National Data Acquisition

 Databook
Data Acquisition Systems

Analog-to-Digital Converters
Digital-to-Analog Converters
Voltage Reference
Temperature Sensors
Sample and Hold
Active Filters
Analog Switches/Multiplexers

DATA ACQUISITION DATABOOK

1995 Edition

Data Acquisition Systems
Analog-to-Digital Converters
Digital-to-Analog Converters
Voltage References
Temperature Sensors
Sample and Hold
Active Filters

Analog Switches/Multiplexers

Surface Mount

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

ABiCTM	Embedded System	MOLETM	SCXTM
Abuseable ${ }^{\text {TM }}$	Processor ${ }^{\text {TM }}$	MPATM	SERIES/800 ${ }^{\text {TM }}$
AirShare ${ }^{\text {TM }}$	EPTM	MSTTM	Series $32000{ }^{\text {® }}$
Anadig ${ }^{\text {TM }}$	E-Z-LINKTM	Naked-8TM	SIMPLE SWITCHER® ${ }^{\text {® }}$
APPSTM	FACTTM	National ${ }^{(8)}$	SNITM
ARi19 ${ }^{\text {m }}$	FACT Quiet Series ${ }^{\text {TM }}$	National Semiconductor ${ }^{\text {® }}$	SNICTM
ASPECTTM	FAIRCADTM	National Semiconductor	SofChekTM
AT/LANTICTM	Fairtech ${ }^{\text {TM }}$	Corp. ${ }^{\text {® }}$	SONICTM
Auto-Chem DeflasherTM	FAST®	NAX 800 ${ }^{\text {TM }}$	SPiKetm
ВСРтм	FASTrTM	NeuFuzTM	SPIRETM
BI-FETTM	GENIXTM	Nitride Plus ${ }^{\text {TM }}$	Staggered Refresh'm
BI-FET IITM	GNXTM	Nitride Plus Oxide ${ }^{\text {TM }}$	STAR ${ }^{\text {TM }}$
BI-LINETM	GTOTM	NMLTM	Starlink ${ }^{\text {TM }}$
BIPLANTM	HEX 3000'м	NOBUSTM	STARPLEXTM
BLCTM	HiSeCtm	NSC800TM	ST-NICTM
BLXTM	НРСтм	NSCISETM	SuperATTM
BMACTM	HyBaltm	NSX-16TM	Super-Block ${ }^{\text {TM }}$
Brite-LiteTM	${ }^{3} \mathrm{~L}$-®	NS-XC-16TM	SuperChip TM
BSITM	ICM ${ }^{\text {TM }}$	NTERCOM ${ }^{\text {™ }}$	Superl/OTM
BSI-2TM	Integral ISETM	NURAM ${ }^{\text {TM }}$	SuperScript ${ }^{\text {TM }}$
CDDTM	IntelisplayTM	OPALTM	SYS32 ${ }^{\text {TM }}$
CDLTM	Inter-LERICTM	Overture'm	TapePak ${ }^{\text {® }}$
CGSTM	Inter-RICTM	OXISSTM	TDSTM
CIM ${ }^{\text {TM }}$	ISETM	P²CMOSTM	TeleGateTM
CIMBUSTM	ISE/06TM	Perfect Watch ${ }^{\text {TM }}$	The National Anthem ${ }^{(1)}$
CLASICTM	ISE/08TM	PLANTM	TinyPaKTM
COMBO ${ }^{\text {® }}$	ISE/16TM	PLANAR ${ }^{\text {TM }}$	TLCTM
COMBO ITM	ISE32TM	PLAYERTM	Trapezoidal ${ }^{\text {TM }}$
COMBO IITM	ISOPLANARTM	PLAYER + TM	TRI-CODETM
COPSTM microcontrollers	ISOPLANAR-Z'M	PLLatinum ${ }^{\text {TM }}$	TRI-POLYTM
СОР8тм	LERICTM	Plus-2TM	TRI-SAFETM
CRDTM	LMCMOSTM	Polycraft ${ }^{\text {m }}$	TRI-STATE®
CROSSVOLTTM	M ${ }^{2} \mathrm{CMOSTM}$	РОРтм	TROPICTM
CSNITM	Macrobus ${ }^{\text {TM }}$	Power + ControlTM	Tropic Pele ${ }^{\text {'tM }}$
CTITM	Macrocomponent ${ }^{\text {TM }}$	POWERplanarTM	Tropic ReeftM
CYCLONETM	MACSITM	QSTM	TURBOTRANSCEIVERTM
DA4TM	MAPLTM	QUAD3000'm	TWISTERTM
DENSPAKTM	MAXI-ROM ${ }^{\text {® }}$	Quiet Series ${ }^{\text {TM }}$	VIPTM
DIBTM	MicrobusTM data bus	QUIKLOOKTM	VR32TM
DISCERNTM	MICRO-DACTM	RATTM	WATCHDOGTM
DISTILLTM	μ Pot ${ }^{\text {TM }}$	RICTM	ХMOSTM
DNR®	μ talkertM	RICKITTM	XPUTM
DPVM ${ }^{\text {TM }}$	MicrotalkerTM	RTX16TM	Z STARTM
$\mathrm{E}^{2} \mathrm{CMOSTM}$	MICROWIRETM	SCANTM	883B/RETSTM
ELSTARTM	MICROWIRE/PLUSTM	SCENICTM	883S/RETSTM

AT® is a registered trademark of International Business Machines Corporation.
Microsoft ${ }^{T M}$ is a trademark of Microsoft Corporation.
StratoguardTM 4.6 is a trademark of National Metallizing Co.
Teflon ${ }^{\circledR}$ and Mylar® ${ }^{\circledR}$ are registered trademarks of E.I. DuPont de Nemours Company.
Windows ${ }^{\circledR}$ is a registered trademark of Microsoft Corporation.
Z80® is a registered trademark of Zilog Corporation.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR

 SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 1-800-272-9959 TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specifications.

Product Status Definitions

Definition of Terms

Data Sheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This data sheet contains preliminary data, and supplementary data will be published at a later date. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Ide		
Notad	Full Production	This data sheet contains final specifications. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Obsolete	Not In Production	This data sheet contains specifications on a product that has been discontinued by National Semiconductor Corporation. The data sheet is printed for reference information only.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to improve reliability, function or design. National does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

Table of Contents

Alphanumeric Index .
Additional Available Linear Devices .
Industry Package Cross Reference Guide . xxvii
Section 1 Data Acquisition Systems
Data Acquisition Systems Definition of Terms . 1-3
Data Acquisition Systems Selection Guide . 1-4
ADC0851/ADC0858 8-Bit Analog Data Acquisition and Monitoring Systems 1-5
LM12434/LM12\{L\} 438 12-Bit + Sign Data Acquisition System with Serial I/O and
Self-Calibration . 1-37
LM12454/LM12H454/LM12458/LM12H458 12-Bit + Sign Data Acquisition System
with Self-Calibration . 1-114
LM12L454/LM12L458 12-Bit + Sign Data Acquisition System with Self-Calibration . . . 1-151
Section 2 Analog-to-Digital Converters
Analog-to-Digital Converters Definition of Terms . 2-4
Analog-to-Digital Converters Selection Guide. 2-6
ADC0800 8-Bit A/D Converter . 2-10
ADC0801/ADC0802/ADC0803/ADC0804/ADC0805 8-Bit μ P Compatible A/D Converters 2-19
ADC0808/ADC0809 8-Bit μ P Compatible A/D Converters with 8-Channel Multiplexer . 2-51
ADC0811 8-Bit Serial I/O A/D Converter with 11-Channel Multiplexer 2-62
ADC0816/ADC0817 8-Bit μ P Compatible A/D Converters with 16-Channel
Multiplexer . $2-73$
ADC0819 8-Bit Serial I/O A/D Converter with 19-Channel Multiplexer $2-84$
ADC0820 8-Bit High Speed μ P Compatible A/D Converter with Track/Hold Function . . 2-94
ADC0831/ADC0832/ADC0834 and ADC0838 8-Bit Serial I/O A/D Converters with
Multiplexer Options . 2-110
ADC0833 8-Bit Serial I/O A/D Converter with 4-Channel Multiplexer 2-136
ADC08031/ADC08032/ADC08034/ADC08038 8-Bit High-Speed Serial I/O A/D
Converters with Multiplexer Options, Voltage Reference, and Track/Hold Function . . $\mathbf{2 - 1 5 4}$
$\begin{array}{ll}\text { ADC08131/ADC08134/ADC08138 8-Bit High-Speed Serial I/O A/D Converters with } \\ \text { Multiplexer Options, Voltage Reference, and Track/Hold Function } & 2-174\end{array}$
ADC08231/ADC08234/ADC08238 8-Bit 2μ s Serial I/O A/D Converters with MUX,
Reference, and Track/Hold . 2 2-193
ADC0841 8-Bit μ P Compatible A/D Converter . 2-213
ADC0844/ADC0848 8-Bit μ P Compatible A/D Converters with Multiplexer Options ... 2-225
ADC0852/ADC0854 Multiplexed Comparator with 8-Bit Reference Divider 2-242
ADC08061/ADC08062 500 ns A/D Converter with S/H Function and Input Multiplexer

2-259
ADC08161 500 ns A/D Converter with S/H Function and 2.5V Bandgap Reference .. 2-273
ADC1001 10-Bit μ P Compatible A/D Converter . 2-289
ADC1005 10-Bit μ P Compatible A/D Converter. 2-296
ADC10154, ADC10158 10-Bit Plus Sign 4 . s ADCs with 4- or 8-Channel MUX,
Track/Hold and Reference . \quad 2-307
ADC1031/ADC1034/ADC1038 10-Bit Serial I/O A/D Converters with Analog
Multiplexer and Track/Hold Function. 2 2-329
ADC10731/ADC10732/ADC10734/ADC10738 10-Bit Plus Sign Serial I/O A/D
Converters with MUX, Sample/Hold and Reference . $2-342$
ADC10831/ADC10832/ADC10834/ADC10838 10-Bit Plus Sign Serial I/O A/D
Converters with MUX, Sample/Hold and Reference . $2-367$
ADC1061 10-Bit High-Speed μ P-Compatible A/D Converter with Track/Hold Function

Table of Contents ${ }_{\text {Coniniuea) }}$

Section 2 Analog-to-Digital Converters (Continued)ADC10061/ADC10062/ADC10064 10-Bit 600 ns A/D Converters with InputMultiplexer and Sample/Hold2-402
ADC10461/ADC10462/ADC10464 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold 2-415
ADC10662/ADC10664 10-Bit 360 ns A/D Converters with Input Multiplexer and Sample/Hold 2-428
ADC12H030/ADC12030/ADC12H032/ADC12032/ADC12H034/ADC12034/ ADC12H038/ADC12038 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold 2-441
ADC12L030/ADC12L032/ADC12L034/ADC12L038 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold 2-478
ADC12130/ADC12132/ADC12138 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold 2-512
ADC1205/ADC1225 12-Bit Plus Sign μ P Compatible A/D Converters 2-548
ADC12062 12-Bit, 1 MHz, 75 mW A/D Converter with Input Multiplexer and Sample/Hold 2-565
ADC12662 12-Bit, 1.5 MHz, 200 mW A/D Converter with Input Multiplexer and Sample/Hold 2-583
ADC1241 Self-Calibrating 12-Bit Plus Sign μ P-Compatible A/D Converter with Sample/Hold 2-602
ADC1242 12-Bit Plus Sign Sampling A/D Converter 2-615
ADC12441 Dynamically-Tested Self-Calibrating 12-Bit Plus Sign A/D Converter with Sample/Hold 2-628
ADC1251 Self-Calibrating 12-Bit Plus Sign A/D Converter with Sample/Hold 2-641
ADC12451 Dynamically-Tested Self-Calibrating 12-Bit Plus Sign A/D Converter with Sample/Hold 2-656
ADC16071/ADC16471 16-Bit Delta-Sigma 192 ks/s Analog-to-Digital Converters 2-672
LM131A/LM131, LM231A/LM231, LM331A/LM331 Precision Voltage-to-Frequency Converters 2-690
Section 3 Digital-to-Analog Converters
Digital-to-Analog Converters Definition of Terms 3-3
Digital-to-Analog Converters Selection Guide 3-4
DAC0800/DAC0801/DAC0802 8-Bit D/A Converters 3-6
DAC0808/DAC0807/DAC0806 8-Bit D/A Converters 3-15
DAC0830/DAC0831/DAC0832 8-Bit μ P Compatible Double-Buffered D/A Converters 3-23
DAC0854 Quad 8-Bit Voltage-Output Serial D/A Converter with Readback 3-41
DAC0890 Dual 8-Bit μ P-Compatible D/A Converter 3-53
DAC1006/DAC1007/DAC1008 μ P Compatible, Double-Buffered D/A Converters 3-63
DAC1020/DAC1021/DAC1022 10-Bit Binary Multiplying D/A Converters 3-83
DAC1220/DAC1222 12-Bit Binary Multiplying D/A Converters 3-83
DAC1054 Quad 10-Bit Voltage-Output Serial D/A Converter with Readback 3-93
DAC1208/DAC1209/DAC1210/DAC1230/DAC1231/DAC1232 12-Bit μ P Compatible Double-Buffered D/A Converters 3-105
DAC1218/DAC1219 12-Bit Binary Multiplying D/A Converters 3-121
Section 4 Voltage Reference
Voltage Reference Selection Guide 4-3
LH0070 Series BCD Buffered Reference 4-8
LH0071 Series Precision Buffered Reference 4-8
LM113/LM313 Reference Diode 4-12

Table of Contents ${ }_{\text {(coninuea) }}$

Section 4 Voltage Reference (Continued)

LM129/LM329 Precision Reference4-15LM134/LM234/LM334 3-Terminal Adjustable Current Sources 4-20
LM136-2.5/LM236-2.5/LM336-2.5V Reference Diodes 4-29
LM136-5.0/LM236-5.0/LM336-5.0V Reference Diodes 4-36
LM169/LM369 Precision Voltage References 4-43
LM185/LM285/LM385 Adjustable Micropower Voltage References 4-53
LM185-1.2/LM285-1.2/LM385-1.2 Micropower Voltage Reference Diodes 4-60
LM185-2.5/LM285-2.5/LM385-2.5 Micropower Voltage Reference Diodes 4-67
LM199/LM299/LM399/LM3999 Precision References 4-73
LM368-2.5 Precision Voltage Reference 4-82
LM368-5.0, LM368-10 Precision Voltage References 4-88
LM4040 Precision Micropower Shunt Voltage Reference 4-94
LM4041 Precision Micropower Shunt Voltage Reference 4-113
LM4431 Micropower Shunt Voltage Reference 4-125
LM9140 Precision Micropower Shunt Voltage Reference 4-131
Section 5 Temperature Sensors
Temperature Sensors Selection Guide 5-3
LM34/LM34A/LM34C/LM34CA/LM34D Precision Fahrenheit Temperature Sensors 5-4
LM35/LM35A/LM35C/LM35CA/LM35D Precision Centigrade Temperature Sensors 5-12
LM45B/LM45C SOT-23 Precision Centigrade Temperature Sensors 5-21
LM50B/LM50C Single Supply Precision Centigrade Temperature Sensors 5-28
LM134/LM234/LM334 3-Terminal Adjustable Current Sources 5-29
LM135/LM235/LM335/LM135A/LM235A/LM335A Precision Temperature Sensors 5-38
Section 6 Sample and Hold
Sample and Hold Definition of Terms 6-3
Sample and Hold Selection Guide 6-4
LF198/LF298/LF398/LF198A/LF398A Monolithic Sample and Hold Circuits 6-5
LF13006/LF13007 Digital Gain Set 6-15
Section 7 Active Filters
Active Filters Definition of Terms 7-3
Active Filters Selection Guide 7-4
LMF40 High Performance 4th-Order Switched Capacitor Butterworth Low-Pass Filter 7-5
LMF60 High Performance 6th-Order Switched Capacitor Butterworth Low-Pass Filter 7-19
LMF90 4th-Order Elliptic Notch Filter 7-37
LMF100 High Performance Dual Switched Capacitor Filter 7-57
LMF380 Triple One-Third Octave Switched Capacitor Active Filter 7-79
MF4 4th Order Switched Capacitor Butterworth Lowpass Filter 7-89
MF5 Universal Monolithic Switched Capacitor Filter 7-102
MF6 6th Order Switched Capacitor Butterworth Lowpass Filter 7-117
MF8 4th Order Switched Capacitor Bandpass Filter 7-135
MF10 Universal Monolithic Dual Switched Capacitor Filter 7-157
Section 8 Analog Switches/Multiplexers
Analog Switches/Multiplexers Definition of Terms 8-3
Analog Switches/Multiplexers Selection Guide 8-4
AH0014/AH0014C DPDT, AH0015/AH0015C Quad SPST, AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switches 8-5
AH5010/AH5011/AH5012 Monolithic Analog Current Switches 8-9
AH5020C Monolithic Analog Current Switch 8-20
LF11331/LF13331/LF11332/LF13332/LF11333/LF13333, LF11201/LF13201/ LF11202/LF13202 Quad SPST JFET Analog Switches 8-28

Table of Contents ${ }_{\text {Coniniues) }}$

Section 8 Analog Switches/Multiplexers (Continued) LF13508 8-Channel Analog Multiplexer 8-39
LF13509 4-Channel Differential Analog Multiplexer 8-39
Section 9 Surface Mount
Packing Considerations (Methods, Materials and Recycling) 9-3
Board Mount of Surface Mount Components 9-19
Recommended Soldering Profiles-Surface Mount 9-23
AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability 9-24
Land Pattern Recommendations 9-35
Section 10 Appendices/Physical Dimensions
Appendix A General Product Marking and Code Explanation 10-3
Appendix B Device/Application Literature Cross-Reference 10-4
Appendix D Military Aerospace Programs from National Semiconductor 10-10
Appendix E Understanding Integrated Circuit Package Power Capabilities 10-20
Appendix F How to Get the Right Information from a Datasheet 10-25
Physical Dimensions 10-29
Bookshelf
Distributors

Alpha-Numeric Index

ADC0800 8-Bit A/D Converter 2-10
ADC080i 8 -Bit μ P Compatibie A/D Converier $2-19$
ADC0802 8-Bit μ P Compatible A/D Converter 2-19
ADC0803 8-Bit μ P Compatible A/D Converter 2-19
ADC0804 8-Bit μ P Compatible A/D Converter 2-19
ADC0805 8-Bit μ P Compatible A/D Converter 2-19
ADC0808 8-Bit μ P Compatible A/D Converter with 8-Channel Multiplexer 2-51
ADC0809 8-Bit μ P Compatible A/D Converter with 8-Channel Multiplexer 2-51
ADC0811 8-Bit Serial I/O A/D Converter with 11-Channel Multiplexer 2-62
ADC0816 8-Bit μ P Compatible A/D Converter with 16-Channel Multiplexer 2-73
ADC0817 8-Bit μ P Compatible A/D Converter with 16-Channel Multiplexer $2-73$
ADC0819 8-Bit Serial I/O A/D Converter with 19-Channel Multiplexer 2-84
ADC0820 8-Bit High Speed μ P Compatible A/D Converter with Track/Hold Function 2-94
ADC0831 8-Bit Serial I/O A/D Converter with Multiplexer Options 2-110
ADC0832 8-Bit Serial I/O A/D Converter with Multiplexer Options 2-110
ADC0833 8-Bit Serial I/O A/D Converter with 4-Channel Multiplexer 2-136
ADC0834 8-Bit Serial I/O A/D Converter with Multiplexer Options 2-110
ADC0838 8-Bit Serial I/O A/D Converter with Multiplexer Options 2-110
ADC0841 8-Bit μ P Compatible A/D Converter 2-213
ADC0844 8-Bit μ P Compatible A/D Converter with Multiplexer Options 2-225
ADC0848 8-Bit μ P Compatible A/D Converter with Multiplexer Options 2-225
ADC0851 8-Bit Analog Data Acquisition and Monitoring System 1-5
ADC0852 Multiplexed Comparator with 8-Bit Reference Divider 2-242
ADC0854 Multiplexed Comparator with 8-Bit Reference Divider 2-242
ADC0858 8-Bit Analog Data Acquisition and Monitoring System 1-5
ADC08031 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function $2-154$
ADC08032 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function 2-154
ADC08034 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function 2-154
ADC08038 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function 2-154
ADC08061 500 ns A/D Converter with S/H Function and Input Multiplexer 2-259
ADC08062 500 ns A/D Converter with S/H Function and Input Multiplexer 2-259
ADC08131 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function 2-174
ADC08134 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, VoltageReference, and Track/Hold Function2-174
ADC08138 8-Bit High-Speed Serial I/O A/D Converter with Multiplexer Options, Voltage Reference, and Track/Hold Function 2-174
ADC08161 500 ns A/D Converter with S/H Function and 2.5V Bandgap Reference 2-273
ADC08231 8-Bit $2 \mu \mathrm{~s}$ Serial I/O A/D Converter with MUX, Reference, and Track/Hold 2-193
ADC08234 8-Bit 2μ s Serial I/O A/D Converter with MUX, Reference, and Track/Hold 2-193
ADC08238 8-Bit $2 \mu \mathrm{~s}$ Serial I/O A/D Converter with MUX, Reference, and Track/Hold 2-193
ADC12H030 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold $2-441$
ADC12H032 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold 2-441
ADC12H034 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold 2-441

Alpha-Numeric Index ${ }_{\text {(Continued) }}$

ADC12H038 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold $2-441$
ADC12L030 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold $2-478$
ADC12L032 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold 2-478
ADC12L034 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold $2-478$
ADC12L038 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold 2-478
ADC1001 10-Bit μ P Compatible A/D Converter 2-289
ADC1005 10-Bit μ P Compatible A/D Converter 2-296
ADC1031 10-Bit Serial I/O A/D Converter with Analog Multiplexer and Track/Hold Function 2-329
ADC1034 10-Bit Serial I/O A/D Converter with Analog Multiplexer and Track/Hold Function 2-329
ADC1038 10-Bit Serial I/O A/D Converter with Analog Multiplexer and Track/Hold Function 2-329
ADC1061 10-Bit High-Speed μ P-Compatible A/D Converter with Track/Hold Function 2-392
ADC1205 12-Bit Plus Sign μ P Compatible A/D Converter 2-548
ADC1225 12-Bit Plus Sign μ P Compatible A/D Converter 2-548
ADC1241 Self-Calibrating 12-Bit Plus Sign μ P-Compatible A/D Converter with Sample/Hold 2-602
ADC1242 12-Bit Plus Sign Sampling A/D Converter 2-615
ADC1251 Self-Calibrating 12-Bit Plus Sign A/D Converter with Sample/Hold 2-641
ADC10061 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold 2-402
ADC10062 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold 2-402
ADC10064 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold 2-402
ADC10154 10-Bit Plus Sign $4 \mu s$ ADC with 4- or 8-Channel MUX, Track/Hold and Reference 2-307
ADC10158 10-Bit Plus Sign 4μ s ADC with 4- or 8-Channel MUX, Track/Hold and Reference 2-307
ADC10461 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold 2-415
ADC10462 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold 2-415
ADC10464 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold 2-415
ADC10662 10-Bit 360 ns A/D Converter with Input Multiplexer and Sample/Hold 2-428
ADC10664 10-Bit 360 ns A/D Converter with Input Multiplexer and Sample/Hold 2-428
ADC10731 10-Bit Plus Sign Serial I/O A/D Converter with MUX, Sample/Hold and Reference 2-342
ADC10732 10-Bit Plus Sign Serial I/O A/D Converter with MUX, Sample/Hold and Reference 2-342
ADC10734 10-Bit Plus Sign Serial I/O A/D Converter with MUX, Sample/Hold and Reference 2-342
ADC10738 10-Bit Plus Sign Serial I/O A/D Converter with MUX, Sample/Hold and Reference 2-342
ADC10831 10-Bit Plus Sign Serial I/O A/D Converter with MUX, Sample/Hold and Reference 2-367
ADC10832 10-Bit Plus Sign Serial I/O A/D Converter with MUX, Sample/Hold and Reference 2-367
ADC10834 10-Bit Plus Sign Serial I/O A/D Converter with MUX, Sample/Hold and Reference 2-367
ADC10838 10-Bit Plus Sign Serial I/O A/D Converter with MUX, Sample/Hold and Reference 2-367
ADC12030 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold 2-441
ADC12032 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold $2-441$
ADC12034 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold 2-441
ADC12038 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold 2-441
ADC12062 12-Bit, $1 \mathrm{MHz}, 75 \mathrm{~mW}$ A/D Converter with Input Multiplexer and Sample/Hold 2-565
ADC12130 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold $2-512$

Alpha-Numeric Index ${ }_{\text {(Continuead }}$

ADC12132 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold 2-512
ADC12138 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converter with MUX and Sample/Hold 2-512
ADC12441 Dynamically-Tested Self-Calibrating 12-Bit Plus Sign A/D Converter with Sample/Hold 2-628
ADC12451 Dynamically-Tested Self-Calibrating 12-Bit Plus Sign A/D Converter with Sample/Hold 2-656
ADC12662 12-Bit, 1.5 MHz, 200 mW A/D Converter with Input Multiplexer and Sample/Hold 2-583
ADC16071 16-Bit Delta-Sigma 192 ks/s Analog-to-Digital Converter 2-672
ADC16471 16-Bit Delta-Sigma 192 ks/s Analog-to-Digital Converter 2-672
AH0014 Dual DPDT-TTL/DTL Compatible MOS Analog Switch 8-5
AH0015 Quad SPST-TTL/DTL Compatible MOS Analog Switch 8-5
AH0019 Dual DPST-TTL/DTL Compatible MOS Analog Switch 8-5
AH5010 Monolithic Analog Current Switch 8-9
AH5011 Monolithic Analog Current Switch 8-9
AH5012 Monolithic Analog Current Switch 8-9
AH5020C Monolithic Analog Current Switch 8-20
AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability 9-24
Board Mount of Surface Mount Components 9-19
DAC0800 8-Bit D/A Converter 3-6
DAC0801 8-Bit D/A Converter 3-6
DAC0802 8-Bit D/A Converter 3-6
DAC0806 8-Bit D/A Converter 3-15
DAC0807 8-Bit D/A Converter 3-15
DAC0808 8-Bit D/A Converter 3-15
DAC0830 8-Bit μ P Compatible Double-Buffered D/A Converter 3-23
DAC0831 8-Bit μ P Compatible Double-Buffered D/A Converter 3-23
DAC0832 8-Bit μ P Compatible Double-Buffered D/A Converter 3-23
DAC0854 Quad 8-Bit Voltage-Output Serial D/A Converter with Readback 3-41
DAC0890 Dual 8-Bit μ P-Compatible D/A Converter 3-53
DAC1006 μ P Compatible, Double-Buffered D/A Converter 3-63
DAC1007 μ P Compatible, Double-Buffered D/A Converter 3-63
DAC1008 μ P Compatible, Double-Buffered D/A Converter 3-63
DAC1020 10-Bit Binary Multiplying D/A Converter 3-83
DAC1021 10-Bit Binary Multiplying D/A Converter 3-83
DAC1022 10-Bit Binary Multiplying D/A Converter 3-83
DAC1054 Quad 10-Bit Voltage-Output Serial D/A Converter with Readback 3-93
DAC1208 12-Bit μ P Compatible Double-Buffered D/A Converter 3-105
DAC1209 12-Bit μ P Compatible Double-Buffered D/A Converter 3-105
DAC1210 12-Bit μ P Compatible Double-Buffered D/A Converter 3-105
DAC1218 12-Bit Binary Multiplying D/A Converter 3-121
DAC1219 12-Bit Binary Multiplying D/A Converter 3-121
DAC1220 12-Bit Binary Multiplying D/A Converter 3-83
DAC1222 12-Bit Binary Multiplying D/A Converter 3-83
DAC1230 12-Bit μ P Compatible Double-Buffered D/A Converter 3-105
DAC1231.12-Bit μ P Compatible Double-Buffered D/A Converter 3-105
DAC1232 12-Bit μ P Compatible Double-Buffered D/A Converter 3-105
Land Pattern Recommendations 9-35
LF198 Monolithic Sample and Hold Circuit 6-5

Alpha-Numeric Index ${ }_{\text {(Continued) }}$

LF298 Monolithic Sample and Hold Circuit 6-5
LF398 Monolithic Sample and Hold Circuit 6-5
LF11201 Quad SPST JFET Analog Switch 8-28
LF11202 Quad SPST JFET Analog Switch 8-28
LF11331 Quad SPST JFET Analog Switch 8-28
LF11332 Quad SPST JFET Analog Switch 8-28
LF11333 Quad SPST JFET Analog Switch 8-28
LF13006 Digital Gain Set 6-15
LF13007 Digital Gain Set 6-15
LF13201 Quad SPST JFET Analog Switch 8-28
LF13202 Quad SPST JFET Analog Switch 8-28
LF13331 Quad SPST JFET Analog Switch 8-28
LF13332 Quad SPST JFET Analog Switch 8-28
LF13333 Quad SPST JFET Analog Switch 8-28
LF13508 8-Channel Analog Multiplexer 8-39
LF13509 4-Channel Differential Analog Multiplexer 8-39
LH0070 Series BCD Buffered Reference 4-8
LH0071 Series Precision Buffered Reference 4-8
LM12H454 12-Bit + Sign Data Acquisition System with Self-Calibration 1-114
LM12H458 12-Bit + Sign Data Acquisition System with Self-Calibration 1-114
LM12L438 12-Bit + Sign Data Acquisition System with Serial I/O and Self-Calibration 1-37
LM12L454 12-Bit + Sign Data Acquisition System with Self-Calibration 1-151
LM12L458 12-Bit + Sign Data Acquisition System with Self-Calibration 1-151
LM34 Precision Fahrenheit Temperature Sensor 5-4
LM35 Precision Centigrade Temperature Sensor 5-12
LM45 SOT-23 Precision Centigrade Temperature Sensor 5-21
LM50 Single Supply Precision Centigrade Temperature Sensor 5-28
LM113 Reference Diode 4-12
LM129 Precision Reference 4-15
LM131 Precision Voltage-to-Frequency Converter 2-690
LM134 3-Terminal Adjustable Current Source 4-20
LM134 3-Terminal Adjustable Current Source 5-29
LM135 Precision Temperature Sensor 5-38
LM136-2.5V Reference Diode 4-29
LM136-5.0V Reference Diode 4-36
LM169 Precision Voltage Reference 4-43
LM185 Adjustable Micropower Voltage Reference 4-53
LM185-1.2 Micropower Voltage Reference Diode 4-60
LM185-2.5 Micropower Voltage Reference Diode 4-67
LM199 Precision Reference 4-73
LM231 Precision Voltage-to-Frequency Converter 2-690
LM234 3-Terminal Adjustable Current Source 5-29
LM234 3-Terminal Adjustable Current Source 4-20
LM235 Precision Temperature Sensor 5-38
LM236-2.5V Reference Diode 4-29
LM236-5.0V Reference Diode 4-36
LM285 Adjustable Micropower Voltage Reference 4-53
LM285-1.2 Micropower Voltage Reference Diode 4-60
LM285-2.5 Micropower Voltage Reference Diode 4-67
LM299 Precision Reference 4-73
LM313 Reference Diode 4-12
Alpha-Numeric Index ${ }_{\text {(Continued) }}$
LM329 Precision Reference 4-15
LM331 Precision Voltage-to-Frequency Converter 2-690
LM334 3-Terminal Adjustable Current Source 4-20
LM334 3-Terminal Adjustable Current Source 5-29
LM335 Precision Temperature Sensor 5-38
LM336-2.5V Reference Diode 4-29
LM336-5.0V Reference Diode 4-36
LM368-2.5 Precision Voltage Reference 4-82
LM368-5.0 Precision Voltage Reference 4-88
LM368-10 Precision Voltage Reference 4-88
LM369 Precision Voltage Reference 4-43
LM385 Adjustable Micropower Voltage Reference 4-53
LM385-1.2 Micropower Voltage Reference Diode 4-60
LM385-2.5 Micropower Voltage Reference Diode 4-67
LM399 Precision Reference 4-73
LM3999 Precision Reference 4-73
LM4040 Precision Micropower Shunt Voltage Reference 4-94
LM4041 Precision Micropower Shunt Voltage Reference 4-113
LM4431 Micropower Shunt Voltage Reference 4-125
LM9140 Precision Micropower Shunt Voltage Reference 4-131
LM12434 12-Bit + Sign Data Acquisition System with Serial I/O and Self-Calibration 1-37
LM12454 12-Bit + Sign Data Acquisition System with Self-Calibration 1-114
LM12458 12-Bit + Sign Data Acquisition System with Self-Calibration 1-114
LMF40 High Performance 4th-Order Switched Capacitor Butterworth Low-Pass Filter 7-5
LMF60 High Performance 6th-Order Switched Capacitor Butterworth Low-Pass Filter 7-19
LMF90 4th-Order Elliptic Notch Filter 7-37
LMF100 High Performance Dual Switched Capacitor Filter 7-57
LMF380 Triple One-Third Octave Switched Capacitor Active Filter 7-79
MF4 4th Order Switched Capacitor Butterworth Lowpass Filter 7-89
MF5 Universal Monolithic Switched Capacitor Filter 7-102
MF6 6th Order Switched Capacitor Butterworth Lowpass Filter 7-117
MF8 4th Order Switched Capacitor Bandpass Filter 7-135
MF10 Universal Monolithic Dual Switched Capacitor Filter 7-157
Packing Considerations (Methods, Materials and Recycling) 9-3
Recommended Soldering Profiles-Surface Mount 9-23

Additional Available Linear Devices

54ACT715 Programmable Video Sync Generator 74ACT715 Programmable Video Sync Generator. AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability

Section 5
AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability Section 5
AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability

Section 6
Board Mount of Surface Mount Components Section 6
Board Mount of Surface Mount Components
Section 5
Board Mount of Surface Mount Components Section 5
DH0006 Current Driver Section 5
DH0034 High Speed Dual Level Translator Section 5
DH0035 Pin Diode Driver. Section 5
DP7310 Octal Latched Peripheral Driver Section 3
DP7311 Octal Latched Peripheral Driver Section 3
DP8310 Octal Latched Peripheral Driver Section 3
DP8311 Octal Latched Peripheral Driver Section 3
DS0026 5 MHz Two Phase MOS Clock Drivers. Section 4
DS1631 CMOS Dual Peripheral Driver Section 3
DS1632 CMOS Dual Peripheral Driver Section 3
DS1633 CMOS Dual Peripheral Driver Section 3
DS1634 CMOS Dual Peripheral Driver Section 3
DS2003 High Current/Voltage Darlington Driver Section 3
DS2004 High Current/Voltage Darlington Driver Section 3
DS3631 CMOS Dual Peripheral Driver Section 3
DS3632 CMOS Dual Peripheral Driver Section 3
DS3633 CMOS Dual Peripheral Driver Section 3
DS3634 CMOS Dual Peripheral Driver Section 3
DS3658 Quad High Current Peripheral Driver Section 3
DS3668 Quad Fault Protected Peripheral Driver Section 3
DS3630 Quad Negative Voltage Relay Driver Section 3
DS9667 High Current/Voltage Darlington Driver Section 3
DS55451 Series Dual Peripheral Driver Section 3
DS55452 Series Dual Peripheral Driver Section 3
DS55453 Series Dual Peripheral Driver Section 3
DS55454 Series Dual Peripheral Driver Section 3
DS75451 Series Dual Peripheral Driver Section 3
DS75452 Series Dual Peripheral Driver Section 3
DS75453 Series Dual Peripheral Driver Section 3
DS75454 Series Dual Peripheral Driver Section 3
DS75491 MOS-to-LED Quad Segment Driver Section 4
DS75492 MOS-to-LED Hex Digit Driver Section 4
DS75494 Hex Digit Driver . Section 4
Land Pattern Recommendations . Section 5
Land Pattern Recommendations . Section 5
Land Pattern Recommendations . Section 6
LF111 Voltage Comparator . Section 3

Application Specific Analog Products Application Specific Analog Products

Power ICs

Application Specific Analog Products

Operational Amplifiers
Operational Amplifiers
Application Specific Analog Products
Power ICs
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Application Specific Analog Products Application Specific Analog Products

Power ICs
Application Specific Analog Products Operational Amplifiers Operational Amplifiers

Additional Available Linear Devices ${ }_{\text {(coninues) }}$

LF147 Wide Bandwidth Quad JFET Input OperationalAmplifier . Section 1LF155 Series Monolithic JFET Input OperationalAmplifiersSection 1
LF156 Series Monolithic JFET Input OperationalAmplifiersSection 1
LF157 Series Monolithic JFET Input OperationalAmplifiersSection 1
LF211 Voltage Comparator Section 3
LF311 Voltage Comparator Section 3
LF347 Wide Bandwidth Quad JFET Input OperationalAmplifierSection 1
LF351 Wide Bandwidth JFET Input Operational
Amplifier Section 1
LF353 Wide Bandwidth Dual JFET Input OperationalAmplifierSection 1
LF411 Low Offset, Low Drift JFET Input Operational Amplifier Section 1
LF412 Low Offset, Low Drift Dual JFET OperationaAmplifierSection 1
LF441 Low Power JFET Input Operational Amplifier Section 1
LF442 Dual Low Power JFET Input OperationalAmplifierSection 1
LF444 Quad Low Power JFET Input OperationalAmplifierSection 1
LF451 Wide-Bandwidth JFET Input Operational
AmplifierSection 1
LF453 Wide-Bandwidth Dual JFET Input Operational
AmplifierSection 1
LH0002 Buffer Section 2
LH0003 Wide Bandwidth Operational Amplifier Section 1
LH0004 High Voltage Operational Amplifier Section 1
LH0021 1.0 Amp Power Operational Amplifier Section 1
LH0024 High Slew Rate Operational Amplifier Section 1
LH0032 Ultra Fast FET-Input Operational Amplifier Section 1
LH0033 Fast and Ultra Fast Buffers Section 2
LH0041 0.2 Amp Power Operational Amplifier Section 1
LH0042 Low Cost FET Operational Amplifier Section 1
LH0063 Fast and Ultra Fast Buffers Section 2
LH0094 Multifunction Converter Section 5
LH0101 Power Operational Amplifier Section 1
LH1605 5 Amp, High Efficiency Switching Regulator Section 3
LH2111 Dual Voltage Comparator Section 3
LH2311 Dual Voltage Comparator Section 3
LH4001 Wideband Current Buffer Section 2
LH4002 Wideband Video Buffer Section 2
LM10 Operational Amplifier and Voltage Reference Section 1
LM12 80W Operational Amplifier Section 4
LM78LXX Series 3-Terminal Positive Regulators Section 1
LM78MXX Series 3-Terminal Positive Regulator Section 1
LM78S40 Universal Switching Regulator Subsystem Section 3Operational Amplifiers
Operational Amplifiers

Operational Amplifiers
Operational Amplifiers

Operational AmplifiersOperational AmplifiersOperational AmplifiersOperational Amplifiers
Operational Amplifiers

Operational Amplifiers

Operational Amplifiers

Operational Amplifiers
Operational Amplifiers

Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Power ICs
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Power ICs
Power ICs
Power ICs
Power ICs

Additional Available Linear Devices ${ }_{\text {(coninued) }}$

LM78XX Series Voltage Regulators

Section. 1
LM79LXXAC Series 3-Terminal Negative Regulator
LM79MXX Series 3-Terminal Negative Regulators
LM79XX Series 3-Terminal Negative Regulators
Section 1
Section 1
LM70XX Series 3-Teminal Negative RegulatorsSection 1
LM101A Operational Amplifier
Section 1
LM102 Volage Foll Amer
M102 Voltage Follower.
LM105 Voltage Regulator . Section 1
LM106 Voltage Comparator . Section 3
LM107 Operational Amplifier Section 1
LM108 Operational Amplifier . Section 1
LM109 5-Volt Regulator . Section 1
LM110 Voltage Follower . Section 2
LM111 Voltage Comparator . Section 3
LM117 3-Terminal Adjustable Regulator Section 1
LM117HV 3-Terminal Adjustable Regulator Section 1
LM118 Operational Amplifier Section 1
LM119 High Speed Dual Comparator Section 3
LM120 Series 3-Terminal Negative Regulator Section 1
LM122 Precision Timer Section 4
LM123 3-Amp, 5-Volt Positive Regulator Section 1
LM124 Low Power Quad Operational Amplifier Section 1
LM125 Dual Voltage Regulator Section 1
LM133 3-Amp Adjustable Negative Regulator Section 1
LM137 3-Terminal Adjustable Negative Regulator Section 1
LM137HV 3-Terminal Adjustable Negative Regulator
(High Voltage) . Section 1
LM138 5-Amp Adjustable Regulator Section 1
LM139 Low Power Low Offset Voltage Quad
Comparator . Section 3
LM140 Series 3-Terminal Positive Regulator Section 1
LM140L Series 3-Terminal Positive Regulator Section 1
LM143 High Voltage Operational Amplifier Section 1
LM145 Negative 3-Amp Regulator Section 1
LM146 Programmable Quad Operational Amplifier.Section 1
LM148 Quad 741 Operational Amplifier Section 1
LM149 Wide Band Decompensated ($\mathrm{AV}_{\mathrm{V}}(\mathrm{MIN})=5$) \ldots. . Section 1
LM150 3-Amp Adjustable Regulator Section 1
LM158 Low Power Dual Operational Amplifier. Section 1
LM160 High Speed Differential Comparator. Section 3
LM161 High Speed Differential Comparator. Section 3
LM193 Low Power Low Offset Voltage Dual
Comparator . Section 3
LM194 Supermatch Pair Section 5
LM195 Ultra Reliable Power Transistor Section 5
LM201A Operational Amplifier . Section 1
LM205 Voltage Regulator . Section 1
LM207 Operational Amplifier . Section 1
LM208 Operational Amplifier . Section 1
LM210 Voltage Follower . Section 2
LM211 Voltage Comparator . Section 3
LM218 Operational Amplifier Section 1
Power ICs
Power ICs
Power ICs
Power ICs
Operational Amplifiers
Operational Amplifiers
Power ICs
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Power ICs
Operational Amplifiers
Operational Amplifiers
Power ICs
Power ICs
Application Specific Analog Products
Power ICs
Oprations
Operational Amplifiers
Power ICs
Oper ICs
Power ICs
Operational Amplifiers
Power ICs
Power ICs

Power ICs
Power ICs
Power ICs
Operational Amplifiers
Operational Amplifiers
Power ICs
Operational Amplifiers
Operational Amplifiers
Power ICs
Operational Amplifiers
Operational Amplifiers
Power ICs
Power ICs
Operational Amplifiers
Operational Amplifiers
Power ICs
Power ICs

Power ICs
Power ICs

Power ICs
Power ICs

Power ICs
Power ICs
Power ICs
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Power ICs
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers Power ICs
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers

Additional Available Linear Devices ${ }_{\text {(Coninueos) }}$

LM219 High Speed Dual Comparator Section 3
LM221 Precision Preamplifier Section 1
LM224 Low Power Quad Operational Amplifier Section 1
LM239 Low Power Low Offset Voltage Quad Comparator Section 3
LM246 Programmable Quad Operational Amplifier Section 1
LM248 Quad 741 Operational Amplifier Section 1
LM258 Low Power Dual Operational Amplifier Section 1
LM261 High Speed Differential Comparator Section 3
LM293 Low Power Low Offset Voltage DualComparatorSection 3
LM301A Operational Amplifier Section 1
LM302 Voltage Follower Section 2
LM305 Voltage Regulator Section 1
LM306 Voltage Comparator Section 3
LM307 Operational Amplifier Section 1
LM308 Operational Amplifier Section 1
LM309 5-Volt Regulator Section 1
LM310 Voltage Follower Section 2
LM311 Voltage Comparator Section 3
LM317 3-Terminal Adjustable Regulator Section 1
LM317HV 3-Terminal Adjustable Regulator Section 1
LM317L 3-Terminal Adjustable Regulator Section 1
LM318 Operational Amplifier Section 1
LM319 High Speed Dual Comparator Section 3
LM320 Series 3-Terminal Negative Regulator Section 1
LM320L Series 3-Terminal Negative Regulator Section 1
LM321 Precision Preamplifier Section 1
LM322 Precision Timer Section 4
LM323 3-Amp, 5-Volt Positive Regulator Section 1
LM324 Low Power Quad Operational Amplifier Section 1
LM325 Dual Voltage Regulator Section 1
LM330 3-Terminal Positive Regulator Section 2
LM333 3-Amp Adjustable Negative Regulator Section 1
LM337 3-Terminal Adjustable Negative Regulator Section 1
LM337HV 3-Terminal Adjustable Negative Regulator (High Voltage) Section 1
LM337L 3-Terminal Adjustable Regulator Section 1
LM338 5-Amp Adjustable Regulator Section 1
LM339 Low Power Low Offset Voltage Quad Comparator Section 3
LM340 Series 3-Terminal Positive Regulator Section 1
LM340L Series 3-Terminal Positive Regulator Section 1
LM341 Series 3-Terminal Positive Regulator Section 1
LM343 High Voltage Operational Amplifier Section 1
LM345 Negative 3-Amp Regulator Section 1
LM346 Programmable Quad Operational Amplifier Section 1
LM348 Quad 741 Operational Amplifier Section 1
LM349 Wide Band Decompensated (Av(MIN) = 5) Section 1
LM350 3-Amp Adjustable Regulator Section 1
LM358 Low Power Dual Operational Amplifier Section 1

Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers Operational Amplifiers

Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Power ICs
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Power ICs
Operational Amplifiers
Operational Amplifiers
Power ICs
Power ICs
Power ICs
Operational Amplifiers
Operational Amplifiers
Power ICs
Power ICs
Operational Amplifiers
Application Specific Analog Products
Power ICs
Operational Amplifiers
Power ICs
Operational Amplifiers
Power ICs
Power ICs
Power ICs
Operational Amplifiers
Power ICs
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Power ICs
Operational Amplifiers

Additional Available Linear Devices ${ }_{\text {(coninueas) }}$

LM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifier Section 1

LM360 High Speed Differential Comparator Section 3
LM361 High Speed Differential Comparator Section 3
LM376 Voltage Regulator Section 1
LM380 Audio Power Amplifier Section 1
LM383 7W Audio Power Amplifier Section 1
LM384 5W Audio Power Amplifier Section 1
LM386 Low Voltage Audio Power Amplifier Section 1
LM387/LM387A Low Noise Dual Preamplifier Section 1
LM388 1.5W Audio Power Amplifier Section 1
LM389 Low Voltage Audio Power Amplifier with NPNTransistor ArraySection 1
LM390 1W Battery Operated Audio Power Amplifier Section 1
LM391 Audio Power Driver Section 1
LM392 Low Power Operational Amplifier/VoltageComparatorSection 1
LM393 Low Power Low Offset Voltage Dual Comparator Section 3
LM394 Supermatch Pair Section 5
LM395 Ultra Reliable Power Transistor Section 5
LM431A Adjustable Precision Zener Shunt Regulator Section 3
LM555 Timer Section 4
LM555C Timer Section 4
LM556 Dual Timer Section 4
LM556C Dual Timer Section 4
LM565 Phase Locked Loop Section 4
LM565C Phase Locked Loop Section 4
LM566C Voltage Controlled Oscillator Section 4
LM567 Tone Decoder Section 4
LM567C Tone Decoder Section 4
LM611 Operational Amplifier and Adjustable
Reference Section 1
LM612 Dual-Channel Comparator and Reference Section 3
LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference Section 3
LM613 Dual Operational Amplifier, Dual Comparator, and Adjustable Reference Section 1
LM614 Quad Operational Amplifier and Adjustable Reference Section 1
LM615 Quad Comparator and Adjustable Reference Section 3
LM628 Precision Motion Controller Section 4
LM629 Precision Motion Controller Section 4
LM675 Power Operational Amplifier Section 1
LM709 Operational Amplifier Section 1
LM710 Voltage Comparator Section 3
LM723 Voltage Regulator Section 1
LM725 Operational Amplifier Section 1
LM741 Operational Amplifier Section 1
LM747 Dual Operational Amplifier Section 1
LM748 Operational Amplifier Section 1

Operational Amplifiers Operational Amplifiers Operational Amplifiers Power ICs Application Specific Analog Products Application Specific Analog Products

Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products

Operational Amplifiers
Operational Amplifiers Operational Amplifiers Operational Amplifiers Power ICs
Application Specific Analog Products Application Specific Analog Products

Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Power ICs
Power ICs
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Power ICs
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers

Additional Available Linear Devices ${ }_{\text {(coninuea) }}$

LM759 Power Operational Amplifier Section 1
LM760 High Speed Differential Comparator Section 3
Livio3i Low Voitage Âudio Power Âmplifier Section 1
LM833 Dual Audio Operational Amplifier Section 1
LM837 Low Noise Quad Operational Amplifier Section 1
LM903 Fluid Level Detector Section 3
LM1036 Dual DC Operated Tone/Volume/Balance Circuit Section 1
LM1042 Fluid Level Detector Section 3
LM1131 Dual Dolby B-Type Noise Reduction
Processor Section 1
LM1201 Video Amplifier System Section 2
LM1202 230 MHz Video Amplifier System Section 2
LM1203 RGB Video Amplifier System Section 2
LM1203A 150 MHz RGB Video Amplifier System Section 2
LM1203B 100 MHz RGB Video Amplifier System Section 2
LM1204 150 MHz RGB Video Amplifier System Section 2
LM1205 130 MHz RGB Video Amplifier System with Blanking Section 2
LM1207 85 MHz RGB Video Amplifier System with Blanking Section 2
LM1208 130 MHz RGB Video Amplifier System with Blanking Section 2
LM1209 100 MHz RGB Video Amplifier System with Blanking Section 2
LM1212 230 MHz Video Amplifier System with OSD Blanking Section 2
LM1281 85 MHz RGB Video Amplifier System with On Screen Display (OSD) Section 2
LM1291 Video PLL System for Continuous Sync Monitors Section 2
LM1295 DC Controlled Geometry Correction Systemfor Continuous Sync MonitorsSection 2
LM1391 Phase-Locked Loop Section 2
LM1458 Dual Operational Amplifier Section 1
LM1496 Balanced Modulator-Demodulator Section 4
LM1558 Dual Operational Amplifier Section 1
LM1575 SIMPLE SWITCHER 1A Step-Down Voltage
Regulator Section 3
LM1575HV SIMPLE SWITCHER 1A Step-Down Voltage Regulator Section 3
LM1577 SIMPLE SWITCHER Step-Up Voltage
Regulator Section 3
LM1577 SIMPLE SWITCHER Step-Up Voltage Regulator Section 3
LM1578A Switching Regulator Section 3
LM1596 Balanced Modulator-Demodulator Section 4
LM1801 Battery Operated Power Comparator Section 3
LM1815 Adaptive Variable Reluctance SensorAmplifierSection 3
LM1819 Air-Core Meter Driver Section 3

Operational Amplifiers Operational Amplifiers Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products

Application Specific Analog Products Application Specific Analog Products

Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products

Application Specific Analog Products Application Specific Analog Products

Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products Application Specific Analog Products Operational Amplifiers Application Specific Analog Products

Operational Amplifiers

Power ICs
Power ICs
Power ICs
Application Specific Analog Products
Power ICs
Application Specific Analog Products
Operational Amplifiers
Application Specific Analog Products Application Specific Analog Products

Additional Available Linear Devices ${ }_{\text {(continued) }}$

LM1823 Video IF Amplifier/PLL Detector System Section 2
LM1830 Fluid Detector Section 3
LM1851 Ground Fault Interrupter Section 4
LM1865 Advanced FM IF System Section 4
LM1868 AM/FM Radio System Section 4
LM1875 20 Watt Power Audio Amplifier Section 1
LM1875 20W Audio Power Amplifier Section 1
LM1876 Dual 20W Audio Power Amplifier with Mute and Standby Modes Section 1
LM1877 Dual Audio Power Amplifier Section 1
LM1877 Dual Power Audio Amplifier Section 1
LM1881 Video Sync Separator Section 2
LM1882 Programmable Video Sync Generator Section 2
LM1893 Carrier-Current Transceiver Section 4
LM1894 Dynamic Noise Reduction System DNR® Section 1
LM1896 Dual Audio Power Amplifier Section 1
LM1896 Dual Power Audio Amplifier Section 1
LM1921 1 Amp Industrial Switch Section 3
LM1946 Over/Under Current Limit Diagnostic Circuit Section 3
LM1949 Injector Drive Controller Section 3
LM1950 750 mA High Side Switch Section 3
LM1951 Solid State 1 Amp Switch Section 3
LM1971 μ Pot 62 dB Digitally Controlled AudioAttenuator with MuteSection 1
LM1972 μ Pot 2-Channel 78 dB Audio Attenuator with Mute Section 1
LM1973 μ Pot 3-Channel 76 dB Audio Attenuator with Mute Section 1
LM2416 Triple 50 MHz CRT Driver Section 2
LM2416C Triple 50 MHz CRT Driver Section 2
LM2418 Triple 30 MHz CRT Driver Section 2
LM2419 Triple 65 MHz CRT Driver Section 2
LM2427 Triple 80 MHz CRT Driver Section 2
LM2524D Regulating Pulse Width Modulator Section 3
LM2574 SIMPLE SWITCHER 0.5A Step-Down Voltage
RegulatorSection 3
LM2574HV SIMPLE SWITCHER 0.5A Step-Down Voltage Regulator Section 3
LM2575 SIMPLE SWITCHER 1A Step-Down VoltageRegulatorSection 3
LM2575HV SIMPLE SWITCHER 1A Step-DownVoltage RegulatorSection 3
LM2576 SIMPLE SWITCHER 3A Step-Down VoltageRegulatorSection 3
LM2576HV SIMPLE SWITCHER 3A Step-DownVoltage RegulatorSection 3
LM2577 SIMPLE SWITCHER Step-Up Voltage Regulator Section 3
LM2577 SIMPLE SWITCHER Step-Up Voltage
RegulatorSection 3
LM2578A Switching Regulator Section 3

Application Specific Analog Products Operational Amplifiers Application Specific Analog Products

Application Specific Analog Products Application Specific Analog Products Operational Amplifiers Application Specific Analog Products Operational Amplifiers Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products

Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products

Power ICs
Application Specific Analog Products
Power ICs

Additional Available Linear Devices ${ }_{\text {Conininued }}$

LM2587 SIMPLE SWITCHER 5A Flyback Regulator ... Section 3 LM2876 High-Performance 40W Audio Power Amplifier with Míute

Section 1
LM2877 Dual 4 Watt Power Audio Amplifier Section 1
LM2877 Dual 4W Audio Power Amplifier Section 1
LM2878 Dual 5 Watt Power Audio Amplifier Section 1
LM2878 Dual 5W Audio Power Amplifier Section 1
LM2879 Dual 8 Watt Audio Amplifier Section 1
LM2879 Dual 8W Audio Power Amplifier Section 1
LM2889 TV Video Modulator . Section 2
LM2893 Carrier-Current Transceiver Section 4
LM2896 Dual Audio Power Amplifier Section 1
LM2896 Dual Power Audio Amplifier Section 1
LM2900 Quad Amplifier . Section 1
LM2901 Low Power Low Offset Voltage Quad Comparator

Section 3
LM2902 Low Power Quad Operational Amplifier Section 1
LM2903 Low Power Low Offset Voltage Dual
Comparator
Section 3
LM2904 Low Power Dual Operational AmplifierSection 1
LM2907 Frequency to Voltage Converter Section 3
LM2917 Frequency to Voltage Converter Section 3
LM2924 Low Power Operational Amplifier/Voltage
Comparator
Section 1
LM2925 Low Dropout Regulator with Delayed Reset . . .Section 3
LM2925 Low Dropout Regulator with Delayed Reset . . .Section 2
LM2926 Low Dropout Regulator with Delayed Reset . . . Section 2
LM2926 Low Dropout Regulator with Delayed Reset . . . Section 3
LM2927 Low Dropout Regulator with Delayed Reset . . .Section 3
LM2927 Low Dropout Regulator with Delayed Reset . . .Section 2
LM2930 3-Terminal Positive Regulator Section 2
LM2931 Series Low Dropout Regulators Section 2
LM2931 Series Low Dropout Regulators Section 3
LM2935 Low Dropout Dual Regulator Section 3
LM2935 Low Dropout Dual Regulator Section 2
LM2936 Ultra-Low Quiescent Current 5V Regulator.... Section 2
LM2936 Ultra-Low Quiescent Current 5V Regulator... . Section 3
LM2937 500 mA Low Dropout Regulator Section 3
LM2937 500 mA Low Dropout Regulator Section 2
LM2940/LM2940C 1A Low Dropout Regulators Section 2
LM2940/LM2940C 1A Low Dropout Regulators Section 3
LM2941/LM2941C 1A Low Dropout Adjustable
Regulators
Section 2
LM2984 Microprocessor Power Supply System Section 2
LM2984 Microprocessor Power Supply System Section 3
LM2990 Negative Low Dropout Regulator Section 2
LM2991 Negative Low Dropout Adjustable Regulator . .Section 2
LM3001 Primary-Side PWM Driver . Section 3
LM3045 Transistor Array . Section 1
LM3045 Transistor Array . Section 5
LM3046 Transistor Array . Section 5

Application Specific Analog Products Operational Amplifiers
Application Specific Analog Products
Operational Amplifiers
Application Specific Analog Products
Operational Amplifiers
Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Operational Amplifiers Operational Amplifiers

Operational Amplifiers Operational Amplifiers

Operational Amplifiers Operational Amplifiers Application Specific Analog Products Application Specific Analog Products

Operational Amplifiers Application Specific Analog Products Power ICs Power ICs Application Specific Analog Products Application Specific Analog Products Power ICs Power ICs Power ICs Application Specific Analog Products Application Specific Analog Products Power ICs Power ICs Application Specific Analog Products Application Specific Analog Products Power ICs Power ICs
Application Specific Analog Products
Power ICs
Power ICs
Application Specific Analog Products Power ICs Power ICs Power ICs
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers

Additional Available Linear Devices ${ }_{\text {(coninues) }}$

LM3046 Transistor Array . Section 1
LM3080 Operational Transconductance Amplifier Section 1
LM3086 Transistor Array . Section 1
LM3086 Transistor Array . Section 5
LM3101 Secondary-Side PWM Controller Section 3
LM3146 High Voltage Transistor Array Section 5
LM3301 Quad Amplifier . Section 1
LM3302 Low Power Low Offset Voltage Quad Comparator

Section 3
LM3303 Quad Operational Amplifier Section 1
LM3403 Quad Operational Amplifier Section 1
LM3411 Precision Secondary Regulator/Driver Section 3
LM3420-4.2, -8.4, -12.6 Lithium-Ion Battery Charge Controller

Section 2
LM3524D Regulating Pulse Width Modulator Section 3
LM3578A Switching Regulator . Section 3
LM3875 High Performance 40 Watt Audio Power Amplifier

Section 1
LM3875 High Performance 56W Audio Power
Amplifier
Section 1
LM3876 High Performance 56W Audio Power Amplifier with Mute

Section 1
LM3886 High-Performance 68W Audio Power Amplifier with Mute

Section 1
LM3900 Quad Amplifier . Section 1
LM3905 Precision Timer . Section 4
LM3909 LED Flasher/Oscillator. Section 4
LM3914 Dot/Bar Display Driver . Section 4
LM3915 Dot/Bar Display Driver . Section 4
LM3916 Dot/Bar Display Driver . Section 4
LM3940 1A Low Dropout Regulator for 5V to 3.3V
Conversion
Section 2
LM4250 Programmable Operational Amplifier Section 1
LM4700 OvertureTM 30W Audio Power Amplifier with Mute and Standby Modes

Section 1
LM4860 1W Audio Power Amplifier with Shutdown Mode

Section 1
LM4861 $1 / 2$ W Audio Power Amplifier with Shutdown Mode.

Section 1
LM4862 350 mW Audio Power Amplifier with Shutdown Mode
.Section 1
LM4880 Dual 200 mW Audio Power Amplifier with Shutdown Mode
.Section 1
LM6104 Quad Gray Scale Current Feedback
Amplifier
Section 4
LM6104 Quad Gray Scale Current Feedback
Amplifier
Section 1
LM6104 Quad Gray Scale Current Feedback
Amplifier . Section 2
LM6118 Fast Settling Dual Operational Amplifier Section 1
LM6121 High Speed Buffer . Section 2
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers Power ICs
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Power ICs
Power ICs
Power ICs
Power ICs
Operational Amplifiers
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products Operational Amplifiers
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products Application Specific Analog Products
Power ICs
Operational Amplifiers
Application Specific Analog Products
Operational Amplifiers
Operational Amplifiers
Application Specific Analog Products
Operational Amplifiers
Operational Amplifiers

Additional Available Linear Devices ${ }_{(\text {(continuea) }}$

LM6121 High Speed Buffer

Section 2
LM6125 High Speed Buffer Section 2
LM6125 High Speed Buffer Section 2
LM6132 Dual High Speed/Low Power 7 MHzRail-to-Rail I/O Operational AmplifierSection 1
LM6134 Quad High Speed/Low Power 7 MHz Rail-to-Rail I/O Operational Amplifier Section 1
LM6142 Dual High Speed/Low Power 17 MHzRail-to-Rail Input-Output Operational AmplifierSection 1
LM6142 Dual High Speed/Low Power 17 MHz
Rail-to-Rail Input-Output Operational Amplifier Section 1
LM6144 Quad High Speed/Low Power 17 MHzRail-to-Rail Input-Output Operational AmplifierSection 1
LM6144 Quad High Speed/Low Power 17 MHz Rail-to-Rail Input-Output Operational Amplifier Section 1
LM6152 Dual High Speed/Low Power 45 MHz
Rail-to-Rail Input-Output Operational Amplifier Section 1
LM6152 Dual High Speed/Low Power 45 MHzRail-to-Rail I/O Operational Amplifier
\qquadLM6154 Quad High Speed/Low Power 45 MHzRail-to-Rail I/O Operational Amplifier
\qquadLM6154 Quad High Speed/Low Power 45 MHzRail-to-Rail Input-Output Operational AmplifierSection 1
LM6161 High Speed Operational Amplifier Section 1
LM6161 High Speed Operational Amplifier Section 2
LM6162 High Speed Operational Amplifier Section 2
LM6162 High Speed Operational Amplifier Section 1
LM6164 High Speed Operational Amplifier Section 1
LM6164 High Speed Operational Amplifier Section 2
LM6165 High Speed Operational Amplifier Section 2
LM6165 High Speed Operational Amplifier Section 1
LM6171 Voltage Feedback Low Distortion Low Power Operational Amplifier Section 1
LM6171 Voltage Feedback Low Distortion Low Power Operational Amplifier Section 2
LM6181 100 mA, 100 MHz Current FeedbackAmplifierSection 2
LM6181 100 mA, 100 MHz Current FeedbackAmplifierSection 1
LM6182 Dual 100 mA Output, 100 MHz Dual Current Feedback Amplifier

\qquad
Section 1
LM6182 Dual 100 mA Output, 100 MHz Dual Current Feedback Amplifier Section 2
LM6218 Fast Settling Dual Operational Amplifier Section 1
LM6221 High Speed Buffer Section 2
LM6221 High Speed Buffer Section 2
LM6225 High Speed Buffer Section 2
LM6225 High Speed Buffer Section 2
LM6261 High Speed Operational Amplifier Section 1
LM6261 High Speed Operational Amplifier Section 2
LM6262 High Speed Operational Amplifier Section 2

Application Specific Analog Products Application Specific Analog Products

Operational Amplifiers
Operational Amplifiers

Operational Amplifiers

Operational Amplifiers

Application Specific Analog Products

Application Specific Analog Products

Operational Amplifiers

Operational Amplifiers

Application Specific Analog Products

Application Specific Analog Products

Operational Amplifiers Operational Amplifiers Application Specific Analog Products Application Specific Analog Products Operational Amplifiers Operational Amplifiers
Application Specific Analog Products
Application Specific Analog Products
Operational Amplifiers

Operational Amplifiers

Application Specific Analog Products

Application Specific Analog Products

Operational Amplifiers

Operational Amplifiers

Application Specific Analog Products
Operational Amplifiers
Operational Amplifiers
Application Specific Analog Products Application Specific Analog Products

Operational Amplifiers
Operational Amplifiers
Application Specific Analog Products Application Specific Analog Products

Additional Available Linear Devices ${ }_{\text {(coninues) }}$

LM7171 Very High Speed High Output Current Voltage Feedback Amplifier

Section 2
LM7171 Very High Speed High Output Current Voltage
Feedback Amplifier
Section 1
LM7800C Series 3-Terminal Positive Regulator Section 1
LM8305 STN LCD Display Bias Voltage Source Section 2
LM8305 STN LCD Display Bias Voltage Source Section 4
LM9044 Lambda Sensor Interface Amplifier Section 3
LM9061 Power MOSFET Driver with Lossless
Protection
Section 3
LM13600 Dual Operational Transconductance
Amplifier with Linearizing Diodes and Buffers Section 1
LM13700 Dual Operational Transconductance
Amplifier with Linearizing Diodes and Buffers Section 1
LM18293 Four Channel Push-Pull Driver Section 4
LM77000 Power Operational Amplifier Section 1
LMC555 CMOS Timer . Section 4
LMC567 Low Power Tone Decoder Section 4
LMC568 Low Power Phase-Locked Loop. Section 4
LMC660 CMOS Quad Operational Amplifier Section 1
LMC662 CMOS Dual Operational Amplifier Section 1
LMC835 Digital Controlled Graphic Equalizer Section 1
LMC1982 Digitally-Controlled Stereo Tone and Volume
Circuit with Two Selectable Stereo Inputs
.Section 1
Operational Amplifiers Operational Amplifiers Application Specific Analog Products Application Specific Analog Products
Operational Amplifiers
Operational Amplifiers Operational Amplifiers Application Specific Analog Products Application Specific Analog Products Operational Amplifiers Operational Amplifiers Application Specific Analog Products Application Specific Analog Products Operational Amplifiers Operational Amplifiers Application Specific Analog Products Application Specific Analog Products
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Operational Amplifiers
Application Specific Analog Products
Application Specific Analog Products
Operational Amplifiers
Power ICs
Application Specific Analog Products
Operational Amplifiers
Application Specific Analog Products
Application Specific Analog Products
Operational Amplifiers
Operational Amplifiers
Power ICs
Operational Amplifiers
Application Specific Analog Products
Application Specific Analog Products
Application Specific Analog Products
Operational Amplifiers
Operational Amplifiers
Application Specific Analog Products
Application Specific Analog Products

Additional Available Linear Devices ${ }_{\text {(coninues) }}$

LMC1983 Digitally-Controlled Stereo Tone and Volume	
Circuit with Three Selectable Stereo Inputs Section 1	Application Specific Analog Products
LMC1992 Digitally-Controlled Stereo Tone and Volume	
Circuit with Four-Channel Input-Selector Section 1	Application Specific Analog Products
LMC6001 Ultra Ultra-Low Input Current Amplifier Section 1	Operational Amplifiers
LMC6008 8 Channel Buffer. Section 4	Operational Amplifiers
LMC6008 8 Channel Buffer . Section 2	Application Specific Analog Products
LMC6022 Low Power CMOS Dual Operational	
Amplifier . Section 1	Operational Amplifiers
LMC6024 Low Power CMOS Quad Operational	
Amplifier . Section 1	Operational Amplifiers
LMC6032 CMOS Dual Operational Amplifier Section 1	Operational Amplifiers
LMC6034 CMOS Quad Operational Amplifier Section 1	Operational Amplifiers
LMC6041 CMOS Single Micropower Operational	
Amplifier . Section 1	Operational Amplifiers
LMC6042 CMOS Dual Micropower Operational	
Amplifier . Section 1	Operational Amplifiers
LMC6044 CMOS Quad Micropower Operational	
Amplifier . Section 1	Operational Amplifiers
LMC6061 Precision CMOS Single Micropower	
Operational Amplifier . Section 1	Operational Amplifiers
LMC6062 Precision CMOS Dual Micropower	
Operational Amplifier . Section 1	Operational Amplifiers
LMC6064 Precision CMOS Quad Micropower	
Operational Amplifier . Section 1	Operational Amplifiers
LMC6081 Precision CMOS Single Operational	
Amplifier . Section 1	Operational Amplifiers
LMC6082 Precision CMOS Dual Operational	
Amplifier . Section 1	Operational Amplifiers
LMC6084 Precision CMOS Quad Operational	
Amplifier . Section 1	Operational Amplifiers
LMC6462 Dual Micropower, Rail-to-Rail Input and	
Output CMOS Operational Amplifier Section 1	Operational Amplifiers
LMC6464 Quad Micropower, Rail-to-Rail Input and	
Output CMOS Operational Amplifier Section 1	Operational Amplifiers
LMC6482 CMOS Dual Rail-to-Rail Input and Output	
Operational Amplifier . Section 1	Operational Amplifiers
LMC6484 CMOS Quad Rail-to-Rail Input and Output	
Operational Amplifier . Section 1	Operational Amplifiers
LMC6492 Dual CMOS Rail-to-Rail Input and Output	
Operational Amplifier . Section 1	Operational Amplifiers
LMC6494 Quad CMOS Rail-to-Rail Input and Output	
Operational Amplifier . Section 1	Operational Amplifiers
LMC6572 Dual Low Voltage (3V) Operational	
Amplifier . Section 1	Operational Amplifiers
LMC6574 Quad Low Voltage (2.7V) Operational	
Amplifier . Section 1	Operational Amplifiers
LMC6582 Dual Low Voltage, Rail-to-Rail Input and	
Output CMOS Operational Amplifier Section 1	Operational Amplifiers
LMC6584 Quad Low Voltage, Rail-to-Rail Input and	
Output CMOS Operational Amplifier Section 1	Operational Amplifiers

Additional Available Linear Devices
LMC6681 Single Low Voltage, Rail-to-Rail Input and Output CMOS Amplifier with PowerdownLMC6682 Dual Low Voltage, Rail-to-Rail Input andOutput CMOS Amplifier with PowerdownLMC6684 Quad Low Voltage, Rail-to-Rail Input andOutput CMOS Amplifier with Powerdownection 1
LMC6762 Dual Micropower, Rail-to-Rail Input and Output CMOS Comparator Section 3
LMC6764 Quad Micropower, Rail-to-Rail Input and Output CMOS Comparator Section 3
LMC6772 Dual Micropower Rail-to-Rail Input and Open Drain Output CMOS Comparator Section 3
LMC6774 Quad Micropower Rail-to-Rail Input and Open Drain Output CMOS Comparator Section 3
LMC7101 Tiny Low Power Operational Amplifier with Rail-to-Rail Input and Output Section 1
LMC7111 Tiny CMOS Operational Amplifier with Rail-to-Rail Input and Output Section 1
LMC7211 Tiny CMOS Comparator with Rail-to-Rail Input Section 3
LMC7221 Tiny CMOS Comparator with Rail-to-RailInput and Open Drain OutputSection 3
LMC7660 Switched Capacitor Voltage Converter Section 3
LMD18200 3A, 55V H-Bridge Section 4
LMD18201 3A, 55V H-Bridge Section 4
LMD18245 3A, 55V DMOS Full-Bridge Motor Driver Section 4
LMD18400 Quad High Side Driver Section 3
LP311 Voltage Comparator Section 3
LP339 Ultra-Low Power Quad Comparator Section 3
LP395 Ultra Reliable Power Transistor Section 5
LP2950/A-XX Series of Adjustable Micropower Voltage Regulators Section 3
LP2950/A-XX Series of Adjustable Micropower Voltage Regulators Section 2
LP2951/A-XX Series of Adjustable MicropowerVoltage RegulatorsSection 2
LP2951/A-XX Series of Adjustable MicropowerVoltage RegulatorsSection 3
LP2952 Adjustable Micropower Low-Dropout Voltage
Regulator Section 2
LP2953 Adjustable Micropower Low-Dropout VoltageRegulatorSection 2
LP2954 5V Micropower Low-Dropout Voltage Regulator Section 2
LP2956 Dual Micropower Low-Dropout Voltage Regulator Section 2
LP2957 5V Low-Dropout Regulator for $\mu \mathrm{P}$Applications . Section 2LP2980 Micropower SOT, 50 mA Ultra Low-DropoutRegulatorSection 2

Section 1
Section 1

LP2980 Micropower SOT, 50 mA Ultra Low-Dropout Regulator Section 2

Operational Amplifiers
Power ICs
Power ICs
Power ICs
Power ICs

Operational Amplifiers
Operational Amplifiers
Power ICs
Power ICs
Power ICs
Power ICs
Application Specific Analog Products Operational Amplifiers Operational Amplifiers Operational Amplifiers

Application Specific Analog Products
Power ICs
Power ICs
Application Specific Analog Products
Power ICs
Power ICs
Power ICs
Power ICs
Power ICs
Additional Available Linear Devices (Continued)
LPC660 Low Power CMOS Quad OperationalÂmpiifierSection 1
LPC661 Low Power CMOS Operational Amplifier Section 1
LPC662 Low Power CMOS Dual OperationalAmplifierSection 1
MM5368 CMOS Oscillator Divider Circuit Section 4
MM5369 17 Stage Oscillator/Divider Section 4
MM5450 LED Display Driver Section 4
MM5451 LED Display Driver Section 4
MM5452 Liquid Crystal Display Driver Section 4
MM5453 Liquid Crystal Display Driver Section 4
MM5480 LED Display Driver Section 4
MM5481 LED Display Driver Section 4
MM5483 Liquid Crystal Display Driver Section 4
MM5484 16-Segment LED Display Driver Section 4
MM5486 LED Display Driver Section 4
MM58241 High Voltage Display Driver Section 4
MM58341 High Voltage Display Driver Section 4
MM58342 High Voltage Display Driver Section 4
OP07 Low Offset, Low Drift Operational Amplifier Section 1
Packing Considerations (Methods, Materials and Recycling) Section 6
Packing Considerations (Methods, Materials and Recycling) Section 5
Packing Considerations (Methods, Materials and Recycling) Section 5
Recommended Soldering Profiles-Surface Mount Section 5
Recommended Soldering Profiles-Surface Mount Section 5
Recommended Soldering Profiles-Surface Mount Section 6
TL081 Wide Bandwidth JFET Input OperationalAmplifierSection 1
TL082 Wide Bandwidth Dual JFET Input Operational Amplifier Section 1

Operationai Âmplifíiers Operational Amplifiers

Operational Amplifiers Application Specific Analog Products Application Specific Analog. Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Application Specific Analog Products Operational Amplifiers

Operational Amplifiers
Application Specific Analog Products
Power ICs
Power ICs
Application Specific Analog Products Operational Amplifiers

Operational Amplifiers
Operational Amplifiers

		NSC	$\underset{\mu \mathrm{A}}{\mathrm{NSC}}$	Signetics	Motorola	TI	AMD	Sprague
	PCC	v	Q	A	FN	FN	L	EP
	LCC Leadless Ceramic Chip Carrier	E	L1	G	U	$\begin{gathered} \text { FK/ } \\ \text { FG/FH } \end{gathered}$	L	EK

Section 1

Data Acquisition

 SystemsSection 1 Contents
Data Acquisition Systems Definition of Terms 1-3
Data Acquisition Systems Selection Guide 1-4
ADC0851/ADC0858 8-Bit Analog Data Acquisition and Monitoring Systems 1-5
LM12434/LM12\{L\}438 12-Bit + Sign Data Acquisition System with Serial I/O and Self-Calibration 1-37
LM12454/LM12H454/LM12458/LM12H458 12-Bit + Sign Data Acquisition System with Self-Calibration 1-114
LM12L454/LM12L458 12-Bit + Sign Data Acquisition System with Self-Calibration 1-151

Data Acquisition Systems Definition of Terms

Throughput Time: The time it takes from addressing the analog input channels till valid data is read on the output. In the case of systems such as the LM12454/8 family, this includes reading the sequencer instruction, selecting the proper multiplexer input channels and waiting for them to settle, the conversion time of the A/D, storing the results in the FIFO, sending a data request, and one clock cycle for the read to occur.

Throughput Rate: The inverse of the Throughput Time.

Watchdog Mode: This mode of operation is used to monitor an analog input's amplitude to two preset (and programmable) limits. An interrupt signal can be generated if the input signal is above or below either of the two limits. As the preset limits are fed into the successive approximation A/D's internal D/A, and then compared to the input signal, the watchdog mode can provide a quick and accurate assessment of a possible alarm condition.

Data Acquisition Systems Selection Guide

(N)National Semiconductor

ADC0851 and ADC0858 8-Bit Analog Data Acquisition and Monitoring Systems

General Description

The ADC0851 and ADC0858 are 2 and 8 input analog data acquisition systems. They can function as conventional multiple input A/D converters, automatic scanning A/D converters or programmable analog "watchdog" systems. In "watchdog" mode they monitor analog inputs and determine whether these inputs are inside or outside user programmed window limits. This monitoring process takes place independent of the host processor. When any input falls outside of its programmed window limits, an interrupt is automatically generated which flags the processor; the chip can then be interrogated as to exactly which channels crossed which limits.
The advantage of this approach is that its frees the processor from having to frequently monitor analog variables. It can consequently save having to insert many A/D subroutine calls throughout real time application code. In control systems where many variables are continually being monitored this can significantly free up the processor, especially if the variables are $D C$ or slow varying signals.
The Auto A/D conversion feature allows the device to scan through selected input channels, performing an A/D conversion on each channel without the need to select a new channel after each conversion.

Applications

- Instrumentation monitoring and process control
- Digitizing automotive sensor signals
- Embedded diagnostics

Key Specifications

- Resolution
- Total error
- Low power
a Conversion time
- Limit comparison time

Features

- Watchdog operation signals processor when any channel is outside user programmed window limits
- Frees microprocessor from continually monitoring analog signals and simplifies applications software
- 2 (ADC0851) or 8 (ADC0858) analog input channels
a Single ended or differential input pairs
© COM input for DC offsetting of input voltage
44 (ADC0851) and 16 (ADC0858), 8-bit programmable limits
- NSC MICROWIRETM interface
- Power fail detection
- Auto A/D conversion feature
- Single 5V supply
(Window limits are user programmable via serial interface

Simplified Block Diagram

FIGURE 1

Connection Diagrams

ADC0858
8-Channel MUX Dual-In-Line Package

TL/H/11021-2

Top View

ADC0858 PLCC Package

TL/H/11021-4
Top View

Ordering Information

Industrial $\mathbf{(- 4 0 ^ { \circ } \mathbf { C } \leq \mathbf { T } _ { \mathbf { A } } \leq + 8 5 ^ { \circ } \mathbf { C })}$	Package
ADC0851BIN,	N16E, 16-Pin
ADC0851CIN	Plastic DIP
ADC0858BIN,	N20A, 20-Pin
ADC0858CIN	Plastic DIP
ADC0851BIV,	V20A, 20-Lead
ADC0851CIV	PLCC
ADC0858BIV,	V20A, 20-Lead
ADC0858CIV	PLCC

Military $\left(-55^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+125^{\circ} \mathbf{C}\right)$	Package
ADC0851CMJ/883	J16A, 16-Pin Ceramic DIP
ADC0858CMJ/883	J20A, 20-Pin Ceramic DIP

Absolute Maximum Ratings (Notes $1 \& 2)$	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage, V_{CC}	6.5 V
Voltage at Logic and Analog	
Inputs (Note 3)	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current per Pin	$\pm 5 \mathrm{~mA}$
Input Current per Package	$\pm 20 \mathrm{~mA}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation	500 mW
at TA = +25 ${ }^{\circ} \mathrm{C}$ (Board Mount)	800 mW
Lead Temperature (Soldering, 10 Sec.)	
Dual-In-Line (Plastic)	$+260^{\circ} \mathrm{C}$
Dual-In-Line (Ceramic)	$+300^{\circ} \mathrm{C}$
ESD Susceptibility (Note 4)	2000 V

Operating Ratings (Notes 1 \& 2)
Supply Voltage, V_{CC}
Temperature Range
ADC0858CMJ/883
ADC0851CMJ/883
ADC0858BIN, ADC0858CIN
ADC0851BIN, ADC0851CIN
ADC0858BIV, ADC0858CIV
ADC0851BIV, ADC0851CIV
4.5 V to 5.5 V
$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}=+4.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$ and $\mathrm{f}_{\mathrm{OSC}}=1 \mathrm{MHz}\left(\mathrm{R}_{\mathrm{ext}}=\right.$ $3.16 \mathrm{k} \Omega, \mathrm{C}_{\text {ext }}=170 \mathrm{pF}$) unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits apply at $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$.

Parameter	Conditions	Typical (Note 5)	Limit (Note 6)	Units (Limits)

CONVERTER AND MULTIPLEXER CHARACTERISTICS

```Total Unadjusted Error (Note 7) ADC0851/8/BIN, ADC0851/8/BIV ADC0851/8/CIN, ADC0851/8/CMJ, ADC0851/8/CIV```			$\begin{gathered} \pm 1 / 2 \\ \pm 1 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB (Max) } \\ & \text { LSB (Max) } \\ & \text { LSB (Max) } \end{aligned}$
Comparator Offset   ADC0851/8/BIN, ADC0858BIV   ADC0851/8/CIN, ADC0851/8/CMJ, ADC0858CIV		$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	$\begin{aligned} & \pm \mathbf{1 0} \\ & \pm \mathbf{2 0} \\ & \pm \mathbf{2 0} \end{aligned}$	$m V($ Max $)$   mV (Max)   mV (Max)
$\mathrm{V}_{\text {REF }}$ Input Resistance		6	$\begin{array}{r} 3.5 \\ 10 \end{array}$	$k \Omega$ (Min)   $k \Omega$ (Max)
Common Mode Input Voltage (Note 8)	All MUX Inputs and COM Input		$\begin{aligned} & \text { GND }-0.05 \\ & \mathbf{V}_{\mathbf{C C}}+0.05 \end{aligned}$	$\begin{aligned} & V(\operatorname{Min}) \\ & V(\operatorname{Max}) \\ & \hline \end{aligned}$
DC Common Mode Error	$\Delta \mathrm{V}_{\mathrm{CM}}=-0.05 \mathrm{~V}$ to +5.05 V	$\pm 1 / 16$	$\pm 1 / 4$	LSB (Max)
Power Supply Sensitivity	$\begin{aligned} & V_{\text {REF }}=4.75 \mathrm{~V} \\ & V_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% \\ & V_{\mathrm{REF}}=4.5 \mathrm{~V} \\ & V_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1 / 16 \\ & \pm 1 / 16 \end{aligned}$	$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 2 \end{aligned}$	LSB (Max)
$l_{\text {OFF }}$   Off Channel	$\begin{aligned} & \text { On Channel }=5 \mathrm{~V} \\ & \text { Off Channel }=0 \mathrm{~V} \end{aligned}$	-0.01	-3	$\mu \mathrm{A}$ (Max)
Leakage Current (Note 9)	$\begin{aligned} & \text { On Channel }=0 \mathrm{~V} \\ & \text { Off Channel }=5 \mathrm{~V} \end{aligned}$	+0.01	+3	$\mu \mathrm{A}$ (Max)
ION,   On Channel	$\begin{aligned} & \text { On Channel }=5 \mathrm{~V} \\ & \text { Off Channel }=0 \mathrm{~V} \end{aligned}$	+0.01	+3	$\mu \mathrm{A}$ (Max)
Leakage Current (Note 9)	On Channel $=0 \mathrm{~V}$   Off Channel $=5 \mathrm{~V}$	-0.01	-3	$\mu \mathrm{A}$ (Max)

DC Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}=+4.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$ and $\mathrm{f}_{\mathrm{OSC}}=1 \mathrm{MHz}\left(\mathrm{R}_{\text {ext }}=\right.$ $3.16 \mathrm{k} \Omega, \mathrm{C}_{\text {ext }}=170 \mathrm{pF}$ ) unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits apply at $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$.

Parameter	Conditions	Typical   (Note 5)	Limit (Note 6)	Units (Limits)
DIGITAL CHARACTERISTICS				
Logic " 1 " Input Voltage, $\mathrm{V}_{\mathrm{IH}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		2.2	$V$ (Min)
Logic "0" Input Voltage, $\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	,	0.8	V(Max)
Logic "1" Input Current, $\mathrm{I}_{\mathrm{IH}}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$	0.005	3	$\mu \mathrm{A}$ ( Max )
Logic "0" Input Current, $\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-3	$\mu \mathrm{A}$ ( Max)
Logic "1" Output   Voltage, $\mathrm{V}_{\mathrm{OH}}$   (Except INT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=-360 \mu \mathrm{~A} \\ & \mathrm{I}_{\text {OUT }}=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.2 \end{array}$	$V($ Min $)$ $V(M i n)$
Logic "0" Output Voltage, $\mathrm{V}_{\mathrm{OL}}$	$\begin{aligned} & \mathrm{l} \mathrm{OUT}=1.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$		0.4	$V$ (Max)
TRI-STATE® Output Current (DO)	$\begin{aligned} & \overline{\mathrm{CS}}=\text { Logic " } 1 \text { " }(5 \mathrm{~V}) \\ & \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.1 \\ 0.1 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\begin{aligned} & \mu A(\text { (Max) } \\ & \mu A(\text { Max }) \end{aligned}$
Isource (Except INT)	$V_{\text {OUT }}$ Short to GND	-14	-6.5	mA (Min)
ISINK	$\mathrm{V}_{\text {OUT }}$ Short to $\mathrm{V}_{\text {CC }}$	16	8	mA (Min)
Supply Current, ICC ADC0851 or ADC0858	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz} \\ & \text { (Note 10) } \end{aligned}$	$\begin{gathered} 7 \\ 7.2 \end{gathered}$	10	$\begin{gathered} \mathrm{mA}(\operatorname{Max}) \\ \mathrm{mA} \end{gathered}$

## AC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}=+4.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=$ 5 ns unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits apply at $T_{A}=T_{J}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	Limit (Note 6)	Units (Limits)
$\mathrm{f}_{\mathrm{CLK}}$	Data Clock Frequency		1	2	MHz (Max)
	Clock Duty Cycle (Note 11)			$\begin{aligned} & 40 \\ & 60 \end{aligned}$	\% (Min)   \% (Max)
tset-up	$\overline{\mathrm{CS}}$ Falling Edge or Data Input Valid to CLK Rising Edge		$30$	70	ns (Min)
$\mathrm{t}_{\text {HOLD }}$	Data Input Valid after CLK Rising Edge		5	30	ns (Min)
tPD1 $^{\text {, }}$ tPD0	CLK Rising Edge to Output Data Valid	$C_{L}=100 \mathrm{pF}$	80	200	ns (Max)

## AC Electrical Characteristics (Continued)

The following specifications apply for $V_{C C}=+5 V_{D C}, V_{R E F}=+4.5 \mathrm{~V}_{\mathrm{DC}}$, $A G N D=D G N D=0 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=$ 5 ns unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits apply at $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical   (Note 5)	Limit   (Note 6)	Units   (Limits)
$\mathrm{t}_{1 \mathrm{H},} \mathrm{t}_{\mathrm{OH}}$	Rising Edge of $\overline{\text { CS to }}$   Data Output Hi-Z	$\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=2 \mathrm{k}$   (See TRIISTATE   Test Circuits)	90	$\mathbf{2 0 0}$	ns (Max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to ground (AGND = DGND $=0 \mathrm{~V}$ ).
Note 3: All of the analog and digital input pins are internally diode clamped to the supply pins. Should the applied voltage at any pin exceed the power supply voltage, the additional absolute value of current at that pin (caused by the forward biasing of the internal diodes) should be limited to 5 mA or less.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typical specifications are at $+25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 6: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 7: Total unadjusted error includes comparator offset, ADC linearity and multiplexer error, and, is expressed in LSBs.
Note 8: Two on-chip diodes are tied to each analog input. The diodes will forward conduct for analog input voltages one diode drop below ground or one diode drop above $\mathrm{V}_{\mathrm{CC}}$. Care should be exercised when operating the device at low supply voltages (e.g., $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ ) because high analog inputs ( 5 V ) can cause the input diodes to conduct, especially at elevated temperatures. This will cause errors for analog inputs near full scale. The specification allows 50 mV forward bias of either clamp diode. Thus as long as $V_{I N}$ or $V_{R E F}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$.
Note 9: Leakage current is measured with the oscillator clock disabled.
Note 10: Measured supply current does not include the DAC ladder current.
Note 11: A $40 \%$ to $60 \%$ clock duty cycle range ensures proper operation at all clock frequencies.

## Typical Performance Characteristics



Total Unadjusted Error vs Temperature


TL/H/11021-5

## Test Circuits and Waveforms



TL/H/11021-6


TL/H/11021-7


## Timing Diagrams



Timing Diagrams (Continued)


TL/H/11021-12


TL/H/11021-13

## Timing Diagrams for ADC0851 and ADC0858

## Read Power Flag after Power Up ADC0851/ADC0858





1 A/D Conversion ADC0851/ADC0858


## ADC0851 Programming Chart

Function	Receive (DI)		Transmit (DO)	Comments
	Mode			
Watchdog	1000	C11... C0	T3 . . T0, C11 . . C0, P, S3 . . S0	Send Data after $\overline{\text { NT }}$
Write 1 Limit	1001	A3 . . A0, LO . . L7		Write Limit to RAM
1 A/D Conversion	1010	$13 \ldots 10$	D0 . . D D , 13 . . 10	Send Data after Conversion
Read 1 Limit	1011	A3 ... A0	L0... L7	Send Limit from RAM
Test	1100			Do Not Use (See Text)
Write all Limits	1101	4 Bytes, LO First		Write All Limits to RAM
Auto A/D Convert	1110	C11...C0	D0... D7, 13 . . 10	Continuous Conversion
Read all Limits	1111		4 Bytes, LO First	Send all Limits from RAM

ADC0858 Programming Chart

Function	Receive (DI)		Transmit (DO)	Comments
	Mode			
Watchdog	1000	C11... C0	T3 . . . T0, C11 . . C0, P, S15 . . S0	Send Data after $\overline{\text { NT }}$
Write 1 Limit	1001	A3 . . A0, LO . . L7		Write Limit to RAM
1A/D Conversion	1010	$13 . . .10$	D0... D7, 13 . . 10	Send Data after Conversion
Read 1 Limit	1011	A3... A0	L0... L7	Send Limit from RAM
Test	1100			Do Not Use (See Text)
Write all Limits	1101	16 Bytes, L0 First		Write all Limits to RAM
Auto A/D Convert	1110	C11... C0	D0 . . . D7, 13 . . 10	Continuous Conversion
Read all Limits	1111	,	16 Bytes, L0 First	Send all Limits from RAM

## Serial Communication Bit Order



## Pin Descriptions

$V_{C C}$
Positive power supply pin. Bypass to analog ground with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor.
Input/Output pin used to generate internal timing for A/D conversion. This pin is connected to an external resistor and capacitor to set the oscillation frequency for analog timing (see Figure 12).
$\overline{\mathrm{CS}} \quad$ This is the chip select input pin. It must be held low while data is transferred to or from the ADC0851/8 (see Timing Diagram).
The serial clock input pin is used to clock serial data either into the data input pin (DI) or out of the data output pin (DO). Input data is loaded on the rising edge of CLK and the output data is valid at the falling edge of CLK.

Analog ground reference.
DGND Digital ground reference for the logic inputs. Both AGND and DGND should be at same potential.
$V_{\text {REF }} \quad$ This is the analog reference pin. The voltage applied to this pin sets the full scale A/D conversion range. Recommended voltages applied to this pin range from 1 V to $V_{C C}$. Bypass to analog ground with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor.
The COM pin functions as an inverting differential input common to all analog inputs when each channel is configured as a sin-gle-ended channel. If the input channels are programmed as differential pairs then the COM input has no effect.
$\mathrm{CH}-\mathrm{CH} 1 \quad \mathrm{CHO}-\mathrm{CH} 7$ are analog input channels which (ADC0851) can be configured as single ended inputs or $\mathrm{CHO}-\mathrm{CH} 7$ as differential pairs. The analog input volt(ADC0858) age should stay within the power supply range.
COMPL, These output pins are available only on the COMPH

## General Overview

The ADC0851/58 is a versatile microprocessor-compatible data acquisition system with an on-board watchdog capability. The device is capable of synchronous serial interface with most microprocessors and includes a multiplexer, a RAM and a successive approximation register. The ADC0851 and the ADC0858 have two and eight input channels respectively.

### 1.0 Modes of Operation

The device can be used in any one of the eight modes of operation listed below. A mode is selected by taking CS low and providing the IC with an input word whose first four bits specify the desired mode (see the "Programming Charts" for the mode selection codes):

### 1.1 WATCHDOG MODE

This mode of operation allows the device to operate as a digitally-programmable window comparator. The analog input voltage at each channel is compared against the upper and lower boundary limits stored in an internal RAM. When an input falls outside of its programmed window limits, an interrupt is generated. The microprocessor can then pull $\overline{\mathrm{CS}}$ low which causes the device to produce a bit stream that indicates which channel(s) crossed which limit(s).
The watchdog mode is selected by taking $\overline{\mathrm{CS}}$ low and shifting in the four bit word ( 1000 ) followed by a twelve bit word that configures the analog inputs to operate either as single-ended or as differential pairs ( $\mathrm{CH} 0-\mathrm{CH} 1, \mathrm{CH} 2-\mathrm{CH} 3$, etc.). When a channel is operating single-ended, its input voltage is compared to the upper and lower limits stored in RAM for that input. When two inputs are configured as a differential pair, the limits stored in the RAM for the channel with the lower number will be compared against the differential input voltage. For example, the differential voltage $\mathrm{CH} 0-\mathrm{CH} 1$ will be compared with the lower and upper limits for CHO . The limits are programmed using the "write one limit to RAM" or "write all limits to RAM" mode.


### 1.2 WRITE ONE LIMIT TO RAM

This mode allows the user to update a single limit for one of the input channels. This is accomplished by using a 16 -bit stream of input data (see "Programming Chart"). The first four bits (1001) select the mode, the next four bits select
the input channel and the limit (upper or lower) that will be preset, and the last eight bits set the limit (or comparator threshold).

The limit data representing the input voltage limit (or comparator threshold) is expressed as per the following equation:
$V_{\text {LIM }}=V_{\text {REF }}(1 / 2 L 7+1 / 4 L 6+\ldots+1 / 256 L 0)$
where L7 is the MSB.

## Data Input (DI) Word-ADC0851 or ADC0858



TL/H/11021-24

### 1.3 WRITE ALL LIMITS TO RAM

This mode is used to update each pair of lower and upper limits for all channels. This is accomplished by a stream of input data whose first four bits select the mode of operation followed by four bytes of limit data for the ADC0851 and sixteen bytes of limit data for the ADC0858.
The limit data representing the input voltage limit (or comparator threshold) is expressed as per the following equation:

$$
V_{\mathrm{LIM}}=\mathrm{V}_{\mathrm{REF}}(1 / 2 \mathrm{~L} 7+1 / 4 \mathrm{~L} 6+\ldots+1 / 256 \mathrm{LO})
$$

where L7 is the MSB.
Data Input (DI) Word—ADC0851 or ADC0858


TL/H/11021-25

### 1.4 READ ONE LIMIT FROM RAM

When the ADC0851/8 is configured in this mode, the user can read back an 8 -bit limit word from the RAM memory location pointed to by the limit address. An 8-bit input word selects the mode (1011) and the memory location to be read.

Data Input (DI)—ADC0851 or ADC0858


TL/H/11021-26

### 1.0 Modes of Operation (Continued)

### 1.5 READ ALL LIMITS FROM RAM

This mode of operation allows the device to serially output 8 -bit limit data from each memory location in succession starting with CHO -lower limit (see Section 2.4 under interface considerations).

Data Input (DI) Word-ADC0851 or ADC0858


TL/H/11021-27

### 1.6 INITIATE ONE A/D CONVERSION

At any time, the user can initiate an A/D conversion on any input channel. Note that the input channels may be configured as single ended or differential inputs. The first four bits of the input word select the mode of operation and the next four bits assign the multiplexer configuration.

Data Input (DI) Word-ADC0851 or ADC0858


TL/H/11021-28

### 1.7 INITIATE AUTO A/D CONVERSION

When configured in this mode, an A/D conversion is done on a channel or channel pair and after the output data is transmitted, conversion begins on the next subsequent channel or channel pair. In this mode the device continually scans through the input channels making A/D conversions unless the device's mode of operation is changed. The first four bits of the input word select the mode of operation and the next twelve bits assign the multiplexer configuration.

Data Input (DI) Word-ADC0851 or ADC0858


TL/H/11021-29

### 1.8 TEST MODE

This mode is used to test the ADC0851/8 at the factory and is not intended for normal use. If this mode is accidentally selected, the supply voltage must be disconnected and then reconnected to reset the device.

### 2.0 Conversion Timing vs Serial Interface Timing

Note that the ADC0851/8 uses two clock signals for proper operation. Connecting an external resister ( $\mathrm{R}_{\text {ext }}$ ) from the OSC pin (pin 2) to $\mathrm{V}_{\mathrm{CC}}$ and an external capacitor ( $\mathrm{C}_{\text {ext }}$ ) from
the OSC pin to ground causes the device's internal oscillator to generate the OSC clock signal for A/D conversion and watchdog timing. With $R_{\text {ext }}=3.16 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{ext}}=$ 170 pF , the OSC clock frequency is approximately 1 MHz . Note that internally, ADC0851/8 divides the OSC clock frequency by two. An A/D conversion is completed in eighteen OSC clock periods maximum. It should be noted that the OSC pin of the ADC0851/8 should not be driven by an external clock.

An external clock signal is applied to the CLK pin (pin 4) of the ADC0851/8. The CLK signal is used to clock serial data either into the data input pin (DI) or out of the data output pin (DO).
Note that input data is loaded at the rising edge of CLK while the output data is valid at the falling edge of CLK. All digital timing such as data set-up and hold times and delays are measured with respect to the CLK signal. The OSC clock and CLK frequencies need not be the same.

### 3.0 Programming Information

The ADC0851 and ADC0858 communicate data serially over the DI (data input) and DO (data output) lines. The data format for the input and output words for various modes of operation are shown in the "programming charts."
There are nine types of data as shown in the "serial communication bit order" table. The order in which data is communicated is MSB first in all but two cases: Limit data and A/D conversion data. The various data types are described below.

### 3.1 LIMIT DATA (LO, L1, . . L7)

Limits on the ADC0851/8 are 8 bits in width and can either represent an upper or lower boundary limit. Limit data can either be written (in the "write one limit" or "write all limits" mode) to or read (in the "read one limit" or "read all limits" mode) from the limit RAM. Being able to read back the limit data allows system testability, and it also allows independent software routines to see what window limits were previously written to the chip. During watchdog operation, a programmed limit must be crossed in order to cause an interrupt.

### 3.2 A/D CONVERSION DATA (D0, D1, ... D7)

There are two A/D conversion modes (One A/D conversion and Auto A/D conversion) that produce 8 -bit conversion data. During either type of A/D conversion, a single-ended analog input or a differential analog input pair is digitized to produce this conversion data.

### 3.3 LIMIT ADDRESS (A3, A2, . . . A0)

The limit address points to the location, within the limit RAM, to which limit data is sent or from which it is received. Limit address is used in the "write one limit to RAM", "write all limits to RAM", "read one limit from RAM" or "read all limits from RAM" mode. There are two addresses for each analog input; the even addresses correspond to the lower

### 3.0 Programming Information

(Continued)
limits while the odd addresses correspond to the upper limits. The ADC0851 and ADC0858 both use four bits (A3-A0) to address the limit RAM but the ADC0851 only decodes the two LSBs while ignoring the two MSBs. The ADC0858 decodes all four bits thus yielding sixteen limit addresses.

### 3.4 STATUS AND CHANNEL TAG DATA

(S3, S2, ... , S0, ADC0851; S15, S14, ... , S0, ADC0858)
(T3, T2, ... T0)

During watchdog mode, immediately after one analog input is determined to be outside of its programmed window limit, its channel number is stored in the channel tag register and the remaining inputs are checked one more time and the pass/fail status of each input is stored in the status register. When the microprocessor receives the interrupt signal, it can read the status and channel tag data by pulling $\overline{\mathrm{CS}}$ low and clocking out the data.

### 3.5 CHANNEL CONFIGURATION DATA

(C11, C10, ... C0)
The channel configuration data assigns the configuration of the multiplexer. The data is comprised of twelve bits with each group of three bits addressing an analog input channel pair. Each channel pair can be configured for single-ended operation, differential operation, one single ended channel and one disabled channel, or both channels disabled. The channel configuration data is required when the device is in the watchdog or Auto A/D conversion mode.

### 3.6 CHANNEL INFORMATION DATA

## (I3, I2, ... IO)

This data is used by the ADC0851/8 only when the device is configured in the "One A/D conversion" mode. The channel information data assigns the configuration of the multiplexer.

### 3.7 MODE ADDRESS (M3, M2, . . . M0)

The input word (DI) configures the ADC0851/8 for various modes of operation. The first four bits of the input word constitute the mode address which specifies the mode of operation.

### 3.8 POWER FAIL BIT (P)

The ADC0851/8 is automatically configured to the watchdog mode upon power-up and an interrupt is immediately generated after $\overline{\mathrm{CS}}$ is pulled high. Pulling $\overline{\mathrm{CS}}$ low produces a 17-bit data stream. The seventeenth bit of the output word DO in the watchdog mode is the power fail bit, $P$. If the output data is read after power-up then $P$ will be at logical " 1 ". Changing the mode of operation resets $P$ to logical " 0 ". Any subsequent power failure will cause the device to configure in the watchdog mode upon power-up with $P$ at logical " 1 ".

### 4.0 Initialization after Power-Up

The ADC0851/8 is automatically configured in the watchdog mode upon power-up. After reading the power fail bit $\overline{\mathrm{CS}}$ is pulled high. To exit the watchdog mode and to change to a new mode of operation, $\overline{\mathrm{CS}}$ should be high less than eight oscillator clock periods for the ADC0851 and less than
thirty two oscillator clock periods for the ADC0858 respectively (see the Timing Diagram, "Read Power Flag after Power Up ADC0851/8"). When changing to a new mode of operation, the device readies itself to read a new input word clocked in at the data input (DI) pin. The input word configures the new mode of operation.

## Functional Description

The simplified block diagram (Figure 1, front page) shows the various functional blocks. The ADC0851 and ADC0858 include 2 - and 8 -channel analog input multiplexers respectively. Using the appropriate serial input word at the Data Input (DI) pin, the analog channels can be configured for either single-ended operation or differential mode operation. The COM input pin provides additional flexibility since the COM pin functions as an inverting differential input common to all analog inputs when each channel is configured as a single ended channel. Applying an external DC voltage at the COM pin allows offsetting the single ended analog input voltages from ground (pseudo-differential mode). Input channels that are configured as differential pairs will be unaffected by the voltage at COM pin.
The ADC0851/8 includes an 8-bit DAC, a comparator and an 8 -bit successive approximation register. An analog-todigital conversion can be initiated at any time on any one of the input channels. The 8 -bit digital word corresponding to the analog input voltage is serially clocked out at the Data Output (DO) pin. In addition to its use as a multiplexed A/D converter, the ADC0851/8 may also be used as a window comparator in the watchdog mode. An upper and lower boundary limit corresponding to each analog input voltage may be stored in an internal RAM. The RAM consists of sixteen memory locations, each 8 bit wide; however, for the ADC0851 only four memory locations are used. Limit data can either be written into or read back from the RAM. The read/write capability allows independent software routines to read back previously programmed window limits. Furthermore, currently programmed limits may also be read back to ensure system testability. An address register holds the addresses of the RAM's memory locations where data may either be stored or retrieved from.
When the device is operated in the watchdog mode (as described in the "general overview" section), the analog inputs are continually polled and compared against their respective window limits. Once an input signal that has exceeded either boundary limit is detected, a " 1 " is stored in the MSB position in a 16 -bit status register, indicating a limit crossing. Note that the ADC0851 uses only four locations of the status register because it has only four limits. In addition, the tag register is updated so that the register holds the address which indicates the channel and the corresponding upper or lower limit that was crossed. After the first limit crossing is detected, the device cycles through the remaining limits and compares them against their respective input signals. If any additional limit crossing is or are detected then a " 1 " is stored in the appropriate locations of the status register. After the completion of this operation, the interrupt pin (INT) goes low, providing a flag to a microprocessor. The microprocessor can then cause the serial status data to be shifted out by bringing the $\overline{\mathrm{CS}}$ line low. Together with the status and tag bits, the microprocessor can determine which channel exceeded which limit. If desired the mi-

## Functional Description (Continued)

croprocessor can then initiate an A/D conversion on any channel(s). The ADC0851 includes two additional output pins, COMPL and COMPH. During watchdog operation, if either of the inputs exceeds its respective window bounds then not only is an interrupt generated but a logic low at COMPL or COMPH indicates whether the lower or upper boundary was crossed.
A mode register within the ADC0851/8 allows the device to be used in any one of the eight modes of operation as described in the "general overview" section.
The features described make the ADC0851/8 ideal for use in microprocessor-based automotive, instrumentation and control applications. Such applications often require monitoring of various transducer signals and comparison against pre-programmed window limits. With its watchdog operation, the ADC0851/8 frees up the microprocessor from having to continually monitor the analog variables; the microprocessor is interrupted only when the input signal crosses the preset bounds. Furthermore, the window limits can easily be changed with simple software control.

## Applications Information

## I. Digital Interface Considerations

The ADC0851 and ADC0858 communicate data serially over the DI (Data Input) and DO (Data Output) pins. The data transfer is synchronous with the external clock (CLK) signal and is clocked in or out of the device at the rising edge of clock. Note that although the output data is clocked out starting at the rising edge of CLK, the data is valid at the falling edge of CLK.
All internal timing in the device is with respect to the oscillator clock. The oscillator frequency is set by connecting a resistor from the OSC pin (pin 2 for ADC0851 or ADC0858) to $\mathrm{V}_{\mathrm{CC}}$ and a capacitor from the OSC pin to ground. The period of the oscillator clock will determine the A/D conversion time and chip select ( $\overline{\mathrm{CS}}$ ) high duration as will be discussed in the following sections.

### 1.0 Modes of Operation

To initiate the operation of the device in any one of the eight modes, the chip select ( $\overline{\mathrm{CS}}$ ) line must go low. After a $\overline{\mathrm{CS}}$ low is detected, serial input data at the DI pin is clocked in starting at the first rising edge of the serial clock. The first four bits of the input word are reserved for specifying the mode
of operation, with the first bit of the input word always being a logic "1". Table I shows the mode addresses for selecting the different modes of operation.

TABLE I. Modes of Operation

Mode Address				Mode	
M3	M2	M1	M0		
1	0	0	0	Watchdog	
1	0	0	1	Write One Limit	
1	0	1	0	One A/D Conversion	
1	0	1	1	Read One Limit	
1	1	0	0	Test (for Factory Use Only)	
1	1	0	1	Write All Limits	
1	1	1	0	Auto A/D Conversion	
1	1	1	1	Read All Limits	

### 1.1 POWER FAILURE DETECTION/ <br> INITIALIZATION AFTER POWER-UP

Upon power up, the device is automatically configured in the watchdog mode. The status of the power flag bit, P, provides power failure indication to the microprocessor. The timing diagram of Figure 2 shows the sequence of events.
First consider the case of initial power up. After power is applied, $\overline{\mathrm{CS}}$ should be brought high. Bringing $\overline{\mathrm{CS}}$ high causes the INT pin to go low, which signals the microprocessor that a failure has occurred. The microprocessor can then interrogate the device as to the type of failure by bringing $\overline{\mathrm{CS}}$ low. When $\overline{\mathrm{CS}}$ goes low, it resets the INT pin to high and the output data is read starting at the first rising edge of clock (CLK) after $\overline{\mathrm{CS}}$ has gone low. Since this is the first read cycle after power up, the power flag bit, $P$, is set high and appears at the rising edge of the seventeenth clock cycle after $\overline{\mathrm{CS}}$ low is detected (Figure 2). After the power flag is read by the microprocessor, $\overline{\mathrm{CS}}$ is taken high. Note that the duration for which $\overline{\mathrm{CS}}$ remains high (after the power flag is read) must be less than eight oscillator clock periods for ADC0851 and less than thirty-two oscillator clock periods for ADC0858. This is required to interrupt the device from watchdog mode so that when $\overline{\mathrm{CS}}$ goes low, the device reads a valid data input (DI) word and configures to a new mode.
During normal operation, the power flag bit is reset to zero after the first "read" cycle and will be updated to a " 1 " only if a power interruption occurs.


### 2.0 Memory Access Modes

The ADC0851/8 has an internal RAM with sixteen memory locations (one location for the upper limit and one for the lower limit for each of the 8 input channels). Each memory location is 8 bits wide. An 8 -bit limit word representing an upper or lower limit boundary can either be written to or read from the RAM. The ADC0851 uses only four memory locations for the four boundary limits corresponding to the two inputs. The eight channel ADC0858, however, makes use of all sixteen memory locations.
Each memory location is accessed by a specific address as shown by Table II(a) and (b). Note that even addresses correspond to the lower limits while the odd addresses correspond to the upper limits. The ADC0851 and ADC0858 both use 4 bits (A3, ... AO) to address the RAM, however, ADC0851 decodes only the two LSBs of the address data while ignoring the two MSBs.

TABLE Ila. RAM Address and Limit Data for ADC0851

RAM Address				Corresponding   Channel and Limit
A3	A2	A1	A0	
X	X	0	0	CH0-Lower Limit
X	X	0	1	CH0-Upper Limit
X	X	1	0	CH 1 -Lower Limit
X	X	1	1	CH 1 -Upper Limit

Limit Data (ADC0851)

LO	L 1	L 2	L 3	L 4	L 5	L 6	L 7

TABLE Ilb. RAM Address and
Limit Data for ADC0858

RAM Address				Corresponding   Channel and Limit
A3	A2	A1	A0	
0	0	0	0	CH
0	0	0	1	CH0-Upper Limit
0	0	1	0	CH1-Lower Limit
0	0	1	1	CH1-Upper Limit
0	1	0	0	CH2-Lower Limit
0	1	0	1	CH 2 -Upper Limit
0	1	1	0	CH 3 -Lower Limit
0	1	1	1	CH 3 -Upper Limit
1	0	0	0	CH 4 -Lower Limit
1	0	0	1	CH 4 -Upper Limit
1	0	1	0	CH 5 -Lower Limit
1	0	1	1	CH 5 -Upper Limit
1	1	0	0	CH 6 -Lower Limit
1	1	0	1	CH 6 -Upper Limit
1	1	1	0	CH 7 -Lower Limit
1	1	1	1	CH 7 -Upper Limit

Limit Data (ADC0858)


### 2.1 WRITE ONE LIMIT

This mode is used to update a single memory location in the limit RAM. An 8 -bit limit word is written to the location pointed to by the limit address. From Table I we can see that to initiate the operation of the device in the "write one limit" mode, the mode address has to be 100 1. The data format for the input word is as shown below.

Data Input (DI) Word-ADC0851 or ADC0858


TL/H/11021-31

### 2.0 Memory Access Modes (Continued)

Note that the memory address is clocked in with the MSB (bit A3) first whereas the limit data is clocked in with the LSB (bit L0) first.
Figure 3 shows the timing diagram for writing one limit. After $\overline{C S}$ is brought low, the input word (DI) is clocked in starting at the first rising edge of CLK. Taking CS high after the MSB (bit L7) of the limit data is loaded completes the write operation.

### 2.2 WRITE ALL LIMITS MODE

This mode is used to update all memory locations in the limit RAM. An 8-bit limit word is written to each memory location. Note that there are four limit words for the ADC0851 and sixteen limit words for the ADC0858. To initiate the operation of the device in the "write all limits" mode, the mode address has to be 1101 (see Table I). The data format for the input word is as shown below.

Data Input (DI) Word-ADC0851 or ADC0858


When writing all limits, memory address is not required. The limit data is sequentially written into the RAM starting at the location for CHO -Lower Limit and ending at; CH 1 -Upper Limit for the ADC0851 (see Table Ila), CH7-Upper Limit for ADC0858 (see Table llb). Note that L0 corresponds to the LSB of the limit data.
Figure 4 shows the timing diagram. After $\overline{\mathrm{CS}}$ is brought low, the input word (DI) is clocked in starting at the first rising edge of CLK. The first four bits of D1 configure the device in the "write all limits" mode. Next, the limit data is serially clocked in. To complete the operation, $\overline{\mathrm{CS}}$ should be brought high after the data is loaded.

### 2.3 READ ONE LIMIT MODE

When the mode address is 1011 , the device is configured in the "read one limit" mode. One 8-bit limit word can be read from the RAM memory location pointed to by the limit address. The data format for the input word is as shown below.

## Data Input (DI)—ADC0851 or ADC0858



TL/H/11021-33


TL/H/11021-34
FIGURE 3. Timing Diagram for Write One Limit


FIGURE 4. Timing Diagram for Write All Limits

### 2.0 Memory Access Modes (Continued)

The address bits access specific memory locations as per Table II(a) and (b) for the ADC0851 and ADC0858 respectively. The address data is clocked in with the MSB (bit A3) first.
The timing diagram in Figure 5 shows that after $\overline{C S}$ goes low, the first four bits of the input word configure the device to "read one limit" mode. Next, the address bits select the desired memory location. Third clock rising edge after the address data's LSB is loaded, the limit data is output with the LSB (bit LO) first.

### 2.4 READ ALL LIMITS MODE

With a mode address of 1111 , the device is configured in the "read all limits mode". When in this mode, 8 -bit limit data from each memory location is serially transmitted out. The data format for the input word is as follows:

Data Input (DI) Word-ADC0851 or ADC0858


TL/H/11021-36


TL/H/11021-38
FIGURE 5. Timing Diagram for Read One Limit ADC0851/ADC0858


FIGURE 6. Timing Diagram for Read All Limits ADC0851/ADC0858

### 3.0 Watchdog Mode

This is the primary real time operating mode. During watchdog operation, the upper and lower limits stored in the RAM are applied sequentially to the DAC's digital inputs. The DAC's analog output is applied to the comparator input and compared against the voltage at the enabled analog input pin. The data format for the input word is as shown below.


TL/H/11021-37
The last twelve bits of the input word assign the multiplexer channel configuration.

### 3.1 SELECTING THE CHANNEL CONFIGURATION

When the device is either in the watchdog or automatic $A / D$ conversion mode, each pair of analog input channels must be programmed to determine which channel(s) will be active, and whether they will be operating single-ended or differentially. Table III(a) and (b) show the channel addresses for the ADC0851 and the ADC0858 in various channel configurations. When the channels are configured as singleended inputs, the input voltages are measured with respect to the voltage at the COM pin. Applying a DC voltage at the

COM pin will cause the device to measure the difference between the input signal and the voltage at the COM pin. The voltage at the COM pin has no effect on an input channel that is configured as a differential pair. When the channel pairs are configured as differential inputs (i.e., CHO$\mathrm{CH} 1, \mathrm{CH} 2-\mathrm{CH} 3$, etc.) the differential voltage is compared with the limits for the lower numbered channel. For example, the differential voltage $\mathrm{CHO}-\mathrm{CH} 1$ will be compared with the limits for CHO . Note that the channel pairs are programmed in groups of three bits. The channel address is input to the A/D converter with the MSB (bit C11) first.
The timing diagrams for ADC0851 and ADC0858 watchdog operation are shown in Figure 7. After a $\overline{\mathrm{CS}}$ low is detected, the input word (DI) is clocked in starting at the first rising edge of the serial clock (CLK). Once the least significant bit of the channel address is loaded, $\overline{\mathrm{CS}}$ should go high. Taking $\overline{\mathrm{CS}}$ high after the proper input word is loaded initiates the operation of the device in the watchdog mode. To keep the device in continuous watchdog mode, $\overline{\mathrm{CS}}$ should remain high for eight or more OSC clock periods for the ADC0851 and thirty-three or more OSC clock periods for the ADC0858. If the input signals are within the boundary limits, the interrupt pin (INT) remains at logic "1" and the Data Ouptut (DO) pin is in TRI-STATE. In addition, in the case of the ADC0851, the COMPL and COMPH pins remain at logic "1".

TABLE IIIa. Multiplexer Channel Configuration (ADC0851)


TLH/11021-40
TABLE IIIb. Multiplexer Channel Configuration (ADC0858)



### 3.0 Watchdog Mode (Continued)

The device will read the new input word and configure to a different mode if $\overline{\mathrm{CS}}$ is high for less than eight oscillator clock periods for the ADC0851 and less than thirty-two oscillator clock periods for the ADC0858.
Once a boundary limit is crossed, $\overline{N T}$ goes low. Moreover, for ADC0851, COMPL goes low if a lower limit is crossed, whereas COMPH goes low if an upper limit is crossed. If the input signals exceed both the upper and lower boundary limits then both COMPL and COMPH would go low.
To output data after a limit crossing occurs (i.e., after INT goes low), $\overline{C S}$ should be brought low. Note that INT, COMPL and COMPH would remain low as long as $\overline{\mathrm{CS}}$ doesn't go low. After CS goes low INT, COMPL and COMPH go high and one clock cycle later output data is transmitted starting at the first rising edge of CLK, however, the data is valid at the falling edge of CLK (Figure 7).

### 3.2 LIMIT CROSSING DETECTION

When the ADC0851/8 is configured in the watchdog mode, the device operates as a window comparator. First the lower window limit (stored in the RAM) for CHO is compared against the input voltage at CH . If the input voltage is greater than the lower limit, then no interrupt is generated. Next the upper window limit for CH 0 is compared against CHO input voltage. If the input voltage is less than the upper window limit then no interrupt is generated for CHO and the device starts a similar comparison cycle for the next channel (CH1). Note that the lower limit can be greater than the upper limit; in this case the device will flag the microprocessor if the input signal falls inside a window.

TABLE IVa. Channel Tag Address and Status (ADC0851)

Tag   \#	Tag Address				Corresponding Limit   and Channel
	T3	T2	T1	T0	
0	0	0	0	0	Lower Limit-CH0
1	0	0	0	1	Upper Limit-CH0
2	0	0	1	0	Lower Limit-CH1
3	0	0	1	1	Upper Limit-CH1



FIRST FAILED LIMIT
(ADDRESS OF LIMIT IN CHANNEL TAG REGISTER)

TABLE IVb. Channel Tag Address and Status (ADC0858)

Tag   $\#$	Tag Address				Corresponding Limit   and Channel
	T3	T2	T1	T0	
0	0	0	0	0	Lower Limit-CH0
1	0	0	0	1	Upper Limit-CH0
2	0	0	1	0	Lower Limit-CH1
3	0	0	1	1	Upper Limit-CH1
4	0	1	0	0	Lower Limit-CH2
5	0	1	0	1	Upper Limit-CH2
6	0	1	1	0	Lower Limit-CH3
7	0	1	1	1	Upper Limit-CH3
8	1	0	0	0	Lower Limit-CH4
9	1	0	0	1	Upper Limit-CH4
10	1	0	1	0	Lower Limit-CH5
11	1	0	1	1	Upper Limit-CH5
12	1	1	0	0	Lower Limit-CH6
13	1	1	0	1	Upper Limit-CH6
14	1	1	1	0	Lower Limit-CH7
15	1	1	1	1	Upper Limit-CH7

STATUS


Each comparison takes $2 \mu \mathrm{~s}$; thus a total of $4 \mu \mathrm{~s}$ is required per channel.
When in watchdog mode, the device will continuously cycle through the input channels until an input that has crossed its preset window limit is detected. When this occurs, a logical " 1 " is stored in the MSB (bit S3 for ADC0851 and S15 for ADC0858) position of the status register. In addition the tag register is updated with the channel's address (see Tables IV(a) and (b) for ADC0851 and ADC0858 respectively). Note that the tag address indicates which channel crossed which limit. Once the tag register is updated after the first limit is crossed, the device will once more cycle through the remaining channels and compare the input voltages against

### 3.0 Watchdog Mode (Continued)

their respective window limits. A logical " 1 " will be placed in the appropriate location of the status register for each limit that is crossed as the device cycles through the remaining channels. Note that the tag register is updated only once i.e., when the first limit is exceeded. After the last limit comparison is made subsequent to the first limit crossing, the device will cease any further limit comparisons and will cause the interrupt pin to go low. Taking $\overline{\mathrm{CS}}$ low causes the data in the status and tag registers to be transmitted along with the programmed channel configuration information. In addition, an extra bit, P , is inserted between the channel and status information. This bit is updated to a logic " 1 " in case of a power interruption.
The format for the output data is as shown below.

## Data Output (DO) Word—ADC0851



The order in which data is transmitted is as follows (ADC0851 or ADC0858):

- Tags (4 bits)-MSB (T3) first
- Channel configuration (12 bits)-MSB (C11) first
- Power interrupt (1 bit)
- Status (4 bits for ADC0851, 16 bits for ADC0858)—MSB (S3/S15) first

It is important to note that any channel that is disabled will not cause an interrupt. Furthermore, when operated in the differential mode, the arithmetic difference of the two voltages will be compared with the lower and upper limits for the lower numbered channel. For example, with CHO and CH 1 operating as a differential input pair,' the CHO limits will apply.
Consider an example where the lower limit of CH 1 is crossed first and while the remaining limits are being checked, the upper limit of CH 0 is crossed. Figure 8 illustrates the sequence of events for the ADC0851. During watchdog operation, CHO's lower limit stored in the RAM is compared against the input voltage at CHO . Since no limit crossing is detected, the upper limit is compared against CHO input voltage. Again no umit crossing is detected and so CH1's lower limit is next compared against the CH 1 input voltage. This time a limit crossing is detected and a logic " 1 " is now stored in the MSB (S3) position of the status register (see Table IV(a)). Also the Tag register is updated with the corresponding address ( 0010 ) from Table IV(a). The device now cycles through the remaining channels once more. Since no limit crossing is detected for the upper limit of CH 1 , a logic " 0 " is stored for S 2 of the status register. Similarly a logic " 0 " is stored for S1 of the status register. Finally to complete the cycle, the last limit (upper limit of CHO ) is checked and a limit crossing is detected. Consequently, a logic " 1 " is stored for SO . Note that the Tag regis-
ter is only updated once when the first limit crossing is detected thus indicating which channel first exceeded its lower or upper limit.


TL/H/11021-45
(Example: Lower limit of CH 1 is crossed first. During cycle through, upper limit of CHO is crossed)

FIGURE 8. Example of Limit Crossing Detection (ADC0851)
Assuming that there is no power interruption and that the ADC0851 was configured for single ended operation, the output word for our example would be:
(Example of ADC0851 Data Output. Single ended input. Lower limit of CH 1 fails first. During cycle through, upper limit-CHO failure is detected).


T3 T2 T1 T0 C11 C10 C9 C8 C7
C1 C0 P S3 S2 S1 S0 $\mathrm{X}=$ Don't care, whatever bit was initially programmed (ADC0851 only).

The ADC0858 operates similar to the ADC0851 except that the ADC0858 has a 16 -bit status word for the sixteen limits and sixteen tag addresses (See Table IV(b)). The output word transmitted to the microprocessor not only contains information as to how the channels are configured but also which input crossed which limit. If desired, the microprocessor can go through a status bit normalization routine to normalize the status information with the tag number as will be discussed next.

### 3.3 STATUS BIT NORMALIZATION

Figure 9 shows the procedure for normalizing the status information. Let's consider the example cited earlier for the ADC0851. In our example, the lower limit of CH 1 was crossed first and during cycle-through, upper limit-CHO crossing was detected. The serial status data is thus 1001 and the tag data 0010 corresponds to tag \#2 (see Table IVa). Since the most significant bit (S3) of the status data is transmitted first, the data stored in the microprocessor's memory is 1001 . The microprocessor next computes the tag number from the tag data and rotates the status bits left "TAG" places as in Figure 9. For our example, the status bits are rotated by shifting left 2 places. The status information in the microprocessor's memory is now normalized i.e., U0 corresponds to tag 0 , U1 corresponds to tag 1 and so on. From the example in Figure 9 we can see that the status register in the microprocessor's memory shows that tag 2 and tag 1 failed. The ADC0858 uses a 16-bit status word and operates similar to the ADC0851. An example shown in Figure 9 for the ADC0858 demonstrates how status bit normalization is carried out.

### 3.0 Watchdog Mode (Continued)



FIGURE 9. Status Bit Normalization

### 4.0 A/D Conversion Modes

The ADC0851/8 can be used in two A/D conversion modes. In "One A/D conversion" mode, the device operates as a multiplexed A/D converter and a conversion may be initiated on any channel or channel pair configured in the differential mode. In the "Automatic A/D conversion" mode, an A/D conversion is done on a channel or channel pair and after the output data is transmitted, conversion begins on the next subsequent channel or channel pair. This process will continue unless the device's mode of operation is changed.
Note that the A/D conversion time is determined by the oscillator clock period and has no relation with the digital clock signal, CLK. The oscillator clock's frequency is set by connecting a resistor from the OSC pin (pin 2 for ADC0851 or ADC0858) to $\mathrm{V}_{\mathrm{CC}}$ and a capacitor from the OSC pin to ground. The conversion time of the A/D converter is eighteen OSC clock periods maximum. Assuming that the oscillation clock frequency is set at 1 MHz (with $\mathrm{R}_{\text {ext }}=3.16 \mathrm{k} \Omega$ and $\mathrm{C}_{\text {ext }}=170 \mathrm{pF}$ ) then the conversion time would be $18 \mu \mathrm{~s}$ maximum.

### 4.1 ONE A/D CONVERSION MODE

This mode is used to initiate one A/D conversion on a single channel or channel pair configured in the differential mode. The necessary mode address as per Table l is 1010 . The format for the input word is as follows:
Data Input (DI) word-ADC0851 or ADC0858.


TL/H/11021-49
(Table V(a) for ADC0851, Table V(b) for ADC0858)

The 4-bit data following the mode address is the channel information address. These four bits assign the MUX configuration for the single A/D conversion. The channel information addresses and the corresonding MUX configurations are shown in Table V(a) and (b) for ADC0851 and ADC0858 respectively. Note that the ADC0851 only decodes the two LSBs of the channel information data while ignoring the two MSBs (I3 and I2). When a channel pair is configured in the differential mode, it is important to note that the arithmetic difference of the channel voltages should not be negative. Negative difference voltage would result in all zeroes at the output.

TABLE V(a). Channel Information for One A/D Conversion (ADC0851)

Channel Information				Channels Enabled
13	12	11	10	
$X$	$X$	0	0	CH 0
$X$	$X$	0	1	$\mathrm{CHO}-\mathrm{CH} 1$
$X$	$X$	1	0	CH 1
$X$	$X$	1	1	Invalid

### 4.0 A/D Conversion Modes (Continued)

TABLE V(b). Channel Information for One A/D Conversion (ADC0858)

Channel Information				Channels Enabled
$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1} 1$	$\mathbf{1 0}$	
0	0	0	0	CH 0
0	0	0	1	$\mathrm{CH} 0-\mathrm{CH} 1$
0	0	1	0	CH 1
0	0	1	1	Invalid
0	1	0	0	CH 2
0	1	0	1	$\mathrm{CH} 2-\mathrm{CH} 3$
0	1	1	0	CH 3
0	1	1	1	Invalid
1	0	0	0	CH 4
1	0	0	1	$\mathrm{CH} 4-\mathrm{CH} 5$
1	0	1	0	CH 5
$\mathbf{1}$	0	1	1	Invalid
$\mathbf{1}$	$\mathbf{1}$	0	0	CH 6
1	1	0	1	$\mathrm{CH} 6-\mathrm{CH} 7$
1	1	1	0	CH 7
1	1	1	1	Invalid

The timing diagram for one A/D conversion is shown in Figure 10. After $\overline{\mathrm{CS}}$ goes low, the input word (DI) is clocked in starting at the first rising edge of the digital clock signal, CLK. The first four bits of the input word configure the device for "one A/D conversion" mode while the following four bits (channel information address) assign the configuration of the MUX as per Table $V(a)$ and (b) for the ADC0851 and the ADC0858 respectively. Any input data following the channel information address is ignored until the device's mode of operation is changed.
Taking $\overline{\mathrm{CS}}$ high after the last bit of the channel information address loads the input word. Had $\overline{\mathrm{CS}}$ been kept low longer, the following bits of the input word would have been ignored. The device takes one to two OSC clock periods after $\overline{\mathrm{CS}}$ goes high to initiate the start of $A / D$ conversion. The EOC output goes low, thus signalling the start of the conversion process. After a maximum of eighteen OSC clock periods, conversion is completed and EOC output goes high, thus signalling the end of conversion. The output data is now available and will be transmitted only if $\overline{C S}$ is brought low. The output data is transmitted starting at the first rising edge of CLK after $\overline{C S}$ goes low.

The format for the output word is as shown below.

## Data Output (DO)—ADC0851 or ADC0858



TL/H/11021-50
The first eight bits of the output word represent the digital equivalent of the input voltage. Bits 13 through 10 provide the channel configuration information as per Table $\mathrm{V}(\mathrm{a})$ and (b) for ADC0851 and ADC0858 respectively. Note that this information is the same as the channel information in the input word. The order in which the output data is transmitted is as follows:

- Data-LSB (DO) first
- Channel information-MSB (I3) first

Note that the output will be TRI-STATE if $\overline{C S}$ remains low after 10 is transmitted. Taking $\overline{\mathrm{CS}}$ high after the output data is transmitted causes the device to initiate the start of the next $A / D$ conversion on the same input while ignoring the data input word (DI). If the duration for which $\overline{\mathrm{CS}}$ is high is less than seventeen OSC clock periods, the conversion process will be interrupted and the device will look for the mode address at the falling edge of $\overline{\mathrm{CS}}$ so as to configure to a new mode of operation. However, if $\overline{\mathrm{CS}}$ is high for eighteen or more OSC clock periods then the conversion operation will continue from point A on the timing diagram (Figure 10).
To ensure repetitive A/D conversion on the same input, $\overline{C S}$ going low should be synchronized with EOC going high. Thus after EOC goes high, the conversion is completed and $\overline{\mathrm{CS}}$ can go low to transmit the output data. Meanwhile, if $\overline{\mathrm{CS}}$ goes low while EOC is low then the conversion process is interrupted and the device is readied for a new mode of operation.

### 4.2 AUTO A/D CONVERSION MODE

When used in this mode, the ADC0851/8 offers added flexibility that many multiplexed A/D converters don't. In the auto A/D conversion mode, the ADC0851/8 scans through the selected input channels, performing A/D conversion on each channel without the need for reloading a new data input word each time. From Table I, the mode address for the "Auto A/D Conversion" mode is 1110.
The format for the input word is as follows:
Data Input (DI) Word-ADC0851 or ADC0858


### 4.0 A/D Conversion Modes (Continued)

The 12-bit channel address following the mode address assigns the MUX configuration as per Table III(a) and (b) for ADC0851 and ADC0858 respectively. Note that the ADC0851 only decodes the three LSBs (C0, C1 and C2) of the channel address.
The timing diagram for "Auto A/D Conversion" mode is shown in Figure 11. The input word is loaded starting at the first rising edge of the CLK after $\overline{\mathrm{CS}}$ goes low. The first four bits configure the device for the "Auto A/D Conversion" mode while the 12 -bit channel address assigns the configuration of each channel pair. If $\overline{\mathrm{CS}}$ remains low after CO is loaded then any subsequent input data is ignored. Taking $\overline{\mathrm{CS}}$ high after the input word is loaded initiates the start of A/D conversion. A/D conversion starts one to two OSC clock periods after $\overline{\mathrm{CS}}$ goes high. The EOC output goes low to signal the start of an A/D conversion. The conversion time may range from $17 \mu \mathrm{~s}$ to $74 \mu \mathrm{~s}$ depending on how
the channel pairs are configured. The EOC output goes high at the end of conversion thus signalling that the result of the A/D conversion can now be retrieved. The output data will be transmitted only if $\overline{\mathrm{CS}}$ goes low and is transmitted starting at the first rising edge of CLK signal after $\overline{\mathrm{CS}}$ goes low. The format for the output word is as follows:




### 4.0 A/D Conversion Modes (Continued)

The first eight bits of the output word represents the digital equivalent of the analog input voltage. Status bits I3 through 10 provide the channel configuration information as per Table $V(a)$ and (b) for ADC0851 and ADC0858 respectively.
Keeping $\overline{\mathrm{CS}}$ low after 10 is transmitted causes the output to be TRI-STATE. Once the output data is transmitted, $\overline{C S}$ may go high to initiate the start of the next A/D conversion. The subsequent A/D conversion starts on the next channel pair that is configured as per the initially loaded input word (Figure 11). Any data on the data input (DI) line is ignored. Note that if the duration for which $\overline{\mathrm{CS}}$ is high is less than seventeen OSC clock periods then the conversion process would be interrupted and the device would look for the mode address at the falling edge of $\overline{\mathrm{CS}}$ so that a new mode of operation can be configured.
To ensure proper operation in the "Auto A/D Conversion" mode, $\overline{\mathrm{CS}}$ going low should be synchronized with EOC going high. Thus after EOC goes high, the conversion is completed and $\overline{\mathrm{CS}}$ can go low to transmit the output data. After the output data is transmitted, $\overline{\mathrm{CS}}$ should go high to initiate automatic A/D conversion on the next channel pair and remain high until the conversion is completed and EOC goes high. Meanwhile, if $\overline{C S}$ goes low while EOC is low then the conversion process is interrupted and the device is readied for a new mode of operation.

### 5.0 Test Mode

A mode address of 1100 configures the device in the test mode. This mode is used to test the internal operation of the device at the factory and is not recommended for normal use. If the device is accidentally configured in the test mode then the power supply must be disconnected and reconnected again to reset the device.

### 6.0 Bidirectional I/O

If the microprocessor has bidirectional Input/Output capability then ADC0851/8's input and output pins can be tied together and a single wire can be used to serially input data to or output data from ADC0851/8. This capability is made possible because when the input word is clocked in, the output pin is in TRI-STATE and when the output word is clocked out, the data at the input pin is ignored.

## II. Analog Considerations

### 1.0 A/D Conversion Time

The A/D conversion time is a function of the OSC clock frequency. The oscillator frequency is set by connecting an external resistor, $\mathrm{R}_{\text {ext }}$ from the ADC0851/8's OSC pin to $V_{\text {CC }}$ and an external capacitor, $\mathrm{C}_{\text {ext }}$ from the OSC pin to ground. With $R_{\text {ext }}=3.16 \mathrm{k} \Omega$ and $\mathrm{C}_{\text {ext }}=170 \mathrm{pF}$, the OSC frequency is 1 MHz at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ and 1.05 MHz at $\mathrm{V}_{\mathrm{CC}}=$ 5.5V.

The OSC frequency will vary as the ambient temperature varies, this is shown by the Typical Performance Characteristics curve, "OSC Frequency vs Temperature". For a specified external resistor, the OSC frequency can be changed by varying the external capacitor as is shown by the Typical Performance Characteristics curve, "OSC Frequency vs $\mathrm{R}_{\text {ext }}$ and $\mathrm{C}_{\text {ext"'. Note that the OSC pin of the ADC0851/8 }}$ should not be driven by an external clock as this might
cause improper operation. The A/D converter's conversion time is a minimum of seventeen OSC clock periods and a maximum of eighteen. Figure 12 shows a typical connection for the ADC0851 and ADC0858.

### 2.0 The Reference

The magnitude of the reference voltage ( $\mathrm{V}_{\mathrm{REF}}$ ) applied to the A/D coriverter determines the analog input voltage span (i.e., the difference between $\mathrm{V}_{\operatorname{IN}(\max )}$ and $\mathrm{V}_{\mathrm{IN}(\mathrm{Min})}$ ) over which the 256 possible output codes apply. The reference voltage source connected to the $\mathrm{V}_{\text {REF }}$ pin of ADC0851/8 must be capable of driving a minimum load of $4 \mathrm{k} \Omega$.
The ADC0851/8 can be used in either ratiometric applications or in systems requiring absolute accuracy. In a ratiometric system, the analog input voltage is proportional to the voltage used for the A/D's reference. This voltage is usually the system power supply, so the $\mathrm{V}_{\text {REF }}$ pin can be tied to $\mathrm{V}_{\mathrm{CC}}$.
For absolute accuracy, where the analog input varies between very specific voltage limits, the reference pin must be connected to a voltage source that is stable over time and temperature. The LM385 and LM336 micropower references are good low current devices for use with these A/D converters.
The maximum value of the reference voltage is limited by the A/D converter's power supply voltage, $\mathrm{V}_{\mathrm{CC}}$. The minimum value, however, can be as low as 1 V while maintaining a typical Integral Linearity of $\pm 1$ LSB (see Typical Performance Characteristics curve, "Linearity Error vs Reference voltage'). This allows direct conversion of transducer outputs that provide less than a 5 V output span. Due to the increased sensitivity of the A/D converter at low reference voltages (e.g., $1 \mathrm{LSB}=3.9 \mathrm{mV}$ for a 1 V full scale range), care must be exercised with regard to noise pickup, circuit layout, and system error voltage sources.

### 3.0 The Analog Inputs

### 3.1 REDUCING COMMON MODE ERROR

Rejection of common mode noise can be achieved by configuring the ADC0851/8's inputs in the differential mode since the offending common mode signal is common to both the selected " + " and " - " inputs. The time interval between sampling the " + " input and the " - " input is one oscillator clock period. A change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:

$$
V_{\text {error }(M a x)}=V_{\text {PEAK }}\left(2 \pi f_{C M}\right)\left(1 / f_{\mathrm{OSC}}\right)
$$

where $\mathrm{f}_{\mathrm{CM}}$ is the frequency of the common-mode signal, $V_{\text {PEAK }}$ is the signal's peak voltage and fOSC is the A/D converter's OSC clock frequency.
For a 60 Hz common-mode signal to generate a $1 / 4 \mathrm{LSB}$ error ( $\approx 5 \mathrm{mV}$ for a 5 V full scale range) with the converter running at fosc $=250 \mathrm{kHz}$, its peak voltage would have to be 3.3V.

### 3.2 SOURCE RESISTANCE

For a source resistance under $2 \mathrm{k} \Omega$, the ADC0851/8's total unadjusted error is typically $\pm 0.2 \mathrm{LSB}$ at $\mathrm{V}_{\text {REF }}=4.75 \mathrm{~V}$ and fosc $\leq 1 \mathrm{MHz}$ (see Typical Performance Characteristics curves, "Total Unadjusted Error vs Source Impedance").
One source of error is the multiplexer's leakage current of $3 \mu \mathrm{~A}$ which contributes a 3 mV drop across a $1 \mathrm{k} \Omega$ source

### 3.0 The Analog Inputs (Continued)

resistance. Another source of error is the sampling nature of the A/D converter. Short spikes of current enter the "+" input and exit the "-" input at the rising and falling transition of the OSC clock. These currents decay rapidly and generally do not cause errors since the internal comparator is strobed at the end of a clock period. If large source' resistances are used however, then the transients caused by the current spikes may not settle completely before conversion begins. If a capacitor is used at the input of the A/D converter for input filtering then the input signal source resistance should be kept at $1 \mathrm{k} \Omega$ or less.

### 3.3 ANALOG INPUT PROTECTION

Often the analog inputs of A/D converters are driven from voltage sources that can swing higher than $\mathrm{V}_{\mathrm{CC}}$ or lower than GND. Analog inputs often come from op amps which use $\pm 15 \mathrm{~V}$ supplies. While during normal operation the input voltages stay within the OV-5V A/D converter supply voltage range, at power up the input voltage may actually rise above or fall below the A/D converter's supply voltages. If the input voltage to any A/D converter input pin does fall outside the supply voltage by more than 0.3 V (worst case) and the input draws more than 5 mA then there is a good possibility that the converter may latch up and provide a low impedance short between $\mathrm{V}_{\mathrm{CC}}$ and GND.
Figure 13 shows the overvoltage protection circuit for the analog input. If, for instance, the amplifier's output saturates to its positive supply rail, then the junction of R1 and R2 would be clamped to $\mathrm{V}_{\mathrm{CC}}$ plus a diode drop. Resistor R1 limits the op amp's output current and R2 limits the current flowing into the input of the A/D converter. Likewise, the junction of R1 and R2 would be clamped to a diode drop below ground if the op amp's output saturates to the negative rail.

### 4.0 Zero Scale and Full Scale Adjustment

### 4.1 ZERO SCALE ERROR

The zero scale error of the A/D converter does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathrm{IN}(\mathrm{Min})}$, is not at ground potential then a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing the $\mathrm{V}_{\text {IN }}(-)$
input of a differential input pair at this $V_{I N(M i n)}$ value. This utilizes the differential mode operation of the A/D converter.
The zero scale error of the $A / D$ converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\operatorname{IN}(-)}$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathrm{IN}(+)}$ input. Zero error is the difference between the actual DC input voltage (the ideal $1 / 2$ LSB value, $1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}$ for $\mathrm{V}_{\text {REF }}=5.000$ $V_{D C}$ ) and the applied input voltage that causes an output digital code transition from 00000000 to 00000001.

### 4.2 FULL SCALE ADJUSTMENT

The full-scale adjustment can be made by applying an input voltage that is 1.5 LSB less than the desired analog fullscale voltage and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }}$ input voltage for a digital output code that just changes from 11111110 to 11111111.

### 4.3 ADJUSTING FOR AN ARBITRARY ANALOG INPUT VOLTAGE RANGE

Analog input voltages that span from a positive non-zero minimum value can easily be accommodated by the ADC0851/8. In this case, the A/D converter is used in the differential mode and a reference voltage equal to $\mathrm{V}_{\mathrm{IN}}(\mathrm{Min})$ is applied to the $\mathrm{V}_{\operatorname{IN}(-)}$ input. Normally zero scale adjustment is not required because the zero scale error is very small. However, if zero scale adjustment is desired then a voltage equal to $\mathrm{V}_{\mathrm{IN}(\mathrm{Min})}$ plus $1 / 2 \mathrm{LSB}$ (where $1 \mathrm{LSB}=$ Input voltage span/256) should be applied to $\mathrm{V}_{\mathbb{I}(+)}$ and the reference voltage at $\mathrm{V}_{\mathrm{IN}(-)}$ should be adjusted such that the output code just changes from 00000000 to 00000001.
Once the proper reference voltage is applied to the $\mathrm{V}_{\operatorname{IN}(-)}$ input then full scale adjustment can be made. Full scale adjustment is made by first applying a voltage to the $\mathrm{V}_{\mathrm{IN}(+)}$ input that is 1.5 LSB less than $V_{I N(M a x)}$ i.e.;

$$
\mathrm{V}_{\mathrm{IN}(+) \text { FS ADJ }}=\mathrm{V}_{\mathrm{Max}}-1.5\left[\left(\mathrm{~V}_{\mathrm{Max}}-\mathrm{V}_{\mathrm{Min}}\right) / 256\right]
$$

where, $\mathrm{V}_{\mathrm{Max}}=$ the high end of the analog input voltage range
$\mathrm{V}_{\text {Min }}=$ the low end of the analog input voltage
The reference voltage, $\mathrm{V}_{\text {REF }}$ applied to the reference input pin of the A/D converter is adjusted so that the output code just changes from 11111110 to 1111 1111. This completes the adjustment procedure.

## Typical Applications



TL/H/11021-55
FIGURE 12. Recommended Connection for ADC0851 and ADC0858

Typical Applications (Continued)


TL/H/11021-56
FIGURE 13. Over Voltage Protection of the Analog Inputs


FIGURE 14. Analog Input Multiplexer Options for ADC0851



TL/H/11021-63

FIGURE 15. Analog Input Multiplexer Options for ADC0858

Typical Applications (Continued)


TL/H/11021-64
FIGURE 16. Adaptive Instrumentation Control (Ratiometric Operation) with Over Range Flag


TL/H/11021-66
FIGURE 18. Absolute Input with 2.5V Input Voltage Span


FIGURE 17. Remote Temperature Sensor with Over Range Flag


TL/H/11021-67
FIGURE 19. Single Channel Ratiometric Operation

# LM12434／LM12\｛L\} 438 12－Bit＋Sign Data Acquisition System with Serial I／O and Self－Calibration 

## General Description

The LM12434 and LM12\｛L\}438 are highly integrated Data Acquisition Systems．Operating on 3 V to 5 V ，they combine a fully－differential self－calibrating（correcting linearity and zero errors）13－bit（12－bit + sign）analog－to－digital converter （ADC）and sample－and－hold（S／H）with extensive analog and digital functionality．Up to 32 consecutive conversions， using two＇s complement format，can be stored in an internal 32 －word（16－bit wide）FIFO data buffer．An internal 8 －word instruction RAM can store the conversion sequence for up to eight acquisitions through the LM12\｛L\}438's eight-input multiplexer．The LM12434 has a four－channel multiplexer，a differential multiplexer output，and a differential S／H input． The LM12434 and LM12\｛L\}438 can also operate with 8-bit + sign resolution and in a supervisory＂watchdog＂mode that compares an input signal against two programmable limits．
Acquisition times and conversion rates are programmable through the use of internal clock－driven timers．The differen－ tial reference voltage inputs can be externally driven for ab－ solute or ratiometric operation．
All registers，RAM，and FIFO are directly accessible through the high speed and flexible serial I／O interface bus．The serial interface bus is user selectable to interface with the following protocols with zero glue logic：MICROWIRE／ PLUSTM，Motorola＇s SPI／QSPI，Hitachi＇s SCI， 8051 Family＇s Serial Port（Mode 0）， $1^{2} \mathrm{C}$ and the TMS320 Family＇s Serial Port．
An evaluation kit for demonstrating the LM12434 and LM12\｛L\}438 is available.

## Key Specifications

$\mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz}\left\{\mathrm{L}, \mathrm{f}_{\mathrm{CLK}}=6 \mathrm{MHz}\right\}$
－Resolution 12 －bit + sign or 8 －bit + sign
■ 13－bit conversion time $\quad 5.5 \mu \mathrm{~s}\{7.3 \mu \mathrm{~s}\}$（max）
－9－bit conversion time $\quad 2.6 \mu \mathrm{~s}\{3.5 \mu \mathrm{~s}\}$（max）
－13－bit Through－put rate
140k samples／s \｛105k sample／s\} (min)
－Comparison time（＇watchdog＂mode）
$1.4 \mu \mathrm{~s}\{1.8 \mu \mathrm{~s}\}$（max）
■ Serial Clock $\quad 10 \mathrm{MHz}\{6 \mathrm{MHz}\}$（max）
－Integral Linearity Error $\pm 1$ LSB（max）
－$V_{\text {IN }}$ range
GND to $\mathrm{V}_{\mathrm{A}}{ }^{+}$
－Power dissipation $45 \mathrm{~mW}\{20 \mathrm{~mW}\}$（max）
－Stand－by mode power dissipation $\quad 25 \mu \mathrm{~W}\{16.5 \mu \mathrm{~W}\}$（typ）
－Supply voltage LM12L438 $3.3 V \pm 10 \%$
LM12434／8
$5 \mathrm{~V} \pm 10 \%$

## Features

■ Three operating modes： 12 －bit + sign， 8 －bit + sign， and＂watchdog＂comparison mode
－Single－ended or differential inputs
－Built－in Sample－and－Hold
－Instruction RAM and event sequencer
－8－channel（LM12\｛L\}438) or 4-channel (LM12434) multiplexer
－32－word conversion FIFO
－Programmable acquisition times and conversion rates
－Self－calibration and diagnostic mode
－Power down output for system power management
－Read while convert capability for maximum through－put rate

## Applications

－Data Logging
－Portable Instrumentation
－Process Control
－Energy Management
－Robotics

## Connection Diagrams


＊Pin names in（）apply to the LM12434
Order Number LM12434CIV，LM12438CIV，or LM12L438CIV
See NS Package Number V28A

28－Pin Wide Body SO Package


TL／H／11879－2
Order Number LM12434CIWM，LM12438CIWM，or LM12L438CIWM
See NS Package Number M28B

## Table of Contents

1.0 FUNCTIONAL DIAGRAMS ..... 1-39
2.0 ELECTRICAL SPECIFICATIONS ..... 1-41
2.1 Ratings ..... 1-41
2.1.1 Absolute Maximum Ratings ..... 1-41
2.1.2 Operating Ratings ..... 1-41
2.2 Performance Characteristics ..... 1-41
2.2.1 Converter Static Characteristics ..... 1-41
2.2.2 Converter Dynamic Characteristics . ..... 1-42
2.2.3 DC Characteristics ..... 1-44
2.2.4 Digital DC Characteristics ..... 1-45
2.3 Digital Switching Characteristics ..... 1-46
2.3.1 Standard Interface Mode ..... 1-46
2.3.2 8051 Interface Mode ..... 1-47
2.3.3 TMS320 Interface Mode ..... 1-48
2.3.4 ${ }^{12} \mathrm{C}$ Bus Interface ..... 1-49
2.4 Notes on Specifications ..... 1-50
3.0 ELECTRICAL CHARACTERISTICS ..... 1-51
4.0 TYPICAL PERFORMANCE CHARACTERISTICS ..... 1-55
5.0 PIN DESCRIPTIONS. ..... 1-59
6.0 OPERATIONAL INFORMATION ..... 1-61
6.1 Functional Description ..... 1-61
6.2 Internal User-Accessible Registers ..... 1-65
6.2.1 Instruction RAM ..... 1-65
6.2.2 Configuration Register ..... 1-72
6.2.3 Interrupts ..... 1-72
6.2.4 Interrupt Enable Register ..... 1-73
6.2.5 Interrupt Status Register ..... 1-73
6.2.6 Limit Status Register ..... 1-74
6.2.7 Timer ..... 1-74
6.2.8 FIFO ..... 1-74
6.3 Instruction Sequencer ..... 1-75
7.0 DIGITAL INTERFACE ..... 1-77
7.1 Standard Interface Mode ..... 1-77
7.1.1 Examples of Interfacing to the HPC 46XXX's MICROWIRE/PLUSTM and 68HC11's SPI. . 1-84
7.28051 Interface Mode ..... 1-91
7.2.1 Example of Interfacing to the 8051 ..... 1-94
7.3 TMS320 Interface Mode ..... 1-98
7.3.1 Example of Interfacing to the TMS320C3x ..... 1-101
$7.41^{2} \mathrm{C}$ Bus Interface ..... 1-106
7.4.1 Example of Interfacing to an $1^{2} \mathrm{C}$ Controller ..... 1-108
8.0 ANALOG CONSIDERATIONS ..... 1-109
8.1 Reference Voltage ..... 1-109
8.2 Input Range ..... 1-109
8.3 Input Current ..... 1-109
8.4 Input Source Resistance ..... 1-109
8.5 Input Bypass Capacitance ..... 1-109
8.6 Input Noise ..... 1-109
8.7 Power Supply Consideration ..... 1-109
8.8 PC Board Layout and Grounding Consideration . ..... 1-110

### 1.0 Functional Diagrams



INTERFACE	MODESEL1	MODESEL2	P1	P2	P3	P4	P5
Standard	0	1	$\bar{R} / F$	$\overline{\mathrm{CS}}$	DI	DO	SCLK
8051	0	0	$1^{*}$	$1^{*}$	$\overline{\mathrm{CS}}$	RXD	TXD
12C	1	0	SAD0	SAD1	SAD2	SDA	SCL
TMS320	1	1	FSR	FSX	DX	DR	SCLK

*Internal pull-up

## Ordering Information (LM12434)

Part Number	Package Type	NSC Package Number	Temperature Range
LM12434CIV	$28-P i n ~ P L C C ~$	V28A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM12434CIWM	28 -Pin Wide Body SO	M28B	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

1.0 Functional Diagrams (Continued)

LM12\{L\}438


TL/H/11879-4

INTERFACE	MODESEL1	MODESEL2	P1	P2	P3	P4	P5
Standard	0	1	$\bar{R} / F$	$\overline{\mathrm{CS}}$	DI	DO	SCLK
8051	0	0	$1^{*}$	$1^{*}$	$\overline{\mathrm{CS}}$	RXD	TXD
R $^{2} \mathrm{C}$	1	0	SAD0	SAD1	SAD2	SDA	SCL
TMS320	1	1	FSR	FSX	DX	DR	SCLK

*Internal pull-up

## Ordering Information (LM12\{L\}438)

Part Number	Package Type	NSC Package Number	Temperature Range
LM12438CIV   LM12L438CIV	28-Pin PLCC	V28A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM12438CIWM LM12L438CIWM	28-Pin Wide Body SO	M28B	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM12438 Eval	Evaluation Board and Windows® based software		

### 2.0 Electrical Specifications

### 2.1 RATINGS

2.1.1 Absolute Maximum Ratings (Notes $1 \& 2$ )

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ( $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}^{+}}$)
6.0 V

Voltage at Input and Output Pins
except INO-IN3 (LM12434) $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
and INO-IN7 (LM12\{L\}438)
Voltage at Analog Inputs INO-IN3 (LM12434) and INO-IN7 (LM12\{L\}438) GND -5 V to $\mathrm{V}++5 \mathrm{~V}$
$\left|V_{A}{ }^{+}-V_{D}{ }^{+}\right| \quad 300 \mathrm{mV}$
|AGND - DGND|
Input Current at Any Pin (Note 3)
300 mV

Package Input Current (Note 3) $\pm 20 \mathrm{~mA}$
Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ) (Note 4) V Package
WM Package
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information, Lead Temperature (Note 19)
$V$ Package, Vapor Phase (60 seconds)
Infrared (15 seconds)
WM Package, Vapor Phase (60 seconds) Infrared (15 seconds)
ESD Susceptibility (Note 5)
1.5 kV
2.2 PERFORMANCE CHARACTERISTICS All specifications apply to the LM12434, LM12438, and LM12L438 unless otherwise noted. Specifications in braces \{ \} apply only to the LM12L438.
2.2.1 Converter Static Characteristics The following specifications apply to the LM12434 and LM12\{L\}438 for $\mathrm{V}_{\mathrm{A}^{+}}=$ $\mathrm{V}_{\mathrm{D}}{ }^{+}=5 \mathrm{~V}\{3.3 \mathrm{~V}\}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}+=4.096 \mathrm{~V}\{2.5 \mathrm{~V}\}, \mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}, 12$-bit + sign conversion mode, $\mathrm{f}_{\mathrm{CLK}}=$ $8.0 \mathrm{MHz}\{6 \mathrm{MHz}\}, \mathrm{R}_{\mathrm{S}}=25 \Omega$, source impedance for $\mathrm{V}_{\mathrm{REF}}+$ and $\mathrm{V}_{\mathrm{REF}}-\leq 25 \Omega$, fully-differential input with fixed 2.048 V \{1.25V \} common-mode voltage, and minimum acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=$ $\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Notes $6,7,8$ and 9 )

Symbol	Parameter	Conditions	Typical   (Note 10)	Limits   (Note 11)	Units   (Limit)
ILE	Positive and Negative Integral   Linearity Error	After Auto-Cal (Notes 12, 17)	$\pm 0.35$	$\pm \mathbf{1}$	LSB (max)
TUE	Total Unadjusted Error	After Auto-Cal (Note 12)	$\pm 1$		LSB
	Resolution with No Missing Codes	After Auto-Cal (Note 12)		$\mathbf{1 3}$	Bits
DNL	Differential Non-Linearity	After Auto-Cal	$\pm 0.2$	$\pm \mathbf{1}$	LSB (max)
	Zero Error	After Auto-Cal (Notes 13, 17)	$\pm 0.2$	$\pm \mathbf{1}$	LSB (max)
	Positive Full-Scale Error	After Auto-Cal (Notes 12, 17)	$\pm 0.2$	$\pm \mathbf{2}$	LSB (max)
	Negative Full-Scale Error	After Auto-Cal (Notes 12, 17)	$\pm 0.2$	$\pm \mathbf{2}$	LSB (max)
ILE	DC Common Mode Error	(Note 14)	$\pm 2$	$\pm \mathbf{3 . 5}$	LSB (max)
8-Bit + Sign and "Watchdog"'   Mode Positive and Negative   Integral Linearity Error	(Note 12)	$\pm 0.15$	$\pm \mathbf{1 / 2}$	LSB (max)	
TUE	8-Bit + Sign and "Watchdog" Mode   Total Unadjusted Error	After Auto-Zero	$\pm 1 / 2$	$\pm \mathbf{1 / 2}$	LSB (max)
	8-Bit + Sign and "Watchdog" Mode   Resolution with No Missing Codes			$\mathbf{9}$	Bits (max)

### 2.0 Electrical Specifications (Continued)

2.2.1 Converter Static Characteristics The following specifications apply to the LM12434 and LM12\{L\}438 for $\mathrm{V}_{\mathrm{A}^{+}}=$ $\mathrm{V}_{\mathrm{D}}{ }^{+}=5 \mathrm{~V}\{3.3 \mathrm{~V}\}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}+=4.096 \mathrm{~V}\{2.5 \mathrm{~V}\}, \mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}, 12$-bit + sign conversion mode, $\mathrm{f}_{\mathrm{CLK}}=$ $8.0 \mathrm{MHz}\{6 \mathrm{MHz}\}, \mathrm{R}_{\mathrm{S}}=25 \Omega$, source impedance for $\mathrm{V}_{\mathrm{REF}}+$ and $\mathrm{V}_{\mathrm{REF}}-\leq 25 \Omega$, fully-differential input with fixed 2.048 V \{1.25V) common-mode voltage, and minimum acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=$ $\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {max }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Notes $6,7,8$ and 9 ) (Continued)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limit)
DNL	8-Bit + Sign and "Watchdog" Mode Differential Non-Linearity		$\pm 0.15$	$\pm 1 / 2$	LSB (max)
	8-Bit + Sign and "Watchdog" Mode Zero Error	After Auto-Zero	$\pm 0.05$	$\pm 1 / 2$	LSB (max)
	8-Bit + Sign and "Watchdog" Positive and Negative Full-Scale Error		$\pm 0.1$	$\pm 1 / 2$	LSB (max)
	8-Bit + Sign and "Watchdog" Mode DC Common Mode Error		$\pm 1 / 8$		LSB
	Multiplexer Channel-to-Channel Matching		$\pm 0.05$		LSB
$\mathrm{V}_{\text {IN }+}$	Non-Inverting Input Range			$\begin{aligned} & \text { GND } \\ & \mathbf{V}_{\mathbf{A}}{ }^{+} \end{aligned}$	$\begin{aligned} & V(\min ) \\ & V(\max ) \end{aligned}$
$\mathrm{V}_{\text {IN }-}$	Inverting Input Range			$\begin{aligned} & \text { GND } \\ & \mathbf{V}_{\mathbf{A}}{ }^{+} \\ & \hline \end{aligned}$	$\begin{aligned} & V(\min ) \\ & V(\max ) \end{aligned}$
$\mathrm{V}_{\mathrm{IN}+}-\mathrm{V}_{\mathrm{IN}-}$	Differential Input Voltage Range			$\begin{gathered} -\mathbf{V}_{\mathbf{A}}{ }^{+} \\ \mathbf{v}_{\mathbf{A}^{+}} \end{gathered}$	$\begin{aligned} & V(\min ) \\ & V(\max ) \end{aligned}$
$\frac{V_{I N+}-V_{I N}}{2}$	Common Mode Input Voltage Range			$\begin{aligned} & \mathbf{G N D} \\ & \mathbf{V}_{\mathbf{A}}+ \end{aligned}$	$\begin{aligned} & V(\min ) \\ & V(\max ) \end{aligned}$
PSS	Power Supply   Sensitivity Zero Error   (Note 15) Full-Scale Error   Linearity Error	$\begin{aligned} & \mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}^{+}=5 \mathrm{~V} \pm 10 \%, \\ & \mathrm{~V}_{\text {REF }+}=4.096 \mathrm{~V}, \mathrm{~V}_{\text {REF }-}=\mathrm{GND} \end{aligned}$	$\begin{gathered} \pm 0.05 \\ \pm 0.25 \\ \pm 0.2 \end{gathered}$	$\begin{aligned} & \pm 1.0 \\ & \pm \mathbf{1 . 5} \end{aligned}$	$\begin{gathered} \text { LSB (max) } \\ \text { LSB (max) } \\ \text { LSB } \end{gathered}$
$\mathrm{C}_{\text {REF }}$	$\mathrm{V}_{\text {REF }+} / \mathrm{V}_{\text {REF }}$ - Input Capacitance		85		pF
$\mathrm{C}_{\mathrm{IN}}$	Selected Multiplexer Channel Input Capacitance		75		pF

2.2.2 Converter Dynamic Characteristics The following specifications apply only to the LM12434 and LM12438 for $\mathrm{V}_{\mathrm{A}}+=$ $\mathrm{V}_{\mathrm{D}}{ }^{+}=5 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}+}=4.096 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}, 12$-bit + sign conversion mode, $\mathrm{f}_{\mathrm{CLK}}=8.0 \mathrm{MHz}$, throughput rate $=133.3 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$, source impedance for $\mathrm{V}_{\mathrm{REF}}+$ and $\mathrm{V}_{\mathrm{REF}}-\leq 25 \Omega$, fully-differential input with fixed 2.048 V \{1.25V $\}$ common-mode voltage, and minimum acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\mathbf{M A X}}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\boldsymbol{J}}=25^{\circ} \mathrm{C}$. (Notes 6, 7, 8 and 9 )

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units   (Limit)
	CLK Duty Cycle		50	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	
${ }^{t} C$	Conversion Time	13-Bit Resolution, Sequencer State S5 (Figure 10)	44 (tclk)	44 (tclk) + 50 ns	(max)
		9-Bit Resolution, Sequencer State S5 (Figure 10)	21 (tclk)	21 (tclk) + 50 ns	(max)
$\mathrm{t}_{\mathrm{A}}$	Acquisition Time (Programmable)	Sequencer State S7 (Figure 10) Minimum for 13 -Bits Maximum for 13 -Bits $(D=15)$	$\begin{gathered} 9\left(t_{\text {CLK }}\right) \\ 39\left(\mathrm{t}_{\mathrm{CLK}}\right) \\ \hline \end{gathered}$	$\begin{gathered} 9\left(\mathbf{t}_{\text {CLK }}\right)+50 \mathrm{~ns} \\ 39\left(\mathrm{t}_{\text {CLK }}\right)+50 \mathrm{~ns} \end{gathered}$	$\begin{gathered} \text { t CLLK }_{=}=\text {CLK Period } \\ (\max ) \\ \\ (\max ) \\ \hline \end{gathered}$
		Minimum for 9-Bits (Figure 10) Maximum for 9 -Bits $(\mathrm{D}=15$ )		$\begin{gathered} 2\left(t_{\text {CLK }}\right)+50 \mathrm{~ns} \\ 32\left(t_{\text {CLK }}\right)+50 \mathrm{~ns} \end{gathered}$	(max)   (max)

### 2.0 Electrical Specifications (Continued)

2.2.2 Converter Dynamic Characteristics The following specifications apply only to the LM12434 and LM12438 for $\mathrm{V}_{\mathrm{A}^{+}}=$ $\mathrm{V}_{\mathrm{D}}{ }^{+}=5 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}+}=4.096 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}, 12$-bit + sign conversion mode, $\mathrm{f}_{\mathrm{CLK}}=8.0 \mathrm{MHz}$, throughput rate $=133.3 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$, source impedance for $\mathrm{V}_{\text {REF }}+$ and $V_{\text {REF }}-\leq 25 \Omega$, fully-differential input with fixed 2.048 V common-mode voltage, and minimum acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=$ $\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Notes 6, 7, 8 and 9) (Continued)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limit)
$\mathrm{t}_{2}$	Auto-Zero Time	Sequencer State S2 (Figure 10)	76 (tCLK)	76 (tcLK) +50 ns	(max)

## 2．0 Electrical Specifications（Continued）

2．2．2 Converter Dynamic Characteristics The following specifications apply only to the LM12434 and LM12438 for $\mathrm{V}_{\mathrm{A}^{+}}=$ $\mathrm{V}_{\mathrm{D}}{ }^{+}=5 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}+}=4.096 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}-=0 \mathrm{~V}, 12$－bit + sign conversion mode， $\mathrm{f}_{\mathrm{CLK}}=8.0 \mathrm{MHz}$ ， throughput rate $=133.3 \mathrm{kHz}, R_{S}=25 \Omega$ ，source impedance for $V_{\text {REF }}+$ and $V_{R E F} \leq 25 \Omega$ ，fully－differential input with fixed 2.048 V common－mode voltage，and minimum acquisition time unless otherwise specified．Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=$ $\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {mAX }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ ．（Notes 6，7， 8 and 9 ）（Continued）

Symbol	Parameter	Conditions	Typical （Note 10）	Limits （Note 11）	Units （Limit）
IMD	Two Tone Intermodulation Distortion Differential Input	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 4.096 \mathrm{~V} \text { (Note 20) } \\ & \mathrm{f}_{1}=19.190 \mathrm{kHz} \\ & \mathrm{f}_{2}=19.482 \mathrm{kHz} \\ & \hline \end{aligned}$	－82		dBc
IMD	Two＇Tone Intermodulation Distortion Single Ended Input	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4.096 \mathrm{~V}_{\mathrm{pp}} \\ & \mathrm{f}_{1}=19.190 \mathrm{kHz} \\ & \mathrm{f}_{2}=19.482 \mathrm{kHz} \end{aligned}$	－80	－	dBc
	Multiplexer Channel－to－Channel Crosstalk	$\begin{aligned} & \mathrm{V}_{I N}=4.096 \mathrm{~V} \text { PP } \\ & \mathrm{f}_{\mathrm{IN}}=5 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{CROSSTALK}}=40 \mathrm{kHz} \\ & \text { LM12434 MUXOUT Only } \\ & \text { and LM12438 MUX } \\ & \text { plus Converter (Note 21) } \end{aligned}$	－90		dBc
tPu	Power－Up Time		10		ms
twu	Wake－Up Time	（Note 22）	2		ms

2．2．3 DC Characteristics The following specifications apply to the LM 12434 and $\mathrm{LM} 12\{\mathrm{~L}\} 438$ for $\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}^{+}}=5 \mathrm{~V}\{3.3 \mathrm{~V}]$ ， $\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}+}=4.096 \mathrm{~V}\{2.5 \mathrm{~V}\}, \mathrm{V}_{\mathrm{REF}-}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=8.0 \mathrm{MHz}\{6 \mathrm{MHz}\}$ and minimum acquisition time unless otherwise specified．Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\mathbf{M A X}}$ ；all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$ ．（Notes 6,7 and 8）

Symbol	Parameter	Conditions	Typical （Note 10）	Limits （Note 11）	Units （Limit）
$\mathrm{ID}^{+}$	$\mathrm{V}_{\mathrm{D}}+$ Supply Current	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz}\{6 \mathrm{MHz}\} \\ & \mathrm{f}_{\text {SCLK }}=\text { Stopped } \\ & \mathrm{f}_{\mathrm{SCLK}}=10 \mathrm{MHz}\{8 \mathrm{MHz}\} \end{aligned}$	$\begin{aligned} & 2.0\{1.4\} \\ & 4.0\{2.0\} \end{aligned}$	5.0 \｛2．5\}	mA（max）   mA（max）
$\mathrm{I}_{\mathrm{A}}+$	$\mathrm{V}_{\mathrm{A}}+$ Supply Current	$\mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz}\{6 \mathrm{MHz}\}$	2.8 \｛2．2\}	4.0 \｛3．5\}	mA（max）
IST	Stand－By Supply Current（ $\mathrm{I}^{+}+\mathrm{I}^{+}$）	$\begin{aligned} & \text { Stand-By Mode Selected } \\ & \mathrm{f}_{\mathrm{SCLK}}=\text { Stopped } \\ & \mathrm{f}_{\mathrm{CLK}}=\text { Stopped } \\ & \mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz}\{6 \mathrm{MHz}\} \\ & \mathrm{f}_{\mathrm{SCLK}}=10 \mathrm{MHz}\{8 \mathrm{MHz}\} \\ & \mathrm{f}_{\mathrm{CLK}}=\text { Stopped } \\ & \mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz}\{6 \mathrm{MHz}\} \\ & \hline \end{aligned}$	$\begin{gathered} 5\{5\} \\ 120\{50\} \\ \\ 1.4\{0.8\} \\ 1.4\{0.8\} \end{gathered}$	．	$\mu \mathrm{A}$（max）   $\mu A$（max）   mA（max）   mA（max）
	Multiplexer ON－Channel Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}^{+}=5.5 \mathrm{~V} \\ & \text { ON-Channel }=5.5 \mathrm{~V} \\ & \text { OFF-Channel }=0 \mathrm{~V} \\ & \text { ON-Channel }=0 \mathrm{~V} \\ & \text { OFF-Channel }=5.5 \mathrm{~V} \end{aligned}$	0.1	$\begin{aligned} & 1.0\{3.0\} \\ & 1.0\{3.0\} \end{aligned}$	$\mu \mathrm{A}(\max )$   $\mu \mathrm{A}$（max）
	Multiplexer OFF－Channel Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{A}^{+}}=5.5 \mathrm{~V}\{3.3 \mathrm{~V}\} \\ & \mathrm{ON} \text {-Channel }=5.5 \mathrm{~V}\{3.3 \mathrm{~V}\} \\ & \text { OFF-Channel }=0 \mathrm{~V} \\ & \text { ON-Channel }=0 \mathrm{~V} \\ & \text { OFF-Channel }=5.5 \mathrm{~V}\{3.3 \mathrm{~V}\} \end{aligned}$	0.1	$\begin{aligned} & 1.0\{3.0\} \\ & 1.0\{3.0\} \end{aligned}$	$\mu \mathrm{A}$（max）   $\mu \mathrm{A}(\mathrm{max})$

### 2.0 Electrical Specifications (Continued)

2.2.3 DC Characteristics The following specifications apply to the LM12434 and LM12\{L\}438 for $\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=5 \mathrm{~V}\{3.3 \mathrm{~V}]$, $\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}+}=4.096 \mathrm{~V}\{2.5 \mathrm{~V}\}, \mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=8.0 \mathrm{MHz}\{6 \mathrm{MHz}\}$ and minimum acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\mathbf{m a x}}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$. (Notes 6,7 and 8) (Continued)

Symbol	Parameter	Conditions	Typical (Note 10)	Llmits (Note 11)	Units (Limit)
RON	Multiplexer ON-Resistance	$\begin{aligned} & \text { LM12434 } \\ & V_{I N}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 650 \\ & 700 \\ & 630 \\ & \hline \end{aligned}$		$\begin{aligned} & \Omega(\max ) \\ & \Omega(\max ) \\ & \Omega(\max ) \end{aligned}$
	Multiplexer Channel-to-Channel RON matching	$\begin{aligned} & L M 12434 \\ & V_{I N}=5 \mathrm{~V} \\ & V_{I N}=2.5 \mathrm{~V} \\ & V_{I N}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 1.0 \% \\ & \pm 1.0 \% \\ & \pm 1.0 \% \end{aligned}$	$\begin{aligned} & \pm \mathbf{3 . 0 \%} \\ & \pm \mathbf{3 . 0 \%} \\ & \pm \mathbf{3 . 0 \%} \end{aligned}$	(max)   (max)   (max)

2.2.4 Digital DC Characteristics The following specifications apply to the LM12434 and LM12\{L\}438 for $\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=5 \mathrm{~V}$ $\{3.3 \mathrm{~V}\}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$, unless otherwise specified. Boldface limits apply for $\mathbf{T}_{A}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6, 7 and 8 )

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limit)
$\mathrm{V}_{\mathrm{IN}(1)}$	Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}^{+}{ }^{+}=5.5 \mathrm{~V}\{3.6 \mathrm{~V}\}$		2.0	V (min)
$\mathrm{V}_{\mathrm{IN}(0)}$	Logical "0" Input Voltage	$\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}^{+}{ }^{+}=4.5 \mathrm{~V}$ \{3.0V)		0.8	V (max)
$\underline{I N(1)}$	Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}\{3.3 \mathrm{~V}\}$	0.005	1.0	$\mu \mathrm{A}$ (max)
$\operatorname{IN}(0)$	Logical " 0 " Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-1.0	$\mu \mathrm{A}$ (max)
$\mathrm{CIN}_{1 N}$	All Digital Inputs		6		pF
VOUT(1)	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}+=\mathrm{V}_{\mathrm{D}}^{+}=4.5 \mathrm{~V}\{3.0 \mathrm{~V}\} \\ & \text { IOUT }=-360 \mu \mathrm{~A} \\ & \text { IOUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{gathered} 2.4 \\ 4.25\{2.9\} \\ \hline \end{gathered}$	$\begin{aligned} & V(\min ) \\ & V(\min ) \end{aligned}$
VOUT(0)	Logical " 0 " Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=4.5 \mathrm{~V}\{3.0 \mathrm{~V}\} \\ & \mathrm{IOUT}=1.6 \mathrm{~mA} \end{aligned}$		0.4	$V$ (max)
lout	TRI-STATE® Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}\{3.3 \mathrm{~V}\} \end{aligned}$	$\begin{gathered} -0.05 \\ 0.05 \end{gathered}$	$\begin{gathered} -3.0 \\ \mathbf{3 . 0} \\ \hline \end{gathered}$	$\mu \mathrm{A}$ (max)   $\mu \mathrm{A}$ (max)

### 2.0 Electrical Specifications (Continued)

2.3 DIGITAL SWITCHING CHARACTERISTICS The following specifications apply to the LM12434 and LM12\{L\}438 for $\mathrm{V}_{\mathrm{A}}+$ $=\mathrm{V}_{\mathrm{D}}+=5 \mathrm{~V}\{3.3 \mathrm{~V}\}$, $\mathrm{AGND}=\mathrm{DGND}=\mathrm{OV}, \mathrm{C}_{\mathrm{L}}$ (load capacitance) on output lines $=80 \mathrm{pF}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {maX }}$, all other limits for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Notes 6, 7, and 9)
2.3.1 Standard Mode Interface (MICROWIRE/PLUSTM, SCI and SPI/QSPI)

Symbol   (See Figure Below)	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units   (Limit)
$\mathrm{t}_{1}$	SCLK (Serial Clock) Period			100 \{125\}	ns (min)
$\mathrm{t}_{2}$	CS Set-Up Time to First Clock Transition			25 \{30\}	ns (min)
$\mathrm{t}_{3}$	DI Valid Set-Up Time to Data Capture Transition of SCLK			0	ns (min)
$t_{4}$	DI Valid Hold Time to Data Capture Transition of SCLK			40	ns (min)
$t_{5}$	DO Hold Time from Data Shift Transition of SCLK			70 \{120\}	ns (max)
$\mathrm{t}_{6}$	CS Hold Time from Last SCLK Transition in a Read or Write Cycle (Excluding Burst Read Cycle)			25	ns (min)
${ }^{1} 7$	CS Inactive to CS Active Again			3	CLK Cycle (min)*
$\mathrm{t}_{8}$	SCLK Idle Time between the End of the Command Byte Transfer and the Start of the Data Transfer in Read Cycles			3	CLK Cycle (min)*

${ }^{*}$ CLK is the main clock input to the device, pin number 24 in PLCC package or pin number 2 in SO package.


TL/H/11879-18

### 2.0 Electrical Specifications (Continued)

2.3 DIGITAL SWITCHING CHARACTERISTICS The following specifications apply to the LM12434 and LM12\{L\}438 for $\mathrm{V}_{\mathrm{A}}+$ $=\mathrm{V}_{\mathrm{D}}+=5 \mathrm{~V}\{3.3 \mathrm{~V}\}$, $\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}$ (load capacitance) on output lines $=80 \mathrm{pF}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to. $\mathbf{T}_{\text {MAX }}$, all other limits for $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$. (Notes 6, $\mathbf{7}$, and 9) (Continued)
2.3.2 8051 Interface Mode

Symbol   (See Figure Below)	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limit)
$\mathrm{t}_{9}$	TXD (Serial Clock Period)			125 (250)	ns (min)
$\mathrm{t}_{10}$	CS Set-Up Time to First Clock Transition			25 (40)	ns (min)
$t_{11}$	Data in Valid Set-Up Time to TXD Clock High			40	ns (min)
$\mathrm{t}_{12}$	Data in Valid Hold Time from TXD Clock High			40 \{90\}	ns (min)
$t_{13}$	Data Out Hold Time from TXD Clock High			70 \{120\}	ns (max)
$\mathrm{t}_{14}$	CS Hold Time from Last TXD High in a Read or Write Cycle (Excluding Burst Read Cycle)			25 \{50\}	ns (min)
$t_{15}$	CS Inactive to CS Active Again			3	$\begin{gathered} \text { CLK Cycle } \\ (\mathrm{min})^{*} \\ \hline \end{gathered}$
$\mathrm{t}_{16}$	SCLK Idle Time between the End of the Command Byte Transfer and the Start of the Data Transfer in Read Cycles			3	CLK Cycle (min)*

*CLK is the main clock input to the device, pin number 24 in PLCC package or pin number 2 in SO package.


### 2.0 Electrical Specifications (Continued)

2.3 DIGITAL SWITCHING CHARACTERISTICS The following specifications apply to the LM12434 and LM12\{L\}438 for $\mathrm{V}_{\mathrm{A}}+$ $=\mathrm{V}_{\mathrm{D}}+=5 \mathrm{~V}\{3.3 \mathrm{~V}\}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{OV}, \mathrm{C}_{\mathrm{L}}$ (load capacitance) on output lines $=80 \mathrm{pF}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{A}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {mAX }}$, all other limits for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$. (Notes 6, 7, and 9) (Continued)
2.3.3 TMS320 Interface Mode

Symbol   (See Figure Below)	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limit)
$\mathrm{t}_{22}$	SCLK (Serial Clock) Period			125 (167)	ns (min)
$\mathrm{t}_{23}$	FSX Set-Up Time to SCLK High			30 \{50\}	ns (min)
$\mathrm{t}_{24}$	FSX Hold Time from SCLK High			10	ns (min)
$\mathrm{t}_{25}$	Data in (DX) Set-Up   Time to SCLK Low			0	$n s(m i n)$
$\mathrm{t}_{26}$	Data in DX Hold Time from SCLK Low			30 \{120\}	ns (min)
$\mathrm{t}_{27}$	FSR High from SCLK High			80 \{100\}	ns (max)
$\mathrm{t}_{28}$	FSR Low from SCLK Low			120	ns (max)
$\mathrm{t}_{29}$	SCLK High to Data Out (DR) Change			90	ns (max)



TL/H/11879-23

### 2.0 Electrical Specifications (Continued)

2.3 DIGITAL SWITCHING CHARACTERISTICS The following specifications apply to the LM12434 and LM12\{L\}438 for $\mathrm{V}_{\mathrm{A}}+$ $=\mathrm{V}_{\mathrm{D}}+=5 \mathrm{~V}\{3.3 \mathrm{~V}\}$, AGND $=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}$ (load capacitance) on output lines $=80 \mathrm{pF}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {mIN }}$ to $\mathbf{T}_{\text {max }}$, all other limits for $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\boldsymbol{J}}=25^{\circ} \mathrm{C}$. (Notes 6, 7, and 9) (Continued)

### 2.3.4 ${ }^{2} \mathrm{C}$ Cus Interface

The switching characteristics of the LM12434/8 for I2 ${ }^{2} \mathrm{C}$ bus interface fully meets or exceeds the published specifications of the ${ }^{2}{ }^{2} \mathrm{C}$ bus. The following parameters given here are the timing relationships between SCL and SDA signals related to the LM12434/8. They are not the $I^{2} \mathrm{C}$ bus specifications.

Symbol   (See Figure Below)	Parameter	Conditions	Typical   (Note 10)	Limits   (Note 11)	Units   (Limit)
$\mathrm{t}_{17}$	SCL (Clock) Period			$\mathbf{2 5 0 0}\{\mathbf{1 0 0 0 0}\}$	$\mathrm{ns}(\mathrm{min})$
$\mathrm{t}_{18}$	Data in Set-Up Time to SCL High			$\mathbf{3 0}$	$\mathrm{ns}(\mathrm{min})$
$\mathrm{t}_{19}$	Data Out Stable after SCL Low			$\mathbf{9 0 0}\{\mathbf{1 4 0 0}\}$	$\mathrm{ns}(\mathrm{max})$
$\mathrm{t}_{20}$	SDA Low Set-Up Time to SCL   Low (Start Condition)			$\mathbf{4 0}$	$\mathrm{ns}(\mathrm{min})$
$\mathrm{t}_{21}$	SDA High Hold Time after SCL   High (Stop Condition)			$\mathbf{4 0}$	$\mathrm{ns}(\mathbf{m i n})$



## 2．0 Electrical Specifications（Continued）

## 2．4 NOTES ON SPECIFICATIONS

Note 1：Absolute Maximum Ratings indicate limits beyond which damage to the device may occur．Operating Ratings indicate conditions for which the device is functional，but do not guarantee specific performance limits．For guaranteed specifications and test conditions，see the Electrical Characteristics．The guaranteed specifications apply only for the test conditions listed．Some performance characteristics may degrade when the device is not operated under the listed test conditions．
Note 2：All voltages are measured with respect to GND，unless otherwise specified．GND specifies either AGND and／or DGND and $V^{+}$specifies either $V_{A}+$ and／ or $V_{D}{ }^{+}$．
Note 3：When the input voltage $\left(\mathrm{V}_{\mathbb{I}}\right)$ at any pin exceeds the power supply rails $\left(\mathrm{V}_{\mathbb{N}}<G N D\right.$ or $\mathrm{V}_{\mathbb{N}}>\left(\mathrm{V}_{\mathrm{A}}+\right.$ or $\left.\mathrm{V}_{\mathrm{D}}+\right)$ ），the current at that pin should be limited to 5 mA ．The 20 mA maximum package input current rating allows the voltage at any four pins，with an input current of 5 mA ，to simultaneously exceed the power supply voltages．
Note 4：The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J m a x}$（maximum junction temperature），$\Theta_{J A}$（package junction to ambient thermal resistance），and $T_{A}$（ambient temperature）．The maximum allowable power dissipation at any temperature is $P D_{\max }=\left(T_{J \max }-T_{A}\right) /$ $\Theta_{J A}$ or the number given in the Absolute Maximum Ratings，whichever is lower．For this device，$T_{J m a x}=150^{\circ} \mathrm{C}$ ，and the typical thermal resistance（ $\Theta_{\mathrm{JA}}$ ）of the V package，when board mounted，is $70^{\circ} \mathrm{C} / \mathrm{W}$ and in the WM package，when board mounted，is $60^{\circ} \mathrm{C} / \mathrm{W}$ ．
Note 5：Human body model， 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor．
Note 6：Two on－chip diodes are tied to each analog input through a series resistor，as shown below，Input voltage magnitude up to 5 V above $\mathrm{V}_{\mathrm{A}}+$ or 5 V below GND will not damage the part．However，errors in the $A / D$ conversion can occur if these diodes are forward biased by more than 100 mV ．As an example，if $\mathrm{V}_{\mathrm{A}}+$ is $4.5 \mathrm{~V}_{\mathrm{DC}}$ ，the full－scale input voltage must be $\leq 4.6 \mathrm{~V}_{\mathrm{DC}}$ to ensure accurate conversions．


TL／H／11879－5
Note 7： $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$must be connected together to the same power supply voltage and bypassed with separate capacitors at each $\mathrm{V}^{+}$pin to assure conversion／comparison accuracy．Refer to Section 8.0 for a detailed discussion on grounding the DAS．
Note 8：Accuracy is guaranteed when operating the LM12434／LM12\｛L\}438 at fcLK $=8 \mathrm{MHz}\{6 \mathrm{MHz}\}$ ．
Note 9：With the test condition for $V_{\text {REF }}\left(V_{\text {REF }}+-V_{\text {REF－}}\right)$ given as +4.096 V ，the 12－bit LSB is 1 mV and the 8 －bit／＂Watchdog＂LSB is 19 mV ．
Note 10：Typicals are at $T_{A}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm．
Note 11：Limits are guaranteed to National＇s AOQL（Average Output Quality Level）．
Note 12：Positive integral linearity error is defined as the deviation of the analog value，expressed in LSBs，from the straight line that passes through positive full－ scale and zero．For negative integral linearity error the straight line passes through negative full－scale and zero．（See Figures 5b and 5c）．
Note 13：Zero error is a measure of the deviation from the mid－scale voltage（a code of zero），expressed in LSB．It is the average value of the code transitions between -1 to 0 and 0 to +1 （see Figure 6）．
Note 14：The DC common－mode error is measured with both the inverted and non－inverted inputs shorted together and driven from 0 V to 5 V \｛3．3V\}. The measured value is referred to the resulting output value when the inputs are driven with a $2.5 \mathrm{~V}\{1.65 \mathrm{~V}\}$ signal．
Note 15：Power Supply Sensitivity is measured after Auto－Zero and／or Auto－Calibration cycle has been completed with $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$at the specified extremes．
Note 16：$V_{\text {REFCM }}$（Reference Voltage Common Mode Range）is defined as（ $\mathrm{V}_{\text {REF }}++\mathrm{V}_{\mathrm{REF}}$ ）／2．See Figures 3 and 4.
Note 17：The device self－calibration technique ensures linearity and offset errors as specified，but noise inherent in the self－calibration process will result in a repeatability uncertainty of $\pm 0.10$ LSB．

Note 18：The Throughput Rate is for a single instruction repeated continuously while reading data during conversions with a serial clock frequency fSCLK $=10 \mathrm{MHz}$ \｛ 8 MHz \}. Sequencer states 0 （ 1 clock cycle）， 1 （ 1 clock cycle）， 7 （ 9 clock cycles）and 5 （ 44 clock cycles）are used（see Figure 10 ）for a total of 56 clock cycles per conversion．The Throughput Rate is $\mathrm{f}_{\mathrm{CLK}}(\mathrm{MHz}) / \mathrm{N}$ ，where N is the number of clock cycles／conversion．
Note 19：See AN－450＂Surface Mounting Methods and their Effect on Product Reliability＂for other methods of soldering surface mount devices．
Note 20：Each input referenced to the other input sees a $\pm 4.096 \mathrm{~V}\left(8.192 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right)$ sine wave．However the voltage at each input stays within the supply rails．This is done by applying two sine waves with $180^{\circ}$ phase shift and $4.096 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$（between GND and $\mathrm{V}_{\mathrm{A}}{ }^{+}$）to the inputs．
Note 21：Multiplexer channel－to－channel crosstalk is measured by placing a sinewave with a frequency of $\mathrm{f}_{\mathrm{IN}}=5 \mathrm{kHz}$ on one channel and another sinewave with a frequency of fCROSSTALK $=40 \mathrm{kHz}$ on the remaining channels． 8192 conversions are performed on the channel with the 5 kHz signal．A special response is generated by doing a FFT on these samples．The crosstalk is then calculated by subtracting the amplitude of the frequency component at 40 kHz from the amplitude of the fundamental frequency at 5 kHz ．
Note 22：Interrupt 7 is set to return an out－of－standby flag 10 ms （typ）after the device is requested to come out of standby mode．However，characterization has shown the devices will perform to their rated specifications in 2 ms ．

### 3.0 Electrical Characteristics



FIGURE 1. Output Digital Code vs the Operating Input Voltage Range (General Case)

$$
v_{I N+}(V)
$$

FIGURE 2. Output Digital Code vs the Operating Input Voltage Range for $\mathrm{V}_{\mathrm{REF}}=\mathbf{4 . 0 9 6 V}$
3.0 Electrical Characteristics (Continued)


FIGURE 3. VREF Operating Range (General Case)


FIGURE 4. $\mathbf{V}_{\mathbf{R E F}}$ Operating Range for $\mathbf{V}_{\mathbf{A}}{ }^{+}=\mathbf{5 V}$

### 3.0 Electrical Characteristics (Continued)



TL/H/11879-10
FIGURE 5a. Transfer Characteristic


TL/H/11879-11
FIGURE 5b. Simplified Error Curve vs Output Code without Auto-Calibration or Auto-Zero Cycles

## 3．0 Electrical Characteristics（Continued）



TL／H／11879－12
FIGURE 5c．Simplified Error Curve vs Output Code after Auto－Calibration Cycle


TL／H／11879－13
FIGURE 6．Offset or Zero Error Voltage

### 4.0 Typical Performance Characteristics

The following curves apply for 12-bit + sign mode after auto-calibration unless otherwise specified. The performance for 8 -bit + sign and "watchdog" modes is equal to or better than shown. (Note 9)













TL/H/11879-14

## 4．0 Typical Performance Characteristics（Continued）

The following curves apply for 12－bit + sign mode after auto－calibration unless otherwise specified．The performance for 8－bit + sign and＂watchdog＂modes is equal to or better than shown．（Note 9）


Analog Supply Current vs Temperature
＊Digital Supply Current vs Clock Frequency

＊Free－running conversion and SPI mode data read at 200 ns SCLK period．


TL／H／11879－15

The following curves apply to the LM12L438 in 12－bit＋sign mode after auto－calibration unless otherwise specified． $\mathrm{R}_{\mathrm{S}}=50 \Omega$ ， $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{A}}^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=6 \mathrm{MHz}, \mathrm{f}_{\mathrm{SCLK}}=8 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V} \rightarrow 0 \mathrm{~dB}$ ，Sampling Rate $=$ 100 kHz．


TL／H／11879－84

The following curves apply for 12－bit + sign mode after auto－calibration unless otherwise specified． $\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ， $\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=4.096 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz}, \mathrm{f}_{\text {SCLK }}=10 \mathrm{MHz}, \mathrm{V}_{\mathbb{I}}=4.096 \mathrm{~V} \rightarrow 0 \mathrm{~dB}$ ，Sampling Rate $=100 \mathrm{kHz}$.



TL／H／11879－55

### 4.0 Typical Performance Characteristics (Continued)

The following curves apply for 12-bit + sign mode after auto-calibration unless otherwise specified.
$R_{S}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=4.096 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz}, \mathrm{f}_{\mathrm{SCLK}}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=4.096 \mathrm{~V} \rightarrow 0 \mathrm{~dB}$, Sampling Rate $=133.3 \mathrm{kHz}$.


Unipolar Signal-to-Noise

+ Distortion
vs Input Frequency


Unipolar Spectral Response with 1.025 kHz
Sine Wave at 0 dB


Unipolar Spectral Response with 40.283 kHz
Sine Wave at $\mathbf{- 0 . 5 d B}$


Unipolar Total
Harmonic Distortion vs Input Frequency


Unipolar Spectral Response with 10.010 kHz
Sine Wave at 0 dB


Unipolar Spectral Response with $\mathbf{4 0 . 2 8 3 ~ k H z}$
Sine Wave at - 1.0 dB



Unipolar Two Tone Spectral
Response with $\mathrm{f1}=19.190 \mathrm{kHz}$ and
f2 = $\mathbf{1 9 . 4 8 2} \mathbf{~ k H z}$ Sine Wave


### 4.0 Typical Performance Characteristics (Continued)

The following curves apply for 12-bit + sign mode after auto-calibration unless otherwise specified.
$R_{S}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=4.096 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz}, \mathrm{f}_{\mathrm{SCLK}}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}= \pm 4.096 \mathrm{~V} \rightarrow 0 \mathrm{~dB}$, Sampling Rate $=133.3 \mathrm{kHz}$.




Bipolar Spectral Response with 40.283 kHz Sine Wave at - 0.5 dB


Bipolar Total Harmonic
Distortion vs Input Frequency


FREQUENCY ( kHz )


Bipolar Spectral Response with 40.283 kHz Sine Wave at $\mathbf{- 1 . 0 ~ d B}$


Bipolar Spectral Response with 62.25 kHz Sine Wave at 0 dB


Bipolar Two Tone Spectral
Response with $f 1=19.190 \mathrm{kHz}$ and
$\mathbf{f 2}=\mathbf{1 9 . 4 8 2} \mathbf{~ k H z}$ Sine Waves


### 5.0 Pin Descriptions

TABLE I. LM12\{L\}438 Pin Description

Pin Number		Pin Name	Description
$\begin{aligned} & \text { PLCC } \\ & \text { Pkg. } \end{aligned}$	$\begin{gathered} \text { SO } \\ \text { Pkg. } \end{gathered}$		
1	7	DGND	Digital ground. This is the device's digital supply ground connection. It should be connected through a low resistance and low inductance ground return to the system power supply.
$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{gathered} 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{gathered}$	INO   IN1   IN2   IN3   IN4   IN5   IN6   IN7	These are the eight analog inputs to the multiplexer. For each conversion to be performed, the active channels are selected according to the instruction RAM programming. Any individual channel can be selected for a single-ended conversion referenced to AGND, or any pair of channels, whether adjacent or non adjacent, can be selected as a fully differential input pairs.
10	16	$\mathrm{V}_{\text {REF }}{ }^{+}$	Positive reference input. The operating voltage range for this input is $1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}}{ }^{+} \leq \mathrm{V}_{\mathrm{A}}+$ (See Figures 3 and 4). In order to achieve 12-bit performance this pin should be by passed to AGND at least with a parallel combination of a $10 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ (ceramic) capacitor. The capacitors should be placed as close to the part as possible.
11	17	$V_{\text {REF }}{ }^{-}$	Negative reference input. The operating voltage range for this input is $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}}{ }^{-} \leq \mathrm{V}_{\mathrm{REF}}{ }^{+}$ - 1V (See Figures 3 and 4). In order to achieve 12-bit performance, this pin should be bypassed to AGND at least with a parallel combination of a $10 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ (ceramic) capacitor. The capacitors should be placed as close to the part as possible.
12	18	AGND	Analog ground. This is the device's analog supply ground connection. It should be connected through a low resistance and low inductance ground return to the system power supply.
13	19	$\mathrm{V}_{\mathrm{A}}{ }^{+}$	Analog supply. This is the supply connection for the analog circuitry. The device operating supply voltage range is +3.0 V to +5.5 V . Accuracy is guaranteed only if the $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$are connected to the same potential. In order to achieve 12-bit performance, this pin should be bypassed to AGND at least with a parallel combination of a $10 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ (ceramic) capacitor. The capacitors should be placed as close to the part as possible.
14	20	DGND	Digital ground. See above definition.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	$\mathrm{V}_{\mathrm{D}}{ }^{+}$	Digital supply. This is the supply connection for the analog circuitry. The device operating supply voltage range is +3.0 V to +5.5 V . The device accuracy is guaranteed only if the $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$ are connected to the same potential. In order to achieve 12-bit performance this pin should be by passed to DGND at least with a parallel combination of a $10 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ (ceramic) capacitor. The capacitors should be placed as close to the part as possible.
17	23	P5	P1-P5 are the multi-function serial interface input or output pins that have different assignments depending on the selected mode.   Serial interface input:
18	24	P4	Serial interface input/output: Standard: DO    $8051:$ RXD    I2C: SDA    TMS320: DR
19	25	P3	Serial interface input: Standard: DI    3051: CS    I2C: SAD2    TMS320: DX

5.0 Pin Descriptions (Continued)

TABLE I. LM12\{L\}438 Pin Description (Continued)

Pin Number		Pin Name	Description
PLCC Pkg.	$\begin{gathered} \text { SO } \\ \text { Pkg. } \end{gathered}$		
20	26	P2	Serial interface input: Standard: CS    $8051:$ 1    $\mathrm{I}^{2} \mathrm{C}:$ SAD1    TMS320: FSX
21	27	P1	Serial interface input: Standard: $\bar{R} / F$ (Clock rise/fall)    $8051:$ 1    $1^{2} \mathrm{C}:$ SAD0    TMS320: FSR
$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{gathered} 28 \\ 1 \end{gathered}$	MODESEL2 MODESEL1	Serial mode selection inputs. The logic states of these inputs determine the operation of the serial mode as shown below. The standard mode covers the National's MICROWIRE, Motorola's SPI and Hitachi's SCI protocols.
24	2	CLK	The device main clock input. The operating range of clock frequency is 0.05 MHz to 10.0 MHz . The device accuracy is guaranteed only for the clock frequencies indicated in the specification tables.
25	3	$\overline{\text { INT }}$	Interrupt output. This is an active low output. An interrupt is generated any time a nonmasked interrupt condition takes place. There are seven different conditions that can generate an interrupt. (Refer to Section 6.2.4). The interrupt is set high (inactive) by reading the interrupt status register. This output can drive up to 100 pF of capacitive loads. An external buffer should be used for driving higher capacitive loads.

Synchronization input/output. SYNC is an input if the Configuration Register's SYNC I/O bit is " 0 " and output when the bit is " 1 ". When sync is an input, a rising edge on this pin causes the internal $S / H$ to hold the input signal and a conversion cycle or a comparison cycle (depending on the programmed instruction) to be started. (The conversion or comparison actually begins on the rising edge of the CLK immediately following the rising edge of sync.) When output, it goes high at the start of a conversion or a comparison cycle and returns low when the cycle is completed. At power up the SYNC pin is set as an input. When used as an output it can drive up to 100 pF of capacitive loads. An external buffer should be used for driving higher capacitive loads.
Stand-by output. This is an active low output. STANDBYOUT will be activated when the LM12\{L\}438 is put into stand-by mode through the Configuration Register's stand-by bit. It is used to force any other devices in the system (signal conditioning circuitry, for example) to go into power-down mode. This is done by connecting the "shutdown", "powerdown", "standby", etc. pins of the other ICs to STANDBYOUT. In those cases where the peripheral ICs do not have the power-down inputs, STANDBYOUT can be used to turn off their power through an electronic switch. Note that the logic polarity of the STANDBYOUT is the opposite to that of the stand-by bit in the Configuration Register.

Digital supply. See above definition.
LM12434 Pin Description. (Same as LM12\{L\}438 with the exceptions of the following pins.)
LM12434 Pin Description (Same As LM12\{L\}438 with the exception of the following pins.)
\(\left.$$
\begin{array}{l|l|l|l}\hline 6 & 12 & \text { MUXOUT- } & \begin{array}{l}\text { Multiplexer outputs. These are the LM12434's externally available analog MUX output pins. } \\
7\end{array}
$$ <br>

\hline 13 \& MUXOUT+ \& Analog inputs are directed to these outputs based on the Instruction RAM programming.\end{array}\right]\)| 8 | 14 | S/H IN- | Sample-and-hold inputs. These are the inverting and non-inverting inputs of the sample- <br> and-hold. LM12434 allows external analog signal conditioning circuits to be placed <br> between MUX outputs and S/H inputs. |
| :--- | :--- | :--- | :--- |

### 6.0 Operational Information

### 6.1 FUNCTIONAL DESCRIPTION

The LM12434 and LM12\{L\}438 are multi-functional Data Acquisition Systems that include a fully differential 12-bit-plus-sign self-calibrating analog-to-digital converter (ADC) with a two's-complement output format, an 8-channel (LM12(L) 438) or a 4-channel (LM12434) analog multiplexer, a first-in-first-out (FIFO) register that can store 32 conversion results, and an Instruction RAM that can store as many as eight instructions to be sequentially executed. The LM12434 also has a differential multiplexer output and a differential S/H input. All of this circuitry operates on only a single +5 V power supply. For simplicity, the DAS (Data Acquisition System) abbreviation is used as a generic name for the members of the LM12434 and LM12\{L\}438 family thoughout this discussion.

Figure 7 illustrates the functional block diagram or user programming model of the DAS. Note that this diagram is not meant to reflect the actual implementation of the internal building blocks. The model consists of the following blocks:

- A flexible analog multiplexer with differential output at the front end of the device.
- A fully-differential, self-calibrating 12-bit + sign ADC converter with sample and hold.
- A 32-word FIFO register as the output data buffer.
- An 8-word instruction RAM that can be programmed to repeatedly perform a series of conversions and comparisons on selected input channels.
- A series of registers for overall control and configuration of DAS operation and indication of internal operational status.
- Interrupt generation logic to request service from the processor under specified conditions.
- Serial interface logic for input/output operations between the DAS and the processor. All the registers shown in the diagram can be read and most of them can also be written to by the user through the input/output block.
- A controller unit that manages the interactions of the different blocks inside the DAS and controls the conversion, comparison and calibration sequences.
The DAS has 3 different modes of operation:
- 12-bit + sign conversion
-8-bit + sign conversion
- 8-bit + sign comparison (also called "watchdog" mode)

The fully differential 12-bit-plus-sign ADC uses a charge redistribution topology that includes calibration capabilities. Charge re-distribution ADCs use a capacitor ladder in place of a resistor ladder to form an internal DAC. The DAC is used by a successive approximation register to generate intermediate voltages between the voltages applied to $\mathrm{V}_{\text {REF }}{ }^{-}$and $\mathrm{V}_{\text {REF }}{ }^{+}$. These intermediate voltages are compared against the sampled analog input voltage as each bit is charged.
Conversion accuracy is ensured by an internal auto-calibration system. Two different calibration modes are available; one compensates for offset voltage, or zero error, while the other corrects the ADC's linearity and offset errors.

When correcting offset only, the offset error is measured once and a correction coefficient is created. During the full calibration, the offset error is measured eight times, aver-
aged, and a correction coefficient is created. After completion of either calibration mode, the offset correction coefficient is stored in an internal offset correction register.
The LM12434 and LM12\{L\}438's overall linearity correction is achieved by correcting the internal DAC's capacitor mismatch. Each capacitor is compared eight times against all remaining smaller value capacitors and any errors are averaged. A correction coefficient is then created and stored in one of the thirteen linearity correction registers. A state machine, using patterns stored in 16 -bit $\times 8$-bit ROM, executes each calibration algorithm.
Once the converter has beeñ calibrated, an arithmetic logic unit (ALU) uses the offset correction coefficient and the 13 linearity correction coefficients to reduce the conversion's offset error and linearity error, in the background, during the 12 -bit + sign conversion. 8 -bit + sign conversions and "watchdog" comparisons use only the offset coefficient. An 8 -bit + sign conversion requires less than half the time needed for a 12-bit + sign conversion.

## Diagnostic Mode

A diagnostic mode is available that allows verification of the LM12\{L\}438's operation. The diagnostic mode is disabled in the LM12434. This mode internally connects the voltages present at the $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$pins to the internal $\mathrm{V}_{\text {IN }}{ }^{+}$ and $\mathrm{V}_{\mathrm{IN}^{-}} \mathrm{S} / \mathrm{H}$ inputs. This mode is activated by setting the Diagnostic bit (Bit 11) in the Configuration register to a " 1 ". More information concerning this mode of operation can be found in Section 6.2.2.

## Watchdog Mode

In the watchdog mode no conversion is performed, but the DAS samples an input and compares it with the values of the two limits stored in the Instruction RAM. If the input voltage is above or below the limits (as defined by the user) an interrupt can be generated to indicate a fault condition. The LM12434 and LM\{L\}438's "watchdog" mode is used to monitor a single-ended or differential signal's amplitude and generate an output if the signal's amplitude falls outsidde of a programmable 'window". Each watchdog instruction includes two limits. An interrupt can be generated if the input signal is above or below either of the two limits. This allows interrupt to be generated when analog voltage inputs are "outside the window". After a "watchdog" mode interrupt, the processor can then request a conversion on the input signal and read the signal's magnitude.

## Analog Input Multiplexer

The analog input multiplexer can be configured for any combination of single-ended or fully differential operation. Each input is referenced to AGND when a multiplexer channel operates in the single-ended mode. Fully differential analog input channels are formed by pairing any two channels together.
The LM12434's multiplexer outputs and S/H inputs (MUXOUT+, MUXOUT- and S/H IN+, S/H IN-) provide the option for additional analog signal processing after the multiplexer. Fixed-gain amplifiers, programmable-gain amplifiers, filters, and other processing circuits can operate on the multiplexer output signals before they are applied to the ADC's S/H inputs. If external processing is not used, connect MUXOUT+ to S/H IN+ and MUXOUT - to S/H IN-.

### 6.0 Operational Information (Continued)



TL/H/11879-27
(a) The LM12\{L\}438


TL/H/11879-28
(b) The LM 12434

FIGURE 7. The LM12\{L\} 438 and LM12434 Functional Block Diagram (Programming Model)

## 6．0 Operational Information（Continued）

## Acquisition Time

The LM12434 and LM12\｛L\}438's internal S/H is designed to operate at its minimum acquisition time（1．125［1．5）$\mu \mathrm{s}$ for a 12 －bit + sign conversion）when the source imped－ ance，$R_{S}$ ，is less than or equal to $60\{80\} \Omega$（fclk $\leq 8$ \｛6\} MHz ）．When $60\{80\} \Omega<R_{S} \leq 4.17\{5.56\} \mathrm{k} \Omega$ ，the inter－ nal S／H＇s acquisition time can be increased to a maximum of $4.88\{6.5\} \mu \mathrm{s}\left(12+\right.$ sign bits， $\left.\mathrm{f}_{\mathrm{CLK}}=8\{6\} \mathrm{MHz}\right)$ to provide sufficient time for the sampling capacitor to charge． See Section 6．2．1（Instruction RAM＂00＂）Bits 12－15 for more information．

## Instruction Register

The INSTRUCTION RAM is divided into 8 separate words， each with $48(3 \times 16)$ bit length．Each word is separated into three 16 －bit sections．Each word has a unique address and different sections of the instruction word are selected by the 2－bit RAM pointer（RP）in the configuration register．As shown in Figure 7，the Instruction RAM sections are labeled Instructions，Limits \＃1 and Limits \＃2．The Instruction sec－ tion holds operational（12－bit + sign， 8 －bit + sign or watch－ dog）information such as the input channels to be selected， the mode of operation to be performed for each instruction， and the duration of the acquisition period．The other two sections are used in the watchdog mode and the user－ defined limits are stored in them．Each watchdog instruction has 2 limits associated with it（usually a low limit and a high limit，but two low limits or two high limits may be pro－ grammed instead）．The DAS starts executing from instruc－ tion 0 and moves through the next instructions up to any user－specified instruction and then＂loop back＂to instruc－ tion 0 ．It is not necessary to execute all 8 instructions in the instruction loop．The cycle may be repeatedly executed until stopped by the user．The processor should access the In－ struction RAM only when the instruction sequencer is stopped．

## FIFO Register

The FIFO Register stores the conversion results．This regis－ ter is＂Read only＂and all the locations are accessed through a single address．Each time a conversion is per－ formed the result is stored in the FIFO and the FIFO＇s inter－ nal write pointer points to the next location．The pointer rolls back to location 1 after a Write to location 32．The same flow occurs when reading from the FIFO．The internal FIFO Writes and the external FIFO Reads do not affect each oth－ er＇s pointer locations．

Microprocessor overhead is reduced through the use of the internal conversion FIFO．Thirty－two consecutive conver－ sions can be completed and stored in the FIFO without any microprocessor intervention．The microprocessor can，at any time，interrogate the FIFO and retrieve its contents．It can also wait for the LM12434 and LM12\｛L\}438 to issue an interrupt when the FIFO is full or after any number（ $\leq 32$ ）of conversions have been stored．

## Configuration Register

The CONFIGURATION Register is the main＂control panel＂ of the DAS．Writing is and 0s to the different bits of the Configuration Register commands the DAS start or stop the sequencer，reset the pointers and flags，go into＂standby＂ mode for low power consumption，calibrate offset and lin－ earity，and select sections of the RAM．

## Other Registers

The INTERRUPT ENABLE Register lets the user activate up to 7 sources for interrupt generation（refer to Section 6．2．3）． It also holds two user－programmable values．One is the number of conversions to be stored in the FIFO register before the generation of the Data Ready interrupt．The other value is the instruction number that generates an interrupt when the sequencer reaches that instruction．
The INTERRUPT STATUS and LIMIT STATUS Registers are＂Read only＂registers．They are used as vectors to indi－ cate which conditions have generated the interrupt and what watchdog limit boundaries have been passed．Note that the bits are set in the status registers upon occurrence of their corresponding interrupt conditions，regardless of whether the condition is enabled for external interrupt gen－ eration．
The TIMER Register can be programmed to insert a delay before execution of each instruction．A bit in the instruction register enables or disables the insertion of the delay before the execution of an instruction．

## Serial I／O

A very flexible serial synchronous interface is provided to facilitate reading from and writing to the LM12434 and LM12\｛L\}438's registers. The communication between the LM12434 and LM12\｛L\}438 and microcontrollers, microprocessors and other circuitry is accomplished through this serial interface．The serial interface is designed to directly communicate with the synchronous serial interfaces of the most popular microprocessors with no extra hardware re－ quirement．The interface has been also designed to simplify software development．

### 6.0 Operational Information (Continued)

Instruction RAM $\mathbf{R P}=10$   Limits \# 2	(Read/Write) $\mathbf{R P}=01$   Limits \# 1	$\mathbf{R P}=00$   Instructions
ADD $=0000$	ADD $=0000$	ADD $=0000$
ADD $=0001$	ADD $=0001$	ADD $=0001$
ADD $=0010$	ADD $=0010$	ADD $=0010$
ADD $=0011$	ADD $=001.1$	ADD $=0011$
ADD $=0100$	ADD $=0100$	ADD $=0100$
$A D D=0101$	$A D D=0101$	ADD $=0101$
$A D D=0110$	ADD $=0110^{\circ}$	$A D D=0110$
$A D D=0111$	$A D D=0111$	$A D D=0111$



CONFIGURATION REGISTER	(Read/Write)
	$A D D=1000$
	(Read/Write)
INTERRUPT ENABLE REGISTER	ADD $=1001$
	(Read Only)
INTERRUPT STATUS REGISTER	$A D D=1010$


TIMER REGISTER	(Read/Write)
	ADD $=1011$
$\cdots$	(Read Only)
CONVERSION FIFO	$A D D=1100$
(32 Locations, 1 address)	
	----------- -

(Read Only)
LIMIT STATUS REGISTER


FIGURE 8. LM12434 and LM12\{L\}438 User Accessible Registers

### 6.0 Operational Information (Continued)

### 6.2 INTERNAL USER-ACCESSIBLE REGISTERS

Figure 8 shows the LM12434 and LM12\{L\} 438 internal user accessible registers. Figure 9 shows the bit assignment for each register. All the registers are accessible through the serial interface bus. Following are the descriptions of the registers and their bit assignments.

### 6.2.1 Instruction RAM

The instruction RAM holds up to eight sequentially executable instructions. Each 48-bit long instruction is divided into three 16 -bit sections. READ and WRITE operations can be issued to each 16-bit section using the instruction's address and the 2-bit "RAM pointer" in the Configuration register. The eight instructions are located at addresses 0000 through 0111. They can be accessed and programmed in random order.

## Read/Write Operations

Any Instruction RAM READ or WRITE can affect the sequencer's operation.
Therefore, the Sequencer should be stopped by setting the RESET bit to a " 1 " or by resetting the START bit in the Configuration Register and waiting for the current instruction to finish execution before any Instruction RAM READ or WRITE is initiated.
A soft RESET should be issued by writing a " 1 " to the Configuration Register's RESET bit after any READ or WRITE to the Instruction RAM.
The three sections in the Instruction RAM are selected by the Configuration Register's 2-bit "RAM Pointer", bits D8 and D9. The first 16-bit Instruction RAM section is selected with the RAM Pointer equal to " 00 ". This section can be programmed for multiplexer channel selection, conversion resolution, watchdog mode operation, timer or external SYNC use, pause in instruction and loop bit as described later. The second 16 -bit section holds "watchdog" limit \#1, its sign, and a bit that determines whether an interrupt can be generated when the input is greater than or less than limit \#1. The third 16-bit section holds "watchdog" limit \#2, its sign, and the "greater than/less than" selection bit.

## Instruction RAM, Bank 1, RP $=00$

Bit $\mathbf{0}$ is the LOOP bit. After an instruction with Bit 0 set to a " 1 " is executed, the sequencer will loop back to instruction 0 . The next instruction to be executed will be instruction 0 .
Bit 1 is the PAUSE bit. When the PAUSE bit is set (" 1 "), the Sequencer will stop after reading the current instruction. The instruction will not execute at this point, and the START bit in the Configuration register will reset to " 0 ". Setting the PAUSE also causes an interrupt to be issued. The Sequencer is restarted by placing a " 1 " in the Configuration register's Bit 0 (Start bit).
After the Instruction RAM has been programmed and the RESET bit is set to " 1 ", the Sequencer retrieves Instruction 0 , decodes it, and waits for a " 1 " to be placed in the Configuration register's START bit. The START bit value of " 1 " "overrides" the action of Instruction 0's PAUSE bit when the Sequencer is started. Once started, the Sequencer executes Instruction 0 and retrieves, decodes, and executes
each of the remaining instructions. With the PAUSE bit set to " 1 " in instruction 0 , no PAUSE Interrupt (INT 5) is generated the first time the Sequencer executes Instruction 0. When the Sequencer encounters a LOOP bit or completes all eight instructions, Instruction 0 is retrieved and decoded. A set PAUSE bit in Instruction 0 now halts the Sequencer before the instruction is executed. If Pause $=0$, the instruction loop continues to execute.
Bits 2-4 select which of the eight input channels (INO-IN7) will be the non-inverting inputs to the LM12\{L\}438's ADC. (See Table III.) They select which of the four input channels (for INO-IN3) will be the non-inverting inputs to the LM12434's ADC. (See Table IV.)
Bits 5-7 select which of the seven input channels (IN1 to IN7) will be the inverting inputs to the LM12\{L\}438 ADC. (See Table III.) They select which of the three input channels (IN1-IN4) will be the inverting inputs to the LM12434's ADC. (See Table IV.) Fully differential operation is created by selecting two multiplexer channels, one non-inverting and the other inverting. A code of " 000 " selects ground as the inverting input for single ended operation.
Bit 8 is the SYNC bit. Setting Bit 8 to " 1 " causes the Sequencer to hold operation at the internal S/H's acquisition cycle and to wait until a rising edge appears at the SYNC pin. When a rising edge appears, the S/H goes into the "Hold" mode and the ADC begins to perform a conversion on the next rising edge of CLK. To make the SYNC pin serve as an input, the Configuration register's "SYNC I/O" bit (Bit 7) must be set to a " 0 ". With SYNC configured as an input, it is possible to synchronize the start of a conversion to external events. When SYNC pin is defined as an output (SYNC I/O bit $=1$ ) the SYNC bit in the instruction registers must not be set to 1 .
When the LM12434 and LM12\{L\}438 are used in the "watchdog" mode with external synchronization, two rising edges on the SYNC input are required to initiate the two comparisons that are performed during a watchdog instruction. The first rising edge initiates the comparison of the selected analog input signal with Limit \# 1 (found in Instruction RAM " 01 ") and the second rising edge initiates the comparison of the same analog input signal with Limit \#2 (found in Instruction RAM "10").
Bit 9 is the TIMER bit. When Bit 9 is set to " 1 ", the Sequencer will halt until the internal 16 -bit Timer counts down to zero. During this time interval, no "watchdog" comparisons or analog-to-digital conversions will be performed.
Bit 10 selects the ADC conversion resolution. Setting Bit 10 to " 1 " selects 8 -bit + sign and resetting to " 0 " selects 12 bit + sign.
Bit 11 is the "watchdog" comparison mode enable bit. When operating in the "watchdog" comparison mode, the selected analog input signal is compared with the programmable values stored in Limit \#1 and Limit \#2 (see Instruction RAM " 01 " and Instruction RAM " 10 "). Setting Bit 11 to "1" causes two comparisons of the selected analog input signal, one with each of the two stored limits. When Bit 11 is reset to " 0 ", an 8 -bit + sign or 12-bit + sign (depending on the state of Bit 10 of Instruction RAM ' 00 ") conversion of the input signal can take place.

### 6.0 Operational Information (Continued)

A4	A3	A2	A1	Purpose	Type	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0   0	0 $1$	$\begin{gathered} 0 \\ \text { to } \\ 1 \end{gathered}$		Instruction RAM   (RAM Pointer $=00$ )	R/W	Acquisition Time				Watchdog	8/12	Timer	Sync	$\begin{aligned} & \text { S/H IN- } \\ & \text { (MUXIN-)* } \end{aligned}$			$\begin{aligned} & \text { S/HIN+ } \\ & \text { (MUXIN+)* } \end{aligned}$			Pause	Loop
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0   1	$\begin{gathered} 0 \\ \text { to } \\ 1 \end{gathered}$		Instruction RAM   $($ RAM Pointer $=01)$	R/W	Don't Care						>/<	Sign	Limit \#1							
$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	0   1	$\begin{gathered} 0 \\ \text { to } \\ 1 \end{gathered}$		Instruction RAM   (RAM Pointer = 10)	R/W	Don't Care						>/<	Sign	Limit \# 2							
1	0	0	0	Configuration Register	R/W	Don't Care				DIAG ${ }^{+}$	$\begin{gathered} \text { Test } \\ =0 \end{gathered}$	RAM   Pointer		SYNC 1/0	A/Z Each Cycle	I/S	Stand-   by	Full CAL	Auto-   Zero	Reset	Start
1	0	0	1	Interrupt Enable Register	R/W	Number of Conversion Results in FIFO to Generate Interrupt (INT2)					Instruction   Number to   Generate   Interrupt (INT1)			INT7	X	INT5	INT4	INT3	INT2	INT1	INTO
1	0	1	0	Interrupt Status Register	R	Number of Unread Conversion Results in FIFO					Instruction   Number being Executed			INST7	X	INST5	INST4.	INST3	INST2	INST1	INSTO
1	0	1	1	Timer Register	R/W	Timer Preset High Byte								Timer Preset Low Byte							
1	1	0	0	Conversion FIFO	R		Instructio   Number   Extend   Sign		Sign	Conversion   Data: MSBs				Conversion Data: LSBs							
1	1	0	1	Limit Status Register	R	Limit \# 2: Status								Limit \#1; Status							

*LM12434 (Refer to Table IV).
†LM12\{L\}438 only. Must be set to " 0 " for the LM12434.
X No interrupt is associated with this bit. When programming the interrupt Enable Register, bit-6 is a don't care condition.
FIGURE 9. Bit Assignments for LM12434 and LM12\{L\}438 Internal Registers

### 6.0 Operational Information (Continued)

CONFIGURATION REGISTER (Read/Write):

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	Don't Care			Diag.	Test	RAM   Pointer		Sync I/O	A/Z Each Cycle	1/S	Standby	Full   Cal	$\begin{aligned} & \text { Auto } \\ & \text { Zero } \end{aligned}$	Reset	Start

DO: Start: 0 stops the instruction execution. 1 starts the instruction execution.
D1: Reset: When set to 1, resets Start bit; also resets all the bits in status registers and resets the instruction pointer to zero. D1 will then automatically reset itself to zero after 2 clock pulses.
D2: Auto-Zero: When set to 1 a long (8-cycle) auto-zero calibration cycle is performed.
D3: $\quad$ Full Calibration: When set to 1 a full calibration cycle (linearity and auto-zero) is performed.
D4: Standby: When set to 1 the chip goes to low-power standby mode. Resetting the bit will return the chip to active mode after a short delay.
D5: $\quad$ I/S: Instruction \# or extended sign. $0=$ Bits 13-15 of the conversion result hold the instruction number to which the result belongs; $1=$ Bits 13-15 of the result hold the extended sign bit.
D6: A/Z each Cycle: When set to 1 a short auto-zero cycle is performed before each conversion.
D7: $\quad$ Sync I/O: $0=$ Sync pin is input: $1=$ Sync pin is output.
D9-D8: RAM Pointer: Selects the sections of the instruction RAM, $00=$ Instruction, $01=$ Limits \#1, $10=$ Limits \#2.
D10: This bit is used for production testing and must be kept zero for normal operation.
D11: Diagnostic: When set to 1 , the LM12\{L\} 438 will perform a diagnostic conversion along with a properly selected instruction. This mode is not available on the LM12434.
D15-D12: Don't Care.
INSTRUCTION RAM (Read/Write):
Instruction:

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Acquisition Time			Watchdog	8/12	Timer	Sync	MUXIN -						MUXIN +		Pause

D0: Loop: $0=$ Go to next instruction; $1=$ Loop back to in instruction \#0.
D1: $\quad$ Pause: $0=$ No pause; $1=$ Pause; don't do the instruction. The start bit in the Configuration register resets to 0 when a pause encountered; a 1 written to the Start bit restarts the instruction execution.
D4-D2: MUXIN+: For the LM12\{L\}438, these bits select which input channel is connected to the ADC's non-inverting input. For the LM12434, they select which input channel is connected to MUXOUT+.
D7-D5: MUXIN-: For the LM12\{L\}438, these bits select which input channel is connected to the ADC's inverting input. For the LM12434, they select which input channel is connected to MUXOUT-.
D8: $\quad$ Sync: $0=$ Normal operation, internal timing, SYNC is an output. $1=$ SYNC is an input; S/H and conversion (comparison) timing are controlled by an external signal applied to SYNC pin.
D9: $\quad$ Timer: $0=$ Timer is not used for this instruction; 1 = Instruction execution does not begin until timer counts down to zero.
D10: $\quad 8 / 12: 0=12$-bit + sign resolution. $1=8$-bit + sign resolution.
D11: Watchdog: $0=$ Conventional conversion (no watchdog comparison); $1=$ Instruction performs watchdog comparisons.
D15-D12: Acquisition Time: Determines S/H acquisition time
For 12 -bit + sign: $(9+2 \mathrm{D})$ clock cycles. For 8 -bit + sign: $(2+2 \mathrm{D})$ clock cycles.
Where $\mathrm{D}=$ Contents of D15-D12.
For 12-bit + sign: Choose $D$ for $D \geq 0.45 \times R_{S}[k \Omega] \times f_{C L K}[M H z]$.
For 8 -bit + sign: Choose $D$ for $D \geq 0.36 \times R_{S}[k \Omega] \times f_{C L K}[M H z]$.
Where $\mathrm{R}_{\mathrm{S}}=$ Input source resistance.
FIGURE 9. Bit Assignments for LM12434 and LM12\{L\}438 Internal Registers (Continued)

### 6.0 Operational Information (Continued)

## INSTRUCTION RAM (Read/Write): (Continued)

Limits \#1 \& 2

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO
Don't Care						>/<	Sign	Limit							

D7-D0: Limit: 8-bit limit value.
D8: $\quad$ Sign: Sign of limit value, $0=$ Positive; $1=$ Negative.
D9: $\quad>/<$ : High Limit/Low limit. $0=$ Inputs lower than limit generate interrupt, $1=$ Inputs higher than limit generate interrupt.
D15-D10: Don't Care.

INTERRUPT ENABLE REGISTER (Read/Write):

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1
	Number of Conversion   Results in FIFO to   Generate Interrupt (INT2)		Instruction Number   to Generate   Interrupt (INT1)	INT7	X	INT5	INT4	INT3	INT2	INT1	INT0			

Bits \# 0 to 7 enable interrupt generation for the following conditions when the bit is set to 1.
DO: INTO: Generates an interrupt when a limit is passed in watchdog mode.
D1: INT1: Generates an interrupt when the sequencer has loaded the instruction number contained in bits D10, D9, and D8 of the Interrupt Enable register.
D2: INT2: Generates an interrupt when the number of conversion results in the FIFO is equal to the programmed value (D15-D11).
D3: INT3: Generates an interrupt when an auto-zero cycle is completed.
D4: INT4: Generates an interrupt when a full calibration cycle is completed.
D5: INT5: Generates an interrupt when a pause condition is encountered.
D6: This bit is a don't care condition. No interrupt is associated with this bit.
D7: INT7: Generates an interrupt when the chip is returned from standby and is ready for operation.
D10-D8: Programmable instruction number used to generate an interrupt when that instruction has been reached.
D15-D11: Programmable number of conversion results in the FIFO to generate an interrupt.

TIMER REGISTER (Read/Write):

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

The Timer delays the execution of an instruction if the Timer bit is set in that instruction.
The time delay is:
Delay $=(32 \times N)+2$ [Clock Cycles]
FIGURE 9. Bit Assignments for LM12434 and LM12\{L\}438 Internal Registers (Continued)

### 6.0 Operational Information (Continued)

FIFO REGISTER (Read only):

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Instruction Number or Extended Sign			Sign	Conversion Result											

D11-D0: Conversion Result:
For 12-bit + sign: 12-bit result value
For 8 -bit + sign: D11-D4 $=$ result value, $D 3-D 0=1110$
D12: $\quad$ Sign: Conversion result sign bit, $0=$ Positive, $1=$ Negative
D15-D13: Instruction number associated with the conversion result or the extended sign bit for 2's complement arithmetic, selected by bit D5 (Channel Mask) of the Configuration register.

INTERRUPT STATUS REGISTER (Read only):

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Number of Unread Results in FIFO					Instruction Number Being Executed			INST7	X	INST5	INST4	INST3	INST2	INST1	INSTO

Bits \#0 to 7 are interrupt flags (vectors) that will be set to 1 when the following conditions occur. The bits are set to 1 whether the interrupt is enabled or disabled in the Interrupt Enable register. The bits are reset to 0 when the register is read, or by a device reset through the Configuration register.
DO: INSTO: Is set to 1 when a limit is passed in watchdog mode.
D1: INST1: Is set to 1 when the sequencer has loaded the instruction number contained in bits D10, D9, and D8 of the Interrupt Enable register.
D2: INST2: Is set to 1 when number of conversion results in FIFO is equal to the programmed value (D15-D11) in the Interrupt Enable Register.
D3: $\quad$ INST3: Is set to 1 when an auto-zero cycle is completed.
D4: INST4: Is set to 1 when a full calibraton cycle is completed.
D5: INST5: Is set to 1 when a pause condition is encountered.
D6: Don't care.
D7: INST7: Is set to 1 when the chip is returned from standby and is ready.
D10-D8: Holds the instruction number presently being executed or will be executed following a Pause or Timer delay.
D15-D11: Holds the number of conversion results that have been put in the FIFO but that have not yet been read by the user.
LIMIT STATUS REGISTER (Read only):

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Limit \#2: Status								Limit \# 1: Status							

The bits in this register are limit flags (vectors) that will be set to 1 when a limit is passed. The bits are associated to individual instruction limits as indicated below.
DO: Limit \#1 of Instruction \#0 is passed.
D1: Limit \#1 of Instruction \#1 is passed.
D2: Limit \#1 of Instruction \#2 is passed.
D3: Limit \#1 of Instruction \#3 is passed.
D4: Limit \#1 of Instruction \#4 is passed.
D5: Limit \#1 of Instruction \#5 is passed.
D6: Limit \#1 of Instruction \#6 is passed.
D7: Limit \# 1 of Instruction \#7 is passed.
D8: Limit \#2 of Instruction \#0 is passed.
D9: Limit \#2 of Instruction \#1 is passed.
D10: Limit \#2 of Instruction \#2 is passed.
D11: Limit \#2 of Instruction \#3 is passed.
D12: Limit \# 2 of Instruction \#4 is passed.
D13: Limit \#2 of Instruction \#5 is passed.
D14: Limit \# 2 of Instruction \#6 is passed.
D15: Limit \#2 of Instruction \#7 is passed.
FIGURE 9. BIt Assignments for LM12434 and LM12\{L\}438 Internal Registers (Continued)

### 6.0 Operational Information (Continued)

Bits 12-15 store the user-programmable acquisition time. The Sequencer keeps the internal $\mathrm{S} / \mathrm{H}$ in the acquisition mode for a fixed number of clock cycles (nine clock cycles, for 12 -bit + sign conversions and two clock cycles for 8 -bit + sign conversions or "watchdog" comparisons) plus a variable number of clock cycles equal to twice the value stored in Bits 12-15. Thus, the S/H's acquisition time is (9 +2 D ) clock cycles for 12-bit + sign conversions and ( $2+$ 2D) clock cycles for 8-bit + sign conversions or "watchdog" comparisons, where D is the value stored in Bits 1215. The minimum acquisition time compensates for the typical internal multiplexer series resistance of $2 \mathrm{k} \Omega$, and any additional delay created by Bits 12-15 compensates for source resistances greater than $60 \Omega\{80 \Omega\}$. The necessary acquisition time is determined by the source impedance at the multiplexer input. If the source resistance $\mathrm{R}_{\mathrm{S}}<60 \Omega$ and the clock frequency is 8 MHz , the value stored in bits 12-15 (D) can be 0000. If $R_{S}>60 \Omega$, the following equations determine the value that should be stored in bits 12-15.

$$
\text { for 12-bits }+\operatorname{sign} \begin{aligned}
D & =0.45 \times R_{S} \times f_{C L K} \\
D & =0.36 \times R_{S} \times f_{C L K}
\end{aligned}
$$

for 8 -bits + sign and "watchdog"
$R_{S}$ is in $k \Omega$ and $f_{C L K}$ is in MHz . Round the result to the next higher integer value. If the value of 0 obtained from the expressions above is greater than 15 , it is advisable to lower the source impedance by using an analog buffer between the signal source and the LM12\{L\}438's multiplexer inputs. The value of $D$ can also be used to compensate for the settling or response time of external processing circuits connected between the LM12434's MUXOUT and S/H IN pins.

## Instruction RAM, Bank 2 RP = 01

The second Instruction RAM section is selected by placing " 01 " in Bits 8 and 9 of the Configuration register.
Bits 0-7 hold "watchdog" limit \#1. When Bit 11 of Instruction RAM " 00 " is set to a " 1 ", the LM12434 and LM12\{L\}438 performs a "watchdog" comparison of the sampled analog input signal with the limit \#1 value first, followed by a comparison of the same sampled analog input signal with the value found in limit \#2 (Instruction RAM "10").
Bit 8 holds limit \#1's sign.
Bit 9's state determines the limit condition that generates a "watchdog" interrupt. A " 1 " causes a voltage greater than limit \#1 to generate an interrupt, while a " 0 " causes a voltage less than limit \#1 to generate an interrupt.
Bits 10-15 are not used.
Instruction RAM, Bank 3, RP = $\mathbf{1 0}$
The third Instruction RAM section is selected by placing " 10 " in Bits 8 and 9 of the Configuration register.
Bits 0-7 hold "watchdog" limit \#2. When Bit 11 of Instruction RAM " 00 " is set to a " 1 ", the LM12434 and LM12\{L\}438 performs a "watchdog" comparison of the sampled analog input signal with the limit \#1 value first (lnstruction RAM " 01 "), followed by a comparison of the same sampled analog input signal with the value found in limit \#2. Bit 8 holds limit \#2's sign.
Bit 9's state determines the limit condition that generates a "watchdog" interrupt. A "1" causes a voltage greater than limit \#2 to generate an interrupt, while a " 0 " causes a voltage less than limit \#2 to generate an interrupt.
Bits 10-15 are not used.

TABLE III. LM12\{L\}438 Operating Mode Input Channel Selection through Input Multiplexer

Normal Operating Mode				
Non-Inverting Input   Channel Selection Bits   in Instruction Register   D4, D3, D2	Input Channel to Be   Connected to A/D   Non-Inverting Input   (IN+)	Inverting Input   Channel Selection Bits   in Instruction Register   D7, D6, D5	Input Channel to Be   Connected to A/D   Inverting Input   (IN-)	
000	IN0	000	GND	
001	IN1	001	IN1	
010	IN2	010	IN2	
011	IN3	011	IN3	
100	IN4	100	IN4	
101	IN5	101	IN5	
110	IN6	110	IN6	
111	IN7	111	IN7	

### 6.0 Operational Information (Continued)

TABLE IV. LM12434 Input Channel Selection through Input Multiplexer
Normal Operating Mode

Non-Inverting Input   Channel Selection Bits   in Instruction Register   D4, D3, D2	Input Channel to Be   Connected to MUX   Non-Inverting Output   (MUXOUT+)	Inverting Input   Channel Selection Bits   in Instruction Register   D7, D6, D5	Input Channel to Be   Connected to MUX   Inverting Output   (MUXOUT-)
000	IN0	000	GND
001	IN1	001	IN1
010	IN2	010	IN2
011	IN3	011	IN3
$1 X X$	None	$1 X X$	None

TABLE V. LM12\{L\}438 Diagnostic Mode Input Channel Selection through Input Multiplexer

Diagnostic Mode			
Non-Inverting Input Channel Selection Bits in Instruction Register D4, D3, D2	Input Channel to Be Connected to A/D Non-Inverting Input (IN+)	Inverting Input Channel Selection Bits in Instruction Register D7, D6, D5	Input Channel to Be Connected to A/D Inverting Input ( $\mathrm{IN}^{-}$)
000	None	000	None
001	$\mathrm{V}_{\text {REF }}{ }^{+}$	001	$\mathrm{V}_{\text {REF }}{ }^{-}$
010	IN2	010	IN2
011	IN3	011	IN3
100	IN4	100	IN4
101	IN5	101	IN5
110	IN6	110	IN6
111	IN7	111	IN7

### 6.0 Operational Information (Continued)

### 6.2.2 Configuration Register

The Configuration register is a 16 -bit control register with read/write capability. It acts as the LM12434's and LM12\{L\}438's "control panel" holding global information as well as start/stop, reset, self-calibration, and stand-by commands.
Bit 0 is the START/STOP bit. Reading Bit 0 returns an indication of the Sequencer's status. A " 0 " indicates that the Sequencer is stopped and waiting to execute the next instruction. $A$ " 1 " shows that the Sequencer is running. Writing a " 0 " halts the Sequencer when the current instruction has finished execution. The next instruction to be executed is pointed to by the instruction pointer found in the status register. Writing a " 1 " to Bit 0 restarts the Sequencer with the instruction currently pointed to by the instruction pointer. (See Bits 8-10 in the Interrupt Status register.)
Bit 1 is the DAS' system RESET bit. Writing a " 1 " to Bit 1 stops the Sequencer (resetting the Configuration register's START/STOP bit), resets the Instruction pointer to "000" (found in the Interrupt Status register), clears the Conversion FIFO, and resets all interrupt flags. The RESET bit will return to " 0 " after two clock cycles unless it is forced high by writing a " 1 " into the Configuration register's Standby bit. A reset signal is internally generated when power is first applied to the part. No operation should be started until the RESET bit is " 0 ".
Bit 2 is the auto-zero bit. Writing a " 1 " to this bit initiates an auto-zero offset voltage calibration. Unlike the eight-sample auto-zero calibration performed during the full calibration procedure, Bit 2 initiates a "short" auto-zero by sampling the offset once and creating a correction coefficient (full calibration averages eight samples of the converter offset voltage when creating a correction coefficient). If the $\mathrm{Se}-$ quencer is running when Bit 2 is set to " 1 ", an auto-zero starts immediately after the conclusion of the currently running instruction. Bit 2 is reset automatically to a " 0 " and an interrupt flag (Bit 3, in the Interrupt Status register) is set at the end of the auto-zero ( 76 clock cycles). After completion of an auto-zero calibration, the Sequencer fetches the next instruction as pointed to by the Instruction RAM's pointer and resumes execution. If the Sequencer is stopped, an auto-zero is performed immediately at the time requested.
Bit 3 is the calibration bit. Writing a " 1 " to this bit initiates a complete calibration process that includes a "long" autozero offset voltage correction (this calibration averages eight samples of the comparator offset voltage when creating a correction coefficient) followed by an ADC linearity calibration. This complete calibration is started after the currently running instruction is completed if the Sequencer is running when Bit 3 is set to " 1 ". Bit 3 is reset automatically to a " 0 " and an interrupt flag (Bit 4, in the Interrupt Status register) will be generated at the end of the calibration procedure ( 4944 clock cycles). After completion of a full autozero and linearity calibration, the Sequencer fetches the next instruction as pointed to by the Instruction RAM's pointer and resumes execution. If the Sequencer is stopped, a full calibration is performed immediately at the time requested.
Bit 4 is the Standby bit. Writing a " 1 " to Bit 4 immediately places the DAS in Standby mode. Normal operation returns when Bit 4 is reset to a " 0 ". The Standby command (" 1 ") disconnects the external clock from the internal circuitry, decreases the LM12434 and LM12\{L\}438's internal
analog circuitry power supply current, and preserves all internal RAM contents. After writing a " 0 " to the Standby bit, the DAS returns to an operating state identical to that caused by exercising the RESET bit. A Standby completion interrupt is issued after a power-up delay to allow the analog circuitry to settle. The Sequencer should be restarted only after the Standby completion interrupt is issued (see Note 22). The Instruction RAM can still be accessed through read and write operations while the LM12434 and LM12\{L\}438 are in Standby Mode.
Bit 5 is the Channel Address Mask. If Bit 5 is set to a " 1 ", Bits 13-15 in the conversion FIFO will be equal to the sign bit (Bit 12) of the conversion data. Resetting Bit 5 to a " 0 " causes conversion data Bits 13 through 15 to hold the instruction pointer value of the instruction to which the conversion data belongs.
Bit 6 selects a "short" auto-zero correction for every conversion. The Sequencer automatically inserts an auto-zero before every conversion or "watchdog" comparison if Bit 6 is set to " 1 ". No automatic correction will be performed if Bit 6 is reset to " 0 ".
The DAS' offset voltage, after calibration, has a typical drift of 0.1 LSB over a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. This small drift is less than the variability of the change in offset that can occur when using the auto-zero correction with each conversion. This variability is the result of using only one sample of the offset voltage to create a correction value. This variability decreases when using the full calibration mode because eight samples of the offset voltage are taken, averaged, and used to create a correction value. Therefore, it is recommended that this mode not be used.
Bit 7 programs the SYNC pin (29) to operate as either an input or an output. The SYNC pin becomes an output when Bit 7 is a " 1 " and an input when Bit 7 is a " 0 ". With SYNC programmed as an input, the rising edge of any logic signal applied to pin 29 will start a conversion or "watchdog" comparison. Programmed as an output, the logic level at pin 29 will go high at the start of a conversion or "watchdog" comparison and remain high until either have finished. See Instruction RAM " 00 ", Bit 8.
Bits 8 and 9 form the RAM Pointer that is used to select each of a 48 -bit instruction's three 16 -bit sections during read or write actions. A " 00 " selects Instruction RAM section one, " 01 " selects section two, and " 10 " selects section three.
Bit 10 activates the Test mode that is used only during production testing. Always write " 0 " in this bit when programming the Instruction Register.
Bit 11 is the Diagnostic bit and is available only in the LM12\{L\}438. It can be activated by setting it to a " 1 ". The Diagnostic mode, along with a properly chosen instruction, allows verification that the LM12\{L\}438's ADC is performing correctly. When activated, the inverting and non-inverting inputs are connected as shown in Table V. As an example, an instruction with "001" for both $\operatorname{IN}+$ and $\operatorname{IN}$ - while using the Diagnostic mode typically results in a full-scale output.

### 6.2.3 Interrupts

The LM12434 and LM12\{L\}438 have seven possible interrupts, all with the same priority. Any of these interrupts will cause a hardware interrupt to appear on the INT pin (31) if

## 6．0 Operational Information（Continued）

they are not masked（by the Interrupt Enable register）．The Interrupt Status register is then read to determine which of the seven interrupts has been issued．
The Interrupt Status register must be cleared by reading it after writing to the Interrupt Enable register．This removes any spurious interrupts on the INT pin generated during an Interrupt Enable register access．
Interrupt $\mathbf{0}$ is generated whenever the analog input voltage on a selected multiplexer channel crosses a limit while the LM12434 and LM12\｛L\}438 are operating in the "watchdog＂comparison mode．Two sequential comparisons are made when the LM12434 and LM12 L$\} 438$ are executing a ＂watchdog＂instruction．Depending on the logic state of Bit 9 in the Instruction RAM＇s second and third sections，an interrupt will be generated either when the input signal＇s magnitude is greater than or less than the programmable limits．（See the Instruction RAM，Bit 9 description．）The Limit Status register will indicate which preprogrammed limit（\＃1 or \＃2）was crossed，and which instruction was executing when the limit was crossed．
Interrupt 1 is generated when the Sequencer reaches the instruction counter value specified in the Interrupt Enable register＇s bits $8-10$ ．This flag appears before the instruc－ tion＇s execution．Instructions continue to execute as pro－ grammed．
Interrupt 2 is activated when the Conversion FIFO holds a number of conversions equal to the programmable value stored in the Interrupt Enable register＇s Bits 11－15．This value ranges from 00000 to 11111，with 00001 to 11111 representing 1 to 31 conversions stored in the FIFO，and 00000 generating an interrupt after 32 conversions．See Section 6．2．8 for more FIFO information．
The completion of the short，single－sampled auto－zero cali－ bration generates Interrupt 3.
The completion of a full auto－zero and linearity self－calibra－ tion generates Interrupt 4.
Interrupt 5 is generated when the Sequencer encounters an instruction that has its Pause bit（Bit 1 in Instruction RAM ＂ 00 ＂）set to＂ 1 ＂．
Interrupt 7 is issued after a short delay（ 10 ms typ）while the DAS returns from Standby mode to active operation us－ ing the Configuration register＇s Bit 4．This short delay allows the internal analog circuitry to settle sufficiently，ensuring accurate conversion results（see Note 22）．

## 6．2．4 Interrupt Enable Register

The Interrupt Enable register at address location 1001 has READ／WRITE capability．An individual interrupt＇s ability to produce an external interrupt at pin 31 （INT）is accom－ plished by placing a＂ 1 ＂in the appropriate bit location．Any of the internal interrupt－producing operations will set their corresponding bits to＂ 1 ＂in the Interrupt Status register re－ gardless of the state of the associated bit in the Interrupt Enable register．See Section 2.3 for more information about each of the eight internal interrupts．
Bit 0 enables an external interrupt when an internal＂watch－ dog＂comparison limit interrupt has taken place．
Bit 1 enables an external interrupt when the Sequencer has reached the address stored in Bits 8－10 of the Interrupt Enable register．
Bit 2 enables an external interrupt when the Conversion FIFO＇s limit，stored in Bits 11－15 of the Interrupt Enable register，has been reached．

Bit 3 enables an external interrupt when the single－sampled auto－zero calibration has been completed．
Bit 4 enables an external interrupt when a full auto－zero and linearity self－calibration has been completed．
Bit 5 enables an external interrupt when an internal Pause interrupt has been generated．
Bit 6 don＇t care condition．
Bit 7 enables an external interrupt when the LM12434 and LM12\｛L\}438 returns from standby to active mode (see Note 22）．
Bits 8－10 form the storage location of the user－programma－ ble value against which the Sequencer＇s address is com－ pared．When the Sequencer reaches an address that is equal to the value stored in Bits 8－10，an internal interrupt is generated and appears in Bit 1 of the Interrupt Status register．If Bit 1 of the Interrupt Enable register is set to＂ 1 ＂， an external interrupt will appear at pin 31 （INT）．
The value stored in bits $8-10$ ranges from 000 to 111，rep－ resenting 1 to 8 instructions stored in the Instruction RAM． After the Instruction RAM has been programmed and the RESET bit is set to＂ 1 ＂，the Sequencer is started by placing a＂ 1 ＂in the Configuration register＇s START bit．Setting the INT 1 trigger value to 000 does not generate an INT 1 the first time the Sequencer retrieves and decodes Instruction 000．The Sequencer generates INT 1 （by placing a＂ 1 ＂in the Interrupt Status register＇s Bit 1）the second time and every subsequent time that the Sequencer encounters in－ struction 000．It is important to remember that the Sequenc－ er continues to operate even if an Instruction interrupt（INT 1）is internally or externally generated．The only mecha－ nisms that stop the Sequencer are an instruction with the PAUSE bit set to＂ 1 ＂（halts before instruction execution）， placing a＂ 0 ＂in the Configuration register＇s START bit，or placing a＂ 1 ＂in the Contiguration register＇s RESET bit．
Bits 11－15 hold the number of conversions that must be stored in the Conversion FIFO in order to generate an inter－ nal interrupt．This internal interrupt appears in Bit 2 of the Interrupt Status register．If Bit 2 of the Interrupt Enable reg－ ister is set to＂ 1 ＂，an external interrupt will appear at pin 31 （INT）．

## 6．2．5 Interrupt Status Register

This read－only register is located at address 1010．The cor－ responding flag in the Interrupt Status register goes high （＂1＂）any time that an interrupt condition takes place， whether an interrupt is enabled or disabled in the Interrupt Enable register．Any of the active（＂ 1 ＂）Interrupt Status reg－ ister flags are reset to＂ 0 ＂whenever this register is read or a device reset is issued（see Bit 1 in the Configuration Reg－ ister）．
Bit 0 is set to＂ 1 ＂when a＂watchdog＂comparison limit interrupt has taken place．
Bit 1 is set to＂ 1 ＂when the Sequencer has reached the address stored in Bits 8－10 of the Interrupt Enable register．
Bit 2 is set to＂ 1 ＂when the Conversion FIFO＇s limit，stored in Bits 11－15 of the Interrupt Enable register，has been reached．
Bit 3 is set to＂ 1 ＂when the single－sampled auto－zero has been completed．
Bit 4 is set to＂ 1 ＂when an auto－zero and full linearity self－ calibration has been completed．
Bit 5 is set to＂ 1 ＂when a Pause interrupt has been generat－ ed．

### 6.0 Operational Information (Continued)

Bit 6 no interrupt is associated with this bit. Don't care condition.
Bit 7 is set to " 1 " when the DAS returns from standby to active mode (see Note 22).
Bits 8-10 hold the Sequencer's current instruction number while it is running.
Bits 11-15 hold the current number of conversion results stored in FIFO but have not been read by the user. After each conversion, the result will be stored in the FIFO and the contents of these bits incremented by one. Each single read from FIFO decrements the contents of these bits by one. If more than 32 conversion results being stored in FIFO the numbers on these bits roll over from "11111" to " 00000 " and continue incrementing. If reads are performed from FIFO more than the number of conversions stored in it, the contents of these bits roll back from " 00000 " to "11111" and continue decrementing.

### 6.2.6 Limit Status Register

This read-only register is located at address 1101. This register is used in tandem with the Limit \#1 and Limit \#2 registers in the Instruction RAM. Whenever a given instruction's input voltage exceeds the limit set in its corresponding Limit register (\#1 or \#2) a bit corresponding to the instruction number is set in the Limit Status register. Any of the active (" 1 ") Limit Status flags are reset to " 0 " whenever this register is read or a device reset is issued (see Bit 1 in the Configuration register). This register holds the status of limits \#1 and \#2 for each of the eight instructions.
Bits 0-7 show the Limit \#1 status. Each bit will be set high (" 1 ") when the corresponding instruction's input voltage exceeds the threshold stored in the instruction's Limit \#1 register. When, for example, instruction 3 is a "watchdog" operation (Bit 11 is set high) and the input for instruction 3 meets the magnitude and/or polarity data stored in instruction 3's Limit \#1 register, Bit 3 in the Limit Status register will be set to a " 1 ".
Bits 8-15 show the Limit \#2 status. Each bit will be set high (" 1 ") when the corresponding instruction's input voltage exceeds the threshold stored in the instruction's Limit \#2 register. When, for example, the input to instruction 6 meets the value stored in instruction 6's Limit \#2 register, Bit 14 in the Limit Status register will be set to a " 1 ".

### 6.2.7 Timer

The LM12434 and LM12\{L\} 438 have an on-board 16-bit timer that includes a 5-bit pre-scaler. It uses the clock signal applied to pin 23 as its input. It can generate time intervals of 0 through $2^{21}$ clock cycles in steps of $2^{5}$. This time interval can be used to delay the execution of instructions. It can also be used to slow the conversion rate when converting slowly changing signals. This can reduce the amount of redundant data stored in the FIFO and retrieved by the controller.
The user-defined timing value used by the Timer is stored in the 16-bit READ/WRITE Timer register at location 1011 and is pre-loaded automatically. Bits $0-7$ hold the preset value's low byte and Bits $8-15$ hold the high byte. The Timer is
activated by the Sequencer only if the current instruction's Bit 9 is set (" 1 "). If the equivalent decimal value " $N$ " ( $0 \leq \mathrm{N} \leq 2^{16-1}$ ) is written inside the 16-bit Timer register and the Timer is enabled by setting an instruction's bit 9 to a " 1 ", the Sequencer will delay that instruction's execution by halting at state 3 (S3), as shown in Figure 11, for $32 \times \mathrm{N}+$ 2 clock cycles.

### 6.2.8 FIFO

The result of each conversion is stored in an internal readonly FIFO (First-In, First-Out) register. It is located at address 1100. This register has 32 16-bit wide locations. Each location holds 13 bits of conversion data. Bits 0-3 hold the four LSBs in the 12 bits + sign mode or " 1110 " in the 8 bits + sign mode. Bits $4-11$ hold the eight MSBs and Bit 12 holds the sign bit. Bits 13-15 can hold either the sign bit, extending the register's two's complement data format to a full sixteen bits or the instruction address that generated the conversion and the resulting data. These modes are selected according to the logic state of the Configuration register's Bit 5.
The FIFO status should be read in the Interrupt Status register (Bits 11-15) to determine the number of conversion results that are held in the FIFO before retrieving them. This will help prevent conversion data corruption that may take place if the number of reads are greater than the number of conversion results contained in the FIFO. Trying to read the FIFO when it is empty may corrupt new data being written into the FIFO. Writing more than 32 conversion results into the FIFO by the ADC results in loss of the first conversion results. Therefore, to prevent data loss, it is recommended that the LM12434 and LM12\{L\}438's interrupt capability be used to inform the system controller that the FIFO is full.
Bits 0-12 hold 12-bit + sign conversion data. Bits 0-3 will be 1110 when using 8 -bit plus sign resolution.
Bits 13-15 hold either the instruction responsible for the associated conversion data or the sign bit. Either mode is selected with Bit 5 in the Configuration register.
Using the FIFO's full depth is achieved as follows. Set the value of the Interrupt Enable registers's Bits 11-15 to 00000 and the Interrupt Enable register's Bit 2 to a " 1 ". This generates an external interrupt when the 31st conversion is stored in the FIFO. This gives the host processor a chance to send a " 0 " to the LM12434 and LM12\{L\}438's Start bit (Configuration register) and halt the ADC before it completes the 32nd conversion. The Sequencer halts after the current (32) conversion is completed. The conversion data is then transferred to the FIFO and occupies the 32nd location. FIFO overflow is avoided if the Sequencer is halted before the start of the 32nd conversion by placing a " 0 " in the Start bit (Configuration register). It is important to remember that the Sequencer continues to operate even if a FIFO interrupt (INT 2) is internally or externally generated. The only mechanisms that stop the Sequencer are an instruction with the PAUSE bit set to " 1 " (halts before instruction execution), placing a " 0 " in the Configuration register's START bit, or placing a " 1 " in the Configuration register's RESET bit.

## 6．0 Operational Information（Continued）

### 6.3 INSTRUCTION SEQUENCER

The Sequencer uses a 3－bit counter（Instruction Pointer，or IP）to retrieve the programmable conversion instructions stored in the Instruction RAM．The counter is reset to 000 during chip reset or if the current executed instruction has its Loop bit（Bit 1 in any Instruction RAM＂ 00 ＂）set high （＂ 1 ＂）．It increments at the end of the currently executed instruction and points to the next instruction．It will continue to increment up to 111 unless an instruction＇s Loop bit is set．If this bit is set，the counter resets to＂ 000 ＂and execu－ tion begins again with the first instruction．If all instructions have their Loop bit reset to＂ 0 ＂，the Sequencer will execute all eight instructions continuously．Therefore，it is important to realize that if less than eight instructions are pro－ grammed，the Loop bit on the last instruction must be set． Leaving this bit reset to＂ 0 ＂allows the Sequencer to exe－ cute＂unprogrammed＂instructions，the results of which may be unpredictable．
The Sequencer＇s Instruction Pointer value is readable at any time and is found in the Status register at Bits 8－10 Figure 10 illustrates the instruction execution flow as per－ formed by the sequencer．The Sequencer can go through eight states during instruction execution：

State 0：The current instruction＇s first 16 bits are read from the Instruction RAM＂ 00 ＂．This state is one clock cycle long．

State 1：Checks the state of the Calibration and Start bits． This is the＂rest＂state whenever the Sequencer is stopped using the reset，a Pause command，or the Start bit is reset low（＂ 0 ＂）．When the Start bit is set to a＂ 1 ＂，this state is one clock cycle long．

State 2：Perform calibration．If bit 2 or bit 6 of the Configu－ ration register is set to a＂ 1 ＂，state 2 is 76 clock cycles long． If the Configuration register＇s bit 3 is set to a＂ 1 ＂，state 2 is 4944 clock cycles long．

State 3：Run the internal 16 －bit Timer．The number of clock cycles for this state varies according to the value stored in the Timer register．The number of clock cycles is found by using the expression below

$$
32 T+2
$$

where $0 \leq T \leq 2^{16}-1$ ．
State 7：Sample the input signal and read Limit \＃1＇s val－ ue if needed．The number of clock cycles for acquiring the input signal in the 12－bit + sign mode varies according to

$$
9+2 D
$$

where D is the user－programmable 4－bit value stored in bits $12-15$ of Instruction RAM＂ 00 ＂and is limited to $0 \leq D \leq$ 15.

The number of clock cycles for acquiring the input signal in the 8 －bit + sign or＂watchdog＂mode varies according to

$$
2+2 D
$$

State 6：Perform first watchdog comparison．This state is 5 clock cycles long．
State 4：Read Limit \＃2．This state is 1 clock cycle long．
State 5：Perform a conversion or second watchdog com－ parison．This state takes 44 clock cycles for a 12－bit + sign conversions or 21 clock cycles for a 8 －bit + sign conver－ sions．The＂watchdog＂comparison mode takes 5 clock cy－ cles．
6.0 Operational Information (Continued)


## 7．0 Digital Interface

In order to read from or write to the registers of the LM12434 and LM12\｛L\}438 a very flexible serial synchronous interface is provided．Communication between the LM12434 and LM12\｛L\}438 and microcontrollers, microprocessors and other circuitry is accomplished through this serial interface．The serial interface is designed to directly communicate with synchronous serial interface of the most popular microprocessors and $\mathrm{I}^{2} \mathrm{C}$ serial protocol with no ad－ ditional hardware required．The interface has been also de－ signed to accommodate easy and straightforward software programming．

The LM12434 and LM12（L）438 supports four selectable protocols as shown in Table VI．The MODESEL1 and MODESEL2 inputs select the desired protocol．These pins are normally hardwired for a selected protocol，but they can also be controlled by the system in case a protocol change within the system is required．P1－P5 are multi－function seri－ al interface input or output pins that have different assign－ ments depending on the selected interface mode．
The＂Standard＂interface mode uses a simple shift register type of serial data transfer．It supports several microcontrol－ lers＇serial synchronous protocols，including：National Semi－ conductor＇s MICROWIRE／PLUS，Motorola＇s SPI，QSPI，and Hitachi＇s synchronous SCI．Section 7．1．1 shows general block diagrams of how the serial DAS，configured in the Standard Interface Mode，can be connected to the HPC and 68 HC 11 ．Also，detailed assembly routines are included for single writes，single reads and burst read operations．
The＂8051＂mode supports the synchronous serial interface of the 8051 family of microcontrollers（ 8051 serial interface Mode 0）．It is also compatible with the serial interface in the MCS－96 family of 16－bit microcontrollers．Section 7．2．1 shows a general block diagram of how the serial DAS，con－ figured in the 8051 Interface Modes can be connected to the 8051 family of $\mu \mathrm{Cs}$ ．Also，detailed assembly routines for a single write，single read and burst read operations are included．
The＂TMS320＂mode is designed to directly interact with the serial interface of the TMS320C3x and TMS320C5x families of digital signal processors．This interface is also compatible with the similar serial interfaces on the DSP56000 and the ADSP2100 families of DSP processors． Section 7．3．1 shows a general block diagram of how the serial DAS，configured in the TMS320 interface mode，can be connected to the TMS320C3x family of DSP processors． Also，detailed assembly routines for a single write，single read and burst read operations are included．

The＂${ }^{2}$ C＇＂mode supports the Philips＇${ }^{2} \mathrm{C}$ bus specification for both the standard（ 100 kHz maximum data rate）and the fast（ 400 kHz maximum data rate）modes of operation．The DAS behaves as a slave device on the $\mathrm{I}^{2} \mathrm{C}$ bus and receives and transmits the information under the control of a bus master．Section 7．4．1 shows a general block diagram of how the serial DAS，configured in the $I^{2} \mathrm{C}$ Interface mode， can be connected to an $I^{2} \mathrm{C}$ bus using an $1^{2} \mathrm{C}$ controller （PCD8584）．
All the serial interface modes allow for three basic types of data transfer；these are single write，single read and burst read．In a single write or read， 16 bits（2 bytes）of data is written to or read from one of the registers inside the DAS． In a burst read，multiple reads are performed from one regis－ ter without having to repeatedly send the control and regis－ ter address information for each read．The burst read can be performed on any LM12434 and LM12\｛L\}438's register, however it is primarily provided for multiple reads from the FIFO register（one address， 32 locations），where a se－ quence of conversion results is stored．

## 7．1 STANDARD INTERFACE MODE

The standard interface mode is a simple shift register type of serial data transfer．The serial clock synchronizes the transfer of data to and from the LM12434 and LM12\｛L\} 438. The interface uses 4 lines： 2 data lines（ DI and DO），a serial clock line（SCLK）and a chip－select（CS）line．More than one device can share the data and serial clock lines provided that each device has its own chip－select line．

The LM12434 and LM12\｛L\}438 standard mode is selected when the MODESEL1 and MODESEL2 pins have the logic state of＂ 01 ＂．Figure 12 shows a typical connection diagram for the LM12434 and LM12\｛L\}438 standard mode serial interface．The CS，DI，DO，and SCLK lines are respectively assigned to interface pins P2 through P5．The P1 pin is assigned to a signal called R／F（Rise／Fall）．The logic level on this pin specifies the polarity of the serial clock：
－If R／F＝1，data is shifted after falling edge and is stable and captured at the rising edge of the SCLK．
－If $R / F=0$ ，data is shifted after rising edge and is stable and captured at the falling edge of the SCLK．

### 7.0 Digital Interface (Continued)

In both cases the data transfer is insensitive to idle state of the SCLK. SCLK can stay at either logic level high or low when not clocking (see Figure 11)
Data transfer in this mode is basically byte-oriented. This is compatible with the serial interface of the target microcontrollers and microprocessors. As mentioned, the LM12434 and LM12\{L\}438 have three different communication cycles: write cycle, read cycle and burst read cycle. At the start of each data transfer cycle, "command byte" is written to the serial DAS, followed by write or read data. The command byte informs the LM12434 and LM12\{L\}438 about the communication cycle. The command byte carries the following information:

- what type of data transfer (communication cycle) is started
- which device register to be accessed

The command byte has the following format:


Note that the first bit may be either the MSB or the LSB of the byte depending on the processor type, but it must be the first bit transmitted to the LM12434 and LM12\{L\}438.
Figure 11 shows the timing diagrams for different communication cycles. Figures 11a, b, $c, d$ show write cycles for various combinations of R/F pin logic level and SCLK idle state. Figures 11e, $f, g$, $h$ show read cycles for similar sets of conditions. Figure 11i shows a burst read cycle for the case of R/F $=0$ and low SCLK idle state. Note that these timing diagrams depict general relationships between the SCLK edges, the data bits and $\overline{\mathrm{CS}}$. These diagrams are not meant to show guaranteed timing. (See specification tables for parametric switching characteristics.)
Write cycle: A write cycle begins with the falling edge of $\overline{\mathrm{CS}}$. Then a command byte is written to the DAS on the DI line synchronized by SCLK. The command byte has the R/W and B bits equal to zero. Following the command byte, 16 bits of data ( 2 bytes) is shifted in on the same DI line.

This data is written to the register addressed in the command byte (A3, A2, A1, A0). The data is interpreted as MSB or LSB first based on the logic level of the 7th bit (MSB/ LSB) in the command byte. There is no activity on the DO line during write cycles and the DAS leaves the DO line in the high impedance state. $\overline{C S}$ will go high after the transfer of the last bit, thus completing the write cycle.
Read cycle: A read cycle starts the same way as a write cycle, except that the command byte's R/W bits equal to one. Following the command byte, the DAS outputs the data on the DO line synchronized with the microcontroller's SCLK. The data is read from the register addressed in the command byte. Data is shifted out MSB or LSB first, depending on the logic level of the MSB/LSB bit. The logic state of the DI line is "don't care" after the command byte. $\overline{\mathrm{CS}}$ will go high after the transfer of the last data bit, then completing the read cycle.
Burst read cycle: A burst read cycle starts the same way as a single read cycle, but the $B$ bit in the command byte is set to one, indicating a burst read cycle. Following the command byte the data is output on the DO line as long as the DAS receives SCLK from the system. To tell the DAS when a burst read cycle is completed pull $\overline{\mathrm{CS}}$ high after the 8th and before the 15th SCLK cycle during the last data byte transfer (see Figure 11i). After $\overline{\mathrm{CS}}$ high is detected and the last data bit is transferred, the DAS is ready for a new communication cycle to begin.
The timing diagrams in Figure 11 show the transfer of data in packets of 8 bits (bytes). This represents the way the serial ports of most microcontrollers and microprocessors produce serial clock and data. The DAS does not require a gap between the first and second byte of the data; 16 continuous clock cycles will transfer the data word. However, there should be a gap equal to 3 CLK (the DAS main clock input, not the SCLK) cycles between the end of the command byte and the start of the data during a read cycle. This is not a concern in most systems for two reasons. First, the processor generally has some inherent gap between byte transfers. Second, the SCLK frequency is usually significantly slower than the CLK frequency. For example, a 68 HC 11 processor with an 8 MHz crystal generates a maximum SCLK frequency of 1 MHz . If the DAS is running with a 6 MHz CLK, there are 6 cycles of CLK within each cycle of SCLK and the requirement is satisfied even if SCLK operates continuously during and after the command byte.

## 7．0 Digital Interface（Continued）




FIGURE 11．Timing Diagrams for LM12434 and LM12\｛L\}438 Standard Serial Interface

7．0 Digital Interface（Continued）

（c）Write Cycle，R／F Input（P1）$=0$
Idle State of SCLK＝0，Data Stable at Falling Edge and Shifted at Rising Edge of the SCLK


Idle State of SCLK $=1$ ，Data Stable at Falling Edge and Shifted at Rising Edge of the SCLK FIGURE 11．Timing Diagrams for LM12434 and LM12\｛L\}438 Standard Serial Interface (Continued)



Idle State of SCLK = 1, Data Stable at Rising Edge and Shifted at Falling Edge of the SCLK
FIGURE 11. Timing Diagrams for LM12434 and LM12\{L\}438 Standard Serial Interface (Continued)
7.0 Digital Interface (Continued)


Idle State of SCLK = 1, Data Stable at Falling Edge and Shifted at Rising Edge of the SCLK
FIGURE 11. Timing Diagrams for LM12434 and LM12\{L\}438 Standard Serial Interface (Continued)



Idle State of SCLK $=\mathbf{0}$, Data Stable at Rising Edge and Shifted at Falling Edge of the SCLK
FIGURE 11. Timing Diagrams for LM12434 and LM12\{L\}438 Standard Serial Interface (Continued)

## 7．0 Digital Interface（Continued）

## 7．1．1 Examples of Interfacing to the HPC＇s MICROWIRE／PLUS and 68HC11＇s SPI



TL／H／11879－65
Note：Other device pins are not shown．
FIGURE 12a．LM12434 and LM12\｛L\}438 Standard Mode Interface to the HPC's MICROWIRE/PLUSTM


TL／H／11879－66
Note：Other device pins are not shown．
FIGURE 12b．LM12434 and LM12\｛L\}438 Standard Mode Interface to the 68HC11's SPI

### 7.0 Digital Interface (Continued)

## HPC Assembly Code Example

;****************************************************************************
; THE HPC MICROCONTROLLER ASSEMBLY SUBROUTINES FOR INTERFACE TO THE LMIL
; SERIAL DAS READS AND WRITES ARE PERFORMED BY SUBROUTINES SER_WR \& SER_RD, THESE ROUTINES USE THE CNTRL BUF REGISTER AS CONTROL INPUT AND THE DATA BUF ; FOR READS DATA RETURNS IN THE DATA_BUF REGISTER.

[^0]
### 7.0 Digital Interface (Continued)

## HPC Assembly Code Example (Continued)

;-- AN EXAMPLE OF A WRITE TO CONFIGURATION REGISTER:

LD	CNTRL_BUF.B,\#WCONFIG	; CONFIGURATION REG. WRITE COMMAND
		; LOADED IN THE CNTRL_BUF.
LD	DATA_BUF.W, \#0x0002	;DATA LOADED ON THE DATA_BUF REG. RESET SDAS, ; PAUSE=1, RAM POINTER=00.
JSR	SER_WR	; CALLING SER_WR FOR DATA TRANSFER.

:-- AN EXAMPLE OF A READ FROM CONFIGURATION REGISTER:

LD	B.B.\#RCONFIG	; CONFIGURATION REG. READ COMMAND
JSR	;LOADED IN THE CNTRL_BUF.	
	SER_RD	CALLING SER_RD FOR DATA TRANSFER.


; DATA WRITE SUBROUTINE "SER_WR", FOR SERIAL I/O TRANSFER OF DATA BETWEEN THE   ; HPC AND THE SERIAL DAS WITH uW SERIAL INTERFACE. BEFORE CALLING THE ROUTINE   ; THE DATA TRANSFER CONTROL BYTE SHOULD BE LOADED IN THE CNTRL_BUF AND THE   ; DATA TO BE WRITTEN TO THE SDAS SHOULD BE LOADED IN THE DATA_BUF.			
SER_WR:			
	RBIT	DAS_CS, PORTB.B	;RESET THE PORT B BIT-X TO SELECT ;THE SDAS1.
	LD	SIO.B,CNTRL_BUF.B	; LOAD THE CONTROL BYTE TO HPC's SIO   ;REGISTER, BYTE TRANSFER IS STARTED.
WAIT1:	IFBIT	uWDONE, IRPD. B	; WAIT AND CHECK THE uWDONE BIT FOR
	JP	WBYTE1	; COMPLETION OF DATA TRANSFER. WHEN DONE,
	JP	WAIT1	;GO AHEAD FOR FIRST DATA BYTE TRANSFER.
WBYTE1:	LD	SIO.B, (DATA_BUF+1).B	; LOAD HIGH ORDER BYTE OF DATA TO SIO ;REGISTER, TRANSFER IS STARTED.
WAIT2:	IFBIT	UWDONE, IRPD.B	; WAIT AND CHECK THE UWDONE BIT FOR
	JP	WBYTE2	; COMPLETION OF DATA TRANSFER. WHEN DONE,
	JP	WAIT2	;GO AHEAD FOR SECOND DATA BYTE TRANSFER.
WBYTE2 :	LD	SIO.B,DATA_BUF.B	; LOAD LOW ORDER BYTE OF DATA TO SIO ;REGISTER, TRANSFER IS STARTED.
WAIT3:	IFBIT	uWDONE, IRPD.B	;WAIT AND CHECK THE uWDONE BIT FOR
	JP	WDONE	; COMPLETION OF DATA TRANSFER. WHEN DONE,
	JP	WAIT3	;DESELECT THE SDAS AND RETURN.
WDONE :	SBIT	DAS_CS, PORTB.B	; SET THE BIT TO DESELECT THE SDAS.
	RET		;RETURN FROM SUBROUTI



### 7.0 Digital Interface (Continued)

## HPC Assembly Code Example (Continued)

			; THE DATA TRANSFER
WAIT6:	IFBIT	UWDONE, IRPD.B	; WAIT AND CHECK the uwdone bit for
	JP	RDONE	; COMPLETION OF DATA TRANSFER. WHEN DONE,
	JP	WAIT6	; LOAD the read data to al, deselect the
RDONE:	LD	DATA_BUF.B.SIO.B	; LOAD LOW ORDER BYTE OF THE DATA_BUF REGISTER ; WITH THE DATA JUST READ FROM SDAS.
	SBIT	DAS_CS, PORTB. ${ }^{\text {a }}$	; SEt the bx to deselect the sdas.
	RET		;RETURN FROM SUBROUTINE.
; FIFO BURST READ SUBROUTINE "RD_FIFO", USED FOR READING THE CONVERSION RESULTS			
; FROM FIFO IN BURST READ MODE. DATA IS READ FROM FIFO AND STORED IN THE			
; SYSTEM MEMORY STARTING FROM THE DATA BLK ADDRESS. NUMBER OF CONVERSION			
; Results being read is rslt_num which is loaded in the x register. It is assumed			
; THAT THE HPC IS USING 16 bit data bus.			
RD_FIFO:			
	LD	BK. W, \#DATA_BLK, \# (DATA_BLK +2 * RSLT_NUM-1)	
			; SET B FOR STARTING ADDRESS OF MEMORY
			;AND K FOR ENDING ADDRESS MINUS ONE
LPFIFO:			
	LD	X.W,\#RSLY_NUM	; A COUNTER TO KEEP track of \# of fifo
			;READS FOR TERMINATION OF BURST MODE
			; BY pulling the chip select high during ;THE LAST READ CYCLE AND BEFORE THE
			;14TH CLOCK EDGE.
	RBIT	DAS_CS, PORTB. B	; RESET THE PORT B BIT-X TO SELECT
			; THE SDAS.
	LD	SIO.B, \#RBFIFO	; LOAD THE BURS' FIFO READ CONTROL ByTE
			;TO SIO REG. BYTE TRANSFER IS STARTED.
WAIT7:	IFBIT	UWDONE, IRPD.B	; WAIT AND CHECK THE uWDONE BIT FOR
	JP	MSBYTE	; COMPLETION OF DATA TRANSFER. WHEN DONE,
	JP	WAIT7	;GO AhEAD FOR FIRST data byte read.
MSBYTE:	LD	SIO.B.\#0x00	; LOAD THE SIO WITH 0, THIS IS JUST A ;DUMMY LOAD TO START THE DATA TRANSFER
WAIT8:	IFBIT	UWDONE, IRPD.B	; WAIt and check the uwdone bit for
	JP	LSBYTE	; COMPLETION OF DATA TRANSFER. WHEN DONE,
	JP	WAIT8	;GO AHEAD FOR SECOND DATA BYTE READ.
LSBYTE:	LD	AH.B, SIO.B	; LOAD HIGH ORDER BYTE OF THE A REGISTER
			; WIth data just read from the sdas.
	LD	SIO.B, \#0x00	; LOAD THE SIO WITH 0, THIS IS JUST A
			; DUMMY LOAD to start the data transfer.
	DECSZ	x	; DECREMENT X AND SET THE SDAS CHIP-
	JP	WAIT9	; SELECT bit if last read cycle ( $\mathrm{X}=0$ ),
	SBIT	DAS_CS, PORTB.B	;OTHERWISE CONTINUE.
WAIT9:	IFBIT	UWDONE, IRPD. B	; WAIT AND CHECK THE uWDONE BIT FOR
	JP	CMPLT	; COMPLETION OF DATA TRANSFER. WHEN DONE,
	JP	WAIT9	; LOAD the read data to al.
CMPLT :	LD	AL. B, SIO.B	; LOAD LOW ORDER BYTE OF THE A REGISTER
			; WITH the data just read from the sdas.
	xS	A, $[\mathrm{B}+\mathrm{]}$. W	; STORE A TO THE DATA BLK WITH B AUTO-
			; INCREMENT AND SKIP IF GREATER THAN K .
	JP	MSBYTE	; GO FOR THE NEXT FIFO DATA
	RET		

; FIFO BURST READ SUBROUTINE "RD_FIFO", USED FOR READING THE CONVERSION RESULTS FROM FIFO IN BURST READ MODE. DATA IS READ FROM FIFO AND STORED IN THE SYSTEM MEMORY STARTING FROM THE DATA_BLK ADDRESS. NUMBER OF CONVERSION RESULTS BEING READ IS RSLT_NUM WHICH IS LOADED IN THE X REGISTER. IT IS ASSUMED ; THAT THE HPC IS USING 16 BIT DATA BUS.

RD_FIFO:
LD BK.W,\#DATA_BLK,\#(DATA_BLK $+2 *$ RSLT_NUM-1)
; SET B FOR STARTING ADDRESS OF MEMORY
;A COUNTER TO KEEP TRACK OF \# OF FIFO ; READS FOR TERMINATION OF BURST MODE ; BY pulling the chip select high during ; THE LAST READ CYCLE AND BEFORE THE ;14TH CLOCK EDGE. ; THE SDAS.
; LOAD THE BURST FIFO READ CONTROL BYTE TO SIO REG. BYTE TRANSFER IS STARTED. ;WAIT AND CHECK THE uWDONE BIT FOR COM LETION OF DATA TRANSFER. WHEN DONE,
; LOAD THE SIO WITH 0, THIS IS JUST A ;DUMMY LOAD TO START THE DATA TRANSFER ; WAIT AND CHECK THE uWDONE BIT FOR COMPLETION OF DATA TRANSFER. WHEN DONE, ;LOAD HIGH ORDER BYTE OF THE A REGISTER ; WITH DATA JUST READ FROM THE SDAS. ; LOAD THE SIO WITH 0, THIS IS JUST A ;DUMMY LOAD TO START THE DATA TRANSFER.
;DECREMENT X AND SET THE SDAS CHIP; SELECT BIT IF LAST READ CYCLE ( $\mathrm{X}=0$ ) , ;OTHERWISE CONTINUE.
; WAIT AND CHECK THE UWDONE BIT FOR ; COMPLETION OF DATA TRANSFER. WHEN DONE,
; LOAD LOW ORDER BYTE OF THE A REGISTER ; WITH THE DATA JUST READ FROM THE SDAS. ; STORE A TO THE DATA_BLK WITH B AUTO; INCREMENT AND SKIP IF GREATER THAN K. ; GO FOR THE NEXT FIFO DATA RET
; THIS ROUTINE INITIALIZES THE SDAS SERIAL INTERFACE IN CASE A
; COMMUNICATION CYCLE IS INTERRUPTED IN THE MIDDLE OF A CYCLE FOR ANY REASON.

