=200 \mathrm{~mA}$		0.4		mA
Regulator					
Pin 2 Reference Voltage			5.8		V
Temperature Coefficient			5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Pin 3 Reference Voltage			5.2		V
Temperature Coefficient			7		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Battery Check Oscillator					
Threshold Voltage (Pin 12)		5.5	6.0	6.5	V
Period	$\mathrm{V}^{+}=7.5 \mathrm{~V}, \mathrm{C} 1=10 \mu \mathrm{~F}$		40	50	s
Beep Pulse Width	$\mathrm{V}+=7.5 \mathrm{~V}, \mathrm{C} 1=10 \mu \mathrm{~F}$		60		ms
Supply Current (Note 3)			6	8	$\mu \mathrm{A}$
Zener Clamp Voltage, V9	$\mathrm{l}_{9}=1 \mathrm{~mA}$		14.5		V

Note 1: For operating at elevated temperatures, the device must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $85^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: $\mathrm{R}_{\mathrm{SET}}=10 \mathrm{M} \Omega, \mathrm{V}^{+}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 1).
Note 3: Output OFF.

Applications Hints

circuit operation

The LM1801 includes a bias string, comparator, steering logic, output transistor, supply clamp, low voltage detector, and reference. An internal schematic is shown in Figure 2.
The chip is biased by a group of current sources that are controlled externally by a fixed resistor, $\mathbf{R}_{\text {set }}$. In normal, or standby operation the supply current drain is nominally 6 times the set current at pin 1. The voltage at pin 1 is two forward diode potentials ($\mathrm{D} 1+\mathrm{D} 2=1.2 \mathrm{~V}$ typical) less than the positive supply voltage. Practical values of $\mathrm{R}_{\text {set }}$ range from $100 \mathrm{k} \Omega$ to $10 \mathrm{M} \Omega$. Higher currents are useful where speed is important, while lower currents promote long battery life.
The total standby current drain of the LM1801 will include, in addition to the above, the current drawn by the external circuits connected at pins 2,3 , and 12 . These are the resistive dividers used to set the low battery threshold and comparator threshold.
The voltage comparator consists of devices Q1 through Q10. The input features a common mode range from less than 300 mV to $\mathrm{V}^{+}-1.2 \mathrm{~V}$. If the non-inverting input is within this range, the output state remains valid for inverting inputs of 0 V to V^{+}. If the inverting input is within the common mode range, valid comparisons hold for non-inverting inputs of 300 mV to V^{+}. The comparator may not switch low if the positive input is grounded.
With a set resistance of $10 \mathrm{M} \Omega$, comparator input bias currents of 2 nA are typical. This allows the use of high-value resistors ($10 \mathrm{M} \Omega$) at the comparator inputs which help minimize total supply current. The comparator's output is available through a steering diode (D3) for latching or hysteresis functions.
The comparator output is also coupled internally to the steering logic (Q11-Q13). The comparator, low battery detector, and parallel output (pin 10) functions are OR'd in the logic circuit. In addition, the comparator output is steered to the parallel output. If the parallel outputs (pin 10) of two or more chips are wired together along with a common ground, the comparator on any one chip can cause all of the other output stages to switch, as well as its own output. Outputs are switched when the inverting comparator input is positive with respect to the non-inverting input. Low battery functions are coupled to the steering logic via Q12, and therefore do not affect the parallel output (Q13).
If the sense outputs (pin 11) of two or more chips are wired together, the comparator and low battery detector will cause all outputs to switch.
The output transistor is a 0.5A Darlington. Included in this structure are two clamp diodes. D4 clamps positive collector voltage excursions to the supply, and D5 clamps negative excursions to ground.

The output transistor is normally operated with the emitter grounded. Under these conditions the collector is guaranteed to saturate no higher than 1.3 V at 200 mA . 1.9 V saturation voltage is typical at 500 mA . The emitter may also be used as an output, and it can swing from ground potential up to 5 V on a 9 V supply. Emitter swing in the positive direction is limited in the parallel output mode.
A low battery detector with a 6 V threshold is also included on chip. This circuit consists of Q16, Q17, D11, and D12. When pin 12, the battery sense input, is higher than 6V, D12 clamps the emitter of Q16 to 6.6V, and the output from the current source flows through the zener to ground. If pin 14 drops below 6V, Q16 is biased ON, and current is drawn away from the zener and into Q16. The SCR formed by Q16 and Q17 is triggered when Q16 is biased ON. The capacitor at pin 14 is discharged, part of its charge flows to the steering logic to pulse the output transistor, and the remainder holds the SCR in its ON state.
When the timing capacitor has discharged, conduction in Q16 and Q17 is commutated. Note that the output from the current source is less than the sustaining current required by the SCR. The current source slowly charges the capacitor until the voltage across it rises 0.6 V above pin 12 , where the cycle repeats itself. If pin 12 rises above 6V, the zener clamps the voltage at pin 14 and the low battery detector remains OFF.
Pin 12 is biased from an external resistive divider. The divider should be designed to detect at no lower than $\mathrm{V}+=7 \mathrm{~V}$. The detector will continue to work at lower voltages providing pin 12 is at least 1 V below the supply. For a 9 V alkaline battery a threshold of 8.2 V is common. A resistive divider of 2.7 $\mathrm{M} \Omega$ and $7.5 \mathrm{M} \Omega$ provides the appropriate threshold.

In many applications the on-chip references can provide bias points. The references are driven from D13, and buffered by Q18 and Q19. If only one bias point is needed the first reference (pin 2) should be used, and the unused output (pin 3) may be left open. The tiny leakage currents in Q18 can cause Q19 (pin 3) to drift upward if a $10 \mathrm{M} \Omega$ load resistor is not included at pin 2. The combined output current from pins 2 and 3 should not exceed 1 mA . If neither reference output is used, pins 2 and 3 should be left open. The last section of the LM1801 is the supply zener. It is built from a series combination of two diodes and two zeners. The breakdown voltage at 1 mA is 14.5 V , and the series resistance is about 200л. In line operated applications the zener may be used for supply regulation or transient protection. The zener is designed to carry up to 10 mA .

Applications Hints (Continued)

DESIGN HINTS

If the comparator inputs are subjected to electrostatic discharges (ESD), a series resistance is recommended to provide protection. Given the low input bias currents, $100 \mathrm{k} \Omega$ resistors can be added without affecting circuit performance, yet they greatly enhance static protection. The LM1801 is not designed to withstand reverse battery.
With a 10 M $\mathbf{R}_{\text {set }}$, the LM1801 responds to an input in approximately $2.5 \mu \mathrm{~s}$, and turns OFF in $200 \mu \mathrm{~s}$. Higher set currents decrease the response time. With $R_{\text {set }}=1 \mathrm{M} \Omega$, the output switches low in $0.5 \mu \mathrm{~s}$, and high in $50 \mu \mathrm{~s}$, and with $\mathbf{R}_{\text {set }}=100 \mathrm{k} \Omega$, the response times are reduced to $0.2 \mu \mathrm{~s}$ and $12 \mu \mathrm{~s}$.
When the circuit is in the standby state (V5 > V4), the current consumption in a typical application such as Figure 1 is less than approximately $7 \mu \mathrm{~A}$. However, when the comparator switches LOW (V4 > V5), the supply current increases to 3 mA owing to the Darlington base current. Therefore, to realize maximum battery life, any application should be devised so that $\mathrm{V} 5>\mathrm{V} 4$ in the standby or resting state.

The output stage can drive lamps, LEDs, buzzers, beepers, relays, motors, and solenoids. However, the low battery detector is not compatible with every load. Since the low battery detector generates only a short pulse (60 ms typical), it is intended for use with buzzers and beepers. Depending on the response time and resonant frequency, some buzzers may only, produce a single click. Self-oscillating beepers usually start instantly and produce a recognizable "tweet" when a low battery condition is detected. Incandescent lamps, large relays and solenoids will do absolutely nothing when pulsed by the low battery detector.
Self-oscillating beepers are readily available, such as the Sonalert SNP428 and the Panasonic EAL-069A. These units are guaranteed to self-start when power is applied.
To defeat the low battery detector, short pins 12 and 14 together, and do not connect them to anything else.
Circuit board assembly procedures should include a thorough cleaning to remove flux and other residues. The input pins are often biased by very high impedance sources and even a $10 \mathrm{M} \Omega$ leakage path can upset circuit operation.

$R_{1}+R_{2}=10 \mathrm{M} \Omega$
$\mathrm{V}_{\text {TRIP }}=\left(\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}}\right) 5.8 \mathrm{~V}$
Minimum trip voltage $=5.8 \mathrm{~V}$
*Use series resistor for supplies $>14 \mathrm{~V}$. Select for $I_{\text {ZENER }}=5 \mathrm{~mA}$.
**Reverse connections and add $1 \mathrm{M} \Omega$ resistor for overvoltage indication.
†Optional filter capacitor, 1 nF to 100 nF .
$\dagger \dagger$ Push to reset. Eliminate pin 6 connection for non-latching operation.
FIGURE 3. Under (Over) Voltage Indicator

Applications Hints (Continued)

TL/H/9139-4
$R_{1}+R_{2}=10 M \Omega$
$V_{\text {TRIP }}=\left(\frac{R_{1}+R_{2}}{R_{2}}\right) 5.8 \mathrm{~V}$
*Use series resistor for supplies $>14 \mathrm{~V}$.
†Optional filter capacitor, 1 nF to 100 nF .
FIGURE 4. Overvoltage Crowbar

Applications Hints (Continued)

TL/H/9139-5
To set trip point, trim $\mathrm{V}_{\text {REF }}$ to 4.5 V . Trim RSENSOR at room temperature $\left(23^{\circ} \mathrm{C}\right)$ for:
$V_{\text {SENSOR }}=4.5\left(\frac{273+23}{T_{X}+273}\right)$
where T_{X} is the desired trip point temperature in ${ }^{\circ} \mathrm{C}$. As shown, the alarm is activated for over temperature conditions. Reverse the comparator connections for under temperature alarm. The $20 \mathrm{k} \Omega$ potentiometer allows an adjustment range of $-55^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$. Add a 10 k fixed resistance in series with the potentiometer for $\mathrm{a}+50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ adjustment range. R $\mathrm{R}_{\text {SENSOR }}$ can be replaced by a fixed resistor once the desired value is found. $\mathrm{V}_{\text {REF }}$ is used as a final adjustment.

FIGURE 5. Over (Under) Temperature Alarm

Applications Hints (Continued)

FIGURE 6. Simple Alarm Circuit

FIGURE 7. Full-Featured Intrusion Alarm

LM6511

180 ns 3V Comparator

General Description

The LM6511 voltage comparator is ideal for analog-digital interface circuitry when only a +3 V or +3.3 V supply is available. The open-collector output permits signal compatibility with a wide variety of digital families: +5 V CMOS, +3 V CMOS, TTL and so on. Supply voltage may range from 2.7 V to 36 V between supply voltage leads. The LM6511 operates with little power consumption (Pdiss $<$ 9.45 mW at $\mathrm{V}^{+}=+2.7 \mathrm{~V}$ and $\mathrm{V}^{-}=0 \mathrm{~V}$).

This voltage comparator offers many features that are available in traditional sub-microsecond comparators: output sync strobe, inputs and output may be isolated from system ground, and wire-ORing. Also, the LM6511 uses the indus-try-standard, single comparator pinout configuration.

Features (Typical unless otherwise noted)

- Operates at $+2.7 \mathrm{~V},+3 \mathrm{~V},+3.3 \mathrm{~V},+5 \mathrm{~V}$

■ Low Power consumption <9.45 mW @ $\mathrm{V}+=2.7 \mathrm{~V}$ (max)

- Fast Response Time of 180 ns

Applications

- Portable Equipment
- Cellular Phones
- Digital Level Shifting

Connection Diagram

TL/H/11888-1

Ordering Information

Package	Industrial Temperature Range $-\mathbf{4 0 ^ { \circ }} \mathrm{C}$ to $+\mathbf{8 5} 5^{\circ} \mathrm{C}$	NSC Package Drawing
8-Pin Molded DIP	LM6511IN	N08E
8-Pin Small Outline	LM6511IM	M08A

AC Electrical Characteristics Unlesss otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5 ^ { \circ }}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}-2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, 50 \Omega \leq \mathrm{R}_{\mathrm{L}} \leq 50 \mathrm{k} \Omega$, and $\mathrm{L}=1.0 \mathrm{~mA}$ unless otherwise specified.

Symbol	Parameter	Conditions	Typical	LM6511I	Units (Limits)
T_{R}	Response Time	(Note 4)			Limit

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: The positive input voltage limit is 30 V above the negative supply voltage. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply voltage, whichever is less.
Note 3: The offset voltage and offset current limits are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Therefore, these parameters define an error band and take into account the worst-case effects of voltage gain and input impedance.
Note 4: This specification is for a 100 mV input step with a 25 mV overdrive.
Note 5: This specification gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; it should be current driven at 3 mA to 5 mA .

Schematic Diagram

LM6511 Typical Performance Characteristics $\mathrm{v}_{\mathrm{s}}=3 \mathrm{~V}$ unless otherwise noted

Supply Current vs
Temperature

TL/H/11888-2

Typical Application

Universal Logic Level Shifter

TL/H/11888-4
Notes: Because of the very wide operating and output voltage range, the LM6511 may be used to shift logic levels from $3 V$ to TTL or CMOS to the other way around.
By biasing the input to $1 / 2$ of the input logic supply $\left(\mathrm{V}_{\mathrm{A}}\right)$, this assures that this input remains within the input voltage range. The pull-up resistor should go to the output logic supply (V_{B}).

National Semiconductor

LMC6762 Dual/LMC6764 Quad MicroPower, Rail-To-Rail Input and Output CMOS Comparator

General Description

The LMC6762/4 is an ultra low power dual/quad comparator with a maximum supply current of $10 \mu \mathrm{~A} /$ comparator. It is designed to operate over a wide range of supply voltages, from 2.7 V to 15 V . The LMC6762/4 has guaranteed specs at 2.7 V to meet the demands of 3 V digital systems.

The LMC6762/4 has an input common-mode voltage range which exceeds both supplies. This is a significant advantage in low-voltage applications. The LMC6762/4 also features a push-pull output that allows direct connections to logic devices without a pull-up resistor.
A quiescent power consumption of $50 \mu \mathrm{~W} / a m p l i f i e r$ (@ $\mathrm{V}^{+}=5 \mathrm{~V}$) makes the LMC6762/4 ideal for applications in portable phones and hand-held electronics. The ultra-low supply current is also independent of power supply voltage. Guaranteed operation at 2.7 V and a rail-to-rail performance makes this device ideal for battery-powered applications.
Refer to the LMC6772/4 datasheet for an open-drain version of this device.

Features (Typical unless otherwise noted)

- Low power consumption
(Guaranteed)
$\mathrm{I}_{\mathrm{s}}=10 \mu \mathrm{~A} / \mathrm{comp}$

■ Wide range of supply voltages $\quad 2.7 \mathrm{~V}$ to 15 V
■ Rail-to-rail input common mode voltage range

- Rail-to-rail output swing
(Within 100 mV of the supplies, @ $\mathrm{V}^{+}=2.7 \mathrm{~V}$, and $\mathrm{I}_{\text {LOAD }}=2.5 \mathrm{~mA}$)
- Short circuit protection 40 mA
- Propagation delay
(@ $\mathrm{V}^{+}=5 \mathrm{~V}, 100 \mathrm{mV}$ overdrive) $\quad 4 \mu \mathrm{~s}$

Applications

- Laptop computers
- Mobile phones
- Metering systems
- Hand-held electronics
- RC timers
- Alarm and monitoring circuits
- Window comparators, multivibrators

Connection Diagrams

Ordering Information

Package	Temperature Range $-40^{\circ} \mathbf{C}$ to $+\mathbf{8 5}^{\circ} \mathbf{C}$	NSC Drawing	Transport Media
8-Pin Molded DIP	LMC6762AIN, LMC6762BIN	N08E	Rails
8-Pin Small Outline	LMC6762AIM, LMC6762BIM LMC6762AIMX, LMC6762BIMX	M08A M08A	Rails Tape and Reel
14-Pin Molded DIP	LMC6764AIN, LMC6764BIN	N08E	Rails
14-Pin Small Outline	LMC6764AIM, LMC6764BIM LMC6762AIMX, LMC6762BIMX	M14A M14A	Rails Tape and Reel

LMC6772 Dual, LMC6774 Quad, Micro-Power Rail-To-Rail Input and Open Drain Output CMOS Comparator

General Description

The LMC6772/4 is an ultra low power dual/quad comparator with a maximum $10 \mu \mathrm{~A} /$ comparator power supply current. It is designed to operate over a wide range of supply voltages, from 2.7V to 15V. The LMC6772/4 has guaranteed specs at 2.7 V to meet the demands of 3 V digital systems.
The LMC6772/4 has an input common-mode voltage range which exceeds both rails. This is a significant advantage in low-voltage applications. The LMC6772/4 also features an open-drain output. This architecture is ideal for mixed supply voltage systems as an external resistor can be used to pull the output up to +15 V , regardless of the supply voltage.
A quiescent power consumption of $50 \mu \mathrm{~W} /$ Amplifier ($@ \mathrm{~V}_{\mathrm{S}}$ $=5 \mathrm{~V}$) makes the LMC6772/4 ideal for applications in portable phones and hand-held electronics. The ultra-low supply current is also independent of the power supply voltage. Guaranteed operation at 2.7 V and rail-to-rail performance make the device ideal for battery-powered applications.

Features (Typical unless otherwise noted)

- Low power consumption Is $=10 \mu \mathrm{~A} / \mathrm{comp}$

■ Wide range of supply voltages $\quad 2.7 \mathrm{~V}$ to 15 V

- Rail-to-Rail Input Common Mode Voltage Range
- Open-drain output stage
- Short circuit protection 40 mA
- Propagation delay ($@ \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, 100 \mathrm{mV}$ overdrive) $5 \mu \mathrm{~s}$
- Refer to the LMC6762/4 datasheet for a device with similar specs and a push-pull output stage

Applications

- Laptop computers
- Mobile Phones
- Metering systems
- Hand-held electronics
- RC timers, Window Comparators, Multivibrators
- Alarm and monitoring circuits

Connection Diagrams

TL/H/12347-1
Top View

TL/H/12347-2
Top View

Package	Temperature Range Industrial, $-40^{\circ} \mathbf{C}$ to $+85^{\circ} \mathbf{C}$	NSC Drawing	Transport Media
8-Pin Molded DIP	LMC6772AIN, LMC6772BIN	N08E	Rails
8-Pin Small Outline	LMC6772AIM, LMC6772BIM	M08A	Rails
	LMC6772AIMX, LMC6772BIMX		Tape and Reel
14-Pin Molded DIP	LMC6774AIN, LMC6774BIN	N14A	Rails
14-Pin Small Outline	LMC6774AIM, LMC6774BIM		Rails
	LMC6774AIMX, LMC6774BIMX		Tape and Reel

LMC7211
 Tiny CMOS Comparator with Rail-to-Rail Input

General Description

The LMC7211 is a micropower CMOS comparator available in the space saving SOT23-5 package. This makes the comparator ideal for space and weight critical designs. The LMC7211 is available in SO-8 surface mount packages and in conventional 8-pin DIP packages. The LMC7211 is supplied in two offset voltage grades, 5 mV and 15 mV .
The main benefits of the Tiny package are most apparent in small portable electronic devices, such as mobile phones, pagers, notebook computers, personal digital assistants, and PCMCIA cards. The rail-to-rail input voltage makes the LMC7211 a good choice for sensor interfacing, such as light detector circuits, optical and magnetic sensors, and alarm and status circuits.
The Tiny Comparator's outside dimensions (length x width x height) of $3.05 \mathrm{~mm} \times 3.00 \mathrm{~mm} \times 1.43 \mathrm{~mm}$ allow it to fit into tight spaces on PC boards.

Features

- Tiny SOT 23-5 package saves space
- Package is less than 1.43 mm thick
- Guaranteed specs at $2.7 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}$ supplies

■ Typical supply current $7 \mu \mathrm{~A}$ at 5 V

- Response time of $8 \mu \mathrm{~s}$ at 5 V
- LMC7211-push-pull output
- Input common-mode range beyond V - and $\mathrm{V}+$
- Low input current

Applications

- Battery Powered Products
- Notebooks and PDAs
- PCMCIA cards
- Mobile Communications
- Alarm and Security circuits
- Direct Sensor Interface
- Replaces amplifiers used as comparators with better performance and lower current

Connection Diagrams

Package	Ordering Information	NSC Drawing Number	Package Marking	Transport Media
8-Pin DIP	LMC7211AIN	N08E	LMC7211AIN	rails
8-Pin DIP	LMC7211BIN	N08E	LMC7211BIN	rails
8-Pin SO-8	LMC7211AIM	M08A	LM7211AIM	rails
8-Pin SO-8	LMC7211BIM	M08A	LM7211BIM	rails
8-Pin SO-8	LMC7211AIMX	M08A	LM7211AIM	2.5k units tape and reel
8-Pin SO-8	LMC7211BIMX	M08A	LM7211BIM	2.5k units tape and reel
5-Pin SOT 23-5	LMC7211AIM5	MA05A	C00A	250 units tape and reel
5-Pin SOT 23-5	LMC7211BIM5	MA05A	C00B	250 units tape and reel
5-Pin SOT 23-5	LMC7211AIM5X	MA05A	C00A	3k units tape and reel
5-Pin SOT 23-5	LMC7211BIM5X	MA05A	C00B	3k units tape and reel

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
ESD Tolerance (Note 2)
2 kV
Differential Input Voltage $\quad\left(\mathrm{V}_{\mathrm{CC}}\right)+0.3 \mathrm{~V}$ to $\left(-\mathrm{V}_{\mathrm{CC}}\right)-0.3 \mathrm{~V}$
Voltage at Input/Output Pin $\left(\mathrm{V}_{\mathrm{cc}}\right)+0.3 \mathrm{~V}$ to $\left(-\mathrm{V}_{\mathrm{cc}}\right)-0.3 \mathrm{~V}$
Supply Voltage ($\mathbf{V}^{+}-\mathrm{V}^{-}$)
16V
Current at Input Pin
$\pm 5 \mathrm{~mA}$
Current at Output Pin (Note 3) $\pm 20 \mathrm{~mA}$
Current at Power Supply Pin Lead Temperature (soldering, 10 sec) 40 mA $260^{\circ} \mathrm{C}$ Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Junction Temperature (Note 4) $\cdots 150^{\circ} \mathrm{C}$

Operating Ratings (Note 1)
Supply Voltage $\quad 2.7 \leq \mathrm{VCC}_{\mathrm{CC}} \leq 15 \mathrm{~V}$
Junction Temperature Range
LMC7211AI, LMC7211BI $\quad-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA})

N Package, 8 -pin Molded DIP	$115^{\circ} \mathrm{C} / \mathrm{W}$
SO-8 Package, 8 -Pin Surface Mount	$165^{\circ} \mathrm{C} / \mathrm{W}$
M05A Package, 5 -Pin Surface Mount	$325^{\circ} \mathrm{C} / \mathrm{W}$

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+12$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC7211AI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$		Units
Vos	Input Offset Voltage	- ..	3	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\max _{\max }$
TCV ${ }_{\text {OS }}$	Input Offset Voltage Temperature Drift		1.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Voltage Average Drift		3.3	\%		$\mu \mathrm{V} /$ Month
I_{B}	Input Current		0.04			pA
los	Input Offset Current		0.02			pA
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.7 \mathrm{~V}$	75			dB
PSRR	Power Supply Rejection Ratio	$2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}$	80	,		dB
A_{V}	Voltage Gain		100			dB
CMVR	Input Common-Mode Voltage Range	CMRR > 55 dB	3.0	$\begin{aligned} & 2.9 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.7 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
		CMRR > 55 dB	-0.3	$\begin{gathered} -0.2 \\ \mathbf{0 . 0} \end{gathered}$	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} V \\ \max \end{gathered}$
V_{OH}	Output Voltage High	$\mathrm{l}_{\text {load }}=2.5 \mathrm{~mA}$	2.5	$\begin{aligned} & 2.4 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.3 \end{aligned}$	$\begin{gathered} V \\ \max \end{gathered}$
V_{OL}	Output Voltage Low	$\mathrm{l}_{\text {load }}=2.5 \mathrm{~mA}$	0.2	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{gathered} V \\ \max \end{gathered}$
Is	Supply Current	$\mathrm{V}_{\text {OUT }}=$ low	7	$\begin{array}{r} 12 \\ \quad 14 \end{array}$	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\mu \mathrm{A}$ max

5.0V and 15.0V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}$ and $15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condlitions	Typ (Note 5)	$\begin{aligned} & \text { LMC7211AI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LMC7211BI } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
Vos	Input Offset Voltage		3	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	mV max
TCV ${ }_{\text {OS }}$	Input Offset Voltage Temperature Drift	$\mathrm{V}+=5 \mathrm{~V}$	1.0			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		$\mathrm{V}+=15 \mathrm{~V}$	4.0			
	Input Offset Voltage Average Drift	$\mathrm{V}+=5 \mathrm{~V}$	3.3			$\mu \mathrm{V} / \mathrm{Month}$
		$\mathrm{V}+=15 \mathrm{~V}$	4.0			
I_{B}	Input Current		0.04			pA
los	Input Offset Current		0.02			pA
CMRR	Common Mode Rejection Ration	$\mathrm{V}+=5.0 \mathrm{~V}$	75			dB
		$\mathrm{V}+=15.0 \mathrm{~V}$	82			dB
PSRR	Power Supply Rejection Ratio	$5 \mathrm{~V} \leq \mathrm{V}+\leq 10 \mathrm{~V}$	80			dB
A_{V}	Voltage Gain		100			dB
CMVR	Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}+=5.0 \mathrm{~V} \\ & \mathrm{CMRR}>55 \mathrm{~dB} \end{aligned}$	5.3	$\begin{aligned} & 5.2 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
		$\begin{aligned} & \mathrm{V}+=5.0 \mathrm{~V} \\ & \mathrm{CMRR}>55 \mathrm{~dB} \end{aligned}$	-0.3	$\begin{gathered} -0.2 \\ 0.0 \\ \hline \end{gathered}$	$\begin{gathered} -0.2 \\ \mathbf{0 . 0} \\ \hline \end{gathered}$	$\begin{gathered} V \\ \max \\ \hline \end{gathered}$
		$\begin{aligned} & \mathrm{V}+=15.0 \mathrm{~V} \\ & \mathrm{CMRR}>55 \mathrm{~dB} \end{aligned}$	15.3	$\begin{gathered} 15.2 \\ 15.0 \end{gathered}$	$\begin{aligned} & 15.2 \\ & 15.0 \end{aligned}$	$\begin{gathered} V \\ \max \end{gathered}$
		$\begin{aligned} & \mathrm{V}+=15.0 \mathrm{~V} \\ & \mathrm{CMRR}>55 \mathrm{~dB} \end{aligned}$	-0.3	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} -0.2 \\ 0.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
V_{OH}	Output Voltage High	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{I}_{\text {load }}=5 \mathrm{~mA} \end{aligned}$	4.8	$\begin{gathered} 4.6 \\ 4.45 \\ \hline \end{gathered}$	$\begin{gathered} 4.6 \\ 4.45 \\ \hline \end{gathered}$	mV max
		$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{load}}=5 \mathrm{~mA} \end{aligned}$	14.8	$\begin{gathered} 14.6 \\ 14.45 \\ \hline \end{gathered}$	$\begin{gathered} 14.6 \\ 14.45 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \max \end{gathered}$
V_{OL}	Output Voltage Low	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{l}_{\text {load }}=5 \mathrm{~mA} \end{aligned}$	0.2	$\begin{array}{r} 0.40 \\ \mathbf{0 . 5 5} \\ \hline \end{array}$	$\begin{aligned} & 0.40 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
		$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{load}}=5 \mathrm{~mA} \end{aligned}$	0.2	$\begin{array}{r} 0.40 \\ \mathbf{0 . 5 5} \\ \hline \end{array}$	$\begin{array}{r} 0.40 \\ \mathbf{0 . 5 5} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~min} \\ & \hline \end{aligned}$
Is	Supply Current	$\mathrm{V}_{\text {OUT }}=$ low	7	$\begin{aligned} & 14 \\ & 18 \end{aligned}$	$\begin{array}{r} 14 \\ 18 \end{array}$	$\mu \mathrm{A}$ max
Isc	Short Circuit Current	Sourcing	30			mA min
		Sinking	45			mA min

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}+/ 2$. Boldface limits apply at the temperature extreme.

Symbol	Parameter	Conditions		$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { LMC7211AI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \text { LMC7211BI } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Units
$t_{\text {rise }}$	Rise Time	$\begin{aligned} & f=10 \mathrm{kHz}, \mathrm{Cl}=50 \mathrm{pF}, \\ & \text { Overdrive }=10 \mathrm{mV} \end{aligned}$		0.3			$\mu \mathrm{s}$
$t_{\text {fall }}$	Fall Time	$\begin{aligned} & f=10 \mathrm{kHz}, \mathrm{Cl}=50 \mathrm{pF}, \\ & \text { Overdrive }=10 \mathrm{mV} \end{aligned}$		0.3			$\mu \mathrm{s}$
tPHL	Propagation Delay (High to Low)	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{Cl}=50 \mathrm{pF} \end{aligned}$	10 mV	10			$\mu \mathrm{s}$
			100 mV	4			
		$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{Cl}=50 \mathrm{pF} \end{aligned}$	10 mV	10			$\mu \mathrm{S}$
			100 mV	4			
tply	Propagation Delay (Low to High)	$\begin{aligned} & f=10 \mathrm{kHz}, \\ & \mathrm{Cl}=50 \mathrm{p} \end{aligned}$	10 mV	6			$\mu \mathrm{S}$
			100 mV	4			
		$\begin{aligned} & V+=2.7 \mathrm{~V}, \\ & f=10 \mathrm{kHz}, \\ & \mathrm{Cl}=50 \mathrm{pF} \end{aligned}$	10 mV	7			μs
			100 mV	4			

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.

Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \boldsymbol{\theta}_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.

Typical Performance Characteristics single Supply $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless specified

Typical Performance Characteristics single Supply, $T_{A}=25^{\circ} \mathrm{C}$ unless specified (Continued)).wh:

Input Overdrive Referenced to $V_{O S}$

Response Time for Various Input Overdrives ${ }^{-t_{P H L}}$

Input Overdrive Referenced to $V_{0 S}$
Input Blas Current vs Common Mode Voltage

Mode Voltage (V)

Response Time for Various Input Overdrives - $\mathbf{t P H L}^{\text {P }}$

Input Overdrive Referenced to $V_{O S}$

Common Mode Voltage (V)

Input Bias Current vs Temperature

Application Information

1.0 Benefits of the LMC7211 Tiny Comparator

Size. The small footprint of the SOT 23-5 packaged Tiny Comparator, (0.120×0.118 inches, $3.05 \times 3.00 \mathrm{~mm}$) saves space on printed circuit boards, and enable the design of smaller electronic products. Because they are easier to carry, many customers prefer smaller and lighter products.
Height. The height (0.056 inches, 1.43 mm) of the Tiny Comparator makes it possible to use it in PCMCIA type III cards.
Simplified Board Layout. The Tiny Comparator can simplify board layout in several ways. First, by placing a comparator where comparators are needed, instead of routing signals to a dual or quad device, long pc traces may be avoided.
By using multiple Tiny Comparators instead of duals or quads, complex signal routing and possibly crosstalk can be reduced.
DIPs available for prototyping. LMC7211 comparators packaged in conventional 8 -pin dip packages can be used for prototyping and evaluation without the need to use surface mounting in early project stages.
Low Supply Current. The typical $7 \mu \mathrm{~A}$ supply current of the LMC7211 extends battery life in portable applications, and may allow the reduction of the size of batteries in some applications.
Wide Voltage Range. The LMC7211 is characterized at 15V, 5V and 2.7V. Performance data is provided at these popular voltages. This wide voltage range makes the LMC7211 a good choice for devices where the voltage may vary over the life of the batteries.
Digital Outputs Representing Signal Level. Comparators provide a high or low digital output depending on the voltage levels of the (+) and (-) inputs. This makes comparators useful for interfacing analog signals to microprocessors and other digital circuits. The LMC7211 can be thought of as a one-bit a/d converter.
Push-Pull Output. The push-pull output of the LMC7211 is capable of both sourcing and sinking milliamp level currents even at a 2.7 volt supply. This can allow the LMC7211 to drive multiple logic gates.
Driving LEDs (Light Emitting Diodes). With a 5 volt power supply, the LMC7211's output sinking current can drive small, high efficiency LEDs for indicator and test point circuits. The small size of the Tiny package makes it easy to find space to add this feature to even compact designs.
Input range to Beyond Rail to Rail. The input common mode range of the LMC7211 is slightly larger than the actual power supply range. This wide input range means that the comparator can be used to sense signals close to the power supply rails. This wide input range can make design easier by eliminating voltage dividers, amplifiers, and other front end circuits previously used to match signals to the limited input range of earlier comparators. This is useful to power supply monitoring circuits which need to sense their own power supply, and compare it to a reference voltage which
is close to the power supply voltage. The wide input range can also be useful for sensing the voltage drop across a current sense resistor for battery chargers.
Zero Crossing Detector. Since the LMC7211's common mode input range extends below ground even when powered by a single positive supply, it can be used with large input resistors as a zero crossing detector.
Low Input Currents and High Input Impedance. These characteristics allow the LMC7211 to be used to sense high impedance signals from sensors. They also make it possible to use the LMC7211 in timing circuits built with large value resistors. This can reduce the power dissipation of timing circuits. For very long timing circuits, using high value resistors can reduce the size and cost of large value capacitors for the same R-C time constant.
Direct Sensor Interfacing. The wide input voltage range and high impedance of the LMC7211 may make it possible to directly interface to a sensor without the use of amplifiers or bias circuits. In circuits with sensors which can produce outputs in the tens to hundreds of millivolts, the LMC7211 can compare the sensor signal with an appropriately small reference voltage. This may be done close to ground or the positive supply rail. Direct sensor interfacing may eliminate the need for an amplifier for the sensor signal. Eliminating the amplifier can save cost, space, and design time.

2.0 Low Voltage Operation

Comparators are the common devices by which analog signals interface with digital circuits. The LMC7211 has been designed to operate at supply voltages of 2.7 V without sacrificing performance to meet the demands of 3 V digital systems.
At supply voltages of 2.7 V , the common-mode voltage range extends 200 mV (guaranteed) below the negative supply. This feature, in addition to the comparator being able to sense signals near the positive rail, is extremely useful in low voltage applications.

TL/H/12337-5
FIGURE 1. Even at Low-Supply Voltage of 2.7V, an Input Signal which Exceeds the Supply Voltages Produces No Phase Inversion at the Output

At $\mathrm{V}^{+}=2.7 \mathrm{~V}$ propagation delays are $\mathrm{t}_{\mathrm{PLH}}=4 \mu \mathrm{~s}$ and $\mathrm{t}_{\mathrm{PHL}}=4 \mu \mathrm{~s}$ with overdrives of 100 mV .
Please refer to the performance curves for more extensive characterization.

Application Information (Continued)

3.0 Shoot-Through Current

The shoot-through current is defined as the current surge, above the quiescent supply current, between the positive and negative supplies of a device. The current surge occurs when the output of the device switches states. The shootthrough current results in glitches in the supply voltages. Usually, glitches in the supply lines are prevented by bypass capacitors. When the glitches are minimal, the value of the bypass capacitors can be reduced.

TL/H/12337-6
FIGURE 2. Circuit for Measurement of the Shoot-Through Current

TL/H/12337-7
FIGURE 3. Measurement of the Shoot-Through Current
From Figure 3, the shoot-through current for the LMC7211 can be calculated to be 0.2 mA (typical), and the duration is $1 \mu \mathrm{~s}$. The values needed for the bypass capacitors can be calculated as follows:

TL/H/12337-8
Area of $\Delta=1 / 2(1 \mu s \times 200 \mu \mathrm{~A})$

$$
=100 \mathrm{pC}
$$

The capacitor needs to supply 100 picocolumb. To avoid large shifts in the comparator threshold due to changes in the voltage level, the voltage drop at the bypass capacitor should be limited to 100 mV or less.
The charge needed (100 picocolumb) and the allowable voltage drop (100 mV) will give us the minimum capacitor value required.

$$
\begin{aligned}
& \Delta Q=C(\Delta V) \\
& C=\Delta Q / \Delta V=100 \text { picocolumb } / 100 \mathrm{mV} \\
& C=10^{-10} / 10^{-1}=10^{-9}=1 \mathrm{nF}=0.001 \mu F \\
& 10^{-9}=1 \mathrm{nF}=0.001 \mu F
\end{aligned}
$$

The voltage drop of $\boldsymbol{\sim} \mathbf{1 0 0} \mathbf{~ m V}$ will cause a threshold shift in the comparator. This threshold shift will be reduced by the power supply rejection ratio, (PSRR). The PSRR which is applicable here is not the DC value of PSRR ($\sim 80 \mathrm{~dB}$), but a transient PSRR which will be usually about $20 \mathrm{~dB}-40 \mathrm{~dB}$, depending on the circuit and the speed of the transient. This will result in an effective threshold shift of about 1 mV to 10 mV .
For precision and level sensing circuits, it is generally a good goal to reduce the voltage delta on the power supply to a value equal to or less than the hysteresis of the comparator circuit. If the above circuit was to be used with 50 mV of hysteresis, it would be reasonable to increase the bypass capacitor to $0.01 \mu \mathrm{~F}$ to reduce the voltage delta to 10 mV . Larger values may be useful for obtaining more accurate and consistent switching.
Note that the switching current of the comparator can spread to other parts of the board as noise. The bypass capacitor reduces this noise. For low noise systems this may be reason to make the capacitor larger.
For non-precision circuits, such as using a comparator to determine if a push-button switch is on or off, it is often cheaper and easier to use a larger value of hysteresis and a small value or bypass capacitance. The low shoot-through current of the LMC7211 can allow the use of smaller and less expensive bypass capacitors in non-critical circuits.