```
**
```

SDAS_SER_PORT_RST:

### 7.0 Digital Interface (Continued)

## HPC Assembly Code Example (Continued)

> ;RESET SEQUENCE FOR THE SDAS INTER-
> ;FACE TO BRING IT OUT OF A HANGUP BY ;APPLYING 24 SERIAL CLOCK PULSE WHILE ;CHIP SELECT IS HIGH, THIS IS EQUAL TO ;POWER UP RESET FOR THE INTERFACE ;FACE TO BRING IT OUT OF A HANGUP ;NOTE THAT THIS ROUTINE DOES NOT RESET ;THE SERIAL DAS BUT ONLY THE SERIAL INTERFACE ;THIS ROUTINE IS USEFUL DURING ;SOFTWARE DEVELOPMENT OR IN CASE THAT ;A COMMUNICATION CYCLE NEEDS TO BE ;INTERRUPTED BY SYSTEM REQUIREMENTS.

68HC11 Assembly Code Example
$\qquad$

* THE 68HC11 MICROCONTROLLERS FAMILY ASSEMBLY SUBROUTINES FOR INTERFACE TO
* THE LM12434 AND LM12\{L\}438 SERIAL DATA ACQUISITION SYSTEM (SDAS) CHIP.


* 68HC11 CONTROLLER REGISTER'S ADDRESSES SYMBOLIC DEFINITIONS, USED IN
* Interface routines
****************************************************************************
PORTD EQU $\$ 1008$; Port D data register

| * |  |  | ; "- , - SS* , SCK ;MOSI,MISO, TxD ,RxD " |
| :--- | :--- | :--- | :--- | :--- |
| * |  |  | ; PORT D "SS" BIT IS USED FOR SDAS CHIP SELECT |



* SERIAL DAS RELATED REGISTERS, CONSTANTS AND MEMORY BLOCKS BASE ADDRESSES
* SYMBOLIC DEFINITIONS

* 

RINSTRO	EQU	\$C2	;SERIAL DAS INSTRUCTION RAM AND LIMITS 1 \& 2
WINSTR0	EQU	\$82	; READ AND WRITE CONTROL BYTES. THESE BYTES
RINSTR1	EQU	\$C6	; CONTAIN ADDRESSES OF THE SDAS REGISTER, THE
WINSTR1	EQU	\$86	; READ/WRITE BIT AND THE MSB/LSB BIT.
RINSTR2	EQU	\$CA	; PREDEFINED.
WINSTR2	EQU	\$8A	; "
RINSTR3	EQU	\$CE	"
WINSTR3	EQU	\$8E	; "
RINSTR4	EQU	\$D2	; "
WINSTR4	EQU	\$92	; "
RINSTR5	EQU	\$D6	; "
WINSTR5	EQU	\$96	; "
RINSTR6	EQU	\$DA	, "
WINSTR6	EQU	\$9A	; "
RINSTR7	EQU	\$DE	; "
WINSTR7	EQU	\$9E	; "
RCONFIG	EQU	\$E2	;SDAS CONFIGURATION REG. READ CONTROL BYTE.
WCONFIG	EQU	\$ ${ }^{\text {2 }}$	;SDAS CONFIGURATION REG. WRITE CONTROL BYTE.
RINTEN	EQU	\$E6	; SDAS INTERRUPT ENABLE REG. READ CONTROL BYTE.
WINTEN	EQU	\$A6	; SDAS INTERRUPT ENABLE REG. WRITE CONTROL BYTE.
RINTSTAT	EQU	\$EA	;SDAS INTERRUPT STATUS REG. READ CONTROL BYTE.
RTIMER	EQU	\$EE	; SDAS TIMER REG. READ CONTROL BYTE.
WTIMER	EQU	\$AE	; SDAS TIMER REG. WRITE CONTROL BYTE.
RSFIFO	EQU	\$F2	; SDAS FIFO, SINGLE READ CONTROL BYTE.
RBFIFO	EQU	\$F3	; SDAS FIFO, BURST READ CONTROL BYTE.
RLMTSTAT	EQU	\$F6	;SDAS LIMIT STATUS REG. READ CONTROL BYTE.

### 7.0 Digital Interface (Continued)

## 68HC11 Assembly Code Example (Continued)


*--- AN EXAMPLE OF A WRITE TO CONFIGURATION REGISTER:

LDAA	\#WCONFIG	;CONFIGURATION REG. WRITE COMMAND
STAA	CNTRL_BUF	;LOADED IN THE CNTRL_BUF.
LDD	\#\$OO10	;DATA LOADED ON THE DATA_BUF REG.
STD	DATA_BUF	;RESET= 1, RAM POINTER=00.
JSR	SER_IO	;CALLING SER_WR FOR DATA TRANSFER.

*--- AN EXAMPLE OF A READ FROM CONFIGURATION REGISTER:

LDAA	\#RCONFIG	;CONFIGURATION REG. READ COMMAND
STAA	CNTRL_BUF	;LOADED IN THE CNTRL_BUF.
JSR	SER_IO	;CALLING SER_RD FOR DATA TRANSFER.



* DATA WRITE/READ SUBROUTINE "SER_IO", FOR SERIAL I/O TRANSFER OF DATA BETWEEN
* THE 68HC11 AND THE SERIAL DAS WITH SPI SERIAL INTERFACE. BEFORE CALLING THE
* ROUTINE, THE DATA TRANSFER CONTROL BYTE SHOULD BE LOADED IN THE CNTRL_BUF.
* FOR WRITES THE DATA TO BE WRITTEN TO THE SDAS SHOULD BE LOADED IN DATA_BUF.
* FOR READS, DATA IS LOADED INTO THE DATA_BUF UPON RETURN FROM THIS SUBROUTINE.


SER_IO:

LOAD A WITH CONTROL BYTE
STAA SPDR
START SPI SEND
GET SPI STATUS TO WAIT FOR SPIF
MASKING THE EIGHTH BIT WITH THE SPIF BIT
IF SPIF=0 THEN BRANCH, ELSE SKIP
GET MSB DATA BYTE AND SEND
START SPI SEND. THIS WILL ALSO CLEAR THE SPIF BIT
GET SPI STATUS TO WAIT FOR SPIF
MASKING THE EIGHTH BIT WITH THE SPIF BIT
IF SPIF=0 THEN BRANCH, ELSE SKIP
LOADS 1 DATA BYTE (MSB/LSB) SENT FROM DAS INTO ACC A
STORE MSB DATA BYTE IN RAM BUFFER
get lsb data byte to send
START SPI SEND
SEND3 LDAA
GET SPI STATUS TO WAIT FOR SPIF
MASKING THE EIGHTH BIT WITH THE SPIF BIT
IF SPIF=0 THEN BRANCH, ELSE SKIP
LOADS 1 DATA BYTE (MSB/LSB) SENT FROM DAS INTO ACC A
STORE MSB DATA BYTE IN RAM BUFFER
STAA DATA BUF
DONE -- RAISE CS

### 7.0 Digital Interface (Continued)

## 68HC11 Assembly Code Example (Continued)

****************************************************************************

* FIFO BURST READ SUBROUTINE "RD_FIFO", FOR READING THE CONVERSION RESULTS
* FROM FIFO IN BURST READ MODE. DATA IS READ FROM FIFO AND STORED IN THE
* SYSTEM MEMORY STARTING FROM THE DATA_BLK ADDRESS. NUMBER OF CONVERSION
* RESULTS BEING READ IS RSLT_NUM WHICH IS LOADED IN THE X REGISTER. IT IS ASSUMED
* THAT THE HPC IS USING 16 BIT DATA BUS.
*****************************************************************************
RD_FIFO:

LDX \#DATA BL
LDAB \#RSLT_N
LSLB
DECB
BCLR PORTD,Y \$2
LDAA \#RBFIFO
STAA SPDR
BURST1 LDAA SPSR ANDA \#\$8
BEQ BURST1
BLOOP
STAA SPD
BURST2 LDAA
ANDA \#\$8
BEQ BURST
LDAA SPDR
STAA $0, X$
INX
B
BNE BLOOP
BSET
STAA
BURST3 LDAA SPSR
ANDA \#\$8 BEQ BURST3 LDAA SPD STAA 0, RTS

```
; LOAD X WITH DATA BLOCK BASE ADDRESS
; LOAD B WITH NUMBER OF RESULTS
; MAKE INTO BYTE COUNT
; ONE LESS FOR LAST BYTE
; DROP CHIP SELECT
LOAD A WITH BURST READ COMMAND
SEND COMMAND
GET SPI STATUS TO WAIT FOR SPIF
MASKING THE EIGHTH BIT WITH THE SPIF BIT
IF SPIF=0 THEN BRANCH, ELSE SKIP
```

```
CLEAR DATA BYTE TO SEND
START SPI, RECEIVE A DATA BYTE
GET SPI STATUS TO WAIT FOR SPIF
MASKING THE EIGHTH BIT WITH THE SPIF BIT
IF SPIF=0 THEN BRANCH, ELSE SKIP
GET THE RECEIVED DATA BYTE
STORE DATA BYTE
POINT TO NEXT DATA BYTE
COUNTING DOWN # OF BYTES
STILL MORE DATA BYTES TO GET
RAISE CS TO END BURST READ
START SPI, RECEIVE LAST BYTE
GET SPI STATUS TO WAIT FOR SPIF
MASKING THE EIGHTH BIT WITH THE SPIF BIT
IF SPIF=0 THEN BRANCH, ELSE SKIP
GET RECEIVED DATA BYTE
STORE DATA BYTE IN RAM BUFFER
```


## 7．0 Digital Interface（Continued）

### 7.28051 INTERFACE MODE

The 8051 interface mode is designed to work directly with the 8051 family of microcontrollers＇mode 0 serial interface． This interface mode is a simple shift register type of serial data transfer．The serial clock synchronizes the transfer of data to and from the LM12434 and LM12\｛L\}438. The interface uses 3 lines：a bidirectional data line（RXD），a serial clock line（TXD）and a chip－select（ $\overline{\mathrm{CS}}$ ）line．More than one device can share the data and serial clock lines provided that each device has its own chip－select line．
The 8051 mode is selected when the MODESEL1 and MODESEL2 pins have the logic state of＂00＂．Figure 14 shows a typical connection diagram for the 8051 mode seri－ al interface．The $\overline{C S}$, RXD and TXD lines are respectively assigned to interface pins P3 through P5．The P1 and P2 pins are not used in this mode and should be left open or connected to logic＂ 1 ＂．In this interface the idle state of the serial clock TXD is logic＂ 1 ＂．The data is stable at both edges of the TXD clock and is shifted after its rising edge． The interface has a bidirectional RXD data line．The LM12434 and LM12\｛L\}438 leaves the RXD line in a high impedance state whenever it is not outputting any data．
Data transfer in this mode is byte oriented．As mentioned， the LM12434 and LM12\｛L\}438 has three different communication cycles：write cycle，read cycle and burst read cycle． At the start of each data transfer cycle，＂command byte＂is written to the LM12434 and LM12\｛L\}438, followed by write or read data．The command byte informs the LM12434 and LM12\｛L\}438 about the communication cycle and carries the following information：
－what type of data transfer（communication cycle）is start－ ed
－which device register is to be accessed

The command byte has the following format：


TL／H／11879－53
The first bit is the LSB of the byte based on the 8051 mode 0 serial interface protocol．
Figure 13 shows the timing diagrams for different communi－ cation cycles．Figure 13a shows a write cycle．Figure 13b shows a read cycle．Figure $13 c$ shows a burst read cycle． Note that these timing diagrams depict general relationships between the SCLK edges，the data bits and $\overline{\mathrm{CS}}$ ．These dia－ grams are not meant to show guaranteed timing perform－ ance．（See specification tables for parametric switching characteristics．）
Write cycle：A write cycle begins with the falling edge of the $\overline{\mathrm{CS}}$ ．Then a command byte is written to the DAS on the RXD line synchronized by TXD clock．The command byte has the R／W and $B$ bits equal to zero．Following the command byte， 16 bits of data（2 bytes）is shifted in on the RXD line．The data is written to the register addressed in the command byte（A3，A2，A1，A0）．The data is always LSB first in this interface．$\overline{\mathrm{CS}}$ will go high after the transfer of the last bit， thus completing the write cycle．
Read cycle：A read cycle starts the same way as a write cycle，except that the command bytes R／W bit is equal to one．Following the command byte，the DAS outputs the data on the RXD line synchronized with the microcontrol－ ler＇s TXD clock．The data is read from the register ad－ dressed in the command byte．Data is shifted in LSB first． Again，$\overline{\mathrm{CS}}$ will go high after the transfer of the last data bit， thus completing the read cycle．

## 7．0 Digital Interface（Continued）

Burst read cycle：A burst read cycle starts the same way as a single read cycle，but the B bit in the command byte is set to one，indicating a burst read cycle．Following the com－ mand byte the data is output on the RXD line as long as the DAS receives TXD clock from the system．To tell the DAS when a burst read cycle is completed，$\overline{\mathrm{CS}}$ should be set high after the 8th and before the 15th SCLK cycle during the last data byte transfer（see Figure 13c）．After $\overline{\mathrm{CS}}$ high is detect－ ed and the last data bit is transferred，the DAS is ready for a new communication cycle to begin．
The timing diagrams in Figure 13 show the transfer of data in packets of 8 bits（bytes）．This represents the way the serial ports of the 8051 family of microcontrollers produce the serial clock and data．The DAS does not require a gap between the first and second bytes of the data；

16 continuous clock cycles will transfer the data word．How－ ever，there should be a gap equal to 3 CLK（the DAS main clock input，not the TXD clock）cycles between the end of the command byte and the start of the data during a read cycle．This is not concerned in most systems for two rea－ sons．First，the processor generally has some inherent gap between byte transfers．Second，the TXD frequency is usu－ ally significantly slower than the CLK frequency．For exam－ ple，an 8051 processor with 12 MHz crystal generates a TXD of 1 MHz ．If the DAS is running with 6 MHz CLK，there are 6 cycles of CLK within each cycle of TXD and the re－ quirement is satisfied even if TXD comes continuously after command byte．The user should pay attention to this re－ quirement if running the TXD with a speed near or higher than CLK．


TL／H／11879－40
（a）Write Cycle
Idle State of SCLK＝1，Data Shifted at the Rising Edge of the SCLK


TL／H／11879－41
（b）Read Cycle
Idle State of SCLK＝1，Data Shifted at the Rising Edge of the SCLK
FIGURE 13．Timing Diagrams for LM12434 and LM12\｛L\}438 8051 Serial Interface Mode

```
CS}[\begin{array}{c}{\mathrm{ From System}}\\{\mathrm{ to DAS }}\end{array}
```

$\qquad$

``` －••
```




``` To DAS
```



``` DAS Internal DAS Internal
Register Address 1st Data Byte，1st Word 065
```



``` From DAS
```



Idie State of SCLK＝1，Data Shifted after the Rising Edge of the SCLK
FIGURE 13．Timing Diagrams for LM12434 and LM12\｛L\}438 8051 Serial Interface Mode（Continued）

### 7.0 Digital Interface (Continued)

### 7.2.1 Example of Interfacing to the $\mathbf{8 0 5 1}$



TL/H/11879-67
FIGURE 14. LM12434 and LM12\{L\}438 in the 8051 Interface Mode
8051 Assembly Code Example

```

; THE }8051\mathrm{ MICROCONTROLLERS FAMILY ASSEMBLY SUBROUTINES FOR INTERFACE TO
; THE LM12434 and LM12{L}438, SERIAL INTERFACE DATA ACQUISITION SYSTEM (SDAS) CHIP.
;**
;***
; 8051 CONTROLLER REGISTER, BITS SYMBOLIC DEFINITIONS, USED IN INTERFACE
; ROUTINES
;***
;SCON ;SERIAL PORT CONTROL REGISTER
R_DONE BIT SCON.O ;RECEIVE CYCLE COMPLETE FLAG, BIT #O OF SCON
S_DONE BIT SCON.1 ;SEND CYCLE COMPLETE FLAG, BIT #1 OF SCON
R_EN BIT SCON.4 ;RECEIVE CYCLE ENABLE BIT, BIT #4 OF SCON
;SBUF
SDAS_SLCT BIT P3.4 ;PIN #4 OF PORT 3 USED FOR THE SDAS CHIP SELECT
;**
; SERIAL DAS RELATED REGISTERS, CONSTANTS AND MEMORY BLOCK BASE ADDRESSES
; SYMBOLIC DEFINITIONS
;**
RINSTRO EQU 80H ;SERIAL DAS INSTRUCTION RAM AND LIMITS 1 & 2
WINSTRO EQU OOH ;READ AND WRITE CONTROL BYTES. THESE BYTES
RINSTR1 EQU 81H ;CONTAIN ADDRESSES OF THE SDAS REGISTERS, THE
WINSTR1 EQU 01H ;READ/WRITE BIT AND THE BURST READ BIT
RINSTR2 EQU 82H ;PREDEFINED.
WINSTR2 EQU 0.2H ; "
RINSTR3 EQU 83H ; "
WINSTR3 EQU 03H ; "
RINSTR4 EQU 84H ; "
WINSTR4 EQU 04H ; "
RINSTR5 EQU 85H ; "
WINSTR5 EQU 05H ; "
RINSTR6
RINSTR7 EQU 87H ; "
WINSTR7 EQU 07H ; "
```

7.0 Digital Interface (Continued)

8051 Assembly Code Example (Continued)

RCONFIG	EQU	88H	; SDAS CONFIGURATION REG. READ CONTROL BYTE.
wConfig	EQU	08H	; SDAS CONFIGURATION REG. WRITE CONTROL BYTE.
RINTEN	EQU	89H	; SDAS INTERRUPT ENABLE REG. READ CONTROL BYTE.
WINTEN	EQU	09H	; SDAS INTERRUPT ENABLE REG. WRITE CONTROL BYTE
RINTSTAT	EQU	8AH	; SDAS Interrupt status reg. read control byte.
RTIMER	EQU	8BH	;SDAS TIMER REG. READ CONTROL BYTE.
WTIMER	EQU	OBH	; SDAS TIMER REG. WRITE CONTROL BYTE.
RSFIFO	EQU	8 CH	; SDAS FIFO, SINGLE READ CONTROL BYTE.
RBFIFO	EQU	OCCH	; SDAS FIFO, BURST READ CONTROL BYTE.
RLMTSTAT	EQU	8DH	;SDAS LIMIT STATUS REG. READ CONTROL BYTE.
DATA_BLK	EQU	OXXH	;SYMBOLIC STARTING ADDRESS OF THE DATA BLOCK   ;IN SYSTEM MEMORY, USED TO STORE THE   ;CONVERSION RESULTS READ FROM FIFO IN BURST   ;READ ROUTINE.
DATA_BUF	EQU	0xxH	;SYMBOLIC ADDRESS FOR A 16 BIT DATA BUFFER
CNTRL_BUF	EQU	0xXH	;SYMBOLIC ADDRESS FOR AN 8 BIT BUFFER USED ;IN ROUTINES FOR CONTROL BYTE.
RSLT_NOM	EQU	OXXH	;SYMBOLIC DEFINITION FOR THE NUMBER OF ;RESULTS to be read from fifo in burst read