4.0 Output Short Circuit Current

The LMC7211 has short circuit protection of 40 mA . However, it is not designed to withstand continuous short circuits, transient voltage or current spikes, or shorts to any voltage beyond the supplies. A resistor in series with the output should reduce the effect of shorts. For outputs which send signals off PC boards additional protection devices, such as diodes to the supply rails, and varistors may be used.

5.0 Hysteresis

If the input signal is very slow or very noisy, the comparator output might trip several times as the input signal passes through the threshold. Using positive feedback to add hysteresis to the switching can reduce or eliminate this problem. The positive feedback can be added by a high value resistor (R_{F}). This will result in two switching thresholds, one for increasing signals and one for decreasing signals. A capacitor can be added across R_{F} to increase the switching speed and provide more short term hysteresis. This can result in greater noise immunity for the circuit.
See Figures 4, 5 and 6.

Application Information (Continued)

Note that very heavy loading of the comparator output, such as LED drive or bipolar logic gates, will change the output voltage and shift the voltage thresholds.

TL/H/12337-9
$R_{F}>R_{1}$ and
$R_{F}>R_{2}$
FIGURE 4. Positive Feedback for Hysteresis

FIGURE 5

With Positive Feedback (Hysteresis or Memory)

FIGURE 6

6.0 Input Protection

If input signals are like to exceed the common mode range of the LMC7211, or it is likely that signals may be present when power is off, damage to the LMC7211 may occur. Large value ($100 \mathrm{k} \Omega$ to $\mathrm{M} \Omega$) input resistors may reduce the likelihood of damage by limiting the input currents. Since the LMC7211 has very low input leakage currents, the effect on accuracy will be small. Additional protection may require the use of diodes, as shown in Figure 7. Note that diode leakage current may affect accuracy during normal operation. The R-C time constant of $\mathrm{R}_{\mathbb{N}}$ and the diode capacitance may also slow response time.

TL/H/12337-12
FIGURE 7

7.0 Layout Considerations

The LMC7211 is not an especially fast comparator, so high speed design practices are not required. The LMC7211 is capable of operating with very high impedance inputs, so precautions should be taken to reduce noise pickup with high impedance ($\sim 100 \mathrm{k} \Omega$ and greater) designs and in electrically noisy environments.
Keeping high value resistors close to the LMC7211 and minimizing the size of the input nodes is a good practice. With multilayer designs, try to avoid long loops which could act as inductors (coils). Sensors which are not close to the comparator may need twisted pair or shielded connections to reduce noise.

8.0 Open Drain Output, Dual and Quad Versions

The LMC7221 is a comparator similar to the LMC7211, but with an open drain output which allows the output voltage to be different (higher or lower) than the supply voltage. The open drain output is like the open collector output of a logic gate. This makes the LMC7221 very useful for mixed voltage systems. Many systems will have different voltages for the analog and microprocessor sections. Please see the LMC7221 datasheet for details.
The performance of the LMC7211 is available in dual devices. Please see the LMC6762 datasheet for details on a dual push-pull output device. For a dual device with open drain outputs, please see the LMC6772 datasheet.

Application Information (Continued)

Rail-to-Rail Input Low Power Comparators-Push-Pull Output

LMC7211	Tiny, SOT23-5, DIP	Single
LMC6762	SO-8, DIP	Dual
LMC7221	Open Drain Output	
LMC6772	Tiny, SOT23-5, DIP	Single
	SO-8, DIP	Dual

9.0 Additional SOT23-5 Tiny Devices

National Semiconductor has additional parts available in the space saving SOT23 Tiny package, including amplifiers, voltage references, and voltage regulators. These devices include-

LMC7101 1 MHz gain-bandwidth rail-to-rail input and output amplifier-high input impedance and high gain $700 \mu \mathrm{~A}$ typical current $2.7 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}$ and 15 V specifications.
LMC7111 Low power 50 kHz gain-bandwidth rail-to-rail input and output amplifier with $25 \mu \mathrm{~A}$ typical current specified at $2.7 \mathrm{~V}, 3.0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V .
LM7131 Tiny Video amp with 70 MHz gain bandwidth 3 V , 5 V and $\pm 5 \mathrm{~V}$ specifications.
LP2980 Micropower SOT 50 mA Ultra Low-Dropout Regulator.
LM4040 Precision micropower shunt voltage reference. Fixed voltages of $2.500 \mathrm{~V}, 4.096 \mathrm{~V}, 5.000 \mathrm{~V}$, 8.192 V and 10.000 V .

LM4041 Precision micropower shut voltage reference 1.225 V and adjustable.

Contact your National Semiconductor representative for the latest information.

10.0 Spice Macromodel

A Spice Macromodel is available for the LMC7211 comparator on the National Semiconductor Amplifier Macromodel disk. Contact your National Semiconductor representative to obtain the latest version.

REEL DIMENSIONS

$\mathbf{8 ~ m m}$	$\mathbf{7 . 0 0}$	0.059	$\mathbf{0 . 5 1 2}$	0.795	2.165	$0.331+0.059 /-0.000$	0.567	W1+0.078/-0.039
	330.00	1.50	13.00	20.20	55.00	$8.40+1.50 /-\mathbf{0 . 0 0}$	14.40	W1 + 2.00/-1.00
Tape Size	A	B	C	D	N	W	W 1	W 2
W 3								

SOT-23-5 Tape and Reel Specification

TAPE FORMAT

Tape Section	\# Cavities	Cavity Status	Cover Tape Status
Leader (Start End)	$0(\mathrm{~min})$	Empty	Sealed
	$75(\mathrm{~min})$	Empty	Sealed
Carrier	3000	Filled	Sealed
	250	Filled	Sealed
Trailer (Hub End)	$125(\mathrm{~min})$	Empty	Sealed
	$0(\mathrm{~min})$	Empty	Sealed

TAPE DIMENSIONS

TL/H/12337-14

$\mathbf{~ m m}$	$\mathbf{0 . 1 3 0}$ $\mathbf{(3 . 3)}$	$\mathbf{0 . 1 2 4}$ $\mathbf{(3 . 1 5)}$	$\mathbf{0 . 1 3 0}$ $\mathbf{(3 . 3)}$	$\mathbf{0 . 1 2 6}$ $\mathbf{(3 . 2)}$	$\mathbf{0 . 1 3 8} \pm \mathbf{0 . 0 0 2}$ $\mathbf{(3 . 5} \pm \mathbf{0 . 0 5)}$	$\mathbf{0 . 0 5 5} \pm \mathbf{0 . 0 0 4}$ $\mathbf{(1 . 4} \pm \mathbf{0 . 1 1)}$	$\mathbf{0 . 1 5 7}$ $\mathbf{(4)}$	$\mathbf{0 . 3 1 5} \pm \mathbf{0 . 0 1 2}$ $\mathbf{(8} \pm \mathbf{0 . 3)}$
	DIM A	DIM AO	DIM B	DIM Bo	DIM F	DIM Ko	DIM P1	DIM W

National Semiconductor

LMC7221

Tiny CMOS Comparator with Rail-To-Rail Input and Open Drain Output

General Description

The LM7221 is a micropower CMOS comparator available in the space saving SOT23-5 package. This makes this comparator ideal for space and weight critical designs. For easy prototyping, the LMC7221 is available in a conventional 8 -pin DIP package. The LMC7221 is supplied in two offet voltage grades, 4 mV and 9 mV .
The open drain output can be pulled up with a resistor to a voltage which can be higher or lower than the supply volt-age-this makes the part useful for mixed voltage systems.
For a tiny comparator with a push-pull output, please see the LMC7211 datasheet.

Features

- Tiny SOT 23-5 package saves space
- Package is less than 1.43 mm thick
- Guaranteed specs at $2.7 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}$ supplies

■ Typical supply current $10 \mu \mathrm{~A}$ at 5 V

- Response time of $7 \mu \mathrm{~s}$ at 5 V
- LMC7221-open drain output
- Input common-mode range beyond V - and $V+$
- Low input current

Applications

- Mixed voltage battery powered products
- Notebooks and PDAs
- PCMCIA cards
- Mobile communications
- Alarm and security circuits
- Driving low current LEDs
- Direct sensor interface

Connection Diagrams

Ordering Information

Package	Ordering Information	NSC Drawing Number	Package Marking	Transport Media
8-Pin DIP	LMC7221AIN	N08E	LMC7221AIN	Rails
8-Pin DIP	LMC7221BIN	N08E	LMC7221BIN	Rails
5-Pin SOT 23-5	LMC7221AIM5	MA05A	C01A	250 Units on Tape and Reel
5-Pin SOT 23-5	LMC7221BIM5	MA05A	C01B	250 Units on Tape and Reel
5-Pin SOT 23-5	LMC7221AIM5X	MA05A	C01A	3k Units Tape and Reel
5-Pin SOT 23-5	LMC7221BIM5X	MA05A	C01B	3k Units Tape and Reel

LP311 Voltage Comparator

General Description

The LP311 is a low power version of the industry-standard LM311. It takes advantage of stable high-value ion-implanted resistors to perform the same function as an LM311, with a $30: 1$ reduction in power drain, but only a $6: 1$ slowdown of response time. Thus the LP311 is well suited for batterypowered applications, and all other applications where fast response is not needed. It operates over a wide range of supply voltages from 36 V down to a single 3 V supply, with less than $200 \mu \mathrm{~A}$ drain, but it is still capable of driving a 25 mA load. The LP311 is quite easy to apply without any oscillation, if ordinary precautions are taken to minimize stray coupling from the output to either input or to the balance pins (as described in the LM311 datasheet Application Hints).

Features

- Low power drain, $900 \mu \mathrm{~W}$ on 5 V supply
- Operates from $\pm 15 \mathrm{~V}$ or a single supply as low as 3 V
- Output can drive 25 mA
- Emitter output can swing below negative supply
- Response time: $1.2 \mu \mathrm{~s}$
- Same pin-out as LM311
- Low input currents: 2 nA of offset, 15 nA of bias
- Large common-mode input range: -14.6 V to 13.6 V with $\pm 15 \mathrm{~V}$ supply

Applications

- Level-detector for battery-powered instruments
- Low-power lamp or relay driver
- Low-power zero-crossing detector

Schematic Diagram

Connection Diagram

Dual-In-Line Package

Order Number LP311M or LP311N See NS Package Numbers M08A or N08E
Absolute Maximum Ratings

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Total Supply Voltage (V_{8-4})
Collector Output to Negative Supply Voltage (V_{7-4}) 40V
Collector Output to Emitter Output 40 V
Emitter Output to Negative Supply Voltage $\left(\mathrm{V}_{1-4}\right) \pm 30 \mathrm{~V}$
Differential Input Voltage $\pm 30 \mathrm{~V}$
Input Voltage (Note 1) $\pm 15 \mathrm{~V}$

Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

Electrical Characteristics

These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage (Notes 3, 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k}$		2.0	7.5	mV
Input Offset Current (Notes 3, 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	25	nA
Input Bias Current (Note 3)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		15	100	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}$	40	200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.2		$\mu \mathrm{s}$
Saturation Voltage (Note 6)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{OUT}}=25 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}=25^{\circ} \mathrm{C}} \end{aligned}$		0.4	1.5	V
Strobe Current (Note 7)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	100	200	300	$\mu \mathrm{A}$
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	100	nA
Input Offset Voltage (Notes 3, 4)	RS 5100 k			10	mV
Input Offset Current (Notes 3, 4)				35	nA
Input Bias Current (Note 3)				150	nA
Input Voltage Range		$\mathrm{V}-+0.5$	+13.7, -14.7	$\mathrm{V}+-1.5$	V
Saturation Voltage (Note 6)	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 1.6 \mathrm{~mA} \end{aligned}$		0.1	0.4	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output on		150	300	$\mu \mathrm{A}$
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80	180	$\mu \mathrm{A}$
Minimum Operating Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0	3.5	V

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LP311 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the dual-in-line package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 4 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with 1 mA load. Thus, these parameters define an error band and take into account the worst-case effects of voltage gain and input impedance.
Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.
Note 6: Saturation voltage specification applies to collector-emitter voltage (V7-1) for $\mathrm{V}_{\text {COLLECTOR }} \leq\left(\mathrm{V}^{+}-3 \mathrm{~V}\right)$.
Note 7: This specification gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground. It should be current driven, $100 \mu \mathrm{~A}$ to $300 \mu \mathrm{~A}$.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Applications Information

For applications information and typical applications, refer to the LM311 datasheet.

Auxiliary Circuits

Offset Balancing

TL/H/5711-2

Note: Do not ground strobe pin.

Test Circuits

Test Circuit 1 (Collector Output)

TL/H/5711-8

Test Circuit 2 (Emitter Output)

TL/H/5711-9

Test Circuit 4 (Emitter Output)

TL/H/5711-11

LP339 Ultra-Low Power Quad Comparator

General Description

The LP339 consists of four independent voltage comparators designed specifically to operate from a single power supply and draw typically $60 \mu \mathrm{~A}$ of power supply drain current over a wide range of power supply voltages. Operation from split supplies is also possible and the ultra-low power supply drain current is independent of the power supply voltage. These comparators also feature a common-mode range which includes ground, even when operated from a single supply.
Applications include limit comparators, simple analog-to-digital converters, pulse, square and time delay generators; VCO's; multivibrators; high voltage logic gates. The LP339 was specifically designed to interface with the CMOS logic family. The ultra-low supply current makes the LP339 valuable in battery powered applications.

Advantages

- Ultra-low power supply drain suitable for battery applications
- Single supply operation
- Sensing at ground
- Compatible with CMOS logic family
- Pin-out identical to LM339

Features

- Ultra-low power supply current drain ($60 \mu \mathrm{~A}$)-independent of the supply voltage ($75 \mu \mathrm{~W} /$ comparator at $+5 \mathrm{~V}_{\mathrm{DC}}$)
- Low input biasing current
- Low input offset current $\pm 0.5 \mathrm{nA}$
- Low input offset voltage $\pm 2 \mathrm{mV}$
- Input common-mode voltage includes ground
- Output voltage compatible with MOS and CMOS logic
- High output sink current capability (30 mA at $\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}$)
- Supply Input protected against reverse voltages

Schematic and Connection Diagrams

TL/H/5226-1

TL/H/5226-2
Order Number LP339M for S.O. Package See NS Package Number M14A
Order Number LP339N for Dual-In-Line Package See NS Package Number N14A

Driving CMOS

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,	
please contact the National	Semiconductor Sales
Office/Distributors for availability and specifications.	
Supply Voltage	$36 \mathrm{~V}_{\mathrm{DC}}$ or $\pm 18 \mathrm{~V}_{\mathrm{DC}}$
Differential Input Voltage	$\pm 36 \mathrm{~V}$ DC
Input Voltage	$-0.3 \mathrm{~V}_{\mathrm{DC}}$ to $36 \mathrm{~V}_{\mathrm{DC}}$
Power Dissipation (Note 1) Molded DIP	570 mW
Output Short Circuit to GND (Note 2)	Continuous

Input Current $\mathrm{V}_{\mathrm{IN}^{\prime}}<-0.3 \mathrm{~V}_{\mathrm{DC}}$ (Note 3) Operating Temperature Range

50 mA Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Soldering Information:

Dual-In-Line Package (10 sec.)	
S.O. Package: Vapor Phase (60 sec.) Infrared (15 sec.)	$+215^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect "on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics ($\mathrm{V}+=5 \mathrm{~V}_{\mathrm{DC}}$, Note 4)

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 9)		± 2	± 5	$\mathrm{m}^{\mathrm{V}} \mathrm{DC}$
Input Bias Current	$I_{\mathrm{IN}}(+)$ or $\mathrm{I}_{\mathrm{N}}(-)$ with the Output in the Linear Range, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)		2.5	25	nA ${ }_{\text {DC }}$
Input Offset Current	$\mathrm{I}_{\mathrm{N}}(+)-\mathrm{I}_{1 N}(-), \mathrm{T}_{A}=25^{\circ} \mathrm{C}$		± 0.5	± 5	$n A_{D C}$
Input Common Mode Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)	0		V+-1.5	$V_{D C}$
Supply Current	$\mathrm{R}_{\mathrm{L}}=$ Infinite on all Comparators, $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		60	100	$\mu A_{D C}$
Voltage Gain	$\begin{aligned} & V_{O}=1 \mathrm{~V}_{D C} \text { to } 11 \mathrm{~V}_{\mathrm{DC}}, \\ & R_{\mathrm{L}}=15 \mathrm{k} \Omega, \mathrm{~V}+=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		500		${ }^{6} \mathrm{~V} / \mathrm{mV}$
Large Signal Response Time	$\begin{aligned} & V_{I N}=T T L \text { Logic Swing, } V_{R E F}=1.4 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		1.3	- \quad	$\mu \mathrm{Sec}$
Response Time	$\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 7)		8		$\mu \mathrm{Sec}$
Output Sink Current	$\begin{aligned} & V_{I N}(-)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\operatorname{IN}}(+)=0, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note } 11) \end{aligned}$	15	30	;	$\mathrm{mA}_{\mathrm{DC}}$
	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}_{\mathrm{DC}}$	0.20	0.70		$m A_{D C}$
Output Leakage Current	$\mathrm{V}_{I N}(+)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{IN}}(-)=0, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$	\therefore.	0.1	$\%$	$n A_{D C}$
Input Offset Voltage	(Note 9)			± 9	mV DC
Input Offset Current	$\underline{\ln (+)-\operatorname{lin}(-)}$		± 1	± 15	$n A_{D C}$
Input Bias Current	$\mathrm{l}_{\mathbb{N}(}(+)$ or $\operatorname{liN}(-)$ with Output in Linear Range		4	40	$n A_{D C}$
Input Common Mode Voltage Range	Single Supply	0		$\mathrm{V}+$-2.0	$V_{D C}$
Output Sink Current	$\mathrm{V}_{I N}(-)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {IN }}(+)=0, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}$	10			$m A_{D C}$
Output Leakage Current	$\mathrm{V}_{\text {IN }}(+)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{IN}}(-)=0, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}_{\mathrm{DC}}$			1.0	$\mu A_{D C}$
Differential Input Voltage	${ }^{\text {All }} \mathrm{V}_{\text {IN's }} \geq 0 \mathrm{~V}_{\mathrm{DC}}$ (or V - on split supplies) (Note 8)			36	$V_{D C}$

Note 1: For elevated temperature operation, T_{j} max is $125^{\circ} \mathrm{C}$ for the LP339. $\boldsymbol{\theta}_{\text {ja }}$ (junction to ambient) is $175^{\circ} \mathrm{C} / \mathrm{W}$ for the LP339N and $120^{\circ} \mathrm{C} / \mathrm{W}$ for the LP339M when either device is soldered in a printed circuit board in a still air environment. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very small ($\mathrm{PD}_{\mathrm{D}} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.
Note 2: Short circuits from the output to $\mathrm{V}+$ can cause excessive heating and eventual destruction. The maximuri output current is approximately 50 mA .
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input clamp diodes. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltage of the comparators to go to the $\mathrm{V}+$ voltage level (or to ground for a large input overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which is negative, again returns to a value greater than $-0.3 \mathrm{~V}_{\mathrm{DC}}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$.
Note 4: These specifications apply for $\mathrm{V}+=5 \mathrm{~V}_{\mathrm{DC}}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise stated. The temperature extremes are guaranteed but not 100% production tested. These parameters are not used to calculate outgoing AQL.
Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading change exists on the reference or the input lines as long as the common-mode range is not exceeded.
Note 6: The input common-mode voltage or either input voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}+-1.5 \mathrm{~V}\left(\mathrm{~T}_{A}=25^{\circ} \mathrm{C}\right)$, but either or both inputs can go to $30 \mathrm{~V}_{\mathrm{DC}}$ without damage.
Note 7: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals $1.3 \mu \mathrm{~s}$ can be obtained. See Typical Performance Characteristics section.

Electrical Characteristics $(\mathrm{V}+=5 \mathrm{~V} \mathrm{DC}$, Note 4) (Continued)
Note 8: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (or $0.3 \mathrm{~V}_{\mathrm{DC}}$ below the magnitude of the negative power supply, if used) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 9: At output switch point, $V_{O}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with $\mathrm{V}+$ from $5 \mathrm{~V}_{\mathrm{DC}}$; and over the full input common-mode range ($0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}+-1.5 \mathrm{~V}_{D C}$).
Note 10: For input signals that exceed $\mathrm{V}+$, only the overdriven comparator is affected. With a 5 V supply, $\mathrm{V}_{\mathbb{I}}$ should be limited to 25 V maximum, and a limiting resistor should be used on all inputs that might exceed the positive supply.
Note 11: The output sink current is a function of the output voltage. The LP339 has a bi-modal output section which allows it to sink large currents via a Darlington connection at output voltages greater than approximately $1.5 \mathrm{~V}_{\mathrm{DC}}$ and sink lower currents below this point. (See typical characteristics section and applications section).

Typical Performance Characteristics

Application Hints

All pins of any unused comparators should be grounded.
The bias network of the LP339 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$.
It is usually unnecessary to use a bypass capacitor across the power supply line.
The differential input voltage may be larger than V + without damaging the device. Protection should be provided to prevent the input voltages from going negative more than - 0.3 $V_{D C}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode can be used as shown in the application section.
The output section of the LP339 has two distinct modes of operation-a Darlington mode and a grounded emitter mode. This unique drive circuit permits the LP339 to sink 30 mA at $\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}$ (Darlington mode) and $700 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}_{\mathrm{DC}}$ (grounded emitter mode). Figure 1 is a simplified schematic diagram of the LP339 output section.

TL/H/5226-11
FIGURE 1
Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$

One-Shot Multivibrator

TL/H/5226-13

Time Delay Generator

ORing the Outputs

Typical Applications (Continued) $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$

Three Level Audio Peak Indicator

LED Driver

TL/H/5226-22

Bi-Stable Multivibrator

TL/H/5226-21

Relay Driver

TL/H/5226-23

Transducer Amplifier

Zero Crossing Detector (Single Power Supply)

TL/H/5226-31

Split-Supply Applications Zero Crossing Detector

TL/H/5226-33

Comparator With a Negative Reference

Section 4

Active Matrix/LCD Display Drivers

Section 4 Contents

LM6104 Quad Gray Scale Current Feedback Amplifier 4-3
LM8305 STN LCD Display Bias Voltage Source 4-7
LMC6008 8 Channel Buffer 4-8

LM6104

Quad Gray Scale Current Feedback Amplifier

General Description

The LM6104 quad amplifier meets the requirements of battery operated liquid crystal displays by providing high speed while maintaining low power consumption.
Combining this high speed with high integration, the LM6104 conserves valuable board space in portable systems with a cost effective, surface mount quad package.
Built on National's advanced high speed VIPTM (Vertically Integrated PNP) process, the LM6104 current feedback architecture is easily compensated for speed and loading conditions. These features make the LM6104 ideal for buffering grey levels in liquid crystal displays.

Features (Typical unless otherwise noted)

- Low power	IS $=875 \mu \mathrm{~A} / a \mathrm{amplifier}$
Slew rate	$100 \mathrm{~V} / \mu \mathrm{s}$
- 3 dB bandwidth $\left(\mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega\right)$	30 MHz
- High output drive	$\pm 5 \mathrm{~V}$ into 100Ω
Wide operating range	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ to $\pm 12 \mathrm{~V}$
- High integration	Quad surface mount

Applications

- Grey level buffer for liquid crystal displays
- Column buffer for portable LCDs
- Video distribution amplifiers, video line drivers
- Hand-held, high speed signal conditioning

Typical Application

LCD Buffer Application for Grey Levels

TL/H/11979-1

Connection Diagram

Order Number LM6104M
See NS Package Number M14A

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage	24 V
Differential Input Voltage	$\pm 6 \mathrm{~V}$
Input Voltage	\pm Supply Voltage
Inverting Input Current	15 mA
Soldering Information	
Vapor Phase (60s)	$215^{\circ} \mathrm{C}$
Infrared (15s)	$220^{\circ} \mathrm{C}$

Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
ESD Rating (Note 2)	2000 V

Operating Ratings
Supply Voltage Range
4.75 V to 24 V

Junction Temperature Range (Note 3) LM6104M
$-20^{\circ} \leq \mathrm{T}_{\mathrm{J}} \leq+80^{\circ} \mathrm{C}$

Electrical Characteristics

The following specifications apply for $\mathrm{V}+=8 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{F}}=2 \mathrm{k} \Omega$ and $0^{\circ} \leq \mathrm{T}_{\mathrm{J}} \leq 60^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	LM6104M		Units
			Typical (Note 4)	Limits (Note 5)	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		10	30	$m \mathrm{~V}$ max
I_{B}	Inverting Input Bias Current		5.0	20	$\mu \mathrm{A}$ max
	Non-Inverting Input Bias Current		0.5	2	$\mu \mathrm{A}$ max
Is	Supply Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	3.5	4.0	mA max
Isc	Output Source Current	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\ & \operatorname{liN(-)}=-100 \mu \mathrm{~A} \end{aligned}$	60	45	mA min
	Output Sink Current	$\begin{aligned} & V_{O}=0 V \\ & \operatorname{liN(-)}=100 \mu \mathrm{~A} \end{aligned}$	60	45	mA \min
V_{O}	Positive Output Swing	$\operatorname{liN(-)}=-100 \mu \mathrm{~A}$	6.5	6.1	V min
	Negative Output Swing	$\ln (-)=100 \mu \mathrm{~A}$	-3.5	-3.1	V max
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 4$ to $\pm 10 \mathrm{~V}$	70	60	dB min
		$100 \mathrm{mV} \mathrm{pp} @ 100 \mathrm{kHz}$	40	30	dB min
R_{T}	Transresistance		10	5	$\mathrm{M} \Omega$ min
SR	Slew Rate	(Note 6)	100	55	$\mathrm{V} / \mu \mathrm{s}$ min
BW	Bandwidth	$\begin{aligned} & A_{V}=-1 \\ & R_{I N}=R_{F}=2 \mathrm{k} \Omega \end{aligned}$	7.5	5.0	MHz
	Amp-to-Amp Isolation	$\begin{aligned} & R_{L}=2 \mathrm{k} \Omega \\ & \mathrm{~F}=1 \mathrm{MHz} \end{aligned}$	60		dB
CMVR	Common Mode Voltage Range	;	$\begin{aligned} & V+-1.4 V \\ & V^{-}+1.4 V \end{aligned}$		V
CMRR	Common Mode Rejection Ratio		60		dB
ts_{5}	Settling Time	$\begin{aligned} & 0.05 \%, 5 \mathrm{~V} \text { Step, } A_{V}=-1 \\ & R_{F}=R_{S}=2 \mathrm{k} \Omega, V_{S}= \pm 5 \mathrm{~V} \end{aligned}$	240		ns

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions. Operating ratings indicate conditions the device is intended to be functional, but device parameter specifications may not be guaranteed under the conditions.
Note 2: Human body model $1.5 \mathrm{k} \Omega$ and 100 pF . This is a class 2 device rating.
Note 3: Thermal resistance of the SO package is $98^{\circ} \mathrm{C} / \mathrm{W}$. When operating at $\mathrm{T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$, maximum power dissipation is 700 mW .
Note 4: Typical values represent the most likely parametric norm.
Note 5: All limits guaranteed at operating temperature extremes.
Note 6: $A_{V}=-1$ with $R_{I N}=R_{F}=2 \mathrm{k}$. Slew rate is calculated from the 25% to the 75% point on both rising and falling edges. Output swing is -0.6 V to +5.6 V and 5.6 V to 0.6 V .

Typical Performance Characteristics

Applications Information

CURRENT FEEDBACK TOPOLOGY

The small-signal bandwidth of conventional voltage feedback amplifiers is inversely proportional to the closed-loop gain based on the gain-bandwidth concept. In contrast, the current feedback amplifier topology, such as the LM6104, enables a signal bandwidth that is relatively independent of the amplifier's gain (see typical curve Frequency Response vs Closed Loop Gain).

FEEDBACK RESISTOR SELECTION: RF

Current feedback amplifier bandwidth and slew rate are controlled by $\mathrm{R}_{\mathrm{F}} . \mathrm{R}_{\mathrm{F}}$ and the amplifier's internal compensation capacitor set the dominant pole in the frequency response. The amplifier, therefore, always requires a feedback resistor, even in unity gain.

Bandwidth and slew rate are inversely proportional to the value of R_{F} (see typical curve Frequency Response vs R_{F}). This makes the amplifier especially easy to compensate for a desired pulse response (see typical curve Large Signal Pulse Response). Increased capacitive load driving capability is also achieved by increasing the value of R_{F}.
The LM6104 has guaranteed performance with a feedback resistor of $2 \mathrm{k} \Omega$.

CAPACITIVE FEEDBACK

It is common to place a small lead capacitor in parallel with feedback resistance to compensate voltage feedback amplifiers. Do not place a capacitor across R_{F} to limit the bandwidth of current feedback amplifiers. The dynamic impedance of capacitors in the feedback path of the LM6104, as with any current feedback amplifier, will cause instability.

LM8305—STN LCD Display Bias Voltage Source

General Description

The LM8305M contains five buffered voltage sources to provide the voltage ratios required to drive a standard STN LCD display panel using a time-multiplexed voltage waveform to activate, or deactivate, a pixel once every picture frame. The internal resistor array features a binary weighted array to allow the user to select the proper ratio for the display being driven. The user can use an external resistor to set the ratio, if desired.
The LM8305 has a maximum operating supply voltage of 50 V to support higher multiplexing rates.
The LM8305 also features an internal high side PNP switch, and an independent voltage comparator with an internal bandgap reference.

Features

- High operating voltages, 50 V maximum
- Internal resistor array with binary weighting
- Ratios from $1 / 6$ to $1 / 37$
- Optional external resistors
- High-side PNP switch from VCC
- Separate voltage comparator circuit with band-gap voltage reference
- Surface mount 24-pin package

Typical Application

Connection Diagram

See NS Package Number M24B Order Number LM8305M

General Description

The LMC6008 octal buffer is designed for use in an active matrix liquid-crystal display (AMLCD), specifically to buffer the gray-level voltages going to the inputs of the column driver integrated circuits. In an 8 -gray-level (512 color) or 16 -gray-level (4096 color) AMLCD, the function of the column drivers is to switch the gray-level voltage inputs to the AMLCD columns. Thus, the voltage buffers must be able to drive the column capacitance of the entire display panel. The LMC6008 AC characteristics, including settling time, are specified for a capacitive load of $0.1 \mu \mathrm{~F}$ for this reason. The LMC6008 contains 4 high-speed buffers and 4 lowpower buffers. The high-speed buffers can provide an output current of at least 250 mA (minimum), and the low-power buffers can provide at least 150 mA (minimum). The highspeed buffers are intended to be used for the highest graylevel voltages (V0, V1, V2, V3 in an 8-gray AMLCD). By including the 2 types of buffers, the LMC6008 is able to provide this function while consuming a supply current of only 6.5 mA (maximum). The buffers are a rail-to-rail design, which typically swing to within 30 mV of either supply.

Connection Diagram

Note: Buffers 1, 3, 5 and 7 are High Speed and
Buffers 2, 4, 6 and 8 are Low Speed.

The LMC6008 also contains a standby function which puts the buffer into a high-impedance mode. The supply current in the standby mode is a low $500 \mu \mathrm{~A}$ max. Also, a thermal limit circuit is included to protect the device from overload conditions.

Features

- High Output Current:

High Speed Buffers 250 mA min
Low Power Buffers $\quad 150 \mathrm{~mA}$ min

- Slew Rate:

High Speed Buffers $\quad 1.7 \mathrm{~V} / \mu \mathrm{s}$
Low Power Buffers $0.85 \mathrm{~V} / \mu \mathrm{s}$

- Settling Time, $\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$
$16 \mu \mathrm{~s}$ max
- Wide Input/Output Range
- Supply Voltage Range
0.1 V to $\mathrm{V}_{\mathrm{Cc}}-0.1 \mathrm{~V}$ min

5 V to 16 V

- Supply Current
6.5 mA max
- Standby Mode Current $500 \mu \mathrm{~A}$

Applications

- AMLCD voltage buffering
- Multi-voltage buffering

Ordering Information

Package	Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	NSC Drawing	Transport Media
24-Pin Surface Mount	LMC6008IM	M24B	Rail
	LMC6008IMX	M24B	Tape \& Reel

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for avallability and specifications.	
ESD Tolerance (Note 2)	2000 V
Voltage at Input Pin	$\mathrm{V}++0.4 \mathrm{~V}, \mathrm{~V}--0.4 \mathrm{~V}$
Voltage at Output Pin	$\mathrm{V}++0.4 \mathrm{~V}, \mathrm{~V}--0.4 \mathrm{~V}$
Supply Voltage ($\mathrm{V}+-\mathrm{V}-$)	16 V
Lead Temperature	
(soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 4)	$150^{\circ} \mathrm{C}$
Power Dissipation (Note 4)	Internally Limited

Operating Ratings (Note 1)

Supply Voltage	$4.5 \mathrm{~V} \leq \mathrm{V}+\leq 16 \mathrm{~V}$
Temperature Range	$-20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ M Package, 24-Pin Surface Mount	$50^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=14.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=0$.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{aligned} & \text { LMC6008 } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		25	mV max
A_{V}	$\mathrm{V}_{\mathrm{O}}=10 \mathrm{VPP}$			0.985	V/V
I_{B}	Input Bias Current			300	$n A$ max
ILP	Peak Load Current	Hi Speed Buffers$V_{O}=13 V_{P P}$		-250	mA max
				$+250$	mA min
ILP	Peak Load Current	Lo Speed Buffers $V_{O}=13 V_{P P}$		-150	mA max
				+150	mA min
$V_{\text {ERR }}$	Output Voltage Difference (Note 9)		35		mV max
V_{IH}	Standby Logic High Voltage			3.30	V min
$V_{\text {IL }}$	Istandby Logic Low Voltage			1.80	V max
I_{H}	Standby High Input Current			1.0	$\mu \mathrm{A}$ max
I/L	Standby Low Input Current			1.0	$\mu \mathrm{A}$ max
l_{O} (STD-BY)	Output Leakage Current	$\mathrm{V}_{\text {STD-BY }}=$ High		5	$\mu \mathrm{A}$ max
ICC	Supply Current	$\mathrm{V}_{\mathrm{IL}}=$ Low, $\mathrm{V}_{\text {IN }}=7.25 \mathrm{~V}$		6.5	mA max
ISTD-BY	Standby Current	$\mathrm{V}_{\text {STD-BY }}=$ High		500	$\mu \mathrm{A}$ max
PSRR	Power Supply Rejection Ratio	$5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<14.5 \mathrm{~V}$		55	dB min
V_{O}	Voltage Output Swing			0.1	$V_{\text {min }}$
				$\mathrm{V}_{\mathrm{CC}}-0.1$	V max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=14.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=0 \Omega$.

Symbol	Parameter	Conditions	Typ (Note 5)	$\begin{gathered} \hline \text { LMC6008 } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
SR	Slew Rate	Buffers 1, 3, 5, 7 (Note 3)		1.70	$\mathrm{V} / \mu \mathrm{s}$ min
		Buffers 2, 4, 6, 8 (Note 3)		0.85	$\mathrm{V} / \mu \mathrm{s}$ min
ts	Settling Time	(Notes 3, 7)		16	μs max
ton	Standby Response Time ON			10	μs max
toff	Standby Response Time OFF			10	μs max
PBW	Power Bandwidth	$\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}_{\mathrm{Pp}}$ for Hi-Speed $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$ PP for Lo-Speed (Note 3)		45	KHz min
C_{L}	Load Capacitance			0.1	$\mu \mathrm{F}$ max

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: The Load is a series connection of a $0.1 \mu \mathrm{~F}$ capacitor and a 1Ω resistor.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$, where the junction-to-ambient thermal resistance $\theta_{J A}=50^{\circ} \mathrm{C} / \mathrm{W}$. If the maximum allowable power dissipation is exceeded, the thermal limit circuit will limit the die temperature to approximately $160^{\circ} \mathrm{C}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: The settling time is measured from the input transition to a point 50 mV of the final value, for both rising and falling transitions. The input swing is 0.5 V to 13.5 V for buffers 1, 3,5,7 and 3.75V to 10.25 V for buffers 2, 4, 6, 8. Input rise time should be less than $1 \mu \mathrm{~s}$.

Note 8: High-Speed Buffers are 1, 3, 5, 7 and Low-Speed Buffers are 2, 4, 6, 8.
Note 9: Output Voltage Difference is the difference between the highest and lowest buffer output voltage when all buffer inputs are at identical voltages.

Section 5
Special Functions
Section 5 Contents
DH0006/DH0006C Current Drivers 5-3
DH0034 High Speed Dual Level Translator 5-7
DH0035/DH0035C Pin Diode Driver 5-11
LH0094 Multifunction Converter 5-14
LM194/LM394 Supermatch Pair 5-23
LM195/LM395 Ultra Reliable Power Transistors 5-31
LM3045/LM3046/LM3086 Transistor Arrays 5-42
LM3146 High Voltage Transistor Array 5-47
LP395 Ultra Reliable Power Transistor 5-52

DH0006/DH0006C* Current Drivers

General Description

The DH0006/DH0006C is an integrated high voltage, high current driver designed to accept standard DTL or TTL logic levels and drive a load of up to 400 mA at 28 V . AND inputs are provided along with an Expander connection, should additional gating be required. The addition of an external capacitor provides control of the rise and fall times of the output in order to decrease cold lamp surges or to minimize electromagnetic interference if long lines are driven.
Since one side of the load is normally grounded, there is less likelihood of false turn-on due to an inadvertent short in the drive line.

Features

- Operation from a Single +10 V to +45 Power Supply
- Low Standby Power Dissipation of only 35 mW for 28 V Power Supply
- 1.5A, 50 ms , Pulse Current Capability

Schematic and Connection Diagrams

Absolute Maximum Ratings
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
 Peak Power Supply Voltage (for 0.1 sec)
 Continuous Supply Voltage Input Voltage

Electrical Characteristics (Note 1)

Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}$ to 10 V	2.0			V
Logical "0" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}$ to 10 V			0.8	
Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{IOUT}=400 \mathrm{~mA}$	26.5	27.0		
Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		0.001	0.01	
Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=150 \mathrm{~mA}$	8.8	9.2		
Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		-0.8	-1.0	mA
Logical "1" Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$		0.5	$\begin{aligned} & 5.0 \\ & 100 \end{aligned}$	$\mu \mathrm{A}$
"Off" Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$		1.6	2.0	mA
"On" Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}$			8	mA
Rise Time	$V_{C C}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=82 \Omega$		0.10		$\mu \mathrm{s}$
Fall Time			0.8		
Ton			0.26		
$\mathrm{T}_{\text {off }}$			2.2		

Note 1: Unless otherwise specified, limits shown apply from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for DH 0006 and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for DH 0006 C .
Note 2: Typical values are for $25^{\circ} \mathrm{C}$ ambient.
Note 3: Power ratings for the TO-5 based on a maximum junction temperature of $+175^{\circ} \mathrm{C}$ and θ_{JA} of $210^{\circ} \mathrm{C} / \mathrm{W}$.

Switching Time Waveforms

Typical Performance Characteristics

TL/K/10120-7

Typical Applications

. Lamp Driver with Expanded Inputs

DH0034
 High Speed Dual Level Translator

General Description

The DH0034 is a high speed level translator suitable for interfacing to MOS or junction FET analog switches. It may also be used as a universal logic level shifter capable of accepting TTL/DTL input levels and shifting to CML, MOS, or SLT levels.

Features

■ Fast switching, $\mathrm{t}_{\mathrm{pd} 0}$: typically 15 ns ; $\mathrm{t}_{\mathrm{pd} 1}$: typically 35 ns

- Large output voltage range: 25 V
- Input is TTL/DTL compatible
- Low output leakage: typically $0.1 \mu \mathrm{~A}$

Schematic and Connection Diagrams

Dual-In-Line Package

Order Number DH0034D-MIL or DH0034CD
See NS Package Number D14D

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

VCC Supply Voltage	7.0 V
Negative Supply Voltage	-30 V
Positive Supply Voltage	+25 V
Differential Supply Voltage	25 V
Maximum Output Current	100 mA
Power Dissipation	(Note 4)

Input Voltage	+5.5 V
Operating Temperature Range	
DH0034D-MIL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DH0034CD	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$	$300^{\circ} \mathrm{C}$

Electrical Characteristics (See Notes 1 and 2)

Parameter	Conditions	DH0034			Units
		Min	Typ	Max	
Logical " 1 " Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \end{aligned}$	2.0			V
Logical "0" Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \end{aligned}$			0.8	V
Logical "1" Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{I N}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V} \end{aligned}$			40	$\mu \mathrm{A}$
Logical "1" Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$			1.0	mA
Logical " 0 " Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \end{aligned}$			-1.6	mA
Power Supply Current Logic "0"	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V} \\ & \text { (Note 3) } \end{aligned}$		30	38	mA
Power Supply Current Logic "1"	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { (Note 3) } \end{aligned}$		37	48	mA
Logical " 0 " Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OUT}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OUT}}=50 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & V^{-}+0.50 \\ & v^{-}+0.3 \end{aligned}$	$V^{-}+0.50$	V
Output Leakage Current	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{I N}=0.8 \mathrm{~V} \\ & V^{+}-V^{-}=25 \mathrm{~V} \end{aligned}$		0.1	5.0	$\mu \mathrm{A}$
Transition Time to Logical "0"	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{3}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}-=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=510 \Omega \end{aligned}$		15	25	ns
Transition Time to Logical " 1 "	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}-=-25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=510 \Omega \end{aligned}$		35	75	ns

Note 1: The specifications apply over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DH0034D-MIL and over the temperature range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for DH0034CD with a 510Ω resistor connected between output and ground, and V - connected to -25 V , unless otherwise specified.

Note 2: All typical values are for $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: Current measured is total drawn from $V_{C C}$ supply.
Note 4: Power rating for the Cavity DIP based on a maximum junction temperature of $175^{\circ} \mathrm{C}$ and $\theta_{\mathrm{JA}}=180^{\circ} \mathrm{C} / \mathrm{W}$.

Theory of Operation

When both inputs of the DH0034 are raised to logic " 1 ", the input AND gate is turned "on" allowing Q1's emitter to become forward biased. Q1 provides a level shift and constant output current. The collector current is essentially the same as the emitter which is given by

$$
\frac{V_{C C}-V_{B E}}{R 1}
$$

Approximately 7.0 mA flows out of Q1's collector.
About 2 mA of Q1's collector current is drawn off by pull down resistor, R2. The balance, 5 mA , is available as base drive to Q2 and to charge its associated Miller capacitance. The output is pulled to within a $V_{\text {SAT }}$ of V^{-}. When either (or both) input to the DH0034 is lowered to logic " 0 ", the AND gate output drops to 0.2 V turning Q1 off. Deprived of base drive Q2 rapidly turns off causing the output to rise to the V_{3} supply voltage. Since Q2's emitter operates between 0.6 V and 0.2 V , the speed of the DH0034 is greatly enhanced.

Applications Information

1. Paralleling the Outputs

The outputs of the DH0034 may be paralleled to increase output drive capability or to accomplish the "wire OR". In order to prevent current hogging by one output transistor or the other, resistors of $2 \Omega / 100 \mathrm{~mA}$ value should be inserted between the emitters of the output transistors and the minus supply.

2. Recommended Output Voltage Swing

The graph shows boundary conditions which govern proper operation of the DH0034. The range of operation for the negative supply is shown on the X axis and must be between -3 V and -25 V . The allowable range for the positive supply is governed by the value chosen for $\mathrm{V}^{-} . \mathrm{V}^{+}$ may be selected by drawing a vertical line through the selected value for V^{-}and terminated by the boundaries of the operating region. For example, a value of V - equal to -6 V would dictate values of $\mathrm{V}+$ between -5 V and +19 V . In general, it is desirable to maintain at least 5 V difference between the supplies.

Switching Time Waveforms

TL/K/10122-7

Typical Applications

DH0035/DH0035C

 PIN Diode Driver
General Description

The DH0035/DH0035C is a high speed digital driver designed to drive PIN diodes in RF modulators and switches. The device is used in conjunction with an input buffer such as the DM7830/DM8830 or DM5440/DM7440.

Features

- Large output voltage swing-30V
- Peak output current in excess of 1 A - Inputs TTL/DTL compatible
- Short propagation delay-10 ns
- High repetition rate- 5 MHz

The DH0035/DH0035C is capable of driving a variety of PIN diode types including parallel, serial, anode grounded and cathode grounded. For additional information, see AN-49 PIN Diode Drivers.
The DH0035 is guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ whereas the DH0035C is guaranteed from $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

TL/K/10124-1

Metal Can Package

TL/K/10124-2
Top View
Order Number DH0035G-MIL or DH0035CG See NS Package Number G12B

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
V^{-}Supply Voltage Differential (Pin 5 to Pin 1 or 2) 40 V
$\mathrm{~V}^{+}$Supply Voltage Differential (Pin 1 or 2 to Pin 8 or 9) 30 V
Input Current (Pin 3 or 7)
Peak Output Current
75 mA

Power Dissipation (Note 3)	1.5 W
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DH0035	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DH0035C	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 1 and 2)

Parameter	Conditions	Limits			Units
		Min	Typ	Max	
Input Logic "1" Threshold	$\mathrm{V}_{\text {OUT }}=-8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		1.0	2.0	V
Input Logic "0" Threshold	$\mathrm{V}_{\text {OUT }}=+8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	0.4	0.6		V
Positive Output Swing	$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$	7.0	+8.0		V
Negative Output Swing	$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$		-8.0	-7.0	V
Positive Short Circuit Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0 \Omega$ (Pulse Test, Duty Cycle $\leq 3 \%$)	400	800		mA
Negative Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=50 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=0 \Omega \\ & \text { (Pulse Test, Duty Cycle } \leq 3 \% \text {) } \end{aligned}$	800	1000		mA
Turn-On Delay	$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-3 \mathrm{~V}$		10	15	ns
Turn-Off Delay	$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=+3 \mathrm{~V}$		15	30	ns
On Supply Current	$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}$		45	60	mA

Note 1: Unless otherwise specified, these specifications apply for $\mathrm{V}^{+}=10.0 \mathrm{~V}, \mathrm{~V}^{-}=-10.0 \mathrm{~V}$, pin 5 grounded, over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DH0035, and $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the DH0035C.
Note 2: All typical values are for $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: Derate linearly at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $25^{\circ} \mathrm{C}$.

Typical Applications

TL/K/10124-3
Note: Cathode grounded PIN diode: $R_{p}=62 \Omega$ limits diode forward current to 100 mA . Typical switching for HP33604A, RF turn-on 25 ns , turn-off $5 \mathrm{~ns} . \mathrm{C} 2=250 \mathrm{pF}, \mathrm{R}_{\mathrm{p}}=0 \Omega, \mathrm{C} 1=0.1 \mathrm{~F}$.

Typical Applications (Continued)

θ
 National Semiconductor
 LH0094 Multifunction Converter

General Description

The LH0094 multifunction converter generates an output voltage per the transfer function:

$$
E_{O}=V_{y}\left(\frac{V_{Z}}{V_{X}}\right)^{m}, 0.1 \leq m \leq 10, m \text { continuously adjustable }
$$

m is set by 2 resistors.

Features

- Low cost
- Versatile
- High accuracy-0.05\%
- Wide supply range $- \pm 5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Minimum component count
- Internal matched resistor pair for setting $\mathrm{m}=2$ and $\mathrm{m}=0.5$

Applications
 - Precision divider, multiplier
 - Square root
 - Square
 - Trigonometric function generator
 - Companding
 - Linearization
 - Control systems
 - Log amp

Block and Connection Diagrams

Order Number LH0094CD See NS Package Number D16D

Dual-In-Line Package

Simplified Schematic

TL/H/5695-1

```
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for avallability and specifications.
\begin{tabular}{lr} 
Supply Voltage & \(\pm 22 \mathrm{~V}\) \\
Input Voltage & \(\pm 22 \mathrm{~V}\) \\
Output Short-Circuit Duration & Continuous
\end{tabular}
```


Electrical Characteristics

$V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified. Transfer function: $\mathrm{E}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Y}} \frac{\mathrm{V}_{\mathrm{Z}} \mathrm{m}}{\mathrm{V}_{\mathrm{X}}} ; 0.1 \leq \mathrm{m} \leq 10 ; O \mathrm{~V} \leq \mathrm{V}_{\mathrm{X}}, \mathrm{V}_{\mathrm{Y}}, \mathrm{V}_{\mathrm{Z}} \leq 10 \mathrm{~V}$

Parameter	Conditions	LH0094C			Units
		Min	Typ	Max	
ACCURACY					
Multiply Untrimmed External Trim	$E_{O}=V_{Z} V_{Y}\left(0.03 \leq V_{Y} \leq 10 V ; 0.01 \leq V_{Z} \leq 10 V\right)$ (Figure 2) (Figure 3) vs. Temperature	$\begin{gathered} 1.0 \\ 0.15 \end{gathered}$	$\begin{gathered} 0.45 \\ 0.1 \\ 0.2 \end{gathered}$	0.9	\% F.S. (10V) \% F.S. $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Divide	$\mathrm{E}_{\mathrm{O}}=10 \mathrm{~V}_{\mathrm{Z}} / \mathrm{V}_{\mathrm{X}}$			0.9	\% F.S. \% F.S. $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Untrimmed	(Figure 4), $0.5 \leq \mathrm{V}_{\mathrm{X}} \leq 10 ; 0.01 \leq \mathrm{V}_{\mathrm{Z}} \leq 10$)		0.45		
External Trim	(Figure 5), $\left(0.1 \leq \mathrm{V}_{X} \leq 10 ; 0.01 \leq \mathrm{V}_{\mathrm{Z}} \leq 10\right)$		0.1		
	vs. Temperature		0.2		
Square Root	$E_{O}=10 \sqrt{V_{Z} / 10}$			0.9	$\begin{aligned} & \text { \% F.S. } \\ & \text { \% F.S. } \end{aligned}$
Untrimmed	(Figure 8), $\left(0.03 \leq \mathrm{V}_{\mathrm{z}} \leq 10\right.$		0.45		
External Trim	(Figure 9), $\left(0.01 \leq \mathrm{V}_{\mathrm{Z}} \leq 10\right.$		0.15		
Square	$\mathrm{E}_{\mathrm{O}}=10\left(\mathrm{~V}_{\mathrm{Z}} / 10\right)^{2}\left(0.1 \leq \mathrm{V}_{\mathrm{Z}} \leq 10\right)$			$\begin{aligned} & \text { \% F.S. } \\ & \text { \% F.S. } \end{aligned}$	
Untrimmed	(Figure 6)		2.0		
External Trim	(Figure 7)				
Low Level	$\mathrm{E}_{\mathrm{O}}=\sqrt{10 \mathrm{~V}_{\mathrm{Z}}} ; 5.0 \mathrm{mV} \leq \mathrm{V}_{\mathrm{Z}} \leq 10 \mathrm{~V}$, (Figure 10)		0.05		\% F.S.
Square Root	$\mathrm{m}=0.2, \mathrm{E}_{\mathrm{O}}=10\left(\mathrm{~V}_{\mathrm{z}} / 10\right)^{2}$ (Figure 11), $\left(0.1 \leq \mathrm{V}_{\mathrm{z}} \leq 10\right)$				\% F.S.
Exponential Circuits	$m=0.2, E_{O}=10\left(V_{Z} / 10\right)^{2}\left(\right.$ Figure 11), $\left(0.1 \leq V_{Z} \leq 10\right)$ $m=5.0, E_{O}=10\left(V_{Z} / 10\right)^{5}\left(\right.$ Figure 11), $\left(1.0 \leq V_{Z} \leq 10\right)$		0.08 0.08		$\begin{aligned} & \text { \% F.S. } \\ & \text { \% F.S. } \end{aligned}$

OUTPUT OFFSET

	$V_{X}=10 \mathrm{~V}, \mathrm{~V}_{Y}=\mathrm{V}_{\mathrm{Z}}=0$	5.0	10	mV
AC CHARACTERISTICS				
3 dB Bandwidth Noise	$\begin{aligned} & m=1.0, V_{X}=10 \mathrm{~V}, V_{Y}=0.1 V_{r m s} \\ & 10 \mathrm{~Hz} \text { to } 1.0 \mathrm{kHz}, \mathrm{~m}=1.0, \mathrm{~V}_{Y}=V_{Z}=0 \mathrm{~V} \\ & V_{X}=10 \mathrm{~V} \\ & V_{X}=0.1 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 10 \\ 100 \\ 300 \\ \hline \end{array}$		kHz $\mu \mathrm{V} / \mathrm{rms}$ $\mu \mathrm{V} / \mathrm{rms}$

EXPONENT

m		0.2 to	0.1 to		

INPUT CHARACTERISTICS

$\left.\begin{array}{l}\begin{array}{l}\text { Input Voltage } \\ \text { Input Impedance }\end{array} \\ \hline \begin{array}{l}\text { (For Rated Performance) } \\ \text { (All Inputs) }\end{array} \\ \hline \text { OUTPUT CHARACTERISTICS }\end{array} \begin{array}{c}0 \\ 98\end{array}\right)$

Note 1: Refer to RETS0094D drawing for specifications of the military LH00940 version.

Applications Information

GENERAL INFORMATION

Power supply bypass capacitors ($0.1 \mu \mathrm{~F}$) are recommended for all applications.
The LH0094 series is designed for positive input signals only. However, negative input up to the supply voltage will not damage the device.
A clamp diode (Figure 1) is recommended for those applications in which the inputs may be subjected to open circuit or negative input signals.
For basic applications (multiply, divide, square, square root) it is possible to use the device without any external adjustments or components. Two matched resistors are provided internally to set m for square or square root.
When using external resistors to set m, such resistors should be as close to the device as possible.

SELECTION OF RESISTORS TO SET m

Internal Matched Resistors

R_{A} and R_{B} are matched internal resistors. They are $100 \Omega \pm 10 \%$, but matched to 0.1%.
(a) $\mathrm{m}=\mathbf{2}^{*}$

(b) $m=0.5^{*}$

TL/H/5695-2
*No external resistors required, strap as indicated

External Resistors

The exponent is set by 2 external resistors or it may be continuously varied by a single trim pot. (R1 $+\mathrm{R} 2 \leq 500 \Omega$.
(a) $m=1$

TL/H/5695-3
(b) $\mathrm{m}<1$

$$
m=\frac{R 2}{R 1+R 2} R 1+R 2 \approx 200 \Omega
$$

(c) $m>1$

$$
m=\frac{R 1+R 2}{R 2}
$$

TL/H/5695-4

ACCURACY (ERROR)

The accuracy of the LH0094 is specified for both externally adjusted and unadjusted cases.
Although it is customary to specify the errors in percent of full-scale (10 V), it is seen from the typical performance curves that the actual errors are in percent of reading. Thus, the specified errors are overly conservative for small input voltages. An example of this is the LH0094 used in the multiplication mode. The specified typical error is 0.25% of fullscale (25 mV). As seen from the curve, the unadjusted error is $\approx 25 \mathrm{mV}$ at 10 V input, but the error is less than 10 mV for inputs up to 1V. Note also that if either the multiplicand or the multiplier is at less than 10 V , (5 V for example) the unadjusted error is less. Thus, the errors specified are at full-scale-the worst case.
The LH0094 is designed such that the user is able to externally adjust the gain and offset of the device-thus trim out all of the errors of conversion. In most applications, the gain adjustment is the only external trim needed for super accu-racy-except in division mode, where a denominator offset adjust is needed for small denominator voltages.

EXPONENTS

The LH0094 is capable of performing roots to 0.1 and powers up to 10. However, care should be taken when applying these exponent-otherwise, results may be misinterpreted. For example, consider the $1 / 10$ th power of a number: i.e., 0.001 raised to 0.1 power is $0.5011 ; 0.1$ raised to the 0.1 power is 0.7943 ; and 10 raised to the 0.1 power is 1.2589 . Thus, it is seen that while the input has changed 4 decades, the output has only changed a little more than a factor of 2. It is also seen that with as little as 1 mV of offset, the output will also be greater than zero with zero input.

Applications Information (Continued)

1. CLAMP DIODE CONNECTION

$\mathrm{F}_{\mathrm{v}}=\mathrm{v}_{\mathrm{y}}\left(\frac{\mathrm{v}_{z}}{\mathrm{v}_{\mathrm{x}}}\right)^{\mathrm{m}}$
$0.1 \leq m \leq 10$
Note. This clamp diode connection is recommended for those applications in which the inputs may be subject to open circuit or negative signals.
rIGURE 1. Clamp Diode Connection

2. MULTIPLY

FIGURE 2a. LH0094 Used to Multiply (No External Adjustment)

FIGURE 2b. Typical Performance of LH0094 in Multiply Mode Without External Adjustment

$$
E_{0}=\frac{V_{y} V_{z}}{10} \quad m=1
$$

Trim Procedure
Set $V_{Z}=V_{Y}=10 \mathrm{~V}$
Adjust R2 until output $=10.000 \mathrm{~V}$

FIGURE 3. Precision Multiplier (0.02\% Typ) with 1 External Adjustment

Applications Information (Continued)
3. DIVIDE

FIGURE 4a. LH0094 Used to Divide (No External Adjustment)

FIGURE 4b. Typical Performance, Divide Mode, Without External Adjustments

Trim Procedures
Apply 10 V to $\mathrm{V}_{\mathrm{Y}}, 0.1 \mathrm{~V}$ to V_{X} and V_{Z}. Adjust R3 until $\mathrm{E}_{\mathrm{O}}=10.000 \mathrm{~V}$.
Apply 10.000 V to all inputs.
Adjust R 2 until $\mathrm{E}_{\mathrm{O}}=10.000 \mathrm{~V}$ Repeat procedure.

FIGURE 5. Precision Divider (0.05\% Typ)

4. SQUARE

FIGURE 6a. Basic Connection of LH0094 ($\mathrm{m}=2$) without External Adjustment Using Internal Resistors to Set m

TL/H/5695-6
FIGURE 6b. Squaring Mode without External Adjustment

Applications Information (Continued)

4. SQUARE (Continued)

FIGURE 7. Precision Squaring Circuit (0.15\% Typ)
5. SQUARE ROOT

FIGURE 8a. Basic Connection of LH0094 ($\mathrm{m}=0.5$) without External Adjustment Using Internal Resistors to Set m

TL/H/5695-7
FIGURE 9. Precision Square Rooter (0.15\% Typ)

Applications Information (Continued)

6. LOW LEVEL SQUARE ROOT

FIGURE 10. 3-Decade Precision Square Root Circuit Using the LH0094 with m=1

Typical Applications

FIGURE 11. Precision Exponentiator ($\mathbf{m}=0.2$ to 5)

Typical Applications (Continued)

Note. The LH0094 may be used to generate a voltage equivalent to:

$$
V 0=\sqrt{V 1^{2}+V 2^{2}}
$$

$\mathrm{V} 0=\mathrm{V} 2+\frac{\mathrm{V}_{1}{ }^{2}}{\mathrm{~V} 0+\mathrm{V} 2}$
$V_{0}{ }^{2}+V_{0} V_{2}=V_{2} V_{0}+V_{2}{ }^{2}+V_{12}$
$V 0^{2}=V 1^{2}+V 2^{2}$
$\therefore V 0=\sqrt{V_{1}^{2}+V^{2}} \quad V_{1}, V 2 \quad 0 \rightarrow 10 \mathrm{~V}$
$R \approx 10 k$
National Semiconductor resistor array RA08-10k is recommended
FIGURE 12. Vector Magnitude Function

TL/H/5695-9
Note. The LH0094 may be used in direct measurement of gas flow.

$$
\begin{aligned}
& \text { Flow }=k \sqrt{\frac{P \Delta P}{T}} \\
& E_{O}=10 \frac{V_{P}}{V_{T}} \times \frac{V_{\Delta P}}{E_{O}} \\
& E_{O}{ }^{2}=10 \frac{V_{P} V_{\Delta P}}{V T} \\
& E_{O}=\sqrt{10 \frac{V P V_{\Delta P}}{V T}}
\end{aligned}
$$

$\mathbf{P}=$ Absolute pressure
$\mathrm{T}=$ Absolute temperature
$\Delta P=$ Pressure drop
FIGURE 13. Mass Gas Flow Circuit

Typical Applications (Continued)

Note. The LH0094 may also be used to generate the Log of a ratio of 2 voltages. The output is taken from pin 14 of the LH0094 for the Log application.

$$
\begin{aligned}
& E_{L O G}=K 1 \frac{K T}{q} \ell n \frac{V_{Z}}{V_{X}} \\
& \text { where } K 1=\frac{R 1+R 2}{R 2} \\
& \text { If } K 1=\frac{1}{K T / q \ell n 10} \\
& \text { then } E_{L O G}=\log _{10} \frac{V_{Z}}{V_{X}} \\
& R 1=15.9 R 2 \\
& R 2 \approx 400 \Omega
\end{aligned}
$$

R2 must be a thermistor with a tempco of $\approx 0.33 \% /{ }^{\circ} \mathrm{C}$ to be compensated over temperature.

FIGURE 14. Log Amp Application

LM194/LM394 Supermatch Pair

General Description

The LM194 and LM394 are junction isolated ultra wellmatched monolithic NPN transistor pairs with an order of magnitude improvement in matching over conventional transistor pairs. This was accomplished by advanced linear processing and a unique new device structure.
Electrical characteristics of these devices such as drift versus initial offset voltage, noise, and the exponential relationship of base-emitter voltage to collector current closely approach those of a theoretical transistor. Extrinsic emitter and base resistances are much lower than presently available pairs, either monolithic or discrete, giving extremely low noise and theoretical operation over a wide current range. Most parameters are guaranteed over a current range of $1 \mu \mathrm{~A}$ to 1 mA and 0 V up to 40 V collector-base voltage, ensuring superior performance in nearly all applications.
To guarantee long term stability of matching parameters, internal clamp diodes have been added across the emitterbase junction of each transistor. These prevent degradation due to reverse biased emitter current-the most common cause of field failures in matched devices. The parasitic isolation junction formed by the diodes also clamps the substrate region to the most negative emitter to ensure complete isolation between devices.
The LM194 and LM394 will provide a considerable improvement in performance in most applications requiring a closely
matched transistor pair. In many cases, trimming can be eliminated entirely, improving reliability and decreasing costs. Additionally, the low noise and high gain make this device attractive even where matching is not critical.
The LM194 and LM394/LM394B/LM394C are available in an isolated header 6 -lead TO-5 metal can package. The LM394/LM394B/LM394C are available in an 8-pin plastic dual-in-line package. The LM194 is identical to the LM394 except for tighter electrical specifications and wider temperature range.

Features

- Emitter-base voltage matched to $50 \mu \mathrm{~V}$
- Offset voltage drift less than $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Current gain (h_{FE}) matched to 2%
- Common-mode rejection ratio greater than 120 dB
- Parameters guaranteed over $1 \mu \mathrm{~A}$ to 1 mA collector current
- Extremely low noise
- Superior logging characteristics compared to conventional pairs
- Plug-in replacement for presently available devices

Typical Applications


```
Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 4)
```



```
Collector-Emitter Voltage 35V
    LM394C 20V
Collector-Base Voltage 35V
    LM394C
                                20V
Collector-Substrate Voltage 35V
    LM394C
                20V
Collector-Collector Voltage 35V
    LM394C
```

Base-Emitter Current	$\pm 10 \mathrm{~mA}$
Power Dissipation	500 mW
Junction Temperature	
LM194	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM394/LM394B/LM394C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information	
Metal Can Package (10 sec.)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (10 sec.)	260°
Small Outline Package	
Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting and their Effects on Product Reliability" for other methods of soldering surface mount devices.	

See AN-450 "Surface Mounting and their Effects on Prodmount devices.

Electrical Characteristics ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)

Parameter	Conditions	LM194			LM394			LM394B/394C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Current Gain (h_{FE})	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{MAX}} \text { (Note 1) } \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \\ & 300 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 700 \\ & 550 \\ & 450 \\ & 300 \\ & \hline \end{aligned}$		$\begin{aligned} & 300 \\ & 250 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 700 \\ & 550 \\ & 450 \\ & 300 \end{aligned}$		$\begin{aligned} & 225 \\ & 200 \\ & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 500 \\ & 400 \\ & 300 \\ & 200 \\ & \hline \end{aligned}$		
Current Gain Match, ($\mathrm{h}_{\text {FE }}$ Match) $=\frac{100\left[\Delta \mathrm{I}_{\mathrm{B}}\right]\left[\mathrm{h}_{\mathrm{FE}(\mathrm{MIN})}\right]}{\mathrm{I}_{\mathrm{C}}}$	$\begin{aligned} & V_{C B}=0 V \text { to } V_{M A X} \\ & I_{C}=10 \mu A \text { to } 1 \mathrm{~mA} \\ & I_{C}=1 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	2		$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	4		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	5	$\begin{aligned} & \text { \% } \\ & \% \end{aligned}$
Emitter-Base Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=0 \\ & \mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{~A} \text { to } 1 \mathrm{~mA} \end{aligned}$		25	100		25	150		50	200	$\mu \mathrm{V}$
Change in Emitter-Base Offset Voltage vs Collector-Base Voltage (CMRR)	(Note 1) $I_{C}=1 \mu A$ to 1 mA , $V_{C B}=O V$ to $V_{M A X}$		10	25		10	50		10	100	$\mu \mathrm{V}$
Change in Emitter-Base Offset Voltage vs Collector Current	$\begin{aligned} & V_{C B}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{~A} \text { to } 0.3 \mathrm{~mA} \end{aligned}$		5	25		5	50		5	50	$\mu \mathrm{V}$
Emitter-Base Offset Voltage Temperature Drift	$\begin{aligned} & I_{\mathrm{C}}=10 \mu \mathrm{~A} \text { to } 1 \mathrm{~mA} \text { (Note } 2 \text {) } \\ & \mathrm{I}_{\mathrm{C} 1}=I_{\mathrm{C} 2} \\ & \mathrm{~V}_{\mathrm{OS}} \text { Trimmed to } 0 \text { at } 25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.08 \\ & 0.03 \end{aligned}$	$\begin{array}{r} 0.3 \\ 0.1 \\ \hline \end{array}$		$\begin{aligned} & 0.08 \\ & 0.03 \end{aligned}$	$\begin{array}{r} 1.0 \\ 0.3 \\ \hline \end{array}$		$\begin{gathered} 0.2 \\ 0.03 \\ \hline \end{gathered}$	$\begin{array}{r} 1.5 \\ 0.5 \\ \hline \end{array}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Logging Conformity	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=3 \mathrm{nA} \text { to } 300 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CB}}=0,(\text { Note } 3) \end{aligned}$		150			150			150		$\mu \mathrm{V}$
Collector-Base Leakage	$V_{C B}=V_{M A X}$		0.05	0.25		0.05	0.5		0.05	0.5	nA
Collector-Collector Leakage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {MAX }}$		0.1	2.0		0.1	5.0		0.1	5.0	nA
Input Voltage Noise	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CB}}=0 \mathrm{~V}, \\ & \mathrm{f}=100 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \end{aligned}$		1.8			1.8			1.8		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Collector to Emitter Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=100 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$			$\begin{aligned} & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$

Note 1: Collector-base voltage is swept from 0 to $\mathrm{V}_{\mathrm{MAX}}$ at a collector current of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, and 1 mA .
Note 2: Offset voltage drift with $\mathrm{V}_{\mathrm{OS}}=0$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ is valid only when the ratio of $\mathrm{I}_{\mathrm{C} 1}$ to $\mathrm{I}_{\mathrm{C} 2}$ is adjusted to give the initial zero offset. This ratio must be held to within 0.003% over the entire temperature range. Measurements taken at $+25^{\circ} \mathrm{C}$ and temperature extremes.
Note 3: Logging conformity is measured by computing the best fit to a true exponential and expressing the error as a base-emitter voltage deviation.
Note 4: Refer to RETS194X drawing of military LM194H version for specifications.

Typical Applications (Continued)
Fast, Accurate Logging Amplifier, $\mathrm{V}_{\mathbf{I N}}=10 \mathrm{~V}$ to 0.1 mV or $\mathrm{I}_{\mathrm{IN}}=1 \mathrm{~mA}$ to 10 nA

TL/H/9241-3
${ }^{*} 1 \mathrm{k} \Omega(\pm 1 \%)$ at $25^{\circ} \mathrm{C},+3500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Available from Vishay Ultronix, Grand Junction, CO, Q81 Series.

$$
V_{\mathrm{OUT}}=-\log _{10}\left(\frac{\mathrm{~V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{REF}}}\right)
$$

Typical Applications (Continued)

High Accuracy One Quadrant Multiplier/Divider

TL/H/9241-6
$V_{\text {OUT }}=\frac{(X)(Y)}{(Z)}$; positive inputs only.
*Typical linearity 0.1%

Typical Applications (Continued)

Typical Performance Characteristics

Base-Emitter On Voltage vs Collector Current

TL/H/9241-8

Typical Performance Characteristics (Continued)

Low Frequency Noise of Differential Pair*

TL/H/9241-11

[^17]Connection Diagrams

Order Number LM194H/883*, LM394H, LM394BH or LM394CH See NS Package Number H06C

Dual-In-Line and Small Outline Packages

Order Number LM394N or LM394CN See NS Package Number N08E

LM 195/LM395 Ultra Reliable Power Transistors

General Description

The LM195/LM395 are fast, monolithic power transistors with complete overload protection. These devices, which act as high gain power transistors, have included on the chip, current limiting, power limiting, and thermal overload protection making them virtually impossible to destroy from any type of overload. In the standard TO-3 transistor power package, the LM195 will deliver load currents in excess of 1.0A and can switch 40 V in 500 ns .

The inclusion of thermal limiting, a feature not easily available in discrete designs, provides virtually absolute protection against overload. Excessive power dissipation or inadequate heat sinking causes the thermal limiting circuitry to turn off the device preventing excessive heating.
The LM195 offers a significant increase in reliability as well as simplifying power circuitry. In some applications, where protection is unusually difficult, such as switching regulators, lamp or solenoid drivers where normal power dissipation is low, the LM195 is especially advantageous.
The LM195 is easy to use and only a few precautions need be observed. Excessive collector to emitter voltage can destroy the LM195 as with any power transistor. When the device is used as an emitter follower with low source impedance, it is necessary to insert a 5.0 k resistor in series with the base lead to prevent possible emitter follower oscilla-
tions. Although the device is usually stable as an emitter follower, the resistor eliminates the possibility of trouble without degrading performance. Finally, since it has good high frequency response, supply bypassing is recommended.
For low-power applications (under 100 mA), refer to the LP395 Ultra Reliable Power Transistor.
The LM195/LM395 are available in standard TO-3 power packages and solid Kovar TO-5. The LM195 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM395 from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Features

- Internal thermal limiting
- Greater than 1.0A output current
- $3.0 \mu \mathrm{~A}$ typical base current
- 500 ns switching time
- 2.0 V saturation
- Base can be driven up to 40 V without damage
- Directly interfaces with CMOS or TTL
- 100% electrical burn-in

Simplified Circuit

TL/H/6009-1

Connection Diagrams

Bottom View
Order Number LM195K/883 See NS Package Number K02A

Order Number LM395T
See NS Package Number T03B

TO-5 Metal Can Package

Order Number LM195H/883
See NS Package Number H03B

\section*{Absolute Maximum Ratings
 If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
 Collector to Emitter Voltage
 | LM195 | 42 V |
| :--- | :---: |
| LM395 | 36 V |
| Collector to Base Voltage | |
| LM195 | 42 V |
| LM395 | 36 V |
| Base to Emitter Voltage (Forward) | |
| LM195 | 42 V |
| LM395 | 36 V |}

Preconditioning

100\% Burn-In In Thermal Limit

Electrical Characteristics (Note 1)

Parameter	Conditions	LM195			LM395			Units
		Min	Typ	Max	Min	Typ	Max	
Collector-Emitter Operating Voltage (Note 3)	$\mathrm{I}_{\mathrm{Q}} \leq \mathrm{I}_{\mathrm{C}} \leq \mathrm{I}_{\text {MAX }}$			42			36	V
Base to Emitter Breakdown Voltage	$0 \leq \mathrm{V}_{\text {CE }} \leq \mathrm{V}_{\text {CEMAX }}$	42			36	60		V
$\begin{aligned} & \text { Collector Current } \\ & \text { TO-3, TO-220 } \\ & \text { TO-5 } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}} \leq 7.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 1.8 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 1.8 \end{aligned}$		$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
Saturation Voltage	$\mathrm{I}_{\mathrm{C}} \leq 1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.8	2.0		1.8	2.2	V
Base Current	$\begin{aligned} & 0 \leq \mathrm{I}_{\mathrm{C}} \leq \mathrm{I}_{\text {MAX }} \\ & 0 \leq \mathrm{V}_{\mathrm{CE}} \leq \mathrm{V}_{\text {CEMAX }} \end{aligned}$		3.0	5.0		3.0	10	$\mu \mathrm{A}$
Quiescent Current (I_{Q})	$\begin{aligned} & \mathrm{V}_{\mathrm{be}}=0 \\ & 0 \leq \mathrm{V}_{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{CEMAX}} \end{aligned}$		2.0	5.0		2.0	10	mA
Base to Emitter Voltage	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.9			0.9		V
Switching Time	$\begin{aligned} & V_{C E}=36 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=36 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		500			500		ns
Thermal Resistance Junction to Case (Note 2)	TO-3 Package (K)		2.3	3.0		2.3	3.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	TO-5 Package (H)		12	15		12	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	TO-220 Package (T)					4	6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise specified, these specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the LM 195 and $0^{\circ} \mathrm{C} \leq+125^{\circ} \mathrm{C}$ for the LM 395 .
Note 2: Without a heat sink, the thermal resistance of the TO-5 package is about $+150^{\circ} \mathrm{C} / \mathrm{W}$, while that of the TO-3 package is $+35^{\circ} \mathrm{C} / \mathrm{W}$.
Note 3: Selected devices with higher breakdown available.
Note 4: Refer to RETS195H and RETS195K drawings of military LM195H and LM195K versions for specifications.