```
;**
; SERIAL DAS READS AND WRITES ARE PERFORMED BY SUBROUTINES SER_WR & SER_RD,
; THESE ROUTINES USE THE "CNTRL_BUF" REGISTER AS CONTROL INPUT AND THE
; "DATA_BUF" REGISTER AS DATA BUFFER, FOR WRITES DATA IS LOADED ON THE
; "DATA_BUF" REGISTER, AND FOR READS DATA RETURNS IN THE "DATA_BUF" REGISTER.
**
```

;--- AN EXAMPLE OF A WRITE TO CONFIGURATION REGISTER:

MOV	CNTRL_BUF,\#WCONFIG	;LOAD CNTRL_BUF WITH WRITE CONTROL
		;BYTE
MOV	DATA_BUF,\#02H	;LOAD LOW ORDER BYTE OF DATA TO
MOV	DATA_BUF+1,\#OOH	;DATA_BUF
	;LOAD HIGH ORDER BYTE OF DATA TO	
LCALL	SER_WR	;DATA_BUF

;--- AN EXAMPLE OF A READ FROM CONFIGURATION REGISTER:

MOV	CNTRL_BUF,\#RTIMER	;LOAD CNTRL_BUF WITH READ CONTROL
LCALL	SER_RD	;SER_RD ROUTINE READS THE DATA

### 7.0 Digital Interface (Continued)

8051 Assembly Code Example (Continued)
;****************************************************************************
; DATA WRITE SUBROUTINE "SER_WR", FOR A SERIAL WRITE TO THE DAS. BEFORE CALLING THE
; ROUTINE, THE WRITE CONTROL BYTE SHOULD BE LOADED IN THE "CNTRL BUF"
; AND THE DATA TO BE WRITTEN TO THE SDAS SHOULD BE LOADED IN THE "DATA_BUF".
;***************************************************************************
SER_WR:

CLR SDAS_SL
CLR S_DONE
MOV SBUF,CNTRL BU
SENDW: JNB S_DONE,SENDW
CLR S_DONE ;CLEAR SEND CYCLE DONE FLAG
MOV SBUF,DATA_BUF START SENDING LOW ORDER BYTE OF DATA
SEND1: JNB S_DONE,SEND

CLR S_DONE
MOV SBUF,DATA_BUF+1
SEND2: JNB S_DONE,SEND2
SETB SDAS_SLCT
RET
;**************************************************************************
; DATA READ SUBROUTINE "SER_RD", FOR A SERIAL READ, FROM THE DAS. BEFORE CALLING THE ; ROUTINE, THE READ CONTROL BYTE SHOULD BE LOADED ON THE "CNTRL_BUF"
; AND THE DATA IS LOADED IN THE "DATA_BUF" UPON RETURN FROM SUBROUTINE.
;***************************************************************************
SER_RD:
$\begin{array}{ll}\text { CLR } & \text { SDAS_SL } \\ \text { CLR } & S \text { DONE }\end{array}$
CLR S_DONE
MOV SBUF,CNTRT BUF
SENDR: JNB S_ḊONE, SENDR
SETB R_EN
CLR R_DONE
RCVI: JNB R DONE,RCVI
MOV DATA_BUF,SBUF
CLR R_DONE
JNB R_DONE, RCV2
MOV DATA_BUF +1 ,SBUF

SETB SDAS_SLCT ;DESELECT THE SDAS, CHIP SELECT=1
CLR R_EN
RET
;SELECT THE SDAS, CHIP SELECT=0
; CLEAR SEND CYCLE DONE FLAG
, START SENDING THE READ CONTROL BYTE
;WAIT HERE UNTIL SEND CYCLE COMPLETED
;ENABLE DATA RECEIVE CYCLES
; START A DATA BYTE RECEIVE CYCLE ;WAIT HERE UNTIL RECEIVE COMPLETED ; STORE LOW ORDER BYTE IN DATA_BUF
;START A DATA BYTE RECEIVE CYCLE
; WAIT HERE UNTIL RECEIVE COMPLETED ; STORE HIGH ORDER BYTE IN DATA_BUF ;DISABLE DATA RECEIVE CYCLES

### 7.0 Digital Interface (Continued)

## 8051 Assembly Code Example (Continued)

;*************************************************************************** ; FROM FIFO IN BURST READ MODE. DATA IS READ FROM FIFO AND STORED IN THE ; SYSTEM MEMORY STARTING FROM THE "DATA_BLK" ADDRESS. NUMBER OF CONVERSION ; RESULTS BEING READ IS "RSLT_NUM". THIS ROUTINE USES THE RO AND RI REGISTERS. ; IT IS ASSUMED THAT THEY ARE IN THE PRESENT REGISTER BANK.
; RO IS THE POINTER TO "DATA_BLK" WHERE THE CONVERSION RESULTS ARE STORED. ; R1 IS USED AS A COUNTER TO KEEP TRACK OF THE NUMBER OF RESULTS TO BE READ ; FROM FIFO.
;****************************************************************************
RD_FIFO:
MOV RO,DATA_BLK ;SETTING DATA BLOCK POINTER
MOV A,\#RSLT_NUM ;NUMBER OF RESULTS TO BE READ IN ACC ; CALCULATING \# OF DATA BYTES TO BE ; READ FROM FIFO, EACH CONVERSION ;RESULTS IS 2 BYTES
; NUMBER OF DATA BYTES TO R1 COUNTER
;TOTAL DATA BYTES MINUS 1 IN COUNTER
; SELECT THE SDAS, CHIP SELECT=0
;CLEAR SEND CYCLE DONE FLAG , START SENDING THE FIFO BURST READ ; CONTROL BYTE
;WAIT HERE UNTIL SEND CYCLE COMRLETED
; ENABLE DATA RECEIVE CYCLES

RD_LP:	CLR	R_DONE	;START A DATA BYTE RECEIVE CYCLE
RCVB :	JNB	R_DONE, RCVB	; WAIT HERE UNTIL RECEIVE COMPLETED
	MOV	@RO, SBUF	;STORE DATA BYTES IN DATA_BLK
	INC	RO	; POINTING TO NEXT DATA LOCATION
	DJNZ	R1,RD_LP	; READ NEXT BYTE IF NOT THE LAST ONE
	SETB	SDAS_SLCT	; DESELECT THE SDAS, BEFOR READING
			;THE LAST BYTE, BURST READ TERMINATION
	CLR	R__DONE	; Start a data byte receive cycle
RCVL;	JNB	R_DONE, RCVL	;WAIT HERE UNTIL RECEIVE COMPLETED
	MOV	QRO, SBUF	;STORE THE LAST DATA BYTE
	CLR	R_EN	;DISABLE DATA RECEIVE CYCLES
	RET		

; THIS ROUTINE INITIALIZES THE SDAS SERIAL INTERFACE IN CASE THAT A
; COMMUNICATION CYCLE HAS BEEN INTERRUPTED. THIS ROUTINE APPLYS 24 , SERIAL CLOCK PULSES TO THE DAS WHILE ITS CHIP SELECT
; IS HIGH. THIS ROUTINE CAN BE USED AT THE START OF THE PROGRAM DURING CODE ; DEVELOPMENT OR ANYWHERE THAT A READ OR WRITE CYCLE MUST BE INTERRUPTED , BECAUSE OF THE SYSTEM REQUIREMENT.
信
SDAS_SER_PORT_RST:

SETB	SDAS_SLCT	;DESELECT THE SDAS, CHIP SELECT=1
SETB	R_EN	;ENABLE DATA RECEIVE CYCLES
CLR	R_DONE	;START A CYCLE, 8 PULSES APPLIED
JNB	R_DONE,TRY1	;WAIT HERE UNTIL CYCLE COMPLETED
CLR	R_DONE	iSTART A CYCLE, 8 PULSES APPLIED
JNB	R_DONE,TRY2	;WAIT HERE UNTIL CYCLE COMPLETED
CLR	R_DONE	;START A CYCLE, 8 PULSES APPLIED
JNB	R_DONE,TRY3	;WAIT HERE UNTIL CYCLE COMPLETED
CLR	R_EN	

### 7.0 Digital Interface (Continued)

### 7.3 TMS320 INTERFACE MODE

The TMS320 interface mode is designed to work directly with the serial interface port of the TMS320C3x and TMS320C5x families of digital signal processors. This interface uses five lines: two data lines (DX, DR), two frame synchronization signal lines (FSX, FSR), and a serial clock line (SCLK). Note that the TMS320C3x/5x serial interface has two separate serial clock lines for transmit and receive called CLKX and CLKR, but the LM12434 and LM12\{L\}438 only uses one clock input for both receive and transmit. Typically, CLKX is specified as an output and drives SCLK as well as CLKR (defined as an input). The serial clock for this interface mode is a free running clock, with the data stream synchronized by SCLK. The start of each data transfer (the beginning of a data packet) is synchronized by FSX (Transmit Frame Sync) or FSR (Receive Frame Sync). This interface can communicate with one device; no device select signal is used. The following discussion assumes that the reader has a basic knowledge of the architecture and operation of the TMS320C3x/5x serial interface port.
The TMS320 interface mode is selected when the MODESEL1 and MODESEL2 pins have the logic state of " 11 ". Figure 16 shows a typical connection diagram for the LM12434 and LM12\{L\}438 in the TMS320 serial interface mode. The FSR, FSX, DX, DR, and SCLK lines are assigned to interface pins P1 through P5.
Data transfer in this mode is programmable by the processor for 8 -, 16 -, 24 -, or 32 -bit data packets for the TMS320C3x and 8-, or 16-bit data packets for TMS320C5x. The LM12434 and LM12\{L\} 438 uses 16 -bit and 32 -bit data packets. For the TMS320C5x the 32-bit packet is composed of two successive 16 -bit packets with no gaps between them. The data bits in each packet are transferred MSB first, and are shifted in on the rising edge of SCLK and are stable and captured at the falling edge of the SCLK. As with the "Standard" and "8051" interface modes, the LM12434 and LM12\{L\} 438 has three different communication cycles: write cycle, read cycle and burst read cycle. At the start of each data transfer cycle, a stream of 9 data bits (the "command packet') is written to the LM12434 and LM12\{L\}438 and informs it about the communication cycle. The placement of these 9 bits in the data packet is different in the read and write cycles and is discussed for each case separately. The command packet carries the following information:

- what type of data transfer (communication cycle) is started
- which device register is to be accessed

The command packet has the following format:


TL/H/11879-54
The first bit of the command packet is always the MSB of the data packet to to be transferred.
Figure 15 shows the timing diagrams for the three communication cycles. Figure 15a shows a write cycle. Figure 15b shows a read cycle, and Figure 15 c shows a burst read cycle. Note that these timing diagrams depict general relationships between the SCLK edges, the data bits and the frame synchronization signals (FSX, FSR). These diagrams are not meant to show guaranteed timing performance. (See specification tables for parametric switching characteristics.)
Write cycle: A write cycle begins with an FSX pulse from the processor. The first data bit is received by the DAS on the DX line during the next SCLK falling edge after the falling edge of FSX. A 32-bit data packet is written to the DAS. The TMS320C3x does this with a 32-bit transfer, using its serial port 32-bit register. With the TMS320C5x family two successive 16-bit transfers are initiated without any gap in between. The first 9 bits (MSBs) of the data are the command packet with the R/ $\bar{W}$ bit and $B$ bit equal to zero. Following the command packet, a 16-bit data stream starts on the falling edge of the 10th SCLK cycle and continues through the 25 th cycle. The last 7 bits in the 32-bit data packet are "don't care" and are ignored by the DAS. The data is written to the register addressed in the command packet (A3, A2, A1, A0). There is no activity on the FSR and DR lines during a write cycle. The write cycle is completed after the last data bit is transferred.
Read cycle: A read cycle also begins with an FSX pulse from the processor. The read cycle uses 16-bit data transfer. Following the FSX pulse, 16 bits of data are written to the DAS on the DX line. The first 9 bits (MSBs) of data are the command packet with the R/W bit equal to one and the $B$ bit equal to zero. The last 7 bits (LSBs) are "don't care" and are ignored by the DAS. About 3 to 4 CLK (the DAS main clock input, not the SCLK) cycles after the R/W bit is received, the DAS generates an FSR pulse to initiate the data transfer. Following the FSR pulse, the DAS will send 16 bits of data to the processor on the DR line. The first bit (MSB) of the data appears on the DR line on the next SCLK cycle following the FSR pulse. The data is read from the register addressed in the command packet. The read cycle is completed after the last data bit is transferred.

### 7.0 Digital Interface (Continued)

Burst read cycle: A burst read cycle starts the same way as a single read cycle, but the $B$ bit in the command packet is set to one, indicating a burst read cycle. After the first 16 bits of data carrying the command packet is written to the DAS, the DAS begins to send out the data words from the addressed register on the DR line repeatedly. Each data word is preceded by an FSR pulse for synchronization. To terminate a burst read cycle, the processor does a dummy read from the configuration register during the last
data word. This dummy read should be started so that its FSR pulse occurs during the 15th to 17 th SCLK cycle of the last data word as shown in Figure 15c. The dummy read terminates the burst read cycle and shifts out the contents of the configuration register on the DR line. This data can be discarded. After transfer of the last data bit from the configuration register, the DAS is ready for a new communication cycle to begin.



sexcom ......
FSX (Cont.) . . . .

1
1 $\begin{array}{lll}\text { A dummy read from configuration register } \\ & 1 & 1 \\ 1 & 1 & 1 \\ & 1 & 1\end{array}$ $\qquad$ _ $\quad$.
DX (Cont.) ...

DR (Cont.) .....

( $\mathrm{N}-1$ ) th Data word

### 7.0 Digital Interface (Continued)

### 7.3.1 Example of Interfacing to the TMS320C3x



Note: Other device pins are not shown.
FIGURE 16. LM12434 and LM12\{L\}438 in the TMS320 Interface Mode
TMS320C3x Assembly Code Example

; INSTRUCTION RAM 0-8 (NOTE: CONFIG. REG. RAM POINTER SELECTS BANKS 0, 1 OR 2)

.text

* THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION-
* DEPENDENT PART OF THE SYSTEM (BOTH ON- AND OFF-CHIP SHOULD
* NOW BE INITIALIZED.
* 
* FIRST, INITIALIZE THE CONTROL REGISTER. IN THIS EXAMPLE,
* EVERYTHING IS INITIALIZED TO ZERO SINCE THE ACTUAL INITIALIZATION
* IS APPLICATION DEPENDENT.
* 

LDI	@CTRL, ARO	; LOAD in ARO the pointer to control   ; registers
LDI	@DMACTL, R0	
STI	RO,*+ARO (0)	; Init DMA control
LDI	©TIMOCTL, RO	
STI	RO, *+ARO (32)	; Init timer 0 control
LDI	@TIM1CTL, R0	
STI	RO,*+ARO (48)	; Init timer 1 control
LDI	©SERGLOBO,RO	
STI	RO, *+ARO (64)	; Init serial 0 global control
LDI	@SERPRTX0,R0	
STI	RO, *+AR0 (66)	; Init serial 0 xmt control
LDI	@SERPRTRO,R0	
STI	RO, *+ARO (67)	; Init serial 0 rcv control

### 7.0 Digital Interface (Continued)

TMS320C3x Assembly Code Example (Continued)

	LDI	@SERTIMO,RO	
	STI	RO,*+ARO (68)	; Init serial 0 timer control
	LDI	@SERGLOB1, R0	
	STI	RO, * + RRO (80)	; Init serial 1 global control
	LDI	@SERPRTX1,R0	
	STI	R0, *+ARO (82)	; Init serial 1 xmt control
	LDI	@SERPRTR1,R0	
	STI	R0, *+ARO (83)	; Init serial 1 rcv control
	LDI	@SERTIM1,R0	
	STI	RO, *+ARO (84)	; Init serial 1 timer control
;	LDI	@STIMCNT1,R0	
;	STI	R0,*+ARO (85)	; Init serial 1 timer counter
;	LDI	@STIMPRD1,R0	
,	STI	RO, *+ARO (86)	; Init serial 1 timer period
	LDI	@PARINT, R0	. . .
	STI	RO, *+ARO (100)	, Init parallel interface control (c30 only)
	LDI	QIOINT, R0	
	STI	RO, *+AR0 (96)	; Init I/O interface control
*	LDI	©STCK, SP	; Initialize the stack pointer
	OR	2000H, ST	; Global interrupt enable
BEGIN	BR	BEGIN	; Branch to the beginning of application.
	NOP		
	LDI	0, 10F	; PROGRAM XFI PORT AS AN INPUT PORT
	LDI	@CTRL, ARO	; LOAD in ARO the pointer to control
	LDI	©CONFIG, RO	
	LDI	0082H, R1	; SYNC. PIN OUTPUT
	CALL	SWRITE	; SOFT RESET LM12438
	LDI	©INTEN, R0	
	LDI	0714H, R1	; 32 CONVERSIONS
	LDI	0C714H, R1	; 24 CONVERSIONS
	CALL	SWRITE	; InIt. Interrupt enable reg.
	LDI	©TIMER,RO	
	LDI	OAAAAH, R1	
	CALL	SWRITE	; LOAD SOME VALUE IN timer
	LDI	@RAMO,RO	; INSTRUCTIONS FOR 8 CONVERSION
	LDI	0000H, R1	; ON EACH CHANNEL (0-7) ALL SINGLE ENDED
	CALL	SWRITE	; SET RAMO
	LDI	@RAM1, R0	
	LDI	0004H, R1	
	CALL	SWRITE	; SET RAM1
	LDI	@RAM2,R0	
	LDI	0008H, R1	
	CALL	SWRITE	; SET RAM2
	LDI	ORAM3, R0	
	LDI	000CH, R1	
	CALL	SWRITE	; SET RAM3
	LDI	@RAM4, R0	
	LDI	0010H, R1	
	CALL	SWRITE	; SET RAM4
	LDI	©RAM5, R0	
	LDI	0014H, R1	
	CALL	SWRITE	; SET RAM5
	LDI	@RAM6,R0	
	LDI	0018H, R1	
	CALL	SWRITE	; SET RAM6
	LDI	@RAM7, R0	
	LDI	001CH, R1	
	CALL	SWRITE	; SET RAM7
	LDI	©CONFIG, R0	; Start full calibration
	LDI	0088H, R1	; SYNC. PIN OUTPUT
	CALL	SWRITE	

### 7.0 Digital Interface (Continued)

TMS320C3x Assembly Code Example (Continued)

CHKINT1	$\begin{aligned} & \text { TSTB } \\ & \text { BNZ } \end{aligned}$	80H, IOF CHKINTI	; TEST XF1 INPUT CONNECTED TO LM12438'S INTERRUPT   ; FOR COMPLETION OF FULL CALIBRATION
	LDI	QINTSTAT, Ro	
	CALL	SREAD	; READ INTERRUPT STATUS REG.
DOAGAIN	LDI	@CONFIG,RO	; If full calibration is done set the start bit
	LDI	0081H, R1	; OF LM12438 CONFIG. REG. (SYNC. PIN OUTPUT)
	CALL	SWRITE	; START LM12438 SEQUENCER
CHKINT2	TSTB	80\%, TOF	; TEST XFI INPUT CONNECTED TO LM12438'S INTERRUPT
	BNZ	CHKINT2	; (COMPLETION OF 24 FIFO CONVERSIONS)
	LDI	©CONFIG, R0	
	LDI	0080H, R1	; STOP THE CONVERSION (IS NOT NECESSARY)
	CALL	SWRITE	
	LDI	©INTSTAT, RO	
	CALL	SREAD	; Read interrupt status reg.
	LDI	32, R4	
FLOOP	LDI	R4, R1	
	LDI	©FIFO,RO	; READ FIFO
	CALL	BREAD	
	SUBB	1,R4	
	BNZ	FLOOP	
	LDI	@CONFIG,RO	
	LDI	0002H, R1	; RESET LM12438 (SYNC. PIN OUTPUT)
	CALL	SWRITE	
	BR	DOAGAIN	
	IDLE		

; LM12438 BURST READ ROUTINE THROUGH SERIAL PORT1

BREAD	PUSH	ST	; SAVE STATUS REG.
	PUSH	ARO	; SAVE ARO
	PUSH	AR1	; SAVE AR1
	PUSH	AR2	; SAVE AR2
	PUSH	RO	; SAVE RO
	PUSH	R1	; SAVE R1
	PUSH	R2	SAVE R2
	PUSH	R3	; SAVE R3
	PUSH	R4	; SAVE R4
	LDI	@CTRL, ARO	; LOAD in ARO the pointer to control
	LDI	@FIFODATA, AR2	; USE AR2 AS POINTER TO FIFO DATA
	LDI	@SERGLOB1R,R2	; PREPARE FOR 16 BIT TRANSMIT
	CMPI	0, R1	; IF COUNTER IS 0 (USER'S ERROR)
	BZ	BDONE2	; TERMINATE NOW ELSE CONTINUE
	CMPI	1, R1	; IF A SINGLE READ REQUIRED THEN
	B2	SINGLE	; CALL the SINGLE READ SUBROUTINE
	BR	MLTIPLE	; ELSE GO ON
SINGLE	LDI	@FIFO,RO	; FOR SINGLE READ FIFO ADDRESS IS
	CALL	SREAD	; CALLING SINGLE READ ROUTINE
	STI	R1, *AR2++(1)	; STORE READ DATA INTO FIFODATA
	BR	BDONE2	; TERMINATE
MLTIPLE	LDI	13,R4	; SET UP R4 AS the delay counter
	LDI	@SERGLOB1R,R2	; PREPARE FOR 16 bit transmit
	STI	R2,*+ARO (80)	; Init serial 1 global control
	RPTS	7	; POSITION THE ADDRESS
	ROL	R0	; TO START At bit \#10
	OR	1080H, RO	; SET the read bit
	LDI	R0, R3	; RO IS FREED FOR LAST READ
	LDI	©CONFIG,RO	; PREPARE FOR A LASt Config reg. read
	RPTS	7	; WHICH WILL STOP LM12438 FROM GENERATING
	ROL	R0	; FURTHER BURST READS
	OR	80H, RO	; SET The read bit

7．0 Digital Interface（Continued）
TMS320C3x Assembly Code Example（Continued）

	STI	R3，＊＋ARO（88）	；Init serial 1 data xmt register
	RPTS	2H	；PROVIDE DELAY FOR UPDATE OF
	NOP		；XSREMPTY BIT IN GLOB CONT REG．
	LDI	10．00B，R3	
CHKR2	TSTB	＊＋ARO（80），R3	；CHECK SER． 1 CONTROL XSREMPTY
	BNZ	CHKR2	；IF XSREMPTY＝1 THEN KEEP CHECKING
COUNT	NOP		
	SUBB	1，R1	；DECREMENT COUNTER（R1）AND CHECK FOR ZERO
	LDI	1，R3	；PREPARE R3 FOR CHECKING RRDY BIT
RCONT3	TSTB	＊＋ARO（80），R3	
	BZ	RCONT3	；IF RRDY $=0$ THEN CHECK AGAIN
RDONE2	LDI	＊＋ARO（92），R3	；LOAD DRR（RECEIVED DATA），RRDY．IS CLEARED
	AND	OFFFFH，R3	；CLEAN UP THE UPPER BITS
	STI	R3，＊AR2＋＋（1）	；Place read data in fifodata
	CMPI	1，R1	；IF COUNTER $=1$ THEN TERMINATE
	BNZ	COUNT	；ElSE CONTINUE
BSTDONE	RPTS	R4	；WAIT FOR THE 16TH CLOCK RISE
	NOP		；BEFORE SENDING the terminating
			；READ FROM CONFIG．REG
	STI	R0，＊＋ARO（88）	；XMT FOR LAST READ FROM CONFIG REG
RCONT4	LDI	＊＋ARO（80），R3	；READ SER． 1 CONTROL REGISTER TO
	TSTB	0001B，R3	；CHECK FOR RRDY BIT
	BZ	RCONT4	；IF RRDY IS 1，EXIT THE burst routine
RCONT5	LDI	＊＋ARO（92），R3	；READ the last burst data in drr
	AND	OFFFFH，R3	；CLEAN UP THE UPPER BITS
	STI	R3，＊AR2＋＋（1）	；PLACE IT IN FIFODATA
RCONT6	LDI	＊＋ARO（80），R3	；READ SER． 1 CONTROL REGISTER TO
	TSTB	0001B，R3	CHECK FOR RRDY BIT
	BZ	RCONT6	
BDONE2	LDI	＊＋ARO（92），R3	；READ THE DRR（CLEAR RRDY BIT）
	POP	R4	；RESTORE R4
	POP	R3	；RESTORE R3
	POP	R2	；RESTORE R2
	POP	R1	；RESTORE R1
	POP	R0	；RESTORE RO
	POP	AR2	；RESTORE AR2
	POP	AR1	；RESTORE AR1
	POP	ARO	；RESTORE ARO
	POP	ST	；RESTORE ST
	RETS		

### 7.0 Digital Interface (Continued)

TMS320C3x Assembly Code Example (Continued)

SREAD	PUSH	ST	; SAVE Status reg.
	PUSH	ARO	; SAVE ARO
	PUSH	R0	; SAVE RO THE READ ADDRESS
	PUSH	R2	SAVE R2
	LDI	QCTRL, ARO	; LOAD in ARO the pointer to control
	LDI	@SERGLOB1R,R2	; PREPARE FOR 16 BIT TRANSMIT
			; AND 16 BIT RECIEVE
	STI	R2,*+AR0 (80)	; Init serial 1 global control
	RPTS	7	; POSITION THE ADDRESS
	ROL	Ro	; TO START AT BIT \#10
	OR	80h, RO	; SET The read bit
	STI	R0,*+AR0 (88)	; Init serial 1 data xmt register
	RPTS	2H	; PROVIDE DELAY FOR UPDATE OF
	NOP		; XSREMPTY BIT IN GLOB CONT REG.
CHKR1	LDI	* +ARO (80) , RO	; READ SER. 1 CONTROL XSREMPTY
	TSTB	10008, R0	; CHECK
	BNZ	CHKR1	; IF IT IS CLEAR (TRANSMIT COMPLETE) CONTINUE
RCONT1	LDI	*+ARO (80) , R0	; READ SER. 1 CONTROL
	TSTB	0001B, R0	CHEK RRDY BIT
	BZ	RCONT1	; IF RRDY IS 1 (RECEIVE COMPLETE) CONTINUE
RDONE1	LDI	*+ARO (92), R1	; LOAD DRR (RECEIVED DATA) INTO R1
	AND	OFFFFH, R1	; CLEAN UP UPPER BITS
	POP	R2	; RESTORE R2
	POP	Ro	; RESTORE RO THE READ ADDRESS
	POP	ARO	RESTORE ARO
	POP	ST	; RESTORE ST
	RETS		
; LM12438 WRITE		ROUTINE THROUGH	SERIAL PORT1
SWRITE	PUSH	ST	; SAVE STATUS REG.
	PUSH	ARO	; SAVE ARO
	PUSH	R2	; SAVE R2
	LDI	©CTRL, AR0	; LOAD in ARO the pointer to control
	LDI	@SERGLOB1W, R2	; PREPARE FOR 32 BIT TRANSMIT
	STI	R2,*+ARO (80)	; Init serial 1 global control
	AND	@CLNDATA, RI	; CLEAN UP UNUSED ADD. BITS
	RPTS	23	; POSITION THE ADDRESS TO START AT BIT \#27
	ROL	RO	;
	RPTS	6	; POSITION DATA to Start at bit \#22
	ROL	R1	;
	OR	R1,R0	;
	STI	R0,*+ARO (88)	; Init serial 1 data xmt register
	RPTS	2H	; PROVIDE DELAY FOR UPDATE OF
	NOP		; XSREMPTY BIT IN GLOB CONT REG.
CHK1	LDI	*+ARO (80) , R0	; READ SER. 1 CONTROL XSREMPTY
	TSTB	1000B, RO	; CHECK
	BNZ	CHK1	; IF IT IS CLEAR (TRANSMIT COMPLETE) CONTINUE
WDONE1	POP	R2	; RESTORE R2
	POP	ARO	; RESTORE ARO
	POP	ST	; RESTORE ST
	RETS		

### 7.0 Digital Interface (Continued)

## $7.41^{2} \mathrm{C}$ BUS INTERFACE

The ${ }^{2} \mathrm{C}$ bus is a serial synchronous bus structure. It is a multi-master bus, which means that more than one device capable of controlling the bus can be connected to it. The bus uses 2 wires, serial data (SDA) and serial clock (SCL), to carry information between the devices connected to the bus. Both data and clock lines are bidirectional and are connected to the positive power supply via a pull-up resistor. Each device is identified by a unique address, whether it is a microprocessor/controller or a peripheral such as memory, keyboard, data-converter or display. Each device can operate as either transmitter or receiver, depending on the function of the device. In addition to transmitters and receivers, devices can also be considered as masters and slaves when performing data transfer. A master is the device that initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device addressed is considered slave. It should be apparent that the ${ }^{2} \mathrm{C}$ bus is not merely an interconnecting wire, it embodies comprehensive formats and procedures for addressing, transfer cycles start and stop, clock generation/synchronization and bus arbitration. The following discussion assumes that the reader is familiar with the specification and architecture of the $\mathrm{I}^{2} \mathrm{C}$ bus.
The LM12434 and LM12\{L\}438's I2C bus interface is selected when the MODESEL1 and MODESEL2 pins have the logic state of " 10 ". Figure 18 shows a typical connection diagram for the LM12434 and LM12\{L\}438 to the ${ }^{2} \mathrm{C}$ bus. As was mentioned, communication on the $I^{2} \mathrm{C}$ bus is performed on 2 lines, SCL (serial clock) and SDA (serial data); pins P5 and P4 are assigned to these lines. The DAS operates as a slave on the ${ }^{2} \mathrm{C}$ bus. As a result, the SCL line is an input (no clock is generated by the LM12434 and LM12 $(\mathrm{L}\} 438$ ) and the SDA line is a bi-directional serial data path. According to I2C bus specifications, the DAS has a 7-bit slave address. The four most significant bits of the slave address are hard wired inside the LM12434 and LM12\{L\}438 and are "0101". The three least significant bits of the address are assigned to pins P3-P1. Therefore, the LM12434 and LM12\{L\}438 I2 ${ }^{2}$ s slave address is:


Tying the P3-P1 pins to different logic levels allows up to eight LM12434 and LM12\{L\}438's to be addressed on a single $I^{2} \mathrm{C}$ bus.
Figure 17 shows the timing diagram for the read and write cycles for the LM12434 and LM12\{L\}438's I²C interface.

This timing diagram depicts the general relationship between the serial clock edges and the data bits. It is not meant to show guaranteed timing performance. (See specification tables for parametric switching characteristics.) The DAS's $\mathrm{I}^{2} \mathrm{C}$ interface timing parameters fully meet or exceed the $I^{2} \mathrm{C}$ bus specification. Data transfer on the $I^{2} \mathrm{C}$ bus is byte oriented and the 16 -bit data to be written to or read from each register is transferred in two bytes.
Write cycle: A write cycle is illustrated in Figure 17a. Communication is initiated with a start condition generated by a master ( $1^{2} \mathrm{C}$ bus specification), followed by a byte of the DAS's slave address with the read/write bit (8th bit) being " 0 ", indicating a write cycle will follow. At the 9th SCL clock pulse of the first data packet, the DAS pulls the SDA line low (" 0 ") to acknowledge that it has been addressed. The next byte is the address of the DAS register to be accessed. The format of this byte is three " 0 's" (MSBs) followed by four bits of register address (MSB first as shown) and a " 0 " as the last bit (LSB). After the DAS acknowledges the address byte, the 16-bit data proceeds in two bytes, beginning with the high order byte (MSB first). The direction of the data in a write cycle is from master to DAS with acknowledgement given by the DAS at the end of each byte. The cycle is completed by a stop condition generated by the master.
Read/burst read cycle: The read and burst read cycles for the $I^{2} \mathrm{C}$ interface are combined in a single format. A read cycle is shown in Figure 17b. A read cycle starts the same as a write with a slave address byte for write followed by a register address byte. After the register address byte is written to the DAS, the bus should be released without any stop condition. The master then applies a repeat start condition followed by the DAS's slave address, but with the read/ write bit being " 1 ", indicating a read request from the master. The DAS (slave) acknowledges its address and beginning with the next byte, the direction of the data will be from DAS to master. The DAS starts to transmit the contents of its register (addressed previously at second byte of the cycle) synchronized with the clocks applied by the master. An even number of data bytes should be read from the DAS (two bytes per register). At the end of each byte received from the DAS the bus master generates an acknowledge. The DAS continues to repeat transmitting its register contents as long as the master is transmitting clocks and acknowledges at the end of each byte. The DAS recognizes the end of the transfer whenever the master does not acknowledge at the end of an even numbered byte. At this point, the master should generate a stop condition as required by the $I^{2} \mathrm{C}$ bus specification. Notice that the master may read only one word (single read) or as many words (two bytes each) as it needs using the read procedure.

（a）Write Cycle

s．mas．．．．．．


### 7.0 Digital Interface (Continued)

7.4.1 Example of Interfacing to an I2C Bus Controller (No Assembly Code)


Note: Other device pins are not shown.
FIGURE 18. Interfacing the DAS to an I2C Bus Controller

## 8．0 Analog Considerations

## 8．1 REFERENCE VOLTAGE

The difference between the voltages applied to the VREF＋ and $V_{\text {REF }}$－is the analog input voltage span（the difference between the voltages applied across two multiplexer inputs or the voltage applied to one of the multiplexer inputs and analog ground，over which 4095 positive and 4096 negative codes exist）．The voltage sources driving $\mathrm{V}_{\text {REF }}+$ or $\mathrm{V}_{\text {REF }}-$ must have very low output impedance and noise．The circuit in Figure 19 is an example of a very stable reference appro－ priate for use with the LM12434 and LM12\｛L\}438.
The ADC can be used in either ratiometric or absolute refer－ ence applications．In ratiometric systems，the analog input voltage is proportional to the voltage used for the ADC＇s reference voltage．When this voltage is the system power supply，the $\mathrm{V}_{\text {REF }}+$ pin is connected to $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\text {REF }}$－is connected to GND．This technique relaxes the system refer－ ence stability requirements because the analog input volt－ age and the ADC reference voltage move together．This maintains the same output code for given input conditions．
For absolute accuracy，where the analog input voltage var－ ies between very specific voltage limits，a time and tempera－ ture stable voltage source can be connected to the refer－ ence inputs．Typically，the reference voltage＇s magnitude will require an initial adjustment to null reference voltage induced full－scale errors．

## 8．2 INPUT RANGE

The LM12434 and LM12\｛L\}438's fully differential ADC and reference voltage inputs generate a two＇s－complement out－ put that is found by using the equation below．

$$
\begin{align*}
& \text { output code }=\frac{V_{I N+}-V_{\text {IN }-}}{V_{\text {REF }+}-V_{\text {REF- }}}(4096)-1 / 2  \tag{12-bit}\\
& \text { output code }=\frac{V_{I N+}-V_{I N-}}{V_{\text {REF }+}-V_{\text {REF- }}}(256)-1 / 2 \tag{8-bit}
\end{align*}
$$

Round up to the next integer value between -4096 to 4095 for 12 －bit resolution and between－256 to 255 for 8 －bit res－ olution if the result of the above equation is not a whole number．As an example， $\mathrm{V}_{\mathrm{REF}}+=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}-=1 \mathrm{~V}$ ， $\mathrm{V}_{\mathrm{IN}+}=1.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IN}}-=$ GND．The 12－bit + sign output code is positive full－scale，or $0,1111,1111,1111$ ．If $V_{\text {REF }}+$ $=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}-}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}+}=3 \mathrm{~V}$ ，and $\mathrm{V}_{\mathrm{IN}-}=\mathrm{GND}$ ，the 12－bit + sign output code is $0,1100,0000,0000$ ．

## 8．3 INPUT CURRENT

A charging current flows into or out of（depending on the input voltage polarity）the analog input pins，INO－IN7 at the start of the analog input acquisition time（ $t_{\mathrm{ACQ}}$ ）．This cur－ rent＇s peak value will depend on the actual input voltage applied．

## 8．4 INPUT SOURCE RESISTANCE

For low impedance voltage sources（ $<60 \Omega$ for 8 MHz oper－ ation），the input charging current will decay，before the end of the S／H＇s acquisition time，to a value that will not intro－ duce any conversion errors．For higher source impedances， the S／H＇s acquisition time can be increased．As an exam－ ple，operating with a 8 MHz clock frequency and maximum acquisition time，the LM12434 and LM12438＇s analog inputs can handle source impedances as high as $4.17 \mathrm{k} \Omega$ ．Refer to Section 6．2．1，Instruction RAM＂ 00 ＂，Bits 12－15 for further information．

## 8．5 INPUT BYPASS CAPACITANCE

External capacitors（ $0.01 \mu \mathrm{~F}-0.1 \mu \mathrm{~F}$ ）can be connected be－ tween the analog input pins，INO－IN7，and analog ground to filter any noise caused by inductive pickup associated with long input leads．These capacitors will not degrade the con－ version accuracy．

## 8．6 INPUT NOISE

The leads to each of the analog multiplexer input pins should be kept as short as possible．This will minimize input noise and clock frequency coupling that can cause conver－ sion errors．Input filtering can be used to reduce the effects of the noise sources．

## 8．7 POWER SUPPLY CONSIDERATIONS

Decoupling and bypassing the power supply on a high reso－ lution ADC is an important design task．Noise spikes on the $\mathrm{V}_{\mathrm{A}}+$（analog supply）or $\mathrm{V}_{\mathrm{D}}+$（digital supply）can cause conversion errors．The analog comparator used in the ADC will respond to power supply noise and will make erroneous conversion decisions．The DAS is especially sensitive to power supply spikes that occur during the auto－zero or lin－ earity calibration cycles．

＊Tantalum
＊＊Ceramic
TL／H／11879－20
FIGURE 19．Low Drift Extremely Stable Reference Circuit

### 8.0 Analog Considerations (Continued)

The LM12434/8 is designed to operate from a single +5 V power supply. The LM12\{L\} 438 is designed to operate from a single +3.3 V supply. The separate supply and ground pins for the analog and digital portions of the circuit allow separate external bypassing. To minimize power supply noise and ripple adequate bypass capacitors should be placed directly between power supply pins and their associated grounds. Both supply pins are generally connected to the same supply source. In systems with separate analog and digital supplies, the DAS should be powered from the analog supply. At least a $10 \mu \mathrm{~F}$ tantalum electrolytic capacitor in parallel with a $0.1 \mu \mathrm{~F}$ monolithic ceramic capacitor is recommended for bypassing each power supply. The key consideration for these capacitors is to have the low series resistance and inductance. The capacitors should be placed as close as physically possible to the supply and ground pins with the smaller capacitor closer to the device. The capacitors also should have the shortest possible leads in order to minimize series lead inductance. Surface mount chip capacitors are optimal in this respect and should be used when possible.
When the power supply regulator is not local on the board, adequate bypassing (a high value electrolytic capacitor) should be placed at the power entry point. The value of the capacitor depends on the total supply current of the circuits on the PC board. All supply currents should be supplied by the capacitor instead of being drawn from the external supply lines, while the external supply charges the capacitor at a steady rate.
The DAS has two $\mathrm{V}_{\mathrm{D}}+$ and DGND pins on two sides of its package. It is recommended to use a $0.1 \mu \mathrm{~F}$ plus a $10 \mu \mathrm{~F}$ capacitor between pins 15 and $16\left(\mathrm{~V}_{\mathrm{D}}+\right.$ ) and 14 (DGND) and a $0.1 \mu \mathrm{~F}$ capacitor between pins $28\left(\mathrm{~V}_{\mathrm{D}}+\right)$ and 1 (DGND) for the PLCC package. The respective pins for the SO package are 21 and $22\left(\mathrm{~V}_{\mathrm{D}}+\right.$ ) and 20 (DGND), $6\left(\mathrm{~V}_{\mathrm{D}}+\right.$ ) and 7 (DGND). The layout diagrams in Section 8.8 show the recommended placement for the supply bypass capacitors.

### 8.8 PC BOARD LAYOUT AND GROUNDING CONSIDERATIONS

To get the best possible performance from the LM12434 and LM12\{L\}438, the printed circuit boards should have separate analog and digital ground planes. The reason for using two ground planes is to prevent digital and analog ground currents from sharing the same path until they reach a very low impedance power supply point. This will prevent noisy digital switching currents from being injected into the analog ground.
Figure 20 illustrates a favorable layout for ground planes, power supply and reference input bypass capacitors. Figure 20 a shows a layout using a 28 -pin PLCC socket and through-hole assembly. Figure 20b shows a surface mount layout for the same 28-pin PLCC package. A similar approach should be used for the SO package.
The analog ground plane should encompass the area under the analog pins and any other analog components such as the reference circuit, input amplifiers, signal conditioning circuits, and analog signal traces.
The digital ground plane should encompass the area under the digital circuits and the digital input/output pins of the DAS. Having a continuous digital ground plane under the
data and clock traces is very important. This reduces the overshoot/undershoot and high frequency ringing on these lines that can be capacitively coupled to analog circuitry sections through stray capacitances.
The AGND and DGND in the LM12434 and LM12\{L\}438 are not internally connected together. They should be connected together on the PC board right at the chip. This will provide the shortest return path for the signals being exchanged between the internal analog and digital sections of the DAS.

It is also a good design practice to have power plane layers in the PC board. This will improve the supply bypassing (an effective distributed capacitance between power and ground plane layers) and voltage drops on the supply lines. However, power planes are not essential as ground planes are for the performance of the DAS. If power planes are used, they should be separated into two planes and the area and connections should follow the same guidelines as mentioned for the ground planes. Each power plane should be laid out over its associated ground planes, avoiding any overlap between power and ground planes of different types. When the power planes are not used, it is recommended to use separate supply traces for the $\mathrm{V}_{\mathrm{A}}+$ and $\mathrm{V}_{\mathrm{D}}+$ pins from a low impedance supply point (the regulator output or the power entry point to the PC board). This will help ensure that the noisy digital supply does not corrupt the analog supply.
When measuring AC input signals with the DAS, any crosstalk between analog input/output lines and the reference lines (INO-INT, MUXOUT $\pm, \mathrm{S} / \mathrm{H} I \mathrm{~N} \pm, \mathrm{V}_{\mathrm{REF}} \pm$ ) should be minimized. Cross talk is minimized by reducing any stray capacitance between the lines. This can be done by increasing the clearance between traces, keeping the traces as short as possible, shielding traces from each other by placing them on different sides of the AGND plane, or running AGND traces between them.
Figure 20 also shows the reference input bypass capacitors. Here the reference inputs are considered to be differential. The performance of the DAS improves by having a $0.1 \mu \mathrm{~F}$ capacitor between the $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}{ }^{-}$, and by bypassing in a manner similar to that described in Section 8.7 for the supply pins. When a single ended reference is used, $\mathrm{V}_{\mathrm{REF}}$ - is connected to AGND and only two capacitors are used between $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}-(0.1 \mu \mathrm{~F}+10 \mu \mathrm{~F})$. It is recommended to directly connect the AGND side of these capacitors to the $\mathrm{V}_{\text {REF }}$ - instead of connecting $\mathrm{V}_{\text {REF }}$ - and the ground sides of the capacitors separately to the ground planes. This provides a significantly lower-impedance connection when using surface mount technology.

Figure 21 is intended to give a general idea of how the DAS should be wired and interfaced to a $\mu \mathrm{C}$ that operates in the Standard Interface mode. All necessary analog and digital power supply and voltage reference bypass capacitors are shown. A voltage reference of 4.096 V generated by the LM4040-4.1 is connected to the VREF+ of the DAS and the $V_{\text {REF }}$ - is connected to analog ground. The serial interface pins P1 through P5 of the DAS are connected to the $\mu \mathrm{C}$ 's serial control lines and the interrupt pin of the DAS is wired directly to the interrupt of the $\mu \mathrm{C}$. In this diagram the DAS runs on a separate clock than the $\mu \mathrm{C}$, however, in some applications the DAS analog clock (CLK) may be a derivative of the $\mu \mathrm{C}$ 's clock.

8.0 Analog Considerations (Continued)


TL/H/11879-51
(b) Surface Mount Technology for 28-Pin PLCC Package

FIGURE 20. Printed Circuit Board Layout for LM12434 and LM12\{L\} 438 (Continued)

### 8.0 Analog Considerations (Continued)

Microcontroller (Standard Interface Mode)


TL/H/11879-83
FIGURE 21. General Schematic of the DAS Operating in Standard Interface Mode

# LM12454/LM12H454/LM12458/LM12H458 12-Bit + Sign Data Acquisition System with Self-Calibration 

## General Description

The LM12454, LM12H454, LM12458, and LM12H458 are highly integrated Data Acquisition Systems. Operating on just 5V, they combine a fully-differential self-calibrating (correcting linearity and zero errors) 13-bit (12-bit + sign) ana-log-to-digital converter (ADC) and sample-and-hold (S/H) with extensive analog functions and digital functionality. Up to 32 consecutive conversions, using two's complement format, can be stored in an internal 32-word (16-bit wide) FIFO data buffer. An internal 8 -word RAM can store the conversion sequence for up to eight acquisitions through the LM12 $(H) 458$ 's eight-input multiplexer. The LM12 $(H) 454$ has a four-channel multiplexer, a differential multiplexer output, and a differential S/H input. The LM12(H)454 and LM12(H)458 can also operate with 8-bit + sign resolution and in a supervisory "watchdog" mode that compares an input signal against two programmable limits.
Programmable acquisition times and conversion rates are possible through the use of internal clock-driven timers. The reference voltage input can be externally generated for absolute or ratiometric operation or can be derived using the internal 2.5 V bandgap reference.
All registers, RAM, and FIFO are directly addressable through the high speed microprocessor interface to either an 8 -bit or 16 -bit databus. The LM12(H)454 and LM12(H)458 include a direct memory access (DMA) interface for high-speed conversion data transfer.

## An evaluation/interface board is available. Order num-

 ber LM12458EVAL.Additional applications information can be found in applications note AN-906.

## Key Specifications (fCLK $=5 \mathrm{MHz} ; 8 \mathrm{MHz}, \mathrm{H}$ ) <br> - Resolution 12-bit + sign or 8-bit + sign <br> - 13-bit conversion time $\quad 8.8 \mu \mathrm{~s}, 5.5 \mu \mathrm{~s}(\mathrm{H})(\max )$

- 9-bit conversion time
- 13-bit Through-put rate
- Comparison time ("watchdog" mode)
- ILE
- $V_{I N}$ range
- Power dissipation
$4.2 \mu \mathrm{~s}, 2.6 \mu \mathrm{~s}(\mathrm{H})(\max )$
88k samples/s (min)
140k samples/s (H) (min)
- Stand-by mode
- Single supply
$2.2 \mu \mathrm{~s}(\max )$
$1.4 \mu \mathrm{~s}(\mathrm{H})(\max )$
$\pm 1 \mathrm{LSB}(\max )$
GND to $\mathrm{V}_{\mathrm{A}}{ }^{+}$
$30 \mathrm{~mW}, 34 \mathrm{~mW}(\mathrm{H})(\max )$
$50 \mu \mathrm{H}(\mathrm{typ})$
3 V to 5.5 V


## Features

- Three operating modes: 12-bit + sign, 8 -bit + sign, and "watchdog"
- Single-ended or differential inputs
- Built-in Sample-and-Hold and 2.5V bandgap reference
- Instruction RAM and event sequencer
- 8-channel (LM12(H)458), 4-channel (LM12(H)454) multiplexer
- 32-word conversion FIFO
- Programmable acquisition times and conversion rates
- Self-calibration and diagnostic mode
- 8- or 16 -bit wide databus microprocessor or DSP interface


## Applications

- Data Logging
- Instrumentation
- Process Control
- Energy Management
- Inertial Guidance


## Ordering Information

Guaranteed Clock Freq (min)	Guaranteed Linearity Error (max)	Order Part Number	See NS Package Number
8 MHz	$\pm 1.0$ LSB	LM12H454CIV   LM12H458CIV   LM12H458CIVF LM12H458MEL/883 or 5962-9319502MYA LM12H458MW/883 or 5962-9319502MXA	V44A V44A   VGZ44A   EL44A   WA44A
5 MHz	$\pm 1.0$ LSB	LM12454CIV   LM12458CIV LM12458CIVF LM12458MEL/883 or 5962-9319501MYA LM12458MW/883 or 5962-9319501MXA	V44A   V44A   VGZ44A   EL44A   WA44A

## Connection Diagrams


*Pin names in () apply to the LM12454 and LM12H454.
Order Number LM12454CIV, LM12H454CIV, LM12458CIV or LM12H458CIV See NS Package Number V44A

Order Number LM12458MEL/883 or 5962-9319501MYA, LM12H458MEL/883 or 5962-9319502MYA, LM12458MW/883 or 5962-9319501MXA, LM12H458MW/883 or 5962-9319502MXA See NS Package Number EL44A or WA44A


## Functional Diagrams



## LM12(H)458



TL/H/11264-21

Absolute Maximum Ratings (Notes 1 \& 2) If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ( $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$)
Voltage at Input and Output Pins

$$
\text { except INO-IN3 (LM12(H)454) } \quad-0.3 \mathrm{~V} \text { to } \mathrm{V}^{+}+0.3 \mathrm{~V}
$$ and INO-IN7 (Livi12(H)458)

Voltage at Analog Inputs INO-IN3 (LM12(H)454)
and INO-IN7 (LM12(H)458) GND -5 V to $\mathrm{V}^{+}+5 \mathrm{~V}$
$\left|V_{A}+-V_{D}+\right|$
Input Current at Any Pin (Note 3)
Package Input Current (Note 3)
Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )
$V$ Package (Note 4)
Storage Temperature
Lead Temperature
$V$ Package, Infrared, $15 \mathrm{sec} . \quad+300^{\circ} \mathrm{C}$
EL and W Packages, Solder, 10 sec.
ESD Susceptibility (Note 5)
LM12(H)458MEL(MW)/883
$+250^{\circ} \mathrm{C}$
300 mV
$\pm 5 \mathrm{~mA}$
$\pm 20 \mathrm{~mA}$
875 mW
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
1.5 kV
2.0 kV

## Converter Characteristics

The following specifications apply to the LM12454, LM12H454, LM12458, and LM12H458 for $\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}+=$ $5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}-}=0 \mathrm{~V}, 12$-bit + sign conversion mode, $\mathrm{f}_{\mathrm{CLK}}=8.0 \mathrm{MHz}(\mathrm{LM12H454/8})$ or $\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}(\mathrm{LM12454/8}), \mathrm{R}_{\mathrm{S}}=$ $25 \Omega$, source impedance for $V_{\text {REF }}+$ and $V_{\text {REF - }} \leq 25 \Omega$, fully-differential input with fixed 2.5 V common-mode voltage, and minimum acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{A}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {mind }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6, 7, 8, 9 and 19)


## Converter Characteristics

The following specifications apply to the LM12454, LM12H454, LM12458, and LM12H458 for $\mathrm{V}_{A^{+}}=\mathrm{V}_{\mathrm{D}}{ }^{+}=5 \mathrm{~V}$, $\mathrm{V}_{\text {REF }}+=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0 \mathrm{~V}$, 12-bit + sign conversion mode, $\mathrm{f}_{\mathrm{CLK}}=8.0 \mathrm{MHz}(\mathrm{LM} 12 \mathrm{H} 454 / 8)$ or $\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}$ (LM12454/8), $R_{S}=25 \Omega$, source impedance for $V_{R E F}+$ and $V_{R E F}-\leq 25 \Omega$, fully-differential input with fixed 2.5 V commonmode voltage, and minimum acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T m i n}_{\text {min }}$ to
$\mathbf{T}_{\text {max }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Notes 6, 7, 8, 9 and 19) (Continued)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Unit (Limit)
	8-Bit + Sign and "Watchdog" Mode DC Common Mode Error		$\pm 1 / 8$		LSB
	Multiplexer Channel-to-Channel Matching		$\pm 0.05$		LSB
$\mathrm{V}_{\text {IN }+}$	Non-Inverting Input Range			$\begin{aligned} & \text { GND } \\ & \mathbf{V}_{\mathbf{A}^{+}} \end{aligned}$	$V$ (min)   $V$ (max)
$\mathrm{V}_{1} \mathrm{~N}$ -	Inverting Input Range			$\begin{aligned} & \mathbf{G N D} \\ & \mathbf{v}_{\mathbf{A}}{ }^{+} \end{aligned}$	$\begin{aligned} & \mathrm{V}(\min ) \\ & \mathrm{V}(\max ) \end{aligned}$
$\mathrm{V}_{\mathrm{IN}+}-\mathrm{V}_{\mathrm{IN}-}$	Differential Input Voltage Range			$\begin{gathered} -\mathbf{V}_{\mathbf{A}}{ }^{+} \\ \mathbf{v}_{\mathbf{A}^{+}} \\ \hline \end{gathered}$	$\begin{aligned} & V(\min ) \\ & V(\max ) \end{aligned}$
$\frac{\mathrm{V}_{\mathrm{IN}+}-\mathrm{V}_{\mathrm{IN}-}}{2}$	Common Mode Input Voltage Range			$\begin{aligned} & \mathbf{G N D} \\ & \mathbf{V}_{\mathbf{A}}{ }^{+} \end{aligned}$	$V$ (min)   V (max)
PSS	Power Supply Zero Error   Sensitivity Full-Scale Error   (Note 15) Linearity Error	$\begin{aligned} & \mathrm{V}_{A^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{~V}_{\text {REF }+}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }-}=\mathrm{GND} \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.4 \\ & \pm 0.2 \end{aligned}$	$\begin{gathered} \pm 1.75 \\ \pm 2 \end{gathered}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (max) } \\ & \text { LSB } \end{aligned}$
$\mathrm{C}_{\text {REF }}$	$\mathrm{V}_{\text {REF }+} / \mathrm{V}_{\text {REF }- \text { Input Capacitance }}$		85		pF
$\mathrm{C}_{\text {IN }}$	Selected Multiplexer Channel Input Capacitance		75		pF

## Converter AC Characteristics

The following specifications apply to the LM12454, LM12H454, LM12458, and LM12H458 for $\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{REF}+}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0 \mathrm{~V}$, 12 -bit + sign conversion mode, $\mathrm{f}_{\mathrm{CLK}}=8.0 \mathrm{MHz}(\mathrm{LM} 12 \mathrm{H} 454 / 8)$ or $\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}$ (LM12454/8), $R_{S}=25 \Omega$, source impedance for $V_{\text {REF }}+$ and $V_{\text {REF }} \leq 25 \Omega$, fully-differential input with fixed 2.5 V commonmode voltage, and minimum acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {miN }}$ to $\mathrm{T}_{\text {max }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Notes 6, 7, 8, 9 and 19)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Unit (Limit)
	Clock Duty Cycle		50	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	
$\mathrm{t}_{\mathrm{C}}$	Conversion Time	13-Bit Resolution, Sequencer State S5 (Figure 11)	44 (tclk)	44 (tclk) + 50 ns	(max)
		9-Bit Resolution, Sequencer State S5 (Figure 11)	21 (tclek)	21 (tclk) + 50 ns	(max)
$t_{\text {A }}$	Acquisition Time	Sequencer State S7 (Figure 11) Built-in minimum for 13-Bits	9 (tcle ${ }_{\text {c }}$	9 (tclk) + 50 ns	(max)
		Built-in minimum for 9-Bits and "Watchdog" mode	2 (tclu)	2 (tclk) + 50 ns	(max)
$\mathrm{t}_{\mathrm{z}}$	Auto-Zero Time	Sequencer State S2 (Figure 11)	76 (tcLK)	76 (tclk) + 50 ns	(max)
$\mathrm{t}_{\mathrm{CAL}}$	Full Calibration Time	Sequencer State S2 (Figure 11)	4944 (tcLK)	4944 (tcLK) + 50 ns	(max)
	Throughput Rate (Note 18)	LM12H454, LM12H458	$\begin{gathered} 89 \\ 142 \\ \hline \end{gathered}$	$\begin{gathered} 88 \\ 140 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{kHz} \\ (\mathrm{~min}) \end{gathered}$
two	"Watchdog" Mode Comparison Time	Sequencer States S6, S4, and S5 (Figure 11)	11 (tCLK)	11 (tclk) + 50 ns	(max)

## Converter AC Characteristics

The following specifications apply to the LM12454, LM12H454, LM12458, and LM12H458 for $V_{A}{ }^{+}=V_{D}{ }^{+}=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{REF}+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}$, 12-bit + sign conversion mode, $\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$, source impedance for $\mathrm{V}_{\text {REF }}+$ and $V_{\text {REF }} \leq 25 \Omega$, fully-differential input with fixed 2.5 V common-mode voltage, and minimum acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$. (Notes $6,7,8,9$ and 19) (Continued)


DC Characteristics The following specifications apply to the LM12454, LM12H454, LM12458, and LM12H458 for $\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}-=0 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=8.0 \mathrm{MHz}(\mathrm{LM12H454/8})$ or $\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}$ (LM12454/8), and minimum acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {mAX }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6, 7, 8, and 19)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Unit (Limit)
$10^{+}$	$\mathrm{V}_{\mathrm{D}}+$ Supply Current	$\begin{aligned} & \hline \overline{\mathrm{CS}}=" 1 " \\ & \text { LM12454/8 } \\ & \text { LM12H454/8 } \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	$m A(\max )$
$\mathrm{IA}^{+}$	$\mathrm{V}_{\text {A }}+$ Supply Current	$\begin{aligned} & \hline \overline{\mathrm{CS}}=" 1 " \\ & \text { LM12454/8 } \\ & \text { LM12H454/8 } \end{aligned}$	$\begin{aligned} & 3.1 \\ & 3.1 \end{aligned}$	$\begin{array}{r} 5.0 \\ 5.5 \end{array}$	$\mathrm{mA}(\max )$
Ist	Stand-By Supply Current ( $\mathrm{I}^{+}+\mathrm{I}^{+}$)	Power-Down Mode Selected Clock Stopped 8 MHz Clock	$\begin{aligned} & 10 \\ & 40 \end{aligned}$		$\begin{aligned} & \mu \mathrm{A}(\max ) \\ & \mu \mathrm{A}(\max ) \end{aligned}$
	Multiplexer ON-Channel Leakage Current	$\mathrm{V}_{\mathrm{A}^{+}}=5.5 \mathrm{~V}$   ON -Channel $=5.5 \mathrm{~V}$   OFF-Channel $=0 \mathrm{~V}$   LM12(H)458MEL/MW   ON-Channel $=0 \mathrm{~V}$   OFF-Channel $=5.5 \mathrm{~V}$   LM12(H)458MEL/MW	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.5 \\ & 0.3 \\ & 0.5 \end{aligned}$	$\mu \mathrm{A}(\max )$   $\mu \mathrm{A}$ (max)
	Multiplexer OFF-Channel Leakage Current	$\mathrm{V}_{\mathrm{A}}+=5.5 \mathrm{~V}$   ON -Channel $=5.5 \mathrm{~V}$   OFF-Channel $=0 \mathrm{~V}$   LM12(H)458MEL/MW   ON-Channel $=0 \mathrm{~V}$   OFF-Channel $=5.5 \mathrm{~V}$   LM12(H)458MEL/MW	0.1 $0.1$	$\begin{aligned} & 0.3 \\ & 0.5 \\ & 0.3 \\ & 0.5 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ (max)   $\mu \mathrm{A}(\max )$
RON	Multiplexer ON-Resistance	$\begin{aligned} & \mathrm{LM} 12(\mathrm{H}) 454 \\ & \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & 850 \\ & 760 \\ & \hline \end{aligned}$	$\begin{aligned} & 1500 \\ & 1500 \\ & 1500 \end{aligned}$	$\begin{aligned} & \Omega(\max ) \\ & \Omega(\max ) \\ & \Omega(\max ) \end{aligned}$
	Multiplexer Channel-to-Channel RON matching	$\begin{aligned} & \mathrm{LM} 12(\mathrm{H}) 454 \\ & \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 1.0 \% \\ & \pm 1.0 \% \\ & \pm 1.0 \% \\ & \hline \end{aligned}$		(max) (max) (max)

Internal Reference Characteristics The following specifications apply to the LM12454, LM12H454, LM12458, and LM12H458 for $\mathrm{V}_{A}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {miN }}$ to $\mathrm{T}_{\mathrm{max}}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Notes 6,7 , and 19 )

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	$\begin{gathered} \text { Unit } \\ \text { (Limit) } \end{gathered}$
$V_{\text {REFOUT }}$	Internal Reference Output Voltage	LM12(H)458MEL/MW	2.5	$\begin{aligned} & 2.5 \pm 4 \% \\ & 2.5 \pm 6 \% \end{aligned}$	$V$ (max)
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{T}$	Internal Reference Temperature Coefficient		40		ppm $/{ }^{\circ} \mathrm{C}$
$\Delta_{\text {REF }} / \Delta l_{\text {L }}$	Internal Reference Load Regulation	Sourcing ( $0<\mathrm{I}_{\mathrm{L}} \leq+4 \mathrm{~mA}$ )   Sinking ( $-1 \leq \mathrm{I}_{\mathrm{IL}}<0 \mathrm{~mA}$ )		$\begin{aligned} & 0.2 \\ & 1.2 \end{aligned}$	$\% / m A(\max )$   \%/mA (max)
$\Delta V_{\text {REF }}$	Line Regulation	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}}{ }^{+} \leq 5.5 \mathrm{~V}$	3	20	mV (max)
ISC	Internal Reference Short Circuit Current	$\mathrm{V}_{\text {REFOUT }}=0 \mathrm{~V}$	13	25	mA (max)
$\Delta V_{\text {REF }} / \Delta t$	Long Term Stability		200		ppm/kHr
${ }^{\text {tsu }}$	Internal Reference Start-Up Time	$\begin{aligned} & V_{A^{+}}=V_{D^{+}}=0 \mathrm{~V} \rightarrow 5 \mathrm{~V} \\ & C_{L}=100 \mu \mathrm{~F} \end{aligned}$	10		ms


Digital Characteristics The following specifications apply to the LM12454, LM12H454, LM12458, and LM12H458 for $\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=5 \mathrm{~V}$, unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6, 7, 8, and 19)							
Symbol		Parameter		ditions	Typical (Note 10)	Limits (Note 11)	Unit (Limit)
$V_{\text {IN(1) }}$	Logical "1" Input Voltage		$\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}^{+}{ }^{+}=5.5 \mathrm{~V}$			2.0	$V$ (min)
V IN(0)	Logical "0" Input Voltage		$\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=4.5 \mathrm{~V}$			0.8	$V$ (max)
$\operatorname{liN(1)}$	Logical "1" Input Current		$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$   LM12(H)458MEL/MW		0.005	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ ( $\max$ )
$\operatorname{lin(0)}$	Logical "0" Input Current		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { LM12(H)458MEL/MW } \end{aligned}$		-0.005	$\begin{array}{r} -1.0 \\ -2.0 \end{array}$	$\mu \mathrm{A}$ (max)
$\mathrm{C}_{\text {IN }}$	D0-D15 Input Capacitance				6		pF
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{A}}+=\mathrm{V}_{\mathrm{D}}+=4.5 \mathrm{~V} \\ & \text { IOUT }=-360 \mu \mathrm{~A} \\ & \text { lout }=-10 \mu \mathrm{~A} \end{aligned}$			$\begin{gathered} 2.4 \\ 4.25 \\ \hline \end{gathered}$	$\begin{aligned} & V(\min ) \\ & V(\min ) \end{aligned}$
V OUT(0)	Logical "0" Output Voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}+=4.5 \mathrm{~V} \\ & \mathrm{l} \text { OUT }=1.6 \mathrm{~mA} \end{aligned}$			0.4	$V$ (max)
lout	TRI-STATE® Output Leakage Current		$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & V_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$		$\begin{gathered} -0.01 \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} -3.0 \\ \mathbf{3 . 0} \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A}(\max ) \\ & \mu \mathrm{A}(\max ) \end{aligned}$
Digital Timing Characteristics   The following specifications apply to the LM12454, LM12H454, LM12458, and LM12H458 for $V_{A}{ }^{+}=V_{D}{ }^{+}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=$ 3 ns , and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ on data I/O, $\bar{N} T$ and $D M A R Q$ lines unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}$ $=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max; }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Notes $6,7,8$, and 19)							
Symbol (See Figures $8 a, 8 b$, and $8 c$ )		Parameter		Conditions	Typical (Note 10)	Limits (Note 11)	Unit (Limit)
1,3		$\overline{\mathrm{CS}}$ or Address Valid to ALE Low Set-Up Time				40	$n \mathrm{n}$ (min)
2, 4		$\overline{\mathrm{CS}}$ or Address Valid to ALE Low Hold Time				20	$n s(m i n)$
5		ALE Pulse Width				45	$n s$ (min)
6		$\overline{\mathrm{RD}}$ High to Next ALE High				35	ns (min)
7		ALE Low to $\overline{\mathrm{RD}}$ Low				20	ns (min)
8		$\overline{\mathrm{RD}}$ Pulse Width				100	ns (min)
9		$\overline{\mathrm{RD}}$ High to Next $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low				100	ns (min)
10		ALE Low to $\overline{\mathrm{WR}}$ Low				20	ns (min)
11		$\overline{\text { WR Pulse Width }}$				60	ns (min)
12		$\overline{\text { WR High to Next ALE High }}$				75	$n \mathrm{~ns}(\mathrm{~min})$
13		$\overline{W R}$ High to Next $\overline{\mathrm{RD}}$ or $\overline{W R}$ Low				140	ns (min)
14		Data Valid to WR High Set-Up Time				40	ns (min)
15		Data Valid to WR High Hold Time				30	ns (min)
16		RD Low to Data Bus Out of TRI-STATE			40	$\begin{aligned} & 10 \\ & 70 \\ & \hline \end{aligned}$	ns (min)   ns (max)
17		$\overline{\mathrm{RD}}$ High to TRI-STATE		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	30	$\begin{gathered} 10 \\ 110 \end{gathered}$	ns (min)   ns (max)
18		RD Low to Data Valid (Access Time)		.	30	$\begin{aligned} & 10 \\ & 80 \end{aligned}$	ns (min) ns (max)

## Digital Timing Characteristics

The following specifications apply to the LM12454, LM12H454, LM12458, and LM12H458 for $V_{A^{+}}=V_{D^{+}}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=$ 3 ns , and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ on data $/ / \mathrm{O}$, $\overline{\mathrm{NT}}$ and $D M A R Q$ lines unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}$
$=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Notes 6, 7, 8, and 19) (Continued)

Symbol (See Figures 8a, $8 b$, and $8 c$ )	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Unit (Limit)
20	Address Valid or $\overline{\mathrm{CS}}$ Low to $\overline{\mathrm{RD}}$ Low			20	ns (min)
21	Address Valid or $\overline{\mathrm{CS}}$ Low to $\overline{\mathrm{WR}}$ Low			20	ns (min)
19	Address Invalid from $\overline{R D}$ or $\overline{W R}$ High			10	ns (min)
22	$\overline{\text { INT }}$ High from $\overline{\mathrm{RD}}$ Low		30	$\begin{aligned} & 10 \\ & 60 \end{aligned}$	ns (min) ns (max)
23	DMARQ Low from $\overline{\mathrm{RD}}$ Low	-	30	$\begin{aligned} & 10 \\ & 60 \\ & \hline \end{aligned}$	ns (min) ns (max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: When the input voltage $\left(\mathrm{V}_{\mathbb{I}}\right)$ at any pin exceeds the power supply rails $\left(\mathrm{V}_{\mathbb{I}}<\mathrm{GND}\right.$ or $\mathrm{V}_{\mathbb{N}}>\left(\mathrm{V}_{A}+\right.$ or $\left.\mathrm{V}_{\mathrm{D}}+\right)$ ), the current at that pin should be limited to 5 mA . The 20 mA maximum package input current rating allows the voltage at any four pins, with an input current of 5 mA , to simultaneously exceed the power supply voltages.
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J m a x}$ (maximum junction temperature), $\Theta_{\mathrm{JA}}$ (package junction to ambient thermal resistance), and $T_{A}$ (ambient temperature). The maximum allowable power dissipation at any temperature is $P D_{\max }=\left(T_{J \max }-T_{A}\right) /$ $\Theta_{\mathrm{JA}}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{Jmax}}=150^{\circ} \mathrm{C}$, and the typical thermal resistance ( $\Theta_{\mathrm{JA}}$ ) of the LM12 $(H) 454$ and LM12 $(H) 458$ in the V package, when board mounted, is $47^{\circ} \mathrm{C} / \mathrm{W}$; in the W package, when board mounted, is $50^{\circ} \mathrm{C} / \mathrm{W}\left(\theta \mathrm{J} \mathrm{C}=5.8^{\circ} \mathrm{C} / \mathrm{W}\right)$, and in the EL package, when board mounted, is $70^{\circ} \mathrm{C} / \mathrm{W}\left(\theta \mathrm{J}_{\mathrm{C}}=3.5^{\circ} \mathrm{C} / \mathrm{W}\right)$.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: Two on-chip diodes are tied to each analog input through a series resistor, as shown below. Input voltage magnitude up to 5 V above $\mathrm{V}_{\mathrm{A}}+$ or 5 V below GND will not damage the LM12(H)454 or the LM12(H)458. However, errors in the A/D conversion can occur if these diodes are forward biased by more than 100 mV . As an example, if $\mathrm{V}_{\mathrm{A}}{ }^{+}$is $4.5 \mathrm{~V}_{\mathrm{DC}}$, full-scale input voltage must be $\leq 4.6 \mathrm{~V}_{\mathrm{DC}}$ to ensure accurate conversions.


TL/H/11264-3
Note 7: $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}+$ must be connected together to the same power supply voltage and bypassed with separate capacitors at each $\mathrm{V}+$ pin to assure conversion/comparison accuracy.
Note 8: Accuracy is guaranteed when operating at $\mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}$ for the LM12454/8 and $\mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz}$ for the LM12H454/8.
Note 9: With the test condition for $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\text {REF }}+-\mathrm{V}_{\mathrm{REF}}\right.$ ) given as +5 V , the 12-bit LSB is 1.22 mV and the 8-bit/"Watchdog" LSB is 19.53 mV .
Note 10: Typicals are at $T_{A}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 11: Limits are guaranteed to National's AOQL (Average Output Quality Level).
Note 12: Positive integral linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line that passes through positive fullscale and zero. For negative integral linearity error the straight line passes through negative full-scale and zero. (See Figures $5 b$ and $5 c$ ).
Note 13: Zero error is a measure of the deviation from the mid-scale voltage (a code of zero), expressed in LSB. It is the worst-case value of the code transitions between -1 to 0 and 0 to +1 (see Figure 6).
Note 14: The DC common-mode error is measured with both inputs shorted together and driven from 0 V to 5 V . The measured value is referred to the resulting output value when the inputs are driven with a 2.5 V signal.
Note 15: Power Supply Sensitivity is measured after Auto-Zero and/or Auto-Calibration cycle has been completed with $\mathrm{V}_{\mathrm{A}^{+}}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$at the specified extremes.
Note 16: $\mathrm{V}_{\text {REFCM }}$ (Reference Voltage Common Mode Range) is defined as $\left(\mathrm{V}_{\text {REF }}+\mathrm{V}_{\text {REF-- }}\right) / 2$.
Note 17: The LM12(H)454/8's self-calibration technique ensures linearity and offset errors as specified, but noise inherent in the self-calibration process will result in a repeatability uncertainty of $\pm 0.10$ LSB.
Note 18: The Throughput Rate is for a single instruction repeated continuously. Sequencer states 0 ( 1 clock cycle), 1 ( 1 clock cycle), 7 ( 9 clock cycles) and 5 ( 44 clock cycles) are used (see Figure 11). One additional clock cycle is used to read the conversion result stored in the FIFO, for a total of 56 clock cycles per conversion. The Throughput Rate is f CLK $(\mathrm{MHz}) / \mathrm{N}$, where N is the number of clock cycles/conversion.
Note 19: A military RETS specification is available upon request. At the time of printing, the LM12(H)458CMEL/883 RETS specification complied with the boldface values in the Limits column.

## Electrical Characteristics



TL/H/11264-22
FIGURE 1. The General Case of Output Digital Code vs the Operating Input Voltage Range


FIGURE 2. Specific Case of Output Digital Code vs the Operating Input Voltage Range for $\mathrm{V}_{\text {REF }}=\mathbf{4 . 0 9 6} \mathrm{V}$

Electrical Characteristics (Continued)

$\mathrm{V}_{\mathrm{REF}+}(\mathrm{V})$
FIGURE 3. The General Case of the $\mathbf{V}_{\text {REF }}$ Operating Range


FIGURE 4. The Specific Case of the $\mathbf{V}_{\text {REF }}$ Operating Range for $\mathbf{V}_{\mathbf{A}}{ }^{+}=\mathbf{5 V}$

## Electrical Characteristics (Continued)



FIGURE 5a. Transfer Characteristic


TL/H/11264-5
FIGURE 5b. Simplified Error Curve vs Output Code without Auto-Calibration or Auto-Zero Cycles

Electrical Characteristics (Continued)


TL/H/11264-6
FIGURE 5c. Simplified Error Curve vs Output Code after Auto-Calibration Cycle


FIGURE 6. Offset or Zero Error Voltage

## Typical Performance Characteristics

The following curves apply for 12－bit + sign mode after auto－calibration unless otherwise specified．The performance for 8 －bit + sign and＂watchdog＂modes is equal to or better than shown．（Note 9）






Full－Scale Error Change vs Clock Frequency








TL／H／11264－8

## Typical Performance Characteristics

The following curves apply for 12 -bit + sign mode after auto-calibration unless otherwise specified. The performance for 8 -bit + sign and "watchdog" modes is equal to or better than shown. (Note 9) (Continued)




## Typical Dynamic Performance Characteristics

The following curves apply for 12-bit + sign mode after auto-calibration unless otherwise specified.




TL/H/11264-10

## Typical Dynamic Performance Characteristics

The following curves apply for 12-bit + sign mode after auto-calibration unless otherwise specified. (Continued)


## Test Circuits and Waveforms



TL/H/11264-12


TL/H/11264-13


TL/H/11264-14
$\overline{\mathrm{RD}}$


TL/H/11264-15
FIGURE 7. TRI-STATE Test Circuits and Waveforms

## Timing Diagrams

$\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+5 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=3 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ for the INT, DMARQ, D0-D15 outputs.


TL/H/11264-16
FIGURE 8a. Multiplexed Data Bus

1, 3: $\overline{\mathrm{CS}}$ or Address valid to ALE low set-up time.
2, 4: $\overline{C S}$ or Address valid to ALE low hold time.
5: ALE pulse width
6: $\overline{\mathrm{RD}}$ high to next ALE high
7: ALE low to $\overline{R D}$ low
8: $\overline{R D}$ pulse width
9: $\overline{\mathrm{RD}}$ high to next $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ low
10: ALE low to $\overline{W R}$ low

11: $\overline{\text { WR }}$ pulse width
12: $\overline{W R}$ high to next ALE high
13: $\overline{W R}$ high to next $\overline{W R}$ or $\overline{R D}$ low
14: Data valid to $\overline{W R}$ high set-up time
15: Data valid to $\overline{W R}$ high hold time
16: $\overline{R D}$ low to data bus out of TRI-STATE
17: $\overline{\operatorname{RD}}$ high to TRI-STATE
18: $\overline{\mathrm{RD}}$ low to data valid (access time)

## Timing Diagrams

$\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=+5 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=3 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ for the $\overline{\mathrm{NT}}$, DMARQ, D0-D15 outputs. (Continued)


FIGURE 8b. Non-Multiplexed Data Bus (ALE = 1)

8: $\overline{\mathrm{RD}}$ pulse width
9: $\overline{\mathrm{RD}}$ high to next $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ low
11: $\overline{W R}$ pulse width
13: $\overline{W R}$ high to next $\overline{W R}$ or $\overline{R D}$ low
14: Data valid to $\overline{W R}$ high set-up time
15: Data valid to $\overline{W R}$ high hold time

16: $\overline{\mathrm{RD}}$ low to data bus out of TRI-STATE
17: $\overline{R D}$ high to TRI-STATE
18: $\overline{\mathrm{RD}}$ low to data valid (access time)
19: Address invalid from $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ high (hold time)
20: $\overline{\mathrm{CS}}$ low or address valid to $\overline{\mathrm{RD}}$ low
21: $\overline{\mathrm{CS}}$ low or address valid to $\overline{\mathrm{WR}}$ low
$\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+5 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=3 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ for the $\overline{\mathrm{INT}}$, DMARQ, D0-D15 outputs.


FIGURE 8c. Interrupt and DMARQ
22: $\overline{N T}$ high from $\overline{R D}$ low
23: DMARQ low from $\overline{R D}$ low

## Pin Description

$\mathrm{V}_{\mathrm{A}}{ }^{+} \quad$ These are the analog and digital supply voltage
$\mathrm{V}_{\mathrm{D}}{ }^{+}$pins. The LM12(H)454/8's supply voltage operating range is +3.0 V to +5.5 V . Accuracy is guaranteed only if $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$are connected to the same power supply. Each pin should have a parallel combination of $10 \mu \mathrm{~F}$ (electrolytic or tantalum) and $0.1 \mu \mathrm{~F}$ (ceramic) bypass capacitors connected between it and ground.
D0-D15 The internal data input/output TRI-STATE buffers are connected to these pins. These buffers are designed to drive capacitive loads of 100 pF or less. External buffers are necessary for driving higher load capacitances. These pins allows the user a means of instruction input and data output. With a logic high applied to the BW pin, data lines D8D15 are placed in a high impedance state and data lines D0-D7 are used for instruction input and data output when the LM12(H)454/8 is connected to an 8 -bit wide data bus. A logic low on the BW pin allows the LM12(H)454/8 to exchange information over a 16 -bit wide data bus.
$\overline{R D} \quad$ This is the input for the active low READ bus control signal. The data input/output TRI-STATE buffers, as selected by the logic signal applied to the BW pin, are enabled when RD and $\overline{\mathrm{CS}}$ are both low. This allows the LM12(H)454/8 to transmit information onto the databus.
$\overline{W R} \quad$ This is the input for the active low WRITE bus control signal. The data input/output TRI-STATE buffers, as selected by the logic signal applied to the BW pin, are enabled when $\overline{W R}$ and $\overline{\mathrm{CS}}$ are both low. This allows the LM12(H)454/8 to receive information from the databus.
$\overline{\mathrm{CS}} \quad$ This is the input for the active low Chip Select control signal. A logic low should be applied to this pin only during a READ or WRITE access to the LM12(H)454/8. The internal clocking is halted and conversion stops while Chip Select is low. Conversion resumes when the Chip Select input signal returns high.
ALE This is the Address Latch Enable input. It is used in systems containing a multiplexed databus. When ALE is asserted high, the LM12 $(\mathrm{H}) 454 / 8$ accepts information on the databus as a valid address. A high-to-low transition will latch the address data on AO-A4 while the $\overline{\mathrm{CS}}$ is low. Any changes on A0A4 and $\overline{\mathrm{CS}}$ while ALE is low will not affect the LM12(H)454/8. See Figure 8a. When a non-multiplexed bus is used, ALE is continuously asserted high. See Figure $8 b$.
CLK This is the external clock input pin. The LM12(H)454/8 operates with an input clock frequency in the range of 0.05 MHz to 10.0 MHz .
A0-A4 These are the LM12(H)454/8's address lines. They are used to access all internal registers, Conversion FIFO, and Instruction RAM.
SYNC This is the synchronization input/output. When used as an output, it is designed to drive capacitive loads of 100 pF or less. External buffers are necessary for driving higher load capacitances. SYNC is an input if the Configuration register's "I/O Select" bit is low. A rising edge on this pin causes the internal $\mathrm{S} / \mathrm{H}$ to hold the input signal. The next
rising clock edge either starts a conversion or makes a comparison to a programmable limit depending on which function is requested by a programming instruction. This pin will be an output if " $I / O$ Select" is set high. The SYNC output goes high when a conversion or a comparison is started and low when completed. (See Section 2.2). An internal reset after power is first applied to the LM12(H)454/8 automatically sets this pin as an input.
BW This is the Bus Width input pin. This input allows the LM12(H)454/8 to interface directly with either an 8 - or 16 -bit databus. A logic high sets the width to 8 bits and places D8-D15 in a high impedance state. A logic low sets the width to 16 bits.
INT $\quad$ This is the active low interrupt output. This output is designed to drive capacitive loads of 100 pF or less. External buffers are necessary for driving higher load capacitances. An interrupt signal is generated any time a nonmasked interrupt condition takes place. There are eight different conditions that can cause an interrupt. Any interrupt is reset by reading the Interrupt Status register. (See Section 2.3.)
DMARQ This is the active high Direct Memory Access Request output. This output is designed to drive capacitive loads of 100 pF or less. External buffers are necessary for driving higher load capacitances. It goes high whenever the number of conversion results in the conversion FIFO equals a programmable value stored in the Interrupt Enable register. It returns to a logic low when the FIFO is empty.
GND This is the LM12(H)454/8 ground connection. It should be connected to a low resistance and inductance analog ground return that connects directly to the system power supply ground.
INO-IN7 These are the eight (LM12(H)458) or four (IN0-IN3 (LM12(H)454) analog inputs. A given channel LM12H454 is selected through the instruction RAM. Any LM12454) of the channels can be configured as an independent single-ended input. Any pair of channels, whether adjacent or non-adjacent, can operate as a fully differential pair.
S/H IN+ These are the LM12(H)454's non-inverting and S/H IN- inverting inputs to the internal S/H.
MUXOUT+ These are the LM12(H)454's non-inverting and MUXOUT - inverting outputs from the internal multiplexer.
$V_{\text {REF - }} \quad$ This is the negative reference input. The LM12(H)454/8 operate with $0 \mathrm{~V} \leq \mathrm{V}_{\text {REF- }} \leq$ $V_{\text {REF }}+$. This pin should be bypassed to ground with a parallel combination of $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ (ceramic) capacitors.
$V_{\text {REF }+~ T h i s ~ i s ~ t h e ~ p o s i t i v e ~ r e f e r e n c e ~ i n p u t . ~ T h e ~}^{\text {in }}$ LM12(H)454/8 operate with $0 V \leq V_{\text {REF }} \leq$ $\mathrm{V}_{\mathrm{A}}{ }^{+}$. This pin should be bypassed to ground with a parallel combination of $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ (ceramic) capacitors.
$V_{\text {REFOUT }}$ This is the internal 2.5 V bandgap's output pin. This pin should be bypassed to ground with a $100 \mu \mathrm{~F}$ capacitor.

## Application Information

### 1.0 Functional Description

The LM12(H)454 and LM12(H)458 are multi-functional Data Acquisition Systems that include a fully differential 12-bit-plus-sign self-calibrating analog-to-digital converter (ADC) with a two's-complement output format, an 8-channel (LM12(H)458) or a 4-channel (LM12(H)454) analog multiplexer, an internal 2.5 V reference, a first-in-first-out (FIFO) register that can store 32 conversion results, and an Instruction RAM that can store as many as eight instructions to be sequentially executed. The LM12(H)454 also has a differential multiplexer output and a differential S/H input. All of this circuitry operates on only a single +5 V power supply.
The LM12(H)454/8 have three modes of operation:
12-bit + sign with correction
8 -bit + sign without correction
8 -bit + sign comparison mode ("watchdog" mode)
The fully differential 12-bit-plus-sign ADC uses a charge redistribution topology that includes calibration capabilities. Charge re-distribution ADCs use a capacitor ladder in place of a resistor ladder to form an internal DAC. The DAC is used by a successive approximation register to generate intermediate voltages between the voltages applied to $V_{\text {REF }}$ - and $\mathrm{V}_{\text {REF }}$. These intermediate voltages are compared against the sampled analog input voltage as each bit is generated. The number of intermediate voltages and comparisons equals the ADC's resolution. The correction of each bit's accuracy is accomplished by calibrating the capacitor ladder used in the ADC.
Two different calibration modes are available; one compensates for offset voltage, or zero error, while the other corrects both offset error and the ADC's linearity error.
When correcting offset only, the offset error is measured once and a correction coefficient is created. During the full calibration, the offset error is measured eight times, averaged, and a correction coefficient is created. After completion of either calibration mode, the offset correction coefficient is stored in an internal offset correction register.
The LM12(H)454/8's overall linearity correction is achieved by correcting the internal DAC's capacitor mismatch. Each capacitor is compared eight times against all remaining smaller value capacitors and any errors are averaged. A correction coefficient is then created and stored in one of the thirteen internal linearity correction registers. An internal state machine, using patterns stored in an internal $16 \times 8$-bit ROM, executes each calibration algorithm.
Once calibrated, an internal arithmetic logic unit (ALU) uses the offset correction coefficient and the 13 linearity correction coefficients to reduce the conversion's offset error and linearity error, in the background, during the 12-bit + sign conversion. The 8 -bit + sign conversion and comparison modes use only the offset coefficient. The 8 -bit + sign mode performs a conversion in less than half the time used by the 12 -bit + sign conversion mode.

The LM12 $(H) 454 / 8$ 's "watchdog" mode is used to monitor a single-ended or differential signal's amplitude. Each sampled signal has two limits. An interrupt can be generated if the input signal is above or below either of the two limits. This allows interrupts to be generated when analog voltage inputs are "inside the window" or, alternatively, "outside the window". After a "watchdog" mode interrupt, the processor can then request a conversion on the input signal and read the signal's magnitude.
The analog input multiplexer can be configured for any combination of single-ended or fully differential operation. Each input is referenced to ground when a multiplexer channel operates in the single-ended mode. Fully differential analog input channels are formed by pairing any two channels together.
The LM12(H)454's multiplexer outputs and S/H inputs (MUXOUT+, MUXOUT- and S/H IN+, S/H IN-) provide the option for additional analog signal processing. Fixedgain amplifiers, programmable-gain amplifiers, filters, and other processing circuits can operate on the signal applied to the selected multiplexer channel(s). If external processing is not used, connect MUXOUT + to S/H IN + and MUX-OUT- to S/H IN-.
The LM12(H)454/8's internal S/H is designed to operate at its minimum acquisition time ( $1.13 \mu \mathrm{~s}, 12$ bits) when the source impedance, $\mathrm{R}_{\mathrm{S}}$, is $\leq 60 \Omega$ ( $\mathrm{f}_{\mathrm{CLK}} \leq 8 \mathrm{MHz}$ ). When $60 \Omega<R_{\mathrm{S}} \leq 4.17 \mathrm{k} \Omega$, the internal $\mathrm{S} / \mathrm{H}$ 's acquisition time can be increased to a maximum of $4.88 \mu \mathrm{~s}$ ( 12 bits, $\mathrm{f}_{\mathrm{CLK}}=$ 8 MHz ). See Section 2.1 (Instruction RAM " 00 ") Bits 12-15 for more information.
An internal 2.5 V bandgap reference output is available at pin 44. This voltage can be used as the ADC reference for ratiometric conversion or as a virtual ground for front-end analog conditioning circuits. The $\mathrm{V}_{\text {REFOUT }}$ pin should be bypassed to ground with a $100 \mu \mathrm{~F}$ capacitor.
Microprocessor overhead is reduced through the use of the internal conversion FIFO. Thirty-two consecutive conversions can be completed and stored in the FIFO without any microprocessor intervention. The microprocessor can, at any time, interrogate the FIFO and retrieve its contents. It can also wait for the LM12(H)454/8 to issue an interrupt when the FIFO is full or after any number ( $\leq 32$ ) of conversions have been stored.
Conversion sequencing, internal timer interval, multiplexer configuration, and many other operations are programmed and set in the Instruction RAM.
A diagnostic mode is available that allows verification of the LM12(H)458's operation. The diagnostic mode is disabled in the LM12(H)454. This mode internally connects the voltages present at the $\mathrm{V}_{\text {REFOUT }}, \mathrm{V}_{\text {REF }+}, \mathrm{V}_{\text {REF- }}$, and GND pins to the internal $\mathrm{V}_{I N}+$ and $\mathrm{V}_{I N}-\mathrm{S} / \mathrm{H}$ inputs. This mode is activated by setting the Diagnostic bit (Bit 11) in the Configuration register to a " 1 ". More information concerning this mode of operation can be found in Section 2.2.

### 2.0 Internal User-Programmable Registers

### 2.1 INSTRUCTION RAM

The instruction RAM holds up to eight sequentially executable instructions. Each 48-bit long instruction is divided into three 16 -bit sections. READ and WRITE operations can be issued to each 16 -bit section using the instruction's address and the 2-bit "RAM pointer" in the Configuration register. The eight instructions are located at addresses 0000 through $0111(\mathrm{~A} 4-\mathrm{A} 1, \mathrm{BW}=0)$ when using a 16-bit wide data bus or at addresses 00000 through 01111 (A4-AO, $\mathrm{BW}=1$ ) when using an 8 -bit wide data bus. They can be accessed and programmed in random order.
Any Instruction RAM READ or WRITE can affect the sequencer's operation:

The Sequencer should be stopped by setting the RESET bit to a " 1 " or by resetting the START bit in the Configuration Register and waiting for the current instruction to finish execution before any Instruction RAM READ or WRITE is initiated.
A soft RESET should be issued by writing a " 1 " to the Configuration Register's RESET bit after any READ or WRITE to the Instruction RAM.
The three sections in the Instruction RAM are selected by the Configuration Register's 2-bit "RAM Pointer", bits D8 and D9. The first 16 -bit Instruction RAM section is selected with the RAM Pointer equal to " 00 ". This section provides multiplexer channel selection, as well as resolution, acquisition time, etc. The second 16 -bit section holds "watchdog" limit \#1, its sign, and an indicator that shows that an interrupt can be generated if the input signal is greater or less than the programmed limit. The third 16 -bit section holds "watchdog" limit \#2, its sign, and an indicator that shows that an interrupt can be generated if the input signal is greater or less than the programmed limit.

## Instruction RAM "00"

Bit 0 is the LOOP bit. It indicates the last instruction to be executed in any instruction sequence when it is set to a " 1 ". The next instruction to be executed will be instruction 0.
Bit 1 is the PAUSE bit. This controls the Sequencer's operation. When the PAUSE bit is set (" 1 "), the Sequencer will stop after reading the current instruction and before executing it, and the start bit in the Configuration register is automatically reset to a " 0 ". Setting the PAUSE also causes an interrupt to be issued. The Sequencer is restarted by placing a " 1 " in the Configuration register's Bit 0 (Start bit).
After the instruction RAM has been programmed and the RESET bit is set to " 1 ", the Sequencer retrieves Instruction 000, decodes it, and waits for a "1" to be placed in the Configuration's START bit. The START bit value of " 0 " "overrides" the action of Instruction 000's PAUSE bit when the Sequencer is started. Once started, the Sequencer executes Instruction 000 and retrieves, decodes, and executes each of the remaining instructions. No PAUSE Interrupt (INT 5) is generated the first time the Sequencer executes Instruction 000 having a PAUSE bit set to " 1 ". When the Sequencer encounters a LOOP bit or completes all eight instructions, Instruction 000 is retrieved and decoded. A set PAUSE bit in Instruction 000 now halts the Sequencer before the instruction is executed.

Bits 2-4 select which of the eight input channels (" 000 " to "111" for INO-IN7) will be configured as non-inverting inputs to the LM12(H)458's ADC. (See Page 25, Table I.) They select which of the four input channels (" 000 " to " 011 " for INO-IN4) will be configured as non-inverting inputs to the LM12(H)454's ADC. (See Page 25, Table II.)
Bits 5-7 select which of the seven input channels (" 001 " to "111" for IN1 to IN7) will be configured as inverting inputs to the LM12(H)458's ADC. (See Page 25, Table I.) They select which of the three input channels ("001" to "011" for IN1IN 4 ) will be configured as inverting inputs to the LM12(H)454's ADC. (See Page 25, Table II.) Fully differential operation is created by selecting two multiplexer channels, one operating in the non-inverting mode and the other operating in the inverting mode. A code of " 000 " selects ground as the inverting input for single ended operation.
Bit 8 is the SYNC bit. Setting Bit 8 to " 1 " causes the Sequencer to suspend operation at the end of the internal S/H's acquisition cycle and to wait until a rising edge appears at the SYNC pin. When a rising edge appears, the S/H acquires the input signal magnitude and the ADC performs a conversion on the clock's next rising edge. When the SYNC pin is used as an input, the Configuration register's " $1 / O$ Select" bit (Bit 7) must be set to a " 0 ". With SYNC configured as an input, it is possible to synchronize the start of a conversion to an external event. This is useful in applications such as digital signal processing (DSP) where the exact timing of conversions is important.
When the LM12 $(H) 454 / 8$ are used in the "watchdog" mode with external synchronization, two rising edges on the SYNC input are required to initiate two comparisons. The first rising edge initiates the comparison of the selected analog input signal with Limit \# 1 (found in Instruction RAM "01") and the second rising edge initiates the comparison of the same analog input signal with Limit \#2 (found in Instruction RAM "10").
Bit 9 is the TIMER bit. When Bit 9 is set to " 1 ", the Sequencer will halt until the internal 16-bit Timer counts down to zero. During this time interval, no "watchdog" comparisons or analog-to-digital conversions will be performed.
Bit 10 selects the ADC conversion resolution. Setting Bit 10 to " 1 " selects 8 -bit + sign and when reset to " 0 " selects 12 -bit + sign.
Bit 11 is the "watchdog" comparison mode enable bit. When operating in the "watchdog" comparison mode, the selected analog input signal is compared with the programmable values stored in Limit \#1 and Limit \#2 (see Instruction RAM "01" and Instruction RAM "10"). Setting Bit 11 to " 1 " causes two comparisons of the selected analog input signal with the two stored limits. When Bit 11 is reset to " 0 ", an 8-bit + sign or 12-bit + sign (depending on the state of Bit 10 of Instruction RAM " 00 ") conversion of the input signal can take place.

2.0 Internal User-Programmable Registers (Continued)																	
A4 A3 A2 A1	Purpose	Type	D15	D14 D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
$\begin{array}{llll}  & 0 & 0 & 0 \\ 0 & & \text { to } & \\ & 1 & 1 & 1 \\ \hline \end{array}$	Instruction RAM   $($ RAM Pointer $=00)$	R/W	Acquisition Time			Watchdog	8/12	Timer	Sync		VinUXOUT			$\mathrm{V}_{\mathrm{IN}+}+$ UXOUT		Pause	Loop
$\begin{array}{llll} & 0 & 0 & 0 \\ 0 & & \text { to } & \\ & 1 & 1 & 1\end{array}$	Instruction RAM (RAM Pointer = 01)	R/W	Don't Care					> / <	Sign	Limit \# 1							
$\begin{array}{llll}  & 0 & 0 & 0 \\ 0 & & \text { to } & \\ & 1 & 1 & 1 \\ \hline \end{array}$	Instruction RAM (RAM Pointer $=10$ )	R/W	Don't Care					>/<	Sign	Limit \#2							
1000	Configuration Register	R/W	Don't Care			DIAG ${ }^{\dagger}$	$\begin{gathered} \text { Test } \\ =0 \end{gathered}$	RAM   Pointer		I/O Sel	Auto   Zero ${ }^{\text {ec }}$	Chan   Mask	Standby	Full CAL	Auto-   Zero	Reset	Start
100001	Interrupt Enable Register	R/W	Number of Conversions in Conversion FIFO to Generate INT2				Sequencer   Address to Generate INT1			INT7	INT6	INT5	INT4	INT3	INT2	INT1	INTO
10010	Interrupt Status Register	R	Actual Number of Conversion Results in Conversion FIFO				Address of Sequencer Instruction being Executed			INST7	INST6	INST5	INST4	INST3	INST2	INST1	INSTO
$\begin{array}{lllll}1 & 0 & 1 & 1\end{array}$	Timer Register	R/W	Timer Preset High Byte							Timer Preset Low Byte							
$1 \begin{array}{llll}1 & 1 & 0\end{array}$	Conversion FIFO	R		Address or Sign	Sign	Conversion   Data: MSBs				Conversion Data: LSBs							
$1 \begin{array}{llll}1 & 1 & 0 & 1\end{array}$	Limit Status   Register	R	Limit \# 2: Status							Limit \#1: Status							

[^1]FIGURE 9. LM12(H)454/8 Memory Map for 16-Bit Wide Databus (BW = " 0 ", Test Bit = " 0 " and A0 = Don't Care)

A4	A3	A2	A1	AO	Purpose	Type	D7	D6	D5	D4	D3	D2:	D1	D0
0	0   1	$\begin{gathered} 0 \\ \text { to } \\ 1 \\ \hline \end{gathered}$	0   1	0	Instruction RAM   (RAM Pointer $=00$ )	R/W	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}-} \\ & \text { (MUXOUT-)* } \end{aligned}$			$\begin{gathered} \mathrm{V}_{\mathrm{IN}+}+ \\ (\mathrm{MUXOUT}+)^{*} \end{gathered}$			Pause	Loop
0	0   1	$\begin{gathered} 0 \\ \text { to } \\ 1 \end{gathered}$	0   1	1		R/W	Acquisition Time				Watchdog	8/12	Timer	Sync
0	0   1	$\begin{gathered} 0 \\ \text { to } \\ 1 \\ \hline \end{gathered}$	0   1	0	Instruction RAM   (RAM Pointer $=01$ )	R/W	Comparison Limit \# 1							
0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} 0 \\ \text { to } \\ 1 \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	1		R/W	Don't Care						>/<	Sign
0	0   1	$\begin{gathered} 0 \\ \text { to } \\ 1 \\ \hline \end{gathered}$	0   1	0	Instruction RAM   (RAM Pointer $=10$ )	R/W	Comparison Limit \# 2Don't Care						:	
0	0   1	$\begin{gathered} 0 \\ \text { to } \\ 1 \end{gathered}$	-   1	1		R/W							>/<	Sign
1	0	0	0	0	Configuration Register	R/W	$\begin{aligned} & 1 / 0 \\ & \mathrm{Sel} \\ & \hline \end{aligned}$	Auto Zeroec	Chan   Mask	Standby	Full   Cal	Auto-   Zero	Reset	Start
1	0	0	0	1		R/W	Don't Care				DIAG ${ }^{\dagger}$	$\begin{aligned} & \text { Test } \\ & =0 \end{aligned}$	RAM Pointer	
1	0	0	1	0	Interrupt Enable Register	R/W	INT7	INT6	INT5	INT4	INT3	INT2	INT1	INTO
1	0	0	1	1		R/W	Number of Conversions in Conversion FIFO to Generate INT2					Sequencer Address to Generate INT1		
1	0	1	0	0	Interrupt Status Register	R	INST7	INST6	INST5	INST4	INST3	INST2	INST1	INSTO
1	0	1	0	1		R	Actual Number of Conversions Results in Conversion FIFO					Address of Sequencer Instruction being Executed		
1	0	1	1	0	Timer Register	R/W	Timer Preset: Low Byte							
1	0	1	1	1		R/W	Timer Preset: High Byte							
1	1	0	0	0	Conversion FIFO	R	Conversion Data: LSBs							
1	1	0	0	1		R		dress or S		Sign		version	Data: MS	
1	1	0	1	0	Limit Status Register	R	Limit \# 1 Status							
1	1	0	1	1		R	Limit \#2 Status							

FIGURE 10. LM12(H)454/8 Memory Map for 8 -Bit Wide Databus (BW = " 1 " and Test Bit = " 0 ")

### 2.0 Internal User-Programmable Registers (Continued)

Bits 12-15 are used to store the user-programmable acquisition time. The Sequencer keeps the internal $\mathrm{S} / \mathrm{H}$ in the acquisition mode for a fixed number of clock cycles (nine clock cycles, for 12 -bit + sign conversions and two clock cycles for 8 -bit + sign conversions or "watchdog" comparisons) plus a variable number of clock cycles equal to twice the value stored in Bits 12-15. Thus, the S/H's acquisition time is $(9+2 D)$ clock cycles for 12-bit + sign conversions and $(2+2 \mathrm{D})$ clock cycles for 8 -bit + sign conversions or "watchdog" comparisons, where $D$ is the value stored in Bits 12-15. The minimum acquisition time compensates for the typical internal multiplexer series resistance of $2 \mathrm{k} \Omega$, and any additional delay created by Bits 12-15 compensates for source resistances greater than $60 \Omega(100 \Omega)$. (For this acquisition time discussion, numbers in () are shown for the LM12 (H)454/8 operating at 5 MHz .) The necessary acquisition time is determined by the source impedance at the multiplexer input. If the source resistance ( $\mathrm{R}_{\mathrm{S}}$ ) $<60 \Omega$ ( $100 \Omega$ ) and the clock frequency is 8 MHz , the value stored in bits $12-15$ (D) can be 0000 . If $R_{S}>60 \Omega$ ( $100 \Omega$ ), the following equations determine the value that should be stored in bits 12-15.

$$
\mathrm{D}=0.45 \times R_{\mathrm{S}} \times \mathrm{f}_{\mathrm{CL}} \mathrm{~K}
$$

for 12-bits + sign

$$
D=0.36 \times R_{S} \times f_{C L K}
$$

for 8 -bits + sign and "watchdog"
$R_{S}$ is in $k \Omega$ and $f_{\text {CLK }}$ is in MHz. Round the result to the next higher integer value. If $D$ is greater than 15 , it is advisable to lower the source impedance by using an analog buffer between the signal source and the LM12(H)458's multiplexer inputs. The value of $D$ can also be used to compensate for the settling or response time of external processing circuits connected between the LM12(H)454's MUXOUT and S/H IN pins.

## Instruction RAM "01"

The second Instruction RAM section is selected by placing a " 01 " in Bits 8 and 9 of the Configuration register.
Bits 0-7 hold "watchdog" limit \#1. When Bit 11' of Instruction RAM " 00 " is set to a " 1 ", the LM12(H)454/8 performs a "watchdog" comparison of the sampled analog input signal with the limit \#1 value first, followed by a comparison of the same sampled analog input signal with the value found in limit \#2 (Instruction RAM "10").
Bit 8 holds limit \#1's sign.
Bit 9's state determines the limit condition that generates a "watchdog" interrupt. A "1", causes a voltage greater than limit \#1 to generate an interrupt, while a " 0 " causes a voltage less than limit \#1 to generate an interrupt.
Bits 10-15 are not used.

## Instruction RAM "10"

The third Instruction RAM section is selected by placing a " 10 " in Bits 8 and 9 of the Configuration register.
Bits 0-7 hold "watchdog" limit \# 2. When Bit 11 of Instruction RAM " 00 " is set to a " 1 ", the LM12(H)454/8 performs a "watchdog" comparison of the sampled analog input signal with the limit \# 1 value first (Instruction RAM "01"), followed by a comparison of the same sampled analog input signal with the value found in limit \#2.
Bit 8 holds limit \# 2's sign.
Bit 9's state determines the limit condition that generates a "watchdog" interrupt. A " 1 " causes a voltage greater than
limit \# 2 to generate an interrupt, while a " 0 " causes a voltage less than limit \#2 to generate an interrupt.
Bits 10-15 are not used.

### 2.2 CONFIGURATION REGISTER

The Configuration register, 1000 (A4-A1, BW $=0$ ) or $1000 x$ ( $\mathrm{A} 4-\mathrm{AO}, \mathrm{BW}=1$ ) is a 16 -bit control register with read/write capability. It acts as the LM12(H)454's and LM12(H)458's "control panel" holding global information as well as start/stop, reset, self-calibration, and stand-by commands.
Bit 0 is the START/STOP bit. Reading Bit 0 returns an indication of the Sequencer's status. A " 0 " indicates that the Sequencer is stopped and waiting to execute the next instruction. A " 1 " shows that the Sequencer is running. Writing a " 0 " halts the Sequencer when the current instruction has finished execution. The next instruction to be executed is pointed to by the instruction pointer found in the status register. A "1" restarts the Sequencer with the instruction currently pointed to by the instruction pointer. (See Bits 810 in the Interrupt Status register.)
Bit 1 is the LM12(H)454/8's system RESET bit. Writing a " 1 " to Bit 1 stops the Sequencer (resetting the Configuration register's START/STOP bit), resets the Instruction pointer to " 000 " (found in the Interrupt Status register), clears the Conversion FIFO, and resets all interrupt flags. The RESET bit will return to " 0 " after two clock cycles unless it is forced high by writing a " 1 " into the Configuration register's Standby bit. A reset signal is internally generated when power is first applied to the part. No operation should be started until the RESET bit is " 0 ".
Writing a " 1 " to Bit 2 initiates an auto-zero offset voltage calibration. Unlike the eight-sample auto-zero calibration performed during the full calibration procedure, Bit 2 initiates a "short" auto-zero by sampling the offset once and creating a correction coefficient (full calibration averages eight samples of the converter offset voltage when creating a correction coefficient). If the Sequencer is running when Bit 2 is set to " 1 ", an auto-zero starts immediately after the conclusion of the currently running instruction. Bit 2 is reset automatically to a " 0 " and an interrupt flag (Bit 3 , in the Interrupt Status register) is set at the end of the auto-zero ( 76 clock cycles). After completion of an auto-zero calibration, the Sequencer fetches the next instruction as pointed to by the Instruction RAM's pointer and resumes execution. If the Sequencer is stopped, an auto-zero is performed immediately at the time requested.
Writing a "1" to Bit 3 initiates a complete calibration process that includes a "long" auto-zero offset voltage correction (this calibration averages eight samples of the comparator offset voltage when creating a correction coefficient) followed by an ADC linearity calibration. This complete calibration is started after the currently runining instruction is completed if the Sequencer is running when Bit 3 is set to " 1 ". Bit 3 is reset automatically to a " 0 " and an interrupt flag (Bit 4, in the Interrupt Status register) will be generated at the end of the calibration procedure ( 4944 clock cycles). After completion of a full auto-zero and linearity calibration, the Sequencer fetches the next instruction as pointed to by the Instruction RAM's pointer and resumes execution. If the Sequencer is stopped, a full calibration is performed immediately at the time requested.

### 2.0 Internal User-Programmable Registers (Continued)

Bit 4 is the Standby bit. Writing a " 1 " to Bit 4 immediately places the LM12 $(\mathrm{H}) 454 / 8$ in Standby mode. Normal operation returns when Bit 4 is reset to a " 0 ". The Standby command (" 1 ") disconnects the external clock from the internal circuitry, decreases the LM12(H)454/8's internal analog circuitry power supply current, and preserves all internal RAM contents. After writing a " 0 " to the Standby bit, the LM12(H)454/8 returns to an operating state identical to that caused by exercising the RESET bit. A Standby completion interrupt is issued after a power-up completion delay that allows the analog circuitry to settle. The Sequencer should be restarted only after the Standby completion is issued. The Instruction RAM can still be accessed through read and write operations while the LM12(H)454/8 are in Standby Mode.
Bit 5 is the Channel Address Mask. If Bit 5 is set to a " 1 ", Bits 13-15 in the conversion FIFO will be equal to the sign bit (Bit 12) of the conversion data. Resetting Bit 5 to a " 0 " causes conversion data Bits 13 through 15 to hold the instruction pointer value of the instruction to which the conversion data belongs.
Bit 6 is used to select a "short" auto-zero correction for every conversion. The Sequencer automatically inserts an auto-zero before every conversion or "watchdog" comparison if Bit 6 is set to " 1 ". No automatic correction will be performed if Bit 6 is reset to " 0 ".
The LM12(H)454/8's offset voltage, after calibration, has a typical drift of 0.1 LSB over a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. This small drift is less than the variability of the change in offset that can occur when using the auto-zero correction with each conversion. This variability is the result of using only one sample of the offset voltage to create a correction value. This variability decreases when using the full calibration mode because eight samples of the offset voltage are taken, averaged, and used to create a correction value.
Bit 7 is used to program the SYNC pin (29) to operate as either an input or an output. The SYNC pin becomes an output when Bit 7 is a " 1 " and an input when Bit 7 is a " 0 ". With SYNC programmed as an input, the rising edge of any logic signal applied to pin 29 will start a conversion or "watchdog" comparison. Programmed as an output, the logic level at pin 29 will go high at the start of a conversion or "watchdog" comparison and remain high until either have finished. See Instruction RAM " 00 ", Bit 8.
Bits 8 and 9 form the RAM Pointer that is used to select each of a 48 -bit instruction's three 16 -bit sections during read or write actions. A " 00 " selects Instruction RAM section one, " 01 " selects section two, and " 10 " selects section three.
Bit 10 activates the Test mode that is used only during production testing. Leave this bit reset to " 0 ".
Bit 11 is the Diagnostic bit and is available only in the LM12(H)458. It can be activated by setting it to a " 1 " (the Test bit must be reset to a " 0 "). The Diagnostic mode, along with a correctly chosen instruction, allows verification that the LM12(H)458's ADC is performing correctly. When activated, the inverting and non-inverting inputs are connected as shown in Table I. As an example, an instruction with "001" for both $\mathrm{V}_{\mathrm{IN}}+$ and $\mathrm{V}_{\mathrm{IN}}$ - while using the Diagnostic mode typically results in a full-scale output.

### 2.3 INTERRUPTS

The LM12(H)454 and LM12(H)458 have eight possible interrupts, all with the same priority. Any of these interrupts will cause a hardware interrupt to appear on the INT pin (31) if they are not masked (by the Interrupt Enable register). The Interrupt Status register is then read to determine which of the eight interrupts has been issued.

TABLE I. LM12(H)458 Input Multiplexer Channel Configuration Showing Normal Mode and Diagnostic Mode

Channel Selection Data	Normal Mode		Dlagnostic Mode	
	$\mathrm{V}_{\text {IN }+}$	$\mathrm{V}_{\text {IN }-}$	$\mathrm{V}_{\text {IN }+}$	$\mathrm{V}_{\text {IN }-}$
000	INO	GND	$V_{\text {REFOUT }}$	GND
001	IN1	IN1	VREF+	VREF-
010	IN2	IN2	IN2	IN2
011	IN3	IN3	IN3	IN3
100	IN4	IN4	IN4	IN4
101	IN5	IN5	IN5	IN5
110	IN6	IN6	IN6	IN6
111	IN7	IN7	IN7	IN7

TABLE II. LM12(H)454 Input Multiplexer Channel Configuration

Channel   Selection   Data	MUX +	MUX-
000	IN0	GND
001	IN1	IN1
010	IN2	IN2
011	IN3	IN3
$1 X X$	OPEN	OPEN

The Interrupt Status register, 1010 (A4-A1, BW $=0$ ) or $1010 \times(\mathrm{A} 4-\mathrm{AO}, \mathrm{BW}=1)$ must be cleared by reading it after writing to the Interrupt Enable register. This removes any spurious interrupts on the INT pin generated during an Interrupt Enable register access.
Interrupt 0 is generated whenever the analog input voltage on a selected multiplexer channel crosses a limit while the LM12(H)454/8 are operating in the "watchdog" comparison mode. Two sequential comparisons are made when the LM12(H)454/8 are executing a "watchdog" instruction. Depending on the logic state of Bit 9 in the Instruction RAM's second and third sections, an interrupt will be generated either when the input signal's magnitude is greater than or less than the programmable limits. (See the Instruction RAM, Bit 9 description.) The Limit Status register will indicate which preprogrammed limit, \#1 or \#2 and which instruction was executing when the limit was crossed.
Interrupt 1 is generated when the Sequencer reaches the instruction counter value specified in the Interrupt Enable register's bits $8-10$. This flag appears before the instruction's execution.
Interrupt 2 is activated when the Conversion FIFO holds a number of conversions equal to the programmable value

### 2.0 Internal User-Programmable Registers (Continued)

stored in the Interrupt Enable register's Bits 11-15. This value ranges from 0001 to 1111, representing 1 to 31 conversions stored in the FIFO. A user-programmed value of 0000 has no meaning. See Section 3.0 for more FIFO information.
The completion of the short, single-sampled auto-zero calibration generates Interrupt 3.
The completion of a full auto-zero and linearity self-calibration generates Interrupt 4.
Interrupt 5 is generated when the Sequencer encounters an instruction that has its Pause bit (Bit 1 in Instruction RAM " 00 ") set to " 1 ".
The LM12 $(\mathrm{H}) 454 / 8$ issues Interrupt 6 whenever it senses that its power supply voltage is dropping below 4 V (typ). This interrupt indicates the potential corruption of data returned by the LM12(H)454/8.
Interrupt 7 is issued after a short delay ( 10 ms typ) while the LM12(H)454/8 returns from Standby mode to active operation using the Configuration register's Bit 4. This short delay allows the internal analog circuitry to settle sufficiently, ensuring accurate conversion results.

### 2.4 INTERRUPT ENABLE REGISTER

The Interrupt Enable register at address location 1001 ( $\mathrm{A} 4-\mathrm{A} 1, \mathrm{BW}=0$ ) or 1001x ( $\mathrm{A} 4-\mathrm{AO}, \mathrm{BW}=1$ ) has READ/ WRITE capability. An individual interrupt's ability to produce an external interrupt at pin 31 (INT) is accomplished by placing a " 1 " in the appropriate bit location. Any of the internal interrupt-producing operations will set their corresponding bits to " 1 " in the Interrupt Status register regardless of the state of the associated bit in the Interrupt Enable register. See Section 2.3 for more information about each of the eight internal interrupts.
Bit 0 enables an external interrupt when an internal "watchdog" comparison limit interrupt has taken place.
Bit 1 enables an external interrupt when the Sequencer has reached the address stored in Bits 8-10 of the Interrupt Enable register.
Blt 2 enables an external interrupt when the Conversion FIFO's limit, stored in Bits 11-15 of the Interrupt Enable register, has been reached.
Bit 3 enables an external interrupt when the single-sampled auto-zero calibration has been completed.
Bit 4 enables an external interrupt when a full auto-zero and linearity self-calibration has been completed.
Bit 5 enables an external interrupt when an internal Pause interrupt has been generated.
Bit 6 enables an external interrupt when a low power supply condition ( $\mathrm{V}_{\mathrm{A}}{ }^{+}<4 \mathrm{~V}$ ) has generated an internal interrupt.
Bit 7 enables an external interrupt when the LM12(H)454/8 return from power-down to active mode.
Bits 8-10 form the storage location of the user-programmable value against which the Sequencer's address is compared. When the Sequencer reaches an address that is equal to the value stored in Bits 8-10, an internal interrupt is generated and appears in Bit 1 of the Interrupt Status register. If Bit 1 of the Interrupt Enable register is set to " 1 ", an external interrupt will appear at pin 31 (INT).
The value stored in bits $8-10$ ranges from 000 to 111, representing 0 to 7 instructions stored in the Instruction RARi. After the Instruction RAM has been programmed and the

RESET bit is set to " 1 ", the Sequencer is started by placing a "1" in the Configuration register's START bit. Setting the INT 1 trigger value to 000 does not generate an INT 1 the first time the Sequencer retrieves and decodes Instruction 000. The Sequencer generates INT 1 (by placing a " 1 " in the Interrupt Status register's Bit 1) the second time and after the Sequencer encounters Instruction 000. It is important to remember that the Sequencer continues to operate even if an Instruction interrupt (INT 1) is internally or externally generated. The only mechanisms that stop the Sequencer are an instruction with the PAUSE bit set to "1" (halts before instruction execution), placing a " 0 " in the Configuration register's START bit, or placing a " 1 " in the Configuration register's RESET bit.
Bits 11-15 hold the number of conversions that must be stored in the Conversion FIFO in order to generate an internal interrupt. This internal interrupt appears in Bit 2 of the Interrupt Status register. If Bit 2 of the Interrupt Enable register is set to " 1 ", an external interrupt will appear at pin 31 (INT).

### 2.5 INTERRUPT STATUS REGISTER

This read-only register is located at address 1010 (A4-A1, $\mathrm{BW}=0$ ) or 1010x ( $\mathrm{A} 4-\mathrm{AO}, \mathrm{BW}=1$ ). The corresponding flag in the Interrupt Status register goes high ("1") any time that an interrupt condition takes place, whether an interrupt is enabled or disabled in the Interrupt Enable register. Any of the active ("1") Interrupt Status register flags are reset to " 0 " whenever this register is read or a device reset is issued (see Bit 1 in the Configuration Register).
Bit 0 is set to " 1 " when a "watchdog" comparison limit interrupt has taken place.
Bit 1 is set to " 1 " when the Sequencer has reached the address stored in Bits 8-10 of the Interrupt Enable register.
Bit 2 is set to " 1 " when the Conversion FIFO's limit, stored in Bits 11-15 of the Interrupt Enable register, has been reached.
Bit 3 is set to " 1 " when the single-sampled auto-zero has been completed.
Bit 4 is set to " 1 " when an auto-zero and full linearity selfcalibration has been completed.

Bit 5 is set to " 1 " when a Pause interrupt has been generated.
Bit 6 is set to " 1 " when a low-supply voltage condition $\left(\mathrm{V}_{\mathrm{A}}{ }^{+}<4 \mathrm{~V}\right)$ has taken place.
Bit 7 is set to " 1 " when the LM12(H)454/8 return from pow-er-down to active mode.
Bits 8-10 hold the Sequencer's actual instruction address while it is running.
Bits 11-15 hold the actual number of conversions stored in the Conversion FIFO while the Sequencer is running.

### 2.6 LIMIT STATUS REGISTER

The read-only register is located at address 1101 (A4-A1, $\mathrm{BW}=0$ ) or 1101x ( $\mathrm{A} 4-\mathrm{A} 0, \mathrm{BW}=1$ ). This register is used in tandem with the Limit \#1 and Limit \#2 registers in the Instruction RAM. Whenever a given instruction's input voltage exceeds the limit set in its corresponding Limit register (\#1 or \#2), a bit, corresponding to the instruction number, is set in the Limit Status register. Any of the active (" 1 ") Limit Status flags are reset to " 0 " whenever this register is

### 2.0 Internal User-Programmable Registers (Continued)

read or a device reset is issued (see Bit 1 in the Configuration register). This register holds the status of limits \#1 and \# 2 for each of the eight instructions.
Bits 0-7 show the Limit \#1 status. Each bit will be set high (" 1 ') when the corresponding instruction's input voltage exceeds the threshold stored in the instruction's Limit \#1 register. When, for example, instruction 3 is a "watchdog" operation (Bit 11 is set high) and the input for instruction 3 meets the magnitude and/or polarity data stored in instruction 3's Limit \# 1 register, Bit 3 in the Limit Status register will be set to a " 1 ".
Bits $8 \mathbf{- 1 5}$ show the Limit \#2 status. Each bit will be set high (" 1 ") when the corresponding instruction's input voltage exceeds the threshold stored in the instruction's Limit \#2 register. When, for example, the input to instruction 6 meets the value stored in instruction 6's Limit \#2 register, Bit 14 in the Limit Status register will be set to a " 1 ".

### 2.7 TIMER

The LM12(H)454/8 have an on-board 16-bit timer that includes a 5-bit pre-scaler. It uses the clock signal applied to pin 23 as its input. It can generate time intervals of 0 through $2^{21}$ clock cycles in steps of $2^{5}$. This time interval can be used to delay the execution of instructions. It can also be used to slow the conversion rate when converting slowly changing signals. This can reduce the amount of redundant data stored in the FIFO and retrieved by the controller.
The user-defined timing value used by the Timer is stored in the 16 -bit READ/WRITE Timer register at location 1011 (A4-A1, BW $=0$ ) or 1011x (A4-A0; BW = 1) and is preloaded automatically. Bits $0-7$ hold the preset value's low byte and Bits $8-15$ hold the high byte. The Timer is activated by the Sequencer only if the current instruction's Bit 9 is set (" 1 "). If the equivalent decimal value " N " ( $0 \leq \mathrm{N} \leq 2^{16}-1$ ) is written inside the 16-bit Timer register and the Timer is enabled by setting an instruction's bit 9 to a " 1 ", the Sequencer will delay the same instruction's execution by halting at state 3 (S3), as shown in Figure 11, for $32 \times N+2$ clock cycles.

### 2.8 DMA

The DMA works in tandem with Interrupt 2. An active DMA Request on pin 32 (DMARQ) requires that the FIFO interrupt be enabled. The voltage on the DMARQ pin goes high when the number of conversions in the FIFO equals the 5-bit value stored in the Interrupt Enable register (bits 1115). The voltage on the INT pin goes low at the same time as the voltage on the DMARQ pin goes high. The voltage on the DMARQ pin goes low when the FIFO is emptied. The Interrupt Status register must be read to clear the FIFO interrupt flag in order to enable the next DMA request.
DMA operation is optimized through the use of the 16 -bit databus connection (a logic " 0 " applied to the BW pin). Using this bus width allows DMA controllers that have single address Read/Write capability to easily unload the FIFO. Using DMA on an 8 -bit databus is more difficult. Two read operations (low byte, high byte) are needed to retrieve each
conversion result from the FIFO. Therefore, the DMA controller must be able to repeatedly access two constant addresses when transferring data from the LM12(H)454/8 to the host system.

### 3.0 FIFO

The result of each conversion stored in an internal read-only FIFO (First-In, First-Out) register. It is located at 1100 (A4$A 1, B W=0)$ or $1100 \times(A 4-A 0, B W=1)$. This register has 32 16-bit wide locations. Each location holds 13 -bit data. Bits $0-3$ hold the four LSB's in the 12 bits + sign mode or "1110" in the 8 bits + sign mode. Bits $4-11$ hold the eight MSB's and Bit 12 holds the sign bit. Bits 13-15 can hold either the sign bit, extending the register's two's complement data format to a full sixteen bits or the instruction address that generated the conversion and the resulting data. These modes are selected according to the logic state of the Configuration register's Bit 5.
The FIFO status should be read in the Interrupt Status register (Bits 11-15) to determine the number of conversion results that are held in the FIFO before retrieving them. This will help prevent conversion data corruption that may take place if the number of reads are greater than the number of conversion results contained in the FIFO. Trying to read the FIFO when it is empty may corrupt new data being written into the FIFO. Writing more than 32 conversion data into the FIFO by the ADC results in loss of the first conversion data. Therefore, to prevent data loss, it is recommended that the LM12(H)454/8's interrupt capability be used to inform the system controller that the FIFO is full.
The lower portion ( $\mathrm{AO}=0$ ) of the data word (Bits $0-7$ ) should be read first followed by a read of the upper portion ( $A O=1$ ) when using the 8 -bit bus width $(B W=1)$. Reading the upper portion first causes the data to shift down, which results in loss of the lower byte.
Bits 0-12 hold 12 -bit + sign conversion data. Bits $\mathbf{0 - 3}$ will be 1110 (LSB) when using 8 -bit plus sign resolution.
Bits 13-15 hold either the instruction responsible for the associated conversion data or the sign bit. Either mode is selected with Bit 5 in the Configuration register.
Using the FIFO's full depth is achieved as follows. Set the value of the Interrupt Enable register's Bits 11-15 to 11111 and the Interrupt Enable register's Bit 2 to a " 1 ". This generates an external interrupt when the 31st conversion is stored in the FIFO. This gives the host processor a chance to send a " 0 " to the LM12(H)454/8's Start bit (Configuration register) and halt the ADC before it completes the 32nd conversion. The Sequencer halts after the current (32) conversion is completed. The conversion data is then transferred to the FIFO and occupies the 32nd location. FIFO overflow is avoided if the Sequencer is halted before the start of the 32nd conversion by placing a " 0 " in the Start bit (Configuration register). It is important to remember that the Sequencer continues to operate even if a FIFO interrupt (INT 2) is internally or externally generated. The only mechanisms that stop the Sequencer are an instruction with the PAUSE bit set to "1" (halts before instruction execution), placing a " 0 " in the Configuration register's START bit, or placing a " 1 " in the Configuration register's RESET bit.

### 4.0 Sequencer

The Sequencer uses a 3-bit counter (Instruction Pointer, or IP, in Figure 7) to retrieve the programmable conversion instructions stored in the Instruction RAM. The 3-bit counter is reset to 000 during chip reset or if the current executed instruction has its Loop bit (Bit 1 in any Instruction RAM " 00 ') set high (" 1 "). It increments at the end of the currently executed instruction and points to the next instruction. It will continue to increment up to 111 unless an instruction's Loop bit is set. If this bit is set, the counter resets to "000" and execution begins again with the first instruction. If all instructions have their Loop bit reset to " 0 ", the Sequencer will execute all eight instructions continuously. Therefore, it is important to realize that if less than eight instructions are programmed, the Loop bit on the last instruction must be set. Leaving this bit reset to " 0 " allows the Sequencer to execute "unprogrammed" instructions, the results of which may be unpredictable.
The Sequencer's Instruction Pointer value is readable at any time and is found in the Status register at Bits 8-10. The Sequencer can go through eight states during instruction execution:

State 0: The current instruction's first 16 bits are read from the Instruction RAM " 00 ". This state is one clock cycle long.

State 1: Checks the state of the Calibration and Start bits. This is the "rest" state whenever the Sequencer is stopped using the reset, a Pause command, or the Start bit is reset low (" 0 "). When the Start bit is set to a " 1 ", this state is one clock cycle long.

State 2: Perform calibration. If bit 2 or bit 6 of the Configuration register is set to a " 1 ", state 2 is 76 clock cycles long. If the Configuration register's bit 3 is set to a " 1 ", state 2 is 4944 clock cycles long.

State 3: Run the internal 16 -bit Timer. The number of clock cycles for this state varies according to the value stored in the Timer register. The number of clock cycles is found by using the expression below

$$
32 T+2
$$

where $0 \leq T \leq 2^{16-1}$.
State 7: Run the acquisition delay and read Limit \#1's value if needed. The number of clock cycles for 12-bit + sign mode varies according to

$$
9+2 D
$$

where D is the user-programmable 4-bit value stored in bits $12-15$ of Instruction RAM " 00 " and is limited to $0 \leq \mathrm{D} \leq$ 15.

The number of clock cycles for 8 -bit + sign or "watchdog" mode varies according to

$$
2+2 D
$$

where D is the user-programmable 4-bit value stored in bits 12-15 of Instruction RAM " 00 " and is limited to $0 \leq \mathrm{D} \leq$ 15.

State 6: Perform first comparison. This state is 5 clock cycles long.

State 4: Read Limit \#2. This state is 1 clock cycle long.
State 5: Perform a conversion or second comparison. This state takes 44 clock cycles when using the 12-bit + sign mode or 21 clock cycles when using the 8 -bit + sign mode. The "watchdog" mode takes 5 clock cycles.
4.0 Sequencer (Continued)


FIGURE 11. Sequencer Logic Flow Chart (IP = Instruction Pointer)

### 5.0 Analog Considerations

### 5.1 REFERENCE VOLTAGE

The difference in the voltages applied to the $\mathrm{V}_{\text {REF }}+$ and $V_{\text {REF }}$ - defines the analog input voltage span (the difference between the voltages applied between two multiplexer inputs or the voltage applied to one of the multiplexer inputs and analog ground), over which 4095 positive and 4096 negative codes exist. The voltage sources driving $\mathrm{V}_{\mathrm{REF}}+$ or $V_{\text {REF- }}$ must have very low output impedance and noise. The circuit in Figure 12 is an example of a very stable reference appropriate for use with the LM12(H)454/8.
The ADC can be used in either ratiometric or absolute reference applications. In ratiometric systems, the analog input voltage is proportional to the voltage used for the ADC's reference voltage. When this voltage is the system power supply, the $\mathrm{V}_{\text {REF }}+$ pin is connected to $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\text {REF- }}$ is connected to GND. This technique relaxes the system reference stability requirements because the analog input voltage and the ADC reference voltage move together. This maintains the same output code for given input conditions.
For absolute accuracy, where the analog input voltage varies between very specific voltage limits, a time and temperature stable voltage source can be connected to the reference inputs. Typically, the reference voltage's magnitude will require an initial adjustment to null reference voltage induced full-scale errors.
When using the LM12(H)454/8's internal 2.5V bandgap reference, a parallel combination of a $100 \mu \mathrm{~F}$ capacitor and a $0.1 \mu \mathrm{~F}$ capacitor connected to the $\mathrm{V}_{\text {REFOUT }}$ pin is recommended for low noise operation. When left unconnected, the reference remains stable without a bypass capacitor. However, ensure that stray capacitance at the V REFOUT pin remains below 50 pF .

### 5.2 INPUT RANGE

The LM12(H)454/8's fully differential ADC and reference voltage inputs generate a two's-complement output that is found by using the equation below.

$$
\begin{align*}
& \text { output code }=\frac{V_{\text {IN }+}-V_{\text {IN }-}}{V_{\text {REF }+}-V_{\text {REF- }}}(4096)-1 / 2  \tag{12-bit}\\
& \text { output code }=\frac{V_{\text {IN }+}-V_{\text {IN }-}}{V_{\text {REF }+}-V_{\text {REF- }}}(256)-1 / 2 \tag{8-bit}
\end{align*}
$$

Round up to the next integer value between -4096 to 4095 for 12-bit resolution and between -256 to 255 for 8 -bit resolution if the result of the above equation is not a whole
number. As an example, $\mathrm{V}_{\text {REF }+}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }-}=1 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IN}+}=1.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IN}-}=\mathrm{GND}$. The 12-bit + sign output code is positive full-scale, or $0,1111,1111,1111$. If $V_{\text {REF }}+$ $=5 \mathrm{~V}, \mathrm{~V}_{\text {REF- }}=1 \mathrm{~V}, \mathrm{~V}_{\mathbb{N}+}=3 \mathrm{~V}$, and $\mathrm{V}_{\mathbb{N}-}=\mathrm{GND}$, the 12 -bit + sign output code is $0,1100,0000,0000$.

### 5.3 INPUT CURRENT

A charging current flows into or out of (depending on the input voltage polarity) the analog input pins, INO-IN7 at the start of the analog input acquisition time ( $\mathrm{t}_{\mathrm{ACQ}}$ ). This current's peak value will depend on the actual input voltage applied.

### 5.4 INPUT SOURCE RESISTANCE

For low impedance voltage sources (<100 $\Omega$ for 5 MHz operation and $<60 \Omega$ for 8 MHz operation), the input charging current will decay, before the end of the S/H's acquisition time, to a value that will not introduce any conversion errors. For higher source impedances, the S/H's acquisition time can be increased. As an example, operating with a 5 MHz clock frequency and maximum acquisition time, the LM12(H)454/8's analog inputs can handle source impedance as high as $6.67 \mathrm{k} \Omega$. When operating at 8 MHz and maximum acquisition time, the LM12H454/8's analog inputs can handle source impedance as high as $4.17 \mathrm{k} \Omega$. Refer to Section 2.1, Instruction RAM "00", Bits 12-15 for further information.

### 5.5 INPUT BYPASS CAPACITANCE

External capacitors ( $0.01 \mu \mathrm{~F}-0.1 \mu \mathrm{~F}$ ) can be connected between the analog input pins, IN0-IN7, and analog ground to filter any noise caused by inductive pickup associated with long input leads. It will not degrade the conversion accuracy.

### 5.6 NOISE

The leads to each of the analog multiplexer input pins should be kept as short as possible. This will minimize input noise and clock frequency coupling that can cause conversion errors. Input filtering can be used to reduce the effects of the noise sources.

### 5.7 POWER SUPPLIES

Noise spikes on the $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$supply lines can cause conversion errors; the comparator will respond to the noise. The ADC is especially sensitive to any power supply spikes that occur during the auto-zero or linearity correction. Low inductance tantalum capacitors of $10 \mu \mathrm{~F}$ or greater paralleled with $0.1 \mu \mathrm{~F}$ monolithic ceramic capacitors are recom-


FIGURE 12. Low Drift Extremely Stable Reference Circuit

### 5.0 Analog Considerations (Continued)

mended for supply bypassing. Separate bypass capacitors should be used for the $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$supplies and placed as close as possible to these pins.

### 5.8 GROUNDING

The LM12(H)454/8's nominal high resolution performance can be maximized through proper grounding techniques. These include the use of separate analog and digital ground planes. The digital ground plane is placed under all components that handle digital signals, while the analog ground plane is placed under all analog signal handling circuitry. The digital and analog ground planes are connected at only one point, the power supply ground. This greatly reduces the occurrence of ground loops and noise.
It is recommended that stray capacitance between the analog inputs or outputs (LM12(H)454: INO-IN3, MUXOUT+, MUXOUT-, S/H IN+, S/H IN-; LM12(H)458: INO-IN7, $\mathrm{V}_{\text {REF }+ \text {, }}$ and $\mathrm{V}_{\text {REF-) }}$ ) be reduced by increasing the clearance ( $+1 / 16$ th inch) between the analog signal and reference pins and the ground plane.

### 5.9 CLOCK SIGNAL LINE ISOLATION

The LM12(H)454/8's performance is optimized by routing the analog input/output and reference signal conductors (pins 34-44) as far as possible from the conductor that carries the clock signal to pin 23 . Ground traces parallel to the clock signal trace can be used on printed circuit boards to reduce clock signal interference on the analog input/output pins.

### 6.0 Application Circuits

### 6.1 PC EVALUATION/INTERFACE BOARD

Figure 13 is the schematic of an evaluation/interface board designed to interface the LM12(H)454 or LM12(H)458 with an XT or AT style computer. The board can be used to develop both software and hardware. The board hardwires the BW (Bus Width) pin to a logic high, selecting an 8 -bit wide databus. Therefore, it is designed for an 8 -bit expansion slot on the computer's motherboard.
The circuit operates on a single +5 V supply derived from the computer's +12 V supply using an LM340 regulator. This greatly attenuates noise that may be present on the computer's power supply lines. However, your application may only need an LC filter.
Figure 13 also shows the recommended supply $\left(\mathrm{V}_{\mathrm{A}}+\right.$ and $\mathrm{V}_{\mathrm{D}}+$ ) and reference input ( $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF-- }}$ ) bypassing. The digital and analog supply pins can be connected together to the same supply voltage. However, they need separate, multiple bypass capacitors. Multiple capacitors on the supply pins and the reference inputs ensures a low impedance bypass path over a wide frequency range.
All digital interface control signals (IOR, IOW, and AEN), data lines (DB0-DB7), address lines (A0-A9), and IRQ (interrupt request) lines (IRQ2, IRQ3, and IRQ5) connections are made through the motherboard slot connector. All ana$\log$ signals applied to, or received by, the input multiplexer (INO-IN7 for the LM12(H)458 and INO-IN3, MUXOUT+, MUXOUT-, S/H IN+ and S/H IN- for the LM12(H)454), $\mathrm{V}_{\text {REF }+}, \mathrm{V}_{\text {REF- }}, \mathrm{V}_{\text {REFOUT, }}$ and the SYNC signal input/
output are applied through a DB-37 connector on the rear side of the board. Figure 13 shows that there are numerous analog ground connections available on the DB-37 connector.
The voltage applied to $\mathrm{V}_{\text {REF }}$ - and $\mathrm{V}_{\text {REF }}+$ is selected using two jumpers, JP1 and JP2. JP1 selects between the voltage applied to the DB-37's pin 24 or GND and applies it to the LM12(H)454/8's VREF- input. JP2 selects between the LM12(H)454/8's internal reference output, V VEFOUT, and the voltage applied to the DB-37's pin 22 and applies it to the LM12(H)454/8's VREF+ input.

## TABLE III. LM12(H)454/8 Evaluation/Interface Board SW DIP-8 Switch Settings for Available I/O Memory Locations

Hexidecimal   l/O Memory   Base Address	SW DIP-8			
	SW1   (SEL0)	SW2   (SEL1)	SW3   (SEL2)	SW4   (SEL3)
100	ON	ON	ON	ON
120	OFF	ON	ON	ON
140	ON	OFF	ON	ON
160	OFF	OFF	ON	ON
180	ON	ON	OFF	ON
$1 A 0$	OFF	ON	OFF	ON
$1 C 0$	ON	OFF	OFF	ON
300	OFF	OFF	OFF	ON
340	ON	ON	ON	OFF
280	OFF	ON	ON	OFF
$2 A 0$	ON	OFF	ON	OFF

The board allows the use of one of three Interrupt Request (IRQ) lines IRQ2, IRQ3, and IRQ5. The individual IRQ line can be selected using switches 5, 6, and 7 of SW DIP-8. When using any of these three IRQs, the user needs to ensure that there are no conflicts between the evaluation board and any other boards attached to the computer's motherboard.

Switches 1-4, along with address lines A5-A9 are used as inputs to GAL16V8 Programmable Gate Array (U2). This device forms the interface between the computer's control and address lines and generates the control signals used by the LM12 $(H) 454 / 8$ for $\overline{C S}, \overline{W R}$, and $\overline{R D}$. It also generates the signal that controls the data buffers. Several address ranges within the computer's I/O memory map are available. Refer to Table III for the switch settings that gives the desired I/O memory address range. Selection of an address range must be done so that there are no conflicts between the evaluation board and any other boards attached to the computer's motherboard. The GAL equations are shown in Figure 14. The GAL functional block diagram is shown in Figure 15.
Figures 16-19 show the layout of each layer in the 3-layer evaluation/interface board plus the silk-screen layout showing parts placement. Figure 17 is the top or component side, Figure 18 is the middle or ground plane layer, Figure 19 is the circuit side, and Figure 16 is the parts layout.

### 6.0 Application Circuits (Continued)



Note: The layout utilizes a split ground plane. The analog ground plane is placed under all analog signals and U5 pins 1,34-44. The remaining signals and pins are placed over the digital ground. The single point ground connection is at U6, pin 2, and this is connected to the motherboard pin B1.

## Parts List:

Y1	HC49U, 8 MHz crystal	C7, C21	$100 \mu \mathrm{~F}, 25 \mathrm{~V}$, electrolytic
D1	1N4002	C8, C12, C20	$10 \mu \mathrm{~F}, 35 \mathrm{~V}$, electrolytic
L1	$33 \mu \mathrm{H}$	C13, C16	$0.01 \mu \mathrm{~F}, 50 \mathrm{~V}$, monolithic ceramic
P1	DB37F; parallel connector	C14, C18	$1 \mu \mathrm{~F}, 35 \mathrm{~V}$, tantalum
R1	$10 \mathrm{M} \Omega, 5 \%, 1 / 4 \mathrm{~W}$	C15, C17	$100 \mu \mathrm{~F}, 50 \mathrm{~V}$, ceramic disk
R2	$2 \mathrm{k} \Omega, 5 \%, 1 / 4 \mathrm{~W}$	U1	MM74HCT244N
RN1	$10 \mathrm{k} \Omega$, 6 resistor SIP, $5 \%$, 1/8W	U2	GAL16V8-20LNC
JP1, JP2	HX3, 3-pin jumper	U3	MM74HCT245N
S1	SW DIP-8; 8 SPST switches	U4	MM74HCU04N
C1-3, C6, C9-11,		U5	LM12(H)458CIV or LM12(H)454CIV
C19, C 22	$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$, monolithic ceramic	U6	LM340AT-5.0
C4	$68 \mathrm{pF}, 50 \mathrm{~V}$, ceramic disk	SK1	44-pin PLCC socket
C5	$15 \mathrm{pF}, 50 \mathrm{~V}$, ceramic disk	A1	LM12(H)458/4 Rev. D PC Board

FIGURE 13. Schematic and Parts List for the LM12(H)454/8 Evaluation/Interface Board for XT and AT Style Computers, Order Number LM12458EVAL
6.0 Application Circuits (Continued)

: I 10 Decode Lines	
$10 _A 5$	1
$10 _A 6$	2
$10 _A 7$	3
$10 _A 8$	4
$10 _A 9$	5

;Select Lines for Zone Decode
SELO
SEL 1

SEL2	7
	8

SEL3 9 TL/H/11264-33
; Physical I/O Controls
AEN
15
! 10 _WR
11
110_RD
13
; Physical Outputs

ICS	
IWR	
IRD	
IDBEN	12
inntermediate	Terms:
DECD	16

FILT 14
Equations
; Decode of Select LInes:

; Decode of Address LInes:

AL00		SL0 \&	! $10 _A 78$	! 10 _A6 8	110_A5:	
AL20	=	SL1 \&	110_A7 \&	! 10 -A6 8	10_A5;	
AL40	-	SL2 \&	110_A7 \&	$10 _A 68$	: 10 _A5:	
AL60	-	SL3 8	! 10 _A7 8	$10 _A 68$	10_A5;	
AL80	-	SL4 \&	$10 _A 78$	110_A6 \&	1io_A5:	
ALAO	-	SL5 \&	$10 _A 78$	110_A6 \&	10_A5;	
ALC 0	-	SL6 8	$10 _A 78$	IO_A6 8	110_A5:	
AHO 1	$=$	! SEL3	\& 110_A9	$\& \quad 10 _A 8$		
AH02	-	SEL3	\& io_A9	\& ! 10 - ${ }^{\text {a }}$	$\& \quad 10 _A 7$	\& ! 10 - ${ }^{\text {a }}$;
AH03	-	SEL3	\& 10_A9	$\& \quad 10$ - $A B$	\& ! 10_A7	\& 110_A5;

I Intermediate Address Groups:
DECO - $\quad=A E N \&(A L O D+A L 20+A L 40+A L 60+A L B O+A L A O+A L C O):$
; DAS Chip Select Decode:
FILT - CS \& ( $10 _W R+10 _R D$ );
CS $\quad=\quad\left(1 O_{-} W R+\left(O_{-} R D\right) \& D E C O \&(A H O 1+A H O 2+A H 03) ;\right.$
DBEN = CS \& DECO \& ( $\left.10 _W R+10 _R D\right) ;$
; Delayed Read/ Write Decodes:

$W R$	$=$	$10-W R \&$ FILT;
$R D$	$=$	$10-R D \& F I L T ;$

### 6.0 Application Circuits (Continued)



FIGURE 15. GAL Functional Block Diagram


TL/H/11264-31
FIGURE 16. Silk-Screen Layout Showing Parts Placement on the LM12(H)454/8 Evaluation/Interface Board
6.0 Application Circuits (Continued)


FIGURE 17. LM12(H)454/8 Evaluation/Interface Board Component-Side Layout Positive
6.0 Application Circuits (Continued)

6.0 Application Circuits (Continued)


FIGURE 19. LM12(H)454/8 Evaluation/Interface Circuit-Side Layout Positive

## LM12L454/LM12L458 12-Bit + Sign Data Acquisition System with Self-Calibration

## General Description

The LM12L454 and LM12L458 are highly integrated 3.3V Data Acquisition Systems. They combine a fully-differential self-calibrating (correcting linearity and zero errors) 13-bit (12-bit + sign) analog-to-digital converter (ADC) and sam-ple-and-hold (S/H) with extensive analog functions and digital functionality. Up to 32 consecutive conversions, using two's complement format, can be stored in an internal 32 -word (16-bit wide) FIFO data buffer. An internal 8 -word RAM can store the conversion sequence for up to eight acquisitions through the LM12L458's eight-input multiplexer. The LM12L454 has a four-channel multiplexer, a differential multiplexer output, and a differential S/H input. The LM12L454 and LM12L458 can also operate with 8-bit + sign resolution and in a supervisory "watchdog" mode that compares an input signal against two programmable limits. Programmable acquisition times and conversion rates are possible through the use of internal clock-driven timers.
All registers, RAM, and FIFO are directly addressable through the high speed microprocessor interface to either an 8 -bit or 16 -bit databus. The LM12L454 and LM12L458 include a direct memory access (DMA) interface for highspeed conversion data transfer.

Key Specifications (fclk $=6 \mathrm{MHz}$ )

- Resolution
12-bit + sign or 8 -bit + sign
- 13-bit conversion time
- 9-bit conversion time
- 13-bit Through-put rate
$7.3 \mu \mathrm{~s}$
$3.5 \mu \mathrm{~s}$
106k samples/s (min)
- Comparison time ("watchdog" mode)
- ILE
- $V_{I N}$ range
- Power dissipation
- Stand-by mode
- Single supply


## Features

- Three operating modes: 12 -bit + sign, 8 -bit + sign, and "watchdog"
- Single-ended or differential inputs
- Built-in Sample-and-Hold
- Instruction RAM and event sequencer
© 8-channel (LM12L458), 4-channel (LM12L454) multiplexer
四 32-word conversion FIFO
- Programmable acquisition times and conversion rates
(1) Self-calibration and diagnostic mode
( 8 - or 16 -bit wide databus microprocessor or DSP interface
- CMOS compatible I/O


## Applications

■ Data Logging

- 0 Process Control

■ Medical Instrumentation


## Connection Diagram



Order Number LM12L454CIV or LM12L458CIV
See NS Package Number V44A

Functional Diagrams


LM12L458


## Ordering Information

Guaranteed   Clock Freq (min)	Guaranteed   Linearity Error (max)	Order   Part Number	See NS   Package Number
6 MHz	$\pm 1.0$ LSB	LM12L454CIV	V44A
		LM12L458CIV	V44A



See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

## Operating Ratings (Notes 1,2$)$

Temperature Range

$$
\begin{aligned}
& \left(T_{\min } \leq T_{A} \leq T_{\text {max }}\right) \\
& \text { LM12L454CIV/LM12L458CIV } \quad-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}
\end{aligned}
$$

## Supply Voltage

$\mathrm{V}_{\mathrm{A}}{ }^{+}, \mathrm{V}_{\mathrm{D}}{ }^{+}$
$\left|\mathrm{V}_{\mathrm{A}}{ }^{+}-\mathrm{V}_{\mathrm{D}}{ }^{+}\right|$
3.0 V to 5.5 V
$\leq 100 \mathrm{mV}$
$\mathrm{V}_{\mathrm{IN}+}$ Input Range
GND $\leq \mathrm{V}_{\text {IN }+} \leq \mathrm{V}_{\mathrm{A}}{ }^{+}$
$\mathrm{V}_{\mathrm{IN} \text { - Input Range }}$
$\mathrm{V}_{\text {REF }}+$ Input Voltage
$V_{\text {REF }}$ - Input Voltage
$\mathrm{V}_{\text {REF }+}-\mathrm{V}_{\text {REF- }}$
$V_{\text {REF }}$ Common Mode Range (Note 16)

## Converter Characteristics

The following specifications apply to the LM12L454 and LM12L458 for $\mathrm{V}_{A^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}+}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}$, 12 -bit + sign conversion mode, $f_{C L K}=6.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$, source impedance for $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}-\leq 25 \Omega$, fully-differential input with fixed 1.25 V common-mode voltage, and minimum acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$. (Notes $6,7,8$, and 9 )

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	$\begin{gathered} \text { Unit } \\ \text { (Limit) } \end{gathered}$
ILE	Positive and Negative Integral Linearity Error	After Auto-Cal (Notes 12, 17)	$\pm 1 / 2$	$\pm 1$	LSB (max)
TUE	Total Unadjusted Error	After Auto-Cal (Note 12)	$\pm 1$		LSB
	Resolution with No Missing Codes	After Auto-Cal (Note 12)	,	13	Bits (max)
DNL	Differential Non-Linearity	After Auto-Cal		$\pm 1$	LSB (max)
	Zero Error	After Auto-Cal (Notes 13, 17)	$\pm 1 / 4$	$\pm 1$	LSB (max)
	Positive Full-Scale Error	After Auto-Cal (Notes 12, 17)	$\pm 1 / 2$	$\pm 3$	LSB (max)
	Negative Full-Scale Error	After Auto-Cal (Notes 12, 17)	$\pm 1 / 2$	$\pm 3$	LSB (max)
	DC Common Mode Error	(Note 14)	$\pm 2$	$\pm 4$	LSB (max)
ILE	8 -Bit + Sign and "Watchdog"   Mode Positive and Negative Integral Linearity Error	(Note 12)		$\pm 1 / 2$	LSB (max)
TUE	8-Bit + Sign and "Watchdog" Mode Total Unadjusted Error	After Auto-Zero	$\pm 1 / 2$	$\pm 3 / 4$	LSB (max)
$\because$	8-Bit + Sign and "Watchdog" Mode Resolution with No Missing Codes	.		9	Bits (max)
DNL	8-Bit + Sign and "Watchdog" Mode Differential Non-Linearity			$\pm 1$	LSB (max)
	8-Bit + Sign and "Watchdog" Mode Zero Error	After Auto-Zero		$\pm 1 / 2$	LSB (max)
	8-Bit + Sign and "Watchdog" Positive and Negative Full-Scale Error			$\pm \mathbf{1 / 2}$	LSB (max)

## Converter Characteristics

The following specifications apply to the LM12L454 and LM12L458 for $\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {REF }+}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {REF- }}=0 \mathrm{~V}$, 12 -bit + sign conversion mode, $f_{C L K}=6.0 \mathrm{MHz}, R_{S}=25 \Omega$, source impedance for $V_{R E F}+$ and $V_{R E F} \leq 25 \Omega$, fully-differential input with fixed 1.25 V common-mode voltage, and minimum acquisition time unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes $6,7,8$, and 9 ) (Continued)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Unit (Limit)
	8-Bit + Sign and "Watchdog" Mode DC Common Mode Error		$\pm 1 / 8$		LSB
	Multiplexer Channel-to-Channel Matching		$\pm 0.05$		LSB
$\mathrm{V}_{\mathrm{IN}+}$	Non-Inverting Input Range			$\begin{aligned} & \text { GND } \\ & \mathbf{V}_{\mathbf{A}}{ }^{+} \end{aligned}$	$V$ (min)   $V$ (max)
$\mathrm{V}_{\mathrm{IN}-}$	Inverting Input Range			$\begin{aligned} & \text { GND } \\ & \mathbf{v}_{\mathbf{A}}+ \\ & \hline \end{aligned}$	$\begin{aligned} & V(\min ) \\ & V(\max ) \end{aligned}$
$\mathrm{V}_{\mathrm{IN}+}-\mathrm{V}_{\mathrm{IN}-}$	Differential Input Voltage Range			$\begin{gathered} -\mathbf{v}_{\mathbf{A}^{+}} \\ \mathbf{v}_{\mathbf{A}} \end{gathered}$	$\begin{aligned} & V(\min ) \\ & V(\max ) \end{aligned}$
$\frac{V_{I N+}-V_{\text {IN }-}}{2}$	Common Mode Input Voltage Range			$\begin{aligned} & \text { GND } \\ & \mathbf{V}_{\mathbf{A}}{ }^{+} \end{aligned}$	$V$ (min)   $V$ (max)
PSS	Power Supply Zero Error   Sensitivity Full-Scale Error   (Note 15) Linearity Error	$\begin{aligned} & V_{A^{+}}=V_{D^{+}}=3.3 V \pm 10 \% \\ & V_{\text {REF }+}=2.5 \mathrm{~V}, V_{\text {REF }-}=G N D \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.4 \\ & \pm 0.2 \end{aligned}$	$\begin{gathered} \pm 1.75 \\ \pm 2 \end{gathered}$	$\begin{gathered} \text { LSB (max) } \\ \text { LSB (max) } \\ \text { LSB } \end{gathered}$
$\mathrm{C}_{\text {REF }}$	$\mathrm{V}_{\text {REF }+} / \mathrm{V}_{\text {REF }}$ - Input Capacitance		85		pF
$\mathrm{C}_{\text {IN }}$	Selected Multiplexer Channel Input Capacitance		75		pF

## Converter AC Characteristics

The following specifications apply to the LM12L454 and LM12L458 for $\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}^{+}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}+}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}$, 12 -bit + sign conversion mode, $f_{C L K}=6.0 \mathrm{MHz}, R_{S}=25 \Omega$, source impedance for $V_{R E F}+$ and $V_{R E F}-\leq 25 \Omega$, fully-differential input with fixed 1.25 V common-mode voltage, and minimum acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max; }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes $6,7,8$, and 9 )

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Unit   (Limit)
	Clock Duty Cycle		50	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	
${ }_{t}$	Conversion Time	13-Bit Resolution, Sequencer State S5 (Figure 11)	44 (tcle)	44 (tclk) + 50 ns	(max)
		9-Bit Resolution, Sequencer State S5 (Figure 11)	21 (tcle)	21 (tclk) + 50 ns	(max)
$t_{\text {A }}$	Acquisition Time	Sequencer State S7 (Figure 11) Built-in minimum for 13-Bits	9 (tclk)	9 (tclk) +50 ns	(max)
		Built-in minimum for 9 -Bits and "Watchdog" mode	2 (tclk)	2 (tclk) + 50 ns	(max)
$\mathrm{t}_{\mathrm{z}}$	Auto-Zero Time	Sequencer State S2 (Figure 11)	76 (tcLK)	76 (tclk) + 50 ns	(max)
$t_{\text {cal }}$	Full Calibration Time	Sequencer State S2 (Figure 11)	4944 (tCLK)	4944 (tCLK) + 50 ns	(max)
	Throughput Rate (Note 18)		107	106	$\begin{gathered} \mathrm{kHz} \\ (\mathrm{~min}) \end{gathered}$
two	"Watchdog" Mode Comparison Time	Sequencer States S6, S4, and S5 (Figure 11)	11 (tclek)	11 (tclk) + 50 ns	(max)
$t_{\text {PU }}$	Power-Up Time		10		ms
twu	Wake-Up Time		10		ms

DC Characteristics The following specifications apply to the LM12L454 and LM12L458 for $V_{A}+=V_{D^{+}}=3.3 \mathrm{~V}$, $\mathrm{V}_{\mathrm{REF}+}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}-=0 \mathrm{~V}, \mathrm{t}_{\mathrm{CL}}=6.0 \mathrm{MHz}$ and minimum acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$ all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\boldsymbol{J}}=25^{\circ} \mathrm{C}$. (Notes 6,7 , and 8 )

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Unit (Limit)
$\mathrm{ld}^{+}$	$\mathrm{V}_{\mathrm{D}}+$ Supply Current	$\begin{aligned} & \overline{C S}=" 1 " \\ & \text { LM12L454/8 } \end{aligned}$	0.4	1.0	mA (max)
$\mathrm{I}_{\mathrm{A}}+$	$\mathrm{V}_{\mathrm{A}}+$ Supply Current	$\begin{aligned} & \hline \overline{C S}=" 1 " \\ & \text { LM12L454/8 } \end{aligned}$	2.25	3.5	mA (max)
IST	Stand-By Supply Current ( $\mathrm{I}^{+}+\mathrm{I}^{+}{ }^{+}$)	Power-Down Mode Selected Clock Stopped 6 MHz Clock	$\begin{aligned} & 1.5 \\ & 30 \\ & \hline \end{aligned}$	4.5	$\begin{aligned} & \mu A(\max ) \\ & \mu \mathrm{A}(\max ) \end{aligned}$
	Multiplexer ON-Channel Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{A}^{+}}=3.6 \mathrm{~V} \\ & \qquad \begin{array}{r} \text { ON-Channel }=3.6 \mathrm{~V} \\ \text { OFF-Channel }=0 \mathrm{~V} \end{array} \\ & \begin{array}{r} \text { ON-Channel }=0 \mathrm{~V} \\ \text { OFF-Channel }=3.6 \mathrm{~V} \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A}(\text { max }) \\ & \mu \mathrm{A}(\text { max }) \end{aligned}$
	Multiplexer OFF-Channel Leakage Current	$\begin{aligned} & V_{A}+=3.6 \mathrm{~V} \\ & \qquad \begin{array}{r} \text { ON-Channel }=3.6 \mathrm{~V} \\ \text { OFF-Channel }=0 \mathrm{~V} \end{array} \\ & \begin{array}{r} \text { ON-Channel }=0 \mathrm{~V} \\ \text { OFF-Channel }=3.6 \mathrm{~V} \end{array} \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A}(\text { max }) \\ & \mu \mathrm{A}(\text { max }) \end{aligned}$
RON	Multiplexer ON-Resistance	LM12L454 $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=1.65 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 850 \\ 1300 \\ 830 \\ \hline \end{gathered}$	1500 2000 1500	$\begin{aligned} & \Omega(\max ) \\ & \Omega(\max ) \\ & \Omega(\max ) \end{aligned}$
	Multiplexer Channel-to-Channel RON matching	$\begin{aligned} & \text { LM12L454 } \\ & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=1.65 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1.0 \% \\ & \pm 1.0 \% \\ & \pm 1.0 \% \end{aligned}$	$\begin{aligned} & \pm \mathbf{3 . 0 \%} \\ & \pm \mathbf{3 . 0 \%} \\ & \pm \mathbf{3 . 0 \%} \end{aligned}$	(max)   (max)   (max)

Digital Characteristics The following specifications apply to the LM12L454 and LM12L458 for $\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}+=$ 3.3V, unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$ all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$. (Notes 6, 7, and 8)

Symbol	. Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Unit (Limit)
$\mathrm{V}_{\mathrm{IN}(1)}$	Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=3.6 \mathrm{~V}$		2.0	$V(\mathrm{~min})$
$\mathrm{V}_{\text {IN( }}(0)$	Logical "0" Input Voltage	$\mathrm{V}_{\mathrm{A}}^{+}=\mathrm{V}_{\mathrm{D}^{+}}=3.0 \mathrm{~V}$   ALE, Pin 22		$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	$V$ (max)
$\mathrm{I}_{\mathrm{IN}(1)}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$	0.005	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\mu \mathrm{A}$ (max)
$\underline{I N(0)}$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	$\begin{aligned} & -1.0 \\ & -2.0 \end{aligned}$	$\mu \mathrm{A}$ (max)
$\mathrm{C}_{\text {IN }}$	D0-D15 Input Capacitance		6		pF
VOUT(1)	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=3.0 \mathrm{~V} \\ & \text { IOUT }=-360 \mu \mathrm{~A} \\ & \text { IOUT }=-10 \mu \mathrm{~A} . \end{aligned}$		$\begin{gathered} 2.4 \\ 2.85 \end{gathered}$	$\begin{aligned} & \mathrm{V}(\mathrm{~min}) \\ & \mathrm{V}(\mathrm{~min}) \end{aligned}$
VOUT(0)	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}^{+}=3.0 \mathrm{~V} \\ & \text { IOUT }=1.6 \mathrm{~mA} \\ & \text { IOUT }=10 \mu \mathrm{~A} \end{aligned}$	.	$\begin{aligned} & 0.4 \\ & 0.1 \end{aligned}$	$V$ (max)
Iout	TRI-STATE® ${ }^{\circledR}$ Output Leakage Current	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & V_{\text {OUT }}=3.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.01 \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} -3.0 \\ 3.0 \\ \hline \end{gathered}$	$\mu \mathrm{A}(\max )$   $\mu A($ max $)$

## Digital Timing Characteristics

The following specifications apply to the LM12L454 and LM12L458 for $\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=3.3 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$, and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ on data I/O, $\overline{I N T}$ and DMARQ lines unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\mathbf{m I N}}$ to $\mathbf{T}_{\text {max }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6, 7 , and 8 )

Symbol (See Figures $8 a, 8 b$, and $8 c$ )	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Unit   (Limit)
1, 3	$\overline{\mathrm{CS}}$ or Address Valid to ALE Low Set-Up Time			40	ns (min)
2, 4	$\overline{\mathrm{CS}}$ or Address Valid to ALE Low Hold Time			20	ns (min)
5	ALE Pulse Width			45	ns (min)
6	$\overline{\text { RD High to Next ALE High }}$			35	ns (min)
7	ALE Low to $\overline{\text { RD Low }}$			20	ns (min)
8	$\overline{\mathrm{RD}}$ Pulse Width			100	ns (min)
9	$\overline{\text { RD }}$ High to Next $\overline{\mathrm{RD}}$ or $\overline{W R}$ Low			100	ns (min)
10	ALE Low to WR Low			20	ns (min)
11	$\overline{\text { WR Pulse Width }}$			60	ns (min)
12	WR High to Next ALE High			75	ns (min)
13	$\overline{\text { WR }}$ High to Next $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low			140	ns (min)
14	Data Valid to WR High Set-Up Time			40	ns (min)
15	Data Valid to WR High Hold Time			30	ns (min)
16	$\overline{\mathrm{RD}}$ Low to Data Bus Out of TRI-STATE		30	$\begin{aligned} & 10 \\ & 70 \end{aligned}$	ns (min)   ns (max)
17	$\overline{\mathrm{RD}}$ High to TRI-STATE	$R_{L}=1 \mathrm{k} \Omega$	30	$\begin{gathered} 10 \\ 110 \\ \hline \end{gathered}$	ns (min) ns (max)
18	$\overline{\mathrm{RD}}$ Low to Data Valid (Access Time)		30	$\begin{aligned} & 10 \\ & 95 \end{aligned}$	ns (min) ns (max)

## Digital Timing Characteristics

The following specifications apply to the LM12L454 and LM12L458 for $V_{A}{ }^{+}=V_{D}+=3.3 V, t_{r}=t_{f}=3 \mathrm{~ns}$, and $C_{L}=100 \mathrm{pF}$ on data I/O, $\bar{N} T$ and $D M A R Q$ lines unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\mathbf{M I N}}$ to $\mathbf{T}_{\mathbf{M A X}}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6, 7, and 8) (Continued)

Symbol (See Figures $8 a, 8 b$, and $8 c$ )	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Unit   (Limit)
20	Address Valid or $\overline{\mathrm{CS}}$ Low to $\overline{\mathrm{RD}}$ Low			20	ns (min)
21	Address Valid or $\overline{\mathrm{CS}}$ Low to $\overline{\mathrm{WR}}$ Low			20	ns (min)
19	Address Invalid from $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High			10	ns (min)
22	$\overline{\text { INT }}$ High from $\overline{\mathrm{RD}}$ Low		30	$\begin{aligned} & 10 \\ & 60 \end{aligned}$	ns (min) ns (max)
23	DMARQ Low from $\overline{\mathrm{RD}}$ Low		30	$\begin{aligned} & 10 \\ & 60 \end{aligned}$	ns (min) ns (max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: When the input voltage $\left(\mathrm{V}_{\mathbb{I}}\right)$ at any pin exceeds the power supply rails $\left(\mathrm{V}_{\mathbb{I}}<G N D\right.$ or $\mathrm{V}_{\mathbb{I N}}>\left(\mathrm{V}_{A}+\right.$ or $\left.\mathrm{V}_{\mathrm{D}}+\right)$ ), the current at that pin should be limited to 5 mA . The 20 mA maximum package input current rating allows the voltage at any four pins, with an input current of 5 mA , to simultaneously exceed the power supply voltages.
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J m a x}$ (maximum junction temperature), $\Theta_{\mathrm{JA}}$ (package junction to ambient thermal resistance), and $T_{A}$ (ambient temperature). The maximum allowable power dissipation at any temperature is $P D_{\max }=\left(T_{J \max }-T_{A}\right) /$ $\Theta_{\mathrm{JA}}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{Jmax}}=150^{\circ} \mathrm{C}$, and the typical thermal resistance ( $\Theta_{\mathrm{JA}}$ ) of the LM12L454 and LM12L458 in the V package, when board mounted, is $47^{\circ} \mathrm{C} / \mathrm{W}$.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: Two on-chip diodes are tied to each analog input through a series resistor, as shown below. Input voltage magnitude up to 5 V above $\mathrm{V}_{\mathrm{A}}+$ or 5 V below GND will not damage the LM12L454 or the LM12L458. However, errors in the A/D conversion can occur if these diodes are forward biased by more than 100 mV . As an example, if $\mathrm{V}_{\mathrm{A}}+$ is $3.0 \mathrm{~V}_{\mathrm{DC}}$, full-scale input voltage must be $\leq 3.1 \mathrm{~V}_{\mathrm{DC}}$ to ensure accurate conversions.


TL/H/11711-4
Note 7: $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$must be connected together to the same power supply voltage and bypassed with separate capacitors at each $\mathrm{V}^{+}$pin to assure conversion/comparison accuracy.
Note 8: Accuracy is guaranteed when operating at $\mathrm{f}_{\mathrm{CLK}}=6 \mathrm{MHz}$.
Note 9: With the test condition for $\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}-\mathrm{V}_{\text {REF }}$ given as +2.5 V , the 12-bit LSB is $305 \mu \mathrm{~V}$ and the 8-bit/"Watchdog" LSB is 4.88 mV .
Note 10: Typicals are at $T_{A}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 11: Limits are guaranteed to National's AOQL (Average Output Quality Level).
Note 12: Positive integral linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line that passes through positive fullscale and zero. For negative integral linearity error the straight line passes through negative full-scale and zero. (See Figures 5b and 5c).
Note 13: Zero error is a measure of the deviation from the mid-scale voltage (a code of zero), expressed in LSB. It is the worst-case value of the code transitions between -1 to 0 and 0 to +1 (see Figure 6).
Note 14: The DC common-mode error is measured with both inputs shorted together and driven from 0 V to 2.5 V . The measured value is referred to the resulting output value when the inputs are driven with a 1.25 V signal.
Note 15: Power Supply Sensitivity is measured after Auto-Zero and/or Auto-Calibration cycle has been completed with $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$at the specified extremes.
Note 16: $\mathrm{V}_{\text {REFCM }}$ (Reference Voltage Common Mode Range) is defined as ( $\mathrm{V}_{\mathrm{REF}}++\mathrm{V}_{\mathrm{REF}}$ )/2.
Note 17: The LM12L454/8's self-calibration technique ensures linearity and offset errors as specified, but noise inherent in the self-calibration process will result in a repeatability uncertainty of $\pm 0.10$ LSB.
Note 18: The Throughput Rate is for a single instruction repeated continuously. Sequencer states 0 ( 1 clock cycle), 1 ( clock cycle), 7 ( 9 clock cycles) and 5 ( 44 clock cycles) are used (see Figure 11). One additional clock cycle is used to read the conversion result stored in the FIFO, for a total of 56 clock cycles per conversion. The Throughput Rate is $\mathrm{f}_{\mathrm{CLK}}(\mathrm{MHz}) / \mathrm{N}$, where N is the number of clock cycles/conversion.

## Electrical Characteristics



TL/H/11711-5
FIGURE 1. The General Case of Output Digital Code vs the Operating Input Voltage Range

$\mathrm{V}_{\mathbf{I N}+}(\mathrm{V})$

Electrical Characteristics (Continued)


FIGURE 3. The General Case of the VREF Operating Range


FIGURE 4. The Specific Case of the $\mathbf{V}_{\text {REF }}$ Operating Range for $\mathbf{V}_{\mathbf{A}}{ }^{+}=\mathbf{3 . 3} \mathbf{V}$

## Electrical Characteristics (Continued)



FIGURE 5a. Transfer Characteristic


TL/H/11711-10
FIGURE 5b. Simplified Error Curve vs Output Code without Auto-Calibration or Auto-Zero Cycles

## Electrical Characteristics (Continued)



FIGURE 5c. Simplified Error Curve vs Output Code after Auto-Calibration Cycle


TL/H/11711-12
FIGURE 6. Offset or Zero Error Voltage

## Typical Performance Characteristics

The following curves apply for 12-bit + sign mode after auto-calibration with $\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}+=2.5 \mathrm{~V}$, $\mathrm{V}_{\text {REF- }}=\mathrm{OV}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and $\mathrm{f}_{\mathrm{CLK}}=6 \mathrm{MHz}$ unless otherwise specified. The performance for 8 -bit + sign and "watchdog" modes is equal to or better than shown. (Note 9)




Zero Error Change vs Temperature



Full-Scale Error Change vs Clock Frequency


Full-Scale Error vs Supply Voltage


Zero Error Change vs Reference Voltage



Full-Scale Error Change vs Temperature



Zero Error Change vs Supply Voltage


TL/H/11711-13

## Typical Performance Characteristics

The following curves apply for 12 －bit + sign mode after auto－calibration unless otherwise specified．The performance for 8 －bit + sign and＂watchdog＂modes is equal to or better than shown．（Note 9）（Continued）




## Test Circuits and Waveforms



TL/H/11711-15


TL/H/11711-16


TL/H/11711-17
$\overline{R D}$

TL/ 11711 - 16

TL/H/11711-18
FIGURE 7. TRI-STATE Test Circuits and Waveforms

## Timing Diagrams

$\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+3.3 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=3 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ for the $\overline{\mathrm{INT}}, \mathrm{DMARQ}, \mathrm{D} 0-\mathrm{D} 15$ outputs.


FIGURE 8a. Multiplexed Data Bus

1, 3: $\overline{\mathrm{CS}}$ or Address valid to ALE low set-up time.
2, 4: $\overline{C S}$ or Address valid to ALE low hold time.
5: ALE pulse width
6: $\overline{R D}$ high to next ALE high
7: ALE low to $\overline{\mathrm{RD}}$ low
8: $\overline{R D}$ pulse width
9: $\overline{\mathrm{RD}}$ high to next $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ low
10: ALE low to $\overline{\mathrm{WR}}$ low

11: $\overline{W R}$ pulse width
12: $\overline{W R}$ high to next ALE high
13: $\overline{W R}$ high to next $\overline{W R}$ or $\overline{R D}$ low
14: Data valid to $\overline{W R}$ high set-up time
15: Data valid to $\overline{W R}$ high hold time
16: $\overline{\mathrm{RD}}$ low to data bus out of TRI-STATE
17: $\overline{\mathrm{RD}}$ high to TRI-STATE
18: $\overline{\mathrm{RD}}$ low to data valid (access time)

Timing Diagrams
$\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+3.3 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=3 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ for the $\overline{\mathrm{INT}}, \mathrm{DMARQ}, \mathrm{DO} 0 \mathrm{D} 15$ outputs. (Continued)


FIGURE 8b. Non-Multiplexed Data Bus (ALE = 1)

8: $\overline{\mathrm{RD}}$ pulse width
9: $\overline{\operatorname{RD}}$ high to next $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ low
11: $\overline{\text { WR }}$ pulse width
13: $\overline{W R}$ high to next $\overline{W R}$ or $\overline{R D}$ low
14: Data valid to $\overline{W R}$ high set-up time
15: Data valid to $\overline{W R}$ high hold time

16: $\overline{\mathrm{RD}}$ low to data bus out of TRI-STATE
17: $\overline{\mathrm{RD}}$ high to TRI-STATE
18: $\overline{\mathrm{RD}}$ low to data valid (access time)
19: Address invalid from $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ high (hold time)
20: $\overline{\mathrm{CS}}$ low or address valid to $\overline{\mathrm{RD}}$ low
21: $\overline{\mathrm{CS}}$ low or address valid to $\overline{\mathrm{WR}}$ low
$\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+3.3 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=3 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ for the $\overline{\mathrm{INT}}$, DMARQ, D0-D15 outputs.


FIGURE 8c. Interrupt and DMARQ
22: $\overline{\text { INT }}$ high from $\overline{\mathrm{RD}}$ low
23: DMARQ low from $\overline{R D}$ low

## Pin Description

$\mathrm{V}_{\mathrm{A}^{+}} \quad$ These are the analog and digital supply voltage
$\mathrm{V}_{\mathrm{D}}{ }^{+} \quad$ pins. The LM12L454/8's supply voltage operating range is +3.0 V to +5.5 V . Accuracy is guaranteed only if $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$are connected to the same power supply. Each pin should have a parallel combination of $10 \mu \mathrm{~F}$ (electrolytic or tantalum) and $0.1 \mu \mathrm{~F}$ (ceramic) bypass capacitors connected between it and ground.
D0-D15 The internal data input/output TRI-STATE buffers are connected to these pins. These buffers are designed to drive capacitive loads of 100 pF or less. External buffers are necessary for driving higher load capacitances. These pins allows the user a means of instruction input and data output. With a logic high applied to the BW pin, data lines D8D15 are placed in a high impedance state and data lines D0-D7 are used for instruction input and data output when the LM12L454/8 is connected to an 8 -bit wide data bus. A logic low on the BW pin allows the LM12L454/8 to exchange information over a 16-bit wide data bus.
$\overline{R D} \quad$ This is the input for the active low READ bus control signal. The data input/output TRI-STATE buffers, as selected by the logic signal applied to the BW pin, are enabled when RD and $\overline{C S}$ are both low. This allows the LM12L454/8 to transmit information onto the databus.
$\overline{W R} \quad$ This is the input for the active low WRITE bus control signal. The data input/output TRI-STATE buffers, as selected by the logic signal applied to the BW pin, are enabled when $\overline{W R}$ and $\overline{\mathrm{CS}}$ are both low. This allows the LM12L454/8 to receive information from the databus.
$\overline{\mathrm{CS}} \quad$ This is the input for the active low Chip Select control signal. A logic low should be applied to this pin only during a READ or WRITE access to the LM12L454/8. The internal clocking is halted and conversion stops while Chip Select is low. Conversion resumes when the Chip Select input signal returns high.
ALE This is the Address Latch Enable input. It is used in systems containing a multiplexed databus. When ALE is asserted high, the LM12L454/8 accepts information on the databus as a valid address. A high-to-low transition will latch the address data on A0-A4 and the logic state on the $\overline{C S}$ input. Any changes on A0-A4 and $\overline{\mathrm{CS}}$ while ALE is low will not affect the LM12L454/8. See Figure 8a. When a non-multiplexed bus is used, ALE is continuously asserted high. See Figure $8 b$.
CLK This is the external clock input pin. The LM12L454/8 operates with an input clock frequency in the range of 0.05 MHz to 8 MHz .
A0-A4 These are the LM12L454/8's address lines. They are used to access all internal registers, Conversion FIFO, and Instruction RAM.
SYNC This is the synchronization input/output. When used as an output, it is designed to drive capacitive loads of 100 pF or less. External buffers are necessary for driving higher load capacitances. SYNC is an input if the Configuration register's "I/O Select" bit is low. A rising edge on this pin causes
the internal S/H to hold the input signal. The next rising clock edge either starts a conversion or makes a comparison to a programmable limit depending on which function is requested by a programming instruction. This pin will be an output if "I/O Select" is set high. The SYNC output goes high when a conversion or a comparison is started and low when completed. (See Section 2.2). An internal reset after power is first applied to the LM12L454/8 automatically sets this pin as an input.
BW This is the Bus Width input pin. This input allows the LM12L454/8 to interface directly with either an 8 - or 16 -bit databus. A logic high sets the width to 8 bits and places D8-D15 in a high impedance state. A logic low sets the width to 16 bits.
INT $\quad$ This is the active low interrupt output. This output is designed to drive capacitive loads of 100 pF or less. External buffers are necessary for driving higher load capacitances. An interrupt signal is generated any time a nonmasked interrupt condition takes place. There are eight different conditions that can cause an interrupt. Any interrupt is reset by reading the Interrupt Status register. (See Section 2.3.)
DMARQ This is the active high Direct Memory Access Request output. This output is designed to drive capacitive loads of 100 pF or less. External buffers are necessary for driving higher load capacitances. It goes high whenever the number of conversion results in the conversion FIFO equals a programmable value stored in the Interrupt Enable register. It returns to a logic low when the FIFO is empty.
GND
This is the LM12L454/8 ground connection. It should be connected to a low resistance and inductance analog ground return that connects directly to the system power supply ground.
INO-IN7 These are the eight (LM12L458) or four (INO-IN3 (LM12L454) analog inputs. A given channel is LM12L454 selected through the instruction RAM. Any of the channels can be configured as an independent single-ended input. Any pair of channels, whether adjacent or non-adjacent, can operate as a fully differential pair.
S/H IN+ These are the LM12L454's non-inverting and S/H INinverting inputs to the internal $\mathrm{S} / \mathrm{H}$.
MUXOUT+ These are the LM12L454's non-inverting and MUXOUT - inverting outputs from the internal multiplexer.
$V_{\text {REF- }} \quad$ This is the negative reference input. The LM12L454/8 operate with $O V \leq V_{\text {REF }} \leq$ $V_{\text {REF }}$. This pin should be bypassed to ground with a parallel combination of $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ (ceramic) capacitors.
$V_{\text {REF }}+\quad$ This is the positive reference input. The LM12L454/8 operate with $\mathrm{OV} \leq \mathrm{V}_{\text {REF }+} \leq$ $\mathrm{V}_{\mathrm{A}}{ }^{+}$. This pin should be bypassed to ground with a parallel combination of $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ (ceramic) capacitors.
N.C. This is a no connect pin.

## Application Information

### 1.0 Functional Description

The LM12L454 and LM12L458 are multi-functional Data Acquisition Systems that include a fully differential 12-bit-plussign self-calibrating analog-to-digital converter (ADC) with a two's-complement output format, an 8-channel (LM12L458) or a 4-channel (LM12L454) analog multiplexer, a first-in-first-out (FIFO) register that can store 32 conversion results, and an Instruction RAM that can store as many as eight instructions to be sequentially executed. The LM12L454 also has a differential multiplexer output and a differential S/H input. All of this circuitry operates on only a single +3.3 V power supply.
The LM12L454/8 have three modes of operation:
12-bit + sign with correction
8 -bit + sign without correction
8 -bit + sign comparison mode ("watchdog" mode)
The fully differential 12-bit-plus-sign ADC uses a charge redistribution topology that includes calibration capabilities. Charge re-distribution ADCs use a capacitor ladder in place of a resistor ladder to form an internal DAC. The DAC is used by a successive approximation register to generate intermediate voltages between the voltages applied to $\mathrm{V}_{\text {REF }}$ and $\mathrm{V}_{\text {REF }}$. These intermediate voltages are compared against the sampled analog input voltage as each bit is generated. The number of intermediate voltages and comparisons equals the ADC's resolution. The correction of each bit's accuracy is accomplished by calibrating the capacitor ladder used in the ADC.
Two different calibration modes are available; one compensates for offset voltage, or zero error, while the other corrects both offset error and the ADC's linearity error.
When correcting offset only, the offset error is measured once and a correction coefficient is created. During the full calibration, the offset error is measured eight times, averaged, and a correction coefficient is created. After completion of either calibration mode, the offset correction coefficient is stored in an internal offset correction register.
The LM12L454/8's overall linearity correction is achieved by correcting the internal DAC's capacitor mismatch. Each capacitor is compared eight times against all remaining smaller value capacitors and any errors are averaged. A correction coefficient is then created and stored in one of the thirteen internal linearity correction registers. An internal state machine, using patterns stored in an internal $16 \times 8$-bit ROM, executes each calibration algorithm.
Once calibrated, an internal arithmetic logic unit (ALU) uses the offset correction coefficient and the 13 linearity correction coefficients to reduce the conversion's offset error and linearity error, in the background, during the 12-bit + sign conversion. The 8 -bit + sign conversion and comparison modes use only the offset coefficient. The 8 -bit + sign mode performs a conversion in less than half the time used by the 12-bit + sign conversion mode.

The LM12L454/8's "watchdog" mode is used to monitor a single-ended or differential signal's amplitude. Each sampled signal has two limits. An interrupt can be generated if the input signal is above or below either of the two limits. This allows interrupts to be generated when analog voltage inputs are "inside the window" or, alternatively, "outside the window". After a "watchdog" mode interrupt, the processor can then request a conversion on the input signal and read the signal's magnitude.
The analog input multiplexer can be configured for any combination of single-ended or fully differential operation. Each input is referenced to ground when a multiplexer channel operates in the single-ended mode. Fully differential analog input channels are formed by pairing any two channels together.
The LM12L454's multiplexer outputs and S/H inputs (MUXOUT + , MUXOUT- and S/H IN+, S/H IN-) provide the option for additional analog signal processing. Fixedgain amplifiers, programmable-gain amplifiers, filters, and other processing circuits can operate on the signal applied to the selected multiplexer channel(s). If external processing is not used, connect MUXOUT+ to S/H IN + and MUX-OUT- to S/H IN-.
The LM12L454/8's internal S/H is designed to operate at its minimum acquisition time ( $1.5 \mu \mathrm{~s}, 12$ bits) when the source impedance, $\mathrm{R}_{\mathrm{S}}$, is $\leq 80 \Omega$ (fGLK $\leq 6 \mathrm{MHz}$ ). When $80 \Omega<R_{S} \leq 5.56 \mathrm{k} \Omega$, the internal $\mathrm{S} / \mathrm{H}$ 's acquisition time can be increased to a maximum of $6.5 \mu \mathrm{~s}$ ( 12 bits, f CLK $=$ 6 MHz ). See Section 2.1 (Instruction RAM ' 00 ') Bits 12-15 for more information.
Microprocessor overhead is reduced through the use of the internal conversion FIFO. Thirty-two consecutive conversions can be completed and stored in the FIFO without any microprocessor intervention. The microprocessor can, at any time, interrogate the FIFO and retrieve its contents. It can also wait for the LM12L454/8 to issue an interrupt when the FIFO is full or after any number ( $\leq 32$ ) of conversions have been stored.
Conversion sequencing, internal timer interval, multiplexer configuration, and many other operations are programmed and set in the Instruction RAM.
A diagnostic mode is available that allows verification of the LM12L458's operation. The diagnostic mode is disabled in the LM12L454. This mode internally connects the voltages present at the $\mathrm{V}_{\text {REF }+}, \mathrm{V}_{\text {REF-, }}$, and GND pins to the internal $\mathrm{V}_{\mathrm{IN}+}$ and $\mathrm{V}_{\mathrm{IN}}-\mathrm{S} / \mathrm{H}$ inputs. This mode is activated by setting the Diagnostic bit (Bit 11) in the Configuration register to a " 1 ". More information concerning this mode of operation can be found in Section 2.2.

### 2.0 Internal User-Programmable Registers

### 2.1 INSTRUCTION RAM

The instruction RAM holds up to eight sequentially executable instructions. Each 48-bit long instruction is divided into three 16 -bit sections. READ and WRITE operations can be issued to each 16-bit section using the instruction's address and the 2-bit "RAM pointer" in the Configuration register. The eight instructions are located at addresses 0000 through 0111 ( $\mathrm{A} 4-\mathrm{A} 1, \mathrm{BW}=0$ ) when using a 16-bit wide data bus or at addresses 00000 through 01111 (A4-A0, $\mathrm{BW}=1$ ) when using an 8 -bit wide data bus. They can be accessed and programmed in random order.
Any Instruction RAM READ or WRITE can affect the sequencer's operation:

The Sequencer should be stopped by setting the RESET bit to a " 1 " or by resetting the START bit in the Configuration Register and waiting for the current instruction to finish execution before any Instruction RAM READ or WRITE is initiated.
A soft RESET should be issued by writing a " 1 " to the Configuration Register's RESET bit after any READ or WRITE to the Instruction RAM.
The three sections in the Instruction RAM are selected by the Configuration Register's 2-bit "RAM Pointer", bits D8 and D9. The first 16 -bit Instruction RAM section is selected with the RAM Pointer equal to " 00 ". This section provides multiplexer channel selection, as well as resolution, acquisition time, etc. The second 16 -bit section holds "watchdog" limit \# 1, its sign, and an indicator that shows that an interrupt can be generated if the input signal is greater or less than the programmed limit. The third 16 -bit section holds "watchdog" limit \#2, its sign, and an indicator that shows that an interrupt can be generated if the input signal is greater or less than the programmed limit.

## Instruction RAM "00"

Bit $\mathbf{0}$ is the LOOP bit. It indicates the last instruction to be executed in any instruction sequence when it is set to a " 1 ". The next instruction to be executed will be instruction 0 .
Bit 1 is the PAUSE bit. This controls the Sequencer's operation. When the PAUSE bit is set (" 1 "), the Sequencer will stop after reading the current instruction, but before executing it and the start bit, in the Configuration register, is automatically reset to a " 0 ". Setting the PAUSE also causes an interrupt to be issued. The Sequencer is restarted by placing a " 1 " in the Configuration register's Bit 0 (Start bit).
After the Instruction RAM has been programmed and the RESET bit is set to " 1 ", the Sequencer retrieves Instruction 000 , decodes it, and waits for a " 1 " to be placed in the Configuration's START bit. The START bit value of " 0 " "overrides" the action of Instruction 000's PAUSE bit when the Sequencer is started. Once started, the Sequencer executes Instruction 000 and retrieves, decodes, and executes each of the remaining instructions. No PAUSE Interrupt (INT 5) is generated the first time the Sequencer executes Instruction 000 having a PAUSE bit set to " 1 ". When the Sequencer encounters a LOOP bit or completes all eight in-
structions, Instruction 000 is retrieved and decoded. A set PAUSE bit in Instruction 000 now halts the Sequencer before the instruction is executed.
Bits 2-4 select which of the eight input channels (" 000 " to "111" for INO-IN7) will be configured as non-inverting inputs to the LM12L458's ADC. (See Page 22, Table I.) They select which of the four input channels (" 000 " to " 011 " for INO-IN4) will be configured as non-inverting inputs to the LM12L454's ADC. (See Page 22, Table II.)
Bits 5-7 select which of the seven input channels ("001" to "111" for IN1 to IN7) will be configured as inverting inputs to the LM12L458's ADC. (See Page 22, Table I.) They select which of the three input channels ("001" to "011" for IN1IN4) will be configured as inverting inputs to the LM12L454's ADC. (See Page 22, Table II.) Fully differential operation is created by selecting two multiplexer channels, one operating in the non-inverting mode and the other operating in the inverting mode. A code of "000" selects ground as the inverting input for single ended operation.
Bit 8 is the SYNC bit. Setting Bit 8 to "1" causes the Sequencer to suspend operation at the end of the internal S/H's acquisition cycle and to wait until a rising edge appears at the SYNC pin. When a rising edge appears, the S/H acquires the input signal magnitude and the ADC performs a conversion on the clock's next rising edge. When the SYNC pin is used as an input, the Configuration register's "I/O Select" bit (Bit 7) must be set to a " 0 ". With SYNC configured as an input, it is possible to synchronize the start of a conversion to an external event. This is useful in applications such as digital signal processing (DSP) where the exact timing of conversions is important.
When the LM12L454/8 are used in the "watchdog" mode with external synchronization, two rising edges on the SYNC input are required to initiate two comparisons. The first rising edge initiates the comparison of the selected analog input signal with Limit \# 1 (found in Instruction RAM " 01 ") and the second rising edge initiates the comparison of the same analog input signal with Limit \#2 (found in Instruction RAM "10").
Bit 9 is the TIMER bit. When Bit 9 is set to " 1 ", the Sequencer will halt until the internal 16-bit Timer counts down to zero. During this time interval, no "watchdog" comparisons or analog-to-digital conversions will be performed.
Bit 10 selects the ADC conversion resolution. Setting Bit 10 to " 1 " selects 8 -bit + sign and when reset to " 0 " selects 12-bit + sign.
Bit 11 is the "watchdog" comparison mode enable bit. When operating in the "watchdog" comparison mode, the selected analog input signal is compared with the programmable values stored in Limit \#1 and Limit \# 2 (see Instruction RAM " 01 " and Instruction RAM " 10 "). Setting Bit 11 to " 1 " causes two comparisons of the selected analog input signal with the two stored limits. When Bit 11 is reset to " 0 ", an 8 -bit + sign or 12-bit + sign (depending on the state of Bit 10 of Instruction RAM " 00 ") conversion of the input signal can take place.

2．0 Internal User－Programmable Registers（Continued）																
A4 A3 A2 A1	Purpose	Type	D15 D14 D13	D12	D11	D10	D9	D8	D7	D6	－D5	D4	D3	D2	D1	D0
$\begin{array}{cccc} & 0 & 0 & 0 \\ 0 & & \text { to } & \\ & 1 & 1 & 1\end{array}$	Instruction RAM   （RAM Pointer $=00$ ）	R／W	Acquisition Time		$\begin{gathered} \text { Watch- } \\ \text { dog } \end{gathered}$	8／12	Timer	Sync	$\mathrm{V}_{\mathrm{IN}-}$ （MUXOUT－）＊			$\begin{aligned} & \mathrm{V}_{\text {IN }+} \\ & \text { (MUXOUT+)* } \end{aligned}$			Pause	Loop
$\begin{array}{llll}  & 0 & 0 & 0 \\ 0 & & \text { to } & \\ & 1 & 1 & 1 \end{array}$	Instruction RAM   （RAM Pointer＝01）	R／W	Don＇t Care				＞／＜	Sign	Limit \＃ 1							
$\begin{array}{llll}  & 0 & 0 & 0 \\ 0 & & \text { to } & \\ & 1 & 1 & 1 \end{array}$	Instruction RAM   $($ RAM Pointer $=10)$	R／W	Don＇t Care				＞／＜	Sign	Limit \＃2							
10000	Configuration Register	R／W	Don＇t Care		DIAG ${ }^{+}$	$\begin{array}{\|} \text { Test } \\ =0 \end{array}$			$\begin{aligned} & \text { I/O } \\ & \text { Sel } \end{aligned}$	Auto   Zero $_{\text {ec }}$	Chan   Mask	Stand－ by	Full CAL	Auto－   Zero	Reset	Start
$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	Interrupt Enable Register	R／W	Number of Conversions in Conversion FIFO to Generate INT2			Sequencer   Address to Generate INT1			INT7	Don＇t   Care	INT5	INT4	INT3	INT2	INT1	INTO
10010	Interrupt Status Register	R	Actual Number of Conversion Results in Conversion FIFO				Address of quenc structio being xecute		INST7	＂0＂	INST5	INST4	INST3	INST2	INST1	INSTO
$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	Timer   Register	R／W	Timer Preset High Byte						Timer Preset Low Byte							
11000	Conversion FIFO	R	Address or Sign	Sign	Conversion   Data：MSBs				Conversion Data：LSBs							
$1 \begin{array}{llll}1 & 1 & 0 & 1\end{array}$	Limit Status Register	R	Limit \＃2：Status						Limit \＃1：Status							

＊LM12L454（Refer to Table II）．
tLM12L458 only．Must be set to＂ 0 ＂for the LM12L454．
FIGURE 9．LM12L454／8 Memory Map for 16－Bit Wide Databus（BW＝＂ 0 ＂，Test Bit＝＂ 0 ＂and AO＝Don＇t Care）

A4	A3	A2	A1	AO	Purpose	Type	D7	D6	D5	D4	D3	D2	D1	DO
0	0   1	$\begin{gathered} 0 \\ \text { to } \\ 1 \\ \hline \end{gathered}$	0   1	0	Instruction RAM   (RAM Pointer $=00$ )	R/W	$\begin{aligned} & \mathrm{V}_{\text {IN- }}- \\ & \text { (MUXOUT-)* } \end{aligned}$			$\begin{aligned} & \text { VIN+ } \\ & (\text { MUXOUT+)* } \end{aligned}$			Pause	Loop
0	0   1	$\begin{gathered} 0 \\ \text { to } \\ 1 \\ \hline \end{gathered}$	0   1	1		R/W	Acquisition Time				Watchdog	8/12	Timer	Sync
0	0   1	$\begin{gathered} 0 \\ \text { to } \\ 1 \\ \hline \end{gathered}$	0   1	0	Instruction RAM(RAM Pointer = 01)	R/W	Comparison Limit \#1							
0	0   1	$\begin{gathered} 0 \\ \text { to } \\ 1 \\ \hline \end{gathered}$	0   1	$1$		R/W	Don't Care						>/<	Sign
0	0   1	$\begin{gathered} 0 \\ \text { to } \\ 1 \end{gathered}$	0   1	0	Instruction RAM   (RAM Pointer $=10$ )	R/W	Comparison Limit \#2							
	$\therefore 0$ $1$	$\begin{gathered} 0 \\ \text { to } \\ 1 \end{gathered}$	0   1	$1$		R/W	Don't Care						>/<	Sign
1	0	0	0	0	Configuration Register	R/W	$\begin{aligned} & \text { I/O } \\ & \text { Sel } \end{aligned}$	Auto   Zero $_{\text {ec }}$	Chan   Mask	Standby	Full   Cal	AutoZero	Reset	Start
	0	0	0	1		R/W	Don't Care				DIAG ${ }^{\dagger}$	$\begin{aligned} & \text { Test } \\ & =0 \end{aligned}$	RAM Pointer	
1	0	0	1	0	Interrupt Enable Register	R/W	INT7	Don't   Care	INT5	INT4	INT3	INT2	INT1	INTO
1	0	0	1	1		R/W	Number of Conversions in Conversion FIFO to Generate INT2					Sequencer Address to. Generate INT1		
1	0	1	0	0	Interrupt Status Register	R	INST7	"0"	INST5	INST4	INST3	INST2	INST1	INSTO
1	0	1	0	1		R	Actual Number of Conversions Results in Conversion FIFO					Address of Sequencer Instruction being Executed		
1	0	1	1	0	Timer Register	R/W	Timer Preset: Low Byte							
1	0	1	1	1		R/W	Timer Preset: High Byte							
1	1	0	0	0	Conversion FIFO	R	Conversion Data: LSBs							
1	1	0	0	1		R	Address or Sign			Sign	Conversion Data: MSBs			
1	1	0	1	0	Limit Status Register	R	Limit \#1 Status							
1	1	0	1	1		R	Limit \# 2 Status							

FIGURE 10. LM12L454/8 Memory Map for 8-Bit Wide Databus (BW = " 1 " and Test Bit = " 0 ")

### 2.0 Internal User-Programmable Registers (Continued)

Bits 12-15 are used to store the user-programmable acquisition time. The Sequencer keeps the internal S/H in the acquisition mode for a fixed number of clock cycles (nine clock cycles, for 12 -bit + sign conversions and two clock cycles for 8-bit + sign conversions or "watchdog" comparisons) plus a variable number of clock cycles equal to twice the value stored in Bits 12-15. Thus, the S/H's acquisition time is $(9+2 \mathrm{D})$ clock cycles for 12 -bit + sign conversions and $(2+2 \mathrm{D})$ clock cycles for 8 -bit + sign conversions or "watchdog" comparisons, where $D$ is the value stored in Bits 12-15. The minimum acquisition time compensates for the typical internal multiplexer series resistance of $2 \mathrm{k} \Omega$, and any additional delay created by Bits 12-15 compensates for source resistances greater than $80 \Omega$. (For this acquisition time discussion, numbers in () are shown for the LM12L454/8 operating at 6 MHz . The necessary acquisition time is determined by the source impedance at the multiplexer input. If the source resistance $\left(\mathrm{R}_{\mathrm{S}}\right)<80 \Omega$ and the clock frequency is 6 MHz , the value stored in bits 12-15 (D) can be 0000 . If $R_{S}>80 \Omega$, the following equations determine the value that should be stored in bits 12-15.

$$
\begin{aligned}
& \text { for 12-bits }+\operatorname{sign} D=0.45 \times R_{S} \times f \text { CLK } \\
& D=0.36 \times R_{S} \times f \text { fLK } \\
& \text { for } 8 \text {-bits }+\operatorname{sign} \text { and "watchdog" }
\end{aligned}
$$

$R_{S}$ is in $k \Omega$ and $f_{C L K}$ is in $M H z$. Round the result to the next higher integer value. If $D$ is greater than 15 , it is advisable to lower the source impedance by using an analog buffer between the signal source and the LM12L458's multiplexer inputs. The value of $D$ can also be used to compensate for the settling or response time of external processing circuits connected between the LM12L454's MUXOUT and S/H IN pins.

## Instruction RAM "01"

The second Instruction RAM section is selected by placing a " 01 " in Bits 8 and 9 of the Configuration register.
Bits 0-7 hold "watchdog" limit \#1. When Bit 11 of Instruction RAM " 00 "' is set to a " 1 ", the LM12L454/8 performs a "watchdog" comparison of the sampled analog input signal with the limit \# 1 value first, followed by a comparison of the same sampled analog input signal with the value found in limit \#2 (Instruction RAM "10").
Bit 8 holds limit \#1's sign.
Bit 9's state determines the limit condition that generates a "watchdog" interrupt. A " 1 " causes a voltage greater than limit \#1 to generate an interrupt, while a " 0 " causes a voltage less than limit \#1 to generate an interrupt.
Bits 10-15 are not used.

## Instruction RAM "10"

The third Instruction RAM section is selected by placing a " 10 " in Bits 8 and 9 of the Configuration register.
Bits 0-7 hold "watchdog" limit \# 2. When Bit 11 of Instruction RAM " 00 " is set to a " 1 ", the LM12L454/8 performs a "watchdog" comparison of the sampled analog input signal with the limit \# 1 value first (Instruction RAM "01"), followed by a comparison of the same sampled analog input signal with the value found in limit \#2.
Bit 8 holds limit \# 2's sign.
Bit 9's state determines the limit condition that generates a "watchdog" interrupt. A " 1 " causes a voltage greater than
limit \#2 to generate an interrupt, while a " 0 " causes a voltage less than limit \#2 to generate an interrupt.
Bits 10-15 are not used.

### 2.2 CONFIGURATION REGISTER

The Configuration register, 1000 (A4-A1, BW $=0$ ) or $1000 \times(\mathrm{A} 4-\mathrm{AO}, \mathrm{BW}=1$ ) is a 16 -bit control register with read/write capability. It acts as the LM12L454's and LM12L458's "control panel" holding global information as well as start/stop, reset, self-calibration, and stand-by commands.
Bit 0 is the START/STOP bit. Reading Bit 0 returns an indication of the Sequencer's status. A " 0 " indicates that the Sequencer is stopped and waiting to execute the next instruction. A " 1 " shows that the Sequencer is running. Writing a " 0 " halts the Sequencer when the current instruction has finished execution. The next instruction to be executed is pointed to by the instruction pointer found in the status register. A " 1 " restarts the Sequencer with the instruction currently pointed to by the instruction pointer. (See Bits 810 in the Interrupt Status register.)
Bit 1 is the LM12L454/8's system RESET bit. Writing a " 1 " to Bit 1 stops the Sequencer (resetting the Configuration register's START/STOP bit), resets the instruction pointer to "000" (found in the Interrupt Status register), clears the Conversion FIFO, and resets all interrupt flags. The RESET bit will return to " 0 " after two clock cycles unless it is forced high by writing a " 1 " into the Configuration register's Standby bit. A reset signal is internally generated when power is first applied to the part. No operation should be started until the RESET bit is " 0 ".
Writing a " 1 " to Bit 2 initiates an auto-zero offset voltage calibration. Unlike the eight-sample auto-zero calibration performed during the full calibration procedure, Bit 2 initiates a "short" auto-zero by sampling the offset once and creating a correction coefficient (full calibration averages eight samples of the converter offset voltage when creating a correction coefficient). If the Sequencer is running when Bit 2 is set to " 1 ", an auto-zero starts immediately after the conclusion of the currently running instruction. Bit 2 is reset automatically to a " 0 " and an interrupt flag (Bit 3 , in the Interrupt Status register) is set at the end of the auto-zero ( 76 clock cycles). After completion of an auto-zero calibration, the Sequencer fetches the next instruction as pointed to by the Instruction RAM's pointer and resumes execution. If the Sequencer is stopped, an auto-zero is performed immediately at the time requested.
Writing a " 1 " to Bit 3 initiates a complete calibration process that includes a "long" auto-zero offset voltage correction (this calibration averages eight samples of the comparator offset voltage when creating a correction coefficient) followed by an ADC linearity calibration. This complete calibration is started after the currently running instruction is completed if the Sequencer is running when Bit 3 is set to " 1 ". Bit 3 is reset automatically to a " 0 " and an interrupt flag (Bit 4, in the Interrupt Status register) will be generated at the end of the calibration procedure ( 4944 clock cycles). After completion of a full auto-zero and linearity calibration, the Sequencer fetches the next instruction as pointed to by the instruction RAM's pointer and resumes execution. If the Sequencer is stopped, a full calibration is performed immediately at the time requested.

### 2.0 Internal User-Programmable Registers (Continued)

Bit 4 is the Standby bit. Writing a " 1 " to Bit 4 immediately places the LM12L454/8 in Standby mode. Normal operation returns when Bit 4 is reset to a " 0 ". The Standby command ("1") disconnects the external clock from the internal circuitry, decreases the LM12L454/8's internal analog circuitry power supply current, and preserves all internal RAM contents. After writing a " 0 " to the Standby bit, the LM12L454/8 returns to an operating state identical to that caused by exercising the RESET bit. A Standby completion interrupt is issued after a power-up completion delay that allows the analog circuitry to settle. The Sequencer should be restarted only after the Standby completion is issued. The Instruction RAM can still be accessed through read and write operations while the LM12L454/8 are in Standby Mode.
Blt 5 is the Channel Address Mask. If Bit 5 is set to a " 1 ", Bits 13-15 in the conversion FIFO will be equal to the sign bit (Bit 12) of the conversion data. Resetting Bit 5 to a " 0 " causes conversion data Bits 13 through 15 to hold the instruction pointer value of the instruction to which the conversion data belongs.
Blt 6 is used to select a "short" auto-zero correction for every conversion. The Sequencer automatically inserts an auto-zero before every conversion or "watchdog" comparison if Bit 6 is set to " 1 ". No automatic correction will be performed if Bit 6 is reset to " 0 ".
The LM12L454/8's offset voltage, after calibration; has a typical drift of 0.1 LSB over a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. This small drift is less than the variability of the change in offset that can occur when using the auto-zero correction with each conversion. This variability is the result of using only one sample of the offset voltage to create a correction value. This variability decreases when using the full calibration mode because eight samples of the offset voltage are taken, averaged, and used to create a correction value.
Bit 7 is used to program the SYNC pin (29) to operate as either an input or an output. The SYNC pin becomes an output when Bit 7 is a " 1 " and an input when Bit 7 is a " 0 ". With SYNC programmed as an input, the rising edge of any logic signal applied to pin 29 will start a conversion or "watchdog" comparison. Programmed as an output, the logic level at pin 29 will go high at the start of a conversion or "watchdog" comparison and remain high until either have finished. See Instruction RAM " 00 ", Bit 8.
Bits 8 and 9 form the RAM Pointer that is used to select each of a 48 -bit instruction's three 16 -bit sections during read or write actions. A " 00 " selects Instruction RAM section one, " 01 " selects section two, and " 10 " selects section three.
Bit 10 activates the Test mode that is used only during production testing. Leave this bit reset to " 0 ".
Bit 11 is the Diagnostic bit and is available only in the LM12L458. It can be activated by setting it to a " 1 " (the Test bit must be reset to a " 0 "). The Diagnostic mode, along with a correctly chosen instruction, allows verification that the LM12L458's ADC is performing correctly. When activated, the inverting and non-inverting inputs are connected as shown in Table I. As an example, an instruction with " 001 " for both $\mathrm{V}_{\mathrm{IN}}+$ and $\mathrm{V}_{\mathrm{IN}}$ - while using the Diagnostic mode typically results in a full-scale output.

### 2.3 INTERRUPTS

The LM12L454 and LM12L458 have eight possible interrupts, all with the same priority. Any of these interrupts will cause a hardware interrupt to appear on the INT pin (31) if they are not masked (by the Interrupt Enable register). The Interrupt Status register is then read to determine which of the eight interrupts has been issued.

TABLE I. LM12L458 Input Multiplexer Channel Configuration Showing Normal Mode and Diagnostic Mode

Channel Selection Data	Normal Mode		Diagnostic Mode	
	$\mathrm{V}_{\mathbf{I N}+}$	$\mathrm{V}_{\mathrm{IN}-}$		$\mathbf{V}_{\mathbf{I N}-}$
000	INO	GND		
001	IN1	IN1	$\mathrm{V}_{\text {REF }+}$	$\mathrm{V}_{\text {REF }-~}$
010	IN2	IN2	IN2	IN2
011	IN3	IN3	IN3	IN3
100	IN4	IN4	IN4	IN4
101	IN5	IN5	IN5	IN5
110	IN6	IN6	IN6	IN6
111	IN7	IN7.	IN7	IN7

TABLE II. LM12L454 Input Multiplexer Channel Configuration

Channel   Selection   Data	MUX +	MUX-
000	IN0	GND
001	IN1	IN1
010	IN2	IN2
011	IN3	IN3
$1 X X$	OPEN	OPEN

The Interrupt Status register, 1010 (A4-A1, BW $=0$ ) or 1010x ( $\mathrm{A} 4-\mathrm{A} 0, \mathrm{BW}=1$ ) must'be cleared by reading it after writing to the Interrupt Enable register. This removes any spurious interrupts on the INT pin generated during an Interrupt Enable register access.
Interrupt $\mathbf{0}$ is generated whenever the analog input voltage on a selected multiplexer channel crosses a limit while the LM12L454/8 are operating in the "watchdog" comparison mode. Two sequential comparisons are made when the LM12L454/8 are executing a "watchdog" instruction. Depending on the logic state of Bit 9 in the Instruction RAM's second and third sections, an interrupt will be generated either when the input signal's magnitude is greater than or less than the programmable limits. (See the Instruction RAM, Bit 9 description.) The Limit Status register will indicate which preprogrammed limit, \#1 or \#2 and which instruction was executing when the limit was crossed.
Interrupt 1 is generated when the Sequencer reaches the instruction counter value specified in the Interrupt Enable register's bits $8-10$. This flag appears before the instruction's execution.
Interrupt 2 is activated when the Conversion FIFO holds a number of conversions equal to the programmable value

### 2.0 Internal User-Programmable Registers (Continued)

stored in the Interrupt Enable register's Bits 11-15. This value ranges from 0001 to 1111, representing 1 to 31 conversions stored in the FIFO. A user-programmed value of 0000 has no meaning. See Section 3.0 for more FIFO information.
The completion of the short, single-sampled auto-zero calibration generates Interrupt 3.

The completion of a full auto-zero and linearity self-calibration generates Interrupt 4.
Interrupt 5 is generated when the Sequencer encounters an instruction that has its Pause bit (Bit 1 in Instruction RAM " 00 ") set to " 1 ".
Interrupt 7 is issued after a short delay ( 10 ms typ) while the LM12L454/8 returns from Standby mode to active operation using the Configuration register's Bit 4. This short delay allows the internal analog circuitry to settle sufficiently, ensuring accurate conversion results.

### 2.4 INTERRUPT ENABLE REGISTER

The Interrupt Enable register at address location 1001 ( $\mathrm{A} 4-\mathrm{A} 1, \mathrm{BW}=0$ ) or 1001x ( $\mathrm{A} 4-\mathrm{A} 0, \mathrm{BW}=1$ ) has READ/ WRITE capability. An individual interrupt's ability to produce an external interrupt at pin 31 (INT) is accomplished by placing a " 1 " in the appropriate bit location. Any of the internal interrupt-producing operations will set their corresponding bits to "1" in the Interrupt Status register regardless of the state of the associated bit in the Interrupt Enable register. See Section 2.3 for more information about each of the eight internal interrupts.
Bit 0 enables an external interrupt when an internal "watchdog" comparison limit interrupt has taken place.
Bit 1 enables an external interrupt when the Sequencer has reached the address stored in Bits 8-10 of the Interrupt Enable register.
Bit 2 enables an external interrupt when the Conversion FIFO's limit, stored in Bits 11-15 of the Interrupt Enable register, has been reached.
Bit 3 enables an external interrupt when the single-sampled auto-zero calibration has been completed.
Bit 4 enables an external interrupt when a full auto-zero and linearity self-calibration has been completed.
Bit 5 enables an external interrupt when an internal Pause interrupt has been generated.
Bit 6 is a "Don't Care".
Bit 7 enables an external interrupt when the LM12L454/8 return from power-down to active mode.
Bits 8-10 form the storage location of the user-programmable value against which the Sequencer's address is compared. When the Sequencer reaches an address that is equal to the value stored in Bits 8-10, an internal interrupt is generated and appears in Bit 1 of the Interrupt Status register. If Bit 1 of the Interrupt Enable register is set to " 1 ", an external interrupt will appear at pin 31 (INT).

The value stored in bits 8-10 ranges from 000 to 111, representing 0 to 7 instructions stored in the Instruction RAM. After the Instruction RAM has been programmed and the RESET bit is set to " 1 ", the Sequencer is started by placing a " 1 " in the Configuration register's START bit. Setting the

INT 1 trigger value to 000 does not generate an INT 1 the first time the Sequencer retrieves and decodes Instruction 000 . The Sequencer generates INT 1 (by placing a " 1 " in the Interrupt Status register's Bit 1) the second time and after the Sequencer encounters instruction 000. It is important to remember that the Sequencer continues to operate even if an Instruction interrupt (INT 1) is internally or externally generated. The only mechanisms that stop the Sequencer are an instruction with the PAUSE bit set to " 1 " (halts before instruction execution), placing a " 0 " in the Configuration register's START bit, or placing a "1" in the Configuration register's RESET bit.
Bits 11-15 hold the number of conversions that must be stored in the Conversion FIFO in order to generate an internal interrupt. This internal interrupt appears in Bit 2 of the Interrupt Status register. If Bit 2 of the Interrupt Enable register is set to " 1 ", an external interrupt will appear at pin 31 (INT).

### 2.5 INTERRUPT STATUS REGISTER

This read-only register is located at address 1010 (A4-A1, $\mathrm{BW}=0$ ) or 1010x ( $\mathrm{A} 4-\mathrm{AO}, \mathrm{BW}=1$ ). The corresponding flag in the Interrupt Status register goes high (" 1 ") any time that an interrupt condition takes place, whether an interrupt is enabled or disabled in the Interrupt Enable register. Any of the active (" 1 ") Interrupt Status register flags are reset to " 0 " whenever this register is read or a device reset is issued (see Bit 1 in the Configuration Register).
Bit 0 is set to " 1 " when a "watchdog" comparison limit interrupt has taken place.
Bit 1 is set to " 1 " when the Sequencer has reached the address stored in Bits 8-10 of the Interrupt Enable register.
Bit 2 is set to " 1 " when the Conversion FIFO's limit, stored in Bits 11-15 of the Interrupt Enable register, has been reached.
Bit 3 is set to " 1 " when the single-sampled auto-zero has been completed.
Bit 4 is set to " 1 " when an auto-zero and full linearity selfcalibration has been completed.
Bit 5 is set to " 1 " when a Pause interrupt has been generated.
Bit 6 is a "Don't Care".
Bit 7 is set to " 1 " when the LM12L454/8 return from powerdown to active mode.
Bits 8-10 hold the Sequencer's actual instruction address while it is running.

Bits 11-15 hold the actual number of conversions stored in the Conversion FIFO while the Sequencer is running.

### 2.6 LIMIT STATUS REGISTER

The read-only register is located at address 1101 (A4-A1, $\mathrm{BW}=0$ ) or 1101x ( $\mathrm{A} 4-\mathrm{A} 0, \mathrm{BW}=1$ ). This register is used in tandem with the Limit \#1 and Limit \#2 registers in the Instruction RAM. Whenever a given instruction's input voltage exceeds the limit set in its corresponding Limit register (\#1 or \#2), a bit, corresponding to the instruction number, is set in the Limit Status register. Any of the active ("1") Limit Status flags are reset to " 0 " whenever this register is

### 2.0 Internal User-Programmable Registers (Continued)

read or a device reset is issued (see Bit 1 in the Configuration register). This register holds the status of limits \#1 and \#2 for each of the eight instructions.
Bits 0-7 show the Limit \#1 status. Each bit will be set high (" 1 ") when the corresponding instruction's input voltage exceeds the threshold stored in the instruction's Limit \#1 register. When, for example, instruction 3 is a "watchdog" operation (Bit 11 is set high) and the input for instruction 3 meets the magnitude and/or polarity data stored in instruction 3's Limit \#1 register, Bit 3 in the Limit Status register will be set to a " 1 ".
Bits 8-15 show the Limit \#2 status. Each bit will be set high ("1") when the corresponding instruction's input voltage exceeds the threshold stored in the instruction's Limit \# 2 register. When, for example, the input to instruction 6 meets the value stored in instruction 6's Limit \#2 register, Bit 14 in the Limit Status register will be set to a " 1 ".

### 2.7 TIMER

The LM12L454/8 have an on-board 16 -bit timer that includes a 5 -bit pre-scaler. It uses the clock signal applied to pin 23 as its input. It can generate time intervals of 0 through $2^{21}$ clock cycles in steps of $2^{5}$. This time interval can be used to delay the execution of instructions. It can also be used to slow the conversion rate when converting slowly changing signals. This can reduce the amount of redundant data stored in the FIFO and retrieved by the controller.
The user-defined timing value used by the Timer is stored in the 16 -bit READ/WRITE Timer register at location 1011 ( $\mathrm{A} 4-\mathrm{A} 1, \mathrm{BW}=0$ ) or 1011 x ( $\mathrm{A} 4-\mathrm{A} 0, \mathrm{BW}=1$ ) and is preloaded automatically. Bits $0-7$ hold the preset value's low byte and Bits $8-15$ hold the high byte. The Timer is activated by the Sequencer only if the current instruction's Bit 9 is set (" 1 "). If the equivalent decimal value " $N$ " ( $0 \leq N \leq 2^{16}-1$ ) is written inside the 16-bit Timer register and the Timer is enabled by setting an instruction's bit 9 to a "1", the Sequencer will delay the same instruction's execution by halting at state 3 (S3), as shown in Figure 11, for $32 \times \mathrm{N}+2$ clock cycles.

### 2.8 DMA

The DMA works in tandem with Interrupt 2. An active DMA Request on pin 32 (DMARQ) requires that the FIFO interrupt be enabled. The voltage on the DMARQ pin goes high when the number of conversions in the FIFO equals the 5-bit value stored in the Interrupt Enable register (bits 1115). The voltage on the INT pin goes low at the same time as the voltage on the DMARQ pin goes high. The voltage on the DMARQ pin goes low when the FIFO is emptied. The Interrupt Status register must be read to clear the FIFO interrupt flag in order to enable the next DMA request.
DMA operation is optimized through the use of the 16 -bit databus connection (a logic " 0 " applied to the BW pin). Using this bus width allows DMA controllers that have single address Read/Write capability to easily unload the FIFO. Using DMA on an 8-bit databus is more difficult. Two read operations (low byte, high byte) are needed to retrieve each
conversion result from the FIFO. Therefore, the DMA controller must be able to repeatedly access two constant addresses when transferring data from the LM12L454/8 to the host system.

### 3.0 FIFO

The result of each conversion stored in an internal read-only FIFO (First-In, First-Out) register. It is located at 1100 (A4$\mathrm{A} 1, \mathrm{BW}=0$ ) or $1100 \mathrm{x}(\mathrm{A} 4-\mathrm{AO}, \mathrm{BW}=1$ ). This register has 3216 -bit wide locations. Each location holds 13 -bit data. Bits 0-3 hold the four LSB's in the 12 bits + sign mode or " 1110 " in the 8 bits + sign mode. Bits $4-11$ hold the eight MSB's and Bit 12 holds the sign bit. Bits 13-15 can hold either the sign bit, extending the register's two's complement data format to a full sixteen bits or the instruction address that generated the conversion and the resulting data. These modes are selected according to the logic state of the Configuration register's Bit 5 .
The FIFO status should be read in the Interrupt Status register (Bits 11-15) to determine the number of conversion results that are held in the FIFO before retrieving them. This will help prevent conversion data corruption that may take place if the number of reads are greater than the number of conversion results contained in the FIFO. Trying to read the FIFO when it is empty may corrupt new data being written into the FIFO. Writing more than 32 conversion data into the FIFO by the ADC results in loss of the first conversion data. Therefore, to prevent data loss, it is recommended that the LM12L454/8's interrupt capability be used to inform the system controller that the FIFO is full.
The lower portion ( $\mathrm{AO}=0$ ) of the data word (Bits 0-7) should be read first followed by a read of the upper portion ( $A 0=1$ ) when using the 8 -bit bus width $(B W=1$ ). Reading the upper portion first causes the data to shift down, which results in loss of the lower byte.
Bits $\mathbf{0 - 1 2}$ hold 12-bit + sign conversion data. Bits $\mathbf{0 - 3}$ will be 1110 (LSB) when using 8 -bit plus sign resolution.
Bits 13-15 hold either the instruction responsible for the associated conversion data or the sign bit. Either mode is selected with Bit 5 in the Configuration register.
Using the FIFO's full depth is achieved as follows. Set the value of the Interrupt Enable registers's Bits 11-15 to 1111 and the Interrupt Enable register's Bit 2 to a " 1 ". This generates an external interrupt when the 31st conversion is stored in the FIFO. This gives the host processor a chance to send a " 0 " to the LM12L454/8's Start bit (Configuration register) and halt the ADC before it completes the 32nd conversion. The Sequencer halts after the current (32) conversion is completed. The conversion data is then transferred to the FIFO and occupies the 32nd location. FIFO overflow is avoided if the Sequencer is halted before the start of the 32nd conversion by placing a " 0 " in the Start bit (Configuration register). It is important to remember that the Sequencer continues to operate even if a FIFO interrupt (INT 2) is internally or externally generated. The only mechanisms that stop the Sequencer are an instruction with the PAUSE bit set to "1" (halts before instruction execution), placing a " 0 " in the Configuration register's START bit, or placing a " 1 " in the Configuration register's RESET bit.

## 4．0 Sequencer

The Sequencer uses a 3－bit counter（Instruction Pointer，or IP，in Figure 7）to retrieve the programmable conversion instructions stored in the Instruction RAM．The 3－bit counter is reset to 000 during chip reset or if the current executed instruction has its Loop bit（Bit 1 in any Instruction RAM ＂ 00 ＂）set high（＂ 1 ＂）．It increments at the end of the currently executed instruction and points to the next instruction．It will continue to increment up to 111 unless an instruction＇s Loop bit is set．If this bit is set，the counter resets to＂ 000 ＂ and execution begins again with the first instruction．If all instructions have their Loop bit reset to＂ 0 ＂，the Sequencer will execute all eight instructions continuously．Therefore，it is important to realize that if less than eight instructions are programmed，the Loop bit on the last instruction must be set．Leaving this bit reset to＂ 0 ＂allows the Sequencer to execute＂unprogrammed＂instructions，the results of which may be unpredictable．
The Sequencer＇s Instruction Pointer value is readable at any time and is found in the Status register at Bits 8－10． The Sequencer can go through eight states during instruc－ tion execution：

State 0：The current instruction＇s first 16 bits are read from the Instruction RAM＂ 00 ＂．This state is one clock cycle long．
State 1：Checks the state of the Calibration and Start bits． This is the＂rest＂state whenever the Sequencer is stopped using the reset，a Pause command，or the Start bit is reset low（＂ 0 ＂）．When the Start bit is set to a＂ 1 ＂，this state is one clock cycle long．
State 2：Perform calibration．If bit 2 or bit 6 of the Configu－ ration register is set to a＂ 1 ＂，state 2 is 76 clock cycles long． If the Configuration register＇s bit 3 is set to a＂ 1 ＂，state 2 is 4944 clock cycles long．

State 3：Run the internal 16－bit Timer．The number of clock cycles for this state varies according to the value stored in the Timer register．The number of clock cycles is found by using the expression below

$$
32 T+2
$$

where $0 \leq T \leq 2^{16-1 .}$
State 7：Run the acquisition delay and read Limit \＃1＇s value if needed．The number of clock cycles for 12 －bit + sign mode varies according to

$$
9+2 D
$$

where D is the user－programmable 4－bit value stored in bits $12-15$ of Instruction RAM＂ 00 ＂and is limited to $0 \leq \mathrm{D} \leq$ 15.

The number of clock cycles for 8 －bit＋sign or＂watchdog＂ mode varies according to

$$
2+2 D
$$

where $D$ is the user－programmable 4－bit value stored in bits $12-15$ of Instruction RAM＂ 00 ＂and is limited to $0 \leq \mathrm{D} \leq$ 15.

State 6：Perform first comparison．This state is 5 clock cycles long．
State 4：Read Limit \＃2．This state is 1 clock cycle long．
State 5：Perform a conversion or second comparison． This state takes 44 clock cycles when using the 12－bit＋ sign mode or 21 clock cycles when using the 8 －bit + sign mode．The＂watchdog＂mode takes 5 clock cycles．
4.0 Sequencer (Continued)


### 5.0 Analog Considerations

### 5.1 REFERENCE VOLTAGE

The difference in the voltages applied to the $V_{\text {REF }}+$ and $V_{\text {REF - defines }}$ the analog input voltage span (the difference between the voltages applied between two multiplexer inputs or the voltage applied to one of the multiplexer inputs and analog ground), over which 4095 positive and 4096 negative codes exist. The voltage sources driving $\mathrm{V}_{\text {REF }}+$ or $V_{\text {REF - must have very low output impedance and noise. }}$ The circuit in Figure 12 is an example of a very stable reference appropriate for use with the LM12L454/8.
The ADC can be used in either ratiometric or absolute reference applications. In ratiometric systems, the analog input voltage is proportional to the voltage used for the ADC's reference voltage. When this voltage is the system power supply, the $\mathrm{V}_{\text {REF }}+$ pin is connected to $\mathrm{V}_{\mathrm{A}}+$ and $\mathrm{V}_{\text {REF }}$ - is connected to GND. This technique relaxes the system reference stability requirements because the analog input voltage and the ADC reference voltage move together. This maintains the same output code for given input conditions. For absolute accuracy, where the analog input voltage varies between very specific voltage limits, a time and temperature stable voltage source can be connected to the reference inputs. Typically, the reference voltage's magnitude will require an initial adjustment to null reference voltage induced full-scale errors.

### 5.2 INPUT RANGE

The LM12L454/8's fully differential ADC and reference voltage inputs generate a two's-complement output that is found by using the equation below.

$$
\begin{align*}
& \text { output code }=\frac{V_{\text {IN }+}-V_{\text {IN }-}}{V_{\text {REF }+}-V_{\text {REF- }}}(4096)-1 / 2  \tag{12-bit}\\
& \text { output code }=\frac{V_{\text {IN }+}-V_{\text {IN }-}}{V_{\text {REF }+}-V_{\text {REF- }}}(256)-1 / 2 \tag{8-bit}
\end{align*}
$$

Round up to the next integer value between -4096 to 4095 for 12 -bit resolution and between -256 to 255 for 8 -bit resolution if the result of the above equation is not a whole number. As an example, $\mathrm{V}_{\mathrm{REF}+}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}-}=1 \mathrm{~V}$, $\mathrm{V}_{I N+}=1.5 \mathrm{~V}$ and $\mathrm{V}_{I N-}=\mathrm{GND}$. The 12 -bit + sign output code is positive full-scale, or $0,1111,1111,1111$. If $V_{\text {REF }}+$ $=3.3 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}+}=3 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{IN}-}=\mathrm{GND}$, the 12 -bit + sign output code is $0,1100,0000,0000$.

### 5.3 INPUT CURRENT

A charging current flows into or out of (depending on the input voltage polarity) the analog input pins, INO-IN7 at the start of the analog input acquisition time ( $\mathrm{t}_{\mathrm{ACQ}}$ ). This current's peak value will depend on the actual input voltage applied.

### 5.4 INPUT SOURCE RESISTANCE

For low impedance voltage sources ( $<80 \Omega$ for 6 MHz operation) the input charging current will decay, before the end of the S/H's acquisition time, to a value that will not introduce any conversion errors. For higher source impedances, the $\mathrm{S} / \mathrm{H}$ 's acquisition time can be increased. As an example, operating with a 6 MHz clock frequency and maximum acquisition time, the LM12L454/8's analog inputs can handle source impedance as high as $5.56 \mathrm{k} \Omega$. Refer to Section 2.1, Instruction RAM "00", Bits 12-15 for further information.

### 5.5 INPUT BYPASS CAPACITANCE

External capacitors ( $0.01 \mu \mathrm{~F}-0.1 \mu \mathrm{~F}$ ) can be connected between the analog input pins, INO-IN7, and analog ground to filter any noise caused by inductive pickup associated with long input leads. It will not degrade the conversion accuracy.

### 5.6 NOISE

The leads to each of the analog multiplexer input pins should be kept as short as possible. This will minimize input noise and clock frequency coupling that can cause conversion errors. Input filtering can be used to reduce the effects of the noise sources.

### 5.7 POWER SUPPLIES

Noise spikes on the $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$supply lines can cause conversion errors; the comparator will respond to the noise. The ADC is especially sensitive to any power supply spikes that occur during the auto-zero or linearity correction. Low inductance tantalum capacitors of $10 \mu \mathrm{~F}$ or greater paralleled with $0.1 \mu \mathrm{~F}$ monolithic ceramic capacitors are recom-


FIGURE 12. Low Drift Extremely Stable Reference CIrcult

### 5.0 Analog Considerations (Continued)

mended for supply bypassing. Separate bypass capacitors should be used for the $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$supplies and placed as close as possible to these pins.

### 5.8 GROUNDING

The LM12L454/8's nominal high resolution performance can be maximized through proper grounding techniques. These include the use of separate analog and digital ground planes. The digital ground plane is placed under all components that handle digital signals, while the analog ground plane is placed under all analog signal handling circuitry. The digital and analog ground planes are connected at only one point, the power supply ground. This greatly reduces the occurrence of ground loops and noise.
It is recommended that stray capacitance between the analog inputs or outputs (LM12L454: INO-IN3, MUXOUT+, MUXOUT-, S/H IN+, S/H IN-; LM12L458: INO-IN7, $\mathrm{V}_{\text {REF }}$, and $\mathrm{V}_{\text {REF-) }}$ ) be reduced by increasing the clearance ( $+1 / 16$ th inch) between the analog signal and reference pins and the ground plane.

### 5.9 CLOCK SIGNAL LINE ISOLATION

The LM12L454/8's performance is optimized by routing the analog input/output and reference signal conductors (pins 34-44) as far as possible from the conductor that carries the clock signal to pin 23. Ground traces parallel to the clock signal trace can be used on printed circuit boards to reduce clock signal interference on the analog input/output pins.

### 6.0 Application Circuits

### 6.1 PC EVALUATION/INTERFACE BOARD

Figure 13 is the schematic of an evaluation/interface board designed to interface the LM12(H)454 or LM12 $(\mathrm{H}) 458$ with an XT or AT style computer. The LM12(H)454/8 is the 5V version of the Data Acquisition System. It is functionally equivalent to the LM12L454/8. See the LM12(H)454/8 datasheet for further information. The board can be used to develop both software and hardware for applications using the LM12L454/8. The board hardwires the BW (Bus Width) pin to a logic high, selecting an 8 -bit wide databus. Therefore, it is designed for an 8 -bit expansion slot on the computer's motherboard.
The circuit operates on a single +5 V supply derived from the computer's +12 V supply using an LM340 regulator. This greatly attenuates noise that may be present on the computer's power supply lines. However, your application may only need an LC filter.
Figure 13 also shows the recommended supply $\left(\mathrm{V}_{\mathrm{A}}+\right.$ and $\mathrm{V}_{\mathrm{D}^{+}}$) and reference input ( $\mathrm{V}_{\text {REF }}$ and $\mathrm{V}_{\text {REF- }}$ ) bypassing. The digital and analog supply pins can be connected together to the same supply voltage. However, they need separate, multiple bypass capacitors. Multiple capacitors on the supply pins and the reference inputs ensures a low impedance bypass path over a wide frequency range.
All digital interface control signals (IOR, IOW, and AEN), data lines (DB0-DB7), address lines (A0-A9), and IRQ (interrupt request) lines (IRQ2, IRQ3, and IRQ5) connections are made through the motherboard slot connector. All analog signals applied to, or received by, the input multiplexer (INO-IN7 for the LM12(H)458 and INO-IN3, MUXOUT+, MUXOUT-, S/H IN+ and S/H IN - for the LM12(H)454), $\mathrm{V}_{\text {REF }+}, \mathrm{V}_{\text {REF-, }} \mathrm{V}_{\text {REFOUT, }}$ and the SYNC signal input/
output are applied through a DB-37 connector on the rear side of the board. Figure 13 shows that there are numerous analog ground connections available on the DB-37 connector.
The voltage applied to $V_{\text {REF }}$ - and $V_{\text {REF }}+$ is selected using two jumpers, JP1 and JP2. JP1 selects between the voltage applied to the DB-37's pin 24 or GND and applies it to the LM12(H)454/8's VREF- input. JP2 selects between the LM12(H)454/8's internal reference output, VREFOUT, and the voltage applied to the DB-37's pin 22 and applies it to the LM12(H)454/8's VREF+ input.

## TABLE III. LM12(H)454/8 Evaluation/Interface Board SW DIP-8 Switch Settings for Available I/O Memory Locations

Hexidecimal   l/O Memory   Base Address	SW DIP-8			
	SW1   (SEL0)	SW2   (SEL1)	SW3   (SEL2)	SW4   (SEL3)
100	ON	ON	ON	ON
120	OFF	ON	ON	ON
140	ON	OFF	ON	ON
160	OFF	OFF	ON	ON
180	ON	ON	OFF	ON
140	OFF	ON	OFF	ON
100	ON	OFF	OFF	ON
300	OFF	OFF	OFF	ON
340	ON	ON	ON	OFF
280	OFF	ON	ON	OFF
$2 A 0$	ON	OFF	ON	OFF

The board allows the use of one of three Interrupt Request (IRQ) lines IRQ2, IRQ3, and IRQ5. The individual IRQ line can be selected using switches 5, 6, and 7 of SW DIP-8. When using any of these three IRQs, the user needs to ensure that there are no conflicts between the evaluation board and any other boards attached to the computer's motherboard.
Switches 1-4, along with address lines A5-A9 are used as inputs to GAL16V8 Programmable Gate Array (U2). This device forms the interface between the computer's control and address lines and generates the control signals used by the LM12(H)454/8 for $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{RD}}$. It also generates the signal that controls the data buffers. Several address ranges within the computer's I/O memory map are available. Refer to Table III for the switch settings that gives the desired I/O memory address range. Selection of an address range must be done so that there are no conflicts between the evaluation board and any other boards attached to the computer's motherboard. The GAL equations are shown in Figure 14. The GAL functional block diagram is shown in Figure 15.
Figures 16-19 show the layout of each layer in the 3-layer evaluation/interface board plus the silk-screen layout showing parts placement. Figure 17 is the top or component side, Figure 18 is the middle or ground plane layer, Figure 19 is the circuit side, and Figure 16 is the parts layout.
6.0 Application Circuits (Continued)


Note: The layout utilizes a split ground plane. The analog ground plane is placed under all analog signals and U5 pins 1,34-44. The remaining signals and pins are placed over the digital ground. The single point ground connection is at U6, pin 2, and this is connected to the motherboard pin B1.

## Parts List:



FIGURE 13. Schematic and Parts List for the LM12(H)454/8 Evaluation/Interface Board for XT and AT Style Computers, Order Number LM12458EVAL

### 6.0 Application Circuits (Continued)

: I 10 Decode Lines	
$10 _A 5$	1
$10-A 6$	2
$10 _A 7$	3
$10 _A 8$	4
$10 _A 9$	5


SSelect Lines for Zone Decode		
SELO	6	
SEL1	7	
SELZ	8	
SEL3	9	$T L / H / 11711-25$

```
;Physical I/O Controls
AEN 15
```

$110 _W R$	11
$110 _R D$	13

; Physical Outputs
ICS
IWR 19

IRD 18
IDBEN
12
intermediate Terma:
DECD
16
FILT 14
Equations
; Decode of Select LInes:

SL0	-	1 SEL2	8	!SEL1	8	9 SEL0;
SLI		! SEL2	\&	\|SELI	\&	SELO:
SL2	-	! SEL2	8	SEL 1	8	ISELO:
SL3	-	! SEL2	8	SEL 1	8	SEL0:
SL4		SEL2	8	!SEL1	8	ISEL0;
SL5		SEL2	8	!SELI	8	SEL0;
SL6	-	SEL2	8	SEL1	\&	ISEL0:
SL7	-	SEL2	\&	SEL1	8	SEL0:

; Decode of Address LInes:

AL00	-	SL0 \&	!10_A7 \&	110_A6 \&	110_A5;	
AL20	-	SL1 \&	110_A7 \&	110_A6 \&	10_A5;	
AL40	-	SL2 \&	110_A7 \&	$10 _A 6$ \&	\|10_A5;	
AL60	-	SL3 \&	1io_A7 \&	$10 _A 6$ \&	10_A5;	
AL80	-	SL4 \&	$10 _A 78$	$110-A 68$	110_A5:	
ALAO	=	SL5 \&	$10 _A 7$ \&	110_A6 \&	$10 _A 5 ;$	
ALCO	-	SL6 \&	$10 _A 7$ \&	$10 _A 6$ \&	110_A5:	
AHO 1	=	! SEL3	$\& 110 _A 9$	$\& \quad 10 _A 8$		
AHO2	-	SEL3	\& 10_A9	\& ! io_A8	\& 1O_A7 \&	! $10 \times A 5$
AHO3	=	SEL3	$\& \quad 10 _A 9$	\& 10_A8	\& 110_A7 \&	\& $110 _A 5$

; Intermediate Address Groups:
DECO - $\quad$ : AEN \& (ALOD + AL20 + AL40 + AL60 + AL80 + ALAO + ALCO):
; DAS Chip Select Decode:

```
FILT = CS & (IO_WR + lo_RD);
CS = (lO_WR + IO_RD) & DECO & (AHO1 + AHO2 + AH03):
DBEN = CS & DECO & ((O_WR + (O_RD);
```

; Delayed Read/ Write Decodes:

$W R$	$=$	$10 _W R \&$ FILT;
$R D$	$10 _R D \& F I L T ;$	

### 6.0 Application Circuits (Continued)



FIGURE 15. GAL Functional Block Diagram


FIGURE 16. SIIk-Screen layout Showing Parts Placement on the LM12(H)454/8 Evaluation/Interface Board
6.0 Application Circuits (Continued)


FIGURE 17. LM12(H)454/8 Evaluation/Interface Board Component-Side Layout Positive
6.0 Application Circuits (Continued)

6.0 Application Circuits (Continued)


FIGURE 19. LM12(H)454/8 Evaluation/Interface Circuit-Side Layout Positive

## Analog-to-Digital Converters

Section 2 Contents
Analog-to-Digital Converters Definition of Terms ..... 2-4
Analog-to-Digital Converters Selection Guide ..... 2-6
ADC0800 8-Bit A/D Converter ..... 2-10
ADC0801/ADC0802/ADC0803/ADC0804/ADC0805 8-Bit $\mu$ P Compatible A/D Converters ..... 2-19
ADC0808/ADC0809 8-Bit $\mu$ P Compatible A/D Converters with 8-Channel Multiplexer ..... 2-51
ADC0811 8-Bit Serial I/O A/D Converter with 11-Channel Multiplexer ..... 2-62
ADC0816/ADC0817 8-Bit $\mu$ P Compatible A/D Converters with 16-Channel Multiplexer ..... 2-73
ADC0819 8-Bit Serial I/O A/D Converter with 19-Channel Multiplexer ..... 2-84
ADC0820 8-Bit High Speed $\mu$ P Compatible A/D Converter with Track/Hold Function ..... 2-94
ADC0831/ADC0832/ADC0834 and ADC0838 8-Bit Serial I/O A/D Converters with Multiplexer Options ..... 2-110
ADC0833 8-Bit Serial I/O A/D Converter with 4-Channel Multiplexer ..... 2-136
ADC08031/ADC08032/ADC08034/ADC08038 8-Bit High-Speed Serial I/O A/D Converters with Multiplexer Options, Voltage Reference, and Track/Hold Function ..... 2-154
ADC08131/ADC08134/ADC08138 8-Bit High-Speed Serial I/O A/D Converters with Multiplexer Options, Voltage Reference, and Track/Hold Function ..... 2-174
ADC08231/ADC08234/ADC08238 8-Bit $2 \mu$ s Serial I/O A/D Converters with MUX, Reference, and Track/Hold ..... 2-193
ADC0841 8-Bit $\mu$ P Compatible A/D Converter ..... 2-213
ADC0844/ADC0848 8-Bit $\mu$ P Compatible A/D Converters with Multiplexer Options ..... 2-225
ADC0852/ADC0854 Multiplexed Comparator with 8-Bit Reference Divider ..... 2-242
ADC08061/ADC08062 500 ns A/D Converter with S/H Function and Input Multiplexer ..... 2-259
ADC08161 500 ns A/D Converter with S/H Function and 2.5V Bandgap Reference ..... 2-273
ADC1001 10-Bit $\mu$ P Compatible A/D Converter ..... 2-289
ADC1005 10-Bit $\mu$ P Compatible A/D Converter ..... 2-296
ADC10154, ADC10158 10-Bit Plus Sign $4 \mu$ s ADCs with 4- or 8-Channel MUX, Track/Hold and Reference ..... 2-307
ADC1031/ADC1034/ADC1038 10-Bit Serial I/O A/D Converters with Analog Multiplexer and Track/Hold Function ..... 2-329
ADC10731/ADC10732/ADC10734/ADC10738 10-Bit Plus Sign Serial I/O A/D Converters with MUX, Sample/Hold and Reference ..... 2-342
ADC10831/ADC10832/ADC10834/ADC10838 10-Bit Plus Sign Serial I/O A/D Converters with MUX, Sample/Hold and Reference ..... 2-367
ADC1061 10-Bit High-Speed $\mu$ P-Compatible A/D Converter with Track/Hold Function ..... 2-392
ADC10061/ADC10062/ADC10064 10-Bit 600 ns A/D Converters with Input Multiplexer and Sample/Hold ..... 2-402
ADC10461/ADC10462/ADC10464 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold ..... 2-415
ADC10662/ADC10664 10-Bit 360 ns A/D Converters with Input Multiplexer and Sample/Hold ..... 2-428
ADC12H030/ADC12030/ADC12H032/ADC12032/ADC12H034/ADC12034/ADC12H038/ ADC12038 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold ..... 2-441
ADC12L030/ADC12L032/ADC12L034/ADC12L038 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold ..... 2-478
ADC12130/ADC12132/ADC12138 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold ..... 2-512
ADC1205/ADC1225 12-Bit Plus Sign $\mu$ P Compatible A/D Converters ..... 2-548
Section 2 Contents (Continued)
ADC12062 12-Bit, 1 MHz, 75 mW A/D Converter with Input Multiplexer and Sample/Hold ..... 2-565
ADC12662 12-Bit, 1.5 MHz, 200 mW A/D Converter with Input Multiplexer and Sample/Hold . ..... 2-583
ADC1241 Self-Calibrating 12-Bit Plus Sign $\mu$ P-Compatible A/D Converter with Sample/Hold . ..... 2-602
ADC1242 12-Bit Plus Sign Sampling A/D Converter ..... 2-615
ADC12441 Dynamically-Tested Self-Calibrating 12-Bit Plus Sign A/D Converter with Sample/Hold ..... 2-628
ADC1251 Self-Calibrating 12-Bit Plus Sign A/D Converter with Sample/Hold ..... 2-641
ADC12451 Dynamically-Tested Self-Calibrating 12-Bit Plus Sign A/D Converter with Sample/Hold ..... 2-656
ADC16071/ADC16471 16-Bit Delta-Sigma $192 \mathrm{ks} / \mathrm{s}$ Analog-to-Digital Converters ..... 2-672
LM131A/LM131, LM231A/LM231, LM331A/LM331 Precision Voltage-to-Frequency Converters ..... 2-690

# Definition Of Terms A/D Converters 

Conversion Time: The time required for a complete measurement by an analog-to-digital converter. Since the Conversion Time does not include acquisition time, multiplexer set up time, or other elements of a complete conversion cycle, the conversion time may be less than the Throughput Time.
DC Common-Mode Error: This specification applies to ADCs with differential inputs. It is the change in the output code that occurs when the analog voltages on the two inputs are changed by an equal amount. It is expressed in LSBs.
Differential Nonlinearity (DNL): Differential non-linearity is a measure of the worst case deviation from the ideal 1 LSB input voltage span that is associated with each output code. Differential non-linearity may be expressed in fractional bits or as a percentage of full scale. A differential non-linearity greater than 1 LSB will lead to missing codes in an ADC.
Dynamic Specifications: The specifications of an ADC pertaining to an $A C$ input signal. These include $\mathrm{S} / \mathrm{N}$ ratio, SNR, SINAD, S/(N+D), ENOB, THD, IMD, FPBW, and SSBW.
Effective Number of Bits (ENOB): The ENOB of an ADC is determined from a measurement of its SINAD and the following equation: $\mathrm{ENOB}=(\mathrm{SINAD}-1.76) / 6.02$. This specification combines the effects of many of the other dynamic specifications; errors resulting from dynamic differential and integral nonlinearity, missing codes, THD, and aperture jitter show up in ENOB.
Full Power Bandwidth (FPBW): The frequency at which the $\mathrm{S} / \mathrm{N}$ ratio has dropped by 3 dB (relative to its low frequency level) for an input signal that is at or near full-scale. This corresponds to a drop in ENOB by $1 / 2$ bit relative to its low frequency level.
Gain Error (Full Scale Error): The difference (usually expressed in LSBs) between the input voltage that should ideally produce a full scale output code and the actual input voltage that produces that code.
Gain Temperature Coefficient (Full Scale Temperature Coefficient): Change in gain error divided by change in temperature. Usually expressed in parts per million per degree Celsius (ppm/ ${ }^{\circ} \mathrm{C}$ ).
Integral Nonlinearity (Linearity Error): Worst case deviation of an ADC transfer function from the line between the ADC's measured endpoints (zero and full scale). Can be expressed as a percentage of full scale or in fractions of an LSB. This specification is commonly referred to as INL or ILE.
Intermodulation Distortion (IMD): Two nearby frequency components in a signal will interact through the nonlinearities in an ADC to produce signal at additional frequencies. IMD is commonly defined as the ratio of the rms sum of the distortion product amplitudes to the rms sum of the input frequency amplitudes.

LSB (Least-Significant Bit): In a binary coded system this is the bit that carries the smallest value or weight. Its value is the full scale voltage (or current) divided by $2 n$, where $n$ is the resolution of the converter.
Missing Codes: When an incremental increase or decrease in input voltage causes the converter to increment or decrement its numeric output by more than one LSB the converter is said to exhibit "missing codes". If there are missing codes, there are digital codes which cannot be reached by any input voltage value.
MSB (Most Significant Bit): In a binary coded system this is the bit that has the largest value or weight. Its value is one half of full scale.
Offset Error (Zero Error): This is the difference between the ideal input voltage ( $1 / 2$ LSB) and the actual input voltage that is needed to make the transition from zero to 1 LSB. All the digital codes in the transfer curve are offset by the same value. Offset error is usually expressed in LSBs.
Peak Harmonic: The amplitude, relative to the fundamental, of the largest harmonic resulting from the A/D conversion of an AC signal.
Power Supply Sensitivity: The sensitivity of a converter to changes in the dc power supply voltages.
Quantization Error: The error inherent in all A/D conversions. Since even an "ideal" converter has finite resolution, any analog voltage that falls between two adjacent output codes will result in an output code that is inaccurate by up to $1 / 2$ LSB.
Ratiometric Operation: Many A/D applications require a stable and accurate reference voltage against which the input voltage is compared. This approach results in an absolute conversion. Some applications, however, use transducers or other signal sources whose output voltages are proportional to some external reference. In these ratiometric applications, the reference for the signal source should be connected to the reference input of the converter. Thus, any variations in the source reference voltage will also change the converter reference voltage and produce an accurate conversion.
Resolution: The smallest analog increment corresponding to a 1 LSB converter code change. For converters, resolution is normally expressed in bits, where the number of digital codes is equal to 2 n . As an example, a 12-bit converter maps the analog signal into $212=4096$ digital codes.
Signal-to-Noise Ratio (S/N or SNR): The ratio of the signal amplitude to the background noise level. The background noise is determined by integrating the noise spectral density over the bandwidth of interest.
SINAD (Signal-to-Noise + Distortion Ratio): Similar to the S/N ratio, the SINAD includes harmonic distortion components as part of the noise. (See $S /(N+D)$

S/N+D (Signal-to-Noise + Distortion Ratio): Similar to the $S / N$ ratio, the $S / N+D$ includes harmonic distortion components as part of the noise. (See SINAD)
Small Signal Bandwidth (SSBW): The frequency at which the $\mathrm{S} / \mathrm{N}$ ratio has dropped by 3 dB (relative to its low frequency level) for an input signal that is much smaller than the full-scale input ( 20 dB or 40 dB below full-scale, for example).
Static Specifications: The specifications of an ADC pertaining to a DC signal input. These include gain error, offset error, and differential and integral linearity errors.

Total Harmonic Distortion (THD): Due to inherent nonlinearities even in an ideal ADC transfer function, ADC's will produce harmonics of the input signal frequency. THD is defined as the ratio of the rms sum of the harmonic distortion product amplitudes to the input signal amplitude.
Throughput Rate: The maximum continuous conversion rate of the ADC.

Throughput Time: The inverse of the Throughput Rate.
Total Unadjusted Error (TUE): The maximum deviation of the voltage corresponding to the center of a digital code's associated input voltage span from the ideal case. Total unadjusted error includes offset error, gain error, and differential and integral nonlinearity errors.



A/D Converter Selection Guide

	Part No.	$\begin{gathered} \text { I/O } \\ \text { Type } \\ \hline \end{gathered}$	Res'	$\begin{array}{\|l\|} \text { Conversion } \\ \text { Time (Max) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { Accuracy } \\ \text { (Max) } \end{array}$	$\begin{array}{\|l\|} \text { \# Mux } \\ \text { Inputs } \end{array}$	S/H\|	On-Board Reference	Supply Voltage	Temp Range	$\begin{array}{\|c\|} \text { Power } \\ (\mathrm{mW} \text { Max) }) \end{array}$	Packages	Comments	2
	ADC1031	Serial	10	$13.7 \mu \mathrm{~s}$	$\pm 1$ LSB	1	$Y$	N	+5V	1	15 mW	N		
	ADC1034	Serial	10	$13.7 \mu \mathrm{~s}$	$\pm 1$ LSB	4	$Y$	N	$+5 \mathrm{~V}$	I, M	15 mW	J, N, M		$\bigcirc$
	ADC1038	Serial	10	$13.7 \mu \mathrm{~s}$	$\pm 1$ LSB	8	$Y$	N	$+5 \mathrm{~V}$	I, M	15 mW	J, N, M		$\bigcirc$
	ADC1061	Parallel	10	$1.8 \mu \mathrm{~s}$	$\pm 2$ LSB	1	$Y$	N	$+5 \mathrm{~V}$	I, M	235 mW	J, N, M		5
	ADC10061	Parallel	10	900 ns	$\pm 1$ LSB	1	$Y$	N	$+5 \mathrm{~V}$	I, M	235 mW	J, N, M	$1 \mathrm{MS} / \mathrm{s}$ Throughput	$\underline{1}$
	ADC10062	Parallel	10	900 ns	$\pm 1$ LSB	2	$Y$	N	$+5 \mathrm{~V}$	I, M	235 mW	J, N, M	$1 \mathrm{MS} / \mathrm{s}$ Throughput	$\underset{\sim}{\mathbf{D}}$
	ADC10064	Parallel	10	900 ns	$\pm 1$ LSB	4	$Y$	N	$+5 \mathrm{~V}$	I, M	235 mW	J, N, M	$1 \mathrm{MS} / \mathrm{s}$ Throughput	0
	ADC10461	Parallel	10	900 ns	$\pm 1$ LSB	1	$Y$	N	$+5 \mathrm{~V}$	1	235 mW	N, M	AC Tested Version of ADC10061	(1)
	ADC10462	Parallel	10	900 ns	$\pm 1$ LSB	2	$Y$	N	$+5 \mathrm{~V}$	1	235 mW	N, M	AC Tested Version of ADC10062	9
	ADC10464	Parallel	10	900 ns	$\pm 1$ LSB	4	$Y$	N	$+5 \mathrm{~V}$	1	235 mW	$\mathrm{N}, \mathrm{M}$	AC Tested Version of ADC10064	$\stackrel{\rightharpoonup}{0}$
	ADC10664	Parallel	10	466 ns	$\pm 1.5$ LSB	4	$Y$	N	$+5 \mathrm{~V}$	1	235 mW	N, M	AC Tested, $2 \mathrm{MS} / \mathrm{s}$ Throughput	$5$
	ADC10662	Parallel	10	466 ns	$\pm 1.5$ LSB	2	$Y$	N	$+5 \mathrm{~V}$	1	235 mW	$\mathrm{N}, \mathrm{M}$	AC Tested, $2 \mathrm{MS} / \mathrm{s}$ Throughput	O
	ADC10731	Serial	$10+$ Sign	$5 \mu \mathrm{~s}$	$\pm 1$ LSB	1	$Y$	Y	$+5 \mathrm{~V}$	1	37 mW	N, M	Software Power-Down to $18 \mu \mathrm{~W}$	$\frac{\text { 등 }}{}$
	ADC10732	Serial	$10+$ Sign	$5 \mu \mathrm{~s}$	$\pm 1$ LSB	2	$Y$	Y	$+5 \mathrm{~V}$	1	37 mW	N, M	Software Power-Down to $18 \mu \mathrm{~W}$	$\frac{1}{10}$
	ADC10734	Serial	$10+$ Sign	$5 \mu \mathrm{~s}$	$\pm 1$ LSB	4	Y	$Y$	$+5 \mathrm{~V}$	1	37 mW	$\mathrm{N}, \mathrm{M}$	Software Power-Down to $18 \mu \mathrm{~W}$	¢
	ADC10738	Serial	$10+$ Sign	$5 \mu \mathrm{~s}$	$\pm 1$ LSB	8	$Y$	Y	$+5 \mathrm{~V}$	1	37 mW	N, M	Software Power-Down to $18 \mu \mathrm{~W}$	雨
	ADC1083	Serial	$10+$ Sign	$5 \mu \mathrm{~s}$	$\pm 1$ LSB	1	$Y$	$Y$	$\pm 5 \mathrm{~V}$	1	59 mW	N, M	Software Power-Down to $33 \mu \mathrm{~W}$	$\stackrel{\rightharpoonup}{0}$
	ADC10832	Serial	$10+$ Sign	$5 \mu \mathrm{~s}$	$\pm 1$ LSB	2	$Y$	Y	$\pm 5 \mathrm{~V}$	1	59 mW	N, M	Software Power-Down to $33 \mu \mathrm{~W}$	
	ADC10834	Serial	$10+$ Sign	$5 \mu \mathrm{~s}$	$\pm 1$ LSB	4	$Y$	$Y$	$\pm 5 \mathrm{~V}$	1	59 mW	N, M	Software Power-Down to $33 \mu \mathrm{~W}$	
	ADC10838	Serial	$10+$ Sign	$5 \mu \mathrm{~s}$	$\pm 1$ LSB	8	$Y$	$Y$	$\pm 5 \mathrm{~V}$	1	59 mW	N, M	Software Power-Down to $33 \mu \mathrm{~W}$	
	ADC10154	Byte-Wide	$10+$ Sign	$4.4 \mu \mathrm{~s}$	$\pm 1$ LSB	4	$Y$	Y	$+5 \mathrm{~V}, \pm 5 \mathrm{~V}$	1	33 mW	$\mathrm{N}, \mathrm{M}$		
	ADC10158	Byte-Wide	$10+$ Sign	$4.4 \mu \mathrm{~s}$	$\pm 1$ LSB	8	$Y$	Y	$+5 \mathrm{~V}, \pm 5 \mathrm{~V}$	1	33 mW	$\mathrm{N}, \mathrm{M}$		
	ADC12062B	Parallel	12	980 ns	$\pm 1$ LSB	2	Y	N	$+5 \mathrm{~V}$	1	75 mW	$\mathrm{V}, \mathrm{VF}$		
	ADC12062C	Parallel	12	980 ns	$\pm 11 / 2$ LSB	2	$Y$	N	$+5 \mathrm{~V}$	1	75 mW	$\mathrm{V}, \mathrm{VF}$		
	ADC12662	Parallel	12	660 ns	$\pm 11 / 2 \mathrm{LSB}$	2	Y	N	$+5 \mathrm{~V}$	1	200 mW	$\mathrm{V}, \mathrm{VF}$		
	ADC1205C	Parallel	$12+$ Sign	$100 \mu \mathrm{~s}$	$\pm 1$ LSB	1	N	N	$+5 \mathrm{~V}, \pm 5 \mathrm{~V}$	C, I	235 mW	$J$		
	ADC1225	Parallel	$12+$ Sign	$100 \mu \mathrm{~s}$	$\pm 1$ LSB	1	N	N	$+5 \mathrm{~V}, \pm 5 \mathrm{~V}$	C, I	235 mW	$J$		
	ADC1241B	Parallel	$12+$ Sign	13.8 ms	$\pm 1 / 2$ LSB	1	$Y$	N	$+5 \mathrm{~V}, \pm 5 \mathrm{~V}$	1	70 mW	$J$	Self Calibrating	
	ADC1241C	Parallel	$12+$ Sign	$13.8 \mu \mathrm{~s}$	$\pm 1$ LSB	1	$Y$	N	$+5 \mathrm{~V}, \pm 5 \mathrm{~V}$	I, M	70 mW	J	Self Calibrating	
	ADC12441	Parallel	$12+$ Sign	13.8 \% s	$\pm 1$ LSB	1	$Y$	N	$+5 \mathrm{~V}, \pm 5 \mathrm{~V}$	1	70 mW	J	AC Tested	
	ADC12030	Serial	$12+$ Sign	$8.8 \mu \mathrm{~s}$	$\pm 1$ LSB	2	$Y$	N	$+5 \mathrm{~V}$	1	33 mW	N, M	Software Power-Down to $100 \mu \mathrm{~W}$	
	Package Codes:		Cerdip   Metal Can Plastic Dip Small Outline	p V   n MS   p VF	$\begin{aligned} & \text { PLCC } \\ & \text { SSOP } \\ & \text { PQFP } \end{aligned}$	Temperatu		C     I   M	$\begin{array}{r} 0^{\circ} \mathrm{Ct} \\ -25^{\circ} \mathrm{C} \\ \text { or }-40^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to } \end{array}$	$\begin{aligned} & \text { to }+70^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	${ }^{\circ} \mathrm{C}$			


Part   No.	$\begin{aligned} & \text { I/O } \\ & \text { Type } \end{aligned}$	Res' (Bits)	Conversion   Time (Max)	Accuracy (Max)	\# MUX Inputs	S/H	On-Board Reference	Supply Voltage	$\left.\begin{array}{l\|} \text { Temp } \\ \text { Range } \end{array} \right\rvert\,$	Power (mW Max)	Packages	Comments
ADC12032	Serial	$12+$ Sign	$8.8 \mu \mathrm{~s}$	$\pm 1$ LSB	2	$Y$	N	$+5 \mathrm{~V}$	1	33 mW	N, M	Software Power-Down to $100 \mu \mathrm{~W}$
ADC12034	Serial	$12+$ Sign	$8.8 \mu \mathrm{~s}$	$\pm 1$ LSB	4	Y	N	$+5 \mathrm{~V}$	1	33 mW	N, M	Software Power-Down to $100 \mu \mathrm{~W}$
ADC12038	Serial	$12+$ Sign	$8.8 \mu \mathrm{~s}$	$\pm 1$ LSB	8	Y	N	$+5 \mathrm{~V}$	1	33 mW	N, M	Software Power-Down to $100 \mu \mathrm{~W}$
ADC12L030	Serial	$12+$ Sign	$8.8 \mu \mathrm{~s}$	$\pm 1$ LSB	2	Y	N	$+5 \mathrm{~V}$	1	15 mW	N, M	3V Guaranteed Operation
ADC12L032	Serial	$12+$ Sign	$8.8 \mu \mathrm{~s}$	$\pm 1$ LSB	2	Y	N	+5V	1	15 mW	N, M	3V Guaranteed Operation
ADC12L034	Serial	$12+$ Sign	$8.8 \mu \mathrm{~s}$	$\pm 1$ LSB	4	$Y$	N	$+5 \mathrm{~V}$	1	15 mW	N, M	3V Guaranteed Operation
ADC12L038	Serial	$12+$ Sign	$8.8 \mu \mathrm{~s}$	$\pm 1$ LSB	8	$Y$	N	$+5 \mathrm{~V}$	1	15 mW	N, M	3V Guaranteed Operation
ADC1251B	Byte-Wide	$12+$ Sign	$7.7 \mu \mathrm{~s}$	$\pm 1 / 2$ LSB	1	Y	N	$+5 \mathrm{~V}, \pm 5 \mathrm{~V}$	1	113 mW	$J$	Self Calibrating
ADC1251C	Byte-Wide	$12+$ Sign	$7.7 \mu \mathrm{~s}$	$\pm 1$ LSB	1	Y	N	$+5 \mathrm{~V}, \pm 5 \mathrm{~V}$	I, M	113 mW	J	Self Calibrating
ADC12451	Byte-Wide	$12+$ Sign	$7.7 \mu \mathrm{~s}$	$\pm 1$ LSB	1	Y	N	$+5 \mathrm{~V}, \pm 5 \mathrm{~V}$	1	113 mW	J	AC Tested
ADC12H030	Serial	$12+$ Sign	$5.5 \mu \mathrm{~s}$	$\pm 1$ LSB	2	Y	N	$+5 \mathrm{~V}$	1	36 mW	N, M	Software Power-Down to $100 \mu \mathrm{~W}$
ADC12H032	Serial	$12+$ Sign	$5.5 \mu \mathrm{~s}$	$\pm 1$ LSB	2	Y	N	$+5 \mathrm{~V}$	1	36 mW	N, M	Software Power-Down to $100 \mu \mathrm{~W}$
ADC12H034	Serial	$12+$ Sign	$5.5 \mu \mathrm{~s}$	$\pm 1$ LSB	4	Y	N	$+5 \mathrm{~V}$	1	36 mW	N, M	Software Power-Down to $100 \mu \mathrm{~W}$
ADC12H038	Serial	$12+$ Sign	$5.5 \mu \mathrm{~s}$	$\pm 1$ LSB	8	Y	N	$+5 \mathrm{~V}$	1	36 mW	N, M	Software Power-Down to $100 \mu \mathrm{~W}$
ADC16071	Serial	16	$192 \mathrm{kS} / \mathrm{s}$	SINAD: 72 dB	1	Y	N	$+5 \mathrm{~V}$	1	500 mW	N, M	Delta Sigma Architecture
ADC16471	Serial	16	$192 \mathrm{kS} / \mathrm{s}$	SINAD: 72 dB	1	Y	Y	$+5 \mathrm{~V}$	1	500 mW	N, M	Delta Sigma Architecture
LM131	Frequency	V-F	N/A	0.01\%	1	N/A	N	+5 V to +40 V	C, I, M	30 mW	N, M, H	V to F Converter, 100 kHz Max

National Semiconductor

## ADC0800 8-Bit A/D Converter

## General Description

The ADC0800 is an 8-bit monolithic A/D converter using Pchannel ion-implanted MOS technology. It contains a high input impedance comparator, 256 series resistors and ana$\log$ switches, control logic and output latches. Conversion is performed using a successive approximation technique where the unknown analog voltage is compared to the resistor tie points using analog switches. When the appropriate tie point voltage matches the unknown voltage, conversion is complete and the digital outputs contain an 8-bit complementary binary word corresponding to the unknown. The binary output is TRI-STATE ${ }^{\circledR}$ to permit bussing on common data lines.
The ADC0800PD is specified over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and

## Features

- Low cost
- $\pm 5 \mathrm{~V}, 10 \mathrm{~V}$ input ranges
- No missing codes
- Ratiometric conversion
- TRI-STATE outputs
- Fast
- Contains output latches
- TTL compatible
- Supply voltages

■ Resolution

- Linearity
- Conversion speed
- Clock range

$$
\mathrm{T}_{\mathrm{C}}=50 \mu \mathrm{~s}
$$

$$
\begin{array}{r}
T_{C}=50 \mu \mathrm{~S} \\
5 \mathrm{~V}_{\mathrm{DC}} \text { and }-12 \mathrm{~V}_{\mathrm{DC}} \\
8 \mathrm{bits} \\
\pm 1 \mathrm{LSB}
\end{array}
$$

40 clock periods
50 to 800 kHz

Block Diagram

$(00000000=+$ full-scale $)$

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National
Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage $\left(V_{\mathrm{DD}}\right)$
Supply Voltage $\left(\mathrm{V}_{\mathrm{GG}}\right)$
Voltage at Any Input
Input Current at Any Pin (Note 2)
Package Input Current (Note 2)
Electrical Characteristics
These specifications apply for $\mathrm{V}_{\mathrm{SS}}=5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{GG}}=-12.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}_{\mathrm{DC}}$, a reference voltage of $10.000 \mathrm{~V}_{\mathrm{DC}}$ across the on-chip R-network ( $\mathrm{V}_{\mathrm{R} \text {-NETWORK TOP }}=5.000 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{V}_{\mathrm{R} \text {-NETWORK }}$ BOTTOM $=-5.000 \mathrm{~V}_{\mathrm{DC}}$ ), and a clock frequency of 800 kHz . For all tests, a $475 \Omega$ resistor is used from pin 5 to $\mathrm{V}_{\text {R-NETWORK }}$ BOTTOM $=-5 \mathrm{~V}_{\mathrm{DC}}$. Unless otherwise noted, these specifications apply over an ambient temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the $\mathrm{ADC0800PD}$ and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the ADC0800PCD.

Parameter	Conditions	Min	Typ	Max	Units
Non-Linearity	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, (Note 8) } \\ & \text { Over Temperature, (Note 8) } \end{aligned}$			$\begin{aligned} & \pm 1 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Differential Non-Linearity				$\pm 1 / 2$	LSB
Zero Error				$\pm 2$	LSB
Zero Error Temperature Coefficient	(Note 9)			0.01	\%/ ${ }^{\circ} \mathrm{C}$
Full-Scale Error				$\pm 2$	LSB
Full-Scale Error Temperature Coefficient	(Note 9)			0.01	\%/ ${ }^{\circ} \mathrm{C}$
Input Leakage				1	$\mu \mathrm{A}$
Logical "1" Input Voltage	All Inputs	$V_{S S}-1.0$		$\mathrm{V}_{\text {SS }}$	V
Logical "0" Input Voltage	All Inputs	$\mathrm{V}_{\mathrm{GG}}$		$\mathrm{V}_{S S}-4.2$	V
Logical Input Leakage	$\begin{aligned} & T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { All Inputs, } \mathrm{V}_{\mathrm{IL}}= \\ & \mathrm{V}_{\mathrm{SS}}-10 \mathrm{~V} \end{aligned}$			1	$\mu \mathrm{A}$
Logical "1" Output Voltage	All Outputs, $\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$	2.4			V
Logical " 0 " Output Voltage	All Outputs, $\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	V
Disabled Output Leakage	$\begin{aligned} & T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { All Outputs, } \mathrm{V}_{\mathrm{OL}}= \\ & \mathrm{V}_{\mathrm{SS}} @ 10 \mathrm{~V} \end{aligned}$			2	$\mu \mathrm{A}$
Clock Frequency	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$		$\begin{aligned} & 800 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \hline \end{aligned}$
Clock Pulse Duty Cycle		40		60	\%
TRI-STATE Enable/Disable Time				1	$\mu \mathrm{s}$
Start Conversion Pulse	(Note 10)	1		$31 / 2$	Clock   Periods
Power Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			20	mA

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: When the input voltage $\left(\mathrm{V}_{\mathbb{I}}\right)$ at any pin exceeds the power supply rails ( $\mathrm{V}_{\mathbb{I N}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathbb{I N}}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature, $T_{A}$. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance of the ADC0800PD and ADC0800PCD when board mounted is $66^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 6: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 7: Design limits are guaranteed but not $100 \%$ tested. These limits are not used to calculate outgoing quality levels.
Note 8: Non-linearity specifications are based on best straight line.
Note 9: Guaranteed by design only.
Note 10: Start conversion pulse duration greater than $31 / 2$ clock periods will cause conversion errors.

## Timing Diagram



TL/H/5670-2
Data is complementary binary (full scale is all " 0 ' $s$ " output).

## Application Hints

## operation

The ADC0800 contains a network with 256-300 $\Omega$ resistors in series. Analog switch taps are made at the junction of each resistor and at each end of the network. In operation, a reference $(10.00 \mathrm{~V})$ is applied across this network of 256 resistors. An analog input $\left(\mathrm{V}_{\mathbb{I}}\right)$ is first compared to the center point of the ladder via the appropriate switch. If $\mathrm{V}_{\text {IN }}$ is larger than $V_{\text {REF }} / 2$, the internal logic changes the switch points and now compares $\mathrm{V}_{\mathrm{IN}}$ and $3 / 4 \mathrm{~V}_{\mathrm{REF}}$. This process, known as successive approximation, continues until the best match of $\mathrm{V}_{\mathrm{IN}}$ and $\mathrm{V}_{\text {REF }} / \mathrm{N}$ is made. N now defines a specific tap on the resistor network. When the conversion is complete, the logic loads a binary word corresponding to this tap into the output latch and an end of conversion (EOC) logic level appears. The output latches hold this data valid until a new conversion is completed and new data is loaded into the latches. The data transfer occurs in about 200 ns so that valid data is present virtually all the time in the latches. The data outputs are activated when the Output Enable is high, and in TRI-STATE when Output Enable is low. The Enable Delay time is approximately 200 ns. Each conversion requires 40 clock periods. The device may be operated in the free running mode by connecting the Start Conversion line to the End of Conversion line. However, to ensure start-up under all possible conditions, an external Start Conversion pulse is required during power up conditions.

## REFERENCE

The reference applied across the 256 resistor network determines the analog input range. $\mathrm{V}_{\text {REF }}=10.00 \mathrm{~V}$ with the top of the R-network connected to 5 V and the bottom connected to -5 V gives a $\pm 5 \mathrm{~V}$ range. The reference can be level shifted between $V_{S S}$ and $V_{G G}$. However, the voltage, applied to the top of the R-network (pin 15), must not exceed $\mathrm{V}_{\mathrm{SS}}$, to prevent forward biasing the on-chip parasitic silicon diodes that exist between the P-diffused resistors (pin 15) and the N -type body (pin 10, $\mathrm{V}_{\mathrm{SS}}$ ). Use of a standard logic power supply for $V_{S S}$ can cause problems, both due to initial voltage tolerance and changes over temperature. A solution is to power the $\mathrm{V}_{\mathrm{SS}}$ line ( 15 mA max drain) from the output of the op amp that is used to bias the top of the

R-network (pin 15). The analog input voltage and the voltage that is applied to the bottom of the R-network (pin 5) must be at least 7 V above the $-\mathrm{V}_{\mathrm{GG}}$ supply voltage to ensure adequate voltage drive to the analog switches.

Other reference voltages may be used (such as 10.24 V ). If a 5 V reference is used, the analog range will be 5 V and accuracy will be reduced by a factor of 2 . Thus, for maximum accuracy, it is desirable to operate with at least a 10 V reference. For TTL logic levels, this requires 5 V and -5 V for the R-network. CMOS can operate at the $10 \mathrm{~V}_{\mathrm{DC}} \mathrm{V}_{S S}$ level and a single $10 V_{D C}$ reference can be used. All digital voltage levels for both inputs and outputs will be from ground to VSS.

## ANALOG INPUT AND SOURCE RESISTANCE CONSIDERATIONS

The lead to the analog input (pin 12) should be kept as short as possible. Both noise and digital clock coupling to this input can cause conversion errors. To minimize any input errors, the following source resistance considerations should be noted:
For $R_{S} \leq 5 k \quad$ No analog input bypass capacitor required, although a $0.1 \mu \mathrm{~F}$ input bypass capacitor will prevent pickup due to unavoidable series lead inductance.
For $5 k<R_{S} \leq 20 k \quad$ A $0.1 \mu \mathrm{~F}$ capacitor from the input (pin 12) to ground should be used.

For $\mathrm{R}_{\mathrm{S}}>20 \mathrm{k} \quad$ Input buffering is necessary.
If the overall converter system requires lowpass filtering of the analog input signal, use a $20 \mathrm{k} \Omega$ or less series resistor for a passive RC section or add an op amp RC active lowpass filter (with its inherent low output resistance) to ensure accurate conversions.

## CLOCK COUPLING

The clock lead should be kept away from the analog input line to reduce coupling.

## LOGIC INPUTS

The logical " 1 " input voltage swing for the Clock, Start Conversion and Output Enable should be ( $\mathrm{V}_{\mathrm{SS}}-1.0 \mathrm{~V}$ ).

## Application Hints (Continued)

CMOS will satisfy this requirement but a pull-up resistor should be used for TTL logic inputs.

## RE-START AND DATA VALID AFTER EOC

The EOC line (pin 9) will be in the low state for a maximum of 40 clock periods to indicate "busy". A START pulse that occurs while the A/D is BUSY will reset the SAR and start a new conversion with the EOC signal remaining in the low state until the end of this new conversion. When the conversion is complete, the EOC line will go to the high voltage state. An additional 4 clock periods must be allowed to elapse after EOC goes high, before a new conversion cycle is requested. Start Conversion pulses that occur during this last 4 clock period interval may be ignored (see Figure 1 and 2 for high speed operation). This is a problem only for high conversion rates and keeping the number of conversions per second less than $\mathrm{f}_{\mathrm{CLOCK}} / 44$ automatically guarantees proper operation. For example, for an 800 kHz clock, approximately 18,000 conversions per second are allowed. The transfer of the new digital data to the output is initiated when EOC goes to the high voltage state.

## POWER SUPPLIES

Standard supplies are $\mathrm{V}_{\mathrm{SS}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V}$ and $V_{D D}=0 \mathrm{~V}$. Device accuracy is dependent on stability of the reference voltage and has slight sensitivity to $\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{GG}}$. $V_{D D}$ has no effect on accuracy. Noise spikes on the $V_{S S}$ and $V_{G G}$ supplies can cause improper conversion; therefore, filtering each supply with a $4.7 \mu \mathrm{~F}$ tantalum capacitor is recommended.

## CONTINUOUS CONVERSIONS AND LOGIC CONTROL

Simply tying the EOC output to the Start Conversion input will allow continuous conversions, but an oscillation on this line will exist during the first 4 clock periods after EOC goes high. Adding a D flip-flop between EOC ( D input) to Start Conversion (Q output) will prevent the oscillation and will allow a stop/continuous control via the "clear"' input.
To prevent missing a start pulse that may occur after EOC goes high and prior to the required 4 clock period time interval, the circuit of Figure 1 can be used. The RS latch can be set at any time and the 4 -stage shift register delays the application of the start pulse to the A/D by 4 clock periods. The RS latch is reset 1 clock period after the A/D EOC signal goes to the low voltage state. This circuit also provides a Start Conversion pulse to the A/D which is 1 clock period wide.
A second control logic application circuit is shown in Figure 2. This allows an asynchronous start pulse of arbitrary length less than $T_{C}$, to continuously convert for a fixed high level and provides a single clock period start pulse to the A/D. The binary counter is loaded with a count of 11 when the start pulse to the A/D appears. Counting is inhibited until the EOC signal from the A/D goes high. A carry pulse is then generated 4 clock periods after EOC goes high and is used to reset the input RS latch. This carry pulse can be used to indicate that the conversion is complete, the data has transferred to the output buffers and the system is ready for a new conversion cycle.

## Application Hints (Continued)

## ZERO AND FULL-SCALE ADJUSTMENT

Zero Adjustment: This is the offset voltage required at the bottom of the R-network (pin 5) to make the 11111111 to 11111110 transition when the input voltage is $1 / 2$ LSB (20 mV for a 10.24 V scale). In most cases, this can be accomplished by having a $1 \mathrm{k} \Omega$ pot on pin 5 . A resistor of $475 \Omega$ can be used as a non-adjustable best approximation from pin 5 to ground.

Full-Scale Adjustment: This is the offset voltage required at the top of the R-network (pin 15) to make the 00000001 to 00000000 transition when the input voltage is $11 / 2$ LSB from full-scale ( 60 mV less than full-scale for a 10.24 V scale). This voltage is guaranteed to be within $\pm 2$ LSB for the ADC0800 without adjustment. In most cases, adjustment can be accomplished by having a. $1 \mathrm{k} \Omega$ pot on pin 15.

## Typical Applications



TL/H/5670-11

Hi-Voltage CMOS Output Levels


Ratiometric Input Signal with Tracking Reference



A 1 and $\mathrm{A} 2=\mathrm{LM} 358 \mathrm{~N}$ dual op amp


Input Level Shifting


- Permits TTL compatible outputs with 0 V to 10 V input range ( 0 V to -10 V input range achieved by reversing polarity of zener diodes and returning the 6.8 k resistor to $\mathrm{V}^{-}$).

TL/H/5670-5

## Typical Applications (Continued)

## TESTING THE A/D CONVERTER

There are many degrees of complexity associated with testing an A/D converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LEDs to display the resulting digital output code as shown in Figure 3. Note that the LED drivers invert the digital output of the A/D converter to provide a binary display. A lab DVM can be used if a precision voltage source is not available. After adjusting the zero and full-scale, any number of points can be checked, as desired.
For ease of testing, a $10.24 \mathrm{~V}_{\mathrm{DC}}$ reference is recommended for the A/D converter. This provides an LSB of 40 mV (10.240/256). To adjust the zero of the A/D, an analog input voltage of $1 / 2$ LSB or 20 mV should be applied and the
zero adjust potentiometer should be set to provide a flicker on the LSB LED readout with all the other display LEDs OFF.
To adjust the full-scale adjust potentiometer, an analog input that is $11 / 2$ LSB less than the reference (10.240-0.060 or $10.180 \mathrm{~V}_{\mathrm{DC}}$ ) should be applied to the analog input and the full-scale adjusted for a flicker on the LSB LED, but this time with all the other LEDs ON.

A complete circuit for a simple A/D tester is shown in Figure 4. Note that the clock input voltage swing and the digital output voltage swings are from OV to 10.24 V . The MM74C901 provides a voltage translation to 5V operation and also the logic inversion so the readout LEDs are in binary.


TL/H/5670-15
FIGURE 3. Basic A/D Tester


TL/H/5670-7
FIGURE 4. Complete Basic Tester Circuit

## Typical Applications (Continued)

The digital output LED display can be decoded by dividing the 8 bits into the 4 most significant bits and 4 least significant bits. Table I shows the fractional binary equivalent of these two 8-bit groups. By adding the decoded voltages which are obtained from the column: "Input Voltage Value with a $10.240 \mathrm{~V}_{\text {REF" }}$ of both the MS and LS groups, the value of the digital display can be determined. For example, for an output LED display of "1011 0110" or "B6" (in hex) the voltage values from the table are $7.04+0.24$ or
$7.280 \mathrm{~V}_{\mathrm{DC}}$. These voltage values represent the center values of a perfect A/D converter. The input voltage has to change by $\pm 1 / 2$ LSB ( $\pm 20 \mathrm{mV}$ ), the "quantization uncertainty" of an A/D, to obtain an output digital code change. The effects of this quantization error have to be accounted for in the interpretation of the test results. A plot of this natural error source is shown in Figure 5 where, for clarity, both the analog input voltage and the error voltage are normalized to LSBs.

TABLE I. DECODING THE DIGITAL OUTPUT LEDs



TL/H/5670-8
FIGURE 5. Error Plot of a Perfect A/D Showing Effects of Quantization Error

## Typical Applications (Continued)

A low speed ramp generator can also be used to sweep the analog input voltage and the LED outputs will provide a binary counting sequence from zero to full-scale.
The techniques described so far are suitable for an engineering evaluation or a quick check on performance. For a higher speed test system, or to obtain plotted data, a digital-to-analog converter is needed for the test set-up. An accurate 10-bit DAC can serve as the precision voltage source for the A/D. Errors of the A/D under test can be provided as either analog voltages or differences in two digital words.
A basic A/D tester which uses a DAC and provides the error as an analog output voltage is shown in Figure 6. The 2 op amps can be eliminated if a lab DVM with a numerical subtraction feature is available to directly readout the difference voltage, " $\mathrm{A}-\mathrm{C}$ ".

For operation with a microprocessor or a computer-based test system, it is more convenient to present the errors digitally. This can be done with the circuit of Figure 7 where the output code transitions can be detected as the 10-bit DAC is incremented. This provides $1 / 4$ LSB steps for the 8 -bit A/D under test. If the results of this test are automatically plotted with the analog input on the $X$ axis and the error (in LSB's) as the $Y$ axis, a useful transfer function of the A/D under test results. For acceptance testing, the plot is not necessary and the testing speed can be increased by establishing internal limits on the allowed error for each code.


FIGURE 6. A/D Tester with Analog Error Output


TL/H/5670-17
FIGURE 7. Basic "Digital" A/D Tester

## Connection Diagram



## ADC0801/ADC0802/ADC0803/ADC0804/ADC0805 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters

## General Description

The ADC0801, ADC0802, ADC0803, ADC0804 and ADC0805 are CMOS 8 -bit successive approximation A/D converters that use a differential potentiometric laddersimilar to the 256R products. These converters are designed to allow operation with the NSC800 and INS8080A derivative control bus with TRI-STATE® output latches directly driving the data bus. These A/Ds appear like memory locations or I/O ports to the microprocessor and no interfacing logic is needed.
Differential analog voltage inputs allow increasing the com-mon-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

## Features

■ Compatible with $8080 \mu \mathrm{P}$ derivatives-no interfacing logic needed - access time - 135 ns

- Easy interface to all microprocessors, or operates "stand alone"
- Differential analog voltage inputs
- Logic inputs and outputs meet both MOS and TTL voltage level specifications
■ Works with 2.5 V (LM336) voltage reference
- On-chip clock generator
- 0 V to 5 V analog input voltage range with single 5 V supply
- No zero adjust required

■ $0.3^{\prime \prime}$ standard width 20 -pin DIP package

- 20-pin molded chip carrier or small outline package
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}, 2.5 \mathrm{~V}_{\mathrm{DC}}$, or analog span adjusted voltage reference


## Key Specifications

- Resolution

8 bits
$\square$ Total error $\pm 1 / 4 \mathrm{LSB}, \pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$

- Conversion time
$100 \mu \mathrm{~s}$


## Typical Applications