Typical Performance Characteristics (for K and T Packages)

Typical Performance Characteristics (for K and T Packages) (Continued)

Typical Applications

1.0 Amp Voltage Follower

TL/H/6009-12

*Protects against excessive base drive
**Needed for stability

TL/H/6009-14

Typical Applications (Continued)

TL/H/6009-17

TL/H/6009-18

Typical Applications (Continued)

TL/H/6009-21

Two Terminal Current Limiter

TL/H/6009-22

TL/H/6009-23
*Drive Voltage 0 V to $\geq 10 \mathrm{~V} \leq 42 \mathrm{~V}$
6.0V Shunt Regulator with Crowbar

Two Terminal 100 mA Current Regulator

TL/H/6009-25

TL/H/6009-24

Typical Applications (Continued)

TL/H/6009-29

TL/H/6009-30
*Prevents storage with fast fall time square wave drive

Typical Applications (Continued)

*Sixty turns wound on Arnold Type A-083081-2 core.
**Four devices in parallel
\dagger Solid tantalum

LM3045/LM3046/LM3086 Transistor Arrays

General Description

The LM3045, LM3046 and LM3086 each consist of five general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially-connected pair. The transistors are well suited to a wide variety of applications in low power system in the DC through VHF range. They may be used as discrete transistors in conventional circuits however, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The LM3045 is supplied in a 14 -lead cavity dual-in-line package rated for operation over the full military temperature range. The LM3046 and LM3086 are electrically identical to the LM3045 but are supplied in a 14-lead molded dual-in-line package for applications requiring only a limited temperature range.

Features

- Two matched pairs of transistors
$V_{B E}$ matched $\pm 5 \mathrm{mV}$
Input offset current $2 \mu \mathrm{~A}$ max at $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
- Five general purpose monolithic transistors
- Operation from DC to 120 MHz
- Wide operating current range
- Low noise figure $\quad 3.2 \mathrm{~dB}$ typ at 1 kHz
- Full military
temperature range (LM3045) $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Applications

- General use in all types of signal processing systems operating anywhere in the frequency range from DC to VHF
- Custom designed differential amplifiers
- Temperature compensated amplifiers

Schematic and Connection Diagram

Dual-In-Line and Small Outline Packages

TL/H/7950-1

Order Number LM3045J, LM3046M, LM3046N or LM3086N
See NS Package Number J14A, M14A or N14A

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Conditions	Limits			Limits			Units
		LM3045, LM3046			LM3086			
		Min	Typ	Max	Min	Typ	Max	
Collector to Base Breakdown Voltage ($\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO} \text {) }}$	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	20	60		20	60		V
Collector to Emitter Breakdown Voltage (V(BR)CEO)	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	15	24		15	24		V
Collector to Substrate Breakdown Voltage (V(BR)CIO)	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{Cl}}=0$	20	60		20	60		V
Emitter to Base Breakdown Voltage ($\mathrm{V}_{(\mathrm{BR}) \text { EBO }}$)	$\mathrm{I}_{\mathrm{E}} 10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	5	7		5	7		V
Collector Cutoff Current (${ }_{\text {CBO }}$)	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		0.002	40		0.002	100	nA
Collector Cutoff Current (ICEO)	$\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$			0.5			5	$\mu \mathrm{A}$
Static Forward Current Transfer Ratio (Static Beta) (h_{FE})	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V} \\ \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \end{array}\right.$		100			100		
		40	100		40	100		
			54			54		
Input Offset Current for Matched Pair Q_{1} and $\mathrm{Q}_{2} \mid l_{\mathrm{O}_{1}}$ - $\mathrm{I}_{\mathrm{O} 2} \mid$	$\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		0.3	2				$\mu \mathrm{A}$
Base to Emitter Voltage (VBE)	$V_{C E}=3 V\left\{\begin{array}{l} I_{E}=1 \mathrm{~mA} \\ \mathrm{I}_{E}=10 \mathrm{~mA} \end{array}\right.$		0.715			0.715		V
			0.800			0.800		
Magnitude of Input Offset Voltage for Differential Pair $\left\|\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}\right\|$	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		0.45	5				mV
Magnitude of Input Offset Voltage for Isolated Transistors $\left\|\mathrm{V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{BE} 4}\right\|,\left\|\mathrm{V}_{\mathrm{BE}} 4-\mathrm{V}_{\mathrm{BE}}\right\|$, $\left\|V_{B E 5}-V_{B E 3}\right\|$	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		0.45	5				mV
Temperature Coefficient of Base to Emitter Voltage $\left(\frac{\Delta V_{\mathrm{BE}}}{\Delta \mathrm{T}}\right)$	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		-1.9			-1.9		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Collector to Emitter Saturation Voltage (VEE(SAT)	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$		0.23			0.23		V
Temperature Coefficient of Input Offset Voltage $\left(\frac{\Delta V_{10}}{\Delta T}\right)$	$\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		1.1					$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Note 1: The collector of each transistor of the LM3045, LM3046, and LM3086 is isolated from the substrate by an integral diode. The substrate (terminal 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.
Electrical Characteristics (Continued)

Parameter	Conditions	Min	Typ	Max	Units
Low Frequency Noise Figure (NF)	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}$, $\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega$	3.25		dB	

LOW FREQUENCY, SMALL SIGNAL EQUIVALENT CIRCUIT CHARACTERISTICS

Forward Current Transfer Ratio (h_{fe})	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$		110 (LM3045, LM3046) (LM3086)		
Short Circuit Input Impednace (h_{ie})			3.5		k Ω
Open Circuit Output Impedance ($\mathrm{h}_{\text {Oe }}$)			15.6		$\mu \mathrm{mho}$
Open Circuit Reverse Voltage Transfer Ratio ($\mathrm{hre}_{\text {re }}$)			1.8×10^{-4}		
ADMITTANCE CHARACTERISTICS					
Forward Transfer Admittance (Y_{fe})	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$		$31-\mathrm{j} 1.5$		
Input Admittance (Y_{ie})			$0.3+\mathrm{J} 0.04$		
Output Admittance ($\mathrm{Y}_{0 \theta}$)			$0.001+\mathrm{j} 0.03$		
Reverse Transfer Admittance (Y_{re})			See Curve		
Gain Bandwidth Product (f_{T})	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=3 \mathrm{~mA}$	300	550		
Emitter to Base Capacitance ($\mathrm{CEB}^{\text {) }}$	$V_{E B}=3 V, I_{E}=0$		0.6		pF
Collector to Base Capacitance (C_{CB})	$V_{C B}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		0.58		pF
Collector to Substrate Capacitance (C_{Cl})	$\mathrm{V}_{C S}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		2.8		pF

Typical Performance Characteristics

Typical Static Base To Emitter Voltage Characteristic and Input Offset Voltage for Differential Pair and Paired Isolated Transistors vs Emitter Current

TL/H/7950-3

Typical Performance Characteristics (Continued)

Typical Performance Characteristics (Continued)

TL/H/7950-7

LM3146 High Voltage Transistor Array

General Description

The LM3146 consists of five high voltage general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially-connected pair. The transistors are well suited to a wide variety of applications in low power system in the dc through VHF range. They may be used as discrete transistors in conventional circuits however, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The LM3146 is supplied in a 14 -lead molded dual-in-line package for applications requiring only a limited temperature range.

Features

- High voltage matched pairs of transistors, V_{BE} matched $\pm 5 \mathrm{mV}$, input offset current $2 \mu \mathrm{~A}$ max at $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
- Five general purpose monolithic transistors
- Operation from dc to 120 MHz
- Wide operating current range
- Low noise figure
3.2 dB typ at 1 kHz

Applications

■ General use in all types of signal processing systems operating anywhere in the frequency range from dc to VHF

- Custom designed differential amplifiers
- Temperature compensated amplifiers

Connection Diagram

Dual-In-Line and Small Outline Packages

TL/H/7959-1
Top View
Order Number LM3146M or LM3146N
See NS Package Number M14A or N14A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

LM3146 Units
Power Dissipation: Each transistor
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}>55^{\circ} \mathrm{C}$
Power Dissipation: Total Package

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	500	mW
$\mathrm{~T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$	Derate at 6.67	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Collector to Emitter Voltage, $\mathrm{V}_{\text {CEO }}$	30	V
Collector to Base Voltage, $\mathrm{V}_{\text {CBO }}$	40	V
Collector to Substrate Voltage,		
$\mathrm{V}_{\mathrm{CIO}}$ (Note 1)	40	V
Emitter to Base Voltage, $\mathrm{V}_{\text {EBO }}$		
\quad (Note 2)	5	V
Collector to Current, IC	50	mA
Operating Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

Derate at $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

DC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Limits			Units
			Min	Typ	Max	
$V_{\text {(BR) }}$ CBO	Collector to Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	40	72		V
$V_{\text {(BR) }}$ CEO	Collector to Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	30	56		V
$\mathrm{V}_{\text {(BR) }} \mathrm{ClO}$	Collector to Substrate Breakdown Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{Cl}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, \\ & \mathrm{I}_{\mathrm{E}}=0 \end{aligned}$	40	72		V
$V_{\text {(BR) EBO }}$	Emitter to Base Breakdown Voltage (Note 2)	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$	5	7		V
$\mathrm{I}_{\mathrm{CBO}}$	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		0.002	100	nA
ICEO	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{B}}=0$		(Note 3)	5	$\mu \mathrm{A}$
$h_{\text {FE }}$	Static Forward Current Transfer Ratio (Static Beta)	$\begin{aligned} & I_{C}=10 \mathrm{~mA}, V_{C E}=5 \mathrm{~V} \\ & I_{C}=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V} \\ & I_{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V} \end{aligned}$	30	$\begin{gathered} 85 \\ 100 \\ 90 \end{gathered}$		
$\mathrm{I}_{\mathrm{B} 1}-\mathrm{l}_{\mathrm{B} 2}$	Input Offset Current for Matched Pair Q1 and Q2	$\begin{aligned} & \mathrm{I}_{\mathrm{C} 1}=1 \mathrm{C} 2=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$		0.3	2	$\mu \mathrm{A}$
V_{BE}	Base to Emitter Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}$	0.63	0.73	0.83	V
$\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}$	Magnitude of Input Offset Voltage for Differential Pair	$\mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$		0.48	5	mV
$\Delta V_{B E} / \Delta T$	Temperature Coefficient of Base to Emitter Voltage	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{E}}=1 \mathrm{~mA}$		-1.9		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CES (SAT) }}$	Collector to Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$		0.33		V
$\Delta V_{10} / \Delta T$	Temperature Coefficient of Input Offset Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}$		1.1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Note 1: The collector of each transistor is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transistors and provide normal transistor action. To avoid undesired coupling between transistors, the substrate terminal should be maintained at either dc or signal (ac) ground. A suitable bypass capacitor can be used to establish a signal ground.
Note 2: If the transistors are forced into zener breakdown ($\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$), degradation of forward transfer current ratio (h_{FE}) can occur.
Note 3: See curve.

AC Electrical Characteristics

Symbol	Parameter	Conditions	Limits			Units
			Min	Typ	Max	
NF	Low Frequency Noise Figure	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega \end{aligned}$		3.25		dB
f_{T}	Gain Bandwidth Product	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}$	300	500		MHz
$\mathrm{C}_{\text {EB }}$	Emitter to Base Capacitance	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		0.70		pF
C_{CB}	Collector to Base Capacitance	$\mathrm{V}_{C B}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		0.37		pF
C_{Cl}	Collector to Substrate Capacitance	$\mathrm{V}_{\mathrm{Cl}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		2.2		pF

Low Frequency, Small Signal Equivalent Circuit Characteristics

$h_{f e}$	Forward Current Transfer Ratio	$f=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		100	
$\mathrm{~h}_{\mathrm{ie}}$	Short Circuit Input Impedance	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		3.5	
$\mathrm{~h}_{\mathrm{oe}}$	Open Circuit Output Impedance	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		15.6	
$\mathrm{~h}_{\mathrm{re}}$	Open Circuit Reverse Voltage Transfer Ratio	$f=1 \mathrm{kHz}, V_{\mathrm{CE}}=3 \mathrm{~V}$, $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		1.8×10^{-4}	

Admittance Characteristics

$Y_{f e}$	Forward Transfer Admittance	$f=1 \mathrm{MHz}, V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		$31-\mathrm{j} 1.5$	
Y_{ie}	Input Admittance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	mmho		
Y_{oe}	Output Admittance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$0.3+\mathrm{j} 0.04$		mmho
Y_{re}	Reverse Transfer Admittance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$0.001+\mathrm{j} 0.03$		mmho

Note 1: The collector of each transistor is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transistors and provide normal transistor action. To avoid undesired coupling between transistors, the substrate terminal should be maintained at either dc or signal (ac) ground. A suitable bypass capacitor can be used to establish a signal ground.
Note 2: If the transistors are forced into zener breakdown ($\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$), degradation of forward transfer current ratio (h_{FE}) can occur.
Note 3: See curve.

Typical Performance Characteristics

TA - AMBient temperature (${ }^{\circ} \mathrm{C}$)
$V_{B E}$ and $V_{1 O}$ vs

Typical Performance Characteristics (Continued)

TL/H/7959-3

National Semiconductor

LP395 Ultra Reliable Power Transistor

General Description

The LP395 is a fast monolithic transistor with complete overload protection. This very high gain transistor has included on the chip, current limiting, power limiting, and thermal overload protection, making it difficult to destroy from almost any type of overload. Available in an epoxy TO-92 transistor package this device is guaranteed to deliver 100 mA.
Thermal limiting at the chip level, a feature not available in discrete designs, provides comprehensive protection against overload. Excessive power dissipation or inadequate heat sinking causes the thermal limiting circuitry to turn off the device preventing excessive die temperature.
The LP395 offers a significant increase in reliability while simplifying protection circuitry. It is especially attractive as a small incandescent lamp or solenoid driver because of its low drive requirements and blowout-proof design.
The LP395 is easy to use and only a few precautions need be observed. Excessive collector to emitter voltage can destroy the LP395 as with any transistor. When the device is used as an emitter follower with a low source impedance, it is necessary to insert a $4.7 \mathrm{k} \Omega$ resistor in series with the base lead to prevent possible emitter follower oscillations. Also since it has good high frequency response, supply bypassing is recommended.

Areas where the LP395 differs from a standard NPN transistor are in saturation voltage, leakage (quiescent) current and in base current. Since the internal protection circuitry requires voltage and current to function, the minimum voltage across the device in the on condition (saturated) is typically 1.6 Volts, while in the off condition the quiescent (leakage) current is typically $200 \mu \mathrm{~A}$. Base current in this device flows out of the base lead, rather than into the base as is the case with conventional NPN transistors. Also the base can be driven positive up to 36 Volts without damage, but will draw current if driven negative more than 0.6 Volts. Additionally, if the base lead is left open, the LP395 will turn on. The LP395 is a low-power version of the 1-Amp LM195/LM295/LM395 Ultra Reliable Power Transistor.
The LP395 is rated for operation over a $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range.

Features

- Internal thermal limiting
- Internal current and power limiting
- Guaranteed 100 mA output current
- $0.5 \mu \mathrm{~A}$ typical base current
- Directly interfaces with TTL or CMOS
- +36 Volts on base causes no damage
- $2 \mu \mathrm{~s}$ switching time

Connection Diagram

TO-92 Package

TL/H/5525-1
Order Number LP395Z
See NS Package Z03A

Typical Applications

Fully Protected Lamp Driver

TL/H/5525-3

Absolute Maximum Ratings

Collector to Emitter Voltage	36 V
Collector to Base Voltage	36 V
Base to Emitter Voltage (Forward)	36 V
Base to Emitter Voltage (Reverse)	10 V
Base to Emitter Current (Reverse)	20 mA

20 mA

Collector Current Limit	Internally Limited
Power Dissipation	Internally Limited
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

Internally Limited Internally Limited $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $260^{\circ} \mathrm{C}$

Electrical Characteristics

Symbol	Parameter	Conditions	Typical	Tested Limit (Note 2)		Units (Limit)
$\mathrm{V}_{\text {ce }}$	Collector to Emitter Operating Voltage	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{C}} \leq 100 \mathrm{~mA}$		36	$\begin{gathered} 36 \\ \text { (Note 1) } \end{gathered}$	V(Max)
${ }^{\text {ICL }}$	Collector Current Limit (Note 4)	$\begin{aligned} & V_{B E}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=36 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{BE}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{BE}}=2 \mathrm{~V}, 2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CE}} \leq 6 \mathrm{~V} \end{aligned}$	$\begin{gathered} 45 \\ 90 \\ 130 \end{gathered}$	$\begin{gathered} 25 \\ 60 \\ 100 \end{gathered}$	$\begin{gathered} 20 \\ 50 \\ 100 \end{gathered}$	mA(Min) mA(Min) mA(Min)
I_{B}	Base Current	$0 \leq \mathrm{I}_{\mathrm{C}} \leq 100 \mathrm{~mA}$	-0.3	-2.0	-2.5	$\mu A($ Max $)$
I_{0}	Quiescent Current	$\mathrm{V}_{\mathrm{BE}}=0 \mathrm{~V}, 0 \leq \mathrm{V}_{\mathrm{CE}} \leq 36 \mathrm{~V}$	0.24	0.50	0.60	mA(Max)
$\mathrm{V}_{\text {CES(SAT) }}$	Saturation Voltage	$\mathrm{V}_{\mathrm{BE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	1.82	2.00	2.10	V (Max)
$\mathrm{BV}_{\mathrm{BE}}$	Base to Emitter Breakdown Voltage (Note 4)	$0 \leq \mathrm{V}_{\mathrm{CE}} \leq 36 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=2 \mu \mathrm{~A}$		36	36	$V($ Min $)$
$V_{B E}$	Base to Emitter Voltage (Note 5)	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$	0.69	0.79	0.90	V(Max)
		$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$ (Note 4)	1.02		1.40	V (Max)
ts	Switching Time	$\begin{aligned} & V_{C E}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=200 \Omega \\ & \mathrm{~V}_{\mathrm{BE}}=0 \mathrm{~V},+2 \mathrm{~V}, 0 \mathrm{~V} \end{aligned}$	2			$\mu \mathrm{s}$
θ_{JA}	Thermal Resistance Junction to Ambient	$0.4^{\prime \prime}$ leads soldered to printed circuit board	150		180	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & (\mathrm{Max}) \end{aligned}$
		$0.125^{\prime \prime}$ leads soldered to printed circuit board	130		160	${ }^{\circ} \mathrm{C} / \mathrm{W}$ (Max)

Note 1: Parameters identified with boldface type apply at temp. extremes. All other numbers, unless noted apply at $+25^{\circ} \mathrm{C}$.
Note 2: Guaranteed and 100\% production tested.
Note 3: Guaranteed (but not 100% production tested) over the operating temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 4: These numbers apply for pulse testing with a low duty cycle.
Note 5: Base positive with respect to emitter.

Simplified Circuit

Applications Information

One failure mode incandescent lamps may experience is one in which the filament resistance drops to a very low value before it actually blows out. This is especially rough on most solid-state lamp drivers and in most cases a lamp failure of this type will also cause the lamp driver to fail. Because of its high gain and blowout-proof design, the LP395 is an ideal candidate for reliably driving small incandescent lamps. Additionally, the current limiting characteristics of the LP395 are advantageous as it serves to limit the cold filament inrush current, thus increasing lamp life.

Typical Performance Characteristics

TL/H/5525-9

Typical Applications (Continued)

TL/H/5525-7

Typical Applications (Continued)

Two Terminal Current Limiter

Section 6
Surface Mount

Section 6 Contents

Packing Considerations (Methods, Materials and Recycling) 6-3
Board Mount of Surface Mount Components 6-19
Recommended Soldering Profiles-Surface Mount 6-23
AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability 6-24
Land Pattern Recommendations 6-35

Packing Considerations (Methods, Materials and Rococling)

Transport Media

All NSC devices are prepared, inspected and packed to insure proper physical support and to protect during transport and shipment. All assembled devices are packed in one or more of the following container forms-immediate containers, intermediate containers and outer/shipping containers. An example of each container form is illustrated below.

IMMEDIATE CONTAINER

TL/P/11809-1

INTERMEDIATE CONTAINER

TL/P/11809-4

TL/P/11809-5

TL/P/11809-6

OUTER/SHIPPING CONTAINER

TL/P/11809-7

Methods of immediate carrier packing include insertion of components into molded trays and rails/tubes, mounting of components onto tape and reel or placement in corrugated cartons. The immediate containers are then packed into intermediate containers (bags or boxes) which specify quantities of trays, rails/tubes or tape and reels. Outer/shipping containers are then filled or partially filled with intermediate containers to meet order quantity requirements and to further insure protection from transportation hazards. Additional dunnage filler material is required to fill voids within the intermediate and outer/shipping containers.

General Packing Requirements

NSC packing methods and materials are designed based on the following considerations:

- Optimum protection to the products-it must provide adequate protection from handling (electrostatic discharge) and transportation hazards;
- Ease of handling-it should be easy to assemble, load and unload products in and from it; and
- Impacts to the environment-it shall be reusable and recyclable.

Levels of Product Packing

IMMEDIATE CONTAINER

The first level of product packing is the immediate container. The immediate container type varies with the product or package being packed. In addition, the materials used in the immediate container depend on the fragility, size and profile of the product. The four types of immediate containers used by NSC are rails/tubes, trays, tape and reel, and corrugated and chipboard containers.
Rails/tubes are generally made of acrylic or polyvinyl chloride (PVC) plastics. The electrical characteristics of the material are altered by either intrinsically adding carbon fillers, and/or topically coating it with antistatic solution. Refer to Table I for rail/tube material and recyclabillty information.

TABLE I. Plastic Rail/Tube and Stopper Requirements

Package Type	Rail		Type	Stopper Material	Code/Symbol (Note 1)	Recyclability
	Material	Code/Symbol (Note 1)				
DIP's						
Plastic	Polyvinylchloride	03/PVC	Pin	Polyamide	07/PA	Yes
Ceramic	Polyvinylchloride	03/PVC	Pin	Polyamide	07/PA	Yes
Sidebraze	Polyvinylchloride	03/PVC	Pin	Polyamide	07/PA	Yes
PLCC	Polyvinylchloride	03/PVC	Plug	Rubber	07/SBR	Yes
TapePak	Polyvinylchloride	03/PVC	Plug	Rubber	07/SBR	Yes
Flatpack	Polyvinylchloride	03/PVC	Pin	Polymide	07/PA	Yes
Cerpack	Polyvinylchloride	03/PVC	Pin	Polymide	07/PA	Yes
TO-220/202	Polyvinylchloride	03/PVC	Pin	Polymide	07/PA	Yes
$\begin{aligned} & \text { TO-5/8 } \\ & \text { (in Carrier) } \\ & \hline \end{aligned}$	Polyvinylchloride	03/PVC	Pin	Polymide	07/PA	Yes
SOP	Polyvinylchloride	03/PVC	Plug	Rubber	07/SBR	Yes
$\begin{aligned} & \text { LCC } \\ & \quad 18 \mathrm{~L}-44 \mathrm{~L} \end{aligned}$	Polyvinylchloride	03/PVC	Plug	Rubber	07/SBR	Yes

Note 1: ISO 1043-1 International Standards-Plastic Symbols.
SAE J1344 Marking of Plastic Parts.
ASTM D 1972-91 Standard Practice for Generic Marking of Plastic Products.
DIN 6120, German Recycling Systems, RESY for paperbased and VGK for plastic packing materials.

Molded injection and vacuum formed trays can be either conductive or static dissipative. Molded injection trays are classified as either low-temperature or high-temperature
depending on the material type. Vacuum formed trays are only used in ambient room temperature conditions. Refer to Table II for tray material and recyclability information.

TABLE II. Tray Requirements

Package Type	Class	Material	Tray		Binding Type
			Recyclability (Note 1)	Code/Symbol (Note 1)	
PQFP (AII)	High Temperature	Polyethersulfone	Yes	07/PES	Wire Tie or Nylon Strap
	Low Temperature	Acrylonitrilebutadiene Styrene	Yes	07/ABS	Wire Tie or Nylon Strap
PGA, LDCC CERQUADs and LCC (48 leads- 125 leads)	Low Temperature Only	ABS/PVC	Yes	07/ABS-PVC	Wire Tie
PPGA	Low Temperature Only	Polyarylsulfone	Yes	07/PAS	Wire Tie

Tape and reel is a multi-part immediate container system. The reel is made of either polystyrene (PS) material coated with antistatic solution or chipboard. The embossed or cavity tape is made of either PVC or PS material. The cover tape
is made of polyester (PET) and polyethylene (PE) materials. Refer to Table III for tape and reel material and recyclability Information.

TABLE III. Tape and Reel Requirements

Package Type	Reel		Cover Type		Carrier Tape		
	Material	Code/ Symbol (Note 1)	Material	Code/ Symbol (Note 1)	Material	Code/ Symbol (Note 1)	(Note 1) (Nobility
TO-92	Chipboard	Resy	N/A		Paper Tape		Yes
SOP-23	Polystyrene Chipboard	$06 / P S$ Resy	Polystyrene	$06 /$ PS	PVC	$03 /$ PVC	Yes
SOP, SSOP and PLCC	Polystyrene Polyethylene	$06 /$ PS	Polyester	07/PET-PE	PVC	$03 /$ PVC	Yes

Note 1: 150 1043-1 International Standards-Plastic Symbols.
SAE J1344 Marking of Plastic Parts.
ASTM D 1972-91 Standard Practice for Generic Marking of Plastic Products.
DIN 6120, German Recycling Systems, RESY for paperbased and VGK for plastic packing materials.

Corrugated containers are generally constructed with fibreboard facings and a fluted corrugated medium in between the facings. Chipboard containers are comprised of just one
fibreboard facing. Facings and corrugated medium are kraft (brown) fibreboard, and generally single wall construction. Refer to Table IV for material and recyclability information.

TABLE IV. Fibreboard Container Requirements

Package Type	Pack Method		Container Type	Recyclability
	Material	Code/ Symbol (Note 1)		
$\begin{aligned} & \text { TO-92/18, } \\ & \text { TO-46/5, } \\ & \text { TO-39, 220, } \\ & \text { TO-202/126, } \\ & \text { TO-237 } \end{aligned}$	Corrugated (E070 BOX)	Resy	IMM	Yes
All Products	Corrguated	Resy	INT and SHIP	Yes
All Products	3-Ply Paper (Padpak)	Resy	Dunnage	Yes
All Products PLCC	Plastic Bubble Sheet	04/PE	Dunnage	Yes

Note 1: ISO 1043-1 International Standards-Plastic Symbols.
SAE J1344 Marking of Plastic Parts.
ASTM D1972-91 Standard Practice for Generic Marking of Plastic Products.
DIN 6120, German Recycling Systems, RESY for paperbased and VGK for plastic packing materials.

INTERMEDIATE CONTAINERS

The second level of product packing is the intermediate container. Three types on intermediate containers are used by NSC. They are plastic bags, moisture barrier bags and corrugated cartons/boxes.
Two types of plastic bags are used and usage of each type depends on the product or package being packed. Conductive bags are made of polyvinylchloride plastic material. The electrical characteristics of the bag are altered by adding
carbon fillers which make the bag black (opaque) in color. Conductive bags are used on products or packages that are packed in static dissipative (SD) rails/tubes. Static shielding bags are made of two layers of SD polyethylene sheets with a metallized film separating the sheets. Refer to Table V for material and recyclability information.
Moisture barrier bags are used on rail/tube, tape and reel, and tray packs for moisture sensitive products. NSC uses National Metallizing's StratoguardTM 4.6.

TABLE V. Conductive and Static Shielding Bag Requirements

Package Type	Container Type	Material Type	Mat'l and Symbol (Note 1)	Mat'I Recyclabillty
All Prod. in Rails	Conductive Bag	Polyethlene	04/PE	Yes
TO-92/81, TO-46/5, TO-39/220, TO-202/126, TO-3/237	Static Shielding Bag	Polyethlene Alum. Laminant	N/A	No

TABLE VI. Drypack Bag Requirements

Package Type	Container Type	Material Type	Mat'I and Symbol (Note 1)	Mat'I Recyclability
TapePak PLCC (52-84L) PQFP	Drypack Bag	StratoguardTM 4.6	N/A	No

Note 1: ISO 1043-1 International Standards-Plastic Symbols. SAE J1344 Marking of Plastic Parts.
ASTM D1972-91 Standard Practice for Generic Marking of Plastic Products.
DIN 6120, German Recycling Systems, RESY for paperbased and VGK for plastic packing materials

Corrugated cartons/boxes are generally constructed with fibreboard facings and a fluted corrugated medium in between the facings. Facings and corrugated medium are kraft (brown) fibreboards, and are generally of single wall construction. Carton style varies with the product that it will contain. For example, packing of a rail/tube will require the use of a carton with a roll end from lock (REFL) design. Other products generally use the regular slotted container (RSC) box. Refer to Table IV for material and recyclability information.

OUTER/SHIPPING CONTAINERS

The third level of product packing is the outer/shipping container. The outer/shipping containers use by NSC are similar to the corrugated containers used for immediate and intermediate packaging, but are heavier in facing thickness. The style generally used is the regular slotted container (RSC) box and can be single, double or triple wall, depending on the total weight of products being transported or shipped. Refer to Table IV for material and recyclability information.

OTHER PACKING MATERIALS

Additional dunnage and void filler materials are required to fill voids within the intermediate and outer/shipping containers. Two types of dunnage/filler material are Padpack and bubble pack. Padpak is a machine processed, 3-ply kraft paper sheet dunnage system. Refer to Table IV for material and recyclability information.
Bubble pack is made of polyethylene plastic sheets with air pockets trapped in between the plastic layers and can be either static dissipative or conductive. Refer to Table IV for material and recyclability information.

Immediate Container Pack Methods

The following table identifies the primary immediate container pack method for all hermetic and plastic packages offered by National Semiconductor. A secondary immediate container pack method is identified where applicable.

Immediate Packing Method for Ceramic Packages

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
		Method	Quantity	Method	Quantity
Ceramic Sidebrazed Dual-In-Line Package (SB)	D08C	Rail/Tube	35		
	D14D	Rail/Tube	25		
	D16C	Rail/Tube	20		
	D18A	Rail/Tube	20		\because
	D20A	Rail/Tube	18		
	D20B	Rail/Tube	18		
	D24C	Rail/Tube	15		
	D24H	Rail/Tube	15		
	D24K	Rail/Tube	15		
	D28D	Rail/Tube	13		
	D28G	Rail/Tube	13		
	D28H	Rail/Tube	13		
	D40C	Rail/Tube	9		
	D40J	Rail/Tube	9		
	D48A	Rail/Tube	7		
	D52A	Rail/Tube	7		
Ceramic Leadless Chip Carrier (LCC)	E20A	Rail/Tube	50		
	EA20B	Rail/Tube	50		
	E24B	Tray	25		
	E28A	Tray	28		
	EA028C	Tray	100		
	E32A	Rail/Tube	35		
	E32B	Rail/Tube	35		
	E32C	Rail/Tube	35		
	E40A	Rail/Tube	35		
	E44A	Rail/Tube	25		
	E48A	Tray	25		
	E68B	Tray	48		
	E68C	Tray	48		
	E84A	Tray	42		
	E84B	Tray	42		

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Contalner	
		Method	Quantity	Method	Quantity
Ceramic Quad J-Bend (CQJB)	EL28A	Tray	96		
	EL44A	Tray	80		
	EL44B	Tray	80		
	EL44C	Tray	80		
	EL52A	Tray	50		
	EL68A	Tray	44		
	EL68B	Tray	44		
	EL68C	Tray	44		
	EL84A	Tray	42		
Ceramic Quad Flatpack (CQFP)	EL28B	Rail	15		
	EL64A	Box	36		
	EL100A	Tray	12		
	EL116A	Tray	12		
	EL132B	Tray	20		
	EL132C	Tray	20		
	EL132D	Tray	20		
	EL164A	Tray	12		
	EL172B	Tray	12		
	EL172C	Tray	12		
Ceramic Flatpack	F10B	Carrier/Rail	19	Carrier/Box	200
	F14C	Carrier/Rail	19	Carrier/Box	200
	F16B	Carrier/Rail	19	Carrier/Box	200

Immedlate Packing Method for Ceramic Packages (Continued)

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
		Method	Quantity	Method	Quantity
Ceramic Pin Grid Array (CPGA)	U44A	Tray	80		
	U68B	Tray	42		
	U68C	Tray	42		
	U68D	Tray	42		
	U68E	Tray	42		
	U75A	Tray	35		
	U84A	Tray	42		
	U84B	Tray	42		
	U84C	Tray	42		
	U99A	Tray	25		
	U100A	Tray	30		
	U109A	Tray	25		
	U120A	Tray	30		
	U120C	Tray	30		
	U124A	Tray	30		
	U132A	Tray	30		
	U132B	Tray	30		
	U144A	Tray	20		
	U156A	Tray	20		
	U156B	Tray	20		
	U169A	Tray	20		
	U173A	Tray	20		
	U175A	Tray	20		
	U180A	Tray	20		
	U223A	Tray	20		
	U224A	Tray	20		
	U257A	Tray	12		
	U259A	Tray	12		
	U299A	Tray	12		
	U301A	Tray	12		
	U303A	Tray	12		
	U323A	Tray	12		

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
		Method	Quantity	Method	Quantity
Cerpack	W10A	Carrier/Rail	19	Carrier/Box	200
	W14B	Carrier/Rail	19	Carrier/Box	200
	W14C	Carrier/Rail	19	Carrier/Box	200
	W16A	Carrier/Rail	19	Carrier/Box	200
	W20A	Carrier/Rail	19	Carrier/Box	200
	W24C	Carrier/Rail	15	Carrier/Box	80
	W28A	Carrier/Rail	15	Carrier/Box	80
	WA28D	Carrier/Rail	15	Carrier/Box	80
Cerquad	W24B	Rail/Tube	15		
	W56B	Tray	20		
	W64A	Tray	20		
	W68A	Tray	12		
	W84A :	Tray	12		
Cerquad, EIAJ	WA80A	Tray	84		
	WAB0AQ	Tray	84	.	
	W120A	Tray	12		
	W144A	Tray	12		
	W144B	Tray	12		
	W160A	Tray	12		
	W208A	Tray	12		

Immedlate Packing Method for Metal Cans

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
	Method	Quantity	Method	Quantity	
TO-5	H06C	Tray	100	Carrier/Rail	18
	H08A	Tray	100	Carrier/Rail	18
	H08C	Tray	100	Carrier/Rail	18
	H10C	Tray	100	Cerrier/Rail	18
	H03C	Box	1800	Tray	100
	H03A	Tray	100	Carrier/Rail	18
	H03B	Tray	100	Carrier/Rail	18
	HA04E	Tray	100	Carrier/Rail	18
TO-52	H02A	Box	1800	Tray	100
	H03H	Box	1800	Tray	100
	H04A	Box	1800	Tray	100
	H04D	Box	1800	Tray	100
	H03J	Box	1800	Tray	100

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
		Method	Quantity	Method	Quantity
Small Outline Transistor (SOT-23)	M03A	Tape and Reel	$\begin{aligned} & 3000 / \\ & 10000 \end{aligned}$	Bulk/Bag	500
	мозв	Tape and Reel	$\begin{aligned} & 3000 / \\ & 10000 \end{aligned}$	Bulk/Bag	500
Small Outline Package, JEDEC (SOP)	M08A	Rail/Tube	95	Tape and Reel	2500
	M14A	Rail/Tube	55	Tape and Reel	2500
	M14B	Rail/Tube	50	Tape and Reel	1000
	M16A	Rail/Tube	48	Tape and Reel	2500
	M16B	Rail/Tube	45	Tape and Reel	1000
	M20B	Rail/Tube	36	Tape and Reel	1000
	M24B	Rail/Tube	30	Tape and Reel	1000
	M28B	Rail/Tube	26	Tape and Reel	1000
Small Outline Package, EIAJ (SOP)	M14D	Rail/Tube	47	Tape and Reel	1000
	M16D	Rail/Tube	47	Tape and Reel	1000
	M20D	Rail/Tube	37	Tape and Reel	1000
Shrink Small Outline Package, JEDEC (SSOP)	MQA20	Rail/Tube	54	Tape and Reel	2500
	MQA24	Rail/Tube	54	Tape and Reel	2500
	MS48A	Rail/Tube	29	Tape and Reel	1000
	MS56A	Rail/Tube	25	Tape and Reel	1000
Shrink Small Outline Package, EIAJ (SSOP)	MSA20	Rail/Tube	65	Tape and Reel	1000
	MSA24	Rail/Tube	58	Tape and Reel	1000
	MS40A	Rail/Tube	34	Tape and Reel	1000
Very Small Outline Package (VSOP)	M40A	Rail/Tube	34	Tape and Reel	1000
Thin Small Outline Package, EIAJ (TSOP)	MBHi32A	Tray	156		
Thin Shrink Small Outline Package, EIAJ (TSSOP)	MTA20	Tape and Reel	2500		

Immediate Packing Method for Plastic Packages (Continued)

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
		Method	Quantity	Method	Quantity
Plastic Quad Flatpack (PQFP)	VEF44A	Tray	96		
	VBG48A	Tray	60		
	VHG80A	Tray	60		
	VJE80A	Tray	84		
	VCC80A	Tray	50/66		
	VCE100A	Tray	84		
	VLJ100A	Tray	50		
	VJG100A	Tray	60		
	VNG144A	Tray	60		
	VUL160A	Tray	24		
	VQL160A	Tray	24		
	VUW208A	Tray	24		
	VF132A	Tray	36		
	VF196A	Tray	21		
TO-92	Z03A	Box	1800	Tape and Reel	2000
	Z03B	Box	1800	Tape and Reel	2000
	Z03C	Box	1800	Tape and Reel	2000
	Z03D	Box	1800	Tape and Reel	2000
	Z03E	Box	1800	Tape and Reel	2000
	Z03G	Box	1800	Tape and Reel	2000
	Z03H	Box	1800	Tape and Reel	2000
	Z03J	Box	1800	Tape and Reel	2000

Labeling

National Semiconductor offers 3 standard bar code labels; reel and intermediate container labels for Tape and Reel; intermediate container label other than for Tape and Reel;
and outer/shipping container labels. The tape and reel, and intermediate container labels are National's own format while the outer/shipping container label is based on the EIA-556-A label standard.