```
Absolute Maximum Ratings (Notes 1 \& 2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage (\(\mathrm{V}_{\mathrm{CC}}\)) (Note 3)
6.5 V
Voltage
```

Logic Control Inputs
-0.3 V to +18 V
At Other Input and Outputs $\quad-0.3 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Lead Temp. (Soldering, 10 seconds)
Dual-In-Line Package (plastic)
$260^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)
Surface Mount Package Vapor Phase ( 60 seconds) $215^{\circ} \mathrm{C}$ Infrared ( 15 seconds)

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
875 mW
ESD Susceptibility (Note 10)
800 V
Operating Ratings (Notes 182 )

Temperature Range	$T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$
ADC0801/02LJ, ADC0802LJ/883	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
ADC0801/02/03/04LCJ	$-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$
ADC0801/02/03/05LCN	$-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$
ADC0804LCN	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$
ADC0802/03/04LCV	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$
ADC0802/03/04LCWM	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$
Range of $V_{C C}$	$4.5 \mathrm{~V}_{D C}$ to $6.3 \mathrm{~V}_{D C}$

## Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}, T_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
ADC0801: Total Adjusted Error (Note 8)	With Full-Scale Adj. (See Section 2.5.2)			$\pm 1 / 4$	LSB
ADC0802: Total Unadjusted Error (Note 8)	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}_{\text {DC }}$			$\pm 1 / 2$	LSB
ADC0803: Total Adjusted Error (Note 8)	With Full-Scale Adj. (See Section 2.5.2)			$\pm 1 / 2$	LSB
ADC0804: Total Unadjusted Error (Note 8)	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}_{\text {DC }}$			$\pm 1$	LSB
ADC0805: Total Unadjusted Error (Note 8)	$\mathrm{V}_{\text {REF }} / 2-\mathrm{No}$ Connection			$\pm 1$	LSB
$\mathrm{V}_{\text {REF }} / 2$ Input Resistance (Pin 9)	$\begin{aligned} & \text { ADC0801/02/03/05 } \\ & \text { ADC0804 (Note 9) } \\ & \hline \end{aligned}$	$\begin{gathered} 2.5 \\ 0.75 \\ \hline \end{gathered}$	$\begin{aligned} & 8.0 \\ & 1.1 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Analog Input Voltage Range	(Note 4) V(+) or $\mathrm{V}(-)$	Gnd-0.05		$\mathrm{V}_{\mathrm{CC}}+0.05$	$\mathrm{V}_{\mathrm{DC}}$
DC Common-Mode Error	Over Analog Input Voltage Range		$\pm 1 / 16$	$\pm 1 / 8$	LSB
Power Supply Sensitivity	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}} \pm 10 \% \text { Over } \\ & \text { Allowed } \mathrm{V}_{\mathrm{IN}}(+) \text { and } \mathrm{V}_{\mathrm{IN}}(-) \\ & \text { Voltage Range (Note 4) } \\ & \hline \end{aligned}$		$\pm 1 / 16$	$\pm 1 / 8$	LSB

## AC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{D C}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{T}_{\mathrm{C}}$	Conversion Time	$\mathrm{f}_{\text {CLK }}=640 \mathrm{kHz}$ (Note 6)	103		114	$\mu \mathrm{s}$
$\mathrm{T}_{\mathrm{C}}$	Conversion Time	(Note 5, 6)	66		73	1/fCLK
fCLK	Clock Frequency Clock Duty Cycle	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, (Note 5) (Note 5)	$\begin{gathered} 100 \\ 40 \\ \hline \end{gathered}$	640	$\begin{gathered} 1460 \\ 60 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{kHz} \\ & \% \end{aligned}$
CR	Conversion Rate in Free-Running Mode	$\overline{\text { INTR }}$ tied to $\overline{\mathrm{WR}}$ with $\overline{\mathrm{CS}}=0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$	8770		9708	conv/s
$t_{W}(\overline{W R}) L$	Width of WR Input (Start Pulse Width)	$\overline{\mathrm{CS}}=0 \mathrm{~V}_{\mathrm{DC}}$ ( Note 7)	100			ns
$t_{\text {ACC }}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Data Valid).	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		135	200	ns
$\mathrm{t}_{1}, \mathrm{t}_{\mathrm{OH}}$	TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to Hi-Z State)	$C_{L}=10 \mathrm{pF}, R_{L}=10 \mathrm{k}$   (See TRI-STATE Test Circuits)		125	200	ns
$t_{W}, t_{\text {R }}$	Delay from Falling Edge of $\overline{W R}$ or $\overline{R D}$ to Reset of $\overline{\text { INTR }}$			300	450	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance of Logic Control Inputs			5	7.5	pF
Cout	TRI-STATE Output Capacitance (Data Buffers)		,	5	7.5	pF

CONTROL INPUTS [Note: CLK IN (Pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately]

$V_{I N}(1)$	Logical "1" Input Voltage   (Except Pin 4 CLK IN)	$V_{C C}=5.25 V_{D C}$	2.0		15	$V_{D C}$

## AC Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{D C}$ and $T_{M I N} \leq T_{A} \leq T_{M A X}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
CONTROL INPUTS [Note: CLK IN (Pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately]						
$\mathrm{V}_{\text {IN }}(0)$	Logical "0" Input Voltage (Except Pin 4 CLK IN)	$\mathrm{V}_{C C}=4.75 \mathrm{~V}_{\mathrm{DC}}$			0.8	$V_{D C}$
$\mathrm{IIN}^{(1)}$	Logical "1" Input Current (All Inputs)	$\mathrm{V}_{I N}=5 \mathrm{~V}_{\mathrm{DC}}$		0.005	1	$\mu A_{D C}$
$\mathrm{I}_{\mathrm{N}}(0)$	Logical "0"' Input Current (All Inputs)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}_{\mathrm{DC}}$	-1	-0.005		$\mu A_{D C}$
CLOCK IN AND CLOCK R						
$\mathrm{V}_{\mathrm{T}}+$	CLK IN (Pin 4) Positive Going Threshold Voltage		2.7	3.1	3.5	$V_{D C}$
$\mathrm{V}_{\mathrm{T}}-$	CLK IN (Pin 4) Negative Going Threshold Voltage		1.5	1.8	2.1	$\mathrm{V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathrm{H}}$	CLK IN (Pin 4) Hysteresis $\left(V_{T}+\right)-\left(V_{T}-\right)$		0.6	1.3	2.0	$V_{D C}$
$\mathrm{V}_{\text {OUT }}(0)$	Logical "0" CLK R Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \mathrm{DC} \end{aligned}$			0.4	$\mathrm{V}_{\mathrm{DC}}$
$V_{\text {OUT }}(1)$	Logical "1" CLK R Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	2.4			$\mathrm{V}_{\mathrm{DC}}$

DATA OUTPUTS AND INTR

V OUT (0)	Logical " 0 " Output Voltage Data Outputs INTR Output	$\begin{aligned} & \text { IOUT }=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \mathrm{DC} \\ & \mathrm{I}_{\mathrm{OUT}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$V_{D C}$   $V_{D C}$
$\mathrm{V}_{\text {OUT }}(1)$	Logical "1" Output Voltage	$\mathrm{l}_{\mathrm{O}}=-360 \mu \mathrm{~A}, \mathrm{~V}_{C C}=4.75 \mathrm{~V}_{\mathrm{DC}}$	2.4			$V_{D C}$
$\mathrm{V}_{\text {OUT }}(1)$	Logical "1" Output Voltage	$\mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \mathrm{VC}$	4.5			$V_{D C}$
Iout	TRI-STATE Disabled Output Leakage (All Data Buffers)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	-3		3	$\mu A_{D C}$ $\mu A_{D C}$
ISOURCE		$\mathrm{V}_{\text {OUT }}$ Short to Gnd, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4.5	6		$m A_{D C}$
ISINK		$\mathrm{V}_{\text {OUT }}$ Short to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	9.0	16		$m A_{D C}$

## POWER SUPPLY

| ICC | Supply Current (Includes |
| :--- | :--- | Ladder Current)

ADC0801/02/03/04LCJ/05 ADC0804LCN/LCV/LCWM

$$
\begin{aligned}
& \text { fCLK }=640 \mathrm{kHz}, \\
& V_{\text {REF }} / 2=\mathrm{NC}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \text { and } \overline{\mathrm{CS}}=5 \mathrm{~V}
\end{aligned}
$$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to Gnd, unless otherwise specified. The separate A Gnd point should always be wired to the D Gnd.
Note 3: A zener diode exists, internally, from $V_{C C}$ to $G$ nd and has a typical breakdown voltage of $7 \mathrm{~V}_{\mathrm{DC}}$.
Note 4: For $V_{I N}(-) \geq V_{I N}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see block diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the $\mathrm{V}_{\mathrm{CC}}$ supply. Be careful, during testing at low $\mathrm{V}_{\mathrm{CC}}$ levels ( 4.5 V ), as high level analog inputs ( 5 V ) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathbb{I}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Accuracy is guaranteed at $\mathrm{fCLK}=640 \mathrm{kHz}$. At higher clock frequencies accuracy can degrade. For lower clock frequencies, the duty cycle limits can be extended so long as the minimum clock high time interval or minimum clock low time interval is no less than 275 ns .
Note 6: With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process. The start request is internally latched, see Figure 2 and section 2.0.
Note 7: The CS input is assumed to bracket the WR strobe input and therefore timing is dependent on the $\overline{W R}$ pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the WR pulse (see timing diagrams).
Note 8: None of these A/Ds requires a zero adjust (see section 2.5.1). To obtain zero code at other analog input voltages see section 2.5 and Figure 5.
Note 9: The $\mathrm{V}_{\text {REF }} / 2$ pin is the center point of a two-resistor divider connected from $\mathrm{V}_{\mathrm{CC}}$ to ground. In all versions of the ADC0801, ADC0802, ADC0803, and ADC0805, and in the ADC0804LCJ, each resistor is typically 16 k . In all versions of the ADC0804 except the ADC0804LCJ, each resistor is typically $2.2 \mathrm{k} \Omega$. Note 10: Human body model, 100 pF diecharged through a $1.6 \mathrm{k} \Omega$ resistor.

Typical Performance Characteristics



CLOCK CAPACITOR (pF)


CLK IN Schmitt Trip Levels vs. Supply Voltage


Effect of Unadjusted Offset Error vs. VREF/2 Voltage



## TRI-STATE Test Circuits and Waveforms



Timing Diagrams (All timing is measured from the $50 \%$ voltage points)


Output Enable and Reset INTR


TL/H/5671-4

Typical Applications (Continued)


Absolute with a 2.500V Reference

*For low power, see also LM385-2.5

Zero-Shift and Span Adjust: $\mathbf{2 V} \leq \mathbf{V}_{\mathbf{I N}} \leq \mathbf{5 V}$


Ratiometric with Full-Scale Adjust


Absolute with a 5V Reference


Span Adjust: $\mathbf{0 V} \leq \mathbf{V}_{\mathbf{I N}} \leq \mathbf{3 V}$


TL/H/5671-5

## Typical Applications（Continued）

Directly Converting a Low－Level Signal


A $\mu \mathrm{P}$ Interfaced Comparator


For：$V_{I N}(+)>V_{I N}(-)$
Output $=$ FF $_{\text {HEX }}$
For： $\mathrm{V}_{\mathrm{IN}}(+)<\mathrm{V}_{\mathbb{I N}}(-)$
Output $=00_{\mathrm{HEX}}$


Digitizing a Current Flow


Typical Applications (Conitiued)

$100 \mathrm{kHz} \leq \mathrm{f}_{\mathrm{CLK}} \leq 1460 \mathrm{kHz}$

*After power-up, a momentary grounding of the WR input is needed to guarantee operation.


Operating with "Automotive" Ratiometric Transducers


Ratiometric with $\mathbf{V}_{\text {REF }} / 2$ Forced


Typical Applications (Continued)
$\mu$ P Compatible Differential-Input Comparator with Pre-Set Vos (with or without Hysteresis)

*See Figure 5 to select $R$ value $D B 7=" 1$ " for $V_{\mathbb{I N}}(+)>V_{\mathbb{I N}}(-)+\left(\mathrm{V}_{\text {REF }} / 2\right)$
Omit circuitry within the dotted area if
hysteresis is not needed

*Beckman Instruments \#694-3-R10K resistor array
Low-Cost, $\mu$ P Interfaced, Temperature-to-Digital Converter
 A/D can be calibrated with a pre-set input voltage.

Typical Applications (Continued)


## Typical Applications (Continued)

3-Decade Logarithmic A/D Converter



Multiplexing Differential Inputs


Output Buffers with A/D Data Enabled


[^2] prior to assertion of INTR

Increasing Bus Drive and/or Reducing Time on Bus

*Allows output data to set-up at falling edge of $\overline{C S}$

Typical Applications (Continued)

Sampling an AC Input Signal


Note 1: Oversample whenever possible [keep fs $>2 f(-60)$ ] to eliminate input frequency folding (aliasing) and to allow for the skirt response of the filter.
Note 2: Consider the amplitude errors which are introduced within the passband of the filter.

70\% Power Savings by Clock Gating


Power Savings by A/D and $\mathbf{V}_{\text {REF }}$ Shutdown


TL/H/5671-11

## *Use ADC0801, 02, 03 or 05 for lowest power consumption.

Note: Logic inputs can be driven to $V_{C C}$ with A/D supply at zero volts.
Buffer prevents data bus from overdriving output of A/D when in shutdown mode.

## Functional Description

### 1.0 UNDERSTANDING A/D ERROR SPECS

A perfect A/D transfer characteristic (staircase waveform) is shown in Figure 1a. The horizontal scale is analog input voltage and the particular points labeled are in steps of 1 LSB ( 19.53 mV with 2.5 V tied to the $\mathrm{V}_{\text {REF }} / 2 \mathrm{pin}$ ). The digital output codes that correspond to these inputs are shown as $D-1, D$, and $D+1$. For the perfect $A / D$, not only will centervalue ( $A-1, A, A+1, \ldots$ ) analog inputs produce the correct output ditigal codes, but also each riser (the transitions between adjacent output codes) will be located $\pm 1 / 2$ LSB away from each center-value. As shown, the risers are ideal and have no width. Correct digital output codes will be provided for a range of analog input voltages that extend $\pm 1 / 2$ LSB from the ideal center-values. Each tread (the range of analog input voltage that provides the same digital output code) is therefore 1 LSB wide.
Figure $1 b$ shows a worst case error plot for the ADC0801. All center-valued inputs are guaranteed to produce the correct output codes and the adjacent risers are guaranteed to be no closer to tha center-value points than $\pm 1 / 4 \mathrm{LSB}$. In

Transfer Function

other words, if we apply an analog input equal to the centervalue $\pm 1 / 4 \mathrm{LSB}$, we guarantee that the $A / D$ will produce the correct digital code. The maximum range of the position of the code transition is indicated by the horizontal arrow and it is guaranteed to be no more than $1 / 2$ LSB.
The error curve of Figure $1 c$ shows a worst case error plot for the ADC0802. Here we guarantee that if we apply an analog input equal to the LSB analog voltage center-value the A/D will produce the correct digital code.
Next to each transfer function is shown the corresponding error plot. Many people may be more familiar with error plots than transfer functions. The analog input voltage to the A/D is provided by either a linear ramp or by the discrete output steps of a high resolution DAC. Notice that the error is continuously displayed and includes the quantization uncertainty of the A/D. For example the error at point 1 of Figure 1a is $+1 / 2$ LSB because the digital code appeared $1 / 2$ LSB in advance of the center-value of the tread. The error plots always have a constant negative slope and the abrupt upside steps are always 1 LSB in magnitude.

a) Accuracy $= \pm 0$ LSB: A Perfect A/D


b) Accuracy $= \pm 1 / 4$ LSB


c) Accuracy $= \pm 1 / 2$ LSB

## Functional Description (Continued)

### 2.0 FUNCTIONAL DESCRIPTION

The ADC0801 series contains a circuit equivalent of the 256R network. Analog switches are sequenced by successive approximation logic to match the analog difference input voltage $\left[\mathrm{V}_{\mathbb{N}}(+)-\mathrm{V}_{\mathbb{I}}(-)\right]$ to a corresponding tap on the R network. The most significant bit is tested first and after 8 comparisons ( 64 clock cycles) a digital 8 -bit binary code (1111 $1111=$ full-scale) is transferred to an output latch and then an interrupt is asserted (INTR makes a high-to-low transition). A conversion in process can be interrupted by issuing a second start command. The device may be operated in the free-running mode by connecting INTR to the $\overline{W R}$ input with $\overline{\mathrm{CS}}=0$. To ensure start-up under all possible conditions, an external $\overline{\mathrm{WR}}$ pulse is required during the first power-up cycle.
On the high-to-low transition of the $\overline{W R}$ input the internal SAR latches and the shift register stages are reset. As long as the $\overline{\mathrm{CS}}$ input and $\overline{\mathrm{WR}}$ input remain low, the A/D will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-tohigh transition.

A functional diagram of the A/D converter is shown in Figure 2. All of the package pinouts are shown and the major logic control paths are drawn in heavier weight lines.
The converter is started by having $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ simultaneously low. This sets the start flip-flop (F/F) and the resulting " 1 " level resets the 8 -bit shift register, resets the Interrupt (INTR) F/F and inputs a " 1 " to the D flop, F/F1, which is at the input end of the 8 -bit shift register. Internal clock signals then transfer this "1" to the Q output of F/F1. The AND gate, G1, combines this " 1 " output with a clock signal to provide a reset signal to the start F/F. If the set signal is no longer present (either $\overline{W R}$ or $\overline{C S}$ is a " 1 ") the start F/F is reset and the 8 -bit shift register then can have the " 1 " clocked in, which starts the conversion process. If the set signal were to still be present, this reset pulse would have no effect (both outputs of the start F/F would momentarily be at a " 1 " level) and the 8 -bit shift register would continue to be held in the reset mode. This logic therefore allows for wide $\overline{C S}$ and $\overline{W R}$ signals and the converter will start after at least one of these signals returns high and the internal clocks again provide a reset signal for the start $F / F$.


TL/H/5671-13
Note 1: CS shown twice for clarity.
Note 2: SAR = Successive Approximation Register.
FIGURE 2. Block Dlagram

## Functional Description (Continued)

After the " 1 " is clocked through the 8 -bit shift register (which completes the SAR search) it appears as the input to the D-type latch, LATCH 1. As soon as this " 1 " is output from the shift register, the AND gate, G2, causes the new digital word to transfer to the TRI-STATE output latches. When LATCH 1 is subsequently enabled, the $Q$ output makes a high-to-low transition which causes the INTR F/F to set. An inverting buffer then supplies the INTR input signal.
Note that this $\overline{\text { SET }}$ control of the INTR F/F remains low for 8 of the external clock periods (as the internal clocks run at $1 / 8$ of the frequency of the external clock). If the data output is continuously enabled ( $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ both held low), the INTR output will still signal the end of conversion (by a high-to-low transition), because the SET input can control the Q output of the INTR F/F even though the RESET input is constantly at a " 1 " level in this operating mode. This INTR output will therefore stay low for the duration of the SET signal, which is 8 periods of the external clock frequency (assuming the A/D is not started during this interval).
When operating in the free-running or continuous conversion mode (IINTR pin tied to $\overline{W R}$ and $\overline{\mathrm{CS}}$ wired low-see also section 2.8), the START F/F is SET by the high-to-low transition of the $\overline{N T T R}$ signal. This resets the SHIFT REGISTER which causes the input to the D-type latch, LATCH 1, to go low. As the latch enable input is still present, the $\bar{Q}$ output will go high, which then allows the INTR F/F to be RESET. This reduces the width of the resulting INTR output pulse to only a few propagation delays (approximately 300 ns).
When data is to be read, the combination of both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ being low will cause the INTR F/F to be reset and the TRI-STATE output latches will be enabled to provide the 8 bit digital outputs.

### 2.1 Digital Control Inputs

The digital control inputs ( $\overline{C S}, \overline{R D}$, and $\overline{W R}$ ) meet standard T2L logic voltage levels. These signals have been renamed when compared to the standard A/D Start and Output Enable labels. In addition, these inputs are active low to allow an easy interface to microprocessor control busses. For non-microprocessor based applications, the $\overline{\mathrm{CS}}$ input (pin 1) can be grounded and the standard A/D Start function is obtained by an active low pulse applied at the $\overline{W R}$ input (pin 3) and the Output Enable function is caused by an active low pulse at the $\overline{\mathrm{RD}}$ input (pin 2).

### 2.2 Analog Differential Voltage Inputs and Common-Mode Rejection

This A/D has additional applications flexibility due to the analog differential voltage input. The $\mathrm{V}_{\mathrm{IN}}(-)$ input (pin 7) can be used to automatically subtract a fixed voltage value from the input reading (tare correction). This is also useful in $4 \mathrm{~mA}-20 \mathrm{~mA}$ current loop conversion. In addition, commonmode noise can be reduced by use of the differential input. The time interval between sampling $\mathrm{V}_{\mathrm{IN}}(+)$ and $\mathrm{V}_{\mathrm{IN}}(-)$ is 4$1 / 2$ clock periods. The maximum error voltage due to this
slight time difference between the input voltage samples is given by:

$$
\Delta V_{e}(M A X)=\left(V_{P}\right)\left(2 \pi f_{c m}\right)\left(\frac{4.5}{f_{C L K}}\right)
$$

where:

$$
\Delta V_{e} \text { is the error voltage due to sampling delay }
$$

$V_{P}$ is the peak value of the common-mode voltage
$f_{c m}$ is the common-mode frequency
As an example, to keep this error to $1 / 4$ LSB ( $\sim 5 \mathrm{mV}$ ) when operating with a 60 Hz common-mode frequency, $\mathrm{f}_{\mathrm{cm}}$, and using a 640 kHz A/D clock, $\mathrm{f}_{\mathrm{CLK}}$, would allow a peak value of the common-mode voltage, $\mathrm{V}_{\mathrm{p}}$, which is given by:

$$
V_{P}=\frac{\left[\Delta V_{e(M A X)}\left(f_{C L K}\right)\right]}{\left(2 \pi f_{\mathrm{cm}}\right)(4.5)}
$$

or

$$
V_{P}=\frac{\left(5 \times 10^{-3}\right)\left(640 \times 10^{3}\right)}{(6.28)(60)(4.5)}
$$

which gives

$$
V_{P} \cong 1.9 \mathrm{~V}
$$

The allowed range of analog input voltages usually places more severe restrictions on input common-mode noise levels.
An analog input voltage with a reduced span and a relatively large zero offset can be handled easily by making use of the differential input (see section 2.4 Reference Voltage).

### 2.3 Analog Inputs

### 2.3.1 Input Current

## Normal Mode

Due to the internal switching action, displacement currents will flow at the analog inputs. This is due to on-chip stray capacitance to ground as shown in Figure 3.


FIGURE 3. Analog Input Impedance

## Functional Description (Continued)

The voltage on this capacitance is switched and will result in currents entering the $\mathrm{V}_{\mathbb{I}}(+)$ input pin and leaving the $\mathrm{V}_{\mathrm{IN}}(-)$ input which will depend on the analog differential input voltage levels. These current transients occur at the leading edge of the internal clocks. They rapidly decay and do not cause errors as the on-chip comparator is strobed at the end of the clock period.

## Fault Mode

If the voltage source applied to the $\mathrm{V}_{\mathrm{IN}}(+)$ or $\mathrm{V}_{\mathrm{IN}}(-)$ pin exceeds the allowed operating range of $V_{C C}+50 \mathrm{mV}$, large input currents can flow through a parasitic diode to the $V_{C C}$ pin. If these currents can exceed the 1 mA max allowed spec, an external diode ( 1 N 914 ) should be added to bypass this current to the $\mathrm{V}_{\mathrm{CC}}$ pin (with the current bypassed with this diode, the voltage at the $\mathrm{V}_{\mathrm{IN}}(+)$ pin can exceed the $\mathrm{V}_{\mathrm{CC}}$ voltage by the forward voltage of this diode).

### 2.3.2 Input Bypass Capacitors

Bypass capacitors at the inputs will average these charges and cause a DC current to flow through the output resistances of the analog signal sources. This charge pumping action is worse for continuous conversions with the $\mathrm{V}_{\mathrm{IN}}(+)$ input voltage at full-scale. For continuous conversions with a 640 kHz clock frequency with the $\mathrm{V}_{\mathrm{IN}}(+)$ input at 5 V , this DC current is at a maximum of approximately $5 \mu \mathrm{~A}$. Therefore, bypass capacitors should not be used at the analog inputs or the $V_{\text {REF }} / 2$ pin for high resistance sources ( $>1$ $k \Omega$ ). If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capacitor size, the detrimental effects of the voltage drop across this input resistance, which is due to the average value of the input current, can be eliminated with a full-scale adjustment while the given source resistor and input bypass capacitor are both in place. This is possible because the average value of the input current is a precise linear function of the differential input voltage.

### 2.3.3 Input Source Resistance

Large values of source resistance where an input bypass capacitor is not used, will not cause errors as the input currents settle out prior to the comparison time. If a low pass filter is required in the system, use a low valued series resistor ( $\leq 1 \mathrm{k} \Omega$ ) for a passive RC section or add an op amp RC active low pass filter. For low source resistance applications, ( $\leq 1 \mathrm{k} \Omega$ ), a $0.1 \mu \mathrm{~F}$ bypass capacitor at the inputs will prevent noise pickup due to series lead inductance of a long wire. A $100 \Omega$ series resistor can be used to isolate this ca-pacitor-both the $R$ and $C$ are placed outside the feedback loop-from the output of an op amp, if used.

### 2.3.4 Noise

The leads to the analog inputs (pin 6 and 7) should be kept as short as possible to minimize input noise coupling. Both noise and undesired digital clock coupling to these inputs can cause system errors. The source resistance for these inputs should, in general, be kept below $5 \mathrm{k} \Omega$. Larger values of source resistance can cause undesired system noise pickup. Input bypass capacitors, placed from the analog inputs to ground, will eliminate system noise pickup but can create analog scale errors as these capacitors will average the transient input switching currents of the $A / D$ (see section 2.3.1.). This scale error depends on both a large source
resistance and the use of an input bypass capacitor. This error can be eliminated by doing a full-scale adjustment of the $A / D$ (adjust $V_{\text {REF }} / 2$ for a proper full-scale reading-see section 2.5.2 on Full-Scale Adjustment) with the source resistance and input bypass capacitor in place.

### 2.4 Reference Voltage

### 2.4.1 Span Adjust

For maximum applications flexibility, these $A / D s$ have been designed to accommodate a $5 \mathrm{~V}_{\mathrm{DC}}, 2.5 \mathrm{~V}_{\mathrm{DC}}$ or an adjusted voltage reference. This has been achieved in the design of the IC as shown in Figure 4.


TL/H/5671-15

## FIGURE 4. The VREFERENCE Design on the IC

Notice that the reference voltage for the IC is either $1 / 2$ of the voltage applied to the $\mathrm{V}_{\mathrm{CC}}$ supply pin, or is equal to the voltage that is externally forced at the $\mathrm{V}_{\mathrm{REF}} / 2 \mathrm{pin}$. This allows for a ratiometric voltage reference using the $V_{C C}$ supply, a $5 V_{D C}$ reference voltage can be used for the $V_{C C}$ supply or a voltage less than $2.5 \mathrm{~V}_{D C}$ can be applied to the $\mathrm{V}_{\text {REF }} / 2$ input for increased application flexibility. The internal gain to the $\mathrm{V}_{\mathrm{REF}} / 2$ input is 2 , making the full-scale differential input voltage twice the voltage at pin 9.
An example of the use of an adjusted reference voltage is to accommodate a reduced span-or dynamic voltage range of the analog input voltage. If the analog input voltage were to range from $0.5 \mathrm{~V}_{\mathrm{DC}}$ to $3.5 \mathrm{~V}_{\mathrm{DC}}$, instead of 0 V to $5 \mathrm{~V}_{\mathrm{DC}}$, the span would be 3 V as shown in Figure 5. With $0.5 \mathrm{~V}_{\mathrm{DC}}$ applied to the $\mathrm{V}_{\mathbb{I N}}(-)$ pin to absorb the offset, the reference voltage can be made equal to $1 / 2$ of the 3 V span or $1.5 \mathrm{~V}_{\mathrm{DC}}$. The A/D now will encode the $\mathrm{V}_{\text {IN }}(+)$ signal from 0.5 V to 3.5 V with the 0.5 V input corresponding to zero and the $3.5 \mathrm{~V}_{\mathrm{DC}}$ input corresponding to full-scale. The full 8 bits of resolution are therefore applied over this reduced analog input voltage range.

## Functional Description (Continued)


a) Analog Input Signal Example
b) Accommodating an Analog Input from 0.5 V (Digital Out $==00_{\text {HEX }}$ ) to 3.5 V
(Digital Out $=$ FFFHEX $^{\text {) }}$

FIGURE 5. Adapting the A/D Analog Input Voltages to Match an Arbitrary Input Signal Range

### 2.4.2 Reference Accuracy Requirements

The converter can be operated in a ratiometric mode or an absolute mode. In ratiometric converter applications, the magnitude of the reference voltage is a factor in both the output of the source transducer and the output of the A/D converter and therefore cancels out in the final digital output code. The ADC0805 is specified particularly for use in ratiometric applications with no adjustments required. In absolute conversion applications, both the initial value and the temperature stability of the reference voltage are important factors in the accuracy of the A/D converter. For $V_{\text {REF }} / 2$ voltages of $2.4 \mathrm{~V}_{\mathrm{DC}}$ nominal value, initial errors of $\pm 10$ $m V_{D C}$ will cause conversion errors of $\pm 1$ LSB due to the gain of 2 of the $\mathrm{V}_{\text {REF }} / 2$ input. In reduced span applications, the initial value and the stability of the $\mathrm{V}_{\text {REF }} / 2$ input voltage become even more important. For example, if the span is reduced to 2.5 V , the analog input LSB voltage value is correspondingly reduced from 20 mV ( 5 V span) to 10 mV and 1 LSB at the $\mathrm{V}_{\mathrm{REF}} / 2$ input becomes 5 mV . As can be seen, this reduces the allowed initial tolerance of the reference voltage and requires correspondingly less absolute change with temperature variations. Note that spans smaller than 2.5 V place even tighter requirements on the initial accuracy and stability of the reference source.
In general, the magnitude of the reference voltage will require an initial adjustment. Errors due to an improper value of reference voltage appear as full-scale errors in the A/D transfer function. IC voltage regulators may be used for references if the ambient temperature changes are not excessive. The LM336B 2.5V IC reference diode (from National Semiconductor) has a temperature stability of 1.8 mV typ ( 6 mV max) over $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$. Other temperature range parts are also available.

### 2.5 Errors and Reference Voltage Adjustments

### 2.5.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathbb{I N}(M I N)}$, is not ground, a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing the $A / D V_{I N}(-)$ input at this $V_{I N(M I N)}$ value (see Applications section). This utilizes the differential mode operation of the A/D.
The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\mathrm{IN}}(-)$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{I N}(+)$ input. Zero error is the difference between the actual DC input voltage that is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value ( $1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}$ for $\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}$ ).

### 2.5.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage that is $11 / 2$ LSB less than the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }} / 2$ input (pin 9 or the $\mathrm{V}_{\text {CC }}$ supply if pin 9 is not used) for a digital output code that is just changing from 11111110 to 11111111.

## Functional Description (Continued)

### 2.5.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal that does not go to ground) this new zero reference should be properly adjusted first. A $\mathrm{V}_{\mathrm{IN}}(+)$ voltage that equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, $1 \mathrm{LSB}=$ ana$\log$ span/256) is applied to pin 6 and the zero reference voltage at pin 7 should then be adjusted to just obtain the $00_{\text {HEX }}$ to $01_{\text {HEX }}$ code transition.
The full-scale adjustment should then be made (with the proper $\mathrm{V}_{\mathrm{IN}}(-)$ voltage applied) by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input which is given by:

$$
\mathrm{V}_{\mathrm{IN}}(+) \text { fs adj }=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]
$$

where:
$V_{M A X}=$ The high end of the analog input range and
$\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)
The $\mathrm{V}_{\text {REF }} / 2$ (or $\mathrm{V}_{\mathrm{CC}}$ ) voltage is then adjusted to provide a code change from $\mathrm{FE}_{\text {HEX }}$ to $\mathrm{FF}_{\text {HEX }}$. This completes the adjustment procedure.

### 2.6 Clocking Option

The clock for the A/D can be derived from the CPU clock or an external RC can be added to provide self-clocking. The CLK IN (pin 4) makes use of a Schmitt trigger as shown in Figure 6.


$$
\begin{aligned}
& f_{C L K} \cong \frac{1}{1.1 R C} \\
& R \cong 10 \mathrm{k} \Omega
\end{aligned}
$$

## FIGURE 6. Self-Clocking the A/D

Heavy capacitive or DC loading of the clock R pin should be avoided as this will disturb normal converter operation. Loads less than 50 pF , such as driving up to $7 \mathrm{~A} / \mathrm{D}$ converter clock inputs from a single clock R pin of 1 converter, are allowed. For larger clock line loading, a CMOS or low power TTL buffer or PNP input logic should be used to minimize the loading on the clock R pin (do not use a standard TTL buffer).

### 2.7 Restart During a Conversion

If the A/D is restarted ( $\overline{C S}$ and $\overline{W R}$ go low and return high) during a conversion, the converter is reset and a new conversion is started. The output data latch is not updated if the
conversion in process is not allowed to be completed, therefore the data of the previous conversion remains in this latch. The INTR output simply remains at the " 1 " level.

### 2.8 Continuous Conversions

For operation in the free-running mode an initializing pulse should be used, following power-up, to ensure circuit operation. In this application, the $\overline{\mathrm{CS}}$ input is grounded and the $\overline{W R}$ input is tied to the $\overline{\mathrm{NTR}}$ output. This $\overline{\mathrm{WR}}$ and $\overline{\mathrm{NTR}}$ node should be momentarily forced to logic low following a power-up cycle to guarantee operation.

### 2.9 Driving the Data Bus

This MOS A/D, like MOS microprocessors and memories, will require a bus driver when the total capacitance of the data bus gets large. Other circuitry, which is tied to the data bus, will add to the total capacitive loading, even in TRISTATE (high impedance mode). Backplane bussing also greatly adds to the stray capacitance of the data bus.
There are some alternatives available to the designer to handle this problem. Basically, the capacitive loading of the data bus slows down the response time, even though DC specifications are still met. For systems operating with a relatively slow CPU clock frequency, more time is available in which to establish proper logic levels on the bus and therefore higher capacitive loads can be driven (see typical characteristics curves).
At higher CPU clock frequencies time can be extended for I/O reads (and/or writes) by inserting wait states (8080) or using clock extending circuits (6800).
Finally, if time is short and capacitive loading is high, external bus drivers must be used. These can be TRI-STATE buffers (low power Schottky such as the DM74LS240 series is recommended) or special higher drive current products which are designed as bus drivers. High current bipolar bus drivers with PNP inputs are recommended.

### 2.10 Power Supplies

Noise spikes on the $\mathrm{V}_{\mathrm{CC}}$ supply line can cause conversion errors as the comparator will respond to this noise. A low inductance tantalum filter capacitor should be used close to the converter $\mathrm{V}_{\mathrm{CC}}$ pin and values of $1 \mu \mathrm{~F}$ or greater are recommended. If an unregulated voltage is available in the system, a separate LM340LAZ-5.0, TO-92, 5 V voltage regulator for the converter (and other analog circuitry) will greatly reduce digital noise on the $V_{C C}$ supply.

### 2.11 Wiring and Hook-Up Precautions

Standard digital wire wrap sockets are not satisfactory for breadboarding this A/D converter. Sockets on PC boards can be used and all logic signal wires and leads should be grouped and kept as far away as possible from the analog signal leads. Exposed leads to the analog inputs can cause undesired digital noise and hum pickup, therefore shielded leads may be necessary in many applications.

## Functional Description (Continued)

A single point analog ground that is separate from the logic ground points should be used. The power supply bypass capacitor and the self-clocking capacitor (if used) should both be returned to digital ground. Any $\mathrm{V}_{\text {REF }} / 2$ bypass capacitors, analog input filter capacitors, or input signal shielding should be returned to the analog ground point. A test for proper grounding is to measure the zero error of the $A / D$ converter. Zero errors in excess of $1 / 4$ LSB can usually be traced to improper board layout and wiring (see section 2.5.1 for measuring the zero error).

### 3.0 TESTING THE A/D CONVERTER

There are many degrees of complexity associated with testing an A/D converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LEDs to display the resulting digital output code as shown in Figure 7.
For ease of testing, the $\mathrm{V}_{\text {REF }} / 2$ (pin 9) should be supplied with $2.560 \mathrm{~V}_{\mathrm{DC}}$ and a $\mathrm{V}_{\mathrm{CC}}$ supply voltage of $5.12 \mathrm{~V}_{\mathrm{DC}}$ should be used. This provides an LSB value of 20 mV .
If a full-scale adjustment is to be made, an analog input voltage of $5.090 \mathrm{~V}_{\mathrm{DC}}(5.120-11 / 2 \mathrm{LSB})$ should be applied to the $\mathrm{V}_{\mathrm{IN}}(+)$ pin with the $\mathrm{V}_{\mathrm{IN}}(-)$ pin grounded. The value of the $\mathrm{V}_{\text {REF }} / 2$ input voltage should then be adjusted until the digital output code is just changing from 11111110 to 1111 1111. This value of $V_{\text {REF }} / 2$ should then be used for all the tests.
The digital output LED display can be decoded by dividing the 8 bits into 2 hex characters, the 4 most significant (MS) and the 4 least significant (LS). Table I shows the fractional binary equivalent of these two 4-bit groups. By adding the voltages obtained from the "VMS" and "VLS" columns in Table I, the nominal value of the digital display (when


TL/H/5671-18
$\mathrm{V}_{\mathrm{REF}} / 2=2.560 \mathrm{~V}$ ) can be determined. For example, for an output LED display of 10110110 or B 6 (in hex), the voltage values from the table are $3.520+0.120$ or $3.640 \mathrm{~V}_{\mathrm{DC}}$. These voltage values represent the center-values of a perfect $A / D$ converter. The effects of quantization error have to be accounted for in the interpretation of the test results.
For a higher speed test system, or to obtain plotted data, a digital-to-analog converter is needed for the test set-up. An accurate 10 -bit DAC can serve as the precision voltage source for the A/D. Errors of the A/D under test can be expressed as either analog voltages or differences in 2 digital words.
A basic A/D tester that uses a DAC and provides the error as an analog output voltage is shown in Figure 8. The 2 op amps can be eliminated if a lab DVM with a numerical subtraction feature is available to read the difference voltage, " $\mathrm{A}-\mathrm{C}$ ", directly. The analog input voltage can be supplied by a low frequency ramp generator and an $\mathrm{X}-\mathrm{Y}$ plotter can be used to provide analog error ( $Y$ axis) versus analog input (X axis).
For operation with a microprocessor or a computer-based test system, it is more convenient to present the errors digitally. This can be done with the circuit of Figure 9, where the output code transitions can be detected as the 10-bit DAC is incremented. This provides $1 / 4$ LSB steps for the 8 -bit A/D under test. If the results of this test are automatically plotted with the analog input on the X axis and the error (in LSB's) as the Y axis, a useful transfer function of the A/D under test results. For acceptance testing, the plot is not necessary and the testing speed can be increased by establishing internal limits on the allowed error for each code.

### 4.0 MICROPROCESSOR INTERFACING

To dicuss the interface with 8080A and 6800 microprocessors, a common sample subroutine structure is used. The microprocessor starts the A/D, reads and stores the results of 16 successive conversions, then returns to the user's program. The 16 data bytes are stored in 16 successive memory locations. All Data and Addresses will be given in hexadecimal form. Software and hardware details are provided separately for each type of microprocessor.

### 4.1 Interfacing 8080 Microprocessor Derivatives (8048, 8085)

This converter has been designed to directly interface with derivatives of the 8080 microprocessor. The A/D can be mapped into memory space (using standard memory address decoding for $\overline{\mathrm{CS}}$ and the $\overline{\mathrm{MEMR}}$ and $\overline{\mathrm{MEMW}}$ strobes) or it can be controlled as an I/O device by using the //O R and $\overline{\mathrm{IOOW}}$ strobes and decoding the address bits AO $\rightarrow$ A7 (or address bits A8 $\rightarrow$ A15 as they will contain the same 8 -bit address information) to obtain the $\overline{\mathrm{CS}}$ input. Using the I/O space provides 256 additional addresses and may allow a simpler 8 -bit address decoder but the data can only be input to the accumulator. To make use of the additional memory reference instructions, the A/D should be mapped into memory space. An example of an A/D in I/O space is shown in Figure 10.

Functional Description (Continued)


FIGURE 8. A/D Tester with Analog Error Output


TL/H/5671-19
FIGURE 9. Basic "Digital" A/D Tester

TABLE I. DECODING THE DIGITAL OUTPUT LEDs

HEX	BINARY				FRACTIONAL BINARY VALUE FOR								OUTPUT VOLTAGE CENTER VALUES WITH$\mathrm{V}_{\mathrm{REF}} / 2=2.560 \mathrm{~V}_{\mathrm{DC}}$		
						MS	ROUP				RROUP		VMS GROUP*	VLS GROUP*	
F	1	1	1	1	3/4 ${ }^{7 / 8}$			15/16	3/64 $7 / 128$			$\begin{aligned} & 15 / 256 \\ & 13 / 256 \end{aligned}$	4.800	0.300	
E	1		1	0								4.480	0.280		
D	1	1	0	1				13/16				4.160	0.260		
C	1	1	0	0								3.840	0.240		
B	1	0	1	1	1/2	5/8		11/16	1/32		5/128		11/256	3.520	0.220
A	1	0	1	0							3.200			0.200	
9	1	0	0	1				9/16			9/256		2/880	0.180	
8	1	0	0	0							2/560	0.160			
7	0	1	1	1		$\begin{array}{rr} & 3 / 8 \\ 1 / 4\end{array}$		7/16	1/64 ${ }^{3 / 128}$			7/256	2.240	0.140	
6	0	1	1	0								1.920	0.120		
5	0	1	0	1				5/16				2/256	1.600	0.100	
4	0	1	0	0								1/280	0.080		
3	0	0	1	1	1/8			3/16	1/128				3/256	0.960	0.060
2	0	0	1	0								1/256	0.640	0.040	
1	0	0	0	1				1/16				0.320	0.020		
0		0	0	0								0	0		

[^3]Functional Description (Continued)


Note 1: *Pin numbers for the DP8228 system controller, others are INS8080A.
Note 2: Pin 23 of the INS8228 must be tied to +12 V through a $1 \mathrm{k} \Omega$ resistor to generate the RST 7 instruction when an interrupt is acknowledged as required by the accompanying sample program.

FIGURE 10. ADC0801-INS8080A CPU Interface
SAMPLE PROGRAM FOR FIGURE 10 ADC0801-INS8080A CPU INTERFACE

0038	$\text { C3 } 0003$	$\text { RST } 7:$	JMP IDDATA	
-	-	-		
0100	210002	START:	LXI H 0200H	; HL pair will point to   ; datastorage locations
0103	310004	RETURN:	LXI SP 0400H	; Initialize stack pointer (Note l)
0106	7 D		MOV A, I	; Test \# of bytes entered
0107	FE OF		CPI OFH	; If \# = 16. JMP to
0109	CA 1301		JZ CONT	; user program
O10C	D3 E0		OUT EOH	; Start A/D
O10E	FB		EI	; Enable interrupt
010F	00	L00P :	NOP	; Loop until end of
0110	C3 OF 01		JMP LOOP	; conversion
0113	-	CONT :	-	
-	$\bullet$	-	-	
-	$\bullet$	(User programto	-	
-	$\bullet$	process data)	$\bullet$	
-	$\bullet$	-	-	
$\bullet$	-	-	-	
0300	DBEO	LD DATA:	IN EOH	; Load data into accumulator
0302	77		MOV M, A	; Store data
0303	23		INX H	; Increment storage pointer
0304	C3 0301		JMP RETURN	

Note 1: The stack pointer must be dimensioned because a RST 7 instruction pushes the PC onto the stack.
Note 2: All address used were arbitrarily chosen.

## Functional Description (Continued)

The standard control bus signals of the $8080 \overline{\mathrm{CS}}, \overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ ) can be directly wired to the digital control inputs of the A/D and the bus timing requirements are met to allow both starting the converter and outputting the data onto the data bus. A bus driver should be used for larger microprocessor systems where the data bus leaves the PC board and/or must drive capacitive loads larger than 100 pF .

### 4.1.1 Sample 8080A CPU Interfacing Circuitry and Program

The following sample program and associated hardware shown in Figure 10 may be used to input data from the converter to the INS8080A CPU chip. set (comprised of the INS8080A microprocessor, the INS8228 system controller and the INS8224 clock generator). For simplicity, the A/D is controlled as an I/O device, specifically an 8 -bit bi-directional port located at an arbitrarily chosen port address, E0. The TRI-STATE output capability of the A/D eliminates the need for a peripheral interface device, however address decoding is still required to generate the appropriate $\overline{\mathrm{CS}}$ for the converter.

It is important to note that in systems where the A/D converter is 1 -of- 8 or less I/O mapped devices, no address decoding circuitry is necessary. Each of the 8 address bits (A0 to A7) can be directly used as $\overline{C S}$ inputs-one for each I/O device.

### 4.1.2 INS8048 Interface

The INS8048 interface technique with the ADC0801 series (see Figure 11) is simpler than the 8080A CPU interface. There are 24 I/O lines and three test input lines in the 8048. With these extra I/O lines available, one of the I/O lines (bit 0 of port 1) is used as the chip select signal to the $A / D$, thus eliminating the use of an external address decoder. Bus control signals $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and $\overline{\mathrm{NT}}$ of the 8048 are tied directly to the A/D. The 16 converted data words are stored at onchip RAM locations from 20 to 2 F (Hex). The $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signals are generated by reading from and writing into a dummy address, respectively. A sample interface program is shown below.


TL/H/5671-21
FIGURE 11. INS8048 Interface
SAMPLE PROGRAM FOR FIGURE 11 INS8048 INTERFACE

0410		JMP	10H	: Program starts at addr 10
		ORG	3H	
0450		JMP	50 H	; Interrupt jump vector
		ORG	10H'	; Main program
99 FE		ANL	P1, \#OFEH	; Chip select
81		MOVX	A, @R1	; Read in the lst data   ; to reset the intr
8901	START :	ORL	P1, \#1	; Set port pin high
B8 20		MOV	RO, \#20H	; Data address
B9 FF		MOV	R1, \#OFFH	; Dummy address
BA 10		MOV	R2, \#10H	; Counter for 16 bytes
23 FF	AGAIN :	MOV	A, \#OFFH	; Set ACC for intr loop
99 FE		ANL	Pl, \#OFEH	; Send CS (bit 0 of Pl)
91		MOVX	@R1, A	; Send WR out
05		EN	I	; Enable interrupt
9621	L00P:	JNZ	LOOP	; Wait for interrupt
EA 1B		DJNZ	R2, AGAIN	; If 16 bytes are read
00		NOP		; go touser's program
00		NOP		
		ORG	50 H	
81	INDATA:	MOVX	A, @R1	; Input data, CS still $10 w$
AO		MOV	@RO, A	; Store in memory
18		INC	RO	; Increment storage counter
8901		ORL	P1,\#1	; Reset CS signal
27		CLR	A	; Clear ACC to get out of
93		RETR		; the interrupt loop

## Functional Description (Continued)

### 4.2 Interfacing the $\mathbf{Z - 8 0}$

The Z-80 control bus is slightly different from that of the 8080. General $\overline{R D}$ and $\overline{W R}$ strobes are provided and separate memory request, $\overline{M R E Q}$, and I/O request, $\overline{\text { IORQ, sig- }}$ nals are used which have to be combined with the generalized strobes to provide the equivalent 8080 signals. An advantage of operating the A/D in I/O space with the $Z-80$ is that the CPU will automatically insert one wait state (the $\overline{R D}$ and $\overline{\mathrm{WR}}$ strobes are extended one clock period) to allow more time for the I/O devices to respond. Logic to map the A/D in I/O space is shown in Figure 13.


FIGURE 13. Mapping the A/D as an I/O Device for Use with the Z-80 CPU
Additional I/O advantages exist as software DMA routines are available and use can be made of the output data transfer which exists on the upper 8 address lines (A8 to A15) during I/O input instructions. For example, MUX channel selection for the A/D can be accomplished with this operating mode.

### 4.3 Interfacing 6800 Microprocessor Derivatives (6502, etc.)

The control bus for the 6800 microprocessor derivatives does not use the $\overline{R D}$ and $\overline{W R}$ strobe signals. Instead it employs a single $R / \bar{W}$ line and additional timing, if needed, can be derived fom the $\phi 2$ clock. All I/O devices are memory mapped in the 6800 system, and a special signal, VMA, indicates that the current address is valid. Figure 14 shows an interface schematic where the A/D is memory mapped in the 6800 system. For simplicity, the $\overline{\mathrm{CS}}$ decoding is shown using $1 / 2$ DM8092. Note that in many 6800 systems, an al-
ready decoded $\overline{4 / 5}$ line is brought out to the common bus at pin 21 . This can be tied directly to the $\overline{C S}$ pin of the A/D, provided that no other devices are addressed at HX ADDR: $4 X X X$ or 5 XXX .
The following subroutine performs essentially the same function as in the case of the 8080A interface and it can be called from anywhere in the user's program.
In Figure 15 the ADC0801 series is interfaced to the M6800 microprocessor through (the arbitrarily chosen) Port B of the MC6820 or MC6821 Peripheral Interface Adapter, (PIA). Here the $\overline{C S}$ pin of the A/D is grounded since the PIA is already memory mapped in the M6800 system and no CS decoding is necessary. Also notice that the A/D output data lines are connected to the microprocessor bus under program control through the PIA and therefore the A/D $\overline{\mathrm{RD}}$ pin can be grounded.
A sample interface program equivalent to the previous one is shown below Figure 15. The PIA Data and Control Registers of Port B are located at HEX addresses 8006 and 8007, respectively.

### 5.0 GENERAL APPLICATIONS

The following applications show some interesting uses for the A/D. The fact that one particular microprocessor is used is not meant to be restrictive. Each of these application circuits would have its counterpart using any microprocessor that is desired.

### 5.1 Multiple ADC0801 Series to MC6800 CPU Interface

To transfer analog data from several channels to a single microprocessor system, a multiple converter scheme presents several advantages over the conventional multiplexer single-converter approach. With the ADC0801 series, the differential inputs allow individual span adjustment for each channel. Furthermore, all analog input channels are sensed simultaneously, which essentially divides the microprocessor's total system servicing time by the number of channels, since all conversions occur simultaneously. This scheme is shown in Figure 16.


TL/H/5671-24
Note 1: Numbers in parentheses refer to MC6800 CPU pin out.

FIGURE 14. ADC0801-MC6800 CPU Interface

Functional Description (Continued)
SAMPLE PROGRAM FOR FIGURE 14 ADC0801-MC6800 CPU INTERFACE

0010	DF 36	datain	STX	TEMP2	; Save contents of X
0012	CE 002 C		LDX	\#\$002C	; Upon $\overline{\text { IRQ }}$ low CPU
0015	FF FF F8		STX	\$FFF8	; jumps to 002C
0018	B75000		STAA	\$5000	; Start ADC0801
001B	OE		CLI		
001C	3E	CONVRT	WAI		; Wait for interrupt
001D	DE 34		LDX	TEMP1	
001F	8C 020 F		CPX	\#\$020F	; Is final data stored?
0022	2714		BEQ	ENDP	
0024	B7 5000		STAA	\$5000	; Restarts ADC0801
0027	08		INX		
0028	DF 34		STX	TEMP1	
002A	20 FO		BRA	CONVRT	
002C	DE 34	INTRPT	LDX	TEMP1	
002E	B6 5000		LDAA	\$5000	; Read data
0031	A7 00		STAA	X	; Store it at X
0033	3B		RTI		
0034	0200	TEMP1	FDB	\$0200	; Starting address for   ; data storage
0036	0000	TEMP2	FDB	\$0000	
0038	CE 0200	ENDP	LDX	\#\$0200	; Reinitialize TEMP1
003B	DF 34		STX	TEMPI	
003D	DE 36		LDX	TEMP2	
003F	39		RTS		; Return from subroutine   ; To user's program

Note 1: In order for the microprocessor to service subroutines and interrupts, the stack pointer must be dimensioned in the user's program.


FIGURE 15. ADC0801-MC6820 PIA Interface

Functional Description (Continued)

## SAMPLE PROGRAM FOR FIGURE 15 ADC0801-MC6820 PIA INTERFACE

0010	CE 0038	DATAIN	LDX	\#\$0038	; Upon $\overline{\text { IRQ }}$ low CPU
0013	FFFF F8		STX	\$FFF8	; jumps to 0038
0016	B6 8006		IDAA	PIAORB	; Clear possible $\overline{\text { IRQ flags }}$
0019	$\triangle \mathrm{F}$		CLRA		
001A	B7 8007		STAA	PIACRB	
001D	B7 8006		STAA	PIAORB	; Set Port B as input
0020	OE		CLI		
0021	C6 34		LDAB	\#\$34	
0023	863 D		LDAA	\#\$3D	
0025	F7 8007	CONVRT	STAB	PIACRB	; Starts ADC0801
0028	B7 8007		STAA	PIACRB	
002B	3E		WAI		; Wait for interrupt
002C	DE 40		LDX	TEMP1	
002E	8 CO 0 OF		CPX	\#\$020F	; Is final data stored?
0031	27 OF		BEQ	ENDP	
0033	08		INX		
0034	DF 40		STX	TEMP1	
0036	20 ED		BRA	CONVRT	
0038	DE 40	INTRPT	LDX	TEMP1	
003A	B6 8006		IDAA	PIAORB	; Read data in
003D	A7 00		STAA	X	; Store it at X
003F	3B		RTI		
0040	0200	TEMP1	FDB	\$0200	; Starting address for   ; data storage
0042	CE 0200	ENDP	LDX	\#\$0200	; Reinitialize TEMP1
0045	DF 40		STX	TEMP1	
0047	39		RTS		; Return from subroutine
		PIAORB	EQU	\$8006	; Touser's program
		PIACRB	EQU	\$8007	

CPU, starts all the converters simultaneously and waits for the interrupt signal. Upon receiving the interrupt, it reads the converters (from HEX addresses 5000 through 5007) and stores the data successively at (arbitrarily chosen) HEX addresses 0200 to 0207, before returning to the user's program. All CPU registers then recover the original data they

Functional Description (Continued)


TL/H/5671-26

FIGURE 16. Interfacing Multiple A/Ds in an MC6800 System
SAMPLE PROGRAM FOR FIGURE 16 INTERFACING MULTIPLE A/Ds IN AN MC6800 SYSTEM

ADDRESS	HEX CODE		MNEMONICS	,	COMMENTS
0010	DF 44	DATAIN	STX	TEMP	; Save Contents of X
0012	CE 00 2A		LDX	\#\$002A	; Upon $\overline{\text { IRQ }}$ LOW CPU
0015	FF FF F8		STX	\$FFF8	; Jumps to 002A
0018	B7 5000		STAA	\$5000	; Starts all A/D's
001B	OE		CLI		
001C	3E		WAI		; Wait for interrupt
001D	CE 5000		LDX	\#\$5000	
0020	DF 40		STX	INDEXI	; Reset both INDEX
0022	CE 0200		LDX	\#\$0200	; 1 and 2 to starting
0025	DF 42		STX	INDEX2	; addresses
0027	DE 44		LDX	TEMP	
0029	39		RTS		; Return from subroutine
002A	DE 40	INTRPT	LDX	INDEXI	; INDEXI $\rightarrow$ X
002C	A6 00		IDAA	X	; Read data in from $A / D$ at $X$
002E	08		INX		; Increment $X$ by one
002F	DF 40		STX	INDEXI	; $\mathrm{X} \rightarrow$ INDEXI
0031	DE 42		LDX	INDEX2	; INDEX2 $\rightarrow$ X

## Functional Description (Continued)

SAMPLE PROGRAM FOR FIGURE 16 INTERFACING MULTIPLE A/Ds IN AN MC6800 SYSTEM

ADDRESS	HEX CODE	MNEMONICS		
0033	A7 00		STAA	X
0035	$8 C 0207$		CPX	\#\$0207
0038	2705		BEQ	RETURN
$003 A$	08		INX	
$003 B$	DF 42		STX	INDEX2
$003 D$	20 EB		BRA	INTRPT
$003 F$	$3 B$	RETURN	RTI	
0040	5000	INDEXI	FDB	$\$ 5000$
0042	0200	INDEX2	FDB	$\$ 0200$
0044	0000	TEMP	FDB	$\$ 0000$

; Store data at X
; Have all A/D's been read?
; Yes: branch to RETURN
; No: increment $X$ by one
; X $\rightarrow$ INDEX2
; Branch to 002A
; Starting address for A/D
; Starting address for data storage

Note 1: In order for the microprocessor to service subroutines and interrupts, the stack pointer must be dimensioned in the user's program.

For amplification of DC input signals, a major system error is the input offset voltage of the amplifiers used for the preamp. Figure 17 is a gain of 100 differential preamp whose offset voltage errors will be cancelled by a zeroing subroutine which is performed by the INS8080A microprocessor system. The total allowable input offset voltage error for this preamp is only $50 \mu \mathrm{~V}$ for $1 / 4$ LSB error. This would obviously require very precise amplifiers. The expression for the differential output voltage of the preamp is:

where $I_{X}$ is the current through resistor $\mathrm{R}_{\mathrm{X}}$. All of the offset error terms can be cancelled by making $\pm I_{X R}=V_{O S 1}+$ $V_{\text {OS3 }}$ - $V_{\text {OS2 }}$. This is the principle of this auto-zeroing scheme.
The INS8080A uses the 3 I/O ports of an INS8255 Programable Peripheral Interface (PPI) to control the auto zeroing and input data from the ADC0801 as shown in Figure 18. The PPI is programmed for basic I/O operation (mode 0 ) with Port A being an input port and Ports B and C being output ports. Two bits of Port C are used to alternately open or close the 2 switches at the input of the preamp. Switch

SW1 is closed to force the preamp's differential input to be zero during the zeroing subroutine and then opened and SW2 is then closed for conversion of the actual differential input signal. Using 2 switches in this manner eliminates concern for the ON resistance of the switches as they must conduct only the input bias current of the input amplifiers.
Output Port B is used as a successive approximation register by the 8080 and the binary scaled resistors in series with each output bit create a D/A converter. During the zeroing subroutine, the voltage at $\mathrm{V}_{\mathrm{x}}$ increases or decreases as required to make the differential output voltage equal to zero. This is accomplished by ensuring that the voltage at the output of $A 1$ is approximately 2.5 V so that a logic " 1 " ( 5 V ) on any output of Port $B$ will source current into node $V_{X}$ thus raising the voltage at $V_{X}$ and making the output differential more negative. Conversely, a logic " 0 " ( 0 V ) will pull current out of node $\mathrm{V}_{\mathrm{X}}$ and decrease the voltage, causing the differential output to become more positive. For the resistor values shown, $\mathrm{V}_{\mathrm{X}}$ can move $\pm 12 \mathrm{mV}$ with a resolution of 50 $\mu V$, which will null the offset error term to $1 / 4$ LSB of fullscale for the ADC0801. It is important that the voltage levels that drive the auto-zero resistors be constant. Also, for symmetry, a logic swing of 0 V to 5 V is convenient. To achieve this, a CMOS buffer is used for the logic output signals of Port B and this CMOS package is powered with a stable 5 V source. Buffer amplifier A1 is necessary so that it can source or sink the D/A output current.

Functional Description (Continued)


Note 1: R2 = 49.5 R1
Note 2: Switches are LMC13334 CMOS analog switches.
Note 3: The 9 resistors used in the auto-zero section can be $\pm 5 \%$ tolerance.
FIGURE 17. Gain of 100 Differential Transducer Preamp


FIGURE 18. Microprocessor Interface Circuitry for Differential Preamp

A flow chart for the zeroing subroutine is shown in Figure 19. It must be noted that the ADC0801 series will output an all zero code when it converts a negative input $\left[\mathrm{V}_{\operatorname{IN}}(-) \geq\right.$ $\left.\mathrm{V}_{\mathbb{I}}(+)\right]$. Also, a logic inversion exists as all of the I/O ports are buffered with inverting gates.
Basically, if the data read is zero, the differential output voltage is negative, so a bit in Port $B$ is cleared to pull $V_{X}$ more negative which will make the output more positive for the next conversion. If the data read is not zero, the output voltage is positive so a bit in Port $B$ is set to make $V_{x}$ more positive and the output more negative. This continues for 8 approximations and the differential output eventually converges to within 5 mV of zero.
The actual program is given in Figure 20. All addresses used are compatible with the BLC 80/10 microcomputer system. In particular:
Port A and the ADC0801 are at port address E4
Port $B$ is at port address E5
Port $C$ is at port address E6
PPI control word port is at port address E7
Program Counter automatically goes to ADDR:3C3D upon
acknowledgement of an interrupt from the ADC0801

### 5.3 Multiple A/D Converters in a Z-80 Interrupt Driven Mode

In data acquisition systems where more than one A/D converter (or other peripheral device) will be interrupting program execution of a microprocessor, there is obviously a need for the CPU to determine which device requires servicing. Figure 21 and the accompanying software is a method of determining which of 7 ADC0801 converters has completed a conversion (INTR asserted) and is requesting an interrupt. This circuit allows starting the A/D converters in any sequence, but will input and store valid data from the converters with a priority sequence of A/D 1 being read first, A/D 2 second, etc., through A/D 7 which would have the lowest priority for data being read. Only the converters whose INT is asserted will be read.
The key to decoding circuitry is the DM74LS373, 8-bit D type flip-flop. When the Z-80 acknowledges the interrupt, the program is vectored to a data input Z-80 subroutine. This subroutine will read a peripheral status word from the DM74LS373 which contains the logic state of the INTR outputs of all the converters. Each converter which initiates an interrupt will place a logic " 0 " in a unique bit position in the status word and the subroutine will determine the identity of the converter and execute a data read. An identifier word (which indicates which A/D the data came from) is stored in the next sequential memory location above the location of the data so the program can keep track of the identity of the data entered.


FIGURE 19. Flow Chart for Auto-Zero Routine

3 DOO	3E90	MVI 90		
3D02	D3E7	Out Control Port		; Program PPI
3 004	2601	MVI H 01	Auto-Zero Subroutine	
3 306	7 C	MOV A,H		
3 D 07	D3E6	OUT C		; Close SWl open SW2
$3 \mathrm{D09}$	0680	MVI B 80		; Initialize SAR bit pointer
3D0B	3E7F	MVI A 7F		; Initialize SAR code
3DOD	4F	MOV C,A	Return	
3DOE	D3E5	OUT B		; Port B = SAR code
3 D10	31AA3D	LXI SP 3DAA	Start	; Dimension stack pointer
$3 \mathrm{Dl3}$	D3E4	OUT A		; Start A/D
3 D 15	FB	IE		
$3 \mathrm{Dl6}$	00	NOP	Loop	; Loop until $\overline{\text { INT }}$ asserted
3 D 17	C3163D	JMP Loop		
3D1A	7A	MOV A, D	Auto-Zero	.
3D1B	C600	ADI 00		
3D1D	CA2D3D	JZ Set C		; Test A/D output data for zero
3D20	78	MOV A, B	Shift B	
3 D 21	F600	ORI 00		; Clear carry
3 D 23	1 F	RAR		; Shift "l" in Bright one place
3D24	FE00	CPI 00		; Is Bzero? If yes last
3 D 26	CA373D	JZ Done		; approximation has been made
3D29	47	MOV B,A		
3D2A	C3333D	JMP New C		$\cdots$
3D2D	79	MOV A, C	Set C	
3D2E	B0	ORA B		; Set bit in C that is in same
3D2F	4F	MOV C, A		; positionas "l" in B
3D30	C3203D	JMP Shift B		
3 D 33	A9	XRA C	New C	; Clear bit in C that is in
3 D34	C30D3D	JMP Return		; same position as "l" in B
3 D 37	47	MOV B,A	Done	; then output new SAR code.
3D38	7 C	MOV A, H		; Open SW1, close SW2 then
3D39	EEO3	XRI 03		; proceed with program. Preamp
3D3B	D3E6	OUT C		; is now zeroed.
3D3D		-	Normal	
		-	. *	
		Program for processing proper data values		
3C3D	DBE4	IN A	Read A/D Subroutine	; Read A/D data
3C3F	EEFF	XRI FF		; Invert data
$3 \mathrm{C41}$	57	MOV D,A		
$3 \mathrm{C42}$	78	MOV A, B		; Is B Reg = 0? If not stay
3 C 43	E6FF	ANI FF		; in auto zero subroutine
3 C 45	C21A3D	JNZ Auto-Zero		,
3 C 48	C33D3D	JMP Normal		

FIGURE 20. Software for Auto-Zeroed Differential A/D

### 5.3 Multiple A/D Converters in a Z-80® Interrupt Driven Mode (Continued)

The following notes apply:

1) It is assumed that the CPU automatically performs a RST 7 instruction when a valid interrupt is acknowledged (CPU is in interrupt mode 1). Hence, the subroutine starting address of X0038.
2) The address bus from the $Z-80$ and the data bus to the $Z$ 80 are assumed to be inverted by bus drivers.
3) A/D data and identifying words will be stored in sequential memory locations starting at the arbitrarily chosen address X 3E00.
4) The stack pointer must be dimensioned in the main program as the RST 7 instruction automatically pushes the PC onto the stack and the subroutine uses an additional 6 stack addresses.
5) The peripherals of concern are mapped into I/O space with the following port assignments:

HEX PORT ADDRESS	PERIPHERAL
00	MM74C374 8-bit flip-flop
01	A/D 1
02	A/D 2
03	A/D 3
04	A/D 4
05	A/D 5
06	A/D 6
07	A/D 7

This port address also serves as the A/D identifying word in the program.


FIGURE 21. Multiple A/Ds with Z-80 Type Microprocessor
INTERRUPT SERVICING SUBROUTINE

LOC	OBJ CODE
0038	E5
0039	C5
003A	F5
003B	21003 E
003E	OE 01
0040	D300
0042	DB00
0044	47
0045	79
0046	FE 08
0048	CA 6000
004B	78
004C	$1 F$
004D	47
004E	DA 5500
0051	OC
0052	C3 4500
0055	ED 78
0057	EEFF
0059	77
005A	2 C
005B	71
005C	2 C
005D	C3 5100
0060	F1
0061	Cl
0062	El
0063	C9

STATEMENT
PUSH HL

## COMMENT

; Save contents of all registers affected by
; this subroutine.
; Assumed INT mode l earlier set.
; Initialize memory pointer where data will be stored.
; C register will be port ADDR of A/D converters.
; Load peripheral status word into 8-bit latch.
; Load status word into accumulator.
; Save the status word.
; Test to see if the status of all A/D's have
; been checked. If so, exit subroutine
; Test a single bit in status word by looking for
; a "l" to be rotated into the CARRY (an INT
; is loaded as a "l"). If CARRY is set then load
; contents of A/D at port ADDR in C register.
; If CARRY is not set, increment C register to point
; to next $A / D$, then test next bit in status word.
; Read data from interrupting $A / D$ and invert
; the data.
; Store the data
; Store A/D identifier (A/D port ADDR) •
; Test next bit in status word.
; Re-establish all registers as they were
; before the interrupt.
; Return to original program

Ordering Information					
TEMP RANGE		$0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
ERROR	$\pm 1 / 4 \text { Bit }$   Adjusted				ADC0801LCN
	$\pm 1 / 2 \text { Bit }$   Unadjusted	ADC0802LCWM	ADC0802LCV		ADC0802LCN
	$\pm 1 / 2 \text { Bit }$   Adjusted	ADC0803LCWM	ADC0803LCV		ADC0803LCN
	$\begin{aligned} & \pm 1 \text { Bit } \\ & \text { Unadjusted } \end{aligned}$	ADC0804LCWM	ADC0804LCV	ADC0804LCN	ADC0805LCN
PACKAGE OUTLINE		M20B-Small Outine	V20A-Chip Carrier	N20A-Molded DIP	


TEMP RANGE		$-40^{\circ} \mathrm{C}$ TO $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ TO $+\mathbf{1 2 5}{ }^{\circ} \mathrm{C}$
ERROR	$\pm 1 / 4$ Bit Adjusted	ADC0801LCJ	ADC0801LJ
	$\pm 1 / 2$ Bit Unadjusted	ADC0802LCJ	ADC0802LJ,
	$\pm 1 / 2$ Bit Adjusted	ADC0803LCJ	ADC0802LJ/883
	$\pm 1$ Bit Unadjusted	ADC0804LCJ	
PACKAGE OUTLINE		J20A-Cavity DIP	J20A-Cavity DIP

## Connection Diagrams



## ADC0808/ADC0809 8-Bit $\mu$ P Compatible A/D Converters with 8-Channel Multiplexer

## General Description

The ADC0808, ADC0809 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital converter, 8 -channel multiplexer and microprocessor compatible control logic. The 8 -bit A/D converter uses successive approximation as the conversion technique. The converter features a high impedance chopper stabilized comparator, a 256R voltage divider with analog switch tree and a successive approximation register. The 8-channel multiplexer can directly access any of 8 -single-ended analog signals.
The device eliminates the need for external zero and fullscale adjustments. Easy interfacing to microprocessors is provided by the latched and decoded multiplexer address inputs and latched TTL TRI-STATE ${ }^{\circledR}$ outputs.
The design of the ADC0808, ADC0809 has been optimized by incorporating the most desirable aspects of several $A / D$ conversion techniques. The ADC0808, ADC0809 offers high speed, high accuracy, minimal temperature dependence, excellent long-term accuracy and repeatability, and consumes minimal power. These features make this device ideally suited to applications from process and machine control to consumer and automotive applications. For 16channel multiplexer with common output (sample/hold port) see ADC0816 data sheet. (See AN-247 for more information.)

## Features

- Easy interface to all microprocessors
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ or analog span adjusted voltage reference
- No zero or full-scale adjust required
- 8-channel multiplexer with address logic
- 0 V to 5 V input range with single 5 V power supply
- Outputs meet TTL voltage level specifications
- Standard hermetic or molded 28 -pin DIP package

28-pin molded chip carrier package
ADC0808 equivalent to MM74C949
ADC0809 equivalent to MM74C949-1

## Key Specifications

- Resolution	8 Bits
- Total Unadjusted Error	$\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$
- Single Supply	5 V DC
Low Power	15 mW
- Conversion Time	$100 \mu \mathrm{~s}$

Block Diagram


TL/H/5672-1

Absolute Maximum Ratings (Notes $1 \& 2$ )	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage (VCC) (Note 3)	6.5 V
Voltage at Any Pin	-0.3 V to (VCC +0.3 V )
Except Control Inputs	
Voltage at Control Inputs	-0.3 V to +15 V
(START, OE, CLOCK, ALE, ADD A, ADD B, ADD C)	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	875 mW
Lead Temp. (Soldering, 10 seconds)	
Dual-In-Line Package (plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)	$300^{\circ} \mathrm{C}$
Molded Chip Carrier Package	
Vapor Phase ( 60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$
ESD Susceptibility (Note 11)	400 V

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales

Supply Voltage (VCC) (Note 3)
6.5 V

Voltage at Any Pin
-0.3 V to +15 V
(START, OE, CLOCK, ALE, ADD A, ADD B, ADD C)

## Electrical Characteristics

Converter Specifications: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{REF}+}, \mathrm{V}_{\mathrm{REF}(-)}=\mathrm{GND}, \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ unless otherwise stated.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
	ADC0808   Total Unadjusted Error (Note 5)	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$		$\cdots$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 3 / 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
	ADC0809   Total Unadjusted Error (Note 5)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$   $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	.	.	$\begin{gathered} \pm 1 \\ \pm 11 / 4 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
	Input Resistance	From $\operatorname{Ref}(+)$ to $\operatorname{Ref}(-)$	1.0	2.5		k $\Omega$
	Analog Input Voltage Range	(Note 4) V $(+)$ or $\mathrm{V}(-)$	GND-0.10		$\mathrm{V}_{\mathrm{CC}}+0.10$	$\mathrm{V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {REF }(+)}$	Voltage, Top of Ladder	Measured at Ref( + )		$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.1$	V
$\frac{V_{\operatorname{REF}(+)}+V_{\operatorname{REF}(-)}}{2}$	Voltage, Center of Ladder		$\mathrm{V}_{\mathrm{CC}} / 2-0.1$	$\mathrm{V}_{\mathrm{cc}} / 2$	$\mathrm{V}_{\mathrm{CC}} / 2+0.1$	V
$\mathrm{V}_{\text {REF }}(-)$	Voltage, Bottom of Ladder	Measured at Ref(-)	-0.1	0		V
IN	Comparator Input Current	$\mathrm{f}_{\mathrm{c}}=640 \mathrm{kHz}$, (Note 6)	-2	$\pm 0.5$	2	$\mu \mathrm{A}$

## Electrical Characteristics

Digital Levels and DC Specifications: ADC0808CJ $4.5 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted ADC0808CCJ, ADC0808CCN, ADC0808CCV, ADC0809CCN and ADC0809CCV, $4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
ANALOG MULTIPLEXER						
loFF(+)	OFF Channel Leakage Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$   $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		10	$\begin{array}{r} 200 \\ 1.0 \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
loff(-)	OFF Channel Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } T_{\mathrm{MAX}} \end{aligned}$	$\begin{aligned} & -200 \\ & -1.0 \end{aligned}$	-10		$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$

Electrical Characteristics (Continued)
Digital Levels and DC Specifications: ADC0808CJ $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted ADC0808CCJ, ADC0808CCN, ADC0808CCV, ADC0809CCN and ADC0809CCV, $4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Conditions	MIn	Typ	Max	Units
CONTROL INPUTS						
$\mathrm{V}_{\operatorname{IN}(1)}$	Logical "1" Input Voltage		$\mathrm{V}_{\mathrm{CC}}-1.5$			V
$\mathrm{V}_{\text {IN(0) }}$	Logical "0" Input Voltage				1.5	V
$\operatorname{lin(1)}$	Logical "1" Input Current (The Control Inputs)	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
$1 \mathrm{IN}(0)$	Logical " 0 " Input Current (The Control Inputs)	$\mathrm{V}_{\text {IN }}=0$	-1.0			$\mu \mathrm{A}$
ICC	Supply Current	fcLK $=640 \mathrm{kHz}$		0.3	3.0	mA
DATA OUTPUTS AND EOC (INTERRUPT)						
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage	$10=-360 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.4$			V
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\mathrm{l}=1.6 \mathrm{~mA}$			0.45	V
$V_{\text {OUT(0) }}$	Logical "0" Output Voltage EOC	$1 \mathrm{O}=1.2 \mathrm{~mA}$			0.45	V
lout	TRI-STATE Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0 \end{aligned}$	-3		3	$\underset{\mu \mathrm{A}}{\mu \mathrm{~A}}$

## Electrical Characteristics

Timing Specifications $V_{C C}=V_{R E F(+)}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tws	Minimum Start Pulse Width	(Figure 5)		100	200	ns
twale	Minimum ALE Pulse Width	(Figure 5)		100	200	ns
$\mathrm{t}_{\text {s }}$	Minimum Address Set-Up Time	(Figure 5)		25	50	ns
$\mathrm{t}_{\mathrm{H}}$	Minimum Address Hold Time	(Figure 5)		25	50	ns
$t_{D}$	Analog MUX Delay Time From ALE	$\mathrm{R}_{\mathrm{S}}=0 \Omega$ (Figure 5)		1	2.5	$\mu \mathrm{S}$
$t_{H 1}, t_{H 0}$	OE Control to Q Logic State	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
$\mathrm{t}_{1 \mathrm{H},}, \mathrm{tOH}^{\text {r }}$	OE Control to $\mathrm{Hi}-\mathrm{Z}$	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
$\mathrm{t}_{\mathrm{c}}$	Conversion Time	$\mathrm{f}_{\mathrm{C}}=640 \mathrm{kHz}$, (Figure 5) (Note 7)	90	100	116	$\mu \mathrm{S}$
$\mathrm{f}_{\mathrm{c}}$	Clock Frequency		10	640	1280	kHz
$t_{\text {EOC }}$	EOC Delay Time	(Figure 5)	0		$8+2 \mu \mathrm{~S}$	Clock   Periods
$\mathrm{C}_{\text {IN }}$	Input Capacitance	At Control Inputs		10	15	pF
COUT	TRI-STATE Output Capacitance	At TRI-STATE Outputs, (Note 12)		10	15	pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to GND, unless othewise specified.
Note 3: A zener diode exists, internally, from $V_{C C}$ to $G N D$ and has a typical breakdown voltage of $7 \mathrm{~V}_{\mathrm{DC}}$.
Note 4: Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the $V_{C C}$ n supply. The spec allows 100 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathrm{IN}}$ does not exceed the supply voltage by more than 100 mV , the output code will be correct. To achieve an absolute $O V_{D C}$ to $5 \mathrm{~V}_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.900 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors. See Figure 3. None of these A/Ds requires a zero or full-scale adjust. However, if an all zero code is desired for an analog input other than 0.0 V , or if a narrow full-scale span exists (for example: 0.5 V to 4.5 V full-scale) the reference voltages can be adjusted to achieve this. See Figure 13.
Note 8: Comparator input current is a bias current into or out of the chopper stabilized comparator. The bias current varies directly with clock frequency and has little temperature dependence (Figure 6). See paragraph 4.0.
Note 7: The outputs of the data register are updated one clock cycle before the rising edge of EOC.
Note 8: Human body model, 100 pF discharged through a $1.6 \mathrm{k} \Omega$ resistor.

## Functional Description

Multiplexer. The device contains an 8-channel single-ended analog signal multiplexer. A particular input channel is selected by using the address decoder. Table I shows the input states for the address lines to select any channel. The address is latched into the decoder on the low-to-high transition of the address latch enable signal.

TABLEI

SELECTED   ANALOG CHANNEL	ADDRESS LINE		
	C	B	A
IN0	L	L	L
IN1	L	L	H
IN2	L	H	L
IN3	L	H	H
IN4	H	L	L
IN5	H	L	H
IN6	H	H	L
IN7	H	H	H

## CONVERTER CHARACTERISTICS

## The Converter

The heart of this single chip data acquisition system is its 8bit analog-to-digital converter. The converter is designed
to give fast, accurate, and repeatable conversions over a wide range of temperatures. The converter is partitioned into 3 major sections: the 256R ladder network, the successive approximation register, and the comparator. The converter's digital outputs are positive true.
The 256R ladder network approach (Figure 1) was chosen over the conventional R/2R ladder because of its inherent monotonicity, which guarantees no missing digital codes. Monotonicity is particularly important in closed loop feedback control systems. A non-monotonic relationship can cause oscillations that will be catastrophic for the system. Additionally, the 256R network does not cause load variations on the reference voltage.
The bottom resistor and the top resistor of the ladder network in Figure 1 are not the same value as the remainder of the network. The difference in these resistors causes the output characteristic to be symmetrical with the zero and full-scale points of the transfer curve. The first output transition occurs when the analog signal has reached $+1 / 2$ LSB and succeeding output transitions occur every 1 LSB later up to full-scale.
The successive approximation register (SAR) performs 8 iterations to approximate the input voltage. For any SAR type converter, $n$-iterations are required for an $n$-bit converter. Figure 2 shows a typical example of a 3-bit converter. In the ADC0808, ADC0809, the approximation technique is extended to 8 bits using the 256R network.


TL/H/5672-2

FIGURE 1. Resistor Ladder and Switch Tree

Functional Description (Continued)
The A/D converter's successive approximation register (SAR) is reset on the positive edge of the start conversion (SC) pulse. The conversion is begun on the falling edge of the start conversion pulse. A conversion in process will be interrupted by receipt of a new start conversion pulse. Continuous conversion may be accomplished by tying the end-of-conversion (EOC) output to the SC input. If used in this mode, an external start conversion pulse should be applied after power up. End-of-conversion will go low between 0 and 8 clock pulses after the rising edge of start conversion. The most important section of the A/D converter is the comparator. It is this section which is responsible for the ultimate accuracy of the entire converter. It is also the


FIGURE 2. 3-Bit A/D Transfer Curve
comparator drift which has the greatest influence on the repeatability of the device. A chopper-stabilized comparator provides the most effective method of satisfying all the converter requirements.
The chopper-stabilized comparator converts the DC input signal into an AC signal. This signal is then fed throught a high gain AC amplifier and has the DC level restored. This technique limits the drift component of the amplifier since the drift is a DC component which is not passed by the AC amplifier. This makes the entire A/D converter extremely insensitive to temperature, long term drift and input offset errors.
Figure 4 shows a typical error curve for the ADC0808 as measured using the procedures outlined in AN-179.


FIGURE 3. 3-Bit A/D Absolute Accuracy Curve

FIGURE 4. Typical Error Curve

## Connection Diagrams

Dual-In-Line Package


TL/H/5672-11
Order Number ADC0808CCN, ADC0809CCN, ADC0808CCJ or ADC0808CJ See NS Package J28A or N28A

Molded Chip Carrier Package


TL/H/5672-12
Order Number ADC0808CCV or ADC0809CCV See NS Package V28A

## Timing Diagram



FIGURE 5

## Typical Performance Characteristics



FIGURE 6. Comparator IIN vs $V_{I N}$ $\left(\mathbf{V}_{\mathrm{CC}}=\mathbf{V}_{\mathrm{REF}}=5 \mathrm{~V}\right)$


TL/H/5672-5
FIGURE 7. Multiplexer RON $_{\text {OS }} \mathbf{V}_{\text {IN }}$ $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}\right)$

## TRI-STATE Test Circuits and Timing Diagrams



FIQURE 8

## Applications Information

## operation

### 1.0 RATIOMETRIC CONVERSION

The ADC0808, ADC0809 is designed as a complete Data Acquisition System (DAS) for ratiometric conversion systems. In ratiometric systems, the physical variable being measured is expressed as a percentage of full-scale which is not necessarily related to an absolute standard. The voltage input to the ADC0808 is expressed by the equation

$$
\begin{aligned}
& \frac{V_{I N}}{V_{\text {fs }}-V_{Z}}=\frac{D_{X}}{D_{\text {MAX }}-D_{M I N}} \\
& V_{\text {IN }}=\text { Input voltage into the ADC0808 } \\
& V_{\text {fs }}=\text { Full-scale voltage } \\
& V_{Z}=\text { Zero voltage } \\
& D_{X}=\text { Data point being measured } \\
& D_{\text {MAX }}=\text { Maximum data limit } \\
& D_{\text {MIN }}=\text { Minimum data limit }
\end{aligned}
$$

A good example of a ratiometric transducer is a potentiometer used as a position sensor. The position of the wiper is directly proportional to the output voltage which is a ratio of the full-scale voltage across it. Since the data is represented as a proportion of full-scale, reference requirements are greatly reduced, eliminating a large source of error and cost for many applications. A major advantage of the ADC0808, ADC0809 is that the input voltage range is equal to the supply range so the transducers can be connected directly across the supply and their outputs connected directly into the multiplexer inputs, (Figure 9).

Ratiometric transducers such as potentiometers, strain gauges, thermistor bridges, pressure transducers, etc., are suitable for measuring proportional relationships; however, many types of measurements must be referred to an absolute standard such as voltage or current. This means a system reference must be used which relates the full-scale voltage to the standard volt. For example, if $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5.12 \mathrm{~V}$, then the full-scale range is divided into 256 standard steps. The smallest standard step is 1 LSB which is then 20 mV .

### 2.0 RESISTOR LADDER LIMITATIONS

The voltages from the resistor ladder are compared to the selected into 8 times in a conversion. These voltages are coupled to the comparator via an analog switch tree which is referenced to the supply. The voltages at the top, center and bottom of the ladder must be controlled to maintain proper operation.
The top of the ladder, Ref( + ), should not be more positive than the supply, and the bottom of the ladder, Ref( - ), should not be more negative than ground. The center of the ladder voltage must also be near the center of the supply because the analog switch tree changes from N -channel switches to P-channel switches. These limitations are automatically satisfied in ratiometric systems and can be easily met in ground referenced systems.
Figure 10 shows a ground referenced system with a separate supply and reference. In this system, the supply must be trimmed to match the reference voltage. For instance, if a 5.12 V is used, the supply should be adjusted to the same voltage within 0.1 V .


TL/H/5672-7
FIGURE 9. Ratiometric Conversion System

## Applications Information (Continued)

The ADC0808 needs less than a milliamp of supply current so developing the supply from the reference is readily accomplished. In Figure 11 a ground referenced system is shown which generates the supply from the reference. The buffer shown can be an op amp of sufficient drive to supply the milliamp of supply current and the desired bus drive, or if a capacitive bus is driven by the outputs a large capacitor will supply the transient supply current as seen in Figure 12. The LM301 is overcompensated to insure stability when loaded by the $10 \mu \mathrm{~F}$ output capacitor.

The top and bottom ladder voltages cannot exceed $V_{C C}$ and ground, respectively, but they can be symmetrically less than $\mathrm{V}_{\mathrm{Cc}}$ and greater than ground. The center of the ladder voltage should always be near the center of the supply. The sensitivity of the converter can be increased, (i.e., size of the LSB steps decreased) by using a symmetrical reference system. In Figure 13, a 2.5 V reference is symmetrically centered about $\mathrm{V}_{\mathrm{CC}} / 2$ since the same current flows in identical resistors. This system with a 2.5 V reference allows the LSB bit to be half the size of a 5 V reference system.


FIGURE 10. Ground Referenced Conversion System Using Trimmed Supply


FIGURE 11: Ground Referenced Conversion System with Reference Generating $\mathbf{V}_{\mathbf{C C}}$ Supply


FIGURE 12. Typical Reference and Supply Circuit


TL/H/5672-9
FIGURE 13. Symmetrically Centered Reference

### 3.0 CONVERTER EQUATIONS

The transition between adjacent codes N and $\mathrm{N}+1$ is given by:

$$
\begin{equation*}
V_{I N}=\left\{\left(V_{\operatorname{REF}(+)}-V_{\operatorname{REF}(-))}\left[\frac{N}{256}+\frac{1}{512}\right] \pm \mathrm{V}_{\text {TUE }}\right\}+\mathrm{V}_{\text {REF }(-)}\right. \tag{2}
\end{equation*}
$$

The center of an output code N is given by:

$$
\begin{equation*}
\mathrm{V}_{\text {IN }}\left\{\left(\mathrm{V}_{\mathrm{REF}(+)}-\mathrm{V}_{\mathrm{REF}(-)}\left[\frac{\mathrm{N}}{256}\right] \pm \mathrm{V}_{\text {TUE }}\right\}+\mathrm{V}_{\text {REF }(-)}\right. \tag{3}
\end{equation*}
$$

The output code N for an arbitrary input are the integers within the range:

$$
\begin{equation*}
N=\frac{V_{I N}-V_{R E F(-)}}{V_{R E F}(+)-V_{R E F(-)}} \times 256 \pm \text { Absolute Accuracy } \tag{4}
\end{equation*}
$$

where: $\mathrm{V}_{\mathrm{IN}}=$ Voltage at comparator input

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{REF}(+)}=\text { Voltage at } \operatorname{Ref}(+) \\
& \mathrm{V}_{\mathrm{REF}(-)}=\text { Voltage at } \operatorname{Ref}(-) \\
& \mathrm{V}_{\text {TUE }}=\text { Total unadjusted error voltage (typically } \\
& \left.\mathrm{V}_{\mathrm{REF}(+)} \div 512\right)
\end{aligned}
$$

### 4.0 ANALOG COMPARATOR INPUTS

The dynamic comparator input current is caused by the periodic switching of on-chip stray capacitances. These are connected alternately to the output of the resistor ladder/ switch tree network and to the comparator input as part of the operation of the chopper stabilized comparator.
The average value of the comparator input current varies directly with clock frequency and with $\mathrm{V}_{\mathrm{IN}}$ as shown in Figure 6.
If no filter capacitors are used at the analog inputs and the signal source impedances are low, the comparator input current should not introduce converter errors, as the transient created by the capacitance discharge will die out before the comparator output is strobed.
If input filter capacitors are desired for noise reduction and signal conditioning they will tend to average out the dynamic comparator input current. It will then take on the characteristics of a DC bias current whose effect can be predicted conventionally.

## Typical Application


*Address latches needed for 8085 and SC/MP interfacing the ADC0808 to a microprocessor

MICROPROCESSOR INTERFACE TABLE

PROCESSOR	$\overline{\text { READ }}$	$\overline{\text { WRITE }}$	INTERRUPT (COMMENT)
8080	$\overline{\text { MEMR }}$	$\overline{\text { MEMW }}$	INTR (Thru RST Circuit)
8085	$\overline{R D}$	$\overline{\text { WR }}$	INTR (Thru RST Circuit)
Z-80	$\overline{R D}$	$\overline{\text { WR }}$	$\overline{\text { INT (Thru RST Circuit, Mode 0) }}$
SC/MP	NRDS	NWDS	SA (Thru Sense A)
6800	VMA $\phi 2 \bullet R / W$	VMA $\phi \bullet \overline{R / W}$	$\overline{\text { IRQA or IRQB (Thru PIA) }}$

## Ordering Information

TEMPERATURE RANGE		$-\mathbf{4 0}{ }^{\circ} \mathrm{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$			$-\mathbf{5 5 ^ { \circ }} \mathbf{C}$ to $+\mathbf{1 2 5} \mathbf{5}^{\circ} \mathbf{C}$
Error	$\pm 1 / 2$ LSB Unadjusted	ADC0808CCN	ADC0808CCV	ADC0808CCJ	ADC0808CJ
	$\pm 1$ LSB Unadjusted	ADC0809CCN	ADC0809CCV		
Package Outline			N28A Molded DIP	V28A Molded Chip Carrier	J28A Ceramic DIP

## ADC0811 8-Bit Serial I/O A/D Converter With 11-Channel Multiplexer

## General Description

The ADC0811 is an 8 -Bit successive approximation A/D converter with simultaneous serial I/O. The serial input controls an analog multiplexer which selects from 11 input channels or an internal half scale test voltage.
An input sample-and-hold is implemented by a capacitive reference ladder and sampled data comparator. This allows the input signal to vary during the conversion cycle.
Separate serial I/O and conversion clock inputs are provided to facilitate the interface to various microprocessors.

## Features

- Separate asynchronous converter clock and serial data I/O clock.
- 11-Channel multiplexer with 4-Bit serial address logic.
- Built-in sample and hold function.
- Ratiometric or absolute voltage referencing.
- No zero or full-scale adjust required.
- Internally addressable test voltage.
- 0 V to 5 V input range with single 5 V power supply.
- TTL/MOS input/output compatible.
- $0.3^{\prime \prime}$ standard width 20 -pin dip or 20 -pin molded chip carrier

Key Specifications

Resolution	8 -Bits
Total unadjusted error	$\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$
Single supply	$5 \mathrm{~V}_{\mathrm{DC}}$
L Low Power	15 mW
Conversion Time	$32 \mu \mathrm{~S}$

## Connection Diagrams



Molded Chip Carrier (PCC) Package


Order Number ADC0811J,N,V
See NS Packages J20A, N20A, V20A Use Ordering Information

Functional Diagram


Absolute Maximum Ratings (Notes 18 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

## Supply Voltage (VCC)

6.5 V

Voltage

Inputs and Outputs
Input Current Per Pin (Note 3)
Total Package Input Current (Note 3)
Storage Temperature
Package Dissipation at $T_{A}=25^{\circ} \mathrm{C}$
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
$\pm 5 \mathrm{~mA}$
$\pm 20 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
875 mW

Lead Temp. (Soldering, 10 seconds) Dual-In-Line Package (plastic) $260^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic) $300^{\circ} \mathrm{C}$ Molded Chip Carrier Package Vapor Phase (60 seconds) $215^{\circ} \mathrm{C}$ Infrared (15 seconds) $220^{\circ} \mathrm{C}$
ESD Susceptibility (Note 11)
2000V
Operating Ratings (Notes $1 \& 2$ )
Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ )
$4.5 \mathrm{~V}_{D C}$ to $6.0 \mathrm{~V}_{\mathrm{DC}}$
Temperature Range
ADC0811BCN, ADC0811CCN
ADC0811BCV $T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$

ADC0811CCJ, ADC0811CCV
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$

## Electrical Characteristics

The following specifications' apply for $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+4.6 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}\right), \phi_{2} \mathrm{CLK}=2.097 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0811CCJ			ADC0811BCN, ADC0811BCV ADC0811CCN, ADC0811CCV			Units
		Typical (Note 6)	Tested Limit (Note 7)	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 8) } \\ \hline \end{array}$	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	
CONVERTER AND MULTIPLEXER CHARACTERISTICS								
Maximum Total Unadjusted Error ADC0811BCN, ADC0811BCV ADC0811CCN, ADC0811CCV ADC0811CCJ	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=5.00 \mathrm{~V}_{\mathrm{DC}} \\ & \text { (Note 4) } \end{aligned}$		$\pm 1$			$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \hline \end{aligned}$
Minimum Reference Input Resistance		8		5	8		5	$\mathrm{k} \Omega$
Maximum Reference Input Resistance		8	11		8	11	11	k $\Omega$
Maximum Analog Input Range	(Note 5)		$\mathrm{V}_{\mathbf{C C}}+0.05$			$\mathrm{V}_{\text {CC }}+0.05$	$\mathbf{v}_{\text {cc }}+0.05$	V
Minimum Analog Input Range			GND-0.05			GND-0.05	GND-0.05	V
On Channel Leakage Current ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV ADC0811CJ, BJ	On Channel $=5 \mathrm{~V}$   Off Channel $=0 \mathrm{~V}$		$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$			400	1000	nA nA
ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV ADC0811BJ, CJ	On Channel $=0 \mathrm{~V}$ Off Channel $=5 \mathrm{~V}$ (Note 9)					-400	-1000	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Off Channel Leakage Current ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV ADC0811CJ, BJ	$\begin{aligned} & \text { On Channel }=5 \mathrm{~V} \\ & \text { Off Channel }=0 \mathrm{~V} \end{aligned}$		$-1000$   - 1000			-400	1000	nA
ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV ADC0811BJ, CJ	On Channel $=0 \mathrm{~V}$ Off Channel $=5 \mathrm{~V}$ (Note 9)		$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$			400	1000	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Minimum $V_{\text {TEST }}$ Internal Test Voltage	$\begin{aligned} & V_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{CH} 11 \text { Selected } \\ & \hline \end{aligned}$		125			125	125	(Note 10) Counts
Maximum $\mathrm{V}_{\text {TEST }}$ Internal Test Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{CH} 11 \text { Selected } \end{aligned}$		130			130	130	(Note 10) Counts

## Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+4.6 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}\right), \phi_{2} \mathrm{CLK}=2.097 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Continued)

Parameter	Conditions	ADC0811CCJ			$\begin{aligned} & \text { ADC0811BCN, ADC0811BCV } \\ & \text { ADC0811CCN, ADC0811CCV } \end{aligned}$			Units
		Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	
DIGITAL AND DC CHARACTERISTICS								
$V_{\text {IN(1) }}$, Logical "1" Input Voltage (Min)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		2.0			2.0	2.0	V
$V_{\text {IN(0) }}$, Logical "0" Input   Voltage (Max)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		0.8			0.8	0.8	V
IIN(1), Logical " 1 " Input Current (Max)	$\mathrm{V}_{1 \mathrm{~N}}=5.0 \mathrm{~V}$	0.005	2.5		0.005	2.5	2.5	$\mu \mathrm{A}$
IIN(0), Logical " 0 " Input Current (Max)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-0.005	-2.5		-0.005	2.5	-2.5	$\mu \mathrm{A}$
Vout(1), Logical "1" Output Voltage (Min)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=-360 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OUT}}=-10 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$			$\begin{aligned} & 2.4 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
VOUT(0), Logical " 0 " Output Voltage (Max)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \\ & \hline \end{aligned}$		0.4			0.4	0.4	V
IOUt, TRI-STATE Output Current (Max)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} -0.01 \\ 0.01 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$		$\begin{gathered} -0.01 \\ 0.01 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
IsOURCE, Output Source Current (Min)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-12	-6.5		-14	-6.5	-6.5	mA
ISINK, Output Sink Current (Min)	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$	18	8.0		16	8.0	8.0	mA
$I_{\text {CC, }}$ Supply Current (Max)	$\overline{\mathrm{CS}}=1, V_{\text {REF }}$ Open	1	2.5		1	2.5	2.5	mA
IREF (Max)	$\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$	0.7	1		0.7	1	1	mA

## AC CHARACTERISTICS

Parameter		Conditions	Typical   (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
$\phi_{2}$ CLK, $\phi_{2}$ Clock Frequency	MIN		0.70		1.0	MHz
	MAX		3.0	2.0	2.1	
Sclk, Serial Data Clock Frequency	MIN				5.0	KHz
	MAX		700	525	525	
$\mathrm{T}_{\mathrm{C}}$, Conversion Process Time	MIN	Not Including MUX   Addressing and Analog Input Sampling Times	48		48	$\phi_{2}$ cycles
	MAX		64		64	
$t_{A C C}$, Access Time Delay From $\overline{C S}$ Falling Edge to DO Data Valid	MIN				1	$\phi_{2}$ cycles
	MAX				3	
${ }^{\text {tset-UP, Minimum Set-up Time of } \overline{C S} \text { Falling }}$ Edge to $\mathrm{S}_{\text {CLK }}$ Rising Edge					$4 / \phi_{2 C L K}+\frac{1}{2 S_{C L K}}$	sec
$t_{\mathrm{H}} \overline{C S}, \overline{\mathrm{CS}}$ Hold Time After the Falling Edge of $\mathrm{S}_{\mathrm{CLK}}$					0	ns
t $\overline{\mathrm{CS}}$, Total $\overline{\mathrm{CS}}$ Low Time	MIN				$t_{\text {set-up }}+8 / \mathrm{S}_{\text {cLK }}$	sec
	MAX				t $\mathrm{CS}^{(\mathrm{min})+48 / \phi_{2} \mathrm{CLK}}$	sec
thDI, Minimum DI Hold Time from SCLK Rising Edge			0		0	ns
$t_{H D O}$, Minimum DO Hold Time from S $_{\text {CLK }}$ Falling Edge		$\begin{aligned} & R_{\mathrm{L}}=30 \mathrm{k}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$			10	ns

## Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+4.6 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}\right), \phi_{2} \mathrm{CLK}=2.097 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Continued)

Parameter		Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
AC CHARACTERISTICS (Continued)						
tsDI, Minimum DI Set-up Time to $^{\text {S }}$ CLK Rising Edge			200		400	ns
tDDO, Maximum Delay From SCLK Falling Edge to DO Data Valid	$\begin{aligned} & R_{\mathrm{L}}=30 \mathrm{k}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$		180	400	400	ns
$t_{\text {TRII, }}$, Maximum DO Hold Time, ( $\overline{C S}$ Rising edge to DO TRI-STATE)	$\begin{aligned} & R_{\mathrm{L}}=3 \mathrm{k}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$		90	150	150	ns
${ }^{t}{ }_{C A}$, Analog   Sampling Time	After Address Is Latched$\overline{\mathrm{CS}}=\text { Low }$				4/ScLK $+1 \mu \mathrm{~s}$	sec
$\mathrm{t}_{\text {RDO }}$, Maximum DO	$\begin{aligned} & R_{\mathrm{L}}=30 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pf} \end{aligned}$	"TRI-STATE" to "HIGH" State	75	150	150	ns
Rise Time		"LOW" to "HIGH" State	150	300	300	
$\mathrm{t}_{\text {FDO }}$, Maximum DO	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pf} \end{aligned}$	"TRI-STATE" to "LOW" State	75	150	150	ns
Fall Time		"HIGH" to "LOW" State	150	300	300	
$\mathrm{C}_{\mathrm{IN}}$, Maximum Input Capacitance	Analog inputs, ANO-AN10 and V REF		11		55	pF
	All Others		5		15	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to ground.
Note 3: Under over voltage conditions $\left(V_{I N}<0 V\right.$ and $\left.V_{I N}>V_{C C}\right)$ the maximum input current at any one pin is $\pm 5 \mathrm{~mA}$. If the voltage at more than one pin exceeds $\mathrm{V}_{\mathrm{CC}}+.3 \mathrm{~V}$ the total package current must be limited to 20 mA . For example the maximum number of pins that can be over driven at the maximum current level of $\pm 5 \mathrm{~mA}$ is four.
Note 4: Total unadjusted error includes offset, full-scale, linearity, multiplexer, and hold step errors.
Note 5: Two on-chip diodes are tied to each analog input, which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than $\mathrm{V}_{\mathrm{CC}}$ supply. Be careful during testing at low $\mathrm{V}_{\mathrm{CC}}$ levels (4.5V), as high level analog inputs ( 5 V ) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathbb{I N}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 6: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Guaranteed and $100 \%$ production tested under worst case condition.
Note 8: Guaranteed, but not $100 \%$ production tested. These limits are not used to calculate outgoing quality levels.
Note 9: Channel leakage current is measured after the channel selection.
Note 10: 1 count $=V_{\text {REF }} / 256$.
Note 11: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

## Test Circuits

## Leakage Current



DO Except "TRI-STATE"


Test Circuits (Continued)


TL/H/5587-22

## Typical Performance Characteristics



## Timing Diagrams

DO "TRI-STATE" Rise \& Fall Times


DO Low to High State
$00 \rightarrow \mid$


Timing with a continuous $\mathrm{S}_{\mathrm{CLK}}$


TL/H/5587-11
*Strobing $\overline{\mathrm{CS}}$ High and Low will abort the present conversion and initiate a new serial I/O exchange.

Timing with a gated $\mathbf{S C L K}$ and $\overline{\mathrm{CS}}$ Continuously Low


TL/H/5587-9

Note: Strobing $\overline{\mathrm{CS}}$ Low during this time interval will abort the conversion in process.

Timing Diagrams (Continued)
$\overline{\mathbf{C S}}$ High During Conversion

$\overline{\mathbf{C S}}$ Low During Conversion


Note: DO and DI lines share the 8-bit I/O shift register(see Functional Block Diagram). Since the MUX address bits are shifted in on $\mathrm{S}_{\text {CLK }}$ rising edges while $\mathrm{S}_{\text {CLK }}$ falling edges shift out conversion data on DO, the eighth falling edge of SCLK will shift out the MSB MUX address bit (A7) on DO. Thus, if addressing channels $\mathrm{CH} 8-\mathrm{CH} 10$, a high DO will occur momentarily (one $\phi_{2}$ clock period) until the 8 -bit I/O shift register is cleared by the internal EOC signal.

## Channel Addressing Table

TABLE I. ADC 0811 Channel Addressing

MUX ADDRESS								ANALOG CHANNEL SELECTED
$\mathrm{A}_{7}$	$\mathrm{A}_{6}$	$\mathrm{A}_{5}$	$\mathrm{A}_{4}$	$\mathrm{A}_{3}$	$\mathrm{A}_{2}$	$A_{1}$	$\mathrm{A}_{0}$	
0	0	0	0	X	X	X	X	CHO
0	0	0	1	X	X	X	X	CH 1
0	0	1	0	X	X	X	X	CH 2
0	0	1	1	X	X	X	X	CH3
0	1	0	0	X	X	X	X	CH 4
0	1	0	1	X	X	X	X	CH5
0	1	1	0	X	X	X	X	CH6
0	1	1	1	X	X	X	X	CH7
1	0	0	0	X	X	X	X	CH8
1	0	0	1	x	x	x	x	CH 9
1	0	1	0	X	X	X	X	CH 10
1	0	1	1	X	X	X	X	$V_{\text {TEST }}$
1	1	X	X	X	X	X	X	LOGIC TEST MODE*

[^4]

## Functional Description

### 1.0 DIGITAL INTERFACE

The ADC0811 uses five input/output pins to implement the serial interface. Taking chip select ( $\overline{\mathrm{CS}}$ ) low enables the I/O data lines ( DO and DI ) and the serial clock input ( $\mathrm{S}_{\text {CLK }}$ ). The result of the last conversion is transmitted by the A/D on the DO line, while simultaneously the DI line receives the address data that selects the mux channel for the next conversion. The mux address is shifted in on the rising edge of $\mathrm{S}_{\text {CLK }}$ and the conversion data is shifted out on the falling edge. It takes eight $\mathrm{S}_{\mathrm{CLK}}$ cycles to complete the serial I/O. A second clock ( $\phi_{2}$ ) controls the SAR during the conversion process and must be continuously enabled.

### 1.1 CONTINUOUS SCLK

With a continuous $\mathrm{S}_{\mathrm{CLK}}$ input $\overline{\mathrm{CS}}$ must be used to synchronize the serial data exchange (see Figure 1). The ADC0811 recognizes a valid $\overline{\mathrm{CS}}$ one to three $\phi_{2}$ clock periods after the actual falling edge of $\overline{\mathrm{CS}}$. This is implemented to ensure noise immunity of the $\overline{\mathrm{CS}}$ signal. Any spikes on $\overline{\mathrm{CS}}$ less than one $\phi_{2}$ clock period will be ignored. $\overline{\mathrm{CS}}$ must remain low during the complete I/O exchange which takes eight $\mathrm{S}_{\mathrm{CLK}}$ cycles. Although $\overline{\mathrm{CS}}$ is not immediately acknowledged for the purpose of starting a new conversion, the falling edge of $\overline{\mathrm{CS}}$ immediately enables DO to output the MSB (D7) of the previous conversion.
The first $\mathrm{S}_{\text {CLK }}$ rising edge will be acknowledged after a setup time ( $\mathrm{t}_{\text {set-up }}$ ) has elapsed from the falling edge of $\overline{\mathrm{CS}}$. This and the following seven $S_{\text {CLK }}$ rising edges will shift in the channeladdress for the analog multiplexer. Since there are 12 channels only four address bits are utilized. The first four $\mathrm{S}_{\text {CLK }}$ cycles clock in the mux address, during the next four $\mathrm{S}_{\mathrm{CLK}}$ cycles the analog input is selected and sampled. During
this mux address/sample cycle, data from the last conversion is also clocked out on DO. Since D7 was clocked out on the falling edge of $\overline{C S}$ only data bits D6-D0 remain to be received. The following seven falling edges of $S_{C L K}$ shift out this data on DO.

The 8th $\mathrm{S}_{\text {CLK }}$ falling edge initiates the beginning of the A/D's actual conversion process which takes between 48 to $64 \phi_{2}$ cycles ( $T_{C}$ ). During this time $\overline{\mathrm{CS}}$ can go high to TRI-STATE DO and disable the $\mathrm{S}_{\mathrm{CLK}}$ input or it can remain low. If $\overline{\mathrm{CS}}$ is held low a new I/O exchange will not start until the conversion sequence has been completed, however once the conversion ends serial I/O will immediately begin. Since there is an ambiguity in the conversion time ( $T_{C}$ ) synchronizing the data exchange is impossible. Therefore $\overline{\mathrm{CS}}$ should go high before the 48th $\phi_{2}$ clock has elasped and return low after the 64th $\phi_{2}$ to synchronize serial communication.

A conversion or I/O operation can be aborted at any time by strobing $\overline{\mathrm{CS}}$. If $\overline{\mathrm{CS}}$ is high or low less than one $\phi_{2}$ clock it will be ignored by the A/D. If the $\overline{C S}$ is strobed high or low between 1 to $3 \phi_{2}$ clocks the A/D may or may not respond. Therefore $\overline{\mathrm{CS}}$ must be strobed high or low greater than $3 \phi_{2}$ clocks to ensure recognition. If a conversion or I/O exchange is aborted while in process the consequent data output will be erroneous until a complete conversion sequence has been implemented.

### 1.2 DISCONTINUOUS ScLK

Another way to accomplish synchronous serial communication is to tie $\overline{\mathrm{CS}}$ low continuously and disable $\mathrm{S}_{\text {CLK }}$ after its 8th falling edge (see Figure 2). $\mathrm{S}_{\text {CLK }}$ must remain low for


TL/H/5587-18
FIGURE 1


## Functional Description (Continued)

at least $64 \phi_{2}$ clocks to insure that the A/D has completed its conversion. If $\mathrm{S}_{\mathrm{CLK}}$ is enabled sooner, synchronizing to the data output on DO is not possible since an end of conversion signal from the $A / D$ is not available and the actual conversion time is not known. With $\overline{\mathrm{CS}}$ low during the conversion time ( $64 \phi_{2}$ max) DO will go low after the eighth falling edge of $\mathrm{S}_{\mathrm{CLK}}$ and remain low until the conversion is completed. Once the conversion is through DO will transmit the MSB. The rest of the data will be shifted out once $\mathrm{S}_{\text {CLK }}$ is enabled as discussed previously.
If $\overline{C S}$ goes high during the conversion sequence $D O$ is tristated, and the result is not affected so long as $\overline{\mathrm{CS}}$ remains high until the end of the conversion.

### 1.2 MULTIPLEXER ADDRESSING

The four bit mux address is shifted, MSB first, into DI. Input data corresponds to the channel selected as shown in table 1. Care should be taken not to send an address greater than or equal to twelve ( 11 XX ) as this puts the A/D in a digital testing mode. In this mode the analog inputs CH 0 thru CH 3 become digital outputs, for our use in production testing.

### 2.0 ANALOG INPUT

### 2.1 THE INPUT SAMPLE AND HOLD

The ADC0811's sample/hold capacitor is implemented in its capacitive ladder structure. After the channel address is received, the ladder is switched to sample the proper analog input. This sampling mode is maintained for $1 \mu \mathrm{sec}$ after the
eighth $S_{C L K}$ falling edge. The hold mode is initiated with the start of the conversion process. An acquisition window of $4{ }^{\mathrm{s}_{\mathrm{CLK}}}+1 \mu \mathrm{sec}$ is therefore available to allow the ladder capacitance to settle to the analog input voltage. Any change in the analog voltage before or after the acquisition window will not effect the A/D conversion result.
In the most simple case, the ladder's acquisition time is determined by the $\mathrm{R}_{\text {on }}(3 \mathrm{~K})$ of the multiplexer switches and the total ladder capacitance (90pf). These values yield an acquisition time of about $2 \mu \mathrm{sec}$ for a full scale reading. Therefore the analog input must be stable for at least $2 \mu \mathrm{sec}$ before and $1 \mu \mathrm{sec}$ after the eighth $\mathrm{S}_{\mathrm{CLK}}$ falling edge to ensure a proper conversion. External input source resistance and capacitance will lengthen the acquisition time and should be accounted for.
Other conventional sample and hold error specifications are included in the error and timing specs of the A/D. The hold step and gain error sample/hold specs are taken into account in the ADC0811's total unadjusted error, while the hold settling time is included in the A/D's max conversion time of $64 \phi_{2}$ clock periods. The hold droop rate can be thought of as being zero since an unlimited amount of time can pass between a conversion and the reading of data. However, once the data is read it is lost and another conversion is started.

## Typical Applications

ADC0811-INS8048 INTERFACE



## Ordering Information

Temperature Range		$\mathbf{0}^{\circ} \mathrm{C}$ to $\mathbf{7 0} 0^{\circ} \mathrm{C}$	$-\mathbf{4 0 ^ { \circ } \mathrm { C } \text { to } + \mathbf { 8 5 } 5 ^ { \circ } \mathrm { C }}$
Total Unadjusted   Error	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{ADC0811BCN}$	$\mathrm{ADC0811BCV}$
	$\pm 1 \mathrm{LSB}$	$\mathrm{ADC0811CCN}$	$\mathrm{ADC0811CCJ}$   $\mathrm{ADC0811CCV}$
Package Outline			N 20 A
$\mathrm{~J} 20 \mathrm{~A}, \mathrm{~V} 20 \mathrm{~A}$			

## ADC0816/ADC0817 8-Bit $\mu$ P Compatible A/D Converters with 16-Channel Multiplexer

## General Description

The ADC0816, ADC0817 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital converter, 16 -channel multiplexer and microprocessor compatible control logic. The 8-bit A/D converter uses successive approximation as the conversion technique. The converter features a high impedance chopper stabilized comparator, a 256R voltage divider with analog switch tree and a successive approximation register. The 16 -channel multiplexer can directly access any one of 16 -single-ended analog signals, and provides the logic for additional channel expansion. Signal conditioning of any analog input signal is eased by direct access to the multiplexer output, and to the input of the 8-bit A/D converter.
The device eliminates the need for external zero and fullscale adjustments. Easy interfacing to microprocessors is provided by the latched and decoded multiplexer address inputs and latched TTL TRI-STATE ${ }^{\circledR}$ outputs.
The design of the ADC0816, ADC0817 has been optimized by incorporating the most desirable aspects of several $A / D$ conversion techniques. The ADC0816, ADC0817 offers high speed, high accuracy, minimal temperature dependence, excellent long-term accuracy and repeatability, and consumes minimal power. These features make this device ideally suited to applications from process and machine control to consumer and automotive applications. For similar performance in an 8-channel, 28-pin, 8 -bit A/D converter, see the ADC0808, ADC0809 data sheet. (See AN-258 for more information.)

Features
■ Easy interface to all microprocessors, or operates "stand alone"

- Operates ratiometrically or with $5 V_{D C}$ or analog span adjusted voltage reference
- 16-channel multiplexer with latched control logic

■ Outputs meet TTL voltage level specifications
■ 0 V to 5 V analog input voltage range with single 5 V supply

- No zero or full-scale adjust required

■ Standard hermetic or molded 40-pin DIP package
■ Temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

- Latched TRI-STATE output
- Direct áccess to "comparator in" and "multiplexer out" for signal conditioning
- ADC0816 equivalent to MM74C948
- ADC0817 equivalent to MM74C948-1


## Key Specifications

Resolution	8 Bits
Total Unadjusted Error	$\pm 1 / 2$ LSB and $\pm 1 \mathrm{LSB}$
Single Supply	5 VCC
L Low Power	15 mW
Conversion Time	$100 \mu \mathrm{~s}$

## Block Diagram



Absolute Maximum Ratings (Notes $1 \& 2$ )	
If Military/Aerospace specified devices are required,	
please contact the National	Semiconductor Sales
Office/Distributors for availability and specifications.	
Supply Voltage (VCC) (Note 3)	6.5 V
Voltage at Any Pin	-0.3 V to (VCC +0.3 V )
Except Control Inputs	
Voltage at Control Inputs	-0.3 V to 15 V
(START, OE, CLOCK, ALE, EXPANSION CONTROL,	
ADD A, ADD B, ADD C, ADD D)	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	875 mW
Lead Temp. (Soldering, 10 seconds)	
Dual-In-Line Package (Plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (Ceramic)	$300^{\circ} \mathrm{C}$
Molded Chip Carrier Package	
Vapor Phase ( 60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

ESD Susceptibility (Note 9)
400 V

## Operating Conditions (Notes $1 \& 2$ )

Temperature Range (Note 1) ADC0816CCJ, ADC0816CCN,
$T_{M I N} \leq T_{A} \leq T_{M A X}$ ADC0817CCN
Range of $\mathrm{V}_{\mathrm{CC}}$ (Note 1)
Voltage at Any Pin
4.5 $V_{D C}$ to $6.0 V_{D C}$ Except Control Inputs
Voltage at Control Inputs
0 V to 15 V
(START, OE, CLOCK, ALE; EXPANSION CONTROL, ADD A, ADD B, ADD C, ADD D)

## Electrical Characteristics

Converter Specifications: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{REF}(+)}, \mathrm{V}_{\mathrm{REF}(-)}=\mathrm{GND}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {COMPARATOR }}{ }^{(N)} \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {MAX }}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ unless otherwise stated.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
	ADC0816   Total Unadjusted Error (Note 5)	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$		.	$\begin{aligned} & \pm 1 / 2 \\ & \pm 3 / 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \hline \end{aligned}$
	ADC0817   Total Unadjusted Error (Note 5)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$   $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			$\begin{gathered} \pm 1 \\ \pm 11 / 4 . \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
	Input Resistance	From Ref( + ) to $\operatorname{Ref}(-)$	1.0	4.5		k $\Omega$
	Analog Input Voltage Range	(Note 4)V(+) or V( - )	GND-0.10		$V_{C C}+0.10$	$\mathrm{V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {REF }}(+)$	Voltage, Top of Ladder	Measured at $\operatorname{Ref}(+)$		$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.1$	V
$\frac{\mathrm{V}_{\mathrm{REF}(+)}+\mathrm{V}_{\mathrm{REF}(-)}}{2}$	Voltage, Center of Ladder		$\mathrm{V}_{\mathrm{CC}} / 2-0.1$	$\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{V}_{\mathrm{cc}} / 2+0.1$	V
$\mathrm{V}_{\text {REF }}(-)$	Voltage, Bottom of Ladder	Measured at Ref( - )	-0.1	0	.	V
	Comparator Input Current	$\mathrm{f}_{\mathrm{c}}=640 \mathrm{kHz}$, (Note 6)	-2	$\pm 0.5$	2	$\mu \mathrm{A}$

## Electrical Characteristics

Digital Levels and DC Specifications: ADC0816CCJ, ADC0816CCN, ADC0817CCN-4.75V $\leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
ANALOG MULTIPLEXER						
$\mathrm{R}_{\mathrm{ON}}$	Analog Multiplexer ON Resistance	(Any Selected Channel) $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{L}=10 \mathrm{k} \\ & T_{A}=85^{\circ} \mathrm{C} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$		1.5	$\begin{aligned} & 3 \\ & 6 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \hline \end{aligned}$
$\Delta \mathrm{R}_{\text {ON }}$	$\Delta$ ON Resistance Between Any 2 Channels	$\begin{aligned} & \text { (Any Selected Channel) } \\ & R_{L}=10 \mathrm{k} \\ & \hline \end{aligned}$		75		$\Omega$
loff+	OFF Channel Leakage Current	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{I N}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$		10	$\begin{array}{r} 200 \\ 1.0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
loff(-)	OFF Channel Leakage Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{I N}=0, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } T_{\text {Max }} \end{aligned}$	$\begin{array}{r} -200 \\ -1.0 \\ \hline \end{array}$	."		$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
CONTROL INPUTS						
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage		$\mathrm{V}_{C C}-1.5$			V
V IN(0)	Logical "0" Input Voltage				1.5	V

Electrical Characteristics (Continued)
Digital Levels and DC Specifications: ADC0816CCJ, ADC0816CCN, ADC0817CCN-4.75V $\leq V_{C C} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	MIn	Typ	Max	Units
CONTROL INPUTS (Continued)						
$\ln (1)$	Logical "1" Input Current (The Control Inputs)	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
$\operatorname{IN}(0)$	Logical " 0 " Input Current (The Control Inputs)	$\mathrm{V}_{1 \mathrm{~N}}=0$	-1.0			$\mu \mathrm{A}$
ICC	Supply Current	$\mathrm{f}_{\text {cLK }}=640 \mathrm{kHz}$		0.3	3.0	mA
DATA OUTPUTS AND EOC (INTERRUPT)						
$V_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & I_{0}-360 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{O}}=-300 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}-0.4$			v
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$			0.45	V
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage EOC	$\mathrm{I}_{0}=1.2 \mathrm{~mA}$			0.45	V
lout	TRI-STATE Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{O}}=0 \end{aligned}$	-3.0		3.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

## Electrical Characteristics

Timing Specifications: $V_{C C}=V_{R E F(+)}=5 V, V_{R E F(-)}=G N D, t_{r}=t_{f}=20 \mathrm{~ns}$ and $T_{A}=25^{\circ} C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tws	Minimum Start Pulse Width	(Figure 5) (Note 7)		100	200	ns
$t_{\text {WALE }}$	Minimum ALE Pulse Width	(Figure 5)		100	200	ns
$\mathrm{t}_{\mathrm{s}}$	Minimum Address Set-Up Time	(Figure 5)		25	50	ns
$\mathrm{T}_{\mathrm{H}}$	Minimum Address Hold Time	(Figure 5)		25	50	ns
$t_{D}$	Analog MUX Delay Time from ALE	$\mathrm{R}_{\mathrm{S}}=\mathrm{O} \Omega$ (Figure 5)		1	2.5	$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{H} 1}, \mathrm{t}_{\mathrm{HO}}$	OE Control to Q Logic State	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
$t_{1 H}, t_{0 H}$	OE Control to $\mathrm{Hi}-\mathrm{Z}$	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
$\mathrm{t}_{\mathrm{C}}$	Conversion Time	$\mathrm{f}_{\mathrm{C}}=640 \mathrm{kHz}$, (Figure 5) (Note 8)	90	100	116	$\mu \mathrm{s}$
$\mathrm{f}_{\mathrm{c}}$	Clock Frequency		10	640	1280	kHz
${ }_{\text {teOC }}$	EOC Delay Time	(Figure 5)	0		$8+2 \mu \mathrm{~s}$	Clock Periods
$\mathrm{Clin}^{\text {N }}$	Input Capacitance	At Control Inputs		10	15	pF
COUT	TRI-STATE Output Capacitance	At TRI-STATE Outputs (Note 8)		10	15	pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: A zener diode exists, internally, from $V_{C C}$ to $G N D$ and has a typical breakdown voltage of $7 V_{D C}$.
Note 4: Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the $V_{C C}$ supply. The spec allows 100 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathrm{IN}}$ does not exceed the supply voltage by more than 100 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.900 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Total unadjusted error includes offset, full-scale, and linearity errors. See Figure 3. None of these A/Ds requires a zero or full-scale adjust. However, if an all zero code is desired for an analog input other than 0.0 V , or if a narrow full-scale span exists (for example: 0.5 V to 4.5 V full-scale) the reference voltages can be adjusted to achieve this. See Figure 13.
Note 6: Comparator input current is a bias current into or out of the chopper stabilized comparator. The bias current varies directly with clock frequency and has little temperature dependence (Figure 6). See paragraph 4.0.
Note 7: If start pulse is asynchronous with converter clock or if $f_{c}>640 \mathrm{kHz}$, the minimum start pulse width is 8 clock periods plus $2 \mu \mathrm{~s}$. For synchronous operation at $f_{c} \leq 640 \mathrm{kHz}$ take start high within 100 ns of clock going low.
Note 8: The outputs of the data register are updated one clock cycle before the rising edge of EOC.
Note 9: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

## Functional Description

Multiplexer: The device contains a 16-channel single-ended analog signal multiplexer. A particular input channel is selected by using the address decoder. Table 1 shows the input states for the address line and the expansion control line to select any channel. The address is latched into the decoder on the low-to-high transition of the address latch enable signal.

TABLE 1

Selected   Analog Channel	Address Line			Expansion         Control	
	C	B	A		
IN1	L	L	L	L	H
IN2	L	L	L	H	H
IN3	L	L	H	H	H
IN4	H				
IN5	H	L	L	H	
IN6:	L	H	L	H	H
IN7	L	H	H		
IN8	H	L	L	H	H
IN9	H	L	L	H	H
IN10	H	L	H	L	H
IN11	H	L	H	H	H
IN12	H	H	L	L	H
IN13	H	H	L	H	H
IN14	H	H	H	L	H
IN15	H	H	H	H	H
All Channels OFF	X	X	X	X	L

X= don't care

Additional single-ended analog signals can be multiplexed to the A/D converter by disabling all the multiplexer inputs using the expansion control. The additional external signals are connected to the comparator input and the device ground. Additional signal conditioning (i.e., prescaling, sample and hold, instrumentation amplification, etc.) may also be added between the analog input signal and the comparator input.

## CONVERTER CHARACTERISTICS

## The Converter

The heart of this single chip data acquisition system is its 8bit analog-to-digital converter. The converter is designed to give fast, accurate, and repeatable conversions over a wide range of temperatures. The converter is partitioned into 3 major sections: the 256R ladder network, the successive approximation register, and the comparator. The converter's digital outputs are positive true.
The 256R ladder network approach (Figure 1) was chosen over the conventional R/2R ladder because of its inherent monotonicity, which guarantees no missing digital codes. Monotonicity is particularly important in closed loop feedback control systems. A non-monotonic relationship can cause oscillations that will be catastrophic for the system. Additionally, the 256R network does not cause load variations on the reference voltage.
The bottom resistor and the top resistor of the ladder network in Figure 1 are not the same value as the remainder of the network. The difference in these resistors causes the output characteristic to be symmetrical with the zero and full-scale points of the transfer curve. The first output transition occurs when the analog signal has reached $+1 / 2$ LSB and succeeding output transitions occur every 1 LSB later up to full-scale.


FIGURE 1. Resistor Ladder and Switch Tree


TL/H/5277-3
FIGURE 2. 3-Bit A/D Transfer Curve


FIGURE 3. 3-Bit A/D Absolute Accuracy Curve


TL/H/5277-5
FIGURE 4. Typical Error Curve
Timing Diagram


FIGURE 5

The successive approximation register (SAR) performs 8 iterations to approximate the input voltage. For any SAR type converter, $n$-iterations are required for an $n$-bit converter. Figure 2 shows a typical example of a 3-bit converter. In the ADC0816, ADC0817, the approximation technique is extended to 8 bits using the 256R network.
The A/D converter's successive approximation register (SAR) is reset on the positive edge of the start conversion (SC) pulse. The conversion is begun on the falling edge of the start conversion pulse. A conversion in process will be interrupted by receipt of a new start conversion pulse. Continuous conversion may be accomplished by tying the end-of-conversion (EOC) output to the SC input. If used in this mode, an external start conversion pulse should be applied after power up. End-of-conversion will go low between 0 and 8 clock pulses after the rising edge of start conversion.

The most important section of the A/D converter is the comparator. It is this section which is responsible for the ulimate accuracy of the entire converter. It is also the comparator drift which has the greatest influence on the repeatability of the device. A chopper-stabilized comparator provides the most effective method of satisfying all the converter requirements.
The chopper-stabilized comparator converts the DC input signal into an AC signal. This signal is then fed through a high gain AC amplifier and has the DC level restored. This technique limits the drift component of the amplifier since the drift is a DC component which is not passed by the AC amplifier. This makes the entire A/D converter extremely insensitive to temperature, long term drift and input offset errors.
Figure 4 shows a typical error curve for the ADC0816 as measured using the procedures outlined in AN-179.


Order Number ADC0816CCN, ADC0817CCN, ADC0816CCJ or ADC0816CJ See NS Package Number J40A or N40A

## Typical Performance Characteristics



FIGURE 6. Comparator $\mathrm{I}_{\mathrm{IN}}$ Vs $\mathrm{V}_{\mathrm{IN}}$

$$
\left(V_{C C}=V_{R E F}=5 V\right)
$$



TL/H/5277-8
FIGURE 7. Multiplexer RON vs $\mathrm{V}_{\mathrm{IN}}$ $\left(\mathbf{V}_{\mathbf{C C}}=\mathbf{V}_{\text {REF }}=5 \mathrm{~V}\right)$

## TRI-STATE Test Circuits and Timing Diagrams



TL/H/5277-9
$t_{\mathrm{OH}}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$


TL/H/5277-10
FIGURE 8

## Applications Information

## OPERATION

### 1.0 RATIOMETRIC CONVERSION

The ADC0816, ADC0817 is designed as a complete Data Acquisition System (DAS) for ratiometric conversion systems. In ratiometric systems, the physical variable being measured is expressed as a percentage of full-scale which is not necessarily related to an absolute standard. The voltage input to the ADC0816 is expressed by the equation
$\frac{V_{I N}}{V_{f s}-V_{Z}}=\frac{D_{X}}{D_{M A X}-D_{M I N}}$
$\mathrm{V}_{\mathrm{IN}}=$ Input voltage into the ADC0816
$V_{\text {fs }}=$ Full-scale voltage
$V_{Z}=$ Zero voltage
$D_{X}=$ Data point being measured
$\mathrm{D}_{\mathrm{MAX}}=$ Maximum data limit
$\mathrm{D}_{\text {MIN }}=$ Minimum data limit

A good example of a ratiometric transducer is a potentiometer used as a position sensor. The position of the wiper is directly proportional to the output voltage which is a ratio of the full-scale voltage across it. Since the data is represented as a proportion of full-scale, reference requirements are greatly reduced, eliminating a large source of error and cost for many applications. A major advantage of the ADC0816, ADC0817 is that the input voltage range is equal to the supply range so the transducers can be connected directly across the supply and their outputs connected directly into the multiplexer inputs, (Figure 9).

Ratiometric transducers such as potentiometers, strain gauges, thermistor bridges, pressure transducers, etc., are suitable for measuring proportional relationships; however, many types of measurements must be referred to an absolute standard such as voltage or current. This means a system reference must be used which relates the full-scale voltage to the standard volt. For example, if $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=$ 5.12 V , then the full-scale range is divided into 256 standard steps. The smallest standard step is 1 LSB which is then 20 mV .

### 2.0 RESISTOR LADDER LIMITATIONS

The voltages from the resistor ladder are compared to the selected input 8 times in a conversion. These voltages are coupled to the comparator via an analog switch tree which is referenced to the supply. The voltages at the top, center and bottom of the ladder must be controlled to maintain proper operation.
The top of the ladder, $\operatorname{Ref}(+)$, should not be more positive than the supply, and the bottom of the ladder, Ref( - ), should not be more negative than ground. The center of the ladder voltage must also be near the center of the supply because the analog switch tree changes from N -channel switches to P-channel switches These limitations are automaticaly satisfied in ratiometric systems and can be easily met in ground referenced systems.
Figure 10 shows a ground referenced system with a separate supply and reference. In this system, the supply must be trimmed to match the reference voltage. For instance, if a 5.12 V reference is used, the supply should be adjusted to the same voltage within 0.1 V .


FIGURE 9. Ratiometric Conversion System

## Applications Information (Continued)

The ADC0816 needs less than a milliamp of supply current so developing the supply from the reference is readily accomplished. In Figure 11 a ground references system is shown which generates the supply from the reference. The buffer shown can be an op amp of sufficient drive to supply the milliamp of supply current and the desired bus drive, or if a capacitive bus is driven by the outputs a large capacitor will supply the transient supply current as seen in Figure 12. The LM301 is overcompensated to insure stability when loaded by the $10 \mu \mathrm{~F}$ output capacitor.

The top and bottom ladder voltages cannot exceed $V_{C C}$ and ground, respectively, but they can be symmetrically less than $\mathrm{V}_{\mathrm{CC}}$ and greater than ground. The center of the ladder voltage should always be near the center of the supply. The sensitivity of the converter can be increased, (i.e., size of the LSB steps decreased) by using a symmetrical reference system. In Figure 13, a 2.5 V reference is symmetrically centered about $\mathrm{V}_{\mathrm{CC}} / 2$ since the same current flows in identical resistors. This system with a 2.5 V reference allows the LSB to be half the size of the LSB in a 5 V reference system.


FIGURE 10. Ground Referenced Conversion System Using Trimmed Supply


Applications Information (Continued)


FIGURE 12. Typical Reference and Supply Circuit


TL/H/5277-15
FIGURE 13. Symmetrically Centered Reference

### 3.0 CONVERTER EQUATIONS

The transition between adjacent codes N and $\mathrm{N}+1$ is given by:

$$
\begin{equation*}
V_{I N}=\left\{\left(V_{\operatorname{REF}(+)}-V_{\operatorname{REF}(-))}\left[\frac{N}{256}+\frac{1}{512}\right] \pm V_{T U E}\right\}+V_{\operatorname{REF}(-)}\right. \tag{2}
\end{equation*}
$$

The center of an output code N is given by:

$$
\begin{equation*}
V_{\mathbb{I N}}=\left\{\left(V_{\operatorname{REF}(+)}-\mathrm{V}_{\mathrm{REF}(-))}\left[\frac{\mathrm{N}}{256}\right] \pm \mathrm{V}_{\text {TUE }}\right]+\mathrm{V}_{\text {REF }(-)}\right. \tag{3}
\end{equation*}
$$

The output code N for an arbitrary input are the integers within the range:

$$
\begin{equation*}
N=\frac{V_{I N}-V_{\text {REF }}(-)}{V_{R E F}(+)-V_{\text {REF }(-)}} \times 256 \pm \text { Absolute Accuracy } \tag{4}
\end{equation*}
$$

where: $\mathrm{V}_{\mathbb{I N}}=$ Voltage at comparator input

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{REF}}=\text { Voltage at } \operatorname{Ref}(+) \\
& \mathrm{V}_{\mathrm{REF}}=\text { Voltage at } \operatorname{Ref}(-) \\
& \mathrm{V}_{\mathrm{TUE}}=\text { Total unadjusted error voltage (typically } \\
& \left.\mathrm{V}_{\mathrm{REF}}(+) \div 512\right)
\end{aligned}
$$

## Applications Information (Continued)

### 4.0 ANALOG COMPARATOR INPUTS

The dynamic comparator input current is caused by the periodic switching of on-chip stray capacitances These are connected alternately to the output of the resistor ladder/switch tree network and to the comparator input as part of the operation of the chopper stabilized comparator.
The average value of the comparator input current varies directly with clock frequency and with $\mathrm{V}_{\mathrm{IN}}$ as shown in Figure 6.

If no filter capacitors are used at the analog or comparator inputs and the signal source impedances are low, the comparator input current should not introduce converter errors, as the transient created by the capacitance discharge will die out before the comparator output is strobed.
If input filter capacitors are desired for noise reduction and signal conditioning they will tend to average out the dynamic comparator input current. It will then take on the characteristics of a DC bias current whose effect can be predicted conventionally. See AN-258 for further discussion.

## Typical Application



TL/H/5277-16
*Address latches needed for 8085 and SC/MP interfacing the ADC0816, 17 to a microprocessor

## Microprocessor Interface Table

## Ordering Information

TEMPERATURE RANGE		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Error	$\pm 1 / 2$ Bit Unadjusted	ADC0816CCN	ADC0816CCJ
	$\pm 1$ Bit Unadjusted	ADC0817CCN	
Package Outline		N40A Molded DIP	J40A Hermetic DIP

## ADC0819 8-Bit Serial I/O A/D Converter with 19-Channel Multiplexer

## General Description

The ADC0819 is an 8-Bit successive approximation A/D converter with simultaneous serial I/O. The serial input controls an analog multiplexer which selects from 19 input channels or an internal half scale test voltage.
An input sample-and-hold is implemented by a capacitive reference ladder and sampled data comparator. This allows the input signal to vary during the conversion cycle.
Separate serial I/O and conversion clock inputs are provided to facilitate the interface to various microprocessors.

## Features

- Separate asynchronous converter clock and serial data I/O clock.
- 19-Channel multiplexer with 5-Bit serial address logic.
- Built-in sample and hold function.
- Ratiometric or absolute voltage referencing.
- No zero or full-scale adjust required.
- Internally addressable test voltage.
- 0 V to 5 V input range with single 5 V power supply.
- TTL/MOS input/output compatible.
- 28-pin molded chip carrier or 28-pin molded DIP


## Key Specifications

- Resolution
8-Bits
- Total unadjusted error $\quad \pm 1 / 2$ LSB and $\pm 1$ LSB
- Single supply $5 \mathrm{~V}_{\mathrm{DC}}$
- Low Power
15 mW
- Conversion Time
$16 \mu \mathrm{~s}$


## Connection Diagrams

## Functional Diagram

## Molded Chip Carrier (PCC) Package



Top View
Order Number ADC0819BCV, CCV See NS Package Number V28A

Dual-In-Line Package


TL/H/9287-20
Top View
Order Number ADC0819BCN, CIN See NS Package Number N28B


TL/H/9287-2

Absolute Maximum Ratings (Notes 1 \& 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
6.5 V

Voltage
Inputs and Outputs
Input Current Per Pin (Note 3)
Total Package Input Current (Note 3)
-0.3 V to V CC
+0.3 V
$\pm 5 \mathrm{~mA}$
$\pm 20 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
875 mW

Lead Temperature (Soldering, 10 sec .)
Dual-In-Line Package (Plastic) . Surface Mount Package
Vapor Phase ( 60 sec .) $215^{\circ} \mathrm{C}$ Infrared (15 sec.)
ESD Susceptibility (Note 11) $220^{\circ} \mathrm{C}$ 2000V

Operating Ratings (Notes $1 \& 2$ )
Supply Voltage (VCC) $4.5 \mathrm{~V}_{D C}$ to $6.0 \mathrm{~V}_{\mathrm{DC}}$
Temperature Range
ADC0819BCV, ADC0819CCV
ADC0819BCN
ADC0819CIN
$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$

## Electrical Characteristics

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=5 \mathrm{~V}, \phi_{2} \mathrm{CLK}=2.097 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	Typical (Note 6)		Design Limit (Note 8)	Units
CONVERTER AND MULTIPLEXER CHARACTERISTICS					
Maximum Total Unadjusted Error ADC0819BCV, BCN ADC0819CCV, CIN	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=5.00 \mathrm{~V}_{\mathrm{DC}} \\ & \text { (Note 4) } \end{aligned}$		$\begin{gathered} \pm 1 / 2 \\ \pm 1 \\ \hline \end{gathered}$	$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \hline \end{aligned}$
Minimum Reference Input Resistance		8		5	$k \Omega$
Maximum Reference Input Resistance		8	11	11	k $\Omega$
Maximum Analog Input Range	(Note 5)		$\mathrm{V}_{\mathrm{CC}}+0.05$	$\mathrm{V}_{\text {cc }}+0.05$	V
Minimum Analog Input Range			GND-0.05	GND-0.05	V
On Channel Leakage Current	(Note 9)   On Channel $=5 \mathrm{~V}$   Off Channel=0V		400	1000	nA
	On Channel=0V Off Channel $=5 \mathrm{~V}$ (Note 9)		-400	-1000	nA
Off Channel Leakage Current	(Note 9)   On Channel $=5 \mathrm{~V}$   Off Channel $=0 \mathrm{~V}$		-400	-1000	nA
	On Channel $=0 \mathrm{~V}$ Off Channel $=5 \mathrm{~V}$ (Note 9)		400	1000	nA
Minimum $V_{\text {TEST }}$ Internal Test Voltage	$\begin{aligned} & \mathrm{V}_{\text {REF }}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{CH} 19 \text { Selected } \end{aligned}$		125	125	(Note 10) Counts
Maximum $V_{\text {TEST }}$ Internal Test Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{CH} 19 \text { Selected } \end{aligned}$		130	130	(Note 10) Counts
DIGITAL AND DC CHARACTERISTICS					
$V_{\text {IN(1) }}$, Logical " 1 " Input Voltage (Min)	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		2.0	2.0	V
$V_{\text {IN(0) }}$, Logical "0" Input Voltage (Max)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	.	0.8	0.3	V
$I_{\text {IN(1) }}$, Logical "1" Input Current (Max)	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$	0.005	2.5	2.5	$\mu \mathrm{A}$
IIN(0), Logical " 0 " Input Current (Max)	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	-0.005	-2.5	-2.5	$\mu \mathrm{A}$

Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}, \phi_{2} \mathrm{CLK}=2.097 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
DIGITAL AND DC CHARACTERISTICS (Continued)					
VOUT(1), Logical "1" Output Voltage (Min)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { IOUT }=-360 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OUT}}=-10 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$V_{\text {OUT(0) }}$, Logical " 0 " Output Voltage (Max)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \end{aligned}$		0.4	0.4	V
IOUT, TRI-STATE Output Current (Max)	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} \end{array}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.01 \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
ISOURCE, Output Source Current (Min)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-14	-6.5	-6.5	mA
ISINK, Output Sink Current (Min)	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$	16	8.0	8.0	mA
ICC, Supply Current (Max)	$\overline{C S}=1, V_{\text {REF }}$ Open	1	2.5	2.5	mA
IREF (Max)	$\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$	0.7	1	1	mA

AC CHARACTERISTICS

Parameter		Conditions	Typical (Note 6)	$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 7) } \\ & \hline \end{aligned}$	Design Limit (Note 8)	Units
$\phi_{2}$ CLK, $\phi_{2}$ Clock Frequency	MIN		0.70		1.0	MHz
	MAX		4.0	2.0	2.1	
SCLK, Serial Data Clock Frequency	MIN				5.0	KHz
	MAX		1000	525	525	
$\mathrm{T}_{\mathrm{C}}$, Conversion Process Time	MIN	Not Including MUX   Addressing and Analog Input Sampling Times	26		26	\$2 cycles
	MAX		32		32	
$t_{\text {ACC }}$, Access Time Delay From $\overline{\mathrm{CS}}$   Falling Edge to DO Data Valid	MIN				1	$\phi_{2}$ cycles
	MAX				3	
tsET-UP, Minimum Set-up Time of $\overline{C S}$ Falling Edge to $\mathrm{S}_{\mathrm{CLK}}$ Rising Edge					$4 / \phi_{2 C L K}+\frac{1}{2 S_{C L K}}$	sec
$\mathrm{t}_{\mathrm{H}} \overline{\mathrm{CS}}, \overline{\mathrm{CS}}$ Hold Time After the Falling Edge of $\mathrm{S}_{\mathrm{CLK}}$					0	ns
t $\overline{\mathrm{CS}}$, Total $\overline{\mathrm{CS}}$ Low Time	MIN				$t_{\text {set-up }}+8 / S_{\text {clk }}$	sec
	MAX					sec
$t_{H D I}$, Minimum DI Hold Time from $\mathrm{S}_{\text {CLK }}$ Rising Edge			0	-	0	ns
$t_{\text {HDO }}$, Minimum DO Hold Time from $\mathrm{S}_{\text {CLK }}$ Falling Edge		$\begin{aligned} & R_{\mathrm{L}}=30 \mathrm{k}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$			10	ns
${ }^{\text {tsDI, Minimum DI Set-up Time to SCLK }}$ Rising Edge			200		400	ns
tDDO, Maximum Delay From ScLK Falling Edge to DO Data Valid		$\begin{aligned} & R_{L}=30 \mathrm{k} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	180	200	250	ns
t TRRI, , Maximum DO Hold Time, ( $\overline{C S}$ Rising edge to DO TRI-STATE)		$\begin{aligned} & R_{L}=3 k, \\ & C_{L}=100 \mathrm{pF} \end{aligned}$	90	150	150	ns

Electrical Characteristics The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}$, unless otherwise specified. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ all other limits $\mathrm{T}_{A}=\mathrm{T}_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions		Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
AC CHARACTERISTICS (Continued)						
$t_{C A}$, Analog Sampling Time	After Address Is Latched$\overline{\mathrm{CS}}=\text { Low }$				3/ScLk $+1 \mu \mathrm{~s}$	sec
$t_{\text {RDO, }}$ Maximum DO	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pf} \\ & \hline \end{aligned}$	"TRI-STATE" to "HIGH" State	75	150	150	ns
Rise Time		"LOW" to "HIGH" State	150	300	300	
$t_{\text {FDO }}$, Maximum DO Fall Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pf} \end{aligned}$	"TRI-STATE" to "LOW" State	75	150	150	ns
		"HIGH" to "LOW" State	150	300	300	
$\mathrm{C}_{\mathrm{IN}^{N}}$, Maximum Input Capacitance	Analog Inputs, ANO-AN10 and $\mathrm{V}_{\text {REF }}$		11		55	pF
	All Others		5		15	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

Note 2: All voltages are measured with respect to ground.
Note 3: Under over voltage conditions $\left(V_{\mathbb{N}}<0 \mathrm{~V}\right.$ and $\left.V_{\mathbb{N}}>V_{C C}\right)$ the maximum input current at any one pin is $\pm 5 \mathrm{~mA}$. If the voltage at more than one pin exceeds $V_{C C}+.3 V$ the total package current must be limited to 20 mA . For example the maximum number of pins that can be over driven at the maximum current level of $\pm 5 \mathrm{~mA}$ is four.

Note 4: Total unadjusted error includes offset, full-scale, linearity, multiplexer, and hold step errors.
Note 5: Two on-chip diodes are tied to each analog input, which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than $V_{C C}$ supply. Be careful during testing at low $V_{C C}$ levels ( 4.5 V ), as high level analog inputs ( 5 V ) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $V_{I N}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of 4.950 VDC over temperature variations, initial tolerance and loading.
Note 6: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Tested Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Design Limits are guaranteed, but not $100 \%$ production tested. These limits are not used to calculate outgoing quality levels.
Note 9: Channel leakage current is measured after the channel selection.
Note 10: 1 count $=V_{\text {REF }} / 256$.
Note 11: Human body model; 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

## Test Circuits

## Leakage Current


tTRI "TRI-STATE"

.OV

D0 Except "TRI-STATE"


Timing Diagrams
DO "TRI-STATE" Rise \& Fall Times


TL/H/9287-6

## Timing Diagrams (Continued)



DO High to Low State


Timing with a continuous ScLK


TL/H/9287-10
*Strobing $\overline{C S}$ High and Low will abort the present conversion and initiate a new serial I/O exchange.

Timing with a gated SCLK and CS Continuously Low


Using $\overline{\mathbf{C S}}$ TO TRI-STATE DO


Note: Strobing CS Low during this time interval will abort the conversion in process.

Timing Diagrams (Continued)


TL/H/9287-13
$\overline{\mathrm{CS}}$ Low During Conversion


## Channel Addressing Table

TABLE I. ADC 0819 Channel Addressing

MUX ADDRESS								ANALOG CHANNEL SELECTED
$\mathrm{A}_{7}$	$\mathrm{A}_{6}$	$\mathrm{A}_{5}$	$\mathrm{A}_{4}$	$\mathrm{A}_{3}$	$\mathrm{A}_{2}$	$\mathrm{A}_{1}$	$\mathrm{A}_{0}$	
0	0	0	0	0	X	X	X	CHO
0	0	0	0	1	X	X	X	CH 1
0	0	0	1	0	X	X	X	CH 2
0	0	0	1	1	X	X	X	CH3
0	0	1	0	0	X	X	X	CH 4
0	0	1	0	1	X	X	X	CH5
0	0	1	1	0	X	X	X	CH6
0	0	1	1	1	X	X	X	CH 7
0	1	0	0	0	X	X	X	CH8
0	1	0	0	1	X	X	X	CH9
0	1	0	1	0	X	X	X	CH10
0	1	0	1	1	X	X	X	CH11
0	1	1	0	0	X	X	X	CH12
0	1	1	0	1	X	X	X	CH13
0	1	1	1	0	X	X	X	CH14
0	1	1	1	1	X	X	X	CH 15
1	0	0	0	0	X	X	X	CH16
1	0	0	0	1	X	X	X	CH17
1	0	0	1	0	X	X	X	CH18
1	0	0	1	1	X	X	X	$V_{\text {TEST }}$
1	0	1	0	0	X	X	X	No Channel Select
1	0	1	0	1	X	X	X	No Channel Select
1	0	1	1	0	X	X	X	No Channel Select
1	0	1	1	1	X	X	X	No Channel Select
1	1	X	X	X	X	X	X	Logic Test Mode*



## Functional Description

### 1.0 DIGITAL INTERFACE

The ADC0819 uses five input/output pins to implement the serial interface. Taking chip select ( $\overline{\mathrm{CS}}$ ) low enables the I/O data lines ( DO and DI ) and the serial clock input ( $\mathrm{S}_{\mathrm{CLK}}$ ). The result of the last conversion is transmitted by the A/D on the DO line, while simultaneously the DI line receives the address data that selects the mux channel for the next conversion. The mux address is shifted in on the rising edge of $\mathrm{S}_{\mathrm{CLK}}$ and the conversion data is shifted out on the falling edge. It takes eight $\mathrm{S}_{\text {CLK }}$ cycles to complete the serial I/O. A second clock ( $\phi_{2}$ ) controls the SAR during the conversion process and must be continuously enabled.

### 1.1 CONTINUOUS SCLK

With a continuous $\mathrm{S}_{\mathrm{CLK}}$ input $\overline{\mathrm{CS}}$ must be used to synchronize the serial data exchange (see Figure 1). The ADC0819 recognizes a valid $\overline{C S}$ one to three $\phi_{2}$ clock periods after the actual falling edge of $\overline{\mathrm{CS}}$. This is implemented to ensure noise immunity of the $\overline{\mathrm{CS}}$ signal. Any spikes on $\overline{\mathrm{CS}}$ less than one $\phi_{2}$ clock period will be ignored. $\overline{\mathrm{CS}}$ must remain low during the complete I/O exchange which takes eight $\mathrm{S}_{\mathrm{CLK}}$ cycles. Although $\overline{\mathrm{CS}}$ is not immediately acknowledged for the purpose of starting a new conversion, the falling edge of $\overline{\mathrm{CS}}$ immediately enables DO to output the MSB (D7) of the previous conversion.
The first $\mathrm{S}_{\mathrm{CLK}}$ rising edge will be acknowledged after a setup time ( $\mathrm{t}_{\text {set-up }}$ ) has elapsed from the falling edge of $\overline{\mathrm{CS}}$. This and the following seven $S_{C L K}$ rising edges will shift in the channel address for the analog multiplexer. Since there are 19 channels only five address bits are utilized. The first five $\mathrm{S}_{\text {CLK }}$ cycles clock in the mux address, during the next three $\mathrm{S}_{\mathrm{CLK}}$ cycles the analog input is selected and sampled. During
this mux address/sample cycle, data from the last conversion is also clocked out on DO. Since D7 was clocked out on the falling edge of $\overline{C S}$ only data bits $D 6-D 0$ remain to be received. The following seven falling edges of $\mathrm{S}_{\text {CLK }}$ shift out this data on DO.

The 8th $\mathrm{S}_{\text {CLK }}$ falling edge initiates the beginning of the A/D's actual conversion process which takes between 26 and 32 $\phi_{2}$ cycles ( $T_{C}$ ). During this time $\overline{\mathrm{CS}}$ can go high to TRISTATE DO and disable the $\mathrm{S}_{\text {CLK }}$ input or it can remain low. If $\overline{\mathrm{CS}}$ is held low a new I/O exchange will not start until the conversion sequence has been completed, however once the conversion ends serial I/O will immediately begin. Since there is an ambiguity in the conversion time ( $T_{C}$ ) synchronizing the data exchange is impossible. Therefore $\overline{\mathrm{CS}}$ should go high before the 26th $\phi_{2}$ clock has elasped and return low after the 32nd $\phi_{2}$ to synchronize serial communication.
A conversion or I/O operation can be aborted at any time by strobing $\overline{\mathrm{CS}}$. If $\overline{\mathrm{CS}}$ is high or low less than one $\phi_{2}$ clock it will be ignored by the A/D. If the $\overline{C S}$ is strobed high or low between 1 to $3 \phi_{2}$ clocks the A/D may or may not respond. Therefore $\overline{\mathrm{CS}}$ must be strobed high or low greater than $3 \phi_{2}$ clocks to ensure recognition. If a conversion or I/O exchange is aborted while in process the consequent data output will be erroneous until a complete conversion sequence has been implemented.

### 1.2 DISCONTINUOUS SCLK

Another way to accomplish synchronous serial communication is to tie $\overline{\mathrm{CS}}$ low continuously and disable $\mathrm{S}_{\mathrm{CLK}}$ after its 8th falling edge (see Figure 2). SCLK must remain low for


FIGURE 1
TL/H/9287-16


Functional Description (Continued)
at least $32 \phi_{2}$ clocks to ensure that the A/D has completed its conversion. If $\mathrm{S}_{\mathrm{CLK}}$ is enabled sooner, synchronizing to the data output on DO is not possible since an end of conversion signal from the A/D is not available and the actual conversion time is not known. With $\overline{\mathrm{CS}}$ low during the conversion time ( $32 \phi_{2}$ max) DO will go high or low after the eighth falling edge of $\mathrm{S}_{\mathrm{CLK}}$ until the conversion is completed. Once the conversion is through DO will transmit the MSB. The rest of the data will be shifted out once $\mathrm{S}_{\text {CLK }}$ is enabled as discussed previously.
If $\overline{C S}$ goes high during the conversion sequence DO is tristated, and the result is not affected so long as $\overline{\mathrm{CS}}$ remains high until the end of the conversion.

### 1.2 MULTIPLEXER ADDRESSING

The five bit mux address is shifted, MSB first, into DI. Input data corresponds to the channel selected as shown in table 1. Care should be taken not to send an address greater than or equal to twenty four (11XXX) as this puts the A/D in a digital testing mode. In this mode the analog inputs CHO thru CH 4 become digital outputs, for our use in production testing.

### 2.0 ANALOG INPUT

### 2.1 THE INPUT SAMPLE AND HOLD

The ADC0819's sample/hold capacitor is implemented in its capacitive ladder structure. After the channel address is received, the ladder is switched to sample the proper analog input. This sampling mode is maintained for $1 \mu \mathrm{sec}$ after the
eighth SCLK falling edge. The hold mode is initiated with the start of the conversion process. An acquisition window of ${ }^{3}{ }^{4} \mathrm{~S}_{\mathrm{CLK}}+1 \mu \mathrm{sec}$ is therefore available to allow the ladder capacitance to settle to the analog input voltage. Any change in the analog voltage before or after the acquisition window will not effect the A/D conversion result.
In the most simple case, the ladder's acquisition time is determined by the $\mathrm{R}_{\text {on }}(3 \mathrm{~K})$ of the multiplexer switches and the total ladder capacitance (90pf). These values yield an acquisition time of about $2 \mu \mathrm{sec}$ for a full scale reading. Therefore the analog input must be stable for at least $2 \mu \mathrm{sec}$ before and $1 \mu \mathrm{sec}$ after the eighth $\mathrm{S}_{\mathrm{CLK}}$ falling edge to ensure a proper conversion. External input source resistance and capacitance will lengthen the acquisition time and should be accounted for.
Other conventional sample and hold error specifications are included in the error and timing specs of the A/D. The hold step and gain error sample/hold specs are taken into account in the ADC0819's total unadjusted error, while the hold settling time is included in the A/D's max conversion time of $32 \phi_{2}$ clock periods. The hold droop rate can be thought of as being zero since an unlimited amount of time can pass between a conversion and the reading of data. However, once the data is read it is lost and another conversion is started.

## Typical Applications

ADC0819-INS8048 INTERFACE


ADC0819 FUNCTIONAL CIRCUIT


## Ordering Information

Temperature Range		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Total Unadjusted Error	$\pm 1 / 2$ LSB	ADC0819BCN	ADC0819BCV	
	$\pm 1$ LSB		ADC0819CCV	ADC0819CIN
Package Outline		N28B	V28A	N28B

National Semiconductor

## ADC0820 8-Bit High Speed $\mu$ P Compatible A/D Converter with Track/Hold Function

## General Description

By using a half-flash conversion technique, the 8 -bit ADC0820 CMOS A/D offers a $1.5 \mu \mathrm{~s}$ conversion time and dissipates only 75 mW of power. The half-flash technique consists of 32 comparators, a most significant 4-bit ADC and a least significant 4-bit ADC.
The input to the ADC0820 is tracked and held by the input sampling circuitry eliminating the need for an external sam-ple-and-hold for signals moving at less than $100 \mathrm{mV} / \mu \mathrm{s}$.
For ease of interface to microprocessors, the ADC0820 has been designed to appear as a memory location or I/O port without the need for external interfacing logic.

## Key Specifications

- Resolution	8 Bits
- Conversion Time	$2.5 \mu \mathrm{~s} \mathrm{Max}$ (RD Mode)
	$1.5 \mu \mathrm{~s}$ Max (WR-RD Mode)
Input signals with slew without external sample	of $100 \mathrm{mV} / \mu \mathrm{s}$ converted -hold to 8 bits
Low Power	75 mW Max
Total Unadjusted Error	$\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LS}$

## Features

- Built-in track-and-hold function
- No missing codes

■ No external clocking

- Single supply-5 $V_{D C}$
- Easy interface to all microprocessors, or operates stand-alone
- Latched TRI-STATE ${ }^{\circledR}$ output
- Logic inputs and outputs meet both MOS and T²L voltage level specifications
- Operates ratiometrically or with any reference value equal to or less than $\mathrm{V}_{\mathrm{CC}}$
- 0 V to 5 V analog input voltage range with single 5 V supply
- No zero or full-scale adjust required
- Overflow output available for cascading
- $0.3^{\prime \prime}$ standard width 20-pin DIP
- 20-pin molded chip carrier package
- 20-pin small outline package
- 20-pin shrink small outline package (SSOP)


## Connection and Functional Diagrams

## Dual-In-Line, Small Outline and

 SSOP Packages

Top View
Molded Chip Carrier Package



TL/H/5501-2
FIGURE 1

See Ordering Information

Absolute Maximum Ratings (Notes $1 \& 2$ )
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ )
10 V
Logic Control Inputs $\quad-0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.2 \mathrm{~V}$
Voltage at Other Inputs and Output
Storage Temperature Range
Package Dissipation at $T_{A}=25^{\circ} \mathrm{C}$
Input Current at Any Pin (Note 5)
Package Input Current (Note 5)
ESD Susceptability (Note 9)

$$
\begin{array}{r}
-0.2 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.2 \mathrm{~V} \\
-0.2 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.2 \mathrm{~V} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
875 \mathrm{~mW} \\
1 \mathrm{~mA} \\
4 \mathrm{~mA} \\
1200 \mathrm{~V}
\end{array}
$$

Lead Temp. (Soldering, 10 sec.$)$

Dual-In-Line Package (plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)	$300^{\circ} \mathrm{C}$
Surface Mount Package	
Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

Operating Raitings (Notes 1 \& 2)
Temperature Range
ADC0820CCJ
ADC0820CIWM
ADC0820BCN, ADC0820CCN
ADC0820BCV, ADC0820CCV
ADC0820BCWM, ADC0820CCWM
ADC0820CCMSA
$T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
4.5 V to 8 V

Converter Characteristics The following specifications apply for RD mode (pin $7=0$ ), $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}(+)=5 \mathrm{~V}$, and $V_{\text {REF }}(-)=G N D$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0820CCJ			ADC0820BCN, ADC0820CCN   ADC0820BCV, ADC0820CCV   ADC0820BCWM, ADC0820CCWM ADC0820CCMSA, ADC0820CIWM			Limit   Units
		Typ (Note 6)		$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 8) } \\ \hline \end{array}$	Typ (Note 6)		Design Limit (Note 8)	
Resolution			8			8	8	Bits
Total Unadjusted Error (Note 3)	ADC0820BCN, BCWM   ADC0820CCJ   ADC0820CCN, CCWM, CIWM, ADC0820CCMSA		$\pm 1$			$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Minimum Reference Resistance		2.3	1.00		2.3	1.2		k $\Omega$
Maximum Reference Resistance		2.3	6		2.3	5.3	6	$\mathrm{k} \Omega$
Maximum $V_{\text {REF }}(+)$ Input Voltage			$\mathrm{V}_{\text {cc }}$			$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{Cc}}$	V
Minimum $\mathrm{V}_{\text {REF }}(-)$ Input Voltage			GND			GND	GND	V
Minimum $\mathrm{V}_{\text {REF }}(+$ ) Input Voltage			$\mathrm{V}_{\text {REF }}(-)$			$\mathrm{V}_{\text {REF }}(-)$	$\mathbf{V}_{\text {REF }}(-)$	V
$\begin{aligned} & \text { Maximum } \mathrm{V}_{\mathrm{REF}}(-) \\ & \text { Input Voltage } \end{aligned}$			$\mathbf{V}_{\text {REF }}(+)$	.		$\mathrm{V}_{\text {REF }}(+)$	$\mathbf{V R E F}^{(+)}$	V
Maximum $\mathrm{V}_{\text {IN }}$ Input Voltage			$\mathrm{v}_{\mathrm{CC}}+0.1$			$\mathrm{V}_{\mathrm{CC}}+0.1$	$\mathrm{v}_{\mathrm{cc}}+0.1$	V
Minimum $\mathrm{V}_{\text {IN }}$ Input Voltage			GND-0.1			GND-0.1	GND-0.1	V
Maximum Analog Input Leakage Current	$\begin{aligned} & \mathrm{CS}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{1 \mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$		$\begin{gathered} 3 \\ -3 \end{gathered}$			$\begin{gathered} 0.3 \\ -0.3 \end{gathered}$	$\begin{gathered} 3 \\ -3 \end{gathered}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$
Power Supply Sensitivity	$V_{C C}=5 \mathrm{~V} \pm 5 \%$	$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB

DC Electrical Characteristics The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified.
Boldface limits apply from $T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions		ADC0820CCJ			ADC0820BCN, ADC0820CCN   ADC0820BCV, ADC0820CCV ADC0820BCWM, ADC0820CCWM ADC0820CCMSA, ADC0820CIWM			Limit Units
			Typ (Note 6)	$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 7) } \end{aligned}$	Design Limit (Note 8)	Typ   (Note 6)	```Tested Limit (Note 7)```	Design Limit (Note 8)	
$V_{\text {IN(1) }}$, Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}$		2.0			2.0	2.0	V
		Mode		3.5			3.5	3.5	V
$\mathrm{V}_{\text {IN(0) }}$, Logical "0" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}$		0.8			0.8	0.8	V
		Mode		1.5			1.5	1.5	V
${ }^{I} \mathrm{~N}(1)$, Logical " 1 " Input Current	$\begin{aligned} & V_{I N(1)}=5 \mathrm{~V} ; \overline{\mathrm{CS}, \overline{\mathrm{RD}}} \\ & \mathrm{~V}_{I N(1)}=5 \mathrm{~V} ; \mathrm{WR} \\ & \mathrm{~V}_{I N(1)}=5 \mathrm{~V} ; \text { Mode } \\ & \hline \end{aligned}$		$\begin{gathered} 0.005 \\ 0.1 \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 3 \\ 200 \\ \hline \end{gathered}$		$\begin{gathered} 0.005 \\ 0.1 \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 0.3 \\ 170 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 3 \\ 200 \\ \hline \end{gathered}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{A}$
InN(0), Logical " 0 " Input Current	$V_{I N(0)}=O V ; \overline{C S}, \overline{R D}, \overline{W R},$Mode		-0.005	-1		-0.005		-1	$\mu \mathrm{A}$
VOUT(1), Logical "1" Output Voltage	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, \text { IOUT }=-360 \mu \mathrm{~A} ; \\ & \mathrm{DBO}-\mathrm{DB7} ; \overline{\mathrm{OFL}}, \overline{\mathrm{INT}} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=-10 \mu \mathrm{~A} ; \\ & \mathrm{DBO}-\mathrm{DB}, \overline{\mathrm{OFL}}, \frac{\mathrm{INT}}{} \end{aligned}$			$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 2.8 \\ & 4.6 \end{aligned}$	$2.4$ $4.5$	$\mathrm{V}$   V
$V_{\text {OUT(0), }}$, Logical " 0 " Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \text {; } \\ & \mathrm{DBO}-\mathrm{DB} 7, \overline{\mathrm{OFL}}, \overline{\mathrm{INT}, \mathrm{RDY}} \end{aligned}$			0.4			0.34	0.4	V
Iout, TRI-STATE Output Current	$\begin{aligned} & V_{\text {OUT }}=5 \mathrm{~V} ; \text { DB0-DB7, RDY } \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} ; \mathrm{DB}-\mathrm{DB7}, \mathrm{RDY} \\ & \hline \end{aligned}$		$\begin{gathered} 0.1 \\ -0.1 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ -3 \end{gathered}$		$\begin{gathered} 0.1 \\ -0.1 \\ \hline \end{gathered}$	$\begin{gathered} 0.3 \\ -0.3 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ -3 \end{gathered}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$
Isource, Output Source Current	$\frac{V_{\mathrm{OUT}}}{\mathrm{INT}}=0 \mathrm{~V} ; \mathrm{DBO}-\mathrm{DB} 7, \overline{\mathrm{OFL}}$		$\begin{gathered} -12 \\ -9 \end{gathered}$	$\begin{gathered} -6 \\ -4.0 \\ \hline \end{gathered}$		$\begin{gathered} -12 \\ -9 \end{gathered}$	$\begin{aligned} & -7.2 \\ & -5.3 \\ & \hline \end{aligned}$	$\begin{gathered} -6 \\ -4.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
IsINK, Output Sink Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=5 \mathrm{~V} ; \mathrm{DB} 0-\mathrm{DB7}, \overline{\mathrm{OFL}}, \\ & \text { INT, RDY } \end{aligned}$		14	7		14	8.4	7	mA .
ICC, Supply Current	$\overline{\mathrm{CS}}=\overline{\mathrm{WR}}=\overline{\mathrm{RD}}=0$		7.5	15		7.5	13	15	mA

AC Electrical Characteristics The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\text {REF }}(+)=5 \mathrm{~V}$, $\mathrm{V}_{\text {REF }}(-)=0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter		Conditions	Typ (Note 6)		Design Limit (Note 8)	Units
$\mathrm{t}_{\text {CRD }}$, Conversion Time for RD Mode		Pin $7=0$, (Figure 2)	1.6		2.5	$\mu \mathrm{s}$
$t_{\text {ACCO }}$, Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)		$\operatorname{Pin} 7=0$, (Figure 2)	$\mathrm{t}_{\text {CRD }}+20$		$\mathrm{t}_{\text {CRD }}+50$	ns
tcWR-RD, Conversion Time for WR-RD Mode		Pin $7=V_{C C} ; t_{W R}=600 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{RD}}=600 \mathrm{~ns}$; (Figures 3a and 3b)			1.52	$\mu \mathrm{S}$
twr, Write Time	Min	Pin $7=V_{\text {CC }}$; (Figures $3 a$ and $3 b$ )   (Note 4) See Graph		600		ns
	Max		50			$\mu \mathrm{s}$
$\mathrm{t}_{\text {RD }}$, Read Time Min		Pin $7=V_{\text {CC }}$; (Figures $3 a$ and $3 b$ )   (Note 4) See Graph		600		ns
$t_{\text {ACC1 }}$, Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)		Pin $7=V_{\mathrm{CC}}, \mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\text {; }}$ (Figure 3a) $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	190		280	ns
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	210		320	ns
$t_{\text {ACC2 }}$, Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Valid)		$\begin{aligned} & \text { Pin } 7=V_{\mathrm{CC}}, \mathrm{t}_{\mathrm{RD}}>\mathrm{t}_{\mathrm{j}} \text {; (Figure 3b) } \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	70		120	ns
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	90		150	ns
$t_{\text {ACC3 }}$, Access Time (Delay from Rising Edge of RDY to Output Valid)		$\mathrm{R}_{\text {PULLUP }}=1 \mathrm{k}$ and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	30			ns

AC Electrical Characteristics (Continued) The following specifications apply for $V_{C C}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, $\mathrm{V}_{\text {REF }}(+)=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}(-)=0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Tested Limit (Note 7)	$\begin{gathered} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 8) } \\ \hline \end{gathered}$	Units
$\mathfrak{t}_{1}$, Internal Comparison Time	Pin $7=V_{\text {CC }}$; (Figures $3 b$ and 4) $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	800		1300	ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$, TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{D}}$ to Hi-Z State)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	100		200	ns
tintL, Delay from Rising Edge of WR to Falling Edge of $\overline{N T}$		$t_{\text {RD }}+200$		$\begin{gathered} t_{1} \\ t_{\text {RD }}+290 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tiNTH, Delay from Rising Edge of $\overline{\mathrm{AD}}$ to Rising Edge of $\mathbb{N T}$	(Figures 2, 3a and 3b) $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	125		225	ns
tinthwr, Delay from Rising Edge of WR to Rising Edge of $\overline{\text { INT }}$	(Figure 4), $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	175		270	ns
$\mathrm{t}_{\text {RDY }}$, Delay from $\overline{\text { CS }}$ to RDY	(Figure 2), $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Pin $7=0$	50		100	ns
$\mathrm{t}_{\text {ID }}$, Delay from $\overline{\mathrm{NT}}$ to Output Valid	(Figure 4)	20		50	ns
$\mathrm{t}_{\mathrm{RI}}$, Delay from $\overline{\mathrm{RD}}$ to $\overline{\mathrm{NT}}$	$\operatorname{Pin} 7=V_{C C}, t_{R D}<t_{1}$   (Figure 3a)	200		290	ns
tp, Delay from End of Conversion to Next Conversion	(Figures 2, 3a, $3 b$ and 4) (Note 4) See Graph			500	ns
Slew Rate, Tracking		0.1			$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{CVIN}^{\text {, Analog Input Capacitance }}$		45			pF
COUT, Logic Output Capacitance		5			pF
$\mathrm{C}_{\mathrm{IN}^{\prime}}$, Logic Input Capacitance		5			pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to the GND pin, unless otherwise specified.
Note 3: Total unadjusted error includes offset, full-scale, and linearity errors.
Note 4: Accuracy may degrade if $t_{W R}$ or $t_{R D}$ is shorter than the minimum value specified. See Accuracy vs $t_{W R}$ and Accuracy vs $t_{R D}$ graphs.
Note 5: When the input voltage $\left(\mathrm{V}_{1 N}\right)$ at any pin exceeds the power supply rails ( $\mathrm{V}_{\mathbb{N}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathbb{N}}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 1 mA or less. The 4 mA package input current limits the number of pins that can exceed the power supply boundaries with a 1 mA current limit to four.
Note 6: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Design limits are guaranteed but not $100 \%$ tested. These limits are not used to calculate outgoing quality levels.
Note 9: Human body model, 100 pF discharaged through a $1.5 \mathrm{k} \Omega$ resistor.

## TRI-STATE Test Circuits and Waveforms



$\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$
TL/H/5501-4


## Timing Diagrams



Note: On power-up the state of INT can be high or low.
FIGURE 2. RD Mode (Pin 7 is Low)


TL/H/5501-8

FIGURE 3a. WR-RD Mode (Pin 7 is High and $\mathrm{t}_{\text {RD }}<\mathrm{t}_{\mathrm{I}}$ )


Typical Performance Characteristics


Conversion Time (RD Mode) vs Temperature



Accuracy vs $V_{\text {REF }}$

$* 1 \mathrm{LSB}=\frac{\mathrm{V}_{\text {REF }}}{256}$


Output Current vs Temperature


TL/H/5501-11

## Description of Pin Functions

	e	Function
1	$\mathrm{V}_{\text {IN }}$	Analog input; range $=$ GND $\leq$
2	DB0	TRI-STATE data output-bit 0 (LSB)
3	DB1	TRI-STATE data output-bit 1
4	DB2	TRI-STATE data output-bit 2
5	DB3	TRI-STATE data output-bit 3
6	WR/RDY	WR-RD Mode    ed on the falling edge of $\overline{W R}$. Approximately 800 ns (the preset internal time out, $t_{1}$ ) after the $\overline{W R}$ rising edge, the result of the conversion will be strobed into the output latch, provided that $\overline{\mathrm{RD}}$ does not occur prior to this time out (see Figures $3 a$ and $3 b$ ).   RD Mode   RDY: This is an open drain output (no internal pull-up device). RDY will go low after the falling edge of $\overline{\mathrm{CS}}$; RDY will go TRI-STATE when the result of the conversion is strobed into the output latch. It is used to simplify the interface to a microprocessor system (see Figure 2).
7	Mode	Mode: Mode selection input-it is internally tied to GND through a $50 \mu \mathrm{~A}$ current source.   RD Mode: When mode is low WR-RD Mode: When mode is high
8	$\overline{R D}$	WR-RD Mode   With $\overline{C S}$ low, the TRI-STATE data outputs (DB0-DB7) will be activated when $\overline{R D}$ goes low (see Figure 4). $\overline{R D}$ can also be used to increase the speed of the converter by reading data prior to the preset internal time out ( $\mathrm{t}, \sim 800 \mathrm{~ns}$ ). If this is done, the data result transferred to output latch is latched after the falling edge of the $\overline{\mathrm{RD}}$ (see Figures $3 a$ and $3 b$ ).   RD Mode   With $\overline{\mathrm{CS}}$ low, the conversion will start with $\overline{\mathrm{RD}}$ going low, also $\overline{\mathrm{RD}}$ will enable the TRI-STATE data outputs at the completion of the conversion. RDY going TRISTATE and INT going low indicates the completion of the conversion (see Figure 2).

### 1.0 Functional Description

### 1.1 GENERAL OPERATION

The ADC0820 uses two 4-bit flash A/D converters to make an 8 -bit measurement (Figure 1). Each flash ADC is made up of 15 comparators which compare the unknown input to a reference ladder to get a 4 -bit result. To take a full 8 -bit reading, one flash conversion is done to provide the 4 most significant data bits (via the MS flash ADC). Driven by the 4 MSBs, an internal DAC recreates an analog approximation of the input voltage. This analog signal is then subtracted from the input, and the difference voltage is converted by a second 4 -bit flash ADC (the LS ADC), providing the 4 least significant bits of the output data word.


The internal DAC is actually a subsection of the MS flash converter. This is accomplished by using the same resistor ladder for the A/D as well as for generating the DAC signal. The DAC output is actually the tap on the resistor ladder which most closely approximates the analog input. In addition, the "sampled-data" comparators used in the ADC0820 provide the ability to compare the magnitudes of several analog signals simultaneously, without using input summing amplifiers. This is especially useful in the LS flash ADC, where the signal to be converted is an analog difference.

### 1.0 Functional Description (Continued)

### 1.2 THE SAMPLED-DATA COMPARATOR

Each comparator in the ADC0820 consists of a CMOS inverter with a capacitively coupled input (Figure 5). Analog switches connect the two comparator inputs to the input capacitor ( C ) and also connect the inverter's input and output. This device in effect now has one differential input pair. A comparison requires two cycles, one for zeroing the comparator, and another for making the comparison.
In the first cycle, one input switch and the inverter's feedback switch (Figure 5a) are closed. In this interval, C is charged to the connected input (V1) less the inverter's bias voltage ( $\mathrm{V}_{\mathrm{B}}$, approximately 1.2 V ). In the second cycle (Figure $5 b$ ), these two switches are opened and the other (V2) input's switch is closed. The input capacitor now subtracts its stored voltage from the second input and the difference is amplified by the inverter's open loop gain. The inverter's input ( $\mathrm{V}_{\mathrm{B}}{ }^{\prime}$ ) becomes
$V_{B}-\left(V_{1}-V_{2}\right) \frac{C}{C+C_{S}}$
and the output will go high or low depending on the sign of $V_{B}{ }^{\prime}-V_{B}$.


The actual circuitry used in the ADC0820 is a simple but important expansion of the basic comparator described above. By adding a second capacitor and another set of switches to the input (Figure 6), the scheme can be expanded to make dual differential comparisons. In this circuit, the feedback switch and one input switch on each capacitor ( $Z$ switches) are closed in the zeroing cycle. A comparison is then made by connecting the second input on each capacitor and opening all of the other switches (S switches). The change in voltage at the inverter's input, as a result of the change in charge on each input capacitor, will now depend on both input signal differences.

### 1.3 ARCHITECTURE

In the ADC0820, one bank of 15 comparators is used in each 4-bit flash A/D converter (Figure 7). The MS (most significant) flash ADC also has one additional comparator to detect input overrange. These two sets of comparators operate alternately, with one group in its zeroing cycle while the other is comparing.


TL/H/5501-13

$$
\begin{aligned}
& \cdot V_{B^{\prime}}-V_{B}=\left(V_{2}-V_{1}\right) \frac{C}{C+C_{S}} \\
& \bullet V_{O^{\prime}}=\frac{-A}{C+C_{S}}\left[C V 2-C V_{1}\right]
\end{aligned}
$$

$\bullet \mathrm{V}_{\mathrm{O}}$ is dependent on $\mathrm{V} 2-\mathrm{V} 1$

FIGURE 5b. Compare Phase


FIGURE 6. ADC0820 Comparator (from MS Flash ADC)

## Detailed Block Diagram





FIGURE 7

### 1.0 Functional Description (Continued)

When a typical conversion is started, the $\overline{W R}$ line is brought low. At this instant the MS comparators go from zeroing to comparison mode (Figure 8). When WR is returned high after at least 600 ns , the output from the first set of comparators (the first flash) is decoded and latched. At this point the two 4-bit converters change modes and the LS (least significant) flash ADC enters its compare cycle. No less than 600 ns later, the $\overline{R D}$ line may be pulled low to latch the lower 4 data bits and finish the 8 -bit conversion. When $\overline{\mathrm{RD}}$ goes low, the flash A/Ds change state once again in preparation for the next conversion.
Figure 8 also outlines how the converter's interface timing relates to its analog input ( $\mathrm{V}_{\mathrm{IN}}$ ). In WR-RD mode, $\mathrm{V}_{\mathrm{IN}}$ is measured while $\overline{W R}$ is low. In RD mode, sampling occurs during the first 800 ns of $\overline{\mathrm{RD}}$. Because of the input connections to the ADC0820's LS and MS comparators, the converter has the ability to sample $\mathrm{V}_{\mathrm{IN}}$ at one instant (Section 2.4), despite the fact that two separate 4-bit conversions are being done. More specifically, when WR is low the MS flash is in compare mode (connected to $\mathrm{V}_{\mathrm{IN}}$ ), and the LS flash is in zero mode (also connected to $\mathrm{V}_{\mathrm{IN}}$ ). Therefore both flash ADCs sample $V_{I N}$ at the same time.

### 1.4 DIGITAL INTERFACE

The ADC0820 has two basic interface modes which are selected by strapping the MODE pin high or low.

## RD Mode

With the MODE pin grounded, the converter is set to Read mode. In this configuration, a complete conversion is done by pulling $\overline{\mathrm{RD}}$ low until output data appears. An $\overline{\mathrm{NT}}$ line is provided which goes low at the end of the conversion as well as a RDY output which can be used to signal a processor that the converter is busy or can also serve as a system Transfer Acknowledge signal.


When in RD mode, the comparator phases are internally triggered. At the falling edge of $\overline{\mathrm{RD}}$, the MS flash converter goes from zero to compare mode and the LS ADC's comparators enter their zero cycle. After 800 ns , data from the MS flash is latched and the LS flash ADC enters compare mode. Following another 800 ns, the lower 4 bits are recovered.

## WR then RD Mode

With the MODE pin tied high, the A/D will be set up for the WR-RD mode. Here, a conversion is started with the $\overline{W R}$ input; however, there are two options for reading the output data which relate to interface timing. If an interrupt driven scheme is desired, the user can wait for INT to go low before reading the conversion result (Figure B). INT will typically go low 800 ns after $\overline{\mathrm{WR}}$ 's rising edge. However, if a shorter conversion time is desired, the processor need not wait for $\overline{\mathrm{NT}}$ and can exercise a read after only 600 ns (Figure $A$ ). If this is done, INT will immediately go low and data will appear at the outputs.


TL/H/5501-17
FIGURE A. WR-RD Mode (Pin 7 is High and $\mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\mathrm{l}}$ )


TL/H/5501-18
FIGURE B. WR-RD Mode (Pin 7 is High and $t_{\text {RD }}>t_{1}$ )

## Stand-Alone

For stand-alone operation in WR-RD mode, $\overline{C S}$ and $\overline{\mathrm{RD}}$ can be tied low and a conversion can be started with WR. Data will be valid approximately 800 ns following $\overline{W R}$ 's rising edge.

WR-RD Mode (Pin 7 is High) Stand-Alone Operation


TL/H/5501-19

### 1.0 Functional Description (Continued)



TL/H/5501-20
Note: MS means most significant
LS means least significant

## FIGURE 8. Operating Sequence (WR-RD Mode)

## OTHER INTERFACE CONSIDERATIONS

In order to maintain conversion accuracy, $\overline{\mathrm{WR}}$ has a maximum width spec of $50 \mu \mathrm{~s}$. When the MS flash ADC's sam-pled-data comparators (Section 1.2) are in comparison mode ( $\overline{\mathrm{WR}}$ is low), the input capacitors (C, Figure 6) must hold their charge. Switch leakage and inverter bias current can cause errors if the comparator is left in this phase for too long.
Since the MS flash ADC enters its zeroing phase at the end of a conversion (Section 1.3), a new conversion cannot be started until this phase is complete. The minimum spec for this time ( $t_{p}$, Figures 2, 3a, 3b, and 4) is 500 ns .

### 2.0 Analog Considerations

### 2.1 REFERENCE AND INPUT

The two $V_{\text {REF }}$ inputs of the ADC0820 are fully differential and define the zero to full-scale input range of the $A$ to $D$ converter. This allows the designer to easily vary the span of the analog input since this range will be equivalent to the voltage difference between $\mathrm{V}_{\mathrm{IN}}(+)$ and $\mathrm{V}_{\mathrm{IN}}(-)$. By reducing $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}(+)-\mathrm{V}_{\text {REF }}(-)\right)$ to less than 5 V , the sensitivity of the converter can be increased (i.e., if $\mathrm{V}_{\text {REF }}=2 \mathrm{~V}$ then $1 \mathrm{LSB}=7.8 \mathrm{mV}$ ). The input/reference arrangement also facilitates ratiometric operation and in many cases the chip power supply can be used for transducer power as well as the $\mathrm{V}_{\mathrm{REF}}$ source.
This reference flexibility lets the input span not only be varied but also offset from zero. The voltage at $\mathrm{V}_{\text {REF }}(-)$ sets the input level which produces a digital output of all zeroes. Though $\mathrm{V}_{\mathrm{IN}}$ is not itself differential, the reference design affords nearly differential-input capability for most measurement applications. Figure 9 shows some of the configurations that are possible.

### 2.2 INPUT CURRENT

Due to the unique conversion techniques employed by the ADC0820, the analog input behaves somewhat differently than in conventional devices. The A/D's sampled-data comparators take varying amounts of input current depending on which cycle the conversion is in.
The equivalent input circuit of the ADC0820 is shown in Figure 10a. When a conversion starts (WR low, WR-RD mode), all input switches close, connecting $\mathrm{V}_{\mathrm{IN}}$ to thirty-one 1 pF capacitors. Although the two 4-bit flash circuits are not both in their compare cycle at the same time, $\mathrm{V}_{\mathbb{N}}$ still sees all input capacitors at once. This is because the MS flash converter is connected to the input during its compare interval and the LS flash is connected to the input during its zeroing phase (Section 1.3). In other words, the LS ADC uses $\mathrm{V}_{\mathbb{I N}}$ as its zero-phase input.
The input capacitors must charge to the input voltage through the on resistance of the analog switches (about 5 $\mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ ). In addition, about 12 pF of input stray capacitance must also be charged. For large source resistances, the analog input can be modeled as an RC network as shown in Figure 10b. As $R_{S}$ increases, it will take longer for the input capacitance to charge.
In RD mode, the input switches are closed for approximately 800 ns at the start of the conversion. In WR-RD mode, the time that the switches are closed to allow this charging is the time that $\overline{W R}$ is low. Since other factors force this time to be at least 600 ns , input time constants of 100 ns can be accommodated without special consideration. Typical total input capacitance values of 45 pF allow $\mathrm{R}_{\mathrm{S}}$ to be $1.5 \mathrm{k} \Omega$ without lengthening $\overline{W R}$ to give $V_{\mathbb{N}}$ more time to settle.

### 2.0 Analog Considerations (Continued)

External Reference 2.5V Full-Scale


TL/H/5501-21

Power Supply as Reference


TL/H/5501-22

Input Not Referred to GND


TL/H/5501-23
FIGURE 9. Analog Input Options


TL/H/5501-24
FIGURE 10a


TL/H/5501-25

### 2.3 INPUT FILTERING

It should be made clear that transients in the analog input signal, caused by charging current flowing into $V_{I N}$, will not degrade the A/D's performance in most cases. In effect the ADC0820 does not "look" at the input when these transients occur. The comparators' outputs are not latched while $\overline{\mathrm{WR}}$ is low, so at least 600 ns will be provided to charge the ADC's input capacitance. It is therefore not necessary to filter out these transients by putting an external cap on the $\mathrm{V}_{\mathrm{IN}}$ terminal.

### 2.4 INHERENT SAMPLE-HOLD

Another benefit of the ADC0820's input mechanism is its ability to measure a variety of high speed signals without the help of an external sample-and-hold. In a conventional SAR type converter, regardless of its speed, the input must remain at least $1 / 2$ LSB stable throughout the conversion process if full accuracy is to be maintained. Consequently, for many high speed signals, this signal must be externally sampled, and held stationary during the conversion.

Sampled-data comparators, by nature of their input switching, already accomplish this function to a large degree (Section 1.2). Although the conversion time for the ADC0820 is $1.5 \mu \mathrm{~s}$, the time through which $\mathrm{V}_{\mathrm{IN}}$ must be $1 / 2$ LSB stable is much smaller. Since the MS flash ADC uses $V_{I N}$ as its "compare" input and the LS ADC uses $\mathrm{V}_{\mathrm{IN}}$ as its "zero" input, the ADC0820 only "samples" $V_{\text {IN }}$ when $\overline{W R}$ is low (Sections 1.3 and 2.2). Even though the two flashes are not done simultaneously, the analog signal is measured at one instant. The value of $\mathrm{V}_{\mathrm{IN}}$ approximately 100 ns after the rising edge of $\overline{W R}$ (100 ns due to internal logic prop delay) will be the measured value.
Input signals with slew rates typically below $100 \mathrm{mV} / \mu \mathrm{s}$ can be converted without error. However, because of the input time constants, and charge injection through the opened comparator input switches, faster signals may cause errors. Still, the ADC0820's loss in accuracy for a given increase in signal slope is far less than what would be witnessed in a conventional successive approximation device. An SAR type converter with a conversion time as fast as $1 \mu \mathrm{~s}$ would still not be able to measure a 5 V 1 kHz sine wave without the aid of an external sample-and-hold. The ADC0820, with no such help, can typically measure $5 \mathrm{~V}, 7 \mathrm{kHz}$ waveforms.

### 3.0 Typical Applications

8-Bit Resolution Configuration


TL/H/5501-26

9-Bit Resolution Configuration

3.0 Typical Applications (Continued)


TL/H/5501-30
Fast Infinite Sample-and-Hold



## Ordering Information

Part Number	Total Unadjusted Error	Package	Temperature Range
ADC0820BCV		V20A--Molded Chip Carrier	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ADC0820BCWM	$\pm 1 / 2$ LSB	M20B-Wide Body Small Outline	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ADC0820BCN		N20A-Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ADC0820CCJ		J20A-Cerdip	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ADC0820CCMSA		$\begin{gathered} \text { MSA20- Shrink Small } \\ \text { Outline } \\ \text { Package } \end{gathered}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ADC0820CCV	$\pm 1$ LSB	V20A-Molded Chip Carrier	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ADC0820CCWM		M20B-Wide Body Small Outline	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ADC0820CIWM		M20B-Wide Body Small Outline	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ADC0820CCN		N20A-Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

# ADC0831/ADC0832/ADC0834 and ADC0838 8-Bit Serial I/O A/D Converters with Multiplexer Options 

## General Description

The ADC0831 series are 8-bit successive approximation A/D converters with a serial I/O and configurable input multiplexers with up to 8 channels. The serial I/O is configured to comply with the NSC MICROWIRETM serial data exchange standard for easy interface to the COPSTM family of processors, and can interface with standard shift registers or $\mu \mathrm{Ps}$.
The 2-, 4- or 8-channel multiplexers are software configured for single-ended or differential inputs as well as channel assignment.
The differential analog voltage input allows increasing the common-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

## Features

- NSC MICROWIRE compatible-direct interface to COPS family processors
- Easy interface to all microprocessors, or operates "stand-alone"
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ voltage reference
- No zero or full-scale adjust required
- 2-, 4- or 8-channel multiplexer options with address logic
- Shunt regulator allows operation with high voltage supplies
■ 0 V to 5 V input range with single 5 V power supply
- Remote operation with serial digital data link
- TTL/MOS input/output compatible
- $0.3^{\prime \prime}$ standard width, 8 -, 14- or 20-pin DIP package
- 20 Pin Molded Chip Carrier Package (ADC0838 only)
- Surface-Mount Package


## Key Specifications

- Resolution	8 Bits
■ Total Unadjusted Error	$\pm 1 / 2$ LSB and $\pm 1 \mathrm{LSB}$
- Single Supply	5 VDC
- Low Power	15 mW
- Conversion Time	$32 \mu \mathrm{~s}$

## Typical Application



TL/H/5583-1

Absolute Maximum Ratings (Notes 1 \& 2 )
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Current into V + (Note 3)
15 mA
Supply Voltage, VCC (Note 3)
6.5 V

Voltage
Logic Inputs
$-0.3 V$ to $V_{C C}+0.3 V$
Analog Inputs
Input Current per Pin (Note 4) Package
Storage Temperature
$-0.3 V$ to $V_{C C}+0.3 V$
$\pm 5 \mathrm{~mA}$
$\pm 20 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Board Mount)

Lead Temperature (Soldering 10 sec.$)$	
Dual-In-Line Package (Plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (Ceramic)	$300^{\circ} \mathrm{C}$
Molded Chip Carrier Package	
$\quad$ Vapor Phase $(60$ sec.)	$215^{\circ} \mathrm{C}$
$\quad$ Infrared (15 sec.)	$220^{\circ} \mathrm{C}$
ESD Susceptibility (Note 5)	2000 V

## Operating Ratings (Notes 1 \& 2)

Supply Voltage, $\mathrm{V}_{\mathrm{CC}}$	$4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.3 \mathrm{~V}_{\mathrm{DC}}$
Temperature Range	$\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$

ADC0831/8BCJ,
ADC0831/4/8CCJ,
ADC0832BIWM,
ADC0831/2/4/8CIWM $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ADC0831/2//4/8BCN,
ADC0838BCV,
ADC0831/2/4/8CCN,
ADC0838CCV,
ADC0831/2/4/8CCWM $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

## Converter and Multiplexer Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}+=\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}} \leq \mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, and $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$ unless otherwise specified. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ -

Parameter	Conditions	BCJ, BIWM, CIWM and CCJ Devices			BCV, CCV, CCWM, BCN and CCN Devices			Units
		Typ (Note 12)	Tested Limit (Note 13)	Design Limit (Note 14)	Typ (Note 12)	$\begin{gathered} \text { Tested } \\ \text { Limit } \\ \text { (Note 13) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Design } \\ \text { Limit } \\ \text { (Note 14) } \\ \hline \end{gathered}$	

## CONVERTER AND MULTIPLEXER CHARACTERISTICS

Total Unadjusted Error   ADC0838BCV   ADC0831/2/4/8BCN   ADC0831/8BCJ   ADC0832BIWM   ADC0838CCV   ADC0831/2/4/8CCN   ADC0831/2/4/8CCWM   ADC0831/4/8CCJ   ADC0831/2/4/8CIWM	$\begin{aligned} & \mathrm{V}_{\text {REF }}=5.00 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$		$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \\ & \\ & \pm 1 \\ & \pm 1 \end{aligned}$		$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \\ & \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \\ & \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	LSB
Minimum Reference Input Resistance (Note 7)		3.5	1.3	3.5	1.3	1.3	k $\Omega$
Maximum Reference Input Resistance (Note 7)		3.5	5.9	3.5	5.4	5.9	k $\Omega$
Maximum Common-Mode Input Range (Note 8)			$\mathbf{V}_{\mathbf{c c}}+0.05$		$\mathrm{V}_{\mathrm{CC}}+0.05$	$\mathrm{V}_{\mathbf{c c}}+0.05$	V
Minimum Common-Mode Input Range (Note 8)			GND -0.05		GND -0.05	GND-0.05	V
DC Common-Mode Error		$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB

## Converter and Multiplexer Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}_{C C}=\mathrm{V}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, and $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$ unless otherwise specified. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$.

Parameter	Conditions	BCJ, BIWM, CIWM and CCJ Devices			BCV, CCV, CCWM, BCN and CCN Devices			Units
		Typ (Note 12)	Tested Limit (Note 13)	Design Limit (Note 14)	Typ (Note 12)	Tested Limit (Note 13)	Design Limit (Note 14)	

## CONVERTER AND MULTIPLEXER CHARACTERISTICS (Continued)

Change in zero error from $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to internal zener operation (Note 3)	$\begin{aligned} & 15 \mathrm{~mA} \text { into } \mathrm{V}+ \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{N} . \mathrm{C} . \\ & \mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V} \end{aligned}$		1			1	1	LSB
$\mathrm{V}_{\mathrm{Z}}$, internal MIN   diode breakdown MAX   (at $\mathrm{V}_{+}$) (Note 3)	15 mA into $\mathrm{V}+$		$\begin{aligned} & 6.3 \\ & 8.5 \end{aligned}$			$\begin{aligned} & 6.3 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 8.5 \end{aligned}$	V
Power Supply Sensitivity	$V_{C C}=5 \mathrm{~V} \pm 5 \%$	$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB
loff, Off Channel Leakage Current (Note 9)	On Channel = 5V,   Off Channel = OV		$\begin{gathered} -0.2 \\ -1 \end{gathered}$			-0.2	-1	$\mu \mathrm{A}$
	On Channel = OV,   Off Channel $=5 \mathrm{~V}$		$\begin{gathered} +0.2 \\ +1 \end{gathered}$			$+0.2$	+1	$\mu \mathrm{A}$
ION, On Channel Leakage Current (Note 9)	On Channel = OV,   Off Channel $=5 \mathrm{~V}$		$\begin{gathered} -0.2 \\ -1 \end{gathered}$			-0.2	-1	$\mu \mathrm{A}$
	On Channel $=5 \mathrm{~V}$, Off Channel = OV		$\begin{gathered} +0.2 \\ +1 \end{gathered}$			+0.2	+1	$\mu \mathrm{A}$
DIGITAL AND DC CHARACTERISTICS								
$\mathrm{V}_{\mathrm{IN}(1)}$, Logical "1" Input Voltage (Min)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		2.0			2.0	2.0	V
$\mathrm{V}_{\mathrm{IN}(0)}$, Logical "0" Input Voltage (Max)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		0.8			0.8	0.8	V
IN(1), Logical " 1 " Input Current (Max)	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$	0.005	1		0.005	1	1	$\mu \mathrm{A}$
IIN(0), Logical " 0 " Input Current (Max)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-1		-0.005	-1	-1	$\mu \mathrm{A}$
Vout(1), Logical "1" Output Voltage (Min)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=-360 \mu \mathrm{~A} \\ & \mathrm{I}_{\text {OUT }}=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.5 \end{array}$			$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{array}{r} 2.4 \\ 4.5 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Vout(0), Logical "0" Output Voltage (Max)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \end{aligned}$		0.4			0.4	0.4	V
IOUT, TRI-STATE Output Current (Max)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.1 \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} -\mathbf{3} \\ \mathbf{3} \\ \hline \end{gathered}$		$\begin{gathered} -0.1 \\ 0.1 \\ \hline \end{gathered}$	$\begin{array}{r} -3 \\ +3 \\ \hline \end{array}$	$\begin{array}{r} -3 \\ +3 \\ \hline \end{array}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$
ISOURCE, Output Source Current (Min)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-14	-6.5		-14	-7.5	-6.5	mA
ISINK, Output Sink Current (Min)	$V_{\text {OUT }}=V_{\text {CC }}$	16	8.0		16	9.0	8.0	mA
$I_{C C}$, Supply Current (Max) ADC0831, ADC0834, ADC0838		0.9	2.5		0.9	2.5	2.5	mA
ADC0832	Includes Ladder Current	2.3	6.5		2.3	6.5	6.5	mA

## AC Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter		Conditions	Typ (Note 12)	$\begin{gathered} \text { Tested } \\ \text { Limit } \\ \text { (Note 13) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Design } \\ \text { Limit } \\ \text { (Note 14) } \\ \hline \end{gathered}$	Limit Units
fCLK, Clock Frequency	Min   Max			10	400	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
$\mathrm{t}_{\mathrm{c}}$, Conversion Time		Not including MUX Addressing Time		8		1/fCLK
Clock Duty Cycle (Note 10)	Min   Max				$\begin{array}{r} 40 \\ 60 \\ \hline \end{array}$	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
${ }^{\text {tsET-UP, }} \overline{\text { CS }}$ Falling Edge or Data Input Valid to CLK Rising Edge		-			250	ns
$t_{\text {HOLD }}$, Data Input Valid after CLK Rising Edge					90	ns
$\mathrm{t}_{\mathrm{pd} 1}, \mathrm{t}_{\mathrm{pd} 0}$-CLK Falling Edge to Output Data Valid (Note 11)		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { Data MSB First } \\ & \text { Data LSB First } \\ & \hline \end{aligned}$	$\begin{aligned} & 650 \\ & 250 \end{aligned}$		$\begin{gathered} 1500 \\ 600 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$,-Rising Edge of CS to Data Output and		$C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$   (see TRI-STATE ${ }^{\circledR}$ Test Circuits)	125		250	ns
SARS Hi-Z		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pf}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		500		ns
$\mathrm{C}_{\mathrm{IN}}$, Capacitance of Logic Input			5			pF
Cout, Capacitance of Logic Outputs			5	$\cdot$	,	pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to the ground plugs.
Note 3: Internal zener diodes ( 6.3 to 8.5 V ) are connected from $\mathrm{V}+$ to GND and $\mathrm{V}_{\mathrm{CC}}$ to GND . The zener at $\mathrm{V}+$ can operate as a shunt regulator and is connected to $\mathrm{V}_{\mathrm{CC}}$ via a conventional diode. Since the zener voltage equals the $\mathrm{A} / \mathrm{D}$ 's breakdown voltage, the diode insures that $\mathrm{V}_{\mathrm{CC}}$ will be below breakdown when the device is powered from $V+$. Functionality is therefore guaranteed for $V+$ operation even though the resultant voltage at $V_{C C}$ may exceed the specified Absolute Max of 6.5V. It is recommended that a resistor be used to limit the max current into V+. (See Figure 3 in Functional Description Section 6.0)

Note 4: When the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ at any pin exceeds the power supply rails ( $\mathrm{V}_{\mathrm{IN}}<\mathrm{V}^{-}$or $\mathrm{V}_{I N}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors.
Note 7: Cannot be tested for ADC0832.
Note 8: For $\mathrm{V}_{\mathrm{IN}}(-) \geq \mathrm{V}_{\mathbb{I}}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater then the $\mathrm{V}_{\mathrm{CC}}$ supply. Be careful, during testing at low $\mathrm{V}_{\mathrm{CC}} \mathrm{levels}$ ( 4.5 V ), as high level analog inputs ( 5 V ) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathrm{IN}}$ or $\mathrm{V}_{\mathrm{REF}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 9: Leakage current is measured with the clock not switching.
Note 10: A $40 \%$ to $60 \%$ clock duty cycle range insures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits, the minimum, time the clock is high or the minimum time the clock is low must be at least $1 \mu \mathrm{~s}$. The maximum time the clock can be high is $60 \mu \mathrm{~s}$. The clock can be stopped when low so long as the analog input voltage remains stable.
Note 11: Since data, MSB first, is the output of the comparator used in the successive approximation loop, an additional delay is built in (see Block Diagram) to allow for comparator response time.
Note 12: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 13: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 14: Guaranteed but not $100 \%$ production tested. These limits are not used to calculate outgoing quality levels.

## Typical Performance Characteristics




Power Supply Current vs fclk




Note: For ADC0832 add IREF.


TL/H/5583-2


TL/H/5583-40

Leakage Current Test Circuit


## TRI-STATE Test Circuits and Waveforms




TL/H/5583-4


TL/H/5583-23

## Timing Diagrams



## Timing Diagrams (Continued)



TL/H/5583-27


TL/H/5583-28

ADC0834 Timing


TL/H/5583-5

## ADC0838 Timing



* Make sure clock edge \#18 clocks in the LSB before $\overline{\mathrm{SE}}$ is taken low



## Connection Diagrams

ADC0838 8-Channel MUX
Small Outline/Dual-In-Line Package (J, M and N)


Top View

ADC0834 4-Channel MUX
Small Outline/Dual-In-Line Package (J, M, and N)


TL/H/5583-30
Top View
COM internally connected to A GND

ADC0832 2-Channel MUX
Dual-In-Line Package ( J and N )


COM internally connected to GND
$\mathrm{V}_{\mathrm{REF}}$ internally connected to $\mathrm{V}_{\mathrm{CC}}$.

## ADC0832 2-Channel MUX

Small Outline Package (M)

TL/H/5583-41
Top View

> ADC0838 8-Channel MUX
> Molded Chip Carrier (PCC) Package (V)

## Functional Description

### 1.0 MULTIPLEXER ADDRESSING

The design of these converters utilizes a sample-data comparator structure which provides for a differential analog input to be converted by a successive approximation routine.
The actual voltage converted is always the difference between an assigned " + " input terminal and a " -" input terminal. The polarity of each input terminal of the pair being converted indicates which line the converter expects to be the most positive. If the assigned " + " input is less than the "-" input the converter responds with an all zeros output code.
A unique input multiplexing scheme has been utilized to provide multiple analog channels with software-configurable single-ended, differential, or a new pseudo-differential option which will convert the difference between the voltage at any analog input and a common terminal. The analog signal conditioning required in transducer-based data acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground referenced inputs and true differential inputs as well as signals with some arbitrary reference voltage.
A particular input configuration is assigned during the MUX addressing sequence, prior to the start of a conversion. The MUX address selects which of the analog inputs are to be enabled and whether this input is single-ended or differen-
tial. In the differential case, it also assigns the polarity of the channels. Differential inputs are restricted to adjacent channel pairs. For example channel 0 and channel 1 may be selected as a different pair but channel 0 or 1 cannot act differentially with any other channel. In addition to selecting differential mode the sign may also be selected. Channel 0 may be selected as the positive input and channel 1 as the negative input or vice versa. This programmability is best illustrated by the MUX addressing codes shown in the following tables for the various product options.
The MUX address is shifted into the converter via the DI line. Because the ADC0831 contains only one differential input channel with a fixed polarity assignment, it does not require addressing.
The common input line on the ADC0838 can be used as a pseudo-differential input. In this mode, the voltage on this pin is treated as the "-" input for any of the other input channels. This voltage does not have to be analog ground; it can be any reference potential which is common to all of the inputs. This feature is most useful in single-supply application where the analog circuitry may be biased up to a potential other than ground and the output signals are all referred to this potential.

TABLE I. Multiplexer/Package Options

Part   Number	Number of Analog Channels		Number of   Package Pins
	Single-Ended	Differential	
ADC0831	1	1	8
ADC0832	2	1	14
ADC0834	4	2	20
ADC0838	8	4	8

Functional Description (Continued)
TABLE II. MUX Addressing: ADC0838
Single-Ended MUX Mode

MUX Address				Analog Single-Ended Channel \#								
$\frac{\text { SGL/ }}{\overline{\text { DIF }}}$	ODD/ SIGN			0	1	2	3	4	5	6	7	COM
1	0	0	0	+								-
1	0	0	1			+						-
1	0	1	0					+				-
1	0	1	1							+		-
1	1	0	0		+							-
1	1	0	1				+					-
1	1	1	0						+			-
1	1	1	1								$+$	-

## Differential MUX Mode

MUX Address				Analog Differential Channel-Pair \#							
$\frac{\text { SGL/ }}{\overline{\text { DIF }}}$	$\begin{aligned} & \text { ODD/ } \\ & \text { SIGN } \end{aligned}$	SELECT		0		1		2		3	
		1	0	0	1	2	3	4	5	6	7
0	0	0	0	+	-						
0	0	0	1			$+$	-				
0	0	1	0					+	-		
0	0	1	1							+	-
0	1	0	0	-	+						
0	1	0	1			-	+				
0	1	1	0					-	+		
0	1	1	1							-	+

TABLE III. MUX Addressing: ADC0834
Single-Ended MUX Mode

MUX Address			Channel \#			
SGL/   DIF	ODD/   SIGN	SELECT	$\mathbf{0}$	$\mathbf{1}$	2	$\mathbf{3}$
	$\mathbf{1}$	0				
1	0	0			+	
1	0	1		+		
1	1	0				+
1	1	1				

COM is internally tied to A GND

Differential MUX Mode

MUX Address			Channel \#			
SGL/   DIF	ODD/   SIGN	SELECT	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
	$\mathbf{1}$	0		-		
0	0	1			+	-
0	0	0	-	+		
0	1	1			-	+
0	1	1				

## Functional Description (Continued)

Since the input configuration is under software control, it can be modified, as required, at each conversion. A channel can be treated as a single-ended, ground referenced input for one conversion; then it can be reconfigured as part of a differential channel for another conversion. Figure 1 illustrates the input flexibility which can be achieved.
The analog input voltages for each channel can range from 50 mV below ground to 50 mV above $\mathrm{V}_{\mathrm{CC}}$ (typically 5 V ) without degrading conversion accuracy.

### 2.0 THE DIGITAL INTERFACE

A most important characteristic of these converters is their serial data link with the controlling processor. Using a serial communication format offers two very significant system improvements; it allows more function to be included in the converter package with no increase in package size and it can eliminate the transmission of low level analog signals by locating the converter right at the analog sensor; transmitting highly noise immune digital data back to the host processor.

To understand the operation of these converters it is best to refer to the Timing Diagrams and Functional Block Diagram and to follow a complete conversion sequence. For clarity a separate diagram is shown of each device.

1. A conversion is initiated by first pulling the $\overline{\mathrm{CS}}$ (chip select) line low. This line must be held low for the entire conversion. The converter is now waiting for a start bit and its MUX assignment word.
2. A clock is then generated by the processor (if not provided continuously) and output to the A/D clock input.
3. On each rising edge of the clock the status of the data in (DI) line is clocked into the MUX address shift register. The start bit is the first logic " 1 " that appears on this line (all leading zeros are ignored). Following the start bit the converter expects the next 2 to 4 bits to be the MUX assignment word.


FIGURE 1. Analog Input Multiplexer Options for the ADC0838

## Functional Description (Continued)

4. When the start bit has been shifted into the start location of the MUX register, the input channel has been assigned and a conversion is about to begin. An interval of $1 / 2$ clock period (where nothing happens) is automatically inserted to allow the selected MUX channel to settle. The SAR status line goes high at this time to signal that a conversion is now in progress and the DI line is disabled (it no longer accepts data).
5. The data out (DO) line now comes out of TRI-STATE and provides a leading zero for this one clock period of MUX settling time.
6. When the conversion begins, the output of the SAR comparator, which indicates whether the analog input is greater than (high) or less than (low) each successive voltage from the internal resistor ladder, appears at the DO line on each falling edge of the clock. This data is the result of the conversion being shifted out (with the MSB coming first) and can be read by the processor immediately.
7. After 8 clock periods the conversion is completed. The SAR status line returns low to indicate this $1 / 2$ clock cycle later.
8. If the programmer prefers, the data can be provided in an LSB first format [this makes use of the shift enable ( $\overline{\mathrm{SE}}$ ) control line]. All 8 bits of the result are stored in an output shift register. On devices which do not include the SE control line, the data, LSB first, is automatically shifted out the DO line, after the MSB first data stream. The DO line then goes low and stays low until $\overline{C S}$ is returned high. On the ADC0838 the $\overline{\text { SE }}$ line is brought out and if held high, the value of the LSB remains valid on the DO line. When $\overline{\mathrm{SE}}$ is forced low, the data is then clocked out LSB first. The ADC0831 is an exception in that its data is only output in MSB first format.
9. All internal registers are cleared when the $\overline{\mathrm{CS}}$ line is high. If another conversion is desired, $\overline{\mathrm{CS}}$ must make a high to low transition followed by address information.

a) Ratiometric

The DI and DO lines can be tied together and controlled through a bidirectional processor I/O bit with one wire. This is possible because the DI input is only "looked-at" during the MUX addressing interval while the DO line is still in a high impedance state.

### 3.0 REFERENCE CONSIDERATIONS

The voltage applied to the reference input to these converters defines the voltage span of the analog input (the difference between $\mathrm{V}_{\text {IN }}(\mathrm{MAX})$ and $\left.\mathrm{V}_{\text {IN(MIN })}\right)$ over which the 256 possible output codes apply. The devices can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pin must be connected to a voltage source capable of driving the reference input resistance of typically $3.5 \mathrm{k} \Omega$. This pin is the top of a resistor divider string used for the successive approximation conversion.
In a ratiometric system, the analog input voltage is proportional to the voltage used for the A/D reference. This voltage is typically the system power supply, so the $V_{\text {REF }}$ pin can be tied to $\mathrm{V}_{\mathrm{CC}}$ (done internally on the ADC0832). This technique relaxes the stability requirements of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy, where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. The LM385 and LM336 reference diodes are good low current devices to use with these converters.
The maximum value of the reference is limited to the $V_{C C}$ supply voltage: The minimum value, however, can be quite small (see Typical Performance Characteristics) to allow direct conversions of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $\mathrm{V}_{\text {REF }}$ / 256).


TL/H/5583-10
b) Absolute with a Reduced Span

FIGURE 2. Reference Examples

## Functional Description (Continued)

### 4.0 THE ANALOG INPUTS

The most important feature of these converters is that they can be located right at the analog signal source and through just a few wires can communicate with a controlling processor with a highly noise immune serial bit stream. This in itself greatly minimizes circuitry to maintain analog signal accuracy which otherwise is most susceptible to noise pickup. However, a few words are in order with regard to the analog inputs should the input be noisy to begin with or possibly riding on a large common-mode voltage.
The differential input of these converters actually reduces the effects of common-mode input noise, a signal common to both selected " + " and " -" inputs for a conversion (60 Hz is most typical). The time interval between sampling the " + " input and then the " - " input is $1 / 2$ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:
$V_{\text {error }}(\max )=V_{\text {PEAK }}\left(2 \pi f_{\mathrm{CM}}\right)\left(\frac{0.5}{f_{\mathrm{CLK}}}\right)$
where $\mathrm{f}_{\mathrm{CM}}$ is the frequency of the common-mode signal,
$V_{\text {PEAK }}$ is its peak voltage value
and $\mathrm{f}_{\mathrm{CLK}}$, is the $\mathrm{A} / \mathrm{D}$ clock frequency.
For a 60 Hz common-mode signal to generate a $1 / 4$ LSB error ( $\approx 5 \mathrm{mV}$ ) with the converter running at 250 kHz , its peak value would have to be 6.63 V which would be larger than allowed as it exceeds the maximum analog input limits. Due to the sampling nature of the analog inputs short spikes of current enter the "+" input and exit the " -" input at the clock edges during the actual conversion. These currents decay rapidly and do not cause errors as the internal comparator is strobed at the end of a clock period. Bypass capacitors at the inputs will average these currents and cause an effective DC current to flow through the output resistance of the analog signal source. Bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$.
This source resistance limitation is important with regard to the DC leakage currents of input multiplexer as well. The worst-case leakage current of $\pm 1 \mu \mathrm{~A}$ over temperature will create a 1 mV input error with a $1 \mathrm{k} \Omega$ source resistance. An op amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

### 5.0 OPTIONAL ADJUSTMENTS

### 5.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{1 \mathrm{~N}(\mathrm{MIN})}$, is not ground a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing any $\mathrm{V}_{\operatorname{IN}}(-)$ input at this $\mathrm{V}_{\mathbb{N}(M \operatorname{MN})}$ value. This utilizes the differential mode operation of the A/D.
The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\mathrm{IN}}(-)$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\operatorname{IN}}(+)$ input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value $\left(1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}\right.$ for $\left.\mathrm{V}_{\text {REF }}=5.000 \mathrm{~V} \mathrm{VC}\right)$.

### 5.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }}$ input (or $\mathrm{V}_{\mathrm{CC}}$ for the ADC0832) for a digital output code which is just changing from 11111110 to 11111111.

### 5.3 Adjustịng for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A $\mathrm{V}_{\mathrm{IN}}(+)$ voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, using 1 LSB = analog span/256) is applied to selected "+" input and the zero reference voltage at the corresponding "-" input should then be adjusted to just obtain the $00_{\text {HEX }}$ to $01_{\text {HEX }}$ code transition.
The full-scale adjustment should be made [with the proper $\mathrm{V}_{\mathbb{I}}(-)$ voltage applied] by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input which is given by:

$$
V_{I N}(+) \text { fs adj }=V_{M A X}-1.5\left[\frac{\left(V_{M A X}-V_{M I N}\right)}{256}\right]
$$

where:

$$
V_{M A X}=\text { the high end of the analog input range }
$$

and
$\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range.
(Both are ground referenced.)
The $\mathrm{V}_{\mathrm{REF}}$ (or $\mathrm{V}_{\mathrm{CC}}$ ) voltage is then adjusted to provide a code change from FE HEX to FFHEX. This completes the adjustment procedure.

### 6.0 POWER SUPPLY

A unique feature of the ADC0838 and ADC0834 is the inclusion of a zener diode connected from the $\mathrm{V}+$ terminal to ground which also connects to the $V_{C C}$ terminal (which is the actual converter supply) through a silicon diode, as shown in Figure 3. (See Note 3)


TL/H/5583-11
FIGURE 3. An On-Chip Shunt Regulator Diode

## Functional Description (Continued)

This zener is intended for use as a shunt voltage regulator to eliminate the need for any additional regulating components. This is most desirable if the converter is to be remotely located from the system power source. Figures 4 and 5 illustrate two useful applications of this on-board zener when an external transistor can be afforded.
An important use of the interconnecting diode between $\mathrm{V}+$ and $V_{C C}$ is shown in Figures 6 and 7. Here, this diode is used as a rectifier to allow the $\mathrm{V}_{\mathrm{CC}}$ supply for the converter

## Applications



FIGURE 4. Operating with a Temperature Compensated Reference


FIGURE 6. Generating $\mathbf{V C C}_{\text {C }}$ from the Converter Clock
to be derived from the clock. The low current requirements of the A/D and the relatively high clock frequencies used (typically in the range of $10 \mathrm{k}-400 \mathrm{kHz}$ ) allows using the small value filter capacitor shown to keep the ripple on the $V_{C C}$ line to well under $1 / 4$ of an LSB. The shunt zener regulator can also be used in this mode. This requires a clock voltage swing which is in excess of $\mathrm{V}_{\mathrm{z}}$. A current limit for the zener is needed, either built into the clock generator or a resistor can be used from the CLK pin to the $\mathrm{V}^{+}$pin.

FIGURE 5. Using the A/D as the System Supply Regulator


TL/H/5583-36
FIGURE 7. Remote SensingClock and Power on 1 Wire

Applications (Continued)
Digital Link and Sample Controlling Software for the Serially Oriented COP420 and the Bit Programmable I/O INS8048


COP CODING EXAMPLE

Mnemonic	Instruction
LEI	ENABLES SIO's INPUT AND OUTPUT
SC	$\mathrm{C}=1$
OGI	$\mathrm{GO}=0(\overline{\mathrm{CS}}=0)$
CLRA	CLEARS ACCUMULATOR
AISC 1	LOADS ACCUMULATOR WITH 1
XAS	EXCHANGES SIO WITH ACCUMULATOR AND STARTS SK CLOCK
LDD	LOADS MUX ADDRESS FROM RAM INTO ACCUMULATOR
NOP	-
XAS	LOADS MUX ADDRESS FROM ACCUMULATOR TO SIO REGISTER
	UCTIONS
XAS	READS HIGH ORDER NIBBLE (4 BITS) INTO ACCUMULATOR
XIS	PUTS HIGH ORDER NIBBLE INTO RAM
CLRA	CLEARS ACCUMULATOR
RC	$\mathrm{C}=0$
XAS	READS LOW ORDER NIBBLE INTO ACCUMULATOR AND STOPS SK
XIS	PUTS LOW ORDER NIBBLE INTO RAM
OGI	$\mathrm{GO}=1(\overline{\mathrm{CS}}=1)$
LEI	DISABLES SIO's InPUT AND OUTPUT



TL/H/5583-13
8048 CODING EXAMPLE

Mnemonic			Instruction
START:	ANL	P1, \#0F7H	;SELECT A/D ( $\overline{\mathrm{CS}}=0$ )
	MOV	B, \#5	;BIT COUNTER $\leftarrow 5$
	MOV	A, \# ADDR	;A $\leftarrow$ MUX ADDRESS
LOOP 1:	RRC	A	;CY ↔ ADDRESS BIT
	JC	ONE	;TEST BIT
			; $\mathrm{BIT}=0$
ZERO:	ANL	P1, \#0FEH	; $\mathrm{Dl} \leftarrow 0$
	JMP	CONT	;CONTINUE
			; $\mathrm{BIT}=1$
ONE:	ORL	P1, \#1	; $\mathrm{DI} \leftarrow 1$
CONT:	CALL	PULSE	;PULSE SK $0 \rightarrow 1 \rightarrow 0$
	DJNZ	B, LOOP 1	;CONTINUE UNTIL DONE
	CALL	PULSE	;EXTRA CLOCK FOR SYNC
	MOV	B, \#8	;BIT COUNTER $\leftarrow 8$
LOOP 2:	CALL	PULSE	;PULSE SK $0 \rightarrow 1 \rightarrow 0$
	IN	A, P1	;CY $\leftarrow$ DO
	RRC	A	
	RRC	A	
	MOV	A, C	;A $\leftarrow$ RESULT
	RLC	A	;A(0) $\leftarrow$ BIT AND SHIFT
	MOV	C, A	; C ↔RESULT
	DJNZ	B, LOOP 2	;CONTINUE UNTIL DONE
RETR			
			;PULSE SUBROUTINE
PULSE:	ORL	P1, \# 04	;SK $\leftarrow 1$
	NOP		;DELAY
	ANL	P1, \#0FBH	;SK $\leftarrow 0$
	RET		

Applications (Continued)

*Pinouts shown for ADC0838.
For all other products tie to
pin functions as shown.



Operating with Ratiometric Transducers

${ }^{*} \mathrm{~V}_{\mathrm{IN}}(-)=0.15 \mathrm{~V}_{\mathrm{CC}}$
$15 \%$ of $V_{C C} \leq V_{X D R} \leq 85 \%$ of $V_{C C}$

Span Adjust: $\mathbf{O V} \leq \mathbf{V}_{\mathbf{I N}} \leq \mathbf{3 V}$


Applications (Continued)
Obtaining Higher Resolution


Controller performs a routine to determine which input polarity (9-bit example) or which channel pair (10-bit example) provides a non-zero output code. This information provides the extra bits.
a) 9-Bit A/D
b) $10-$ Bit A/D

Protecting the Input


TL/H/5583-18

## Applications (Continued)



TL/H/5583-19

[^5]Applications (Continued)
4 mA-20 mA Current Loop Converter


TL/H/5583-20 .



## －No additional connections


－Timing arranged for 40 kHz ，could be changed up or down by component change
－10\％CLK frequency change without component change OK

Applications (Continued)


- Simpler version of 8-channel
- $\overline{\text { CS }}$ derived from long CLK pulse


## Ordering Information

Part Number	Analog Input Channels	Total Unadjusted Error	Package	Temperature Range
ADC0831BCJ ADC0831BCN		$\pm 1 / 2$	Hermetic (J)   Molded ( N )	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$
ADC0831CCJ ADC0831CCN ADC0831CIWM ADC0831CCWM	1	$\pm 1$	Hermetic (J)   Molded (N)   SO(M)   SO(M)	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$
ADC0832BIWM ADC0832BCN		$\pm 1 / 2$	SO(M)   Molded ( N )	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$
ADC0832CIWM ADC0832CCN ADC0832CCWM	2	$\pm 1$	$\begin{gathered} \mathrm{SO}(\mathrm{M}) \\ \text { Molded (N) } \\ \mathrm{SO}(\mathrm{M}) \\ \hline \end{gathered}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$

Ordering Information (Continued)

Part Number	Analog Input Channels	Total Unadjusted Error	Package	Temperature Range
ADC0834BCN		$\pm 1 / 2$	Molded (N)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ADC0834CCJ   ADC0834CCN   ADC0834CCWM   ADC0834CIWM	4	$\pm 1$	Hermetic (J)   Molded ( N ) SO(M) SO(M)	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$
ADC0838BCJ ADC0838BCV ADC0838BCN		$\pm 1 / 2$	$\begin{aligned} & \text { Hermetic (J) } \\ & \text { PCC (V) } \\ & \text { Molded (N) } \end{aligned}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$
ADC0838CCJ   ADC0838CCV   ADC0838CCN   ADC0838CIWM   ADC0838CCWM	8	$\pm 1$	$\begin{aligned} & \text { Hermetic (J) } \\ & \text { PCC (V) } \\ & \text { Molded (N) } \\ & \text { SO(M) } \\ & \text { SO(M) } \end{aligned}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$

See NS Package Number J08A, J14A, J20A, M14B, M20B, N08E, N14A, N20A or V20A

National Semiconductor

## ADC0833 8-Bit Serial I/O A/D Converter with 4-Channel Multiplexer

## General Description

The ADC0833, series is an 8-bit successive approximation A/D converter with a serial I/O and configurable input multiplexer with 4 channels. The serial I/O is configured to comply with the NSC MICROWIRETM serial data exchange standard for easy interface to the COPSTM family of processors, as well as with standard shift registers or $\mu \mathrm{Ps}$.
The 4-channel multiplexer is software configured for singleended or differential inputs when channel assigned by a 4bit serial word.
The differential analog voltage input allows increasing the common-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

## Key Specifications

■ Resolution	8 Bits
■ Total Unadjusted Error	$\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$
■ Single Supply	5 V DC
- Low Power	23 mW
- Conversion Time	$32 \mu \mathrm{~s}$

Features
NSC MICROWIRE compatible-direct interface to COPS family processors

- Easy interface to all microprocessors, or operates "stand alone"
- Works with 2.5V (LM336) voltage reference
- No full-scale or zero adjust required
- Differential analog voltage inputs
- 4-channel analog multiplexer

■ Shunt regulator allows operation with high voltage supplies
■ 0 V to 5 V input range with single 5 V power supply

- Remote operation with serial digital data link
- TTL/MOS input/output compatible

■ $0.3^{\prime \prime}$ standard width 14 -pin DIP package

## Connection and Functional Diagrams

Dual-In-Line Package (J and N)


Order Number ADC0833CCJ, ADC0833BCN or ADC0833CCN See NS Package Number J14A or N14A


TL/H/5607-1

Absolute Maximum Ratings (Notes 1 \& 2)					
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Board Mount)			0.8W
		Lead Temperature (Soldering, 10 sec .)			
Current into V+(Note 3)$15 \mathrm{~mA}$		Dual-Iñ-Line Package (Plastic)			$260^{\circ} \mathrm{C}$
Supply Voltage, $\mathrm{V}_{\text {CC }}$ (Note 3) ${ }^{\text {3 }}$ ( 6.5 V		Dual-In-Line Package (Ceramic)			$300^{\circ} \mathrm{C}$
Voltage		ESD Susceptibility (Note 5)			2000 V
Logic Inputs -0.3 V to $V_{\mathrm{CC}}+0.3$   Analog Inputs -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3$		Operating Conditions (Notes 1 \& 2)			
Input Current per Pin (Note 4) $\pm 5 \mathrm{~mA}$		Supply Voltage, $\mathrm{V}_{\mathrm{CC}}$			$3 V_{D C}$
Package Input Current (Note 4) $\pm 20 \mathrm{~mA}$		Temperature Range ADC0833CCJ			TMAX
Storage Temperature $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ}$		ADC0833BCN, ADC0833CCN $0^{\circ} \mathrm{C}$			$\begin{aligned} & 85^{\circ} \mathrm{C} \\ & 70^{\circ} \mathrm{C} \end{aligned}$
Electrical Characteristics The following specifications apply for $\mathrm{V}_{C \mathrm{C}}=\mathrm{V}+=5 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=250 \mathrm{kHz}$ and $\mathrm{V}_{\mathrm{REF}} / 2 \leq\left(\mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}\right)$ unless otherwise specified. Boldface limits apply from $\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.					
Parameter	Conditions	Typ (Note 6)		Design Limit (Note 8)	Units
CONVERTER AND MULTIPLEXER CHARACTERISTICS					
Total Unadjusted Error ADC0833BCN ADC0833CCN ADC0833CCJ	$\mathrm{V}_{\text {REF/ }}$ 2 Forced to $2.500 \mathrm{~V}_{\mathrm{DC}}$		$\begin{gathered} \pm 1 / 2 \\ \pm 1 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \hline \end{aligned}$
Minimum Total Ladder Resistance (Note 9) ADC0833CCJ ADC0833BCN/CCN		$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$	2.6	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Maximum Total Ladder Resistance (Note 9) ADC0833CCJ ADC0833BCN/CCN		$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathbf{1 1 . 8} \\ & 10.8 \end{aligned}$	11.8	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Minimum Common-Mode Input Range (Note 10) ADC0833CCJ ADC0833BCN/CCN	All MUX Inputs and COM Input		$\begin{gathered} \text { GND-0.05 } \\ \text { GND-0.05 } \end{gathered}$	GND-0.05	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Maximum Common-Mode Input Range (Note 10) ADC0833CCJ ADC0833BCN/CCN	All MUX Inputs and COM Input		$\begin{gathered} \mathbf{v}_{\mathbf{c c}}+\mathbf{0 . 0 5} \\ \mathrm{V}_{\mathrm{CC}}+0.05 \\ \hline \end{gathered}$	$V_{\text {cc }}+0.05$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \text { DC Common-Mode Error } \\ & \text { ADC0833CCJ } \\ & \text { ADC0833BCN/CCN } \\ & \hline \end{aligned}$		$\begin{array}{r}  \pm 1 / 16 \\ \pm 1 / 16 \\ \hline \end{array}$	$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 4 \\ & \hline \end{aligned}$	$\pm 1 / 4$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Change In Zero   Error From $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$   To Internal Zener   Operation (Note 3)   ADC0833CCJ   ADC0833BCN/CCN	$\begin{aligned} & 15 \mathrm{~mA} \text { Into } \mathrm{V}+ \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{N} . \mathrm{C} . \\ & \mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	1	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$

Electrical Characteristics The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$ and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Electrical Characteristics The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}+=5 \mathrm{~V}$, fCLK $=250 \mathrm{kHz}$ and
$\mathrm{V}_{\text {REF }} / 2 \leq\left(\mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}\right)$ unless otherwise specified. Boldface limits apply from $\mathrm{t}_{\text {MIN }}$ to $\mathrm{t}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$. (Continued)

Parameter	Conditions	Typ   (Note 6)	Tested   Limit   (Note 7)	Design   Limit   (Note 8)	Units

## CONVERTER AND MULTIPLEXER CHARACTERISTICS (Continued)

$\mathrm{V}_{\mathrm{Z}}$, Minimum Internal Diode Breakdown (At V+) (Note 3) ADC0833CCJ ADC0833BCN/CCN	15 mA Into $\mathrm{V}+$		$\begin{aligned} & 6.3 \\ & 6.3 \end{aligned}$	6.3	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
$\mathrm{V}_{\mathrm{Z}}$, Maximum Internal Diode Breakdown (At V+) (Note 3) ADC0833CCJ ADC0833BCN/CCN	15 mA Into $\mathrm{V}+$		$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	8.5	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Power Supply Sensitivity ADC0833CCJ ADC0833BCN/CCN	$\mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%$	$\begin{array}{r}  \pm 1 / 16 \\ \pm 1 / 16 \\ \hline \end{array}$	$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 4 \\ & \hline \end{aligned}$	$\pm 1 / 4$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
loff, Off Channel Leakage Current (Note 11) ADC0833CCJ ADC0833BCN/CCN	On Channel $=5 \mathrm{~V}$, Off Channel $=0 \mathrm{~V}$		$\begin{gathered} -1 \\ -200 \\ -200 \\ \hline \end{gathered}$	-1	$\mu \mathrm{A}$   nA   $\mu \mathrm{A}$   nA
ADC0833CCJ   ADC0833BCN/CCN	On Channel $=0 \mathrm{~V}$, Off Channel $=5 \mathrm{~V}$		$\begin{gathered} 1 \\ 200 \\ 200 \\ \hline \end{gathered}$	1	$\mu \mathrm{A}$   nA   $\mu \mathrm{A}$   nA
Ion, On Channel Leakage Current (Note 11) ADC083CCJ ADC0833BCN/CCN	On Channel $=5 \mathrm{~V}$, Off Channel $=0 \mathrm{~V}$		$\begin{gathered} 1 \\ 200 \\ \\ 200 \\ \hline \end{gathered}$	1	
ADC083CCJ   ADC0833BCN/CCN	On Channel $=0 \mathrm{~V}$, Off Channel $=5 \mathrm{~V}$		$\begin{array}{r} -1 \\ -200 \\ -200 \\ \hline \end{array}$	-1	

DIGITAL AND DC CHARACTERISTICS

```VIN(1), Logical "1" Input Voltage ADC0833CCJ ADC0833BCN/CCN```	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	2.0	V
$V_{\text {IN(0) }}$, Logical "0" Input Voltage ADC0833CCJ ADC0833BCN/CCN	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		$\begin{gathered} 0.8 \\ 0.8 \end{gathered}$	0.8	V
IN(1), Logical "1" Input Current ADC0833CCJ ADC0833BCN/CCN	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	$\begin{aligned} & 0.005 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	$\mu \mathrm{A}$ $\mu \mathrm{A}$

Electrical Characteristics The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}+=5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$ and
$\mathrm{V}_{\text {REF }} / 2 \leq\left(\mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}\right)$ unless otherwise specified. Boldface limits apply from $\mathrm{t}_{\text {MIN }}$ to $\mathrm{t}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$. (Continued)

Parameter	Conditions	Typ (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
DIGITAL AND DC CHARACTERISTICS (Continued)					

I IN(O), Logical "0" Input Current ADC0833CCJ ADC0833BCN/CCN	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	$\begin{aligned} & -0.005 \\ & -0.005 \end{aligned}$	$\begin{aligned} & -1 \\ & -1 \end{aligned}$	-1	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$V_{\text {OUT (1), }}$, Logical " 1 " Output Voltage ADC083зСС J ADC0833BCN/CCN ADC083зСС J ADC0833BCN/CCN	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { IOUT }=-360 \mu \mathrm{~A} \\ & \text { IOUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 2.4 \\ & 2.4 \\ & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Vout(0), Logical "0" Output Voltage ADC0833CCJ ADC0833BCN/CCN	$\mathrm{l}_{\text {OUT }}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		$\begin{gathered} 0.4 \\ 0.4 \end{gathered}$	0.4	V
Iout, TRI-STATE Output Current (DO, SARS) ADC0833CCJ ADC0833BCN/CCN ADC083зСС J ADC0833BCN/CCN	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.1 \\ -0.1 \\ 0.1 \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} -\mathbf{3} \\ -3 \\ \mathbf{3} \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} -\mathbf{3} \\ \mathbf{3} \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
ISOURCE ADC0833CCJ ADC0833BCN/CCN	$V_{\text {OUT }}$ Short to GND	$\begin{aligned} & -14 \\ & -14 \end{aligned}$	$\begin{gathered} -6.5 \\ -7.5 \end{gathered}$	-6.5	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$
IsINK ADC083з C J ADC0833BCN/CCN	$V_{\text {OUT }}$ Short to $\mathrm{V}_{\text {CC }}$	$\begin{aligned} & 16 \\ & 16 \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ 9.0 \end{gathered}$	8.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
I_{C}, Supply Current (Note 3) ADC0833CCJ ADC0833BCN/CCN	$V_{\text {REF }} / 2$ Open Circuit	$\begin{aligned} & 0.9 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	4.5	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$

AC Electrical Characteristics The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ unless otherwise specified. These limits apply for $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	Typ (Note 6)	Tested Limit (Note 7)		Units
fCLK, Clock Frequency $\begin{array}{cc}\text { Min } \\ & \text { Max }\end{array}$,	10	400	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
T_{C}, Conversion Time	Not including MUX Addressing Time		8		1/fCLK
Clock Duty Cycle (Note 12) Min Max				$\begin{array}{r} 40 \\ 60 \\ \hline \end{array}$	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
tset-up, $\overline{\text { CS }}$ Falling Edge or Data Input Valid to CLK Rising Edge				250	ns
$t_{\text {HOLD }}$, Data Input Valid after CLK Rising Edge		,		90	ns
$t_{\text {pd1 }}, t_{\text {pd0 }}$-CLK Falling Edge to Output Data Valid (Note 13)	$C_{L}=100 \mathrm{pF}$ Data MSB First Data LSB First	$\begin{aligned} & 650 \\ & 250 \end{aligned}$		$\begin{gathered} 1500 \\ 600 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$-Rising Edge of $\overline{\mathrm{CS}}$ to Data Output and SARS $\mathrm{Hi}-\mathrm{Z}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$ (see TRI-STATE Test Circuits)	125	500	250	ns ns
C_{IN}, Capacitance of Logic Input		5			pF
Cout, Capacitance of Logic Outputs		5			pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to the ground pins.
Note 3: Internal zener diodes (approx. 7 V) are connected from V^{+}to GND and V_{CC} to GND . The zener at $\mathrm{V}+$ can operate as a shunt regulator and is connected to $V_{C C}$ via a conventional diode. Since the zener voltage equals the A / D 's breakdown voltage, the diode insures that $V_{C C}$ will be below breakdown when the device is powered from V^{+}. Functionality is therefore guaranteed for V^{+}operation even though the resultant voltage at V_{CC} may exceed the specified Absolute Max. of 6.5 V . It is recommended that a resistor be used to limit the max. current into V^{+}.