NSC Standard Tape and Reel Label

This label is placed on the reel (immediate container) as well as on the intermediate box.

NSC Standard Outer/Shipping Container Label

Board Mount of Surface Mount Components

Abstract

In facing the challenges of "Surface Mount Technology", many manufacturers of printed circuit boards have taken steps to convert some portions of their boards to this process. However, as the availability of all products as surface mount components is still limited, many have had to mix lead-inserted components with surface mount devices (SMD's). Furthermore, to take advantage of using both sides of the board, some surface mounted components are adhered to the bottom side of the board while the top side is reserved for the conventional lead-insert packages and fine pitch surface mount packages.
There are three surface mount processes in hi-volume use today:

1. WAVE SOLDER; the surface mounted components are adhered to the bottom side of the board while the top side is reserved for the lead-inserted packages. The surface mount components are subjected to severe thermal stress when they are immersed into the molten solder.
2. INFRA-RED mass reflow; the surface mount components are placed on the solder paste which has been applied to the board, the solder joints are formed when the board is passed thru the reflow media. The surface mount devices are subjected to a controlled thermal environment.
3. VAPOR PHASE mass reflow; the surface mount components are placed on the solder paste which has been applied to the board, tbe solder joints are formed when the board is passed thru the reflow media. The surface mount devices are subjected to a controlled thermal environment, more severe than Infra-red but much less than wavesolder.
A discussion of the effect of these processes on the reliability of plastic semiconductor packages follows.

Role of Wave Soldering in Application of SMDs

The generally acceptable methods of soldering SMDs are vapor phase reflow soldering and IR reflow soldering, both requiring application of solder paste on PW boards prior to placement of the components. However, sentiment still exists for retaining the use of the old wave soldering machine. The reasons being:
Most PC Board Assembly houses already possess wave soldering equipment. Switching to another technology such as vapor phase soldering requires substantial investment in equipment and people.

Due to the limited number of devices that are surface mount components, it is necessary to mix both lead inserted components and surface mount components on the same board.
Some components such as relays and switches are made of materials which would not be able to survive the temperature exposure in a vapor phase or IR furnace.

PW Board Assembly Procedures

There are two considerations in which through-hole ICs may be combined with surface mount components on the PW Board:
a) Whether to mount ICs on one or both sides of the board.
b) The sequence of soldering using Vapor Phase, IR or Wave Soldering singly or a combination of two or more methods.
The various processes that may be employed are:

A) WAVE SOLDER BEFORE VAPOR/IR REFLOW SOLDER

1. Components on the same side of PW Board. Lead insert standard DIPS onto PW Board Wave solder (conventional). Wash and lead trim. Dispense solder paste on SEM pads. Pick and place SMDs onto PW Board. Bake Vapor phase/IR reflow. Clean.
2. Components on opposite side of PW Board. Lead insert standard DIPs onto PW Board Wave Solder (conventional). Clean and lead trim. Invert PW Board. Dispense drop of adhesive on SMD sites (optional for smaller components). Pick and place SMDs onto board. Bake/Cure. Invert board to rest on raised fixture. Vapor/IR reflow soldering. Clean.
B) VAPOR/IR REFLOW SOLDER THEN WAVE SOLDER
3. Components on the same side of PW Board. Solder paste screened on SMD side of Printed Wire Board. Pick and place SMDs. Bake Vapor/IR reflow. Lead insert on same side as SMD's. Wave solder. Clean and trim underside of PCB.

C) VAPOR/IR REFLOW ONLY

1. Components on the same side of PW Board Trim and form standard DIPs in "gull wing" configuration. Solder paste screened on PW Board. Pick and place SMDs and DIPs. Bake Vapor/IR reflow. Clean.
2. Components on opposite sides of PW Board. Solder paste screened on SMD-side of Printed Wire Board. Adhesive dispensed at central location of each component. Pick and place SMDs. Bake. Solder paste screened on all pads on DIP-side or alternatively apply solder rings (performs) on leads. Lead insert DIPs. Vapor/IR reflow. Clean and lead trim.

PW Board Assembly Procedures

(Continued)

D) WAVE SOLDERING ONLY

1. Components on opposite sides of PW board. Adhesive dispense on SMD side of PW Board. Pick and place SMDs. Cure adhesive. Lead insert top side with DIPs. Wave solder with SMDs down and into solder bath. Clean and lead trim.
All of the above assembly procedures can be divided into three categories for IC. Reliability considerations:
1) Components are subjected to both a vapor phase/IR heat cycle then followed by a wave-solder heat cycle or vice versa.
2) Components are subjected to only a vapor phase/IR heat cycle.
3) Components are subjected to wave-soldering only and SMDs are subjected to heat by immersion into a solder pot.
Of these three categories, the last is the most severe regarding heat treatment to a semiconductor device. However, note that semiconductor molded packages generally possess a coating of solder on their leads as a final finish for solderability and protection of base leadframe material. Most semiconductor manufacturers solder-plate the component leads, while others perform hot solder dip. In the latter case the packages may be subjected to total immersion into a hot solder bath under controlled conditions (manual operation) or be partially immersed while in a "pallet" where automatic wave or DIP soldering processes are used. It is, therefore, possible to subject SMDs to solder heat under certain conditions and not cause catastrophic failures.

Thermal Characteristics of Molded Integrated Circuits

Since Plastic DIPs and SMDs are encapsulated with a thermoset epoxy, the thermal characteristics of the material generally correspond to a TMA (Thermo-Mechanical Analysis) graph. The critical parameters are (a) its Linear thermal expansion characteristics and (b) its glass transition temperature after the epoxy has been fully cured. A typical TMA graph is illustrated in Figure 1. Note that the epoxy changes to a higher thermal expansion once it is subjected to temperatures exceeding its glass transition temperature. Metals (as used on leadframes, for example) do not have this characteristic and generally will have a consistent Linear thermal expansion over the same temperature range.
In any good reliable plastic package, the choice of leadframe material should be such to match its thermal expansion properties to that of the encapsulating epoxy. In the event that there is a mismatch between the two, stresses can build up at the interface of the epoxy and metal. There now exists a tendency for the epoxy to separate from the metal leadframe in a manner similar to that observed on bimetallic thermal range.
In most cases when the packages are kept at temperatures below their glass transition, there is a small possibility of separation at the epoxy-metal interface. However, If the package is subjected to temperature above its glass-transition temperature, the epoxy will expand much faster than the metal and the probability of separation is greatly increased.

TL/P/11828-1
FIGURE 1. Thermal Expansion and Glass

Conventional Wave Soldering

Most wave soldering operations occur at temperatures between $240^{\circ} \mathrm{C}-260^{\circ} \mathrm{C}$. Conventional epoxies for encapsulation have glass-transition temperatures between $140^{\circ} \mathrm{C}$ $170^{\circ} \mathrm{C}$. An I.C. directly exposed to these temperatures risks its long term functionality due to epoxy/metal separation.
Fortunately, there are factors that can reduce that element of risk:

1. The PW board has a certain amount of heat-sink effort and tends to shield the components from the temperature of the solder (if they were placed on the top side of the board). In actual measurements, DIPs achieve a temperature between $120^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}$ in a 5 -second pass over the solder. This accounts for the fact that DIPs mounted in the conventional manner are reliable.
2) In conventional soldering, only the tip of each lead in DIP would experience the solder temperature because the epoxy and die are standing above the PW board and out of the solder bath.

Effect on Package Performance by Epoxy-Metal Separation

In wave soldering, it is necessary to use fluxes to assist the solderability of the components and PW boards. Some facilities may even process the boards and components through some form of acid cleaning prior to the soldering temperature. If separation occurs, the flux residues and acid residues (which may be present owing to inadequate cleaning) will be forced into the package mainly by capillary action as the residues move away from the solder heat source. Once the package is cooled, these contaminants are now trapped within the package and are available to diffuse with moisture from the epoxy over time. It should be noted that electrical tests performed immediately after soldering generally will glve no indication of this potential problem. In any case, the end result will be corrosion of the chip metalization over time and premature failure of the device in the field.

Vapor Phase/IR Reflow Soldering

In both vapor phase and IR reflow soldering, the risk of separation between epoxy/metal can also be high. Maximum operating temperatures are $219^{\circ} \mathrm{C}$ (vapor phase) or $240^{\circ} \mathrm{C}$ (IR) and duration may also be longe, ($30 \mathrm{sec}-60$ $\mathrm{sec})$. On the same theoretical basis, there should also be separation. However, in both these methods, solder paste is applied to the pads of the boards; no fluxes are used. Also, the devices are not immersed into the hot solder. This reduces the possibility of solder forcing itself into the epoxyleadframe interface. Furthermore, in the vapor phase system, the soldering environment is "oxygen-free" and considered "contaminant free". Being so, it could be visualized that as far as reliability with respect to corrosion, both of these methods are advantageous over wave soldering,

Bias Moisture Test

A bias moisture test was designed to determine the effect on package performance. In this test, the packages are pressured in a steam chamber to accelerate penetration of moisture into the package. An electrical bias is applied on the device. Should there be any contaminants trapped within the package, the moisture will quickly form an electrolyte and cause the electrodes (which are the lead fingers), the gold wire and the aluminum bond-pads of the silicon device to corrode. The aluminum bond-pads, being the weakest link of the system, will generally be the first to faiL
This proprietary accelerated bias/moisture pressure-test is significant in relation to the life test condition at $85^{\circ} \mathrm{C}$ and 85% relative humidity. One cycle of approximately 100 hours has been shown to be equivalent to 2,000 hours in the 85/85 condition. Should the packages start to fail within the first cycle in the test, it is anticipated that the boards with these components in the harsh operating environment $\left(85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}\right)$ will experience corrosion and eventual electrical failures within its first 2,000 hours of operation.
Whether this is significant to a circuit board manufacturer will obviously be dependent on the products being manufactured and the workmanship or reliability standards. Generally in systems with a long warranty and containing many components, it is advisable both on a reputation and cost basis to have the most reliable parts available.

Test Results

The comparison of vapor phase and wave-soldering upon the reliability of molded Small-Outline packages was performed using the bias moisture test (see Table IV). It is clearly seen that vapor phase reflow soldering gave more consistent results. Wave soldering results were based on manual operation giving variations in soldering parameters such as temperature and duration.

TABLE IV. Vapor Phase vs. Wave Solder

1. Vapor phase (60 sec . exposure @ $217^{\circ} \mathrm{C}$)
$=9$ failures/1723 samples
$=0.5 \%$ (average over 32 sample lots)
2. Wave solder (2 sec total immersion @ $260^{\circ} \mathrm{C}$)
$=16$ failures $/ 1201$ samples
$=1.3 \%$ (average over 27 sample lots)
Package: SO-14 lead
Test: Bias moisture test 85\% R.H.
$85^{\circ} \mathrm{C}$ for 2,000 hours
Device: LM324M

In Table V we examine the tolerance of the Small-Outlined (SOIC) package to varying immersion time in a hot solder pot. SO-14 lead molded packages were subjected to the bias moisture test after being treated to the various soldering conditions and repeated four (4) times. End point was an electrical test after an equivalent of 4,000 hours $85 / 85$ test. Results were compared for packages by themselves against packages which were surface-mounted onto a FR-4 printed wire board.

TABLE V. Summary of Wave Solder Results

	Unmounted	Mounted
Control/Vapor Phase 15 sec @ 215	$0 / 114$	$0 / 84$
Solder Dip 4 Sec @ 260	$2 / 144(1.4 \%)$	$0 / 85$
Solder Dip 4 Sec @ 260	-	$0 / 83$
Solder Dip 6 Sec @ 260	$13 / 248(5.2 \%)$	$1 / 76(1.3 \%)$
Solder Dip 10 Sec @ 260	$14 / 127(11.0 \%)$	$3 / 79(3.8 \%)$
Package: Device: LM324M		

Since the package is of very small mass and experiences a rather sharp thermal shock followed by stresses created by the mismatch in expansion, the results show the packages being susceptible to failures after being immersed in excess of 6 seconds in a solder pot. In the second case where the packages were mounted, the effect of severe temperature excursion was reduced. In any case, because of the repeated treatment, the package had failures when subjected in excess of 6 seconds immersion in hot solder. The safety margin is therefore recommended as maximum 4 seconds immersion. If packages were immersed longer then 4 seconds, there is a probable chance of finding some Eng term reliability failures even though the immediate electrical test data could be acceptable.

Finally, Table VI examines the bias moisture test performed on surface mount (SOIC) components manufactured by various semiconductor houses. End point was an electrical test after an equivalent of 6,000 hours in an 85/85 test. Failures were analyzed and corrosion was checked for in each case to detect flaws in package integrity.

TABLE VI. U.S. Manufacturing Integrated Circuits Reliability in Various Solder Environments (\# Fallure/Total Environment)

Package SO-8	Vapor Phase 30 sec	Wave Solder 2 sec	Wave Solder $\mathbf{4 ~ s e c ~}$	Wave Solder $\mathbf{6 ~ s e c}$	Wave Solder 10 sec
Manuf A	$8 / 30^{*}$	$1 / 30^{*}$	$0 / 30$	$12 / 30^{*}$	$16 / 30^{*}$
Manuf B	$2 / 30^{*}$	$8 / 30^{*}$	$2 / 30^{*}$	$22 / 30^{*}$	$20 / 30^{*}$
Manuf C	$0 / 30$	$0 / 29$	$0 / 29$	$0 / 30$	$0 / 30$
Manuf D	$1 / 30^{*}$	$12 / 30^{*}$	$14 / 30^{*}$	$2 / 30^{*}$	
Manuf E	$1 / 30^{* *}$	$0 / 30$	$0 / 30$	$0 / 30$	
Manuf F	$0 / 30$	$0 / 30$	$0 / 30$	$0 / 30$	
NSC	$0 / 30$	$0 / 30$	$0 / 30$	$0 / 30$	

*Corrosion failures
**No Visual Defects-Non-corrosion failues
Test Accelerated Bias Moisture Test: 85% R.H. $/ 85^{\circ} \mathrm{C}$. 6,000 equivalent hours

Summary

Based on the results presented, it is noted that surfacemounted components are as reliable as standard molded DIP packages. Whereas DIPs were never processed by being totally immersed in hot solder wave during printed circuit board soldering, surface mounted components such as SOICs (Small Outline) are expected to survive a total immersion in the hot solder in order to capitalize on maximum population on boards. Being constructed from a thermoset plastic of relatively low T_{g} compared to the soldering temperature, the ability of the package to survive is dependent on the time of immersion and also the cleanliness of material. The results indicate that one should limit the immersion time of the package in the solder wave to a maximum of 4 seconds in order to truly duplicate the reliability of a DIP. As the package size is reduced, as in a SO-8 lead, the requirement becomes even more critical. This is shown by the various manufacturers' performance. Results indicate there is room for improvement since not all survived the hot solder immersion without compromise to lower reliability.

National Semiconductor Recommended Soldering Profiles-Surface Mount				
		Wave Solder	IR Profile	Vapor Phase
Ramp Up ${ }^{\circ} \mathrm{C} / \mathrm{sec}$	Maximum	$6^{\circ} \mathrm{C} / \mathrm{sec}$	$4^{\circ} \mathrm{C} / \mathrm{sec}$	$24^{\circ} \mathrm{C} / \mathrm{sec}$
	Recommended	$4^{\circ} \mathrm{C} / \mathrm{sec}^{*}$	$2^{\circ} \mathrm{C} / \mathrm{sec}^{*}$	$2^{\circ} \mathrm{C} / \mathrm{soc}$
	Minimum	**	**	**
ΔT	Maximum	$135^{\circ} \mathrm{C}$	N/A	N/A
	Recommended	$120^{\circ} \mathrm{C}$	N/A	N/A
	Minimum	$110^{\circ} \mathrm{C}$	N/A	N/A
Dwell Time $\geq 183^{\circ} \mathrm{C}$	Maximum	N/A	85 seconds	85 seconds
	Recommended	N/A	75 seconds*	75 seconds*
	Minimum	N/A	30 seconds**	**
Solder Temperature	Maximum	$260^{\circ} \mathrm{C}$	$240^{\circ}{ }^{* * *}$	$219^{\circ} \mathrm{C}$
	Recommended	$240^{\circ} \mathrm{C}$	215 ${ }^{\circ}{ }^{*}$	$215^{\circ}{ }^{*}$
	Minimum	**	**	**
Dwell Time @ Max.	Maximum	4 seconds	10 seconds	75
	Recommended	3 seconds	5 seconds	70 seconds
	Minimum	**	1 second	**
Ramp Down ${ }^{\circ} \mathrm{C} / \mathrm{sec}$	Maximum	No information	$4^{\circ} \mathrm{C} / \mathrm{sec}$	$4^{\circ} \mathrm{C} / \mathrm{sec}$
	Recommended	$4^{\circ} \mathrm{C} / \mathrm{sec}$	$2^{\circ} \mathrm{C} / \mathrm{soc}$	$2^{\circ} \mathrm{C} / \mathrm{soc}$
	Minimum	No information	**	**

Note: Temperature in degrees celcius. N/A = Not Applicable.
$\Delta T=$ The temperature differential between the final preheat stage and the soldering stage. Temperature measured at the component lead area.
*Will vary depending on board density, geometry, and package type.
**Will vary depending on package types, and board density.
***For plastic packages; ceramic packages maximum may be $250^{\circ} \mathrm{C}$.

Small Outline (SO) Package Surface Mounting MethodsParameters and Their Effect on Product Reliability

The SO (small outline) package has been developed to meet customer demand for ever-increasing miniaturization and component density.

COMPONENT SIZE COMPARISON

Because of its small size, reliability of the product assembled in SO packages needs to be carefully evaluated.
SO packages at National were internally qualified for production under the condition that they be of comparable reliability performance to a standard dual in line package under all accelerated environmental tests. Figure A is a summary of accelarated bias moisture test performance on 30V bipolar and 15 V CMOS product assembled in SO and DIP (control) packages.

TL/F/8766-3
FIGURE A

National Semiconductor
Application Note 450
Josip Huljev
W. K. Boey

In order to achieve reliability performance comparable to DIPs-SO packages are designed and built with materials and processes that effectively compensate for their small size.
All SO packages tested on 85% RA, $85^{\circ} \mathrm{C}$ were assembled on PC conversion boards using vapor-phase reflow soldering. With this approach we are able to measure the effect of surface mounting methods on reliability of the process. As illustrated in Figure A no significant difference was detected between the long term reliability performance of surface mounted S.O. packages and the DIP control product for up to 6000 hours of accelerated $85 \% / 85^{\circ} \mathrm{C}$ testing.

SURFACE-MOUNT PROCESS FLOW

The standard process flowcharts for basic surface-mount operation and mixed-lead insertion/surface-mount operations, are illustrated on the following pages.
Usual variations encountered by users of SO packages are:

- Single-sided boards, surface-mounted components only.
- Single-sided boards, mixed-lead inserted and surfacemounted components.
- Double-sided boards, surface-mounted components only.
- Double-sided boards, mixed-lead inserted and surfacemounted components.
In consideration of these variations, it became necessary for users to utilize techniques involving wave soldering and adhesive applications, along with the commonly-used vaporphase solder reflow soldering technique.

PRODUCTION FLOW

Basic Surface-Mount Production Flow

Mixed Surface-Mount and Axial-Leaded Insertion Components Production Flow

Thermal stress of the packages during surface-mounting processing is more severe than during standard DIP PC board mounting processes. Figure B illustrates package temperature versus wave soldering dwell time for surface mounted packages (components are immersed into the molten solder) and the standard DIP wave soldering process. (Only leads of the package are immersed into the molten solder).

TL/F/8766-6
FIGURE B
For an ideal package, the thermal expansion rate of the encapsulant should match that of the leadframe material in order for the package to maintain mechanical integrity during the soldering process. Unfortunately, a perfect matchup of thermal expansion rates with most presently used packaging materials is scarce. The problem lies primarily with the epoxy compound.
Normally, thermal expansion rates for epoxy encapsulant and metal lead frame materials are linear and remain fairly close at temperatures approaching $160^{\circ} \mathrm{C}$, Figure C. At lower temperatures the difference in expansion rate of the two materials is not great enough to cause interface separation. However, when the package reaches the glass-transition temperature (T_{g}) of epoxy (typically $160-165^{\circ} \mathrm{C}$), the thermal expansion rate of the encapsulant increases sharply, and the material undergoes a transition into a plastic state. The epoxy begins to expand at a rate three times or more greater than the metal leadframe, causing a separation at the interface.

When this happens during a conventional wave soldering process using flux and acid cleaners, process residues and even solder can enter the cavity created by the separation and become entrapped when the material cools. These contaminants can eventually diffuse into the interior of the package, especially in the presence of moisture. The result is die contamination, excessive leakage, and even catastrophic failure. Unfortunately, electrical tests performed immediately following soldering may not detect potential flaws. Most soldering processes involve temperatures ranging up to $260^{\circ} \mathrm{C}$, which far exceeds the glass-transition temperature of epoxy. Clearly, circuit boards containing SMD packages require tighter process controls than those used for boards populated solely by DIPs.
Figure D is a summary of accelerated bias moisture test performance on the 30 V bipolar process.
Group 1 - Standard DIP package
Group 2 - SO packages vapor-phase reflow soldered on PC boards
Group 3-6 SO packages wave soldered on PC boards
Group 3 - dwell time 2 seconds
4-dwell time 4 seconds
5 - dwell time 6 seconds
6 - dwell time 10 seconds

TL/F/8766-7

FIGURE D

It is clear based on the data presented that SO packages soldered onto PC boards with the vapor phase reflow process have the best long term bias moisture performance and this is comparable to the performance of standard DIP packages. The key advantage of reflow soldering methods is the clean environment that minimized the potential for contamination of surface mounted packages, and is preferred for the surface-mount process.
When wave soldering is used to surface mount components on the board, the dwell time of the component under molten solder should be no more than 4 seconds, preferrably under 2 seconds in order to prevent damage to the component. Non-Halide, or (organic acid) fluxes are highly recommended.

PICK AND PLACE

The choice of automatic (all generally programmable) pick-and-place machines to handle surface mounting has grown considerably, and their selection is based on individual needs and degree of sophistication.

The basic component-placement systems available are classified as:
(a) In-line placement

- Fixed placement stations
- Boards indexed under head and respective components placed
(b) Sequential placement
- Either a X-Y moving table system or a θ, X-Y moving pickup system used
-Individual components picked and placed onto boards
(c) Simultaneous placement
- Multiple pickup heads
- Whole array of components placed onto the PCB at the same time
(d) Sequential/simultaneous placement
- X-Y moving table, multiple pickup heads system
- Components placed on PCB by successive or simultaneous actuation of pickup heads
The SO package is treated almost the same as surfacemount, passive components requiring correct orientation in placement on the board.

Pick and Place Action

BAKE

This is recommended, despite claims made by some solder paste suppliers that this step be omitted.
The functions of this step are:

- Holds down the solder globules during subsequent reflow soldering process and prevents expulsion of small solder balls.
- Acts as an adhesive to hold the components in place during handling between placement to reflow soldering.
- Holds components in position when a double-sided sur-face-mounted board is held upside down going into a va-por-phase reflow soldering operation.
- Removes solvents which might otherwise contaminate other equipment.
- Initiates activator cleaning of surfaces to be soldered.
- Prevents moisture absorption.

The process is moreover very simple. The usual schedule is about 20 minutes in a $65^{\circ} \mathrm{C}-95^{\circ} \mathrm{C}$ (dependent on solvent system of solder paste) oven with adequate venting. Longer bake time is not recommended due to the following reasons:

- The flux will degrade and affect the characteristics of the paste.
- Solder globules will begin to oxidize and cause solderability problems.
- The paste will creep and after reflow, may leave behind residues between traces which are difficult to remove and vulnerable to electro-migration problems.

REFLOW SOLDERING

There are various methods for reflowing the solder paste, namely:

- Hot air reflow
- Infrared heating (furnaces)
- Convectional oven heating
- Vapor-phase reflow soldering
- Laser soldering

For SO applications, hot air reflow/infrared furnace may be used for low-volume production or prototype work, but va-por-phase soldering reflow is more efficient for consistency and speed. Oven heating is not recommended because of "hot spots" in the oven and uneven melting may result. Laser soldering is more for specialized applications and requires a great amount of investment.

HOT GAS REFLOW/INFRARED HEATING

A hand-held or table-mount air blower (with appropriate orifice mask) can be used.
The boards are preheated to about $100^{\circ} \mathrm{C}$ and then subjected to an air jet at about $260^{\circ} \mathrm{C}$. This is a slow process and results may be inconsistent due to various heat-sink properties of passive components.

INFRARED REFLOW SOLDERING

Use of an infrared furnace is currently the most popular method to automate mass reflow, the heating is promoted by use of IR lamps or panels. Early objections to this method were that certain materials may heat up at different rates under IR radiation and could result in damage to those components (usually sockets and connectors). This has been minimized by using far-infrared (non-focused) systems and convected air.

Infrared Proflle

VAPOR-PHASE REFLOW SOLDERING

Currently the most popular and consistent method, vaporphase soldering utilizes a fluoroinert fluid with excellent heat-transfer properties to heat up components until the solder paste reflows. The maximum temperature is limited by the vapor temperature of the fluid.
The commonly used fluids (supplied by 3M Corp) are:

- FC-70, $215^{\circ} \mathrm{C}$ vapor (most applications) or FX-38
- FC-71, $253^{\circ} \mathrm{C}$ vapor (low-lead or tin-plate)

HTC, Concord, CA, manufactures equipment that utilizes this technique, with two options:

- Batch systems, where boards are lowered in a basket and subjected to the vapor from a tank of boiling fluid.
- In-line conveyorized systems, where boards are placed onto a continuous belt which transports them into a concealed tank where they are subjected to an environment of hot vapor.
Dwell time in the vapor is generally on the order of 15-30 seconds (depending on the mass of the boards and the loading density of boards on the belt).

The question of thermal shock is asked frequently because of the relatively sharp increase in component temperature from room temperature to $215^{\circ} \mathrm{C}$. SO packages mounted on representative boards have been tested and have shown little effect on the integrity of the packages. Various packages, such as cerdips, metal cans and TO-5 cans with glass seals, have also been tested.

Batch-Fed Production Vapor-Phase Soldering Unit

TL/F/8766-11

Solder Joints on a SO-14 Package on PCB

TL/F/8766-13

PRINTED CIRCUIT BOARD

The SO package is molded out of clean, thermoset plastic compound and has no particular compatibility problems with most printed circuit board substrates.
The package can be reliably mounted onto substrates such as:

- G10 or FR4 glass/resin
- FR5 glass/resin systems for high-temperature applications
- Polymide boards, also high-temperature applications
- Ceramic substrates

General requirements for printed circuit boards are:

- Mounting pads should be solder-plated whenever applicable.
- Solder masks are commonly used to prevent solder bridging of fine lines during soldering.
The mask also protects circuits from processing chemical contamination and corrosion.
If coated over pre-tinned traces, residues may accumulate at the mask/trace interface during subsequent reflow, leading to possible reliability failures.
Recommended application of solder resist on bare, clean traces prior to coating exposed areas with solder.
General requirements for solder mask:
- Good pattern resolution.
- Complete coverage of circuit lines and resistance to flaking during soldering.
- Adhesion should be excellent on substrate material to keep off moisture and chemicals.
- Compatible with soldering and cleaning requirements.

SOLDER PASTE SCREEN PRINTING

With the initial choice of printed circuit lithographic design and substrate material, the first step in surface mounting is the application of solder paste.
The typical lithographic "footprints" for SO packages are illustrated below. Note that the $0.050^{\prime \prime}$ lead center-center spacing is not easily managed by commercially-available air pressure, hand-held dispensers.
Using a stainless-steel, wire-mesh screen stencilled with an emulsion image of the substrate pads is by far the most
common and well-tried method. The paste is forced through the screen by a V-shaped plastic squeegee in a sweeping manner onto the board placed beneath the screen.
The setup for SO packages has no special requirement from that required by other surface-mounted, passive components. Recommended working specifications are:

- Use stainless-steel, wire-mesh screens, \#80 or \#120, wire diameter 2.6 mils. Rule of thumb: mesh opening should be approximately 2.5-5 times larger than the average particle size of paste material.
- Use squeegee of Durometer 70.
- Experimentation with squeegee travel speed is recommended, if available on machine used.
- Use solder paste of mesh 200-325.
- Emulsion thickness of $0.005^{\prime \prime}$ usually used to achieve a solder paste thickness (wet) of about $0.008^{\prime \prime}$ typical.
- Mesh pattern should be 90 degrees, square grid.
- Snap-off height of screen should not exceed $1 / \mathrm{s}^{\prime \prime}$, to avoid damage to screens and minimize distortion.

SOLDER PASTE

Selection of solder paste tends to be confusing, due to numerous formulations available from various manufacturers. In general, the following guidelines are sufficient to qualify a particular paste for production:

- Particle sizes (see following photographs). Mesh 325 (approximately 45 microns) should be used for general purposes, while larger (solder globules) particles are preferred for leadless components (LCC). The larger particles can easily be used for SO packages.
- Uniform particle distribution. Solder globules should be spherical in shape with uniform diameters and minimum amount of elongation (visual under 100/200 \times magnification). Uneven distribution causes uneven melting and subsequent expulsion of smaller solder balls away from their proper sites.
- Composition, generally $60 / 40$ or $63 / 37 \mathrm{Sn} / \mathrm{Pb}$. Use $62 / 36$ $\mathrm{Sn} / \mathrm{Pb}$ with $2 \% \mathrm{Ag}$ in the presence of Au on the soldering area. This formulation reduces problems of metal leaching from soldering pads.
- RMA flux system usually used.
- Use paste with aproximately 88-90\% solids.

RECOMMENDED SOLDER PADS FOR SO PACKAGES

Comparison of Particle Size/Shape of Various Solder Pastes

TL/F/8766-17
$200 \times$ Kester (63/37)

TL/F/8766-18

200 ESL (63/37)

CLEANING

The most critical process in surface mounting SO packages is in the cleaning cycle. The package is mounted very close to the surface of the substrate and has a tendency to collect residue left behind after reflow soldering.
Important considerations in cleaning are:

- Time between soldering and cleaning to be as short as possible. Residue should not be allowed to solidify on the substrate for long periods of time, making it difficult to dislodge.
- A low surface tension solvent (high penetration) should be employed. CFC solvents are being phased out as they are hazardous to the environment. Other approaches to cleaning are commercially available and should be investigated on an individual basis considering local and government environmental rules.

Prelete or 1,1,1-Trichloroethane
Kester 5120/5121

- A defluxer system which allows the workpiece to be subjected to a solvent vapor, followed by a rinse in pure solvent and a high-pressure spray lance are the basic requirments for low-volume production.
- For volume production, a conveyorized, multiple hot solvent spray/jet system is recommended.
- Rosin, being a natural occurring material, is not readily soluble in solvents, and has long been a stumbling block to the cleaning process. In recent developments, synthetic flux (SA flux), which is readily soluble in Freon TMS solvent, has been developed. This should be explored where permissible.
The dangers of an inadequate cleaning cycle are:
- Ion contamination, where ionic residue left on boards would cause corrosion to metallic components, affecting the performance of the board.
- Electro-migration, where ionic residue and moisture present on electrically-biased boards would cause dentritic growth between close spacing traces on the substrate, resulting in failures (shorts).

REWORK

Should there be a need to replace a component or re-align a previously disturbed component, a hot air system with appropriate orifice masking to protect surrounding components may be used.
When rework is necessary in the field, specially-designed tweezers that thermally heat the component may be used to remove it from its site. The replacement can be fluxed at the

Hot-Air Solder Rework Station

TL/F/8766-22

TL/F/8766-23
lead tips or, if necessary, solder paste can be dispensed onto the pads using a varimeter. After being placed into position, the solder is reflowed by a hot-air jet or even a standard soldering iron.

WAVE SOLDERING

In a case where lead insertions are made on the same board as surface-mounted components, there is a need to include a wave-soldering operation in the process flow.
Two options are used:

- Surface mounted components are placed and vapor phase reflowed before auto-insertion of remaining components. The board is carried over a standard wave-solder system and the underside of the board (only lead-inserted leads) soldered.
- Surface-mounted components are placed in position, but no solder paste is used. Instead, a drop of adhesive about 5 mils maximum in height with diameter not exceeding 25% width of the package is used to hold down the package. The adhesive is cured and then proceeded to autoinsertion on the reverse side of the board (surface-mounted side facing down). The assembly is then passed over a "dual wave" soldering system. Note that the surfacemounted components are immersed into the molten solder.
Lead trimming will pose a problem after soldering in the latter case, unless the leads of the insertion components are pre-trimmed or the board specially designed to localize certain areas for easy access to the trim blade.
The controls required for wave soldering are:
- Solder temperature to be $240-260^{\circ} \mathrm{C}$. The dwell time of components under molten solder to be short (preferably kept under 2 seconds), to prevent damage to most components and semiconductor devices.
- RMA (Rosin Mildly Activated) flux or more aggressive OA (Organic Acid) flux are applied by either dipping or foam fluxing on boards prior to preheat and soldering. Cleaning procedures are also more difficult (aqueous, when OA flux is used), as the entire board has been treated by flux (unlike solder paste, which is more or less localized). Nonhalide OA fluxes are highly recommended.
- Preheating of boards is essential to reduce thermal shock on components. Board should reach a temperature of about $100^{\circ} \mathrm{C}$ just before entering the solder wave.
- Due to the closer lead spacings ($0.050^{\prime \prime}$ vs $0.100^{\prime \prime}$ for dual-in-line packages), bridging of traces by solder could occur. The reduced clearance between packages also causes "shadowing" of some areas, resulting in poor solder coverage. This is minimized by dual-wave solder systems.

TL/F/8766-24

A typical dual-wave system is illustrated below, showing the various stages employed. The first wave typically is in turbulence and given a transverse motion (across the motion of the board). This covers areas where "shadowing" occurs. A second wave (usually a broad wave) then proceeds to perform the standard soldering. The departing edge from the solder is such to reduce "icicles," and is still further reduced by an air knife placed close to the final soldering step. This air knife will blow off excess solder (still in the fluid stage) which would otherwise cause shorts (bridging) and solder bumps.

AQUEOUS CLEANING

- For volume production, a conveyorized system is often used with a heated recirculating spray wash (water temperature $130^{\circ} \mathrm{C}$), a final spray rinse (water temperature $\left.45-55^{\circ} \mathrm{C}\right)$, and a hot $\left(120^{\circ} \mathrm{C}\right)$ air/air-knife drying section.
- For low-volume production, the above cleaning can be done manually, using several water rinses/tanks. Fastdrying solvents, like alcohols that are miscible with water, are sometimes used to help the drying process.
- Neutralizing agents which will react with the corrosive materials in the flux and produce material readily soluble in water may be used; the choice depends on the type of flux used.
- Final rinse water should be free from chemicals which are introduced to maintain the biological purity of the water. These materials, mostly chlorides, are detrimental to the assemblies cleaned because they introduce a fresh amount of ionizable material.

CONFORMAL COATING

Conformal coating is recommended for high-reliability PCBs to provide insulation resistance, as well as protection against contamination and degradation by moisture.
Requirements:

- Complete coating over components and solder joints.
- Thixotropic material which will not flow under the packages or fill voids, otherwise will introduce stress on solder joints on expansion.
- Compatibility and possess excellent adhesion with PCB material/components.
- Silicones are recommended where permissible in application.

SMD Lab Support

FUNCTIONS
Demonstration-Introduce first-time users to surfacemounting processes.
Service-Investigate problems experienced by users on surface mounting.
Reliability Builds-Assemble surface-mounted units for reliability data acquisition.

Techniques-Develop techniques for handling different materials and processes in surface mounting.
Equipment-In conjunction with equipment manufacturers, develop customized equipments to handle high density, new technology packages developed by National.
In-House Expertise-Availability of in-house expertise on semiconductor research/development to assist users on packaging queries.

Land Pattern Recommendations

The following land pattern recommendations are provided as guidelines for board layout and assembly purposes. These recommendations cover the following National Semiconductor packages: PLCC, PQFP, SOP, SSOP and TSOP. For SOT-23 (5-Lead) and TO-263 (3- or 5-Lead) packages, refer to land patterns shown in the Physical Dimensions for MA05A and TS3B or TS5B packages, respectively.

Plastic Leaded Chip Carriers (PLCC)

TL/P/11811-1

D Body Size (mm)	D^{\prime} Body Size (mm)	Lead Count No.	```L Lead Tip to Tip (mm)```	```L' Lead Tip to Tip (mm)```	w Lead Width (mm)	```P Lead/Pad Pitch (mm)```	A Inner Pad to Pad Edge (mm)	A^{\prime} Inner Pad to Pad Edge (mm)	B Outer Pad to Pad Edge (mm)	B' Outer Pad to Pad Edge (mm)	
8.89	8.89	20	10.03	10.03	0.53	1.27	6.73	6.73	10.80	10.80	0.63
11.43	11.43	28	12.57	12.57	0.53	1.27	9.27	9.27	13.34	13.34	0.63
11.43	14.05	32	12.57	15.11	0.53	1.27	9.27	12.00	13.34	16.00	0.63
16.51	16.51	44	17.65	17.65	0.53	1.27	14.35	14.35	18.42	18.42	0.63
19.05	19.05	52	20.19	20.19	0.53	1.27	16.89	16.89	20.96	20.96	0.63
24.13	24.13	68	25.27	25.27	0.53	1.27	21.97	21.97	26.04	26.04	0.63
29.21	29.21	84	30.35	30.35	0.53	1.27	27.05	27.05	31.12	31.12	0.63

TL/P/11811-2

D Body Size (mm)	$\begin{array}{\|c} \hline D^{\prime} \\ \text { Body } \\ \text { Size } \\ (\mathrm{mm}) \\ \hline \end{array}$	Lead Count No.		L^{\prime} Lead Tip to Tip (mm)	w Lead Width (mm)		A Inner Pad to Pad Edge (mm)	A^{\prime} Inner Pad to Pad Edge (mm)	B Outer Pad to Pad Edge (mm)	$\begin{gathered} B^{\prime} \\ \text { Outer Pad } \\ \text { to Pad Edge } \\ \text { (mm) } \\ \hline \end{gathered}$	X Land Width (mm)
7	7	40	9.29	9.29	0.26	0.50	7.50	7.50	9.78	9.78	0.30
7	7	48	9.40	9.40	0.27	0.50	6.88	6.90	10.42	10.40	0.32
10	10	44	13.35	13.35	0.45	0.80	10.53	10.53	14.47	14.47	0.55
10	10	52	14.15	14.15	0.38	0.65	9.08	9.08	15.17	15.17	0.43
12	12	64	14.00	14.00	0.38	0.65	11.48	11.48	15.02	15.02	0.43
14	14	80	18.15	18.15	0.38	0.65	13.08	13.08	19.17	19.17	0.43
14	20	80	17.80	23.80	0.35	0.80	13.50	19.50	18.50	24.50	0.40
14	14	100	17.45	17.45	0.30	0.50	13.08	13.08	18.47	18.47	0.35
14	20	100	17.80	23.80	0.30	0.65	13.50	19.50	18.50	24.50	0.35
20	20	100	24.30	18.30	0.40	0.65	21.28	15.28	25.32	19.32	0.45
24	24	132	24.21	24.21	0.30	0.64	21.67	21.67	25.23	25.23	0.40
28	28	120	32.15	32.15	0.45	0.80	27.88	27.88	33.17	33.17	0.55
28	28	128	31.45	31.45	0.45	0.80	28.03	28.03	32.47	32.47	0.55
28	28	144	32.15	32.15	0.38	0.65	28.03	28.03	33.17	33.17	0.43
28	28	160	32.40	32.40	0.38	0.65	29.48	29.48	33.42	33.42	0.43
28	28	208	30.60	30.60	0.30	0.50	28.08	28.08	31.62	31.62	0.35

D Body Size (in)	Lead Count No.	C Shoulder to Shoulder (in)	L Lead Tip to Tip (in)	W Lead Width (in)	P Lead/Pad Pitch (in)	A Inner Pad to Pad Edge (in)	B Outer Pad to Pad Edge (in)	X Pad Width (in)
SOP								
0.150	8	0.144	0.244	0.020	0.050	0.094	0.294	0.028
0.150	14	0.144	0.244	0.020	0.050	0.094	0.294	0.028
0.150	16	0.144	0.244	0.020	0.050	0.094	0.294	0.028
0.300	14	0.3300	0.4100	0.0190	0.0500	0.2800	0.4600	0.0270
0.300	16	0.3300	0.4100	0.0190	0.0500	0.2800	0.4600	0.0270
0.300	20	0.3300	0.4100	0.0190	0.0500	0.2800	0.4600	0.0270
0.300	24	0.3300	0.4100	0.0190	0.0500	0.2800	0.4600	0.0270
0.300	28	0.3300	0.4100	0.0190	0.0500	0.2800	0.4600	0.0270
SSOP								
0.150	20	0.185	0.241	0.010	0.025	0.145	0.281	0.014
0.150	24	0.185	0.241	0.010	0.025	0.145	0.281	0.014
0.300	48	0.340	0.420	0.012	0.025	0.300	0.460	0.016
0.300	56	0.340	0.420	0.012	0.025	0.300	0.460	0.016

Section 7
Appendices/
Physical Dimensions

Section 7 Contents

Appendix A General Product Marking and Code Explanation 7-3
Appendix B Device/Application Literature Cross-Reference 7-4
Appendix C Summary of Commercial Reliability Programs 7-10
Appendix D Military Aerospace Programs from National Semiconductor 7-11
Appendix E Understanding Integrated Circuit Package Power Capabilities 7-21
Appendix F How to Get the Right Information from a Datasheet 7-26
Physical Dimensions 7-30
Bookshelf
Distributors

Appendix A
 General Product Marking \& Code Explanation

Device Family

ADC	Data Conversion
AF	Active Filter
AH	Analog Switch (Hybrid)
DAC	Data Conversion
DM	Digital (Monolithic)
HS	Hybrid
LF	Linear (BI-FETTM)
LH	Linear (Hybrid)
LM	Linear (Monolithic)
LMC	Linear CMOS
LMD	Linear DMOS
LP	Linear (Low Power)
LPC	Linear CMOS (Low Power)
MF	Linear (Monolithic Filter)
LMF	Linear Monolithic Filter

Package Type

D	Glass/Metal DIP
E	Ceramic Leadless Chip Carrier (LCC)
F	Glass/Metal Flat Pak ($1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$)
G	12 Lead TO-8 Metal Can (M/C)
H	Multi-Lead Metal Can (M/C)
H-05	4 Lead M/C (TO-5) Shipped with
H-46	4 Lead M/C (TO-46) $\}$ Thermal Shield
J	Lo-Temp Ceramic DIP
J-8	8 Lead Ceramic DIP ("MiniDIP")
J-14	14 Lead Ceramic DIP (-14 used only when product is also available in -8 pkg).
K	TO-3 M/C in Steel, except LM309K which is shipped in Aluminum
KC	TO-3 M/C (Aluminum)
K Steel	TO-3 M/C (Steel)
M	Small Outline Package
M3	3-Lead Small Outline Package
M5	5-Lead Small Outline Package
N	Molded DIP (EPOXY B)
N-01	Molded DIP (Epoxy B) with Staggered Leads
$\mathrm{N}-8$	8 Lead Molded DIP (Epoxy B) ('Mini-DIP")
$\mathrm{N}-14$	14 Lead Molded DIP (Epoxy B)
	(-14 used only when product is also
P	3 Lead TO-202 Power Pkg
Q	Cerdip with UV Window
S	3,5,11, \& 15 Lead TO-263 Surf. Mt. Power Pkg
T	3,5,11,15 \& 23 Lead TO-220 PWR Pkg (Epoxy B)
V	Multi-lead Plastic Chip Carrier (PCC)
W	Lo-Temp Ceramic Flat Pak
WM	Wide Body Small Outline Package

National Semiconductor

Appendix B
 Device/Application Literature Cross-Reference

Device Number
Application Literature

ADCXXXX. ...AN-156.
ADC80 . AN- 360
ADC0801 . AN-233, AN-271, AN-274, AN-280, AN-281, AN-294, LB-53
ADC0802 . AN-233, AN-274, AN-280, AN-281, LB-53
ADC0803 . AN-233, AN-274, AN-280, AN-281, LB-53
ADC08031 . AN-460
ADC0804 . AN-233, AN-274, AN-276, AN-280, AN-281, AN-301, AN-460, LB-53
ADC0805 . AN-233, AN-274, AN-280, AN-281, LB-53
ADC0808. AN-247, AN-280, AN-281
ADC0809 . AN-247, AN-280
ADC0816 . AN-193, AN-247, AN-258, AN-280
ADC0817. AN-247, AN-258, AN-280
ADC0820 . AN- 237
ADC0831 .AN-280, AN-281
ADC0832 . AN-280, AN-281
ADC0833 .AN-280, AN-281
ADC0834 . AN-280, AN-281
ADC0838 .AN-280, AN-281
ADC1001. AN-276, AN-280, AN-281
ADC1005 . AN-280
ADC10461 . AN- 769
ADC10462
ADC10464 . AN- 769
ADC10662 AN-769
ADC10664 . AN-769
ADC12030 . AN-929
ADC12032 . AN-929
ADC12034 . AN-929
ADC12038 . AN-929
ADC12нозо...
ADC12H032...

ADC12L030 . AN-929
ADC12L032 . AN-929
ADC12L034 . AN-929
ADC12L038 . AN-929
ADC1210
ADC12441 . AN-769

DAC0800 .. . AN-693
DAC0830 . AN- 284

Device/Application Literature Cross-Reference (Continued)

Device/Application Literature Cross-Reference (Continued)

Device Number
Application Literature
LH1605... . . AN-343
 LM10 . AN-211, AN-247, AN-258, AN-271, AN-288, AN-299, AN-300, AN-460, AN-693 LM11. AN-241, AN-242, AN-260, AN-266, AN-271 LM12 . AN-446, AN-693, AN-706 LM101 . AN-4, AN-13, AN-20, AN-24, LB-42, Appendix A LM101A AN-29, AN-30, AN-31, AN-79, AN-241 AN-711, LB-1, LB-2, LB-4, LB-8, LB-14, LB-16, LB-19, LB-28 LM102 . AN-4, AN-13, AN-30, LB-1, LB-5, LB-6, LB-11 LM103 . AN-110, LB-41 LM105 . AN-23, AN-110, LB-3
LM106 . AN-41, LB-6, LB-12
LM107 . AN-20, AN-31, LB-1, LB-12, LB-19, Appendix A
LM108 . AN-29, AN-30, AN-31, AN-79, AN-211, AN-241, LB-14, LB-15, LB-21

LM108A. AN-260, LB-15, LB-19
LM109 . AN-42, LB-15
LM109A .
LM110 . LB-11, LB-42
LM111. AN-41, AN-103, LB-12, LB-16, LB-32, LB-39
LM112 . LB-19
LM113. AN-56, AN-110, LB-21, LB-24, LB-28, LB-37
LM117 .AN-178, AN-181, AN-182, LB-46, LB-47
LM117HV .
LM118 .
LM119 . LB-23

LM121 . AN-79, AN-104, AN-184, AN-260, LB-22

LM129 . AN-173, AN-178, AN-262, AN-266
LM131. AN-210, AN-460, Appendix D

LM134 . LB-41, AN-460
LM135 . AN-225, AN-262, AN-292, AN-298, AN-460
LM137 .

LM139 . AN-74
LM143 .AN-127, AN-271

LM150 .

LM160 . AN-87
LM161 . AN-87, AN-266
LM163... . . AN-295
LM194 . AN-222, LB-21

LM199 .AN-161, AN-260

Device/Application Literature Cross-Reference (Continued)

Device Number Application Literature
LM231 AN-210
LM231A AN-210
LM235 AN-225
LM239 AN-74
LM258 AN-116
LM260 AN-87
LM261 AN-87
LM34 AN-460
LM35 AN-460
LM301A AN-178, AN-181, AN-222
LM308 AN-88, AN-184, AN-272, LB-22, LB-28, Appendix D
LM308A AN-225, LB-24
LM309 AN-178, AN-182
LM311 AN-41, AN-103, AN-260, AN-263, AN-288, AN-294, AN-295, AN-307, LB-12, LB-16, LB-18, LB-39
LM313 AN-263
LM316 AN-258
LM317 AN-178, LB-35, LB-46
LM317H LB-47
LM318 AN-299, LB-21
LM319 AN-828, AN-271, AN-293
LM320 AN-288
LM321 LB-24
LM324 AN-88, AN-258, AN-274, AN-284, AN-301, LB-44, AB-25, Appendix C
LM329 AN-256, AN-263, AN-284, AN-295, AN-301LM329BAN-225
LM330 AN-301
LM331 AN-210, AN-240, AN-265, AN-278, AN-285, AN-311, LB-45, Appendix C, Appendix D
LM331A AN-210, Appendix C
LM334 AN-242, AN-256, AN-284
LM335 AN-225, AN-263, AN-295
LM336 AN-202, AN-247, AN-258
LM337 LB-46
LM338 LB-49, LB-51
LM339 AN-74, AN-245, AN-274
LM340 AN-103, AN-182
LM340L AN-256
LM342 AN-288
LM346 .AN-202, LB-54
LM348 AN-202, LB-42
LM349 LB-42
LM358 AN-116, AN-247, AN-271, AN-274, AN-284, AN-298, Appendix C
LM358A Appendix D
LM359 AN-278, AB-24
LM360 AN-87
LM361 AN-87, AN-294
LM363 AN-271
LM380 AN-69, AN-146
LM385 AN-242, AN-256, AN-301, AN-344, AN-460, AN-693, AN-777
LM386 LB-54
LM391 AN-272
LM392 AN-274, AN-286

Device/Application Literature Cross-Reference (Continued)

Device Number Application Literature
LM4250 .AN-88, LB-34
LM6181 AN-813, AN-840
LM7800 AN-178
LM12454 AN-906, AN-947, AN-949
LM12458 AN-906, AN-947, AN-949
LM12H454 AN-906, AN-947, AN-949
LM12H458 AN-906, AN-947, AN-949
LM12L458 AN-906, AN-947, AN-949
LM18293 AN-706
LM78L12 AN-146
LM78S40 AN-711
LMC555 AN-460, AN-828
LMC660 AN-856
LMC835 AN-435
LMC6044 AN-856
LMC6062 AN-856
LMC6082 AN-856
LMC6484 AN-856
LMD18200 AN-694, AN-828
LMF40. AN-779
LMF60. AN-779
LMF90. AN-779
LMF100 AN-779
LMF380 AN-779
LMF390 AN-779
LP324 AN-284
LP395 AN-460
LPC660 AN-856
MF4 AN-779
MF5 AN-779
MF6 AN-779
MF8 AN-779
MF10 AN-307, AN-779
MM2716 LB-54
MM54104 AN-252, AN-287, LB-54
MM57110 AN-382
MM74C00 AN-88
MM74C02 AN-88
MM74C04 AN-88
MM74C948 AN-193
MM74HC86 AN-861, AN-867
MM74LS138 LB-54
MM53200 AN-290
2N4339 AN-32

P + Product Enhancement

The $\mathrm{P}+$ product enhancement program involves dynamic tests that screen out assembly related and silicon defects that can lead to infant mortality and/or reduce the surviva-
bility of the device under high stress conditions. This program includes but is not limited to the following power devices:

Device	Package Types					
	TO-3 K STEEL	TO-39 (H)	TO-220 (T)	DIP (N)	SO (M)	TO-263 (S)
LM12	X					
LM109/309	X	X				
LM117/317	X	X	X			X
LM117HV/317HV	X	X				
LM120/320	X	X	X			
LM123/323	X					
LM133/333	X		X			
LM137/337	X	X	X			
LM137HV/337HV	X	X				
LM138/338	X		X			
LM140/340	X		X			
LM145/345	X					
LM150/350	X		X			
LM195/395	X	X	X			
LM2930/2935/2984			X			X
LM2937			X			X
LM2940/2941			X			X
LM2990/2991			X			X
LM2575/2575HV			X	X	X	X
LM2576			X			X
LM2577			X	X	X	X
LMD18200/18201			X			

Appendix D Military Aerospace Programs from National Semiconductor

This appendix is intended to provide a brief overview of military products available from National Semiconductor. The process flows and catagories shown below are for general reference only. For further information and availability, please contact the Customer Response Center at 1-800-272-9959, Military/Aerospace Marketing group or your local sales office.
National Semiconductor's Military/Aerospace Program is founded on dedication to excellence. National offers complete support across the broadest range of products with the widest selection of qualification levels and screening flows. These flows include:

Process Flows (Integrated Circuits)	Description
JAN S	QML products processed to MIL-I-38535 Level S or V for Space level applications.
JAN B	QML products processed to MIL-I-38535 Level B or Q for Military applications.
SMD	QML products processed to a Standard Microcircuit Drawing with Table I Electricals controlled by DESC.
883	QML products processed to MIL-STD-883 Level B for Military applications.
MLP	Products processed on the Monitored Line (Program) developed by the Air Force for Space level applications.
-MIL	Similar to MIL-STD-883 with exceptions noted on the Certificate of Conformance.
MSP	Military Screening Products for initial release of advanced products.
MCP	Commercial products processed in a military assembly. Electrical testing performed at $25^{\circ} \mathrm{C}$, plus minimum and maximum operating temperature to commercial limits.
MCR	Commercial products processed in a military assembly. Electrical testing performed at $25^{\circ} \mathrm{C}$ to commercial limits
MRP	Military Ruggedized Plastic products processed to avionics requirements.
MRR	Commercial Ruggedized plastic product processed in a commercial assembly with electrical testing at $25^{\circ} \mathrm{C}$.
MPC	Commercial plastic products processed in a commercial assembly with electrical testing at $25^{\circ} \mathrm{C}$.

- QML: The purpose of the QML program, which is administered by the Defense Electronics Supply Center (DESC), is to provide the military community with standardized products that have been manufactured and screened to the highest quality and reliability standards in facilities that have been certified by the government. To achieve QML status, manufacturers must submit their facilities, quality procedures and design philosophies to a thorough audit aimed at confirming their ability to produce product to the highest design and quality standards. They must be listed on DESC's Qualified Manufacturer List (QML) before devices can be marked and shipped as QML product.
Two processing levels are specified within MIL-I-38535, the QML standard: Class \mathbf{S} (typically specified for space and strategic applications) and Class B (used for tactical missile, airborne, naval and ground systems). The requirements for both classes are defined within MIL-STD-883. National is one of the industry's leading suppliers of both classes.
- Standard Microcircuit Drawings (SMD). SMDs are issued to provide standardized versions of devices offered under QML. MIL-STD-883 screening is coupled with tightly controlled electrical test specifications that allow a manufacturer to use his standard electrical tests. Table I explains the marking of JAN devices, and Table II outlines current marking requirements for QML/ SMD devices. Copies of MIL-I-38535 and the QML can be obtained from the Naval Publications and Forms Center (5801 Tabor Avenue, Philadelphia, PA 19120, 212/697-2179. A current listing of National's SMD offerings can be obtained from our authorized distributors, our sales offices, our Customer Response Center (Arlington, Texas, 817/468-6300), or from DESC.
- MIL-STD-883. Originally intended to establish uniform test methods and procedures, MIL-STD-883 has also become the general specification for non-SMD military product. MIL-STD-883 defines the minimum requirements for a device to be marked and advertised as 883 -compliant. Design and construction criteria, documentation controls, electrical and mechanical screening requirements, and quality control procedures are outlined in paragraph 1.1.2 of MIL-STD-883.

National offers both 883 Class B and 883 Class S prod$u c t$. The screening requirements for both classes of product are outlined in Table III.
As with SMDs a manufacturer is allowed to use his standard electrical tests provided that all critical parameters are tested. Also, the electrical test parameters, test conditions, test limits and test temperatures must be clearly documented. At National Semiconductor, this information is available via our Table I (formerly RETS, Reliability Electrical Test Specification Program). The Table I document is a complete description of the electrical tests performed and is controlled by our QA department. Individual copies are available upon request.
Some of National's products are produced on a flow similar to MIL-STD-883. These devices are screened to the same stringent requirements as 883 product, but are marked as -MIL; specific reasons for prevention of compliancy are clearly defined in the Certificate of Conformance (C of C) shipped with the product.

- Monitored Line Program (MLP): is a non JAN Level S program developed by the Air Force. Monitored Line product usually provides the shortest cycle time, and is acceptable for application in several space level programs. Lockheed Missiles and Space Company in Sunnyvale, California, under an Air Force contract, provides "on-site" monitoring of product processing, and as appropriate, program management. Monitored Line orders generally do not allow "customizing", and most flows do not include quality conformance inspection. Drawing control is maintained by the Lockheed Company.
- Military Screening Program (MSP): National's Military Screening Program was developed to make screened versions of advanced products such as gate arrays and microprocessors available more quickly. Through this program, screened product is made available for prototypes and breadboards prior to or during the QML activities. MSP products receive the 100% screening of Table III, but are not subjected to Group C and D quality conformance testing. Other criteria such as electrical testing and temperature range will vary depending upon individual device status and capability.

TABLE I. JAN S or B Part Marking

TL/XX/0030-1

TABLE I-A. JAN Package Codes

JAN Package Designation	Microcircult Industry Description
A	14-pin $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ (Metal) Flatpak
B	14-pin $3 / 11^{\prime \prime} \times 1 / 4^{\prime \prime}$ (Metal) Flatpak
C	14-pin $1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$ Dual-In-Line
D	14-pin $1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ (Ceramic) Fiatpak
E	16-pin $1 / 4^{\prime \prime} \times 7 / 8^{\prime \prime}$ Dual-In-Line
F	16-pin $1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ (Metal or Ceramic) Flatpak
G	8-pin TO-99 Can or Header
H	10-pin $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ (Metal) Flatpak
1	10-pin TO-100 Can or Header
J	24-pin $1 / 2^{\prime \prime} \times 11 / 4^{\prime \prime}$ Dual-In-Line
K	24-pin $3 / 8^{\prime \prime} \times 5 / 8^{\prime \prime}$ Flatpak
L	24-pin $1 / 4^{\prime \prime} \times 11 / 4^{\prime \prime}$ Dual-In-Line
M	12-pin TO-101 Can or Header
N	(Note 1)
P	8 -pin $1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ Dual-In-Line
Q	40-pin $3 / 16^{\prime \prime} \times 21 / 16^{\prime \prime}$ Dual-In-Line
R	20-pin $1 / 4^{\prime \prime} \times 11 / 16^{\prime \prime}$ ' Dual-In-Line
S	20-pin $1 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$ Flatpak
T	(Note 1)
U	(Note 1)
V	18-pin $3 / 8^{\prime \prime} \times 15 / 16^{\prime \prime}$ Dual-In-Line
W	22-pin $3 / 8^{\prime \prime} \times 11 / 8^{\prime \prime}$ Dual-In-Line
X	(Note 1)
Y	(Note 1)
Z	(Note 1)
2	20-terminal 0.350" $\times 0.350^{\prime \prime}$ Chip Carrier
3	28-terminal 0.450" $\times 0.450^{\prime \prime}$ Chip Carrier

Note 1: These letters are assigned to packages by individual detail specifications and may be assigned to different packages in different specifications.

TABLE III. 100\% Screening Requirements (Continued)					
	Screen	Class S		Class B	
		Method	Reqmt	Method	Reqmt
13.	Reverse Bias Burn-In (Note 7)	$\begin{aligned} & 1015 \text {; Test Condition A, C, } \\ & 72 \text { Hrs. @ } 150^{\circ} \mathrm{C} \mathrm{Min} \\ & \text { (Cond. F Not Allowed) } \end{aligned}$	100\%		
14.	Interim (Post-Burn-In) Electrical Parameters	Per Applicable Device Specification (Note 13)	100\%	Per Applicable Device Specification	100\%
15.	PDA Calculation	5\% Parametric (Note 14), 3\% Functional	All Lots	5\% Parametric (Note 14)	All Lots
16.	Final Electrical Test (Note 15) a) Static Tests 1) $25^{\circ} \mathrm{C}$ (Subgroup 1, Table I, 5005) 2) Max \& Min Rated Operating Temp. (Subgroups 2, 3, Table I, 5005) b) Dynamic Tests or Functional Tests 1) $25^{\circ} \mathrm{C}$ (Subgroup 4 or 7) 2) Max and Min Rated Operating Temp. (Subgroups 5 and 6 or 8, Table I, 5005) c) Switching Tests $25^{\circ} \mathrm{C}$ (Subgroup 9, Table I, 5005)	Per Applicable Device Specification	$\begin{aligned} & 100 \% \\ & 100 \% \\ & \\ & 100 \% \\ & 100 \% \\ & 100 \% \end{aligned}$	Per Applicable Device Specification	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \\ & \\ & 100 \% \end{aligned}$
17.	Seal Fine, Gross	1014	$\begin{gathered} 100 \% \\ \text { (Note 8) } \end{gathered}$	1014	$\begin{gathered} 100 \% \\ \text { (Note 9) } \end{gathered}$
18.	Radiographic (Note 10)	2012 Two Views	100\%		
19.	Qualification or Quality Conformance Inspection Test Sample Selection	(Note 11)	Samp.	(Note 11)	Samp.
20.	External Visual (Note 12)	2009	100\%		100\%

Note 1: Unless otherwise specified, at the manufacturer's option, test samples for Group B, bond strength (Method 5005) may be randomly selected prior to or following internal visual (Method 5004), prior to sealing provided all other specification requirements are satisfied (e.g., bond strength requirements shall apply to each inspection lot, bond failures shall be counted even if the bond would have failed internal visual).
Note 2: For Class B devices, this test may be replaced with thermal shock Method 1011, Test Condition A, minimum.
Note 3: At the manufacturer's option, visual inspection for catastrophic failures may be conducted after each of the thermal/mechanical screens, after the sequence or after seal test. Catastrophic failures are defined as missing leads, broken packages, or lids off.
Note 4: The PIND test may be performed in any sequence after step 6 and prior to step 16. See MIL-I-38585 paragraph 40.6.3.
Note 5: Class S devices shall be serialized prior to interim electrical parameter measurements.
Note 6: When specified, all devices shall be tested for those parameters requiring delta calculations.
Note 7: Reverse bias burn-in is a requirement only when specified in the applicable device specification. The order of performing burn-in and reverse bias burn-in may be inverted.
Note 8: For Class S devices, the seal test may be performed in any sequence between step 16 and step 19, but it shall be performed after all shearing and forming operations on the terminals.
Note 9: For Class B devices, the fine and gross seal tests shall be performed separately or together in any sequence and order between step 6 and step 20 except that they shall be performed after all shearing and forming operations on the terminals. When 100% seal screen cannot be performed after shearing and forming (e.g., flatpaks and chip carriers) the seal screen shall be done 100% prior to these operations and a sample test (LTPD $=5$) shall be performed on each inspection lot following these operations. If the sample fails, 100% rescreening shall be required.
Note 10: The radiographic screen may be performed in any sequence after step 9.
Note 11: Samples shall be selected for testing in accordance with the specific device class and lot requirements of Method 5005.
Note 12: External Visual shall be performed on the lot any time after step 19 and prior to shipment.
Note 13: Read and record is required at steps 10 and 12 only for those parameters for which post-burn-in delta measurements are specified. All parameters shall be read and recorded at step 14.'
Note 14: The PDA shall apply to all subgroup 1 parameters at $25^{\circ} \mathrm{C}$ and all delta parameters.
Note 15: Only one view is required for flat packages and leadless chip carriers with leads on all four sides.
Note 16: May be performed at any time prior to step 10.

Military Analog Products Available from National Semiconductor

Device	Package Styles (Note 1)	Description	Process Flows (Note 2)	SMD/JAN (Note 3)

HIGH PERFORMANCE AMPLIFIERS AND BUFFERS

LF147	D, J	Wide BW Quad JFET Op Amp	SMD/JAN	/11906
LF155A	H	JFET Input Op Amp	883	-
LF156	H	JFET Input Op Amp	883	-
LF156A	H	JFET Input Op Amp	883	-
LF157	H	JFET Input Op Amp	883	-
LF157A	H	JFET Input Op Amp	883	-
LF411M	H	Low Offset, Low Drift JFET Input	883/JAN	/11904
LF412M	H, J	Low Offset, Low Drift JFET Input-Dual	883/JAN	/11905
LF441M	H	Low Power JFET Input	883	-
LF442M	H	Low Power JFET Input-Dual	883	-
LF444M	D	Low Power JFET Input-Quad	883	-
LH0002	H	Buffer Amp	"-MIL"	-
LH0021	K	1.0 Amp Power Op Amp	"-MIL"	-
LH0024	H	High Slew Rate Op Amp	"-MIL"	-
LH0032	G	Ultra Fast FET-Input Op Amp	"-MIL"	-
LH0041	G	0.2 Amp Power Op Amp	"-MIL"	-
LH0101	K	Power Op Amp	"-MIL"	-
LM10	H	Super-Block ${ }^{\text {TM }}$ Micropower Op Amp/Ref	883/SMD	5962-87604
LM101A	J, H, W	General Purpose Op Amp	883/JAN	/10103
LM108A	J, H, W	Precision Op Amp	883/JAN	/10104
LM118	J, H	Fast Op Amp	883/JAN	/10107
LM124	J, E, W	Low Power Quad Op Amp	883/JAN	/11005
LM124A	J, E, W	Low Power Quad	883/JAN	/11006
LM146	J	Quad Programmable Op Amp	883	-
LM148	J, E	Quad 741 Op amp	883/JAN	/11001
LM158A	J, H	Low Power Dual Op Amp	883/SMD	5962-8771002
LM158	J, H	Low Power Dual Op Amp	883/SMD	5962-8771001
LM611AM	J	Super-Block Op Amp/Reference	883/SMD	-
LM613AM	J, E	Super-Block Dual Op Amp/Dual Comp/Ref	883/SMD	-
LM614AM	J	Super-Block Quad Op Amp/Ref	883/SMD	-
LM709A	H, J, W	General Purpose Op Amp	883/SMD	7800701
LM741	J, H, W	General Purpose Op Amp	883/JAN	/10101
LM747	J, H	General Purpose Dual Op Amp	883/JAN	/10102
LM6118	J, E	VIP Dual Op Amp	883/SMD	5962-91565
LM6121	H, J	VIP Buffer	883/SMD	5962-90812
LM6125	H	VIP Buffer with Error Flag	883/SMD	5962-90815
LM6161	J, E, W	VIP Op Amp (Unity Gain)	883/SMD	5962-89621
LM6162	J, E, W	VIP Op Amp ($A_{V}>2,-1$)	883/SMD	5962-92165
LM6164	J, E, W	VIP Op Amp ($A_{V}>5$)	883/SMD	5962-89624
LM6165	J, E, W	VIP Op Amp (AV > 25) 教边	883/SMD	5962-89625
LM6181AM	J	VIP Current Feedback Op Amp	883/SMD	5962-9081802
LM6182AM	J	VIP Current Feedback Dual Op Amp	883/SMD	5962-9460301
LMC660AM	J	Low Power CMOS Quad Op Amp	883/SMD	5962-9209301
LMC662AM	J	Low Power CMOS Dual Op Amp	883/SMD	5962-9209401
LPC660AM	J	Micropower CMOS Quad Op Amp	883/SMD	5962-9209302
LPC662AM	J	Micropower CMOS Dual Op Amp	883/SMD	5962-9209402
LMC6482AM	J	Rail to Rail CMOS Dual Op Amp	883/SMD	5962-9453401
LMC6484AM	J	Rail to Rail CMOS Quad Op Amp	883/SMD	5962-9453402
OP07	H	Precision Op Amp	883	-

Military Analog Products Available from National Semiconductor (Continued)				
Device	Package Styles (Note 1)	Description	Process Flows (Note 2)	SMD/JAN (Note 3)
COMPARATORS				
LF111	H	Voltage Comparator	"-MIL"	-
LH2111	J, W	Dual Voltage Comparator	883/JAN	/10305
LM106	H, W	Voltage Comparator	883/SMD	8003701
LM111	J, H, E, W	Voltage Comparator	883/JAN	/10304
LM119	J, H, E, W	High Speed Dual Comparator	883/JAN	/10306
LM139	J, E, W	Quad Comparator	883/JAN	/11201
LM139A	J, E, W	Precision Quad Comparator	883/SMD	5962-87739
LM160	J, H	High Speed Differential Comparator	883/SMD	8767401
LM161	J, H, W	High Speed Differential Comparator	883/SMD	5962-87572
LM193	J, H	Dual Comparator	883	-
LM193A	J, H	Dual Comparator	883/JAN	/11202
LM612AM	J	Dual-Channel Comparator/Reference	883/SMD	5962-93002
LM613AM	J, E	Super-Block Dual Comparator/ Dual Op Amp/Adj Reference	883/SMD	5962-93003
LM615AM	J	Quad Comparator/Adjustable Reference	883	-
LM710A*	J, H, W	Voltage Comparator	883/JAN	/10301
LM711A*	J, H, W	Dual LM710	883/JAN	/10302
L.M760	J, H	High Speed Differential Comparator	883/SMD	5962-87545
*Formerly manufactured by Fairchild Semiconductor as part numbers μ A710 and μ A711. LINEAR REGULATORS				
Positive Voltage Regulators				
LM105	H	Adjustable Voltage Regulator	883/SMD	5962-89588
LM109	H	5 V Regulator, $\mathrm{I}_{0}=20 \mathrm{~mA}$	883/JAN	/10701BXA
LM109	K	5 V Regulator, $\mathrm{I}_{0}=1 \mathrm{~A}$	883/JAN	/10701BYA
LM117	H, E, K	Adjustable Regulator	883/JAN	/11703,'11704
LM117HV	H	Adjustable Regulator, $\mathrm{I}_{0}=0.5 \mathrm{~A}$	883/SMD	7703402XA
LM117HV	K	Adjustable Regulator, $\mathrm{I}_{0}=1.5 \mathrm{~A}$	883/SMD	7703402YA
LM123	K	3A Voltage Regulator	883	-
LM138	K	5A Adjustable Regulator	"-MIL"	- 10702
LM140-5.0	H	0.5A Fixed 5V Regulator	883/JAN	/10702
LM140-6.0	H	0.5A Fixed 6V Regulator	883	-
LM140-8.0	H	0.5A Fixed 8V Regulator	883	-
LM140-12	H	0.5A Fixed 12V Regulator	883/JAN	/10703
LM140-15	H	0.5A Fixed 15V Regulator	883/JAN	/10704
LM140-24	H	0.5A Fixed 24V Regulator	883	-
LM140A-5.0	K	1.0A Fixed 5V Regulator	883	-
LM140A-12	K	1.0A Fixed 12V Regulator	883	-
LM140A-15	K	1.0A Fixed 15V Regulator	883	-
LM140K-5.0	K	1.0A Fixed 5V Regulator	883/JAN	/10706
LM140K-12	K	1.0A Fixed 12V Regulator	883/JAN	/10707
LM140K-15	K	1.0A Fixed 15V Regulator	883/JAN	/10708
LM140LAH-5.0	H	100 mA Fixed 5V Regulator	883	-
LM140LAH-12	H	100 mA Fixed 12V Regulator	883	-
LM140LAH-15	H	100 mA Fixed 15V Regulator	883	-
LM150	K	3A Adjustable Power Regulator	883	-
LM2940-5.0	K	5V Low Dropout Regulator	883/SMD	5962-89587
LM2940-8.0	K	8V Low Dropout Regulator	883/SMD	5962-90883
LM2940-12	K	12V Low Dropout Regulator	883/SMD	5962-90884
LM2940-15	K	15V Low Dropout Regulator	883/SMD	5962-90885
LM2941	K	Adjustable Low Dropout Regulator	883/SMD	TBD
LM431	H, K	Adjustable Shunt Regulator	883	
LM723	H, J, E	Precision Adjustable Regulator	883/JAN	/10201
$\begin{aligned} & \text { LP2951 } \\ & \text { LP2953AM } \end{aligned}$	$\begin{aligned} & \mathrm{H}, \mathrm{E}, \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$	Adjustable Micropower LDO 250 mA Adj. Micropower LDO	$\begin{aligned} & \text { 883/SMD } \\ & \text { 883/SMD } \end{aligned}$	$\begin{aligned} & 5962-38705 \\ & 5962-9233601 \end{aligned}$

Military Analog Products Available from National Semiconductor (Continued).