Note 4: When the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ at any pin exceeds the power supply rails $\left(\mathrm{V}_{\mathrm{IN}}<\mathrm{V}^{-}\right.$or $\left.\mathrm{V}_{\mathbb{I N}}>\mathrm{V}^{+}\right)$the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Design limits are guaranteed but not 100% tested. These limits are not used to calculate outgoing quality levels.
Note 9: See Applications, section 3.0.
Note 10: For $\mathrm{V}_{I N}(-) \geq \mathrm{V}_{I N}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V_{CC} supply. Be careful, during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathbb{N}}$ or $\mathrm{V}_{\text {REF }}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 V_{D C}$ to $5 V_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 V_{D C}$ over temperature variations, initial tolerance and loading.
Note 11: Leakage current is measured with the clock not switching.
Note 12: A 40% to 60% clock duty cycle range insures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits, the minimum time the clock is high or the minimum time the clock is low must be at least $1 \mu \mathrm{~s}$. The maximum time the clock can be high is $60 \mu \mathrm{~s}$. The clocked can be stopped when low so long as the analog input voltage remains stable.
Note 13: Since data, MSB first, is the output of the comparator used in the successive approximation loop, an additional delay is built in (see Block Diagram) to allow for comparator response time.

Timing Diagrams

Data Output Timing

TRI-STATE Test Circuits and Waveforms

Leakage Current Test Circuit

Typical Performance Characteristics

Power Supply
Current vs feLK

Timing Diagram

TL/H/5607-5

Functional Description

1.0 MULTIPLEXER ADDRESSING

The design of the ADC0833 utilizes a sample-data comparator structure which provides for a differential analog input to be converted by a successive approximation routine.
The actual voltage converted is always the difference between an assigned " + " input terminal and a "-" input terminal. The polarity of each input terminal of the pair being converted indicates which line the converter expects to be the most positive. If the assigned "+" input is less than the "-" input the converter responds with an all zeros output code.
A unique input multiplexing scheme has been utilized to provide multiple analog channels with software-configurable single-ended (ground referred) or differential inputs. The analog signal conditioning required in transducer-based data
acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground referenced inputs and true differential inputs.
A particular input configuration is assigned during the MUX addressing sequence, prior to the start of a conversion. The MUX address selects which of the analog inputs are to be enabled and whether this input is single-ended or differential. In the differential case, it also assigns the polarity of the channels. Differential inputs are restricted to adjacent channel pairs. For example channel 0 and channel 1 may be selected as a differential pair. Channel 0 or 1 cannot act differentially with any other channel. In addition to selecting differential mode the sign may also be selected. Channel 0 may be selected as the positive input and channel 1 as the negative input or vice versa. This programmability is best illustrated by the MUX addressing codes shown in the following table. The MUX address is shifted into the converter through the DI line.

TABLE I. MUX Addressing
Single-Ended MUX Mode

Address				Channel \#			
SGL/	$\begin{aligned} & \overline{\text { ODD/ }} \\ & \overline{\text { SIGN }} \end{aligned}$	SELECT		0	1	2	3
DIF		1	0				
1	0	0	1	+			
1	0	1	1			+	
1	1	0	1		$+$		
1	1	1	1			,	$+$

COM is internally ties to a GND

Differential MUX Mode

Address				Channel \#			
SGL/	ODD/ SIGN	SELECT		0	1	2	3
$\overline{\text { DIF }}$		1	0				
0	0	0	1	$+$	-		
0	0	1	1			$+$	-
0	1	0	1	-	$+$		
0	1	1	1			-	+

Functional Description（Continued）

Since the input configuration is under software control，it can be modified，as required，at each conversion．A channel can be treated as a single－ended，ground referenced input for one conversion；then it can be reconfigured as part of a differential channel for another conversion．Figure 1 illus－ trates the input flexibility which can be achieved．
The analog input voltages for each channel can range from 50 mV below ground to 50 mV above V_{CC}（typically 5 V ）with－ out degrading conversion accuracy．

2．0 THE DIGITAL INTERFACE

A most important characteristic of these converters is their serial data link with the controlling processor．Using a serial communication format offers two very significant system im－ provements；it allows more function to be included in the converter package with no increase in package size and it can eliminate the transmission of low level analog signals by locating the converter right at the analog sensor；transmit－
ting highly noise immune digital data back to the host proc－ essor．
To understand the operation of these converters it is best to refer to the Timing Diagram and Functional Block Diagram and to follow a complete conversion sequence．
1．A conversion is initiated by first pulling the $\overline{\mathrm{CS}}$（chip se－ lect）line low．This line must be held low for the entire con－ version．The converter is now waiting for a start bit and its MUX assignment word．
2．A clock is then generated by the processor（if not provid－ ed continuously）and output to the A／D clock input．
3．On each rising edge of the clock the status of the data in （DI）line is clocked into the MUX address shift register．The start bit is the first logic＂ 1 ＂that appears on this line（all leading zeros are ignored）．Following the start bit the con－ verter expects the next 4 bits to be the MUX assignment word．

Functional Description (Continued)

4. When the start bit has been shifted into the start location of the MUX register, the input channel has been assigned and a conversion is about to begin. An interval of $1 / 2$ clock period (where nothing happens) is automatically inserted to allow the selected MUX channel to settle. The SAR status line goes high at this time to signal that a conversion is now in progress and the DI line is disabled (it no longer accepts data).
5. The data out (DO) line now comes out of TRI-STATE and provides a leading zero for this one clock period of MUX settling time.
6. When the conversion begins, the output of the SAR comparator, which indicates whether the analog input is greater than (high) or less than (low) each successive voltage from the internal resistor ladder, appears at the DO line on each falling edge of the clock. This data is the result of the conversion being shifted out (with the MSB coming first) and can be read by the processor immediately.
7. After 8 clock periods the conversion is completed. The SAR status line returns low to indicate this $1 / 2$ clock cycle later.
8. If the programmer prefers, the data can be read in an LSB first format. All 8 bits of the result are stored in an output shift register. The conversion result, LSB first, is automatically shifted out the DO line, after the MSB first data stream. The DO line then goes low and stays low until $\overline{C S}$ is returned high.
9. All internal registers are cleared when the $\overline{\mathrm{CS}}$ line is high. If another conversion is desired, $\overline{\mathrm{CS}}$ must make a high to low transition followed by address information.
The DI and DO lines can be tied together and controlled through a bidirectional processor I/O bit with one wire. This is possible because the Dl input is only "looked-at" during the MUX addressing interval while the DO line is still in a high impedance state.

3.0 REFERENCE CONSIDERATIONS

The ADC0833 is intended primarily for use in circuits requiring absolute accuracy. In this type of system, the analog
inputs vary between very specific voltage limits and the reference voltage for the A/D converter must remain stable with time and temperature. For ratiometric applications, an ADC0834 is a pin-for-pin compatible alternative since it has a $V_{\text {REF }}$ input (note the ADC0834 needs one less bit of mux addressing information).
The voltage applied to the $V_{\text {REF }} / 2$ pin defines the voltage span of the analog input [the difference between $\mathrm{V}_{\mathrm{IN}}(+)$ and $V_{I N}(-)$] over which the 256 possible output codes apply. A full-scale conversion (an all is output code) will result when the voltage difference between a selected " + " input and "-" input is approximately twice the voltage at the $\mathrm{V}_{\mathrm{REF}} / 2$ pin. This internal gain of 2 from the applied reference to the full-scale input voltage allows biasing a low voltage reference diode from the $5 \mathrm{~V}_{D C}$ converter supply. To accommodate a 5 V input span, only a 2.5 V reference is required. The LM385 and LM336 reference diodes are good low current devices to use with these converters. The output code changes in accordance with the following equation:

$$
\text { Output Code }=256\left(\frac{\mathrm{~V}_{\mathrm{IN}}(+)-\mathrm{V}_{\mathrm{IN}}(-)}{2\left(\mathrm{~V}_{\mathrm{REF}} / 2\right)}\right)
$$

where the output code is the decimal equivalent of the 8 -bit binary output (ranging from 0 to 255) and the term $V_{\text {REF }} / 2$ is the voltage from pin 9 to ground.
The $V_{\text {REF }} / 2$ pin is the center point of a two resistor divider (each resistor is $3.5 \mathrm{k} \Omega$) connected from $V_{C C}$ to ground. Total ladder input resistance is the sum of these two equal resistors. As shown in Figure 2, a reference diode with a voltage less than $\mathrm{V}_{\mathrm{CC}} / 2$ can be connected without requiring an external biasing resistor if its current requirements meet the indicated level.
The minimum value of $\mathrm{V}_{\text {REF }} / 2$ can be quite small (see Typical Performance Characteristics) to allow direct conversions of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $\mathrm{V}_{\text {REF }} / 256$).

FIGURE 2. Reference Biasing Examples

Functional Description（Continued）

4．0 THE ANALOG INPUTS

The most important feature of these converters is that they can be located right at the analog signal source and through just a few wires can communicate with a controlling proces－ sor with a highly noise immune serial bit stream．This in itself greatly minimizes circuitry to maintain analog signal accura－ cy which otherwise is most susceptible to noise pickup． However，a few words are in order with regard to the analog inputs should the inputs be noisy to begin with or possibly riding on a large common－mode voltage．
The differential input of these converters actually reduces the effects of common－mode input noise，a signal common to both selected＂+ ＂and＂- ＂inputs for a conversion（ 60 Hz is most typical）．The time interval between sampling the ＂＋＂input and then the＂－＂input is $1 / 2$ of a clock period． The change in the common－mode voltage during this short time interval can cause conversion errors．For a sinusoidal common－mode signal this error is：

$$
\mathrm{V}_{\text {error }}(\max)=\mathrm{V}_{\mathrm{PEAK}}\left(2 \pi \mathrm{f}_{\mathrm{CM}}\right)\left(\frac{0.5}{f_{\mathrm{CLK}}}\right)
$$

where f_{CM} is the frequency of the common－mode signal，

$$
V_{\text {PEAK }} \text { is its peak voltage value }
$$

and $f_{C L K}$ is the A／D clock frequency．
For a 60 Hz common－mode signal to generate a $1 / 4$ LSB error（ $\approx 5 \mathrm{mV}$ ）with the converter running at 250 kHz ，its peak value would have to be 6.63 V which would be larger than allowed as it exceeds the maximum analog input limits．
Due to the sampling nature of the analog inputs short spikes of current enter the＂+ ＂input and exit the＂- ＂input at the clock edges during the actual conversion．These currents decay rapidly and do not cause errors as the internal com－ parator is strobed at the end of a clock period．Bypass ca－ pacitors at the inputs will average these currents and cause an effective DC current to flow through the output resist－ ance of the analog signal source．Bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$ ．
This source resistance limitation is important with regard to the DC leakage currents of input multiplexer as well．The worst－case leakage current of $\pm 1 \mu \mathrm{~A}$ over temperature will create a 1 mV inut error with a $1 \mathrm{k} \Omega$ source resistance．An op amp RC active low pass filter can provide both imped－ ance buffering and noise filtering should a high impedance signal source be required．

5．0 OPTIONAL ADJUSTMENTS

5．1 Zero Error

The zero of the A／D does not require adjustment．If the minimum analog input voltage value， $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$ ，is not ground a zero offset can be done．The converter can be made to output 00000000 digital code for this minimum input voltage by biasing any $\mathrm{V}_{\mathbb{I N}}(-)$ input at this $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$ value．This utilizes the differential mode operation of the A／D．
The zero error of the A／D converter relates to the location of the first riser of the transfer function and can be mea－ sured by grounding the $\mathrm{V}_{\mathrm{IN}}(-)$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input．Zero error is the difference between the actual DC input voltage which
is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value $\left(1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}\right.$ for $\left.\mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}\right)$ ．

5．2 Full－Scale

The full－scale adjustment can be made by applying a differ－ ential input voltage which is $11 / 2$ LSB down from the desired analog full－scale voltage range and then adjusting the mag－ nitude of the $V_{\text {REF }}$ input or $V_{C C}$ for a digital output code which is just changing from 11111110 to 11111111.

5．3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A／D is shifted away from ground（for example，to accommodate an analog input sig－ nal which does not go to ground），this new zero reference should be properly adjusted first．A $\mathrm{V}_{\mathrm{IN}}(+)$ voltage which equals this desired zero reference plus $1 / 2$ LSB（where the LSB is calculated for the desired analog span，using 1 LSB＝analog span／256）is applied to selected＂＋＂input and the zero reference voltage at the corresponding＂－＂ input should then be adjusted to just obtain the $00_{\text {HEX }}$ to $01_{\text {HEX }}$ code transition．
The full－scale adjustment should be made［with the proper $\mathrm{V}_{\mathrm{In}}(-)$ voltage applied］by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input which is given by：

$$
\mathrm{V}_{\mathrm{IN}}(+) \text { fs adj }=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]
$$

where：

$$
V_{M A X}=\text { the high end of the analog input range }
$$

and
$\mathrm{V}_{\mathrm{MIN}}=$ the low end（the offset zero）of the analog range．

（Both are ground referenced．）

The $\mathrm{V}_{\text {REF }} / 2$ voltage is then adjusted to provide a code change from $\mathrm{FE}_{\text {HEX }}$ to $\mathrm{FF}_{\text {HEX }}$ ．This completes the adjust－ ment procedure．

6．0 POWER SUPPLY

A unique feature of the ADC0833 is the inclusion of a 7 V zener diode connected from the V^{+}terminal to ground which also connects to the $V_{C C}$ terminal（which is the actual converter supply）through a silicon diode，as shown in Fig－ ure 3.

TL／H／5607－8

FIGURE 3．An On－Chip Shunt Regulator Diode

Functional Description (Continued)
This zener is intended for use as a shunt voltage regulator to eliminate the need for any additional regulating components. This is most desirable if the converter is to be remotely located from the system power source. Figures 4 and 5 illustrate two useful applications of this on-board zener when an external transistor can be afforded.
An important use of the interconnecting diode between V^{+} and V_{CC} is shown in Figures 6 and 7. Here, this diode is used as a rectifier to allow the V_{CC} supply for the converter

Applications

FIGURE 4. Operating with a Temperature Compensated Reference

TL/H/5607-17
*Note $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6.3 \mathrm{~V}$
FIGURE 6. Generally VCc from the Converter Clock
to be derived from the clock. The low current requirements of the $A / D(\sim 3 \mathrm{~mA})$ and the relatively high clock frequencies used (typically in the range of $10 \mathrm{k}-400 \mathrm{kHz}$) allows using the small value filter capacitor shown to keep the ripple on the V_{CC} line to well under $1 / 4$ of an LSB. The shunt zener regulator can also be used in this mode. This requires a clock voltage swing which is in excess of V_{Z}. A current limit for the zener is needed, either built into the clock generator or a resistor can be used from the CLK pin to the $\mathrm{V}+$ pin.

FIGURE 5. Using the A/D as the System Supply Regulator

TL/H/5607-9
FIGURE 7. Remote Sensing-Clock and Power on 1 Wire

Applications (Continued)
Digital Link and Sample Controlling Software for the Serially Oriented COP420 and the Bit Programmable I/O INS8048

TL/H/5607-10

COP CODING EXAMPLE

Mnemonic
Instruction
LEI ENABLES SIO's INPUT AND OUTPUT
SC $\quad C=1$
OGI
CLR A CLEARS ACCUMULATOR
AISC 1 LOADS ACCUMULATOR WITH 1
XAS EXCHANGES SIO WITH ACCUMULATOR AND STARTS SK CLOCK
LDD LOADS MUX ADDRESS FROM RAM INTO ACCUMULATOR
NOP
XAS
LOADS MUX ADDRESS FROM ACCUMULATOR TO SIO REGISTER \uparrow 8 INSTRUCTIONS
\downarrow
XAS
XIS PUTS HIGH ORDER NIBBLE INTO RAM
CLRA CLEARS ACCUMULATOR
RC $\quad C=0$
XAS READS LOW ORDER NIBBLE INTO ACCUMULATOR AND STOPS SK
XIS PUTS LOW ORDER NIBBLE INTO RAM
OGI GO=1 ($\overline{C S}=1$)
LEI DISABLES SIO's INPUT AND OUTPUT
8048 CODING EXAMPLE

RET

Mnemonic
START:
ANL MOV MOV
LOOP 1: RRC JC ONE

P1, \#0F7H
B, \#5
A, \#ADDR
ONE
ANL P1, \#0FEH
JMP
CONT
ONE: ORL P1,\#1 ;DI $\leftarrow 1$
CONT: CALL PULSE ;PULSESK $0 \rightarrow 1 \rightarrow 0$ DJNZ B,LOOP 1
CALL PULSE
MOV B, \#8
LOOP 2:
IN
IN A
RRC A
RRC A
MOV A, C ;A \leftarrow RESULT
RLC $A \quad ; A(0) \leftarrow$ BIT AND SHIFT
MOV C, A \quad C \leftarrow RESULT
DJNZ B, LOOP 2 ;CONTINUE UNTIL DONE
RETR
PULSE:
NOP
P1, \#04 ;PULSE SUBROUTINE
;SK $\leftarrow 1$
;DELAY
ANL P1, \#OFBH ;SK $\leftarrow 0$
Instruction
;SELECT A/D ($\overline{\mathrm{CS}}=0$) ;BIT COUNTER $\leftarrow 5$
;A \leftarrow MUX ADDRESS ;CY \leftarrow ADDRESS BIT ;TEST BIT ;BIT=0
; $\mathrm{DI} \leftarrow 0$
;CONTINUE
;BIT=1 ;CONTINUE UNTIL DONE ;EXTRA CLOCK FOR SYNC ;BIT COUNTER $\leftarrow 8$;PULSE SK $0 \rightarrow 1 \rightarrow 0$;CY \leftarrow DO

Applications (Continued)

A "Stand-Alone" Hook-Up for ADC0833 Evaluation

Low Cost Remote Temperature Sensor

Applications (Continued)

Digitizing a Current Flow

Operating with Automotive Ratiometric Transducers

Applications (Continued)

TL/H/5607-18

TL/H/5607-19

Protecting the Input

Ordering Information

Part Number	Temperature Range	Total Unadjusted Error
ADC0833BCN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$
ADC0833CCJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$
ADC0833CCN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

ADC08031/ADC08032/ADC08034/ADC08038 8-Bit High-Speed Serial I/O A/D Converters with Multiplexer Options, Voltage Reference, and Track/Hold Function

General Description

The ADC08031/ADC08032/ADC08034/ADC08038 are 8-bit successive approximation A/D converters with serial I/ O and configurable input multiplexers with up to 8 channels. The serial I/O is configured to comply with the NSC MICROWIRETM serial data exchange standard for easy interface to the COPSTM family of controllers, and can easily interface with standard shift registers or microprocessors.
The ADC08034 and ADC08038 provide a 2.6 V band-gap derived reference. For devices offering guaranteed voltage reference performance over temperature see ADC08131, ADC08134 and ADC08138.
A track/hold function allows the analog voltage at the positive input to vary during the actual A/D conversion.
The analog inputs can be configured to operate in various combinations of single-ended, differential, or pseudo-differential modes. In addition, input voltage spans as small as IV can be accommodated.

Applications

- Digitizing automotive sensors
- Process control monitoring
- Remote sensing in noisy environments
- Instrumentation
- Test systems
- Embedded diagnostics

Features

- Serial digital data link requires few I/O pins
- Analog input track/hold function
- 2-, 4-, or 8 -channel input multiplexer options with address logic
■ 0 V to 5 V analog input range with single 5 V power supply
- No zero or full scale adjustment required
- TTL/CMOS input/output compatible
- On chip 2.6 V band-gap reference
- $0.3^{\prime \prime}$ standard width 8 -, 14 -, or 20-pin DIP package
- 14-, 20-pin small-outline packages

Key Specifications

- Resolution

8 bits

- Conversion time ($\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$)
- Power dissipation $8 \mu \mathrm{~s}$ (max)
- Single supply 20 mW (max)
$5 V_{D C}(\pm 5 \%)$
- Total unadjusted error $\pm 1 / 2$ LSB and ± 1 LSB
- No missing codes over temperature

Ordering Information

Industrial $\left(-40^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}\right)$	Package
ADC08031BIN, ADC08031CIN	N08E
ADC08032BIN, ADC08032CIN	N08E
ADC08034BIN, ADC08034CIN	N14A
ADC08038BIN, ADC08038CIN	N20A
ADC08031BIWM, ADC08031CIWM, ADC08032BIWM, ADC08032CIWM, ADC08034BIWM, ADC08034CIWM	M14B
ADC08038BIWM, ADC08038CIWM	M20B

Connection Diagrams

ADC08038
\qquad

TL/H/10555-2

ADC08032
Dual-In-Line Package

TL/H/10555-4

ADC08032
Small Outline Package
$\overline{C S}-1 \quad 14-V_{C C}\left(V_{R E F}\right)$
TL/H/10555-30

TL/H/10555-3

ADC08031

Dual-In-Line Package

TL/H/10555-5

ADC08031 Small Outline Package

TL/H/10555-31

Operating Ratings (Notes 28 3)

Temperature Range
$T_{M I N} \leq T_{A} \leq T_{M A X}$ ADC08031BIN, ADC08031CIN, ADC08032BIN, ADC08032CIN, ADC08034BIN, ADC08034CIN; ADC08038BIN, ADC08038CIN, ADC08031BIWM, ADC08032BIWM, ADC08034BIWM, ADC08038BIWM ADC08031CIWM, ADC08032CIWM, ADC08034CIWM, ADC08038CIWM
Supply Voltage (V_{CC})
4.5 $V_{D C}$ to $6.3 V_{D C}$

$$
-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}
$$

Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {REF }}=+5 \mathrm{~V}_{\mathrm{DC}}$, and $\mathrm{f}_{C L K}=1 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	ADC08031, ADC08032, ADC08034 and ADC08038 with BIN, CIN, BIWM or CIWM Suffixes		Units (Limits)
			Typical (Note 8)	Limits (Note 9)	

CONVERTER AND MULTIPLEXER CHARACTERISTICS

Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}_{C C}=\mathrm{V}_{\text {REF }}=+5 \mathrm{~V}_{\mathrm{DC}}$, and $\mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{\mathbf{A}}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	ADC08031, ADC08032, ADC08034 and ADC08038 with BIN, CIN, BIWM or CIWM Suffixes		Units (Limits)
			Typical (Note 8)	Limits (Note 9)	
DIGITAL AND DC CHARACTERISTICS					
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		2.0	$V(\min)$
$\mathrm{V}_{\text {IN }(0)}$	Logical " 0 "' Input Voltage	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$		0.8	V (max)
$\operatorname{liN(1)}$	Logical "1" Input Current	$\mathrm{V}_{1 \mathrm{~N}}=5.0 \mathrm{~V}$		1	$\mu A(\max)$
$\operatorname{IN}(0)$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		-1	$\mu \mathrm{A}$ (max)
VOUT(1)	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}: \\ & \text { lout }=-360 \mu \mathrm{~A} \\ & \text { lout }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & V(\min) \\ & V(\min) \end{aligned}$
VOUT(0)	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \\ & \hline \end{aligned}$		0.4	V (max)
Iout	TRI-STATE® Output Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$		$\begin{gathered} -3.0 \\ 3.0 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ (max) $\mu \mathrm{A}$ (max)
ISOURCE	Output Source Current	$V_{\text {OUT }}=0 \mathrm{~V}$		-6.5	$\mathrm{mA}(\mathrm{min})$
ISINK	Output Sink Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$		8.0	mA (min)
Icc	Supply Current ADC08031, ADC08034, and ADC08038 ADC08032 (Note 16)	$\overline{\mathrm{CS}}=\mathrm{HIGH}$		$\begin{array}{r} 3.0 \\ 7.0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA}(\max) \\ & \mathrm{mA}(\max) \end{aligned}$
REFERENCE CHARACTERISTICS					
$\mathrm{V}_{\text {REF }}$ OUT	Nominal Reference Output	VREFOUT Option Available Only on ADC08034 and ADC08038	2.6		V

Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=+5 \mathrm{~V}_{\mathrm{DC}}$, and $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ unless otherwise specified. Boldface limits apply for $T_{\mathbf{A}}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 8)	Limits (Note 9)	Units (Limits)
$\mathrm{f}_{\text {CLK }}$	Clock Frequency		10	1	$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{MHz}(\max) \end{aligned}$
	Clock Duty Cycle (Note 14)			$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\%$ (min) \% (max)
T_{C}	Conversion Time (Not Including MUX Addressing Time)	$\mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$1 /$ flCLK $^{(\max)}$ $\mu \mathrm{s}$ (max)
$t_{\text {cA }}$	Acquisition Time			$1 / 2$	1/fCLK (max)
${ }^{\text {tSELECT }}$	CLK High while $\overline{\mathrm{CS}}$ is High		50		ns
tset-up	$\overline{\mathrm{CS}}$ Falling Edge or Data Input Valid to CLK Rising Edge			25	ns (min)
${ }^{\text {thold }}$	Data Input Valid after CLK Rising Edge			20	ns (min)
$t_{\text {pd1 }}, t_{\text {pd0 }}$	CLK Falling Edge to Output Data Valid (Note 15)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}:$ Data MSB First Data LSB First	.	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	ns (max) ns (max)
$t_{1 H}, t_{0 H}$	TRI-STATE Delay from Rising Edge of $\overline{\mathrm{CS}}$ to Data Output and SARS Hi-Z	$C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ (see TRI-STATE Test Circuits)	50		ns
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		180	ns (max)
C_{IN}	Capacitance of Logic Inputs		5	,	pF
Cout	Capacitance of Logic Outputs		5		pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
Note 2: Operating Ratings indicate conditions for which the device is functional. These ratings do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 3: All voltages are measured with respect to $A G N D=D G N D=0 V_{D C}$, unless otherwise specified.
Note 4: When the input voltage $\mathrm{V}_{\mathbb{I N}}$ at any pin exceeds the power supplies (V_{IN} < (AGND or DGND) or $\mathrm{V}_{I N}>\mathrm{V}_{\mathrm{CC}}$) the current at that pin should be limited to 5 mA . The 20 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 5 mA to four pins.
Note 5: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J_{M A X}}, \theta_{J A}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J_{M A X}}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For devices with suffixes $\mathrm{BIN}, \mathrm{CIN}, \mathrm{BIJ}, \mathrm{CIJ}, \mathrm{BIWM}$, and $C I W M ~ T_{J_{M A X}}=125^{\circ} \mathrm{C}$. For devices with suffix $\mathrm{CMJ}, T_{J_{M A X}}=150^{\circ} \mathrm{C}$. The typical thermal resistances $\left(\theta_{J A}\right)$ of these parts when board mounted follow: ADC08031 and ADC08032 with BIN and CIN suffixes $120^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{ADC08034}$ with BIN and CIN suffixes $95^{\circ} \mathrm{C} / \mathrm{W}$, ADC08038 with $B I N$ and $C I N$ suffixes $80^{\circ} \mathrm{C} / \mathrm{W}$. ADC08031 with BIWM and CIWM suffixes $140^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{ADC08032}$ with BIWM and CIWM suffixes $140^{\circ} \mathrm{C} / \mathrm{W}$, ADC08034 with BIWM and CIWM suffixes $140^{\circ} \mathrm{C} / \mathrm{W}$, ADC08038 with BIWM and CIWM suffixes $91^{\circ} \mathrm{C} / \mathrm{W}$.
Note 6: Human body model, 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: See AN450 "Surface Mounting Methods and Their Effect on Product Reliability" or Linear Data Book section "Surface Mount" for other methods of soldering surface mount devices.
Note 8: Typicals are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 9: Guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 10: Total unadjusted error includes offset, full-scale, linearity, multiplexer.
Note 11: Cannot be tested for the ADC08032.
Note 12: For $\mathrm{V}_{\mathrm{IN}(-)} \geq \mathrm{V}_{\mathrm{IN}(+)}$ the digital code will be 00000000 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. During testing at low V_{CC} levels (e.g., 4.5 V), high level analog inputs (e.g., 5 V) can cause an input diode to conduct, especially at elevated temperatures, which will cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode; this means that as long as the analog $\mathrm{V}_{\mathbf{I N}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. Exceeding this range on an unselected channel will corrupt the reading of a selected channel. Achievement of an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{D C}$ over temperature variations, initial tolerance and loading.
Note 13: Channel leakage current is measured after a single-ended channel is selected and the clock is turned off. For off channel leakage current the following two cases are considered: one, with the selected channel tied high ($5 \mathrm{~V}_{\mathrm{DC}}$) and the remaining seven off channels tied low ($0 \mathrm{~V}_{\mathrm{DC}}$), total current flow through the off channels is measured; two, with the selected channel tied low and the off channels tied high, total current flow through the off channels is again measured. The two cases considered for determining on channel leakage current are the same except total current flow through the selected channel is measured.
Note 14: A 40% to 60% duty cycle range insures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits the minimum time the clock is high or low must be at least 450 ns . The maximum time the clock can be high or low is $100 \mu \mathrm{~s}$.
Note 15: Since data, MSB first, is the output of the comparator used in the successive approximation loop, an additional delay is built in (see Block Diagram) to allow for comparator response time.
Note 16: For the ADC08032 $\mathrm{V}_{\text {REF }} I N$ is internally tied to V_{CC}, therefore, for the ADC08032 reference current is included in the supply current.

Typical Performance Characteristics

Linearity Error vs Clock Frequency

Power Supply Current vs Clock Frequency

TL/H/10555-6

Note: For ADC08032 add IREF

Leakage Current Test Circuit

TRI-STATE Test Circuits and Waveforms

TL/H/10555-8

Timing Diagrams

TL/H/10555-10
*To reset these devices, CLK and $\overline{C S}$ must be simultaneously high for a period of tSELECT or greater. Otherwise these devices are compatible with industry standards ADC0831/2/4/8.

Timing Diagrams (Continued)

*LSB first output not available on ADC08031. LSB information is maintained for remainder of clock periods until $\overline{\mathrm{CS}}$ goes high.

ADC08034 Timing

Functional Description

1.0 MULTIPLEXER ADDRESSING

The design of these converters utilizes a comparator structure with built-in sample-and-hold which provides for a differential analog input to be converted by a successiveapproximation routine.
The actual voltage converted is always the difference between an assigned "+" input terminal and a "-" input terminal. The polarity of each input terminal of the pair indicates which line the converter expects to be the most positive. If the assigned " + " input voltage is less than the " - " input voltage the converter responds with an all zeros output code.
A unique input multiplexing scheme has been utilized to provide multiple analog channels with software-configurable single-ended, differential, or pseudo-differential (which will convert the difference between the voltage at any analog input and a common terminal) operation. The analog signal conditioning required in transducer-based data acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground referenced inputs and true differential inputs as well as signals with some arbitrary reference voltage.
A particular input configuration is assigned during the MUX addressing sequence, prior to the start of a conversion. The MUX address selects which of the analog inputs are to be enabled and whether this input is single-ended or differential. Differential inputs are restricted to adjacent channel pairs. For example, channel 0 and channel 1 may be selected as a differential pair but channel 0 or 1 cannot act
differentially with any other channel. In addition to selecting differential mode the polarity may also be selected. Channel 0 may be selected as the positive input and channel 1 as the negative input or vice versa. This programmability is best illustrated by the MUX addressing codes shown in the following tables for the various product options.
The MUX address is shifted into the converter via the DI line. Because the ADC08031 contains only one differential input channel with a fixed polarity assignment, it does not require addressing.
The common input line (COM) on the ADC08038 can be used as a pseudo-differential input. In this mode the voltage on this pin is treated as the "一" input for any of the other input channels. This voltage does not have to be analog ground; it can be any reference potential which is common to all of the inputs. This feature is most useful in single-supply applications where the analog circuity may be biased up to a potential other than ground and the output signals are all referred to this potential.

TABLE I. Multiplexer/Package Options

Part Number	Number of Analog Channels		Number of Package Pins
	Single-Ended	Differential	
ADC08031	1	1	8
ADC08032	2	1	8
ADC08034	4	2	14
ADC08038	8	4	20

TABLE II. MUX Addressing: ADC08038

Single-Ended MUX Mode

MUX Address					Analog Single-Ended Channel \#								
START	$\begin{gathered} \text { SGL/ } \\ \overline{\text { DIF }} \end{gathered}$	$\begin{aligned} & \text { ODD/ } \\ & \text { SIGN } \end{aligned}$	SELECT		0	1	2	3	4	5	6	7	COM
			1	0									
1	1	0	0	0	$+$								-
1	1	0	0	1			+						-
1	1	0	1	0					$+$				-
1	1.	0	1	1							$+$		-
1	1	1	0	0		$+$.					-
1	1	1	0	1				'+					-
1	1	1	1	0	\checkmark					+			-
1	- 1	1	1	1								+	-

Functional Description (Continued)
TABLE II. MUX Addressing: ADC08038 (Continued)
Differential MUX Mode

MUX Address					Analog Differential Channel-Pair \#							
START	$\begin{gathered} \text { SGL/ } \\ \overline{\text { DIF }} \end{gathered}$	ODD/ SIGN	SELECT		0		1		2		3	
START			1	0	0	1	2	3	4	5	6	7
1	0	0	0	0	$+$	-						
1	0	0	0	1			$+$	-				
1	0	0	1	0					$+$	-		
1	0	0	1	1							$+$	-
1	0	1	0	0	-	$+$						
1	0	1	0	1			-	$+$				
1	0	1	1	0					-	$+$		
1	0	1	1	1							-	$+$

TABLE III. MUX Addressing: ADC08034
Single-Ended MUX Mode

MUX Address					Channel \#			
START	SGL/ $\overline{\text { DIF }}$	ODD/ SIGN	SELECT	$\mathbf{0}$	1	2	3	
	1	0	0					
1	1	0	1			+		
1	1	1	0		+			
1	1	1	1				+	

COM is internally tied to AGND

Differential MUX Mode

MUX Address				Channel \#				
START	SGL/ $\overline{\text { DIF }}$	ODD/ SIGN	SELECT	0	1	2	3	
	1	1						
1	0	0	0	+	-			
1	0	0	1			+	-	
1	0	1	0	-	+			
1	0	1	1			-	+	

TABLE IV. MUX Addressing: ADC08032
Single-Ended MUX Mode

MUX Address			Channel \#	
START	SGL/ DIF	ODD/ SIGN	0	1
1	1	0	+	
1	1	1		+

COM is internally tied to AGND

Differential MUX Mode

MUX Address			Channel \#	
START	SGLI $\overline{\text { DIF }}$	ODD/ SIGN	0	1
1	0	0	+	-
1	0	1	-	+

Functional Description (Continued)

Since the input configuration is under software control, it can be modified as required before each conversion. A channel can be treated as a single-ended, ground referenced input for one conversion; then it can be reconfigured as part of a differential channel for another conversion. Figure 1 illustrates the input flexibility which can be achieved.
The analog input voltages for each channel can range from 50 mV below ground to 50 mV above V_{CC} (typically 5 V) without degrading conversion accuracy.

2.0 THE DIGITAL INTERFACE

A most important characteristic of these converters is their serial data link with the controlling processor. Using a serial communication format offers two very significant system improvements; it allows many functions to be included in a small package and it can eliminate the transmission of low level analog signals by locating the converter right at the analog sensor; transmitting highly noise immune digital data back to the host processor.

To understand the operation of these converters it is best to refer to the Timing Diagrams and Functional Block Diagram and to follow a complete conversion sequence. For clarity a separate timing diagram is shown for each device.

1. A conversion is initiated by pulling the $\overline{C S}$ (chip select) line low. This line must be held low for the entire conversion. The converter is now waiting for a start bit and its MUX assignment word.
2. On each rising edge of the clock the status of the data in (DI) line is clocked into the MUX address shift register. The start bit is the first logic " 1 " that appears on this line (all leading zeros are ignored). Following the start bit the converter expects the next 2 to 4 bits to be the MUX assignment word.

FIGURE 1. Analog Input Multiplexer Options for the ADC08038

Functional Description (Continued)

3. When the start bit has been shifted into the start location of the MUX register, the input channel has been assigned and a conversion is about to begin. An interval of $1 / 2$ clock period (where nothing happe: iss) is automatically inserted to allow the selected MUX channel to settle. The SARS line goes high at this time to signal that a conversion is now in progress and the DI line is disabled (it no longer accepts data).
4. The data out (DO) line now comes out of TRI-STATE and provides a leading zero for this one clock period of MUX settling time.
5. During the conversion the output of the SAR comparator indicates whether the analog input is greater than (high) or less than (low) a series of successive voltages generated internally from a ratioed capacitor array (first 5 bits) and a resistor ladder (last 3 bits). After each comparison the comparator's output is shipped to the DO line on the falling edge of CLK. This data is the result of the conversion being shifted out (with the MSB first) and can be read by the processor immediately.
6. After 8 clock periods the conversion is completed. The SARS line returns low to indicate this $1 / 2$ clock cycle later.
7. The stored data in the successive approximation register is loaded into an internal shift register. If the programmer prefers the data can be provided in an LSB first format [this makes use of the shift enable ($\overline{\mathrm{SE}}$) control line]. On the ADC08038 the $\overline{\text { SE }}$ line is brought out and if held high the value of the LSB remains valid on the DO line. When $\overline{\mathrm{SE}}$ is forced low the data is clocked out LSB first. On devices which do not include the $\overline{\mathrm{SE}}$ control line, the data, LSB first, is automatically shifted out the DO line after the MSB first data stream. The DO line then goes low and stays low until $\overline{\mathrm{CS}}$ is returned high. The ADC08031 is an exception in that its data is only output in MSB first format.
8. All internal registers are cleared when the $\overline{\mathrm{CS}}$ line is high and the tsELECT requirement is met. See Data Input Timing under Timing Diagrams. If another conversion is desired $\overline{\mathrm{CS}}$ must make a high to low transition followed by address information.

a) Ratiometric

The DI and DO lines can be tied together and controlled through a bidirectional processor I/O bit with one wire. This is possible because the DI input is only "looked-at" during the MUX addressing interval while the DO line is still in a high impedance state.

3.0 REFERENCE CONSIDERATIONS

The voltage applied to the reference input on these converters, $V_{\text {REF }}$ IN, defines the voltage span of the analog input (the difference between $\mathrm{V}_{\operatorname{IN}(\mathrm{MAX})}$ and $\mathrm{V}_{\operatorname{IN}(\mathrm{MIN})}$ over which the 256 possible output codes apply. The devices can be used either in ratiometric applications or in systems requiring absolute accuracy. The reference pin must be connected to a voltage source capable of driving the reference input resistance which can be as low as $1.3 \mathrm{k} \Omega$. This pin is the top of a resistor divider string and capacitor array used for the successive approximation conversion.
In a ratiometric system the analog input voltage is proportional to the voltage used for the A/D reference. This voltage is typically the system power supply, so the $\mathrm{V}_{\text {REFI }}$ IN pin can be tied to V_{CC} (done internally on the ADC08032). This technique relaxes the stability requirements of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy, where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. For the ADC08034 and the ADC08038 a band-gap derived reference voltage of 2.6 V (Note 8) is tied to $\mathrm{V}_{\text {REF }} O U T$. This can be tied back to $\mathrm{V}_{\text {REF }} \mathrm{IN}$. Bypassing $\mathrm{V}_{\text {REF }} O U T$ with a $100 \mu \mathrm{~F}$ capacitor is recommended. The LM385 and LM336 reference diodes are good low current devices to use with these converters.
The maximum value of the reference is limited to the V_{CC} supply voltage. The minimum value, however, can be quite small (see Typical Performance Characteristics) to allow direct conversions of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $\mathrm{V}_{\text {REF/ }}$ 256).

TL/H/10555-19
b) Absolute with a Reduced Span

Functional Description (Continued)

4.0 THE ANALOG INPUTS

The most important feature of these converters is that they can be located right at the analog signal source and through just a few wires can communicate with a controlling processor with a highly noise immune serial bit stream. This in itself greatly minimizes circuitry to maintain analog signal accuracy which otherwise is most susceptible to noise pickup. However, a few words are in order with regard to the analog inputs should the input be noisy to begin with or possibly riding on a large common-mode voltage.
The differential input of these converters actually reduces the effects of common-mode input noise, a signal common to both selected "+" and "-" inputs for a conversion (60 Hz is most typical). The time interval between sampling the " + " input and then the " - " input is $1 / 2$ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:

$$
\mathrm{V}_{\text {error }}(\max)=\mathrm{V}_{\mathrm{PEAK}}\left(2 \pi \mathrm{f}_{\mathrm{CM}}\right)\left(\frac{0.5}{f_{\mathrm{CLK}}}\right)
$$

where f_{CM} is the frequency of the common-mode signal,
$V_{\text {PEAK }}$ is its peak voltage value
and $\mathrm{f}_{\mathrm{CLK}}$ is the A/D clock frequency.
For a 60 Hz common-mode signal to generate a $1 / 4 \mathrm{LSB}$ error ($\approx 5 \mathrm{mV}$) with the converter running at 250 kHz , its peak value would have to be 6.63 V which would be larger than allowed as it exceeds the maximum analog input limits.
Source resistance limitation is important with regard to the DC leakage currents of the input multiplexer. Bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$. The worst-case leakage current of $\pm 1 \mu \mathrm{~A}$ over temperature will create a 1 mV input error with a $1 \mathrm{k} \Omega$ source resistance. An op amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

5.0 OPTIONAL ADJUSTMENTS

5.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$, is not ground a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing any $\mathrm{V}_{\mathbb{I N}}(-)$ input at this $\mathrm{V}_{\mathbb{I N}(\mathrm{MIN})}$ value. This utilizes the differential mode operation of the A/D.

The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\mathrm{IN}}(-)$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value $\left(1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}\right.$ for $\left.\mathrm{V}_{\text {REF }}=5.000 \mathrm{~V}_{\mathrm{DC}}\right)$.

5.2 Full Scale

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }} \mathrm{IN}$ input (or V_{CC} for the ADC08032) for a digital output code which is just changing from 11111110 to 11111111.

5.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A $\mathrm{V}_{\mathbb{I N}}(+)$ voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, using 1 LSB = analog span/256) is applied to selected " + " input and the zero reference voltage at the corresponding "-" input should then be adjusted to just obtain the $00_{\text {HEX }}$ to $01_{\text {HEX }}$ code transition.
The full-scale adjustment should be made [with the proper $\mathrm{V}_{\mathrm{IN}}(-)$ voltage applied] by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input which is given by:

$$
\mathrm{V}_{\mathrm{IN}}(+) \text { fs adj }=\mathrm{V}_{\text {MAX }}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]
$$

where:
$\mathrm{V}_{\mathrm{MAX}}=$ the high end of the analog input range and
$\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)
The $\mathrm{V}_{\text {REF }} I N$ (or V_{CC}) voltage is then adjusted to provide a code change from FE HEX to FF HEX. This completes the ad- $^{\text {a }}$ justment procedure.

Applications

*Pinouts shown for ADC08038.
For all other products tie to pin functions as shown.

Operating with Ratiometric Transducers

${ }^{-} \mathrm{V}_{\mathrm{IN}}(-)=0.15 \mathrm{~V}$ CC 15% of $V_{C C} \leq V_{X D R} \leq 85 \%$ of $V_{C C}$

Applications (Continued)

Digital Load Cell

TL/H/10555-27

- Uses one more wire than load cell itself
- Two mini-DIPs could be mounted inside load cell for digital output transducer
- Electronic offset and gain trims relax mechanical specs for gauge factor and offset
- Low level cell output is converted immediately for high noise immunity

Applications (Continued)
4 mA-20 mA Current Loop Converter

TL/H/10555-28

- 1500 V isolation at output

ADC08131/ADC08134/ADC08138 8-Bit High-Speed Serial I/O A/D Converters with Multiplexer Options, Voltage Reference, and Track/Hold Function

General Description

The ADC08131/ADC08134/ADC08138 are 8-bit successive approximation A/D converters with serial I/O and configurable input multiplexers with up to 8 channels. The serial I/O is configured to comply with the NSC MICROWIRETM serial data exchange standard for easy interface to the COPSTM family of controllers, and can easily interface with standard shift registers or microprocessors.
All three devices provide a 2.5 V band-gap derived reference with guaranteed performance over temperature.
A track/hold function allows the analog voltage at the positive input to vary during the actual A/D conversion.
The analog inputs can be configured to operate in various combinations of single-ended, differential, or pseudo-differential modes. In addition, input voltage spans as small as 1V can be accommodated.

Applications

- Digitizing automotive sensors
- Process control/monitoring
- Remote sensing in noisy environments
- Embedded diagnostics

Features

- Serial digital data link requires few I/O pins
- Analog input track/hold function

■ 4- or 8-channel input multiplexer options with address logic
■ On-chip 2.5 V band-gap reference ($\pm 2 \%$ over temperature guaranteed)

- No zero or full scale adjustment required
- TTL/CMOS input/output compatible
- 0 V to 5 V analog input range with single 5 V power supply

Key Specifications

Resolution	8 Bits
Conversion time ($\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$)	$8 \mu \mathrm{~s}$ (Max)
Power dissipation	20 mW (Max)
- Single supply	$5 \mathrm{~V}_{\mathrm{DC}}(\pm 5 \%)$
- Total unadjusted error	$\pm 1 / 2$ LSB and ± 1 LSB
- Linearity Error ($\mathrm{V}_{\mathrm{REF}}=2.5 \mathrm{~V}$)	$\pm 1 / 2$ LSB
- No missing codes (over temperature)	
- On-board Reference	+2.5V $\pm 1.5 \%$ (Max)

$8 \mu \mathrm{~s}$ (Max) 20 mW (Max) $5 \mathrm{~V}_{\mathrm{DC}}(\pm 5 \%)$
$\pm 1 / 2$ LSB

- No missing codes (over temperature)

■ On-board Reference $\quad+2.5 \mathrm{~V} \pm 1.5 \%$ (Max)

Ordering Information

Industrial $\left(-40^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}\right)$	Package
ADC08131BIN, ADC08131CIN	N08E
ADC08134BIN, ADC08134CIN	N14A
ADC08138BIN, ADC08138CIN	N20A
ADC08134BIWM, ADC08134CIWM	M14B
ADC08138BIWM, ADC08138CIWM	M20B

Connection Diagrams

ADC08131
Dual-In-Line Package

Absolute Maximum Ratings (Notes 1 \& 3)	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.	
Supply Voltage (VCC)	6.5 V
Voltage at Inputs and Outputs -	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current at Any Pin (Note 4)	$\pm 5 \mathrm{~mA}$
Package Input Current (Note 4)	$\pm 20 \mathrm{~mA}$
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)	te 5) $\quad 800 \mathrm{~mW}$
ESD Susceptibility (Note 6)	1500 V
Soldering Information	
N Package (10 sec.)	$260^{\circ} \mathrm{C}$
SO Package:	
Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.) (Note 7)	$220^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings (Notes 2 \& 3)
Temperature Range
$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
ADC08131BIN, ADC08131CIN,
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
ADC08134BIN, ADC08134CIN,
ADC08138BIN, ADC08138CIN, ADC08134BIWM, ADC08138BIWM,
ADC08134CIWM, ADC08138CIWM
Supply Voltage (V_{CC})
4.5 V_{DC} to $6.3 \mathrm{~V}_{\mathrm{DC}}$

Electrical Characteristics

The following specifications apply for $V_{C C}=+5 V_{D C}, V_{R E F}=+2.5 V_{D C}$ and $f_{C L K}=1 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{M I N}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	ADC08131, ADC08134 and ADC08138 with BIN, CIN, BIWM or CIWM Suffixes		Units (Limits)
			Typical (Note 8)	Limits (Note 9)	

CONVERTER AND MULTIPLEXER CHARACTERISTICS

	Linearity Error BIN, BIWM CIN, CIWM	$\mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}_{\mathrm{DC}}$		$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (max) } \end{aligned}$
	Full Scale Error BIN, BIWM CIN, CIWM	$\mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}_{\mathrm{DC}}$		$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (max) } \end{aligned}$
	Zero Error BIN, BIWM CIN, CIWM	$\mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}_{\mathrm{DC}}$		$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (max) } \end{aligned}$
	Total Unadjusted Error BIN, BIWM CIN, CIWM	$\begin{aligned} & V_{R E F}=+5 V_{D C} \\ & \text { (Note 10) } \end{aligned}$		$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (max) } \end{aligned}$
	Differential Linearity	$\mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}_{\mathrm{DC}}$		8	Bits (min)
R REF	Reference Input Resistance	(Note 11)	3.5	$\begin{aligned} & 1.3 \\ & 6.0 \end{aligned}$	$\mathrm{k} \Omega$ $\mathrm{k} \Omega$ (min) $k \Omega$ (max)
$\mathrm{V}_{\text {IN }}$	Analog Input Voltage	(Note 12)		$\begin{aligned} & \left(V_{C C}+0.05\right) \\ & (G N D-0.05) \end{aligned}$	$\begin{aligned} & V(\max) \\ & V(\min) \end{aligned}$

Electrical Characteristics (Continued)
The following specifications apply for $V_{C C}=+5 V_{D C}, V_{R E F}=+2.5 \mathrm{~V}_{D C}$ and $f_{C L K}=1 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	ADC08131, ADC08134 and ADC08138 with BIN, CIN, BIWM or CIWM Suffixes		Units (Limits)
			Typical (Note 8)	Limits (Note 9)	

CONVERTER AND MULTIPLEXER CHARACTERISTICS (Continued)

DIGITAL AND DC CHÅRACTERISTICS

$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		2.0	V (min)
V IN(0)	Logical "0" Input Voltage	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$		0.8	V (max)
$\operatorname{lin}(1)$	Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$		1	$\mu A($ max $)$
$\ln (0)$	Logical " 0 " Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		-1	$\mu \mathrm{A}$ (max)
$\mathrm{V}_{\text {OUT (1) }}$	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}: \\ & \text { IOUT }=-360 \mu \mathrm{~A} \\ & \text { I OUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & V(\min) \\ & V(\min) \end{aligned}$
V OUT(0)	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \\ & \hline \end{aligned}$		0.4	V (max)
lout	TRI-STATE® Output Current	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & V_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$		$\begin{gathered} -3.0 \\ 3.0 \\ \hline \end{gathered}$	$\mu \mathrm{A}($ max $)$ $\mu \mathrm{A}$ (max)
ISOURCE	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		-6.5	$m A(\min)$
ISINK	Output Sink Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$		8.0	$m A(\min)$
ICC	Supply Current ADC08134, ADC08138 ADC08131 (Note 16)	$\overline{\mathrm{CS}}=\mathrm{HIGH}$		$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA}(\max) \\ & \mathrm{mA}(\max) \end{aligned}$

Electrical Characteristics (Continued) The following specifications apply for $V_{C C}=+5 V_{D C}$ and $f_{C L K}=1 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{J}=\mathbf{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=25^{\circ} \mathrm{C}$.					
Symbol	Parameter	Conditions	ADC08131, ADC08134 and ADC08138 with BIN, CIN, BIWM or CIWM Suffixes		Units (Limits)
			Typical (Note 8)	Limits (Note 9)	
REFERENCE CHARACTERISTICS					
$V_{\text {REF }}$ OUT	Output Voltage	$\begin{aligned} & \text { ADC08134, } \\ & \text { ADC08138 } \end{aligned}$	$\begin{gathered} 2.5 \\ \pm 2 \% \\ \hline \end{gathered}$	$2.5 \pm 1.5 \%$	V
		ADC08131	$\begin{gathered} 2.5 \\ \pm \mathbf{2 \%} \end{gathered}$	$2.5 \pm 1.5 \%$	
$\Delta V_{\text {REF }} / \Delta T$	Temperature Coefficient		40		ppm $/{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{l}_{\mathrm{L}}$	Load Regulation (Note 17)	Sourcing $\left(0 \leq \mathrm{I}_{\mathrm{L}} \leq+4 \mathrm{~mA}\right)$ ADC08134, ADC08138	0.003	0.1	$\begin{aligned} & \% / \mathrm{mA} \\ & (\max) \end{aligned}$
		Sourcing $\left(0 \leq I_{L} \leq+2 m A\right)$ ADC08131	0.003	0.1	
		Sinking $\left(-1 \leq \mathrm{I}_{\mathrm{L}} \leq 0 \mathrm{~mA}\right)$ ADC08134, ADC08138	0.2	0.5	
		Sinking $\left(-1 \leq \mathrm{I}_{\mathrm{L}} \leq 0 \mathrm{~mA}\right)$ ADC08131	0.2	0.5	
	Line Regulation	$4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$	0.5	6	$\underset{(\max)}{\mathrm{mV}}$
Isc	Short Circuit Current	$\begin{aligned} & V_{\text {REF }}=0 V \\ & \text { ADC08134, } \\ & \text { ADC08138 } \end{aligned}$	8	25	$\begin{gathered} \mathrm{mA} \\ (\max) \end{gathered}$
		$\begin{aligned} & V_{\text {REF }}=0 V \\ & A D C 08131 \end{aligned}$	8	25	
TSU	Start-Up Time	$\begin{aligned} & V_{C C}: 0 V \rightarrow 5 \mathrm{~V} \\ & C_{L}=100 \mu \mathrm{~F} \end{aligned}$	20		ms
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{t}$	Long Term Stability		200		ppm/1 kHr

Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}_{\mathrm{DC}}$, $\mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 8)	Limits (Note 9)	Units (Limits)
${ }_{\text {f CLK }}$	Clock Frequency		10	1	$\begin{aligned} & \mathrm{kHz} \text { (min) } \\ & \mathrm{MHz} \text { (max) } \end{aligned}$
	Clock Duty Cycle (Note 14)			$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & \text { \% (min) } \\ & \%(\max) \end{aligned}$
T_{C}	Conversion Time (Not Including MUX Addressing Time)	$\mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{gathered} 1 / \mathrm{f}_{\mathrm{CLK}}(\max) \\ \mu \mathrm{s}(\max) \end{gathered}$
t_{CA}	Acquisition Time			1/2	1/fCLK (max)
$t_{\text {SELECT }}$	CLK High while $\overline{C S}$ is High		50		ns
${ }^{\text {t SET-UP }}$	$\overline{\mathrm{CS}}$ Falling Edge or Data Input Valid to CLK Rising Edge			25	ns (min)
$t_{\text {Hold }}$	Data Input Valid after CLK Rising Edge			20	ns (min)
$\mathrm{t}_{\mathrm{pd} 1}, \mathrm{t}_{\mathrm{pd} 0}$	CLK Falling Edge to Output Data Valid (Note 15)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}:$ Data MSB First Data LSB First		$\begin{aligned} & 250 \\ & 200 \\ & \hline \end{aligned}$	ns (max) ns (max)
$t_{1 H}, t_{0 H}$	TRI-STATE Delay from Rising Edge of $\overline{\mathrm{CS}}$ to Data Output and SARS Hi-Z	$C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ (see TRI-STATE Test Circuits)	50		ns
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		180	ns (max)
$\mathrm{C}_{\text {IN }}$	Capacitance of Logic Inputs		5		pF
COUT	Capacitance of Logic Outputs		5		pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
Note 2: Operating Ratings indicate conditions for which the device is functional. These ratings do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 3: All voltages are measured with respect to AGND $=\mathrm{DGND}=0 \mathrm{~V}_{\mathrm{DC}}$, unless otherwise specified.
Note 4: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supplies ($V_{I N}<\left(A G N D\right.$ or $D G N D$) or $V_{I N}>A V_{C C}$.) the current at that pin should be limited to 5 mA . The 20 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 5 mA to four pins.
Note 5: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J_{M A X}}, \theta_{\mathrm{JA}}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J_{M A X}}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For devices with suffixes BIN, CIN, BIJ, CIJ, BIWM, and CIWM $T_{J_{M A X}}=125^{\circ} \mathrm{C}$. For devices with suffix CMJ, $T_{J_{M A X}}=150^{\circ} \mathrm{C}$. The typical thermal resistances ($\theta_{J A}$) of these parts when board mounted follow: ADC08131 with BIN and CIN suffixes $120^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{ADC08134}$ with BIN and CIN suffixes $95^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{ADC08138}$ with BIN and CIN suffixes $80^{\circ} \mathrm{C} / \mathrm{W}$. ADC08134 with BIWM and CIWM suffixes $140^{\circ} \mathrm{C} / \mathrm{W}$, ADC08138 with BIWM and CIWM suffixes $91^{\circ} \mathrm{C} / \mathrm{W}$,
Note 6: Human body model, 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: See AN450 "Surface Mounting Methods and Their Effect on Product Reliability" or Linear Data Book section "Surface Mount" for other methods of soldering surface mount devices.
Note 8: Typicals are at $T_{J}=25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 9: Guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 10: Total unadjusted error includes zero, full-scale, linearity, and multiplexer error. Total unadjusted error with $\mathrm{V}_{\mathrm{REF}}=+5 \mathrm{~V}$ only applies to the $\mathrm{ADC08134}$ and ADC08138. See Note 16.
Note 11: Cannot be tested for the ADC08131.
Note 12: For $\mathrm{V}_{\mathrm{IN}(-)} \geq \mathrm{V}_{\mathrm{IN}(+)}$ the digital code will be 0000 0000. Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. During testing at low V_{CC} levels (e.g., 4.5 V), high level analog inputs (e.g., 5V) can cause an input diode to conduct, especially at elevated temperatures. This will cause errors for analog inputs near full-scale. The specification allows 50 mV forward bias of either diode; this means that as long as the analog $\mathrm{V}_{\text {IN }}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. Exceeding this range on an unselected channel will corrupt the reading of a selected channel. Achievement of an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 13: Channel leakage current is measured after a single-ended channel is selected and the clock is turned off. For off channel leakage current the following two cases are considered: one, with the selected channel tied high ($5 \mathrm{~V}_{\mathrm{DC}}$) and the remaining seven off channels tied low ($0 \mathrm{~V}_{\mathrm{DC}}$), total current flow through the off channels is measured; two, with the selected channel tied low and the off channels tied high, total current flow through the off channels is again measured. The two cases considered for determining on channel leakage current are the same except total current flow through the selected channel is measured.
Note 14: A 40\% to 60% duty cycle range insures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits the minimum time the clock is high or low must be at least 450 ns . The maximum time the clock can be high or low is $100 \mu \mathrm{~s}$.
Note 15: Since data, MSB first, is the output of the comparator used in the successive approximation loop, an additional delay is built in (see Block Diagram) to allow for comparator response time.
Note 16: For the ADC08131 $\mathrm{V}_{\text {REF }}$ IN is internally tied to the on chip 2.5 V band-gap reference output; therefore, the supply current is larger because it includes the reference current ($700 \mu \mathrm{~A}$ typical, 2 mA maximum).
Note 17: Load regulation test conditions and specifications for the ADC08131 differ from those of the ADC08134 and ADC08138 because the ADC08131 has the on-board reference as a permanent load.

ADC08138 Simplified Block Diagram

Typical Converter Performance Characteristics

Power Supply Current vs Temperature (ADC08138, ADC08134)

Note: For ADC08131 add IREF (Note 16)

Typical Reference Performance Characteristics

Power Supply Current vs Clock Frequency

TL/H/10749-5

TRI-STATE Test Circuits and Waveforms

TL/H/10749-8

Timing Diagrams

TL/H/10749-9
*To reset these devices, CLK and CS must be simultaneously high for a period of tsELECT or greater. Otherwise these devices are compatible with industry standards ADC0831/4/8.

TL/H/10749-10

Timing Diagrams (Continued)

ADC08138 Functional Block Diagram

Note 1: For the ADC08134, the "SEL 1" Flip-Flop is bypassed. For the ADC08131, VREFOUT and VREFIN are internally tied together.

Functional Description

1.0 MULTIPLEXER ADDRESSING

The design of these converters utilizes a comparator structure with built-in sample-and-hold which provides for a differential analog input to be converted by a successiveapproximation routine.
The actual voltage converted is always the difference between an assigned " + " input terminal and a " - " input terminal. The polarity of each input terminal of the pair indicates which line the converter expects to be the most positive. If the assigned " + " input voltage is less than the " - " input voltage the converter responds with an all zeros output code.
A unique input multiplexing scheme has been utilized to provide multiple analog channels with software-configurable single-ended, differential, or pseudo-differential (which will convert the difference between the voltage at any analog input and a common terminal) operation. The analog signal conditioning required in transducer-based data acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground referenced inputs and true differential inputs as well as signals with some arbitrary reference voltage.
A particular input configuration is assigned during the MUX addressing sequence, prior to the start of a conversion. The MUX address selects which of the analog inputs are to be enabled and whether this input is single-ended or differential. Differential inputs are restricted to adjacent channel pairs. For example, channel 0 and channel 1 may be selected as a differential pair but channel 0 or 1 cannot act
differentially with any other channel. In addition to selecting differential mode the polarity may also be selected. Channel 0 may be selected as the positive input and channel 1 as the negative input or vice versa. This programmability is best illustrated by the MUX addressing codes shown in the following tables for the various product options.
The MUX address is shifted into the converter via the DI line. Because the ADC08131 contains only one differential input channel with a fixed polarity assignment, it does not require addressing.
The common input line (COM) on the ADC08138 can be used as a pseudo-differential input. In this mode the voltage on this pin is treated as the "-" input for any of the other input channels. This voltage does not have to be analog ground; it can be any reference potential which is common to all of the inputs. This feature is most useful in single-supply applications where the analog circuity may be biased up to a potential other than ground and the output signals are all referred to this potential.

TABLE I. Multiplexer/Package Options

Part Number	Number of Analog Channels		Number of
	Single-Ended	Differential	Package Pins
ADC08131	1	1	8
ADC08134	4	2	14
ADC08138	8	4	20

TABLE II. MUX Addressing: ADC08138
Single-Ended MUX Mode

MUX Address					Analog Single-Ended Channel \#								
START	$\begin{gathered} \text { SGL/ } \\ \frac{\text { DIF }}{} \end{gathered}$	ODD/ SIGN	SELECT		0	1	2	3	4	5	6	7	COM
			1	0									
1	1	0	0	0	$+$								-
1	1	0	0	1			$+$						-
1	1	0	1	0					$+$				-
1	1	0	1	1							$+$		-
1	1	1	0	0		+							-
1	1	1	0	1		.		$+$					-
1	1	1	1	0						$+$			-
1	1	1	1	1						+		$+$	-

Functional Description (Continued)
TABLE II. MUX Addressing: ADC08138 (Continued)
Differential MUX Mode

MUX Address					Analog Differential Channel-Pair \#							
START	$\begin{aligned} & \text { SGL/ } \\ & \overline{\text { DIF }} \end{aligned}$	ODD/ SIGN	SELECT		0		1		2		3	
			1	0	0	1	2	3	4	5	6	7
1	0	0	0	0	+	-						
1	0	0	0	1			$+$	-				
1	0	0	1	0					$+$	-		
1	0	0	1	1							$+$	-
1	0	1	0	0	-	$+$						
1	0	1	0	1			-	$+$				
1	0	1	1	0					-	$+$		
1	0	1	1	1							-	$+$

TABLE III. MUX Addressing: ADC08134
Single-Ended MUX Mode

MUX Address					Channel \#			
START	SGL/ $\overline{\mathrm{DIF}}$	ODD/ SIGN	SELECT	0	1	2	3	
1	1	0	0	+				
1	1	0	1			+		
1	1	1	0		+			
1	1	1	1				+	

Differential MUX Mode

MUX Address				Channel \#			
START	SGL/ $\overline{\text { DIF }}$	ODD/ SIGN	SELECT	0	1	2	3
		1					
1	0	0	0	+	-		
1	0	0	1			+	-
1	0	1	0	-	+		
1	0	1	1			-	+

Functional Description (Continued)

Since the input configuration is under software control, it can be modified as required before each conversion. A channel can be treated as a single-ended, ground referenced input for one conversion; then it can be reconfigured as part of a differential channel for another conversion. Figure 1 illustrates the input flexibility which can be achieved.
The analog input voltages for each channel can range from 50 mV below ground to 50 mV above V_{CC} (typically 5 V) without degrading conversion accuracy.

2.0 THE DIGITAL INTERFACE

A most important characteristic of these converters is their serial data link with the controlling processor. Using a serial communication format offers two very significant system improvements; it allows many functions to be included in a small package and it can eliminate the transmission of low level analog signals by locating the converter right at the analog sensor; transmitting highly noise immune digital data back to the host processor.

To understand the operation of these converters it is best to refer to the Timing Diagrams and Functional Block Diagram and to follow a complete conversion sequence. For clarity a separate timing diagram is shown for each device.

1. A conversion is initiated by pulling the $\overline{\mathrm{CS}}$ (chip select) line low. This line must be held low for the entire conversion. The converter is now waiting for a start bit and its MUX assignment word.
2. On each rising edge of the clock the status of the data in (DI) line is clocked into the MUX address shift register. The start bit is the first logic " 1 " that appears on this line (all leading zeros are ignored). Following the start bit the converter expects the next 2 to 4 bits to be the MUX assignment word.

Functional Description (Continued)

3. When the start bit has been shifted into the start location of the MUX register, the input channel has been assigned and a conversion is about to begin. An interval of $1 / 2$ clock period is automatically inserted to allow for sampling the analog input. The SARS line goes high at the end of this time to signal that a conversion is now in progress and the DI line is disabled (it no longer accepts data).
4. The data out (DO) line now comes out of TRI-STATE and provides a leading zero.
5. During the conversion the output of the SAR comparator indicates whether the analog input is greater than (high) or less than (low) a series of successive voltages generated internally from a ratioed capacitor array (first 5 bits) and a resistor ladder (last 3 bits). After each comparison the comparator's output is shipped to the DO line on the falling edge of CLK. This data is the result of the conversion being shifted out (with the MSB first) and can be read by the processor immediately.
6. After 8 clock periods the conversion is completed. The SARS line returns low to indicate this $1 / 2$ clock cycle later.
7. The stored data in the successive approximation register is loaded into an internal shift register. If the programmer prefers the data can be provided in an LSB first format [this makes use of the shift enable ($\overline{\mathrm{SE}}$) control line]. On the ADC08138 the $\overline{\text { SE }}$ line is brought out and if held high the value of the LSB remains valid on the DO line. When $\overline{S E}$ is forced low the data is clocked out LSB first. On devices which do not include the $\overline{S E}$ control line, the data, LSB first, is automatically shifted out the DO line after the MSB first data stream. The DO line then goes low and stays low until $\overline{C S}$ is returned high. The ADC08131 is an exception in that its data is only output in MSB first format.
8. All internal registers are cleared when the $\overline{\mathrm{CS}}$ line is high and the tsELECT requirement is met. See Data Input Timing under Timing Diagrams. If another conversion is desired $\overline{\mathrm{CS}}$ must make a high to low transition followed by address information.

The DI and DO lines can be tied together and controlled through a bidirectional processor I/O bit with one wire: This is possible because the DI input is only "looked-at" during the MUX addressing interval while the DO line is still in a high impedance state.

3.0 REFERENCE CONSIDERATIONS

The $V_{\text {REFI }}$ IN pin on these converters is the top of a resistor divider string and capacitor array used for the successive approximation conversion. The voltage applied to this reference input defines the voltage span of the analog input (the difference between $\mathrm{V}_{\text {IN(MAX) }}$ and $\mathrm{V}_{\text {IN(MIN }}$) over which the 256 possible output codes apply). The reference source must be capable of driving the reference input resistance, which can be as low as $1.3 \mathrm{k} \Omega$.
For absolute accuracy, where the analog input varies between specific voltage limits; the reference input must be biased with a stable voltage source. The ADC08134 and the ADC08138 provide the output of a 2.5 V band-gap reference at $\mathrm{V}_{\text {REF }} \mathrm{OUT}$. This voltage does not vary appreciably with temperature, supply voltage, or load current (see Reference Characteristics in the Electrical Characteristics tables) and can be tied directly to $\mathrm{V}_{\text {REF }} \mathrm{IN}$ for an analog input span of 0 V to 2.5 V . This output can also be used to bias external circuits and:can therefore be used as the reference in ratiometric applications. Bypassing $\mathrm{V}_{\mathrm{REF}}$ OUT with a $100 \mu \mathrm{~F}$ capacitor is recommended.
For the ADC08131, the output of the on-board reference is internally tied to the reference input. Consequently, the analog input span for this device is set at 0 V to 2.5 V . The pin $\mathrm{V}_{\text {REF }} \mathrm{C}$ is provided for bypassing purposes and biasing external circuits as suggested above.
The maximum value of the reference is limited to the $V_{C C}$ supply voltage. The minimum value, however, can be quite small (see Typical Performance Characteristics) to allow direct conversions of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $\mathrm{V}_{\mathrm{REF}}$ / 256).

b) Absolute

FIGURE 2. Reference Examples

Functional Description (Continued)

4.0 THE ANALOG INPUTS

The most important feature of these converters is that they can be located right at the analog signal source and through just a few wires can communicate with a controlling processor with a highly noise immune serial bit stream. This in itself greatly minimizes circuitry to maintain analog signal accuracy which otherwise is most susceptible to noise pickup. However, a few words are in order with regard to the analog inputs should the input be noisy to begin with or possibly riding on a large common-mode voltage.
The differential input of these converters actually reduces the effects of common-mode input noise, a signal common to both selected "+" and "-" inputs for a conversion (60 Hz is most typical). The time interval between sampling the " + " input and then the "-" input is $1 / 2$ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:

$$
V_{\text {error }}(\max)=V_{\text {PEAK }}\left(2 \pi f_{\mathrm{CM}}\right)\left(\frac{0.5}{f_{\mathrm{CLK}}}\right)
$$

where f_{CM} is the frequency of the common-mode signal,
$V_{\text {PEAK }}$ is its peak voltage value
and $\mathrm{f}_{\mathrm{CLK}}$ is the A/D clock frequency.
For a 60 Hz common-mode signal to generate a $1 / 4 \mathrm{LSB}$ error ($\approx 5 \mathrm{mV}$) with the converter running at 250 kHz , its peak value would have to be 6.63 V which would be larger than allowed as it exceeds the maximum analog input limits.
Source resistance limitation is important with regard to the DC leakage currents of the input multiplexer. While operating near or at maximum speed bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$. The worst-case leakage current of $\pm 1 \mu \mathrm{~A}$ over temperature will create a 1 mV input error with a $1 \mathrm{k} \Omega$ source resistance. An op amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

5.0 OPTIONAL ADJUSTMENTS

5.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$, is not ground a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing any $\mathrm{V}_{\text {IN }}(-)$ input at this $\mathrm{V}_{\text {IN }}(\mathrm{MIN})$ value. This utilizes the differential mode operation of the A/D.

The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\text {IN }}(-)$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value $\left(1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}\right.$ for $\left.\mathrm{V}_{\text {REF }}=5.000 \mathrm{~V}_{\mathrm{DC}}\right)$.

5.2 Full Scale

A full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }} \mathrm{N}$ input for a digital output code which is just changing from 11111110 to 11111111 (See figure entitled "Span Adjust; $0 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq 3 \mathrm{~V}$ "). This is possible only with the ADC08134 and ADC08138. (The reference is internally connected to $V_{\text {REF }} I N$ of the ADC08131).

5.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voitage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A $\mathrm{V}_{\mathbb{I}}(+)$ voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, using 1 LSB = analog span/256) is applied to selected " + " input and the zero reference voltage at the corresponding "-" input should then be adjusted to just obtain the 00 HEX to $01_{\text {HEX }}$ code transition.
The full-scale adjustment should be made [with the proper $\mathrm{V}_{\mathrm{IN}}(-)$ voltage applied] by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input which is given by:

$$
\mathrm{V}_{\mathrm{IN}}(+) \text { fs adj }=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]
$$

where:

$$
\begin{aligned}
& V_{\text {MAX }}=\text { the high end of the analog input range } \\
& \text { and } \\
& V_{\text {MIN }}= \\
& \text { the low end (the offset zero) of the analog range. } \\
& \text { (Both are ground referenced.) }
\end{aligned}
$$

The $V_{\text {REF }} I N$ (or $V_{C C}$) voltage is then adjusted to provide a code change from FE HEX to $\mathrm{FF}_{\text {HEX }}$. This completes the adjustment procedure.

A "Stand-Alone" Hook-Up for ADC08138 Evaluation

Low-Cost Remote Temperature Sensor

${ }^{*} \mathrm{~V}_{\text {IN }}(-)=0.15 \mathrm{~V}_{\mathrm{REF}}$
15% of $V_{\text {REF }} \leq V_{\text {XDR }} \leq 85 \%$ of $V_{\text {REF }}$

Span Adjust; $\mathbf{O V} \leq \mathrm{V}_{\text {IN }} \leq \mathbf{3 V}$

Applications（Continued）

ADC08231/ADC08234/ADC08238 8-Bit $2 \mu \mathrm{~s}$ Serial I/O A/D Converters with MUX, Reference, and Track/Hold

General Description

The ADC08231/ADC08234/ADC08238 are 8-bit successive approximation A/D converters with serial I/O and configurable input multiplexers with up to 8 channels. The serial I/O is configured to comply with the NSC MICROWIRETM serial data exchange standard for easy interface to the COPSTM family of controllers, and can easily interface with standard shift registers or microprocessors.
Designed for high-speed/low-power applications, the devices are capable of a fast 2μ s conversion when used with a 4 MHz clock.

All three devices provide a 2.5 V band-gap derived reference with guaranteed performance over temperature.
A track/hold function allows the analog voltage at the positive input to vary during the actual A / D conversion.
The analog inputs can be configured to operate in various combinations of single-ended, differential, or pseudo-differential modes. In addition, input voltage spans as small as 1V can be accommodated.

Applications

- High-speed data acquisition
- Digitizing automotive sensors
- Process control/monitoring
- Remote sensing in noisy environments
- Disk drives
- Portable instrumentation
- Test systems

Features

- Serial digital data link requires few $1 / O$ pins
- Analog input track/hold function
- 4- or 8-channel input multiplexer options with address logic
(1) On-chip 2.5 V band-gap reference ($\pm 2 \%$ over temperature guaranteed)
(a No zero or full scale adjustment required
回 TTL/CMOS input/output compatible
$\square 0 \mathrm{~V}$ to 5 V analog input range with single 5 V power supply
(1) Pin compatible with Industry-Standards ADC0831/4/8

Key Specifications

四 Resolution 8 Bits
■ Conversion time ($\mathrm{f}_{\mathrm{C}}=4 \mathrm{MHz}$)
\square Power dissipation
■ Single supply

- Total unadiuster
- Line
\square No missing codes (over temperature)
- On-board Reference
$+2.5 \mathrm{~V} \pm 1.5 \%$ (Max)

ADC08238 Simplified Block Diagram

Ordering Information

Industrial $\left(-40^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathbf{C}\right)$	Package
ADC08231BIN, ADC08231CIN	N08E, DIP
ADC08234BIN, ADC08234CIN	N14A, DIP
ADC08234CIMF	MTB24, TSSOP
ADC08238BIN, ADC08238CIN	N20A, DIP
ADC08231BIWM, ADC08231CIWM	M14B, SO
ADC08234BIWM, ADC08234CIWM	M14B, SO
ADC08238BIWM, ADC08238CIWM	M20B, SO

Connection Diagrams

Absolute Maximum Ratings (Notes 1 \& 3)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (VCC)	6.5 V
Voltage at Inputs and Outputs	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current at Any Pin (Note 4)	$\pm 5 \mathrm{~mA}$
Package Input Current (Note 4)	$\pm 20 \mathrm{~mA}$
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)	800 mW
ESD Susceptibility (Note 6)	1500 V
Soldering Information	
N Package (10 sec.)	$260^{\circ} \mathrm{C}$
TSSOP and SO Package (Note 7):	
\quad Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
\quad Infrared (15 sec.)	$220^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings (Notes 2 23)

Temperature Range $\quad T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$ ADC08231BIN, ADC08231CIN, $\quad-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ ADC08234BIN, ADC08234CIN, ADC08238BIN, ADC08238CIN, ADC08231BIWM, ADC08231CIWM,
ADC08234BIWM, ADC08238BIWM,
ADC08234CIWM, ADC08238CIWM,
ADC08234CIMF
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right) \quad 4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.3 \mathrm{~V}_{\mathrm{DC}}$

Electrical Characteristics

The following specifications apply for $\mathrm{V}_{C C}=+5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{f}_{\mathrm{CLK}}=4 \mathrm{MHz}, \mathrm{R}_{\text {Source }}=50 \Omega$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	ADC08231, ADC08234 and ADC08238 with BIN, CIN, BIWM, CIWM, or CIMF Suffixes		Units (Limits)
			Typical (Note 8)	Limits (Note 9)	

CONVERTER AND MULTIPLEXER CHARACTERISTICS

	Linearity Error BIN, BIWM CIN, CIMF, CIWM	$\mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}_{\mathrm{DC}}$		$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (max) } \end{aligned}$
	Gain Error BIN, BIWM CIN, CIMF, CIWM	$\mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}_{\mathrm{DC}}$		$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (max) } \end{aligned}$
	Zero Error BIN, BIWM CIN, CIMF, CIWM	$\mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}_{\mathrm{DC}}$		$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (max) } \end{aligned}$
	Total Unadjusted Error BIN, BIWM CIN, CIMF, CIWM	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=+5 \mathrm{~V}_{\mathrm{DC}} \\ & \text { (Note 10) } \end{aligned}$		$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (max) } \end{aligned}$
	Differential Linearity	$\mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}_{\mathrm{DC}}$		8	Bits (min)
RREF	Reference Input Resistance	(Note 11)	3.5	$\begin{aligned} & 1.3 \\ & 6.0 \end{aligned}$	$\begin{gathered} k \Omega \\ k \Omega(\min) \\ k \Omega(\max) \end{gathered}$
V in	Analog Input Voltage	(Note 12)		$\begin{aligned} & \left(V_{C C}+0.05\right) \\ & (G N D-0.05) \end{aligned}$	V (max) V (min)

Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}_{C C}=+5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {REF }}=+2.5 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{f}_{C L K}=4 \mathrm{MHz}, \mathrm{R}_{\text {source }}=50 \Omega$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	ADC08231, ADC08234 and ADC08238 with BIN, CIN, BIWM, CIWM, or CIMF Suffixes		Units (Limits)
			Typical (Note 8)	Limits (Note 9)	

CONVERTER AND MULTIPLEXER CHARACTERISTICS (Continued)

	DC Common-Mode Error	$\mathrm{V}_{\text {REF }}=+2.5 \mathrm{~V}_{\mathrm{DC}}$		$\pm 1 / 2$	LSB (max)
	Power Supply Sensitivity	$\begin{aligned} & V_{C C}=+5 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~V}_{\mathrm{REF}}=+2.5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$		$\pm 1 / 4$	LSB (max)
:	On Channel Leakage Current (Note 13)	On Channel $=5 \mathrm{~V}$, Off Channel $=0 \mathrm{~V}$		$\begin{gathered} 0.2 \\ 1 \end{gathered}$	$\mu \mathrm{A}$ (max)
		$\begin{aligned} & \text { On Channel }=0 \mathrm{~V}, \\ & \text { Off Channel }=5 \mathrm{~V} \end{aligned}$		$\begin{gathered} -0.2 \\ -1 \end{gathered}$	$\mu \mathrm{A}($ max $)$
.	Off Channel Leakage Current (Note 13)	On Channel $=5 \mathrm{~V}$, Off Channel $=0 \mathrm{~V}$		$\begin{gathered} -0.2 \\ -1 \end{gathered}$	$\mu \mathrm{A}$ (max)
		On Channel $=0 \mathrm{~V}$, Off Channel $=5 \mathrm{~V}$		$\begin{gathered} 0.2 \\ 1 \end{gathered}$	$\mu \mathrm{A}$ (max)

DYNAMIC CHARACTERISTICS (see Typical Converter Performance Characteristics)

$\frac{S}{N+D}$	Signal-to(Noise + Distortion) Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=+5 \mathrm{~V} \\ & \text { Sample Rate }=286 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{IN}}=+5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}$			
		$\mathrm{fiN}=10 \mathrm{kHz}$	48.35		dB
		$\mathrm{fiN}^{\prime}=50 \mathrm{kHz}$	48.00		dB
		$\mathrm{fiN}^{\text {¢ }}=100 \mathrm{kHz}$	47.40		dB

DIGITAL AND DC CHARACTERISTICS

Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}_{C C}=+5 \mathrm{~V}_{D C}$ and $f_{C L K}=4 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	ADC08231, ADC08234 and ADC08238 with BIN, CIN, BIWM, CIWM, or CIMF Suffixes		Units (Limits)
			Typical (Note 8)	Limits (Note 9)	
REFERENCE CHARACTERISTICS					
$\mathrm{V}_{\text {REFFOUT }}$	Output Voltage	BIN, BIJ, BIWM	$\begin{gathered} 2.5 \\ \pm 2 \% \end{gathered}$	$2.5 \pm 1.5 \%$	v
		CIN, CIJ, CIWM, CMJ	$\begin{gathered} 2.5 \\ \pm 3.5 \% \end{gathered}$	$2.5 \pm 3.0 \%$	
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{T}$	Temperature Coefficient		40		ppm $/{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {REF }} / \Delta I_{\mathrm{L}}$	Load Regulation (Note 17)	Sourcing $\left(0 \leq \mathrm{I}_{\mathrm{L}} \leq+4 \mathrm{~mA}\right)$ ADC08234, ADC08238	0.003	0.1	\%/mA (max)
		$\begin{aligned} & \text { Sourcing } \\ & \left(0 \leq \mathrm{IL}_{\mathrm{L}} \leq+2 \mathrm{~mA}\right) \\ & \text { ADC0831 } \end{aligned}$	0.003	0.1	
		Sinking $\left(-1 \leq \mathrm{I}_{\mathrm{L}} \leq 0 \mathrm{~mA}\right)$ ADC08234, ADC08238	0.2	0.5	
		Sinking $\left(-1 \leq I_{L} \leq 0 m A\right)$ ADC08231	0.2	0.5	
	Line Regulation	$4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$	0.5	6	$\begin{gathered} \mathrm{mV} \\ (\max) \end{gathered}$
Isc	Short Circuit Current	$V_{\text {REF }}=0 \mathrm{~V}$ ADC08234, ADC08238	8	25	$\underset{(\max)}{ }$
		$\begin{aligned} & V_{\text {REF }}=0 V \\ & \text { ADC08231 } \end{aligned}$	8	25	
$\mathrm{T}_{\text {SU }}$	Start-Up Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}: 0 \mathrm{~V} \rightarrow 5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F} \\ & \hline \end{aligned}$	20		ms
$\Delta V_{\text {REF }} / \Delta t$	Long Term Stability		200		ppm/1 kHr

Electrical Characteristics (Continued)
The following specifications apply for $V_{C C}=+5 V_{D C}, V_{R E F}=+2.5 V_{D C}$ and $t_{r}=t_{f}=20 \mathrm{~ns}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{M I N}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}={ }^{\prime} 25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 8)	Limits (Note 9)	Units (Limits)
${ }_{\text {f CLK }}$	Clock Frequency		10	4	$\begin{aligned} & \mathrm{kHz} \text { (min) } \\ & \mathrm{MHz} \text { (max) } \\ & \hline \end{aligned}$
	Clock Duty Cycle (Note 14)			$\begin{aligned} & 40 \\ & 60 \end{aligned}$	\% (min) \% (max)
T_{C}	Conversion Time (Not Including MUX Addressing Time)	$\mathrm{f}_{\mathrm{CLK}}=4 \mathrm{MHz}$		$\begin{aligned} & 8 \\ & 2 \end{aligned}$	$\begin{gathered} 1 / \mathrm{f}_{\mathrm{CLK}}(\max) \\ \mu \mathrm{s}(\max) \\ \hline \end{gathered}$
$t_{C A}$	Acquisition Time			$11 / 2$	1/f ${ }_{\text {CLK }}$ (max)
tselect	CLK High while $\overline{\mathrm{CS}}$ is High		50		ns
${ }^{\text {tSET-UP }}$	$\overline{\mathrm{CS}}$ Falling Edge or Data Input Valid to CLK Rising Edge			25	ns (min)
thold	Data Input Valid after CLK Rising Edge			20	ns (min)
$\mathrm{t}_{\mathrm{pd} 1}, \mathrm{t}_{\mathrm{pd} 0}$	CLK Falling Edge to Output Data Valid (Note 15)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ Data MSB First Data LSB First		$\begin{aligned} & 250 \\ & 200 \\ & \hline \end{aligned}$	ns (max) ns (max)
$t_{1 H}, t_{0 H}$	TRI-STATE Delay from Rising Edge of $\overline{C S}$ to Data Output and SARS Hi-Z	$C_{L}=10 \mathrm{pF}, R_{\mathrm{L}}=10 \mathrm{k} \Omega$ (see TRI-STATE Test Circuits)	50		ns
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		180	ns (max)
$\mathrm{C}_{\text {IN }}$	Capacitance of Logic Inputs		5		pF
Cout	Capacitance of Logic Outputs		5		pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
Note 2: Operating Ratings indicate conditions for which the device is functional. These ratings do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 3: All voltages are measured with respect to $A G N D=D G N D=0 V_{D C}$, unless otherwise specified.
Note 4: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supplies ($V_{I N}<\left(A G N D\right.$ or $D G N D$) or $V_{I N}>A V_{C C}$) the current at that pin should be limited to 5 mA . The 20 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 5 mA to four pins.
Note 5: The maximum power dissipation must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\mathrm{JAAX}}, \theta_{\mathrm{JA}}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For devices with suffixes $\mathrm{BIN}, \mathrm{CIN}, \mathrm{BIJ}, \mathrm{CIJ}, \mathrm{BIWM}$, and $\mathrm{CIWM} \mathrm{T}_{\mathrm{JAAX}}=125^{\circ} \mathrm{C}$. For devices with suffix $\mathrm{CMJ}, \mathrm{T}_{\mathrm{JAX}^{\prime}}=150^{\circ} \mathrm{C}$. The typical thermal resistances ($\theta_{J A}$) of these parts when board mounted follow: ADC08231 with BIN and CIN suffixes $120^{\circ} \mathrm{C} / \mathrm{W}$, ADC08234 with BIN and CIN suffixes $95^{\circ} \mathrm{C} / \mathrm{W}$, ADC08234 with CIMF suffix $167^{\circ} \mathrm{C} / \mathrm{W}$, ADC08238 with BIN and CIN suffixes $80^{\circ} \mathrm{C} / \mathrm{W}$. ADC08231 with BIWM and CIWM suffixes $140^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{ADC08234}$ with BIWM and CIWM suffixes $140^{\circ} \mathrm{C} / \mathrm{W}$, ADC08238 with BIWM and CIWM suffixes $91^{\circ} \mathrm{C} / \mathrm{W}$,
Note 6: Human body model, 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: See AN450 "Surface Mounting Methods and Their Effect on Product Reliability" or Linear Data Book section "Surface Mount" for other methods of soldering surface mount devices.
Note 8: Typicals are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 9: Guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 10: Total unadjusted error includes zero, full-scale, linearity, and multiplexer error. Total unadjusted error with $\mathrm{V}_{\text {REF }}=+5 \mathrm{~V}$ only applies to the $\mathrm{ADC08234}$ and ADC08238. See Note 16.
Note 11: Cannot be tested for the ADC08231.
Note 12: For $\mathrm{V}_{\mathrm{IN}(-)} \geq \mathrm{V}_{\mathrm{IN}(+)}$ the digital code will be 00000000 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. During testing at low V_{CC} levels (e.g., 4.5 V), high level analog inputs (e.g., 5 V) can cause an input diode to conduct, especially at elevated temperatures. This will cause errors for analog inputs near full-scale. The specification allows 50 mV forward bias of either diode; this means that as long as the analog V_{IN} does rot exceed the supply voltage by more than 50 mV , the output code will be correct. Exceeding this range on ar, unselected channel will corrupt the reading of a selected channel. Achievement of an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 13: Channel leakage current is measured after a single-ended channel is selected and the clock is turned off. For off channel leakage current the following two cases are considered: one, with the selected channel tied high ($5 \mathrm{~V}_{\mathrm{DC}}$) and the remaining off channels tied low ($0 \mathrm{~V}_{\mathrm{DC}}$), total current flow through the off channels is measured; two, with the selected channel tied low and the off channels tied high, total current flow through the off channels is again measured. The two cases considered for determining on channel leakage current are the same except total current flow through the selected channel is measured.
Note 14: A 40% to 60% duty cycle range insures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits the minimum time the clock is high or low must be at least 120 ns . The maximum time the clock can be high or low is $100 \mu \mathrm{~s}$.
Note 15: Since data, MSB first, is the output of the comparator used in the successive approximation loop, an additional delay is built in (see Block Diagram) to allow for comparator response time.
Note 16: For the ADC08231 $\mathrm{V}_{\text {REF }} \mathrm{IN}$ is internally tied to the on chip 2.5 V band-gap reference output; therefore, the supply current is larger because it includes the reference current ($700 \mu \mathrm{~A}$ typical, 2 mA maximum).
Note 17: Load regulation test conditions and specifications for the ADC08231 differ from those of the ADC08234 and ADC08238 because the ADC08231 has the on-board reference as a permanent load.

Typical Performance Characteristics

Note: For ADC08231 add IREF (Note 16)

Spectral Response with 10 kHz Sine Wave Input

 Spectral Response with $50 \mathbf{k H z}$ Sine Wave Input

Signal-to-Noise + Distortion Ratio vs Input Frequency

Typical Reference Performance Characteristics

Output Drift vs Temperature (3 Typical Parts)

TRI-STATE Test Circuits and Waveforms

TL/H/11015-8
TL/H/11015-9

Timing Diagrams

*To reset these devices, CLK and $\overline{C S}$ must be simultaneously high for a period of tSELECT or greater.

TL/H/11015-11

Timing Diagrams (Continued)

TL/H/11015-13
*LSB first output not available on ADC08231.
LSB information is maintained for remainder of clock periods until CS goes high.
To reset the ADC08231, CLK and CS must be simultaneusly high for a period of tsELECT or greater. The ADC08231 also has one extra clock period for sampling the analog signal (t_{ca}). Otherwise it is compatible with the ADC0831.

TL/H/11015-14
To reset the ADC08234, CLK and CS must be simultaneously high for a period of tseLECT or greater. The ADC08234 also has one extra clock period for sampling the analog signal (t_{ca}). Otherwise it is compatible with the ADC0834.

ADC08231/ADC08234/ADC08238

Note 1: For the ADC08234, the "SEL 1" Flip-Flop is bypassed. For the ADC08231, V REFOUT and VREFIN are internally tied together.

Functional Description

1.0 MULTIPLEXER ADDRESSING

The design of these converters utilizes a comparator structure with built-in sample-and-hold which provides for a differential analog input to be converted by a successiveapproximation routine.
The actual voltage converted is always the difference between an assigned " + " input terminal and a " - " input terminal. The polarity of each input terminal of the pair indicates which line the converter expects to be the most positive. If the assigned " + " input voltage is less than the " - " input voltage the converter responds with an all zeros output code.
A unique input multiplexing scheme has been utilized to provide multiple analog channels with software-configurable single-ended, differential, or pseudo-differential (which will convert the difference between the voltage at any analog input and a common terminal) operation. The analog signal conditioning required in transducer-based data acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground referenced inputs and true differential inputs as well as signals with some arbitrary reference voltage.
A particular input configuration is assigned during the MUX addressing sequence, prior to the start of a conversion. The MUX address selects which of the analog inputs are to be enabled and whether this input is single-ended or differential. Differential inputs are restricted to adjacent channel pairs. For example, channel 0 and channel 1 may be selected as a differential pair but channel 0 or 1 cannot act
differentially with any other channel. In addition to selecting differential mode the polarity may also be selected. Channel 0 may be selected as the positive input and channel 1 as the negative input or vice versa. This programmability is best illustrated by the MUX addressing codes shown in the following tables for the various product options.
The MUX address is shifted into the converter via the DI line. Because the ADC08231 contains only one differential input channel with a fixed polarity assignment, it does not require addressing.
The common input line (COM) on the ADC08238 can be used as a pseudo-differential input. In this mode the voltage on this pin is treated as the "-" input for any of the other input channels. This voltage does not have to be analog ground; it can be any reference potential which is common to all of the inputs. This feature is most useful in single-supply applications where the analog circuitry may be biased up to a potential other than ground and the output signals are all referred to this potential.

TABLE I. Multiplexer/Package Options

Part Number	Number of Analog Channels		Number of
	Single-Ended	Differential	Package Pins
ADC08231	1	1	8
ADC08234	4	2	14
ADC08238	8	4	20

TABLE II. MUX Addressing: ADC08238
Single-Ended MUX Mode

MUX Address					Analog Single-Ended Channel \#								
START	$\begin{aligned} & \text { SGL/ } \\ & \overline{\text { DIF }} \end{aligned}$	ODD/ SIGN	SELECT		0	1	2	3	4	5	6	7	COM
			1	0									
1	1	0	0	0	$+$								-
1	1	0	0	1			$+$						-
1	1	0	1	0					$+$				-
1	1	0	1	1							$+$		-
1	1	1	0	0		$+$							-
1	1	1	0	1				$+$					-
1	1	1	1	0						$+$			-
1	1	1	1	1								$+$	-

Functional Description (Continued)
TABLE II. MUX Addressing: ADC08238 (Continued)
Differential MUX Mode

MUX Address					Analog Differential Channel-Pair \#							
START	$\begin{gathered} \text { SGL/ } \\ \overline{\text { DIF }} \end{gathered}$	ODD/ SIGN	SELECT		0		1		2		3	
			1	0	0	1	2	3	4	5	6	7
1	0	0	0	0	$+$	-						
1	0	0	0	1			$+$	${ }_{1}-$				
1	0	0	1	0					$+$	-		
1	0	0	1	1							$+$	-
1	0	1	0	0	-	$+$						
1	0	1	0	1			-	+				
1	0	1	1	0					-	+		
1	0	1	1	1							-	$+$

TABLE III. MUX Addressing: ADC08234
Single-Ended MUX Mode

MUX Address				Channel \#				
START	SGL/ $\overline{\text { DIF }}$	ODD/ SIGN	SELECT	0	1	2	3	
	1	0	0	+				
1	1	0	1			+		
1	1	0	1					
1	1	1	0		+			
1	1	1	1				+	

COM is internally tied to AGND

Differential MUX Mode

MUX Address				Channel \#			
START	SGL/ $\overline{\text { DIF }}$	ODD/ SIGN	SELECT	$\mathbf{0}$	1	2	3
	0	0	1				
1	0	0	1			+	-
1	0	1	0	-	+		
1	0	1	1			-	+

Functional Description (Continued)

Since the input configuration is under software control, it can be modified as required before each conversion. A channel can be treated as a single-ended, ground referenced input for one conversion; then it can be reconfigured as part of a differential channel for another conversion. Figure 1 illustrates the input flexibility which can be achieved.
The analog input voltages for each channel can range from 50 mV below ground to 50 mV above V_{CC} (typically 5 V) without degrading conversion accuracy.

2.0 THE DIGITAL INTERFACE

A most important characteristic of these converters is their serial data link with the controlling processor. Using a serial communication format offers two very significant system improvements; it allows many functions to be included in a small package and it can eliminate the transmission of low level analog signals by locating the converter right at the analog sensor; transmitting highly noise immune digital data back to the host processor.

To understand the operation of these converters it is best to refer to the Timing Diagrams and Functional Block Diagram and to follow a complete conversion sequence. For clarity a separate timing diagram is shown for each device.

1. A conversion is initiated by pulling the $\overline{\mathrm{CS}}$ (chip select) line low. This line must be held low for the entire conversion. The converter is now waiting for a start bit and its MUX assignment word.
2. On each rising edge of the clock the status of the data in (DI) line is clocked into the MUX address shift register. The start bit is the first logic " 1 " that appears on this line (all leading zeros are ignored). Following the start bit the converter expects the next 2 to 4 bits to be the MUX assignment word.

Functional Description (Continued)

3. When the start bit has been shifted into the start location of the MUX register, the input channel has been assigned and a conversion is about to begin. An interval of $11 / 2$ clock periods is automatically inserted to allow for sampling the analog input. The SARS line goes high at the end of this time to signal that a conversion is now in progress and the DI line is disabled (it no longer accepts data).
4. The data out (DO) line now comes out of TRI-STATE and provides a leading zero.
5. During the conversion the output of the SAR comparator indicates whether the analog input is greater than (high) or less than (low) a series of successive voltages generated internally from a ratioed capacitor array (first 5 bits) and a resistor ladder (last 3 bits). After each comparison the comparator's output is shipped to the DO line on the falling edge of CLK. This data is the result of the conversion being shifted out (with the MSB first) and can be read by the processor immediately.
6. After 8 clock periods the conversion is completed. The SARS line returns low to indicate this $1 / 2$ clock cycle later.
7. The stored data in the successive approximation register is loaded into an internal shift register. If the programmer prefers, the data can be provided in an LSB first format [this makes use of the shift enable ($\overline{\mathrm{SE}}$) control line]. On the ADC08238 the $\overline{\text { SE }}$ line is brought out and if held high the value of the LSB remains valid on the DO line. When $\overline{S E}$ is forced low the data is clocked out LSB first. On devices which do not include the $\overline{\text { SE }}$ control line, the data, LSB first, is automatically shifted out the DO line after the MSB first data stream. The DO line then goes low and stays low until $\overline{\mathrm{CS}}$ is returned high. The ADC08231 is an exception in that its data is only output in MSB first format.
8. All internal registers are cleared when the $\overline{\mathrm{CS}}$ line is high and the tSELECT requirement is met. See Data Input Timing under Timing Diagrams. If another conversion is desired $\overline{\mathrm{CS}}$ must make a high to low transition followed by address information.
The DI and DO lines can be tied together and controlled through a bidirectional processor I/O bit with one wire.

This is possible because the DI input is only "looked-at" during the MUX addressing interval while the DO line is still in a high impedance state.

3.0 REFERENCE CONSIDERATIONS

The $\mathrm{V}_{\text {REF }} \mathrm{IN}$ pin on these converters is the top of a resistor divider string and capacitor array used for the successive approximation conversion. The voltage applied to this reference input defines the voltage span of the analog input (the difference between $\mathrm{V}_{\text {IN (MAX }}$) and $\mathrm{V}_{\text {IN(MIN }}$) over which the 256 possible output codes apply). The reference source must be capable of driving the reference input resistance, which can be as low as $1.3 \mathrm{k} \Omega$.
For absolute accuracy, where the analog input varies between specific voltage limits, the reference input must be biased with a stable voltage source. The ADC08234 and the ADC08238 provide the output of a 2.5 V band-gap reference at $\mathrm{V}_{\text {REF }}$ OUT. This voltage does not vary appreciably with temperature, supply voltage, or load current (see Reference Characteristics in the Electrical Characteristics tables) and can be tied directly to $\mathrm{V}_{\text {REF }} I N$ for an analog input span of $O \mathrm{~V}$ to 2.5 V . This output can also be used to bias external circuits and can therefore be used as the reference in ratiometric applications. Bypassing $\mathrm{V}_{\text {REF }}$ OUT with a $100 \mu \mathrm{~F}$ capacitor is recommended.
For the ADC08231, the output of the on-board reference is internally tied to the reference input. Consequently, the ana\log input span for this device is set at 0 V to 2.5 V . The pin $V_{\text {REF }} C$ is provided for bypassing purposes and biasing external circuits as suggested above.
The maximum value of the reference is limited to the V_{CC} supply voltage. The minimum value, however, can be quite small (see Typical Performance Characteristics) to allow direct conversions of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals VREF/ 256).

b) Absolute
a) Ratiometric

TL/H/11015-18

FIGURE 2. Reference Examples

Functional Description (Continued)

4.0 THE ANALOG INPUTS

The most important feature of these converters is that they can be located right at the analog signal source and through just a few wires can communicate with a controlling processor with a highly noise immune serial bit stream. This in itself greatly minimizes circuitry to maintain analog signal accuracy which otherwise is most susceptible to noise pickup. However, a few words are in order with regard to the analog inputs should the input be noisy to begin with or possibly riding on a large common-mode voltage.
The differential input of these converters actually reduces the effects of common-mode input noise, a signal common to both selected " + " and "-" inputs for a conversion (60 Hz is most typical). The time interval between sampling the "+" input and then the "-" input is $1 / 2$ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:

$$
V_{\text {error }}(\max)=V_{\text {PEAK }}\left(2 \pi f_{\mathrm{CM}}\right)\left(\frac{0.5}{f_{\mathrm{CLK}}}\right)
$$

where f_{CM} is the frequency of the common-mode signal,
$V_{\text {PEAK }}$ is its peak voltage value
and $f_{C L K}$ is the A/D clock frequency.
For a 60 Hz common-mode signal to generate a $1 / 4$ LSB error ($\approx 5 \mathrm{mV}$) with the converter running at 250 kHz , its peak value would have to be 6.63 V which would be larger than allowed as it exceeds the maximum analog input limits.
Source resistance limitation is important with regard to the DC leakage currents of the input multiplexer. While operating near or at maximum speed, bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$. The worst-case leakage current of $\pm 1 \mu \mathrm{~A}$ over temperature will create a 1 mV input error with a $1 \mathrm{k} \Omega$ source resistance. An op amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

5.0 OPTIONAL ADJUSTMENTS

5.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN}) \text {, is not ground }}$ a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing any $\mathrm{V}_{\text {IN }}(-)$ input at this $\mathrm{V}_{\text {IN(MIN }}$ value. This utilizes the differential mode operation of the A/D.

The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\text {IN }}(-)$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value $\left(1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}\right.$ for $\left.\mathrm{V}_{\text {REF }}=5.000 \mathrm{~V}_{\mathrm{DC}}\right)$.

5.2 Full Scale

A full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }} \mathrm{I}$ input for a digital output code which is just changing from 11111110 to 11111111 (See figure entitled "Span Adjust; $0 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq 3 \mathrm{~V}$ "). This is possible only with the ADC08234 and ADC08238. (The reference is internally connected to $\mathrm{V}_{\text {REF }} \mathrm{IN}$ of the ADC08231).

5.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A $\mathrm{V}_{\mathbb{N}}(+)$ voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, using 1 LSB = analog span/256) is applied to selected " + " input and the zero reference voltage at the corresponding "-" input should then be adjusted to just obtain the $00_{\text {HEX }}$ to $01_{\text {HEX }}$ code transition.
The full-scale adjustment should be made [with the proper $\mathrm{V}_{\mathrm{IN}}(-)$ voltage applied] by forcing a voltage to the $\mathrm{V}_{\mathbb{I N}}(+)$ input which is given by:

$$
\mathrm{V}_{\mathrm{IN}}(+) \text { fs adj }=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]
$$

where:
$\mathrm{V}_{\text {MAX }}=$ the high end of the analog input range and
$\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)
The $\mathrm{V}_{\text {REF }} I N$ (or V_{CC}) voltage is then adjusted to provide a code change from $\mathrm{FE}_{\text {HEX }}$ to $\mathrm{FF}_{\text {HEX }}$. This completes the adjustment procedure.

Applications

Low-Cost Remote Temperature Sensor

Applications (Continued)

${ }^{*} \mathrm{~V}_{I N}(-)=0.15 \mathrm{~V}_{\mathrm{REF}}$
15% of $\mathrm{V}_{\text {REF }} \leq \mathrm{V}_{\mathrm{XDR}} \leq 85 \%$ of $\mathrm{V}_{\text {REF }}$
TL/H/11015-23

Applications (Continued)

ADC0841 8-Bit μ P Compatible A/D Converter

General Description

The ADC0841 is a CMOS 8-bit successive approximation A/D converter. Differential inputs provide low frequency input common mode rejection and allow offsetting the analog range of the converter. In addition, the reference input can be adjusted enabling the conversion of reduced analog ranges with 8-bit resolution.
The A/D is designed to operate with the control bus of a variety of microprocessors. TRI-STATE ${ }^{\circledR}$ output latches that directly drive the data bus permit the A/D to be configured as a memory location or I/O device to the microprocessor with no interface logic necessary.

Features

- Easy interface to all microprocessors
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ voltage reference
- No zero or full-scale adjust required
- Internal clock
- 0 V to 5 V input range with single 5 V power supply
- $0.3^{\prime \prime}$ standard width 20-pin package

■ 20 Pin Molded Chip Carrier Package

Key Specifications

- Resolution	8 Bits
- Total Unadjusted Error	$\pm 1 / 2 \mathrm{LSB}$ and ± 1 LSB
- Single Supply	$5 \mathrm{~V}_{\text {DC }}$
国 Low Power	15 mW
(1) Conversion Time	$40 \mu \mathrm{~s}$

Block and Connection Diagrams

TL/H/8557-1

Dual-In-Line Package (N)

Molded Chip Carrier Package (V)

Top View

Lead Temp. (Soldering, 10 seconds)	
Dual-In-Line Package (Plastic)	$260^{\circ} \mathrm{C}$
Molded Chip Carrier Package	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
\quad Infrared (15 seconds)	$220^{\circ} \mathrm{C}$
ESD Susceptibility (Note 10$)$	800 V

Operating Conditions (Notes 1 and 2)
Supply Voltage (V_{CC})
Temperature Range
ADC0841BCN, ADC0841CCN
ADC0841BCV, ADC0841CCV
4.5 $V_{D C}$ to $6.0 V_{D C}$ $T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$ $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$

Electrical Characteristics The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise specified. Boldface limits apply from $T_{M I N}$ to $T_{M A X}$; all other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0841BCN, ADC0841CCN ADC0841BCV, ADC0841CCV			Units
		$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$		Design Limit (Note 8)	
CONVERTER AND MULTIPLEXER CHARACTERISTICS					
Maximum Total Unadjusted Error ADC0841BCN, BCV ADC0841CCN, CCV	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=5.00 \mathrm{~V}_{\mathrm{DC}} \\ & \text { (Note 4) } \end{aligned}$		$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Minimum Reference Input Resistance		2.4	1.2	1.1	k Ω
Maximum Reference Input Resistance		2.4	5.4	5.9	k Ω
Maximum Common-Mode Input Voltage	(Note 5)		$\mathrm{V}_{\mathrm{CC}}+0.05$	$V_{c c}+0.05$	V
Minimum Common-Mode Input Voltage	(Note 5)		GND-0.05	GND-0.05	V
DC Common-Mode Error	Differential Mode	$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$	$\pm 1 / 16$	$\pm 1 / 8$	$\pm 1 / 8$	LSB

Electrical Characteristics the following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise specified.
Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter	Conditions	ADC0841BCN, ADC0841CCN ADC0841BCV, ADC0841CCV			Units
			$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Tested Limit (Note 7	Design Limit (Note 6)	

DIGITAL AND DC CHARACTERISTICS

$\mathrm{V}_{\text {IN(1) }}$	Logical " 1 " Input Voltage (Min)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		2.0	2.0	v
$\mathrm{V}_{\text {IN(0) }}$	Logical " 0 " Input Voltage (Max)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		0.8	0.8	v
$\ln (1)$	Logical " 1 " Input Current (Max)	$\mathrm{V}_{1 \mathrm{~N}}=5.0 \mathrm{~V}$	0.005		1	$\mu \mathrm{A}$
$\underline{1 N(0)}$	Logical "0" Input Current (Max)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005		-1	$\mu \mathrm{A}$
$V_{\text {OUT(1) }}$	Logical " 1 " Output Voltage (Min)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { lout }=-360 \mu \mathrm{~A} \\ & \text { lout }=-10 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.8 \\ & 4.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \\ & \hline \end{aligned}$
$V_{\text {OUT(0) }}$	Logical " 0 " Output Voltage (Max)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { louT }=1.6 \mathrm{~mA} \end{aligned}$		0.34	0.4	v
Iout	TRI-STATE Output Current (Max)	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & V_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.01 \\ 0.01 \end{gathered}$	$\begin{gathered} -0.3 \\ 0.3 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Isource	Output Source Current (Min)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-14	-7.5	-6.5	mA
IsINK	Output Sink Current (Min)	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$	16	9.0	8.0	mA
ICC	Supply Current (Max)	$\overline{C S}=1, \mathrm{~V}_{\text {REF }}$ Open	1	2.3	2.5	mA

AC Characteristics The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ unless otherwise specified.
Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ (Note 6)	Tested Limit (Note 7)		Units
t_{C}	Maximum Conversion Time (See Graph)		30	40	60	$\mu \mathrm{s}$
$t_{\text {W }}(\overline{W R})$	Minimum $\overline{\text { WR }}$ Pulse Width	(Note 9)	50	150		ns
$t_{\text {ACC }}$	Maximum Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { (Note 9) } \end{aligned}$	145	225		ns
$t_{1 H}, t_{0 H}$	TRI-STATE Control (Maximum Delay from Rising Edge of $\overline{\mathrm{RD}}$ to Hi-Z State)	$\begin{aligned} & C_{L}=10 \mathrm{pF}, R_{L}=10 \mathrm{k}, \\ & t_{\mathrm{r}}=20 \mathrm{~ns}(\text { Note } 9) \end{aligned}$	125		200	ns
${ }_{\text {t }}^{\text {WI }}$, $t_{\text {RII }}$	Maximum Delay from Falling Edge of $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ to Reset of INTR	(Note 9)		400		ns
$\mathrm{C}_{\text {IN }}$	Capacitance of Logic Inputs		5			pF
$\mathrm{C}_{\text {OUT }}$	Capacitance of Logic Outputs		5			pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to the ground pins.
Note 3: During over-voltage conditions ($\mathrm{V}_{I N}<0 \mathrm{~V}$ and $\mathrm{V}_{I N}>\mathrm{V}_{\mathrm{CC}}$) the maximum input current at any one pin is $\pm 5 \mathrm{~mA}$. If the current is limited to $\pm 5 \mathrm{~mA}$ at all the pins no more than four pins can be in this condition in order to meet the Input Current Per Package ($\pm 20 \mathrm{~mA}$) specification.
Note 4: Total undajusted error includes offset, full-scale, and linearity.
Note 5: For $V_{I N}(-) \geq V_{I N}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input, which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. Be careful during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 V_{D C}$ to $5 \mathrm{~V}_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{D C}$ over temperature variations, initial tolerance and loading.
Note 6: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Design limits are guaranteed but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 9: The temperature coefficient is $0.3 \% /{ }^{\circ} \mathrm{C}$.
Note 10: Human body model, 100 pF discharged through $1.5 \mathrm{k} \Omega$ resistor.

Timing Diagram

TL/H/8557-9
Note 1: Read strobe must occur at least 600 ns after the assertion of interrupt to guarantee reset of INTR.

Typical Performance Characteristics

Linearity Error vs $\mathrm{V}_{\mathrm{REF}}$

Output Current vs
Temperature
(25

Conversion Time vs V SUPPLY

Power Supply Current vs Temperature

Conversion Time vs Temperature

TRI-STATE Test Circuits and Waveforms

TL/H/8557-5

$$
\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}
$$

TL/H/8557-7

$$
t_{0 H}, C_{L}=10 \mathrm{pF}
$$

$$
\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}
$$

Functional Description

A conversion is initiated via the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ lines. If the data from a previous conversion is not read, the INTR line will be low. The falling edge of $\overline{W R}$ will reset the INTR line high and ready the A/D for a conversion cycle. The rising edge of $\overline{W R}$ starts a conversion. After the conversion cycle ($\mathrm{t}_{\mathrm{c}} \leq 60$ $\mu \mathrm{sec}$), which is set by the internal clock frequency, the digital data is transferred to the output latch and the INTR is asserted low. Taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low resets $\overline{\mathrm{NTR}}$ output high and transfers the conversion result on the output data lines (DB0-DB7).

Applications Information

1.0 REFERENCE CONSIDERATIONS

The voltage applied to the reference input of this converter defines the voltage span of the analog input (the difference between $\mathrm{V}_{\mathbb{I N}(\mathrm{MAX})}$ and $\mathrm{V}_{\mathbb{I N}(M \operatorname{MiN})}$) over which the 256 possible output codes apply. The device can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pin must be connected to a voltage source capable of driving the minimum reference input resistance of $1.1 \mathrm{k} \Omega$. This pin is the top of a resistor divider string used for the successive approximation conversion.
In a ratiometric system (Figure 1a), the analog input voltage is proportional to the voltage used for the A/D reference. This voltage is typically the system power supply, so the $V_{\text {REF }}$ pin can be tied to V_{CC}. This technique relaxes the stability requirements of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy (Figure 1b), where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. The LM385 and LM336 reference diodes are good low current devices to use with this converter.
The maximum value of the reference is limited to the $V_{C C}$ supply voltage. The minimum value, however, can be quite small (see Typical Performance Characteristics) to allow direct conversions of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $V_{\text {REF }} / 256$).

2.0 THE ANALOG INPUTS

2.1 Analog Differential Voltage Inputs and CommonMode Rejection

The differential inputs of this converter actually reduce the effects of common-mode input noise, a signal common to both selected " +" and " -" inputs for a conversion (60 Hz is most typical). The time interval between sampling the " + " input and then the " - " input is $1 / 2$ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:

$$
V_{E R R O R}(M A X)=V_{\text {peak }}\left(2 \pi f_{C M}\right) \times 0.5 \times\left(\frac{\mathrm{t}_{\mathrm{C}}}{8}\right)
$$

where fCM is the frequency of the common-mode signal, Vpeak is its peak voltage value and t_{C} is the conversion time.

For a 60 Hz common-mode signal to generate a $1 / 4$ LSB error ($\approx 5 \mathrm{mV}$) with the converter running at $40 \mu \mathrm{~S}$, its peak value would have to be 5.43 V . This large a common-mode signal is much greater than that generally found in a well designed data acquisition system.

2.2 Input Current

Due to the sampling nature of the analog inputs, short duration spikes of current enter the " + " input and exit the " - " input at the clock edges during the actual conversion. These currents decay rapidly and do not cause errors as the internal comparator is strobed at the end of a clock period. Bypass capacitors at the inputs will average these currents and cause an effective DC current to flow through the output resistance of the analog signal source. Bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$. An op amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

3.0 OPTIONAL ADJUSTMENTS

3.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathbb{I N}(\mathrm{MIN}) \text {, }}$, not ground, a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing the $\mathrm{V}_{\mathbb{I N}}(-)$ input at this $\mathrm{V}_{\operatorname{IN}(\mathrm{MIN})}$ value.
The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the V^{-}input and applying a small magnitude positive voltage to the $\mathrm{V}+$ input. Zero error is the difference between actual DC input voltage which is necessary to just cause an output digital code transition from 0000 0000 to 00000001 and the ideal $1 / 2$ LSB value $(1 / 2$ LSB $=9.8$ mV for $\mathrm{V}_{\mathrm{REF}}=5.000 \mathrm{~V}_{\mathrm{DC}}$).

3.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $V_{\text {REF }}$ input for a digital output code changing from 11111110 to 11111111.

3.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, $1 \mathrm{LSB}=$ analog span/256) is applied to the " + " input $\left(\mathrm{V}_{1}{ }^{(+)}\right)$and the zero reference voltage at the "-" input ($\mathrm{V}_{\mathbb{N}}{ }^{(-)}$) should then be adjusted to just obtain the 00 HEX to $01_{\text {HEX }}$ code transition.

Applications Information (Continued)

a) Ratiometric

TL/H/8557-12
b) Absolute with a Reduced Span

FIGURE 1. Referencing Examples

The full-scale adjustment should be made [with the proper $\mathrm{V}_{\mathrm{IN}}(-)$ voltage applied] by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input which is given by:

$$
V_{I N}(+) \text { fs adj }=V_{\text {MAX }}-1.5\left[\frac{\left(V_{M A X}-V_{M I N}\right)}{256}\right]
$$

where $\mathrm{V}_{\mathrm{MAX}}=$ the high end of the analog input range and
$\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)
The $V_{\text {REF }}$ (or $V_{C C}$) voltage is then adjusted to provide a code change from FE HEX to FFHEX. This completes the adjustment procedure.
For an example see the Zero-Shift and Span Adjust circuit below.

Applications Information (Continued)

Span Adjust $\mathbf{O V} \leq \mathbf{V}_{\mathbf{I N}} \leq \mathbf{3 V}$

TL/H/8557-14

Diodes are 1N914

High Accuracy Comparator

$D O=$ all 1 s if $\mathrm{V}_{\mathrm{IN}}(+)>\mathrm{V}_{\mathrm{IN}}(-)$
$D O=$ all $0 s$ if $V_{I N}(+)<\mathrm{V}_{\text {IN }}(-)$

Applications Information (Continued)

TL/H/8557-19

Operating with Automotive Ratiometric Transducers

Applications Information (Continued)

		SAMPLE PROGRAM FOR ADC0841-INS8039 INTERFACE CONVERTING TWO RATIOMETRIC, DIFFERENTIAL SIGNALS			
			ORG	OH	
0000	0410		JMP	BEGIN	;START PROGRAM AT ADDR 10
			ORG	10H	;MAIN PROGRAM
0010	B9 FF	BEGIN:	MOV	R1, \# 0FFH	;LOAD R1 WITH A UNUSED ADDR
					;LOCATION
0012	B8 20		MOV	RO, \#20H	;A/D DATA ADDRESS
0014	89 FF		ORL	P1,\#0FFH	;SET PORT 1 OUTPUTS HIGH
0016	2300		MOV	A, 00 H	;LOAD THE ACC WITH 00
0018	1450		CALL	CONV	;CALL THE CONVERSION SUBROUTINE

;CONTINUE MAIN PROGRAM
;CONVERSION SUBROUTINE
;ENTRY:ACC—A/D MUX DATA
;EXIT: ACC—CONVERTED DATA

			ORG	$50 H$	
0050	99 FE	CONV:	ANL	P1,\#0FEH	;CHIP SELECT THE A/D
0052	91		MOVX	@R1,A	;START CONVERSION
0053	09	LOOP:	IN	A,P1	;INPUTTINTR STATE
0054	3253		JB1	LOOP	;IF INTR $=1$ GOTO LOOP
0056	81		MOVX	A,@R1	;IF INTR $=0$ INPUT A/D DATA
0057	8901		ORL	P1,\&01H	;CLEAR THE A/D CHIP SELECT
0059	A0		MOV	@R0,A	;STORE THE A/D DATA
$005 A$	83		RET		;RETURN TO MAIN PROGRAM

Applications Information (Continued)

SAMPLE PROGRAM FOR ADC0841—NSC800 INTERFACE

0010		NCONV	EQU	16	;TWICE THE NUMBER OF REQUIRED
					;CONVERSIONS

END
Note: A conversion is started, then a $60 \mu \mathrm{~s}$ wait for the A / D to complete a conversion and the data is stored at address ADDTA for the first conversion, ADDTA +1 for the second conversion, etc. for a total of 8 conversions.

Ordering Information

Temperature Range	Total Unadjusted Error		Package Outline
	$\pm 1 / 2$ LSB	± 1 LSB	
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ADC0841BCN	ADC0841CCN	N20A Molded Dip
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	ADC0841BCV	ADC0841CCV	V20A Molded Chip Carrier

ADC0844/ADC0848 8-Bit μ P Compatible A/D Converters with Multiplexer Options

General Description

The ADC0844 and ADC0848 are CMOS 8-bit successive approximation A/D converters with versatile analog input multiplexers. The 4 -channel or 8 -channel multiplexers can be software configured for single-ended, differential or pseudo-differential modes of operation.
The differential mode provides low frequency input common mode rejection and allows offsetting the analog range of the converter. In addition, the A/D's reference can be adjusted enabling the conversion of reduced analog ranges with 8 -bit resolution.
The A/Ds are designed to operate from the control bus of a wide variety of microprocessors. TRI-STATE ${ }^{\circledR}$ output latches that directly drive the data bus permit the A/Ds to be configured as memory locations or I/O devices to the microprocessor with no interface logic necessary.

Features

- Easy interface to all microprocessors

■ Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ voltage reference

- No zero or full-scale adjust required
- 4-channel or 8-channel multiplexer with address logic
- Internal clock
- 0 V to 5 V input range with single 5 V power supply
- $0.3^{\prime \prime}$ standard width 20 -pin or 24-pin DIP
- 28 Pin Molded Chip Carrier Package

Key Specifications

Resolution	8 Bits
Total Unadjusted Error	$\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$
(Single Supply	5 VDC
Low Power	15 mW
Conversion Time	$40 \mu \mathrm{~s}$

Lead Temperature (Soldering, 10 seconds)	
Dual-In-Line Package (Plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (Ceramic)	$300^{\circ} \mathrm{C}$
Molded Chip Carrier Package	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

Operating Conditions (Notes 1 \& 2)

Supply Voltage (VCC)	$4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.0 \mathrm{~V}_{\mathrm{DC}}$
Temperature Range	$\mathrm{T}_{\text {MIN }} \leq T_{A} \leq \mathrm{T}_{\text {MAX }}$
ADC0844BCN, ADC0844CCN,	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}$
ADC0848BCN, ADC0848CCN	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$

ADC0848BCJ, ADC0848CCJ
ADC0848BCV, ADC0848CCV
$T_{M I N} \leq T_{A} \leq T_{M A}$ $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$

Electrical Characteristics The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0844BCJ ADC0844CCJ ADC0848BCJ ADC0848CCJ			ADC0844BCN, ADC0844CCN ADC0848BCN, ADC0848CCN ADC0848BCV, ADC0848CCV			Limit Units
		$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Tested Limit (Note 6)		$\begin{array}{\|c\|} \text { Typ } \\ \text { (Note 5) } \end{array}$		Design Limit (Note 7)	
CONVERTER AND MULTIPLEXER CHARACTERISTICS								
Maximum Total Unadjusted Error ADC0844BCN, ADC0848BCN, BCV ADC0844BCJ, ADC0848BCJ ADC0844CCN, ADC0848CCN, CCV ADC0844CCJ, ADC0848CCJ	$V_{\mathrm{REF}}=5.00 \mathrm{~V}_{\mathrm{DC}}$ (Note 8)	,	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	-		$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Minimum Reference Input Resistance		2.4	1.1		2.4	1.2	1.1	k Ω
Maximum Reference Input Resistance	:	2.4	5.9		2.4	5.4	5.9	k Ω
Maximum Common-Mode Input Voltage	(Note 9)		$V_{c c}+0.05$			$\mathrm{V}_{\mathrm{CC}}+0.05$	$\mathbf{V}_{\mathbf{c c}}+0.05$	V
Minimum Common-Mode Input Voltage	(Note 9)		GND-0.05			GND-0:05	GND-0.05	V
DC Common-Mode Error	Differential Mode	$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V} \pm 5 \%$	$\pm 1 / 16$	$\pm 1 / 8$		$\pm 1 / 16$	$\pm 1 / 8$	$\pm 1 / 8$	LSB
Off Channel Leakage Current	(Note 10) On Channel $=5 \mathrm{~V}$, Off Channel $=0 \mathrm{~V}$		-1			-0.1	-1	$\mu \mathrm{A}$
	$\begin{array}{\|l\|} \hline \text { On Channel }=0 \mathrm{~V}, \\ \text { Off Channel }=5 \mathrm{~V} \end{array}$		1			0.1	1	$\mu \mathrm{A}$
DIGITAL AND DC CHARACTERISTICS								
$V_{\text {IN(1) }}$, Logical "1" Input Voltage (Min)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		2.0			2.0	2.0	V
$\mathrm{V}_{\text {IN(0) }}$, Logical "0" Input Voltage (Max)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		0.8			0.8	0.8	V
IN(1), Logical " 1 " Input Current (Max)	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$	0.005	1		0.005		1	$\mu \mathrm{A}$

Electrical Characteristics The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise specified.
Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$. (Continued)

Parameter	Conditions	ADC0844BCJ ADC0844CCJ ADC0848BCJ ADC0848CCJ			ADC0844BCN, ADC0844CCN ADC0848BCN, ADC0848CCN ADC0848BCV, ADC0848CCV			Limit Units
		Typ (Note 5)		Design Limit (Note 7)	Typ (Note 5)	Tested Limit (Note 6)		

DIGITAL AND DC CHARACTERISTICS (Continued)

IIN(0), Logical "0" Input Current (Max)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-0.005	-1	-0.005		-1	$\mu \mathrm{A}$
$V_{\text {OUT(1), Logical " } 1 "}$ Output Voltage (Min)	$\begin{aligned} & \mathrm{V}_{\text {CC }}=4.75 \mathrm{~V} \\ & \text { lout }=-360 \mu \mathrm{~A} \\ & \text { lout }=-10 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 2.8 \\ & 4.6 \end{aligned}$	2.4	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Vout(0), Logical "0" Output Voltage (Max)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { l }_{\text {OUT }}=1.6 \mathrm{~mA} \\ & \hline \end{aligned}$		0.4		0.34	0.4	V
Iout, TRI-STATE Output Current (Max)	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & V_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.01 \\ 0.01 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\begin{gathered} -0.01 \\ 0 . .01 \end{gathered}$	$\begin{gathered} -0.3 \\ 0.3 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ISOURCE, Output Source Current (Min)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-14	-6.5	-14	-7.5	-6.5	mA
ISINK, Output Sink Current (Min)	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$	16	8.0	16	9.0	8.0	mA
${ }_{\text {ICC, }}$ Supply Current (Max)	$\overline{\mathrm{CS}}=1, \mathrm{~V}$ REF Open	1	2.5	1	2.3	2.5	mA

AC Electrical Characteristics The following specifications apply for $V_{C C}=5 V_{D C}, t_{r}=t_{f}=10 \mathrm{~ns}$ unless otherwise specified. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	Typ (Note 5)	Tested Limit (Note 6)	Design Limit (Note 7)	Units
t_{C}, Maximum Conversion Time (See Graph)		30	40	60	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{W}(\overline{W R})}$, Minimum $\overline{\mathrm{WR}}$ Pulse Width	(Note 11)	50	150		ns
$t_{\text {ACC }}$, Maximum Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { (Note 11) } \end{aligned}$	145		225	ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$, TRI-STATE Control (Maximum Delay from Rising Edge of $\overline{\mathrm{RD}}$ to $\mathrm{Hi}-\mathrm{Z}$ State)	$\begin{aligned} & C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \text { (Note 11) } \end{aligned}$	125		200	ns
${ }^{\mathrm{t}} \mathrm{W}_{\mathrm{I}}, \mathrm{t}_{\mathrm{RI}}$, Maximum Delay from Falling Edge of $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ to Reset of INTR	(Note 11)	200	400		ns
$t_{\text {DS }}$, Minimum Data Set-Up Time	(Note 11)	50	100		ns
$\mathrm{t}_{\text {DH, }}$, Minimum Data Hold Time	(Note 11)	0	50		ns
$\mathrm{C}_{\text {IN }}$, Capacitance of Logic Inputs		5			pF
Cout, Capacitance of Logic Outputs		5			pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to the ground pins.
Note 3: When the input voltage $\left(\mathrm{V}_{\mathbb{I}}\right)$ at any pin exceeds the power supply rails ($\mathrm{V}_{\mathrm{IN}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathbb{N}}>\mathrm{V}^{+}$) the absolute value of the current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 6: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 7: Design limits are guaranteed by not 100% tested. These limits are not used to calculate outgoing quality levels.
Note 8: Total unadjusted error includes offset, full-scale, linearity, and multiplexer error.

Note 9: For $V_{I N}(-) \geq V_{I N}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input, which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. Be careful during testing at low V_{Cc} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $V_{\mathbb{I N}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{D C}$ to $5 \mathrm{~V}_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{D C}$ over temperature variations, initial tolerance and loading.
Note 10: Off channel leakage current is measured after the channel selection.
Note 11: The temperature coefficient is $0.3 \% /{ }^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Power Supply Current vs Temperature

TRI-STATE Test Circuits and Waveforms

Leakage Current Test Circuit

*NOT INCLUDED ON ADCO844

Timing Diagrams

Programming New Channel Configuration and Starting a Conversion

TL/H/5016-9
Note 1: Read strobe must occur at least 600 ns after the assertion of interrupt to guarantee reset of INTR.
Note 2: MA stands for MUX address.

Using the Previously Selected Channel Configuration and Starting a Conversion

TL/H/5016-10

Functional Description

The ADC0844 and ADC0848 contain a 4-channel and 8channel analog input multiplexer (MUX) respectively. Each MUX can be configured into one of three modes of operation differential, pseudo-differential, and single ended. These modes are discussed in the Applications Information Section. The specific mode is selected by loading the MUX address latch with the proper address (see Table I and Ta ble II). Inputs to the MUX address latch (MAO-MA4) are common with data bus lines (DB0-DB4) and are enabled when the $\overline{R D}$ line is high. A conversion is initiated via the $\overline{C S}$ and $\overline{W R}$ lines. If the data from a previous conversion is not read, the $\overline{N T R}$ line will be low. The falling edge of $\overline{W R}$ will reset the $\overline{\text { NTR }}$ line high and ready the A/D for a conversion cycle. The rising edge of $\overline{W R}$, with $\overline{R D}$ high, strobes the data on the MAO/DB0-MA4/DB4 inputs into the MUX address latch to select a new input configuration and start a conversion. If the $\overline{\mathrm{RD}}$ line is held low during the entire low period of $\overline{W R}$ the previous MUX configuration is retained, and the data of the previous conversion is the output on lines DBODB7. After the conversion cycle ($\mathrm{t}_{\mathrm{C}} \leq 40 \mu \mathrm{~s}$), which is set by the internal clock frequency, the digital data is trans-
ferred to the output latch and the INTR is asserted low. Taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low resets $\overline{\text { INTR }}$ output high and outputs the conversion result on the data lines (DB0-DB7).

Applications Information

1.0 MULTIPLEXER CONFIGURATION

The design of these converters utilizes a sampled-data comparator structure which allows a differential analog input to be converted by a successive approximation routine.
The actual voltage converted is always the difference between an assigned " + " input terminal and a "-" input terminal. The polarity of each input terminal of the pair being converted indicates which line the converter expects to be the most positive. If the assigned " + " input is less than the "-" input the converter responds with an all zeros output code.
A unique input multiplexing scheme has been utilized to provide multiple analog channels. The input channels can be software configured into three modes: differential, single-

TABLE I. ADC0844 MUX ADDRESSING

FIGURE 1. Analog Input Multiplexer Options

Applications Information (Continued)

ended, or pseudo-differential. Figure 1 shows the three modes using the 4 -channel MUX ADC0844. The eight inputs of the ADC0848 can also be configured in any of the three modes. In the differential mode, the ADC0844 channel inputs are grouped in pairs, CH 1 with CH 2 and CH 3 with CH 4 . The polarity assignment of each channel in the pair is interchangeable. The single-ended mode has $\mathrm{CH} 1-\mathrm{CH} 4$ assigned as the positive input with the negative input being the analog ground (AGND) of the device. Finally, in the pseudodifferential mode $\mathrm{CH} 1-\mathrm{CH} 3$ are positive inputs referenced to CH 4 which is now a pseudo-ground. This pseudo-ground input can be set to any potential within the input commonmode range of the converter. The analog signal conditioning required in transducer-based data acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground referenced inputs and true differential inputs as well as signals with some arbitrary reference voltage.
The analog input voltages for each channel can range from 50 mV below ground to 50 mV above V_{Cc} (typically 5 V) without degrading conversion accuracy.

2.0 REFERENCE CONSIDERATIONS

The voltage applied to the reference input of these converters defines the voltage span of the analog input (the difference between $\mathrm{V}_{\operatorname{IN}(\mathrm{MAX})}$ and $\left.\mathrm{V}_{\operatorname{IN}(\mathrm{MIN})}\right)$ over which the 256 possible output codes apply. The devices can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pin must be connected to a voltage source capable of driving the minimum reference input resistance of $1.1 \mathrm{k} \Omega$. This pin is the top of a resistor
divider string used for the successive approximation conversion.
In a ratiometric system (Figure 2a), the analog input voltage is proportional to the voltage used for the A/D reference. This voltage is typically the system power supply, so the $V_{\text {REF }}$ pin can be tied to $V_{C C}$. This technique relaxes the stability requirements of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy (Figure 2b), where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. The LM385 and LM336 reference diodes are good low current devices to use with these converters.
The maximum value of the reference is limited to the $V_{C C}$ supply voltage. The minimum value, however, can be quite small (see Typical Performance Characteristics) to allow direct conversions of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $V_{\text {REF }} / 256$).

3.0 THE ANALOG INPUTS

3:1 Analog Differential Voltage Inputs and CommonMode Rejection

The differential input of these converters actually reduces the effects of common-mode input noise, a signal common to both selected " + " and " - " inputs for a conversion (60 Hz is most typical). The time interval between sampling the

TABLE II. ADC0848 MUX Addressing

MUX Address					$\overline{\text { CS }}$	$\overline{W R}$	$\overline{\mathrm{RD}}$	Channel									MUX Mode
MA4	MA3	MA2	MA1	MAO				CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	AGND	
X	L	L	L	L	L		H	+	-								
X	L	L	L	H	L		H	-	$+$								
X	L	L	H	L	L		H			$+$	-						
X	L	L	H	H	L		H			-	$+$						
X	L	H	L	L	L	モ	H					$+$	-				Differential
X	L	H	L	H	L		H					-	+				
X	L	H	H	L	L		H							+	-		
X	L	H	H	H	L		H							-	$+$		
L	H	L	L	L	L		H	+								-	
L	H	L	L	H	L		H		+							-	
L	H	L	H	L	L		H			+						-	
L	H	L	H	H	L	15	H				$+$					-	
L	H	H	L	L	L	Ψ	H					+				-	Single-Ended
L	H	H	L	H	L		H						+			-	
L	H	H	H	L	L		H							$+$		-	
L	H	H	H	H	L		H								+	-	
H	H	L	L	L	L		H	+							-		
H	H	L	L	H	L		H		+						-		
H	H	L	H	L	L'		H			$+$					-		
H	H	L	H	H	L	$\underline{\square}$	H				$+$				-		Pseudo-
H	H	H	L	L	L		H					+			-		Differential
H	H	H	L	H	L		H						+		-		
H	H	H	H	L	L		H							+	-		
X	X	X	X	X	L	$\underline{\square}$	L	Previous Channel Configuration									

Applications Information (Continued)

" + " input and then the " - " inputs is $1 / 2$ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:

$$
\mathrm{V}_{\mathrm{ERROR}}(\mathrm{MAX})=\mathrm{V}_{\text {peak }}\left(2 \pi \mathrm{f}_{\mathrm{CM}}\right) \times 0.5 \times\left(\frac{\mathrm{t}_{\mathrm{C}}}{8}\right)
$$

where f_{CM} is the frequency of the common-mode signal, $\mathrm{V}_{\text {peak }}$ is its peak voltage value and t_{C} is the conversion time. For a 60 Hz common-mode signal to generate a $1 / 4$ LSB error ($\approx 5 \mathrm{mV}$) with the converter running at $40 \mu \mathrm{~S}$, its peak value would have to be 5.43 V . This large a common-mode signal is much greater than that generally found in a well designed data acquisition system.

3.2 Input Current

Due to the sampling nature of the analog inputs, short duration spikes of current enter the " + " input and exit the " - " input at the clock edges during the actual conversion. These currents decay rapidly and do not cause errors as the internal comparator is strobed at the end of a clock period. Bypass capacitors at the inputs will average these currents and cause an effective DC current to flow through the output resistance of the analog signal source. Bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$.

3.3 Input Source Resistance

The limitation of the input source resistance due to the DC leakage currents of the input multiplexer is important. A worst-case leakage current of $\pm 1 \mu \mathrm{~A}$ over temperature will create a 1 mV input error with a $1 \mathrm{k} \Omega$ source resistance. An op amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

a) Ratiometric

4.0 OPTIONAL ADJUSTMENTS

4.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{I N(M I N)}$, is not ground, a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing any $\mathrm{V}_{\mathrm{IN}}(-)$ input at this $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$ value. This is useful for either differential or pseudo-differential modes of input channel configuration.
The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the V - input and applying a small magnitude positive voltage to the $\mathrm{V}+$ input. Zero error is the difference between actual DC input voltage which is necessary to just cause an output digital code transition from 0000 0000 to 00000001 and the ideal $1 / 2$ LSB value $(1 / 2 \mathrm{LSB}=9.8$ mV for $\left.\mathrm{V}_{\mathrm{REF}}=5.000 \mathrm{~V}_{\mathrm{DC}}\right)$.

4.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }}$ input for a digital output code changing from 11111110 to 11111111.

4.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A $\mathrm{V}_{\mathrm{IN}}(+)$ voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, 1 LSB = analog span/256) is applied to selected " + " input and the zero reference voltage at the corresponding "-" input should then be adjusted to just obtain the 00HEX to $01_{\text {HEX }}$ code transition.

TL/H/5016-17
b) Absolute with a Reduced Span

FIGURE 2. Referencing Examples

Applications Information (Continued)

The full-scale adjustment should be made [with the proper $\mathrm{V}_{\mathrm{IN}}(-)$ voltage applied] by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input which is given by:

$$
\mathrm{V}_{\text {IN }}(+) \text { fs adj }=\mathrm{V}_{\text {MAX }}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]
$$

where $\mathrm{V}_{\mathrm{MAX}}=$ the high end of the analog input range and
$\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)
The $V_{\text {REF }}$ (or $V_{C C}$) voltage is then adjusted to provide a code change from $\mathrm{FE}_{\text {HEX }}$ to $\mathrm{FF}_{\text {HEX. }}$. This completes the adjustment procedure.
For an example see the Zero-Shift and Span Adjust circuit below.

TL/H/5016-18

Applications Information (Continued)

Protecting the Input

Applications Information (Continued)

Operating with Automotive Ratiometric Transducers

Applications Information (Continued)

TL/H/5016-25
Note: DUT pin numbers in parentheses are for ADC0844, others are for ADC0848.

Start a Conversion without Updating the Channel Configuration

TL/H/5016-26
$\overline{\mathrm{CS}} \cdot \overline{\mathrm{WR}}$ will update the channel configuration and start a conversion.
$\overline{\mathrm{CS}} \bullet \overline{\mathrm{RD}}$ will read the conversion data and start a new conversion without updating the channel configuration.
Waiting for the end of this conversion is not necessary. A $\overline{\mathrm{CS}} \bullet \overline{\mathrm{WR}}$ can immediately follow the $\overline{\mathrm{CS}} \bullet \overline{\mathrm{RD}}$.

Applications Information (Continued)

		SAMPLE PROGRAM FOR ADC0844-INS8039 INTERFACE CONVERTING TWO RATIOMETRIC, DIFFERENTIAL SIGNALS			
			ORG	OH	
0000	0410		JMP	BEGIN	;START PROGRAM AT ADDR 10
			ORG	10H	;MAIN PROGRAM
0010	B9 FF	BEGIN:	MOV	R1, \#0FFH	;LOAD R1 WITH A UNUSED ADDR
					;LOCATION
0012	B8 20		MOV	R0, \# 20H	;A/D DATA ADDRESS
0014	89 FF		ORL	P1,\# OFFH	;SET PORT 1 OUTPUTS HIGH
0016	2300		MOV	A,00H	;LOAD THE ACC WITH A/D MUX DATA
					;CH1 AND CH2 DIFFERENTIAL
0018	1450		CALL	CONV	;CALL THE CONVERSION SUBROUTINE
001A	2302		MOV	A, \# 02 H	;LOAD THE ACC WITH A/D MUX DATA
					;CH3 AND CH4 DIFFERENTIAL
001C	18		INC	R0	;INCREMENT THE A/D DATA ADDRESS
001D	1450		CALL	CONV	;CALL THE CONVERSION SUBROUTINE
			;CONTINUE MAIN PROGRAM		
			;CONVERSION SUBROUTINE		
			;ENTRY:ACC-A/D MUX DATA		
			;EXIT: ACC-CONVERTED DATA		
			ORG	50 H	
0050	99 FE	CONV:	ANL	P1,\#0FEH	;CHIP SELECT THE A/D
0052	91		MOVX	@R1,A	;LOAD A/D MUX \& START CONVERSION
0053	09	LOOP:	IN	A,P1	;INPUT INTR STATE
0054	3253		JB1	LOOP	;IF $\overline{\text { INTR }}=1$ GOTO LOOP
0056	81		MOVX	A,@R1	;IF $\overline{\text { INTR }}=0$ INPUT A/D DATA
0057	8901		ORL	P1,801H	;CLEAR THE A/D CHIP SELECT
0059	A0		MOV	@RO,A	;STORE THE A/D DATA
005A	83		RET		;RETURN TO MAIN PROGRAM

Applications Information (Continued)

TL/H/5016-28

SAMPLE PROGRAM FOR ADC0848-NSC800 INTERFACE

0008		NCONV	EQU	16	
000F		DEL	EQU	15	;DELAY $50 \mu \mathrm{sec}$ CONVERSION
001F		CS	EQU	1FH	;THE BOARD ADDRESS
3C00		ADDTA	EQU	003 CH	;START OF RAM FOR A/D ;DATA
0000 ${ }^{\prime}$	$0809040 B$	MUXDTA:	DB	08H,09H, 0 AH, 0 ,	;MUX DATA
0004 ${ }^{\prime}$	OC OD OE OF		DB	OCH, ODH,OEH, OFH	
0008 ${ }^{\prime}$	OE 1F	START:	LD	C,CS	
000A'	0616		LD	B,NCONV	
000C'	$210000{ }^{\prime}$		LD	HL,MUXDTA	
000F'	11003 C		LD	DE,ADDTA	
0012'	ED A3	STCONV:	OUTI		;LOAD A/D'S MUX DATA
					;AND START A CONVERSION
0014 ${ }^{\prime}$	EB		EX	DE,HL	;HL=RAM ADDRESS FOR THE ;A/D DATA
0015	3E OF		LD	A,DEL	
0017 ${ }^{\prime}$	3D	WAIT:	DEC	A	;WAIT $50 \mu \mathrm{sec}$ FOR THE
0018'	C2 0013'		JP	NZ,WAIT	;CONVERSION TO FINISH
001B'	ED A2		INI	- .	;STORE THE A/D'S DATA
	-				;CONVERTED ALL INPUTS?
001D'	EB		EX	DE,HL	
001E'	C2 000E'		JP	NZ,STCONV	;IF NOT GOTO STCONV

END
Note: This routine sequentially programs the MUX data latch in the signal-ended mode. For $\mathrm{CH} 1-\mathrm{CH} 8$ a conversion is started, then a $50 \mu \mathrm{~s}$ wait for the A / D to complete a conversion and the data is stored at address ADDTA for CH 1, ADDTA +1 for CH 2 , etc.

Ordering Information

Temperature Range	Total Unadjusted Error		MUX Channels	Package Outline
	$\pm 1 / 2$ LSB	± 1 LSB		N20A Molded Dip
	ADC0844BCN	ADC0844CCN	4	8
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	ADC0848BCN	ADC0848CCN	N24C Molded Dip	
	ADC0844BCJ	ADC0844CCJ	4	J20A Cerdip
	ADC0848BCV	ADC0848CCV	8	J24F Cerdip

National Semiconductor

ADC0852/ADC0854

Multiplexed Comparator with 8-Bit Reference Divider

General Description

The ADC0852 and ADC0854 are CMOS devices that combine a versatile analog input multiplexer, voltage comparator, and an 8-bit DAC which provides the comparator's threshold voltage $\left(\mathrm{V}_{\mathrm{TH}}\right)$. The comparator provides a " 1 -bit" output as a result of a comparison between the analog input and the DAC's output. This allows for easy implementation of set-point, on-off or "bang-bang" control systems with several advantages over previous devices.
The ADC0854 has a 4 input multiplexer that can be software configured for single ended, pseudo-differential, and full-differential modes of operation. In addition the DAC's reference input is brought out to allow for reduction of the span. The ADC0852 has a two input multiplexer that can be configured as 2 single-ended or 1 differential input pair. The DAC reference input is internally tied to $V_{C C}$.
The multiplexer and 8-bit DAC are programmed via a serial data input word. Once programmed the output is updated
once each clock cycle up to a maximum clock rate of 400 kHz.

Features

- 2 or 4 channel multiplexer
- Differential or Single-ended input, software controlled.
- Serial digital data interface
- 256 programmable reference voltage levels
- Continuous comparison after programming
- Fixed, ratiometric, or reduced span reference capability (ADC 0854)

Key Specifications

- Accuracy, $\pm 1 / 2$ LSB or ± 1 LSB of Reference (0.2%)

■ Single 5 V power supply

- Low Power, 15 mW

TL/H/5521-1
FIGURE 1. ADC0854 Simplified Block Diagram (ADC0852 has 2 input channels, COM tied to GND, $\mathbf{V}_{\text {REF }}$ tied to $\mathbf{V}_{\mathbf{C C}}, \mathbf{V}+$ omitted, and one GND connection)

2 Channel and 4 Channel Pin Out


```
Absolute Maximum Ratings (Notes 1 and 2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Current into V+ (Note 3)
                    15 mA
Supply Voltage, VCC (Note 3)
6.5V
Voltage
    Logic and Analog Inputs
Input Current per Pin
Input Current per Package
Storage Temperature
0.3V to V
    \pm mA
    \pm20 mA
Package Dissipation
    at T}\mp@subsup{\textrm{A}}{=25}{=2}\textrm{C}\mathrm{ (Board Mount)
    0.8W
Lead Temp. (Soldering, 10 seconds)
    Dual-In-Line Package (plastic)
                                    260}\mp@subsup{}{}{\circ}\textrm{C
ESD Susceptibility (Note 14) . 2000V
Operating Conditions
Supply Voltage, VCC
Temperature Range
                            4.5\mp@subsup{V}{DC}{}}\mathrm{ to 6.3V
    ADC0854CCN, ADC0852CCN
TMIN }\leq\mp@subsup{T}{A}{}\leq\mp@subsup{T}{MAX}{
    0}\mp@subsup{0}{}{\circ}\textrm{C}\leq\mp@subsup{T}{A}{}\leq7\mp@subsup{0}{}{\circ}\textrm{C
```

Electrical Characteristics The following specifications apply for $\mathrm{V}_{C C}=\mathrm{V}^{+}=5 \mathrm{~V}$ (no V^{+}on ADC0852),
$\mathrm{V}_{\text {REF }} \leq \mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$ unless otherwise specified. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits T_{A} $=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0852CCN ADC0854CCN			Units
		Typ (Note 4)	Tested Limit (Note 5)	Design Limit (Note 6)	
CONVERTER AND MULTIPLEXER CHARACTERISTICS					
Total Unadjusted Error (Note 7) ADC0852/4/CCN	$V_{\text {REF }}$ Forced to $5.000 V_{D C}$		± 1	± 1	LSB
Comparator Offset ADC0852/4/CCN		2.5		20	mV
Minimum Total Ladder Resistance	ADC0854 (Note 15)	3.5	1.3	1.3	k Ω
Maximum Total Ladder Resistance	ADC0854 (Note 15)	3.5	5.4	5.9	k Ω
Minimum Common-Mode Input (Note 8)	All MUX Inputs and COM Input		GND-0.05	GND-0.05	V
Maximum Common-Mode Input (Note 8)	All MUX Inputs and COM Input		$V_{C C}+0.05$	Vcc +0.05	V
DC Common-Mode Error		$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V} \pm 5 \%$	$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB
V_{z}, Internal diode MIN breakdown MAX at $V+$ (Note 3)	15 mA into $\mathrm{V}+$.	.	$\begin{aligned} & 6.3 \\ & 8.5 \end{aligned}$		$\begin{aligned} & V \\ & V \end{aligned}$
loff, Off Channel Leakage Current (Note 9)	$\begin{aligned} & \text { On Channel }=5 \mathrm{~V}, \\ & \text { Off Channel }=0 \mathrm{~V} \end{aligned}$		-200	-1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{nA} \end{aligned}$
	$\begin{aligned} & \text { On Channel }=0 \mathrm{~V}, \\ & \text { Off Channel }=5 \mathrm{~V} \end{aligned}$		+200	+1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{nA} \end{aligned}$

Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}+=5 \mathrm{~V}$ (no $\mathrm{V}+$ on ADC0852), $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0852CCN ADC0854CCN			Units
		Typ (Note 4)			

ION, On Channel Leakage Current (Note 9)	$\begin{aligned} & \text { On Channel }=5 \mathrm{~V}, \\ & \text { Off Channel }=0 \mathrm{~V} \end{aligned}$	+200	+1	$\mu \mathrm{A}$ $n A$
	$\begin{aligned} & \text { On Channel }=0 \mathrm{~V}, \\ & \text { Off Channel }=5 \mathrm{~V} \end{aligned}$	-200	-1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{nA} \end{aligned}$

DIGITAL AND DC CHARACTERISTICS					
$V_{I N(1)}$, Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		2.0	2.0	V
$\mathrm{V}_{\text {IN(0) }}$, Logical " 0 " Input Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		0.8	0.8	V
IN(1), Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=. \mathrm{V}_{\mathrm{CC}}$	0.005	1	1	$\mu \mathrm{A}$
IN(0), Logical " 0 "' Input Current	$\mathrm{V}_{\mathrm{iN}}=0 \mathrm{~V}$	-0.005	-1	-1	$\mu \mathrm{A}$
VOUT(1), Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { IOUT }=-360 \mu \mathrm{~A} \\ & \text { IOUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Vout(0), Logical "0" Output Voltage	$\begin{aligned} & \text { lout }=1.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \end{aligned}$		0.4	0.4	V
Iout, TRI-STATE® Output Current (DO)	$\begin{aligned} & \overline{\mathrm{CS}}=\text { Logical " } 1 \text { " } \\ & \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.1 \\ 0.1 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
ISOURCE	$V_{\text {OUT }}$ Short to GND	-14	-7.5	-6.5	mA
ISINK	$\mathrm{V}_{\text {OUT }}$ Short to $\mathrm{V}_{\text {CC }}$	16	9.0	8.0	mA
Icc Supply Current ADC0852	Includes DAC Ladder Current	2.7	6.5	6.5	mA
ICC Supply Current ADC0854 (Note 3)	Does not Include DAC Ladder Current	0.9	2.5	2.5	mA

AC Characteristics $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	Tested Limit (Note 5)	Design Limit (Note 6)	Units
${ }^{\text {f CLK }}$	Clock Frequency (Note 12)	MIN MAX			10	400	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
$t_{D 1}$	Rising Edge of Clock to "DO" Enabled		$C_{L}=100 \mathrm{pF}$	650		1000	ns
t_{r}	Comparator Response Time (Note 13)		Not Including Addressing Time			$2+1 \mu \mathrm{~s}$	1/f ${ }_{\text {CLK }}$
	Clock Duty Cycle (Note 10)	MIN MAX			$\begin{aligned} & 40 \\ & 60 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
${ }_{\text {tset-UP }}$	CS Falling Edge or Data Input Valid to CLK Rising Edge	MAX				250	ns
$\mathrm{t}_{\text {HOLD }}$	Data Input Valid after CLK Rising Edge	MIN				90	ns
$\mathrm{t}_{\mathrm{pd} 1}, \mathrm{t}_{\mathrm{pd} 0}$	CLK Falling Edge to Output Data Valid (Note 11)	MAX	$C_{L}=100 \mathrm{pF}$	650		1000	ns
$t_{1 H}, t_{0 H}$	Rising Edge of CS to Data Output Hi-Z	MAX	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$ (see TRI-STATE Test Circuits)	125	500	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{Cl}_{\mathrm{IN}}$	Capacitance of Logic Input			5			pF
$\mathrm{Cout}^{\text {O }}$	Capacitance of Logic Outputs			5			pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to ground.
Note 3: Internal zener diodes (approx. 7 V) are connected from $\mathrm{V}+$ to GND and V_{CC} to GND . The zener at $\mathrm{V}+$ can operate as a shunt regulator and is connected to $V_{C C}$ via a conventional diode. Since the zener voltage equals the A/D's breakdown voltage, the diode ensures that $V_{C C}$ will be below breakdown when the device is powered from $\mathrm{V}+$. Functionality is therefore guaranteed for $\mathrm{V}+$ operation even though the resultant voltage at V_{Cc} may exceed the specified Absolute Max of 6.5 V . It is recommended that a resistor be used to limit the max current into $\mathrm{V}+$.
Note 4: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 5: Tested and guaranteed to National AOQL (Average Outgoing Quality Level).
Note 6: Guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 7: Total unadjusted error includes comparator offset, DAC linearity, and multiplexer error. It is expressed in LSBs of the threshold DAC's input code.
Note 8: For $V_{I N}(-) \geq V_{I N}(+)$ the output will be 0 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V_{CC} supply. Be careful, during testing at low V_{Cc} levels (4.5 V), as high level analog inputs $(5 \mathrm{~V})$ can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathbb{I}}$ or $\mathrm{V}_{\text {REF }}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 V_{D C}$ to $5 V_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 9: Leakage current is measured with the clock not switching.
Note 10: A 40% to 60% clock duty cycle range ensures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits then $1.6 \mu \mathrm{~S} \leq$ CLK Low $\leq 60 \mu \mathrm{~S}$ and $1.6 \mu \mathrm{~S} \leq$ CLK HIGH $\leq \infty$.
Note 11: With $\overline{C S}$ low and programming complete, DO is updated on each falling CLK edge. However, each new output is based on the comparison completed 0.5 clock cycles prior (see Figure 5).
Note 12: Error specs are not guaranteed at 400 kHz (see graph: Comparator Error vs. folk).
Note 13: See text, section 1.2.
Note 14: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 15: Because the reference ladder of the ADC0852 is internally connected to $V_{C C}$, ladder resistance cannot be directly tested for the ADC0852. Ladder current is included in the ADC0852's supply current specification.

Typical Performance Characteristics

Icc, Power Supply Current
vs. Temperature, ADC0854*

Icc, Power Supply
Current vs. fCLK, ADC0854*

Timing Diagrams

TRI-STATE Test Circuits and Waveforms

TL/H/5521-5

Leakage Test Circuit

TL/H/5521-6

FIGURE 2. Detailed Block Diagram

Note：Valid Output can change only on Falling Edge of CLK．
FIGURE 3．Timing Diagram

Functional Description

1. 1 The Sampled-data Comparator

The ADC0852 and ADC0854 utilize a sampled-data comparator structure to compare the analog difference between a selected "+" and "-" input to an 8-bit programmable threshold.
This comparator consists of a CMOS inverter with a capacitively coupled input (Figure 4). Analog switches connect the two comparator inputs to the input capacitor and also connect the inverter's input and output. This device in effect now has one differential input pair. A comparison requires two cycles, one for zeroing the comparator and another for making the comparison.

In the first cycle (Figure 4a), one input switch and the inverter's feedback switch are closed. In this interval, the input capacitor (C) is charged to the connected input (V1) less the inverter's bias voltage (V_{B}, approx. 1.2 volts). In the second cycle (Figure 4b) these two switches are opened and the other (V2) input's switch is closed. The input capacitor now subtracts its stored voltage from the second input and the difference is amplified by the inverter's open loop gain. The inverter input $\left(V_{B}{ }^{\prime}\right)$ becomes $V_{B}-\left(V_{1}-V_{2}\right) \frac{C}{C+C_{S}}$ and the output will go high or low depending on the sign of V_{B} 'V_{B}.

FIGURE 4. Sampled-Data Comparator

TL/H/5521-8
FIGURE 4a. Zeroing Phase

- $V_{B^{\prime}}-V_{B}=\left(V_{2}-V_{1}\right) \frac{C}{C+C_{S}}$
- $V_{0}=\frac{-A}{C+C_{S}}\left[C V_{2}-C V_{1}\right]$
- V_{0} is dependent on $V_{2}-V_{1}$

TL/H/5521-9
FIGURE 4b. Compare Phase

$$
\begin{gathered}
V_{0}=\frac{-A}{C_{1}+C_{2}+C_{S}}\left[C_{1}\left(V_{2}-V_{1}\right)+C_{2}\left(V_{4}-V_{3}\right)\right] \\
=\frac{-A}{C_{1}+C_{2}+C_{S}}\left[\Delta Q C_{1}+\Delta Q C_{2}\right]
\end{gathered}
$$

* Comparator Reads V_{TH} from Internal DAC Differentially

TL/H/5521-14
FIGURE 4c. Multiple Differential Inputs

Functional Description (Continued)

In actual practice, the devices used in the ADC0852/4 are a simple but important expansion of the basic comparator described above. As shown in Figure 4c, multiple differential comparisons can be made. In this circuit, the feedback switch and one input switch on each capacitor (A switches) are closed in the first cycle. Then the other input on each capacitor is connected while all of the first switches are opened. The change in voltage at the inverter's input, as a result of the change in charge on each input capacitor (C1, $\mathrm{C} 2)$, will now depend on both input signal differences.

1.2 Input Sampling and Response Time

The input phases of the comparator relate to the device clock (CLK) as shown in Figure 5. Because the comparator is a sampling device, its response characteristics are somewhat different from those of linear comparators. The $\mathrm{V}_{\mathrm{IN}}(+)$ input is sampled first (CLK high) followed by $\mathrm{V}_{\mathrm{IN}}(-)$ (CLK low). The output responds to those inputs, one half cycle later, on CLK's falling edge.
The comparator's response time to an input step is dependent on the step's phase relation to the CLK signal. If an input step occurs too late to influence the most imminent comparator decision, one more CLK cycle will pass before the output is correct. In effect, the response time for the $\mathrm{V}_{\mathrm{IN}}(+)$ input has a minimum of 1 CLK cycle $+1 \mu \mathrm{~S}$ and a maximum of 2 CLK cycles $+1 \mu \mathrm{~S}$. The $\mathrm{V}_{\text {IN }}(-)$ input's delay will range from $1 / 2$ CLK cycle $+1 \mu \mathrm{~S}$ to 1.5 CLK cycles + $1 \mu \mathrm{~S}$ since it is sampled after $\mathrm{V}_{\mathrm{IN}}(+)$.
The sampled inputs also affect the device's response to pulsed signals. As shown in the shaded areas in Figure 5, pulses that rise and/or fall near the latter part of a CLK halfcycle may be ignored.

1.3 Input Multiplexer

A unique input multiplexing scheme has been utilized to pro-
vide multiple analog channels with software-configurable single-ended, differential, or pseudo-differential operation. The analog signal conditioning required in transducer-input and other types of data acquisition systems is significantly simplified with this type of input flexibility: One device package can now handle ground referenced inputs as well as signals with some arbitrary reference voltage.
On the ADC0854, the "common" pin (pin 6) is used as the "-" input for all channels in single-ended mode. Since this input need not be at analog ground, it can be used as the common line for pseudo-differential operation. It may be tied to a reference potential that is common to all inputs and within the input range of the comparator. This feature is especially useful in single-supply applications where the analog circuitry is biased to a potential other than ground.
A particular input configuration is assigned during the MUX addressing sequence which occurs prior to the start of a comparison. The MUX address selects which of the analog channels is to be enabled, what the input mode will be, and the input channel polarity. One limitation is that differential inputs are restricted to adjacent channel pairs. For example, channel 0 and 1 may be selected as a differential pair but they cannot act differentially with any other channel.
The channel and polarity selection is done serially via the DI input. A complete listing of the input configurations and corresponding MUX addresses for the ADC0852 and ADC0854 is shown in tables I and II. Figure 6 illustrates the analog connections for the various input options.
The analog input voltage for each channel can range from 50 mV below ground to 50 mV above V_{CC} (typically 5 V) without degrading accuracy.

TL/H/5521-13
FIGURE 5. Analog Input Timing

Functional Description (Continued)

TABLE I. MUX Addressing: ADC0854 Single-Ended MUX Mode

MUX Address				Channel					
SGL/ DIF	ODD/ SIGN	SELECT	0	1	2	3	COM		
1	0	0	+				-		
1	0	1			+		-		
1	1	0		+			-		
1	1	1				+	-		

Differential MUX Mode

MUX Address				Channel				
SGL/ $\overline{\text { DIF }}$	ODD/ SIGN	SELECT	0	1	2	3		
0	0	0	+	-				
0	0	1			+	-		
0	1	0	-	+				
0	1	1			-	+		

TABLE II. MUX Addressing: ADC0852 Single Ended MUX Mode

MUX Address		Channel	
SGL/ $\overline{\text { DIF }}$	ODD/ SIGN	0	1
1	0	+	
1	1		+

COM is internally tied to A GND
Differential MUX Mode

MUX Address		Channel	
SGL/ DIF	ODD/ SIGN	0	1
0	0	+	-
0	1	-	+

FIGURE 6. Analog Input Multiplexer Options for the ADC0854

Functional Description (Continued)

2.0 THE DIGITAL INTERFACE

An important characteristic of the ADC0852 and ADC0854 is their serial data link with the controlling processor. A serial communication format eliminates the transmission of low level analog signals by locating the comparator close to the signal source. Thus only highly noise immune digital signals need to be transmitted back to the host processor.
To understand the operation of these devices it is best to refer to the timing diagrams (Figure 3) and functional block diagram (Figure 2) while following a complete comparison sequence.

1. A comparison is initiated by first pulling the $\overline{\mathrm{CS}}$ (chip select) line low. This line must be held low for the entire addressing sequence and comparison. The comparator then waits for a start bit, its MUX assignment word, and an 8-bit code to set the internal DAC which supplies the comparator's threshold voltage (V_{TH}).
2. An external clock is applied to the CLK input. This clock can be applied continuously and need not be gated on and off.
3. On each rising edge of the clock, the level present on the DI line is clocked into the MUX address shift register. The start bit is the first logic " 1 " that appears on this line. All leading zeroes are ignored. After the start bit, the ADC0852 expects the next 2 bits to be the MUX assignment word while the ADC0854, with more MUX configurations, looks for 3 bits.
4. Immediately after the MUX assignment word has been clocked in, the shift register then reads the next eight bits as the input code to the internal DAC. This eight bit word is read LSB first and is used to set the voltage applied to the comparator's threshold input (internal).
5. After the rising edge of the 11 th or 12th clock (ADC0852 or ADC0854 respectively) following the start bit, the comparator and DAC programming is complete. At this point the DI line is disabled and ignores further inputs. Also at this time the data out (DO) line comes out of TRI-STATE and enters a don't care state (undefined output) for 1.5 clock cycles.
6. The result of the comparison between the programmed threshold voltage and the difference between the two selected inputs $\left(V_{\mathbb{I N}}(+)-V_{I N}(-)\right)$ is output to the DO line on each subsequent high to low clock transition.
7. After programming, continuous comparison on the same selected channel with the same programmed threshold can
be done indefinitely, without reprogramming the device, as long as $\overline{\mathrm{CS}}$ remains low. Each new comparator decision will be shifted to the output on the falling edge of the clock. However, the output will, in effect, "lag" the analog input by 0.5 to 1.5 clock cycles because of the time required to make the comparison and latch the output (see Figure 5).
8. All internal registers are cleared when the $\overline{\mathrm{CS}}$ line is brought high. If another comparison is desired $\overline{\mathrm{CS}}$ must make a high to low transition followed by new address and threshold programming.

3.0 REFERENCE CONSIDERATIONS / RATIOMETRIC OPERATION

The voltage applied to the " $V_{\text {REF" }}$ input of the DAC defines the voltage span that can be programmed to appear at the threshold input of the comparator. The ADC0854 can be used in either ratiometric applications or in systems with absolute references. The $\mathrm{V}_{\text {REF }}$ pin must be connected to a source capable of driving the DAC ladder resistance (typ. $2.4 \mathrm{k} \Omega$) with a stable voltage.
In ratiometric systems, the analog input voltage is normally a proportion of the DAC's or A/D's reference voltage. For example, a mechanical position servo using a potentiometer to indicate rotation, could use the same voltage to drive the reference as well as the potentiometer. Changes in the value of $V_{\text {REF }}$ would not affect system accuracy since only the relative value of these signals to each other is important. This technique relaxes the stability requirements of the system reference since the analog input and DAC reference move together, thus maintaining the same comparator output for a given input condition.
In the absolute case, the $V_{\text {REF }}$ input can be driven with a stable voltage source whose output is insensitive to time and temperature changes. The LM385 and LM336 are good low current devices for this purpose.
The maximum value of $V_{\text {REF }}$ is limited to the V_{CC} supply voltage. The minimum value can be quite small (see typical performance curves) allowing the effective resolution of the comparator threshold DAC to also be small ($\mathrm{V}_{\mathrm{REF}}=0.5 \mathrm{~V}$, DAC resolution $=2.0 \mathrm{mV}$). This in turn lets the designer have finer control over the comparator trip point. In such instances however, more care must be taken with regard to noise pickup, grounding, and system error sources.

Functional Description (Continued)

4.0 ANALOG INPUTS

4. 1 Differential Inputs

The serial interface of the ADC0852 and ADC0854 allows them to be located right at the analog signal source and to communicate with a controlling processor via a few fairly noise immune digital lines. This feature in itself greatly reduces the analog front end circuitry often needed to maintain signal integrity. Nevertheless, a few words are in order with regard to the analog inputs should the input be noisy to begin with or possibly riding on a large common mode voltage.
The differential input of the comparator actually reduces the effect of common-mode input noise, i.e. signals common to both selected " + " and " - " inputs such as 60 Hz line noise. The time interval between sampling the " + " input and then the " - " input is $1 / 2$ of a clock period (see Figure 5).

The change in the common-mode voltage during this short time interval can cause comparator errors. For a sinusoidal common-mode signal this error is:

$$
V_{\text {ERROR }}(\mathrm{MAX})=V_{\text {PEAK }}\left(2 \pi \mathrm{f}_{\mathrm{CM}} / 2 \mathrm{f}_{\mathrm{CLK}}\right)
$$

where f_{CM} is the frequency of the common-mode signal, $V_{\text {peak }}$ is its peak voltage value, and $\mathrm{f}_{\mathrm{CLK}}$ is the DAC clock frequency.
For example, 1 VPP 60 Hz noise superimposed on both sides of a differential input signal would cause an error (referred to the input) of 0.75 mV . This amounts to less than $1 / 25$ of an LSB referred to the threshold DAC, (assuming $V_{\text {REF }}=5 \mathrm{~V}$ and $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$).

4. 2 Input Currents and Filtering

Due to the sampling nature of the analog inputs, short spikes of current enter the " + " input and leave the " - " at the clock edges during a comparison. These currents decay rapidly and do not cause errors as the comparator is strobed at the end of the clock period (see Figure 5).
The source resistance of the analog input is important with regard to the DC leakage currents of the input multiplexer. The worst-case leakage currents of $\pm 1 \mu \mathrm{~A}$ over temperature will create a 1 mV input error with a $1 \mathrm{k} \Omega$ source

Typical Applications

TL/H/5521-17
FIGURE 8. An On-Chip Shunt Regulator Diode
resistance. An op-amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance source be required.

4. 3 Arbitrary Analog Input/Reference Range

The total span of the DAC output and hence the comparator's threshold voltage is determined by the DAC reference. For example, if $\mathrm{V}_{\text {REF }}$ is set to 1 volt then the comparator's threshold can be programmed over a 0 to 1 volt range with 8 bits of resolution. From the analog input's point of view, this span can also be shifted by applying an offset potential to one of the comparator's selected analog input lines (usually "-'). This gives the designer greater control of the ADC0852/4's input range and resolution and can help simplify or eliminate expensive signal conditioning electronics.
An example of this capability is shown in the "Load Cell Limit Comparator" of Figure 15. In this circuit, the ADC0852 allows the load-cell signal conditioning to be done with only one dual op-amp and without complex, multiple resistor matching.

5.0 POWER SUPPLY

A unique feature of the ADC0854 is the inclusion of a 7 volt zener diode connected from the " $\mathrm{V}+$ " terminal to ground (Figures 2 and 8) " $\mathrm{V}+$ " also connects to " V_{CC} " via a silicon diode. The zener is intended for use as a shunt voltage regulator to eliminate the need for additional regulating components. This is especially useful if the ADC0854 is to be remotely located from the system power source.
An important use of the interconnecting diode between $\mathrm{V}+$ and V_{CC} is shown in Figures 10 and 11. Here this diode is used as a rectifier to allow the $V_{C C}$ supply for the converter to be derived from the comparator clock. The low device current requirements and the relatively high clock frequencies used ($10 \mathrm{kHz}-400 \mathrm{kHz}$) allows use of the small value filter capacitor shown. The shunt zener regulator can also be used in this mode however this requires a clock voltage swing in excess of 7 volts. Current limiting for the zener is also needed, either built into the clock generator or through a resistor connected from the clock to $\mathrm{V}+$.

TL/H/5521-18

FIGURE 9. Using the ADC0854 as the System Supply Regulator

Typical Applications (Continued)

FIGURE 10. Generating $\mathbf{V}_{\mathbf{C C}}$ from the Comparator Clock

TL/H/5521-20
FIGURE 11. Remote Sensing-Clock and Power on One Wire

TL./H/5521-21
FIGURE 12. Protecting the Analog Input

TL/H/5521-22
FIGURE 13. One Component Window Comparator
Requires no additional parts. Window comparisons can be accomplished by inputting the upper and lower window limits into DI on successive comparisons and observing the two outputs:
Two high outputs \rightarrow input $>$ window
Two low outputs \rightarrow input < window
One low and one high \rightarrow input is within window
Typical Applications (Continued)

FIGURE 14. Serial Input Temperature Controlier
Note 1: ADC0854 does not require constant service from computer. Self controlled after one write to DI if $\overline{C S}$ remains low.
Note 2: U_{1} : Solid State Relay, Potter Brumfield \#EOM1DB22
Note 3: Set Temp via. DI. Range: 0 to $125^{\circ} \mathrm{C}$

TL/H/5521-24
FIGURE 15. Load Cell Limit Comparator

[^6]Typical Applications (Continued)

Hysteresis band $=50 \mathrm{mV}$
FIGURE 16. Adding Comparator Hysteresis

TL/H/5521-27
FIGURE 17. Pulse-Width Modulator

- Range of pulse-widths controlled via $\mathrm{R}_{1}, \mathrm{C}_{1}$

ADC08061/ADC08062

500 ns A/D Converter with S/H Function and Input Multiplexer

General Description

Using a patented multi-step A/D conversion technique, the 8-bit ADC08061 and ADC08062 CMOS ADCs offer 500 ns (typ) conversion time, internal sample-and-hold (S/H), and dissipate only 125 mW of power. The ADC08062 has a twochannel multiplexer. The ADC08061/2 family performs an 8 -bit conversion using a 2 -bit voltage estimator that generates the 2 MSBs and two low-resolution (3-bit) flashes that generate the 6 LSBs.
Input track-and-hold circuitry eliminates the need for an ex-ternal-sample-and-hold. The ADC08061/2 family performs accurate conversions of full-scale input signals that have a frequency range of DC to 300 kHz (full-power bandwidth) without need of an external S / H.
The digital interface has been designed to ease connection to microprocessors and allows the parts to be I/O or memory mapped.

Key Specifications

© Resolution 8 bits

- Conversion Time 560 ns max ($\overline{\mathrm{WR}}$ - $\overline{\mathrm{RD}}$ Mode)
- Full Power Bandwidth 300 kHz

■ Throughput rate 1.5 MHz

- Power Dissipation
- Total Unadjusted Error

125 mW max
$\pm 1 / 2$ LSB and ± 1 LSB

Features

- 1 or 2 input channels
- No external clock required
- Analog input voltage range from GND to $\mathrm{V}+$
- Overflow output available for cascading (ADC08061)
- ADC08061 pin-compatible with the industry standard ADC0820

Applications

- Mobile telecommunications
- Hard disk drives
- Instrumentation
- High-speed data acquisition systems

Block Diagram

**ADC08062

```
Absolute Maximum Ratings (Notes 1 \& 2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage ( \({ }^{+}\))
6 V
Logic Control Inputs
Voltage at Other Inputs and Outputs
-0.3 V to \(\mathrm{V}++0.3 \mathrm{~V}\)
-0.3 V to \(\mathrm{V}++0.3 \mathrm{~V}\)
Input Current at Any Pin (Note 3)
Package Input Current (Note 3)
Power Dissipation (Note 4)
    J Package
    N Package
    WM Package
Storage Temperature
```

5 mA
20 mA

875 mW
875 mW 875 mW
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Note 5)
J Package (Soldering, 10 sec.) $+300^{\circ} \mathrm{C}$
N Package (Soldering, 10 sec .) $+260^{\circ} \mathrm{C}$
WM Package (Vapor Phase, 60 sec.) $+215^{\circ} \mathrm{C}$
WM Package (Infrared, 15 sec.$) \quad+220^{\circ} \mathrm{C}$
ESD Susceptibility (Note 6)
2 kV
Operating Ratings (Notes 1\&2)
Temperature Range
$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
ADC08061/2BIN,
ADC08061/2CIN,
ADC08061/2BIWM,
ADC08061/2CIWM
ADC08061CMJ,
ADC08061CMJ/883
Supply Voltage, (${ }^{+}$)
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$
4.5 V to 5.5 V

Converter Characteristics

The following specifications apply for $\overline{\mathrm{RD}}$ Mode， $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}+=5 \mathrm{~V}$ ，and $\mathrm{V}_{\mathrm{REF}}==$ GND unless otherwise specified． Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$ ；all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$ ．

Symbol	Parameter	Conditions	Typical （Note 7）	Limits （Note 8）	Units （Limit）
INL	Integral Non Linearity	ADC08061／2 BIN，BIWM	．\cdot	$\pm 1 / 2$	LSB（max）
		ADC08061／2 CIN，CIWM，CMJ		± 1	LSB（max）
TUE	Total Unadjusted Error	ADC08061／2 BIN；BIWM		$\pm 1 / 2$	LSB（max）
		ADC08061／2 CIN，CIWM，CMJ		± 1	LSB（max）
	Missing Codes			0	Bits（max）
	Reference Input Resistance		$\begin{aligned} & 700 \\ & 700 \end{aligned}$	$\begin{gathered} 500 \\ 1250 \end{gathered}$	$\begin{gathered} \Omega(\min) \\ \Omega(\max) \end{gathered}$
$\mathrm{V}_{\text {REF }+}$	Positive Reference Input Voltage	．．．		$\begin{gathered} \mathbf{V R E F}_{\text {REF }}^{\mathbf{V}+} \end{gathered}$	V（min） V（max）
$V_{\text {REF }-~}$	Negative Reference Input Voltage		．	$\begin{gathered} \text { GND } \\ \mathbf{V}_{\text {REF }+} \end{gathered}$	$\begin{aligned} & \mathrm{V}(\min) \\ & \mathrm{V}(\max) \end{aligned}$
$\mathrm{V}_{\text {IN }}$	Analog Input Voltage	（Note 10）		$\begin{gathered} \text { GND - } 0.1 \\ \mathbf{V}^{+}+0.1 \end{gathered}$	$V(\min)$ V （max）
	On Channel Input Current	$\begin{aligned} & \text { On Channel Input }=5 \mathrm{~V}, \\ & \text { Off Channel Input }=0 \mathrm{~V}(\text { Note } 11) \end{aligned}$	－0．4	－20	$\mu \mathrm{A}$（max）
		$\begin{aligned} & \text { On Channel Input }=0 \mathrm{~V}, \\ & \text { Off Channel Input }=5 \mathrm{~V}(\text { Note 11) } \end{aligned}$	－0．4	－20	$\mu \mathrm{A}$（max）
PSS	Power Supply Sensitivity	$\mathrm{V}^{+}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {REF }}=4.75 \mathrm{~V}$ All Codes Tested	$\pm 1 / 16$	$\pm 1 / 2$	LSB（max）
	Effective Bits		7.8		Bits
	Full－Power Bandwidth	．	300		kHz
THD	Total Harmonic Distortion		0.5		\％
S／N	Signal－to－Noise Ratio		50		dB
IMD	Intermodulation Distortion		50		dB

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}, \mathrm{~V}_{\mathrm{REF}+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }} ;$ all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limits (Note 8)	Units (Limit)
${ }^{\text {twR }}$	Write Time	Mode Pin to V^{+}; (Figures $2 a, 2 b$, and 3)	100	100	ns (min)
$t_{\text {RD }}$	Read Time (Time from Falling Edge of $\overline{\mathrm{WR}}$ to Falling Edge of $\overline{\mathrm{RD}})$	Mode Pin to ${ }^{+}$; (Figure 2a)	350	350	ns (min)
triw	$\overline{\mathrm{RD}}$ Width	Mode Pin to GND; (Figure 4)	$\begin{aligned} & 200 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 400 \\ & \hline \end{aligned}$	ns (min) ns (max)
tCONV	$\overline{\mathrm{WR}}$ - $\overline{\mathrm{RD}}$ Mode Conversion Time ($\mathrm{t}_{\mathrm{WR}}+\mathrm{t}_{\mathrm{RD}}+\mathrm{t}_{\mathrm{ACC}}$)	Mode Pin to V+; (Figure 2a)	500	560	ns (max)
$t_{C} \overline{R D}$	$\overline{\mathrm{RD}}$ Mode Conversion Time	Mode Pin to GND; (Figure 1)	655	900	ns (max)
$\mathrm{t}_{\text {ACCO }}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF} \\ & \text { Mode Pin to GND; (Figure 1) } \end{aligned}$	640	900	ns (max)
$t_{\text {ACC }}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { Mode Pin to } \mathrm{V}+\text {, } \mathrm{t} \overline{\mathrm{RD}} \leq \mathrm{t} \mathrm{INTL} \\ & \text { (Figure 2a) } \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	110	ns (max)
$\mathrm{t}_{\text {ACC2 }}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{t}_{\mathrm{RD}}>\mathrm{t} \frac{\mathrm{tNTL} ;}{}(\text { Figures } 2 b \text { and } 4) \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	90	ns (max)
t_{OH}	TRI-STATE ${ }^{\circledR}$ Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to $\mathrm{HI}-\mathrm{Z}$ State)	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	30	60	ns (max)
$\mathrm{t}_{1} \mathrm{H}$	TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to HI-Z State)	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	30	70	ns (max)
$\underline{\mathrm{t}} \mathrm{NTL}$	Delay from Rising Edge of $\overline{W R}$ to Falling Edge of $\overline{\mathrm{NT}}$	(Figures 2b, and 3) Mode Pin $=\mathrm{V}+, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	520	690	$n \mathrm{~ns}$ (max)
tinth	Delay from Rising Edge of $\overline{R D}$ to Rising Edge of $\overline{\text { NT }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; (Figures 1, 2a, 2b, and 4)	50	95	ns (max)
tINTH	Delay from Rising Edge of $\overline{W R}$ to Rising Edge of $\overline{N T}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; (Figure 3)	45	95	ns (max)
$t_{\text {RDY }}$	Delay from $\overline{\mathrm{CS}}$ to RDY	$\begin{aligned} & \text { Mode Pin }=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { (Figure 1) } \end{aligned}$	25	45	ns (max)
$t_{\text {ID }}$	Delay from INT to Output Valid	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$; (Figure 3)	0	15	ns (max)
t_{RI}	Delay from $\overline{\mathrm{RD}}$ to $\overline{\mathrm{INT}}$	Mode Pin $=\mathrm{V}+$, $\mathrm{t}_{\mathrm{RD}} \leq \mathrm{t}_{\mathrm{INTL}} ;$ (Figure 2a)	60	115	ns (max)
t_{N}	Time between End of $\overline{R D}$ and Start of New Conversion	(Figures 1, 2a, 2b, 3 and 4)	50	60	ns (min)
$t_{\text {AH }}$	Channel Address Hold Time	(Figures 1, 2a, 2b, 3 and 4)	10	60	$\mathrm{ns}(\mathrm{min})$
$t_{\text {AS }}$	Channel Address Setup Time	(Figures 1, 2a, 2b, 3 and 4)	0	0	ns (max)
tcss	$\overline{\mathrm{CS}}$ Setup Time	(Figures 1, 2a, 2b, 3 and 4)	0	0	ns (max)
teSH	$\overline{\text { CS }}$ Hold Time	(Figures 1, 2a, 2b, 3 and 4)	0	0	ns (min)
$\mathrm{C}_{\text {VIN }}$	Analog Input Capacitance		25		pF
COUT	Logic Output Capacitance		5		pF
$\mathrm{C}_{\text {IN }}$	Logic Input Capacitance		5		pF

DC Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limits (Note 8)	Units (Limit)
V_{IH}	Logic "1" Input Voltage	$\mathrm{V}^{+}=5.5 \mathrm{~V}$ Mode Pin ADC08062 $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \mathrm{AO}$ Pins ADC08061 $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}$ Pins		$\begin{array}{r} 3.5 \\ 3.0 \\ 2.2 \end{array}$	$\begin{aligned} & V(\min) \\ & V(\min) \\ & V(\min) \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Logic "0" Input Voltage	$\mathrm{V}^{+}=4.5 \mathrm{~V}$ Mode Pin ADC08062 $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \mathrm{A} 0$ Pins ADC08061 $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}$ Pins		$\begin{aligned} & 1.5 \\ & 0.4 \\ & 0.7 \end{aligned}$	$\begin{aligned} & V(\max) \\ & V(\max) \\ & V(\max) \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Logic "1" Input Current	$V_{I H}=5 V$ $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \mathrm{A} 0$ Pins $\overline{W R}$ Pin Mode Pin	$\begin{gathered} 0.005 \\ 0.1 \\ 50 \end{gathered}$	$\begin{gathered} 1 \\ 3 \\ 200 \end{gathered}$	$\mu \mathrm{A}$ (max) $\mu \mathrm{A}$ (max) $\mu \mathrm{A}$ (max)
ILL	Logic "0" Input Current	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$ $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{AO}$ Pins Mode Pin	-0.005	-2	$\mu \mathrm{A}$ (max)
V_{OH}	Logic "1" Output Voltage	$\begin{aligned} & \mathrm{V}+=4.75 \mathrm{~V} \\ & \text { lout }=-360 \mu \mathrm{~A} \\ & \text { DB0-DB7, } \overline{\mathrm{OFL}}, \mathrm{INT} \\ & \text { lout }=-10 \mu \mathrm{~A} \\ & \text { DB0-DB7, } \overline{\mathrm{OFL}}, \overline{\text { INT }} \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & V(\min) \\ & V(\min) \end{aligned}$
V_{OL}	Logic "0" Output Voltage	$\begin{aligned} & \mathrm{V}+=4.75 \mathrm{~V} \\ & \text { lout }=1.6 \mathrm{~mA} \\ & \text { DB0-DB7, } \overline{\mathrm{OFL}}, \overline{\mathrm{NT}}, \mathrm{RDY} \\ & \hline \end{aligned}$		0.4	V (max)
	TRI-STATE Output Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=5.0 \mathrm{~V} \\ & \text { DBO-DB7, RDY } \end{aligned}$	0.1	3	$\mu \mathrm{A}$ (max)
*		$\begin{aligned} & V_{\text {OUT }}=0 V \\ & \text { DB0-DB7, RDY } \end{aligned}$	-0.1	-3	$\mu \mathrm{A}$ (max)
Isource	Output Source Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \mathrm{DBO}-\mathrm{DB}, \overline{\mathrm{OFL}}, \overline{\mathrm{INT}} \end{aligned}$	-26	-6	$\mathrm{mA}(\mathrm{min})$
ISINK	Output Sink Current	$\begin{aligned} & V_{\text {OUT }}=5 \mathrm{~V} \\ & \text { DB0-DB7, } \overline{\mathrm{OFL}}, \overline{\mathrm{NT}}, \mathrm{RDY} \end{aligned}$	24	7	mA (min)
Ic	Supply Current	$\overline{\mathrm{CS}}=\overline{\mathrm{WR}}=\overline{\mathrm{RD}}=0$	11.5	25	mA (max)

Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings. Operating Ratings indicate conditions for which the device is functional, but do not guarantee performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to the GND pin, unless otherwise specified.
Note 3: When the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ at any pin exceeds the power supply voltage ($\mathrm{V}_{\mathrm{IN}}<\mathrm{GND}$ or $\mathrm{V}_{\mathrm{IN}}>\mathrm{V}^{+}$), the absolute value of the current at that pin should be limited to 5 mA or less. The 20 mA package input current specification limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 4: The power dissipation of this device under normal operation should never exceed 875 mW (Quiescent Power Dissipation + the loads on the digital outputs). Caution should be taken not to exceed absolute maximum power rating when the device is operating in a severe fault condition (e.g., when any input or output exceeds the power supply). The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_{A} (ambient temperature). The maximum allowable power dissipation at any temperature is $P D_{\max }=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. The table below details $T_{J M A X}$ and $\theta_{J A}$ for the various packages and versions of the ADC08061/2.

Part Number	T JMAX	$\theta_{\text {JA }}$
ADC08061/2BIN	105	51
ADC08061/2CIN	105	51
ADC08061/2BIWM	105	85
ADC08061/2CIWM	105	85

Note 5: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
Note 6: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 8: Limits are guaranteed to National's AOQL (Average Output Quality Level).
Note 9: Total unadjusted error includes offset, full-scale, and linearity errors.
Note 10: Two on-chip diodes are tied to each analog input and are reversed biased during normal operation. One is connected to V^{+}and the other is connected to GND. They will become forward biased and conduct when an analog input voltage is equal to or greater than one diode drop above V+ or below GND. Therefore, caution should be exercised when testing with $\mathrm{V}^{+}=4.5 \mathrm{~V}$. Analog inputs with magnitudes equal to 5 V can cause an input diode to conduct, especially at elevated temperatures. This can create conversion errors for analog signals near full-scale. The specification allows 50 mV forward bias on either diode; e.g., the output code will be correct as long as the analog input signal does not exceed the supply voltage by more than 50 mV . Exceeding this range on an unselected channel will corrupt the reading of a selected channel. An absolute analog input signal voltage range of $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5 \mathrm{~V}$ can be achieved by ensuring that the minimum supply voltage applied to V^{+}is 4.950 V over temperature variations, initial tolerance, and loading.
Note 11: Off-channel leakage current is measured after the on-channel selection.

TRI-STATE Test Circuits and Waveforms

TL/H/11086-2

TL/H/11086-3

TL/H/11086-5
$t_{r}=10 \mathrm{~ns}$

Timing Diagrams

FIGURE 1. $\overline{\text { RD }}$ Mode (Mode Pin is Low)

Timing Diagrams (Continued)

FIGURE 2a. $\overline{W R}-\overline{R D}$ Mode (Mode Pin is High and $t_{\overline{R D}} \leq t_{t_{N T L}}$)

Timing Diagrams (Continued)

TL/H/11086-9
FIGURE 3. $\overline{\text { WR}}-\overline{R D}$ Mode (Mode Pin is High) Reduced Interface System Connection ($\overline{\mathbf{C S}}=\overline{\mathbf{R D}}=\mathbf{0}$)

TL/H/11086-10
FIGURE 4. $\overline{\text { RD }}$ Mode (Pipeline Operation) (Mode Pin is Low and tridw must be between 200 ns and 400 ns)

Typical Performance Characteristics

Connection Diagrams

TL/H/11086-14
Dual-In-Line and Wide-Body Small-Outline
Packages J20A, N20A or M20B

TL/H/11086-24

Ordering Information

Industrial ($-\mathbf{4 0} \mathbf{}{ }^{\circ} \leq \mathbf{T}_{\mathbf{A}} \leq \mathbf{8 5}^{\circ} \mathbf{C}$)	Package
ADC08061BIN, ADC08061CIN, ADC08062BIN, ADC08062CIN	N20A
ADC08061BIWM, ADC08061CIWM, ADC08062BIWM, ADC08062CIWM	M20B
ADC08061CMJ, ADC08061CMJ/883,5962	J20A

Pin Description
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {IN1-8 }}$ These are analog inputs. The input range is GND-50 mV $\leq \mathrm{V}_{\text {INPUT }} \leq \mathrm{V}^{+}+50 \mathrm{mV}$. The ADC08061 has a single input (V_{IN}) and the ADC08062 has a two-channel multiplexer ($\mathrm{V}_{\mathrm{IN} 1-2}$).
DB0-DB7 TRI-STATE data outputs-bit 0 (LSB) through bit 7 (MSB).
$\overline{\text { WR} / R D Y ~} \overline{\text { WR}}-\overline{R D}$ Mode (Logic high applied to MODE pin)
$\overline{\text { WR: With }} \overline{\mathrm{CS}}$ low, the conversion is started on the falling edge of $\overline{W R}$. The digital result will be strobed into the output latch at the end of conversion (see Figures 2a, 2b, and 3).
RD Mode (Logic low applied to MODE pin)
RDY: This is an open drain output (no internal pull-up device). RDY will go low after the falling edge of $\overline{\mathrm{CS}}$ and return high at the end of conversion.
Mode: Mode ($\overline{\mathbf{R D}}$ or $\overline{\mathbf{W R}}-\overline{\mathbf{R D}}$) selection input-
MODE This pin is pulled to a logic low through an internal $50 \mu \mathrm{~A}$ current sink when left unconnected. $\overline{\mathbf{R D}}$ Mode is selected if the MODE pin is left unconnected or externally forced low. A complete conversion is accomplished by pulling $\overline{\mathrm{RD}}$ low until output data appears.
$\overline{W R}-\overline{R D}$ Mode is selected when a high is applied to the MODE pin. A conversion starts with the $\overline{\mathrm{WR}}$ signal's rising edge and then using $\overline{\mathrm{RD}}$ to access the data.

Wr-RD Mode (logic high on the MODE pin) This is the active low Read input. With a logic low applied to the $\overline{\mathrm{CS}}$ pin, the TRI-STATE data outputs (DB0-DB7) will be activated when RD goes low (see Figures $2 a, 2 b$ and 3).
$\overline{\text { RD Mode (logic low on the MODE pin) }}$
With $\overline{\mathrm{CS}}$ low, a conversion starts on the falling edge of $\overline{\text { RD }}$. Output data appears on DB0-DB7 at the end of conversion (see Figures 1 and 4).
INT \quad This is an active low output that indicates that a conversion is complete and the data is in the output latch. $\overline{\mathrm{NT}}$ is reset by the rising edge of RD.
GND This is the power supply ground pin. The ground pin should be connected to a "clean" ground reference point.
$V_{\text {REF - }} \quad$ These are the reference voltage inputs. They may be placed at any voltage between GND 50 mV and $\mathrm{V}^{+}+50 \mathrm{mV}$, but $\mathrm{V}_{\mathrm{REF}}+$ must be greater than $\mathrm{V}_{\mathrm{REF}}$-. Ideally, an input voltage equal to $\mathrm{V}_{\text {REF- }}$ produces an output code of 0 , and an input voltage greater than $\mathrm{V}_{\text {REF }}+-$ 1.5 LSB produces an output code of 255.

For the ADC08062, an input voltage on any unselected input that exceeds $\mathrm{V}+$ by more than 100 mV or is below GND by more than 100 mV will create errors in a selected channel that is operating within proper operating conditions.
$\overline{\mathrm{CS}} \quad$ This is the active low Chip Select input. A logic low signal applied to this input pin enables the $\overline{R D}$ and $\overline{W R}$ inputs. Internally, the $\overline{C S}$ signal is ORed with $\overline{R D}$ and $\overline{W R}$ signals.
OFL Overflow Output. If the analog input is higher than $V_{\text {REF }+}-1 / 2$ LSB, $\overline{O F L}$ will be low at the end of conversion. It can be used when cascading two ADC08061s to achieve higher resoIution (9 bits). This output is always active and does not go into TRI-STATE as DB0-DB7 do. When OFL is set, all data outputs remain high when the ADC08061's output data is read.
NC No connection.
AO This logic input is used to select one of the ADC08062's input multiplexer channels. A channel is selected as shown in the table below.

ADC08062 A0	Channel
0	$\mathrm{~V}_{\mathrm{iN1}}$
1	$\mathrm{~V}_{\mathrm{IN} 2}$

V^{+}
Positive power supply voltage input. Nominal operating supply voltage is +5 V . The supply pin should be bypassed with a $10 \mu \mathrm{~F}$ bead tantalum in parallel with a 0.1 ceramic capacitor. Lead length should be as short as possible.

Application Information

1.0 FUNCTIONAL DESCRIPTION

The ADC08061 and ADC08062 perform an 8-bit analog-todigital conversion using a multi-step flash technique. The first flash generates the five most significant bits (MSBs) and the second flash generates the three least significant bits (LSBs). Figure 5 shows the major functional blocks of the ADC08061/2's multi-step flash converter. It consists of an over-encoded 21/2-bit Voltage Estimator, an internal DAC with two different voltage spans, a 3-bit half-flash converter and a comparator multiplexer.
The resistor string near the center of the block diagram in Figure 5 forms the internal main DAC. Each of the eight resistors at the bottom of the string is equal to $1 / 256$ of the total string resistance. These resistors form the LSB Ladder and have a voltage drop of $1 / 256$ of the total reference voltage ($\mathrm{V}_{\mathrm{REF}+}-\mathrm{V}_{\mathrm{REF}}$) across them. The remaining resistors make up the MSB Ladder. They are made up of eight groups of four resistors connected in series. Each MSB Ladder section has $1 / 8$ of the total reference voltage across it. Within a given MSB Ladder section, each of the MSB resistors has $8 / 256$, or $1 / 32$ of the total reference
voltage across it. Tap points are found between all of the resistors in both the MSB and LSB Ladders. Through the Comparator Multiplexer these tap points can be connected, in groups of eight, to the eight comparators shown at the right of Figure 5. This function provides the necessary reference voltages to the comparators during each flash conversion.
The six comparators, seven-resistor string (estimator DAC), and Estimator Decoder at the left of Figure 5 form the Voltage Estimator. The estimator DAC connected between $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}$ - generates the reference voltages for the six Voltage Estimator comparators. These comparators perform a very low resolution A/D conversion to obtain an "estimate" of the input voltage. This estimate is then used to control the Comparator Multiplexer, connecting the appropriate MSB Ladder section to the eight flash comparators. Only 14 comparators, six in the Voltage Estimator and eight in the flash converter, are needed to achieve the full eight-bit resolution, instead of 32 comparators that would be needed by traditional half-flash methods.