Device :	Package Styles (Note 1)	Description	Process Flows (Note 2)	SMD/JAN (Note 3)
LINEAR REGULATORS (Continued)				
Negative Voltage Regulators				
LM120-5.0	H	Fixed 0.5A Regulator, $\mathrm{V}_{\text {OUT }}=-5 \mathrm{~V}$	883/JAN	/11501
LM120-8.0	H	Fixed 0.5A Regulator, $\mathrm{V}_{\text {OUT }}=-8 \mathrm{~V}$	883	-
LM120-12	H	Fixed 0.5A Regulator, $\mathrm{V}_{\text {OUT }}=-12 \mathrm{~V}$	883/JAN	/11502
LM120-15	H	Fixed 0.5A Regulator, $\mathrm{V}_{\text {OUT }}=-15 \mathrm{~V}$	883/JAN	/11503
LM120-5.0	K	Fixed 1.0A Regulator, $\mathrm{V}_{\text {OUT }}=-5 \mathrm{~V}$	883/JAN	/11505
LM120-12	K	Fixed 1.0A Regulator, $\mathrm{V}_{\text {OUT }}=-12 \mathrm{~V}$	883/JAN	$/ 11506$
LM120-15	K	Fixed 1.0A Regulator, $\mathrm{V}_{\text {OUT }}=-15 \mathrm{~V}$	883/JAN	/11507
LM137A	H	Precision Adjustable Regulator	883/SMD	7703406XA
LM137A	K	Precision Adjustable Regulator	883/SMD	7703406YA
LM137	H, K	Adjustable Regulator	883/JAN	/11803, /11804
LM137HV	H	Adjustable (High Voltage) Regulator	883/SMD	7703404XA
LM137HV	K	Adjustable (High Voltage) Regulator	883/SMD	7703404YA
LM145-5.0	K	Negative 3 Amp Regulator	883/SMD	5962-90645
LM145-5.2	K	Negative 3 Amp Regulator	883	-

SWITCHING REGULATORS

LM1575-5	J, K	Simple Switchertm Step-Down, $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	883/SMD	5962-9167201
LM1575-12	J, K	Simple Switcher Step-Down, VOUT $=12 \mathrm{~V}$	883/SMD	5962-9167301
LM1575-15	J, K	Simple Switcher Step-Down, V OUT $=15 \mathrm{~V}$	883/SMD	5962-9167401
LM1575-ADJ	J, K	Simple Switcher Step-Down, Adj Vout	883/SMD	5962-9167101
LM1575HV-5	K	Simple Switcher Step-Down, V ${ }_{\text {OUT }}=5 \mathrm{~V}$	883	-
LM1575HV-12	K	Simple Switcher Step-Down, $\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$	883	-
LM1575HV-15	K	Simple Switcher Step-Down, $\mathrm{V}_{\text {OUT }}=15 \mathrm{~V}$	883	-
LM1575HV-ADJ	K	Simple Switcher Step-Down, Adj V OUT	883	-
LM1577-12	K	Simple Switcher Step-Up, V ${ }_{\text {OUT }}=12 \mathrm{~V}$	883/SMD	5962-9216701
LM1577-15	K	Simple Switcher Step-Up, V ${ }_{\text {OUT }}=15 \mathrm{~V}$	883/SMD	5962-9216801
LM1577-ADJ	K	Simple Switcher Step-Up, Adj V ${ }_{\text {OUT }}$	883/SMD	5962-9216601
LM1578	H	750 mA Switching Regulator	883/SMD	5962-89586
LM78S40*	J	Universal Switching Regulator Subsystem	883/SMD	5962-88761

*Formerly manufactured by Fairchild Semiconductor as the μ A78S40DMQB.
VOLTAGE REFERENCES

LM103-3.0	H	Reference Diode, BV $=3.0 \mathrm{~V}$	$883 /$ SMD	7702806
LM103-3.3	H	Reference Diode, BV $=3.3 \mathrm{~V}$	$883 /$ SMD	7702807
LM103-3.6	H	Reference Diode, BV $=3.6 \mathrm{~V}$	$883 /$ SMD	7702808
LM103-3.9	H	Reference Diode, BV $=3.9 \mathrm{~V}$	$883 /$ SMD	7702809
LM113	H	Reference Diode with 5% Tolerance	$883 /$ SMD	$5962-8671101$
LM113-1	H	Reference Diode with 1% Tolerance	$883 /$ SMD	$5962-8671102$
LM113-2	H	Reference Diode with 2% Tolerance	$883 /$ SMD	$5962-8671103$
LM129A	H	Precision Reference, 10 ppm $/{ }^{\circ} \mathrm{C}$ Drift	$883 /$ SMD	$5962-8992101$ XA
LM129B	H	Precision Reference, 20 ppm $/{ }^{\circ} \mathrm{C}$ Drift	$883 /$ SMD	$5962-8992102 X A$
LM136A-2.5	H	2.5V Reference Diode, 1% VOUT Tolerance	883	-
LM136A-5.0	H	5V Reference Diode, 1\% VOUT Tolerance	$883 /$ SMD	8418001
LM136-2.5	H	2.5V Reference Diode, 2% VOUT Tolerance	883	-
LM136-5.0	H	5V Reference Diode, 2% VOUT Tolerance	883	-

Military Analog Products Available from National Semiconductor (Continued)				
Device	Package Styles (Note 1)	Description	Process Flows (Note 2)	SMD/JAN (Note 3)
VOLTAGE REFERENCES (Continued)				
LM169	H	10V Precision Reference, Low Tempco 0.05\% Tolerance	883	-
LM185B	H, E	Adjustable Micropower Voltage Reference	883/SMD	5962-9041401
LM185BX2.5	H	2.5V Micropower Reference Diode, Ulitralow Drift	883/SMD	5962-8759404
LM185BY	H	Adjustable Micropower Voltage Reference	883	-
LM185BY1.2	H	1.2V Micropower Reference Diode, Low Drift	883/SMD	5962-8759405
LM185BY2.5	H	2.5V Micropower Reference Diode, Low Drift	883/SMD	5962-8759406
LM185-1.2	H, E	1.2V Micropower Reference Diode, Low Drift	883/SMD	5962-8759401
LM185-2.5	H, E	2.5V Micropower Reference Diode, Low Drift	883/SMD	5962-8759402
LM199	H	Precision Reference, Low Tempco	883/SMD	5962-8856102
LM199A	H	Precision Reference, Ultralow Tempco	883/SMD	5962-8856101
LM199A-20	H	Precision Reference, Ultralow Tempco	883	-
LM611AM	J	Super-Block Op Amp/Reference	883	-
LM612AM	J	Super-Block Dual-Channel Comparator/Reference	883/SMD	5962-9300201
LM613AM	J, E	Super-Block Dual Op Amp/DualComp/Dual Ref	883/SMD	5962-9300301
LM614AM	J	Super-Block Quad Op Amp/Reference	883/SMD	5962-9300401
LM615AM	J	Super-Block Quad Comparator/Reference	883/SMD	TBD
LH0070-0	H	Precision BCD Buffered Reference	"-MIL"	-
LH0070-1	H	Precision BCD Buffered Reference	"-MIL"	-
LH0070-2	H	Precision BCD Buffered Reference	"-MIL"	-
DATA ACQUISITION				
ADC08020L	J	8-Bit $\mu \mathrm{P}$-Compatible	883/SMD	5962-90966
ADC0851	J	8-Bit Analog Data Acquisition \& Monitoring System	883/SMD	TBD
ADC0858	J	8-Bit Analog Data Acquisition \& Monitoring System	883/SMD	TBD
ADC08061CM	J	8-Bit Multistep ADC	883/SMD	TBD
ADC10061CM	J	10-Bit Multistep ADC	883/SMD	TBD
ADC10062CM	J	10-Bit Multistep ADC w/Dual Input Mutiplexer	883/SMD	TBD
ADC10064CM	J	10-Bit Multistep ADC w/Quad Input Multiplexer	883/SMD	TBD
ADC1241CM	J	12-Bit Plus Sign Self-Calibrating with Sample/Hold Function	883/SMD	5962-9157801
ADC12441CM	J	Dynamically-Tested ADC1241	883/SMD	5962-9157802
ADC1251CM	J	12-Bit Plus Sign Self-Calibrating with Sample/Hold Function	883/SMD	5962-9157801
ADC12451CM	J	Dynamically-Tested ADC1251	883/SMD	TBD
DAC0854CM	J	Quad 8-Bit D/A Converter with Read Back	883/SMD	TBD
DAC1054CM	J	Quad 10-Bit D/A Converter with Read Back	883/SMD	TBD
LM12458M	EL, W	12-Bit Data Acquisition System	883/SMD	5962-9319501
LM12H458M	EL, W	12-Bit Data Acquisition System	883/SMD	5962-9319502

Appendix E Understanding Integrated Circuit Package Power Capabilities

INTRODUCTION

The short and long term reliability of National Semiconductor's interface circuits, like any integrated circuit, is very dependent on its environmental condition. Beyond the mechanical/environmental factors, nothing has a greater influence on this reliability than the electrical and thermal stress seen by the integrated circuit. Both of these stress issues are specifically addressed on every interface circuit data sheet, under the headings of Absolute Maximum Ratings and Recommended Operating Conditions.
However, through application calls, it has become clear that electrical stress conditions are generally more understood than the thermal stress conditions. Understanding the importance of electrical stress should never be reduced, but clearly, a higher focus and understanding must be placed on thermal stress. Thermal stress and its application to interface circuits from National Semiconductor is the subject of this application note.

FACTORS AFFECTING DEVICE RELIABILITY

Figure 1 shows the well known "bathtub" curve plotting failure rate versus time. Similar to all system hardware (mechanical or electrical) the reliability of interface integrated circuits conform to this curve. The key issues associated with this curve are infant mortality, failure rate, and useful life.

TL/H/9312-1
FIGURE 1. Failure Rate vs Time
Infant mortality, the high failure rate from time to to t1 (early life), is greatly influenced by system stress conditions other than temperature, and can vary widely from one application to another. The main stress factors that contribute to infant mortality are electrical transients and noise, mechanical maltreatment and excessive temperatures. Most of these failures are discovered in device test, burn-in, card assembly and handling, and initial system test and operation. Although important, much literature is available on the subject of infant mortality in integrated circuits and is beyond the scope of this application note.

Failure rate is the number of devices that will be expected to fail in a given period of time (such as, per million hours). The mean time between failure (MTBF) is the average time (in hours) that will be expected to elapse after a unit has failed before the next unit failure will occur. These two primary "units of measure" for device reliability are inversely related:

$$
\text { MTBF }=\frac{1}{\text { Failure Rate }}
$$

Although the "bathtub" curve plots the overall failure rate versus time, the useful failure rate can be defined as the percentage of devices that fail per-unit-time during the flat portion of the curve. This area, called the useful life, extends between t 1 and t 2 or from the end of infant mortality to the onset of wearout. The useful life may be as short as several years but usually extends for decades if adequate design margins are used in the development of a system.
Many factors influence useful life including: pressure, mechanical stress, thermal cycling, and electrical stress. However, die temperature during the device's useful life plays an equally important role in triggering the onset of wearout.

FAILURE RATES vs TIME AND TEMPERATURE

The relationship between integrated circuit failure rates and time and temperature is a well established fact. The occurrence of these failures is a function which can be represented by the Arrhenius Model. Well validated and predominantly used for accelerated life testing of integrated circuits, the Arrhenius Model assumes the degradation of a performance parameter is linear with time and that MTBF is a function of temperature stress. The temperature dependence is an exponential function that defines the probability of occurrence. This results in a formula for expressing the lifetime or MTBF at a given temperature stress in relation to another MTBF at a different temperature. The ratio of these two MTBFs is called the acceleration factor F and is defined by the following equation:

$$
F=\frac{X 1}{X 2}=\exp \left[\frac{E}{K}\left(\frac{1}{T 2}-\frac{1}{T 1}\right)\right]
$$

Where: $\mathrm{X} 1=$ Failure rate at junction temperature T 1
$\mathrm{X} 2=$ Failure rate at junction temperature T2
$\mathrm{T}=$ Junction temperature in degrees Kelvin
$E=$ Thermal activation energy in electron volts (ev)
$\mathrm{K}=$ Boltzman's constant

However, the dramatic acceleration effect of junction temperature (chip temperature) on failure rate is illustrated in a plot of the above equation for three different activation energies in Figure 2. This graph clearly demonstrates the importance of the relationship of junction temperature to device failure rate. For example, using the 0.99 ev line, a 30° rise in junction temperature, say from $130^{\circ} \mathrm{C}$ to $160^{\circ} \mathrm{C}$, results in a 10 to 1 increase in failure rate.

TL/H/9312-2

FIGURE 2. Failure Rate as a Function

 of Junction Temperature
DEVICE THERMAL CAPABILITIES

There are many factors which affect the thermal capability of an integrated circuit. To understand these we need to understand the predominant paths for heat to transfer out of the integrated circuit package. This is illustrated by Figures 3 and 4.
Figure 3 shows a cross-sectional view of an assembled integrated circuit mounted into a printed circuit board.

Figure 4 is a flow chart showing how the heat generated at the power source, the junctions of the integrated circuit
flows from the chip to the ultimate heat sink, the ambient environment. There are two predominant paths. The first is from the die to the die attach pad to the surrounding package material to the package lead frame to the printed circuit board and then to the ambient. The second path is from the package directly to the ambient air.
Improving the thermal characteristics of any stage in the flow chart of Figure 4 will result in an improvement in device thermal characteristics. However, grouping all these characteristics into one equation determining the overall thermal capability of an integrated circuit/package/environmental condition is possible. The equation that expresses this relationship is:

$$
T_{J}=T_{A}+P_{D}\left(\theta_{J A}\right)
$$

Where: $T_{J}=$ Die junction temperature
$T_{A}=$ Ambient temperature in the vicinity device
$P_{D}=$ Total power dissipation (in watts)
$\theta_{\mathrm{JA}}=$ Thermal resistance junction-to-ambient
θ_{JA}, the thermal resistance from device junction-to-ambient temperature, is measured and specified by the manufacturers of integrated circuits. National Semiconductor utilizes special vehicles and methods to measure and monitor this parameter. All circuit data sheets specify the thermal characteristics and capabilities of the packages available for a given device under specific conditions-these package power ratings directly relate to thermal resistance junction-to-ambient or θ_{JA}
Although National provides these thermal ratings, it is critical that the end user understand how to use these numbers to improve thermal characteristics in the development of his system using IC components.

TL/H/9312-3
FIGURE 3. Integrated Circuit Soldered into a Printed Circuit Board (Cross-Sectional View)

TL/H/9312-4
FIGURE 4. Thermal Flow (Predominant Paths)

DETERMINING DEVICE OPERATING JUNCTION TEMPERATURE

From the above equation the method of determining actual worst-case device operating junction temperature becomes straightforward. Given a package thermal characteristic, θ_{JA}, worst-case ambient operating temperature, $\mathrm{T}_{\mathrm{A}}(\mathrm{max})$, the only unknown parameter is device power dissipation, P_{D}. In calculating this parameter, the dissipation of the integrated circuit due to its own supply has to be considered, the dissipation within the package due to the external load must also be added. The power associated with the load in a dynamic (switching) situation must also be considered. For example, the power associated with an inductor or a capacitor in a static versus dynamic (say, 1 MHz) condition is significantly different.
The junction temperature of a device with a total package power of 600 mW at $70^{\circ} \mathrm{C}$ in a package with a thermal resistance of $63^{\circ} \mathrm{C} / \mathrm{W}$ is $108^{\circ} \mathrm{C}$.

$$
\mathrm{T}_{J}=70^{\circ} \mathrm{C}+\left(63^{\circ} \mathrm{C} / \mathrm{W}\right) \times(0.6 \mathrm{~W})=108^{\circ} \mathrm{C}
$$

The next obvious question is, "how safe is $108^{\circ} \mathrm{C}$?"

MAXIMUM ALLOWABLE JUNCTION TEMPERATURES

What is an acceptable maximum operating junction temperature is in itself somewhat of a difficult question to answer. Many companies have established their own standards based on corporate policy. However, the semiconductor industry has developed some defacto standards based on the device package type. These have been well accepted as numbers that relate to reasonable (acceptable) device lifetimes, thus failure rates.
National Semiconductor has adopted these industry-wide standards. For devices fabricated in a molded package, the maximum allowable junction temperature is $150^{\circ} \mathrm{C}$. For these devices assembled in ceramic or cavity DIP packages, the maximum allowable junction temperature is $175^{\circ} \mathrm{C}$. The numbers are different because of the differences in package types. The thermal strain associated with the die package interface in a cavity package is much less than that exhibited in a molded package where the integrated circuit chip is in direct contact with the package material.
Let us use this new information and our thermal equation to construct a graph which displays the safe thermal (power) operating area for a given package type. Figure 5 is an example of such a graph. The end points of this graph are easily determined. For a 16 -pin molded package, the maximum allowable temperature is $150^{\circ} \mathrm{C}$; at this point no power dissipation is allowable. The power capability at $25^{\circ} \mathrm{C}$ is 1.98W as given by the following calculation:

$$
P_{D} @ 25^{\circ} \mathrm{C}=\frac{T_{J}(\max)-T_{A}}{\theta_{J A}}=\frac{150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{63^{\circ} \mathrm{C} / \mathrm{W}}=1.98 \mathrm{~W}
$$

The slope of the straight line between these two points is minus the inversion of the thermal resistance. This is referred to as the derating factor.

$$
\text { Derating Factor }=-\frac{1}{\theta_{\mathrm{JA}}}
$$

As mentioned, Figure 5 is a plot of the safe thermal operating area for a device in a 16 -pin molded DIP. As long as the intersection of a vertical line defining the maximum ambient temperature ($70^{\circ} \mathrm{C}$ in our previous example) and maximum device package power (600 mW) remains below the maximum package thermal capability line the junction temperature will remain below $150^{\circ} \mathrm{C}$-the limit for a molded package. If the intersection of ambient temperature and package power fails on this line, the maximum junction temperature will be $150^{\circ} \mathrm{C}$. Any intersection that occurs above this line will result in a junction temperature in excess of $150^{\circ} \mathrm{C}$ and is not an appropriate operating condition.

TL/H/9312-5
FIGURE 5. Package Power Capability vs Temperature
The thermal capabilities of all integrated circuits are expressed as a power capability at $25^{\circ} \mathrm{C}$ still air environment with a given derating factor. This simply states, for every degree of ambient temperature rise above $25^{\circ} \mathrm{C}$, reduce the package power capability stated by the derating factor which is expressed in $\mathrm{mW} /{ }^{\circ} \mathrm{C}$. For our example-a θ_{JA} of $63^{\circ} \mathrm{C} / \mathrm{W}$ relates to a derating factor of $15.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

FACTORS INFLUENCING PACKAGE THERMAL RESISTANCE

As discussed earlier, improving any portion of the two primary thermal flow paths will result in an improvement in overall thermal resistance junction-to-ambient. This section discusses those components of thermal resistance that can be influenced by the manufacturer of the integrated circuit. It also discusses those factors in the overall thermal resistance that can be impacted by the end user of the integrated circuit. Understanding these issues will go a long way in understanding chip power capabilities and what can be done to insure the best possible operating conditions and, thus, best overall reliability.

Die Size

Figure 6 shows a graph of our 16 -pin DIP thermal resistance as a function of integrated circuit die size. Clearly, as the chip size increases the thermal resistance decreases-this relates directly to having a larger area with which to dissipate a given power.

TL/H/9312-6
FIGURE 6. Thermal Resistance vs Die Size

Lead Frame Material

Figure 7 shows the influence of lead frame material (both die attach and device pins) on thermal resistance. This graph compares our same 16 -pin DIP with a copper lead frame, a Kovar lead frame, and finally an Alloy 42 type lead frame-these are lead frame materials commonly used in the industry. Obviously the thermal conductivity of the lead frame material has a significant impact in package power capability. Molded interface circuits from National Semiconductor use the copper lead frame exclusively.

TL/H/9312-7

FIGURE 7. Thermal Resistance vs Lead Frame Material

Board vs Socket Mount

One of the major paths of dissipating energy generated by the integrated circuit is through the device leads. As a result of this, the graph of Figure 8 comes as no surprise. This compares the thermal resistance of our 16-pin package soldered into a printed circuit board (board mount) compared to the same package placed in a socket (socket mount). Adding a socket in the path between the PC board and the device adds another stage in the thermal flow path, thus increasing the overall thermal resistance. The thermal capabilities of National Semiconductor's interface circuits are specified assuming board mount conditions. If the devices are placed in a socket the thermal capabilities should be reduced by approximately 5% to 10%.

TL/H/9312-8
FIGURE 8. Thermal Resistance vs Board or Socket Mount

Air Flow

When a high power situation exists and the ambient temperature cannot be reduced, the next best thing is to provide air flow in the vicinity of the package. The graph of Figure 9 illustrates the impact this has on thermal resistance. This graph plots the relative reduction in thermal resistance normalized to the still air condition for our 16 -pin molded DIP. The thermal ratings on National Semiconductor's interface circuits data sheets relate to the still air environment.

FIGURE 9. Thermal Resistance vs Air Flow

Other Factors

A number of other factors influence thermal resistance. The most important of these is using thermal epoxy in mounting ICs to the PC board and heat sinks. Generally these techniques are required only in the very highest of power applications.
Some confusion exists between the difference in thermal resistance junction-to-ambient (θ_{JA}) and thermal resistance junction-to-case (θ_{Jc}). The best measure of actual junction temperature is the junction-to-ambient number since nearly all systems operate in an open air environment. The only situation where thermal resistance junction-to-case is important is when the entire system is immersed in a thermal bath and the environmental temperature is indeed the case temperature. This is only used in extreme cases and is the exception to the rule and, for this reason, is not addressed in this application note.

NATIONAL SEMICONDUCTOR PACKAGE CAPABILITIES

Figures 10 and 11 show composite plots of the thermal characteristics of the most common package types in the National Semiconductor Linear Circuits product family. Figure 10 is a composite of the copper lead frame molded
package. Figure 11 is a composite of the ceramic (cavity) DIP using poly die attach. These graphs represent board mount still air thermal capabilities. Another, and final, thermal resistance trend will be noticed in these graphs. As the number of device pins increase in a DIP the thermal resistance decreases. Referring back to the thermal flow chart, this trend should, by now, be obvious.

RATINGS ON INTEGRATED CIRCUITS DATA SHEETS

In conclusion, all National Semiconductor Linear Products define power dissipation (thermal) capability. This information can be found in the Absolute Maximum Ratings section of the data sheet. The thermal information shown in this application note represents average data for characterization of the indicated package. Actual thermal resistance can vary from $\pm 10 \%$ to $\pm 15 \%$ due to fluctuations in assembly quality, die shape, die thickness, distribution of heat sources on the die, etc. The numbers quoted in the linear data sheets reflect a 15% safety margin from the average numbers found in this application note. Insuring that total package power remains under a specified level will guarantee that the maximum junction temperature will not exceed the package maximum.

*Packages from 8- to 20-pin 0.3 mil width
TL/H/9312-10
22-pin 0.4 mil width
24- to 40-pin 0.6 mil width
FIGURE 10. Thermal Resistance vs Die Size vs Package Type (Molded Package)

Surface Mount (M, MW Packages), Board Mount, Still Air

FIGURE 12. Thermal Resistance for "SO" Packages (Board Mount)

The package power ratings are specified as a maximum power at $25^{\circ} \mathrm{C}$ ambient with an associated derating factor for ambient temperatures above $25^{\circ} \mathrm{C}$. It is easy to determine the power capability at an elevated temperature. The power specified at $25^{\circ} \mathrm{C}$ should be reduced by the derating factor for every degree of ambient temperature above $25^{\circ} \mathrm{C}$. For example, in a given product data sheet the following will be found:

$$
\begin{array}{ll}
\text { Maximum Power Dissipation* at } 25^{\circ} \mathrm{C} \\
\text { Cavity Package } & 1509 \mathrm{~mW} \\
\text { Molded Package } & 1476 \mathrm{~mW}
\end{array}
$$

* Derate cavity package at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package at $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
If the molded package is used at a maximum ambient temperature of $70^{\circ} \mathrm{C}$, the package power capability is 945 mW .

$$
\begin{aligned}
\mathrm{P}_{\mathrm{D}} @ 70^{\circ} \mathrm{C} & =1476 \mathrm{~mW}-\left(11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right) \times\left(70^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) \\
& =945 \mathrm{~mW}
\end{aligned}
$$

TL/H/9312-13
*For products with high current ratings ($>3 A$), thermal resistance may be lower. Consult product datasheet for more information.

FIGURE 13. Thermal Resistance (typ.*) for 3-, 5-, and 7-L TO-263 packages mounted on 102. (0.036 mm) PC board foil

APPENDIX F
 How to Get the Right Information From a Data Sheet

Not All Data Sheets Are Created Alike, and False Assumptions Could Cost an Engineer Time and Money

By Robert A. Pease

When a new product arrives in the marketplace, it hopefully will have a good, clear data sheet with it.
The data sheet can show the prospective user how to apply the device, what performance specifications are guaranteed and various typical applications and characteristics. If the data-sheet writer has done a good job, the user can decide if the product will be valuable to him, exactly how well it will be of use to him and what precautions to take to avoid problems.

SPECIFICATIONS

The most important area of a data sheet specifies the characteristics that are guaranteed-and the test conditions that apply when the tests are done. Ideally, all specifications that the users will need will be spelled out clearly. If the product is similar to existing products, one can expect the data sheet to have a format similar to other devices.
But, if there are significant changes and improvements that nobody has seen before, then the writer must clarify what is meant by each specification. Definitions of new phrases or characteristics may even have to be added as an appendix.
For example, when fast-settling operational amplifiers were first introduced, some manufacturers defined settling time as the time after slewing before the output finally enters and stays within the error-band; but other manufacturers included the slewing time in their definition. Because both groups made their definitions clear, the user was unlikely to be confused or misled.
However, the reader ought to be on the alert. In a few cases, the data-sheet writer is playing a specsmanship game, and is trying to show an inferior (to some users) aspect of a product in a light that makes it look superior (which it may be, to a couple of users).

GUARANTEES

When a data sheet specifies a guaranteed minimum value, what does it mean? An assumption might be made that the manufacturer has actually tested that specification and has great confidence that no part could fail that test and still be shipped. Yet that is not always the case.
For instance, in the early days of op amps (20 years ago), the differential-input impedance might have been guaranteed at $1 \mathrm{M} \Omega$-but the manufacturer obviously did not measure the impedance. When a customer insisted, "I have to know how you measure this impedance," it had to be explained that the impedance was not measured, but that the base current was. The correlation between I_{b} and $\mathrm{Z}_{\text {in }}$ permitted the substitution of this simple dc test for a rather messy, noisy, hard-to-interpret test.

Every year, for the last 20 years, manufacturers have been trying to explain, with varying success, why they do not measure the $Z_{\text {in }}$ per se, even though they do guarantee it.
In other cases, the manufacturer may specify a test that can be made only on the die as it is probed on the wafer, but cannot be tested after the die is packaged because that signal is not accessible any longer. To avoid frustrating and confusing the customer, some manufacturers are establishing two classes of guaranteed specifications:

- The tested limit represents a test that cannot be doubted, one that is actually performed directly on 100 percent of the devices, 100 percent of the time.
- The design limit covers other tests that may be indirect, implicit or simply guaranteed by the inherent design of the device, and is unlikely to cause a failure rate (on that test), even as high as one part per thousand.
Why was this distinction made? Not just because customers wanted to know which specifications were guaranteed by testing, but because the quality-assurance group insisted that it was essential to separate the tested guarantees from the design limits so that the AQL (assurance-quality level) could be improved from 0.1 percent to down below 100 ppm.
Some data sheets guarantee characteristics that are quite expensive and difficult to test (even harder than noise) such as long-term drift (20 ppm or 50 ppm over 1,000 hours).
The data sheet may not tell the reader if it is measured, tested or estimated. One manufacturer may perform a 100percent test, while another states, "Guaranteed by sample testing." This is not a very comforting assurance that a part is good, especially in a critical case where only a long-term test can prove if the device did meet the manufacturer's specification. If in doubt, question the manufacturer.

TYPICALS

Next to a guaranteed specification, there is likely to be another in a column labeled "typical".
It might mean that the manufacturer once actually saw one part as good as that. It could indicate that half the parts are better than that specification, and half will be worse. But it is equally likely to mean that, five years ago, half the parts were better and half worse. It could easily signify that a few parts might be slightly better, and a few parts a lot worse; after all, if the noise of an amplifier is extremely close to the theoretical limit, one cannot expect to find anything much better than that, but there will always be a few noisy ones.
If the specification of interest happens to be the bias current (l_{b}) of an op amp, a user can expect broad variations. For example, if the specification is 200 nA maximum, there might be many parts where I_{b} is 40 nA on one batch (where the beta is high), and a month later, many parts where the I_{b} is 140 nA when the beta is low.

Absolute Maximum Ratings (Note 11)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
+35 V to -0.2 V
Output Voltage
+6 V to -1.0 V
Output Current
Storage Temperature,
TO-46 Package
$-76^{\circ} \mathrm{F}$ to $+356^{\circ} \mathrm{F}$
TO-92 Package
$-76^{\circ} \mathrm{F}$ to $+300^{\circ} \mathrm{F}$

Lead Temp. (Soldering, 4 seconds) *
TO-46 Package $+300^{\circ} \mathrm{C}$
TO-92 Package
$+260^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$
LM34, LM34A $\quad-50^{\circ} \mathrm{F}$ to $+300^{\circ} \mathrm{F}$
LM34C, LM34CA $-40^{\circ} \mathrm{F}$ to $+230^{\circ} \mathrm{F}$
LM34D
$+32^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$

DC Electrical Characteristics (Note 1, Note 6)

Parameter	Conditions	LM34A			LM34CA			Units (Max)
		Typical	Tested Limit (Note 4)	Design Limit (Note 5)	Typical	Tested Limit (Note 4)	Design Limit (Note 5)	
Accuracy (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.4 \\ & \pm 0.6 \\ & \pm 0.8 \\ & \pm 0.8 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 2.0 \\ & \pm 2.0 \end{aligned}$		$\begin{aligned} & \pm 0.4 \\ & \pm 0.6 \\ & \pm 0.8 \\ & \pm 0.8 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & \pm 2.0 \\ & \pm 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \end{aligned}$
Nonlinearity (Note 8)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	± 0.35		± 0.7	± 0.30		± 0.6	${ }^{\circ} \mathrm{F}$
Sensor Gain (Average Slope)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	+10.0	$\begin{array}{r} +9.9 \\ +10.1 \end{array}$		+10.0		$\begin{array}{r} +9.9 \\ +10.1 \end{array}$	$\mathrm{mV} /{ }^{\circ} \mathrm{F}, \min$ $\mathrm{mV} /{ }^{\circ} \mathrm{F}, \max$
Load Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \\ & 0 \leq \mathrm{I}_{\mathrm{L}} \leq 1 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 0.4 \\ \pm \mathbf{0 . 5} \end{array}$	± 1.0	± 3.0	$\begin{array}{r} \pm 0.4 \\ \pm 0.5 \end{array}$	± 1.0	± 3.0	$\mathrm{mV} / \mathrm{mA}$ $\mathrm{mV} / \mathrm{mA}$
Line Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & \pm \mathbf{0 . 0 2} \end{aligned}$	± 0.05	± 0.1	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \end{gathered}$	± 0.05	± 0.1	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Quiescent Current (Note 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 75 \\ 131 \\ 76 \\ 132 \end{gathered}$	$\begin{aligned} & 90 \\ & 92 \end{aligned}$	$\begin{aligned} & 160 \\ & 163 \\ & \hline \end{aligned}$	$\begin{gathered} 75 \\ 116 \\ 76 \\ 117 \\ \hline \end{gathered}$	$\begin{aligned} & 90 \\ & 92 \end{aligned}$	$\begin{array}{r} 139 \\ 142 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Change of Quiescent Current (Note 3)	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{array}{r} +0.5 \\ +\mathbf{1 . 0} \end{array}$	2.0	3.0	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	2.0	3.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Temperature Coefficient of Quiescent Current		+0.30		+ 0.5	+0.30		+ 0.5	$\mu \mathrm{A} /{ }^{\circ} \mathrm{F}$
Minimum Temperature for Rated Accuracy	In circuit of Figure 1, $L_{L}=0$	+3.0		+5.0	+3.0		+5.0	${ }^{\circ} \mathrm{F}$
Long-Term Stability	$\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\text {MAX }}$ for 1000 hours	± 0.16			± 0.16			${ }^{\circ} \mathrm{F}$

Note 1: Unless otherwise noted, these specifications apply: $-50^{\circ} \mathrm{F} \leq \mathrm{T}_{j} \leq+300^{\circ} \mathrm{F}$ for the LM34 and LM34A; $-40^{\circ} \mathrm{F} \leq \mathrm{T}_{j} \leq+230^{\circ} \mathrm{F}$ for the LM34C and LM34CA; and $+32^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq+212^{\circ} \mathrm{F}$ for the LM34D. $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{Vdc}$ and $\mathrm{L}_{\mathrm{LOAD}}=50 \mu \mathrm{~A}$ in the circuit of Figure $2 ;+6 \mathrm{Vdc}$ for LM34 and LM34A for $230^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq$ $300^{\circ} \mathrm{F}$. These specifications also apply from $+5^{\circ} \mathrm{F}$ to $\mathrm{T}_{\text {MAX }}$ in the circuit of Figure 1.
Note 2: Thermal resistance of the TO-46 package is $292^{\circ} \mathrm{F} / \mathrm{W}$ junction to ambient and $43^{\circ} \mathrm{F} / \mathrm{W}$ junction to case. Thermal resistance of the TO-92 package is $324^{\circ} \mathrm{F} / \mathrm{W}$ junction to ambient.
Note 3: Regulation is measured at constant junction temperature using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.
Note 4: Tested limits are guaranteed and 100% tested in production.
Note 5: Design limits are guaranteed (but not 100\% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 6: Specification in BOLDFACE TYPE apply over the full rated temperature range.
Note 7: Accuracy is defined as the error between the output voltage and $10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$ times the device's case temperature at specified conditions of voltage, current, and temperature (expressed in ${ }^{\circ} \mathrm{F}$).

Note 8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line over the device's rated temperature range.
Note 9: Quiescent current is defined in the circuit of Figure 1.
Note 10: Contact factory for availability of LM34CAZ.

* * Note 11: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions (see Note 1).

A Point-By-Point Look

Let's look a little more closely at the data sheet of the Na tional Semiconductor LM34, which happens to be a temperature sensor.
Note 1 lists the nominal test conditions and test circuits in which all the characteristics are defined. Some additional test conditions are listed in the column "Conditions", but Note 1 helps minimize the clutter.
Note 2 gives the thermal impedance, (which may also be shown in a chart or table).
Note 3 warns that an output impedance test, if done with a long pulse, could cause significant self-heating and thus, error.
Note 6 is intended to show which specs apply at all rated temperatures.
Note 7 is the definition of the "Accuracy" spec, and Note 8 the definition for non-linearity. Note 9 states in what test circuit the quiescent current is defined. Note 10 indicates that one model of the family may not be available at the time of printing (but happens to be available now), and Note 11 is the definition of Absolute Max Ratings.