Application Information (Continued)

A conversion begins with the Voltage Estimator comparing the analog input signal against the six tap voltages on the estimator DAC. The estimator decoder then selects one of the groups of tap points along the MSB Ladder. These eight tap points are then connected to the eight flash comparators. For example, if the analog input signal applied to $\mathrm{V}_{\mathbb{I N}}$ is between 0 and $3 / 16$ of $V_{\text {REF }}\left(V_{\text {REF }}=V_{\text {REF }}+V_{\text {REF }}\right)$, the estimator decoder instructs the comparator multiplexer to select the eight tap points between $8 / 256$ and $2 / 8$ of $V_{\text {REF }}$ and connects them to the eight flash comparators. The first flash conversion is now performed, producing the five MSBs of data.
The remaining three LSBs are generated next using the same eight comparators that were used for the first flash conversion. As determined by the results of the MSB flash, a voltage from the MSB Ladder equivalent to the magnitude of the five MSBs is subtracted from the analog input voltage as the upper switch is moved from position one to position two. The resulting remainder voltage is applied to the eight flash comparators and, with the lower switch in position two, compared with the eight tap points from the LSB Ladder.
By using the same eight comparators for both flash conversions, the number of comparators needed by the multi-step converter is significantly reduced when compared to standard half-flash techniques.
Voltage Estimator errors as large as $1 / 16$ of $\mathrm{V}_{\text {REF }}$ (16 LSBs) will be corrected since the flash comparators are connected to ladder voltages that extend beyond the range specified by the Voltage Estimator. For example, if $7 / 16 \mathrm{~V}_{\text {REF }}<\mathrm{V}_{\text {IN }}<$ $9 / 16 V_{\text {REF }}$ the Voltage Estimator's comparators tied to the tap points below $9 / 16 V_{\text {REF }}$ will output " 1 " s (000111). This is decoded by the estimator decoder to " 10 ". The eight flash comparators will be placed at the MSB Ladder tap points between $3 / 8 \mathrm{~V}_{\text {REF }}$ and $5 / 8 \mathrm{~V}_{\text {REF }}$. The overlap of $1 / 16 \mathrm{~V}_{\text {REF }}$ on each side of the Voltage Estimator's span will automatically correct an error of up to 16 LSBs (16 LSBs $=312.5 \mathrm{mV}$ for $V_{\text {REF }}=5 \mathrm{~V}$). If the first flash conversion determines that the input voltage is between $3 / 8 \mathrm{~V}_{\text {REF }}$ and $4 / 8 \mathrm{~V}_{\text {REF }}$ - LSB/2, the Voltage Estimator's output code will be corrected by subtracting " 1 ". This results in a corrected value of " 01 ". If the first flash conversion determines that the input voltage is between $8 / 16 \mathrm{~V}_{\text {REF }}-\operatorname{LSB} / 2$ and $5 / 8 \mathrm{~V}_{\text {REF, }}$, the Voltage Estimator's output code remains unchanged.
After correction, the 2-bit data from both the Voltage Estimator and the first flash conversion are decoded to produce the five MSBs. Decoding is similar to that of a 5-bit flash converter since there are 32 tap points on the MSB Ladder. However, 31 comparators are not needed since the Voltage Estimator places the eight comparators along the MSB Ladder where reference tap voltages are present that fall above and below the magnitude of V_{IN}. Comparators are not needed outside this selected range. If a comparator's output is a " 0 ", all comparators above it will also have outputs of " 0 " and if a comparator's output is a " 1 ", all comparators below it will also have outputs of " 1 ".

2.0 DIGITAL INTERFACE

The ADC08061/2 has two basic interface modes which are selected by connecting the MODE pin to a logic high or low.

2.1 $\overline{\text { RD }}$ Mode

With a logic low applied to the MODE pin, the converter is set to Read mode. In this configuration (see Figure 1), a complete version is done by pulling $\overline{\mathrm{RD}}$ low, and holding low, until the conversion is complete and output data appears. This typically takes 655 ns . The INT (interrupt) line goes low at the end of conversion. A typical delay of 50 ns is needed between the rising edge of RD (after the end of a conversion) and the start of the next conversion (by pulling $\overline{R D}$ low). The RDY output goes low after the falling edge of $\overline{\mathrm{CS}}$ and goes high at the end-of-conversion. It can be used to signal a processor that the converter is busy or serve as a system Transfer Acknowledge signal. For the ADC08062 the data generated by the first conversion cycle after powerup is from an unknown channel.

$2.2 \overline{\mathrm{RD}}$ Mode Pipelined Operation

Applications that require shorter $\overline{R D}$ pulse widths than those used in the Read mode as described above can be achieved by setting RD's width between $200 \mathrm{~ns}-400 \mathrm{~ns}$ (Figure 4). $\overline{\mathrm{RD}}$ pulse widths outside this range will create conversion linearity errors. These errors are caused by exercising internal interface logic circuitry using $\overline{\mathrm{CS}}$ and/or $\overline{\mathrm{RD}}$ during a conversion.
When $\overline{R D}$ goes low, a conversion is initiated and the data from the previous conversion is available on the DB0-DB7 outputs. Reading D0-D7 for the first two times after powerup produces random data. The data will be valid during the third $\overline{\mathrm{RD}}$ pulse that occurs after the first conversion.

2.3 $\overline{\mathbf{W R}}$ - $\overline{R D}$ ($\overline{\mathrm{WR}}$ then $\overline{\mathrm{RD}}$) Mode

The ADC08061/2 is in the $\overline{\mathbf{W R}}$ - $\overline{\mathrm{RD}}$ mode with the MODE pin tied high. A conversion starts on the falling edge of the WR signal. There are two options for reading the output data which relate to interface timing. If an interrupt-driven scheme is desired, the user can wait for the $\overline{\mathrm{NT}}$ output to go low before reading the conversion result (see Figure $2 b$). Typically, $\overline{N T}$ will go low 520 ns, maximum, after WR's rising edge. However, if a shorter conversion time is desired, the processor need not wait for $\overline{\mathrm{NT}}$ and can exercise a read after only 350 ns (see Figure 2a). If RD is pulled low before $\overline{I N T}$ goes low, $\overline{I N T}$ will immediately go low and data will appear at the outputs. This is the fastest operating mode (trod $\leq \mathrm{t} N \mathrm{NT}$) with a conversion time, including data access time, of 560 ns . Allowing 100 ns for reading the conversion data and the delay between conversions gives a total throughput time of 660 ns (throughput rate of 1.5 MHz).

2.4 $\overline{\text { WR}}$ - $\overline{R D}$ Mode with Reduced Interface System Connection

$\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ can be tied low, using only $\overline{\mathrm{WR}}$ to control the start of conversion for applications that require reduced digital interface while operating in the WR-唂 mode (Figure 3). Data will be valid approximately 705 ns following WR's rising edge.

2.5 Multiplexer Addressing

The ADC08062 has 2 multiplexer inputs. These are selected using the AO multiplexer channel selection input. Table I

Application Information (Continued)

shows the input code needed to select a given channel. The multiplexer address is latched when received but the multiplexer channel is updated after the completion of the current conversion.

TABLE I. Multiplexer Addressing

ADC08062 A0	Channel
0	$\mathrm{~V}_{\mathrm{IN} 1}$
1	$\mathrm{~V}_{\mathrm{IN} 2}$

The multiplexer address data must be valid at the time of $\overline{R D}$'s falling edge, remain valid during the conversion, and can go high after $\overline{\mathrm{RD}}$ goes high when operating in the Read Mode.
The multiplexer address data should be valid at or before the time of $\overline{W R}$'s falling edge, remain valid while $\overline{W R}$ is low, and go invalid after $\overline{W R}$ goes high when operating in the WR-RD Mode.

3.0 REFERENCE INPUTS

The two $\mathrm{V}_{\text {REF }}$ inputs of the ADC08061/2 are fully differential and define the zero to full-scale input range of the A to D converter. This allows the designer to vary the span of the analog input since this range will be equivalent to the voltage difference between $\mathrm{V}_{\text {REF }}$ and $\mathrm{V}_{\text {REF-. }}$. Transducers with minimum output voltages above GND can also be compensated by connecting $V_{\text {REF }}$ - to a voltage that is equal to this minimum voltage. By reducing $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\mathrm{REF}}+\right.$ - $\mathrm{V}_{\text {REF- }}$) to less than 5 V , the sensitivity of the converter can be increased (i.e., if $\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$, then $1 \mathrm{LSB}=$ 9.8 mV). The ADC08061/2's reference arrangement also facilitates ratiometric operation and in many cases the ADC08061/2's power supply can be used for transducer power as well as the $\mathrm{V}_{\text {REF }}$ source. Ratiometric operation is achieved by connecting $\mathrm{V}_{\mathrm{REF}}$ - to GND and connecting $\mathrm{V}_{\text {REF }}+$ and a transducer's power supply input to $\mathrm{V}+$. The ADC08061/2's linearity degrades when $V_{\text {REF }+}-\left|V_{\text {REF }}\right|$ is less than 2.0 V .
The voltage at $\mathrm{V}_{\text {REF- }}$ sets the input level that produces a digital output of all zeros. Though V_{IN} is not itself differential,' thereference design affords nearly differential-input capability for some measurement applications. Figure 6 shows one possible differential configuration.
It should be noted that, while the two $V_{\text {REF }}$ inputs are fully differential, the digital output will be zero for any analog input voltage if $\mathrm{V}_{\text {REF }}-\geq \mathrm{V}_{\text {REF }}+$.

4.0 ANALOG INPUT AND SOURCE IMPEDANCE

The ADC08061/2's analog input circuitry includes an ana\log switch with an "on" resistance of 70Ω and capacitance of 1.4 pF and 12 pF (see Figure 6). The switch is closed during the A/D's input signal acquisition time (while $\overline{W R}$ is low when using the $\overline{W R}-\overline{R D}$ Mode). A small transient current flows into the input pin each time the switch closes. A transient voltage, whose magnitude can increase as the source impedance increases, may be present at the input. So long as the source impedance is less than 500Ω; the input voltage transient will not cause errors and need not be filtered. Large source impedances can slow the charging of the sampling capacitors and degrade conversion accuracy. Therefore, only signal sources with output impedances less than 500Ω should be used if rated accuracy is to be achieved at the minimum sample time (100 ns maximum). A signal source with a high output impedance should have its output buffered with an operational amplifier. Any ringing or voltage shifts at the op amp's output during the sampling period can result in conversion errors.
Correct conversion results will be obtained for input voltages greater than GND -100 mV and less than $\mathrm{V}^{+}+$ 100 mV . Do not allow the signal source to drive the analog input pin more than 300 mV higher than V^{+}, or more than 300 mV lower than GND. The current flowing through any analog input pin should be limited to 5 mA or less to avoid permanent damage to the IC if an analog input pin is forced beyond these voltages. The sum of all the overdrive currents into all pins must be less than 20 mA . Some sort of protection scheme should be used when the input signal is expected to extend more than 300 mV beyond the power supply limits. A simple protection network using resistors and diodes is shown in Figure 8.

6.0 INHERENT SAMPLE-AND-HOLD

An important benefit of the ADC08061/2's input architecture is the inherent sample-and-hold (S/H) and its ability to measure relatively high speed signals without the help of an external S/H. In a non-sampling converter, regardless of its speed, the input must remain stable to at least $1 / 2$ LSB throughout the conversion process if full accuracy is to be maintained. Consequently, for many high speed signals, this signal must be externally sampled and held stationary during the conversion.
The ADC08061 and ADC08062 are suitable for DSP-based systems because of the direct control of the S/H through
*Represents a multiplexer channel in the ADC08062.
FIGURE 6. ADC08061 and ADC08062 Equivalent Input Circuit Model

Application Information (Continued)

External Reference 2.5V Full-Scale (Standard Application)

Note: Bypass capacitors consist of a $0.1 \mu \mathrm{~F}$ ceramic in parallel with a $10 \mu \mathrm{~F}$ bead tantalum.
FIGURE 7. Analog Input Options

TL/H/11086-23
Note the multiple bypass capacitors on the reference and power supply pins. $\mathrm{V}_{\text {REF }}$ - should be bypass to analog ground using multiple capacitors if it is not grounded (see Section 7.0 "Layout, Grounds, and Bypassing"). $\mathrm{V}_{\mathrm{IN} 1}$ is shown with an optional input protection network.

FIGURE 8. Typical Connection

the $\overline{W R}$ signal. The $\overline{W R}$ input signal allows the A / D to be synchronized to a DSP system's sampling rate or to other ADC08061 and ADC08062s.
The ADC08061 can perform accurate conversions of fullscale input signals at frequencies from dc to more than 300 kHz (full power bandwidth) without the need of an external sample-and-hold (S/H).

7.0 LAYOUT, GROUNDS, AND BYPASSING

In order to ensure fast, accurate conversions from the ADC08061/2, it is necessary to use appropriate circuit board layout techniques. Ideally, the analog-to-digital converter's ground reference should be low impedance and free of noise from other parts of the system. Digital circuits can produce a great deal of noise on their ground returns
and, therefore, should have their own separate ground lines. Best performance is obtained using separate ground planes for the digital and analog parts of the system.
The analog inputs should be isolated from noisy signal traces to avoid having spurious signals couple to the input. Any external component (e.g., an input filter capacitor) connected across the inputs should be returned to a very clean ground point. Incorrectly grounding the ADC08061/2 will result in reduced conversion accuracy.
The V^{+}supply pin, $\mathrm{V}_{\text {REF }+ \text {, and }} \mathrm{V}_{\text {REF }}$ - (if not grounded) should be bypassed with a parallel combination of a $0.1 \mu \mathrm{~F}$ ceramic capacitor and a $10 \mu \mathrm{~F}$ tantalum capacitor placed as close as possible to the supply pin using short circuit board traces. See Figures 7 and 8.

ADC08161

500 ns A/D Converter with S/H Function and 2.5V Bandgap Reference

General Description

Using a patented multi-step A/D conversion technique, the 8-bit ADC08161 CMOS A/D converter offers 500 ns conversion time, internal sample-and-hold (S/H), a 2.5 V bandgap reference, and dissipates only 100 mW of power. The ADC08161 performs an 8-bit conversion with a 2-bit voltage estimator that generates the 2 MSBs and two low-resolution (3-bit) flashes that generate the 6 LBSs.
Input signals are tracked and held by the input sampling circuitry, eliminating the need for an external sample-andhold. The ADC08161 can perform accurate conversions of full-scale input signals at frequencies from DC to typically more than 300 kHz (full power bandwidth) without the need of an external sample-and-hold (S/H).
For ease of interface to microprocessors, this part has been designed to appear as a memory location or I/O port without the need for external interfacing logic.

Key Specifications

- Resolution

8 Bits

- Conversion time (tconv) 560 ns max ($\overline{\mathrm{WR}}-\overline{\mathrm{RD}}$ Mode)
- Full power bandwidth 300 kHz (typ)
- Throughput rate
- Power dissipation
- Total unadjusted error

$$
1.5 \mathrm{MHz} \min
$$ 100 mW max

Features

- No external clock required
- Analog input voltage range from GND to V^{+}
- 2.5 V bandgap reference

Applications

- Mobile telecommunications
- Hard-disk drives
- Instrumentation
- High-speed data acquisition systems

Block Diagram

TL/H/11149-1

Absolute Maximum Ratings (Notes $1 \& 2$)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (V^{+})
6 V
Logic Control Inputs $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Voltage at Other Inputs and Outputs $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Input Current at Any Pin (Note 3) 5 mA
Package Input Current (Note 3) 20 mA
Power Dissipation (Note 4)

N Package	875 mW
WM Package	875 mW
Lead Temperature (Note 5)	
N Package (Soldering, 10 sec.)	$+260^{\circ} \mathrm{C}$
WM Package (Vapor Phase, 60 sec.)	$+215^{\circ} \mathrm{C}$
WM Package (Infrared, 15 sec.$)$	$+220^{\circ} \mathrm{C}$

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Susceptibility (Note 6)	750 V

Operating Ratings (Notes $1 \& 2$)

Temperature Range $\quad T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
ADC08161BIN,
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
ADC08161CIN, ADC08161BIWM, ADC08161CIWM
Supply Voltage, (V^{+})
4.5 V to 5.5 V

Converter Characteristics

The following specifications apply for $\overline{\mathrm{RD}}$ Mode, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}+=5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{REF}}==\mathrm{GND}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {MAX }}$ all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limits (Note 8)	Units (Limit)
INL	Integral Non Linearity	$\begin{aligned} & \mathrm{V}_{\text {REF }}=5 \mathrm{~V} \\ & \text { ADC08161BIN, BIWM } \end{aligned}$		$\pm 1 / 2$	LSB (max)
		ADC08161CIN, CIWM		± 1	LSB (max)
TUE	Total Unadjusted Error (Note 9)	$\begin{aligned} & \mathrm{V}_{\text {REF }}=5 \mathrm{~V} \\ & \text { ADC08161BIN, BIWM } \end{aligned}$		$\pm 1 / 2$	LSB (max)
		ADC08161CIN, CIWM,		± 1	LSB (max)
INL	Integral Non Linearity	$V_{\text {REF }}=2.5 \mathrm{~V}$, All Suffixes		± 1	LSB (max)
TUE	Total Unadjusted Error	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=2.5 \mathrm{~V} \\ & \mathrm{ADC} 08161, \text { All Suffixes } \end{aligned}$		± 1	LSB (max)
	Missing Codes	$\begin{aligned} & V_{\text {REF }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Bits (max) Bits (max)
	Reference Input Resistance		$\begin{aligned} & 700 \\ & 700 \\ & \hline \end{aligned}$	$\begin{gathered} 500 \\ 1250 \end{gathered}$	$\begin{aligned} & \Omega(\min) \\ & \Omega(\max) \end{aligned}$
$\mathrm{V}_{\text {REF }+}$	Positive Reference Input Voltage			VREF- \mathbf{v}^{+}	V (min) V (max)
$\mathrm{V}_{\text {REF }}$	Negative Reference Input Voltage			GND VREF+	$\begin{aligned} & V(\min) \\ & V(\max) \end{aligned}$
V IN	Analog Input Voltage	(Note 10)		$\begin{gathered} \text { GND - } 0.1 \\ \mathbf{v}++0.1 \end{gathered}$	$\begin{aligned} & V(\min) \\ & V(\max) \end{aligned}$
	On-Channel Input Current	On Channel. Input $=5 \mathrm{~V}$, Off Channel Input $=0 \mathrm{~V}$ (Note 11)	-0.4	-20	$\mu \mathrm{A}$ (max)
		On Channel Input $=0 \mathrm{~V}$, Off Channel Input $=5 \mathrm{~V}$ (Note 11)	-0.4	-20	$\mu \mathrm{A}(\mathrm{max})$

Converter Characteristics (Continued)
The following specifications apply for $\overline{\mathrm{RD}}$ Mode, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}+}=5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{REF}}=\mathrm{GND}$ unless otherwise specified.
Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$.

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}, \mathrm{~V}_{\mathrm{REF}+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{M I N}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	ADC08161BIN, ADC08161CIN, ADC08161BIWM, ADC08161CIWM		Units (Limit)
			Typical (Note 7)	Limit (Note 8)	
twR	Write Time	Mode Pin to $\mathrm{V}+$ (Figures 2a, 2b, and 3)	100	100	ns (min)
t R_{RD}	Read Time (Time from Rising Edge of $\overline{W R}$ to Falling Edge of $\overline{\mathrm{RD}}$)	Mode Pin to $\mathrm{V}+$, CMJ Suffix (Figure 2a)	350	$\begin{aligned} & 350 \\ & 515 \end{aligned}$	ns (min)
$t_{\text {RDW }}$	$\overline{\mathrm{RD}}$ Width	Mode Pin to GND (Figure 4)	$\begin{aligned} & 200 \\ & 400 \\ & \hline \end{aligned}$	$\begin{array}{r} 250 \\ 400 \\ \hline \end{array}$	ns (min) ns (max)
tCONV	$\overline{\mathrm{WR}}$ - $\overline{\mathrm{RD}}$ Mode Conversion Time $\left(t_{W R}+t_{R D}+t_{A C C 1}\right)$	Mode Pin to V^{+}, CMJ Suffix (Figure 2a)	500	$\begin{aligned} & 560 \\ & 790 \\ & \hline \end{aligned}$	ns (max)
$\mathrm{t}_{\text {CRD }}$	$\overline{\mathrm{RD}}$ Mode Conversion Time	Mode Pin to GND, CMJ Suffix (Figure 1)	655	$\begin{aligned} & 900 \\ & 940 \end{aligned}$	ns (max)
$\mathrm{t}_{\mathrm{ACCO}}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)	$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$, Mode Pin to GND CMJ Suffix (Figure 1)	640	$\begin{aligned} & 900 \\ & 940 \end{aligned}$	ns (max)
$\mathrm{t}_{\mathrm{ACC} 1}$	Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Valid)	$\begin{array}{\|l} \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ \text { Mode Pin to } \mathrm{V}+\text {, } \mathrm{t}_{\mathrm{RD}} \leq \mathrm{t}_{\mathrm{INTL}} \\ \mathrm{CMJ} \text { Suffix (Figure 2a) } \\ \hline \end{array}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	$\begin{array}{r} 110 \\ 175 \\ \hline \end{array}$	ns ns (max) ns (max)
$t_{\text {ACC2 }}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)	$\begin{aligned} & \hline C_{L} \leq 10 \mathrm{pF} \\ & C_{L}=100 \mathrm{pF} \\ & t_{R D}>t_{I N T L}, \\ & C M J \text { Suffix, (Figures } 2 b \text { and 4) } \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	55 60	$\begin{gathered} \text { ns } \\ \text { ns (max) } \\ \\ \text { ns (max) } \\ \hline \end{gathered}$
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{0 \mathrm{H}}$	TRI-STATE ${ }^{\text {® }}$ Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to $\mathrm{HI}-\mathrm{Z}$ State)	$\begin{aligned} & R_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\ & \text { (Figures 1, 2a, 2b, 3, and 4) } \end{aligned}$	30	60	ns (max)
पINTL	Delay from Rising Edge of $\overline{W R}$ to Falling Edge of $\overline{\mathrm{NT}}$	Mode Pin $=\mathrm{V}^{+}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (Figures 2b, and 3)	520	690	ns (max)

AC Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}, \mathrm{~V}_{\mathrm{REF}+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}-=0 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	ADC08161BIN, ADC08161CIN, ADC08161BIWM, ADC08161CIWM		Units (Limit)
			Typical (Note 7)	Limit (Note 8)	
tiNTH	Delay from Rising Edge of $\overline{R D}$ to Rising Edge of INT	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & \text { CMJ Suffix (Figures 1, 2a, 2b, and 4) } \end{aligned}$	50	$\begin{gathered} 95 \\ 100 \end{gathered}$	ns (max)
tINTH	Delay from Rising Edge of WR to Rising Edge of INT	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { CMJ Suffix (Figure 3) } \end{aligned}$	45	$\begin{gathered} 95 \\ 100 \end{gathered}$	ns (max)
$t_{\text {RDY }}$	Delay from $\overline{\text { CS }}$ to RDY	$\begin{aligned} & \text { Mode Pin }=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \\ & \mathrm{CMJ} \text { Suffix (Figure 1) } \end{aligned}$	25	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	ns (max)
t_{10}	Delay from $\overline{N T}$ to Output Valid	$R_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 3)	0	15	ns (max)
t_{RI}	Delay from $\overline{\mathrm{RD}}$ to INT	Mode Pin $=\mathrm{V}^{+}$, $\mathrm{t}_{\mathrm{RD}} \leq \mathrm{t}_{\mathrm{INTL}}$ CMJ Suffix (Figure 2a)	60	$\begin{aligned} & 115 \\ & 175 \end{aligned}$	ns (max)
t_{N}	Time between End of $\overline{R D}$ and Start of New Conversion	(Figures 1, 2a, 2b, 3 and 4)	50	50	ns (min)
tcss	$\overline{\text { CS Setup Time }}$	(Figures 1, 2a, 2b, 3 and 4)	0	0	ns (max)
tcs	CS Hold Time	(Figures 1, 2a, 2b, 3 and 4)	0	0	ns (max)

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	ADC08161BIN, ADC08161CIN, ADC08161BIWM, ADC08161CIWM		Units (Limit)
			Typical (Note 7)	Limit (Note 8)	
$V_{\text {IH }}$	Logic "1" Input Voltage	$\mathrm{V}+=5.5 \mathrm{~V}$ $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2$ Pins Mode Pin		$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	V (min)
V_{IL}	Logic "0" Input Voltage	$\mathrm{V}^{+}=4.5 \mathrm{~V}$ $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2$ Pins Mode Pin		$\begin{aligned} & 0.8 \\ & 1.5 \end{aligned}$	V (max)
$I_{1 H}$	Logic "1" Input Current	$V_{H}=5 \mathrm{~V}$ $\overline{C S}, \overline{R D}, \mathrm{~A} 0, \mathrm{~A} 1, \mathrm{~A} 2$ Pins $\overline{W R}$ Pin Mode Pin	$\begin{gathered} 0.005 \\ 0.1 \\ 50 \end{gathered}$	$\begin{gathered} 1 \\ 3 \\ 200 \end{gathered}$	$\mu \mathrm{A}$ (max)
IIL	Logic "0" Input Current	$\mathrm{V}_{\mathrm{L}}=\mathrm{OV}$ $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2$ Mode Pins	-0.005	-2	$\mu \mathrm{A}$ (max)
V_{OH}	Logic "1" Output Voltage	$\begin{aligned} & \mathrm{V}+=4.75 \mathrm{~V} \\ & \text { lout }=-360 \mu \mathrm{~A} \\ & \text { DB0-DB7, } \overline{\mathrm{OFL}}, \mathrm{INT} \\ & \text { lout }=-10 \mu \mathrm{~A} \\ & \text { DBO-DB7, } \overline{\mathrm{OFL}}, \overline{\text { INT }} \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	V (min) $V(\min)$

DC Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\mathrm{min}}$ to $\mathrm{T}_{\text {max }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	ADC08161BIN, ADC08161CIN, ADC08161BIWM, ADC08161CIWM,		Units (Limit)
			Typical (Note 7)	Limit (Note 8)	
V_{OL}	Logic "0" Output Voltage	$\begin{aligned} & \mathrm{V}^{+}=4.75 \mathrm{~V} \\ & \text { louT }=1.6 \mathrm{~mA} \\ & \mathrm{DB0}-\mathrm{DB} 7, \overline{\mathrm{OFL}}, \overline{\mathrm{INT}, \text { RDY }} \end{aligned}$		0.4	V (max)
10	TRI-STATE Output Current	$\begin{aligned} & \text { VOUT }=5.0 \mathrm{~V} \\ & \text { DB0-DB7, RDY } \\ & \text { VOUT }=0 \mathrm{~V} \\ & \text { DB0-DB7, RDY } \end{aligned}$	$\begin{gathered} 0.1 \\ -0.1 \end{gathered}$	$\begin{gathered} 3 \\ -3 \end{gathered}$	$\mu \mathrm{A}(\max)$ $\mu \mathrm{A}$ (max)
IsOURCE	Output Source Current	$\begin{aligned} & V_{O U T}=0 \mathrm{~V} \\ & \mathrm{DBO}-\mathrm{DB7}, \overline{\mathrm{OFL}}, \overline{\mathrm{INT}} \end{aligned}$	-26	-6	mA (min)
ISINK	Output Sink Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V} \\ & \mathrm{DBO}-\mathrm{DB}, \overline{\mathrm{OFL}}, \overline{\mathrm{NT}}, \mathrm{RDY} \end{aligned}$	24	7	mA (min)
I_{C}	Supply Current	$\overline{\mathrm{CS}}=\overline{\mathrm{WR}}=\overline{\mathrm{RD}}=0$	11.5	20	mA (max)
$\mathrm{C}_{\text {OUT }}$	Logic Output Capacitance		5		pF
C_{IN}	Logic Input Capacitance		5		pF

Bandgap Reference Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for Tmin to Tmax; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	\therefore Parameter	Conditions	Typical (Note 7)	Limits (Note 8)	Units (Limit)
VREFOUT	Internal Reference Output Voltage	"B" Grade "C'" Grade	2.5	$\begin{aligned} & 2.5 \pm 1.5 \% \\ & 2.5 \pm 2.0 \% \end{aligned}$	V (max)
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{T}$	Internal Reference Temperature Coefficient		40		ppm $/{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{I}_{\mathrm{L}}$	Internal Reference Load Regulation	Sourcing ($0 \leq \mathrm{I}_{\mathrm{L}} \leq+10 \mathrm{~mA}$)	0.01	0.1	\%/mA (max)
	Line Regulation	$4.75 \mathrm{~V} \leq \mathrm{V}+\leq 5.25 \mathrm{~V}$	0.5	6.0	mV (max)
ISC	Short Circuit Current	$\mathrm{V}_{\mathrm{REV}}=0 \mathrm{~V}$	35		mA (max)
$\Delta V_{\text {REF }} / \Delta_{t}$	Long Term Stability	.	200		ppm/kHr
	Start-Up Time	$\mathrm{V}+: 0 \mathrm{~V} \rightarrow 5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=220 \mu \mathrm{~F}$	40		ms

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings. Operating Ratings indicate conditions for which the device is functional, but do not guarantee performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to the GND pin, unless otherwise specified.
Note 3: When the input voltage $\left(\mathrm{V}_{\mathbb{N}}\right)$ at any pin exceeds the power supply voltage ($\mathrm{V}_{\mathbb{N}}<\mathrm{GND}$ or $\mathrm{V}_{\mathrm{IN}}>\mathrm{V}^{+}$), the absolute value of the current at that pin should be limited to 5 mA or less. The 20 mA package input current specification limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 4: The power dissipation of this device under normal operation should never exceed 875 mW (Quiescent Power Dissipation + TTL Loads on the digital outputs). Caution should be taken not to exceed absolute maximum power rating when the device is operating in a severe fault condition (e.g., when any input or output exceeds the power supply). The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_{A} (ambient temperature). The maximum allowable power dissipation at any temperature is $P D_{\text {max }}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. The table below details $T_{J M A X}$ and $\theta_{J A}$ for the various packages and versions of the ADC08161.

Part Number	TJMAX	$\boldsymbol{\theta}_{\text {JA }}$
ADC08161B/CIN	105	51
ADC08161B/CIWM	105	85

Note 5: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
Note 6: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 8: Limits are guaranteed to National's AOQL (Average Output Quality Level).
Note 9: Total unadjusted error includes offset, full-scale, and linearity errors.
Note 10: Two on-chip diodes are tied to each analog input and are reversed biased during normal operation. One is connected to V^{+}and the other is connected to GND. They will become forward biased and conduct when an analog input voltage is equal to or greater than one diode drop above V^{+}or below GND. Therefore, caution should be exercised when testing with $\mathrm{V}+=4.5 \mathrm{~V}$. Analog inputs with magnitudes equal to 5 V can cause an input diode to conduct, especially at elevated temperatures. This can create conversion errors for analog signals near full-scale. The specification allows 50 mV forward bias on either diode; e.g., the output code will be correct as long as the analog input signal does not exceed the supply voltage by more than 50 mV . Exceeding this range on an unselected channel will corrupt the reading of a selected channel. An absolute analog input signal voltage range of $0 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}} \leq 5 \mathrm{~V}$ can be achieved by ensuring that the minimum supply voltage applied to V^{+}is 4.950 V over temperature variations, initial tolerance, and loading.
Note 11: Off-channel leakage current is measured on the on-channel selection.

TRI-STATE Test Circuit and Waveforms

TL/H/11149-3

TL/H/11149-5

$$
t_{r}=10 \mathrm{~ns}
$$

FIGURE 1. $\overline{\mathrm{RD}}$ Mode (Mode Pin is Low)

TRI-STATE Test Circuit and Waveforms (Continued)

FIGURE 2a. $\overline{\text { WR}}-\overline{R D}$ Mode with $t_{R D} \leq t_{\text {INTL }}$ (Mode Pin is High)

FIGURE 2b. $\overline{\text { WR}}-\overline{R D}$ Mode with $\mathbf{t}_{\text {RD }}>\mathbf{t}_{\text {INTL }}$ (Mode Pin is High)

TRI-STATE Test Circuit and Waveforms (Continued)

TL/H/11149-9
FIGURE 3. $\overline{\text { WR}}-\overline{R D}$ Mode Reduced Interface System Connection with $\overline{\mathbf{C S}}=\overline{\mathbf{R D}}=\mathbf{0}$ (Mode Pin is High)

FIGURE 4. $\overline{\text { RD }}$ Mode (Pipeline Operation); $\mathrm{t}_{\text {RDW }}$ must be between 200 ns and 400 ns. (Mode Pin is Low)

Typical Performance Characteristics

Linearity Error vs
Reference Voltage

Offset Error vs Reference Voltage

Logic Threshold vs
Temperature

TL/H/11149-11

Connection Diagram

See NS Package Number N20A or M20A

Ordering Information

Industrial $\left(-\mathbf{4 0} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq \mathbf{8 5}{ }^{\circ} \mathrm{C}\right)$	Package
ADC08161BIN, ADC08161CIN	N20A
ADC08161BIWM, ADC08161CIWM	M20B

Pin Description

$V_{I N} \quad$ This is the analog input. The input range is GND-50 mV $\leq \mathrm{V}_{\text {INPUT }} \leq \mathrm{V}^{+}+50 \mathrm{mV}$.
DB0-DB7 TRI-STATE data outputs-bit 0 (LSB) through bit 7 (MSB).
$\overline{W R} / R D Y \overline{W R}-\overline{R D}$ Mode (Logic high applied to MODE pin)
$\overline{W R}$: With $\overline{\mathrm{CS}}$ low, the conversion is started on the rising edge of WR. The digital result will be strobed into the output latch at the end of conversion (see Figures $2 a, 2 b$, and 3).
$\overline{\text { RD }}$ Mode (Logic low applied to MODE pin)
RDY: This is an open drain output (no internal pull-up device). RDY will go low after the falling edge of $\overline{C S}$ and returns high at the end of conversion.
MODE
Mode: Mode ($\overline{\mathbf{R D}}$ or $\overline{\mathbf{W R}}-\overline{\mathrm{RD}}$) selection inputThis pin is pulled to a logic low through an internal $50 \mu \mathrm{~A}$ current sink when left unconnected.
$\overline{\mathbf{R D}}$ Mode is selected if the MODE pin is left unconnected or externally forced low. A complete conversion is accomplished by pulling $\overline{\mathrm{RD}}$ low until output data appears.
$\overline{\mathbf{W R}}$ - $\overline{\mathbf{R D}}$ Mode is selected when a high is applied to the MODE pin. A conversion starts with the $\overline{\mathrm{WR}}$ signal's rising edge and then using $\overline{\mathrm{RD}}$ to access the data.
$\overline{R D} \quad \overline{W R}-\overline{R D}$ Mode (logic high on the MODE pin) This is the active low Read input. With a logic low applied to the CS pin, the TRI-STATE data outputs (DB0-DB7) will be activated when $\overline{\mathrm{RD}}$ goes low (see Figures $2 a, 2 b$ and 3).
$\overline{\mathbf{R D}}$ Mode (logic low on the MODE pin)

Pin Description (Continued)
With $\overline{\mathrm{CS}}$ low, a conversion starts on the falling edge of $\overline{R D}$. Output data appears on DB0-DB7 at the end of conversion (see Figures 1 and 4).
This is an active low output that indicates that a conversion is complete and the data is in the output latch. INT is reset by the rising edge of RD.
GND This is the power supply ground pin. The ground pin should be connected to a "clean" ground reference point.
$V_{\text {REF- }} \quad$ These are the reference voltage inputs. They $V_{\text {REF }}+\quad$ may be placed at any voltage between GND 50 mV and $\mathrm{V}^{+}+50 \mathrm{mV}$, but $\mathrm{V}_{\mathrm{REF}}+$ must be greater than $V_{\text {REF-. }}$ Ideally, an input voltage equal to $V_{\text {REF }}$ - produces an output code of 0 , and an input voltage greater than $V_{\text {REF }}+-$ 1.5 LSB produces an output code of 255.

For the ADC08161 an input voltage that exceeds $\mathrm{V}+$ by more than 100 mV or is below GND by more than 100 mV will create conversion errors.
$\overline{\mathrm{CS}} \quad$ This is the active low Chip Select input. A logic low signal applied to this input pin enables the $\overline{R D}$ and $\overline{W R}$ inputs. Internally, the $\overline{C S}$ signal is ORed with $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signals.

OFL Overflow Output. If the analog input is higher than $V_{\text {REF }}$, OFL will be low at the end of conversion. It can be used when cascading two ADC08161s to achieve higher resolution (9 bits). This output is always active and does not go into TRI-STATE as DB0-DB7 do. When OFL is set, all data outputs remain high when the ADC08061's output data is read.
V+ Positive power supply voltage input. Nominal operating supply voltage is +5 V . The supply pin should be bypassed with a $10 \mu \mathrm{~F}$ bead tantalum in parallel with a 0.1 ceramic capacitor. Lead length should be as short as possible.
$V_{\text {REFOUT }}$ The internal bandgap reference's 2.5 V output is available on this pin. Use a $220 \mu \mathrm{~F}$ bypass capacitor between this pin and analog ground.

Application Information

FIGURE 5. Block Diagram of the ADC08161 Multi-Step Flash Architecture

1.0 FUNCTIONAL DESCRIPTION

The ADC08161 performs an 8-bit analog-to-digital conversion using a multi-step flash technique. The first flash generates the five most significant bits (MSBs) and the second flash generates the three least significant bits (LSBs). Figure 5 shows the major functional blocks of the ADC08161 multi-step flash converter. It consists of an over-encoded 21/2-bit Voltage Estimator, an internal DAC with two different voltage spans, a 3-bit half-flash converter and a comparator multiplexer.
The resistor string near the center of the block diagram in Figure 5 forms the internal main DAC. Each of the eight resistors at the bottom of the string is equal to $1 / 256$ of the total string resistance. These resistors form the LSB Ladder and have a voltage drop of 1/256 of the total reference voltage ($\mathrm{V}_{\mathrm{REF}}+-\mathrm{V}_{\mathrm{REF}}$) across them. The remaining resistors make up the MSB Ladder. They are made up of eight groups of four resistors connected in series. Each MSB Ladder section has $1 / 8$ of the total reference voltage across it. Within a given MSB Ladder section, each of the MSB resistors has $8 / 256$, or $1 / 32$ of the total reference volt-
age across it. Tap points are found between all of the resistors in both the MSB and LSB Ladders. Through the Comparator Multiplexer these tap points can be connected, in groups of eight, to the eight comparators shown at the right of Figure 5. This function provides the necessary reference voltages to the comparators during each flash conversion. The six comparators, seven-resistor string (estimator DAC), and Estimator Decoder at the left of Figure 5 form the Voltage Estimator. The estimator DAC connected between $V_{\text {REF }}+$ and $V_{\text {REF }}$ - generates the reference voltages for the six Voltage Estimator comparators. These comparators perform a very low resolution A/D conversion to obtain an "estimate" of the input voltage. This estimate is then used to control the Comparator Multiplexer, connecting the appropriate MSB Ladder section to the eight flash comparators. Only 14 comparators, six in the Voltage Estimator and eight in the flash converter, are needed to achieve the full eight-bit resolution, instead of 32 comparators that would be needed by traditional half-flash methods.
A conversion begins with the Voltage Estimator comparing the analog input signal against the six tap voltages on the estimator DAC. The estimator decoder then selects one of

Application Information (Continued)

the groups of tap points along the MSB Ladder. These eight tap points are then connected to the eight flash comparators. For example, if the analog input signal applied to $\mathrm{V}_{\mathbb{I}}$ is between 0 and $3 / 16$ of $V_{\text {REF }}\left(V_{\text {REF }}=V_{\text {REF }}+-V_{\text {REF- }}\right)$, the estimator decoder instructs the comparator multiplexer to select the eight tap points between $8 / 256$ and $2 / 8$ of $V_{\text {REF }}$ and connects them to the eight flash comparators. The first flash conversion is now performed, producing the five MSBs of data.
The remaining three LSBs are generated next using the same eight comparators that were used for the first flash conversion. As determined by the results of the MSB flash, a voltage from the MSB Ladder equivalent to the magnitude of the five MSBs is subtracted from the analog input voltage as the upper switch is moved from position one to position two. The resulting remainder voltage is applied to the eight flash comparators and, with the lower switch in position two, compared with the eight tap points from the LSB Ladder.
By using the same eight comparators for both flash conversions, the number of comparators needed by the multi-step converter is significantly reduced when compared to standard half-flash techniques.
Voltage Estimator errors as large as $1 / 16$ of $V_{\text {REF }}$ (16 LSBs) will be corrected since the flash comparators are connected to ladder voltages that extend beyond the range specified by the Voltage Estimator. For example, if $7 / 16 \mathrm{~V}_{\text {REF }}<\mathrm{V}_{\text {IN }}<$ $9 / 16 V_{\text {REF }}$ the Voltage Estimator's comparators tied to the tap points below $9 / 16 V_{\text {REF }}$ will output " 1 "s (000111). This is decoded by the estimator decoder to " 10 ". The eight flash comparators will be placed at the MSB Ladder tap points between $3 / 8 V_{\text {REF }}$ and $5 / 8 V_{\text {REF }}$. The overlap of $1 / 16 V_{\text {REF }}$ on each side of the Voltage Estimator's span will automatically correct an error of up to 16 LSBs (16 LSBs $=312.5 \mathrm{mV}$ for $V_{\text {REF }}=5 \mathrm{~V}$). If the first flash conversion determines that the input voltage is between $3 / 8 V_{\text {REF }}$ and $4 / 8 V_{\text {REF }}$ - LSB/2, the Voltage Estimator's output code will be corrected by subtracting " 1 ". This results in a corrected value of " 01 ". If the first flash conversion determines that the input voltage is between $8 / 16 \mathrm{~V}_{\text {REF }}$ - LSB/2 and $5 / 8 \mathrm{~V}_{\text {REF }}$, the Voltage Estimator's output code remains unchanged.
After correction, the 2-bit data from both the Voltage Estimator and the first flash conversion are decoded to produce the five MSBs. Decoding is similar to that of a 5 -bit flash converter since there are 32 tap points on the MSB Ladder. However, 31 comparators are not needed since the Voltage Estimator places the eight comparators along the MSB Ladder where reference tap voltages are present that fall above and below the magnitude of $V_{I N}$. Comparators are not needed outside this selected range. If a comparator's output is a " 0 ", all comparators above it will also have outputs of " 0 " and if a comparator's output is a " 1 ", all comparators below it will also have outputs of "1".

2.0 DIGITAL INTERFACE

The ADC08161 has two basic interface modes which are selected by connecting the MODE pin to a logic high or low.

$2.1 \overline{\mathrm{RD}}$ Mode

With a logic low applied to the MODE pin, the converter is set to Read mode. In this configuration (see Figure 1), a complete conversion is done by pulling $\overline{\mathrm{RD}}$ low, and holding low, until the conversion is complete and output data appears. This typically takes 655 ns. The INT (interrupt) line goes low at the end of conversion. A typical delay of 50 ns is
needed between the rising edge of $\overline{C S}$ (after the end of a conversion) and the start of the next conversion (by pulling $\overline{\mathrm{RD}}$ low). The RDY output goes low after the falling edge of $\overline{\mathrm{CS}}$ and goes high at the end-of-conversion. It can be used to signal a processor that the converter is busy or serve as a system Transfer Acknowledge signal.

2.2 $\overline{\text { RD }}$ Mode Pipelined Operation

Applications that require shorter $\overline{\mathrm{RD}}$ pulse widths than those used in the Read mode as described above can be achieved by setting $\overline{R D}$'s width between 200 ns- 400 ns (Figure 4). $\overline{\mathrm{RD}}$ pulse widths outside this range will create conversion linearity errors. These errors are caused by exercising internal interface logic circuitry using $\overline{\mathrm{CS}}$ and/or $\overline{\mathrm{RD}}$ during a conversion.
When $\overline{\mathrm{RD}}$ goes low, a conversion is initiated and the data from the previous conversion is available on the DB0-DB7 outputs. Reading DB0-DB7 for the first two times after pow-er-up produces random data. The data will be valid during the third $\overline{\mathrm{RD}}$ pulse that occurs after the first conversion.

2.3 $\overline{\text { WR}}$ - $\overline{R D}$ ($\overline{\mathrm{WR}}$ then $\overline{\mathrm{RD}}$) Mode

The ADC08161 is in the $\overline{\mathrm{WR}}-\overline{\mathrm{RD}}$ mode with the MODE pin tied high. A conversion starts on the rising edge of the WR signal. There are two options for reading the output data which relate to interface timing. If an interrupt-driven scheme is desired, the user can wait for the INT output to go low before reading the conversion result (see Figure 2b). Typically, INT will go low 690 ns, maximum, after WR's rising edge. However, if a shorter conversion time is desired, the processor need not wait for $\overline{\mathrm{NT}}$ and can exercise a read after only 350 ns (see Figure 2a). If $\overline{\mathrm{RD}}$ is pulled low before INT goes low, INT will immediately go low and data will appear at the outputs. This is the fastest operating mode (tRD $\leq \mathrm{t}_{\mathrm{INTL}}$) with a conversion time, including data access time, of 560 ns . Allowing 100 ns for reading the conversion data and the delay between conversions gives a total throughput time of 660 ns (throughput rate of 1.5 MHz).

$2.4 \overline{\text { WR}}$ - $\overline{R D}$ Mode with Reduced Interface System Connection

$\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ can be tied low, using only $\overline{\mathrm{WR}}$ to control the start of conversion for applications that require reduced digital interface while operating in the $\overline{W R}-\overline{R D}$ mode (Figure 3). Data will be valid approximately 705 ns following $\overline{\mathrm{WR}}$'s rising edge.

Application Information (Continued)

3.0 REFERENCE INPUTS

The ADC08161's two $V_{\text {REF }}$ inputs are fully differential and define the zero to full-scale input range of the A to D converter. This allows the designer to vary the span of the analog input since this range will be equivalent to the voltage difference between $\mathrm{V}_{\text {REF }}$, and $\mathrm{V}_{\text {REF-. }}$. Transducers that have outputs that minimum output voltages above GND can also be compensated by connecting $V_{\text {REF }}$ to a voltage that is equal to this minimum voltage. By reducing $V_{\text {REF }}$ $\left(V_{\text {REF }}=V_{\text {REF }+}-V_{\text {REF }}\right.$) to less than 5 V , the sensitivity of the converter can be increased (i.e., if $\mathrm{V}_{\mathrm{REF}}=2.5 \mathrm{~V}$, then 1 LSB $=9.8 \mathrm{mV}$). The reference arrangement also facilitates ratiometric operation and in may cases the power supply can be used for transducer power as well as the VREF source. Ratiometric operation is achieved by connecting $\mathrm{V}_{\text {REF }}$ - to GND and connecting $\mathrm{V}_{\text {REF }}+$ and a transducer's power supply input to V^{+}. The ADC08161s accuracy degrades when $V_{\text {REF }+,-}\left|V_{\text {REF }}\right|$ is less than 2.0 V .
The voltage at $V_{\text {REF }}$ - sets the input level that produces a digital output of all zeroes. Through V_{IN} is not itself differential, the reference design affords nearly differential-input capability for some measurement applications. Figure 6 shows one possible differential configuration.
It should be noted that, while the two $V_{\text {REF }}$ inputs are fully differential, the digital output will be zero for any analog input voltage if $\mathrm{V}_{\text {REF }}-\geq \mathrm{V}_{\text {REF }}$.

4.0 ANALOG INPUT AND SOURCE IMPEDANCE

The ADC08161's analog input circuitry includes an analog switch with an "on" resistance of 70Ω and a 1.4 pF capacitor (see Figure 6). The switch is closed during the A/D's input signal acquisition time (while $\overline{W R}$ is low when using the $\overline{W R}-\overline{R D}$ Mode). A small transient current flows into the input pin each time the switch closes. A transient voltage, whose magnitude can increase as the source impedance increases, may be present at the input. So long as the source impedance is less than 500Ω, the input voltage transient will not cause errors and need not be filtered.
Large source impedances can slow the charging of the sampling capacitors and degrade conversion accuracy. Therefore, only signal sources with output impedances less than 500Ω should be used if rated accuracy is to be achieved at the minimum sample time (100 ns maximum). A signal source with a high output impedance should have its output buffered with an operational amplifier. Any ringing or voltage shifts at the op amp's output during the sampling period can result in conversion errors.
Some suggested input configurations using the internal 2.5 V reference, an external reference, and adjusting the input span are shown in Figure 7.
Correct conversion results will be obtained for input voltages greater than GND - 100 mV and less than $\mathrm{V}^{+}+$ 100 mV . Do not allow the signal source to drive the analog input pin more than 300 mV higher than V^{+}, or more than 300 mV lower than GND. The current flowing through any analog input pin should be limited to 5 mA or less to avoid
permanent damage to the IC if an analog input pin is forced beyond these voltages. The sum of all the overdrive currents into all pins must be less than 20 mA . Some sort of protection scheme should be used when the input signal is expected to extend more than 300 mV beyond the power supply limits. A simple protection network using resistors and diodes is shown in Figure 8.

5.0 INHERENT SAMPLE-AND-HOLD

An important benefit of the ADC08161's input architecture is the inherent sample-and-hold (S / H) and its ability to measure relatively high speed signals without the help of an external S / H. In a non-sampling converter, regardless of its speed, the input must remain stable to at least $1 / 2$ LSB throughout the conversion process if full accuracy is to be maintained. Consequently, for many high speed signals, this signal must be externally sampled and held stationary during the conversion.
The ADC08161 is suitable for DSP-based systems because of the direct control of the S/H through the WR signal. The $\overline{W R}$ input signal allows the A/D to be synchronized to a DSP system's sampling rate or to other ADC08161s.
The ADC08161 can perform accurate conversions of fullscale input signals at frequencies from DC to more than 300 kHz (full power bandwidth) without the need of an external sample-and-hold (S/H).

6.0 INTERNAL BANDGAP REFERENCE

The ADC08161 has an internal bandgap 2.5 V reference that can be used as the $\mathrm{V}_{\text {REF }}+$ input. A parallel combination of a $0.1 \mu \mathrm{~F}$ ceramic capacitor and a $220 \mu \mathrm{~F}$ tantalum capacitor should be used to bypass the $V_{\text {REFOUT }}$ pin. This reduces possible noise pickup that could cause conversion errors.

7.0 LAYOUT, GROUNDS, AND BYPASSING

In order to ensure fast, accurate conversions from the ADC08161, it is necessary to use appropriate circuit board layout techniques. Ideally, the analog-to-digital converter's ground reference should be low impedance and free of noise from other parts of the system. Digital circuits can produce a great deal of noise on their ground returns and, therefore, should have their own separate ground lines. Best performance is obtained using separate ground planes should be provided for the digital and analog parts of the system.
The analog inputs should be isolated from noisy signal traces to avoid having spurious signals couple to the input. Any external component (e.g., an input filter capacitor) connected across the inputs should be returned to a very clean ground point. Incorrectly grounding the ADC08161 may result in reduced conversion accuracy.
The V^{+}supply pin, $\mathrm{V}_{\text {REF }+ \text {, and }} \mathrm{V}_{\text {REF - (}}$ (if not grounded) should be bypassed with a parallel combination of a $0.1 \mu \mathrm{~F}$ ceramic capacitor and a $10 \mu \mathrm{~F}$ tantalum capacitor placed as close as possible to the pins using short circuit board traces. See Figures 7 and 8.

Application Information (Continued)

FIGURE 6. ADC08161 Equivalent Input Circuit Model

Internal Reference 2.5V Full-Scale
(Standard Application)

Power Supply as Reference

Input Not Referred to GND

*Signal source driving $\mathrm{V}_{\mathrm{IN}}(-)$ must be capable of sinking 5 mA .

Note: Bypass capacitors consist of a $0.1 \mu \mathrm{~F}$ ceramic in parallel with a $10 \mu \mathrm{~F}$ bead tantalum, unless otherwise specified.
FIGURE 7. Analog Input Options

TL/H/11149-22
FIGURE 8. Typical Connection. Note the multiple bypass capacitors on the reference and power supply pins. $\mathbf{V}_{\text {REF }}-$ should be bypassed to analog ground using multiple capacitors if it is not grounded (See Section 7.0 "LAYOUT, GROUNDS, and BYPASSING"). $\mathbf{V}_{\mathbf{I N} 1}$ is shown with an optional input protection network.

ADC1001 10-Bit μ P Compatible A/D Converter

General Description

The ADC1001 is a CMOS, 10-bit successive approximation A/D converter. The 20-pin ADC1001 is pin compatible with the ADC0801 8-bit A/D family. The 10-bit data word is read in two 8 -bit bytes, formatted left justified and high byte first. The six least significant bits of the second byte are set to zero, as is proper for a 16 -bit word.
Differential inputs provide low frequency input common mode rejection and allow offsetting the analog range of the converter. In addition, the reference input can be adjusted enabling the conversion of reduced analog ranges with 10bit resolution.

Features

- ADC1001 is pin compatible with ADC0801 series 8-bit A/D converters
- Compatible with NSC800 and $8080 \mu \mathrm{P}$ derivatives-no interfacing logic needed
- Easily interfaced to $6800 \mu \mathrm{P}$ derivatives with minimal external logic
- Differential analog voltage inputs
- Logic inputs and outputs meet both MOS and TTL voltage level specifications
■ Works with 2.5 V (LM336) voltage reference
■ On-chip clock generator
- 0 V to 5 V analog input voltage range with single 5 V supply
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}, 2.5 \mathrm{~V}_{\mathrm{DC}}$, or analog span adjusted voltage reference
- $0.3^{\prime \prime}$ standard width 20 -pin DIP package

Key Specifications
■ Resolution 10 bits

- Linearity error ± 1 LSB
- Conversion time
$200 \mu \mathrm{~S}$

Connection Diagram

ADC1001 (for an 8-bit data bus) Dual-In-Line Package

Ordering Information

Temperature Range	$0^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Order Number	ADC1001CCJ-	ADC1001CCJ
Package Outline	J 20 A	J 20 A

$\begin{array}{lr}\text { Absolute Maximum Ratings (Notes } 1 \& 2 \text {) } \\ \text { If Military/Aerospace specified devices are required, } \\ \text { please contact the National Semiconductor Sales } \\ \text { Office/Distributors for availability and specifications. } \\ \text { Supply Voltage }\left(\mathrm{V}_{\mathrm{CC}}\right) \text { (Note } 3 \text {) } & 6.5 \mathrm{~V} \\ \text { Logic Control Inputs } & -0.3 \mathrm{~V} \text { to }+18 \mathrm{~V} \\ \text { Voltage at Other Inputs and Outputs } & -0.3 \mathrm{~V} \text { to }\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right) \\ \text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Package Dissipation at } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & 875 \mathrm{~mW} \\ \text { Lead Temp. (Soldering, } 10 \text { seconds) } & 300^{\circ} \mathrm{C} \\ \text { ESD Susceptibility (Note 10) } & 800 \mathrm{~V}\end{array}$
Logic Control Inputs $\quad \because \quad \therefore \quad-0.3 \mathrm{~V}$ to +18 V

Operating Conditions (Notes 1 \& 2)
Temperature Range
ADC1001CCJ
ADC1001CCJ-1
Range of V_{CC}
. $T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
$-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$
4.5 V_{DC} to $6.3 \mathrm{~V}_{\mathrm{DC}}$

Converter Characteristics

Converter Specifications: $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}, T_{M I N} \leq T_{A^{\prime}} \leq T_{M A X}$ and $\mathrm{f}_{C L K}=410 \mathrm{kHz}$ unless otherwise specified.

Parameter	Conditions	MIn	Typ	Max	Units
Linearity Error Zero Error Full-Scale Error				$\begin{aligned} & \pm 1 \\ & \pm 2 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Total Ladder Resistance (Note 9)	Input Resistance at Pin 9	2.2	4.8	-	K Ω
Analog Input Voltage Range	(Note 4) V $(+)$ or $\mathrm{V}(-)$	GND-0.05		$\mathrm{V}_{\mathrm{CC}}+0.05$	$V_{D C}$
DC Common-Mode Error	Over Analog Input Voltage Range		$\pm 1 / 8$		LSB
Power Supply Sensitivity	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}} \pm 5 \%$ Over Allowed $\mathrm{V}_{\mathrm{IN}}(+)$ and $\mathrm{V}_{\mathrm{IN}}(-)$ Voltage Range (Note 4)		$\pm 1 / 8$	-	LSB

AC Electrical Characteristics

Timing Specifications: $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	MIn	Typ	Max	Units
T_{c}	Conversion Time	(Note 5) $f_{\mathrm{CLK}}=410 \mathrm{kHz}$	$\begin{gathered} 80 \\ 195 \\ \hline \end{gathered}$		$\begin{gathered} 90 \\ 220 \\ \hline \end{gathered}$	1/f GLK $\mu \mathrm{s}$
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency	(Note 8)	100		1260	kHz
	Clock Duty Cycle		40		60	\%
CR	Conversion Rate In Free-Running Mode	$\overline{\text { INTR }}$ tied to $\overline{\text { WR }}$ with $\overline{C S}=0 V_{D C}, f_{C L K}=410 \mathrm{kHz}$			4600	conv/s
${ }^{\text {t }} \mathrm{W}(\overline{\mathrm{WR}}) \mathrm{L}$	Width of $\overline{W R}$ Input (Start Pulse Width)	$\overline{C S}=0 V_{D C}($ Note 6)	150			ns
$t_{A C C}$	Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)	$C_{L}=100 \mathrm{pF}$		170	300	ns
$t_{1 H}, t_{O H}$	TRI-STATE® Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to Hi-Z State)	$C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (See TRI-STATE Test Circuits)		125	200	ns
$t_{\text {WI }}, \mathrm{t}_{\mathrm{RI}}$	Delay from Falling Edge of $\overline{W R}$ or $\overline{R D}$ to Reset of $\overline{\text { INTR }}$		-	300	450	ns
$\mathrm{t}_{1 \mathrm{rs}}$	$\overline{\text { INTR }}$ to 1st Read Set-Up Time		550	400		ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance of Logic Control Inputs			5	7.5	pF
Cout	TRI-STATE Output Capacitance (Data Buffers)			5	7.5	pF

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}$ and $T_{M I N} \leq T_{A} \leq T_{M A X}$, unless otherwise specified.

Symbol	Parameter	Conditions	MIn	Typ	Max	Units

CONTROL INPUTS [Note: CLK IN is the input of a Schmitt trigger circuit and is therefore specified separately]

$\mathrm{V}_{\text {IN }}(1)$	Logical "1" Input Voltage (Except CLK IN)	$\mathrm{V}_{C C}=5.25 \mathrm{~V}_{\text {DC }}$	2.0		15	$V_{D C}$
$\mathrm{V}_{\text {IN }}(0)$	Logical "0" Input Voltage (Except CLK IN)	$\mathrm{V}_{C C}=4.75 \mathrm{~V}_{\text {DC }}$			0.8	$V_{D C}$
IN (1)	Logical "1" Input Current (All Inputs)	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}_{\mathrm{DC}}$		0.005	1	$\mu A_{D C}$
IIN (0)	Logical "0" input Current (All Inputs)	$V_{\text {IN }}=0 V_{D C}$	-1	-0.005		$\mu A_{D C}$

CLOCK IN

$V_{T}+$	CLK IN Positive Going Threshold Voltage		2.7	3.1	3.5	$V_{D C}$
$V_{T^{-}}$	CLK IN Negative Going Threshold Voltage		1.5	1.8	2.1	$V_{D C}$
V_{H}	CLK IN Hysteresis $\left(V_{T}+\right)-\left(V_{T}-\right)$	0.6	1.3	2.0	$V_{D C}$	

OUTPUTS AND INTR

$\mathrm{V}_{\text {OUT }}(0)$	Logical " 0 " Output Voltage	$\mathrm{I}_{\text {OUT }}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ DC			0.4	$V_{D C}$
$V_{\text {OUT }}(1)$	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}, \mathrm{~V}_{C C}=4.75 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \\ & \hline \end{aligned}$			$V_{D C}$ $V_{D C}$
Iout	TRI-STATE Disabled Output Leakage (All Data Buffers)	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.4 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{gathered} -100 \\ 3 \end{gathered}$	$\mu A_{D C}$ $\mu A_{D C}$
ISOURCE		$V_{\text {OUT }}$ Short to GND, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4.5	6		$m A_{D C}$
ISINK		$\mathrm{V}_{\text {OUT }}$ Short to $\mathrm{V}_{C C}, T_{A}=25^{\circ} \mathrm{C}$	9.0	16		$m A_{D C}$

POWER SUPPLY

| ICC | Supply Current (Includes |
| :--- | :--- | Ladder Current)

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{CLK}}=410 \mathrm{kHz}, \\
& \mathrm{~V}_{\mathrm{REF}} / 2=\mathrm{NC}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \text { and } \overline{\mathrm{CS}}=1
\end{aligned}
$$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified. The separate A GND point should always be wired to the D GND.
Note 3: A zener diode exists, internally, from $V_{C C}$ to $G N D$ and has a typical breakdown voltage of $7 \mathrm{~V}_{\mathrm{DC}}$.
Note 4: For $V_{I N}(-) \geq V_{I N}(+)$ the digital output code will be all zeros. Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V_{CC} supply. Be careful, during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near fullscale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 V_{D C}$ to $5 V_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 V_{D C}$ over temperature variations, initial tolerance and loading.
Note 5: With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process. The start request is internally latched, see Figure 1.
Note 6: The $\overline{\mathrm{CS}}$ input is assumed to bracket the $\overline{\mathrm{WR}}$ strobe input and therefore timing is dependent on the $\overline{\mathrm{WR}}$ pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the WR pulse (see Timing Diagrams).
Note 7: All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 8: Accuracy is guaranteed at $\mathrm{f}_{\mathrm{CLK}}=410 \mathrm{kHz}$. At higher clock frequencies accuracy can degrade.
Note 9: The $V_{\text {REF/2 }}$ pin is the center point of a two resistor divider (each resistor is $2.4 \mathrm{k} \Omega$) connected from V_{CC} to ground. Total ladder input resistance is the sum of these two equal resistors.
Note 10: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Typical Performance Characteristics

Output Current vs
Temperature

TL/H/5675-2
TRI-STATE Test Circuits and Waveforms

TL/H/5675-3

TL/H/5675-5

Timing Diagrams

Output Enable and Reset INTR

TL/H/5675-8
Note: All timing is measured from the $\mathbf{5 0 \%}$ voltage points.

BYTE SEQUENCING FOR THE 20-PIN ADC1001

Byte Order	8-Bit Data Bus Connection							
	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1st	MSB	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
Bit 2								
2nd	Bit 1	LSB		Bit 0	0	0	0	

Functional Description

The ADC1001 uses an advanced potentiometric resistive ladder network. The analog inputs, as well as the taps of this ladder network, are switched into a weighted capacitor array. The output of this capacitor array is the input to a sampled data comparator. This comparator allows the successive approximation logic to match the analog difference input voltage $\left[\mathrm{V}_{\mathrm{IN}}(+)-\mathrm{V}_{\mathrm{IN}}(-)\right]$ to taps on the R network. The most significant bit is tested first and after 10 comparisons (80 clock cycles) a digital 10 -bit binary code (all " 1 " $s=$ full-scale) is transferred to an output latch and then an interrupt is asserted (INTR makes a high-to-low transition). The device may be operated in the free-running mode by connecting $\overline{N T T R}$ to the $\overline{W R}$ inut with $\overline{C S}=0$. To ensure start-up under all possible conditions, an external $\overline{W R}$ pulse is required during the first power-up cycle. A conversion in process can be interrupted by issuing a second start command.
On the high-to-low transition of the $\overline{\mathrm{WR}}$ input the internal SAR latches and the shift register stages are reset. As long as the $\overline{C S}$ input and $\overline{W R}$ input remain low, the A/D will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-tohigh transition.
A functional diagram of the A/D converter is shown in Figure 1. All of the inputs and outputs are shown and the major logic control paths are drawn in heavier weight lines.
The conversion is initialized by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ simultaneously low. This sets the start flip-flop (F/F) and the resulting " 1 " level resets the 8 -bit shift register, resets the Interrupt (INTR) F/F and inputs a " 1 " to the D flop, F/F1, which is at the input end of the 10 -bit shift register. Internal clock signals then transfer this " 1 " to the Q output of F/F1. The AND gate, G1, combines this " 1 " output with a clock signal to provide a reset signal to the start F / F. If the set signal is no longer present (either $\overline{W R}$ or $\overline{C S}$ is a " 1 ") the start F / F is reset and the 10 -bit shift register then can have the "1"

NOTE: $\mathrm{V}_{\mathrm{IN}}(-)$ should be biased so that $\mathrm{V}_{\mathrm{IN}}(-) \geq-0.05 \mathrm{~V}$ when potentiometer wiper is set at most negative voltage position.

FIGURE 2. Zero Adjust Circuit
clocked in, which allows the conversion process to continue. If the set signal were to still be present, this reset pulse would have no effect and the 10 -bit shift register would continue to be held in the reset mode. This logic therefore allows for wide $\overline{C S}$ and $\overline{W R}$ signals and the converter will start after at least one of these signals returns high and the internal clocks again provide a reset signal for the start F/F.
After the " 1 " is clocked through the 10 -bit shift register (which completes the SAR search) it causes the new digital word to transfer to the TRI-STATE output latches. When this XFER signal makes a high-to-low transition the one shot fires, setting the INTR F/F. An inverting buffer then supplies the INTR output signal.
Note that this SET control of the INTR F/F remains low for aproximately 400 ns . If the data output is continuously enabled ($\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ both held low), the $\overline{\mathrm{NTR}}$ output will still signal the end of the conversion (by a high-to-low transition), because the $\overline{\text { SET }}$ input can control the Q output of the INTR F/F even though the RESET input is constantly at a " 1 " level. This $\overline{\text { NTR }}$ output will therefore stay low for the duration of the $\overline{\mathrm{SET}}$ signal.
When data is to be read, the combination of both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ being low will cause the INTR F/F to be reset and the TRI-STATE output latches will be enabled.

Zero and Full-Scale Adjustment

Zero error can be adjusted as shown in Figure 2. $\mathrm{V}_{\mathbb{I N}}(+)$ is forced to $+2.5 \mathrm{mV}(+1 / 2$ LSB) and the potentiometer is adjusted until the digital output code changes from 000000 0000 to 0000000001.
Full-scale is adjusted as shown in Figure 3, with the $\mathrm{V}_{\text {REF }} / 2$ input. With $\mathrm{V}_{\mathrm{IN}}(+)$ forced to the desired full-scale voltage less $11 / 2$ LSBs ($V_{F S}-11 / 2$ LSBs), $V_{\text {REF }} / 2$ is adjusted until the digital output code changes from 1111111110 to 11 11111111.

TL/H/5675-10

FIGURE 3. Full-Scale Adjust

Typical Application

TL/H/5675-1

Block Diagram

Note 1: $\overline{\mathrm{CS}}$ shown twice for clarity.
TL/H/5675-13
Note 2: SAR = Successive Approximation Register.
FIGURE 1

ADC1005 10-Bit μ P Compatible A/D Converter

General Description

The ADC1005 is a CMOS 10 -bit successive approximation A/D converter. The 20-pin ADC1005 outputs 10-bit data in a two-byte format for interface with 8-bit microprocessors.
The ADC1005 has differential inputs to permit rejection of common-mode signals, allow the analog input range to be offset, and also to permit the conversion of signals not referred to ground. In addition, the reference voltage can be adjusted, allowing smaller voltage spans to be measured with 10-bit resolution.

Features

- Easy interface to all microprocessors
- Differential analog voltage inputs

■ Operates ratiometrically or with $5 \mathrm{~V}_{D C}$ voltage reference or analog span adjusted voltage reference

- 0 V to 5 V analog input voltage range with single 5 V supply
- On-chip clock generator
- TLL/MOS input/output compatible
- $0.3^{\prime \prime}$ standard width 20-pin DIP
- Available in 20-pin molded chip carrier package

Key Specifications

- Resolution	10 bits
- Linearity Error	$\pm 1 / 2$ LSB and ± 1 LSB
- Conversion Time	$50 \mu \mathrm{~S}$

Connection Diagrams

ADC1005 (for an 8-bit data bus)

TL/H/5261-1
Top View

ADC1005 Molded Chip Carrier Package

TL/H/5261-19 Top View

See Ordering Information

Operating Ratings (Notes 1\&2)
Supply Voltage (VCC)
Temperature Range
4.5 V to 6.0 V

ADC1005BCJ, ADC1005CCJ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
ADC1005BCJ-1, ADC1005CCJ-1,
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$

Electrical Char unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$; All other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC1005BCJ ADC1005CCJ			ADC1005BCJ-1, ADC1005CCJ-1 ADC1005CCV			Limit Units
		Typ (Note 5)	Tested Limit (Note 6)	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 7) } \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}\right.$	Tested Limit (Note 6)	Design Limit (Note 7)	
Converter Characteristics								
$\begin{aligned} & \text { Linearity Error (Note 3) } \\ & \text { ADC1005BCJ } \\ & \text { ADC1005BCJ-1 } \\ & \text { ADC1005CCJ } \\ & \text { ADC1005CCJ-1, CCV } \end{aligned}$.	$\begin{gathered} \pm 0.5 \\ \pm \mathbf{1} \end{gathered}$			$\begin{gathered} \pm 0.5 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 0.5 \\ \pm \mathbf{1} \\ \hline \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \hline \end{aligned}$
Zero Error ADC1005BCJ ADC1005BCJ-1 ADC1005CCJ ADC1005CCJ-1, CCV			$\begin{gathered} \pm 0.5 \\ \pm \mathbf{1} \end{gathered}$			$\begin{gathered} \pm 0.5 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 0.5 \\ \pm \mathbf{1} \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Fullscale Error ADC1005BCJ ADC1005BCJ-1 ADC1005CCJ ADC1005CCJ-1, CCV			$\begin{gathered} \pm 0.5 \\ \pm \mathbf{1} \end{gathered}$			$\begin{gathered} \pm 0.5 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 0.5 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Reference MIN Input MAX Resistance		$\begin{aligned} & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 8.3 \end{aligned}$		$\begin{aligned} & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 8.3 \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Common-Mode MIN Input (Note 4) MAX	$\mathrm{V}_{\text {IN }}(+)$ or $\mathrm{V}_{\text {IN }}(-)$		$\begin{aligned} & \mathbf{V}_{\text {cc }}+0.05 \\ & \text { GND }-0.05 \end{aligned}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}+0.05 \\ & \text { GND-0.05 } \end{aligned}$	$\begin{aligned} & \text { VCc }+0.05 \\ & \text { GND } 0.05 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
DC Common-Mode Error	Over Common-Mode Input Range	$\pm 1 / 8$	$\pm 1 / 4$		$\pm 1 / 8$	$\pm 1 / 4$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	$\begin{aligned} & V_{C C}=5 V_{D C} \pm 5 \% \\ & V_{\text {REF }}=4.75 \mathrm{~V} \end{aligned}$	$\pm 1 / 8$	$\pm 1 / 4$		$\pm 1 / 8$	$\pm 1 / 4$	$\pm 1 / 4$	LSB

Electrical Characteristics (Continued) The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=$ 1.8 MHz unless otherwise specified. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; All other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	$\begin{aligned} & \text { ADC1005BCJ } \\ & \text { ADC1005CCJ } \end{aligned}$			$\begin{gathered} \text { ADC1005BCJ-1, ADC1005CCJ-1 } \\ \text { ADC1005CCV } \end{gathered}$			Limit Units
		Typ (Note 5)	Tested Limit (Note 6)	Design Limit (Note 7)	Typ (Note 5)	Tested Limit (Note 6)	Design Limit (Note 7)	
DC Characteristics								
$V_{\text {IN(1) }}$ Logical "1" Input Voltage MIN	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \text { (except } \text { CLK }_{\text {IN }} \text {) } \end{aligned}$		2.0			2.0	2.0	V
$\mathrm{V}_{\text {IN }(0) \text {, Logical " } 0 \text { " Input }}$ Voltage MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { (Except } \mathrm{CLK}_{\mathrm{IN}} \text {) } \end{aligned}$		0.8			0.8	0.8	V
$\mathrm{I}_{\mathrm{I},}$, Logical "1" Input Current MAX	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$	0.005	1		0.005	1	1	$\mu \mathrm{A}$
${ }^{1} \mathrm{IN}$, Logical " 0 " Input Current MAX	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-1		-0.005	-1	-1	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{T}+(\text { MIN })}$, Minimum CLK $_{\text {IN }}$ Positive going Threshold Voltage		3.1	2.7		3.1	2.7	2.7	V
$\mathrm{V}_{\mathrm{T}(\mathrm{MAX})}$, Maximum CLKIN Positive going Threshold Voltage	-	3.1	3.5	,	3.1	3.5	3.5	V
$\mathrm{V}_{\mathrm{T} \text {-(MIN) }}$, Minimum CLKIN Negative going Threshold Voltage	:	1.8	1.5		1.8	1.5	1.5	V
$V_{T-(M A X)}$, Maximum CLKiN Negative going Threshold Voltage		1.8	2.1	\because	1.8	2.1	2.1	V
$\mathrm{V}_{\mathrm{H}(\mathrm{MIN})}$, Minimum CLKIN Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$)		1.3	0.6		1.3	0.6	0.6	V
$\mathrm{V}_{\mathrm{H}(\mathrm{MAX})}$, Maximum CLKiN Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$)	:	1.3	2.0		1.3	2.0	2.0	V
$V_{\text {OUT' }}$ (1), Logical " 1 " Output Voltage MIN	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{l}_{\text {OUT }}=-360 \mu \mathrm{~A} \\ & \text { lout }=-10 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$			$\begin{aligned} & 2.8 \\ & 4.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
VOUT(0), Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \end{aligned}$		0.4			0.34	0.4	V
IOUT, TRI-STATE Output Current	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & V_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{array}{\|c} -0.01 \\ 0.01 \\ \hline \end{array}$	$\begin{gathered} -3 \\ 3 \end{gathered}$		$\begin{gathered} -0.01 \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} -0.3 \\ 0.3 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\begin{aligned} & \mu A \\ & \mu A \end{aligned}$
ISOURCE, Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-14	-6.5		-14	-7.5	-6.5	mA
ISINK, Output Sink : MIN Current	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	16	8.0		16	9.0	8.0	mA
ICC, Supply Current MAX	$\begin{aligned} & \mathrm{f} \mathrm{CLK}=1.8 \mathrm{MHz} \\ & \mathrm{CS}=" 1 " \end{aligned}$	1.5	3	,	1.5	$\cdots 2.5$	3	mA

AC Electrical Characteristics The following specifications apply for $V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ unless otherwise specified. Boldface limits apply from $T_{\text {min }}$ to $T_{\text {max }}$; All other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	Typ (Note 5)	Tested Limit (Note 6)		Limit Units
$f_{\text {CLK }}$, Clock FrequencyMIN MAX			$\begin{aligned} & 0.2 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 2.6 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Clock Duty Cycle MIN			$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$

AC Electrical Characteristics The following specifications apply for $V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$; All other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$. (Continued)

Parameter	Conditions	Typ (Note 5)			Limit Units
t_{c}, Conversion Time MIN MAX MIN MAX 	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=1.8 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CLK}}=1.8 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 80 \\ & 90 \\ & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 80 \\ & 90 \\ & 45 \\ & 50 \end{aligned}$	1/fCLK 1/fCLK $\mu \mathrm{s}$ $\mu \mathrm{s}$
${ }^{\text {W }} \mathrm{W}_{(\overline{W R}) \mathrm{L}}$, Minimum $\overline{\mathrm{WR}}$ Pulse Width	$\overline{\mathrm{CS}}=0$	100	150	150	ns
$t_{A C C}$, Access Time (Delay from falling edge of $\overline{R D}$ to Output Data Valid)	$\begin{aligned} & \overline{\mathrm{CS}}=0 \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	170	300	300	ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$, TRI-STATE Control (Delay from Rising Edge of $\overline{R D}$ to Hi-Z State)	$\begin{aligned} & R_{L}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\ & R_{\mathrm{L}}=2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \hline \end{aligned}$	$\begin{aligned} & 125 \\ & 145 \end{aligned}$	230	$\begin{aligned} & 200 \\ & 230 \end{aligned}$	ns ns
$t_{W}, t_{R 1}$, Delay from Falling Edge of $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ to Reset of $\overline{\text { INTR }}$		300	450	450	ns
$t_{\text {IRS }}$, $\overline{\text { NTR }}$ to 1 st Read Set-up Time		400	550	550	ns
$\mathrm{C}_{\text {IN }}$, Capacitance of Logic Inputs		5		7.5	pF
$\mathrm{C}_{\text {OUT }}$, Capacitance of Logic Outputs		5		7.5	pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to ground.
Note 3: Linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line which passes through the end points of the transfer characteristic.
Note 4: For $V_{I N(-)} \geq V_{I N(+)}$ the digital output code will be 0000000000 . Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. Be careful, during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 V_{D C}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 6: Tested and guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 7: Guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 8: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Functional Diagram

Typical Performance Characteristics

CLK IN Schmitt Trip Levels vs Supply Voltage

TL/H/5261-4

Timing Diagrams

TL/H/5261-5
Output Enable and Reset INTR

TL/H/5261-6
Note: All timing is measured from the $\mathbf{5 0 \%}$ voltage points.

Timing Diagrams (Continued)

Block Diagram

Functional Description

1.0 GENERAL OPERATION

A block diagram of the A/D converter is shown in Figure 1 All of the inputs and outputs are shown and the major logic control paths are drawn in heavier weight lines.

1.1 Converter Operation

The ADC1005 uses an advanced potentiometric resistive ladder network. The analog inputs, as well as the taps of this ladder network are switched into a weighted capacitor array. The output of this capacitor array is the input to a sampled data comparator. This comparator allows the successive approximation logic to match the analog input voltage $\left[\mathrm{V}_{I N}(+)-\mathrm{V}_{\mathrm{IN}}(-)\right]$ to taps on the R network. The most significant bit is tested first and after 10 comparisons (80 clock cycles) a digital 10-bit binary code (all "1"s = fullscale) is transferred to an output latch.

1.2 Starting a Conversion

The conversion is initialized by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ simultaneously low. This sets the start flip-flop (F/F) and the resulting " 1 " level resets the 10 -bit shift register, resets the interrupt (INTR) F/F and inputs a " 1 " to the D flop, F/F1, which is at the input end of the 10-bit shift register. Internal clock signals then transfer this " 1 " to the Q ouput of F/F1. The AND gate, G1, combines this " 1 " output with a clock signal to provide a reset signal to the start F / F. If the set signal is no longer present (either $\overline{W R}$ or $\overline{C S}$ is a " 1 ") the start F / F is reset and the 10 -bit shift register then can have the " 1 " clocked in, allowing the conversion process to continue. If the set signal were still present, this reset pulse would have no effect and the 10-bit shift register would continue to be held in the reset mode. This logic therefore allows for wide $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ signals. The converter will start after at least one of these signals returns high and the internal clocks again provide a reset signal for the start F/F.
To summarize, on the high-to-low transition of the $\overline{W R}$ input the internal SAR latches and the shift register stages are reset. As long as the $\overline{\mathrm{CS}}$ input and $\overline{W R}$ input remain low, the A/D will remain in a reset state. Conversion will start after at least one of these inputs makes a low-to-high transition.

1.3 Output Control

After the " 1 " is clocked through the 10 -bit shift register (which completes the SAR search) it causes the new digital word to transfer to the TRI-STATE output latches. When the XFER signal makes a high-to-low transition the one shot fires, setting the INTR F/F. An inverting buffer then supplies the INTR output signal.
Note that this $\overline{\text { SET }}$ control of the INTR F/F remains low for approximately 400 ns . If the data output is continuously enabled ($\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ both held low) the $\overline{\mathrm{NTR}}$ output will still signal the end of the conversion (by a high-to-low transition). This is because the SET input can control the Q output of the INTR F/F even though the RESET input is constantly at a "1" level. This INTR output will therefore stay low for the duration of the $\overline{\mathrm{SET}}$ signal.
When data is to be read, the combination of both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ being low will cause the INTR F/F to be reset and the TRI-STATE output latches will be enabled.

1.4 Free-Running and Self-Clocking Modes

For operation in the free-running mode an initializing pulse should be used, following power-up, to ensure circuit operation. In this application, the $\overline{\mathrm{CS}}$ input is grounded and the $\overline{W R}$ input is tied to the $\overline{\mathrm{NTR}}$ output. This $\overline{\mathrm{WR}}$ and $\overline{\mathrm{INTR}}$ node should be momentarily forced to logic low following a power-up cycle to ensure start up.
The clock for the A/D can be derived from the CPU clock or an external RC can be added to provide self-clocking. The CLK IN makes use of a Schmitt trigger as shown in Figure 2.

TL/H/5261-12

$$
f_{C L K} \cong \frac{1}{1.1 R C}
$$

FIGURE 2. Self-Clocking the A/D

2.0 REFERENCE VOLTAGE

The voltage applied to the reference input of these converters defines the voltage span of the analog input (the difference between $\mathrm{V}_{\text {IN(MAX }}$) and $\left.\mathrm{V}_{\text {IN(MIN }}\right)$ over which the 1024 possible output codes apply. The devices can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pin must be connected to a voltage source capable of driving the reference input resistance of typically $4.8 \mathrm{k} \Omega$. This pin is the top of a resistor divider string used for the successive approximation conversion.
In a ratiometric system (Figure 3a) the analog input voltage is proportional to the voltage used for the A/D reference. This voltage is typically the system power supply, so the $\mathrm{V}_{\text {REF }}$ pin can be tied to V_{CC}. This technique relaxes the stability requirements of the system references as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy (Figure 3b), where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. The LM385 and LM336 reference diodes are good low current devices to use with these converters.
The maximum value of the reference is limited to the $V_{C C}$ supply voltage. The minimum value, however, can be small to allow direct conversions of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout, and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $V_{\text {REF }} / 1024$).

Functional Description (Continued)

TL/H/5261-17
capacitor is not used, will not cause errors if the input currents settle out prior to the comparison time. If a low pass filter is required in the system, use a low valued series resistor ($\leq 1 \mathrm{k} \Omega$) for a passive RC section or add an op amp RC active low pass filter. For low source resistance applications ($\leq 0.1 \mathrm{k} \Omega$) a 4700 pF bypass capacitor at the inputs will prevent pickup due to series lead induction of a long wire. A 100Ω series resistor can be used to isolate this capacitor both the R and the C are placed outside the feedback loop - from the output of an op amp, if used.

3.5 Noise

The leads to the analog inputs (pins 6 and 7) should be kept as short as possible to minimize input noise coupling. Both noise and undesired digital clock coupling to these inputs can cause system errors. The source resistance for these inputs should, in general, be kept below $1 \mathrm{k} \Omega$. Larger values of source resistance can cause undesired system noise pickup. Input bypass capacitors, placed from the analog inputs to ground, can reduce system noise pickup but can create analog scale errors. See section 3.2, 3.3, and 3.4 if input filtering is to be used.

FIGURE 3b. Absolute with a Reduced Span
input at 5 V , this DC current is at a maximum of approximately $5 \mu \mathrm{~A}$. Therefore, bypass capacitors should not be used at the analog inputs or the $V_{\text {REF }}$ pin for high resistance sources ($>1 \mathrm{k} \Omega$). If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capacitor size, the detrimental effects of the voltage drop across this input resistance, which is due to the average value of the input current, can be eliminated with a full-scale adjustment while the given source resistor and input bypass capacitor are both in place. This is possible because the average value of the input current is a linear function of the differential input voltage.

3.4 Input Source Resistance

Large values of source resistance where an input bypass

3.0 THE ANALOG INPUTS

3.1 Analog Differential Voltage Inputs and Common-Mode Rejection

The differential inputs of these converters reduce the effects of common-mode input noise, which is defined as noise common to both selected " + " and "-" inputs (60 Hz is most typical). The time interval between sampling the " + " input and the " - " input is half of an internal clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal, this error is:

$$
V_{\text {ERROR }}(\mathrm{MAX})=V_{\text {PEAK }}\left(2 \pi f_{\mathrm{CM}}\right) \times \frac{4}{\mathrm{f}_{\mathrm{CLK}}}
$$

where f_{CM} is the frequency of the common-mode signal, $V_{\text {PEAK }}$ is its peak voltage value and $\mathrm{f}_{\mathrm{CLK}}$ is the clock frequency at the CLK IN pin.
For a 60 Hz common-mode signal to generate a $1 / 4$ LSB error (1.2 mV) with the converter running at 1.8 MHz , its peak value would have to be 1.46 V . A common-mode signal this large is much greater than that generally found in data aquisition systems.

3.2 Input Current

Due to the sampling nature of the analog inputs, short duration spikes of current enter the " + " input and exit the " - " input at the clock rising edges during the conversion. These currents decay rapidly and do not cause errors as the internal comparator is strobed at the end of a clock period.

3.3 Input Bypass Capacitors

Bypass capacitors at the inputs will average the current spikes noted in 3.2 and cause a DC current to flow through the output resistances of the analog signal sources. This charge pumping action is worse for continuous conversions with the $\mathrm{V}_{\mathbb{I}}(+)$ input voltage at full scale. For continuous conversions with a 1.8 MHz clock frequency with the $\mathrm{V}_{\mathrm{IN}}(+)$

Functional Description (Continued)

4.0 OFFSET AND REFERENCE ADJUSTMENT

4.1 Zero Offset

The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $V(-)$ input and applying a small magnitude positive voltage to the $V(+)$ input. Zero error is the difference between the actual DC input voltage that is necessary to just cause an output digital code transition from 0000000000 to 0000000001 and the ideal 1/2 LSB value ($1 / 2 \mathrm{LSB}=2.45 \mathrm{mV}$ for $\mathrm{V}_{\mathrm{REF}}=5.0 \mathrm{~V}_{\mathrm{DC}}$).
The zero of the A/D normally does not require adjustment. However, for cases where $\mathrm{V}_{\text {IN(MIN }}$) is not ground and in reduced span applications ($\mathrm{V}_{\text {REF }}<5 \mathrm{~V}$), an offset adjustment may be desired. The converter can be made to output an all zero digital code for an arbitrary input by biasing the $A / D ' s V_{I N}(-)$ input at that voltage. This utilizes the differential input operation of the A/D.

4.2 Full Scale

The full-scale adjustment can be made by applying a differential input voltage that is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }}$ input for a digital output code that is just changing from 1111111110 to 1111111111.

4.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal that does not go to ground), this new zero reference should be properly adjusted first. A $\mathrm{V}_{\mathrm{IN}}(+)$ voltage that equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired añalog span, 1 LSB = analog span/1024) is applied to selected " + " input and the
zero reference voltage at the corresponding "-" input should then be adjusted to just obtain the $000_{\mathrm{HEX}}{ }^{001} \mathrm{HEX}$ code transition.
The full-scale adjustment should be made [with the proper $\mathrm{V}_{\mathrm{IN}}(-)$ voltage applied] by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input given by:

$$
V_{I N}(+) \text { FS adj }=V_{\text {MAX }}-1.5\left[\frac{\left(V_{M A X}-V_{M I N}\right)}{1024}\right]
$$

where $V_{M A X}=$ the high end of the analog input range and $\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced).
The $\mathrm{V}_{\text {REF }}$ (or V_{CC}) voltage is then adjusted to provide a code change from 3 FF HEX to 3 FE HEX. This completes the adjustment procedure.
For an example see the Zero-Shift and Span-Adjust circuit below.

5.0 POWER SUPPLIES

Noise spikes on the V_{CC} supply line can cause conversion errors as the comparator will respond to this noise. A low inductance tantalum filter capacitor should be used close to the converter V_{CC} pin and values of $1 \mu \mathrm{~F}$ or greater are recommended. If an unregulated voltage is available in the system, a separate LM340LAZ-5.0, TO-92, 5V voltage regulator for the converter (and the other analog circuitry) will greatly reduce digital noise on the V_{CC} supply.
A single point analog ground that is separate from the logic ground points should be used. The power supply bypass capacitor and the self-clocking capacitor (if used) should both be returned to the digital ground. Any $\mathrm{V}_{\text {REF }}$ bypass capacitors, analog input filters capacitors, or input signal shielding should be returned to the analog ground point.

TL/H/5261-16
Figure 4. Zero-Shift and Span-Adjust (2V $\leq \mathbf{V}_{\mathbf{I N}} \leq 5 \mathrm{~V}$)

Typical Applications

$V_{I N}(-)=0.15 V_{C C}$
15% of $V_{C C} \leq V_{X D R} \leq 85 \%$ of $V_{C C}$

Handling $\pm 5 \mathrm{~V}$ Analog Inputs

TRI-STATE Test Circuits and Waveforms

TL/H/5261-7

$\mathrm{r}=20 \mathrm{~ns}$

TL/H/5261-9

Ordering Information

Part Number	Package Outline	Temperature Range	Linearity Error			
ADC1005BCJ-1	J 20 A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 1 / \mathrm{LSB}$			
ADC1005BCJ	J 20 A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				

Part Number	Package Outline	Temperature Range	Linearity Error
ADC1005CCV	V20A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$
ADC1005CCJ-1	J20A		
ADC1005CCJ	J20A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	

ADC10154, ADC10158 10-Bit Plus Sign 4μ s ADCs with 4- or 8-Channel MUX, Track/Hold and Reference

General Description

The ADC10154 and ADC10158 are CMOS 10-bit plus sign successive approximation A/D converters with versatile analog input multiplexers, track/hold function and a 2.5 V band-gap reference. The 4-channel or 8-channel multiplexers can be software configured for single-ended, differential or pseudo-differential modes of operation.
The input track/hold is implemented using a capacitive array and sampled-data comparator.
Resolution can be programmed to be 8 -bit, 8 -bit plus sign, 10 -bit or 10 -bit plus sign. Lower-resolution conversions can be performed faster.
The variable resolution output data word is read in two bytes, and can be formatted left justified or right justified, high byte first.

Applications

- Process control

■ Instrumentation

- Test equipment

Features

- 4- or 8- channel configurable multiplexer
- Analog input track/hold function

■ 0 V to 5 V analog input range with single +5 V power supply
■ -5 V to +5 V analog input voltage range with $\pm 5 \mathrm{~V}$ supplies

- Fully tested in unipolar (single +5 V supply) and bipolar (dual $\pm 5 \mathrm{~V}$ supplies) operation
- Programmable resolution/speed and output data format
- Ratiometric or Absolute voltage reference operation
- No zero or full scale adjustment required
- No missing codes over temperature
- Easy microprocessor interface

Key Specifications

■ Resolution	10-bit plus sign
■ Integral linearity error	$\pm 1 \mathrm{LSB}$ (max)
■ Conversion time (10-bit + sign)	33 mW (max)
■ Conversion time (8-bit)	$4.4 \mu \mathrm{~S}$ (max)
■ Sampling rate (10-bit + sign)	$3.2 \mu \mathrm{~s}$ (max)
■ Sampling rate (8-bit)	166 kHz
■ Band-gap reference	207 kHz

ADC10158 Simplified Block Diagram

TL/H/11225-1

Operating Ratings (Notes 2 23)
Temperature Range $\quad T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ ADC10154CIN, ADC10154CIWM, ADC10158CIN, ADC10158CIWM $\quad-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Positive Supply Voltage $\left(\mathrm{V}^{+}=\mathrm{AV}{ }^{+}=\mathrm{DV}{ }^{+}\right.$)
Unipolar Negative Supply Voltage (V-)
4.5 V_{DC} to $5.5 \mathrm{~V}_{\mathrm{DC}}$

DGND
Bipolar Negative Supply
Voltage (V^{-})
-4.5 V to -5.5 V
V+ - V^{-}
$\mathrm{V}_{\text {REF }}{ }^{+} \quad \therefore \quad \mathrm{AV}++0.05 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}^{-}-0.05 \mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {REF }}{ }^{-} \quad \mathrm{AV}++0.05 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}^{-}-0.05 \mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\mathrm{REF}}{ }^{+}-\mathrm{V}_{\text {REF }}{ }^{-}\right) \quad 0.5 \mathrm{~V}_{\mathrm{DC}}$ to V^{+}

Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{AV}{ }^{+}=\mathrm{DV}+=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=5.000 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{GND}, \mathrm{V}^{-}=\mathrm{GND}$ for unipolar operation or $\mathrm{V}^{-}=-5.0 \mathrm{~V}_{\mathrm{DC}}$ for bipolar operation, and $\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 8, 9, and 12)

	Parameter	Condition	Typical (Note 10)	CIN and CIWM Suffixes	Units (Limit)
				Limits (Note 11)	
UNIPOLAR CONVERTER AND MULTIPLEXER STATIC CHARACTERISTICS					
	Resolution			$10+5$ Sign	Bits
	Unipolar Integral Linearity Error	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}^{+}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{REF}}+=5.0 \mathrm{~V} \end{aligned}$	± 0.5	± 1	$\begin{gathered} \text { LSB } \\ \text { LSB (Max) } \end{gathered}$
;	Unipolar Full-Scale Error	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}^{+}}=2.5 \mathrm{~V} \\ & \mathrm{VREF}^{+}=5.0 \mathrm{~V} \end{aligned}$	± 0.5	± 1.5	$\begin{gathered} \text { LSB } \\ \text { LSB (Max) } \end{gathered}$
" ${ }^{\prime}$	Unipolar Offset Error	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}^{+}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{REF}}+=5.0 \mathrm{~V} \end{aligned}$	± 1	± 1.5	$\begin{gathered} \text { LSB } \\ \text { LSB (Max) } \end{gathered}$
	Unipolar Total Unadjusted Error (Note 13)	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}^{+}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{REF}}++=5.0 \mathrm{~V} \end{aligned}$	± 1.5	± 2	$\begin{gathered} \text { LSB } \\ \text { LSB (Max) } \end{gathered}$
	Unipolar Power Supply Sensitivity Offset Error Full-Scale Error Integral Linearity Error	$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V} \pm 10 \% \\ & \mathrm{~V}_{\text {REF }}+=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 0.25 \\ & \pm 0.25 \\ & \pm 0.25 \end{aligned}$	± 1 ± 1	LSB (Max) LSB (Max) LSB

Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{AV}+=\mathrm{DV}+=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=5.000 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{-}}=\mathrm{GND}, \mathrm{V}^{-}=\mathrm{GND}$ for unipolar operation or $\mathrm{V}^{-}=-5.0 \mathrm{~V}_{\mathrm{DC}}$ for bipolar operation, and $\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 8, 9, and 12) (Continued)

Symbol	Parameter	Conditions	Typical (Note 10)	CIN and CIWM Suffixes	Units (Limit)
				Limits (Note 11)	

BIPOLAR CONVERTER AND MULTIPLEXER STATIC CHARACTERISTICS

	Resolution			$10+$ Sign	Bits
	Bipolar Integral Linearity Error	$\mathrm{V}_{\text {REF }}{ }^{+}=5.0 \mathrm{~V}$		± 1	LSB (Max)
	Bipolar Full-Scale Error	$\mathrm{V}_{\mathrm{REF}}{ }^{+}=5.0 \mathrm{~V}$		± 1.25	LSB (Max)
	Bipolar Negative Full-Scale Error with Positive-Full Scale Adjusted	$\mathrm{V}_{\text {REF }}{ }^{+}=5.0 \mathrm{~V}$		± 1.25	LSB (Max)
	Bipolar Offset Error	$\mathrm{V}_{\mathrm{REF}}{ }^{+}=5.0 \mathrm{~V}$		± 2.5	LSB (Max)
	Bipolar Total Unadjusted Error (Note 13)	$\mathrm{V}_{\mathrm{REF}}{ }^{+}=5.0 \mathrm{~V}$		± 3	LSB (Max)
	Bipolar Power Supply Sensitivity Offset Error Full-Scale Error Integral Linearity Error	$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V} \pm 10 \% \\ & \mathrm{~V}_{\mathrm{REF}}+=4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 0.5 \\ \pm 0.5 \\ \pm 0.25 \\ \hline \end{gathered}$	$\begin{aligned} & \pm 2.5 \\ & \pm 1.5 \end{aligned}$	$\begin{gathered} \text { LSB (Max) } \\ \text { LSB (Max) } \\ \text { LSB } \end{gathered}$
	Offset Error Full-Scale Error Integral Linearity Error	$\begin{aligned} & \mathrm{V}^{-}=-5 \mathrm{~V} \pm 10 \% \\ & \mathrm{~V}_{\mathrm{REF}}+=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 0.25 \\ & \pm 0.25 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 0.75 \\ & \pm 0.75 \end{aligned}$	$\begin{gathered} \text { LSB (Max) } \\ \text { LSB (Max) } \\ \text { LSB } \end{gathered}$

UNIPOLAR AND BIPOLAR CONVERTER AND MULTIPLEXER STATIC CHARACTERISTICS

	Missing Codes			0	
	DC Common Mode Error (Note 14) Bipolar Unipolar	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{+}}=\mathrm{V}_{\mathbb{I N}} \\ & =\mathrm{V}_{\mathbb{I N}} \text { where } \\ & +5.0 \mathrm{~V} \geq \mathrm{V}_{\mathrm{IN}} \geq-5.0 \mathrm{~V} \\ & +5.0 \mathrm{~V} \geq \mathrm{V}_{\mathrm{IN}} \geq 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 0.25 \\ & \pm 0.25 \end{aligned}$	$\begin{gathered} \pm 0.75 \\ \pm 0.5 \end{gathered}$	$\begin{aligned} & \text { LSB (Max) } \\ & \text { LSB (Max) } \end{aligned}$
$\mathrm{R}_{\text {REF }}$	Reference Input Resistance		7	$\begin{aligned} & 4.5 \\ & 9.5 \end{aligned}$	$\mathrm{k} \Omega$ (Max) $\mathrm{k} \Omega$ (Max)
$\mathrm{C}_{\text {REF }}$	Reference Input Capacitance		70		pF
$\mathrm{V}_{\text {AI }}$	Analog Input Voltage			$\begin{aligned} & (V++0.05) \\ & (V--0.05) \end{aligned}$	V (Max) V (Min)
$\mathrm{C}_{\text {Al }}$	Analog Input Capacitance		30		pF
	Off Channel Leakage Current (Note 15)	On Channel $=5 \mathrm{~V}$ Off Channel $=0 \mathrm{~V}$	-400	-1000	$n A$ (Max)
		On Channel $=0 \mathrm{~V}$ Off Channel $=5 \mathrm{~V}$	400	1000	$n A(M a x)$

Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{AV}+=\mathrm{DV}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=5.000 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{GND}, \mathrm{V}^{-}=\mathrm{GND}$ for unipolar operation or $\mathrm{V}^{-}=-5.0 \mathrm{~V}_{\mathrm{DC}}$ for bipolar operation, and $f_{C L K}=5.0 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 8, 9, and 12) (Continued)

| Symbol | \therefore Parameter | Conditions | Typical
 (Note 10) | Limits
 (Note 11) | Units
 (Limit) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

DYNAMIC CONVERTER AND MULTIPLEXER CHARACTERISTICS

S/(N+D)	Unipolar Signal-to-Noise + Distortion Ratio		$\begin{aligned} & f_{\mathbb{N}}=10 \mathrm{kHz}, \mathrm{~V}_{\mathbb{I N}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{f}_{\mathrm{IN}}=150 \mathrm{kHz}, \mathrm{~V}_{\mathbb{I N}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}$	$\begin{aligned} & 60 \\ & 58 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{S} /(\mathrm{N}+\mathrm{D})$	Bipolar Signal-to-Noise + Distortion Ratio		$\begin{aligned} & f_{\mathbb{I N}}=10 \mathrm{kHz}, \mathrm{~V}_{\mathbb{I N}}= \pm 4.85 \mathrm{~V} \\ & \mathrm{f}_{\mathbb{I N}}=150 \mathrm{kHz}, \mathrm{~V}_{\mathbb{I N}}= \pm 4.85 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 60 \\ & 58 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	-3 dB Unipolar Full Power Bandwidth		$\mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	200		kHz
	-3 dB Bipolar Full Power Bandwidth		$\mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}$	200		kHz
REFERENCE CHARACTERISTICS (Unipolar Operation $\mathrm{V}^{-}=$GND Only)						
$\mathrm{V}_{\text {REF }}$ Out	Reference Output Voltage			$2.5 \pm 1 \%$	$2.5 \pm 2 \%$	V (Max)
$\Delta V_{\text {REF }} / \Delta t$	$\mathrm{V}_{\text {REF }}$ Out Temperature Coefficient			40		ppm/ ${ }^{\circ} \mathrm{C}$
$\Delta V_{\text {REF }} / \Delta l_{\text {L }}$	Load Regulation	Sourcing	$0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq+4 \mathrm{~mA}$	0.003	0.1	\%/mA (Max)
		Sinking	$0 \mathrm{~mA} \geq \mathrm{I}_{\mathrm{L}} \geq-1 \mathrm{~mA}$	0.2	0.6	\%/mA (Max)
	Line Regulation		$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5.5 \mathrm{~V}$	0.5	6	mV (Max)
Isc	Short Circuit Current		$\mathrm{V}_{\text {REF }}$ Out $=0 \mathrm{~V}$	14	25	mA (Max)
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{t}$	Long-Term Stability			200		ppm/1 kHr
$\mathrm{t}_{\text {SU }}$	Start-Up Time		$\mathrm{C}_{\mathrm{L}}=330 \mu \mathrm{~F}$	20		ms

DIGITAL AND DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN}(1)}$	Logical "1" Input Voltage	$\mathrm{V}+=5.5 \mathrm{~V}$		2.0	V (Min)
$\mathrm{V}_{\text {IN(0) }}$	Logical "0" Input Voltage	$\mathrm{V}+=4.5 \mathrm{~V}$		0.8	V (Max)
$\ln (1)$	Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$	0.005	2.5	$\mu \mathrm{A}$ (Max)
$\operatorname{INN}(0)$	Logical " 0 " Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-2.5	$\mu \mathrm{A}$ (Max)
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}^{+}=4.5 \mathrm{~V}: \\ & \text { loUT } \end{aligned}=-360 \mu \mathrm{~A}$		$\begin{gathered} 2.4 \\ 4.25 \\ \hline \end{gathered}$	V (Min) V (Min)
Vout(0)	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V} \\ & \text { lout }=1.6 \mathrm{~mA} \end{aligned}$		0.4	V (Max)
Iout	TRI-STATE® Output Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.01 \\ 0.01 \end{gathered}$	$\begin{gathered} -3 \\ \mathbf{3} \\ \hline \end{gathered}$	$\mu \mathrm{A}$ (Max) $\mu \mathrm{A}$ (Max)
+ ISC	Output Short Circuit Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-40	-10	mA (Min)
-Isc	Output Short Circuit Sink Current	$\mathrm{V}_{\text {OUT }}=$ DV ${ }^{+}$	30	10	mA (Min)
DI+	Digital Supply Current	$\overline{\mathrm{CS}}=\mathrm{HIGH}$	0.75	2	mA (Max)
		$\overline{\mathrm{CS}}=\mathrm{HIGH}, \mathrm{f}_{\mathrm{CLK}}=0 \mathrm{~Hz}$	0.15		mA (Max)
Al^{+}	Analog Supply Current	$\overline{\mathrm{CS}}=\mathrm{HIGH}$	3	4.5	mA (Max)
		$\overline{\mathrm{CS}}=\mathrm{HIGH}, \mathrm{f}_{\mathrm{CLK}}=0 \mathrm{~Hz}$	3		mA (Max)
1-	Negative Supply Current	CS $=$ HIGH	3.5	4.5	mA (Max)
		$\overline{\mathrm{CS}}=\mathrm{HIGH}, \mathrm{f}_{\mathrm{CLK}}=0 \mathrm{~Hz}$	3.5		mA (Max)
IREF	Reference Input Current	$\mathrm{V}_{\mathrm{REF}}{ }^{+}=5 \mathrm{~V}$	0.7	1.1	mA (Max)

Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{AV}^{+}=\mathrm{DV}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=5.000 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}-=\mathrm{GND}, \mathrm{V}^{-}=\mathrm{GND}$ for unipolar operation or $V^{-}=-5.0 V_{D C}$ for bipolar operation, $t_{r}=t_{f}=3 n s$ and $f_{C L K}=5.0 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Note 16) (Continued)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limit)

AC CHARACTERISTICS

$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency			$\begin{gathered} 8 \\ 10 \end{gathered}$	5.0	MHz (Max) kHz (Min)
	Clock Duty Cycle				$\begin{aligned} & 20 \\ & 80 \end{aligned}$	\% (Min) \% (Max)
${ }^{t} C$	Conversion Time	8-Bit Unipolar Mode			16	1/f ${ }_{\text {CLK }}$
			$\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}$		3.2	$\mu \mathrm{S}$ (Max)
		8-Bit Bipolar Mode			18	1/f ${ }_{\text {CLK }}$
			$\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}$		3.6	$\mu \mathrm{s}$ (Max)
		10-Bit Unipolar Mode			20	1/fCLK
			$\mathrm{f}_{\text {CLK }}=5.0 \mathrm{MHz}$		4.0	$\mu \mathrm{s}$ (Max)
		10-Bit Bipolar Mode			22	1/fCLK
			$\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}$		4.4	$\mu \mathrm{S}$ (Max)
$t_{\text {A }}$	Acquisition Time				6	1/fCLK
			$\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}$		1.2	$\mu \mathrm{s}$
$t_{\text {cre }}$	Delay between Falling Edge of $\overline{\mathrm{CS}}$ and Falling Edge of $\overline{\mathrm{RD}}$			0	5	ns (Min)
$t_{\text {RC }}$	Delay betwee Rising Edge $\overline{\mathrm{RD}}$ and Rising Edge of $\overline{\mathrm{CS}}$			0	5	ns (Min)
$\mathrm{t}_{\mathrm{C}} \mathrm{W}$	Delay between Falling Edge of $\overline{\mathrm{CS}}$ and Falling Edge of $\overline{\mathrm{WR}}$			0	5	ns (Min)
twc	Delay between Rising Edge of $\overline{W R}$ and Rising Edge of $\overline{C S}$			0	5	ns (Min)
$\mathrm{t}_{\text {RW }}$	Delay between Falling Edge of $\overline{\mathrm{RD}}$ and Falling Edge of $\overline{\mathrm{WR}}$			0	5	$n s$ (Min)
${ }^{\text {W }}$ ($\overline{\text { WR }}$)	WR Pulse Width			25	50	ns (Min)
tws	$\overline{\text { WR }}$ High to CLK $\div 2$ Low Set-Up Time				5	ns (Max)
$t_{\text {DS }}$	Data Set-Up Time			6	15	ns (Max)
$t_{\text {DH }}$	Data Hold Time			0	5	ns (Max)
tWR	Delay from Rising Edge of $\overline{W R}$ to Rising Edge $\overline{\mathrm{RD}}$			0	5	ns (Min)
$t_{\text {ACC }}$	Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)		$C_{L}=100 \mathrm{pF}$	25	45	ns (Max)
${ }^{\text {W }}$ I, t_{RI}	Delay from Falling Edge of $\overline{W R}$ or $\overline{\text { RD }}$ to Reset of INT		$C_{L}=100 \mathrm{pF}$	25	40	ns (Max)
tiNTL	Delay from Falling Edge of CLK $\div 2$ to Falling Edge of INT			40		ns

Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{AV}+=\mathrm{DV}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=5.000 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}-=\mathrm{GND}, \mathrm{V}^{-}=\mathrm{GND}$ for unipolar operation or $V^{-}=-5.0 V_{D C}$ for bipolar operation, $t_{r}=t_{f}=3 \mathrm{~ns}$ and $f_{C L K}=5.0 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. (Note 16) (Continued)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limit)

AC CHARACTERISTICS (Continued)

$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$	TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to Hi-Z State)	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	20	$\mathbf{3 5}$	$\mathrm{~ns}(\mathrm{Max})$
t_{RR}	Delay between Successive $\overline{R D}$ Pulses		25	$\mathbf{5 0}$	$\mathrm{~ns}(\mathrm{Min})$
t_{P}	Delay between Last Rising Edge of $\overline{\mathrm{RD}}$ and the Next Falling Edge of $\overline{W R}$		20	$\mathbf{5 0}$	$\mathrm{~ns}(\mathrm{Min})$
$\mathrm{C}_{\mathbb{N}}$	Capacitance of Logic Inputs		5		pF
$\mathrm{C}_{\mathrm{OUT}}$	Capacitance of Logic Outputs		5	pF	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
Note 2: Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 3: All voltages are measured with respect to GND, unless otherwise specified.
Note 4: When the input voltage ($\mathrm{V}_{\mathbb{I}}$) at any pin exceeds the power supplies ($\mathrm{V}_{\mathbb{I}}<\mathrm{V}$ - or $\mathrm{V}_{\mathbb{N}}>\mathrm{AV}+$ or $\mathrm{DV}+$), the current at that pin should be limited to 5 mA . The 20 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 5 mA to four.
Note 5: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J m a x}, \theta_{J A}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J \max }-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{Jmax}}=150^{\circ} \mathrm{C}$. The typical thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ of these parts when board mounted follow: ADC10154 with BIN and CIN suffixes $65^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{ADC} 10154$ with BIJ, CIJ and CMJ suffixes $49^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{ADC10154}$ with BIWM and CIWM suffixes $72^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{ADC} 10158$ with BIN and CIN suffixes $59^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{ADC} 10158$ with $\mathrm{BIJ}, \mathrm{CIJ}$, and CMJ suffixes $46^{\circ} \mathrm{C} / \mathrm{W}$, ADC10158 with BIWM and CIWM suffixes $68^{\circ} \mathrm{C} / \mathrm{W}$.
Note 6: Human body model, 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in any post-1986 National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Note 8: Two on-chip diodes are tied to each analog input as shown below. They will forward-conduct for analog input voltages one diode drop below V - supply or

TL/H/11225-4
one diode drop greater than $\mathrm{V}+$ supply. Be careful during testing at low $\mathrm{V}+$ levels (4.5 V), as high level analog inputs (5 V) can cause an input diode to conduct, especially at elevated temperatures, which will cause errors for analog inputs near full-scale. The specification allows 50 mV forward bias of either diode; this means that as long as the analog $\mathrm{V}_{\mathbb{I}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. Exceeding this range on an unselected channel will corrupt the reading of a selected channel. This means that if $\mathrm{AV}+$ and $\mathrm{DV}+$ are minimum ($4.5 \mathrm{~V}_{\mathrm{DC}}$) and V^{-}is a maximum ($-4.5 \mathrm{~V}_{\mathrm{DC}}$) full scale must be $\leq \pm 4.55 \mathrm{~V}$ DC.

Electrical Characteristics (Continued)

Note 9: A diode exists between AV^{+}and DV^{+}as shown below.

To guarantee accuracy, it is required that the AV^{+}and $\mathrm{DV}+$ be connected together to a power supply with separate bypass filter at each V^{+}pin. Note 10: Typicals are at $T_{J}=T_{A}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 11: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 12: One LSB is referenced to 10 bits of resolution.
Note 13: Total unadjusted error includes offset, full-scale, linearity, multiplexer, and hold step errors.
Note 14: For DC Common Mode Error the only specification that is measured is offset error.
Note 15: Channel leakage current is measured after the channel selection.
Note 16: All the timing specifications are tested at the $T T L$ logic levels, $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ for a falling edge and $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$ for a rising.

Ordering Information

Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	Package
ADC10154CIN	N24A
$A D C 10154 \mathrm{CIWM}$	M24B
$A D C 10158 \mathrm{CIN}$	N28B
$A D C 10158 \mathrm{CIWM}$	M28B

Electrical Characteristics (Continued)

FIGURE 1A. Transfer Characteristic

FIGURE 1B. Simplified Error Curve vs Output Code

Typical Converter Performance Characteristics

Typical Reference Performance Characteristics

Available
Output Current
vs Supply Voltage

Output Drift vs Temperature (3 Typical Parts)

Leakage Current Test Circuit

TRI-STATE Test Circuits and Waveforms

TL/H/11225-12
TL/H/11225-11

TL/H/11225-14

Timing Diagrams

TL/H/11225-15
DIAGRAM 1. Starting a Conversion with New MUX Channel and Output Configuration

DIAGRAM 2. Starting a Conversion without Changing the MUX Channel or Output Configuration
Timing Diagrams (Continued)

DIAGRAM 3. Reading the Conversion Result

Multiplexer Addressing and Output Data Configuration Tables

TABLE I. ADC10154 and ADC10158 Output Data Configuration

Resolution	Output Data Format	Control Input Data			Data Bus Output Assignment								
		8/10	U/S	L/ \bar{R}	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
10-Bits + Sign	Right-Justified	L	L	L	$\begin{array}{\|c} \hline \text { Sign } \\ 8 \\ \hline \end{array}$	Sign 7	$\begin{array}{\|c} \hline \text { Sign } \\ 6 \\ \hline \end{array}$	$\begin{gathered} \text { Sign } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { Sign } \\ 4 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { Sign } \\ 3 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { MSB } \\ 2 \\ \hline \end{array}$	$\begin{gathered} 9 \\ \text { LSB } \\ \hline \end{gathered}$	First Byte Read Second Byte Read
10-Bits + Sign	Left-Justified	L	L	H	$\begin{array}{\|c} \hline \text { Sign } \\ 3 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { MSB } \\ 2 \\ \hline \end{array}$	$\begin{gathered} 9 \\ \text { LSB } \end{gathered}$	$\begin{aligned} & 8 \\ & \mathrm{~L} \end{aligned}$	7	6	$\begin{aligned} & 5 \\ & \mathrm{~L} \end{aligned}$	4	First Byte Read Second Byte Read
10-Bits	Right-Justified	L	H	L	$\begin{aligned} & L \\ & 8 \end{aligned}$	$\begin{aligned} & L \\ & 7 \end{aligned}$	$\begin{aligned} & L \\ & 6 \end{aligned}$	$\begin{aligned} & L \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & 4 \end{aligned}$	$\begin{aligned} & L \\ & 3 \end{aligned}$	$\begin{gathered} \text { MSB } \\ 2 \end{gathered}$	$\begin{gathered} 9 \\ \text { LSB } \end{gathered}$	First Byte Read Second Byte Read
10-Bits	Left-Justified	L	H	H	$\begin{gathered} \text { MSB } \\ 2 \end{gathered}$	$\begin{gathered} 9 \\ \text { LSB } \end{gathered}$	$\begin{aligned} & 8 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 7 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 6 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 5 \\ & L \end{aligned}$	$\begin{aligned} & 4 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 3 \\ & L \end{aligned}$	First Byte Read Second Byte Read
8 -Bits + Sign	Right-Justified	H	L	L	Sign MSB	Sign 7	$\begin{gathered} \text { Sign } \\ 6 \end{gathered}$	$\begin{gathered} \text { Sign } \\ 5 \end{gathered}$	$\begin{gathered} \text { Sign } \\ 4 \end{gathered}$	$\begin{gathered} \text { Sign } \\ 3 \end{gathered}$	$\begin{gathered} \text { Sign } \\ 2 \end{gathered}$	$\begin{aligned} & \text { Sign } \\ & \text { LSB } \end{aligned}$	First Byte Read Second Byte Read
8 -Bits + Sign	Left-Justified	H	L	H	$\begin{array}{\|l} \hline \text { Sign } \\ \text { LSB } \\ \hline \end{array}$	$\begin{gathered} \text { MSB } \\ \mathrm{L} \\ \hline \end{gathered}$	7	6	5	4	$\begin{aligned} & 3 \\ & \mathrm{~L} \\ & \hline \end{aligned}$	2	First Byte Read Second Byte Read
8-Bits	Right-Justified	H	H	L	$\stackrel{L}{\mathrm{~L}}$	$\begin{aligned} & L \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & 5 \end{aligned}$	$\begin{aligned} & L \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & L \\ & 3 \end{aligned}$	$\begin{aligned} & L \\ & 2 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{LSB} \end{gathered}$	First Byte Read Second Byte Read
8-Bits	Left-Justified	H	H	H	MSB L	7	6	5	4	$\begin{aligned} & 3 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 2 \\ & L \end{aligned}$	$\begin{gathered} \text { LSB } \\ L \end{gathered}$	First Byte Read Second Byte Read

Connection Diagrams

Dual-In Line and SO Packages

1.0 Pin Descriptions

$\mathrm{AV}^{+} \quad$ This is the positive analog supply. This pin should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor and a $10 \mu \mathrm{~F}$ tantalum capacitor to the system analog ground.
DV ${ }^{+} \quad$ This is the positive digital supply. This supply pin also needs to be bypassed with $0.1 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantalum capacitors to the system digital ground. AV+ and DV+ should be bypassed separately and tied to same power supply.
DGND This is the digital ground. All logic levels are referred to this ground.
V- This is the negative analog supply. For unipolar operation this pin may be tied to the system analog ground or to a negative supply source. It should not go above DGND by more than 50 mV . When bipolar operation is required, the voltage on this pin will limit the analog input's negative voltage level. In bipolar operation this supply pin needs to be bypassed with $0.1 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantalum capacitors to the system analog ground.
$\mathrm{V}_{\text {REF }}{ }^{+}$, These are the positive and negative reference $\mathrm{V}_{\text {REF }}{ }^{-} \quad$ inputs. The voltage difference between $\mathrm{V}_{\text {REF }}{ }^{+}$ and $\mathrm{V}_{\text {REF }}{ }^{-}$will set the analog input voltage span.
$V_{\text {REF }}$ Out This is the internal band-gap voltage reference output. For proper operation of the voltage reference, this pin needs to be bypassed with a $330 \mu \mathrm{~F}$ tantalum or electrolytic capacitor.
$\overline{\text { CS }} \quad$ This is the chip select input. When a logic low is applied to this pin the $\overline{W R}$ and $\overline{\mathrm{RD}}$ pins are enabled.

$\overline{R D} \quad$ This is the read control input. When a logic low is applied to this pin the digital outputs are enabled and the INT output is reset high.
$\overline{W R} \quad$ This is the write control input. The rising edge of the signal applied to this pin selects the multiplexer channel and initiates a conversion.
$\overline{\mathbb{N T}} \quad$ This is the interrupt output. A logic low at this output indicates the completion of a conversion.
CLK This is the clock input. The clock frequency directly controls the duration of the conversion time (for example, in the 10 -bit bipolar mode $\mathrm{t}_{\mathrm{C}}=22 / \mathrm{f}_{\mathrm{CLK}}$) and the acquisition time ($\mathrm{t}_{\mathrm{A}}=$ 6/f fLK).
DBO(MAO)- These are the digital data inputs/outputs. DBO DB7 (L / \bar{R}) is the least significant bit of the digital output word; DB7 is the most significant bit in the digital output word (see the Output Data Configuration table). MAO through MA4 are the digital inputs for the multiplexer channel selection (see the Multiplexer Addressing tables). U/ $\overline{\mathrm{S}}$ (Unsigned/Signed), 8/70, (8/10-bit resolution) and L / \bar{R} (Left/Right justification) are the digital input bits that set the A/D's output word format and resolution (see the Output Data Configuration table). The conversion time is modified by the chosen resolution (see Electrical AC Characteristics table). The lower the resolution, the faster the conversion will be.
$\mathrm{CHO}-\mathrm{CH} 7$ These are the analog input multiplexer channels. They can be configured as single-ended inputs, differential input pairs, or pseudo-differential inputs (see the Multiplexer Addressing tables for the input polarity assignments).

2.0 Functional Description

The ADC10154 and ADC10158 use successive approximation to digitize an analog input voltage. Additional logic has been incorporated in the devices to allow for the programmability of the resolution, conversion time and digital output format. A capacitive array and a resistive ladder structure are used in the DAC portion of the A/D converters. The structure of the DAC allows a very simple switching scheme to provide a very versatile analog input multiplexer. Also, inherent in this structure is a sample/hold. A 2.5 V CMOS band-gap reference is also provided on the ADC10154 and ADC10158.

2.1 DIGITAL INTERFACE

The ADC10154 and ADC10158 have eight digital outputs (DB0-DB8) and can be easily interfaced to an 8-bit data bus. Taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ low simultaneously will strobe the data word on the data-bus into the input latch. This word will be decoded to determine the multiplexer channel selection, the A/D conversion resolution and the output data format. The following table shows the input word data-bit assignment.

DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7
MA0	MA1	MA2	MA3	MA4	U/ $\overline{\mathrm{S}}$	$\underbrace{}_{\substack{\text { Control } \\ \text { MUX Address } \\ \text { Input Data }}} \underbrace{\text { L/ } \bar{R}}$	

DB0 through DB4 are assigned to the multiplexer address data bits zero through four (MA0-MA4). Tables II and III describe the multiplexer address assignment. DB5 selects unsigned or signed (U/ $\overline{\mathrm{S}}$) operation. DB6 selects 8 - or 10-bit resolution. DB7 selects left or right justification of the output data. Refer to Table I for the effect the Control Input Data has on the digital output word.
The conversion process is started by the rising edge of $\overline{W R}$, which sets the "start conversion" bit inside the ADC. If this bit is set, the converter will start acquiring the input voltage on the next falling edge of the internal CLK $\div 2$ signal. The acquisition period is 3 CLK $\div 2$ periods, or 6 CLK periods. Immediately after the acquisition period the input signal is
held and the actual conversion begins. The number of clocks required for a conversion is given in the following table:

Conversion Type	CLK $\div \mathbf{2}$ Cycles	CLK Cycles (N)
8 -Bit	8	16
8 -Bit + Sign	9	18
$10-$ Bit	10	20
$10-$ Bit + Sign	11	22

Since the CLK $\div 2$ signal is internal to the ADC, it is initially impossible to know which falling edge of CLK corresponds to the falling edge of CLK $\div 2$. For the first conversion, the rising edge of $\overline{W R}$ should occur at least tws ns before any falling edge of CLK. If this edge happens to be on the rising edge of CLK $\div 2$, this will add 2 CLK cycles to the total conversion time. The phase of the CLK $\div 2$ signal can be determined at the end of the first conversion, when INT goes low. INT always goes low on the falling edge of the CLK $\div 2$ signal. From the first falling edge of $\overline{\mathrm{NNT}}$ onward, every other falling edge of CLK will correspond to the falling edge of CLK $\div 2$. With the phase of CLK $\div 2$ now known, the conversion time can be minimized by taking $\overline{W R}$ high at least $t_{w s}$ ns before the falling edge of CLK $\div 2$.
Upon completion of the conversion, $\overline{\mathrm{NT}}$ goes low to signal the A/D conversion result is ready to be read. Taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low will enable the digital output buffer and put byte 1 of the conversion result on DB0 through DB7. The falling edge of $\overline{\mathrm{RD}}$ resets the $\overline{\mathrm{INT}}$ output high. Taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low a second time will put byte 2 of the conversion result on DB7-DB0. Table I defines the DB0-DB7 assignement for different Control Input Data. The second read does not have to be completed before a new conversion is started.
Taking $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ low simultaneously will start a conversion without changing the multiplexer channel assignment or output configuration and resolution. The timing diagram in Figure 2 shows the sequence of events that implement this function. Refer to Diagrams 1, 2, and 3 in the Timing Diagrams section for the timing constraints that must be met.

2.0 Functional Description (Continued)

Digital Interface Hints:

- Reads and writes can be completely asynchronous to CLK.
- In addition to the timing indicated in Diagrams $1-3, \overline{\mathrm{CS}}$ can be tied low permanently or taken low for entire conversions, eliminating all the $\overline{\mathrm{CS}}$ guardbands ($\mathrm{t}_{\mathrm{CR}}, \mathrm{t}_{\mathrm{RC}}$, $t^{\prime} \mathrm{w}, \mathrm{t}_{\mathrm{w}}$).
- If $\overline{\mathrm{CS}}$ is used as shown in Diagrams 1-3, the $\overline{\mathrm{CS}}$ guardbands ($t_{C R}, t_{R C}, t_{C W}, t_{W C}$) between $\overline{C S}$ and the $\overline{R D}$ and $\overline{W R}$ signals can safely be ignored as long as the following two conditions are met:

1) When initiating a write, $\overline{C S}$ and $\overline{W R}$ must be simultaneously low for at least $\mathrm{t}_{\mathrm{W}}(\overline{\mathrm{WR}})$ ns (see Diagram 1). The "start" conversion" bit will be set on the rising edge of $\overline{W R}$ or $\overline{\mathrm{CS}}$, whichever is first.
2) When reading data, understand that data will not be valid until $t_{A C C}$ ns after both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ go low. The output data will enter TRI-STATE $\mathrm{t}_{1 H}$ ns or $\mathrm{t}_{0 H}$ ns after either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{RD}}$ goes high (see Diagrams 2 and 3).

2.2 ARCHITECTURE

Before a conversion is started, during the analog input sampling period, the sampled data comparator is zeroed. As the comparator is being zeroed the channel assigned to be the positive input is connected to the A/D's input capacitor. (See the Digital Interface section for a description of the assignment procedure.) This charges the input 32C capacitor of the DAC to the positive analog input voltage. The switches shown in the DAC portion of the detailed block diagram are set for this zeroing/acquisition period. The voltage at the input and output of the comparator are at equilibrium at this point in time. When the conversion is started the comparator feedback switches are opened and the 32C input capacitor is then switched to the assigned negative input voltage. When the comparator feedback switch opens a fixed amount of charge is trapped on the common plates of the capacitors. The voltage at the input of the comparator moves away from equilibrium when the 32C capacitor is switched to the assigned negative input voltage, causing the output of the comparator to go high ("1") or low ("0"). The SAR next goes through an algorithm, controlled by the output state of the comparator, that redistributes the charge on the capacitor array by switching the voltage on one side of the capacitors in the array. The objective of the SAR algorithm is to return the voltage at the input of the comparator as close as possible to equilibrium.

The switch position information at the completion of the successive approximation routine is a direct representation of the digital output. This information is then manipulated by the Digital Output decoder to the programmed format. The reformatted data is then available to be strobed onto the data bus (DB0-DB7) via the digital output buffers by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low.

3.0 Applications Information

3.1 MULTIPLEXER CONFIGURATION

The design of these converters utilizes a sampled-data comparator structure which allows a differential analog input to be converted by the successive approximation routine.
The actual voltage converted is always the difference between an assigned " + " input terminal and a " - " input terminal. The polarity of each input terminal or pair of input terminals being converted indicates which line the converter expects to be the most positive. If the assigned " + " input is less than the "一" input the converter responds with an all zeros output code when configured for unsigned operation. When configured for signed operation the A/D responds with the appropriate output digital code.
A unique input multiplexing scheme has been utilized to provide multiple analog channels. The input channels can be software configured into three modes: differential, singleended, or pseudo-differential. Figure 3 shows the three modes using the 4 -channel MUX of the ADC10154. The eight inputs of the ADC10158 can also be configured in any of the three modes. The single-ended mode has $\mathrm{CHO}-\mathrm{CH} 3$ assigned as the positive input with the negative input being the $\mathrm{V}_{\text {REF }}{ }^{-}$of the device. In the differential mode, the ADC10154 channel inputs are grouped in pairs, CHO with CH 1 and CH 2 with CH 3 . The polarity assignment of each channel in the pair is interchangeable. Finally, in the pseu-do-differential mode $\mathrm{CHO}-\mathrm{CH} 2$ are positive inputs referred to CH 3 which is now a pseudo-ground. This pseudo-ground input can be set to any potential within the input commonmode range of the converter. The analog signal conditioning required in transducer-based data acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground-referred inputs and true differential inputs as well as signals referred to a specific voltage.
The analog input voltages for each channel can range from 50 mV below V - (typically ground for unipolar operation or -5 V for bipolar operation) to 50 mV above $\mathrm{V}^{+}=\mathrm{DV}^{+}=$ $\mathrm{AV}+$ (typically 5 V) without degrading conversion accuracy. If the voltage on an unselected channel exceeds these limits it may corrupt the reading of the selected channel.

4 Single-Ended

2 Differential

3 Pseudo-Differential

2 Single Ended and 1 Differential

TL/H/11225-20

FIGURE 3. Analog Input Multiplexer Options

3.0 Applications Information (Continued)

3.2 REFERENCE CONSIDERATIONS

The voltage difference between the $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$inputs defines the analog input voltage span (the difference between $\mathrm{V}_{\mathrm{IN}}(\mathrm{Max})$ and $\mathrm{V}_{I N}(\mathrm{Min})$) over which the 2^{n} (where n is the programmed resolution) possible output codes apply. In the pseudo-differential and differential modes the actual voltage applied to $\mathrm{V}_{\mathrm{REF}}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$can lie anywhere between the AV^{+}and V^{-}. Only the difference voltage is of importance. When using the single-ended multiplexer mode the voltage at $\mathrm{V}_{\text {REF }}{ }^{-}$has a dual function. It simultaneously determines the "zero" reference voltage and, with $\mathrm{V}_{\mathrm{REF}}{ }^{+}$, the analog voltage span.
The value of the voltage on the $\mathrm{V}_{\text {REF }}{ }^{+}$or $\mathrm{V}_{\text {REF }}{ }^{-}$inputs can be anywhere between $\mathrm{AV}^{+}+50 \mathrm{mV}$ and V^{-} -50 mV , so long as $\mathrm{V}_{\mathrm{REF}}{ }^{+}$is greater than $\mathrm{V}_{\text {REF }}{ }^{-}$. The ADC10154 and ADC10158 can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pins must be connected to a voltage source capable of driving the minimum reference input resistance of $4.5 \mathrm{k} \Omega$.
The internal 2.5 V bandgap reference in the ADC10154 and ADC10158 is available as an output on the $V_{\text {REF }}$ Out pin. To ensure optimum performance this output needs to be bypassed to ground with $330 \mu \mathrm{~F}$ aluminum electrolytic or tantalum capacitor. The reference output is unstable with capacitive loads greater than 100 pF and less than $100 \mu \mathrm{~F}$. Any capacitive loads $\leq 100 \mathrm{pF}$ or $\geq 100 \mu \mathrm{~F}$ will not cause the reference to oscillate. Lower output noise can be obtained by increasing the output capacitance. The $330 \mu \mathrm{~F}$
capacitor will yield a typical noise floor of $200 \mathrm{nVrms} / \sqrt{\mathrm{Hz}}$. The 2.5 V reference output is referred to the negative supply pin $\left(\mathrm{V}^{-}\right)$. Therefore, the voltage at $\mathrm{V}_{\mathrm{REF}}$ Out will always be 2.5 V greater than the voltage applied to V^{-}. Applying this voltage to $\mathrm{V}_{\text {REF }}{ }^{+}$with $\mathrm{V}_{\text {REF }}{ }^{-}$tied to V^{-}will yield an analog voltage span of 2.5 V . In bipolar operation the voltage at $\mathrm{V}_{\text {REF }}$ Out will be at -2.5 V when V - is tied to -5 V . For the single-ended multiplexer mode the analog input voltage range will be from -5 V to -2.5 V . The pseudo-differential and differential multiplexer modes allow for more flexibility in the analog input voltage range since the "zero" reference voltage is set by the actual voltage applied to the assigned negative input pin. The drawback of using the internal reference in the bipolar mode is that any noise on the -5 V tied to the V^{-}pin will affect the conversion result. The bandgap reference is specified and tested in unipolar operation with V - tied to the system ground.
In a ratiometric system (Figure 4a), the analog input voltage is proportional to the voltage used for the A/D reference. This voltage may also be the system power supply, so $\mathrm{V}_{\mathrm{REF}}{ }^{+}$can also be tied to $\mathrm{AV}{ }^{+}$. This technique relaxes the stablity requirements of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy (Figure 4b), where the analog input varies between very specific voltage limits, the reference pin can be biased with a time- and temperature-stable voltage source that has excellent initial accuracy. The LM4040 and LM185 references are suitable for use with the ADC10154 and ADC10158.

a. Ratiometric Using the Internal Reference

FIGURE 4. Different Reference Configurations
3.0 Applications Information (Continued)

The minimum value of $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{REF}}{ }^{+}-\mathrm{V}_{\mathrm{REF}}{ }^{-}\right)$ can be quite small (see Typical Performance Characteristics) to allow direct conversion of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $\mathrm{V}_{\text {REF }} / 2 \mathrm{n}$).

3.3 THE ANALOG INPUTS

Due to the sampling nature of the analog inputs, at the clock edges short duration spikes of current will be seen on the selected assigned negative input. Input bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$ since they will average the AC current and cause an effective DC current to flow through the analog input source resistance. An op amp RC active lowpass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required. Bypass capacitors may be used when the source impedance is very low without any degradation in performance.
In a true differential input stage, a signal that is common to both " + " and " - " inputs is cancelled. For the ADC10154 and ADC10158, the positive input of a selected channel pair is only sampled once before the start of a conversion during the acquisition time (t_{A}). The negative input needs to be stable during the complete conversion sequence because it is sampled before each decision in the SAR sequence. Therefore, any AC common-mode signal present on the analog inputs will not be completely cancelled and will cause some conversion errors. For a sinusoid common-mode signal this error is:

$$
V_{\text {error }}(\operatorname{Max})=V_{\text {PEAK }}\left(2 \pi f_{\mathrm{CM}}\right)\left(\mathrm{t}_{\mathrm{C}}\right)
$$

where f_{CM} is the frequency of the common-mode signal, $V_{\text {PEAK }}$ is its peak voltage value, and t_{C} is the A/D's maximum conversion time ($\mathrm{t}_{\mathrm{C}}=22 / \mathrm{f}$ CLK for 10 -bit plus sign resolution). For example, for a 60 Hz common-mode signal to generate a $1 / 4 \mathrm{LSB}$ error (1.24 mV) with a $4.5 \mu \mathrm{~s}$ conversion time, its peak value would have to be approximately 731 mV .

3.4 OPTIONAL ADJUSTMENTS

3.4.1 Zero Error

The zero error of the A/D converter relates to the location of the first riser of the transfer function (see Figure 1) and can be measured by grounding the minus input and applying a small magnitude positive or negative voltage to the plus input. Zero error is the difference between actual DC input voltage which is necessary to just cause an output digital code transition from 00000000000 to 00000000001 (10bits plus sign) and the ideal $1 / 2$ LSB value ($1 / 2 \mathrm{LSB}=2.44$ mV for $\mathrm{V}_{\text {REF }}=+5.000 \mathrm{~V}$ and 10 -bit plus sign resolution).
The zero error of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{1 \mathrm{~N}}(\mathrm{Min})$, is not ground, the effetive "zero" voltage can be adjusted to a convenient value. The converter can be made to output an all zeros digital code for this minimum input voltage by biasing any minus input to $\mathrm{V}_{\mathrm{IN}}(\mathrm{Min})$. This is useful for either the differential or pseudo-differential input channel configurations.

3.4.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired
analog full-scale voltage range and then adjusting the $V_{\text {REF }}$ voltage ($\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}{ }^{+}-\mathrm{V}_{\text {REF }}{ }^{-}$) for a digital output code changing from 01111111110 to 0111111 1111. In bipolar signed operation this only adjusts the positive full scale error. The negative full-scale error will be as specified in the Electrical Characteristics after a positive full-scale adjustment.

3.4.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A plus input voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, using 1 LSB $=$ analog span/2n, n being the programmed resolution) is applied to selected plus input and the zero reference voltage at the corresponding minus input should then be adjusted to just obtain the $000_{\text {HEX }}$ to $001_{\text {HEX }}$ code transition.
The full-scale adjustment should be made [with the proper minus input voltage applied] by forcing a voltage to the plus input which is given by:

$$
V_{I N}(+) \text { fs adj }=V_{M A X}-1.5\left[\frac{\left(V_{M A X}-V_{M I N}\right)}{2^{n}}\right]
$$

where $\mathrm{V}_{\text {MAX }}$ equals the high end of the ananlog input range, $V_{\text {MIN }}$ equals the low end (the offset zero) of the analog range and n equals the programmed resolution. Both $V_{\text {MAX }}$ and $\mathrm{V}_{\text {MIN }}$ are ground referred. The $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}{ }^{+}\right.$ - $\mathrm{V}_{\text {REF }}{ }^{-}$) voltage is then adjusted to provide a code change from 3 FE HEX to $3 \mathrm{FF}_{\text {HEX }}$. Note, when using a pseu-do-differential or differential multiplexer mode where $\mathrm{V}_{\text {REF }}{ }^{+}$ and $\mathrm{V}_{\text {REF }}-$ are placed within the V^{+}and V^{-}range, the individual values of $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$do not matter, only the difference sets the analog input voltage span. This completes the adjustment procedure.

3.5 INPUT SAMPLE-AND-HOLD

The ADC10154/8's sample/hold capacitor is implemented in the capacitor array. After the channel address is loaded, the array is switched to sample the selected positive analog input. The rising edge of WR loads the multiplexer addressing information. The sampling period for the assigned positive input is maintained for the duration of the acquisition time $\left(\mathrm{t}_{\mathrm{A}}\right)$, i.e., approximately 6 to 8 clock cycles after the rising edge of WR.
An acquisition window of 6 clock cycles is available to allow the voltage on the capacitor array to settle to the positive analog input voltage. Any change in the analog voltage on a selected positive input before or after the acquisition window will not effect the A/D conversion result.
In the simplest case, the array's acquisition time is determined by the RON ($9 \mathrm{k} \Omega$) of the multiplexer switches, the stray input capacitance $\mathrm{C}_{\mathrm{S} 1}(3.5 \mathrm{pF})$ and the total array $\left(\mathrm{C}_{\mathrm{L}}\right)$ and stray ($\mathrm{C}_{\mathrm{S} 2}$) capacitance ($\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{S} 2}=48 \mathrm{pF}$). For a large source resistance the analog input can be modeled as an RC network as shown in Figure 5. The values shown yield an acquisition time of about $1.1 \mu \mathrm{~s}$ for 10-bit unipolar or 10 -bit plus sign bipolar accuracy with a zero-to-full-scale change in the input voltage. External source resistance and capacitance will lengthen the acquisition time and should be accounted for. Slowing the clock will lengthen the acquisition time, thereby allowing a larger external source resistance.

3.0 Applications Information (Continued)

TL/H/11225-23
FIGURE 5. Analog Input Model
The curve "Signal to Noise Ratio vs. Output Frequency" (Figure 6) gives an indication of the usable bandwidth of the ADC10154/ADC10158. The signal-to-noise ratio of an ideal A / D is the ratio of the RMS value of the full scale input signal amplitude to the value of the total error amplitude (including noise) caused by the transfer function of the A/D. An ideal 10-bit plus sign A/D converter with a total unadjusted error of 0 LSB would have a signal-to-noise ratio of about 68 dB , which can be derived from the equation:

$$
S / N=6.02(n)+1.8
$$

where S / N is in $d B$ and n is the number of bits. Figure 2 shows the signal-to-noise ratio vs. input frequency of a typical ADC10154/ADC10158 with $1 / 2$ LSB total unadjusted error. The dotted lines show signal-to-noise ratios for an ideal (noiseless) 10 -bit A/D with 0 LSB error and an A/D with a 1 LSB error.

TL/H/11225-24
FIGURE 6. ADC10154/ADC10158 Signal-to-Noise Ratio vs Input Frequency
The sample-and-hold error specifications are included in the error and timing specifications of the A/D. The hold step and gain error sample/hold specs are included in the ADC10154/ADC10158's total unadjusted, linearity, gain and offset error specifications, while the hold settling time is included in the A/D's maximum conversion time specification. The hold droop rate can be thought of as being zero since an unlimited amount of time can pass between a conversion and the reading of data. The data is lost after a new conversion has been completed.

3.0 Applications Information (Continued)

Protecting the Analog Inputs

TL/H/11225-25

Note 1: Diodes are 1N914.
Note 2: The protection diodes should be able to withstand the output current of the op amp under current limit.

Zero-Shift and Span-Adjust for Signed or Unsigned, Unipolar, Single-Ended Multiplexer Assignment, Analog Input Range of $\mathbf{2 V} \leq \mathbf{V}_{\mathbf{I N}} \leq 4.5 \mathrm{~V}$

ADC1031/ADC1034/ADC1038 10-Bit Serial I/O A/D Converters with Analog Multiplexer and Track/Hold Function

General Description

The ADC1031, ADC1034 and ADC1038 are 10-bit successive approximation A/D converters with serial I/O. The serial input, for the ADC1034 and ADC1038, controls a singleended analog multiplexer that selects one of 4 input channels (ADC1034) or one of 8 input channels (ADC1038). The ADC1034 and ADC1038 serial output data can be configured into a left- or right-justified format.
An input track/hold is implemented by a capacitive reference ladder and sampled-data comparator. This allows the analog input to vary during the A/D conversion cycle.
Separate serial I/O and conversion clock inputs are provided to facilitate the interface to various microprocessors.

Applications

- Engine control
- Process control
- Instrumentation
- Test equipment

Features

■ Serial I/O (MICROWIRETM compatible)

- Separate asynchronous converter clock and serial data I/O clock
- Analog input track/hold function
- Ratiometric or absolute voltage referencing
- No zero or full scale adjustment required
$■$. 0 V to 5 V analog input range with single 5 V power supply
- TTL/MOS input/output compatible
- No missing codes

Key Specifications

- Resolution	10 bits
- Total unadjusted error	$\pm 1 \mathrm{LSB}$ (max)
- Single supply	$5 \mathrm{~V} \pm 5 \%$
- Power dissipation	20 mW (max)
- Max. conversion time $(\mathrm{f} \mathrm{C}=3 \mathrm{MHz})$	$13.7 \mu \mathrm{~s}$ (max)
- Serial data exchange time $(\mathrm{fS}=1 \mathrm{MHz})$	$10 \mu \mathrm{~s}$ (max)

Connection Diagrams

Top View
ADC1031 In NS Package N08E

Dual-In-Line and SO Packages

TL/H/10556-3
Top View
ADC1034 In NS Packages J16A, M16B or N16E

TL/H/10556-2
Top View
ADC1038 In NS Packages J20A, M20B or N20A

Industrial $-40^{\circ} \mathrm{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}$	Package
ADC1031CIN	N08E
ADC1034CIN	N 16 E
ADC1034CIWM	M16B
ADC1038CIN	N20A
ADC1038CIWM	M20B
Military $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+125^{\circ} \mathrm{C}$	Package
ADC1034CMJ	J16A
ADC1038CMJ	J20A

$\begin{array}{lr}\text { Absolute Maximum Ratings (Notes } 1 \& 3 \text {) } \\ \text { If Military/Aerospace specified devices are required, } \\ \text { please contact the National } \\ \text { Office/Distributors for availability and specifications. } \\ \text { Supply Voltage (VCC) } & 6.5 \mathrm{~V} \\ \text { Voltage at Inputs and Outputs } & -0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V} \\ \text { Input Current at Any Pin (Note 4) } & \pm 5 \mathrm{~mA} \\ \text { Package Input Current (Note 4) } & \pm 20 \mathrm{~mA} \\ \text { Package Dissipation } \\ \text { at TA }=25^{\circ} \mathrm{C} \text { (Note 5) } & 500 \mathrm{~mW} \\ \text { ESD Susceptability (Note 6) } & 2000 \mathrm{~V} \\ \text { Soldering Information } & \\ \text { N Package (10 sec.) } & 260^{\circ} \mathrm{C} \\ \text { J Package (10 sec.) } & 300^{\circ} \mathrm{C} \\ \text { SO Package (Note 7): } & 215^{\circ} \mathrm{C} \\ \text { Vapor Phase (} 60 \text { sec.) } & 220^{\circ} \mathrm{C} \\ \text { Infrared (} 15 \text { sec.) } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}\end{array}$

Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{REF}}=+4.6 \mathrm{~V}$, $\mathrm{f}_{\mathrm{S}}=700 \mathrm{kHz}$, and $\mathrm{f}_{\mathrm{C}}=3 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX; }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	\ddots	Conditions	Typical (Note 8)	Limit (Note 9)	Units (Limits)

CONVERTER AND MULTIPLEXER CHARACTERISTICS

	Total Unadjusted Error	CIN, CIWM, CMJ	(Note 10)		± 1	LSB (max)
	Differential Linearity				10	Bits (min)
R REF	Reference Input Resistance			8	$\begin{gathered} 5 \\ 11 \end{gathered}$	$\begin{gathered} k \Omega \\ k \Omega(\min) \\ k \Omega(\max) \\ \hline \end{gathered}$
$\mathrm{V}_{\text {REF }}$	Reference Voltage				$\left(V_{c c}+0.05\right)$	V (max)
$\mathrm{V}_{\text {IN }}$	Analog Input Voltage		(Note 11)		$\begin{aligned} & \left(V_{C C}+0.05\right) \\ & (G N D-0.05) \end{aligned}$	$\begin{aligned} & V(\max) \\ & V(\min) \end{aligned}$
	On Channel Leakage Current		On Channel $=5 \mathrm{~V}_{\mathrm{DG}}$, Off Channel $=0 V_{D C}$	5.0	$\begin{aligned} & 200 \\ & \mathbf{5 0 0} \\ & \hline \end{aligned}$	$n A$ (max) $n A$ (max)
	(Note 12)		$\begin{aligned} & \text { On Channel }=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \text { Off Channel }=5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	5.0	$\begin{array}{r} -200 \\ -500 \\ \hline \end{array}$	nA (max) nA (max)
	Off Channel Leakage Current		$\begin{aligned} & \text { On Channel }=5 \mathrm{~V}_{\mathrm{DC}}, \\ & \text { Off Channel }=0 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	5.0	$\begin{array}{r} -200 \\ -500 \\ \hline \end{array}$	nA (max) nA (max)
	(Note 12)		$\begin{aligned} & \text { On Channel }=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \text { Off Channel }=5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	5.0	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	nA (max) nA (max)
	Power Supply Sensitivity	Zero Error	$4.75 \mathrm{~V}_{\mathrm{DC}} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}_{\mathrm{DC}}$		$\pm 1 / 4$	LSB (max)
		Full Scale Error		,	$\pm 1 / 4$	LSB (max)

Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+4.6 \mathrm{~V}$, $\mathrm{f}_{\mathrm{S}}=700 \mathrm{kHz}$, and $\mathrm{f}_{\mathrm{C}}=3 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 8)	Limit (Note 9)	Units (Limits)
DIGITAL AND DC CHARACTERISTICS					
Vin(1)	Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}_{\mathrm{DC}}$		2.0	V (min)
$\mathrm{V}_{\text {IN(0) }}$	Logical "0" Input Voltage	$V_{C C}=4.75 V_{D C}$		0.8	V (max)
$\underline{\ln (1)}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V} \mathrm{VC}$	0.005	2.5	$\mu \mathrm{A}$ (max)
$\underline{\operatorname{lin}(0)}$	Logical "0" Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}_{\text {DC }}$	-0.005	-2.5	$\mu A($ max $)$
Vout(1)	Logical "1" Output Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \\ \text { IOUT }=-360 \mu \mathrm{~A} \\ \text { IOUT }=-10 \mu \mathrm{~A} \end{gathered}$		$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & V(\min) \\ & V(\min) \end{aligned}$
Vout(0)	Logical "0" Output Voltage	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{l}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \end{aligned}$		0.4	V (max)
Iout	TRI-STATE Output Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-0.01	-3	$\mu A($ max $)$
		$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	0.01	3	$\mu A(\max)$
ISOURCE	Output Source Current	$V_{\text {OUT }}=0 \mathrm{~V}$	-14	-6.5	$\mathrm{mA}(\mathrm{min})$
ISINK	Output Sink Current	$V_{\text {OUT }}=V_{\text {CC }}$	16	8.0	$\mathrm{mA}(\mathrm{min})$
ICC	Supply Current	$\overline{\mathrm{CS}}=\mathrm{HIGH}, \mathrm{V}_{\text {REF }}$ Open	1.5	3	mA (max)

AC CHARACTERISTICS					
f_{C}	Conversion Clock (CLLK) Frequency		$\begin{aligned} & 0.7 \\ & 4.0 \\ & \hline \end{aligned}$	3.0	MHz (min) MHz (max)
fs	Serial Data Clock (S $\mathrm{S}_{\mathrm{CLK}}$) Frequency (Note 13)	$\mathrm{f}_{\mathrm{C}}=3 \mathrm{MHz}, \mathrm{R} / \mathrm{L}=$ "0"	183		kHz (min)
		$\mathrm{f}_{\mathrm{C}}=3 \mathrm{MHz}, \mathrm{R} / \mathrm{L}=$ " 1 "	622		kHz (min)
		$\mathrm{f}_{\mathrm{C}}=3 \mathrm{MHz}, \mathrm{R} / \overline{\mathrm{L}}=$ " 0 " or $\mathrm{R} / \bar{L}=$ " 1 "	2	1.0	MHz (max)
T_{C}	Conversion Time	Not Including MUX Addressing and Analog Input Sampling Times		$\begin{aligned} & 41(1 / \mathrm{fc}) \\ & +200 \mathrm{~ns} \end{aligned}$	(max)
t_{CA}	Analog Sampling Time	After Address is Latched,CS $=$ Low		$\begin{array}{\|l\|} \hline 4.5\left(1 / f_{\mathrm{s}}\right) \\ +200 \mathrm{~ns} \\ \hline \end{array}$	(max)
$\mathrm{t}_{\text {ACC }}$	Access Time Delay from $\overline{C S}$ or $\overline{O E}$ Falling Edge to DO Data Valid	$\overline{O E}=\times 0 "$	100	200	ns (max)
ISET-UP	Set-up Time of $\overline{C S}$ Falling Edge to $\mathrm{S}_{\mathrm{CLK}}$ Rising Edge		75	150	ns (min)
$\mathrm{t}_{1 \mathrm{H},} \mathrm{t}_{\mathrm{OH}}$	Delay from $\overline{O E}$ or $\overline{\mathrm{CS}}$ Rising Edge to DO TRI-STATE	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	100	120	ns (max)
thDI	DI Hold Time from SCLK Rising Edge		0	50	ns (min)
${ }_{\text {t }}$	DI Set-up Time to SCLK Rising Edge		50	100	ns (min)

Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+4.6 \mathrm{~V}$, $\mathrm{fs}_{\mathrm{S}}=700 \mathrm{kHz}$, and $\mathrm{f}_{\mathrm{C}}=3 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{J}=25^{\circ} \mathrm{C}$.

Symbol	'	ameter	Conditions		Typical (Note 8)	Limit (Note 9)	Units (Limits)
AC CHARACTERISTICS (Continued)							
${ }_{\text {thDO }}$	DO Hold Time from S ${ }_{\text {CLK }}$ Falling Edge		$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		70	10	ns (min)
tDDO	Delay from S CLK Falling Edge to DO Data Valid		$R_{L}=30 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$		150	250	ns (max)
$t_{\text {RDO }}$	DO Rise Time		$\begin{aligned} & R_{\mathrm{L}}=30 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	TRI-STATE to High	35	75	ns (max)
				Low to High	75	150	ns (max)
$t_{\text {FDO }}$	DO Fall Time		$\begin{aligned} & R_{\mathrm{L}}=30 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	TRI-STATE to Low	35	75	ns (max)
				High to Low	75	150	ns (max)
$\mathrm{ClN}_{\mathrm{IN}}$	Input Capacitance		Analog Inputs ($\mathrm{CH} 0-\mathrm{CH} 7$)		50		pF
			All Other Inputs		7.5		: pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
Note 2: Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 3: All voltages are measured with respect to AGND and DGND, ünless otherwise specified.
Note 4: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supplies ($V_{I N}<D G N D$, or $V_{I N}>V_{C C}$) the current at that pin should be limited to 5 mA . The 20 mA maximum package input current rating limits the number, of pins that can safely exceed the power supplies with an input current of 5 mA to four pins.
Note 5: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J m a x}, \theta_{\mathrm{JA}}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J \max }-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{Jmax}}=125^{\circ} \mathrm{C}$. The typical thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ of these parts when board mounted follow: ADC1031 with CIN suffixes $71^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{ADC} 1034$ with CMJ suffixes $52^{\circ} \mathrm{C} / \mathrm{W}$, ADC1034 with CIN suffixes $54^{\circ} \mathrm{C} / \mathrm{W}$, ADC1034 with CIWM suffixes $70^{\circ} \mathrm{C} / \mathrm{W}$, ADC1038 with CMJ suffixes $53^{\circ} \mathrm{C} / \mathrm{W}$, $A D C 1038$ with CIN suffixes $46^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{ADC} 1038$ with CIWM suffixes $64^{\circ} \mathrm{C} / \mathrm{W}$.
Note 6: Human body model, 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: See AN450 "Surface Mounting Methods and Their Effect on Product Reliability" or Linear Databook section "Surface Mount" for other methods of soldering surface mount devices.
Note 8: Typicals are at $T_{J}=25^{\circ} \mathrm{C}$ and represent móst likely parametric norm.
Note 9: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 10: Total unadjusted error includes offset, full-scale, linearity, multiplexer, and hold step errors.
Note 11: Two on-chip diodes are tied to each analog input. They will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. Be careful during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause an input diode to conduct, especially at elevated temperatures, which will cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode; this means that as long as the analog $V_{I N}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. Exceeding this range on an unselected channel will corrupt the reading of a selected channel. To achieve an absolute $0 V_{D C}$ to $5 V_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 V_{D C}$ over temperature variations, initial tolerance and loading.
Note 12: Channel leakage current is measured after the channel selection.
Note 13: In order to synchronize the serial data exchange properly, SARS needs to go low after completion of the serial I/O data exchange. If this does not occur the output shift register will be reset and the correct output data lost. The minimum limit for $\mathrm{S}_{\mathrm{CLK}}$ will depend on $\mathrm{C}_{\mathrm{CLK}}$ frequency and whether right-justified or leftjustified, and can be determined by the following equations:
$\mathrm{f}_{\mathrm{S}}>(8.5 / 41)\left(\mathrm{f}_{\mathrm{C}}\right)$ with right-justification $\left(\mathrm{R} / \overline{\mathrm{L}}=" 1\right.$ ") and $\mathrm{f}_{\mathrm{S}}>(2.5 / 41)\left(\mathrm{f}_{\mathrm{C}}\right)$ with left-justification $(\mathrm{R} / \overline{\mathrm{L}}=" 0$ ").

Typical Performance Characteristics

Linearity Error vs
Cclk Frequency

Power Supply Current (Icc) vs Ambient Temperature

Linearity Error vs Amblent Temperature

Reference Current (IREF) vs Ambient Temperature

Linearity Error vs Reference Voltage

Test Circuits

TL/H/10556-8

Timing Diagrams

DO Low to High State

TL/H/10556-10

DO "TRI-STATE" Rise and Fall Times

Timing Diagrams (Continued)
ADC1031 $\overline{C S}$ High during Conversion
$\mathrm{C}_{\text {CLK }}$ continuously enabled

Conversion Time
$41 \mathrm{C}_{\text {CLK }}$

ADC1038/ADC1034 $\overline{\text { CS }}$ High during Conversion

Timing Diagrams (Continued)

ADC1038/ADC1034 CS Low Continuously

CLLK continuously enabled

Multiplexer Address/Channel Assignment Tables

ADC1038

MUX Address			Analog Channel Selected
A2	A1	AO	
0	0	0	CHO
0	0	1	CH 1
0	1	0	CH 2
0	1	1	CH 3
1	0	0	CH 4
1	0	1	CH 5
1	1	0	CH 6
1	1	1	CH 7

ADC1034

MUX Address			Análog Channel Selected
A2	A1	A0	
X	0	0	CH
X	0	1	CH
X	1	0	CH
X	1	1	CH

Note: "X" = don't care

1.0 Pin Descriptions

CCLK The clock applied to this input controls the successive approximation conversion time interval. The clock frequency applied to this input can be between 700 kHz and 4 MHz .
SCLK The serial data clock input. The clock applied to this input controls the rate at which the serial data exchange occurs and the analog sampling time available to acquire an analog input voltage. The rising edge loads the information on the DI pin into the multiplexer address shift register (address register). This address controls which channel of the analog input multiplexer (MUX) is selected.
The falling edge shifts the data resulting from the previous A/D conversion out on DO. CS and $\overline{O E}$ enable or disable the above functions.
DI The serial data input pin. The data applied to this pin is shifted by SCLK into the multiplexer address register. The first 3 bits of data (AO-A2) are the MUX channel address (see the Multiplexer Address/Channel Assignment tables). The fourth bit (R/ \bar{L}) determines the data format of the conversion result in the conversion to be started. When R / \bar{L} is low the output data format is leftjustified; when high it is right-justified. When rightjustified, six leading " 0 "'s are output on DO before the MSB information; thus the complete conversion result is shifted out in 16 clock periods.
DO The data output pin. The A/D conversion result (D0-D9) is output on this pin. This result can be left- or right-justified depending on the value of R/L bit shifted in on DI.
SARS This pin is an output and indicates the status of the internal successive approximation register (SAR). When high, it signals that the A/D conversion is in progress. This pin is set high after the analog input sampling time (tcA) and remains high for 41 CLK periods. When SARS goes low, the output shift register has been loaded with the conversion result and another A/D conversion sequence can be started.
CS The chip select pin. When a low is applied to this pin, the rising edge of $\mathrm{S}_{\text {CLK }}$ shifts the data on DI into the address register. In the ADC1031 this pin also functions as the $\overline{\mathrm{OE}} \mathrm{pin}$.
$\overline{O E} \quad$ The output enable pin. When $\overline{O E}$ and $\overline{C S}$ are both low the falling edge of $\mathrm{S}_{\text {CLK }}$ shifts out the previous A/D conversion data on the DO pin.
CHO - The analog inputs of the MUX. A channel input is CH7 selected by the address information at the DI pin, which is loaded on the rising edge of $\mathrm{S}_{\mathrm{CLK}}$ into the address register.
Source impedances (R_{S}) driving these inputs should be kept below $1 \mathrm{k} \Omega$. If R_{S} is greater than $1 \mathrm{k} \Omega$, the sampled data comparator will not have enough time to acquire the correct value of the applied input voltage.
The voltage applied to these inputs should not exceed $V_{C C}$ or go below DGND or AGND by more than 50 mV . Exceeding this range on an unselected channel will corrupt the reading of a selected channel.
$\mathrm{V}_{\mathrm{REF}}{ }^{+}$The positive analog voltage reference for the analog inputs. In order to maintain accuracy the voltage range of $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}{ }^{+}-\right.$ $\mathrm{V}_{\text {REF }}{ }^{-}$) is $2.5 \mathrm{~V}_{\mathrm{DC}}$ to $5.0 \mathrm{~V}_{\mathrm{DC}}$ and the voltage at $\mathrm{V}_{\text {REF }}{ }^{+}$cannot exceed $\mathrm{V}_{\mathrm{CC}}+50 \mathrm{mV}$. In the ADC1031 $\mathrm{V}_{\text {REF }}{ }^{-}$is always GND.
$V_{\text {REF }}{ }^{-} \quad$ The negative voltage reference for the analog inputs. In order to maintain accuracy the voltage at this pin must not go below DGND and AGND by more than 50 mV or exceed 40% of V_{CC} (for V_{CC} $\left.=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}^{-}}(\max)=2 \mathrm{~V}\right)$. In the ADC1031 $\mathrm{V}_{\text {REF }}{ }^{-}$is internally connected to the GND pin.
$V_{C C} \quad$ The power supply pin. The operating voltage range of $V_{C C}$ is $4.75 \mathrm{~V}_{\mathrm{DC}}$ to $5.25 \mathrm{~V}_{\mathrm{DC}} . \mathrm{V}_{\mathrm{CC}}$ should be bypassed with $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ capacitors to digital ground for proper operation of the A/D converter.
DGND, The digital and analog ground pins for the AGND ADC1034 and the ADC1038. In order to maintain accuracy the voltage difference between these two pins must not exceed 300 mV .
GND The digital and analog ground pin for the ADC1031.

2.0 Functional Description

2.1 DIGITAL INTERFACE

The ADC1034 and ADC1038 implement their serial interface via seven digital control lines. There are two clock inputs for the ADC1034/ADC1038. The S $\mathrm{S}_{\text {CK }}$ controls the rate at which the serial data exchange occurs and the duration of the analog sampling time window. The $\mathrm{C}_{\text {CLK }}$ controls the conversion time and must be continuously enabled. A low on $\overline{C S}$ enables the rising edge of $\mathrm{S}_{\text {CLK }}$ to shift in the serial multiplexer addressing data on the DI pin. The first three bits of this data select the analog input channel for the ADC1038 and the ADC1034 (see the Channel Addressing Tables). The following bit, R/ \bar{L}, selects the output data format (right-justified or left-justified) for the conversion to be started. With $\overline{\mathrm{CS}}$ and $\overline{\mathrm{OE}}$ low the DO pin is active (out of TRI-STATE) and the falling edge of $\mathrm{S}_{\text {CLK }}$ shifts out the data from the previous analog conversion. When the first conversion is started the data shifted out on $D O$ is erroneous as it depends on the state of the Parallel Load 16-Bit Shift Register on power up, which is unpredictable.
The ADC1031 implements its serial interface with only four control pins since it has only one analog input and comes in an eight pin mini-dip package. The $\mathrm{S}_{\text {CLK }}, \mathrm{C}_{\text {CLK }}, \overline{\mathrm{CS}}$ and $\overline{\mathrm{DO}}$ pins are available for the serial interface. The output data format cannot be selected and defaults to a left-justified format. The state of DO is controlled by $\overline{\mathrm{CS}}$ only.

2.2 OUTPUT DATA FORMAT

When R / \bar{L} is low the output data format is left-justified; when high it is right-justified. When right-justified, six leading " 0 "s are output on DO before the MSB, and the complete conversion result is shifted out in 16 clock periods.

2.3.0 $\overline{\text { CS }}$ HIGH DURING CONVERSION

With a continuous $\mathrm{S}_{\mathrm{CLK}}$ input, $\overline{\mathrm{CS}}$ must be used to synchronize the serial data exchange. A valid $\overline{\mathrm{CS}}$ is recognized if it occurs at least 100 ns (tsET-UP) before the rising edge of $\mathrm{S}_{\text {CLK }}$, thus causing data to be input on DI. If this does not

2．0 Functional Description（Continued）

occur there will be an uncertainty as to which $\mathrm{S}_{\text {CLK }}$ rising edge will clock in the first bit of data．$\overline{\mathrm{CS}}$ must remain low during the complete I／O exchange．Also，$\overline{\mathrm{OE}}$ needs to be low if data from the previous conversion needs to be ac－ cessed．

2．3．1 $\overline{\text { CS }}$ LOW CONTINUOUSLY

Another way to accomplish synchronous serial communica－ tion is to tie $\overline{\mathrm{CS}}$ low continuously and use SARS and $\mathrm{S}_{\text {CLK }}$ to synchronize the serial data exchange．S CLK can be disabled low during the conversion time and enabled after SARS goes low．With $\overline{\mathrm{CS}}$ low during the conversion time a zero will remain on DO until the conversion is completed．Once the conversion is complete，the falling edge of SARS will shift out on DO the MSB before $\mathrm{S}_{\mathrm{CLK}}$ is enabled．This MSB would be a leading zero if right－justified or D9 if left－justified． The rest of the data will be shifted out once ScLK is enabled as discussed previously．If $\overline{\mathrm{CS}}$ goes high during the conver－ sion sequence DO is put into TRI－STATE，and the conver－ sion result is not affected so long as $\overline{\mathrm{CS}}$ remains high until the end of the conversion．

2．4 TYING ScLK and CcLK TOGETHER

$\mathrm{S}_{\mathrm{CLK}}$ and $\mathrm{C}_{\mathrm{CLK}}$ can be tied together．The total conversion time will increase because the maximum clock frequency is now 1 MHz ．The timing diagrams and the serial I／O ex－ change time（ $10 \mathrm{~S}_{\mathrm{CLK}}$ cycles）remain the same，but the con－ version time（ $T_{C}=41 \mathrm{C}_{\mathrm{CLK}}$ cycles）lengthens from a mini－ mum of $14 \mu \mathrm{~s}$ to a minimum of $41 \mu \mathrm{~s}$ ．In the case where $\overline{\mathrm{CS}}$ is low continuously，since the applied clock cannot be dis－ abled，SARS must be used to synchronize the data output on DO and initiate a new conversion．The falling edge of SARS sends the MSB information out on DO．The next ris－ ing edge of the clock shifts in MUX address bit A2 on DI． The following clock falling edge will clock the next data bit of information out on DO．A conversion will be started after MUX addressing information has been loaded in（ 3 more clocks）and the analog sampling time（ 4.5 clocks）has elapsed．The ADC1031 does not have SARS．Therefore，$\overline{C S}$ cannot be left low continuously on the ADC1031．

3．0 Analog Considerations

3．1 THE INPUT SAMPLE AND HOLD

The ADC1031／4／8＇s sample／hold capacitor is implemented in its capacitive ladder structure．After the channel address is received，the ladder is switched to sample the proper ana－ log input．This sampling mode is maintained for 4.5 SCLK cycles after the multiplexer addressing information is loaded in．For the ADC1031／4／8，the sampling of the analog input starts on SCLK＇s 4th rising edge．

TL／H／10556－18
FIGURE 1．Analog Input Model

An acquisition window of $4.5 \mathrm{~S}_{\mathrm{CLK}}$ cycles is available to allow the ladder capacitance to settle to the analog input voltage．Any change in the analog voltage before or after the acquisition window will not effect the A／D conversion result．
In the most simple case，the ladder＇s acquisition time is de－ termined by the $\mathrm{R}_{\text {on }}$（ $9 \mathrm{k} \Omega$ ）of the multiplexer switches，the $\mathrm{C}_{\mathrm{S} 1}(3.5 \mathrm{pF})$ and the total ladder $\left(\mathrm{C}_{\mathrm{L}}\right)$ and stray（ $\mathrm{C}_{\mathrm{S} 2}$ ）capac－ itance（ 48 pF ）．For large source resistance the analog input can be modeled as an RC network as shown in Figure 1. The values shown yield an acquisition time of about $3 \mu \mathrm{~s}$ for 10 bit accuracy with a zero to a full scale change in the reading．External source resistance and capacitance will lengthen the acquisition time and should be accounted for． The curve＂Signal to Noise Ratio vs Output Frequency＂ （Figure 2）gives an indication of the usable bandwidth of the ADC1031／ADC1034／ADC1038．The signal to noise ratio of an ideal A / D is the ratio of the RMS value of the full scale input signal amplitude to the value of the total error ampli－ tude（including noise）caused by the transfer function of the A／D．An ideal 10 bit A／D converter with a total unadjusted error of 0 LSB would have a signal to noise ratio of about 62 dB ，which can be derived from the equation：

$$
S / N=6.02(N)+1.8
$$

where S / N is in $d B$ and N is the number of bits．Figure 2 shows the signal to noise ratio vs．input frequency of a typi－ cal ADC1031／4／8 with $1 / 2$ LSB total unadjusted error．The dotted lines show signal－to－noise ratios for an ideal（noise－ less） 10 bit A／D with 0 LSB error and an A／D with a 1 LSB error．
The sample－and－hold error specifications are included in the error and timing specifications of the A／D．The hold step and gain error sample／hold specs are taken into account in the ADC1031／4／8＇s total unadjusted error specification， while the hold settling time is included in the A／D＇s maxi－ mum conversion time specification．The hold droop rate can be thought of as being zero since an unlimited amount of time can pass between a conversion and the reading of data．However，once the data is read it is lost and another conversion is started．

3．2 INPUT FILTERING

Due to the sampling nature of the analog input，transients will appear on the input pins．They are caused by the ladder capacitance and internal stray capacitance charging current flowing into $V_{I N}$ ．These transients will not degrade the A／D＇s performance if they settle out within the sampling window． This will occur if external source resistance is kept to a mini－ mum．

TL／H／10556－19
FIGURE 2．ADC1031／4／8 Signal to Noise Ratio va Input Frequency
3.0 Analog Considerations (Continued)

External Reference 2.5V Full Scale

FIGURE 3. Analog Input Options

3.3 REFERENCE AND INPUT

The two $V_{\text {REF }}$ inputs of the ADC1031/4/8 are fully differential and define the zero to full-scale input range of the A to D converter. This allows the designer to easily vary the span of the analog input since this range will be equivalent to the voltage difference between $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}-$. By reducing $V_{\text {REF }}\left(V_{\text {REF }}=V_{\text {REF }}+-V_{\text {REF }}-\right.$) to less than $5 V$, the sensitivity of the converter can be increased (i.e., if $\mathrm{V}_{\text {REF }}=$ 2 V then $1 \mathrm{LSB}=1.95 \mathrm{mV}$). The input/reference arrange-

Power Supply Bypassing

ment also facilitates ratiometric operation and in many cases the chip power supply can be used for transducer power as well as the VREF source.
This reference flexibility lets the input span not only be varied but also offset from zero. The voltage at $\mathrm{V}_{\text {REF }}$ - sets the input level which produces a digital output of all zeros. Though $\mathrm{V}_{\mathbb{I N}}$ is not itself differential, the reference design allows nearly differential-input capability for many measurement applications. Figure 3 shows some of the configurations that are possible.
The ADC1031 has no $\mathrm{V}_{\text {REF }}{ }^{-}$pin. $\mathrm{V}_{\text {REF }}{ }^{-}$is internally tied to GND.

Protecting the Analog Inputs

ADC10731/ADC10732/ADC10734/ADC10738 10-Bit Plus Sign Serial I/O A/D Converters with Mux, Sample/Hold and Reference

General Description

This series of CMOS 10-bit plus sign successive approximation A/D converters features versatile analog input multiplexers, sample/hold and a 2.5 V band-gap reference. The 1 -, 2-, 4-, or 8-channel multiplexers can be software configured for single-ended or differential mode of operation.
An input sample/hold is implemented by a capacitive reference ladder and sampled-data comparator. This allows the analog input to vary during the A/D conversion cycle.
In the differential mode, valid outputs are obtained even when the negative inputs are greater than the positive because of the 10 -bit plus sign output data format.
The serial I/O is configured to comply with the NSC MICROWIRETM serial data exchange standard for easy interface to the COPSTM and HPCTM families of controllers, and can easily interface with standard shift registers and microprocessors.

Applications

- Medical instruments
- Portable and remote instrumentation
- Test equipment

Features

m 0 V to 5 V analog input range with single 5 V power supply

- Serial I/O (MICROWIRE compatible)
- 1-, 2-, 4-, or 8-channel differential or single-ended multiplexer
- Software or hardware power down
- Analog input sample/hold function
- Ratiometric or absolute voltage referencing
- No zero or full scale adjustment required
- No missing codes over temperature
- TTL/CMOS input/output compatible
- Standard DIP and SO packages

Key Specifications

- Resolution 10 bits plus sign
- Single supply
- Power dissipation
- In powerdown mode

37 mW (Max)
$18 \mu \mathrm{~W}$

- Conversion time
$5 \mu \mathrm{~s}$ (Max)
- Sampling rate

74 kHz (Max)

- Band-gap reference

ADC10738 Simplified Block Diagram

TL/H/11390-1

Connection Diagrams for Dual-In-Line and SO Packages

TL/H/11390-2
Top View
See NS Package Number N16E or M16B

TL/H/11390-3
Top View
See NS Package Number N20A or M20B

TL/H/11390-4
Top View
See NS Package Number N20A or M20B

TL/H/11390-5
Top View
See NS Package Number N24A or M24B

Industrial Temperature Range $-40^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathbf{C}$	Package
ADC10731CIN	N16E
ADC10731CIWM	M16B
ADC10732CIN	N20A
ADC10732CIWM	M20B
ADC10734CIMSA	MSA20
ADC10734CIN	N20A
ADC10734CIWM	M20B
ADC10738CIN	N24A
ADC10738CIWM	M24B

See NS Package Number MSA20

Absolute Maximum Ratings (Notes 1 \& 3)	
please contact the National Semiconductor Sales	
Supply Voltage ($\mathrm{V}^{+}=\mathrm{AV}+=\mathrm{DV}^{+}$)	6.5 V
Total Reference Voltage ($\mathrm{VREF}^{+}-\mathrm{V}_{\text {REF }}{ }^{+}$)	EF ${ }^{-}$) 6.5 V
Voltage at Inputs and Outputs V+	$\mathrm{V}^{+}+0.3 \mathrm{~V}$ to -0.3 V
Input Current at Any Pin (Note 4)	30 mA
Package Input Current (Note 4)	120 mA
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)	te 5) 500 mW
ESD Susceptability (Note 6)	
Human Body Model	2500 V
Machine Model	150 V
Soldering Information	
N packages (10 seconds)	$260^{\circ} \mathrm{C}$
SO Package (Note 7)	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$
Storage Temperature -	$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Supply Voltage ($\mathrm{V}^{+}=\mathrm{AV}+=\mathrm{DV}+$)... 6.5 V
Total Reference Voltage ($\mathrm{V}_{\text {REF }}{ }^{+}-\mathrm{V}_{\text {REF }}{ }^{-}$)
Voltage at Inputs and Outputs $\quad \mathrm{V}^{+}+0.3 \mathrm{~V}$ to -0.3 V Input Current at Any Pin (Note 4) 30 mA
Package Input Current (Note 4)
120 mA
500 mW

2500 V 150 V
Soldering Information
N packages (10 seconds)
Vapor Phase (60 seconds)
$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings (Notes 2 and 3)

Operating Temperature Range $\quad T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$

Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{AV}+=\mathrm{DV}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{+}}=2.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{-}}=\mathrm{GND}, \mathrm{V}_{\mathrm{IN}^{-}}=2.5 \mathrm{~V}$ for Signed Characteristics, $\mathrm{V}_{\mathrm{IN}}{ }^{-}=$GND for Unsigned Characteristics and $\mathrm{f}_{\mathrm{LK}}=2.5 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max; }}$ all other limits $\mathbf{T}_{\mathbf{A}}=\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$. (Notes $\mathbf{8 , 9} \mathbf{9}$ and 10)

Symbol	Parameter	Conditions	Typical (Note 11)	Limits (Note 12)	Units (Limits)

SIGNED STATIC CONVERTER CHARACTERISTICS

	Resolution with No Missing Codes			10 + Sign	Bits
TUE	Total Unadjusted Error (Note 13)			± 2.0	LSB(max)
INL	Positive and Negative Integral Linearity Error			± 1.25	LSB (max)
	Positive and Negative Full-Scale Error			± 1.5	LSB(max)
	Offset Error			± 1.5	LSB(max)
	Power Supply Sensitivity Offset Error + Full-Scale Error - Full-Scale Error	$V+=+5.0 \mathrm{~V} \pm 10 \%$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.2 \\ & \pm 0.1 \end{aligned}$	$\begin{array}{r} \pm \mathbf{1 . 0} \\ \pm \mathbf{1 . 0} \\ \pm 0.75 \end{array}$	LSB(max) LSB(max) LSB(max)
	DC Common Mode Error (Note 14)	$\begin{aligned} & V_{\mathbb{N N}^{+}}=\mathrm{V}_{\mathbb{N}^{-}}=\mathrm{V}_{\mathbb{I N}} \text { where } \\ & 5.0 \mathrm{~V} \geq \mathrm{V}_{\mathrm{IN}} \geq 0 \mathrm{~V} \end{aligned}$	± 0.1	± 0.33	LSB(max)
	Multiplexer Channel to Channel Matching		± 0.1		LSB

Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}^{+}=\mathrm{AV}+=\mathrm{DV}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=2.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{GND}, \mathrm{V}_{\mathrm{IN}^{-}}=2.5 \mathrm{~V}$ for Signed Characteristics, $\mathrm{V}_{I N^{-}}=$GND for Unsigned Characteristics and $\mathrm{f}_{\mathrm{CLK}}=2.5 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX; }}$ all other limits $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$. (Notes 8, 9 and 10) (Continued)

Symbol	Parameter	Conditions	Typical (Note 11)	Limits (Note 12)	Units (Limits)

UNSIGNED STATIC CONVERTER CHARACTERISTICS

	Resolution with No Missing Codes			10	Bits
TUE	Total Unadjusted Error (Note 13)	$\mathrm{V}_{\text {REF }}{ }^{+}=4.096 \mathrm{~V}$	± 0.75		LSB
INL	Integral Linearity Error	$\mathrm{V}_{\text {REF }}{ }^{+}=4.096 \mathrm{~V}$	± 0.50		LSB
	Full-Scale Error	$\mathrm{V}_{\text {REF }}{ }^{+}=4.096 \mathrm{~V}$		± 1.25	LSB (max)
	Offset Error	$\mathrm{V}_{\text {REF }}{ }^{+}=4.096 \mathrm{~V}$		± 1.25	LSB(max)
	Power Supply Sensitivity Offset Error Full-Scale Error	$\begin{aligned} & \mathrm{V}^{+}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{~V}_{\text {REF }}+=4.096 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.1 \end{aligned}$		$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
	DC Common Mode Error (Note 14)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{+}}=\mathrm{V}_{\mathrm{IN}^{-}}=\mathrm{V}_{\mathrm{IN}} \\ & \text { where }+5.0 \mathrm{~V} \geq \mathrm{V}_{\mathrm{IN}} \geq 0 \mathrm{~V} \end{aligned}$	± 0.1		LSB
	Multiplexer Channel to Channel Matching	$\mathrm{V}_{\text {REF }}{ }^{+}=4.096 \mathrm{~V}$	± 0.1		LSB

DYNAMIC SIGNED CONVERTER CHARACTERISTICS

Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}^{+}=\mathrm{AV}+=\mathrm{DV}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=2.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{GND}, \mathrm{V}_{\mathbb{N}^{-}}=2.5 \mathrm{~V}$ for Signed Characteristics, $\mathrm{V}_{\mathbb{N}^{-}}=$GND for Unsigned Characteristics and $\mathrm{f}_{\mathrm{CLK}}=2.5 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {mim }}$ to $\mathbf{T}_{\text {max; }}$ all other limits $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$. (Notes 8, 9 and 10) (Continued)

Symbol	Parameter	Conditions	Typical (Note 11)	Limits (Note 12)	Units (Limits)

DYNAMIC UNSIGNED CONVERTER CHARACTERISTIC

S/(N+D)	Signal-to-Noise Plus Distortion Ratio	$\mathrm{V}_{\mathrm{REF}}{ }^{+}=4.096 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V}_{\mathrm{PP}}$, and $\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}$ to 15 kHz	60		dB ${ }^{\text {P }}$
	Effective Bits	$\mathrm{V}_{\mathrm{REF}}{ }^{+}=4.096 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V} \mathrm{PP}$, and $\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}$ to 15 kHz	9.8		Bits
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}+=4.096 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=4.0 \mathrm{VPP}, \text { and } \\ & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz} \text { to } 15 \mathrm{kHz} \end{aligned}$	-70	.	dB
IMD	Intermodulation Distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}+=4.096 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=4.0 \mathrm{~V} \text { PP, and } \\ & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz} \text { to } 15 \mathrm{kHz} \end{aligned}$	-73		dB
	Full-Power Bandwidth	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V}_{\mathrm{PP}}, \\ & \mathrm{~V}_{\mathrm{REF}}+=4.096 \mathrm{~V}, \\ & \text { where } \mathrm{S} /(\mathrm{N}+\mathrm{D}) \text { decreases } 3 \mathrm{~dB} \end{aligned}$	380		kHz
	Multiplexer Channel to Channel Crosstalk	$\begin{aligned} & \mathrm{f}_{\mathrm{N}}=15 \mathrm{kHz}, \\ & \mathrm{~V}_{\text {REF }}+=4.096 \mathrm{~V} \end{aligned}$	-80		dB

REFERENCE INPUT AND MULTIPLEXER CHARACTERISTICS

	Reference Input Resistance	- :	7	$\begin{array}{r} 5.0 \\ 9.5 \end{array}$	
$\mathrm{C}_{\text {REF }}$	Reference Input Capacitance		70	.	pF
	MUX Input Voltage			$\begin{gathered} -50 \\ A V+50 \mathrm{mV} \end{gathered}$	$\mathrm{mV}(\mathrm{min})$ (max)
$\mathrm{ClM}_{\mathrm{M}}$	MUX Input Capacitance		47		pF
	Off Channel Leakage Current (Note 15)	On Channel $=5 \mathrm{~V}$ and Off Channel $=0 \mathrm{~V}$ On Channel $=0 \mathrm{~V}$ and Off Channel $=5 \mathrm{~V}$	$\begin{gathered} -0.4 \\ 0.4 \end{gathered}$	$\begin{array}{r} -3.0 \\ 3.0 \end{array}$	$\mu \mathrm{A}$ (max) $\mu \mathrm{A}$ (max)
	On Channel Leakage Current (Note 15)	On Channel $=5 \mathrm{~V}$ and Off Channel $=0 \mathrm{~V}$ On Channel $=0 \mathrm{~V}$ and Off Channel $=5 \mathrm{~V}$	$\begin{gathered} 0.4 \\ -0.4 \end{gathered}$	$\begin{gathered} 3.0 \\ -3.0 \end{gathered}$	$\mu \mathrm{A}$ (max) $\mu \mathrm{A}$ (max)

Electrical Characteristics (Continued) The following specifications apply for $\mathrm{V}^{+}=\mathrm{AV}{ }^{+}=\mathrm{DV}+=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=2.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{GND}, \mathrm{V}_{\mathrm{IN}^{-}}=2.5 \mathrm{~V}$ for Signed Characteristics, $\mathrm{V}_{I N^{-}}=G \mathrm{GND}$ for Unsigned Characteristics and $\mathrm{f}_{\mathrm{CLK}}=2.5 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=+25^{\circ} \mathrm{C}$. (Notes 8, 9 and 10) (Continued)					
Symbol	Parameter	Conditions	Typical (Note 11)	Limits (Note 12)	Units (Limits)
REFERENCE CHARACTERISTICS					
$V_{\text {REF }}$ Out	Reference Output Voltage		$2.5 \mathrm{~V} \pm 0.5 \%$	2.5V $\pm 2 \%$	V (max)
$\Delta \mathrm{V}_{\text {REF }} / \Delta T$	$\mathrm{V}_{\text {REF }}$ Out Temperature Coefficient		± 40		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\Delta V_{\text {REF }} / \Delta l_{\text {L }}$	Load Regulation, Sourcing	$0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq+4 \mathrm{~mA}$	± 0.003	± 0.05	\%/mA(max)
$\Delta V_{\text {REF }} / \Delta L_{L}$	Load Regulation, Sinking	$0 \mathrm{~mA} \leq \mathrm{L}_{\mathrm{L}} \leq-1 \mathrm{~mA}$	± 0.2	± 0.6	\%/mA(max)
	Line Regulation	$5 \mathrm{~V} \pm 10 \%$	± 0.3	± 2.5	mV (max)
ISC	Short Circuit Current	$\mathrm{V}_{\text {REF }}$ Out $=0 \mathrm{~V}$	13	22	mA (max)
	Noise Voltage	10 Hz to $10 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}$	5	.	$\mu \mathrm{V}$
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{t}$	Long-term Stability		± 120		$\mathrm{ppm} / \mathrm{kHr}$
tsu	Start-Up Time	$C_{L}=100 \mu \mathrm{~F}$	100		ms
DIGITAL AND DC CHARACTERISTICS					
$\mathrm{V}_{\mathrm{IN}(1)}$	Logical "1" Input Voltage	$\mathrm{V}+=5.5 \mathrm{~V}$		2.0	$V(\min)$
$\mathrm{V}_{\text {IN(0) }}$	Logical " 0 " Input Voltage	$\mathrm{V}+=4.5 \mathrm{~V}$.	0.8	$V(\max)$
$\ln (1)$	Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$	0.005	+2.5	$\mu A(\max)$
InN(0)	Logical "0" Input Current	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	-0.005	-2.5	$\mu A($ max $)$
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \text { IOUT }=-360 \mu \mathrm{~A} \\ & \mathrm{~V}+=4.5 \mathrm{~V}, \text { IOUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	$V(\min)$ $V($ min $)$
$\mathrm{V}_{\text {OUT(0) }}$	Logical " 0 " Output Voltage	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{lOUT}=1.6 \mathrm{~mA}$		0.4	$V($ min $)$
Iout	TRI-STATE Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} -0.1 \\ +0.1 \\ \hline \end{array}$	$\begin{array}{r} -3.0 \\ +\mathbf{3 . 0} \\ \hline \end{array}$	$\mu A(\max)$ $\mu A(\max)$
+ ISC	Output Short Circuit Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}^{+}=4.5 \mathrm{~V}$	-30	-15	mA(min)
-ISC	Output Short Circuit Sink Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}+=4.5 \mathrm{~V}$	30	15	$\mathrm{mA}(\mathrm{min})$
I^{+}	Digital Supply Current (Note 17)	$\overline{\mathrm{CS}}=$ HIGH, Power Up $\overline{\mathrm{CS}}=$ HIGH, Power Down $\overline{\mathrm{CS}}=\mathrm{HIGH}$, Power Down, and CLK Off	$\begin{aligned} & 0.9 \\ & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 0.4 \\ & 50 \end{aligned}$	mA(max) mA(max) $\mu A(\max)$
$\mathrm{I}_{\mathrm{A}}{ }^{+}$	Analog Supply Current (Note 17)	$\begin{aligned} & \overline{\mathrm{CS}}=\text { HIGH, Power Up } \\ & \overline{\mathrm{CS}}=\text { HIGH, Power Down } \end{aligned}$	$\begin{gathered} 2.7 \\ 3 \\ \hline \end{gathered}$	$\begin{array}{r} 6.0 \\ 15 \\ \hline \end{array}$	mA(max) $\mu \mathrm{A}$ (max)
$I_{\text {REF }}$	Reference Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}{ }^{+}=+2.5 \mathrm{~V} \text { and } \\ & \overline{\mathrm{CS}}=\mathrm{HIGH}, \text { Power Up } \end{aligned}$	-	0.6	mA (max)

Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}^{+}=\mathrm{AV}^{+}=\mathrm{DV}+=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=2.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{GND}, \mathrm{V}_{\mathrm{IN}^{-}}=2.5 \mathrm{~V}$ for Signed Characteristics, $\mathrm{V}_{\mathbb{N}}{ }^{-}=$GND for Unsigned Characteristics and $\mathrm{f}_{\mathrm{CLK}}=2.5 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$. (Note 16)

Symbol	Parameter	Conditions	Typical (Note 11)	Limits (Note 12)	Units (Limits)

AC CHARACTERISTICS

${ }^{\text {f CLK }}$	Clock Frequency		$\begin{gathered} 3.0 \\ 5 \end{gathered}$	2.5	$\begin{gathered} \mathrm{MHz}(\max) \\ \mathrm{kHz}(\min) \end{gathered}$
,	Clock Duty Cycle	,		$\begin{aligned} & 40 \\ & 60 \end{aligned}$	\%(min) \%(max)
t_{6}	Conversion Time		12 5	12 5	Clock Cycles $\mu \mathrm{s}$ (max)
$t_{\text {A }}$	Acquisition Time		$\begin{gathered} 4.5 \\ 2 \end{gathered}$	4.5 2	Clock Cycles $\mu \mathrm{s}$ (max)
tscs	$\overline{\mathrm{CS}}$ Set-Up Time, Set-Up Time from Falling Edge of CS to Rising Edge of Clock		$\begin{gathered} 14 \\ \left(1 \mathrm{t}_{\mathrm{CLK}}\right. \\ -14 \mathrm{~ns}) \end{gathered}$	$\begin{gathered} 30 \\ \left(1 \text { tcLK }^{2}\right. \\ -30 \mathrm{~ns}) \end{gathered}$	$\mathrm{ns}(\min)$ (max)
${ }^{\text {tSDI }}$	DI Set-Up Time, Set-Up Time from Data Valid on DI to Rising Edge of Clock		16	25	ns (min)
${ }_{\text {thDI }}$	DI Hold Time, Hold Time of DI Data from Rising Edge of Clock to Data not Valid on DI		2	25	$\mathrm{ns}(\mathrm{min})$
$t_{\text {AT }}$	DO Access Time from Rising Edge of CLK When $\overline{C S}$ is "Low" during a Conversion		30	50	$\mathrm{ns}(\mathrm{min})$
${ }^{\text {t }}$ A	DO or SARS Access Time from CS, Delay from Falling Edge of $\overline{C S}$ to Data Valid on DO or SARS		30	70	ns (max)
$t_{\text {DSARS }}$	Delay from Rising Edge of Clock to Falling Edge of SARS when $\overline{\mathrm{CS}}$ is "Low"		100	200	ns (max)
${ }_{\text {thDO }}$	DO Hold Time, Hold Time of Data on DO after Falling Edge of Clock		20	35	$\mathrm{ns}(\mathrm{max})$
${ }^{\text {t }}$ AD	DO Access Time from Clock, Delay from Falling Edge of Clock to Valid Data of DO		40	80	ns(max)
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$	Delay from Rising Edge of $\overline{\mathrm{CS}}$ to DO or SARS TRI-STATE		40	50	$\mathrm{ns}(\mathrm{max})$
$t_{\text {DCS }}$	Delay from Falling Edge of Clock to Falling Edge of $\overline{C S}$		20	30	$n s(m i n)$
${ }^{\text {t }} \mathrm{CS}(\mathrm{H})$	CS "HIGH" Time for A/D Reset after Reading of Conversion Result		1 CLK	1 CLK	cycle(min)
${ }^{\text {t }}$ CS(L)	ADC10731 Minimum CS "Low" Time to Start a Conversion		1 CLK	1 CLK	cycle(min)
$\mathrm{tsC}^{\text {c }}$	Time from End of Conversion to $\overline{\mathrm{CS}}$ Going "Low"		5 CLK	5 CLK	cycle(min)
$t_{P D}$	Delay from Power-Down command to 10% of Operating Current		1		$\mu \mathrm{S}$
${ }_{\text {tPC }}$	Delay from Power-Up Command to Ready to Start a New Conversion		10		$\mu \mathrm{S}$
$\mathrm{C}_{\text {IN }}$	Capacitance of Logic Inputs		7		pF
COUT	Capacitance of Logic Outputs		12		pF

Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
Note 2: Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifcations and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 3: All voltages are measured with respect to GND, unless otherwise specified.
Note 4: When the input voltage $\left(V_{\mathbb{I}}\right)$ at any pin exceeds the power supplies ($V_{\mathbb{N}}<G N D$ or $V_{I N}>A V+$ or $D V+$), the current at that pln should be limited to 30 mA The 120 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 30 mA to four.

Note 5: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{\text {Jmax }}, \theta_{J A}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{\mathrm{Jmax}}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$ or the number given In the Absolute Maximum Ratings, whichever is lower. For this device, $T_{J \max }=150^{\circ} \mathrm{C}$. The typical thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ of these Paris when board mounted can be found in the following table:

Part Number	Thermal Resistance	Package Type
ADC10731CIN	$82^{\circ} \mathrm{C} / \mathrm{W}$	N 16 E
ADC10731CIWM	$90^{\circ} \mathrm{C} / \mathrm{W}$	M 16 B
ADC10732CIN	$47^{\circ} \mathrm{C} / \mathrm{W}$	N 20 A
ADC10732CIWM	$80^{\circ} \mathrm{C} / \mathrm{W}$	M20B
ADC10734CIMSA	$134^{\circ} \mathrm{C} / \mathrm{W}$	MSA2O
ADC10734CIN	$47^{\circ} \mathrm{C} / \mathrm{W}$	N20A
ADC10734CIWM	$80^{\circ} \mathrm{C} / \mathrm{W}$	M20B
ADC10738CIN	$60^{\circ} \mathrm{C} / \mathrm{W}$	N24A
ADC10738CIWM	$75^{\circ} \mathrm{C} / \mathrm{W}$	M24B

Note 6: The human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

Note 7: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titied "Surtace Mount" found in any post 1986 National Semiconductor Linear Data Book for other methods of soldering surtace mount devices.
Note 8: Two on-ohip diodes are tied to each analog input as shown below. They will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V^{+}supply. Be careful during testing at low V^{+}levels (+4.5 V), as high level analog inputs (+5 V) can cause an input diode to conduct, especially at elevated temperatures, which will cause errors In the conversion result. The specification allows 50 mV forward bias of either diode; this means that as long as the analog $V_{I N}$ does not exceed the supply voltage by more than 50 mV , the output code will be oorrect. Exceeding this range on an unselected channel will corrupt the reading of a selected channel. If AV^{+}and $\mathrm{DV}+$ are minimum ($4.5 \mathrm{~V}_{\mathrm{DC}}$) and full scale must be $\leq+4.55 \mathrm{~V}_{\mathrm{DC}}$.

TL/H/11390-6
Note 9: No connection exists between AV^{+}and $\mathrm{DV}+$ on the chip.
To guarantee accuracy, it is required that the AV+ and $D V+$ be connected together to a power supply with separate bypass filter at eacn V^{+}pin.
Note 10: One LSB is referenced to 10 bits of resolution.
Note 11: Typicals are at $T_{J}=T_{A}=25^{\circ} \mathrm{C}$ and represent most likely pararmetric norm.
Note 12: Tested limits are guaranteed to National's AOQL (Average Outgolng Quality Level).
Note 13: Total unadjusted error includes offset, full-scale, linearity, multiplexer, and hold step errors.
Note 14: The DC common-mode error is measured in the differential multiplexer mode with the assigned positive and negative input channels shorted together.
Note 15: Channel leakage current is measured after the channel selection.
Note 16: All the timing specifications are tested at the TTL logic levels, $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ for a falling edge and $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$ for a rising. TRI-STATE voltage level is forced to 1.4 V .
Note 17: The voltage applied to the digital inputs will affect the current drain during power down. These devices are tested with CMOS logic levels (logic Low = OV and logic High $=5 \mathrm{~V}$). TTL levels increase the current, during power down, to about $300 \mu \mathrm{~A}$.

Electrical Characteristics (Continued)

FIGURE 1A. Transter Characteristic

FIGURE 1B. Simplified Error Curve vs Output Code

Leakage Current Test Circuit

Typical Performance Characteristics

Digital Supply Current ($\mathrm{ID}_{\mathrm{D}}+$) vs Clock Frequency

Analog Supply Current ($\mathbf{I}_{\mathbf{A}}+$) vs Clock Frequency

Digital Supply Current ($\mathbf{I D}^{+}$) vs Temperature

Offset Error vs Temperature

10－Bit Unsigned Signal－to－Noise＋THD Ratio vs Input Signal Level

Linearity Error vs Reference Voltage

Spectral Response with 34 kHz Sine Wave

Typical Reference Performance Characteristics

Available
Output Current vs Supply Voltage

Power Bandwidth Response with 380 kHz Sine Wave

TL／H／11390－23

TRI-STATE Test Circuits and Waveforms

TL/H/11390-10

TL/H/11390-12

TL/H/11390-13

Timing Diagrams

DO

TL/H/11390-14
FIGURE 2. DI Timing

FIGURE 3. DO Timing

Timing Diagrams (Continued)

FIGURE 4. Delayed DO Timing

FIGURE 5. Hardware Power Up/Down Sequence

FIGURE 6. Software Power Up/Down Sequence

Timing Diagrams (Continued)

Note: If $\overline{C S}$ is low during power up of the power supply voltages (AV^{+}and $\mathrm{DV}{ }^{+}$) then $\overline{\mathrm{CS}}$ needs to go high for $\mathrm{t}_{\mathrm{CS}(\mathrm{H})}$. The data output after the first conversion is invalid.

FIGURE 7. ADC10731 $\overline{\mathbf{C S}}$ Low during Conversion

FIGURE 8. ADC10732, ADC10734 and ADC10738 CS Low during Conversion

TABLE I. ADC10738 Multiplexer Address Assignment

TABLE II. ADC10734 Multiplexer Address Assignment

MUX Address					Channel Number					MUX MODE
MAO	MA1	MA2	MA3	MA4	CHO	CH1	CH2	CH3	COM	
PU	SING/ DIFF	ODD/ SIGN	SEL1	SELO						
1	1	0	0	0	+	+	+	+	-	Single-Ended
1	1	0	0	1					-	
1	1	1	0	0					-	
1	1	1	0	1					-	
1	0	0	0	0	+	-				
1	0	0	0	1			$+$	-		
1	0	1	0	0	-	+				Differential
1	0	1	0	1			-	+		
0	X	X	X	X	Power Down (All Channels Disconnected)					

TABLE III. ADC10732 Multiplexer Address Assignment

MUX Address					Channel Number			MUX MODE
MAO	MA1	MA2	MA3	MA4	CHO	CH1	COM	
PU	SING/ DIFF	ODD/ SIGN	SEL1	SELO				
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	+	$+$	-	Single-Ended
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	+ -	+		Differential
0	X	X	X	X	Power Down (All Channels Disconnected)			

Pin Descriptions

CLK The clock applied to this input controls the successive approximation conversion time interval, the acquisition time and the rate at which the serial data exchange occurs. The rising edge loads the information on the DI pin into the multiplexer address shift register. This address controls which channel of the analog input multiplexer (MUX) is selected. The falling edge shifts the data resulting from the A/D conversion out on DO. $\overline{C S}$ enables or disables the above functions. The clock frequency applied to this input can be between 5 kHz and 3 MHz .
DI This is the serial data input pin. The data applied to this pln is shifted by CLK into the multiplexer address register. Tables I through III show the multiplexer address assignment.
DO The data output pin. The A/D conversion result (DBO-SIGN) are clocked out by the failing edge of CLK on this pin.
$\overline{\mathrm{CS}} \quad$ This is the chip select input pin. When a logic low is applied to this pin, the rising edge of CLK shifts the data on DI into the address register. This low also brings DO out of TRI-STATE after a conversion has been completed.
PD This is the power down input pin. When a logic high is applied to this pin the A/D is powered down. When a low is applied the A / D is powered up.
SARS This is the successive approximation register status output pin. When $\overline{\mathrm{CS}}$ is high this pin is in TRI-STATE. With $\overline{\mathrm{CS}}$ low this pin is active high when a conversion is in progress and active low at all other times.
$\mathrm{CHO}-\mathrm{CH} 7$ These are the analog inputs of the MUX. A channel input is selected by the address information at the DI pin, which is loaded on the rising edge of CLK into the address register (see Tables I-III).
The voltage applied to these inputs should not exceed $A V+$ or go below GND by more than 50 mV . Exceeding this range on an unselected channel will corrupt the reading of a selected channel.
COM This pin is another analog input pin. It can be used as a "pseudo ground" when the analog multiplexer is single-ended.
$\mathrm{V}_{\mathrm{REF}}{ }^{+} \quad$ This is the positive analog voltage reference input. In order to malntaln accuracy, the voltage range $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}{ }^{+}-\mathrm{V}_{\text {REF }}{ }^{-}\right.$) is $0.5 \mathrm{~V}_{\mathrm{DC}}$ to $5.0 \mathrm{~V}_{\mathrm{DC}}$ and the voltage at $\mathrm{V}_{\mathrm{REF}}{ }^{+}$ cannot exceed $\mathrm{AV}^{+}+50 \mathrm{mV}$.
$\mathrm{V}_{\text {REF }}{ }^{-} \quad$ The negative voltage reference input. In order to maintain accuracy, the voltage at this pin must not go below GND - 50 mV or exceed $\mathrm{AV}+$ +50 mV .

These are the analog and digital power supply pins. These pins should be tied to the same power supply and bypassed separately. The operating voltage range of $\mathrm{AV}{ }^{+}$and $\mathrm{DV}{ }^{+}$is 4.5 $V_{D C}$ to $5.5 V_{D C}$.

DGND This is the digital ground pin.
AGND This is the analog ground pin.

Applications Hints

The ADC10731/2/4/8 use successive approximation to digitize an analog input voltage. The DAC portion of the A/D converters uses a capacitive array and a resistive ladder structure. The structure of the DAC allows a very simple switching scheme to provide a versatile analog input multiplexer. This structure also provides a sample/hold. The ADC10731/2/4/8 have a 2.5 V CMOS bandgap reference. The serial digital I/O interfaces to MICROWIRE and MICROWIRE+.

1.0 DIGITAL INTERFACE

There are two modes of operation. The fastest throughput rate is obtained when $\overline{\mathrm{CS}}$ is kept low during a conversion. The timing diagrams in Figures 7 and 8 show the operation of the devices in this mode. $\overline{\mathrm{CS}}$ must be taken high for at least $\mathrm{t}_{\mathrm{CS}(\mathrm{H})}(1 \mathrm{CLK})$ between conversions. This is necessary to reset the internal logic. Figures 9 and 10 show the operation of the devices when $\overline{\mathrm{CS}}$ is taken high while the ADC10731/2/4/8 is converting. $\overline{C S}$ may be taken high during the conversion and kept high indefinitely to delay the output data. This mode simplifies the interface to other devices while the ADC10731/2/4/8 is busy converting.

1.1 Getting Started with a Conversion

The ADC10731/2/4/8 need to be initialized after the power supply voltage is applied. If $\overline{\mathrm{CS}}$ is low when the supply voltage is applied then $\overline{\mathrm{CS}}$ needs to be taken high for at least ${ }^{\mathrm{t}} \mathrm{CS}(\mathrm{H})$ (1 clock period). The data output after the first conversion is not valid.

1.2 Software and Hardware Power Up/Down

These devices have the capability of software or hardware power down. Figures 5 and 6 show the timing diagrams for hardware and software power up/down. In the case of hardware power down note that $\overline{C S}$ needs to be high for $t_{P C}$ after PD is taken low. When PD is high the device is powered down. The total quiescent current, when powered down, is typically $200 \mu \mathrm{~A}$ with the clock at 2.5 MHz and $3 \mu \mathrm{~A}$ with the clock off. The actual voltage level applied to a digital input will effect the power consumption of the
device during power down. CMOS logic levels will give the least amount of current drain ($3 \mu \mathrm{~A}$). TTL logic levels will increase the total current drain to $200 \mu \mathrm{~A}$.
These devices have resistive reference ladders which draw $600 \mu \mathrm{~A}$ with a 2.5 V reference voltage. The internal band gap reference voltage shuts down when power down is activated. If an external reference voltage is used, it will have to be shut down to minimize the total current drain of the device.

2.0 ARCHITECTURE

Before a conversion is started, during the analog input sampling period, $\left(\mathrm{t}_{\mathrm{A}}\right)$, the sampled data comparator is zeroed. As the comparator is being zeroed the channel assigned to be the positive input is connected to the A/D's input capacitor. (The assignment procedure is explained in the Pin Descriptions section.) This charges the input 32C capacitor of the DAC to the positive analog input voltage. The switches shown in the DAC portion of Figure 11 are set for this zeroing/acquisition period. The voltage at the input and output of the comparator are at equilibrium at this time. When the conversion is started, the comparator feedback switches are opened and the 32C input capacitor is then switched to the assigned negative input voltage. When the comparator feedback switch opens, a fixed amount of charge is trapped on the common plates of the capacitors. The voltage at the input of the comparator moves away from equilibrium when the 32C capacitor is switched to the assigned negative input voltage, causing the output of the comparator to go high ("1") or low (" 0 "). The SAR next goes through an algorithm, controlled by the output state of the comparator, that redistributes the charge on the capacitor array by switching the voltage on one side of the capacitors in the array. The objective of the SAR algorithm is to return the voltage at the input of the comparator as close as possible to equilibrium. The switch position information at the completion of the successive approximation routine is a direct representation of the digital output. This data is then available to be shifted on the DO pin.

Applications Hints (Continued)

3.0 APPLICATIONS INFORMATION

3.1 Multiplexer Configuration

The design of these converters utilizes a sampled-data comparator structure, which allows a differential analog input to be converted by the successive approximation routine.
The actual voltage converted is always the difference between an assigned " + " input terminal and a " - " input terminal. The polarity of each input terminal or pair of input terminals being converted indicates which line the converter expects to be the most positive.
A unique input multiplexing scheme has been utilized to provide multiple analog channels. The input channels can be software configured into three modes: differential, singleended, or pseudo-differential. Figure 12 illustrates the three modes using the 4 -channel MUX of the ADC10734. The eight inputs of the ADC10738 can also be configured in any of the three modes. The single-ended mode has $\mathrm{CH} 0-\mathrm{CH} 3$ assigned as the positive input with COM serving as the negative input. In the differential mode, the ADC10734 channel inputs are grouped in pairs, CHO with CH 1 and CH 2 with CH 3 . The polarity assignment of each channel in the pair is interchangeable. Finally, in the pseudo-differential mode $\mathrm{CHO}-\mathrm{CH} 3$ are positive inputs referred to COM which is now a pseudo-ground. This pseudo-ground input can be set to any potential within the input common-mode range of the converter. The analog signal conditioning required in trans-ducer-based data acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground-referred inputs and true differential inputs as well as signals referred to a specific voltage.
The analog input voltages for each channel can range from 50 mV below GND to 50 mV above $\mathrm{V}^{+}=\mathrm{DV}^{+}=\mathrm{AV}{ }^{+}$ without degrading conversion accuracy. If the voltage on an unselected channel exceeds these limits it may corrupt the reading of the selected channel.

3.2 Reference Considerations

The voltage difference between the $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$inputs defines the analog input voltage span (the difference between $\mathrm{V}_{\text {IN }}(\mathrm{Max})$ and $\left.\mathrm{V}_{\text {IN }}(\mathrm{Min})\right)$ over which 1023 positive and 1024 negative possible output codes apply.
The value of the voltage on the $\mathrm{V}_{\text {REF }}{ }^{+}$or $\mathrm{V}_{\text {REF }}{ }^{-}$inputs can be anywhere between $\mathrm{AV}++50 \mathrm{mV}$ and -50 mV , so long as $\mathrm{V}_{\mathrm{REF}}{ }^{+}$is greater than $\mathrm{V}_{\text {REF }}{ }^{-}$. The ADC10731/2/4/8 can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pins must be connected to a voltage source capable of driving the minimum reference input resistance of $5 \mathrm{k} \Omega$.
The internal 2.5 V bandgap reference in the ADC10731/2/4/8 is available as an output on the $V_{\text {REF }} O$ ut pin. To ensure optimum performance this output needs to be bypassed to ground with $100 \mu \mathrm{~F}$ aluminum electrolytic or tantalum capacitor. The reference output can be unstable with capacitive loads greater than 100 pF and less than $100 \mu \mathrm{~F}$. Any capacitive loading less than 100 pF and greater than $100 \mu \mathrm{~F}$ will not cause oscillation. Lower
output noise can be obtained by increasing the output capacitance. A $100 \mu \mathrm{~F}$ capacitor will yield a typical noise floor of $200 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. The pseudo-differential and differential multiplexer modes allow for more flexibility in the analog input voltage range since the "zero" reference voltage is set by the actual voltage applied to the assigned negative input pin.
In a ratiometric system (Figure 13a), the analog input voltage is proportional to the voltage used for the A/D reference. This voltage may also be the system power supply, so $\mathrm{V}_{\mathrm{REF}}{ }^{+}$can also be tied to $\mathrm{AV}{ }^{+}$. This technique relaxes the stability requirements of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy (Figure 13b), where the analog input varies between very specific voltage limits, the reference pin can be biased with a time- and temperature-stable voltage source that has excellent initial accuracy. The LM4040, LM4041 and LM185 references are suitable for use with the ADC10731/2/4/8.
The minimum value of $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}{ }^{+}-\mathrm{V}_{\text {REF }}{ }^{-}\right)$can be quite small (see Typical Performance Characteristics) to allow direct conversion of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voitage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $\mathrm{V}_{\text {REF }}$ / 1024).

3.3 The Analog Inputs

Due to the sampling nature of the analog inputs, at the clock edges short duration spikes of current will be seen on the selected assigned negative input. Input bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$ since they will average the AC current and cause an effective DC current to flow through the analog input source resistance. An op amp RC active lowpass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required. Bypass capacitors may be used when the source impedance is very low without any degradation in performance.
In a true differential input stage, a signal that is common to both "+" and "-" inputs is canceled. For the ADC10731/2/4/8, the positive input of a selected channel pair is only sampled once before the start of a conversion during the acquisition time $\left(t_{A}\right)$. The negative input needs to be stable during the complete conversion sequence because it is sampled before each decision in the SAR sequence. Therefore, any AC common-mode signal present on the analog inputs will not be completely canceled and will cause some conversion errors. For a sinusoid commonmode signal this error is:

$$
V_{\text {ERROR }}(\max)=V_{\text {PEAK }}\left(2 \pi f_{\mathrm{CM}}\right)\left(\mathrm{t}_{\mathrm{C}}\right)
$$

where f_{CM} is the frequency of the common-mode signal, $V_{\text {PEAK }}$ is its peak voltage value, and t_{C} is the A/D's conversion time ($\mathrm{t}_{\mathrm{C}}=12 / \mathrm{f} \mathrm{CLK}$). For example, for a 60 Hz com-mon-mode signal to generate a $1 / 4$ LSB error (0.61 mV) with a $4.8 \mu \mathrm{~s}$ conversion time, its peak value would have to be approximately 337 mV .

Applications Hints (Continued)

FIGURE 12. Analog Input Multiplexer Options
a. Ratiometric Using the Internal Reference

TL/H/11390-29
b. Absolute Using a 4.096V Span

TL/H/11390-30
FIGURE 13. Different Reference Configurations

Applications Hints (Continued)

3.4 Optional Adjustments

3.4.1 Zero Error

The zero error of the A/D converter relates to the location of the first riser of the transfer function (see Figure 1) and can be measured by grounding the minus input and applying a small magnitude voltage to the plus input. Zero error is the difference between actual DC input voltage which is necessary to just cause an output digital code transition from 00000000000 to 00000000001 and the ideal $1 / 2$ LSB value ($1 / 2 \mathrm{LSB}=1.22 \mathrm{mV}$ for $\mathrm{V}_{\text {REF }}=+2.500 \mathrm{~V}$).
The zero error of the A / D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathrm{IN}^{\prime}}(\mathrm{Min})$, is not ground, the effective "zero" voltage can be adjusted to a convenient value. The converter can be made to output an all zeros digital code for this minimum input voltage by biasing any minus input to $\mathrm{V}_{\mathrm{IN}}(\mathrm{Min})$. This is useful for either the differential or pseudo-differential input channel configurations.

3.4.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the $V_{\text {REF }}$ voltage $\left(\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{REF}}{ }^{+}-\mathrm{V}_{\mathrm{REF}}{ }^{-}\right.$) for a digital output code changing from 01111111110 to 0111111 1111. In bipolar signed operation this only adjusts the positive full scale error.

3.4.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A plus input voltage which equals this desired zero reference plus $1 / 2$ LSB is applied to selected plus input and the zero reference voltage at the corresponding minus input should then be adjusted to just obtain the 00000000000 to 00000000001 code transition.
The full-scale adjustment should be made [with the proper minus input voltage applied] by forcing a voltage to the plus input which is given by:

$$
V_{I N}(+) f_{\mathrm{s}} \operatorname{adj}=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{2^{n}}\right]
$$

where $\mathrm{V}_{\text {MAX }}$ equals the high end of the analog input range, $V_{\text {Min }}$ equals the low end (the offset zero) of the analog range. Both $\mathrm{V}_{\text {MAX }}$ and $\mathrm{V}_{\text {MIN }}$ are ground referred. The $\mathrm{V}_{\text {REF }}$ $\left(V_{\text {REF }}=\mathrm{V}_{\text {REF }}{ }^{+}-\mathrm{V}_{\text {REF }}{ }^{-}\right)$voltage is then adjusted to provide a code change from 01111111110 to 01111111111. Note, when using a pseudo-differential or differential multiplexer mode where $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$are placed within the V^{+}and GND range, the individual values of $\mathrm{V}_{\text {REF }}$ and $V_{\text {REF }}{ }^{-}$do not matter, only the difference sets the analog input voltage span. This completes the adjustment procedure.

3.5 The Input Sample and Hold

The ADC10731/2/4/8's sample/hold capacitor is implemented in the capacitor array. After the channel address is loaded, the array is switched to sample the selected positive analog input. The sampling period for the assigned positive input is maintained for the duration of the acquisition time (t_{A}) 4.5 clock cycles.
This acquisition window of 4.5 clock cycles is available to allow the voltage on the capacitor array to settle to the positive analog input voltage. Any change in the analog voltage on a selected positive input before or after the acquisition window will not effect the A/D conversion result.
In the simplest case, the array's acquisition time is determined by the RON ($3 \mathrm{k} \Omega$) of the multiplexer switches, the stray input capacitance $\mathrm{C}_{\mathrm{S} 1}(3.5 \mathrm{pF})$ and the total array $\left(\mathrm{C}_{\mathrm{L}}\right)$ and stray ($\mathrm{C}_{\mathrm{S} 2}$) capacitance (48 pF). For a large source resistance the analog input can be modeled as an RC network as shown in Figure 14. The values shown yield an acquisition time of about $1.1 \mu \mathrm{~s}$ for 10 -bit unipolar or 10-bit plus sign accuracy with a zero-to-full-scale change in the input voltage. External source resistance and capacitance will lengthen the acquisition time and should be accounted for. Slowing the clock will lengthen the acquisition time, thereby allowing a larger external source resistance.

TL/H/11390-25
FIGURE 14. Analog Input Model
The signal-to-noise ratio of an ideal A / D is the ratio of the RMS value of the full scale input signal amplitude to the value of the total error amplitude (including noise) caused by the transfer function of the ideal A/D. An ideal 10-bit plus sign A/D converter with a total unadjusted error of 0 LSB would have a signal-to-(noise + distortion) ratio of about 68 dB , which can be derived from the equation:

$$
S /(N+D)=6.02(n)+1.8
$$

where $S /(N+D)$ is in $d B$ and n is the number of bits.

Applications Hints (Continued)

TL/H/11390-31

Note 1: Diodes are 1N914.
Note 2: The protection diodes should be able to withstand the output current of the op amp under current limit.
FIGURE 15. Protecting the Analog Inputs

TL/H/11390-32
FIGURE 16. Zero-Shift and Span-Adjust for Signed or Unsigned, Single-Ended Multiplexer Assignment, Signed Analog Input Range of $\mathbf{0 . 5 V} \leq \mathbf{V}_{\mathbf{I N}} \leq 4.5 \mathrm{~V}$

ADC10831, ADC10832, ADC10834, ADC10838 10-Bit Plus Sign Serial !/O A/D Converters with MUX, Sample/Hold and Reference

General Description

This series of CMOS 10-bit plus sign successive approximation A/D converters features versatile analog input multiplexers, sample/hold and a 2.5 V band-gap reference. The 1,2,4 or 8-channel multiplexers can be software configured for single-ended or differential mode of operation.
An input sample/hold is implemented by a capacitive reference ladder and sampled-data comparator. This allows the analog input to vary during the A/D conversion cycle.
In the differential mode, valid outputs are obtained even when the negative inputs are greater than the positive because of the 10 -bit plus sign output data format.
The serial I/O is configured to comply with the NSC MICROWIRETM serial data exchange standard for easy interface to the COPSTM and HPCTM families of controllers, and can easily interface with standard shift registers and microprocessors.

Applications

- Medical instruments
- Remote instrumentation
- Test equipment

Features

■ -5 V to +5 V analog voltage range with $\pm 5 \mathrm{~V}$ supplies

- Serial I/O (MICROWIRE compatible)
- 1, 2, 4, or 8 -channel differential or single-ended multiplexer
- Software or hardware power down
- Analog input sample/hold function
- Ratiometric or Absolute voltage referencing
- No zero or full scale adjustment required
- No missing codes over temperature
- TTL/MOS input/output compatible
- Standard DIP and SO packages

Key Specifications

- Resolution	10 bits plus sign
■ Dual supply	$\pm 5 \mathrm{~V}$
- Power dissipation	59 mW (Max)
■ In power down mode	$33 \mu \mathrm{~W}$
- Conversion time	$5 \mu \mathrm{~s}$ (Max)
(1) Sampling rate	74 kHz (Max)
- Band-gap reference	$2.5 \mathrm{~V} \pm 2 \%$ (Max)

ADC10838 Simplified Block Diagram

Connection Diagrams for Dual-In-Line and SO Packages

TL/H/11391-2
Top View
See NS Package Number N16E or M16B

See NS Package Number N20A or M20B

TL/H/11391-4
Top View
See NS Package Number N20A or M20B

TL/H/11391-5
Top View
See NS Package Number N24A or M24B

Ordering Information

Industrial Temperature Range $-40^{\circ} \mathrm{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}$	Package
ADC10831CIN	N16E
ADC10831CIWM	M16B
ADC10832CIN	N20A
ADC10832CIWM	M20B
ADC10834CIN	N20A
ADC10834CIWM	M20B
ADC10838CIN	N24A
ADC10838CIWM	M24B

Absolute Maximum Ratings (Notes 1 \& 3)	
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.	
Positive Supply Voltage ($\mathrm{V}^{+}=\mathrm{AV}{ }^{+}=\mathrm{DV}{ }^{+}$)	$\left.+=\mathrm{DV}^{+}\right) \quad+6.0 \mathrm{~V}$
Negative Supply Voltage (V^{-})	-6.0V
Total Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	12 V
Total Reference Voltage ($\mathrm{VREF}^{+}-\mathrm{V}_{\text {REF }}{ }^{-}$)	$\mathrm{V}_{\mathrm{REF}^{-}}{ }^{-}+6.0 \mathrm{~V}$
Voltage at Analog Inputs (CHO-CH7 and COM) $v^{+}+0.3 V$	+ + 0.3V to $\mathrm{V}^{-}-0.3 \mathrm{~V}$
Voltage at other Inputs and Outputs $\mathrm{V}^{+}+$	V+ +0.3 V to -0.3 V
Input Current at Any Pin (Note 4)	30 mA
Package Input Current (Note 4)	120 mA
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)	(Note 5) 500 mW
ESD Susceptability (Note 6)	
Human Body Model	2500V
Machine Model	150 V
Soldering Information	
N packages (10 seconds)	$260^{\circ} \mathrm{C}$
SO Package (Note 7)	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

Storage Temperature $\quad-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Ratings (Notes 2 and 3)

Operating Temperature Range	
ADC10831CIN, ADC1083 ADC10832CIN, ADC1083 ADC10834CIN, ADC1083 ADC10838CIN, ADC1083	M, M, $\mathrm{M}-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Positive Supply Voltage $\left(V^{+}=A V^{+}=D V^{+}\right)$	+4.5 V to +5.5 V
Negative Supply Voltage (V^{-})	-4.5 V to -5.5 V
$V_{\text {REF }}{ }^{+}$	$\mathrm{AV}++50 \mathrm{mV}$ to -50 mV
$V_{\text {REF }}{ }^{-}$	$\mathrm{AV}++50 \mathrm{mV}$ to -50 mV
$V_{\text {REF }}\left(V_{\text {REF }}{ }^{+}-\mathrm{V}_{\text {REF }}{ }^{-}\right)$	+0.5 V to $\mathrm{V}+$

Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{AV}^{+}=\mathrm{DV}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=+4.096 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{-}}=\mathrm{V}_{\mathrm{IN}^{-}}=\mathrm{GND}$, $\mathrm{V}^{-}=-5.0 \mathrm{~V}_{\mathrm{DC}}$, and $\mathrm{f}_{\mathrm{CLK}}=2.5 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$. (Notes 8, 9 and 10)

Symbol	Parameter	Conditions	Typical (Note 11)	Limits (Note 12)	Units (Limits)

STATIC CONVERTER CHARACTERISTICS

	Resolution with No Missing Codes			$10+$ Sign	Bits
TUE	Total Unadjusted Error (Note 13)			± 2.0	LSB(max)
INL	Positive and Negative Integral Linearity Error			± 1.25	LSB(max)
	Positive and Negative Full-Scale Error			± 1.5	LSB(max)
	Offset Error			± 1.5	LSB(max)
	Power Supply Sensitivity Offset Error + Full-Scale Error - Full-Scale Error	$\begin{aligned} & V+=+5.0 \vee \pm 10 \% \\ & \text { or } V-=-5.0 \pm 10 \% \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.2 \\ & \pm 0.1 \\ & \hline \end{aligned}$	$\begin{gathered} \pm \mathbf{1 . 0} \\ \pm \mathbf{1 . 0} \\ \pm \mathbf{0 . 7 5} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{LSB} \text { (max) } \\ & \mathrm{LSB} \text { (max) } \\ & \mathrm{LSB} \text { (max) } \end{aligned}$
	DC Common Mode Error (Note 14)	$\begin{aligned} & \mathrm{V}_{\mathbb{N}^{+}}=\mathrm{V}_{\mathbb{I N}}^{-}=\mathrm{V}_{\mathbb{I N}} \text { where } \\ & +5.0 \mathrm{~V} \geq \mathrm{V}_{\mathbb{I N}} \geq-5 \mathrm{~V} \end{aligned}$	± 0.15	± 0.6	LSB(max)
	Multiplexer Channel to Channel Matching		± 0.1		LSB

Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}^{+}=\mathrm{AV}+=\mathrm{DV}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}} \cdot \mathrm{V}_{\mathrm{REF}}{ }^{+}=+4.096 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{V}_{\mathrm{IN}^{-}}=\mathrm{GND}$, $\mathrm{V}^{-}=-5.0 \mathrm{~V}_{\mathrm{DC}}$, and $\mathrm{f}_{\mathrm{CLK}}=2.5 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$. (Notes 8, 9 and 10) (Continued)

Symbol	Parameter	Conditions	Typical (Note 11)	Limits (Note 12)	Units (Limits)

DYNAMIC CONVERTER CHARACTERISTICS

	Reference Input Resistance		7	$\begin{aligned} & 5.0 \\ & 9.5 \end{aligned}$	
$\mathrm{C}_{\text {REF }}$	Reference Input Capacitance		70		pF
	MUX Input Voltage			$\begin{gathered} \mathbf{V}--50 \mathrm{mV} \\ \mathbf{A V}++50 \mathrm{mV} \end{gathered}$	(min) (max)
$\mathrm{ClM}^{\text {M }}$	MUX Input Capacitance		47		pF
:	Off Channel Leakage Current (Note 15)	$\begin{aligned} & \text { On Channel }=+5 \mathrm{~V} \text { and } \\ & \text { Off Channel }=-5 \mathrm{~V} \\ & \text { On Channel }=-5 \mathrm{~V} \text { and } \\ & \text { Off Channel }=+5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ 0.4 \end{gathered}$	$\begin{gathered} -3.0 \\ 3.0 \end{gathered}$	$\mu \mathrm{A}$ (max) $\mu \mathrm{A}$ (max)
	On Channel Leakage Current (Note 15)	On Channel $=+5 \mathrm{~V}$ and Off Channel $=+5 \mathrm{~V}$ On Channel $=-5 \mathrm{~V}$ and Off Channel $=+5 \mathrm{~V}$	$\begin{gathered} 0.4 \\ -0.4 \end{gathered}$	$\begin{gathered} 3.0 \\ -3.0 \end{gathered}$	$\mu \mathrm{A}$ (max) $\mu \mathrm{A}$ (max)

Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}^{+}=\mathrm{AV}{ }^{+}=\mathrm{DV}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{+}}=+4.096 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{-}}=\mathrm{V}_{\mathrm{IN}^{-}}=\mathrm{GND}$, $\mathrm{V}^{-}=-5.0 \mathrm{~V}_{\mathrm{DC}}$, and $f_{C L K}=2.5 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {mAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$. (Notes 8,9 and 10) (Continued)

Symbol	Parameter	Conditions	Typical (Note 11)	Limits (Note 12)	Units (Limits)

REFERENCE CHARACTERISTICS

$V_{\text {REFOut }}$	Reference Output Voltage		$2.5 \mathrm{~V} \pm 0.5 \%$	$\mathbf{2 . 5 V} \pm \mathbf{2 \%}$	$\mathrm{V}(\mathrm{max})$
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{T}$	$\mathrm{V}_{\text {REFOUt Temperature Coefficient }}$		± 40		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{I}_{\mathrm{L}}$	Load Regulation, Sourcing	$0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq+4 \mathrm{~mA}$	± 0.003	$\pm \mathbf{0 . 0 5}$	$\% / \mathrm{mA}(\mathrm{max})$
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{I}_{\mathrm{L}}$	Load Regulation, Sinking	$0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq-1 \mathrm{~mA}$	± 0.2	$\pm \mathbf{0 . 6}$	$\% / \mathrm{mA}(\mathrm{max})$
	Line Regulation	$5 \mathrm{~V} \pm 10 \%$	± 0.3	$\pm \mathbf{2 . 5}$	$\mathrm{mV}(\mathrm{max})$
I_{SC}	Short Circuit Current	$\mathrm{V}_{\text {REF }} \mathrm{Out}=0 \mathrm{~V}$	13	$\mathbf{2 2}$	$\mathrm{~mA}(\mathrm{max})$
	Noise Voltage	10 Hz to $10 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}$	5		$\mu \mathrm{l}$
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{t}$	Long-term Stability		± 120		$\mathrm{ppm} / \mathrm{kHr}$
$\mathrm{t}_{\text {SU }}$	Start-Up Time	$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}$	100		ms

DIGITAL AND DC CHARACTERISTICS

$\mathrm{V}_{\text {IN }(1)}$	Logical "1" Input Voltage	$\mathrm{V}+=5.5 \mathrm{~V}$		2.0	V (min)
$\mathrm{V}_{\mathrm{IN}(0)}$	Logical "0" Input Voltage	$\mathrm{V}+=4.5 \mathrm{~V}$		0.8	V (max)
$\operatorname{lin(1)}$	Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$	0.005	+2.5	$\mu A($ max $)$
$\operatorname{lin(0)}$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-2.5	$\mu \mathrm{A}$ (min)
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \text { I OUT }=-360 \mu \mathrm{~A} \\ & \mathrm{~V}+=4.5 \mathrm{~V}, \text { I OUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & V(\min) \\ & V(\min) \end{aligned}$
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0' Output Voltage	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{l}$ OUT $=1.6 \mathrm{~mA}$		0.4	$V(\min)$
Iout	TRI-STATE Output Current	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & V_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} -0.1 \\ +0.1 \\ \hline \end{array}$	$\begin{array}{r} -3.0 \\ +3.0 \\ \hline \end{array}$	$\mu A($ min $)$ $\mu A($ max $)$
$+I_{\text {SC }}$	Output Short-Circuit Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}^{+}=4.5 \mathrm{~V}$	-30	-15	mA(max)
- ISC	Output Short-Circuit Sink Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}+=4.5 \mathrm{~V}$	30	15	$\mathrm{mA}(\mathrm{min})$
ID^{+}	Digital Supply Current (Note 17)	$\overline{\mathrm{CS}}=$ HIGH, Power Up $\overline{\mathrm{CS}}=\mathrm{HIGH}$, Power Down $\overline{\mathrm{CS}}=$ HIGH, Power Down, and CLK Off	$\begin{aligned} & 0.9 \\ & 0.2 \\ & 0.5 \end{aligned}$	1.3 0.4 50	$m A(\max)$ mA(max) $\mu A($ max $)$
$\mathrm{I}_{\text {A }}+$	Positive Analog Supply Current (Note 17)	$\begin{aligned} & \overline{\mathrm{CS}}=\text { HIGH, Power Up } \\ & \overline{\mathrm{CS}}=\text { HIGH, Power Down } \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA}(\max) \\ & \mu \mathrm{A}(\max) \end{aligned}$
$\mathrm{I}_{A}{ }^{-}$	Negative Analog Supply Current (Note 17)	$\begin{aligned} & \overline{\overline{C S}}=\text { HIGH, Power Up } \\ & \overline{\mathrm{CS}}=\text { HIGH, Power Down } \end{aligned}$	$\begin{aligned} & -2.7 \\ & -3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & -4.5 \\ & -15 \end{aligned}$	$\mathrm{mA}(\min)$ $\mu \mathrm{A}(\mathrm{~min})$
$l_{\text {ref }}$	Reference Input Current	$\mathrm{V}_{\mathrm{REF}}{ }^{+}=+2.5 \mathrm{~V} \text { and }$ $\overline{\mathrm{CS}}=\mathrm{HIGH}, \text { Power Up }$		0.6	mA(max)

Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}^{+}=\mathrm{AV}+=\mathrm{DV}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=+4.096 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$, $\mathrm{V}^{-}=-5.0 \mathrm{~V}_{\mathrm{DC}}$, and $\mathrm{f}_{\mathrm{CLK}}=2.5 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$ all other limits $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$. (Note 16)

Symbol	Parameter	Conditions	Typical (Note 11)	Limits (Note 12)	Units (Limits)
AC CHARACTERISTICS					
folk	Clock Frequency		$\begin{gathered} 3.0 \\ 5 \end{gathered}$	2.5	$\begin{gathered} \mathrm{MHz}(\max) \\ \mathrm{kHz}(\min) \end{gathered}$
	Clock Duty Cycle			$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & \%(\min) \\ & \%(\max) \\ & \hline \end{aligned}$
${ }^{\text {t }}$ c	Conversion Time		12 5	12 5	Clock Cycles $\mu \mathrm{s}$ (max)
t_{A}	Acquisition Time		$\begin{gathered} 4.5 \\ 2 \end{gathered}$	$\begin{gathered} 4.5 \\ 2 \end{gathered}$	Clock Cycles $\mu \mathrm{s}$ (max)
tscs	$\overline{\mathrm{CS}}$ Set-Up Time, Set-Up Time from Falling Edge of CS to Rising Edge of Clock		$\begin{gathered} 14 \\ \left(1 \mathrm{t}_{\mathrm{CLK}}\right. \\ -14 \mathrm{~ns}) \end{gathered}$	$\begin{gathered} 30 \\ (1 \mathbf{t c L K} \\ -30 \mathrm{~ns}) \end{gathered}$	$\mathrm{ns}(\mathrm{min})$ (max)
${ }^{\text {t }}$ SD	DI Set-Up Time, Set-Up Time from Data Valid on DI to Rising Edge of Clock		16	25	$n s(m i n)$
${ }_{\text {thil }}$	DI Hold Time, Hold Time of DI Data from Rising Edge of Clock to Data not Valid on DI		2	25	$n s(m i n)$
$t_{\text {AT }}$	DO Access Time from Rising Edge of CLK When $\overline{C S}$ is "Low" during a Conversion		30	50	ns (min)
${ }^{\text {t }}$ AC	DO or SARS Access Time from CS, Delay from Falling Edge of $\overline{\mathrm{CS}}$ to Data Valid on DO or SARS		30	70	ns (max)
${ }^{\text {t DSARS }}$	Delay from Rising Edge of Clock to Falling Edge of SARS when CS is "Low"		100	200	ns(max)
${ }_{\text {thDO }}$	DO Hold Time, Hold Time of Data on DO after Falling Edge of Clock		20	45	ns (max)
$t_{\text {AD }}$	DO Access Time from Clock, Delay from Falling Edge of Clock to Valid Data of DO		40	80	ns (max)
$\mathrm{t}_{1} \mathrm{H}, \mathrm{t}_{\mathrm{OH}}$	Delay from Rising Edge of $\overline{\mathrm{CS}}$ to DO or SARS TRI-STATE		40	50	ns (max)
${ }^{\text {t }}$ DCS	Delay from Falling Edge of Clock to Falling Edge of $\overline{C S}$		20	30	$n s(m i n)$
${ }^{\text {t }} \mathrm{CS}(\mathrm{H})$	$\overline{\mathrm{CS}}$ "HIGH" Time for A/D Reset after Reading of Conversion Result		1 CLK	1 CLK	cycle(min)
${ }^{\text {t }}$ CS(L)	ADC10731 Minimum CS "Low" Time to Start a Conversion		1 CLK	1 CLK	cycle(min)
tsc	Time from End of Conversion to $\overline{\text { CS }}$ Going "Low"		5 CLK	5 CLK	cycle(min)
$t_{\text {PD }}$	Delay from Power-Down command to 10\% of Operating Current		1		$\mu \mathrm{S}$
${ }^{\text {tPC }}$	Delay from Power-Up Command to Ready to Start a New Conversion		10		$\mu \mathrm{S}$
$\mathrm{C}_{\text {IN }}$	Capacitance of Logic Inputs		7		pF
Cout	Capacitance of Logic Outputs		12		pF

Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
Note 2: Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifcations and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 3: All voltáges are measured with respect to GND, unless otherwise specified.
Note 4: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supplies ($V_{I N}<V^{-}$or $\mathrm{V}_{\mathbb{I N}}>A V+$ or $\left.D^{+}\right)$, the current at that pln should be limited to 30 mA . The 120 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 30 mA to four.
Note 5: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J_{\max },} \theta_{\mathrm{JA}}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J \max }-T_{A}\right) / \theta_{J A}$ or the number given In the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{Jmax}}=150^{\circ} \mathrm{C}$. The typical thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ of these Paris when board mounted can be found in the following table:

Part Number	Thermal Resistance	Package Type
ADC10831CIN	$82^{\circ} \mathrm{C} / \mathrm{W}$	N16E
ADC10831CIWM	$90^{\circ} \mathrm{C} / \mathrm{W}$	M16B
ADC10832CIN	$47^{\circ} \mathrm{C} / \mathrm{W}$	N20A
ADC10832CIWM	$80^{\circ} \mathrm{C} / \mathrm{W}$	M20B
ADC10834CIN	$47^{\circ} \mathrm{C} / \mathrm{W}$	N20A
ADC10834CIWM	$80^{\circ} \mathrm{C} / \mathrm{W}$	M20B
ADC10838CIN	$60^{\circ} \mathrm{C} / \mathrm{W}$	N24A
ADC10838CIWM	$75^{\circ} \mathrm{C} / \mathrm{W}$	M24B

Note 6: The human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.
Note 7: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titied "Surtace Mount" found in any post 1986 National Semiconductor Linear Data Book for other methods of soldering surtace mount devices.
Note 8: Two on-ohip diodes are tied to each analog input as shown below. They will forward-conduct for analog input voltages one diode drop below V - or one diode drop greater than V^{+}supply. Be careful during testing at low V^{+}and V - levels ($\pm 4.5 \mathrm{~V}$), as high level analog inputs ($\pm 5 \mathrm{~V}$) can cause an input diode to conduct, especially at elevated temperatures, which will cause errors In the conversion result. The specification allows 50 mV forward bias of either diode; this means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV , the output code will be oorrect. Exceeding this range on an unselected channel will corrupt the reading of a selected channel. If $A V+$ and $D V^{+}$are minimum ($4.5 \mathrm{~V}_{\mathrm{DC}}$) and V^{-}is a maximum ($-4.5 \mathrm{~V}_{\mathrm{DC}}$) full scale must be $\leq \pm 4.55 \mathrm{~V}$ DC.

TL/H/11391-6
Note 9: No connection exists between $\mathrm{AV}+$ and $\mathrm{DV}+$ on the chip.
To guarantee accuracy, it is required that the AV^{+}and DV^{+}be connected together to a power supply with separate bypass filter at eacn V^{+}pin. Note 10: One LSB is referenced to 10 bits of resolution.
Note 11: Typicals are at $T_{J}=T_{A}=25^{\circ} \mathrm{C}$ and represent most likely pararmetric norm.
Note 12: Tested limits are guaranteed to National's AOQL (Average Outgolng Quality Level).
Note 13: Total unadjusted error includes offset, full-scale, linearity, multiplexer, and hold step errors.
Note 14: The DC common-mode error is measured in the differential multiplexer mode with the assigned positive and negative input channels shorted together.
Note 15: Channel leakage current is measured after the channel selection.
Note 16: All the timing specifications are tested at the TTL logic levels, $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ for a falling edge and $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$ for a rising. TRI-STATE voltage level is forced to 1.4 V .
Note 17: The voltage applied to the digital inputs will affect the current drain during power down. These devices are tested with CMOS logic levels (logic Low $=0 \mathrm{~V}$ and logic High $=5 \mathrm{~V}$). TTL levels increase the power down current to about $300 \mu \mathrm{~A}$.

Electrical Characteristics (Continued)

TL/H/11391-7
FIGURE 1A. Transfer Characteristic

FIGURE 1B. Simplified Error Curve vs Output Code

Leakage Current Test Circuit

TL/H/11391-9

Spectral Response with 34 kHz Sine Wave

Offset Error vs Temperature

Power Bandwidth Response with $\mathbf{3 8 0} \mathbf{k H z}$ Sine Wave

Typical Reference Performance Characteristics

TRI-STATE Test Circuits and Waveforms

TL/H/11391-12

TL/H/11391-14

TL/H/11391-13

TL/H/11391-15
Timing Diagrams

DO
TRI-STATE
TL/H/11391-16
FIGURE 2. DI Timing

Timing Diagrams (Continued)

TL/H/11391-18
FIGURE 4. Delayed DO Timing

Timing Diagrams (Continued)

Note: If $\overline{\mathrm{CS}}$ is low during power up of the power supply voltages ($\mathrm{AV}+$ and DV^{+}) then $\overline{\mathrm{CS}}$ needs to go high for $\mathrm{t}_{\mathrm{CS}}^{(\mathrm{H})}$. The data output after the first conversion is invalid.

FIGURE 7. ADC10831 $\overline{\text { CS }}$ Low during Conversion

Note: If $\overline{\mathrm{CS}}$ is low during power up of the power supply voltages ($\mathrm{AV}{ }^{+}$and $\mathrm{DV}{ }^{+}$) then $\overline{\mathrm{CS}}$ needs to go high for $\mathrm{t}_{\mathrm{CS}}^{(\mathrm{H})}$. The data output after the first conversion is not valid.

TABLE I. ADC10838 Multiplexer Address Assignment

MUX Address					Channel Number									$\begin{aligned} & \text { MUX } \\ & \text { MODE } \end{aligned}$
MAO	MA1	MA2	MA3	MA4	CHO	CH1	CH2	CH3	CH4	CH5	CH6	CH7	COM	
PU	SING/ DIFF	ODD/ SIGN	SEL1	SELO										
1	1	0	0	0	$+$								-	
1	1	0	0	1			+						-	
1	1	0	1	0					$+$				-	
1	1	0	1	1							$+$		-	
1	1	1	0	0		+							-	Single-Ended
1	1	1	0	1				$+$					-	
1	1	1	1	0						$+$			-	
1	1	1	1	1								+	-	
1	0	0	0 .	0	+	-								
1	0	0	0	1			+	-						
1	0	0	1	0					+	-				
1	0	0	1	1							$+$	-		
1	0	1	0	0	-	+								Differential
1	0	1	0	1			-	$+$						
1	0	1	1	0					-	$+$				
1	0	1	1	1							-	+		
0	X	X	X	X				Power D	own (Al	Chann	ls Dis	nnect		

TABLE II. ADC10834 Multiplexer Address Assignment

MUX Address					Channel Number					$\begin{aligned} & \text { MUX } \\ & \text { MODE } \end{aligned}$
MAO	MA1	MA2	MA3	MA4	CHO	CH1	CH2	CH3	COM	
PU	SING/ DIFF	ODD/ SIGN	SEL1	SELO						
$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$+$	+	+	+	- - - -	Single-Ended
$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$+$ \qquad -	$\begin{aligned} & - \\ & + \end{aligned}$	$+$	$-$ $-$		Differential
0	X	X	X	X	Power Down (All Channels Disconnected)					

TABLE III. ADC10832 Multiplexer Address Assignment

MUX Address					Channel Number			MUX MODE
MAO	MA1	MA2	MA3	MA4	CHO	CH1	COM	
PU	SING/ DIFF	ODD/ SIGN	SEL1	SELO				
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	+	$+$	-	Single-Ended
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$+$	+		Differential
0	X	X	X	X	Power Down (All Channels Disconnected)			

Pin Descriptions

CLK The clock applied to this input controls the successive approximation conversion time interval, the acquisition time and the rate at which the serial data exchange occurs. The rising edge loads the information on the DI pin into the multiplexer address shift register. This address controls which channel of the analog input multiplexer (MUX) is selected. The falling edge shifts the data resulting from the A/D conversion out on DO. $\overline{C S}$ enables or disables the above functions. The clock frequency applied to this input can be between 5 kHz and 3 MHz .
DI This is the serial data input pin. The data applied to this pin is shifted by CLK into the multiplexer address register. Tables I through III show the multiplexer address assignment.
DO The data output pin. The A/D conversion result (DBO-SIGN) are clocked out by the falling edge of CLK on this pin.
$\overline{\mathrm{CS}} \quad$ This is the chip select input pin. When a logic low is applied to this pin, the rising edge of CLK shifts the data on DI into the address register. This low also brings DO out of TRI-STATE after a conversion has been completed.
PD This is the power down input pin. When a logic high is applied to this pin the A/D is powered down. When a low is applied the A/D is powered up.
SARS This is the successive approximation register status output pin. When $\overline{\mathrm{CS}}$ is high this pin is in TRI-STATE. With $\overline{\mathrm{CS}}$ low this pin is active high when a conversion is in progress and active low at all other times.
$\mathrm{CHO}-\mathrm{CH} 7$ These are the analog inputs of the MUX. A channel input is selected by the address information at the DI pin, which is loaded on the rising edge of CLK into the address register (see Tables I-III).
The voltage applied to these inputs should not exceed $A V+$ or go below V^{-}by more than 50 mV . Exceeding this range on an unselected channel will corrupt the reading of a selected channel.
COM This pin is another analog input. When the ana\log multiplexer is single ended this input serves as the zero reference level for inputs $\mathrm{CH} 0-\mathrm{CH} 7$ (see Tables I-III). COM can serve as a "pseudo ground" that has an input voltage range of $A V+$ +50 mV to $\mathrm{V}^{-}-50 \mathrm{mV}$. In most cases, COM will be grounded. When the MUX is set in the differential pairs mode, COM is not used and may be grounded.
$\mathrm{V}_{\mathrm{REF}}{ }^{+} \quad$ This is the positive analog voltage reference input. In order to malntaln accuracy, the voltage range $V_{\text {REF }}\left(V_{\text {REF }}=V_{\text {REF }}{ }^{+}-V_{\text {REF }}{ }^{-}\right)$is $0.5 \mathrm{~V}_{\mathrm{DC}}$ to $5.0 \mathrm{~V}_{\mathrm{DC}}$ and the voltage at $\mathrm{V}_{\mathrm{REF}}{ }^{+}$ cannot exceed $A V++50 \mathrm{mV}$.
$\mathrm{V}_{\text {REF }}{ }^{-} \quad$ The negative voltage reference input. In order to maintain accuracy, the voltage at this pin must not go below GND - 50 mV or exceed $\mathrm{AV}{ }^{+}$ $+50 \mathrm{mV} . \mathrm{V}_{\text {REF }}{ }^{-}$must always be less than $V_{\text {REF }}{ }^{+}$.
$A V^{+}$,
DV ${ }^{+} \quad$ These are the analog and digital positive power supply pins. These pins should be tied to the same power supply and bypassed separately. The operating voltage range of AV^{+}and DV^{+} is $4.5 \mathrm{~V}_{\mathrm{DC}}$ to $5.5 \mathrm{~V}_{\mathrm{DC}}$.
$\mathrm{V}^{-} \quad$ This is the negative analog supply pin. The operating voltage range of V^{-}is -4.5 V to -5.5 V . This supply pin needs to be bypassed with $0.1 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantalum capacitors to the system analog ground.
DGND This is the digital ground pin.
AGND This is the analog ground pin.

Applications Hints

The ADC10831/2/4/8 use successive approximation to digitize an analog input voltage. The DAC portion of the A/D converters uses a capacitive array and a resistive ladder structure. The structure of the DAC allows a very simple switching scheme to provide a versatile analog input multiplexer. This structure also provides a sample/hold. The ADC10831/2/4/8 have a 2.5 V CMOS bandgap reference. The serial digital I/O interfaces to MICROWIRE and MICROWIRE+.

1.0 DIGITAL INTERFACE

There are two modes of operation. The fastest throughput rate is obtained when $\overline{\mathrm{CS}}$ is kept low during a conversion. The timing diagrams in Figures 7 and 8 show the operation of the devices in this mode. $\overline{\mathrm{CS}}$ must be taken high for at least $\mathrm{t}_{\mathrm{CS}(\mathrm{H})}(1 \mathrm{CLK})$ between conversions. This is necessary to reset the internal logic. Figures 9 and 10 show the operation of the devices when $\overline{\mathrm{CS}}$ is taken high while the ADC10831/2/4/8 is converting. $\overline{C S}$ may be taken high during the conversion and kept high indefinitely to delay the output data. This mode simplifies the interface to other devices while the ADC10831/2/4/8 is busy converting.

1.1 Getting Started with a Conversion

The ADC10831/2/4/8 need to be initialized after the power supply voltage is applied. If $\overline{\mathrm{CS}}$ is low when the supply voltage is applied then $\overline{\mathrm{CS}}$ needs to be taken high for at least ${ }^{\mathrm{t}} \mathrm{CS}(\mathrm{H})$ (1 clock period). The data output after the first conversion is not valid.

1.2 Software and Hardware Power Up/Down

These devices have the capability of software or hardware power down. Figures 5 and 6 show the timing diagrams for hardware and software power up/down. In the case of hardware power down note that $\overline{C S}$ needs to be high for $t_{P C}$ after PD is taken low. When PD is high the device is powered down. The total quiescent current, when powered down, is typically. $200 \mu \mathrm{~A}$ with the clock at 2.5 MHz and $3 \mu \mathrm{~A}$ with the clock off. The actual voltage level applied to a digital input will affect the power consumption of the
device during power down. CMOS logic levels will give the least amount of current drain ($3 \mu \mathrm{~A}$). TTL logic levels will increase the total power down current drain to $300 \mu \mathrm{~A}$.
These devices have resistive reference ladders which draw $600 \mu \mathrm{~A}$ with a 2.5 V reference voltage. The internal band gap reference voltage shuts down when power down is activated. If an external reference voltage is used, it will have to be shut down to minimize the total current drain of the device.

2.0 ARCHITECTURE

Before a conversion is started, during the analog input sampling period, $\left(\mathrm{t}_{\mathrm{A}}\right)$, the sampled data comparator is zeroed. As the comparator is being zeroed the channel assigned to be the positive input is connected to the A/D's input capacitor. (The assignment procedure is explained in the Pin Descriptions section.) This charges the input 32C capacitor of the DAC to the positive analog input voltage. The switches shown in the DAC portion of Figure 11 are set for this zeroing/acquisition period. The voltage at the input and output of the comparator are at equilibrium at this time. When the conversion is started, the comparator feedback switches are opened and the 32C input capacitor is then switched to the assigned negative input voltage. When the comparator feedback switch opens, a fixed amount of charge is trapped on the common plates of the capacitors. The voltage at the input of the comparator moves away from equilibrium when the 32C capacitor is switched to the assigned negative input voltage, causing the output of the comparator to go high ("1") or low ("0"). The SAR next goes through an algorithm, controlled by the output state of the comparator, that redistributes the charge on the capacitor array by switching the voltage on one side of the capacitors in the array. The objective of the SAR algorithm is to return the voltage at the input of the comparator as close as possible to equilibrium. The switch position information at the completion of the successive approximation routine is a direct representation of the digital output. This data is then available to be shifted on the DO pin.

Applications Hints (Continued)

3.0 APPLICATIONS INFORMATION

3.1 Multiplexer Configuration

The design. of these converters utilizes a sampled-data comparator structure, which allows a differential analog input to be converted by the successive approximation routine.
The actual voltage converted is always the difference between an assigned " + " input terminal and a "-" input terminal. The polarity of each input terminal or pair of input terminals being converted indicates which line the converter expects to be the most positive.
A unique input multiplexing scheme has been utilized to provide multiple analog channels. The input channels can be software configured into three modes: differential, singleended, or pseudo-differential. Figure 12 illustrates the three modes using the 4-channel MUX of the ADC10834. The eight inputs of the ADC10838 can also be configured in any of the three modes. The single-ended mode has $\mathrm{CH} 0-\mathrm{CH} 3$ assigned as the positive input with COM serving as the negative input. In the differential mode, the ADC10834 channel inputs are grouped in pairs, CHO with CH 1 and CH 2 with CH 3 . The polarity assignment of each channel in the pair is interchangeable. Finally, in the pseudo-differential mode $\mathrm{CHO}-\mathrm{CH} 3$ are positive inputs referred to COM which is now a pseudo-ground. This pseudo-ground input can be set to any potential within the input common-mode range of the converter. The analog signal conditioning required in trans-ducer-based data acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground-referred inputs and true differential inputs as well as signals referred to a specific voltage.
The analog input voltages for each channel can range from 50 mV below V^{-}to 50 mV above $\mathrm{V}^{+}=\mathrm{DV}^{+}=\mathrm{AV}{ }^{+}$ without degrading conversion accuracy. If the voltage on an unselected channel exceeds these limits it may corrupt the reading of the selected channel.

3.2 Reference Considerations

The voltage difference between the $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$inputs defines the analog input voltage span (the difference between $\mathrm{V}_{\mathrm{IN}}(\mathrm{Max})$ and $\mathrm{V}_{\mathrm{IN}}(\mathrm{Min})$) over which 1023 positive and 1024 negative possible output codes apply.
The value of the voltage on the $\mathrm{V}_{\text {REF }}{ }^{+}$or $\mathrm{V}_{\text {REF }}{ }^{-}$inputs can be anywhere between $\mathrm{AV}^{+}+50 \mathrm{mV}$ and GND^{+} -50 mV , so long as $\mathrm{V}_{\mathrm{REF}}{ }^{+}$is greater than $\mathrm{V}_{\text {REF }}{ }^{-}$. The ADC10831/2/4/8 can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pins must be connected to a voltage source capable of driving the minimum reference input resistance of $5 \mathrm{k} \Omega$.
The internal 2.5 V bandgap reference in the ADC10831/2/4/8 is available as an output on the $V_{\text {REF }}$ Out pin. To ensure optimum performance this output needs to be bypassed to ground with $100 \mu \mathrm{~F}$ aluminum electrolytic or tantalum capacitor. The reference output can be unstable with capacitive loads greater than 100 pF and less than $100 \mu \mathrm{~F}$. Any capacitive loading less than 100 pF and greater than $100 \mu \mathrm{~F}$ will not cause oscillation. Lower
output noise can be obtained by increasing the output capacitance. A $100 \mu \mathrm{~F}$ capacitor will yield a typical noise floor of $200 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. The pseudo-differential and differential multiplexer modes allow for more flexibility in the analog input voltage range since the "zero" reference voltage is set by the actual voltage applied to the assigned negative input pin.
In a ratiometric system (Figure 13a), the analog input voltage is proportional to the voltage used for the A/D reference. This voltage may also be the system power supply, so $\mathrm{V}_{\mathrm{REF}}{ }^{+}$can also be tied to $\mathrm{AV}{ }^{+}$. This technique relaxes the stability requirements of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy (Figure 13b), where the analog input varies between very specific voltage limits, the reference pin can be biased with a time- and temperature-stable voltage source that has excellent initial accuracy. The LM4040, LM4041 and LM185 references are suitable for use with the ADC10831/2/4/8.
The minimum value of $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}{ }^{+}-\mathrm{V}_{\text {REF }}{ }^{-}\right)$can be quite small (see Typical Performance Characteristics) to allow direct conversion of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $V_{\text {REF }}$ / 1024).

3.3 The Analog Inputs

Due to the sampling nature of the analog inputs, at the clock edges short duration spikes of current will be seen on the selected assigned negative input. Input bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$ since they will average the AC current and cause an effective DC current to flow through the analog input source resistance. An op amp RC active lowpass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required. Bypass capacitors may be used when the source impedance is very low without any degradation in performance.
In a true differential input stage, a signal that is common to both " + " and "-" inputs is canceled. For the ADC10831/2/4/8, the positive input of a selected channel pair is only sampled once before the start of a conversion during the acquisition time $\left(\mathrm{t}_{\mathrm{A}}\right)$. The negative input needs to be stable during the complete conversion sequence because it is sampled before each decision in the SAR sequence. Therefore, any AC common-mode signal present on the analog inputs will not be completely canceled and will cause some conversion errors. For a sinusoid commonmode signal this error is:

$$
V_{\text {ERROR }}(\max)=V_{\text {PEAK }}\left(2 \pi f_{\mathrm{CM}}\right)\left(\mathrm{t}_{\mathrm{C}}\right)
$$

where f_{CM} is the frequency of the common-mode signal, $V_{\text {PEAK }}$ is its peak voltage value, and t_{C} is the A / D 's conversion time ($\mathrm{t}_{\mathrm{C}}=12 / \mathrm{f}_{\mathrm{CLK}}$). For example, for a 60 Hz com-mon-mode signal to generate a $1 / 4$ LSB error (0.61 mV) with a $4.8 \mu \mathrm{~s}$ conversion time, its peak value would have to be approximately 337 mV .

Applications Hints (Continued)

FIGURE 12. Analog Input Multiplexer Options

TL/H/11391-27

FIGURE 13. Different Reference Configurations

Applications Hints (Continued)

3.4 Optional Adjustments

3.4.1 Zero Error

The zero error of the A/D converter relates to the location of the first riser of the transfer function (see Figure 1) and can be measured by grounding the minus input and applying a small magnitude voltage to the plus input. Zero error is the difference between actual DC input voltage which is necessary to just cause an output digital code transition from 00000000000 to 00000000001 and the ideal $1 / 2$ LSB value $\left(1 / 2 \mathrm{LSB}=2.0 \mathrm{mV}\right.$ for $\left.\mathrm{V}_{\text {REF }}=+4.096 \mathrm{~V}\right)$.
The zero error of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathrm{IN}}(\mathrm{Min})$, is not ground, the effective "zero" voltage can be adjusted to a convenient value. The converter can be made to output an all zeros digital code for this minimum input voltage by biasing any minus input to $\mathrm{V}_{\mathrm{IN}}(\mathrm{Min})$. This is useful for either the differential or pseudo-differential input channel configurations.

3.4.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the $\mathrm{V}_{\text {REF }}$ voltage ($\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF }}{ }^{+}-\mathrm{V}_{\text {REF }}{ }^{-}$) for a digital output code changing from 01111111110 to 0111111 1111. In bipolar signed operation this only adjusts the positive full scale error.

3.4.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A plus input voltage which equals this desired zero reference plus $1 / 2$ LSB is applied to selected plus input and the zero reference voltage at the corresponding minus input should then be adjusted to just obtain the 00000000000 to 00000000001 code transition. The full-scale adjustment should be made [with the proper minus input voltage applied] by forcing a voltage to the plus input which is given by:

$$
V_{I N}(+) f_{\mathrm{s}} \operatorname{adj}=V_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{2^{n}}\right]
$$

where $\mathrm{V}_{\text {MAX }}$ equals the high end of the analog input range, $\mathrm{V}_{\text {MIN }}$ equals the low end (the offset zero) of the analog range. Both $\mathrm{V}_{\text {MAX }}$ and $\mathrm{V}_{\text {MIN }}$ are ground referred. The $\mathrm{V}_{\text {REF }}$ $\left(\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{REF}}{ }^{+}-\mathrm{V}_{\mathrm{REF}}{ }^{-}\right)$voltage is then adjusted to provide a code change from 01111111110 to 01111111111. Note, when using a pseudo-differential or differential multiplexer mode where $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$are placed within the V^{+}and GND range, the individual values of $\mathrm{V}_{\text {REF }}$ and $\mathrm{V}_{\text {REF }}{ }^{-}$do not matter, only the difference sets the analog input voltage span. This completes the adjustment procedure.

3.5 The Input Sample and Hold

The ADC10831/2/4/8's sample/hold capacitor is implemented in the capacitor array. After the channel address is loaded, the array is switched to sample the selected positive analog input. The sampling period for the assigned positive input is maintained for the duration of the acquisition time ($\left.\mathrm{t}_{\mathrm{A}}\right) 4.5$ clock cycles.
This acquisition window of 4.5 clock cycles is available to allow the voltage on the capacitor array to settle to the positive analog input voltage. Any change in the analog voltage on a selected positive input before or after the acquisition window will not effect the A/D conversion result.
In the simplest case, the array's acquisition time is determined by the R $\mathrm{R}_{\mathrm{ON}}(3 \mathrm{k} \Omega$) of the multiplexer switches, the stray input capacitance $\mathrm{C}_{\mathrm{S} 1}(3.5 \mathrm{pF})$ and the total array (C_{L}) and stray ($\mathrm{C}_{\mathrm{S} 2}$) capacitance (48 pF). For a large source resistance the analog input can be modeled as an RC network as shown in Figure 14. The values shown yield an acquisition time of about $1.1 \mu \mathrm{~s}$ for 10 -bit unipolar or 10 -bit plus sign accuracy with a zero-to-full-scale change in the input voltage. External source resistance and capacitance will lengthen the acquisition time and should be accounted for. Slowing the clock will lengthen the acquisition time, thereby allowing a larger external source resistance.

TL/H/11391-29
FIGURE 14. Analog Input Model
The signal-to-noise ratio of an ideal A / D is the ratio of the RMS value of the full scale input signal amplitude to the value of the total error amplitude (including noise) caused by the transfer function of the ideal A/D. An ideal 10-bit plus sign A/D converter with a total unadjusted error of 0 LSB would have a signal-to-(noise + distortion) ratio of about 68 dB , which can be derived from the equation:

$$
S /(N+D)=6.02(n)+1.8
$$

where $S /(N+D)$ is in $d B$ and n is the number of bits.

Applications Hints (Continued)

Note 1: Diodes are 1N914.
Note 2: The protection diodes should be able to withstand the output current of the op amp under current limit.
FIGURE 15. Protecting the Analog Inputs

ADC1061 10-Bit High-Speed μ P-Compatible A/D Converter with Track/Hold Function

General Description

Using a modified half-flash conversion technique, the 10-bit ADC1061 CMOS analog-to-digital converter offers very fast conversion times yet dissipates a maximum of only 235 mW . The ADC1061 performs a 10-bit conversion in two lowerresolution "flashes", thus yielding a fast A/D without the cost, power dissipation, and other problems associated with true flash approaches.
The analog input voltage to the ADC1061 is tracked and held by an internal sampling circuit. Input signals at frequencies from DC to greater than 160 kHz can therefore be digitized accurately without the need for an external sample-and-hold circuit.
For ease of interface to microprocessors, the ADC1061 has been designed to appear as a memory location or I/O port without the need for external interface logic.

Features

- $1.8 \mu \mathrm{~s}$ maximum conversion time to 10 bits
- Low power dissipation: 235 mW (maximum)
- Built-in track-and-hold
- No external clock required
- Single +5 V supply
- No missing codes over temperature

Applications

- Waveform digitizers
- Disk drives
- Digital signal processor front ends
- Mobile telecommunications

Simplified Block and Connection Diagrams

Ordering Information

Industrial ($-\mathbf{4 0} 0^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq \mathbf{8 5}^{\circ} \mathbf{C}$)	Package
ADC1061CIJ	J20A
ADC1061CIN	N20A
ADC1061CIWM	M20B
Military ($-\mathbf{5 5}{ }^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq \mathbf{1 2 5}{ }^{\circ} \mathbf{C}$)	Package
ADC1061CMJ	J20A

Top View
Order Number
ADC1061CIJ, ADC1061CIN, ADC1061CIWM or ADC1061CMJ

See NS Package J20A, M20B or N20A

```
Absolute Maximum Ratings (Notes 1&2)
If Military/Aerospace specifled devices are required,
please contact the National Semiconductor Sales
Office/Distributors for avallability and specifications.
Supply Voltage (V+ = AV CC = DV CC) - -0.3V to +6V
Voltage at any Input or Output -0.3V to V+}+0.3\textrm{V
Input Current at Any Pin (Note 3) }5\mathrm{ mA
Package Input Current (Note 3) }20\textrm{mA
Power Dissipation (Note 4)
ESD Susceptibility (Note 5)
875 mW
1500V
```

Soldering information (Note 6)	
N Package (10 seconds)	$260^{\circ} \mathrm{C}$
J Package (10 seconds)	$300^{\circ} \mathrm{C}$
SO Package (Note 6):	$215^{\circ} \mathrm{C}$
Vapor Phase $(60$ seconds)	$220^{\circ} \mathrm{C}$
Infrared (15 seconds)	$+150^{\circ} \mathrm{C}$
Junction Temperature, Tj	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings (Notes $1 \& 2$)
Temperature Ránge
$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
ADC1061CIJ; ADC1061CIN, ADC1061CIWM
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
ADC1061CMJ
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
Supply Voltage Range
4.5 V to 5.5 V

Converter Characteristics

The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(+)}=5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{REF}(-)}=\mathrm{GND}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units (Limit)
	Resolution			10	Bits
	Total Unadjusted Error		± 1.0	± 2.0	LSB (Max)
	Integral Linearity Error		± 0.3	± 1.5	LSB (Max)
	Differential Linearity Error			± 1.0	LSB (Max)
	Offset Error		± 0.1	± 1.0	LSB (Max)
	Fullscale Error		± 0.5	± 1.0	LSB (Max)
$\mathrm{R}_{\text {REF }}$	Reference Resistance		0.65	0.4	$k \Omega$ (Min)
$\mathrm{R}_{\text {REF }}$	Reference Resistance		0.65	0.9	$k \Omega$ (Max)
$\mathrm{V}_{\text {REF }(+)}$	$\mathrm{V}_{\text {REF }(+)}$ Input Voltage			$\mathrm{V}++0.05$	V (Max)
$V_{\text {REF }(-)}$	$V_{\text {REF }}(-)$ Input Voltage			GND - 0.05	V (Min)
$\mathrm{V}_{\text {REF }(+)}$	$\mathrm{V}_{\text {REF (}+ \text {) }}$ Input Voltage			$\mathbf{V}_{\text {REF }}(-)$	V (Min)
$V_{\text {REF }(-)}$	$V_{\text {REF (}- \text {) }}$ Input Voltage			$\mathbf{V}_{\text {REF }(-)}$	V (Max)
$V_{\text {IN }}$	Input Voltage			$\mathrm{v}++0.05$	V (Max)
$\mathrm{V}_{\text {IN }}$	Input Voltage			GND - 0.05	V (Min)
	Analog Input Leakage Current	$\begin{aligned} & \overline{\mathrm{CS}}=V^{+}, V_{\mathbb{I N}}=V^{+} \\ & \overline{C S}=V^{+}, V_{\mathbb{I N}}=G N D \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{gathered} 3 \\ -3 \end{gathered}$	$\begin{aligned} & \mu A(\text { (Max) } \\ & \mu A(\text { Max }) \end{aligned}$
	Power Supply Sensitivity	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \pm 5 \% \\ & \mathrm{~V}_{\text {REF }}=4.75 \mathrm{~V} \end{aligned}$	± 0.125	± 0.5	LSB

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(+)}=5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{REF}(-)}=\mathrm{GND}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units (Limits)
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$\mathrm{V}^{+}=5.25 \mathrm{~V}$		2.0	V (Min)
$\mathrm{V}_{\text {IN }(0)}$	Logical "0" Input Voltage	$\mathrm{V}+=4.75 \mathrm{~V}$		0.8	V (Max)
$\underline{I N(1)}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}(1)}=5 \mathrm{~V}$	0.005	1.0	$\mu A(\operatorname{Max})$
$\mathrm{I} \mathrm{N}(0)$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{IN}(0)}=0 \mathrm{~V}$	-0.005	-1.0	$\mu \mathrm{A}$ (Max)
VOUT(1)	Logical "1" Output Voltage.	$\begin{aligned} & \mathrm{V}+=4.75 \mathrm{~V} \text { I OUT }=-360 \mu \mathrm{~A} \\ & \mathrm{~V}+=4.75 \mathrm{~V} \text { IOUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	V (Min) V (Min)
Vout(0)	Logical "0" Output Voltage	$\mathrm{V}+=4.75 \mathrm{~V}$ l $\mathrm{OUT}=1.6 \mathrm{~mA}$		0.4	V (Max)
Iout	TRI-STATE® Output Current	$\begin{aligned} & V_{\text {OUT }}=5 \mathrm{~V} \\ & V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0.1 \\ -0.1 \end{gathered}$	$\begin{gathered} 50 \\ -50 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A}(\operatorname{Max}) \\ & \mu \mathrm{A}(\mathrm{Max}) \end{aligned}$
DICC	DV ${ }_{\text {CC }}$ Supply Current	$C S=W R=\overline{R D}=0$	0.1	2	mA (Max)
$\mathrm{Al}_{\mathrm{CC}}$	$\mathrm{AV}_{\mathrm{CC}}$ Supply Current	$C S=W R=\overline{\mathrm{RD}}=0$	30	45	mA (Max)

AC Electrical Characteristics

The following specifications apply for $V^{+}=+5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{REF}(+)}=5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{REF}(-)}=\mathrm{GND}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units (Limits)
tconv	Conversion Time from Rising Edge of $\overline{\mathrm{S}} / \mathrm{H}$ to Falling Edge of $\overline{\mathrm{NT}}$	Mode 1	1.2	1.8	$\mu \mathrm{S}$ (Max)
${ }^{\text {t CRD }}$	Conversion Time for MODE 2 (RD Mode) ..	Mode 2	1.8	2.4	$\mu \mathrm{s}$ (Max)
$t_{\text {ACC1 }}$	Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Valid)	Mode 1; $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	20	50	ns (Max)
$t_{\text {ACC2 }}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)	Mode 2; $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		$\mathbf{t c R D}^{+50}$	ns (Max)
${ }_{\text {t }}$ H	Minimum Sample Time	(Figure 1); (Note 9)		250	ns (Max)
$\mathrm{t}_{1} \mathrm{H}, \mathrm{t}_{\mathrm{OH}}$	TRI-STATE Control (Delay from Rising Edge of $\overline{R D}$ to High-Z State)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	20	50	ns (Max)
$\mathrm{t}_{\text {INTH }}$	Delay from Rising Edge of $\overline{R D}$ to Rising Edge of INT	.	10	50	ns (Max)
$t_{\text {ID }}$	Delay from INT to Output Valid	$C_{L}=100 \mathrm{pF}$	20	50	ns (Max)
t_{p}	Delay from End of Conversion to Next Conversion	\cdots	10	20	ns (Max)
SR	Slew Rate for Correct Track-and-Hold Operation		2.5		$\mathrm{V} / \mu \mathrm{s}$

AC Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{REF}(+)}=5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{REF}(-)}=\mathrm{GND}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units
$\mathrm{C}_{\mathrm{VIN}}$	Analog Input Capacitance		35		pF
$\mathrm{C}_{\mathrm{OUT}}$	Logic Output Capacitance		5		pF
C_{IN}	Logic Input Capacitance		5		pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: When the input voltage $\left(\mathrm{V}_{\mathbb{I}}\right)$ at any pin exceeds the power supply rails ($\mathrm{V}_{\mathbb{I}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathbb{I N}}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can safely exceed the power supplies with an input of 5 mA to four.
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}$, and the typical thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ when board mounted is $47^{\circ} \mathrm{C} / \mathrm{W}$ for the plastic (N) package, $85^{\circ} \mathrm{C} / \mathrm{W}$ for the ceramic (J) package, and $65^{\circ} \mathrm{C} / \mathrm{W}$ for the small outline (WM) package.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Note 7: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 8: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 9: Accuracy may degrade if tSH is shorter than the value specified.

TRI-STATE Test Circuits and Waveforms

TL/H/10559-4

Timing Diagrams

TL/H/10559-7
FIGURE 1. Mode 1. The conversion time ($\mathrm{t}_{\mathrm{CON}}$) is determined by the internal timer.

FIGURE 2. Mode 2 (RD Mode). The conversion time (tcRD) includes the sampling time, and is determined by the internal timer.

Typical Performance Characteristics

TL/H/10559-11

Pin Descriptions

Symbol DVCc, $\mathrm{AV}_{\mathrm{Cc}}$$(1,6)$	Function	Symbol
	These are the digital and analog positive	$\overline{\mathrm{CS}}$ (5)
	supply voltage inputs. They should	
	always be connected to the same voltage source, but are brought out	
	separately to allow for separate bypass	
	capacitors. Each supply pin should be	$\begin{aligned} & \text { RREF } \\ & (7,9) \end{aligned}$
	bypassed with a $0.1 \mu \mathrm{~F}$ ceramic	
	capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor.	
$\overline{\text { NT }}$ (2)	This is the active low interrupt output.	
	INT goes low at the end of each conversion, and returns to a high state following the rising edge of $\overline{\mathrm{RD}}$.	$\mathrm{V}_{\text {IN }}(8)$
$\overline{\mathrm{S}} / \mathrm{H}$ (3)	This is the Sample/Hold control input. When this pin is forced low, it causes the analog input signal to be sampled and initiates a new conversion.	
$\overline{\mathrm{RD}}$ (4)	This is the active low Read control input. When this pin is low, any data present in the ADC1061's output registers will be placed on the data bus. In Mode 2, the	
	Read signal must be low until $\mathbb{N T}^{\top}$ goes low. Until $\mathbb{N T}$ goes low, the data at the output pins will be incorrect.	

Symbol
AVC
$(1,6)$
$\overline{\mathrm{NT}}$ (2)
$\overline{\mathrm{S}} / \mathrm{H}$ (3)
$\overline{\mathrm{RD}}$ (4)

These are the digital and analog positive supply voltage inputs. They should always be connected to the same voltage source, but are brought out separately to allow for separate bypass capacitors. Each supply pin should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ This is the active low interrupt output. $\overline{\mathrm{NT}}$ goes low at the end of each conversion, and returns to a high state following the rising edge of $\overline{\mathrm{RD}}$.

Symbol
$\overline{C S}$ (5)
$V_{\text {REF- }}$,
VREF+ $(7,9)$
$\mathrm{V}_{\mathrm{IN}}(8)$

Function

This is the active low Chip Select control input. This pin enables the \bar{S} / H and $\overline{R D}$ inputs.
These are the reference voltage inputs. They may be placed at any voltage between GND - 50 mV and $\mathrm{V}_{\mathrm{CC}}+$ 50 mV , but $\mathrm{V}_{\mathrm{REF}}+$ must be greater than $V_{\text {REF- }}$. An input voltage equal to $V_{\text {REF - produces an output code of } 0 \text {, }}$ and an input voltage equal to $\mathrm{V}_{\text {REF }+}-$ 1LSB produces an output code of 1023. This is the analog input pin. The impedance of the source should be less than 500Ω for best accuracy and conversion speed. To avoid damage to the ADC1061, $\mathrm{V}_{\text {IN }}$ should not be allowed to extend beyond the power supply voltages by more than 300 mV unless the drive current is limited. For accurate conversions, $\mathrm{V}_{\text {IN }}$ should not extend more than 50 mV beyond the supply voltages.

Pin Descriptions (Continued)

Symbol
GND (10)

DB0-DB9 (11-20)

Functional Description

The ADC1061 digitizes an analog input signal to 10 bits accuracy by performing two lower-resolution "flash" conversions. The first flash conversion provides the six most significant bits (MSBs) of data, and the second flash conversion provides the four least significant bits (LSBs).
Figure 3 is a simplified block diagram of the converter. Near the center of the diagram is a string of resistors. At the bottom of the string of resistors are 16 resistors, each of which has a value $1 / 1024$ th the resistance of the whole resistor string. These lower 16 resistors (the LSB Ladder) therefore have a voltage drop of 16/1024, or 1/64th of the total reference voltage ($\mathrm{V}_{\text {REF }}+$ - VREF -) across them. The remainder of the resistor string is made up of eight groups of eight resistors connected in series. These comprise the MSB Ladder. Each section of the MSB Ladder has $1 / 8$ th of the total reference voltage across it, and each of the MSB resistors has 1/64th of the total reference voltage across it. Tap points across all of these resistors can be
connected, in groups, to the sixteen comparators at the right of the diagram.
On the left side of the diagram is a string of seven resistors connected between $\mathrm{V}_{\text {REF }}+$ - $\mathrm{V}_{\text {REF-. }}$ Six comparators compare the input voltage with the tap voltages on the resistor string to provide an estimate of the input voltage. This estimate is then used to control the multiplexer that connects the MSB Ladder to the sixteen comparators on the right. Note that the comparators on the left needn't be very accurate; they simply provide an estimate of the input voltage. Only the sixteen comparators on the right and the six on the left are necessary to perform the initial six-bit flash conversion, instead of the 64 comparators that would be required using conventional half-flash methods.
To perform a conversion, the estimator compares the input voltage with the tap voltages on the seven resistors on the left. The estimator decoder then determines which MSB Ladder tap points will be connected to the sixteen comparators on the right. For example, assume that the estimator determines that $\mathrm{V}_{\text {IN }}$ is between 11/16 and 13/16 of VREF. The estimator decoder will instruct the comparator mux to connect the 16 comparators to the taps on the MSB Ladder between $10 / 16$ and $14 / 16$ of VREF. The 16 comparators will then perform the first flash conversion. Note that since the comparators are connected to Ladder voltages that extend beyond the range indicated by the estimator circuit, errors in the estimator as large as $1 / 16$ of the reference voltage (64 LSBs) will be corrected. This first flash conversion produces the six most significant bits of data.

FIGURE 3. Block Diagram of the Modified Half-Flash Converter Architecture

Functional Description (Continued)

The remaining four LSBs may now be determined using the same sixteen comparators that were used for the first flash conversion. The MSB Ladder tap voltage just below the input voltage (as determined by the first flash) is subtracted from the input voltage and compared with the tap points on the sixteen LSB Ladder resistors. The result of this second flash conversion is then decoded, and the full 10-bit result is latched.
Note that the sixteen comparators used in the first flash conversion are reused for the second flash. Thus, the halfflash conversion techniques used in the ADC1061 needs only a small fraction of the number of comparators that would be required for a traditional flash converter, and far fewer than would be used in a conventional half-flash approach. This allows the ADC1061 to perform high-speed conversions without excessive power drain.

Applications Information

1.0 Modes of Operation

The ADC1061 has two basic digital interface modes. These are illustrated in Figure 1 and Figure 2.

MODE 1

In this mode, the $\overline{\mathrm{S}} / \mathrm{H}$ pin controls the start of conversion. $\overline{\mathrm{S}} / \mathrm{H}$ is pulled low for a minimum of 250 ns . This causes the comparators in the "coarse" flash converter to become active. When $\overline{\mathrm{S}} / \mathrm{H}$ goes high, the result of the coarse conversion is latched and the "fine" conversion begins. After approximately $1.2 \mu \mathrm{~s}(1.8 \mu \mathrm{~s}$ maximum), INT goes low, indicating that the conversion results are latched and can be read by pulling $\overline{\mathrm{RD}}$ low. Note that $\overline{\mathrm{CS}}$ must be low to enable $\overline{\mathrm{S}} / \mathrm{H}$ or $\overline{\mathrm{RD}} . \overline{\mathrm{CS}}$ is internally "ANDed" with the sample and read control signals; the input voltage is sampled when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{S}} / \mathrm{H}$ are low, and is read when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are low.

MODE 2

In Mode 2, also called "RD mode", the \bar{S} / H and $\overline{\mathrm{RD}}$ pins are tied together. A conversion is initiated by pulling both pins low. The ADC1061 samples the input voltage and causes the coarse comparators to become active. An internal timer then terminates the coarse conversion and begins the fine conversion.
About $1.8 \mu \mathrm{~s}$ ($2.4 \mu \mathrm{~s}$ maximum) after $\overline{\mathrm{S}} / \mathrm{H}$ and $\overline{\mathrm{RD}}$ are pulled low, $\overline{\mathrm{NT}}$ goes low, indicating that the conversion is complete. Approximately 20 ns later the data appearing on the TRI-STATE output pins will be valid. Note that data will appear on these pins throughout the conversion, but will be valid only after INT goes low.

2.0 Reference Considerations

The ADC1061 has two reference inputs. These inputs, $\mathrm{V}_{\text {REF }}$ and $\mathrm{V}_{\text {REF-, }}$, are fully differential and define the zero to full-scale range of the input signal. The reference inputs can be connected to span the entire supply voltage range ($\mathrm{V}_{\mathrm{REF}-}=\mathrm{OV}, \mathrm{V}_{\mathrm{REF}+}=\mathrm{V}_{\mathrm{CC}}$) for ratiometric applications, or they can be connected to different voltages (as long as they are between ground and $V_{C C}$) when other input spans are required. Reducing the overall $\mathrm{V}_{\text {REF }}$ span to less than 5 V increases the sensitivity of the converter (e.g., if $\mathrm{V}_{\text {REF }}=$ 2 V , then $1 \mathrm{LSB}=1.953 \mathrm{mV}$). Note, however, that linearity and offset errors become larger when lower reference voltages are used. See the Typical Performance Curves for more information. Reference voltages less than 2 V are not recommended.
In most applications, $V_{\text {REF - will simply be connected to }}$ ground, but it is often useful to have an input span that is offset from ground. This situation is easily accommodated by the reference configuration used in the ADC1061. $V_{\text {REF - can be connected to a voltage other than ground as }}$ long as the reference for this pin is capable of sinking current. If $\mathrm{V}_{\text {REF }}$ - is connected to a voltage other than ground, bypass it with multiple capacitors.
Since the resistance between the two reference inputs can be as low as 400Ω, the voltage source driving the reference inputs should have low output impedance. Any noise on either reference input is a potential cause of conversion errors, so each of these pins must be supplied with a clean, low noise voltage source. Each reference pin should normally be bypassed with a $10 \mu \mathrm{~F}$ tantalum and a $0.1 \mu \mathrm{~F}$ ceramic capacitor. More bypassing may be necessary in some systems.
The choice of reference voltage source will depend on the requirements of the system. In ratiometric data acquisition systems with a power supply-referenced sensor, the reference inputs are normally connected to V_{CC} and GND, and no reference other than the power supply is necessary. In absolute measurement systems requiring 10-bit accuracy, a reference with better than 0.1% accuracy will be necessary.

3.0 The Analog Input

The ADC1061 samples the analog input voltage once every conversion cycle. When this happens, the input is briefly connected to an impedance approximately equal to 600Ω in series with 35 pF . Short-duration current spikes can therefore be observed at the analog input during normal operation. These spikes are normal and do not degrade the convertor's performance.
Note that large source impedances can slow the charging of the sampling capacitors and degrade conversion accuracy. Therefore, only signal sources with output impedances less than 500Ω should be used if rated accuracy is to be
achieved at the minimum sample time. If the sampling time is increased, the source impedance can be larger. If a signal source has a high output impedance, its output should be buffered with an operational amplifier. The operational amplifier's output should be well-behaved when driving a switched $35 \mathrm{pF} / 600 \Omega$ load. Any ringing or voltage shifts at the op amp's output during the sampling period can result in conversion errors.
Correct conversion results will be obtained for input voltages greater than GND - 50 mV and less than $\mathrm{V}^{+}+$ 50 mV . Do not allow the signal source to drive the analog input pin more than 300 mV higher than $\mathrm{AV}_{\mathrm{CC}}$ and $\mathrm{DV}_{\mathrm{CC}}$, or more than 300 mV lower than GND. If the analog input pin is forced beyond these voltages, the current flowing through the pin should be limited to 5 mA or less to avoid permanent damage to the ADC1061.

4.0 Inherent Sample-and-Hold

Because the ADC1061 samples the input signal once during each conversion, it is capable of measuring relatively fast input signals without the help of an external sample-hold. In a conventional successive-approximation A/D converter, regardless of speed, the input signal must be stable to better than $\pm 1 / 2$ LSB during each conversion cycle or significant errors will result. Consequently, even for many relatively slow input signals, the signals must be externally sampled and held constant during each conversion.
The ADC1061 can perform accurate conversions of input signals at frequencies from DC to greater than 160 kHz without the need for external sampling circuitry.

5.0 Power Supply Considerations

The ADC1061 is designed to operate from a +5 V (nominal) power supply. There are two supply pins, $A V_{C C}$ and $D V_{C C}$ These pins allow separate external bypass capacitors for the analog and digital portions of the circuit. To guarantee accurate conversions, the two supply pins should be connected to the same voltage source, and each should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor. Depending on the circuit board layout and other system considerations, more bypassing may be necessary.
It is important to ensure that none of the ADC1061's input or output pins are ever driven to a voltage more than 300 mV above $A V_{C C}$ and $D V_{C C}$, or more than 300 mV below GND. If these voltage limits are exceeded, the overdrive current into or out of any pin on the ADC1061 must be limited to less than 5 mA , and no more than 20 mA of overdrive current (all overdriven pins combined) should flow. In systems with multiple power supplies, this may require careful attention to power supply sequencing. The ADC1061's power supply pins should be at the proper voltage before signals are applied to any of the other pins.

6.0 Layout and Grounding

In order to ensure fast, accurate conversions from the ADC1061, it is necessary to use appropriate circuit board layout techniques. The analog ground return path should be low-impedance and free of noise from other parts of the system. Noise from digital circuitry can be especially troublesome, so digital grounds should always be separate from analog grounds. For best performance, separate ground planes should be provided for the digital and analog parts of the system.

All bypass capacitors should be located as close to the converter as possible and should connect to the converter and to ground with short traces. The analog input should be isolated from noisy signal traces to avoid having spurious signals couple to the input. Any external component (e.g., a filter capacitor) connected across the converter's input should be connected to a very clean ground return point. Grounding the component at the wrong point will result in reduced conversion accuracy.

ADC10061/ADC10062/ADC10064 10-Bit 600 ns A/D Converter with Input Multiplexer and Sample/Hold

General Description

Using an innovative, patented multistep* conversion technique, the 10-bit ADC10061, ADC10062, and ADC10064 CMOS analog-to-digital converters offer sub-microsecond conversion times yet dissipate a maximum of only 235 mW . The ADC10061, ADC10062, and ADC10064 perform a 10-bit conversion in two lower-resolution "flashes", thus yielding a fast A/D without the cost, power dissipation, and other problems associated with true flash approaches. The ADC10061 is pin-compatible with the ADC1061 but much faster, thus providing a convenient upgrade path for the ADC1061.
The analog input voltage to the ADC10061, ADC10062, and ADC10064 is sampled and held by an internal sampling circuit. Input signals at frequencies from dc to over 200 kHz can therefore be digitized accurately without the need for an external sample-and-hold circuit.
The ADC10062 and ADC10064 include a "speed-up" pin. Connecting an external resistor between this pin and ground reduces the typical conversion time to as little as 350 ns with only a small increase in linearity error.
For ease of interface to microprocessors, the ADC10061, ADC10062, and ADC10064 have been designed to appear as a memory location or I/O port without the need for external interface logic.

Features

■ Built-in sample-and-hold
■ Single +5 V supply

- 1, 2, or 4-input multiplexer options
- No external clock required
- Speed adjust pin for faster conversions (ADC10062 and ADC10064). See ADC10662/4 for high speed guaranteed performance.

Key Specifications

- Conversion time to 10 bits

600 ns typical,
900 ns max over temperature

- Sampling Rate 800 kHz
- Low power dissipation 235 mW (max)
- Total unadjusted error ± 1.0 LSB (max)
- No missing codes over temperature

Applications

- Digital signal processor front ends
- Instrumentation
- Disk drives
- Mobile telecommunications

Ordering Information

ADC10061		ADC10064	
Industrial ($-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$)	Package	Industrial ($-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$)	Package
ADC10061BIN, ADC10061CIN ADC10061BIWM, ADC10061CIWM	N20A Molded DIP M20B Small Outline	ADC10064BIN, ADC10064CIN ADC10064BIWM, ADC10064CIWM	N28B Molded DIP M28B Small Outline
Military ($-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$)	Package	Military ($-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$)	Package
ADC10061CMJ/883	J20A Cerdip	ADC10064CMJ/883	J28A Cerdip

ADC10062

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}\right)$	Package
ADC10062BIN, ADC10062CIN	N24A Molded DIP
ADC10062BIWM, ADC10062CIWM	M24B Small Outline

Military $\left(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+\mathbf{1 2 5}{ }^{\circ} \mathrm{C}\right)$	Package
ADC10062CMJ/883	J24A Cerdip

Absolute Maximum Ratings (Notes 1,2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}=\mathrm{AV}$ CC $\left.=D V_{C C}\right) \quad-0.3 \mathrm{~V}$ to +6 V Voltage at Any Input or Output $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}++0.3 \mathrm{~V}$ Input Current at Any Pin (Note 3)
Package Input Current (Note 3)
Power Dissipation (Note 4)
ESD Susceptability (Note 5) 5 mA 20 mA

Soldering Information (Note 6)
N Package (10 Sec)
J Package (10 Sec)
SO Package:
Vapor Phase (60 Sec) $215^{\circ} \mathrm{C}$
Infrared (15 Sec) $220^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature

Converter Characteristics

The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(+)}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}$, and Speed Adjust pin unconnected unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {Min }}$ to $T_{\text {Max; }}$ all other limits $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Notes 8, 10)	Units (Limit)
	.Resolution			10	Bits
	Integral Linearity Error	BIN, BIWM Suffixes CIN, CIWM, CMJ Suffixes $R_{S A}=18 \mathrm{k} \Omega$	± 0.5	$\begin{aligned} & \pm 0.6 / \pm \mathbf{1 . 1} \\ & \pm 1.0 / \pm \mathbf{1 . 5} \end{aligned}$	$\begin{gathered} \text { LSB (max) } \\ \text { LSB (max) } \\ \text { LSB } \\ \hline \end{gathered}$
	Offset Error			± 1	LSB (max)
	Full-Scale Error			± 1	LSB (max)
.	Total Unadjusted Error	BIN, BIWM Suffixes CIN, CIWM, CMJ Suffixes All Suffixes, R $_{\text {SA }}=18 \mathrm{k} \Omega$	± 0.5	$\begin{aligned} & \pm 1.0 / \pm 1.5 \\ & \pm 1.5 / \pm 2.0 \end{aligned}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (max) } \\ & \text { LSB } \end{aligned}$
	Missing Codes			0	(max)
	Power Supply Sensitivity	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {REF }}=4.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{REF}}=4.5 \mathrm{~V} \end{aligned}$	$\pm 1 / 16$	$\pm 3 / 8$	$\begin{gathered} \text { LSB } \\ \text { LSB (max) } \end{gathered}$
THD	Total Harmonic Distortion	$\begin{aligned} & f_{I N}=10 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{f}_{\mathrm{IN}}=160 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.08 \\ & \hline \end{aligned}$		$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
SNR	Signal-to-Noise Ratio	$\begin{aligned} & f_{I N}=10 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{f}_{\mathrm{IN}}=160 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	$\begin{aligned} & 61 \\ & 60 \\ & \hline \end{aligned}$		dB dB
	Effective Number of Bits	$\begin{aligned} & f_{I N}=10 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{f}_{\mathrm{IN}}=160 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	$\begin{aligned} & 9.6 \\ & 9.4 \\ & \hline \end{aligned}$		Bits Bits
$\mathrm{R}_{\text {REF }}$	Reference Resistance		650	400	Ω (min)
$\mathrm{R}_{\text {REF }}$	Reference Resistance		650	900	Ω (max)
$\mathrm{V}_{\text {REF }(+)}$	$\mathrm{V}_{\text {REF }(+)}$ Input Voltage			$\mathbf{v +}+0.05$	V (max)
$\mathrm{V}_{\text {REF }}(-)$	$\mathrm{V}_{\text {REF }}(-)$ Input Voltage			GND - 0.05	$V(\min)$
$\mathrm{V}_{\text {REF }}(+)$	$\mathrm{V}_{\text {REF }(+)}$ Input Voltage			$V_{\text {REF }}(-)$	$V(\min)$
$\mathrm{V}_{\text {REF }(-)}$	$V_{\text {REF }}(-)$ Input Voltage			$\mathbf{V}_{\text {REF }}+$)	V (max)
$\mathrm{V}_{\text {IN }}$	Input Voltage			$\mathrm{v}++0.05$	V (max)
V_{IN}	Input Voltage			GND - 0.05	$V(\min)$
	OFF Channel Input Leakage Current ON Channel Input Leakage Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}^{+}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+} \\ & \overline{\mathrm{CS}}=\mathrm{V}^{+}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+} \end{aligned}$	$\begin{gathered} 0.01 \\ \pm 1 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ -3 \end{gathered}$	$\mu \mathrm{A}(\max)$ $\mu \mathrm{A}$ (max)

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(+)}=5 \mathrm{~V} \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}$, and Speed Adjust pin unconnected unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Notes 8, 10)	Units (Limits)
$\mathrm{V}_{\mathrm{IN}(1)}$	Logical "1" Input Voltage	$\mathrm{V}+=5.5 \mathrm{~V}$		2.0	V (min)
V IN(0)	Logical " 0 " Input Voltage	$\mathrm{V}+=4.5 \mathrm{~V}$		0.8	V (max)
$\operatorname{liN(1)}$	Logical '1" Input Current	$\mathrm{V}_{1 \mathrm{~N}(1)}=5 \mathrm{~V}$	0.005	3.0	$\mu \mathrm{A}$ (max)
$\operatorname{IIN}(0)$	Logical "0" Input Current	$V_{1 N(0)} 0 \mathrm{~V}$	-0.005	-3.0	$\mu \mathrm{A}$ (max)
Vout(1)	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}^{+}=4.5 \mathrm{~V}, \text { IOUT }=-360 \mu \mathrm{~A} \\ & \mathrm{~V}^{+}=4.5 \mathrm{~V}, \text { IOUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{gathered} 2.4 \\ 4.25 \end{gathered}$	V (min) V (min)
Vout(0)	Logical "0" Output Voltage	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{l}$ OUT $=1.6 \mathrm{~mA}$		0.4	V (max)
Iout	TRI-STATE® Output Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0.1 \\ -0.1 \\ \hline \end{gathered}$	$\begin{array}{r} 50 \\ -50 \\ \hline \end{array}$	$\mu \mathrm{A}$ (max) $\mu \mathrm{A}$ (max)
Dlcc	DV ${ }_{\text {CC }}$ Supply Current	$\begin{aligned} & \overline{C S}=\bar{S} / H=\overline{R D}=0, R_{S A}=\infty \\ & \overline{C S}=\bar{S} / H=\overline{R D}=0, R_{S A}=18 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	2	mA (max) mA (max)
$\mathrm{Al}_{\text {cc }}$	AV $\mathrm{CC}^{\text {Supply Current }}$	$\begin{aligned} & \overline{\mathrm{CS}}=\bar{S} / H=\overline{R D}=0, R_{S A}=\infty \\ & \overline{C S}=\bar{S} / H=\overline{R D}=0, R_{S A}=18 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	45	mA (max) mA (max)

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{REF}(+)}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}$, and Speed Adjust pin unconnected unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{J}=$ $+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Notes 8, 10)	Units (Limits)
tconv	Mode 1 Conversion Time from Rising Edge of $\overline{\mathrm{S}} / \mathrm{H}$ to Falling Edge of $\overline{\mathrm{NT}}$	BIN, BIWM, CIN, CIWM Suffixes CMJ Suffixes $R_{S A}=18 k$	$\begin{aligned} & 600 \\ & 600 \\ & 375 \\ & \hline \end{aligned}$	$\begin{gathered} 750 / 900 \\ 1000 \end{gathered}$	ns (max) ns (max) ns
${ }^{\text {t CRD }}$	Mode 2 Conversion Time	BIN, BIWM, CIN, CIWM Suffixes CMJ Suffixes Mode 2, $\mathrm{R}_{\mathrm{SA}}=18 \mathrm{k}$	$\begin{aligned} & 850 \\ & 850 \\ & 530 \\ & \hline \end{aligned}$	$\begin{aligned} & 1400 \\ & 1500 \end{aligned}$	ns (max) ns (max) ns
$t_{A C C 1}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)	Mode 1; $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	30	60	ns (max)
$\mathrm{t}_{\mathrm{ACC} 2}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)	Mode 2; $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	900	tcrd +50	ns (max)
${ }_{\text {tsH }}$	Minimum Sample Time	(Figure 1) ; (Note 9)		250	ns (max)
$t_{1 H}, t_{0 H}$	TRI-STATE Control (Delay from Rising Edge of $\overline{R D}$ to High-Z State)	$R_{L}=1 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	30	60	ns (max)
$\mathrm{t}_{\text {INTH }}$	Delay from Rising Edge of $\overline{R D}$ to Rising Edge of $\overline{\text { NT }}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	25	50	ns (max)
tp	Delay from End of Conversion to Next Conversion			50	ns (max)

AC Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{REF}(+)}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=$ GND, and Speed Adjust pin unconnected unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=$ $+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units (Limits)
t_{MS}	Multiplexer Control Setup Time		10	$\mathbf{7 5}$	$\mathrm{~ns}(\mathrm{max})$
t_{MH}	Multiplexer Hold Time		10	$\mathbf{4 0}$	$\mathrm{~ns}(\mathrm{max})$
$\mathrm{C}_{\mathrm{VIN}}$	Analog Input Capacitance		35		$\mathrm{pF}(\max)$
$\mathrm{C}_{\text {OUT }}$	Logic Output Capacitance		5		$\mathrm{pF}(\max)$
C_{IN}	Logic Input Capacitance		5		$\mathrm{pF}(\max)$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional. These ratings do not guarantee specific performance limits, however. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditons.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: When the input voltage $\left(\mathrm{V}_{\mathbb{I}}\right)$ at any pin exceeds the power supply rails ($\mathrm{V}_{\mathbb{I N}}<G N D$ or $\mathrm{V}_{\mathbb{N}}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can safely exceed the power supplies with an input current of 5 mA to four.
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. In most cases, the maximum derated power dissipation will be reached only during fault conditions. For these devices, TJmax for a board-mounted device can be found from the tables below:

ADC10061

Suffix	$\theta_{\text {JA }}\left({ }^{\circ} \mathbf{C} / \mathrm{W}\right)$
CMJ	54
BIN, CIN	70
BIWM, CIWM	85

ADC10062

Suffix	$\boldsymbol{\theta}_{\mathbf{J A}}$ (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
CMJ	48
BIN, CIN	60
BIWM, CIWM	82

ADC10064

Suffix	$\theta_{\text {JA }}\left({ }^{\circ} \mathbf{C} / W\right)$
CMJ	44
BIN, CIN	53
BIWM, CIWM	78

Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Note 7: Typicals are at $+25^{\circ} \mathrm{C}$ and represent must likely parametric norm.
Note 8: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 9: Accuracy may degrade if t_{SH} is shorter than the value specified. See curves of Accuracy vs t_{SH}.
Note 10: A military RETS electrical test specification is available on request. At time of printing, the ADC10061CMJ/883, ADC10062CMJ/883, and ADC10064CMJ/883 RETS specification complies fully with the boldface limits in this column.

Typical Performance Characteristics

 aMBient teaperature (${ }^{\circ}$ C)
Conversion Time vs Speed-Up Resistor (ADC10062 and ADC10064 Only)

Linearity Error vs Reference Voltage

Conversion Time vs Temperature

Conversion Time
vs Speed-Up Resistor (ADC10062 and ADC10064 Only)

Analog Supply Current vs Temperature

Spectral Response with 100 kHz Sine Wave Input

Linearity Change vs Speed－Up Resistor （ADC10062 and ADC10064 Only）

Linearity Error Change

 vs Sample Time

TRI-STATE Test Circuits and Waveforms

TL/H/11020-6

TL/H/11020-8
TL/H/11020-7

Timing Diagrams

FIGURE 1. Mode 1. The conversion time (tconv) is set by the internal timer.

Timing Diagrams (Continued)

TL/H/11020-10
FIGURE 2. Mode 2 ($\overline{\operatorname{RD}}$ Mode). The conversion time ($\mathrm{t}_{\mathrm{CRD}}$) includes the sampling time and is determined by the internal timer.

Simplified Block Diagram

TL/H/11020-1
*ADC10061 Only
**ADC10062 and ADC10064 Only
***ADC10064 Only

Connection Diagrams

Dual－In－Line Package

Dual－In－Line Package

TL／H／11020－12
Top View

Dual－In－Line Package

Pin Descriptions

$D V_{C C}, A V_{C C}$ These are the digital and analog positive sup－ ply voltage inputs．They should always be connected to the same voltage source，but are brought out separately to allow for sepa－ rate bypass capacitors．Each supply pin should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor to ground．
This is the active low interrupt output．$\overline{\text { NT }}$ goes low at the end of each conversion，and returns to a high state following the rising edge of $\overline{R D}$ ．
$\overline{\mathrm{S}} / \mathrm{H} \quad$ This is the Sample／Hold control input．When this pin is forced low（and $\overline{\mathrm{CS}}$ is low），it caus－ es the analog input signal to be sampled and initiates a new conversion．
$\overline{R D} \quad$ This is the active low Read control input． When this $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ are low，any data pres－ ent in the output registers will be placed on the data bus．
CS This is the active low Chip Select control in－ put．When low，this pin enables the $\overline{R D}$ and S／H pins．
S0，S1 On the multiple－input devices（ADC10062 and ADC10064），these pins select the analog input that will be connected to the A／D during the conversion．The input is selected based on the state of S0 and S1 when \bar{S} / H makes its High－to－Low transition（See the Timing Di－ agrams）．The ADC10064 includes both SO and S1．The ADC10062 includes just S0，and the ADC10061 includes neither．
$V_{\text {REF－，}} \quad$ These are the reference voltage inputs．They VREF $+\quad$ may be placed at any voltage between GND and $V_{C C}$ ，but $V_{\text {REF }}+$ must be greater than $\mathrm{V}_{\mathrm{REF}}$－．An input voltage equal to $\mathrm{V}_{\mathrm{REF}}$－ produces an output code of 0 ，and an input voltage equal to（ $\mathrm{V}_{\mathrm{REF}+}+1 \mathrm{LSB}$ ）produces an output code of 1023.
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{INO}}$ ，＂These are the analog input pins．The $\mathrm{V}_{\text {IN1 }}, \mathrm{V}_{\text {IN2 }}$ ，ADC10061 has one input（ V_{IN} ），the $V_{\text {IN3 }}$ ADC10062 has two inputs（ $\mathrm{V}_{\text {INO }}$ and $\mathrm{V}_{\text {IN1 }}$ ）， and the ADC10064 has four inputs（VINO， $\mathrm{V}_{\mathrm{IN} 1}, \mathrm{~V}_{\mathrm{IN} 2}$ and $\mathrm{V}_{\mathrm{IN} 3}$ ）．The impedance of the source should be less than 500Ω for best ac－ curacy and conversion speed．For accurate conversions，no input pin（even one that is not selected）should be driven more than 50 mV above V_{CC} or 50 mV below ground．
GND，AGND，These are the power supply ground pins．The DGND ADC10061 has a single ground pin（GND）， and the ADC10062 and ADC10064 have sep－ arate analog and digital ground pins（AGND and DGND）for separate bypassing of the an－ alog and digital supplies．The ground pins should be connected to a stable，noise－free system ground．For the devices with two ground pins，both pins should be returned to the same potential．
DB0－DB9 These are the TRI－STATE output pins．
SPEED ADJ（ADC10062 and ADC10064 only）．This pin is normally left unconnected，but by connecting a resistor between this pin and ground，the conversion time can be reduced．See the Typical Performance Curves and the table of Electrical Characteristics．

Functional Description

The ADC10061, ADC10062 and ADC10064 digitize an analog input signal to 10 bits accuracy by performing two lowerresolution "flash" conversions. The first flash conversion provides the six most significant bits (MSBs) of data, and the second flash conversion provides the four least significant bits LSBs).
Figure 3 is a simplified block diagram of the converter. Near the center of the diagram is a string of resistors. At the bottom of the string of resistors are 16 resistors, each of which has a value 1/1024 the resistance of the whole resistor string. These lower 16 resistors (the LSB Ladder) therefore have a voltage drop of $16 / 1024$, or $1 / 64$ of the total reference voltage ($\mathrm{V}_{\mathrm{REF}}+-\mathrm{V}_{\mathrm{REF}}$) across them. The remainder of the resistor string is made up of eight groups of eight resistors connected in series. These comprise the MSB Ladder. Each section of the MSB Ladder has $1 / 8$ of the total reference voltage across it, and each of the LSB resistors has $1 / 64$ of the total reference voltage across it. Tap points across these resistors can be connected, in groups of sixteen, to the sixteen comparators at the right of the diagram.
On the left side of the diagram is a string of seven resistors connected between VREF+ and VREF-. Six comparators compare the input voltage with the tap voltages on this resistor string to provide a low-resolution "estimate" of the input voltage. This estimate is then used to control the multiplexer that connects the MSB Ladder to the sixteen comparators on the right. Note that the comparators on the left needn't be very accurate; they simply provide an estimate of the input voltage. Only the sixteen comparators on the right and the six on the left are necessary to perform the initial six-bit flash conversion, instead of the 64 comparators that would be required using conventional half-flash methods.

To perform a conversion, the estimator compares the input voltage with the tap voltages on the seven resistors on the left. The estimator decoder then determines which MSB Ladder tap points will be connected to the sixteen comparators on the right. For example, assume that the estimator determines that $V_{I N}$ is between 11/16 and 13/16 of $V_{\text {REF }}$. The estimator decoder will instruct the comparator MUX to connect the 16 comparators to the taps on the MSB ladder between 10/16 and 14/16 of $\mathrm{V}_{\text {REF }}$. The 16 comparators will then perform the first flash conversion. Note that since the comparators are connected to ladder voltages that extend beyond the range indicated by the estimator circuit, errors in the estimator as large as $1 / 16$ of the reference voltage (64 LSBs) will be corrected. This first flash conversion produces the six most significant bits of data-four bits in the flash itself, and 2 bits in the estimator.
The remaining four LSBs are now determined using the same sixteen comparators that were used for the first flash conversion. The MSB Ladder tap voltage just below the input voltage (as determined by the first flash) is subtracted from the input voltage and compared with the tap points on the sixteen LSB Ladder resistors. The result of this second, four-bit flash conversion is then decoded, and the full 10-bit result is latched.
Note that the sixteen comparators used in the first flash conversion are reused for the second flash. Thus, the multistep conversion technique used in the ADC10061, ADC10062, and ADC10064 needs only a small fraction of the number of comparators that would be required for a traditional flash converter, and far fewer than would be used in a conventional half-flash approach. This allows the ADC10061, ADC10062, and ADC10064 to perform highspeed conversions without excessive power drain.

Applications Information
 1.0 MODES OF OPERATION

The ADC10061, ADC10062, and ADC10064 have two basic digital interface modes. Figure 1 and Figure 2 are timing diagrams for the two modes. The ADC10062 and ADC10064 have input multiplexers that are controlled by the logic levels on pins S_{0} and S_{1} when \bar{S} / H goes low. Table I is a truth table showing how the input channnels are assigned.

Mode 1

In this mode, the $\overline{\mathrm{S}} / \mathrm{H}$ pin controls the start of conversion. $\overline{\mathrm{S}} / \mathrm{H}$ is pulled low for a minimum of 250 ns . This causes the comparators in the "coarse" flash converter to become active. When $\overline{\mathrm{S}} / \mathrm{H}$ goes high, the result of the coarse conversion is latched and the "fine" conversion begins. After 600 ns (typical), INT goes low, indicating that the conversion results are latched and can be read by pulling $\overline{R D}$ low. Note that $\overline{\mathrm{CS}}$ must be low to enable $\overline{\mathrm{S}} / \mathrm{H}$ or $\overline{\mathrm{RD}} . \overline{\mathrm{CS}}$ is internally "ANDed" with $\overline{\mathrm{S}} / \mathrm{H}$ and $\overline{\mathrm{RD}}$; the input voltage is sampled when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{S}} / \mathrm{H}$ are low, and data is read when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are low. $\overline{\mathrm{INT}}$ is reset high on the rising edge of $\overline{\mathrm{RD}}$.

TABLE I. Input Multiplexer Programming

ADC10064		
S_{1} S_{0} 0 0 $V_{\text {INO }}$ 0 1 $\mathrm{~V}_{\mathrm{IN} 1}$		
1	0	$\mathrm{~V}_{\mathrm{IN} 2}$
1	1	$\mathrm{~V}_{\mathrm{IN} 3}$

$\mathbf{s}_{\mathbf{0}}$	
0	Channel
1	$\mathrm{~V}_{\mathrm{INO}}$

(b)
(a)

Mode 2

In Mode 2, also called " $\overline{\mathrm{RD}}$ mode", the $\overline{\mathrm{S}} / \mathrm{H}$ and $\overline{\mathrm{RD}}$ pins are tied together. A conversion is initiated by pulling both pins low. The A/D converter samples the input voltage and causes the coarse comparators to become active. An internal timer then terminates the coarse conversion and begins the fine conversion. 850 ns (typical) after $\overline{\mathrm{S}} / \mathrm{H}$ and $\overline{\mathrm{RD}}$ are pull low, $\overline{\text { NT }}$ goes low, indicating that the conversion is completed. Approximately 20 ns later the data appearing on the TRI-STATE output pins will be valid. Note that data will appear on these pins throughout the conversion, but until INT goes low the data at the output pins will be the result of the previous conversion.

2.0 REFERENCE CONSIDERATIONS

The ADC10061, ADC10062, and ADC10064 each have two reference inputs. These inputs, $\mathrm{V}_{\text {REF }}$ + and $\mathrm{V}_{\text {REF- }}$, are fully differential and define the zero to full-scale range of the input signal. The reference inputs can be connected to span the entire supply voltage range $\left(\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}+=\right.$ $V_{C C}$) for ratiometric applications, or they can be connected to different voltages (as long as they are between ground and V_{CC}) when other input spans are required. Reducing the overall $\mathrm{V}_{\text {REF }}$ span to less than 5 V increases the sensitivity of the converter (e.g., if $\mathrm{V}_{\mathrm{REF}}=2 \mathrm{~V}$, then $1 \mathrm{LSB}=$
1.953 mV). Note, however, that linearity and offset errors become larger when lower reference voltages are used. See the Typical Performance Curves for more information. For this reason, reference voltages less than 2 V are not recommended.
In most applications, $V_{\text {REF- }}$ will simply be connected to ground, but it is often useful to have an input span that is offset from ground. This situation is easily accommodated by the reference configuration used in the ADC10061, ADC10062, and ADC10064. VREF - can be connected to a voltage other than ground as long as the voltage source connected to this pin is capable of sinking the converter's reference current ($12.5 \mathrm{~mA} \mathrm{Max} @ \mathrm{~V}_{\text {REF }}=5 \mathrm{~V}$). If $\mathrm{V}_{\text {REF }}$ - is connected to a voltage other than ground, bypass it with multiple capacitors.
Since the resistance between the two reference inputs can be as low as 400Ω, the voltage source driving the reference inputs should have low output impedance. Any noise on either reference input is a potential cause of conversion errors, so each of these pins must be supplied with a clean, low noise voltage source. Each reference pin should be bypassed with a $10 \mu \mathrm{~F}$ tantalum and a $0.1 \mu \mathrm{~F}$ ceramic.

3.0 THE ANALOG INPUT

The ADC10061, ADC10062, and ADC10064 sample the analog input voltage once every conversion cycle. When this happens, the input is briefly connected to an impedance approximately equal to 600Ω in series with 35 pF . Short-duration current spikes can therefore be observed at the analog. input during normal operation. These spikes are normal and do not degrade the converter's performance.
Large source impedances can slow the charging of the sampling capacitors and degrade conversion accuracy. Therefore, only signal sources with output impedances less than 500Ω should be used if rated accuracy is to be achieved at the minimum sample time (250 ns maximum). If the sampling time is increased, the source impedance can be larger. If a signal source has a high output impedance, its output should be buffered with an operational amplifier. The operational amplifier's output should be well-behaved when driving a switched $35 \mathrm{pF} / 600 \Omega$ load. Any ringing or voltage shifts at the op amp's output during the sampling period can result in conversion errors.
Correct conversion results will be obtained for input voltages greater than GND - 50 mV and less than $\mathrm{V}^{+}+$ 50 mV . Do not allow the signal source to drive the analog input pin more than 300 mV higher than $\mathrm{AV}_{\mathrm{CC}}$ and $\mathrm{DV} \mathrm{C}_{\mathrm{CC}}$, or more than 300 mV lower than GND. If an analog input pin is forced beyond these voltages, the current flowing through the pin should be limited to 5 mA or less to avoid permanent damage to the IC. The sum of all the overdrive currents into all pins must be less than 20 mA . When the input signal is expected to extend more than 300 mV beyond the power supply limits, some sourt of protection scheme should be used. A simple network using diodes and resistors is shown in Figure 4.

Applications Information (Continued)

FIGURE 4. Typical Connection. Note the multiple bypass capacitors on the reference and power supply pins. If $\mathrm{V}_{\text {REF }}-$ is not grounded, it should also be bypassed to analog ground using multiple capacitors (see 5.0 "Power Supply Considerations'). AGND and DGND should be at the same potential. $\mathrm{V}_{\text {INO }}$ is shown with an input protection network. Pin 17 is normally left open, but optional "speedup" resistor RSA can be used to reduce the conversion time.

4.0 INHERENT SAMPLE-AND-HOLD

Because the ADC10061, ADC10062, and ADC10064 sample the input signal once during each conversion, they are capable of measuring relatively fast input signals without the help of an external sample-hold. In a non-sampling succes-sive-approximation A/D converter, regardless of speed, the input signal must be stable to better than $\pm 1 / 2$ LSB during each conversion cycle or significant errors will result. Consequently, even for many relatively slow input signals, the signals must be externally sampled and held constant during each conversion if a SAR with no internal sample-andhold is used.
Because they incorporate a direct sample/hold control input, the ADC10061, ADC10062, and ADC10064 are suitable for use in DSP-based systems. The $\overline{\mathrm{S}} / \mathrm{H}$ input allows synchronization of the A/D converter to the DSP system's sampling rate and to other ADC10061s, ADC10062s, and ADC10064s.
The ADC10061, ADC10062, and ADC10064 can perform accurate conversions of input signals with frequency components from DC to over 160 kHz .

5.0 POWER SUPPLY CONSIDERATIONS

The ADC10061, ADC10062, and ADC10064 are designed to operate from a +5 V (nominal) power supply. There are two supply pins, $A V_{C C}$ and $D V_{C C}$. These pins allow separate external bypass capacitors for the analog and digital portions of the circuit. To guarantee accurate conversions, the two supply pins should be connected to the same voltage source, and each should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor. Depending on the circuit board layout and other system considerations, more bypassing may be necessary.

The ADC10061 has a single ground pin, and the ADC10062 and ADC10064 each have separate analog and digital ground pins for separate bypassing of the analog and digital supplies. The devices with separate analog and digital ground pins should have their ground pins connected to the same potential, and all grounds should be "clean" and free of noise.
In systems with multiple power supplies, careful attention to power supply sequencing may be necessary to avoid overdriving inputs. The A/D converter's power supply pins should be at the proper voltage before digital or analog signals are applied to any of the other pins.

6.0 LAYOUT AND GROUNDING

In order to ensure fast, accurate conversions from the ADC10061, ADC10062, and ADC10064, it is necessary to use appropriate circuit board layout techniques. The analog ground return path should be low-impedance and free of noise from other parts of the system. Noise from digital circuitry can be especially troublesome, so digital grounds should always be separate from analog grounds. For best performance, separate ground planes should be provided for the digital and analog parts of the system.
All bypass capacitors should be located as close to the converter as possible and should connect to the converter and to ground with short traces. The analog input should be isolated from noisy signal traces to avoid having spurious signals couple to the input. Any external component (e.g., a filter capacitor) connected across the converter's input should be connected to a very clean ground return point. Grounding the component at the wrong point will result in reduced conversion accuracy.

Applications Information (Continued)

7.0 DYNAMIC PERFORMANCE

Many applications require the A/D converter to digitize AC signals, but conventional DC integral and differential nonlinearity specifications don't accurately predict the A/D converter's performance with AC input signals. The important specifications for AC applications reflect the converter's ability to digitize AC signals without significant spectral errors and without adding noise to the digitized signal. Dynamic characteristics such as signal-to-noise ratio (SNR) and total harmonic distortion (THD), are quantitative measures of this capability.
An A/D converter's AC performance can be measured using Fast Fourier Transform (FFT) methods. A sinusoidal waveform is applied to the A/D converter's input, and the transform is then performed on the digitized waveform. The resulting spectral plot might look like the ones shown in the typical performance curves. The large peak is the fundamental frequency, and the noise and distortion components (if any are present) are visible above and below the fundamental frequency. Harmonic distortion components appear at whole multiples of the input frequency. Their amplitudes are combined as the square root of the sum of the squares and compared to the fundamental amplitude to yield the THD specification. Typical values for THD are given in the table of Electrical Characteristics.
Signal-to-noise ratio is the ratio of the amplitude at the fundamental frequency to the rms value at all other frequencies, excluding any harmonic distortion components. Typical values are given in the Electrical Characteristics table. An alternative definition of signal-to-noise ratio includes the distortion components along with the random noise to yield a signal-to-noise-plus-distortion ration, or $\mathrm{S} /(\mathrm{N}+\mathrm{D})$.
The THD and noise performance of the A/D converter will change with the frequency of the input signal, with more distortion and noise occurring at higher signal frequencies.

One way of describing the A/D's performance as a function of signal frequency is to make a plot of "effective bits" versus frequency. An ideal A/D converter with no linearity errors or self-generated noise will have a signal-to-noise ratio equal to $(6.02 \mathrm{n}+1.8) \mathrm{dB}$, where n is the resolution in bits of the A/D converter. A real A/D converter will have some amount of noise and distortion, and the effective bits can be found by:

$$
n \text { (effective) }=\frac{S /(N+D)(d B)-1.8}{6.02}
$$

where $S /(N+D)$ is the ratio of signal to noise and distortion, which can vary with frequency.
As an example, an ADC10061 with a $5 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} 100 \mathrm{kHz}$ sine wave input signal will typically have a signal-to-noise-plusdistortion ratio of 59.2 dB , which is equivalent to 9.53 effective bits. As the input frequency increases, noise and distortion gradually increase, yielding a plot of effective bits or $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ as shown in the typical performance curves.

8.0 SPEED ADJUST

In applications that require faster conversion times, the Speed Adjust pin (pin 14 on the ADC10062, pin 17 on the ADC10064) can significantly reduce the conversion time. The speed adjust pin is connected to an on-chip current source that determines the converter's internal timing. By connecting a resistor between the speed adjust pin and ground as shown in Figure 4, the internal programming current is increased, which reduces the conversion time. As an example, an 18 k resistor reduces the conversion time of a typical part from 600 ns to 350 ns with no significant effect on linearity. Using smaller resistors to further decrease the conversion time is possible as well, although the linearity will begin to degrade somewhat (see curves). Note that the resistor value needed to obtain a given conversion time will vary from part to part, so this technique will generally require some "tweaking" to obtain satisfactory results.

ADC10461／ADC10462／ADC10464 10－Bit 600 ns A／D Converter with Input Multiplexer and Sample／Hold

General Description

Using an innovative，patented multistep＊conversion tech－ nique，the 10－bit ADC10461，ADC10462，and ADC10464 CMOS analog－to－digital converters offer sub－microsecond conversion times yet dissipate a maximum of only 235 mW ． The ADC10461，ADC10462，and ADC10464 perform a 10－bit conversion in two lower－resolution＂flashes＂，thus yielding a fast A / D without the cost，power dissipation，and other problems associated with true flash approaches．Dy－ namic performance（THD，S / N ）is guaranteed．The ADC10461 is pin－compatible with the ADC1061 but much faster，thus providing a convenient upgrade path for the ADC1061．
The analog input voltage to the ADC10461，ADC10462，and ADC10464 is sampled and held by an internal sampling cir－ cuit．Input signals at frequencies from dc to over 200 kHz can therefore be digitized accurately without the need for an external sample－and－hold circuit．
The ADC10462 and ADC10464 include a＂speed－up＂pin． Connecting an external resistor between this pin and ground reduces the typical conversion time to as little as 350 ns with only a small increase in linearity error．
For ease of interface to microprocessors，the ADC10461， ADC10462，and ADC10464 have been designed to appear as a memory location or I／O port without the need for exter－ nal interface logic．

Features

■ Built－in sample－and－hold
－Single +5 V supply
－1，2，or 4－input multiplexer options
－No external clock required
－Speed adjust pin for faster conversions（ADC10462 and ADC10464）

Key Specifications

■ Conversion time to 10 bits 600 ns typical， 900 ns max over temperature
■ Sampling Rate
800 kHz
－Low power dissipation 235 mW（max）
－Total harmonic distortion（ 50 kHz ）
-60 dB （max）
－No missing codes over temperature

Applications

■ Digital signal processor front ends
－Instrumentation
－Disk drives
－Mobile telecommunications

Ordering Information

ADC10461

Industrial	
$\left.\mathbf{(- 4 0 ^ { \circ }} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}\right)$	Package
ADC10461CIN	N20A Molded DIP
ADC10461CIWM	M20B Small Outline

ADC10462

Industrial	
$\left(-40^{\circ} \mathrm{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}\right)$	Package
ADC10462CIN	N24A Molded DIP
ADC10462CIWM	M24B Small Outline

ADC10464

Industrial $\left(-40^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathbf{C}\right)$	Package
ADC10464CIN	N28B Molded DIP
ADC10464CIWM	M28B Small Outline

Absolute Maximum Ratings (Notes 1,2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

```
Supply Voltage (V+}=A\mp@subsup{V}{CC}{}= DV CC) - 0.3V to +6V
```

Voltage at Any Input or Output $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Input Current at Any Pin (Note 3)
Package Input Current (Note 3) 20 mA
Power Dissipation (Note 4) 875 mW
ESD Susceptability (Note 5) 2000V
Soldering Information (Note 6)
N Package (10 Sec) $260^{\circ} \mathrm{C}$
SO Package:
Vapor Phase (60 Sec) $215^{\circ} \mathrm{C}$
Infrared (15 Sec) $220^{\circ} \mathrm{C}$

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Operating Ratings (Notes 1,2)

Temperature Range	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
ADC10461CIN, ADC10461CIWM,	
ADC10462CIN, ADC10462CIWM,	
ADC10464CIN,	$-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$
ADC10464CIWM	4.5 V to 5.5 V

Converter Characteristics

The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(+)}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}$, and Speed Adjust pin unconnected unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {Min }}$ to $T_{\text {Max; }}$ all other limits $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units (Limit)
	Resolution			10	Bits
	Integral Linearity Error	$\mathrm{R}_{S A} \geq 18 \mathrm{k} \Omega$	± 0.5		LSB
	Offset Error			± 1	LSB (max)
	Full-Scale Error			± 1	LSB (max)
	Total Unadjusted Error	$\mathrm{R}_{S A} \geq 18 \mathrm{k} \Omega$	± 0.5		LSB
	Missing Codes			0	(max)
	Power Supply Sensitivity	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{REF}}=4.5 \mathrm{~V} \\ & \mathrm{~V}+=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{REF}}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 1 / 16 \\ & \pm 1 / 8 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \hline \end{aligned}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{f}_{\mathrm{IN}}=50 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{f}_{\mathrm{IN}}=240 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	$\begin{aligned} & -68 \\ & -66 \\ & -62 \\ & -58 \end{aligned}$	-60	$d B$ $d B(\max)$ $d B$ $d B$
SNR	Signal-to-Noise Ratio	$\begin{aligned} & f_{I N}=1 \mathrm{kHz}, 4.85 V_{P-P} \\ & f_{I N}=50 \mathrm{kHz}, 4.85 V_{P-P} \\ & f_{I N}=100 \mathrm{kHz}, 4.85 V_{P-P} \end{aligned}$	$\begin{aligned} & 61 \\ & 60 \\ & 60 \\ & \hline \end{aligned}$	58	$d B$ $d B(\min)$ $d B$
ENOB	Effective Number of Bits	$\begin{aligned} & \mathrm{f}_{\mathrm{I}}=1 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{f}_{\mathrm{IN}}=50 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	$\begin{aligned} & 9.6 \\ & 9.5 \\ & \hline \end{aligned}$	9	Bits Bits (min)
R REF	Reference Resistance		650	400	Ω (min)
$\mathrm{R}_{\text {REF }}$	Reference Resistance		650	900	Ω (max)
$\mathrm{V}_{\text {REF }(+)}$	$\mathrm{V}_{\text {REF (}+ \text {) }}$ Input Voltage			v+ + 0.05	V (max)
$\mathrm{V}_{\text {REF }(-)}$	$\mathrm{V}_{\text {REF }(-)}$ Input Voltage			GND - 0.05	$V(\min)$
$\mathrm{V}_{\mathrm{REF}(+)}$	$\mathrm{V}_{\text {REF (}+ \text {) }}$ Input Voltage			$\mathbf{V}_{\text {REF }}(\mathbf{)}$	$V(\min)$
$\mathrm{V}_{\text {REF (}- \text {) }}$	$\mathrm{V}_{\text {REF }(-)}$ Input Voltage			$\mathbf{V}_{\text {REF }(+)}$	V (max)
$\mathrm{V}_{\text {IN }}$	Input Voltage			$\mathbf{v +}+0.05$	V (max)
VIN	Input Voltage			GND - 0.05	$V(\min)$
	OFF Channel Input Leakage Current ON Channel Input Leakage Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}^{+}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+} \\ & \overline{\mathrm{CS}}=\mathrm{V}^{+}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+} \end{aligned}$	$\begin{gathered} 0.01 \\ \pm 1 \end{gathered}$	$\begin{gathered} 3 \\ -3 \end{gathered}$	μA (max) $\mu \mathrm{A}$ (max)

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(+)}=5 \mathrm{~V} \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}$, and Speed Adjust pin unconnected unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units (Limits)
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$\mathrm{V}+=5.5 \mathrm{~V}$		2.0	V (min)
$\mathrm{V}_{\mathrm{IN}(0)}$	Logical "0" Input Voltage	$\mathrm{V}+=4.5 \mathrm{~V}$		0.8	V (max)
$\ln (1)$	Logical "1" Input Current	$\mathrm{V}_{\operatorname{IN}(1)}=5 \mathrm{~V}$	0.005	3.0	$\mu \mathrm{A}$ (max)
$\underline{I N}(0)$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{IN}(0)} \mathrm{OV}$	-0.005	-3.0	$\mu A(\max)$
V OUT(1)	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}^{+}=4.5 \mathrm{~V}, \text { IOUT }=-360 \mu \mathrm{~A} \\ & \mathrm{~V}+=4.5 \mathrm{~V}, \text { IOUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{gathered} 2.4 \\ 4.25 \end{gathered}$	V (min) $V(\min)$
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{l}$ OUT $=1.6 \mathrm{~mA}$		0.4	V (max)
IOUT	TRI-STATE® Output Current	$\begin{aligned} & V_{\text {OUT }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0.1 \\ -0.1 \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ -50 \\ \hline \end{gathered}$	$\mu \mathrm{A}(\max)$ $\mu \mathrm{A}$ (max)
DICC	DV ${ }_{\text {CC }}$ Supply Current	$\begin{aligned} & \overline{\mathrm{CS}}=\overline{\mathrm{S}} / \mathrm{H}=\overline{\mathrm{RD}}=0, \mathrm{R}_{\mathrm{SA}}=\infty \\ & \overline{\mathrm{CS}}=\overline{\mathrm{S}} / \mathrm{H}=\overline{\mathrm{RD}}=0, \mathrm{R}_{\mathrm{SA}}=18 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	2	mA (max) mA (max)
Alcc	AV ${ }_{\text {CC }}$ Supply Current	$\begin{aligned} & \overline{\mathrm{CS}}=\overline{\mathrm{S}} / \mathrm{H}=\overline{\mathrm{RD}}=0, \mathrm{R}_{\mathrm{SA}}=\infty \\ & \overline{\mathrm{CS}}=\overline{\mathrm{S}} / \mathrm{H}=\overline{\mathrm{RD}}=0, \mathrm{R}_{\mathrm{SA}}=18 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	45	mA (max) mA (max)

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{REF}(+)}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}$, and Speed Adjust pin unconnected unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=$ $+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units (Limits)
tCONV	Mode 1 Conversion Time from Rising Edge of $\overline{\mathrm{S}} / \mathrm{H}$ to Falling Edge of $\overline{\mathrm{NT}}$	CIN, CIWM Suffixes $R_{S A}=18 \mathrm{k}$	$\begin{aligned} & 600 \\ & 375 \end{aligned}$	750/900	$\begin{gathered} \text { ns (max) } \\ \text { ns } \end{gathered}$
$t_{\text {CRD }}$	Mode 2 Conversion Time	CIN, CIWM Suffixes Mode 2, $\mathrm{R}_{\mathrm{SA}}=18 \mathrm{k}$	$\begin{aligned} & 850 \\ & 530 \end{aligned}$	1400	$\begin{gathered} \text { ns (max) } \\ \text { ns } \end{gathered}$
$t_{\text {ACCl }}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)	Mode 1; $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	30	60	ns (max)
$t_{\text {ACC2 }}$	Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Valid)	Mode 2; $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	900	$\mathbf{t}_{\text {CRD }}+50$	ns (max)
${ }_{\text {tSH}}$	Minimum Sample Time	(Figure 1) ; (Note 9)		250	ns (max)
$\mathrm{t}_{1} \mathrm{H}, \mathrm{t}_{0 \mathrm{H}}$	TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to High-Z State)	$R_{L}=1 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	30	60	ns (max)
$\mathrm{t}_{\text {INTH }}$	Delay from Rising Edge of $\overline{\mathrm{RD}}$ to Rising Edge of INT	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	25	50	ns (max)
t_{p}	Delay from End of Conversion to Next Conversion			50	ns (max)

AC Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{REF}(+)}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}$, and Speed Adjust pin unconnected unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=$ $+25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units (Limits)
t_{MS}	Multiplexer Control Setup Time		10	$\mathbf{7 5}$	ns (max)
$\mathrm{t}_{\text {MH }}$	Multiplexer Hold Time		10	$\mathbf{4 0}$	$\mathrm{~ns}(\mathrm{max})$
$\mathrm{C}_{\mathrm{VIN}}$	Analog Input Capacitance		35		$\mathrm{pF}(\mathrm{max})$
$\mathrm{C}_{\text {OUT }}$	Logic Output Capacitance		5		$\mathrm{pF}(\mathrm{max})$
C_{IN}	Logic Input Capacitance		5		$\mathrm{pF}(\mathrm{max})$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional. These ratings do not guarantee specific performance limits, however. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditons.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: When the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ at any pin exceeds the power supply rails $\left(\mathrm{V}_{\mathbb{I N}}<\mathrm{GND}\right.$ or $\left.\mathrm{V}_{\mathbb{I N}}>\mathrm{V}^{+}\right)$the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can safely exceed the power supplies with an input current of 5 mA to four.
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. In most cases, the maximum derated power dissipation will be reached only during fault conditions. For these devices, TJmax for a board-mounted device can be found from the tables below:
ADC10461

Suffix	$\theta_{\text {JA }}\left({ }^{\circ} \mathbf{C} / \mathrm{W}\right)$
CIN	70
CIWM	85

ADC10462	
Suffix $\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ CIN 60 CIWM 82	

ADC10464

Suffix	$\theta_{J A}\left({ }^{\circ} \mathrm{C} / \dot{\mathrm{W}}\right)$
CIN	53
CIWM	78

Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Note 7: Typicals represent most likely parametric norm.
Note 8: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 9: Accuracy may degrade if t $_{\text {SH }}$ is shorter than the value specified. See curves of Accuracy vs t_{SH}.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Linearity Change vs Speed-Up Resistor (ADC10462 and ADC10464 Only)

Linearity Change vs Speed-Up Resistor (ADC10462 and ADC10464 Only)

Linearity Error Change vs Sample Time

TRI-STATE Test Circuits and Waveforms

TL/H/11108-4

TL/H/11108-3

TL/H/11108-5
Timing Diagrams

FIGURE 1. Mode 1. The conversion time ($\mathrm{t}_{\mathrm{conv}}$) is set by the internal timer.

Timing Diagrams (Continued)

FIGURE 2. Mode 2 ($\overline{R D}$ Mode). The conversion time (tcrD) includes the sampling time and is determined by the internal timer.

Simplified Block Diagram

TL/H/11108-9
**ADC10462 and ADC10464 Only
***ADC10464 Only

Connection Diagrams

TL/H/11108-11
Top View

TL/H/11108-12
Top View

Pin Descriptions

$D V_{C C}, A V_{C C}$ These are the digital and analog positive supply voltage inputs. They should always be connected to the same voltage source, but are brought out separately to allow for separate bypass capacitors. Each supply pin should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor to ground.
$\overline{\text { INT }}$
This is the active low interrupt output. $\overline{\mathrm{NT}}$ goes low at the end of each conversion, and returns to a high state following the rising edge of $\overline{\mathrm{RD}}$.
$\overline{\mathrm{S}} / \mathrm{H} \quad$ This is the Sample/Hold control input. When this pin is forced low (and $\overline{\mathrm{CS}}$ is low), it causes the analog input signal to be sampled and initiates a new conversion.
$\overline{R D}$
This is the active low Read control input. When this $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ are low, any data present in the output registers will be placed on the data bus.
This is the active low Chip Select control input. When low, this pin enables the RD and $\overline{\mathrm{S}} / \mathrm{H}$ pins.

S0,S1 On the multiple-input devices (ADC10462 and ADC10464), these pins select the analog input that will be connected to the A/D during the conversion. The input is selected based on the state of S 0 and S 1 when $\overline{\mathrm{S}} / \mathrm{H}$ makes its High-to-Low transition (See the Timing Diagrams). The ADC10464 includes both S0 and S1. The ADC10462 includes just S0, and the ADC10461 includes neither.
$V_{\text {REF-, }} \quad$ These are the reference voltage inputs. They $V_{\text {REF }}+$ may be placed at any voltage between GND and V_{CC}, but $\mathrm{V}_{\text {REF }}+$ must be greater than $V_{\text {REF-. An }}$ input voltage equal to $V_{\text {REF- }}$ produces an output code of 0 , and an input voltage equal to ($\mathrm{V}_{\mathrm{REF}}+-1 \mathrm{LSB}$) produces an output code of 1023.
$\mathrm{V}_{\mathbb{I}}, \mathrm{V}_{\text {INO }}$, These are the analog input pins. The $\mathrm{V}_{\mathrm{IN} 1}, \mathrm{~V}_{\mathrm{IN} 2}$, ADC10461 has one input $\left(\mathrm{V}_{\mathrm{IN}}\right)$, the $\mathrm{V}_{\mathrm{IN} 3}$ ADC10462 has two inputs ($\mathrm{V}_{\mathrm{INO}}$ and $\mathrm{V}_{\mathrm{IN} 1}$),
and the ADC10464 has four inputs ($V_{\text {INO }}$, $\mathrm{V}_{\mathrm{IN} 1}, \mathrm{~V}_{\mathrm{IN} 2}$ and $\mathrm{V}_{\mathrm{IN} 3}$). The impedance of the source should be less than 500Ω for best accuracy and conversion speed. For accurate conversions, no input pin (even one that is not selected) should be driven more than 50 mV above V_{CC} or 50 mV below ground.
GND, AGND, These are the power supply ground pins. The DGND ADC10461 has a single ground pin (GND), and the ADC10462 and ADC10464 have separate analog and digital ground pins (AGND and DGND) for separate bypassing of the analog and digital supplies. The ground pins should be connected to a stable, noise-free system ground. For the devices with two ground pins, both pins should be returned to the same potential.
DB0-DB9 These are the TRI-STATE output pins.
SPEED ADJ (ADC10462 and ADC10464 only). This pin is normally left unconnected, but by connecting a resistor between this pin and ground, the conversion time can be reduced. See the Typical Performance Curves and the table of Electrical Characteristics.

Functional Description

The ADC10461, ADC10462 and ADC10464 digitize an analog input signal to 10 bits accuracy by performing two lowerresolution "flash" conversions. The first flash conversion provides the six most significant bits (MSBs) of data, and the second flash conversion provides the four least significant bits LSBs).
Figure 3 is a simplified block diagram of the converter. Near the center of the diagram is a string of resistors. At the bottom of the string of resistors are 16 resistors, each of which has a value 1/1024 the resistance of the whole resistor string. These lower 16 resistors (the LSB Ladder) therefore have a voltage drop of 16/1024, or $1 / 64$ of the total reference voltage ($\mathrm{V}_{\text {REF }}+-\mathrm{V}_{\text {REF- }}$) across them. The remainder of the resistor string is made up of eight groups of eight resistors connected in series. These comprise the MSB Ladder. Each section of the MSB Ladder has $1 / 8$ of the total reference voltage across it, and each of the LSB resistors has $1 / 64$ of the total reference voltage across it. Tap points across these resistors can be connected, in groups of sixteen, to the sixteen comparators at the right of the diagram.
On the left side of the diagram is a string of seven resistors connected between $\mathrm{V}_{\text {REF }}$ + and $\mathrm{V}_{\text {REF }}$.. Six comparators compare the input voltage with the tap voltages on this resistor string to provide a low-resolution "estimate" of the input voltage. This estimate is then used to control the multiplexer that connects the MSB Ladder to the sixteen comparators on the right. Note that the comparators on the left needn't be very accurate; they simply provide an estimate of the input voltage. Only the sixteen comparators on the right and the six on the left are necessary to perform the initial six-bit flash conversion, instead of the 64 comparators that would be required using conventional half-flash methods.

To perform a conversion, the estimator compares the input voltage with the tap voltages on the seven resistors on the left. The estimator decoder then determines which MSB Ladder tap points will be connected to the sixteen comparators on the right. For example, assume that the estimator determines that $\mathrm{V}_{\text {IN }}$ is between 11/16 and 13/16 of $\mathrm{V}_{\text {REF }}$. The estimator decoder will instruct the comparator MUX to connect the 16 comparators to the taps on the MSB ladder between 10/16 and 14/16 of $V_{\text {REF }}$. The 16 comparators will then perform the first flash conversion. Note that since the comparators are connected to ladder voltages that extend beyond the range indicated by the estimator circuit, errors in the estimator as large as $1 / 16$ of the reference voltage (64 LSBs) will be corrected. This first flash conversion produces the six most significant bits of data-four bits in the flash itself, and 2 bits in the estimator.
The remaining four LSBs are now determined using the same sixteen comparators that were used for the first flash conversion. The MSB Ladder tap voltage just below the input voltage (as determined by the first flash) is subtracted from the input voltage and compared with the tap points on the sixteen LSB Ladder resistors. The result of this second, four-bit flash conversion is then decoded, and the full 10-bit result is latched.
Note that the sixteen comparators used in the first flash conversion are reused for the second flash. Thus, the multistep conversion technique used in the ADC10461, ADC10462, and ADC10464 needs only a small fraction of the number of comparators that would be required for a traditional flash converter, and far fewer than would be used in a conventional half-flash approach. This allows the ADC10461, ADC10462, and ADC10464 to perform highspeed conversions without excessive power drain.

TL/H/11108-13
FIGURE 3. Block Diagram of the Multistep Converter Architecture

Applications Information

1.0 MODES OF OPERATION

The ADC10461, ADC10462, and ADC10464 have two basic digital interface modes. Figure 1 and Figure 2 are timing diagrams for the two modes. The ADC10462 and ADC10464 have input multiplexers that are controlled by the logic levels on pins S_{0} and S_{1} when \bar{S} / H goes low. Table I is a truth table showing how the input channnels are assigned.

Mode 1

In this mode, the $\overline{\mathbf{S}} / \mathrm{H}$ pin controls the start of conversion. $\overline{\mathrm{S}} / \mathrm{H}$ is pulled low for a minimum of 250 ns . This causes the comparators in the "coarse" flash converter to become active. When $\overline{\mathrm{S}} / \mathrm{H}$ goes high, the result of the coarse conversion is latched and the "fine" conversion begins. After 600 ns (typical), INT goes low, indicating that the conversion results are latched and can be read by pulling $\overline{\mathrm{RD}}$ low. Note that $\overline{\mathrm{CS}}$ must be low to enable $\overline{\mathrm{S}} / \mathrm{H}$ or $\overline{\mathrm{RD}}$. $\overline{\mathrm{CS}}$ is internally "ANDed" with $\overline{\mathrm{S}} / \mathrm{H}$ and $\overline{\mathrm{RD}}$; the input voltage is sampled when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{S}} / \mathrm{H}$ are low, and data is read when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are low. INT is reset high on the rising edge of $\overline{\mathrm{RD}}$.

TABLE I. Input Multiplexer Programming

ADC10464		
S_{1}	$\mathrm{~S}_{0}$	Channel
0	0	$\mathrm{~V}_{\mathrm{IN} 0}$
0	1	$\mathrm{~V}_{\mathrm{IN} 1}$
1	0	$\mathrm{~V}_{\mathrm{IN} 2}$
1	1	$\mathrm{~V}_{\mathrm{IN} 3}$

ADC10462	
S_{0}	ChanneI
0	$\mathrm{~V}_{\text {INO }}$
1	$\mathrm{~V}_{\text {IN1 }}$

(b)
(a)

Mode 2

In Mode 2, also called " $\overline{R D}$ mode", the $\overline{\mathbf{S}} / \mathrm{H}$ and $\overline{\mathrm{RD}}$ pins are tied together. A conversion is initiated by pulling both pins low. The A/D converter samples the input voltage and causes the coarse comparators to become active. An internal timer then terminates the coarse conversion and begins the fine conversion. 850 ns (typical) after $\overline{\mathrm{S}} / \mathrm{H}$ and $\overline{\mathrm{RD}}$ are pull low, INT goes low, indicating that the conversion is completed. Approximately 20 ns later the data appearing on the TRI-STATE output pins will be valid. Note that data will appear on these pins throughout the conversion, but until INT goes low the data at the output pins will be the result of the previous conversion.

2.0 REFERENCE CONSIDERATIONS

The ADC10461, ADC10462, and ADC10464 each have two reference inputs. These inputs, $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}$, are fully differential and define the zero to full-scale range of the input signal. The reference inputs can be connected to span the entire supply voltage range $\left(\mathrm{V}_{\text {REF }}-=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }+}=\right.$ $V_{C C}$) for ratiometric applications, or they can be connected to different voltages (as long as they are between ground and $V_{C C}$ when other input spans are required. Reducing the overall $\mathrm{V}_{\text {REF }}$ span to less than 5 V increases the sensitivity of the converter (e.g., if $\mathrm{V}_{\text {REF }}=2 \mathrm{~V}$, then $1 \mathrm{LSB}=$
1.953 mV). Note, however, that linearity and offset errors become larger when lower reference voltages are used. See the Typical Performance Curves for more information. For this reason, reference voltages less than 2 V are not recommended.
In most applications, $\mathrm{V}_{\text {REF - }}$ will simply be connected to ground, but it is often useful to have an input span that is offset from ground. This situation is easily accommodated by the reference configuration used in the ADC10461, ADC10462, and ADC10464. V REF- can be connected to a voltage other than ground as long as the voltage source connected to this pin is capable of sinking the converter's reference current (12.5 mA Max @ $\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}$). If $\mathrm{V}_{\text {REF }}$ - is connected to a voltage other than ground, bypass it with multiple capacitors.
Since the resistance between the two reference inputs can be as low as 400Ω, the voltage source driving the reference inputs should have low output impedance. Any noise on either reference input is a potential cause of conversion errors, so each of these pins must be supplied with a clean, low noise voltage source. Each reference pin should be bypassed with a $10 \mu \mathrm{~F}$ tantalum and a $0.1 \mu \mathrm{~F}$ ceramic.

3.0 THE ANALOG INPUT

The ADC10461, ADC10462, and ADC10464 sample the analog input voltage once every conversion cycle. When this happens, the input is briefly connected to an impedance approximately equal to 600Ω in series with 35 pF . Short-duration current spikes can therefore be observed at the analog input during normal operation. These spikes are normal and do not degrade the converter's performance.
Large source impedances can slow the charging of the sampling capacitors and degrade conversion accuracy. Therefore, only signal sources with output impedances less than 500Ω should be used if rated accuracy is to be achieved at the minimum sample time (250 ns maximum). If the sampling time is increased, the source impedance can be larger. If a signal source has a high output impedance, its output should be buffered with an operational amplifier. The operational amplifier's output should be well-behaved when driving a switched $35 \mathrm{pF} / 600 \Omega$ load. Any ringing or voltage shifts at the op amp's output during the sampling period can result in conversion errors.
Correct conversion results will be obtained for input voltages greater than GND - 50 mV and less than $\mathrm{V}^{+}+$ 50 mV . Do not allow the signal source to drive the analog input pin more than 300 mV higher than $A V_{C C}$ and $D V_{C C}$, or more than 300 mV lower than GND. If an analog input pin is forced beyond these voltages, the current flowing through the pin should be limited to 5 mA or less to avoid permanent damage to the IC. The sum of all the overdrive currents into all pins must be less than 20 mA . When the input signal is expected to extend more than 300 mV beyond the power supply limits, some sourt of protection scheme should be used. A simple network using diodes and resistors is shown in Figure 4.

Applications Information (Continued)

TL/H/11108-14
FIGURE 4. Typical Connection. Note the multiple bypass capacitors on the reference and power supply pins. If $\mathbf{V}_{\text {REF }}-$ is not grounded, it should also be bypassed to analog ground using multiple capacitors (see 5.0 "Power Supply Considerations"). AGND and DGND should be at the same potential. $\mathrm{V}_{\mathrm{IN} O}$ is shown with an input protection network. Pin 17 is normally left open, but optional "speedup" resistor $R_{S A}$ can be used to reduce the conversion time.

4.0 INHERENT SAMPLE-AND-HOLD

Because the ADC10461, ADC10462, and ADC10464 sample the input signal once during each conversion, they are capable of measuring relatively fast input signals without the help of an external sample-hold. In a non-sampling succes-sive-approximation A/D converter, regardless of speed, the input signal must be stable to better than $\pm 1 / 2$ LSB during each conversion cycle or significant errors will result. Consequently, even for many relatively slow input signals, the signals must be externally sampled and held constant during each conversion if a SAR with no internal sample-andhold is used.
Because they incorporate a direct sample/hold control input, the ADC10461, ADC10462, and ADC10464 are suitable for use in DSP-based systems. The \bar{S} / H input allows synchronization of the A/D converter to the DSP system's sampling rate and to other ADC10461s, ADC10462s, and ADC10464s.
The ADC10461, ADC10462, and ADC10464 can perform accurate conversions of input signals with frequency components from DC to over 250 kHz .

5.0 POWER SUPPLY CONSIDERATIONS

The ADC10461, ADC10462, and ADC1,0464 are designed to operate from a +5 V (nominal) power supply. There are two supply pins, $A V_{C C}$ and $D V_{C C}$. These pins allow separate external bypass capacitors for the analog and digital portions of the circuit. To guarantee accurate conversions, the two supply pins should be connected to the same voltage source, and each should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor. Depending on the circuit board layout and other system considerations, more bypassing may be necessary.
The ADC10461. has a single ground pin, and the ADC10462 and ADC10464 each have separate analog and digital ground pins for separate bypassing of the analog and digital
supplies. The devices with separate analog and digital ground pins should have their ground pins connected to the same potential, and all grounds should be "clean" and free of noise.
In systems with multiple power supplies, careful attention to power supply sequencing may be necessary to avoid overdriving inputs. The A/D converter's power supply pins should be at the proper voltage before digital or analog signals are applied to any of the other pins.

6.0 LAYOUT AND GROUNDING

In order to ensure fast, accurate conversions from the ADC10461, ADC10462, and ADC10464, it is necessary to use appropriate circuit board layout techniques. The analog ground return path should be low-impedance and free of noise from other parts of the system. Noise from digital circuitry can be especially troublesome, so digital grounds should always be separate from analog grounds. For best performance, separate ground planes should be provided for the digital and analog parts of the system.
All bypass capacitors should be located as close to the converter as possible and should connect to the converter and to ground with short traces. The analog input should be isolated from noisy signal traces to avoid having spurious signals couple to the input. Any external component (e.g., a filter capacitor) connected across the converter's input should be connected to a very clean ground return point. Grounding the component at the wrong point will result in reduced conversion accuracy.

7.0 DYNAMIC PERFORMANCE

Many applications require the A / D converter to digitize $A C$ signals, but conventional DC integral and differential nonlinearity specifications don't accurately predict the A/D converter's performance with AC input signals. The important specifications for AC applications reflect the converter's ability to digitize AC signals without significant spectral errors and without adding noise to the digitized signal. Dynam-

Applications Information (Continued)

ic characteristics such as signal-to-noise ratio (SNR) and total harmonic distortion (THD), are quantitative measures of this capability.
An A/D converter's AC performance can be measured using Fast Fourier Transform (FFT) methods. A sinusoidal waveform is applied to the A/D converter's input, and the transform is then performed on the digitized waveform. The resulting spectral plot might look like the ones shown in the typical performance curves. The large peak is the fundamental frequency, and the noise and distortion components (if any are present) are visible above and below the fundamental frequency. Harmonic distortion components appear at whole multiples of the input frequency. Their amplitudes are combined as the square root of the sum of the squares and compared to the fundamental amplitude to yield the THD specification. Guaranteed limits for THD are given in the table of Electrical Characteristics.
Signal-to-noise ratio is the ratio of the amplitude at the fundamental frequency to the rms value at all other frequencies, excluding any harmonic distortion components. Guaranteed limits are given in the Electrical Characteristics table. An alternative definition of signal-to-noise ratio includes the distortion components along with the random noise to yield a signal-to-noise-plus-distortion ration, or $\mathrm{S} /(\mathrm{N}+\mathrm{D})$.
The THD and noise performance of the A/D converter will change with the frequency of the input signal, with more distortion and noise occurring at higher signal frequencies. One way of describing the A/D's performance as a function of signal frequency is to make a plot of "effective bits" versus frequency. An ideal A/D converter with no linearity errors or self-generated noise will have a signal-to-noise ratio equal to $(6.02 \mathrm{n}+1.8) \mathrm{dB}$, where n is the resolution in bits
of the A/D converter. A real A/D converter will have some amount of noise and distortion, and the effective bits can be found by:

$$
n \text { (effective) }=\frac{S /(N+D)(d B)-1.8}{6.02}
$$

where $S /(N+D)$ is the ratio of signal to noise and distortion, which can vary with frequency.
As an example, an ADC10461 with a 4.85 VP-p, 100 kHz sine wave input signal will typically have a signal-to-noise-plus-distortion ratio of 59.2 dB , which is equivalent to 9.53 effective bits. As the input frequency increases, noise and distortion gradually increase, yielding a plot of effective bits or $S /(N+D)$ as shown in the typical performance curves.

8.0 SPEED ADJUST

In applications that require faster conversion times, the Speed Adjust pin (pin 14 on the ADC10462, pin 17 on the ADC10464) can significantly reduce the conversion time. The speed adjust pin is connected to an on-chip current source that determines the converter's internal timing. By connecting a resistor between the speed adjust pin and ground as shown in Figure 4, the internal programming current is increased, which reduces the conversion time. As an example, an 18 k resistor reduces the conversion time of a typical part from 600 ns to 350 ns with no significant effect on linearity. Using smaller resistors to further decrease the conversion time is possible as well, although the linearity will begin to degrade somewhat (see curves). Note that the resistor value needed to obtain a given conversion time will vary from part to part, so this technique will generally require some "tweaking" to obtain satisfactory results.
For applications that require guaranteed performance using the speed adjust pin, the ADC10662 and ADC10664 are tested and guaranteed for static and dynamic performance with a fixed value of speed-up resistor.

ADC10662/ADC10664 10-Bit 360 ns A/D Converter with Input Multiplexer and Sample/Hold

General Description

Using an innovative, patented multistep* conversion technique, the 10 -bit ADC10662 and ADC10664 are 2- and 4-input CMOS analog-to-digital converters offering sub-microsecond conversion times yet dissipating a maximum of only 235 mW . The ADC10662 and ADC10664 perform a 10-bit conversion in two lower-resolution "flashes", thus yielding a fast A/D without the cost, power dissipation, and other problems associated with true flash approaches. In addition to standard static performance specifications (Linearity, Full-Scale Error, etc.) dynamic performance (THD, S / N) is guaranteed.
The analog input voltage to the ADC10662 and ADC10664 is sampled and held by an internal sampling circuit. Input signals at frequencies from dc to over 250 kHz can therefore be digitized accurately without the need for an external sample-and-hold circuit.
The ADC10662 and ADC10664 include a "speed-up" pin. Connecting an external resistor between this pin and ground reduces the typical conversion time to as little as 360 ns .
For ease of interface to microprocessors, the ADC10662 and ADC10664 have been designed to appear as a memory location or I/O port. without the need for external interface logic.

Features

- Built-in sample-and-hold
- Single +5 V supply
- 2- or 4-input multiplexer options
- No external clock required

Key Specifications

- Conversion time to 10 bits	360 ns typical,
	466 ns max over temperature
- Sampling Rate	1.5 MHz (min)
- Low power dissipation	235 mW (max)
- Total harmonic distortion (50 kHz$)$	-60 dB (max)
(No missing codes over temperature	

Applications

- Digital signal processor front ends
- Instrumentation
- Disk drives
- Mobile telecommunications

Ordering Information

ADC10662

Industrial $\left(-40^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}\right)$	Package
ADC10662CIN	N24A Molded DIP
ADC10662CIWM	M24B Small Outline

ADC10664

Industrial	
$\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}\right)$	Package
$\mathrm{ADC10664CIN}$	N28B Molded DIP
ADC10664CIWM	M28B Small Outline

Absolute Maximum Ratings (Notes 1, 2)	
If Military/Aerospace specified de please contact the National Se Office/Distributors for availability a	vices are required, miconductor Sales and specifications.
Supply Voltage ($\mathrm{V}^{+}=A \mathrm{~V}_{\mathrm{CC}}=\mathrm{DV}_{\mathrm{CC}}$)) -0.3 V to +6 V
Voltage at Any Input or Output	-0.3 V to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Input Current at Any Pin (Note 3)	5 mA
Package Input Current (Note 3)	20 mA
Power Dissipation (Note 4)	875 mW
ESD Susceptability (Note 5)	2000 V
Soldering Information (Note 6)	
N Package (10 Sec)	$260^{\circ} \mathrm{C}$
SO Package:	
Vapor Phase (60 Sec)	$215^{\circ} \mathrm{C}$
Infrared (15 Sec)	$220^{\circ} \mathrm{C}$

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Operating Ratings (Notes 1, 2)
Temperature Range $\quad T_{M I N} \leq T_{A} \leq T_{M A X}$ ADC10662CIN, ADC10662CIWM, ADC10664CIN, ADC10664CIWM
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Supply Voltage Range 4.5 V to 5.5 V

Converter Characteristics

The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(+)}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}$, and Speed Adjust pin connected to ground through a $14.0 \mathrm{k} \Omega$ resistor (Mode 1) or an $8.26 \mathrm{k} \Omega$ resistor (Mode 2) unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {Min }}$ to $T_{\text {Max; }}$ all other limits $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units (Limit)
	Resolution			10	Bits
	Integral Linearity Error		± 0.5	$\pm 1.0 / \pm 1.5$	LSB
	Offset Error			± 1	LSB (max)
	Full-Scale Error			± 1	LSB (max)
	Total Unadjusted Error		± 0.5	$\pm 1.5 / \pm 2.0$	LSB
	Missing Codes			0	(max)
	Power Supply Sensitivity	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {REF }}=4.5 \mathrm{~V} \\ & \mathrm{~V}+=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {REF }}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 1 / 16 \\ & \pm 1 / 8 \end{aligned}$		$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
THD	Total Harmonic Distortion (Note 10)	$\begin{aligned} & f_{I N}=1 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & f_{I N}=50 \mathrm{kHz}, 4.85 \mathrm{~V}_{P-P} \\ & f_{I N}=100 \mathrm{kHz}, 4.85 \mathrm{~V}_{P-P} \\ & f_{I N}=240 \mathrm{kHz}, 4.85 \mathrm{~V}_{P-P} \end{aligned}$	$\begin{aligned} & -68 \\ & -66 \\ & -62 \\ & -58 \end{aligned}$	-60	$\begin{gathered} d B \\ d B(\text { max }) \\ d B \\ d B \end{gathered}$
SNR	Signal-to-Noise Ratio (Note 10)	$\begin{aligned} & f_{I N}=1 \mathrm{kHz}, 4.85 V_{P-P} \\ & f_{I N}=50 \mathrm{kHz}, 4.85 V_{P-P} \\ & f_{I N}=100 \mathrm{kHz}, 4.85 V_{P-P} \end{aligned}$	$\begin{aligned} & 61 \\ & 60 \\ & 60 \end{aligned}$	58	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB}(\min) \\ \mathrm{dB} \end{gathered}$
ENOB	Effective Number of Bits (Note 10)	$\begin{aligned} & f_{\mathrm{IN}^{\prime}}=1 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P-P}} \\ & \mathrm{f}_{\mathrm{IN}}=50 \mathrm{kHz}, 4.85 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	$\begin{aligned} & 9.6 \\ & 9.5 \end{aligned}$	9	Bits Bits (min)
$\mathrm{R}_{\text {REF }}$	Reference Resistance		650	$\begin{aligned} & 400 \\ & 900 \end{aligned}$	$\begin{aligned} & \Omega(\min) \\ & \Omega(\max) \end{aligned}$
$\mathrm{V}_{\text {REF }}(+)$	$\mathrm{V}_{\text {REF }(+)}$ Input Voltage			$\mathrm{v}+\mathrm{+} 0.05$	V (max)
$\mathrm{V}_{\text {REF }(-)}$	$V_{\text {REF }}(-)$ Input Voltage			GND - 0.05	V (min)
$\mathrm{V}_{\text {REF }(+)}$	$\mathrm{V}_{\text {REF }(+)}$ Input Voltage			$V_{\text {REF }}(-)$	V (min)
$\mathrm{V}_{\text {REF }(-)}$	$\mathrm{V}_{\text {REF }(-)}$ Input Voltage			$\mathbf{V}_{\text {REF }(+)}$	V (max)
$\mathrm{V}_{\text {IN }}$	Input Voltage			$\mathbf{v}++0.05$	V (max)
$\mathrm{V}_{\text {IN }}$	Input Voltage			GND - 0.05	V (min)
	OFF Channel Input Leakage Current ON Channel Input Leakage Current	$\begin{aligned} & \overline{\mathrm{CS}}=v^{+}, \mathrm{V}_{\mathbb{I N}}=\mathrm{V}^{+} \\ & \overline{\mathrm{CS}}=\mathrm{V}^{+}, \mathrm{V}_{\mathbb{I N}}=\mathrm{V}^{+} \end{aligned}$	$\begin{gathered} 0.01 \\ \pm 1 \end{gathered}$	$\begin{gathered} 3 \\ -3 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A}(\max) \\ & \mu \mathrm{A}(\max) \end{aligned}$

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(+)}=5 \mathrm{~V} \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}$, and Speed Adjust pin connected to ground through a $14.0 \mathrm{k} \Omega$ resistor (Mode 1) or an $8.26 \mathrm{k} \Omega$ resistor (Mode 2) unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\mathbf{A}}=$ $\mathbf{T}_{J}=\mathbf{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX; }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units (Limits)
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$\mathrm{V}+=5.5 \mathrm{~V}$		2.0	V (min)
$\mathrm{V}_{\text {IN }}(0)$	Logical "0" Input Voltage	$\mathrm{V}+=4.5 \mathrm{~V}$		0.8	V (max)
$1 \mathbb{N}(1)$	Logical "1" Input Current	$\mathrm{V}_{\text {IN(1) }}=5 \mathrm{~V}$	0.005	3.0	$\mu \mathrm{A}$ (max)
$\operatorname{IIN}(0)$	Logical "0" Input Current	$\mathrm{V}_{\text {IN(0) }} \mathrm{OV}$	-0.005	-3.0	$\mu A(\max)$
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}^{+}=4.5 \mathrm{~V}, \text { I OUT }=-360 \mu \mathrm{~A} \\ & \mathrm{~V}+=4.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{gathered} 2.4 \\ 4.25 \\ \hline \end{gathered}$	$\begin{aligned} & V(\min) \\ & V(\min) \end{aligned}$
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{l}$ OUT $=1.6 \mathrm{~mA}$		0.4	V (max)
lout	TRI-STATE® Output Current	$\begin{aligned} & V_{\text {OUT }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0.1 \\ -0.1 \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ -50 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ (max) μA (max)
$\mathrm{DI}_{\mathrm{CC}}$	DV ${ }_{\text {CC }}$ Supply Current	$\overline{\mathrm{CS}}=\overline{\mathrm{S}} / \mathrm{H}=\overline{\mathrm{RD}}=0$	1.0	2	mA (max)
Alcc	$\mathrm{AV}_{\mathrm{CC}}$ Supply Current	$\overline{\mathrm{CS}}=\overline{\mathrm{S}} / \mathrm{H}=\overline{\mathrm{RD}}=0$	30	45	mA (max)

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{REF}(+)}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}$, and Speed Adjust pin connected to ground through a $14.0 \mathrm{k} \Omega$ resistor (Mode 1) or an $8.26 \mathrm{k} \Omega$ resistor (Mode 2) unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions		Typical (Note 7)	Limit (Note 8)	Units (Limits)
tCONV	Mode 1 Conversion Time from Rising Edge of \bar{S} / H to Falling Edge of INT	CIN, CIWM Suffixes		360	466	ns (max)
$\mathrm{t}_{\text {CRD }}$	Mode 2 Conversion Time	CIN, CIWM Suffixes		470	610	ns (max)
${ }^{\text {taCC1 }}$	Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Valid)	Mode 1; $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		30	50	ns (max)
$t_{\text {ACC2 }}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)	Mode 2; $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	CIN, CIWM Suffixes	475	616	ns (max)
${ }_{\text {tSH }}$	Minimum Sample Time	Mode 1 (Figure 1); (Note 9)			150	ns (max)
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{0 \mathrm{H}}$	TRI-STATE Control (Delay from Rising Edge of $\overline{\text { RD }}$ to High-Z State)	$R_{L}=1 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$		30	60	ns (max)
$\mathrm{t}_{\text {INTH }}$	Delay from Rising Edge of $\overline{R D}$ to Rising Edge of $\overline{\text { INT }}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		25	50	ns (max)
t_{p}	Delay from End of Conversion to Next Conversion				50	ns (max)

AC Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{REF}(+)}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}$, and Speed Adjust pin connected to ground through a $14.0 \mathrm{k} \Omega$ resistor (Mode 1) or an $8.26 \mathrm{k} \Omega$ resistor (Mode 2) unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units (Limits)
t_{MS}	Multiplexer Control Setup Time		10	$\mathbf{7 5}$	ns (max)
t_{MH}	Multiplexer Hold Time		10	$\mathbf{4 0}$	ns (max)
$\mathrm{C}_{\mathrm{VIN}}$	Analog Input Capacitance		35		pF (max)
$\mathrm{C}_{\text {OUT }}$	Logic Output Capacitance		5		pF (max)
$\mathrm{C}_{\text {IN }}$	Logic Input Capacitance		5		pF (max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional. These ratings do not guarantee specific performance limits, however. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditons.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supply rails ($\mathrm{V}_{\mathbb{I N}}<G N D$ or $\mathrm{V}_{\mathbb{I N}}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can safely exceed the power supplies with an input current of 5 mA to four.
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. In most cases, the maximum derated power dissipation will be reached only during fault conditions. For these devices, TJMAX for a board-mounted device can be found from the tables below:

ADC10662	
Suffix $\theta_{\text {JA }}\left({ }^{\circ} \mathbf{C} /\right.$ W $)$ CIN 60 CIWM 82	

ADC10664

Suffix	$\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
CIN	53
CIWM	78

Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Note 7: Typicals represent most likely parametric norm.
Note 8: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 9: Accuracy may degrade if t_{SH} is shorter than the value specified. See curves of Accuracy vs t_{SH}.
Note 10: THD, SNR, and ENOB are tested in Mode 1. Measuring these quantities in Mode 2 yields similar values.

Typical Performance Characteristics

Conversion Time vs Speed-Up Resistor

Linearity Error vs Reference Voltage

Conversion Time vs Speed-Up Resistor

Spectral Response with 100 kHz Sine Wave Input

Typical Performance Characteristics（Continued）

TRI-STATE Test Circuits and Waveforms

TL/H/11192-4

TL/H/11192-3

TL/H/11192-6
TL/H/11192-5

Timing Diagrams

FIGURE 1. Mode 1. The conversion time (tconv) is set by the internal timer.

Timing Diagrams (Continued)

FIGURE 2. Mode 2 ($\overline{\mathrm{RD}}$ Mode). The conversion time (tcRD) includes the sampling time and is determined by the internal timer.

Simplified Block Diagram

Connection Diagrams

TL/H/11192-11
Top View
$V_{\text {REF-, }} \quad$ These are the reference voltage inputs. They $V_{\text {REF }+\quad ~ m a y ~ b e ~ p l a c e d ~ a t ~ a n y ~ v o l t a g e ~ b e t w e e n ~ G N D ~}^{\text {G }}$ and V_{CC}, but $\mathrm{V}_{\text {REF }}+$ must be greater than $V_{\text {REF-. }}$ An input voltage equal to $V_{\text {REF- }}$ produces an output code of 0 , and an input voltage equal to (VREF+ - 1 LSB) produces an output code of 1023.
$\mathrm{V}_{\text {INO }}, \mathrm{V}_{\mathrm{IN} 1}$, These are the analog input pins. The $\mathrm{V}_{\mathrm{IN} 2}, \mathrm{~V}_{\mathrm{IN} 3}$ ADC10662 has two inputs ($\mathrm{V}_{\mathrm{INO}}$ and $\mathrm{V}_{\mathrm{IN}_{1}}$) and the ADC10664 has four inputs ($V_{\text {INO }}$, $\mathrm{V}_{\mathrm{IN} 1}, \mathrm{~V}_{\text {IN2 }}$ and $\mathrm{V}_{\text {IN3 }}$). The impedance of the source should be less than 500Ω for best accuracy and conversion speed. For accurate conversions, no input pin (even one that is not selected) should be driven more than 50 mV above V_{CC} or 50 mV below ground.
GND, AGND, These are the power supply ground pins. The DGND ADC10662 and ADC10664 have separate analog and digital ground pins (AGND and DGND) for separate bypassing of the analog and digital supplies. The ground pins should be connected to a stable, noise-free system ground. Both pins should be returned to the same potential.
DB0-DB9 These are the TRI-STATE output pins.
SPEED ADJ By connecting a resistor between this pin and ground, the conversion time can be reduced. The specifications listed in the table of Electrical Characteristics apply for a speed adjust resistor ($R_{S A}$) equal to $14.0 \mathrm{k} \Omega$ (Mode 1) or $8.26 \mathrm{k} \Omega$ (Mode 2). See the Typical Performance Curves and the table of Electrical Characteristics.

Functional Description

The ADC10662 and ADC10664 digitize an analog input sig－ nal to 10 bits accuracy by performing two lower－resolution ＂flash＂conversions．The first flash conversion provides the six most significant bits（MSBs）of data，and the second flash conversion provides the four least significant bits LSBs）．
Figure 3 is a simplified block diagram of the converter．Near the center of the diagram is a string of resistors．At the bottom of the string of resistors are 16 resistors，each of which has a value $1 / 1024$ the resistance of the whole resis－ tor string．These lower 16 resistors（the LSB Ladder）there－ fore have a voltage drop of 16／1024，or 1／64 of the total reference voltage（ $\mathrm{V}_{\mathrm{REF}}+-\mathrm{V}_{\text {REF }}$ ）across them．The re－ mainder of the resistor string is made up of eight groups of eight resistors connected in series．These comprise the MSB Ladder．Each section of the MSB Ladder has $1 / 8$ of the total reference voltage across it，and each of the LSB resis－ tors has $1 / 64$ of the total reference voltage across it．Tap points across these resistors can be connected，in groups of sixteen，to the sixteen comparators at the right of the diagram．
On the left side of the diagram is a string of seven resistors connected between $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF－}}$ ．Six comparators compare the input voltage with the tap voltages on this re－ sistor string to provide a low－resolution＂estimate＂of the input voltage．This estimate is then used to control the multi－ plexer that connects the MSB Ladder to the sixteen com－ parators on the right．Note that the comparators on the left needn＇t be very accurate；they simply provide an estimate of the input voltage．Only the sixteen comparators on the right and the six on the left are necessary to perform the initial six－bit flash conversion，instead of the 64 comparators that would be required using conventional half－flash methods．

To perform a conversion，the estimator compares the input voltage with the tap voltages on the seven resistors on the left．The estimator decoder then determines which MSB Ladder tap points will be connected to the sixteen compara－ tors on the right．For example，assume that the estimator determines that $\mathrm{V}_{\text {IN }}$ is between $11 / 16$ and 13／16 of $\mathrm{V}_{\text {REF }}$ ． The estimator decoder will instruct the comparator MUX to connect the 16 comparators to the taps on the MSB ladder between $10 / 16$ and $14 / 16$ of $V_{\text {REF }}$ ．The 16 comparators will then perform the first flash conversion．Note that since the comparators are connected to ladder voltages that extend beyond the range indicated by the estimator circuit，errors in the estimator as large as $1 / 16$ of the reference voltage （ 64 LSBs）will be corrected．This first flash conversion pro－ duces the six most significant bits of data－four bits in the flash itself，and 2 bits in the estimator．

The remaining four LSBs are now determined using the same sixteen comparators that were used for the first flash conversion．The MSB Ladder tap voltage just below the in－ put voltage（as determined by the first flash）is subtracted from the input voltage and compared with the tap points on the sixteen LSB Ladder resistors．The result of this second， four－bit flash conversion is then decoded，and the full 10－bit result is latched．
Note that the sixteen comparators used in the first flash conversion are reused for the second flash．Thus，the mul－ tistep conversion technique used in the ADC10662 and ADC10664 needs only a small fraction of the number of comparators that would be required for a traditional flash converter，and far fewer than would be used in a conven－ tional half－flash approach．This allows the ADC10662 and ADC10664 to perform high－speed conversions without ex－ cessive power drain．

Applications Information

1.0 MODES OF OPERATION

The ADC10662 and ADC10664 have two basic digital interface modes. Figure 1 and Figure 2 are timing diagrams for the two modes. The ADC10662 and ADC10664 have input multiplexers that are controlled by the logic levels on pins S_{0} and S_{1} when $\overline{\mathrm{S}} / \mathrm{H}$ goes low. Table I is a truth table showing how the input channnels are assigned.

Mode 1

In this mode, the $\overline{\mathrm{S}} / \mathrm{H}$ pin controls the start of conversion. $\overline{\mathrm{S}} / \mathrm{H}$ is pulled low for a minimum of 150 ns . This causes the comparators in the "coarse" flash converter to become active. When $\overline{\mathrm{S}} / \mathrm{H}$ goes high, the result of the coarse conversion is latched and the "fine" conversion begins. After 360 ns (typical), INT goes low, indicating that the conversion results are latched and can be read by pulling $\overline{\mathrm{RD}}$ low. Note that $\overline{C S}$ must be low to enable $\overline{\mathrm{S}} / \mathrm{H}$ or $\overline{\mathrm{RD}} \overline{\mathrm{CS}}$ is internally "ANDed" with $\overline{\mathrm{S}} / \mathrm{H}$ and $\overline{\mathrm{RD}}$; the input voltage is sampled when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{S}} / \mathrm{H}$ are low, and data is read when $\overline{\mathrm{CS}}$ and $\overline{R D}$ are low. $\overline{\mathrm{NT}}$ is reset high on the rising edge of $\overline{\mathrm{RD}}$.

TABLE I. Input Multiplexer Programming

ADC10664

ADC10664		
S_{1}	S_{0}	Channel
0	0	$V_{\mathbb{I N O}}$
0	1	$V_{\text {IN1 }}$
1	0	$V_{\text {IN2 }}$
1	1	$V_{\text {IN3 }}$

ADC10662	
$\mathbf{S}_{\mathbf{0}}$	Channel
0	$\mathrm{~V}_{\text {INO }}$
1	$\mathrm{~V}_{\text {IN1 }}$

(b)
(a)

Mode 2

 are tied together. A conversion is initiated by pulling both pins low. The A/D converter samples the input voltage and causes the coarse comparators to become active. An internal timer then terminates the coarse conversion and begins the fine conversion. 470 ns (typical) after $\overline{\mathrm{S}} / \mathrm{H}$ and $\overline{\mathrm{RD}}$ are pulled low, INT goes low, indicating that the conversion is completed. Approximately 20 ns later the data appearing on the TRI-STATE output pins will be valid. Note that data will appear on these pins throughout the conversion, but until $\mathbb{I N T}$ goes low the data at the output pins will be the result of the previous conversion.

2.0 REFERENCE CONSIDERATIONS

The ADC10662 and ADC10664 each have two reference inputs. These inputs, $\mathrm{V}_{\mathrm{REF}}+$ and $\mathrm{V}_{\text {REF-, }}$, are fully differential and define the zero to full-scale range of the input signal. The reference inputs can be connected to span the entire supply voltage range ($\mathrm{V}_{\mathrm{REF}}-=\mathrm{OV}, \mathrm{V}_{\mathrm{REF}+}=\mathrm{V}_{\mathrm{CC}}$) for ratiometric applications, or they can be connected to different voltages (as long as they are between ground and V_{CC}) when other input spans are required. Reducing the overall $V_{\text {REF }}$ span to less than 5 V increases the sensitivity of the converter (e.g., if $\mathrm{V}_{\mathrm{REF}}=2 \mathrm{~V}$, then $1 \mathrm{LSB}=1.953 \mathrm{mV}$).

Note, however, that linearity and offset errors become larger when lower reference voltages are used. See the Typical Performance Curves for more information. For this reason, reference voltages less than 2 V are not recommended.
In most applications, $\mathrm{V}_{\text {REF }}$ - will simply be connected to ground, but it is often useful to have an input span that is offset from ground. This situation is easily accommodated by the reference configuration used in the ADC10662 and ADC10664. $\mathrm{V}_{\text {REF - }}$ can be connected to a voltage other than ground as long as the voltage source connected to this pin is capable of sinking the converter's reference current (12.5 mA Max @ $\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$). If $\mathrm{V}_{\text {REF }}$ is connected to a voltage other than ground, bypass it with multiple capacitors.
Since the resistance between the two reference inputs can be as low as 400Ω, the voltage source driving the reference inputs should have low output impedance. Any noise on either reference input is a potential cause of conversion errors, so each of these pins must be supplied with a clean, low noise voltage source. Each reference pin should be bypassed with a $10 \mu \mathrm{~F}$ tantalum and a $0.1 \mu \mathrm{~F}$ ceramic.

3.0 THE ANALOG INPUT

The ADC10662 and ADC10664 sample the analog input voltage once every conversion cycle. When this happens, the input is briefly connected to an impedance approximately equal to 600Ω in series with 35 pF . Short-duration current spikes can therefore be observed at the analog input during normal operation. These spikes are normal and do not degrade the converter's performance.
Large source impedances can slow the charging of the sampling capacitors and degrade conversion accuracy. Therefore, only signal sources with output impedances less than 500Ω should be used if rated accuracy is to be achieved at the minimum sample time (250 ns maximum). If the sampling time is increased, the source impedance can be larger. If a signal source has a high output impedance, its output should be buffered with an operational amplifier. The operational amplifier's output should be well-behaved when driving a switched $35 \mathrm{pF} / 600 \Omega$ load. Any ringing or voltage shifts at the op amp's output during the sampling period can result in conversion errors.

Correct conversion results will be obtained for input voltages greater than GND -50 mV and less than $\mathrm{V}^{+}+$ 50 mV . Do not allow the signal source to drive the analog input pin more than 300 mV higher than $A V_{C C}$ and $D V_{C C}$, or more than 300 mV lower than GND. If an analog input pin is forced beyond these voltages, the current flowing through the pin should be limited to 5 mA or less to avoid permanent damage to the IC. The sum of all the overdrive currents into all pins must be less than 20 mA . When the input signal is expected to extend more than 300 mV beyond the power supply limits, some sourt of protection scheme should be used. A simple network using diodes and resistors is shown in Figure 4.

FIGURE 4. Typical Connection. Note the multiple bypass capacitors on the reference and power supply pins. If $\mathbf{V}_{\text {REF }}-$ is not grounded, it should also be bypassed to analog ground using multiple capacitors (see 5.0 "Power Supply Considerations"). AGND and DGND should be at the same potential. $\mathrm{V}_{\mathrm{INO}}$ is shown with an input protection network.

4.0 INHERENT SAMPLE-AND-HOLD

Because the ADC10662 and ADC10664 sample the input signal once during each conversion, they are capable of measuring relatively fast input signals without the help of an external sample-hold. In a non-sampling successive-approximation A/D converter, regardless of speed, the input signal must be stable to better than $\pm 1 / 2$ LSB during each conversion cycle or significant errors will result. Consequently, even for many relatively slow input signals, the signals must be externally sampled and held constant during each conversion if a SAR with no internal sample-and-hold is used.
Because they incorporate a direct sample/hold control input, the ADC10662 and ADC10664 are suitable for use in DSP-based systems. The $\overline{\mathrm{S}} / \mathrm{H}$ input allows synchronization of the A/D converter to the DSP system's sampling rate and to other ADC10662s, and ADC10664s.
The ADC10662 and ADC10664 can perform accurate conversions of input signals with frequency components from DC to over 250 kHz .

5.0 POWER SUPPLY CONSIDERATIONS

The ADC10662 and ADC10664 are designed to operate from a +5 V (nominal) power supply. There are two supply pins, $A V_{C C}$ and $D V_{C C}$. These pins allow separate external bypass capacitors for the analog and digital portions of the circuit. To guarantee accurate conversions, the two supply pins should be connected to the same voltage source, and each should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor. Depending on the circuit board layout and other system considerations, more bypassing may be necessary.
The ADC10662 and ADC10664 have separate analog and digital ground pins for separate bypassing of the analog and digital supplies. Their ground pins should be connected to the same potential, and all grounds should be "clean" and free of noise.

In systems with multiple power supplies, careful attention to power supply sequencing may be necessary to avoid overdriving inputs. The A/D converter's power supply pins should be at the proper voltage before digital or analog signals are applied to any of the other pins.

6.0 LAYOUT AND GROUNDING

In order to ensure fast, accurate conversions from the ADC10662 and ADC10664, it is necessary to use appropriate circuit board layout techniques. The analog ground return path should be low-impedance and free of noise from other parts of the system. Noise from digital circuitry can be especially troublesome, so digital grounds should always be separate from analog grounds. For best performance, separate ground planes should be provided for the digital and analog parts of the system.
All bypass capacitors should be located as close to the converter as possible and should connect to the converter and to ground with short traces. The analog input should be isolated from noisy signal traces to avoid having spurious signals couple to the input. Any external component (e.g., a filter capacitor) connected across the converter's input should be connected to a very clean ground return point. Grounding the component at the wrong point will result in reduced conversion accuracy.

7.0 DYNAMIC PERFORMANCE

Many applications require the A / D converter to digitize $A C$ signals, but conventional DC integral and differential nonlinearity specifications don't accurately predict the A/D converter's performance with $A C$ input signals. The important specifications for AC applications reflect the converter's ability to digitize AC signals without significant spectral errors and without adding noise to the digitized signal. Dynam-

Applications Information (Continued)

ic characteristics such as signal-to-noise ratio (SNR) and total harmonic distortion (THD), are quantitative measures of this capability.
An A/D converter's AC performance can be measured using Fast Fourier Transform (FFT) methods. A sinusoidal waveform is applied to the A/D converter's input, and the transform is then performed on the digitized waveform. The resulting spectral plot might look like the ones shown in the typical performance curves. The large peak is the fundamental frequency, and the noise and distortion components (if any are present) are visible above and below the fundamental frequency. Harmonic distortion components appear at whole multiples of the input frequency. Their amplitudes are combined as the square root of the sum of the squares and compared to the fundamental amplitude to yield the THD specification. Guaranteed limits for THD are given in the table of Electrical Characteristics.
Signal-to-noise ratio is the ratio of the amplitude at the fundamental frequency to the rms value at all other frequencies, excluding any harmonic distortion components. Guaranteed limits are given in the Electrical Characteristics table. An alternative definition of signal-to-noise ratio includes the distortion components along with the random noise to yield a signal-to-noise-plus-distortion ration, or $\mathrm{S} /(\mathrm{N}+\mathrm{D})$.
The THD and noise performance of the A/D converter will change with the frequency of the input signal, with more distortion and noise occurring at higher signal frequencies. One way of describing the A/D's performance as a function of signal frequency is to make a plot of "effective bits" ver-
sus frequency. An ideal A/D converter with no linearity errors or self-generated noise will have a signal-to-noise ratio equal to $(6.02 n+1.8) d B$, where n is the resolution in bits of the A/D converter. A real A/D converter will have some amount of noise and distortion, and the effective bits can be found by:

$$
n \text { (effective) }=\frac{S /(N+D)(d B)-1.8}{6.02}
$$

where $S /(N+D)$ is the ratio of signal to noise and distortion, which can vary with frequency.
As an example, an ADC10662 with a 4.85 VP-p, 100 kHz sine wave input signal will typically have a signal-to-noise-plus-distortion ratio of 59.2 dB , which is equivalent to 9.53 effective bits. As the input frequency increases, noise and distortion gradually increase, yielding a plot of effective bits or $S /(N+D)$ as shown in the typical performance curves.

8.0 SPEED ADJUST

The speed adjust pin is connected to an on-chip current source that determines the converter's internal timing. By connecting a resistor between the speed adjust pin and ground as shown in Figure 4, the internal programming current is increased, which reduces the conversion time. The ADC10662 and ADC10664 are specified and guaranteed for operation with $R_{S A}=14.0 \mathrm{k} \Omega$ (Mode 1) or $R_{S A}=8.26 \mathrm{k}$ (Mode 2). Smaller resistors will result in faster conversion times, but linearity will begin to degrade as R $\mathrm{RA}_{\text {d }}$ becomes smaller (see curves).

ADC12H030/ADC12H032/ADC12H034/ADC12H038, ADC12030/ADC12032/ADC12034/ADC12038 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold

General Description

The ADC12030, and ADC12H030 families are 12-bit plus sign successive approximation A/D converters with serial 1/O and configurable input multiplexers. The ADC12032/ ADC12H032, ADC12034/ADC12H034 and ADC12038/ ADC12H038 have 2,4 and 8 channel multiplexers, respectively. The differential multiplexer outputs and A/D inputs are available on the MUXOUT1, MUXOUT2, A/DIN1 and A/DIN2 pins. The ADC12030/ADC12H030 has a two channel multiplexer with the multiplexer outputs and A / D inputs internally connected. The ADC12030 family is tested with a 5 MHz clock, while the ADC12H030 family is tested with an 8 MHz clock. On request, these A/Ds go through a self calibration process that adjusts linearity, zero and full-scale errors to less than ± 1 LSB each.
The analog inputs can be configured to operate in various combinations of single-ended, differential, or pseudo-differential modes. A fully differential unipolar analog input range $(0 \mathrm{~V}$ to +5 V) can be accommodated with a single +5 V supply. In the differential modes, valid outputs are obtained even when the negative inputs are greater than the positive because of the 12-bit plus sign output data format.
The serial I/O is configured to comply with the NSC MICROWIRETM. For complementary voltage references see the LM4040, LM4041 or LM9140.

Applications

- Medical instruments
- Process control systems
- Test equipment

Features

- Serial I/O (MICROWIRE Compatible)
- 2, 4, or 8 channel differential or single-ended multiplexer
- Analog input sample/hold function
- Power down mode
- Variable resolution and conversion rate
m Programmable acquisition time
- Variable digital output word length and format
- No zero or full scale adjustment required
(1) Fully tested and guaranteed with a 4.096 V reference
- 0 V to 5 V analog input range with single 5 V power supply
- No Missing Codes over temperature

Key Specifications

a Resolution
12-bit plus sign

- 12-bit plus sign conversion time
- ADC12H030 family
$5.5 \mu \mathrm{~s}$ (max)
- ADC12030 family
$8.8 \mu \mathrm{~s}$ (max)
(12-bit plus sign throughput time
- ADC12H030 family
- ADC12030 family
$8.6 \mu \mathrm{~s}$ (max)
$14 \mu \mathrm{~s}$ (max)
a Integral linearity error
- Single supply
- Power dissipation
- Power down

Connection Diagrams

28-Pin Dual-In-Line and Wide Body SO Packages

Top View

Ordering Information

Industrial Temperature Range $-40^{\circ} \mathrm{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}$	Package
ADC12H030CIN, ADC12030CIN	N16E
ADC12H030CIWM, ADC12030CIWM	M16B
ADC12H032CIN, ADC12032CIN	N20A
ADC12H032CIWM, ADC12032CIWM	M20B
ADC12H034CIN, ADC12034CIN	N24C
ADC12H034CIWM, ADC12034CIWM	M24B
ADC12H038CIN, ADC12038CIN	N28B
ADC12H038CIWM, ADC12038CIWM	M28B

Absolute Maximum Ratings (Notes 1 \& 2)	
If Military/Aerospace spec please contact the Natio Office/Distributors for avail	devices are required, Semiconductor Sales y and specifications.
Positive Supply Voltage $\left(V^{+}=V_{A}^{+}=V_{D}^{+}\right)$	6.5 V
Voltage at Inputs and Outputs except $\mathrm{CHO}-\mathrm{CH} 7$ and COM	-0.3 V to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Voltage at Analog Inputs $\mathrm{CHO}-\mathrm{CH} 7$ and COM	GND -5 V to $\mathrm{V}^{+}+5 \mathrm{~V}$
$\left\|V_{A}+{ }^{+} \mathrm{V}^{+}\right\|$	300 mV
Input Current at Any Pin (Note 3)	$\pm 30 \mathrm{~mA}$
Package Input Current (Note 3)	$\pm 120 \mathrm{~mA}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note } 4)$	500 mW
ESD Susceptability (Note 5) Human Body Model	1500 V
Soldering Information N Packages (10 seconds)	$260^{\circ} \mathrm{C}$
SO Package (Note 6): Vapor Phase (60 seconds) Infrared (15 seconds)	$215{ }^{\circ} \mathrm{C}$ 220
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings (Notes $1 \& 2$)
Operating Temperature Range $\quad T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$ ADC12030CIN, ADC12030CIWM, ADC12H030CIN, ADC12H030CIWM, ADC12032CIN, ADC12032CIWM, ADC12H032CIN, ADC12H032CIWM, ADC12034CIN, ADC12034CIWM, ADC12H034CIN, ADC12H034CIWM, ADC12038CIN, ADC12038CIWM, ADC12H038CIN,
ADC12H038CIWM $\quad-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}\right) . \quad+4.5 \mathrm{~V}$ to +5.5 V
$\left|V_{A}+-V_{D}+\right|$ $\leq 100 \mathrm{mV}$
$V_{\text {REF }}{ }^{+}$ 0 V to $\mathrm{V}_{\mathrm{A}}{ }^{+}$
$V_{\text {REF }}{ }^{-}$
OV to $\mathrm{V}_{\text {REF }}{ }^{+}$
$V_{\text {REF }}\left(\mathrm{V}_{\text {REF }}{ }^{+}-\mathrm{V}_{\text {REF }}{ }^{-}\right) \quad 1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{A}}{ }^{+}$
$V_{\text {REF }}$ Common Mode Voltage Range
$\frac{\left(\mathrm{V}_{\text {REF }^{+}}+\mathrm{V}_{\mathrm{REF}^{-}}\right)}{2}$
$0.1 \mathrm{~V}_{\mathrm{A}}{ }^{+}$to $0.6 \mathrm{~V}_{\mathrm{A}}{ }^{+}$
A/DIN1, A/DIN2, MUXOUT1 and MUXOUT2 Voltage Range

OV to $\mathrm{V}_{\mathrm{A}}{ }^{+}$
A/D IN Common Mode Voltage Range
$\frac{\left(V_{\mathrm{IN}^{+}}+\mathrm{V}_{\mathrm{IN}^{-}}\right)}{2}$
OV to $\mathrm{V}_{\mathrm{A}}{ }^{+}$

Converter Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{+}}=+4.096 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{-}}=0 \mathrm{~V}_{\mathrm{DC}}, 12$-bit + sign conversion mode, $\mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=8 \mathrm{MHz}$ for the ADC12H030, $\mathrm{ADC12H032}, \mathrm{ADC12H034}$ and $\mathrm{ADC12H} 038, \mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=$ 5 MHz for the $A D C 12030, A D C 12032, A D C 12034$ and $A D C 12038, R_{S}=25 \Omega$, source impedance for $\mathrm{V}_{\mathrm{REF}}{ }^{+}$and $\mathrm{V}_{\mathrm{REF}^{-}} \leq$ 25Ω, fully-differential input with fixed 2.048 V common-mode voltage, and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 7, 8 and 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)

STATIC CONVERTER CHARACTERISTICS

	Resolution with No Missing Codes			$\mathbf{1 2}+\mathbf{s i g n}$	Bits (min)
+ ILE	Positive Integral Linearity Error	After Auto-Cal (Notes 12, 18)	$\pm 1 / 2$	$\pm \mathbf{1}$	LSB (max)
- ILE	Negative Integral Linearity Error	After Auto-Cal (Notes 12, 18)	$\pm 1 / 2$	$\pm \mathbf{1}$	LSB (max)
DNL	Differential Non-Linearity	After Auto-Cal		$\pm \mathbf{1}$	LSB (max)
	Positive Full-Scale Error	After Auto-Cal (Notes 12, 18)	$\pm 1 / 2$	$\pm \mathbf{3 . 0}$	LSB (max)
	Negative Full-Scale Error	After Auto-Cal (Notes 12; 18)	$\pm 1 / 2$	$\pm \mathbf{3 . 0}$	LSB (max)
	Offset Error	After Auto-Cal (Notes 5, 18) VIN(+) = VIN (-) = 2.048V	$\pm 1 / 2$	$\pm \mathbf{2}$	LSB (max)
	DC Common Mode Error	After Auto-Cal (Note 15)	± 2	$\pm \mathbf{3 . 5}$	LSB (max)
TUE	Total Unadjusted Error	After Auto-Cal (Notes 12, 13 and 14)	± 1		LSB
	Resolution with No Missing Codes	8-bit + sign mode		$\mathbf{8 + \mathbf { s i g n }}$	Bits (min)
+ INL	Positive Integral Linearity Error	8-bit + sign mode (Note 12)		$\pm \mathbf{1 / 2}$	LSB (max)
- INL	Negative Integral Linearity Error	8-bit + sign mode (Note 12)		$\pm \mathbf{1 / 2}$	LSB (max)
DNL	Differential Non-Linearity	8-bit + sign mode		$\pm \mathbf{3 / 4}$	LSB (max)
	Positive Full-Scale Error	8-bit + sign mode (Note 12)		$\pm \mathbf{1 / 2}$	LSB (max)

Converter Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{+}}=+4.096 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {REF }}{ }^{-}=0 \mathrm{~V}_{\mathrm{DC}}, 12$-bit + sign conversion mode, $\mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=8 \mathrm{MHz}$ for the ADC12H030, ADC12H032, ADC12H034 and ADC12H038, $\mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=$ 5 MHz for the $A D C 12030$, $A D C 12032, A D C 12034$ and $A D C 12038, R_{S}=25 \Omega$, source impedance for $V_{R E F}{ }^{+}$and $V_{\text {REF }^{-}} \leq$ 25Ω, fully-differential input with fixed 2.048 V common-mode voltage, and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 7, 8 and 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)

STATIC CONVERTER CHARACTERISTICS (Continued)

	Negative Full-Scale Error	8 -bit + sign mode (Note 12)		$\pm 1 / 2$	LSB (max)
.	Offset Error	8 -bit + sign mode, after Auto-Zero (Note 13) $\mathrm{V}_{\mathbb{I N}}(+)=\mathrm{V}_{\mathrm{IN}}(-)=+2.048 \mathrm{~V}$		$\pm \mathbf{1 / 2}$	LSB (max)
TUE	Total Unadjusted Error	8-bit + sign mode after Auto-Zero (Notes 12, 13 and 14)		$\pm 3 / 4$	LSB (max)
	Multiplexer Channel to Channel Matching		± 0.05		LSB
	Power Supply Sensitivity Offset Error + Full-Scale Error - Full-Scale Error + Integral Linearity Error - Integral Linearity Error	$\begin{aligned} & V+=+5 \mathrm{~V} \pm 10 \% \\ & V_{\text {REF }}=+4.096 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\begin{gathered} \pm 1 \\ \pm 1.5 \\ \pm 1.5 \end{gathered}$	$\begin{gathered} \text { LSB (max) } \\ \text { LSB (max) } \\ \text { LSB (max) } \\ \text { LSB } \\ \text { LSB } \end{gathered}$
	Output Data from "12-Bit Conversion of Offset" (see Table V)	(Note 20)		$\begin{aligned} & +10 \\ & -10 \end{aligned}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (min) } \end{aligned}$
	Output Data from "12-Bit Conversion of Full-Scale" (see Table V)	(Note 20)		$\begin{aligned} & 4095 \\ & 4093 \end{aligned}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (min) } \end{aligned}$

UNIPOLAR DYNAMIC CONVERTER CHARACTERISTICS

$\mathrm{S} /(\mathrm{N}+\mathrm{D})$	Signal-to-Noise Plus Distortion Ratio	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}_{\mathrm{PP}}, \mathrm{~V}_{\text {REF }}{ }^{+}=5.0 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}_{\mathrm{PP}}, \mathrm{~V}_{\text {REF }}+=5.0 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{IN}}=40 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}_{\mathrm{PP}}, \mathrm{~V}_{\text {REF }}+=5.0 \mathrm{~V} \end{aligned}$	69.4 68.3 65.7	dB dB dB
	-3 dB Full Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{VPp}$, where $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ drops 3 dB	31	kHz

DIFFERENTIAL DYNAMIC CONVERTER CHARACTERISTICS

$\mathrm{S} /(\mathrm{N}+\mathrm{D})$	Signal-to-Noise Plus Distortion Ratio	$\begin{aligned} & f_{I N}=1 \mathrm{kHz}, \mathrm{~V}_{\mathbb{I N}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}+=5.0 \mathrm{~V} \\ & \mathrm{f}_{\mathbb{N}}=20 \mathrm{kHz}, \mathrm{~V}_{\mathbb{I N}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}+=5.0 \mathrm{~V} \\ & \mathrm{f}_{\mathbb{N}}=40 \mathrm{kHz}, \mathrm{~V}_{\mathbb{I N}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}+=5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 77.0 \\ & 73.9 \\ & 67.0 \end{aligned}$	dB dB dB
	-3 dB Full Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}= \pm 5 \mathrm{~V}$, where $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ drops 3 dB	40	kHz

Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=+4.096 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{-}=0 \mathrm{~V}_{\mathrm{DC}}$, 12-bit + sign conversion mode, $f_{C K}=f_{S K}=8 \mathrm{MHz}$ for the $\mathrm{ADC12H030}, \mathrm{ADC12H032}, \mathrm{ADC12H034}$ and $\mathrm{ADC12H038}, \mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{S K}=$ 5 MHz for the $\mathrm{ADC12030}, \mathrm{ADC12032}, \mathrm{ADC1} 2034$ and $A D C 12038, \mathrm{R}_{\mathrm{S}}=25 \Omega$, source impedance for $\mathrm{V}_{\mathrm{REF}}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-} \leq$ 25Ω, fully-differential input with fixed 2.048 V common-mode voltage, and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 7, 8 and 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)

REFERENCE INPUT, ANALOG INPUTS AND MULTIPLEXER CHARACTERISTICS

$\mathrm{C}_{\text {REF }}$	Reference Input Capacitance		85		pF
$\mathrm{C}_{\text {A/D }}$	A/DIN1 and A/DIN2 Analog Input Capacitance		75		pF
	A/DIN1 and A/DIN2 Analog Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=+5.0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V} \end{aligned}$	± 0.1	± 1.0	$\mu \mathrm{A}$ (max)
	$\mathrm{CH} 0-\mathrm{CH} 7$ and COM Input Voltage			$\begin{aligned} & \text { GND }-0.05 \\ & \mathbf{V}_{\mathbf{A}}++0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}(\min) \\ & \mathrm{V}(\max) \end{aligned}$
C_{CH}	$\mathrm{CH} 0-\mathrm{CH} 7$ and COM Input Capacitance		10		pF
$\mathrm{C}_{\text {MUXOUT }}$	MUX Output Capacitance		20		pF
	Off Channel Leakage (Note 16) $\mathrm{CHO}-\mathrm{CH} 7$ and COM Pins	$\begin{aligned} & \text { On Channel }=5 \mathrm{~V} \text { and } \\ & \text { Off Channel }=0 \mathrm{~V} \end{aligned}$	-0.01	-0.3	$\mu \mathrm{A}$ (min)
		$\begin{aligned} & \text { On Channel }=0 \mathrm{~V} \text { and } \\ & \text { Off Channel }=5 \mathrm{~V} \end{aligned}$	0.01	0.3	$\mu \mathrm{A}$ (max)
	On Channel Leakage (Note 16) $\mathrm{CHO}-\mathrm{CH} 7$ and COM Pins	$\begin{aligned} & \text { On Channel }=5 \mathrm{~V} \text { and } \\ & \text { Off Channel }=0 \mathrm{~V} \end{aligned}$	0.01	0.3	$\mu \mathrm{A}$ (max)
		$\begin{aligned} & \text { On Channel }=0 \mathrm{~V} \text { and } \\ & \text { Off Channel }=5 \mathrm{~V} \end{aligned}$	-0.01	-0.3	$\mu \mathrm{A}$ (min)
	MUXOUT1 and MUXOUT2 Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {MUXOUT }}=5.0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {MUXOUT }}=0 \mathrm{~V} \end{aligned}$	0.01	0.3	$\mu \mathrm{A}$ (max)
$\mathrm{R}_{\text {ON }}$	MUX On Resistance	$V_{I N}=2.5 \mathrm{~V}$ and $V_{\text {MUXOUT }}=2.4 \mathrm{~V}$	850	1150	Ω (max)
	RoN Matching Channel to Channel	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ and $\mathrm{V}_{\text {MUXOUT }}=2.4 \mathrm{~V}$	5		\%
	Channel to Channel Crosstalk	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}_{\mathrm{PP},} \mathrm{f}_{\mathrm{IN}}=40 \mathrm{kHz}$	-72		dB
	MUX Bandwidth		90		kHz

DC and Logic Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{+}}{ }^{+}=+4.096 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{-}}=0 \mathrm{~V}_{\mathrm{DC}}, 12$-bit + sign conversion mode, $\mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=8 \mathrm{MHz}$ for the $\mathrm{ADC12H030}, \mathrm{ADC12H032}, \mathrm{ADC12H034}$ and $\mathrm{ADC12H038}, \mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=$ 5 MHz for the ADC12030, ADC12032, ADC12034 and ADC12038, $\mathrm{R}_{\mathrm{S}}=25 \Omega$, source impedance for $\mathrm{V}_{\mathrm{REF}^{+}}$and $\mathrm{V}_{\mathrm{REF}^{-}} \leq$ 25Ω, fully-differential input with fixed 2.048 V common-mode voltage, and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{M I N}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 7, 8 and 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)

CCLK, $\overline{\mathbf{C S}}, \overline{\mathrm{CONV}}, \mathrm{DI}$, PD AND SCLK INPUT CHARACTERISTICS

$\mathrm{V}_{\text {IN }}(1)$	Logical "1" Input Voltage	$\mathrm{V}+=5.5 \mathrm{~V}$		2.0	V (min)
$\mathrm{V}_{\text {IN }(0)}$	Logical "0" Input Voltage	$\mathrm{V}+=4.5 \mathrm{~V}$		0.8	V (max)
$\ln (1)$	Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$	0.005	1.0	$\mu \mathrm{A}$ (max)
$\operatorname{liN(0)}$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-1.0	$\mu \mathrm{A}$ (min)

DO, EOC AND DOR DIGITAL OUTPUT CHARACTERISTICS

$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}^{+}=4.5 \mathrm{~V}, \text { I IUUT }=-360 \mu \mathrm{~A} \\ & \mathrm{~V}^{+}=4.5 \mathrm{~V}, \text { I OUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{gathered} 2.4 \\ 4.25 \end{gathered}$	V (min) V (min)
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{l}$ OUT $=1.6 \mathrm{~mA}$		0.4	V (max)
Iout	TRI-STATE Output Current	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & V_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.1 \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} -3.0 \\ \mathbf{3 . 0} \\ \hline \end{gathered}$	$\mu \mathrm{A}$ (max) $\mu \mathrm{A}$ (max)
+ ISC	Output Short Circuit Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	14	6.5	$\mathrm{mA}(\mathrm{min})$
$-I_{\text {SC }}$	Output Short Circuit Sink Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {D }}{ }^{+}$	16	8.0	$\mathrm{mA}(\mathrm{min})$

POWER SUPPLY CHARACTERISTICS

ID^{+}	Digital Supply Current ADC12030, ADC12032, ADC12034 and ADC12038	Awake $\overline{\mathrm{CS}}=$ HIGH, Powered Down, CCLK on $\overline{C S}=$ HIGH, Powered Down, CCLK off	$\begin{gathered} 1.6 \\ 600 \\ 20 \\ \hline \end{gathered}$	2.5	$\begin{gathered} \mathrm{mA}(\max) \\ \mu \mathrm{A} \\ \mu \mathrm{~A} \\ \hline \end{gathered}$
	Digital Supply Current ADC12H030, ADC12H032, ADC12H034 and ADC12H038	Awake $\overline{C S}=$ HIGH, Powered Down, CCLK on $\overline{C S}=$ HIGH, Powered Down, CCLK off	$\begin{aligned} & 2.3 \\ & 0.9 \\ & 20 \\ & \hline \end{aligned}$	3.2	mA mA $\mu \mathrm{A}$
$\mathrm{I}_{\text {A }}+$	Positive Analog Supply Current	Awake $\overline{C S}=$ HIGH, Powered Down, CCLK on $\overline{\mathrm{CS}}=$ HIGH, Powered Down, CCLK off	$\begin{gathered} 2.7 \\ 10 \\ 0.1 \end{gathered}$	4.0	$\begin{gathered} \mathrm{mA}(\max) \\ \mu \mathrm{A} \\ \mu \mathrm{~A} \\ \hline \end{gathered}$
IREF	Reference Input Current	Awake $\overline{C S}=\text { HIGH, Powered Down }$	$\begin{aligned} & 70 \\ & 0.1 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{+}}=+4.096 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{-}}=0 \mathrm{~V}_{\mathrm{DC}}, 12$-bit + sign conversion mode, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=8 \mathrm{MHz}$ for the $\mathrm{ADC1} 2 \mathrm{H} 030$, ADC12H032, ADC12H034 and ADC12H038, $f_{C K}=f_{S K}=5 \mathrm{MHz}$ for the $A D C 12030, A D C 12032, ~$ ADC12034 and ADC12038, $R_{S}=25 \Omega$, source impedance for $V_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-} \leq 25 \Omega$, fully-differential input with fixed 2.048 V common-mode voltage, and 10 (t_{CK}) acquisition time unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Note 17)

Symbol	Parameter	Conditions	Typical (Note 10)	ADC12H030/2/4/8	ADC12030/2/4/8	Units (Limits)
				Limits (Note 11)	Limits (Note 11)	
f_{CK}	Conversion Clock (CCLK) Frequency		$\begin{gathered} 10 \\ 1 \end{gathered}$	8	5	MHz (max) MHz (min)
$\mathrm{f}_{\text {SK }}$	Serial Data Clock SCLK Frequency		$\begin{gathered} 10 \\ 0 \end{gathered}$	8	5	$\begin{gathered} \mathrm{MHz}(\max) \\ \mathrm{Hz}(\min) \end{gathered}$
	Conversion Clock Duty Cycle			$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\%$ (min) \% (max)
	Serial Data Clock Duty Cycle			$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\%$ (min) \% (max)
t_{C}	Conversion Time	12-Bit + Sign or 12-Bit	44(tck)	44(tek)	44(tck)	(max)
				5.5	8.8	$\mu \mathrm{S}$ (max)
		8-Bit + Sign or 8-Bit	$21\left(\mathrm{t}_{\mathrm{CK}}\right)$	21(tck)	$21\left(t_{\text {ck }}\right)$	(max)
				2.625	4.2	$\mu \mathrm{S}$ (max)
$t_{\text {A }}$	Acquisition Time (Note 19)	6 Cycles Programmed	$6\left(\mathrm{t}_{\mathrm{CK}}\right)$	$\begin{aligned} & 6\left(\mathbf{t}_{\mathbf{C K}}\right) \\ & \mathbf{7}\left(\mathbf{t}_{\mathbf{C K}}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 6\left(t_{C K}\right) \\ & 7\left(t_{C K}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & (\min) \\ & (\max) \end{aligned}$
				$\begin{gathered} 0.75 \\ 0.875 \end{gathered}$	$\begin{array}{r} 1.2 \\ 1.4 \\ \hline \end{array}$	$\mu \mathrm{S}$ (min) $\mu \mathrm{S}$ (max)
		10 Cycles Programmed	10(tck)	$\begin{aligned} & 10\left(\mathbf{t}_{\mathbf{C K}}\right) \\ & 11\left(\mathbf{t}_{\mathbf{C K}}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 10\left(\mathbf{t}_{\mathrm{CK}}\right) \\ & 11\left(\mathbf{t}_{\mathrm{CK}}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & (\min) \\ & (\max) \end{aligned}$
				$\begin{gathered} 1.25 \\ 1.375 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & \hline \end{aligned}$	$\mu \mathrm{s}$ (min) $\mu \mathrm{S}$ (max)
		18 Cycles Programmed	18(tek)	$\begin{aligned} & 18\left(\mathbf{t}_{\mathbf{C K}}\right) \\ & 19\left(\mathbf{t}_{\mathrm{CK}}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 18\left(\mathbf{t}_{\mathrm{CK}}\right) \\ & 19\left(\mathbf{t}_{\mathrm{CK}}\right) \end{aligned}$	$\begin{aligned} & (\min) \\ & (\max) \end{aligned}$
				$\begin{gathered} 2.25 \\ 2.375 \end{gathered}$	$\begin{array}{r} 3.6 \\ 3.8 \\ \hline \end{array}$	$\mu \mathrm{s}$ (min) $\mu \mathrm{s}$ (max)
		34 Cycles Programmed	$34\left(\mathrm{t}_{\text {ck }}\right)$	34(tск) 35(tck)	34(tck) 35(tck)	$\begin{aligned} & (\min) \\ & (\max) \\ & \hline \end{aligned}$
				$\begin{array}{r} 4.25 \\ 4.375 \\ \hline \end{array}$	$\begin{aligned} & 6.8 \\ & 7.0 \\ & \hline \end{aligned}$	$\mu \mathrm{S}$ (min) $\mu \mathrm{s}$ (max)
tckal	Self-Calibration Time		4944(tck)	4944(tck)	4944(tck)	(max)
				618.0	988.8	$\mu \mathrm{S}$ (max)
$t_{A Z}$	Auto-Zero Time		76(tck)	76(tek)	76(tek)	(max)
				9.5	15.2	$\mu \mathrm{S}$ (max)
$\mathrm{t}_{\text {SYNC }}$	Self-Calibration or Auto-Zero Synchronization Time from DOR		$2\left(\mathrm{t}_{\mathrm{CK}}\right)$	$\begin{aligned} & 2\left(t_{C K}\right) \\ & 3\left(t_{C K}\right) \end{aligned}$	$\begin{aligned} & 2\left(t_{C K}\right) \\ & 3\left(\mathbf{t}_{\mathbf{C K}}\right) \end{aligned}$	(min) (max)
				$\begin{aligned} & 0.250 \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.60 \\ & \hline \end{aligned}$	$\mu \mathrm{s}$ (min) $\mu \mathrm{s}$ (max)
$t_{\text {DOR }}$	DOR High Time when $\overline{\mathrm{CS}}$ is Low Continuously for Read Data and Software Power Up/Down		$9\left(\mathrm{tSK}^{\text {) }}\right.$	9(tsK)	9(tsk)	(max)
				1.125	1.8	$\mu \mathrm{s}$ (max)
tconv	CONV Valid Data Time		8 (tsk)	8(tsk)	8(tsk)	(max)
				1.0	1.6	$\mu \mathrm{s}$ (max)

AC Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}+=+5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=+4.096 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{-}=0 \mathrm{~V}_{\mathrm{DC}}$, 12-bit + sign conversion mode, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=8 \mathrm{MHz}$ for the ADC12H030, ADC12H032, ADC12H034 and ADC12H038, $\mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=5 \mathrm{MHz}$ for the $\mathrm{ADC12030}, \mathrm{ADC12032}, \mathrm{ADC12034}$ and $\mathrm{ADC12038}, \mathrm{R}_{\mathrm{S}}=25 \Omega$, source impedance for $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-} \leq 25 \Omega$, fully-differential input with fixed 2.048 V common-mode voltage, and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} C$. (Note 17)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)
$\mathrm{t}_{\text {HPU }}$	Hardware Power-Up Time, Time from PD Falling Edge to EOC Rising Edge		140	250	$\mu \mathrm{s}$ (max)
tsPU	Software Power-Up Time, Time from Serial Data Clock Falling Edge to EOC Rising Edge		140	250	$\mu \mathrm{S}$ (max)
$t_{\text {ACC }}$	Access Time Delay from $\overline{\mathrm{CS}}$ Falling Edge to DO Data Valid		20	50	ns (max)
tset-up	Set-Up Time of $\overline{C S}$ Falling Edge to Serial Data Clock Rising Edge			30	$n \mathrm{n}$ (min)
t delay	Delay from SCLK Falling Edge to $\overline{\mathrm{CS}}$ Falling Edge		0	5	ns (min)
$t_{1 H}, t_{0 H}$	Delay from $\overline{\text { CS }}$ Rising Edge to DO TRI-STATE ${ }^{\circledR}$	$R_{L}=3 k, C_{L}=100 \mathrm{pF}$	40	100	ns (max)
$\mathrm{t}_{\mathrm{HDI}}$	DI Hold Time from Serial Data Clock Rising Edge		5	15	ns (min)
${ }^{\text {tSDI }}$	DI Set-Up Time from Serial Data Clock Rising Edge		5	10	ns (min)
$\mathrm{t}_{\mathrm{HDO}}$	DO Hold Time from Serial Data Clock Falling Edge	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	25	$\begin{gathered} 50 \\ 5 \end{gathered}$	ns (max) ns (min)
${ }^{\text {t }}$ DDO	Delay from Serial Data Clock Falling Edge to DO Data Valid		35	50	ns (max)
$t_{\text {RDO }}$	DO Rise Time, TRI-STATE to High DO Rise Time, Low to High	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns (max) ns (max)
${ }^{\text {t }}$ DD	DO Fall Time, TRI-STATE to Low DO Fall Time, High to Low	$R_{L}=3 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns (max) ns (max)
${ }^{t}$ CD	Delay from $\overline{\mathrm{CS}}$ Falling Edge to $\overline{\text { DOR }}$ Falling Edge		25	45	ns (max)
$t_{\text {SD }}$	Delay from Serial Data Clock Falling Edge to $\overline{\mathrm{DOR}}$ Rising Edge		25	45	ns (max)
C_{IN}	Capacitance of Logic Inputs		10		pF
$\mathrm{Cout}^{\text {O }}$	Capacitance of Logic Outputs		20		pF

Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supplies ($\mathrm{V}_{\mathrm{IN}}<\mathrm{GND}$ or $\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{A}+$ or $\mathrm{V}_{\mathrm{D}}{ }^{+}$), the current at that pin should be limited to 30 mA . The 120 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 30 mA to four.
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J m a x}, \theta_{\mathrm{JA}}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J} \max -T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $T_{\text {Jmax }}=150^{\circ} \mathrm{C}$. The typical thermal resistance $\left(\Theta_{\mathrm{JA}}\right)$ of these parts when board mounted follow:

Part Number	Thermal Resistance $\theta_{\text {JA }}$
ADC12H030CIN, ADC12030CIN	$53^{\circ} \mathrm{C} / \mathrm{W}$
ADC12H030CIWM, ADC12030CIWM	$70^{\circ} \mathrm{C} / \mathrm{W}$
ADC12H032CIN, ADC12032CIN	$46^{\circ} \mathrm{C} / \mathrm{W}$
ADC12H032CIWM, ADC12032CIWM	$64^{\circ} \mathrm{C} / \mathrm{W}$
ADC12H034CIN, ADC12034CIN	$42^{\circ} \mathrm{C} / \mathrm{W}$
ADC12H034CIWM, ADC12034CIWM	$57^{\circ} \mathrm{C} / \mathrm{W}$
ADC12H038CIN, ADC12038CIN	$40^{\circ} \mathrm{C} / \mathrm{W}$
ADC12H038CIWM, ADC12038CIWM	$50^{\circ} \mathrm{C} / \mathrm{W}$

Note 5: The human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin.
Note 6: See AN450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in any post 1986 National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Note 7: Two on-chip diodes are tied to each analog input through a series resistor as shown below. Input voltage magnitude up to 5 V above $\mathrm{V}_{\mathrm{A}}+$ or 5 V below GND will not damage this device. However, errors in the A/D conversion can occur (if these diodes are forward biased by more than 50 mV) if the input voltage magnitude of selected or unselected analog input go above $\mathrm{V}_{\mathrm{A}}{ }^{+}$or below GND by more than 50 mV . As an example, if $\mathrm{V}_{\mathrm{A}}+$ is $4.5 \mathrm{~V}_{\mathrm{DC}}$, full-scale input voltage must be $\leq 4.55 \mathrm{~V}_{\mathrm{DC}}$ to ensure accurate conversions.