* Note-the " 4 seconds" soldering time is a new standard for plastic packages.
** Note-the wording of Note 11 has been revised-this is the best wording we can devise, and we will use it on all future datasheets.

APPLICATIONS

Another important part of the data sheet is the applications section. It indicates the novel and conventional ways to use a device. Sometimes these applications are just little ideas to tweak a reader's mind. After looking at a couple of applications, one can invent other ideas that are useful. Some applications may be of no real interest or use.
In other cases, an application circuit may be the complete definition of the system's performance; it can be the test circuit in which the specification limits are defined, tested and guaranteed. But, in all other instances, the performance of a typical application circuit is not guaranteed, it is only typical. In many circumstances, the performance may depend on external components and their precision and matching. Some manufacturers have added a phrase to their data sheets:
"Applications for any circuits contained in this document are for illustration purposes only and the manufacturer makes no representation or warranty that such applications will be suitable for the use indicated without further testing or modification."
In the future, manufacturers may find it necessary to add disclaimers of this kind to avoid disappointing users with circuits that work well, much of the time, but cannot be easily guaranteed.
The applications section is also a good place to look for advice on quirks-potential drawbacks or little details that may not be so little when a user wants to know if a device will actually deliver the expected performance.
For example, if a buffer can drive heavy loads and can handle fast signals cleanly (at no load), the maker isn't doing anybody any favors if there is no mention that the distortion goes sky-high if the rated load is applied.

Another example is the application hint for the LF156 family: "Exceeding the negative common-mode limit on either input will cause a reversal of the phase to output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur, since raising the input back within the common-mode range again puts the input stage and, thus the amplifier, in a normal operating mode."
That's the kind of information a manufacturer should really give to a data-sheet reader because no one could ever guess it.
Sometimes, a writer slips a quirk into a characteristic curve, but it's wiser to draw attention to it with a line of text. This is because it's better to make the user sad before one gets started, rather than when one goes into production. Conversely, if a user is going to spend more than 10 minutes using a new product, one ought to spend a full five minutes reading the entire data sheet.

FINE PRINT

What other fine print can be found on a data sheet? Sometimes the front page may be marked "advance" or "preliminary." Then on the back page, the fine print may say something such as:
"This data sheet contains preliminary limits and design specifications. Supplemental information will be published at a later date. The manufacturer reserves the right to make changes in the products contained in this document in order to improve design or performance and to supply the best possible products. We also assume no responsibility for the use of any circuits described herein, convey no license under any patent or other right and make no representation that the circuits are free from patent infringement."
In fact, after a device is released to the marketplace in a preliminary status, the engineers love to make small improvements and upgrades in specifications and characteristics, and hate to degrade a specification from its first published value-but occasionally that is necessary.
Another item in the fine print is the manufacturer's telephone number. Usually it is best to refer questions to the local sales representative or field-applications engineer, because they may know the answer or they may be best able to put a questioner in touch with the right person at the factory.
Occasionally, the factory's applications engineers have all the information. Other times, they have to bring in product engineers, test engineers or marketing people. And sometimes the answer can't be generated quickly-data have to be gathered, opinions solidified or policies formulated before the manufacturer can answer the question. Still, the telephone number is the key to getting the factory to help.

ORIGINS OF DATA SHEETS

Of course, historically, most data sheets for a class of products have been closely modeled on the data sheet of the forerunner of that class. The first data sheet was copied to make new versions.
That's the way it happened with the UA709 (the first monolithic op amp) and all its copies, as well as many other similar families of circuits.

Even today, an attempt is made to build on the good things learned from the past and add a few improvements when necessary. But, it's important to have real improvements, not just change for the sake of change.
So, while it's not easy to get the format and everything in it exactly right to please everybody, new data sheets are continually surfacing with new features, applications ideas, specifications and aids for the user. And, if the users complain loudly enough about misleading or inadequate data sheets, they can help lead the way to change data sheets. That's how many of today's improvements came aboutthrough customer demand.
Who writes data sheets? In some cases, a marketing person does the actual writing and engineers do the checking. In other companies, the engineer writes, while marketing people and other engineers check. Sometimes, a committee seems to be doing the writing. None of these ways is necessarily wrong.
For example, one approach might be: The original designer of the product writes the data sheet (inside his head) at the same time the product is designed. The concept here is, if one can't find the proper ingredients for a data sheet-good applications, convenient features for the user and nicely tested specifications as the part is being designed-then maybe it's not a very good product until all those ingredients are completed. Thus, the collection of raw materials for a good data sheet is an integral part of the design of a product. The actual assembly of these materials is an art which can take place later.

WHEN TO WRITE DATA SHEETS

A new product becomes available. The applications engineers start evaluating their application circuits and the test engineers examine their production test equipment.
But how can the users evaluate the new device? They have to have a data sheet-which is still in the process of being written. Every week, as the data sheet writer tries to polish and refine the incipient data sheet, other engineers are reporting, "These spec limits and conditions have to be revised," and, "Those application circuits don't work like we thought they would; we'll have one running in a couple of days." The marketing people insist that the data sheet must be finalized and frozen right away so that they can start printing copies to go out with evaluation samples.
These trying conditions may explain why data sheets always seem to have been thrown together under panic conditions and why they have so many rough spots. Users should be aware of the conflicting requirements: Getting a data sheet "as completely as possible" and "as accurately as possible" is compromised if one wants to get the data sheet "as quickly as possible."
The reader should always question the manufacturer. What are the alternatives? By not asking the right question, a misunderstanding could arise; getting angry with the manufacturer is not to anyone's advantage.
Robert Pease has been staff scientist at National Semiconductor Corp., Santa Clara, Calif., for eleven years. He has designed numerous op amps, data converters, voltage regulators and analog-circuit functions.

8 Lead Ceramic Sidebrazed Dual-in-Line Package NS Package Number D08C

All dimensions are in inches (millimeters)

008 C (REV C)

14 Lead Ceramic Sidebrazed Dual-in-Line Package NS Package Number D14D

All dimensions are in inches (millimeters)

14 Lead Hermetic Dual-in-Line Package
 NS Package Number D14E

All dimensions are in inches (millimeters)

16 Lead Ceramic Sidebrazed Dual-in-Line Package NS Package Number D16C

All dimensions are in inches (millimeters)

16 Lead Hybrid Metal Can Dual-in-Line Package NS Package Number D16D

All dimensions are in inches

D16D (REV C)

20 Lead Ceramic Leadless Chip Carrier, Type C NS Package Number E20A

All dimensions are in inches (millimeters)

12 Lead (0.400" Square Pattern) TO-8 Metal Can Package

 NS Package Number G12BAll dimensions are in inches (millimeters)

G128 (REV C)

3 Lead (0.200" Diameter P.C.) TO-39 Metal Can Package, High Profile NS Package Number H03B

All dimensions are in inches (millimeters)

6 Lead (0.200" Diameter P.C.) TO-5 Metal Can Package NS Package Number H06C

All dimensions are in inches (millimeters)

8 Lead (0.230" Diameter P.C.) TO-5 Metal Can Package NS Package Number H08A

All dimensions are in inches (millimeters)

8 Lead (0.230" Diameter P.C.) Metal Can Package NS Package Number H08B

All dimensions are in inches (millimeters)

8 Lead (0.200" Diameter P.C.) TO-5 Metal Can Package NS Package Number H08C

All dimensions are in inches (millimeters)

HOBC (REV E)

8 Lead (0.230" Diameter P.C.) Metal Can Package NS Package Number H08D

All dimensions are in inches (millimeters)

10 Lead (0.230" Diameter P.C.) TO-5 Metal Can Package NS Package Number H10C

All dimensions are in inches (millimeters)

10 Lead (0.230" Diameter P.C.) Metal Can Package NS Package Number H10F

All dimensions are in inches (millimeters)

10 Lead (0.230" Diameter P.C.) Metal Can Package NS Package Number H10G

All dimensions are in inches (millimeters)

H10G (REV B)

12 Lead (0.400 " Square Pattern) Metal Can Package NS Package Number H12B

All dimensions are in inches (millimeters)

8 Lead Dual-in-Line Hybrid Package
NS Package Number HY08A
All dimensions are in inches

8 Lead Ceramic Dual-in-Line Package NS Package Number J08A

J08A (REV K)

14 Lead Ceramic Dual-in-Line Package NS Package Number J14A

All dimensions are in inches (millimeters)

16 Lead Ceramic Dual-in-Line Package NS Package Number J16A

All dimensions are in inches [millimeters]

2 Lead TO-3 Metal Can Package NS Package Number K02A

All dimensions are in inches [millimeters]

8 Lead TO-3 Metal Can Package NS Package Number K08A

All dimensions are in inches (millimeters)

8 Lead (0.150" Wide) Molded Small Outline Package, JEDEC NS Package Number M08A

14 Lead (0.150" Wide) Molded Small Outline Package, JEDEC NS Package Number M14A

All dimensions are in inches (millimeters)

16 Lead (0.150" Wide) Molded Small Outline Package, JEDEC NS Package Number M16A

16 Lead ($0.300^{\prime \prime}$ Wide) Molded Small Outline Package, JEDEC NS Package Number M16B

24 Lead ($0.300^{\prime \prime}$ Wide) Molded Small Outline Package, JEDEC NS Package Number M24B

5 Lead Molded SOT-23-5 NS Package Number MA05A

All dimensions are in inches [millimeters]

LAND PATTERN RECOMMENDATION

8 Lead (0.300" Wide) Molded Dual-in-Line Package NS Package Number N08E

All dimensions are in inches (millimeters)

10 Lead Molded Dual-in-Line Package NS Package Number N10A

N10A (REV A)

16 Lead (0.300 " Wide) Molded Dual-in-Line Package

 NS Package Number N16AAll dimensions are in inches (millimeters)

4 Lead Molded TO-202 NS Package Number P04A

11 Lead Molded TO-202
NS Package Number P11A

3 Lead Molded TO-220 NS Package Number T03B

5 Lead Molded TO-220 NS Package Number T05B

All dimensions are in inches (millimeters)

11 Lead Molded TO-220

NS Package Number TA11B
All dimensions are in inches (millimeters)

11 Lead Molded TO-220 NS Package Number TF11B

10 Lead Cerpack
 NS Package Number W10A

14 Lead Ceramic Flatpack NS Package Number W14B

DETAIL A

3 Lead Molded TO-92

NS Package Number Z03A
All dimensions are in inches [millimeters]

National Semiconductor

Bookshelf of Technical Support Information
National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature.
This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book.
For datasheets on new products and devices still in production but not found in a databook, please contact the National Semiconductor Customer Support Center at 1-800-272-9959.
We are interested in your comments on our technical literature and your suggestions for improvement.
Please send them to:
Technical Communications Dept. M/S 16-300
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052-8090

ADVANCED BiCMOS LOGIC (ABTC, IBF, BICMOS SCAN, LOW VOLTAGE BiCMOS, EXTENDED TTL TECHNOLOGY) DATABOOK—1994
 ABTC/BCT Description and Family Characteristics • ABTC/BCT Ratings, Specifications and Waveforms ABTC Applications and Design Considerations • Quality and Reliability • Integrated Bus Function (IBF) Introduction 54/74ABT3283 Synchronous Datapath Multiplexer • 74FR900/25900 9-Bit 3-Port Latchable Datapath Multiplexer 54/74ACTQ3283 32-Bit Latchable Transceiver with Parity Generator/Checker and Byte Multiplexing SCAN18xxxA BiCMOS 5V Logic with Boundary Scan • 74LVT Low Voltage BiCMOS Logic VME Extended TTL Technology for Backplanes

ALS/AS LOGIC DATABOOK—1990
 Introduction to Advanced Bipolar Logic • Advanced Low Power Schottky • Advanced Schottky

APPLICATION SPECIFIC ANALOG PRODUCTS DATABOOK—1995

Audio Circuits • Video Circuits • Automotive • Special Functions • Surface Mount

ASIC DESIGN MANUAL/GATE ARRAYS \& STANDARD CELLS—1987

SSI/MSI Functions • Peripheral Functions • LSI/VLSI Functions • Design Guidelines • Packaging

CMOS LOGIC DATABOOK—1988

CMOS AC Switching Test Circuits and Timing Waveforms • CMOS Application Notes • MM54HC/MM74HC MM54HCT/MM74HCT • CD4XXX • MM54CXXX/MM74CXXX • Surface Mount

CLOCK GENERATION AND SUPPORT (CGS) DESIGN DATABOOK—1994
Low Skew Clock Buffers/Drivers • Video Clock Generators • Low Skew PLL Clock Generators Crystal Clock Generators

COP8 ${ }^{\text {TM }}$ DATABOOK—1994

COP8 Family • COP8 Applications • MICROWIRE/PLUS Peripherals • COP8 Development Support

CROSSVOLT ${ }^{\text {TM }}$ LOW VOLTAGE LOGIC SERIES DATABOOK—1994

LCX Family • LVX Translator Family •LVX Bus Switch Family • LVX Family • LVQ Family • LVT Family

DATA ACQUISITION DATABOOK—1995

Data Acquisition Systems • Analog-to-Digital Converters • Digital-to-Analog Converters • Voltage References Temperature Sensors • Active Filters • Analog Switches/Multiplexers • Surface Mount

DATA ACQUISITION DATABOOK SUPPLEMENT—1992

New devices released since the printing of the 1989 Data Acquisition Linear Devices Databook.
DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK—1989Selection Guide and Cross Reference Guides • Diodes • Bipolar NPN TransistorsBipolar PNP Transistors • JFET Transistors • Surface Mount Products • Pro-Electron SeriesConsumer Series • Power Components • Transistor Datasheets • Process Characteristics
DRAM MANAGEMENT HANDBOOK—1993
Dynamic Memory Control • CPU Specific System Solutions • Error Detection and Correction Microprocessor Applications
EMBEDDED CONTROLLERS DATABOOK—1992COP400 Family • COP800 Family • COPS Applications • HPC Family • HPC ApplicationsMICROWIRE and MICROWIRE/PLUS Peripherals • Microcontroller Development Tools
FDDI DATABOOK—1994
Datasheets • Application Notes
F100K ECL LOGIC DATABOOK \& DESIGN GUIDE-1992
Family Overview • 300 Series (Low-Power) Datasheets • 100 Series Datasheets •11C DatasheetsDesign Guide • Circuit Basics • Logic Design • Transmission Line Concepts • System ConsiderationsPower Distribution and Thermal Considerations • Testing Techniques • 300 Series Package QualificationQuality Assurance and Reliability • Application Notes
FACTTM ADVANCED CMOS LOGIC DATABOOK—1993Description and Family Characteristics • Ratings, Specifications and WaveformsDesign Considerations • 54AC/74ACXXX • 54ACT/74ACTXXX • Quiet Series: 54ACQ/74ACQXXXQuiet Series: 54ACTQ/74ACTQXXX • 54FCT/74FCTXXX • FCTA: 54FCTXXXA/74FCTXXXA/B
FAST ${ }^{\circledR}$ ADVANCED SCHOTTKY TTL LOGIC DATABOOK—1990
Circuit Characteristics • Ratings, Specifications and Waveforms • Design Considerations•54F/74FXXX
FAST® APPLICATIONS HANDBOOK—1990
Reprint of 1987 Fairchild FAST Applications HandbookContains application information on the FAST family: Introduction • Multiplexers • Decoders • EncodersOperators • FIFOs • Counters • TTL Small Scale Integration • Line Driving and System DesignFAST Characteristics and Testing \bullet Packaging Characteristics
HIGH-PERFORMANCE BUS INTERFACE DATABOOK-1994QuickRing • Futurebus + /BTL Devices •BTL Transceiver Application Notes • Futurebus + Application NotesHigh Performance TTL Bus Drivers • PI-Bus • Futurebus + /BTL Reference
IBM DATA COMMUNICATIONS HANDBOOK—1992
IBM Data Communications • Application Notes
INTERFACE: DATA TRANSMISSION DATABOOK—1994TIA/EIA-232 (RS-232) • TIA/EIA-422/423 • TIA/EIA-485 • Line Drivers • Receivers • RepeatersTransceivers •Low Voltage Differential Signaling • Special Interface • Application Notes
LINEAR APPLICATIONS HANDBOOK—1994The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuitapplications using both monolithic and hybrid circuits from National Semiconductor.Individual application notes are normally written to explain the operation and use of one particular device or to detail variousmethods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence bykeeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.
LOCAL AREA NETWORKS DATABOOK—1993 SECOND EDITIONIntegrated Ethernet Network Interface Controller Products • Ethernet Physical Layer TransceiversEthernet Repeater Interface Controller Products • Token-Ring Interface Controller (TROPIC)Hardware and Software Support Products • FDDI Products • Glossary and Acronyms

LOW VOLTAGE DATABOOK—1992

This databook contains information on National's expanding portfolio of low and extended voltage products. Product datasheets included for: Low Voltage Logic (LVQ), Linear, EPROM, EEPROM, SRAM, Interface, ASIC, Embedded Controllers, Real Time Clocks, and Clock Generation and Support (CGS).

MASS STORAGE HANDBOOK—1989

Rigid Disk Pulse Detectors • Rigid Disk Data Separators/Synchronizers and ENDECs
Rigid Disk Data Controller • SCSI Bus Interface Circuits • Floppy Disk Controllers • Disk Drive Interface Circuits
Rigid Disk Preamplifiers and Servo Control Circuits • Rigid Disk Microcontroller Circuits • Disk Interface Design Guide

MEMORY DATABOOK—1994

FLASH • CMOS EPROMs • CMOS EEPROMs • PROMs • Application Notes

MEMORY APPLICATIONS HANDBOOK—1994

FLASH • EEPROMs • EPROMs • Application Notes

OPERATIONAL AMPLIFIERS DATABOOK—1995

Operational Amplifiers • Buffers • Voltage Comparators • Active Matrix/LCD Display Drivers
Special Functions • Surface Mount

PACKAGING DATABOOK—1993

Introduction to Packaging • Hermetic Packages • Plastic Packages • Advanced Packaging Technology Package Reliability Considerations • Packing Considerations • Surface Mount Considerations

POWER IC's DATABOOK—1995

Linear Voltage Regulators • Low Dropout Voltage Regulators • Switching Voltage Regulators Motion Control • Surface Mount

PROGRAMMABLE LOGIC DEVICE DATABOOK AND DESIGN GUIDE-1993

Product Line Overview • Datasheets • Design Guide: Designing with PLDs • PLD Design Methodology PLD Design Development Tools • Fabrication of Programmable Logic • Application Examples

REAL TIME CLOCK HANDBOOK-1993

3-Volt Low Voltage Real Time Clocks • Real Time Clocks and Timer Clock Peripherals • Application Notes

RELIABILITY HANDBOOK—1987

Reliability and the Die • Internal Construction • Finished Package • MIL-STD-883 • MIL-M-38510
The Specification Development Process • Reliability and the Hybrid Device • VLSI/VHSIC Devices
Radiation Environment • Electrostatic Discharge • Discrete Device • Standardization Quality Assurance and Reliability Engineering • Reliability and Documentation \bullet Commercial Grade Device European Reliability Programs • Reliability and the Cost of Semiconductor Ownership
Reliability Testing at National Semiconductor • The Total Military/Aerospace Standardization Program 883B/RETSTM Products • MILS/RETSTM Products • 883/RETSTM Hybrids • MIL-M-38510 Class B Products Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging Semiconductor Packages • Glossary of Terms • Key Government Agencies • AN/ Numbers and Acronyms Bibliography • MIL-M-38510 and DESC Drawing Cross Listing

SCAN ${ }^{\text {™ }}$ DATABOOK—1994

Evolution of IEEE 1149.1 Standard • SCAN BiCMOS Products • SCAN ACMOS Products • System Test Products Other IEEE 1149.1 Devices

TELECOMMUNICATIONS—1994

COMBO and SLIC Devices • ISDN • Digital Loop Devices • Analog Telephone Components • Software • Application Notes

VHC/VHCT ADVANCED CMOS LOGIC DATABOOK—1993

This databook introduces National's Very High Speed CMOS (VHC) and Very High Speed TTL Compatible CMOS (VHCT) designs. The databook includes Description and Family Characteristics • Ratings, Specifications and Waveforms Design Considerations and Product Datasheets. The topics discussed are the advantages of VHC/VHCT AC Performance, Low Noise Characteristics and Improved Interface Capabilities.

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS

ALABAMA
Huntsville
Anthem Electronics
(205) 890-0302

Future Electronics Corp.
(205) 830-2322

Hamilton/Hallmark
(205) 837-8700

Pioneer Technology
(205) 837-9300

Time Electronics
(205) 721-1134

ARIZONA

Phoenix
Future Electronics Corp.
(602) 968-7140

Hamilton/Hallmark
(602) 437-1200

Scottsdale
Alliance Electronics Inc.
(602) 483-9400

Tempe
Anthem Electronics
(602) 966-6600

Bell Industries
(602) 966-3600

Pioneer Standard
(602) 350-9335

Time Electronics
(602) 967-2000

CALIFORNIA

Agoura Hills
Bell Industries
(818) 865-7900

Future Electronics Corp.
(818) 865-0040

Pioneer Standard
(818) 865-5800

Time Electronics
(818) 707-2890

Calabasas
F/X Electronics
(818) 591-9220

Chatsworth
Anthem Electronics
(818) 775-1333

Costa Mesa
Hamilton/Hallmark
(714) 641-4100

Irvine
Anthem Electronics
(714) 768-4444

Bell Industries
(714) 727-4500

Future Electronics Corp.
(714) 453-1515

Pioneer Standard
(714) 753-5090

Zeus Elect. an Arrow Co.
(714) 581-4622

Rocklin
Anthem Electronics
(916) 624-9744

Bell Industries
(916) 652-0418

Roseville
Future Electronics Corp.
(916) 783-7877

Hamilton/Hallmark (916) 624-9781

San Diego
Anthem Electronics
(619) 453-9005

Bell Industries
(619) 576-3294

Future Electronics Corp.
(619) 625-2800

Hamilton/Hallmark
(619) 571-7540

Pioneer Standard
(619) 514-7700

Time Electronics
(619) 674-2800

San Jose
Anthem Electronics
(408) 453-1200

Future Electronics Corp.
(408) 434-1122

Hamilton/Hallmark
(408) 435-3500

Pioneer Technology
(408) 954-9100

Zeus Elect. an Arrow Co.
(408) 629-4789

Sunnyvale
Bell Industries
(408) 734-8570

Time Electronics
(408) 734-9890

Tustin
Time Electronics
(714) 669-0216

Woodland Hills
Hamilton/Hallmark
(818) 594-0404

Time Electronics
(818) 593-8400

COLORADO
Denver
Bell Industries
(303) 691-9270

Englewood
Anthem Electronics
(303) 790-4500

Hamilton/Hallmark
(303) 790-1662

Pioneer Technology (303) 773-8090 Time Electronics (303) 799-5400

Lakewood
Future Electronics Corp. (303) 232-2008

CONNECTICUT
Cheshire
Future Electronics Corp. (203) 250-0083 Hamilton/Hallmark (203) 271-2844

Meriden
Bell Industries
(203) 639-6000

Shelton
Pioneer Standard
(203) 929-5600

Wallingford Advent Electronics (800) 982-0014

Waterbury
Anthem Electronics (203) 575-1575

FLORIDA
Altamonte Springs Anthem Electronics (407) 831-0007 Bell Industries (407) 339-0078 Future Electronics Corp. (407) 865-7900 Pioneer Technology (407) 834-9090

Deerfield Beach Future Electronics Corp. (305) 426-4043 Pioneer Technology (305) 428-8877

Fort Lauderdale
Hamilton/Hallmark (305) 484-5482 Time Electronics (305) 484-1864

Indialantic

Advent Electronics (800) 975-8669

Lake Mary
Zeus Elect. an Arrow Co. (407) 333-9300

Largo
Future Electronics Corp
(813) 530-1222

Hamilton/Hallmark
(813) 541-7440

Orlando
Chip Supply
"Die Distributor"
(407) 298-7100

Time Electronics
(407) 841-6566

Winter Park
Hamilton/Hallmark
(407) 657-3300

GEORGIA
Duluth
Anthem Electronics
(404) 931-9300

Hamilton/Hallmark
(404) 623-4400

Pioneer Technology
(404) 623-1003

Time Electronics
(404) 623-5455

Norcross
Future Electronics Corp.
(404) 441-7676

ILLINOIS
Addison
Pioneer Standard
(708) 495-9680

Bensenville
Hamilton/Hallmark (708) 860-7780

Des Plaines
Advent Electronics
(800) 323-1270

Elk Grove Village
Bell Industries
(708) 640-1910

Hoffman Estates
Future Electronics Corp. (708) 882-1255

Itasca
Zeus Elect. an Arrow Co.
(708) 595-9730

Schaumburg
Anthem Electronics
(708) 884-0200

Time Electronics
(708) 303-3000

INDIANA
Fort Wayne
Bell Industries
(219) 422-4300

Indianapolis
Advent Electronics Inc.
(800) 732-1453

Bell Industries
(317) 875-8200

Future Electronics Corp.
(317) 469-0447

Hamilton/Hallmark
(317) 872-8875

Pioneer Standard
(317) 573-0880

IOWA
Cedar Rapids
Advent Electronics
(800) 397-8407

Hamilton/Hallmark
(319) 393-0033

KANSAS
Lenexa
Hamilton/Hallmark
(913) 888-4747

Overland Park
Future Electronics Corp. (913) 649-1531

KENTUCKY
Lexington
Hamilton/Hallmark
(606) 288-4911

MARYLAND
Columbia
Anthem Electronics
(410) 995-6640

Bell Industries
(410) 290-5100

Future Electronics Corp.
(410) 290-0600

Hamilton/Hallmark
(410) 988-9800 Seymour Electronics (410) 992-7474

Time Electronics
(410) 720-3600

Gaithersburg Pioneer Technology
(301) 921-0660

MASSACHUSETTS
Andover
Bell Industries
(508) 474-8880

Bolton
Future Electronics Corp. (508) 779-3000

Lexington
Pioneer Standard (617) 861-9200

Newburyport Rochester Electronics
"Obsolete Products" (508) 462-9332

Norwood
Gerber Electronics
(617) 769-6000

Peabody
Hamilton/Hallmark
(508) 532-3701

Time Electronics
(508) 532-9777

Tyngsboro
Port Electronics
(508) 649-4880

Wilmington
Anthem Electronics
(508) 657-5170

Zeus Elect. an Arrow Co.
(508) 658-0900

MICHIGAN
Farmington Hills Advent Electronics (800) 572-9329

Grand Rapids
Future Electronics Corp.
(616) 698-6800

Pioneer Standard
(616) 698-1800

Livonia
Future Electronics Corp.
(313) 261-5270

O'Fallon
Advent Electronics (800) 888-9588

Plymouth Hamilton/Hallmark
(313) 416-5800 Pioneer Standard (313) 416-2157

Wyoming
R. M. Electronics, Inc.
(616) 531-9300

MINNESOTA
Bloomington
Hamilton/Hallmark
(612) 881-2600

Eden Prairie
Anthem Electronics
(612) 944-5454

Future Electronics Corp.
(612) 944-2200

Pioneer Standard
(612) 944-3355

Minnetonka
Time Electronics
(612) 931-2131

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)

MINNESOTA (Continued)
Thief River Falls Digi-Key Corp. "Catalog Sales Only" (800) 344-4539

MISSOURI
Earth City
Hamilton/Hallmark
(314) 291-5350

Manchester Time Electronics (314) 230-7500

St. Louis
Future Electronics Corp.
(314) 469-6805

NEW JERSEY
Camden
Advent Electronics
(800) 255-4771

Cherry Hill Hamilton/Hallmark (609) 424-0110

Fairfield Bell Industries (201) 227-6060 Pioneer Standard (201) 575-3510

Marlton
Future Electronics Corp. (609) 596-4080 Time Electronics (609) 596-1286

Mount Laurel Seymour Electronics (609) 235-7474

Parsippany Future Electronics Corp. (201) 299-0400 Hamilton/Hallmark (201) 515-1641

Pine Brook Anthem Electronics (201) 227-7960

Wayne Time Electronics (201) 785-8250

NEW MEXICO
Albuquerque Bell Industries (505) 292-2700 Hamilton/Hallmark (505) 828-1058

NEW YORK
Binghamton Pioneer Standard (607) 722-9300

Buffalo Summit Distributors (716) 887-2800

Commack Anthem Electronics (516) 864-6600

Fairport Pioneer Standard (716) 381-7070

Hauppauge Future Electronics Corp. (516) 234-4000 Hamilton/Hallmark (516) 434-7400 Time Electronics (516) 273-0100

Port Chester Zeus Elect. an Arrow Co. (914) 937-7400

Rochester
Future Electronics Corp. (716) 387-9550 Hamilton/Hallmark (800) 475-9130 Summit Distributors (716) 334-8110

Syracuse
Future Electronics Corp.
(315) 451-2371

Time Electronics
(315) 434-9837

Woodbury
Pioneer Standard
(516) 921-9700

Seymour Electronics
(516) 496-7474

NORTH CAROLINA
Charlotte
Future Electronics Corp.
(704) 547-1107

Morrisville
Pioneer Technology
(919) 460-1530

Raleigh
Anthem Electronics
(919) 782-3550

Future Electronics Corp.
(919) 790-7111

Hamilton/Hallmark
(919) 872-0712

OHIO
Beavercreek
Future Electronics Corp.
(513) 426-0090

Cleveland
Pioneer Standard
(216) 587-3600

Columbus
Time Electronics
(614) 794-3301

Dayton
Bell Industries
(513) 435-5922

Bell Industries-Military
(513) 434-8231

Hamilton/Hallmark
(513) 439-6735

Pioneer Standard
(513) 236-9900

Maytield Heights
Future Electronics Corp.
(216) 449-6996

Solon
Bell Industries
(216) 498-2002 Hamilton/Hallmark (216) 498-1100

Worthington
Hamilton/Hallmark
(614) 888-3313

OKLAHOMA

Tulsa
Hamilton/Hallmark
(918) 254-6110

Pioneer Standard
(918) 665-7840

Radio Inc.
(918) 587-9123

OREGON
Beaverton
Anthem Electronics
(503) 643-1114

Bell Industries
(503) 644-3444

Future Electronics Corp.
(503) 645-9454

Hamilton/Hallmark
(503) 526-6200

Pioneer Technology
(503) 626-7300

Portland
Time Electronics
(503) 684-3780

PENNSYLVANIA
Horsham
Anthem Electronics
(215) 443-5150

Pioneer Technology
(215) 674-4000

Pittsburgh
Pioneer Standard
(412) 782-2300

Trevose
Bell Industries
(215) 953-2800

TEXAS
Austin
Anthem Electronics
(512) 388-0049

Future Electronics Corp.
(512) 502-0991

Hamilton/Hallmark
(512) 258-8848

Minco Technology Labs.
"Die Distributor"
(512) 834-2022

Pioneer Standard
(512) 835-4000

Time Electronics
(512) 219-3773

Carrollton
Zeus Elect. an Arrow Co.
(214) 380-6464

Dallas
Hamilton/Hallmark
(214) 553-4300

Pioneer Standard
(214) 386-7300

Houston
Future Electronics Corp
(713) 785-1155

Hamilton/Hallmark
(713) 781-6100

Pioneer Standard
(713) 495-4700

Richardson
Anthem Electronics
(214) 238-7100

Bell Industries
(214) 690-9096

Future Electronics Corp.
(214) 437-2437

Time Electronics
(214) 480-5000

UTAH
Midvale
Bell Industries
(801) 255-9691

Salt Lake City
Anthem Electronics
(801) 973-8555

Future Electronics Corp.
(801) 467-4448

Hamilton/Hallmark
(801) 266-2022

West Valley City
Time Electronics
(801) 973-0208

WASHINGTON
Bellevue
Bell Industries
(206) 646-8750

Pioneer Technology
(206) 644-7500

Bothell
Anthem Electronics
(206) 483-1700

Future Electronics Corp.
(206) 489-3400

Kirkland
Time Electronics
(206) 820-1525

Redmond
Hamilton/Hallmark
(206) 881-6697

WISCONSIN
Brookfield
Future Electronics Corp.
(414) 879-0244

Pioneer Standard
(414) 784-3480

Mequon
Taylor Electric
(414) 241-4321

New Berlin
Hamilton/Hallmark
(414) 780-7200

Waukesha
Bell Industries
(414) 547-8879

West Allis
Advent Electronics
(800) 500-0441

CANADA
WESTERN PROVINCES
Burnaby
Hamilton/Hallmark
(604) 420-4101

Semad Electronics Ltd.
(604) 451-3444

Calgary
Electro Sonic Inc.
(403) 255-9550

Future Electronics Corp.
(403) 250-5550

Semad Electronics Ltd.
(403) 252-5664

Zentronics/Pioneer
(403) 295-8838

Edmonton
Future Electronics Corp.
(403) 438-2858

Zentronics/Pioneer
(403) 482-3038

Markham
Semad Electronics Ltd.
(905) 475-8500

Richmond
Electro Sonic Inc.
(604) 273-2911

Zentronics/Pioneer
(604) 273-5575

Vancouver
Future Electronics Corp.
(604) 294-1166

EASTERN PROVINCES
Mississauga
Future Electronics Corp.
(905) 612-9200

Hamilton/Hallmark
(905) 564-6060

Time Electronics
(905) 712-3277

Zentronics/Pioneer
(905) 405-8300

Nepean
Hamilton/Hallmark
(613) 226-1700

Zentronics/Pioneer
(613) 226-8840

Ottawa
Electro Sonic Inc.
(613) 728-8333

Future Electronics Corp.
(613) 820-8313

Semad Electronics Ltd.
(613) 526-4866

Pointe Claire
Future Electronics Corp.
(514) 694-7710

Semad Electronics Ltd.
(514) 694-0860

Quebec
Future Electronics Corp.
(418) 877-6666

Ville St. Laurent
Hamilton/Hallmark
(514) 335-1000

Zentronics/Pioneer
(514) 737-9700

Willowdale
Electro Sonic Inc.
(416) 494-1666

Winnipeg
Electro Sonic Inc.
(204) 783-3105

Future Electronics Corp.
(204) 944-1446

Zentronics/Pioneer
(204) 694-1957

National Semiconductor supplies a comprebensive set of service and support capabilities. Complete product information and design support is available from National's customer support centers.

To receive sales literature and technical assistance, contact the National support center in your area.

See us on the Worldwide Web at: http://www.nsc.com

For support in the following countries, please contact the offices listed below:

Australia
Tel: (39) 558-9999
Fax: (39) 558-9998

China

Tel: 10-849-133 1
Fax: 10-849-133 2

Hong Kong

Tel: (852) 2737-1600
Fax: (852) 2736-9960

India

Tel: 80-226-7272
Fax: 80-225-1133
Korea
Tel: (02) 784-8051/3
(02) 785-0696/8

Fax: (02) 784-8054

Malaysia

Tel: 4-644-9061
Fax: 4-644-9073
Singapore
Tel: (65) 225-2226
Fax: (65) 225-7080
Taiwan
Tel: (02) 521-3288
Fax: (02) 561-3054

For a complete listing of worldwide sales offices, see inside back page.

[^0]: *Available per SMD \#8102306, JM38510/11906.

[^1]: *3 pF in LF157 series.

[^2]: tUse only electrolytic output capacitors.
 $\dagger \dagger$ Circuit descriptions available in application note AN-211.

[^3]: $\dagger \dagger$ Circuit descriptions available in application note AN-211.

[^4]: \dagger † Circuit descriptions available in application note AN-211.

[^5]: *Available per JM38510/10103.

[^6]: *Available per SMD\# 5962-8958901.

[^7]: *LM158 is available per SMD \# 5962-8771001
 LM158A is available per SMD \#5962-8771002

[^8]: *Offset adjust.
 \dagger See table for frequency compensation.

[^9]: Note: Numbers in parentheses are pin numbers for amplifier B. DIP only.

[^10]: Note 1: The collector of each transistor of the LM3045, LM3046, and LM3086 is isolated from the substrate by an integral diode. The substrate (terminal 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

[^11]: $A_{V}=+5$, $\mathrm{l}_{\text {OUT }} \leq 80 \mathrm{~mA}$
 $V_{S}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 0.01 \mu \mathrm{~F}$
 Large and small signal B.W. $=1.3 \mathrm{MHz}(\mathrm{THD}=3 \%)$

[^12]: *For the military temperature grade, please refer to the Military Datasheet: MNLM7171AMJ/883

[^13]: Note: Avoid resistive loads of less than 500Ω, as they may cause instability.

[^14]: For MIL-STD-883C qualified products, please contact your local National Semiconductor Sales Office or Distributor for availability and specification information.

[^15]: *Available per 5962-9081501

[^16]: TL/H/5703-20

[^17]: *Unit must be in still air environment so that differential lead temperature is held to less than $0.0003^{\circ} \mathrm{C}$.