TL/H/11354-2
Note 8: To guarantee accuracy, it is required that the $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$be connected together to the same power supply with separate bypass capacitors at each V^{+} pin.
Note 9: With the test condition for $V_{R E F}\left(V_{\mathrm{REF}^{+}}-\mathrm{V}_{\mathrm{REF}^{-}}\right)$given as +4.096 V , the 12 -bit LSB is 1.0 mV and the 8 -bit LSB is 16.0 mV .
Note 10: Typicals are at $T_{J}=T_{A}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 11: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 12: Positive integral linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line that passes through positive fullscale and zero. For negative integral linearity error, the straight line passes through negative full-scale and zero (see Figures $1 b$ and 16).
Note 13: Zero error is a measure of the deviation from the mid-scale voltage (a code of zero), expressed in LSB. It is the worst-case value of the code transitions between 1 to 0 and 0 to +1 (see Figure 2).
Note 14: Total unadjusted error includes offset, full-scale, linearity and multiplexer errors.
Note 15: The DC common-mode error is measured in the differential multiplexer mode with the assigned positive and negative input channels shorted together.
Note 16: Channel leakage current is measured after the channel selection.
Note 17: Timing specifications are tested at the TTL logic levels, $\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$ for a falling edge and $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ for a rising edge. TRI-STATE output voltage is forced to 1.4 V .
Note 18: The ADC12030 family's self-calibration technique ensures linearity and offset errors as specified, but noise inherent in the self-calibration process will result in a maximum repeatability uncertainty of 0.2 LSB.
Note 19: If SCLK and CCLK are driven from the same clock source, then t_{A} is $6,10,18$ or 34 clock periods minimum and maximum.
Note 20: The "12-Bit Conversion of Offeet" and "12-Bit Conversion of Full-Scale" modes are intended to test the functionality of the device. Therefore, the output data from these modes are not an indication of the accuracy of a conversion result.

Electrical Characteristics (Continued)

TL/H/11354-10
FIGURE 1a. Transfer Characteristic

TLL/H/11354-11
FIGURE 1b. Simplified Error Curve vs Output Code without Auto-Calibration or Auto-Zero Cycles

Electrical Characteristics (Continued)

FIGURE 1c. Simplified Error Curve vs Output Code after Auto-Calibration Cycle

TL/H/11354-13
FIGURE 2. Offset or Zero Error Voltage

Typical Performance Characteristics

The following curves apply for 12-bit + sign mode after auto-calibration unless otherwise specified. The performance for 8-bit + sign mode is equal to or better than shown. (Note 9)

Full-Scale Error Change vs Temperature

Zero Error Change vs Clock Frequency

TL/H/11354-14

Typical Performance Characteristics (Continued)

The following curves apply for 12-bit + sign mode after auto-calibration unless otherwise specified. The performance for 8 -bit + sign mode is equal to or better than shown.

Typical Dynamic Performance Characteristics

The following curves apply for 12 -bit + sign mode after auto-calibration unless otherwise specified.

Typical Dynamic Performance Characteristics (Continued)
The following curves apply for 12-bit + sign mode after auto-calibration unless otherwise specified.

Unipolar Signal-to-Noise + Distortion Ratio vs Input Signal Level

Unipolar Spectral Response with $1 \mathbf{k H z}$ Sine Wave Input

Unipolar Spectral Response with 30 kHz Sine Wave Input

Unipolar Spectral Response with 10 kHz Sine Wave Input

Unipolar Spectral Response with $\mathbf{4 0} \mathbf{~ k H z}$ Sine Wave Input

Test Circuits

TL/H/11354-3

TL/H/11354-4

TL/H/11354-5

Timing Diagrams

Timing Diagrams (Continued)

TL/H/11354-21

TL/H/11354-22

TL/H/11354-23
Note: DO output data is not valid during this cycle.

Timing Diagrams (Continued)

Timing Diagrams (Continued)

Timing Diagrams (Continued)

TL/H/11354-28

ADC12038 Conversion with CS Continuously Low and 16-Bit Digital Output Format

Timing Diagrams (Continued)
ADC12038 Software Power Up/Down Using $\overline{C S}$ with 16-Bit Digital Output Format

TL/H/11354-52

ADC12038 Software Power Up/Down with $\overline{\text { CS }}$ Continuously Low and 16-Bit Digital Output Format

TL/H/11354-31

TL/H/11354-32
Note: Hardware power up/down may occur at any time. If PD is high while a conversion is in progress that conversion will be corrupted and erroneous data will be stored in the output shift register.

TL/H/11354-33
Note: In order for all 9 bits of Status Information to be accessible, the last conversion programmed before Cycle N needs to have a resolution of 8 bits plus sign, 12 bits, 12 bits plus sign, or greater.

Pin Descriptions

CCLK The clock applied to this input controls the sucessive approximation conversion time interval. and the acquisition time. The rise and fall times of the clock edges should not exceed $1 \mu \mathrm{~s}$.
SCLK
This is the serial data clock input. The clock applied to this input controls the rate at which the serial data exchange occurs. The rising edge loads the information on the DI pin into the multiplexer address and mode select shift register. This address controls which channel of the analog input multiplexer (MUX) is selected and the mode of operation for the A/D. With CS low the falling edge of SCLK shifts the data resulting from the previous ADC conversion out on DO, with the exception of the first bit of data. When $\overline{C S}$ is low continously, the first bit of the data is clocked out on the rising edge of EOC (end of conversion). When $\overline{C S}$ is toggled the falling edge of $\overline{\mathrm{CS}}$ always clocks out the first bit of data. CS should be brought low when SCLK is low. The rise and fall times of the clock edges should not exceed $1 \mu \mathrm{~s}$.
DI This is the serial data input pin. The data applied to this pin is shifted by the rising edge of SCLK into the multiplexer address and mode select register. Tables II through V show the assignment of the multiplexer address and the mode select data.

DO The data output pin. This pin is an active push/ pull output when $\overline{\mathrm{CS}}$ is low. When $\overline{\mathrm{CS}}$ is high, this output is TRI-STATE. The A/D conversion result (D0-D12) and converter status data are clocked out by the falling edge of SCLK on this pin. The word length and format of this result can vary (see Table I). The word length and format are controlled by the data shifted into the multiplexer address and mode select register (see Table V).
EOC This pin is an active push/pull output and indicates the status of the ADC12030/2/4/8. When low, it signals that the A / D is busy with a conversion, auto-calibration, auto-zero or power down cycle. The rising edge of EOC signals the end of one of these cycles.
turely terminated. The data in the output latches may be corrupted. Therefore, when $\overline{\mathrm{CS}}$ is brought back low during a conversion in progress the data output at that time should be ignored. $\overline{\mathrm{CS}}$ may also be left continuously low. In this case it is imperative that the correct number of SCLK pulses be applied to the ADC in order to remain synchronous. After the ADC supply power is applied it expects to see 13 clock pulses for each I/O sequence. The number of clock pulses the ADC expects is the same as the digital output word length. This word length can be modified by the data shifted in on the DO pin. Table V details the data required.
$\overline{D O R} \quad$ This is the data output ready pin. This pin is an active push/pull output. It is low when the conversion result is being shifted out and goes high to signal that all the data has been shifted out.
$\overline{\text { CONV }} \quad$ A logic low is required on this pin to program any mode or change the ADC's configuration as listed in the Mode Programming Table (Table V) such as 12-bit conversion, 8-bit conversion, Auto Cal, Auto Zero etc. When this pin is high the ADC is placed in the read data only mode. While in the read data only mode, bringing $\overline{\mathrm{CS}}$ low and pulsing SCLK will only clock out on DO any data stored in the ADCs output shift register. The data on DI will be neglected. A new conversion will not be started and the ADC will remain in the mode and/or configuration previously programmed. Read data only cannot be performed while a conversion, Auto-Cal or Auto-Zero are in progress.
PD This is the power down pin. When PD is high the A/D is powered down; when PD is low the A/D is powered up. The A/D takes a maximum of $250 \mu \mathrm{~s}$ to power up after the command is given.
$\mathrm{CHO}-\mathrm{CH} 7$ These are the analog inputs of the MUX. A channel input is selected by the address information at the DI pin, which is loaded on the rising edge of SCLK into the address register (see Tables II through IV).
The voltage applied to these inputs should not exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$or go below GND. Exceeding this range on an unselected channel will corrupt the reading of a selected channel.
COM This pin is another analog input pin. It is used as a pseudo ground when the analog multiplexer is single-ended.
MUXOUT1, These are the multiplexer output pins. MUXOUT2

A/DIN1, These are the converter input pins. MUXOUT1
A/DIN2 is usually tied to A/DIN1. MUXOUT2 is usually tied to A/DIN2. If external circuitry is placed between MUXOUT1 and A/DIN1, or MUXOUT2 and A/DIN2 it may be necessary to protect these pins. The voltage at these pins should not exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$or go below AGND (see Figure 3).

Pin Descriptions (Continued)

$\mathrm{V}_{\mathrm{REF}}{ }^{+} \quad$ This is the positive analog voltage reference input. In order to maintain accuracy, the voltage range of $V_{\text {REF }}\left(V_{\text {REF }}=V_{\text {REF }}{ }^{+}-V_{\text {REF }}{ }^{-}\right)$is $1 \mathrm{~V}_{\mathrm{DC}}$ to $5.0 \mathrm{~V}_{\mathrm{DC}}$ and the voltage at $\mathrm{V}_{\mathrm{REF}}{ }^{+}$ cannot exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$. See Figure 4 for recommended bypassing.
$\mathrm{V}_{\mathrm{REF}}{ }^{-} \quad$ The negative voltage reference input. In order to maintain accuracy, the voltage at this pin must not go below GND or exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$. (See Figure 4).
$\mathrm{V}_{\mathrm{A}}{ }^{+}, \mathrm{V}_{\mathrm{D}}{ }^{+}$These are the analog and digital power supply pins. $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$are not connected together on the chip. These pins should be tied to the same power supply and bypassed separately (see Figure 4). The operating voltage range of $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}+$ is $4.5 \mathrm{~V}_{\mathrm{DC}}$ to $5.5 \mathrm{~V}_{\mathrm{DC}}$.
DGND This is the digital ground pin (see Figure 4).
AGND This is the analog ground pin (see Figure 4).

FIGURE 4. Recommended Power Supply Bypassing and Grounding

Tables

TABLE I. Data Out Formats

DO Formats			DBO	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8	DB9	DB10	DB11	DB12	DB13	DB14	DB15	DB16
with Sign	MSB First	17 Bits	X	X	X	X	Sign	MSB	10	9	8	7	6	5	4	3	2	1	LSB
		$\begin{array}{\|c\|} 13 \\ \text { Bits } \\ \hline \end{array}$	Sign	MSB	10	9	8	7	6	5	4	3	2	1	LSB				
		$\left\lvert\, \begin{gathered} 9 \\ \text { Bits } \end{gathered}\right.$	Sign	MSB	6	5	4	3	2	1	LSB								
	$\begin{aligned} & \text { LSB } \\ & \text { First } \end{aligned}$	$\begin{array}{\|c} 17 \\ \text { Bits } \\ \hline \end{array}$	LSB	1	2	3	4	5	6	7	8	9	10	MSB	Sign	X	X	X	X
		$\begin{array}{\|c} 13 \\ \text { Bits } \end{array}$	LSB	1	2	3	4	5	6	7	8	9	10	MSB	Sign				
		$\begin{array}{\|c\|} \hline 9 \\ \text { Bits } \end{array}$	LSB	1	2	3	4	5	6	MSB	Sign								
without Sign	MSB First	16 Bits	0	0	0	0	MSB	10	9	8	7	6	5	4	3	2	1	LSB	
		$\begin{gathered} 12 \\ \text { Bits } \end{gathered}$	MSB	10	9	8	7	6	5	4	3	2	1	LSB	-				
		$\begin{array}{\|c\|} \hline 8 \\ \text { Bits } \end{array}$	MSB	6	5	4	3	2	1	LSB									
	$\begin{aligned} & \text { LSB } \\ & \text { First } \end{aligned}$	$\begin{gathered} 16 \\ \text { Bits } \end{gathered}$	LSB	1	2	3	4	5	6	7	8	9	10	MSB	0	0	0	0	
		$\begin{gathered} 12 \\ \text { Bits } \end{gathered}$	LSB	1	2	3	4	5	6	7	8	9	10	MSB					
		$\begin{array}{\|c} 8 \\ \text { Bits } \\ \hline \end{array}$	LSB	1	2	3	4	5	6	MSB									

$X=$ High or Low state.

TABLE II. ADC12038 Multiplexer Addressing

MUX Address				Analog Channel Addressed and Assignment with A/DIN1 tied to MUXOUT1 and A/DIN2 tied to MUXOUT2									A/D Input Polarity Assignment		Multiplexer Output Channel Assignment		Mode
DIO	D11	D12	D13	CHO	CH1	CH2	CH3	CH4	CH5	CH6	CH7	COM	A/DIN1	A/DIN2	MUXOUT1	MUXOUT2	
L	L	L	L	$+$	-								$+$	-	CHO	CH 1	
L	L	L	H			$+$	-						$+$	-	CH2	CH3	
L	L	H	L					$+$	-				$+$	-	CH 4	CH5	
L	L	H	H							$+$	-		+	- -	CH6	CH7	
L	H	L	L	-	$+$								-	$+$	CHO	CH1	Differential
L	H	L	H			-	$+$						-	$+$	CH 2	CH3	
L	H	H	L					-	$+$				-	+	CH 4	CH5	
L	H	H	H							-	+		-	$+$	CH6	CH 7	
H	L	L	L	$+$								-	$+$	-	CHO	COM	
H	L	L	H			$+$						-	$+$	-	CH 2	COM	
H	L	H	L					$+$				-	$+$	-	CH 4	COM	
H	L	H	H							$+$		-	$+$	-	CH 6	COM	
H	H	L	L		$+$							-	$+$	-	CH 1	COM	Single-Ended
H	H	L	H				+					-	+	-	CH3	COM	
H	H	H	L						$+$			-	+	-	CH 5	COM	
H	H	H	H								$+$	-	+	-	CH 7	COM	

Tables (Continued)												
TABLE III. ADC12034 Multiplexer Addressing												
MUX Address			Analog Channel Addressed and Assignment with A/DIN1 tied to MUXOUT1 and A/DIN2 tied to MUXOUT2					A/D Input Polarity Assignment		Multiplexer Output Channel Assignment		Mode
DIO	D11	D12	CHO	CH1	CH2	CH3	COM	A/DIN1	A/DIN2	MUXOUT1	MUXOUT2	
L L L L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$+$	$\begin{aligned} & - \\ & + \end{aligned}$	$+$	$+$		+ + - -	- - + +	$\begin{aligned} & \mathrm{CHO} \\ & \mathrm{CH} 2 \\ & \mathrm{CHO} \\ & \mathrm{CH} 2 \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 3 \\ & \mathrm{CH} 1 \\ & \mathrm{CH} 3 \\ & \hline \end{aligned}$	Differential
H H H H	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	+	+	+	+	- - - -	+ + + +	- - - -	$\begin{aligned} & \mathrm{CHO} \\ & \mathrm{CH} 2 \\ & \mathrm{CH} 1 \\ & \mathrm{CH} 3 \\ & \hline \end{aligned}$	COM COM COM COM	Single-Ended
TABLEIV. ADC12032 and ADC12030 Multiplexer Addressing												
		Analog Channel Addressed and Assignment with A/DIN1 tied to MUXOUT1 and A/DIN2 tied to MUXOUT2						A/D Input Polarity Assignment		Multiplexer Output Channel Assignment		Mode
DIO	DI1		CHO		H1	CO		A/DIN1	A/DIN2	MUXOUT1	MUXOUT2	
$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$		+ -		+			+	$\begin{aligned} & - \\ & + \end{aligned}$	$\begin{aligned} & \mathrm{CHO} \\ & \mathrm{CHO} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 1 \end{aligned}$	Differential
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$		+		+	-		$\begin{aligned} & + \\ & + \end{aligned}$	-	$\begin{aligned} & \mathrm{CHO} \\ & \mathrm{CH}! \end{aligned}$	$\begin{aligned} & \mathrm{COM} \\ & \mathrm{COM} \end{aligned}$	Single-Ended

Tables (Continued)
TABLE V. Mode Programming

ADC12038	DIO	DI1	D12	DI3	DI4	DI5	D16	DI7	Mode Selected (Current)	DO Format (next Conversion Cycle)
ADC12034	DIO	DI1	D12		D13	DI4	D15	DI6		
$\begin{aligned} & \text { ADC12030 } \\ & \text { and } \\ & \text { ADC12032 } \\ & \hline \end{aligned}$	DIO	DI1			DI2	D13	D14	DI5		
	See Tables II, III or IV				L	L	L	L	12 Bit Conversion	12 or 13 Bit MSB First
	See Tables II, III or IV				L	L	L	H	12 Bit Conversion	16 or 17 Bit MSB First
	See Tables II, III or IV				L	L	H	L	8 Bit Conversion	8 or 9 Bit MSB First
	L	L	L	L	L	L	H	H	12 Bit Conversion of Full-Scale	12 or 13 Bit MSB First
	See Tables II, III or IV				L	H	L	L	12 Bit Conversion	12 or 13 Bit LSB First
	See Tables II, III or IV				L	H	L	H	12 Bit Conversion	16 or 17 Bit LSB First
	See Tables II, III or IV				L	H	H	L	8 Bit Conversion	8 or 9 Bit LSB First
	L	L	L	L	L	H	H	H	12 Bit Conversion of Offset	12 or 13 Bit LSB First
	L	L	L	L	H	L	L	L	Auto Cal	No Change
	L	L	L	L	H	L	L	H	Auto Zero	No Change
	L	L	L	L	H	L	H	L	Power Up	No Change
	L'	L.	L	L	H	L	H	H	Power Down	No Change
	L	L	L	L	H	H	L	L	Read Status Register	No Change
	L	L	L	L	H	H	L	H	Data Out without Sign	No Change
	H	L	L	L	H	H	L	H	Data Out with Sign	No Change
	L	L	L	L	H	H	H	L	Acquisition Time-6 CCLK Cycles	No Change
	L	H	L	L	H	H	H	L	Acquisition Time-10 CCLK Cycles	No Change
	H	L	L	L	H	H	H	L	Acquisition Time-18 CCLK Cycles	No Change
	H	H	L	L	H	H	H	L	Acquisition Time-34 CCLK Cycles	No Change
	L	L	L	L	H	H	H	H	User Mode	No Change
	H	X	X	X	H	H	H	H	Test Mode ($\mathrm{CH} 1-\mathrm{CH} 7$ become Active Outputs)	No Change

Note: The A/D powers up with no Auto Cal, no Auto Zero, 10 CCLK acquisition time, 12 -bit + sign conversion, power up, 12- or 13-bit MSB first, and user mode. $X=$ Don't Care

TABLE VI. Conversion/Read Data Only Mode Programming

CS	CONV	PD	Mode
L	L	L	See Table V for Mode
L	H	L	Read Only (Previous DO Format). No Conversion.
H	X	L	Idle
X	X	H	Power Down

X = Don't Care

Tables (Continued)
TABLE VII. Status Register

Application Hints

1.0 DIGITAL INTERFACE

1.1 Interface Concepts

The example in Figure 5 shows a typical sequence of events after the power is applied to the ADC12030/2/4/8:

FIGURE 5. Typical Power Supply Power Up Sequence
The first instruction input to the A/D via DI initiates Auto Cal. The data output on DO at that time is meaningless and is completely random. To determine whether the Auto Cal has been completed, a read status instruction is issued to the A/D. Again the data output at that time has no significance since the Auto Cal procedure modifies the data in the output shift register. To retrieve the status information, an additional read status instruction is issued to the A/D. At this time the status data is available on DO. If the Cal signal in the status word, is low Auto Cal has been completed. Therefore, the next instruction issued can start a conversion. The data output at this time is again status information. To keep noise from corrupting the A/D conversion, status can not be read during a conversion. If $\overline{\mathrm{CS}}$ is strobed and is brought low during a conversion, that conversion is prematurely ended. EOC can be used to determine the end of a conversion or the A/D controller can keep track in software of when it would be appropriate to comnmunicate to the A/D again. Once it has been determined that the A/D has completed a conversion, another instruction can be transmitted to the A/D. The data from this conversion can be accessed when the next instruction is issued to the A/D.
Note, when $\overline{\mathrm{CS}}$ is low continuously it is important to transmit the exact number of SCLK cycles, as shown in the timing diagrams. Not doing so will desynchronize the serial communication to the A/D. (See Section 1.3.)

1.2 Changing Configuration

The configuration of the ADC12030/2/4/8 on power up defaults to 12 -bit plus sign resolution, 12 - or 13 -bit MSB First, 10 CCLK acquisition time, user mode, no Auto Cal, no Auto Zero, and power up mode. Changing the aquisition time and turning the sign bit on and off requires an 8-bit instruction to be issued to the ADC. This instruction will not start a conversion. The instructions that select a multiplexer address and format the output data do start a conversion. Figure 6 describes an example of changing the configuration of the ADC12030/2/4/8.
During I/O sequence 1, the instruction on DI configures the ADC12030/2/4/8 to do a conversion with 12-bit + sign resolution. Notice that when the 6 CCLK Acquisition and Data Out without Sign instructions are issued to the ADC, I/O sequences 2 and 3 , a new conversion is not started. The data output during these instructions is from conversion N which was started during I/O sequence 1 . The Configuration Modification timing diagram describes in detail the sequence of events necessary for a Data Out without Sign, Data Out with Sign, or 6/10/18/34 CCLK Acquisition time mode selection. Table V describes the actual data necessary to be input to the ADC to accomplish this configuration modification. The next instruction, shown in Figure 6, issued to the A/D starts conversion $\mathrm{N}+1$ with 8 bits of resolution formatted MSB first. Again the data output during this I/O cycle is the data from conversion N .
The number of SCLKs applied to the A/D during any conversion I/O sequence should vary in accord with the data out word format chosen during the previous conversion I/O sequence. The various formats and resolutions available are shown in Table I. In Figure 6, since 8-bit without sign MSB first format was chosen during I/O sequence 4 , the number of SCLKs required during I/O sequence 5 is 8 . In the following I/O sequence the format changes to 12 -bit without sign MSB first; therefore the number of SCLKs required during I/O sequence 6 changes accordingly to 12.

1.3 CS Low Continuously Considerations

When $\overline{\mathrm{CS}}$ is continuously low, it is important to transmit the exact number of SCLK pulses that the ADC expects. Not doing so will desynchronize the serial communications to the ADC. When the supply power is first applied to the ADC,

Application Hints (Continued)

it will expect to see 13 SCLK pulses for each I/O transmission. The number of SCLK pulses that the ADC expects to see is the same as the digital output word length. The digital output word length is controlled by the Data Out (DO) format. The DO format maybe changed any time a conversion is started or when the sign bit is turned on or off. The table below details out the number of clock periods required for different DO formats:

DO Format		Number of SCLKs Expected
8-Bit MSB or LSB First	SIGN OFF	8
	SIGN ON	9
12-Bit MSB or LSB First	SIGN OFF	12
	SIGN ON	13
16-Bit MSB or LSB first	SIGN OFF	16
	SIGN ON	17

If erroneous SCLK pulses desynchronize the communications, the simplest way to recover is by cycling the power supply to the device. Not being able to easily resynchronize the device is a shortcoming of leaving $\overline{\mathrm{CS}}$ low continuously. The number of clock pulses required for an I/O exchange may be different for the case when $\overline{\mathrm{CS}}$ is left low continuously vs the case when $\overline{C S}$ is cycled. Take the I/O sequence detailed in Figure 5 (Typical Power Supply Sequence) as an example. The table below lists the number of SCLK pulses required for each instruction:

Instruction	$\overline{\mathbf{C S}}$ Low Continuously	$\overline{\mathbf{C S}}$ Strobed
Auto Cal	13 SCLKs	8 SCLKs
Read Status	13 SCLKs	8 SCLKs
Read Status	13 SCLKs	8 SCLKs
12-Bit + Sign Conv 1	13 SCLKs	8 SCLKs
12-Bit + Sign Conv 2	13 SCLKs	13 SCLKs

1.4 Analog Input Channel Selection

The data input on DI also selects the channel configuration for a particular A/D conversion (see Tables II, III, IV and V).

In Figure 6 the only times when the channel configuration could be modified would be during I/O sequences $1,4,5$ and 6. Input channels are reselected before the start of each new conversion. Shown below is the data bit stream required on DI, during I/O sequence number 4 in Figure 6, to set CH 1 as the positive input and CH 0 as the negative input for the different versions of ADCs:

Part Number								
	DI0	DI1	DI2	DI3	DI4	DI5	DI6	DI7
ADC12H030 ADC12030	L	H	L	L	H	L	X	X
ADC12H032 ADC12032	L	H	L	L	H	L	X	X
ADC12H034 ADC12034	L	H	L	L	L	H	L	X
ADC12H038 ADC12038	L	H	L	L	L	L	H	L

Where X can be a logic high (H) or low (L).

1.5 Power Up/Down

The ADC may be powered down at any time by taking the PD pin HIGH or by the instruction input on DI (see Tables V and VI, and the Power Up/Down timing diagrams). When the ADC is powered down in this way, the circuitry necessary for an A/D conversion is deactivated. The circuitry necessary for digital I/O is kept active. Hardware power up/ down is controlled by the state of the PD pin. Software pow-er-up/down is controlled by the instruction issued to the ADC. If a software power up instruction is issued to the ADC while a hardware power down is in effect (PD pin high) the device will remain in the power-down state. If a software power down instruction is issued to the ADC while a hardware power up is in effect (PD pin low), the device will power down. When the device is powered down by software, it may be powered up by either issuing a software power up instruction or by taking PD pin high and then low. If the power down command is issued during an A/D conversion, that conversion is disrupted. Therefore, the data output after power up cannot be relied upon.

TL/H/11354-37
FIGURE 6. Changing the ADC's Conversion Configuration

Application Hints (Continued)

1.6 User Mode and Test Mode

An instruction may be issued to the ADC to put it into test mode. Test mode is used by the manufacturer to verify complete functionality of the device. During test mode CHO CH 7 become active outputs. If the device is inadvertently put into the test mode with $\overline{\mathrm{CS}}$ continuously low, the serial communications may be desynchronized. Synchronization may be regained by cycling the power supply voltage to the device. Cycling the power supply voltage will also set the device into user mode. If $\overline{\mathrm{CS}}$ is used in the serial interface, the ADC may be queried to see what mode it is in. This is done by issuing a "read STATUS register" instruction to the ADC. When bit 9 of the status register is high, the ADC is in test mode; when bit 9 is low the ADC, is in user mode. As an alternative to cycling the power supply, an instruction sequence may be used to return the device to user mode. This instruction sequence must be issued to the ADC using $\overline{\mathrm{CS}}$. The following table lists the instructions required to return the device to user mode:

Instruction	DI Data							
	DIO	DI1	DI2	DI3	DI4	DI5	DI6	DI7
TEST MODE	H	X	X	X	H	H	H	H
Reset Test Mode Instructions	L	L	L	L	H	H	H	L
	L	L	L	L	H	L	H	L
	L	L	L	L	H	L	H	H
USER MODE	L	L	L	L	H	H	H	H
Power Up	L	L	L	L	H	L	H	L
Set DO with or without Sign	$\begin{aligned} & \mathrm{H} \\ & \text { or } \\ & \mathrm{L} \end{aligned}$	L	L	L	H	H	L	H
Set Acquisition Time	$\begin{gathered} \mathrm{H} \\ \text { or } \\ \mathrm{L} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { or } \\ \mathrm{L} \end{gathered}$	L	L	H	H	H	L
Start a Conversion	$\begin{aligned} & \mathrm{H} \\ & \text { or } \\ & \mathrm{L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \text { or } \\ & \mathrm{L} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \text { or } \\ \mathrm{L} \end{gathered}$	$\begin{aligned} & \mathrm{H} \\ & \text { or } \\ & \mathrm{L} \end{aligned}$	L	H or L	H or L	H or L

X = Don't Care

After returning to user mode with the user mode instruction the power up, data with or without sign, and acquisition time instructions need to be resent to ensure that the ADC is in the required state before a conversion is started.

1.7 Reading the Data Without Starting a Conversion

The data from a particular conversion may be accessed without starting a new conversion by ensuring that the $\overline{C O N V}$ line is taken high during the I/O sequence. See the Read Data timing diagrams. Table VI describes the operation of the CONV pin.

2.0 DESCRIPTION OF THE ANALOG MULTIPLEXER

For the ADC12038, the analog input multiplexer can be configured with 4 differential channels or 8 single ended channels with the COM input as the zero reference or any combination thereof (see Figure 7). The difference between the voltages on the $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$pins determines the input voltage span ($V_{\text {REF }}$). The analog input voltage range is 0 to $\mathrm{V}_{\mathrm{A}}+$. Negative digital output codes result when $\mathrm{V}_{\mathbb{N}^{-}}{ }^{->}$ $\mathrm{V}_{\mathbb{I N}^{+}}$. The actual voltage at $\mathrm{V}_{\mathbb{I}}{ }^{-}$or $\mathrm{V}_{\mathbb{I N}^{+}}$. cannot go below AGND.

FIGURE 7
$\mathrm{CHO}, \mathrm{CH} 2, \mathrm{CH} 4$, and CH 6 can be assigned to the MUXOUT1 pin in the differential configuration, while $\mathrm{CH} 1, \mathrm{CH} 3$, CH 5 , and CH7 can be assigned to the MUXOUT2 pin. In the differential configuration, the analog inputs are paired as follows: CH 0 with $\mathrm{CH} 1, \mathrm{CH} 2$ with $\mathrm{CH} 3, \mathrm{CH} 4$ with CH 5 and CH 6 with CH7. The A/DIN1 and A/DIN2 pins can be assigned positive or negative polarity.

Application Hints (Continued)

With the single-ended multiplexer configuration CHO through CH 7 can be assigned to the MUXOUT1 pin. The COM pin is always assigned to the MUXOUT2 pin. A/DIN1 is assigned as the positve input; A/DIN2 is assigned as the negative input. (See Figure 8).

A/DIN1 and A/DIN2 can be assigned as the + or - input

A/DIN1 is + input A/DIN2 is - input

The Multiplexer assignment tables for the ADC12030,2,4,8 (Tables II, III, and IV) summarize the aforementioned functions for the different versions of A/Ds.

2.1 Biasing for Various Multiplexer Configurations

Figure 9 is an example of biasing the device for single-ended operation. The sign bit is always low. The digital output range is 0000000000000 to 011111111 1111. One LSB is equal to $1 \mathrm{mV}(4.1 \mathrm{~V} / 4096$ LSBs $)$.

FIGURE 8

FIGURE 9. Single-Ended Biasing

Application Hints (Continued)

For pseudo-differential signed operation, the biasing circuit shown in Figure 10 shows a signal AC coupled to the ADC. This gives a digital output range of -4096 to +4095 . With a 2.5 V reference, as shown, 1 LSB is equal to $610 \mu \mathrm{~V}$. Although, the ADC is not production tested with a 2.5 V reference, linearity error typically will not change more than 0.1 LSB (see the curves in the Typical Electrical Characteristics Section). With the ADC set to an acquisition time of 10 clock
periods, the input biasing resistor needs to be 600Ω or less. Notice though that the input coupling capacitor needs to be made fairly large to bring down the high pass corner. Increasing the acquisition time to 34 clock periods (with a 5 MHz CCLK frequency) would allow the 600Ω to increase to 6 k , which with a $1 \mu \mathrm{~F}$ coupling capacitor would set the high pass corner at 26 Hz . Increasing R, to 6 k would allow R_{2} to be 2 k .

TL/H/11354-47
FIGURE 10. Pseudo-Differential Biasing with the Signal Source AC Coupled Directly into the ADC

An alternative method for biasing pseudo-differential operation is to use the +2.5 V from the LM9140 to bias any amplifier circuits driving the ADC as shown in Figure 11. The value of the resistor pull-up biasing the LM9140-2.5 will depend upon the current required by the op amp biasing circuitry.
In the circuit of Figure 11 some voltage range is lost since the amplifier will not be able to swing to +5 V and GND
with a single +5 V supply. Using an adjustable version of the LM4041 to set the full scale voltage at exactly 2.048 V and a lower grade LM4040D-2.5 to bias up everything to 2.5 V as shown in Figure 12 will allow the use of all the ADC's digital output range of -4096 to +4095 while leaving plenty of head room for the amplifier.
Fully differential operation is shown in Figure 13. One LSB for this case is equal to $(4.1 \mathrm{~V} / 4096)=1 \mathrm{mV}$.

FIGURE 11. Alternative Pseudo-Differential Biasing

Application Hints (Continued)

FIGURE 12. Pseudo-Differential Biasing without the Loss of Digital Output Range

FIGURE 13. Fully Differential Blasing

Application Hints (Continued)

3.0 REFERENCE VOLTAGE

The difference in the voltages applied to the $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$defines the analog input span (the difference between the voltage applied between two multiplexer inputs or the voltage applied to one of the multiplexer inputs and ana\log ground), over which 4095 positive and 4096 negative codes exist. The voltage sources driving $\mathrm{V}_{\text {REF }}{ }^{+}$or $\mathrm{V}_{\text {REF }}{ }^{-}$ must have very low output impedance and noise. The circuit in Figure 14 is an example of a very stable reference appropriate for use with the device.

FIGURE 14. Low Drift Extremely Stable Reference Circuit

The ADC 12030/2/4/8 can be used in either ratiometric or absolute reference applications. In ratiometric systems, the analog input voltage is proportional to the voltage used for the ADC's reference voltage. When this voltage is the system power supply, the $\mathrm{V}_{\mathrm{REF}}{ }^{+}$pin is connected to $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{REF}}{ }^{-}$is connected to ground. This technique relaxes the system reference stability requirements because the analog input voltage and the ADC reference voltage move together. This maintains the same output code for given input conditions. For absolute accuracy, where the analog input voltage varies between very specific voltage limits, a time and temperature stable voltage source can be connected to the reference inputs. Typically, the reference voltage's magnitude will require an initial adjustment to null reference voltage induced full-scale errors.
Below are recommended references along with some key specifications.

Part Number	Output Voltage Tolerance	Temperature Coefficient
LM4041CI-Adj	$\pm 0.5 \%$	$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM4040AI-4.1	$\pm 0.1 \%$	$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM9140BYZ-4.1	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM368Y-5.0	$\pm 0.1 \%$	$\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Circuit of Figure 14	Adjustable	$\pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

The reference voltage inputs are not fully differential. The ADC12030/2/4/8 will not generate correct conversions or comparisons if $\mathrm{V}_{\text {REF }}{ }^{+}$is taken below $\mathrm{V}_{\text {REF }}{ }^{-}$. Correct conversions result when $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$differ by 1 V and remain, at all times, between ground and $\mathrm{V}_{\mathrm{A}}{ }^{+}$. The $\mathrm{V}_{\text {REF }}$ common mode range, $\left(\mathrm{V}_{\text {REF }}{ }^{+}+\mathrm{V}_{\text {REF }^{-}}\right) / 2$ is restricted to ($0.1 \times \mathrm{V}_{\mathrm{A}}{ }^{+}$) to ($0.6 \times \mathrm{V}_{\mathrm{A}}{ }^{+}$). Therefore, with $\mathrm{V}_{\mathrm{A}}{ }^{+}=5 \mathrm{~V}$ the center of the reference ladder should not go below 0.5 V or above 3.0 V . Figure 15 is a graphic representation of the voltage restrictions on $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$.

TL/H/11354-45
FIGURE 15. VREF Operating Range

4.0 ANALOG INPUT VOLTAGE RANGE

The ADC12030/2/4/8's fully differential ADC generate a two's complement output that is found by using the equations shown below:

$$
\begin{aligned}
& \text { for (12-bit) resolution the Output Code }= \\
& \frac{\left(V_{I N^{+}}-V_{I N^{-}}\right)(4096)}{\left(V_{R E F}+-V_{R E F}^{-}\right)}
\end{aligned}
$$

for (8-bit) resolution the Output Code $=$

$$
\frac{\left(V_{\mathbb{N}^{+}}-V_{\mathrm{IN}^{-}}\right)(256)}{\left(\mathrm{V}_{\mathrm{REF}^{+}}-\mathrm{V}_{\mathrm{REF}^{-}}\right)}
$$

Round off to the nearest integer value between -4096 to 4095 for 12-bit resolution and between -256 to 255 for 8 -bit resolution if the result of the above equation is not a whole number.

Examples are shown in the table below:

$\mathbf{V}_{\mathbf{R E F}}$				
+	$\mathbf{V}_{\mathbf{R E F}}{ }^{-}$	$\mathbf{V}_{\mathbf{I N}^{+}}$	$\mathbf{V}_{\mathbf{I N}^{-}}$	Digital Output Code
+2.5 V	+1 V	+1.5 V	0 V	$0,1111,1111,1111$
+4.096 V	0 V	+3 V	0 V	$0,1011,1011,1000$
+4.096 V	0 V	+2.499 V	+2.500 V	$1,1111,1111,1111$
+4.096 V	0 V	0 V	+4.096 V	$1,0000,0000,0000$

5.0 INPUT CURRENT

At the start of the acquisition window $\left(t_{A}\right)$ a charging current flows into or out of the analog input pins (A/DIN1 and A/DIN2) depending on the input voltage polarity. The ana\log input pins are $\mathrm{CHO}-\mathrm{CH} 7$ and COM when A/DIN1 is tied to MUXOUT1 and A/DIN2 is tied to MUXOUT2. The peak value of this input current will depend on the actual input voltage applied, the source impedance and the internal multiplexer switch on resistance. With MUXOUT1 tied to A/DIN1 and MUXOUT2 tied to A/DIN2 the internal multiplexer switch on resistance is typically $1.6 \mathrm{k} \Omega$. The A/DIN1 and A/DIN2 mux on resistance is typically 750Ω.

Application Hints (Continued)

6.0 INPUT SOURCE RESISTANCE

For low impedance voltage sources (<600), the input charging current will decay, before the end of the S/H's acquisition time of $2 \mu \mathrm{~s}$ (10 CCLK periods with $\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$), to a value that will not introduce any conversion errors. For high source impedances, the S/H's acquisition time can be increased to 18 or 34 CCLK periods. For less ADC resolution and/or slower CCLK frequencies the S/H's acquisition time may be decreased to 6 CCLK periods. To determine the number of clock periods (N_{c}) required for the acquisition time with a specific source impedance for the various resolutions the following equations can be used:

$$
\begin{aligned}
12 \text { Bit }+ \text { Sign } & N_{C}
\end{aligned}=\left[R_{S}+2.3\right] \times f_{C} \times 0.824,18 \times R_{C} \times 0.57
$$

Where f_{C} is the conversion clock (CCLK) frequency in MHz and R_{S} is the external source resistance in $k \Omega$. As an example, operating with a resolution of 12 Bits $+\operatorname{sign}$, a 5 MHz clock frequency and maximum acquistion time of 34 conversion clock periods the ADC's analog inputs can handle a source impedance as high as $6 \mathrm{k} \Omega$. The acquisition time may also be extended to compensate for the settling or response time of external circuitry connected between the MUXOUT and A/DIN pins.
The acquisition time t_{A} is started by a falling edge of SCLK and ended by a rising edge of CCLK (see timing diagrams). If SCLK and CCLK are asynchronous one extra CCLK clock period may be inserted into the programmed acquisition time for synchronization. Therefore with asnychronous SCLK and CCLKs the acquisition time will change from conversion to conversion.

7.0 INPUT BYPASS CAPACITANCE

External capacitors ($0.01 \mu \mathrm{~F}-0.1 \mu \mathrm{~F}$) can be connected between the analog input pins, $\mathrm{CH} 0-\mathrm{CH} 7$, and analog ground to filter any noise caused by inductive pickup associated with long input leads. These capacitors will not degrade the conversion accuracy.

8.0 NOISE

The leads to each of the analog multiplexer input pins should be kept as short as possible. This will minimize input noise and clock frequency coupling that can cause conversion errors. Input filtering can be used to reduce the effects of the noise sources.

9.0 POWER SUPPLIES

Noise spikes on the $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$supply lines can cause conversion errors; the comparator will respond to the noise. The ADC is especially sensitive to any power supply spikes that occur during the auto-zero or linearity correction. The minimum power supply bypassing capacitors recommended are low inductance tantalum capacitors of $10 \mu \mathrm{~F}$ or greater paralleled with $0.1 \mu \mathrm{~F}$ monolithic ceramic capacitors. More or different bypassing may be necessary depending on the overall system requirements. Separate bypass capacitors should be used for the $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$supplies and placed as close as possible to these pins.

10.0 GROUNDING

The ADC12030/2/4/8's performance can be maximized through proper grounding techniques. These include the use of separate analog and digital ground planes. The digital ground plane is placed under all components that handle digital signals, while the analog ground plane is placed under all components that handle analog signals. The digital and analog ground planes are connected together at only one point, either the power supply ground or at the pins of the ADC. This greatly reduces the occurence of ground loops and noise.
Shown in Figure 16 is the ideal ground plane layout for the ADC12038 along with ideal placement of the bypass capacitors. The circuit board layout shown in Figure 16 uses three bypass capacitors: $0.01 \mu \mathrm{~F}$ (C1) and $0.1 \mu \mathrm{~F}$ (C2) surface mount capacitors and $10 \mu \mathrm{~F}$ (C3) tantalum capacitor.

Application Hints (Continued)

11.0 CLOCK SIGNAL LINE ISOLATION

The ADC12030/2/4/8's performance is optimized by routing the analog input/output and reference signal conductors as far as possible from the conductors that carry the clock signals to the CCLK and SCLK pins. Ground traces parallel to the clock signal traces can be used on printed circuit boards to reduce clock signal interference on the analog input/output pins.

12.0 THE CALIBRATION CYCLE

A calibration cycle needs to be started after the power supplies, reference, and clock have been given enough time to stabilize after initial turn-on. During the calibration cycle, correction values are determined for the offset voltage of the sampled data comparator and any linearity and gain errors. These values are stored in internal RAM and used during an analog-to-digital conversion to bring the overall full-scale, offset, and linearity errors down to the specified limits. Fullscale error typically changes ± 0.4 LSB over temperature and linearity error changes even less; therefore it should be necessary to go through the calibration cycle only once after power up if the Power Supply Voltage and the ambient temperature do not change significantly (see the curves in the Typical Performance Characteristics).

13.0 THE AUTO-ZERO CYCLE

To correct for any change in the zero (offset) error of the A/D, the auto-zero cycle can be used. It may be necessary to do an auto-zero cycle whenever the ambient temperature or the power supply voltage change significantly. (See the curves titled "Zero Error Change vs Ambient Temperature" and "Zero Error Change vs Supply Voltage" in the Typical Performance Characteristics.)

14.0 DYNAMIC PERFORMANCE

Many applications require the A/D converter to digitize AC signals, but the standard DC integral and differential nonlinearity specifications will not accurately predict the A/D converter's performance with AC input signals. The important specifications for AC applications reflect the converter's ability to digitize AC signals without significant spectral errors and without adding noise to the digitized signal. Dynamic characteristics such as signal-to-noise (S / N), signal-to-
noise + distortion ratio $(S /(N+D))$, effective bits, full power bandwidth, aperture time and aperture jitter are quantitative measures of the A/D converter's capability.
An A/D converter's AC performance can be measured using Fast Fourier Transform (FFT) methods. A sinusoidal waveform is applied to the A/D converter's input, and the transform is then performed on the digitized waveform. $S /(N+D)$ and S / N are calculated from the resulting FFT data, and a spectral plot may also be obtained. Typical values for S / N are shown in the table of Electrical Characteristics, and spectral plots of $S /(N+D)$ are included in the typical performance curves.
The A/D converter's noise and distortion levels will change with the frequency of the input signal, with more distortion and noise occurring at higher signal frequencies. This can be seen in the $\mathbf{S} /(\mathbf{N}+\mathrm{D})$ versus frequency curves. These curves will also give an indication of the full power bandwidth (the frequency at which the $S /(N+D)$ or S / N drops 3 dB).
Effective number of bits can also be useful in describing the A/D's noise performance. An ideal A/D converter will have some amount of quantization noise, determined by its resolution, which will yield an optimum S / N ratio given by the following equation:

$$
\mathrm{S} / \mathrm{N}=(6.02 \times \mathrm{n}+1.8) \mathrm{dB}
$$

where n is the A / D 's resolution in bits.
The effective bits of a real A/D converter, therefore, can be found by:

$$
n(\text { effective })=\frac{S / N(d B)-1.8}{6.02}
$$

As an example, this device with a differential signed 5 V , 10 kHz sine wave input signal will typically have a S / N of 78 dB , which is equivalent to 12.6 effective bits.

15.0 AN RS232 SERIAL INTERFACE

Shown on the following page is a schematic for an RS232 interface to any IBM and compatible PCs. The DTR, RTS, and CTS RS232 signal lines are buffered via level translators and connected to the ADC12038's DI, SCLK, and DO pins, respectively. The D flip flop drives the $\overline{\mathrm{CS}}$ control line.

Application Hints (Continued)

TL/H/11354-44
Note: $V_{A}{ }^{+}, V_{D}{ }^{+}$, and $V_{R E F}{ }^{+}$on the ADC12038 each have $0.01 \mu \mathrm{~F}$ and $0.1 \mu F$ chip caps, and $10 \mu \mathrm{~F}$ tantalum caps. All logic devices are bypassed with $0.1 \mu \mathrm{~F}$ caps.

The assignment of the RS232 port is shown below

		B7	B6	B5	B4	B3	B2	B1	B0	
COM11	Input Address	3FE	X	X	X	CTS	X	X	X	X
	Output Address	3FC	X	X	X	0	X	X	RTS	DTR

A sample program, written in Microsoft QuickBasic, is shown on the next page. The program prompts for data mode select instruction to be sent to the A/D. This can be found from the Mode Programming table shown earlier. The data should be entered in " 1 " s and " 0 "s as shown in the table with DIO first. Next the program prompts for the number of SCLKs required for the programmed mode select instruction. For instance, to send all " 0 "'s to the A/D, selects CH 0 as the +input, CH 1 as the -input, 12-bit conversion, and 13-bit MSB first data output format (if the sign bit was not turned off by a previous instruction). This would require 13 SCLK periods since the output data format is 13 bits. The
part powers up with No Auto Cal, No Auto Zero, 10 CCLK Acquisition Time, 12-bit conversion, data out with sign, power up, 12- or 13-bit MSB first, and user mode. Auto Cal, Auto Zero, Power Up and Power Down instructions do not change these default settings.' The following power up sequence should be followed:

1. Run the program
2. Prior to responding to the prompt apply the power to the ADC12038
3. Respond to the program prompts

It is recommended that the first instruction issued to the ADC12038 be Auto Cal (see Section 1.1).

```
Application Hints (Continued)
'variables DOL=Data Out word length, DI=Data string for A/D DI input,
, DO=A/D result string
'SET CS# HIGH
OUT &H3FC, (&H2 OR INP (&H3FC)) 'set RTS HIGH
OUT &H3FC, (&HFE AND INP(&H3FC)) 'set DTR LOW
OUT &H3FC, (&HFD AND INP(&H3FC))) 'set RTS LOW
OUT &H3FC, (&HEF AND INP(&H3FC))) 'set B4 low
10
LINE INPUT "DI data for ADC12038 (see Mode Table on data sheet)"; DI$
INPUT "ADC12038 output word length (8,9,12,13,16 or 17)"; DOL
20
'SET CS# HIGH
OUT &H3FC, (&H2 OR INP (&H3FC)) 'set RTS HIGH
OUT &H3FC, (&HFE AND INP(&H3FC))) 'set DTR LOW
OUT &H3FC, (&HFD AND INP(&H3FC)) 'set RTS LOW
'SET CS# LOW
OUT &H3FC, (&H2 OR INP (&H3FC)) 'set RTS HIGH
OUT &H3FC, (&HL OR INP(&H3FC)) 'set DTR HIGH
OUT &H3FC, (&HFD AND INP(&H3FC)) 'set RTS LOW
DO$=" "
    OUT &H3FC, (&Hl OR INP(&H3FC)) 'SET DTR HIGH
    OUT &H3FC, (&HFD AND INP(&H3FC)) 'SCLK low
FOR N=1 TO 8
    Temp$=MID$(DI$,N,1)
    IF Temp$="0"THEN
        OUT &H3FC,(&HI OR INP(&H3FC))
    ELSE OUT &H3FC, (&HFE AND INP(&H3FC))
    END IF 'out DI
    OUT &H3FC,(&H2 OR INP(&H3FC)) 'SCLK high
    IF (INP(&H3FE) AND 16)=16 THEN
        DO$=D0$+"0"
        ELSE
        DO$=D0$+"1"
    END IF 'input DO
    OUT &H3FC, (&HI OR INP(&H3FC)) 'SET DTR HIGH
    OUT &H3FC, (&HFD AND INP(&H3FC)) 'SCLK low
NEXT N
IF DOL>8 THEN
    FOR N=9 TO DOL
    OUT &H3FC,(&H1 OR INP(&H3FC)) 'SET DTR HIGH
    OUT &H3FC,(&HFD AND INP(&H3FC)) 'SCLK low
    OUT &H3FC,(&H2 OR INP(&H3FC)) 'SCLK high
    IF (INP(&H3FE) AND &H1O)=&H1O THEN
        DO$=D0$+"O"
    ELSE
        DO$=DO$+"1"
    END IF
    NEXT N
END IF
OUT &H3FC,(&HFA AND INP(&H3FC)) 'SCLK low and DI high
FOR N=1 TO 500
NEXT N
PRINT DO$
INPUT "Enter "C" to convert else "RETURN" to alter DI data"; s$
IF s$="C" OR s$="c" THEN
    GOTO 2O
ELSE
    GOTO 10
END IF
END
```


ADC12L030/ADC12L032/ADC12L034/ADC12L038 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold

General Description

The ADC12L030 family is 12-bit plus sign successive approximation A/D converters with serial I/O and configurable input multiplexers. These devices are fully tested with a single 3.3 V power supply. The ADC12L032, ADC12L034 and ADC12L038 have 2, 4 and 8 channel multiplexers, respectively. Differential multiplexer outputs and A/D inputs are available on the MUXOUT1, MUXOUT2, A/DIN1 and A/DIN2 pins. The ADC12L030 has a two channel multiplexer with the multiplexer outputs and A/D inputs internally connected. On request, these A/Ds go through a self calibration process that adjusts linearity, zero and full-scale errors to less than $\pm 1 / 2$ LSB each.
The analog inputs can be configured to operate in various combinations of single-ended, differential, or pseudo-differential modes. A fully differential unipolar analog input range $(0 \mathrm{~V}$ to +3.3 V) can be accommodated with a single $+3.3 \mathrm{~V}$ supply. In the differential modes, valid outputs are obtained even when the negative inputs are greater than the positive because of the 12-bit plus sign two's compliment output data format.
The serial I/O is configured to comply with NSC's MICROWIRETM and Motorola's SPI standards. For complementary voltage references see the LM4040, LM4041 or LM9140 data sheets.

Features

- 0 V to 3.3 V analog input range with single 3.3 V power supply
- Serial I/O (MICROWIRE and SPI Compatible)
- 2, 4, or 8 channel differential or single-ended multiplexer
- Analog input sample/hold function
- Power down mode
- Variable resolution and conversion rate
- Programmable acquisition time
- Variable digital output word length and format
- No zero or full scale adjustment required
- Fully tested and guaranteed with a 2.5 V reference
- No Missing Codes over temperature

Key Specifications

- Resolution	12-bit plus sign
- 12-bit plus sign conversion time	$8.8 \mu \mathrm{~s}(\min)$
- 12-bit plus sign sampling rate	$73 \mathrm{kHz}(\max)$
- Integral linearity error	$\pm 1 \mathrm{LSB}(\max)$
- Single supply	$3.3 \mathrm{~V} \pm 10 \%$
- Power dissipation	$15 \mathrm{~mW}(\max)$
- Power down	$40 \mu \mathrm{~W}$ (typ)

12-bit plus sign
$8.8 \mu \mathrm{~s}$ (min)
± 1 LSB (max)
$3.3 \mathrm{~V} \pm 10 \%$
$40 \mu \mathrm{~W}$ (typ)

Applications

- Portable Medical instruments
- Portable computing
- Portable Test equipment

ADC12L038 Simplified Block Diagram

TL/H/11830-1

Connection Diagrams

Top View

TL/H/11830-4

Top View

28-Pin Dual-In-Line and Wide Body SO Packages

Top View

Ordering Information

Industrial Temperature Range $-40^{\circ} \mathbf{C} \leq \mathbf{T}_{\mathbf{A}} \leq+\mathbf{8 5}^{\circ} \mathbf{C}$	NS Package Number
ADC12L030CIN	N16E
ADC12L030CIWM	M16B
ADC12L032CIN	N20A
ADC12L032CIWM	M20B
ADC12L034CIN	N24C
ADC12L034CIWM	M24B
ADC12L038CIN	N28B
ADC12L038CIWM	M28B

Absolute Maximum Ratings (Notes 1 \& 2)
If Millitary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Positive Supply Voltage

$$
\left(V^{+}=V_{A}^{+}=V_{D}{ }^{+}\right)
$$

6.5 V

Voltage at Inputs and Outputs except $\mathrm{CHO}-\mathrm{CH} 7$ and COM
Voltage at Analog Inputs
$\mathrm{CHO}-\mathrm{CH} 7$ and COM
$\left|V_{A}+-V_{D}+\right|$
Input Current at Any Pin (Note 3)
Package Input Current (Note 3)
Package Dissipation at

$$
T_{A}=25^{\circ} \mathrm{C}(\text { Note } 4)
$$

ESD Susceptability (Note 5) Human Body Model

1500 V
Soldering Information
N Packages (10 seconds)
SO Package (Note 6):
Vapor Phase (60 seconds) Infrared (15 seconds)
Storage Temperature

Operating Ratings (Notes 1 \& 2)
Operating Temperature Range $\quad T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$
ADC12L030CIN, ADC12L030CIWM, ADC12L032CIN, ADC12L032CIWM, ADC12L034CIN, ADC12L034CIWM, ADC12L038CIN, ADC12L038CIWM $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}\right) \quad+3.0 \mathrm{~V}$ to +5.5 V
$\left|V_{A^{+}}-V_{D}+\right|$
$\leq 100 \mathrm{mV}$
$V_{\text {REF }}{ }^{+}$
OV to $\mathrm{V}_{\mathrm{A}}{ }^{+}$
$V_{\text {REF }}{ }^{-}$
$V_{\text {REF }}\left(V_{\text {REF }}{ }^{+}-V_{\text {REF }}{ }^{-}\right)$
O to $\mathrm{V}_{\text {REF }}{ }^{+}$
$V_{\text {REF }}$ Common Mode Voltage Range
$\frac{\left(\mathrm{V}_{\mathrm{REF}}{ }^{+}+\mathrm{V}_{\mathrm{REF}^{-}}\right)}{2}$
$0.1 \mathrm{~V}_{\mathrm{A}}+$ to $0.6 \mathrm{~V}_{\mathrm{A}}{ }^{+}$

A/DIN1, A/DIN2, MUXOUT1 and MUXOUT2 Voltage Range $\quad 0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{A}}{ }^{+}$
A/D IN Common Mode Voltage Range
$\frac{\left(\mathrm{V}_{\mathrm{IN}^{+}}+\mathrm{V}_{\mathrm{IN}^{-}}\right)}{2}$
OV to $\mathrm{V}_{\mathrm{A}}{ }^{+}$

Converter Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+3.3 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {REF }^{+}}=+2.500 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {REF }^{-}}=0 \mathrm{~V}_{\mathrm{DC}}$, 12-bit + sign conversion mode, $\mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=5 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$, source impedance for $\mathrm{V}_{\mathrm{REF}}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-} \leq 25 \Omega$, fully-differential input with fixed 1.250 V common-mode voltage, and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$. (Notes 7,8 and 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)

STATIC CONVERTER CHARACTERISTICS

	Resolution with No Missing Codes			$\mathbf{1 2}+\mathbf{s i g n}$	Bits (min)
+ ILE	Positive Integral Linearity Error	After Auto-Cal (Notes 12, 18)	$\pm 1 / 2$	$\pm \mathbf{1}$	LSB (max)
- ILE	Negative Integral Linearity Error	After Auto-Cal (Notes 12, 18)	$\pm 1 / 2$	$\pm \mathbf{1}$	LSB (max)
DNL	Differential Non-Linearity	After Auto-Cal		$\pm \mathbf{1}$	LSB (max)
	Positive Full-Scale Error	After Auto-Cal (Notes 12, 18)	$\pm 1 / 2$	$\pm \mathbf{2}$	LSB (max)
	Negative Full-Scale Error	After Auto-Cal (Notes 12, 18)	$\pm 1 / 2$	$\pm \mathbf{2}$	LSB (max)
	Offset Error	After Auto-Cal (Notes 5, 18) VIN(+) $=$ VIN (-) =1.250V	$\pm 1 / 2$	$\pm \mathbf{2}$	LSB (max)
	DC Common Mode Error	After Auto-Cal (Note 15)	± 2	$\pm \mathbf{3 . 5}$	LSB (max)
TUE	Total Unadjusted Error	After Auto-Cal (Notes 12, 13 and 14)	± 1		LSB
+ RINL	Posolution with No Missing Codes	8-bit + sign mode		$\mathbf{8 + \mathbf { s i g n }}$	Bits (min)
- INL	Negative Integral Linearity Error	8-bit + sign mode (Note 12)		$\pm \mathbf{1 / 2}$	LSB (max)
DNL	Differential Non-Linearity	8-bit + sign mode		$\pm \mathbf{1 / 2}$	LSB (max)
	Positive Full-Scale Error	8-bit + sign mode (Note 12)		$\pm \mathbf{3 / 4}$	LSB (max)

Converter Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+3.3 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{+}}=+2.500 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{-}=0 \mathrm{~V}_{\mathrm{DC}}$, 12-bit + sign conversion mode, $\mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{S K}=5 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$, source impedance for $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-} \leq 25 \Omega$, fully-differential input with fixed 1.250 V common-mode voltage, and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$ all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$. (Notes 7,8 and 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)
STATIC CONVERTER CHARACTERISTICS (Continued)					
	Negative Full-Scale Error	8 -bit + sign mode (Note 12)		$\pm 1 / 2$	LSB (max)
	Offset Error	8 -bit + sign mode, after Auto-Zero (Note 13) $\mathrm{V}_{\mathbb{I N}}(+)=\mathrm{V}_{\mathrm{IN}}(-)=+1.250 \mathrm{~V}$		$\pm 1 / 2$	LSB (max)
TUE	Total Unadjusted Error	8-bit + sign mode after Auto-Zero (Notes 12, 13 and 14)		$\pm 3 / 4$	LSB (max)
	Multiplexer Channel to Channel Matching		± 0.05		LSB
	Power Supply Sensitivity Offset Error + Full-Scale Error - Full-Scale Error + Integral Linearity Error - Integral Linearity Error	$V^{+}=+3.3 V \pm 10 \%$	$\begin{aligned} & \pm 0.5 \\ & \hline \end{aligned}$	$\begin{gathered} \pm 1 \\ \pm 1.5 \\ \pm 1.5 \end{gathered}$	$\begin{array}{\|c} \text { LSB (max) } \\ \text { LSB (max) } \\ \text { LSB (max) } \\ \text { LSB } \\ \text { LSB } \\ \hline \end{array}$
	Output Data from "12-Bit Conversion of Offset" (see Table V)	(Note 20)		$\begin{aligned} & +10 \\ & -10 \end{aligned}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (min) } \end{aligned}$
	Output Data from "12-Bit Conversion of Full-Scale" (see Table V)	(Note 20)		$\begin{aligned} & 4095 \\ & 4093 \end{aligned}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (min) } \end{aligned}$

UNIPOLAR DYNAMIC CONVERTER CHARACTERISTICS

$\mathrm{S} /(\mathrm{N}+\mathrm{D})$	Signal-to-Noise Plus	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}_{\mathrm{PP}}$	69.4		dB
	Distortion Ratio	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}_{\mathrm{PP}}$	68.3		dB
		$\mathrm{f}_{\mathrm{IN}}=40 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}_{\mathrm{PP}}$	65.7		dB
	-3 dB Full Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}_{\mathrm{PP}}$, where $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ drops 3 dB	31		kHz

DIFFERENTIAL DYNAMIC CONVERTER CHARACTERISTICS

$\mathrm{S} /(\mathrm{N}+\mathrm{D})$	Signal-to-Noise Plus	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\mathbb{I N}}= \pm 2.5 \mathrm{~V}$	77.0		dB
	Distortion Ratio	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}= \pm 2.5 \mathrm{~V}$	73.9		dB
		$\mathrm{f}_{\mathbb{N}}=40 \mathrm{kHz}, \mathrm{V}_{\mathbb{I N}}= \pm 2.5 \mathrm{~V}$	67.0		dB
	-3 dB Full Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}= \pm 2.5 \mathrm{~V}$, where $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ drops 3 dB	40		kHz

Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}+=\mathrm{V}_{\mathrm{D}^{+}}=+3.3 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{+}}=+2.500 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}^{-}}=0 \mathrm{~V}_{\mathrm{DC}}$, 12 -bit + sign conversion mode, $\mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=5 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$, source impedance for $\mathrm{V}_{\mathrm{REF}}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-} \leq 25 \Omega$, fully-differential input with fixed 1.250 V common-mode voltage, and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {maX }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$. (Notes 7,8 and 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)

REFERENCE INPUT, ANALOG INPUTS AND MULTIPLEXER CHARACTERISTICS

DC and Logic Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+3.3 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=+2.500 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}{ }^{-}=0 \mathrm{~V}_{\mathrm{DC}}$, 12-bit + sign conversion mode, $\mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=5 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$, source impedance for $\mathrm{V}_{\mathrm{REF}}{ }^{+}$and $\mathrm{V}_{\mathrm{REF}}{ }^{-} \leq 25 \Omega$, fully-differential input with fixed 1.250 V common-mode voltage, and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Notes 7,8 and 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)
CCLK, $\overline{\mathbf{C S}}$, CONV, DI, PD AND SCLK INPUT CHARACTERISTICS					
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$\mathrm{V}+=3.6 \mathrm{~V}$		2.0	V (min)
$\mathrm{V}_{\mathrm{IN}(0)}$	Logical "0" Input Voltage	$\mathrm{V}+=3.0 \mathrm{~V}$		0.8	V (max)
$\operatorname{IN}(1)$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$	0.005	1.0	$\mu \mathrm{A}($ max $)$
$\operatorname{InN}(0)$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-1.0	$\mu A(\min)$

DO, EOC AND DOR DIGITAL OUTPUT CHARACTERISTICS

V OUT(1)	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}^{+}=3.0 \mathrm{~V}, \text { I OUT }=-360 \mu \mathrm{~A} \\ & \mathrm{~V}^{+}=3.0 \mathrm{~V}, \text { I OUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 2.4 \\ & 2.9 \end{aligned}$	V (min) V (min)
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\mathrm{V}+=3.0 \mathrm{~V}, \mathrm{l}$ OUT $=1.6 \mathrm{~mA}$		0.4	V (max)
lout	TRI-STATE Output Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.1 \\ 0.1 \end{gathered}$	$\begin{gathered} -3.0 \\ 3.0 \end{gathered}$	$\mu \mathrm{A}$ (max) $\mu A(\max)$
$+\mathrm{I}_{\text {SC }}$	Output Short Circuit Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	14	6.5	$\mathrm{mA}(\mathrm{min})$
- ISC	Output Short Circuit Sink Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {D }}{ }^{+}$	16	8.0	mA (min)

POWER SUPPLY CHARACTERISTICS

$1 \mathrm{I}^{+}$	Digital Supply Current	Awake $\overline{\mathrm{CS}}=$ HIGH, Powered Down, CCLK on $\overline{\mathrm{CS}}=$ HIGH, Powered Down, CCLK off	$\begin{gathered} 1.1 \\ 600 \\ 12 \\ \hline \end{gathered}$	1.5	$\begin{gathered} m A(\max) \\ \mu \mathrm{A} \\ \mu \mathrm{~A} \\ \hline \end{gathered}$
$\mathrm{I}_{\mathrm{A}}{ }^{+}$	Positive Analog Supply Current	Awake $\overline{\mathrm{CS}}=$ HIGH, Powered Down, CCLK on $\overline{\mathrm{CS}}=$ HIGH, Powered Down, CCLK off	$\begin{array}{r} 2.2 \\ 10 \\ 0.1 \\ \hline \end{array}$	3.0	$\begin{gathered} m A(\max) \\ \mu A \\ \mu A \\ \hline \end{gathered}$
$\mathrm{I}_{\text {REF }}$	Reference Input Current	Awake $\overline{\mathrm{CS}}=$ HIGH, Powered Down	$\begin{aligned} & 70 \\ & 0.1 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+3.3 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {REF }}{ }^{+}=+2.500 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {REF }}{ }^{-}=0 \mathrm{~V}_{\mathrm{DC}}, 12$-bit + sign conversion mode, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=5 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=25 \Omega$, source impedance for $\mathrm{V}_{\mathrm{REF}}{ }^{+}$and $\mathrm{V}_{\mathrm{REF}}{ }^{-} \leq 25 \Omega$, fullydifferential input with fixed 1.250 V common-mode voltage, and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $T_{A} \equiv \mathrm{~T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$. (Note 17)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)
f_{CK}	Conversion Clock (CCLK) Frequency	-	$\begin{gathered} 10 \\ 1 \end{gathered}$	5	MHz (max) MHz (min)
${ }^{\text {f }}$ K	Serial Data Clock SCLK Frequency	:	$\begin{gathered} 10 \\ 0 \end{gathered}$, 5	$\begin{gathered} \mathrm{MHz}(\max) \\ \mathrm{Hz}(\min) \end{gathered}$
	Conversion Clock Duty Cycle			$\begin{aligned} & 40 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & \%(\min) \\ & \%(\max) \end{aligned}$
\cdots	Serial Data Clock Duty Cycle			$\begin{aligned} & 40 \\ & 60 \\ & \hline \end{aligned}$	$\% \text { (min) }$ \% (max)
tc_{6}	Conversion Time	12-Bit + Sign or 12-Bit	44(tek)	44(tek)	(max)
				8.8	$\mu \mathrm{S}$ (max)
		8-Bit + Sign or 8-Bit	$21\left(\mathrm{t}_{\text {CK }}\right)$	21(tck)	(max)
	, :			4.2	$\mu \mathrm{S}$ (max)
$t_{\text {A }}$	Acquisition Time (Note 19)	6 Cycles Programmed	6(tck)	$\begin{aligned} & 6\left(t_{C K}\right) \\ & 7\left(t_{C K}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & (\min) \\ & (\max) \end{aligned}$
				$\begin{aligned} & 1.2 \\ & 1.4 \\ & \hline \end{aligned}$	$\mu \mathrm{s}(\mathrm{min})$ $\mu \mathrm{s}$ (max)
		10 Cycles Programmed	10 (t_{CK})	$\begin{aligned} & 10\left(t_{C K}\right) \\ & 11\left(t_{C K}\right) \end{aligned}$	(min) (max)
				$\begin{aligned} & 2.0 \\ & 2.2 \\ & \hline \end{aligned}$	$\mu \mathrm{s}$ (min) $\mu \mathrm{S}$ (max)
		18 Cycles Programmed	18(tck)	$\begin{aligned} & 18\left(t_{C K}\right) \\ & 19\left(t_{C K}\right) \end{aligned}$	$\begin{aligned} & (\min) \\ & (\max) \end{aligned}$
				$\begin{array}{r} 3.6 \\ 3.8 \\ \hline \end{array}$	μs (min) $\mu \mathrm{s}$ (max)
		34 Cycles Programmed	34(tck)	$\begin{aligned} & 34\left(t_{C K}\right) \\ & 35\left(t_{C K}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & (\min) \\ & (\max) \end{aligned}$
				$\begin{aligned} & 6.8 \\ & 7.0 \\ & \hline \end{aligned}$	$\mu \mathrm{s}$ (min) $\mu \mathrm{s}$ (max)
${ }^{\text {t }}$ CAL	Self-Calibration Time		4944(t.tek)	4944(tck)	(max)
				988.8	$\mu \mathrm{s}$ (max)
$t_{A Z}$	Auto-Zero Time		76(tck)	76(tck)	(max)
				15.2	μs (max)
${ }^{\text {ts SNC }}$	Self-Calibration or Auto-Zero Synchronization Time from DOR		$2\left(\mathrm{t}_{\mathrm{CK}}\right)$	2(tck) 3(tck)	$\begin{aligned} & (\min) \\ & (\max) \end{aligned}$
				$\begin{aligned} & 0.40 \\ & 0.60 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \text { (min) } \\ & \mu \mathrm{s} \text { (max) } \end{aligned}$
tom	DOR High Time when $\overline{\mathrm{CS}}$ is Low Continuously for Read Data and Software Power Up/Down		$9\left(\mathrm{t}_{\text {SK }}\right)$	9(tsK)	(max)
				1.8	μs (max)
tCONV	$\overline{\text { CONV Valid Data Time }}$		8 (tsk)	8(tsk)	(max)
				1.6	$\mu \mathrm{S}$ (max)

Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: When the input voltage $\left(\mathrm{V}_{\mathbb{I N}}\right)$ at any pin exceeds the power supplies ($\mathrm{V}_{\mathbb{N}}<\mathrm{GND}$ or $\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{A}}+$ or $\mathrm{V}_{\mathrm{D}}{ }^{+}$), the current at that pin should be limited to 20 mA . The 120 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 20 mA to four.
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J m a x}, \theta_{J A}$ and the ambient temperature, T_{A}.. The maximum allowable power dissipation at any temperature is $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{J} \max -\mathrm{T}_{\mathrm{A}}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{J} \max }=150^{\circ} \mathrm{C}$. The typical thermal resistance $\left(\Theta_{\mathrm{JA}}\right)$ of these parts when board mounted follow:

Part Number	Thermal Resistance $\theta_{\text {JA }}$
ADC12L030CIN	$53^{\circ} \mathrm{C} / \mathrm{W}$
ADC12L030CIWM	$70^{\circ} \mathrm{C} / \mathrm{W}$
ADC12L032CIN	$46^{\circ} \mathrm{C} / \mathrm{W}$
ADC12L032CIWM	$64^{\circ} \mathrm{C} / \mathrm{W}$
ADC12L034CIN	$42^{\circ} \mathrm{C} / \mathrm{W}$
ADC12L034CIWM	$57^{\circ} \mathrm{C} / \mathrm{W}$
ADC12L038CIN	$40^{\circ} \mathrm{C} / \mathrm{W}$
ADC12L038CIWM	$50^{\circ} \mathrm{C} / \mathrm{W}$

Note 5: The human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin.
Note 6: See AN450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in any post 1986 National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Note 7: Two on-chip diodes are tied to each analog input through a series resistor as shown below. Input voltage magnitude up to 5 V above $\mathrm{V}_{\mathrm{A}}+$ or 5 V below GND will not damage this device. However, errors in the A/D conversion can occur (if these diodes are forward biased by more than 50 mV) if the input voltage magnitude of selected or unselected analog input go above $\mathrm{V}_{\mathrm{A}}{ }^{+}$or below GND by more than 50 mV . As an example, if $\mathrm{V}_{\mathrm{A}}{ }^{+}$is $3.0 \mathrm{~V}_{\mathrm{DC}}$, full-scale input voltage must be $\leq 3.05 \mathrm{~V}_{\mathrm{DC}}$ to ensure accurate conversions.

TL/H/11830-6
Note 8: To guarantee accuracy, it is required that the $V_{A}+$ and $V_{D}+$ be connected together to the same power supply with separate bypass capacitors at each V^{+} pin.
Note 9: With the test condition for $V_{R E F}\left(V_{R E F}{ }^{+}-V_{\text {REF }^{-}}\right)$given as +2.500 V the 12-bit LSB is $610 \mu \mathrm{~V}$ and the 8-bit LSB is 9.8 mV .
Note 10: Typicals are at $T_{J}=T_{A}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 11: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 12: Positive integral linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line that passes through positive fullscale and zero. For negative integral linearity error, the straight line passes through negative full-scale and zero (see Figures $1 b$ and 10).
Note 13: Zero error is a measure of the deviation from the mid-scale voltage (a code of zero), expressed in LSB. It is the worst-case value of the code transitions between 1 to 0 and 0 to +1 (see Figure 2).
Note 14: Total unadjusted error includes offset, full-scale, linearity and multiplexer errors.
Note 15: The DC common-mode error is measured in the differential multiplexer mode with the assigned positive and negative input channels shorted together.
Note 16: Channel leakage current is measured after the channel selection.
Note 17: Timing specifications are tested at the TTL logic levels, $\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$ for a falling edge and $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ for a rising edge. TRI-STATE output voltage is forced to 1.4 V .
Note 18: The ADC12L030 family's self-calibration technique ensures linearity and offset errors as specified, but noise inherent in the self-calibration process will result in a maximum repeatability uncertainty of 0.2 LSB.
Note 19: If SCLK and CCLK are driven from the same clock source, then t_{A} is $6,10,18$ or 34 clock periods minimum and maximum.
Note 20: The "12-Bit Conversion of Offset" and "12-Bit Conversion of Full-Scale" modes are intended to test the functionality of the device. Therefore, the output data from these modes are not an indication of the accuracy of a conversion result.

Electrical Characteristics (Continued)

TL/H/11830-7
FIGURE 1a. Transfer Characteristic

FIGURE 1b. Simplified Error Curve vs Output Code without Auto-Calibration or Auto-Zero Cycles

Electrical Characteristics (Continued)

FIGURE 1c. Simplifled Error Curve vs Output Code after Auto-Calibration Cycle

FIGURE 2. Offset or Zero Error Voltage

Typical Performance Characteristics

The following curves apply for 12-bit + sign mode after auto-calibration unless otherwise specified. The performance for 8-bit + sign mode is equal to or better than shown. (Note 9)

Test Circuits

TL/H/11830-16

Leakage Current

TL/H/11830-17

Timing Diagrams

Timing Diagrams (Continuad)

TL/H/11830-21

TL/H/11830-22
ADC12L038 Auto Cal or Auto Zero

Note: DO output data is not valid during this cycle.

Timing Diagrams (Continued)

TL/H/11830-25

Timing Diagrams (Continued)

ADC12L038 Conversion Using $\overline{\mathrm{CS}}$ with 8-Bit Digital Output Format

Timing Diagrams (Continued)
ADC12L038 Conversion with $\overline{\text { CS }}$ Continuously Low and 8-Bit Digital Output Format

TL/H/11830-28

ADC12L038 Conversion with CS Continuously Low and 16-Bit Digital Output Format

TL/H/11830-29

Timing Diagrams (Continued)

ADC12L038 Software Power Up/Down with $\overline{\text { CS }}$ Continuously Low and 16-Bit Digital Output Format

Timing Diagrams (Continued)

ADC12L038 Hardware Power Up/Down

TL/H/11830-32
Note: Hardware power up/down may occur at any time. If PD is high while a conversion is in progress that conversion will be corrupted and erroneous data will be stored in the output shift register.

ADC12L038 Configuration Modification-Example of a Status Read

TL/H/11830-33
Note: In order for all 9 bits of status information to be accessible the last conversion programmed before Cycle N needs to have a resolution of 8 bits plus sign, 12 bits, 12 bits plus sign, or greater.

Pin Descriptions

CCLK The clock applied to this input controls the sucessive approximation conversion time interval and the acquisition time. The rise and fall times of the clock edges should not exceed $1 \mu \mathrm{~s}$.
SCLK

DI This is the serial data input pin. The data applied to this pin is shifted by the rising edge of SCLK into the multiplexer address and mode select register. Tables II through V show the assignment of the multiplexer address and the mode select data.

The data output pin. This pin is an active push/ pull output when $\overline{\mathrm{CS}}$ is Low. When $\overline{\mathrm{CS}}$ is High this output is in TRI-STATE. The A/D conversion result (D0-D12) and converter status data are clocked out by the falling edge of SCLK on this pin. The word length and format of this result can vary (see Table I). The word length and format are controlled by the data shifted into the multiplexer address and mode select register (see Table V).
EOC
This pin is an active push/pull output and indicates the status of the ADC12L030/2/4/8. When low, it signals that the A/D is busy with a conversion, auto-calibration, auto-zero or power down cycle. The rising edge of EOC signals the end of one of these cycles.
$\overline{\mathrm{CS}} \quad$ This is the chip select pin. When a logic low is applied to this pin, the rising edge of SCLK shifts the data on DI into the address register. This low also brings DO out of TRI-STATE. With $\overline{\mathrm{CS}}$ low the falling edge of SCLK shifts the data resulting from the previous ADC conversion out on DO, with the exception of the first bit of data. When $\overline{\mathrm{CS}}$ is low continuously, the first bit of the data is clocked out on the rising edge of EOC (end of conversion). When $\overline{\mathrm{CS}}$ is toggled the falling edge of $\overline{\mathrm{CS}}$ always clocks out the first bit of data. CS should be brought low when SCLK is low. The falling edge of $\overline{C S}$ resets a conversion in progress and starts the sequence for a new conversion. When $\overline{\mathrm{CS}}$ is brought back low during a conversion, that conversion is pre-
maturely ended. The data in the output latches may be corrupted. Therefore, when $\overline{\mathrm{CS}}$ is brought back low during a conversion in progress the data output at that time should be ignored. $\overline{\mathrm{CS}}$ may also be left continuously low. In this case it is imperative that the correct number of SCLK pulses be applied to the ADC in order to remain synchronous. After the ADC supply power is applied, it expects to see 13 clock pulses for each I/O sequence. The number of clock pulses the ADC expects is the same as the digital output word length. This word length can be modified by the data shifted in on the DO pin. Table V details the data required.
$\overline{D O R} \quad$ This is the data output ready pin. This pin is an active push/pull output. It is low when the conversion result is being shifted out and goes high to signal that all the data has been shifted out.
$\overline{\text { CONV } \quad \text { A logic low is required on this pin to program }}$ any mode or change the ADC's configuration as listed in the Mode Programming Table (Table V) such as 12 -bit conversion, 8 -bit conversion, Auto Cal, Auto Zero etc. When this pin is high the ADC is placed in the read data only mode. While in the read data only mode, bringing $\overline{\mathrm{CS}}$ low and pulsing SCLK will only clock out on DO any data stored in the ADCs output shift register. The data on DI will be neglected. A new conversion will not be started and the ADC will remain in the mode and/or configuration previously programmed. Read data only cannot be performed while a conversion, Auto-Cal or Auto-Zero are in progress.
PD This is the power down pin. When PD is high the A/D is powered down; when PD is low the A/D is powered up. The A/D takes a maximum of $700 \mu \mathrm{~s}$ to power up after the command is given.
$\mathrm{CH} 0-\mathrm{CH} 7$ These are the analog inputs of the MUX. A channel input is selected by the address information at the DI pin, which is loaded on the rising edge of SCLK into the address register (see Tables II through IV).
The voltage applied to these inputs should not exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$or go below GND. Exceeding this range on an unselected channel will corrupt the reading of a selected channel.
COM This pin is another analog input pin. It is used as a pseudo ground when the analog multiplexer is single-ended.
MUXOUT1, These are the multiplexer output pins. MUXOUT2
A/DIN1, These are the converter input pins. MUXOUT1 A/DIN2 is usually tied to A/DIN1. MUXOUT2 is usually tied to $A / D I N 2$. If external circuitry is placed between MUXOUT1 and A/DIN1, or MUXOUT2 and A/DIN2 it may be necessary to protect these pins. The voltage at these pins should not exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$or go below AGND (see Figure 3).

Pin Descriptions (Continued)

$\mathrm{V}_{\mathrm{REF}}{ }^{+} \quad$ This is the positive analog voltage reference input. In order to maintain accuracy the voltage range of $\mathrm{V}_{\mathrm{REF}}\left(\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{REF}}{ }^{+}-\mathrm{V}_{\mathrm{REF}}{ }^{-}\right.$) is $1 \mathrm{~V}_{\mathrm{DC}}$ to $3.3 \mathrm{~V}_{\mathrm{DC}}$ and the voltage at $\mathrm{V}_{\mathrm{REF}}{ }^{+}$ cannot exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$. See Figure 4 for recommended bypassing.
The negative voltage reference input. In order to maintain accuracy the voltage at this pin must not go below GND or exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$. (See Figure 4).
$\mathrm{V}_{\mathrm{A}}{ }^{+}, \mathrm{V}_{\mathrm{D}}{ }^{+}$These are the analog and digital power supply
pins. $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$are not connected together
on the chip. These pins should be tied to the
same power supply and bypassed separately
(see Figure 4). The operating voltage range of
$\mathrm{V}_{\mathrm{A}}+$ and $\mathrm{V}_{\mathrm{D}}+$ is $3.0 \mathrm{~V}_{\mathrm{DC}}$ to $5.5 \mathrm{~V}_{\mathrm{DC}}$.
DGND . This is the digital ground pin (see Figure 4).
AGND This is the analog ground pin (see Figure 4).

TL/H/11830-34
FIGURE 3. Protecting the MUXOUT1, MUXOUT2, A/DIN1 and A/DIN2 Analog Pins

FIGURE 4. Recommended Power Supply Bypassing and Grounding

Tables

TABLE I. Data Out Formats

DO Formats			DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8	DB9	DB10	DB11	DB12	DB13	DB14	DB15	DB16
with Sign	MSB First	17 Bits 1	X	X	X	X	Sign	MSB	10	9	8	7	6	5	4	3	2	1	LSB
		$\begin{gathered} 13 \\ \text { Bits } \end{gathered}$	Sign	MSB	10	9	8	7	6	5	4	3	2	1	LSB				
		Bits	Sign	MSB	6	5	4	"3	2	1	LSB								
	LSB First	\| 17	LSB	1	2	3	4	5	6	7	8	9	10	MSB	Sign	X	X	X	X
		$\begin{gathered} 13 \\ \text { Bits } \end{gathered}$	LSB	1	2	3	4	5	6	7	8	9	10	MSB	Sign				
		Bits	LSB	1	2	3	4	5	6	MSB	Sign								
without Sign	MSB First	16 Bits 1	0	0	0	0	MSB	10	9	8	7	6	5	4	3	2	1	LSB	
		12 Bits	MSB	10	9	8	7	6	5	4	3	2	1	LSB					
		$\begin{gathered} 8 \\ \text { Bits } \end{gathered}$	MSB	6	5	4	3	2	1	LSB									
	LSB First	16 Bits 1	LSB	1	2	3	4	5	6	7	8	9	10	MSB	0	0	0	0	
		$\begin{gathered} 12 \\ \text { Bits } \end{gathered}$	LSB	1	2	3	4	5	6	7	8	9	10	MSB					
		8 Bits	LSB	1	2	3	4	5	6	MSB									

$X=$ High or Low state.

TABLE II. ADC12L038 Multiplexer Addressing

MUX Address				Analog Channel Addressed and Assignment with A/DIN1 tied to MUXOUT1 and A/DIN2 tied to MUXOUT2									A/D Input Polarity Assignment		Multiplexer Output Channel Assignment		Mode
DIO	DI1	DI2	D13	CHO	CH1	CH2	CH3	CH4	CH5	CH6	CH7	COM	A/DIN1	A/DIN2	MUXOUT1	MUXOUT2	
L	L	L	L	+	-								$+$	-	CHO	CH 1	
L	L	L	H			+	-						+	-	CH2	CH3	
L	L	H	L					+	-				+	-	CH 4	CH5	
L	L	H	H							+	-		+	-	CH 6	CH 7	
L	H	L	L	-	$+$								-	+	CHO	CH 1	Differential
L	H	L	H			-	+						-	+	CH 2	CH3	
L	H	H	L					-	$+$				-	$+$	CH 4	CH5	
L	H	H	H							-	+		-	+	CH 6	CH 7	
H	L	L	L	$+$								-	+	-	CHO	COM	
H	L	L	H			+						-	+	-	CH 2	COM	
H	L	H	L					+				-	+	-	CH 4	COM	
H	L	H	H							+		-	+	-	CH6	COM	
H	H	L	L		+							-	+	-	CH 1	COM	Single-Ended
H	H	L	H				$+$					-	+	-	CH3	COM	
H	H	H	L						+			-	+	-	CH5	COM	
H	H	H	H								+	-	$+$	-	CH 7	COM	

Note: ADC12L030 does not have A/DIN1, A/DIN2, MUXOUT1 and MUXOUT2 pins.

Tables (Continued)
TABLE V. Mode Programming
$\left.\begin{array}{c|c|c|c|c|c|c|c|c|c|c}\hline \text { ADC12L038 } & \text { DI0 } & \text { DI1 } & \text { DI2 } & \text { DI3 } & \text { DI4 } & \text { DI5 } & \text { DI6 } & \text { DI7 } & & \begin{array}{c}\text { Mode Selected } \\ \text { (Current) } \\ \text { (next Conversion } \\ \text { Cycle) }\end{array} \\ \hline \text { ADC12L034 } & \text { DI0 } & \text { DI1 } & \text { DI2 } & & \text { DI3 } & \text { DI4 } & \text { DI5 } & \text { DI6 } & & \\ \hline \begin{array}{c}\text { ADC12L030 } \\ \text { and } \\ \text { ADC12L032 }\end{array} & \text { DI0 } & \text { DI1 } & & & \text { DI2 } & \text { DI3 } & \text { DI4 } & \text { DI5 } & & \text { 12 or 13 Bit MSB First }\end{array}\right]$

Note: The A/D powers up with no Auto Cal, no Auto Zero, 10 CCLK acquisition time, 12-bit + sign conversion, power up, 12- or 13-bit MSB first and user mode. $X=$ Don't Care

TABLE VI. Conversion/Read Data Only Mode Programming

$\overline{\text { CS }}$	$\overline{\text { CONV }}$	PD	Mode
L	L	L	See Table V for Mode
L	H	L	Read Only (Previous DO Format) No Conversion
H	X	L	Idle
X	X	H	Power Down

X = Don't Care

Tables (Continued)
TABLE VII. Status Register

Status Bit Location	DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
Status Bit	PU	PD	Cal	8 or 9	12 or 13	16 or 17	Sign	Justification	Test Mode
	Device Status			DO Output Format Status					
Function	"High" indicates a Power Up Sequence is in progress	"High" indicates a Power Down Sequence is in progress	"High" indicates an Auto- Cal Sequence is in progress	"High" indicates an 8 or 9 bit format	"High" indicates a 12 or 13 bit format	"High" indicates a 16 or 17 bit format	"High" indicates that the sign bit is included. When "Low" the sign bit is not included.	When "High" the conversion result will be output MSB first. When "Low" the result will be output LSB first.	When "High" the device is in test mode. When "Low" the device is in user mode.

Application Hints

1.0 DIGITAL INTERFACE

1.1 Interface Concepts

The example in Figure 5 shows a typical sequence of events after the power is applied to the ADC12L030/2/4/8:

FIGURE 5. Typical Power Supply Power Up Sequence
The first instruction input to the A/D via DI initiates Auto Cal. The data output on DO at that time is meaningless and is completely random. To determine whether the Auto Cal has been completed, a read status instruction is issued to the A/D. Again the data output at that time has no significance since the Auto Cal procedure modifies the data in the output shift register. To retrieve the status information, an additional read status instruction is issued to the A/D. At this time the status data is available on DO. If the Cal signal in the status word is low Auto Cal has been completed. Therefore, the next instruction issued can start a conversion. The data output at this time is again status information. To keep noise from corrupting the A/D conversion, the status can not be read during a conversion. If $\overline{\mathrm{CS}}$ is strobed and is brought low during a conversion, that conversion is prematurely ended. EOC can be used to determine the end of a conversion or the A/D controller can keep track in software of when it would be appropriate to communicate to the A/D again.

Once it has been determined that the A/D has completed a conversion another instruction can be transmitted to the A / D. The data from this conversion can be accessed when the next instruction is issued to the A/D.
Note, when $\overline{\mathrm{CS}}$ is low continuously it is important to transmit the exact number of SCLK cycles, as shown in the timing diagrams. Not doing so will desynchronize the serial communication to the A/D (see Section 1.3).

1.2 Changing Configuration

The configuration of the ADC12L030/2/4/8 on power up defaults to 12-bit plus sign resolution, 12- or 13-bit MSB First, 10 CCLK acquisition time, user mode, no Auto Cal, no Auto Zero, and power up mode. Changing the acquisition time and turning the sign bit on and off requires an 8-bit instruction to be issued to the ADC. This instruction will not start a conversion. The instructions that select a multiplexer address and format the output data do start a conversion. Figure 6 describes an example of changing the configuration of the ADC12L030/2/4/8.
During I/O sequence 1 the instruction on DI configures the ADC12L030/2/4/8 to do a conversion with 12-bit + sign resolution. Notice that when the 6 CCLK Acquisition and Data Out without Sign instructions are issued to the ADC, I/O sequences 2 and 3, a new conversion is not started. The data output during these instructions is from conversion N which was started during I/O sequence 1 . The Configuration Modification timing diagram describes in detail the sequence of events necessary for a Data Out without Sign, Data Out with Sign, or 6/10/18/34 CCLK Acquisition time mode selection. Table V describes the actual data neces-

FIGURE 6. Changing the ADC's Conversion Configuration

Application Hints (Continued)

sary to be input to the ADC to accomplish this configuration modification. The next instruction, shown in Figure 6 , issued to the A/D starts conversion $\mathrm{N}+1$ with 8 bits of resolution formatted MSB first. Again the data output during this I/O cycle is the data from conversion N .
The number of SCLKs applied to the A/D during any conversion I/O sequence should vary in accord with the data out word format chosen during the previous conversion I/O sequence. The various formats and resolutions available are shown in Table I. In Figure 6, since 8-bit without sign MSB first format was chosen during I/O sequence 4, the number of SCLKs required during I/O sequence 5 is 8 . In the following I/O sequence the format changes to 12-bit without sine MSB first; therefore the number of SCLKs required during I/O sequence 6 changes accordingly to 12.

1.3 $\overline{\mathrm{CS}}$ Low Continuously Considerations

When $\overline{C S}$ is continuously low, it is important to transmit the exact number of SCLK pulses that the ADC expects. Not doing so will desynchronize the serial communications to the ADC. When the supply power is first applied to the ADC, it will expect to see 13 SCLK pulses for each I/O transmission. The number of SCLK pulses that the ADC expects to see is the same as the digital output word length. The digital output word length is controlled by the Data Out (DO) format. The DO format maybe changed any time a conversion is started or when the sign bit is turned on or off. The table below details out the number of clock periods required for different DO formats:

DO Format		Number of ScLKs Expected
8-Bit MSB or LSB First	SIGN OFF	8
	SIGN ON	9
12-Bit MSB or LSB First	SIGN OFF	12
	SIGN ON	13
16-Bit MSB or LSB first	SIGN OFF	16
	SIGN ON	17

If erroneous SCLK pulses desynchronize the communications, the simplest way to recover is by cycling the power supply to the device. Not being able to easily resynchronize the device is a shortcoming of leaving $\overline{\mathrm{CS}}$ low continuously. The number of clock pulses required for an 1/O exchange may be different for the case when $\overline{C S}$ is left low continuously vs. the case when $\overline{\mathrm{CS}}$ is cycled. Take the 1/O sequence detailed in Figure 5 (Typical Power Supply Se quence) as an example. The table below lists the number of SCLK pulses required for each instruction:

Instruction	$\overline{\text { CS Low }}$ Continuously	CS Strobed
Auto Cal	13 SCLKs	8 SCLKs
Read Status	13 SCLKs	8 SCLKs
Read Status	13 SCLKs	8 SCLKs
12-Bit + Sign Conv 1	13 SCLKs	8 SCLKs
12 -Bit + Sign Conv 2	13 SCLKs	13 SCLKs

1.4 Analog Input Channel Selection

The data input on DI also selects the channel configuration for a particular A/D conversion (see Tables II, III, IV and V). In Figure 6 the only times when the channel configuration could be modified would be during I/O sequences $1,4,5$ and 6 . Input channels are reselected before the start of each new conversion. Shown below is the data bit stream required on DI, during I/O sequence number 4 in Figure 6, to set CH 1 as the positive input and CH 0 as the negative input for the different versions of ADCs:

Part Number	DI Data									
	DI0	DI1	DI2	DI3	DI4	DI5	DI6	DI7		
ADC12L030	L	H	L	L	H	L	X	X		
ADC12L032	L	H	L	L	H	L	X	X		
ADC12L034	L	H	L	L	L	H	L	X		
ADC12L038	L	H	L	L	L	L	H	L		

Where X can be a logic high (H) or low (L).

1.5 Power Up/Down

The ADC may be powered down at any time by taking the PD pin HIGH or by the instruction input on DI (see Tables V and VI, and the Power Up/Down timing diagrams). When the ADC is powered down in this way the circuitry necessary for an A/D conversion is deactivated. The circuitry necessary for digital I/O is kept active. Hardware power up/down is controlled by the state of the PD pin. Software power up/ down is controlled by the instruction issued to the ADC. If a software power up instruction is issued to the ADC while a hardware power down is in effect (PD pin high) the device will remain in the power-down state. If a software power down instruction is issued to the ADC while a hardware power up is in effect (PD pin low), the device will power down. When the device is powered down by software, it may be powered up by either issuing a software power up instruction or by taking PD pin high and then low. If the power down command is issued during an A/D conversion, that conversion is disrupted. Therefore, the data output after power up cannot be relied on.

1.6 User Mode and Test Mode

An instruction may be issued to the ADC to put it into test mode. Test mode is used by the manufacturer to verify complete functionality of the device. During test mode CHOCH 7 become active outputs. If the device is inadvertently put into the test mode with $\overline{\mathrm{CS}}$ low continuously, the serial communications may be desynchronized. Synchronization may be regained by cycling the power supply voltage to the device. Cycling the power supply voltage will also set the device into user mode. If $\overline{\mathrm{CS}}$ is used in the serial interface, the ADC may be queried to see what mode it is in. This is done by issuing a "read STATUS register" instruction to the ADC. When bit 9 of the status register is high the ADC is in test mode; when bit 9 is low the ADC is in user mode. As an alternative to cycling the power supply, an instruction sequence may be used to return the device to user mode. This instruction sequence must be issued to the ADC using $\overline{\mathrm{CS}}$.

Application Hints (Continued)

The following table lists the instructions required to return the device to user mode:

Instruction	Di Data							
	DIO	DI1	DI2	DI3	DI4	DI5	DI6	DI7
TEST MODE	H	X	X	X	H	H	H	H
RESET	L	L	L	L	H	H	H	L
TEST MODE	L	L	L	L	H	L	H	L
INSTRUCTIONS	L	L	L	L	H	L	H	H
USER MODE	L	L	L	L	H	H	H	H
Power Up	L	L	L	L	H	L	H	L
Set DO with or without Sign	H or L	L	L	L	H	H	L	H
Set Acquisition Time	$\begin{aligned} & \mathrm{H} \\ & \text { or } \\ & \mathrm{L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \text { or } \\ & \mathrm{L} \end{aligned}$	L	L	H	H	H	L
Start a Conversion	$\begin{gathered} \mathrm{H} \\ \text { or } \\ \mathrm{L} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { or } \\ \mathrm{L} \end{gathered}$	H or L	$\begin{gathered} \mathrm{H} \\ \text { or } \\ \mathrm{L} \end{gathered}$	L	H or L	H or L	H or L

$\mathrm{X}=$ Don't Care
After returning to user mode with the user mode instruction the power up, data with or without sign, and acquisition time instructions need to be resent to ensure that the ADC is in the required state before a conversion is started.

1.7 Reading the Data Without Starting a Conversion

The data from a particular conversion may be accessed without starting a new conversion by ensuring that the CONV line is taken high during the I/O sequence. See the Read Data timing diagrams. Table VI describes the operation of the CONV pin.

2.0 DESCRIPTION OF THE ANALOG MULTIPLEXER

For the ADC12L038, the analog input multiplexer can be configured with 4 differential channels or 8 single ended channels with the COM input as the zero reference or any combination thereof (see Figure 7). The difference between the voltages on the $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$pins determines the input voltage span ($V_{\text {REF }}$). The analog input voltage range is 0 to $\mathrm{V}_{\mathrm{A}}{ }^{+}$. Negative digital output codes result when $\mathrm{V}_{\mathrm{IN}^{-}}>$ $\mathrm{V}_{\mathrm{IN}^{+}}$. The actual voltage at $\mathrm{V}_{\mathbb{I}}{ }^{-}$or $\mathrm{V}_{\mathrm{IN}}{ }^{+}$cannot go below AGND.

8 Single-Ended Channels with COM
as Zero Reference

FIGURE 7
$\mathrm{CHO}, \mathrm{CH} 2, \mathrm{CH} 4$, and CH 6 can be assigned to the MUXOUT1 pin in the differential configuration, while $\mathrm{CH} 1, \mathrm{CH} 3$, CH 5 , and CH 7 can be assigned to the MUXOUT2 pin. In the differential configuration, the analog inputs are paired as follows: CH 0 with $\mathrm{CH} 1, \mathrm{CH} 2$ with $\mathrm{CH} 3, \mathrm{CH} 4$ with CH 5 and CH 6 with CH 7 . The A/DIN1 and A/DIN2 pins can be assigned positive or negative polarity.
With the single-ended multiplexer configuration CHO through CH 7 can be assigned to the MUXOUT1 pin. The COM pin is always assigned to the MUXOUT2 pin. A/DIN1 is assigned as the positive input; A/DIN2 is assigned as the negative input. (See Figure 8).

TL/H/11830-40
A/DIN1 and A/DIN2 can be assigned as the + or - input

A/DIN1 is + input
A/DIN2 is - input

FIGURE 8
The Multiplexer assignment tables for the ADC12L030,2,4,8 (Tables II, III, and IV) summarize the aforementioned functions for the different versions of A/Ds.

2.1 Biasing for Various Multiplexer Configurations

Figure 9 is an example of biasing the device for single-ended operation. The sign bit is always low. The digital output range is 0000000000000 to 011111111 1111. One LSB is equal to $610 \mu \mathrm{~V}(2.5 \mathrm{~V} / 4096$ LSBs $)$.

Application Hints (Continued)

FIGURE 9. Single-Ended Biasing

For pseudo-differential signed operation the biasing circuit shown in Figure 10 shows a signal AC coupled to the ADC. This gives a digital output range of -4096 to +4095 . With a 1.25 V reference, as shown, 1 LSB is equal to $305 \mu \mathrm{~V}$. Although the ADC is not production tested with a 1.25 V reference linearity error typically will not change more than 0.3 LSB. With the ADC set to an acquisition time of 10 clock periods the input biasing resistor needs to be 600Ω or less. Notice though that the input coupling capacitor needs to be made fairly large to bring down the high pass corner. Increasing the acquisition time to 34 clock periods (with a

5 MHz CCLK frequency) would allow the 600Ω to increase to $6 k$, which with a $1 \mu \mathrm{~F}$ coupling capacitor would set the high pass corner at 26 Hz . The value of R1 will depend on the value of R2.
An alternative method for biasing pseudo-differential operation is to use the +2.5 V from the LM9140 to bias any amplifier circuits driving the ADC as shown in Figure 11. The value of the resistor pull-up biasing the LM9140-2.5 will depend upon the current required by the op amp biasing circuitry.
Fully differential operation is shown in Figure 12. One LSB for this case is equal to $(2.5 \mathrm{~V} / 4096)=610 \mathrm{mV}$.

Application Hints (Continued)

TL/H/11830-48
FIGURE 11. Alternative Pseudo-Differential Biasing

TL/H/11830-50
FIGURE 12. Fully Differential Blasing

3.0 REFERENCE VOLTAGE

The difference in the voltages applied to the $\mathrm{V}_{\text {REF }}{ }^{+}$and $V_{\text {REF }}{ }^{-}$defines the analog input span (the difference between the voltage applied between two multiplexer inputs or the voltage applied to one of the multiplexer inputs and analog ground), over which 4095 positive and 4096 negative codes exist. The voltage sources driving $\mathrm{V}_{\mathrm{REF}}{ }^{+}$or $\mathrm{V}_{\mathrm{REF}}{ }^{-}$ must have very low output impedance and noise.

The ADC12L030/2/4/8 can be used in either ratiometric or absolute reference applications. In ratiometric systems, the analog input voltage is proportional to the voltage used for the ADC's reference voltage. When this voltage is the system power supply, the $\mathrm{V}_{\text {REF }}{ }^{+}$pin is connected to $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$is connected to ground. This technique relaxes the

Application Hints (Continued)

system reference stability requirements because the analog input voltage and the ADC reference voltage move together. This maintains the same output code for given input conditions. For absolute accuracy, where the analog input voltage varies between very specific voltage limits, a time and temperature stable voltage source can be connected to the reference inputs. Typically, the reference voltage's magnitude will require an initial adjustment to null reference voltage induced full-scale errors.
Below are recommended references along with some key specifications.

Part Number	Output Voltage Tolerance	Temperature Coefficient (max)
LM4041CIM3-AdJ	$\pm 0.5 \%$	$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM4040AIM3-2.5	$\pm 0.1 \%$	$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM9140BYZ-2.5	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM368Y-2.5	$\pm 0.1 \%$	$\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

The reference voltage inputs are not fully differential. The ADC12L030/2/4/8 will not generate correct conversions or comparisons if $\mathrm{V}_{\text {REF }}{ }^{+}$is taken below $\mathrm{V}_{\text {REF }}{ }^{-}$. Correct conversions result when $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$differ by 1 V and remain, at all times, between ground and $\mathrm{V}_{\mathrm{A}}{ }^{+}$. The $\mathrm{V}_{\text {REF }}$ common mode range, ($\left.\mathrm{V}_{\mathrm{REF}}{ }^{+}+\mathrm{V}_{\mathrm{REF}}{ }^{-}\right) / 2$, is restricted to ($0.1 \times \mathrm{V}_{\mathrm{A}}{ }^{+}$) to $\left(0.6 \times \mathrm{V}_{\mathrm{A}}{ }^{+}\right.$). Therefore, with $\mathrm{V}_{\mathrm{A}}{ }^{+}=3.3 \mathrm{~V}$ the center of the reference ladder should not go below 0.33 V or above 1.98 V . Figure 13 is a graphic representation of the voltage restrictions on $\mathrm{V}_{\mathrm{REF}}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$.

TL/H/11830-43
FIGURE 13. VREF Operating Range

4.0 ANALOG INPUT VOLTAGE RANGE

The ADC12L030/2/4/8's fully differential ADC generate a two's complement output that is found by using the equations shown below:
for (12-bit) resolution the Output Code $=$

$$
\frac{\left(V_{I N^{+}}-V_{I N^{-}}^{-}\right)(4096)}{\left(V_{\text {REF }^{+}}-V_{\text {REF }^{-}}\right)}
$$

for (8-bit) resolution the Output Code $=$

$$
\frac{\left(\mathrm{V}_{\mathrm{IN}^{+}}-\mathrm{V}_{\mathrm{IN}^{-}}\right)(256)}{\left(\mathrm{V}_{\mathrm{REF}^{+}}-\mathrm{V}_{\mathrm{REF}^{-}}\right)}
$$

Round off to the nearest integer value between -4096 to 4095 for 12-bit resolution and between -256 to 255 for 8 bit resolution if the result of the above equation is not a whole number.
Examples are shown in the table below:

$\mathbf{V}_{\mathbf{R E F}}$				
+	$\mathbf{V}_{\mathbf{R E F}}{ }^{-}$	$\mathbf{V}_{\mathbf{I N}^{+}}$	$\mathbf{V}_{\mathbf{I N}^{-}}$	Digital Output Code
+2.5 V	+1 V	+1.5 V	0 V	$0,1111,1111,1111$
+2.500 V	0 V	+2 V	0 V	$0,1100,1100,1101$
+2.500 V	0 V	+2.499 V	+2.500 V	$1,1111,1111,1111$
+2.500 V	0 V	0 V	+2.500 V	$1,0000,0000,0000$

5.0 INPUT CURRENT

At the start of the acquisition window $\left(\mathrm{t}_{\mathrm{A}}\right)$ a charging current flows into or out of the analog input pins (A/DIN1 and A/DIN2) depending on the input voltage polarity. The analog input pins are $\mathrm{CHO}-\mathrm{CH} 7$ and COM when A/DIN1 is tied to MUXOUT1 and A/DIN2 is tied to MUXOUT2. The peak value of this input current will depend on the actual input voltage applied, the source impedance and the internal multiplexer switch on resistance. With MUXOUT1 tied to A/DIN1 and MUXOUT2 tied to A/DIN2 the internal multiplexer switch on resistance is typically $1.6 \mathrm{k} \Omega$. The A/DIN1 and A/DIN2 mux on resistance is typically 750Ω.

6.0 INPUT SOURCE RESISTANCE

For low impedance voltage sources ($<600 \Omega$), the input charging current will decay, before the end of the S/H's acquisition time of $2 \mu \mathrm{~s}$ (10 CCLK periods with $\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$), to a value that will not introduce any conversion errors. For high source impedances, the S/H's acquisition time can be increased to 18 or 34 CCLK periods. For less ADC resolution and/or slower CCLK frequencies the S/H's acquisition time may be decreased to 6 CCLK periods. To determine the number of clock periods $\left(\mathrm{N}_{\mathrm{c}}\right)$ required for the acquisition time with a specific source impedance for the various resolutions the following equations can be used:

$$
\begin{aligned}
12 \text { Bit }+ \text { Sign } & N_{C}=\left[R_{S}+2.3\right] \times f_{C} \times 0.824 \\
8 \text { Bit }+ \text { Sign } & N_{C}=\left[R_{S}+2.3\right] \times f_{C} \times 0.57
\end{aligned}
$$

Where fc_{C} is the conversion clock (CCLK) frequency in MHz and R_{S} is the external source resistance in $k \Omega$. As an exam-

Application Hints (Continued)

ple, operating with a resolution of 12 Bits + sign, a 5 MHz clock frequency and maximum acquistion time of 34 conversion clock periods the ADC's analog inputs can handle a source impedance as high as $6 \mathrm{k} \Omega$. The acquisition time may also be extended to compensate for the settling or response time of external circuitry connected between the MUXOUT and A/DIN pins.
The acquisition time (t_{A}) is started by a falling edge of SCLK and ended by a rising edge of CCLK (see Timing Diagrams). If SCLK and CCLK are asynchronous one extra CCLK clock period may be inserted into the programmed acquisition time for synchronization. Therefore with asnychronous SCLK and CCLK the acquisition time will change from conversion to conversion.

7.0 INPUT BYPASS CAPACITANCE

External capacitors ($0.01 \mu \mathrm{~F}-0.1 \mu \mathrm{~F}$) can be connected between the analog input pins, $\mathrm{CH} 0-\mathrm{CH} 7$, and analog ground to filter any noise caused by inductive pickup associated with long input leads. These capacitors will not degrade the conversion accuracy.

8.0 NOISE

The leads to each of the analog multiplexer input pins should be kept as short as possible. This will minimize input noise and clock frequency coupling that can cause conversion errors. Input filtering can be used to reduce the effects of the noise sources.

9.0 POWER SUPPLIES

Noise spikes on the $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}^{+}}$supply lines can cause conversion errors; the comparator will respond to the noise. The ADC is especially sensitive to any power supply spikes that occur during the auto-zero or linearity correction. The
minimum power supply bypassing capacitors recommended are low inductance tantalum capacitors of $10 \mu \mathrm{~F}$ or greater paralleled with $0.1 \mu \mathrm{~F}$ monolithic ceramic capacitors. More or different bypassing may be necessary depending on the overall system requirements. Separate bypass capacitors should be used for the $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$supplies and placed as close as possible to these pins.

10.0 GROUNDING

The ADC12L030/2/4/8's performance can be maximized through proper grounding techniques. These include the use of separate analog and digital ground planes. The digital ground plane is placed under all components that handle digital signals, while the analog ground plane is placed under all components that handle analog signals. The digital and analog ground planes are connected together at only one point, either the power supply ground or at the pins of the ADC. This greatly reduces the occurence of ground loops and noise.
Shown in Figure 14 is the ideal ground plane layout for the ADC12L038 along with ideal placement of the bypass capacitors. The circuit board layout shown in Figure 14 uses three bypass capacitors: $0.01 \mu \mathrm{~F}(\mathrm{C} 1)$ and $0.1 \mu \mathrm{~F}(\mathrm{C} 2)$ surface mount capacitors and $10 \mu \mathrm{~F}$ (C3) tantalum capacitor.

11.0 CLOCK SIGNAL LINE ISOLATION

The ADC12L030/2/4/8's performance is optimized by routing the analog input/output and reference signal conductors as far as possible from the conductors that carry the clock signals to the CCLK and SCLK pins. Ground traces parallel to the clock signal traces can be used on printed circuit boards to reduce clock signal interference on the analog input/output pins.

FIGURE 14. Ideal Ground Plane for the ADC12L038

Application Hints (Continued)
 12.0 THE CALIBRATION CYCLE

A calibration cycle needs to be started after the power supplies, reference, and clock have been given enough time to stabilize after initial turn on. During the calibration cycle, correction values are determined for the offset voltage of the sampled data comparator and any linearity and gain errors. These values are stored in internal RAM and used during an analog-to-digital conversion to bring the overall full-scale, offset, and linearity errors down to the specified limits. Fullscale error typically changes ± 0.4 LSB over temperature and linearity error changes even less; therefore it should be necessary to go through the calibration cycle only once after power up if the Power Supply Voltage and the ambient temperature do not change significantly (see the curves in the Typical Performance Characteristics).

13.0 THE AUTO-ZERO CYCLE

To correct for any change in the zero (offset) error of the A/D, the auto-zero cycle can be used. It may be necessary to do an auto-zero cycle whenever the ambient temperature or the power supply voltage change significantly. (See the curves titled "Zero Error Change vs Ambient Temperature" and "Zero Error Change vs Supply Voltage" in the Typical Performance Characteristics.)

14.0 DYNAMIC PERFORMANCE

Many applications require the A/D converter to digitize AC signals, but the standard DC integral and differential nonlinearity specifications will not accurately predict the A/D converter's performance with AC input signals. The important specifications for AC applications reflect the converter's ability to digitize AC signals without significant spectral errors and without adding noise to the digitized signal. Dynamic characteristics such as signal-to-noise (S / N), signal-tonoise + distortion ratio $(S /(N+D))$, effective bits, full power bandwidth, aperture time and aperture jitter are quantitative measures of the A/D converter's capability.

An A/D converter's $A C$ performance can be measured using Fast Fourier Transform (FFT) methods. A sinusoidal waveform is applied to the A/D converter's input, and the transform is then performed on the digitized waveform. $S /(N+D)$ and S / N are calculated from the resulting FFT data, and a spectral plot may also be obtained.
The A/D converter's noise and distortion levels will change with the frequency of the input signal, with more distortion and noise occurring at higher signal frequencies. This can be seen in the $S /(N+D)$ versus frequency curves. These curves will also give an indication of the full power bandwidth (the frequency at which the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ or S / N drops 3 dB).
Effective number of bits can also be useful in describing the A/D's noise performance. An ideal A/D converter will have some amount of quantization noise, determined by its resolution, which will yield an optimum S / N ratio given by the following equation:

$$
\mathrm{S} / \mathrm{N}=(6.02 \times \mathrm{n}+1.8) \mathrm{dB}
$$

where n is the A/D's resolution in bits.
The effective bits of a real A/D converter, therefore, can be found by:

$$
\mathrm{n} \text { (effective })=\frac{\mathrm{S} / \mathrm{N}(\mathrm{~dB})-1.8}{6.02}
$$

As an example, this device with a $\pm 2.5 \mathrm{~V}, 10 \mathrm{kHz}$ sine wave input signal will typically have a S / N of 78 dB , which is equivalent to 12.6 effective bits.

Application Hints (Continued)

15.0 AN RS232 SERIAL INTERFACE

Shown below is a schematic for an RS232 interface to any IBM and compatible PCs. The DTR, RTS, and CTS RS232 signal lines are buffered via level translators and connected
to the ADC12L038's DI, SCLK, and DO pins, respectively. The D flip flop drive the $\overline{\mathrm{CS}}$ control line.

TL/H/11830-45
Note: $\mathrm{V}_{\mathrm{A}}{ }^{+}, \mathrm{V}_{\mathrm{D}}{ }^{+}$, and $\mathrm{V}_{\text {REF }}{ }^{+}$on the ADC12L038 each have $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ chip caps, and $10 \mu \mathrm{~F}$ tantalum caps. All logic devices are bypassed with $0.1 \mu \mathrm{~F}$ caps. The DS14C335 has an internal DC-DC converter that generates the necessary TIA/EIA-232-E output levels from a 3.3 V supply. There are four $0.47 \mu \mathrm{~F}$ capacitors required for the DC-DC converter that are not shown in the above schematic.

The assignment of the RS232 port is shown below

		B7	B6	B5	B4	B3	B2	B1	B0	
COM1	Input Address	3FE	X	X	X	CTS	X	X	X	X
	Output Address	3FC	X	X	X	0	X	X	RTS	DTR

A sample program, written in Microsoft ${ }^{T M}$ QuickBasic, is shown on the next page. The program prompts for data mode select instruction to be sent to the A/D. This can be found from the Mode Programming table shown earlier. The data should be entered in " 1 "s and " 0 "'s as shown in the table with DIO first. Next the program prompts for the number of SCLKs required for the programmed mode select instruction. For instance, to send all " 0 "s to the A/D, selects CH 0 as the +input, CH 1 as the -input, 12-bit conversion, and 13-bit MSB first data output format (if the sign bit was not turned off by a previous instruction). This would require 13 SCLK periods since the output data format is 13 bits. The part powers up with No Auto Cal, No Auto Zero,

10 CCLK Acquisition Time, 12-bit conversion, data out with sign, 12- or 13-bit MSB First, power up, and user mode. Auto Cal, Auto Zero, Power UP and Power Down instructions do not change these default settings. The following power up sequence should be followed:

1. Run the program
2. Prior to responding to the prompt apply the power to the ADC12L038
3. Respond to the program prompts

It is recommended that the first instruction issued to the ADC12L038 be Auto Cal (see Section 1.1).

Application Hints (Continued)

```
'variables DOL=Data Out word length, DI=Data string for A/D DI input,
- DO=A/D result string
'SET CS# HIGH
OUT &H3FC, (&H2 OR INP (&H3FC)) 'set RTS HIGH
OUT &H3FC, (&HFE AND INP (&H3FC)) 'SET DTR LOW
OUT &H3FC, (&HFD AND INP (&H3FC)) 'SET RTS LOW
OUT &H3FC, (&HEF AND INP (&H3FC)) 'set B4 low
10
LINE INPUT "DI data for ADCl2038 (see Mode Table on data sheet)"; DI$
INPUT "ADCl2038 output word length (8,9,12,13,16 or 17)"; DOL
20
```

'SET CS\# HIGH
OUT \&H3FC, ($\& H 2$ OR INP ($\& H 3 F C)$)
OUT $\& H 3 F C$, ($\& H F E$ AND INP ($\& H 3 F C)$)
OUT \&H3FC, (\&HFD AND INP (\&H3FC))
'set RTS HIGH
'SET DTR LOW
'SET CS\# LOW
OUT \&H3FC, ($\& \mathrm{H} 2$ OR INP ($\& \mathrm{H} 3 \mathrm{FC})$)
OUT $\& H 3 F C$, ($\& H 1$ OR INP ($\& H 3 F C)$)
OUT \&H3FC, ($\& H F D$ AND INP ($\& H 3 F C)$)
DO $\$=1 "$
OUT $\& \mathrm{H} 3 \mathrm{FC},(\& \mathrm{HI}$ OR INP ($\& \mathrm{H} 3 \mathrm{FC})$)
OUT \&H3FC, ($\& H F D$ AND INP (\&H3FC))
'SET DTR HIGH
'set RTS HIGH
'SET DTR HIGH
'SET RTS LOW
'reset DO variable
FOR N=1 TO 8
Temp $\$=\mathrm{MID} \$(\mathrm{DI} \$, N, I)$
IF Temp $\$=$ "0"THEN
OUT \&H3FC, ($\& \mathrm{Hl}$ OR INP($\& \mathrm{H} 3 \mathrm{FC}))$
ELSE OUT \&H3FC, ($\& H F E$ AND INP ($\& H 3 F C)$)
END IF 'out DI
OUT $\& \mathrm{H} 3 \mathrm{FC},(\& \mathrm{H} 2$ OR INP ($\& \mathrm{H} 3 \mathrm{FC}))$) 'SCLK high
IF (INP ($\& \mathrm{H} 3 \mathrm{FE})$ AND 16) $=16$ THEN
D0\$=D0\$+" 0 "
ELSE
DO\$=D0\$+"1"
END IF
OUT \&H3FC, ($\& \mathrm{Hl}$ OR INP ($\& \mathrm{H} 3 \mathrm{FC})$)
OUT \&H3FC, (\&HFD AND INP (\&H3FC))
'Input DO
'SET DTR HIGH
NEXT N
IF DOL >8 THEN
FOR N=9 TO DOL
OUT $\& \mathrm{H} 3 \mathrm{FC},(\& \mathrm{Hl}$ OR INP ($\& \mathrm{H} 3 \mathrm{FC}$)
'SET DTR HIGH
OUT \&H3FC, (\&HFD AND INP (\&H3FC)) 'SCIK low
OUT \&H3FC, (\&H2 OR INP (\&H3FC)) 'SCLK high
IF (INP (\&H3FE) AND \&H16) $=\& H 16$ THEN
DO\$=D0\$+"O"
ELSE
$D 0 \$=D 0 \$+{ }^{n} 1$ "
END IF
NEXT N
END IF
OUT \&H3FC, (\&HFA AND INP(\&H3FC)) 'SCLK low and DI high
FOR N=1 TO 500
NEXT N
PRINT DO\$
INPUT "Enter "C" to convert else "RETURN" to alter DI data"; s\$
IF $s \$=" C$ " OR $s \$=" c$ " THEN
GOTO 20
ELSE
GOTO 10
END IF
END

ADC12130/ADC12132/ADC12138 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold

General Description

The ADC12130, ADC12132 and ADC12138 are 12-bit plus sign successive approximation A/D converters with serial I/O and configurable input multiplexer. The ADC12132 and ADC12138 have a 2 and an 8 channel multiplexer, respectively. The differential multiplexer outputs and A/D inputs are available on the MUXOUT1, MUXOUT2, A/DIN1 and A/DIN2 pins. The ADC12130 has a two channel multiplexer with the multiplexer outputs and A/D inputs internally connected. The ADC12130 family is tested with a 5 MHz clock. On request, these A/Ds go through a self calibration process that adjusts linearity, zero and full-scale errors to typically less than ± 1 LSB each.
The analog inputs can be configured to operate in various combinations of single-ended, differential, or pseudo-differential modes. A fully differential unipolar analog input range (0 V to +5 V) can be accommodated with a single +5 V supply. In the differential modes, valid outputs are obtained even when the negative inputs are greater than the positive because of the 12 -bit plus sign output data format.
The serial I/O is configured to comply with the NSC MICROWIRETM. For complementary voltage references see the LM4040, LM4041 or LM9140.

Features

- Serial I/O (MICROWIRE, SPI and QSPI Compatible)
- 2 or 8 channel differential or single-ended multiplexer
- Analog input sample/hold function
- Power down mode
- Programmable acquisition time
- Variable digital output word length and format
- No zero or full scale adjustment required
- 0 V to 5 V analog input range with single 5 V power supply

Key Specifications

- Resolution	12-bit plus sign
- 12-bit plus sign conversion time	$8.8 \mu \mathrm{~s}$ (max)
- 12-bit plus sign throughput time	$14 \mu \mathrm{~s}$ (max)
- Integral linearity error	± 2 LSB (max)
- Single supply	3.3 V or $5 \mathrm{~V} \pm 10 \%$
- Power dissipation	
-3.3V	15 mW (max)
-3.3V power down	$40 \mu \mathrm{~W}$ (typ)
-5V	33 mW (max)
-5V power down	$100 \mu \mathrm{~W}$ (typ)

Applications

- Pen-based computers
- Digitizers
- Global positioning systems

ADC12138 Simplified Block Diagram

TL/H/12079-1

Connection Diagrams

TL/H/12079-2

28-Pin Dual-In-Line, SSOP and Wide Body SO Packages

TL/H/12079-3
Top View

Absolute Maximum Ratings (Notes $1 \& 2$) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Positive Supply Voltage

$$
\left(V^{+}=V_{A}^{+}=V_{D^{+}}\right)
$$

6.5 V

Voltage at Inputs and Outputs except $\mathrm{CH} 0-\mathrm{CH} 7$ and COM
Voltage at Analog Inputs
$\mathrm{CHO}-\mathrm{CH} 7$ and COM
$\left|V_{A^{+}}-V_{D}{ }^{+}\right|$
Input Current at Any Pin (Note 3)
Package Input Current (Note 3)
Package Dissipation at
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)
ESD Susceptability (Note 5) Human Body Model

$$
-0.3 \mathrm{~V} \text { to } \mathrm{V}++0.3 \mathrm{~V}
$$

GND -5 V to $\mathrm{V}^{+}+5 \mathrm{~V}$
300 mV
$\pm 30 \mathrm{~mA}$
$\pm 120 \mathrm{~mA}$

500 mW

1500V
Soldering Information N Packages (10 seconds) SO Package (Note 6): Vapor Phase (60 seconds) Infrared (15 seconds)
Storage Temperature

Operating Ratings (Notes 1 \& 2)

$$
\begin{aligned}
& \text { Operating Temperature Range } \quad T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \\
& \text { ADC12130CIN, ADC12130CIWM, } \\
& \text { ADC12132CIMSA, ADC12138CIMSA, } \\
& \text { ADC12138CIN, ADC12138CIWM }-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& \text { Supply Voltage }\left(\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}^{+}}\right) \quad+3.0 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
& \left|V_{A^{+}}-V_{D}+\right| \leq 100 \mathrm{mV} \\
& \mathrm{~V}_{\text {REF }}{ }^{+} \\
& \mathrm{OV} \text { to } \mathrm{V}_{\mathrm{A}}{ }^{+} \\
& V_{\text {REF }}{ }^{-} \\
& V_{\text {REF }}\left(V_{\text {REF }^{+}}-V_{\text {REF }^{-}}\right) \\
& 0 \mathrm{~V} \text { to } \mathrm{VREF}^{+} \\
& 1 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{A}}{ }^{+} \\
& V_{\text {REF }} \text { Common Mode Voltage Range } \\
& \frac{\left(\mathrm{V}_{\text {REF }}{ }^{+}+\mathrm{V}_{\text {REF }^{-}}\right)}{2} \quad 0.1 \mathrm{~V}_{\mathrm{A}}+\text { to } 0.6 \mathrm{~V}_{\mathrm{A}}{ }^{+} \\
& \text {A/DIN1, A/DIN2, MUXOUT1 } \\
& \text { and MUXOUT2 Voltage Range } \quad O V \text { to } \mathrm{V}_{\mathrm{A}}{ }^{+} \\
& \text {A/D IN Common Mode Voltage Range } \\
& \frac{\left(V_{\mathbb{N}^{+}}+V_{\mathbb{I N}^{-}}\right)}{2} \\
& \mathrm{OV} \text { to } \mathrm{V}_{\mathrm{A}}{ }^{+}
\end{aligned}
$$

Converter Electrical Characteristics

The following specifications apply for $\left(\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=+4.096 \mathrm{~V}\right.$, and fully differential input with fixed 2.048 V common-mode voltage) or ($\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}{ }^{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}^{+}}=2.5 \mathrm{~V}$ and fully-differential input with fixed 1.250 V common-mode voltage), $\mathrm{V}_{\mathrm{REF}}{ }^{-}=0 \mathrm{~V}$, 12-bit + sign conversion mode, source impedance for analog inputs, $\mathrm{V}_{\mathrm{REF}^{-}}$and $\mathrm{V}_{\mathrm{REF}}{ }^{+} \leq 25 \Omega, \mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=5 \mathrm{MHz}$, and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified. Boldfade limits apply for $\mathrm{T}_{\mathbf{A}}$ $=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {max }} ;$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 7,8 and 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)
STATIC CONVERTER CHARACTERISTICS					
	Resolution			$12+$ sign	Bits (min)
+ILE	Positive Integral Linearity Error	After Auto-Cal (Notes 12, 18)	$\pm 1 / 2$	± 2	LSB (max)
-ILE	Negative Integral Linearity Error	After Auto-Cal (Notes 12, 18)	$\pm 1 / 2$	± 2	LSB (max)
DNL	Differential Non-Linearity	After Auto-Cal		± 1.5	LSB (max)
	Positive Full-Scale Error	After Auto-Cal (Notes 12, 18)	$\pm 1 / 2$	± 3.0	LSB (max)
	Negative Full-Scale Error	After Auto-Cal (Notes 12, 18)	$\pm 1 / 2$	± 3.0	LSB (max)
	Offset Error	After Auto-Cal (Notes 5, 18) $\mathrm{V}_{\mathrm{IN}}(+)=\mathrm{V}_{\mathrm{IN}}(-)=2.048 \mathrm{~V}$	$\pm 1 / 2$	± 2	LSB (max)
	DC Common Mode Error	After Auto-Cal (Note 15)	± 2		LSB (max)
TUE	Total Unadjusted Error	After Auto-Cal (Notes 12, 13 and 14)	± 1		LSB

Converter Electrical Characteristics

The following specifications apply for $\left(\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=+4.096 \mathrm{~V}\right.$, and fully differential input with fixed 2.048 V common-mode voltage) or $\left(\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=+2.5 \mathrm{~V}\right.$ and fully-differential input with fixed 1.250 V common-mode voltage), $\mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{OV}, 12$-bit + sign conversion mode, source impedance for analog inputs, $\mathrm{V}_{\mathrm{REF}}{ }^{-}$and $\mathrm{V}_{\mathrm{REF}}{ }^{+} \leq 25 \Omega, \mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=5 \mathrm{MHz}$, and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified. Boldfade limits apply for $\mathrm{T}_{\mathbf{A}}$ $=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Notes 7, 8 and 9) (Continued)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)
STATIC CONVERTER CHARACTERISTICS (Continued)					
	Multiplexer Channel to Channel Matching		± 0.05		LSB
	Power Supply Sensitivity Offset Error + Full-Scale Error - Full-Scale Error + Integral Linearity Error - Integral Linearity Error	$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V} \pm 10 \% \\ & \mathrm{~V}_{\mathrm{REF}}=+4.096 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.5 \end{aligned}$		$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$

UNIPOLAR DYNAMIC CONVERTER CHARACTERISTICS

$\mathrm{S} /(\mathrm{N}+\mathrm{D})$	Signal-to-Noise Plus Distortion Ratio	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}_{\mathrm{PP}}, \mathrm{~V}_{\mathrm{REF}^{+}}=5.0 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}_{\mathrm{PP}}, \mathrm{~V}_{\text {REF }}+=5.0 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{IN}}=40 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}_{\mathrm{PP}}, \mathrm{~V}_{\text {REF }}+=5.0 \mathrm{~V} \end{aligned}$	69.4 68.3 65.7	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
	-3 dB Full Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ PP, where $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ drops 3 dB	31	kHz

DIFFERENTIAL DYNAMIC CONVERTER CHARACTERISTICS

S/(N+D)	Signal-to-Noise Plus Distortion Ratio	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}^{+}}=5.0 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}^{+}}=5.0 \mathrm{~V} \\ & \mathrm{fiN}_{\mathrm{IN}}=40 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}^{+}}=5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 77.0 \\ & 73.9 \\ & 67.0 \\ & \hline \end{aligned}$	dB dB dB
	-3 dB Full Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}= \pm 5 \mathrm{~V}$, where $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ drops 3 dB	40	kHz

Electrical Characteristics

The following specifications apply for $\left(\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=+4.096 \mathrm{~V}\right.$, and fully differential input with fixed 2.048 V common-mode voltage) or $\left(\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=2.5 \mathrm{~V}\right.$ and fully-differential input with fixed 1.250 V common-mode voltage), $\mathrm{V}_{\mathrm{REF}}{ }^{-}=0 \mathrm{~V}, 12$-bit + sign conversion mode, source impedance for analog inputs, $\mathrm{V}_{\mathrm{REF}}{ }^{-}$and $\mathrm{V}_{\mathrm{REF}}{ }^{+} \leq 25 \Omega$, $\mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{S K}=5 \mathrm{MHz}$, and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified. Boldfade limits apply for $\mathrm{T}_{\mathbf{A}}$ $=\mathbf{T}_{J}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {max }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. (Notes 7, 8 and 9)

Symbol	.. Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)

REFERENCE INPUT, ANALOG INPUTS AND MULTIPLEXER CHARACTERISTICS

$\mathrm{C}_{\text {REF }}$	Reference Input Capacitance		85		pF
$\mathrm{C}_{\text {A/D }}$	A/DIN1 and A/DIN2 Analog Input Capacitance		75		pF
	A/DIN1 and A/DIN2 Analog Input Leakage Current	$\begin{aligned} & V_{\mathrm{IN}}=+5.0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$	± 0.1		$\mu \mathrm{A}$
	$\mathrm{CHO}-\mathrm{CH} 7$ and COM Input Voltage		$\begin{aligned} & \mathbf{G N D}-0.05 \\ & \mathbf{V}_{\mathbf{A}}++\mathbf{0 . 0 5} \end{aligned}$		V
C_{CH}	$\mathrm{CH} 0-\mathrm{CH} 7$ and COM Input Capacitance		10		pF
$\mathrm{C}_{\text {MUXOUT }}$	MUX Output Capacitance		20		pF
	Off Channel Leakage (Note 16) $\mathrm{CHO}-\mathrm{CH} 7$ and COM Pins	$\begin{aligned} & \text { On Channel }=5 \mathrm{~V} \text { and } \\ & \text { Off Channel }=0 \mathrm{~V} \end{aligned}$	-0.01	-	$\mu \mathrm{A}$
		$\begin{aligned} & \text { On Channel }=0 \mathrm{~V} \text { and } \\ & \text { Off Channel }=5 \mathrm{~V} \end{aligned}$	0.01		$\mu \mathrm{A}$
	On Channel Leakage (Note 16) $\mathrm{CHO}-\mathrm{CH} 7$ and COM Pins	$\begin{aligned} & \text { On Channel }=5 \mathrm{~V} \text { and } \\ & \text { Off Channel }=0 \mathrm{~V} \end{aligned}$	0.01		$\mu \mathrm{A}$
		$\begin{aligned} & \text { On Channel }=0 \mathrm{~V} \text { and } \\ & \text { Off Channel }=5 \mathrm{~V} \end{aligned}$	-0.01	-	$\mu \mathrm{A}$
	MUXOUT1 and MUXOUT2 Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {MUXOUT }}=5.0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {MUXOUT }}=0 \mathrm{~V} \end{aligned}$	0.01	-	$\mu \mathrm{A}$
R_{ON}	MUX On Resistance	$\begin{aligned} & V_{I N}=2.5 \mathrm{~V} \text { and } \\ & \mathrm{V}_{\text {MUXOUT }}=2.4 \mathrm{~V} \end{aligned}$	850	1900	Ω (max)
	RON Matching Channel to Channel	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ and $\mathrm{V}_{\text {MUXOUT }}=2.4 \mathrm{~V}$	5		\%
	Channel to Channel Crosstalk	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \mathrm{PP}, \mathrm{f}_{\mathrm{IN}}=40 \mathrm{kHz}$	-72		dB
	MUX Bandwidth		90		kHz

DC and Logic Electrical Characteristics

The following specifications apply for $\left(\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=+4.096 \mathrm{~V}\right.$, and fully-differential input with fixed 2.048 V common-mode voltage) or $\left(\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}^{+}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=+2.5 \mathrm{~V}\right.$ and fully-differential input with fixed 1.250 V common-mode voltage), $\mathrm{V}_{\mathrm{REF}}{ }^{-}=0 \mathrm{~V}, 12$-bit + sign conversion mode, source impedance for analog inputs, $\mathrm{V}_{\mathrm{REF}}{ }^{-}$ and $\mathrm{V}_{\text {REF }}{ }^{+} \leq 25 \Omega$, $\mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=5 \mathrm{MHz}$, and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified. Boldfade limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Notes 7, 8 and 9)

Symbol	Parameter	Conditions	Typical (Note 10)	$\begin{gathered} \mathbf{V}+=\mathbf{V}_{\mathbf{A}}{ }^{+}= \\ \mathbf{V}_{\mathbf{D}}{ }^{+}=3.3 \mathbf{V} \end{gathered}$	$\begin{gathered} \mathbf{V}^{+}=\mathbf{V}_{\mathbf{A}}^{+}= \\ \mathbf{V}_{\mathbf{D}}{ }^{+}=5 \mathbf{V} \end{gathered}$	Units (Limits)
				Limits (Note 11)	Limits (Note 11)	
CCLK, $\overline{\text { CS }}$, CONV, DI, PD AND SCLK INPUT CHARACTERISTICS						
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}^{+}}=\mathrm{V}^{+}+10 \%$		2.0	2.0	$V(\min)$
$\mathrm{V}_{\text {IN(0) }}$	Logical "0" Input Voltage	$\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}^{+}{ }^{+}=\mathrm{V}^{+}-10 \%$		0.8	0.8	$V(\max)$
$\ln (1)$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}+$	0.005	1.0	1.0	$\mu \mathrm{A}$ (max)
IIN(0)	Logical "0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-1.0	-1.0	$\mu \mathrm{A}$ (min)

DO, EOC AND $\overline{\text { DOR }}$ DIGITAL OUTPUT CHARACTERISTICS

$\mathrm{V}_{\text {OUT(1) }}$	Logical " 1 " Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=\mathrm{V}^{+}-10 \%, \\ & \text { IOUT }=-360 \mu \mathrm{~A} \end{aligned}$		2.4	2.4	$V(\min)$
		$\begin{aligned} & \mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=\mathrm{V}^{+}-10 \%, \\ & \mathrm{IOUT}=-10 \mu \mathrm{~A} \end{aligned}$		2.9	4.25	$V(\min)$
$\mathrm{V}_{\text {OUT }}(0)$	Logical " 0 " Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=\mathrm{V}^{+}-10 \% \\ & \mathrm{l} \text { OUT }=1.6 \mathrm{~mA} \end{aligned}$		0.4	0.4	V (max)
lout	TRI-STATE Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}+ \end{aligned}$	$\begin{aligned} & -0.1 \\ & -0.1 \end{aligned}$	$\begin{gathered} -3.0 \\ 3.0 \\ \hline \end{gathered}$	$\begin{gathered} -3.0 \\ 3.0 \end{gathered}$	$\mu \mathrm{A}$ (max)
$+{ }_{\text {ISC }}$	Output Short Circuit Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-14			mA
${ }^{-1} \mathrm{SC}$	Output Short Circuit Sink Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {D }}{ }^{+}$	16			mA

POWER SUPPLY CHARACTERISTICS

I^{+}	Digital Supply Current	$\overline{\mathrm{CS}}=\mathrm{HIGH}$, Powered Down, CCLK on $\overline{\mathrm{CS}}=$ HIGH, Powered Down, CCLK off	$\begin{gathered} 600 \\ 20 \end{gathered}$	1.5	2.5	$\begin{gathered} m A(\max) \\ \mu A \\ \mu A \end{gathered}$
$I_{A}+$	Positive Analog Supply Current	$\overline{\mathrm{CS}}=\mathrm{HIGH}$, Powered Down, CCLK on $\overline{\mathrm{CS}}=\mathrm{HIGH}$, Powered Down, CCLK off	$\begin{aligned} & 10 \\ & 0.1 \end{aligned}$	3.0	4.0	$\begin{gathered} \mathrm{mA}(\max) \\ \mu \mathrm{A} \\ \mu \mathrm{~A} \\ \hline \end{gathered}$
$I_{\text {REF }}$	Reference Input Current	$\overline{\mathrm{CS}}=\mathrm{HIGH}$, Powered Down, CCLK on $\overline{\mathrm{CS}}=$ HIGH, Powered Down, CCLK off	$\begin{aligned} & 70 \\ & 0.1 \end{aligned}$			$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

AC Electrical Characteristics

The following specifications apply for $\left(\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=+4.096 \mathrm{~V}\right.$ ，and fully－differential input with fixed 2.048 V common－mode voltage）or（ $\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}^{+}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=+2.5 \mathrm{~V}$ and fully－differential input with fixed 1．250V common－mode voltage）， $\mathrm{V}_{\text {REF }}{ }^{-}=0 \mathrm{~V}, 12$－bit + sign conversion mode，source impedance for analog inputs， $\mathrm{V}_{\text {REF }}{ }^{-}$ and $\mathrm{V}_{\text {REF }}{ }^{+} \leq 25 \Omega$ ， $\mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=5 \mathrm{MHz}$ ，and $10\left(\mathrm{t}_{\mathrm{CK}}\right)$ acquisition time unless otherwise specified．Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$ all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$ ．（Note 17）

Symbol	Parameter	Conditions	Typical （Note 10）	Limits （Note 11）	Units （Limits）
f_{CK}	Conversion Clock （CCLK）Frequency		$\begin{gathered} 10 \\ 1 \end{gathered}$	5	MHz （max） MHz （min）
f_{SK}	Serial Data Clock SCLK Frequency		$\begin{gathered} 10 \\ 0 \\ \hline \end{gathered}$	5	$\begin{gathered} \mathrm{MHz}(\max) \\ \mathrm{Hz}(\min) \end{gathered}$
	Conversion Clock Duty Cycle			$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\%$（min） \％（max）
	Serial Data Clock Duty Cycle			$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\%$（min） \％（max）
${ }^{\text {t }}$	Conversion Time	12－Bit＋Sign or 12－Bit	44（tek）	44（tek）	（max）
				8.8	μs（max）
t_{A}	Acquisition Time （Note 19）	6 Cycles Programmed	6（tck）	6（tcK） 7（ $\mathbf{t}_{\text {CK }}$ ）	$\begin{aligned} & (\min) \\ & (\max) \end{aligned}$
				$\begin{aligned} & 1.2 \\ & 1.4 \\ & \hline \end{aligned}$	$\mu \mathrm{s}$（min） $\mu \mathrm{s}$（max）
		10 Cycles Programmed	10（tck）	10（tek） 11（tck）	$\begin{aligned} & (\min) \\ & (\max) \end{aligned}$
				$\begin{array}{r} 2.0 \\ 2.2 \\ \hline \end{array}$	$\mu \mathrm{s}$（min） μs（max）
		18 Cycles Programmed	18（tck）	$\begin{aligned} & 18\left(t_{C K}\right) \\ & 19\left(t_{C K}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & (\min) \\ & (\max) \end{aligned}$
				$\begin{aligned} & 3.6 \\ & 3.8 \\ & \hline \end{aligned}$	$\mu \mathrm{s}$（min） $\mu \mathrm{s}$（max）
		34 Cycles Programmed	34（tck）	$\begin{aligned} & \text { 34(tcK) } \\ & \text { 35(t. } \end{aligned}$	$\begin{aligned} & (\min) \\ & (\max) \end{aligned}$
				$\begin{aligned} & 6.8 \\ & 7.0 \\ & \hline \end{aligned}$	$\mu \mathrm{S}$（min） $\mu \mathrm{S}$（max）
${ }^{\text {t }}$ CAL	Self－Calibration Time		4944（t⿳⺈⿴囗十大⿱二小欠）	4944（tck）	（max）
				988.8	$\mu \mathrm{S}$（max）
$t_{A Z}$	Auto－Zero Time		76（tck）	76（tek）	（max）
				15.2	$\mu \mathrm{S}$（max）
tsYnc	Self－Calibration or Auto－Zero Synchronization Time from DOR	．．	$2\left(\mathrm{t}_{\mathrm{CK}}\right)$	$\begin{aligned} & 2\left(t_{C K}\right) \\ & 3\left(t_{C K}\right) \\ & \hline \end{aligned}$	$\begin{array}{r} (\min) \\ \quad(\max) \\ \hline \end{array}$
				$\begin{aligned} & 0.40 \\ & 0.60 \end{aligned}$	$\mu \mathrm{S}$（min） $\mu \mathrm{s}$（max）
toor	DOR High Time when $\overline{C S}$ is Low Continuously for Read Data and Software Power Up／Down		$9\left(\mathrm{t}_{\text {SK }}\right)$	9（tsk）	（max）
				1.8	$\mu \mathrm{s}$（max）
tCONV	CONV Valid Data Time		8（tsk）	8（tsk）	（max）
				1.6	μs（max）

AC Electrical Characteristics

The following specifications apply for $\left(\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=+4.096 \mathrm{~V}\right.$, and fully-differential input with fixed 2.048 V common-mode voltage) or ($\mathrm{V}^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}^{+}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=+2.5 \mathrm{~V}$ and fully-differential input with fixed 1.250 V common-mode voltage), $\mathrm{V}_{\mathrm{REF}}{ }^{-}=0 \mathrm{~V}, 12$-bit + sign conversion mode, source impedance for analog inputs, $\mathrm{V}_{\mathrm{REF}}{ }^{-}$ and $\mathrm{V}_{\text {REF }}{ }^{+} \leq 25 \Omega$, $\mathrm{f}_{\mathrm{CK}}=\mathrm{f}_{\mathrm{SK}}=5 \mathrm{MHz}$, and 10 (t_{CK}) acquisition time unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Note 17) (Continued)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)
$\mathrm{t}_{\text {HPU }}$	Hardware Power-Up Time, Time from PD Falling Edge to EOC Rising Edge		500	700	$\mu \mathrm{S}$ (max)
${ }^{\text {t }}$ SPU	Software Power-Up Time, Time from Serial Data Clock Falling Edge to EOC Rising Edge		500	700	$\mu \mathrm{S}$ (max)
$\mathrm{t}_{\mathrm{ACC}}$	Access Time Delay from $\overline{\mathrm{CS}}$ Falling Edge to DO Data Valid		25	60	ns (max)
tset-up	Set-Up Time of $\overline{C S}$ Falling Edge to Serial Data Clock Rising Edge			50	$n \mathrm{~ns}$ (min)
$\mathrm{t}_{\text {deLay }}$	Delay from SCLK Falling Edge to $\overline{\mathrm{CS}}$ Falling Edge		0	5	$n s$ (min)
$t_{1 H}, t_{0 H}$	Delay from $\overline{\text { CS }}$ Rising Edge to DO TRI-STATE ${ }^{\circledR}$	$R_{L}=3 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	70	100	ns (max)
$\mathrm{t}_{\mathrm{HDI}}$	DI Hold Time from Serial Data Clock Rising Edge		5	15	ns (min)
${ }^{\text {tSDI }}$	DI Set-Up Time from Serial Data Clock Rising Edge		5	10	$n s$ (min)
$\mathrm{t}_{\mathrm{HDO}}$	DO Hold Time from Serial Data Clock Falling Edge	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	35	$\begin{gathered} 65 \\ 5 \\ \hline \end{gathered}$	ns (max) ns (min)
${ }^{\text {t }}$ DDO	Delay from Serial Data Clock Falling Edge to DO Data Valid		50	90	ns (max)
$t_{\text {RDO }}$	DO Rise Time, TRI-STATE to High DO Rise Time, Low to High	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & \hline \end{aligned}$	ns (max) ns (max)
$\mathrm{t}_{\text {FDO }}$	DO Fall Time, TRI-STATE to Low DO Fall Time, High to Low	$R_{L}=3 k, C_{L}=100 \mathrm{pF}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	ns (max) ns (max)
${ }^{\text {t }}$ CD	Delay from $\overline{\mathrm{CS}}$ Falling Edge to $\overline{\text { DOR }}$ Falling Edge		45	80	ns (max)
${ }^{\text {t }}$ S	Delay from Serial Data Clock Falling Edge to $\overline{\text { DOR }}$ Rising Edge		45	80	ns (max)
C_{IN}	Capacitance of Logic Inputs		10		pF
COUT	Capacitance of Logic Outputs		20		pF

AC Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: When the input voltage (V_{IN}) at any pin exceeds the power supplies ($\mathrm{V}_{\mathrm{IN}}<\mathrm{GND}$ or $\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{A}{ }^{+}$or $\mathrm{V}_{D^{+}}$), the current at that pin should be limited to 30 mA . The 120 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 30 mA to four.

Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\mathrm{Jmax}}, \theta_{\mathrm{JA}}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J} m a x-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $T_{J} \max =150^{\circ} \mathrm{C}$. The typical thermal resistance $\left(\Theta_{\mathrm{JA}}\right)$ of these parts when board mounted follow:

Part Number	Thermal Resistance $\theta_{\text {JA }}$
ADC12130CIN	$53^{\circ} \mathrm{C} / \mathrm{W}$
ADC12130CIWM	$70^{\circ} \mathrm{C} / \mathrm{W}$
ADC12132CIMSA	$134^{\circ} \mathrm{C} / \mathrm{W}$
ADC12138CIN	$40^{\circ} \mathrm{C} / \mathrm{W}$
ADC12138CIWM	$50^{\circ} \mathrm{C} / \mathrm{W}$
ADC12138CIMSA	$125^{\circ} \mathrm{C} / \mathrm{W}$

Note 5: The human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin.
Note 6: See AN450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in any post 1986 National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Note 7: Two on-chip diodes are tied to each analog input through a series resistor as shown below. Input voltage magnitude up to 5 V above $\mathrm{V}_{\mathrm{A}}{ }^{+}$or 5 V below GND will not damage this device. However, errors in the A/D conversion can occur (if these diodes are forward biased by more than 50 mV) if the input voltage magnitude of selected or unselected analog input go above $\mathrm{V}_{A^{+}}$or below $G N D$ by more than 50 mV . As an example, if $\mathrm{V}_{\mathrm{A}}{ }^{+}$is $4.5 \mathrm{~V}_{\mathrm{DC}}$, full-scale input voltage must be $\leq 4.55 \mathrm{~V}_{\mathrm{DC}}$ to ensure accurate conversions.

TL/H/12079-4
Note 8: To guarantee accuracy, it is required that the $V_{A}{ }^{+}$and $V_{D}+$ be connected together to the same power supply with separate bypass capacitors at each V^{+} pin.
Note 9: With the test condition for $\mathrm{V}_{\mathrm{REF}}\left(\mathrm{V}_{\mathrm{REF}}{ }^{+}-\mathrm{V}_{\mathrm{REF}}{ }^{-}\right)$given as +4.096 V , the 12 -bit LSB is 1.0 mV . For $\mathrm{V}_{\mathrm{REF}}=2.5 \mathrm{~V}$, the 12 -bit LSB is $610 \mu \mathrm{~V}$.
Note 10: Typicals are at $T_{J}=T_{A}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 11: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 12: Positive integral linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line that passes through positive fullscale and zero. For negative integral linearity error, the straight line passes through negative full-scale and zero (see Figures 16 and 1c).
Note 13: Zero error is a measure of the deviation from the mid-scale voltage (a code of zero), expressed in LSB. It is the average value of the code transitions between -1 to 0 and 0 to +1 (see Figure 2).
Note 14: Total unadjusted error includes offset, full-scale, linearity and multiplexer errors.
Note 15: The DC common-mode error is measured in the differential multiplexer mode with the assigned positive and negative input channels shorted together. Note 16: Channel leakage current is measured after the channel selection.
Note 17: Timing specifications are tested at the TTL logic levels, $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ for a falling edge and $\mathrm{V}_{\mathrm{OL}}=2.4 \mathrm{~V}$ for a rising edge. TRI-STATE output voltage is forced to 1.4 V .
Note 18: The ADC12130 family's self-calibration technique ensures linearity and offset errors as specified, but noise inherent in the self-calibration process will result in a maximum repeatability uncertainty of 0.2 LSB.
Note 19: If SCLK and CCLK are driven from the same clock source, then t_{A} is $6,10,18$ or 34 clock periods minimum and maximum.
Note 20: The "12-Bit Conversion of Offset" and "12-Bit Conversion of Full-Scale" modes are intended to test the functionality of the device. Therefore, the output data from these modes are not an indication of the accuracy of a conversion result.

AC Electrical Characteristics (Continued)

FIGURE 1a. Transfer Characteristic

TL/H/12079-6
FIGURE 1b. Simplified Error Curve vs Output Code without Auto-Calibration or Auto-Zero Cycles

AC Electrical Characteristics (Continued)

FIGURE 1c. Simplified Error Curve vs Output Code after Auto-Callbration Cycle

FIGURE 2. Offset or Zero Error Voltage

Typical Performance Characteristics

The following curves apply for 12-bit + sign mode after auto-calibration unless otherwise specified.

Full-Scale Error Change vs Reference Voltage

Full-Scale Error Change vs Supply Voltage

Zero Error Change vs Reference Voltage

Full-Scale Error Change vs Temperature

Zero Error Change vs Clock Frequency

Typical Performance Characteristics

The following curves apply for 12-bit + sign mode after auto-calibration unless otherwise specified. (Continued)

Linearity Error Change vs Temperature

Zero Error Change vs Temperature

Digital Supply Current vs Clock Frequency

Full-Scale Error Change vs Temperature

Zero Error Change vs Supply Voltage

Digital Supply Current vs Temperature

Digital Supply Current vs Temperature

TL/H/12079-10

Analog Supply Current vs Temperature

Typical Dynamic Performance Characteristics

The following curves apply for 12 -bit + sign mode after auto-calibration unless otherwise specified.

Bipolar Spectral Response with 30 kHz Sine Wave Input

Bipolar Spectral Response with 10 kHz Sine Wave Input

Bipolar Spectral Response with $\mathbf{4 0} \mathbf{~ k H z}$ Sine Wave Input

Bipolar Spectral Response with 20 kHz Sine Wave Input

Bipolar Spectral Response with $\mathbf{5 0} \mathbf{~ k H z}$ Sine Wave Input

TL/H/12079-11

Typical Dynamic Performance Characteristics

The following curves apply for 12-bit + sign mode after auto-calibration unless otherwise specified. (Continued)

Test Circuits

Leakage Current

TL/H/12079-15

Timing Diagrams

DO "TRI-STATE" Falling and Rising Edge

TL/H/12079-17

Timing Diagrams (Continued)

TL/H/12079-19

TL/H/12079-20
ADC12138 Auto Cal or Auto Zero

TL/H/12079-21
Note: DO output data is not valid during this cycle.

Timing Diagrams (Continued)

Timing Diagrams (Continued)
ADC12138 Conversion Using $\overline{\text { CS }}$ with 16-Bit Digital Output Format

TL/H/12079-24

ADC12138 Conversion with CS Continuously Low and 16-Bit Digital Output Format

TL/H/12079-25

Timing Diagrams (Continued)

TL/H/12079-26

ADC12138 Software Power Up/Down with CS Continuously Low and 16-Bit Digital Output Format

Timing Diagrams (Continued)

ADC12138 Hardware Power Up/Down

TL/H/12079-28
Note: Hardware power up/down may occur at any time. If PD is high while a conversion is in progress that conversion will be corrupted and erroneous data will be stored in the output shift register.

Pin Descriptions

CCLK The clock applied to this input controls the sucessive approximation conversion time interval and the acquisition time. The rise and fall times of the clock edges should not exceed $1 \mu \mathrm{~s}$.
SCLK This is the serial data clock input. The clock applied to this input controls the rate at which the serial data exchange occurs. The rising edge loads the information on the DI pin into the multiplexer address and mode select shift register. This address controls which channel of the analog input multiplexer (MUX) is selected and the mode of operation for the A/D. With $\overline{C S}$ low, the falling edge of SCLK shifts the data resulting from the previous ADC conversion out on DO, with the exception of the first bit of data. When $\overline{\mathrm{CS}}$ is low continuously, the first bit of the data is clocked out on the rising edge of EOC (end of conversion). When $\overline{C S}$ is toggled, the falling edge of $\overline{C S}$ always clocks out the first bit of data. CS should be brought low when SCLK is low. The rise and fall times of the clock edges should not exceed $1 \mu \mathrm{~s}$.
DI This is the serial data input pin. The data applied to this pin is shifted by the rising edge of SCLK into the multiplexer address and mode select register. Tables II through IV show the assignment of the multiplexer address and the mode select data.
DO The data output pin. This pin is an active push/ pull output when $\overline{\mathrm{CS}}$ is low. When $\overline{\mathrm{CS}}$ is high, this output is TRI-STATE. The A/D conversion result (DB0-DB12) and converter status data are clocked out by the falling edge of SCLK on this pin. The word length and format of this result can vary (see Table I). The word length and format are controlled by the data shifted into the multiplexer address and mode select register (see Table IV).
EOC This pin is an active push/pull output and indicates the status of the ADC12130/2/8. When low, it signals that the A/D is busy with a conversion, auto-calibration, auto-zero or power down cycle. The rising edge of EOC signals the end of one of these cycles.
This is the chip select pin. When a logic low is applied to this pin, the rising edge of SCLK shifts the data on DI into the address register. This low also brings DO out of TRI-STATE. With $\overline{C S}$ low, the falling edge of SCLK shifts the data resulting from the previous ADC conversion out on DO, with the exception of the first bit of data. When $\overline{\mathrm{CS}}$ is low continuously, the first bit of the data is clocked out on the rising edge of EOC (end of conversion). When $\overline{\mathrm{CS}}$ is toggled, the falling edge of $\overline{C S}$ always clocks out the first bit of data. $\overline{\mathrm{CS}}$ should be brought low when SCLK is low. The falling edge of $\overline{\mathrm{CS}}$ resets a conversion in progress and starts the sequence for a new conversion. When $\overline{C S}$ is brought back low during a conversion, that conversion is prematurely terminated. The data in the output latches may be corrupted. Therefore, when CS is brought back low during a conversion in progress the data output at that
time should be ignored. $\overline{\mathrm{CS}}$ may also be left continuously low. In this case it is imperative that the correct number of SCLK pulses be applied to the ADC in order to remain synchronous. After the ADC supply power is applied it expects to see 13 clock pulses for each I/O sequence. The number of clock pulses the ADC expects is the same as the digital output word length. This word length can be modified by the data shifted in on the DO pin. Table IV details the data required.
$\overline{D O R} \quad$ This is the data output ready pin. This pin is an active push/pull output. It is low when the conversion result is being shifted out and goes high to signal that all the data has been shifted out.
CONV A logic low is required on this pin to program any mode or change the ADC's configuration as listed in the Mode Programming Table (Table IV) such as 12 -bit conversion, Auto Cal, Auto Zero etc. When this pin is high the ADC is placed in the read data only mode. While in the read data only mode, bringing CS low and pulsing SCLK will only clock out on DO any data stored in the ADCs output shift register. The data on DI will be neglected. A new conversion will not be started and the ADC will remain in the mode and/or configuration previously programmed. Read data only cannot be performed while a conversion, Auto-Cal or Auto-Zero are in progress.
PD This is the power down pin. When PD is high the A/D is powered down; when PD is low the A/D is powered up. The A/D takes a maximum of $700 \mu \mathrm{~s}$ to power up after the command is given.
$\mathrm{CHO}-\mathrm{CH} 7$ These are the analog inputs of the MUX. A channel input is selected by the address information at the DI pin, which is loaded on the rising edge of SCLK into the address register (see Tables II and III).
The voltage applied to these inputs should not exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$or go below GND. Exceeding this range on an unselected channel will corrupt the reading of a selected channel.
COM This pin is another analog input pin. It is used as a pseudo ground when the analog multiplexer is single-ended.
MUXOUT1, These are the multiplexer output pins. MUXOUT2
A/DIN1, These are the converter input pins. MUXOUT1 A/DIN2 is usually tied to A/DIN1. MUXOUT2 is usually tied to A/DIN2. If external circuitry is placed between MUXOUT1 and A/DIN1, or MUXOUT2 and A/DIN2 it may be necessary to protect these pins. The voltage at these pins should not exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$or go below AGND (see Figure 3).
$\mathrm{V}_{\mathrm{REF}}{ }^{+} \quad$ This is the positive analog voltage reference input. In order to maintain accuracy, the voltage range of $\mathrm{V}_{\mathrm{REF}}\left(\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{REF}}{ }^{+}-\mathrm{V}_{\mathrm{REF}}{ }^{-}\right)$is $1 \mathrm{~V}_{\mathrm{DC}}$ to $5.0 \mathrm{~V}_{\mathrm{DC}}$ and the voltage at $\mathrm{V}_{\mathrm{REF}}{ }^{+}$ cannot exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$. See Figure 4 for recommended bypassing.

Pin Descriptions (Continued)
$\mathrm{V}_{\mathrm{REF}}{ }^{-} \quad$ The negative voltage reference input. In order to maintain accuracy, the voltage at this pin must not go below GND or exceed $\mathrm{V}_{\mathrm{A}}{ }^{+}$. (See Figure 4).
$\mathrm{V}_{\mathrm{A}}{ }^{+}, \mathrm{V}_{\mathrm{D}}{ }^{+}$These are the analog and digital power supply pins. $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$are not connected together on the chip. These pins should be tied to the same power supply and bypassed separately (see Figure 4). The operating voltage range of $\mathrm{V}_{\mathrm{A}}+$ and $\mathrm{V}_{\mathrm{D}}{ }^{+}$is $3.0 \mathrm{~V}_{\mathrm{DC}}$ to $5.5 \mathrm{~V}_{\mathrm{DC}}$.
DGND This is the digital ground pin (see Figure 4).
AGND This is the analog ground pin (see Figure 4).

TL/H/12079-30
FIGURE 3. Protecting the MUXOUT1, MUXOUT2, A/DIN1 and A/DIN2 Analog Pins

TL/H/12079-31
*Tantalum
**Monolithic Ceramic or better
FIGURE 4. Recommended Power Supply Bypassing and Grounding

TablesTABLE I. Data Out Formats																			
DO Formats			DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8	DB9	DB10	DB11	DB12	DB13	DB14	DB15	DB16
with Sign	MSB First	17 Bits	X	X	X	X	Sign	MSB	10	9	8	7	6	5	4	3	2	1	LSB
		$\begin{gathered} 13 \\ \text { Bits } \end{gathered}$	Sign	MSB	10	9	8	7	6	5	4	3	2	1	LSB				
	$\begin{aligned} & \text { LSB } \\ & \text { First } \end{aligned}$	17 Bits	LSB	1	2	3	4	5	6	7	8	9	10	MSB	Sign	X	X	X	X
		$\begin{array}{\|c\|} \hline 13 \\ \text { Bits } \\ \hline \end{array}$	LSB	1	2	3	4	5	6	7	8	9	10	MSB	Sign				
without Sign	MSB First	$\left\|\begin{array}{c} 16 \\ \text { Bits } \end{array}\right\|$	0	0	0	0	MSB	10	9	8	7	6	5	4	3	2	1	LSB	
		$\begin{array}{\|c\|} \hline 12 \\ \text { Bits } \\ \hline \end{array}$	MSB	10	9	8	7	6	5	4	3	2	1	LSB					
	LSB First	16 Bits 12	LSB	1	2	3	4	5	6	7	8	9	10	MSB	0	0	0	0	
		$\begin{array}{\|c\|} 12 \\ \text { Bits } \\ \hline \end{array}$	LSB	1	2	3	4	5	6	7	8	9	10	MSB					

TABLE II. ADC12138 Multiplexer Addressing

MUX Address				Analog Channel Addressed and Assignment with A/DIN1 tied to MUXOUT1 and A/DIN2 tied to MUXOUT2									A/D Input Polarity Assignment		Multiplexer Output Channel Assignment		Mode
DIO	DI1	DI2	D13	CHO	CH1	CH2	CH3	CH4	CH5	CH6	CH7	COM	A/DIN1	A/DIN2	MUXOUT1	MUXOUT2	
L	L	L	L	+	-								+	-	CHO	CH 1	
L	L	L	H			+	-						+	-	CH2	CH 3	
L	L	H	L					$+$	-				+	-	CH 4	CH5	
L	L	H	H							+	-		+	-	CH6	CH 7	Differential
L	H	L	L	-	+								-	$+$	CHO	CH 1	Differential
L	H	L	H			-	+						-	$+$	CH 2	CH3	
L	H	H	L					-	$+$				-	+	CH 4	CH5	
L	H	H	H							-	+		-	+	CH6	CH7	
H	L	L	L	$+$								-	+	-	CHO	COM	
H	L	L	H			$+$						-	+	-	CH2	COM	
H	L	H	L					$+$				-	+	-	CH 4	COM	
H	L	H	H							+		-	$+$	-	CH6	COM	
H	H	L	L		+							-	+	-	CH 1	COM	Single-Ended
H	H	L	H				+					-	+	-	CH3	COM	
H	H	H	L						+			-	+	-	CH5	COM	
H	H	H	H								+	-	+	-	CH7	COM	

Tables (Continued)
TABLE III. ADC12130 and ADC12132 Multiplexer Addressing

MUX Address		Analog Channel Addressed and Assignment with A/DIN1 tied to MUXOUT1 and A/DIN2 tied to MUXOUT2							

Note: ADC12130 do not have A/DIN1, A/DIN2, MUXOUT1 and MUXOUT2 pins.
TABLE IV. Mode Programming

ADC12138	DIO	DI1	DI2	DI3	D14	DI5	DI6	DI7	Mode Selected (Current)	DO Format (next Conversion Cycle)
$\begin{aligned} & \text { ADC12130 } \\ & \text { and } \\ & \text { ADC12132 } \end{aligned}$	DIO	DI1			DI2	DI3	DI4	DI5		
	See Tables II or III				L	L	L	L	12 Bit Conversion	12 or 13 Bit MSB First
	See Tables II or III				L	L	L	H	12 Bit Conversion	16 or 17 Bit MSB First
	See Tables II or III				L	H	L	L	12 Bit Conversion	12 or 13 Bit LSB First
	See Tables II or III				L	H	L	H	: 12 Bit Conversion	16 or 17 Bit LSB First
	L	L	L	L	H	L	L	L	Auto Cal	No Change
	L	L	L	L	H	L	L	H	Auto Zero	No Change
	L	L	L	L	H	L	H	L	Power Up	No Change
	L	L	L	L	H	L	H	H	Power Down	No Change
	L	L	L	L	H	H	L	L	Read Status Register (LSB First)	No Change
	L	L	L	L	H	H	L	H	Data Out without Sign	No Change
	H	L	L	L	H	H	L	H	Data Out with Sign	No Change
	L	L	L	L	H	H	H	L	Acquisition Time-6 CCLK Cycles	No Change
	L	H	L	L	H	H	H	L	Acquisition Time-10 CCLK Cycles	No Change
	H	L	L	L	H	H	H	L	Acquisition Time-18 CCLK Cycles	No Change
	H	H	L	L	H	H	H	L	Acquisition Time-34 CCLK Cycles	No Change
	L	L	L	L	H	H	H	H	User Mode	No Change
	H	X	X	X	H	H	H	H	Test Mode (CH1-CH7 become Active Outputs)	No Change

Note: The A/D powers up with no Auto Cal, no Auto Zero, 10 CCLK acquisition time, 12-bit + sign conversion, power up, 12- or 13-bit MSB First, and user mode. X = Don't Care

TABLE V. Conversion/Read Data Only Mode Programming

$\overline{\mathbf{C S}}$	$\overline{\mathbf{C O N V}}$	PD	Mode
L	L	L	See Table IV for Mode
L	H	L	Read Only (Previous DO Format). No Conversion.
H	X	L	Idle
X	X	H	Power Down

$X=$ Don't Care

Tables (Continued)

TABLE VI. Status Register

Status Bit Location	DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8
Status Bit	PU	PD	Cal		12 or 13	16 or 17	Sign	Justification	Test Mode
	Device Status			DO Output Format Status					
Function	"High" indicates a Power Up Sequence is in progress	"High" indicates a Power Down Sequence is in progress	"High" indicates an Auto-Cal Sequence is in progress	Not used	$\|$"High" indicates a 12 or 13 bit format	"High" indicates a 16 or 17 bit format	"High" indicates that the sign bit is included. When "Low" the sign bit is not included.	When "High" the conversion result will be output MSB first. When "Low" the result will be output LSB first.	When "High" the device is in test mode. When "Low" the device is in user mode.

Application Hints

1.0 DIGITAL INTERFACE

1.1 Interface Concepts

The example in Figure 5 shows a typical sequence of events after the power is applied to the ADC12130/2/8:

FIGURE 5. Typical Power Supply Power Up Sequence
The first instruction input to the A/D via DI initiates Auto Cal. The data output on DO at that time is meaningless and is completely random. To determine whether the Auto Cal has been completed, a read status instruction is issued to the A/D. Again the data output at that time has no significance since the Auto Cal procedure modifies the data in the output shift register. To retrieve the status information, an additional read status instruction is issued to the A/D. At this time the status data is available on DO. If the Cal signal in the status word, is low Auto Cal has been completed. Therefore, the next instruction issued can start a conversion. The data output at this time is again status information. To keep noise from corrupting the A/D conversion, status can not be read during a conversion. If $\overline{\mathrm{CS}}$ is strobed and is brought low during a conversion, that conversion is prematurely ended. EOC can be used to determine the end of a conversion or the A/D controller can keep track in software of when it would be appropriate to comnmunicate to the A/D again. Once it has been determined that the A/D has completed a conversion, another instruction can be transmitted to the A / D. The data from this conversion can be accessed when the next instruction is issued to the A / D.
Note, when $\overline{\mathrm{CS}}$ is low continuously it is important to transmit the exact number of SCLK cycles, as shown in the timing diagrams. The Data Out Format sets the number of SCLK cycles required in the next I/O cycle. A 12-bit no sign format will require 12 SCLKs to be transmitted; a 12-bit plus sign format will require 13 SCLKs to be transmitted, etc. Not doing so will desynchronize the serial communication to the A/D. (See Section 1.3.)

1.2 Changing Configuration

The configuration of the ADC12130/2/8 on power up defaults to 12 -bit plus sign resolution, 12- or 13-bit MSB First, 10 CCLK acquisition time, user mode, no Auto Cal, no Auto Zero, and power up mode. Changing the acquisition time and turning the sign bit on and off requires an 8-bit instruction to be issued to the ADC. This instruction will not start a conversion. The instructions that select a multiplexer address and format the output data do start a conversion. Figure 6 describes an example of changing the configuration of the ADC12130/2/8.
During I/O sequence 1 , the instruction on DI configures the ADC12130/2/8 to do a conversion with 12-bit + sign resolution. Notice that when the 6 CCLK Acquisition and Data Out without Sign instructions are issued to the ADC, I/O sequences 2 and 3, a new conversion is not started. The data output during these instructions is from conversion N which was started during I/O sequence 1. The Configuration Modification timing diagram describes in detail the sequence of events necessary for a Data Out without Sign, Data Out with Sign, or 6/10/18/34 CCLK Acquisition time mode selection. Table IV describes the actual data necessary to be input to the ADC to accomplish this configuration modification. The next instruction, shown in Figure 6, issued to the A/D starts conversion N+1 with 16-bit format with 12 bits of resolution formatted MSB first. Again the data output during this I/O cycle is the data from conversion N .
The number of SCLKs applied to the A/D during any conversion I/O sequence should vary in accord with the data out word format chosen during the previous conversion I/O sequence. The various formats and resolutions available are shown in Table I. In Figure 6, since 16-bit without sign MSB first format was chosen during I/O sequence 4 , the number of SCLKs required during I/O sequence 5 is 16 . In the following $1 / O$ sequence the format changes to 12 -bit without sign MSB first; therefore the number of SCLKs required during, I/O sequence 6 changes accordingly to 12.

1.3 CS Low Continuously Considerations

When $\overline{\mathrm{CS}}$ is continuously low, it is important to transmit the exact number of SCLK pulses that the ADC expects. Not doing so will desynchronize the serial communications to the ADC. When the supply power is first applied to the ADC,

Application Hints (Continued)

it will expect to see 13 SCLK pulses for each I/O transmission. The number of SCLK pulses that the ADC expects to see is the same as the digital output word length. The digital output word length is controlled by the Data Out (DO) format. The DO format maybe changed any time a conversion is started or when the sign bit is turned on or off. The table below details out the number of clock periods required for different DO formats:

DO Format		Number of SCLKs Expected
12-Bit MSB or LSB First	SIGN OFF	12
	SIGN ON	13
$16-$ Bit MSB or LSB first	SIGN OFF	16
	SIGN ON	17

If erroneous SCLK pulses desynchronize the communications, the simplest way to recover is by cycling the power supply to the device. Not being able to easily resynchronize the device is a shortcoming of leaving $\overline{\mathrm{CS}}$ low continuously. The number of clock pulses required for an $1 / 0$ exchange may be different for the case when $\overline{\mathrm{CS}}$ is left low continuously vs the case when $\overline{\mathrm{CS}}$ is cycled. Take the I/O sequence detailed in Figure 5 (Typical Power Supply Sequence) as an example. The table below lists the number of SCLK pulses required for each instruction:

Instruction	CS Low Continuously	CS Strobed
Auto Cal	13 SCLKs	8 SCLKs
Read Status	13 SCLKs	8 SCLKs
Read Status	13 SCLKs	8 SCLKs
12-Bit + Sign Conv 1	13 SCLKs	8 SCLKs
12-Bit + Sign Conv 2	13 SCLKs	13 SCLKs

In Figure 6 the only times when the channel configuration could be modified would be during I/O sequences $1,4,5$ and 6. Input channels are reselected before the start of each new conversion. Shown below is the data bit stream required on DI , during I/O sequence number 4 in Figure 6, to set CH 1 as the positive input and CH 0 as the negative input for the different versions of ADCs:

Part Number	DI Data								
	DI0	DI1	DI2	DI3	DI4	DI5	DI6	DI7	
ADC12130 and	L	H	L	L	H	L	X	X	
ADC12132									
ADC12138	L	H	L	L	L	L	H	L	

Where X can be a logic high (H) or low (L).

1.5 Power Up/Down

The ADC may be powered down at any time by taking the PD pin HIGH or by the instruction input on DI (see Tables IV and V , and the Power Up/Down timing diagrams). When the ADC is powered down in this way, the circuitry necessary for an A/D conversion is deactivated. The circuitry necessary for digital I/O is kept active. Hardware power up/down is controlled by the state of the PD pin. Software power-up/ down is controlled by the instruction issued to the ADC. If a software power up instruction is issued to the ADC while a hardware power down is in effect (PD pin high) the device will remain in the power-down state. If a software power down instruction is issued to the ADC while a hardware power up is in effect (PD pin low), the device will power down. When the device is powered down by software, it may be powered up by either issuing a software power up instruction or by taking PD pin high and then low. If the power down command is issued during an A/D conversion, that conversion is disrupted. Therefore, the data output after power up cannot be relied upon.

1.4 Analog Input Channel Selection

The data input on DI also selects the channel configuration for a particular A/D conversion (see Tables II, III and IV).

FIGURE 6. Changing the ADC's Conversion Configuration

Application Hints (Continued)

1.6 User Mode and Test Mode

An instruction may be issued to the ADC to put it into test mode. Test mode is used by the manufacturer to verify complete functionality of the device. During test mode $\mathrm{CHO}-$ CH 7 become active outputs. If the device is inadvertently put into the test mode with $\overline{\mathrm{CS}}$ continuously low, the serial communications may be desynchronized. Synchronization may be regained by cycling the power supply voltage to the device. Cycling the power supply voltage will also set the device into user mode. If $\overline{\mathrm{CS}}$ is used in the serial interface, the ADC may be queried to see what mode it is in. This is done by issuing a "read STATUS register" instruction to the ADC. When bit 9 of the status register is high, the ADC is in test mode; when bit 9 is low the ADC, is in user mode. As an alternative to cycling the power supply, an instruction sequence may be used to return the device to user mode. This instruction sequence must be issued to the ADC using $\overline{C S}$. The following table lists the instructions required to return the device to user mode:

Instruction	DI Data							
	DIO	DI1	DI2	DI3	DI4	DI5	DI6	DI7
TEST MODE	H	X	X	X	H	H	H	H
Reset Test Mode Instructions	L	L	L	L	H	H	H	L
	L	L	L	L	H	L	H	L
	L	L	L	L	H	L	H	H
USER MODE	L	L	L	L	H	H	H	H
Power Up	L	L	L	L	H	L	H	L
Set DO with or without Sign	H or L	L	L	L	H	H	L	H
Set Acquisition Time	H or L	H or L	L	L	H	H	H	L
Start a Conversion	H or L	H or L	H or L	H or L	L	H or L	H or L	H or L

X = Don't Care

After returning to user mode with the user mode instruction the power up, data with or without sign, and acquisition time instructions need to be resent to ensure that the ADC is in the required state before a conversion is started.

1.7 Reading the Data Without Starting a Conversion

The data from a particular conversion may be accessed without starting a new conversion by ensuring that the $\overline{\text { CONV }}$ line is taken high during the I/O sequence. See the Read Data timing diagrams. Table V describes the operation of the CONV pin.

2.0 DESCRIPTION OF THE ANALOG MULTIPLEXER

For the ADC12138, the analog input multiplexer can be configured with 4 differential channels or 8 single ended channels with the COM input as the zero reference or any combination thereof (see Figure 7). The difference between the voltages on the $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$pins determines the input voltage span ($V_{\text {REF }}$). The analog input voltage range is 0 to $\mathrm{V}_{\mathrm{A}}{ }^{+}$. Negative digital output codes result when $\mathrm{V}_{\mathrm{IN}^{-}}>$ $\mathrm{V}_{\mathbb{I}}{ }^{+}$. The actual voltage at $\mathrm{V}_{\mathrm{IN}^{-}}$or $\mathrm{V}_{\mathbb{I}}{ }^{+}$cannot go below AGND.

FIGURE 7
$\mathrm{CH} 0, \mathrm{CH} 2, \mathrm{CH} 4$, and CH 6 can be assigned to the MUXOUT1 pin in the differential configuration, while $\mathrm{CH} 1, \mathrm{CH} 3$, CH 5 , and CH 7 can be assigned to the MUXOUT2 pin. In the differential configuration, the analog inputs are paired as follows: CH 0 with $\mathrm{CH} 1, \mathrm{CH} 2$ with $\mathrm{CH} 3, \mathrm{CH} 4$ with CH 5 and CH 6 with CH7. The A/DIN1 and A/DIN2 pins can be assigned positive or negative polarity.

Application Hints (Continued)

With the single-ended multiplexer configuration CHO through CH 7 can be assigned to the MUXOUT1 pin. The COM pin is always assigned to the MUXOUT2 pin. A/DIN1 is assigned as the positve input; A/DIN2 is assigned as the negative input. (See Figure 8).

Differential
Configuration

A/DIN1 and A/DIN2 can be assigned as the + or - input

Single-Ended Configuration

A/DIN1 is + input A/DIN2 is - input

The Multiplexer assignment tables for the ADC12130/2/8 (Tables II and III) summarize the aforementioned functions for the different versions of A/Ds.

2.1 Biasing for Various Multiplexer Configurations

Figure 9 is an example of biasing the device for single-ended operation. The sign bit is always low. The digital output range is 0000000000000 to 011111111 1111. One LSB is equal to 1 mV (4.1V/4096 LSBs).

FIGURE 8

FIGURE 9. Single-Ended Biasing

Application Hints (Continued)

For pseudo-differential signed operation, the biasing circuit shown in Figure 10 shows a signal AC coupled to the ADC. This gives a digital output range of -4096 to +4095 . With a 2.5 V reference, as shown, 1 LSB is equal to $610 \mu \mathrm{~V}$. Although, the ADC is not production tested with a 2.5 V reference, when $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$are +5.0 V linearity error typically will not change more than 0.1 LSB (see the curves in the Typical Electrical Characteristics Section). With the ADC set
to an acquisition time of 10 clock periods, the input biasing resistor needs to be 600Ω or less. Notice though that the input coupling capacitor needs to be made fairly large to bring down the high pass corner. Increasing the acquisition time to 34 clock periods (with a 5 MHz CCLK frequency) would allow the 600Ω to increase to 6 k , which with a $1 \mu \mathrm{~F}$ coupling capacitor would set the high pass corner at 26 Hz . Increasing R, to $6 k$ would allow R_{2} to be $2 k$.

TL/H/12079-39
FIGURE 10. Pseudo-Differential Biasing with the Signal Source AC Coupled Directly into the ADC

An alternative method for biasing pseudo-differential operation is to use the +2.5 V from the LM9140 to bias any amplifier circuits driving the ADC as shown in Figure 11. The value of the resistor pull-up biasing the LM9140-2.5 will depend upon the current required by the op amp biasing circuitry.
In the circuit of Figure 11 some voltage range is lost since the amplifier will not be able to swing to +5 V and GND
with a single +5 V supply. Using an adjustable version of the LM4041 to set the full scale voltage at exactly 2.048 V and a lower grade LM4040D-2.5 to bias up everything to 2.5 V as shown in Figure 12 will allow the use of all the ADC's digital output range of -4096 to +4095 while leaving plenty of head room for the amplifier.
Fully differential operation is shown in Figure 13. One LSB for this case is equal to $(4.1 \mathrm{~V} / 4096)=1 \mathrm{mV}$.

Application Hints (Continued)

TL/H/12079-41
FIGURE 12. Pseudo-Differential Biasing without the Loss of Digital Output Range

TL/H/12079-42
FIGURE 13. Fully Differential Biasing

Application Hints (Continued)

3.0 REFERENCE VOLTAGE

The difference in the voltages applied to the $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$defines the analog input span (the difference between the voltage applied between two multiplexer inputs or the voltage applied to one of the multiplexer inputs and analog ground), over which 4095 positive and 4096 negative codes exist. The voltage sources driving $\mathrm{V}_{\text {REF }}{ }^{+}$or $\mathrm{V}_{\text {REF }}{ }^{-}$ must have very low output impedance and noise. The circuit in Figure 14 is an example of a very stable reference appropriate for use with the device.

FIGURE 14. Low Drift Extremely Stable Reference Circuit

The ADC12130/2/8 can be used in either ratiometric or absolute reference applications. In ratiometric systems, the analog input voltage is proportional to the voltage used for the ADC's reference voltage. When this voltage is the system power supply, the $\mathrm{V}_{\text {REF }}{ }^{+}$pin is connected to $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{REF}}{ }^{-}$is connected to ground. This technique relaxes the system reference stability requirements because the analog input voltage and the ADC reference voltage move together. This maintains the same output code for given input conditions. For absolute accuracy, where the analog input voltage varies between very specific voltage limits, a time and temperature stable voltage source can be connected to the reference inputs. Typically, the reference voltage's magnitude will require an initial adjustment to null reference voltage induced full-scale errors.
Below are recommended references along with some key specifications.

Part Number	Output Voltage Tolerance	Temperature Coefficient
LM4041CI-Adj	$\pm 0.5 \%$	$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM4040AI-4.1	$\pm 0.1 \%$	$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM9140BYZ-4.1	$\pm 0.5 \%$	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM368Y-5.0	$\pm 0.1 \%$	$\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Circuit of Figure 14	Adjustable	$\pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

The reference voltage inputs are not fully differential. The ADC12130/2/8 will not generate correct conversions or comparisons if $\mathrm{V}_{\mathrm{REF}}{ }^{+}$is taken below $\mathrm{V}_{\mathrm{REF}}{ }^{-}$. Correct conversions result when $\mathrm{V}_{\mathrm{REF}}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$differ by 1 V and remain, at all times, between ground and $\mathrm{V}_{\mathrm{A}}{ }^{+}$. The $\mathrm{V}_{\text {REF }}$ common mode range, ($\left.\mathrm{V}_{\mathrm{REF}}{ }^{+}+\mathrm{V}_{\mathrm{REF}}{ }^{-}\right) / 2$ is restricted to ($0.1 \times \mathrm{V}_{\mathrm{A}}{ }^{+}$) to ($0.6 \times \mathrm{V}_{\mathrm{A}^{+}}$). Therefore, with $\mathrm{V}_{\mathrm{A}}{ }^{+}=5 \mathrm{~V}$ the center of the reference ladder should not go below 0.5 V or above 3.0V. Figure 15 is a graphic representation of the voltage restrictions on $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$.

FIGURE 15. $V_{\text {REF }}$ Operating Range

4.0 ANALOG INPUT VOLTAGE RANGE

The ADC12130/2/8's fully differential ADC generate a two's complement output that is found by using the equation shown below:

$$
\begin{aligned}
& \text { for (12-bit) resolution the Output Code }= \\
& \frac{\left(\mathrm{V}_{\mathrm{IN}}+-\mathrm{V}_{\mathrm{IN}^{-}}\right)(4096)}{\left(\mathrm{V}_{\mathrm{REF}}+-\mathrm{V}_{\mathrm{REF}}-\right)}
\end{aligned}
$$

Round off to the nearest integer value between -4096 to 4095 if the result of the above equation is not a whole number.
Examples are shown in the table below:

$\mathbf{V}_{\mathbf{R E F}}{ }^{+}$	$\mathbf{V}_{\mathbf{R E F}}{ }^{-}$	$\mathbf{V}_{\mathbf{I}{ }^{+}}$	$\mathbf{V}_{\mathbf{I}}{ }^{-}$	Digital Output Code
+2.5 V	+1 V	+1.5 V	0 V	$0,1111,1111,1111$
+4.096 V	0 V	+3 V	0 V	$0,1011,1011,1000$
+4.096 V	0 V	+2.499 V	+2.500 V	$1,1111,1111,1111$
+4.096 V	0 V	0 V	+4.096 V	$1,0000,0000,0000$

5.0 INPUT CURRENT

At the start of the acquisition window $\left(\mathrm{t}_{\mathrm{A}}\right)$ a charging current flows into or out of the analog input pins (A/DIN1 and A/DIN2) depending on the input voltage polarity. The analog input pins are $\mathrm{CH} 0-\mathrm{CH} 7$ and COM when A/DIN1 is tied to MUXOUT1 and A/DIN2 is tied to MUXOUT2. The peak value of this input current will depend on the actual input voltage applied, the source impedance and the internal multiplexer switch on resistance. With MUXOUT1 tied to A/DIN1 and MUXOUT2 tied to A/DIN2 the internal multiplexer switch on resistance is typically $1.6 \mathrm{k} \Omega$. The A/DIN1 and A/DIN2 mux on resistance is typically 750Ω.

Application Hints (Continued)

6.0 INPUT SOURCE RESISTANCE

For low impedance voltage sources (<600), the input charging current will decay, before the end of the S/H's acquisition time of $2 \mu \mathrm{~s}$ (10 CCLK periods with $\mathrm{f}_{\mathrm{CK}}=$ 5 MHz), to a value that will not introduce any conversion errors. For high source impedances, the S/H's acquisition time can be increased to 18 or 34 CCLK periods. For less ADC accuracy and/or slower CCLK frequencies the S/H's acquisition time may be decreased to 6 CCLK periods. To determine the number of clock periods $\left(\mathrm{N}_{\mathrm{c}}\right)$ required for the acquisition time with a specific source impedance for the various resolutions the following equations can be used:

$$
12 \text { Bit }+ \text { Sign } \quad N_{C}=\left[R_{S}+2.3\right] \times f_{C K} \times 0.824
$$

Where f_{CK} is the conversion clock (CCLK) frequency in MHz and R_{S} is the external source resistance in $\mathrm{k} \Omega$. As an example, operating with a resolution of 12 Bits + sign, a 5 MHz clock frequency and maximum acquistion time of 34 conversion clock periods the ADC's analog inputs can handle a source impedance as high as $6 \mathrm{k} \Omega$. The acquisition time may also be extended to compensate for the settling or response time of external circuitry connected between the MUXOUT and A/DIN pins.
The acquisition time t_{A} is started by a falling edge of SCLK and ended by a rising edge of CCLK (see timing diagrams). If SCLK and CCLK are asynchronous one extra CCLK clock period may be inserted into the programmed acquisition time for synchronization. Therefore with asnychronous SCLK and CCLKs the acquisition time will change from conversion to conversion.

7.0 INPUT BYPASS CAPACITANCE

External capacitors ($0.01 \mu \mathrm{~F}-0.1 \mu \mathrm{~F}$) can be connected between the analog input pins, $\mathrm{CH} 0-\mathrm{CH} 7$, and analog ground to filter any noise caused by inductive pickup associated with long input leads. These capacitors will not degrade the conversion accuracy.

8.0 NOISE

The leads to each of the analog multiplexer input pins should be kept as short as possible. This will minimize input noise and clock frequency coupling that can cause conversion errors. Input filtering can be used to reduce the effects of the noise sources.

9.0 POWER SUPPLIES

Noise spikes on the $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$supply lines can cause conversion errors; the comparator will respond to the noise. The ADC is especially sensitive to any power supply spikes that occur during the auto-zero or linearity correction. The minimum power supply bypassing capacitors recommended are low inductance tantalum capacitors of $10 \mu \mathrm{~F}$ or greater paralleled with $0.1 \mu \mathrm{~F}$ monolithic ceramic capacitors. More or different bypassing may be necessary depending on the overall system requirements. Separate bypass capacitors should be used for the $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$supplies and placed as close as possible to these pins.

10.0 GROUNDING

The ADC12130/2/8's performance can be maximized through proper grounding techniques. These include the use of separate analog and digital ground planes. The digital ground plane is placed under all components that handle digital signals, while the analog ground plane is placed under all components that handle analog signals. The digital and analog ground planes are connected together at only one point, either the power supply ground or at the pins of the ADC. This greatly reduces the occurence of ground loops and noise.
Shown in Figure 16 is the ideal ground plane layout for the ADC12138 along with ideal placement of the bypass capacitors. The circuit board layout shown in Figure 16 uses three bypass capacitors: $0.01 \mu \mathrm{~F}(\mathrm{C} 1)$ and $0.1 \mu \mathrm{~F}(\mathrm{C} 2)$ surface mount capacitors and $10 \mu \mathrm{~F}(\mathrm{C} 3)$ tantalum capacitor.

FIGURE 16. Ideal Ground Plane

Application Hints (Continued)

11.0 CLOCK SIGNAL LINE ISOLATION

The ADC12130/2/8's performance is optimized by routing the analog input/output and reference signal conductors as far as possible from the conductors that carry the clock signals to the CCLK and SCLK pins. Ground traces parallel to the clock signal traces can be used on printed circuit boards to reduce clock signal interference on the analog input/output pins.

12.0 THE CALIBRATION CYCLE

A calibration cycle needs to be started after the power supplies, reference, and clock have been given enough time to stabilize after initial turn-on. During the calibration cycle, correction values are determined for the offset voltage of the sampled data comparator and any linearity and gain errors. These values are stored in internal RAM and used during an analog-to-digital conversion to bring the overall full-scale, offset, and linearity errors down to the specified limits. Fullscale error typically changes ± 0.4 LSB over temperature and linearity error changes even less; therefore it should be necessary to go through the calibration cycle only once after power up if the Power Supply Voltage and the ambient temperature do not change significantly (see the curves in the Typical Performance Characteristics).

13.0 THE AUTO-ZERO CYCLE

To correct for any change in the zero (offset) error of the A/D, the auto-zero cycle can be used. It may be necessary to do an auto-zero cycle whenever the ambient temperature or the power supply voltage change significantly. (See the curves titled "Zero Error Change vs Ambient Temperature" and "Zero Error Change vs Supply Voltage" in the Typical Performance Characteristics.)

14.0 DYNAMIC PERFORMANCE

Many applications require the A/D converter to digitize AC signals, but the standard DC integral and differential nonlinearity specifications will not accurately predict the A/D converter's performance with AC input signals. The important specifications for AC applications reflect the converter's ability to digitize AC signals without significant spectral errors and without adding noise to the digitized signal. Dynamic characteristics such as signal-to-noise (S / N), signal-tonoise + distortion ratio $(S /(N+D)$), effective bits, full pow-
er bandwidth, aperture time and aperture jitter are quantitative measures of the A/D converter's capability.
An A/D converter's AC performance can be measured using Fast Fourier Transform (FFT), methods. A sinusoidal waveform is applied to the A/D converter's input, and the transform is then performed on the digitized waveform. $S /(N+D)$ and S / N are calculated from the resulting FFT data, and a spectral plot may also be obtained. Typical values for S / N are shown in the table of Electrical Characteristics, and spectral plots of $S /(N+D)$ are included in the typical performance curves.
The A/D converter's noise and distortion levels will change with the frequency of the input signal, with more distortion and noise occurring at higher signal frequencies. This can be seen in the $S /(N+D)$ versus frequency curves. These curves will also give an indication of the full power bandwidth (the frequency at which the $S /(N+D)$ or S / N drops 3 dB).
Effective number of bits can also be useful in describing the A/D's noise performance. An ideal A/D converter will have some amount of quantization noise, determined by its resolution, which will yield an optimum S / N ratio given by the following equation:

$$
\mathrm{S} / \mathrm{N}=(6.02 \times \mathrm{n}+1.8) \mathrm{dB}
$$

where n is the A/D's resolution in bits.
The effective bits of a real A/D converter, therefore, can be found by:

$$
\mathrm{n}(\text { effective })=\frac{\mathrm{S} / \mathrm{N}(\mathrm{~dB})-1.8}{6.02}
$$

As an example, this device with a differential signed 5 V , 10 kHz sine wave input signal will typically have a S / N of 78 dB , which is equivalent to 12.6 effective bits.

15.0 AN RS232 SERIAL INTERFACE

Shown on the following page is a schematic for an RS232 interface to any IBM and compatible PCs. The DTR, RTS, and CTS RS232 signal lines are buffered via level translators and connected to the ADC12138's DI, SCLK, and DO pins, respectively. The D flip/flop is used to generate the $\overline{C S}$ signal.

Application Hints (Continued)

TL/H/12079-46
Note: $\mathrm{V}_{\mathrm{A}}{ }^{+}, \mathrm{V}_{\mathrm{D}}{ }^{+}$, and $\mathrm{V}_{\mathrm{REF}}{ }^{+}$on the ADC12138 each have $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ chip caps, and $10 \mu \mathrm{~F}$ tantalum caps. All logic devices are bypassed with $0.1 \mu \mathrm{~F}$ caps.

The assignment of the RS232 port is shown below

			B7	B6	B5	B4	B3	B2	B1	B0
COM1	Input Address	3FE	X	X	X	CTS	X	X	X	X
	Output Address	3FC	X	X	X	0	X	X	RTS	DTR

A sample program, written in Microsoft QuickBasic, is shown on the next page. The program prompts for data mode select instruction to be sent to the A/D. This can be found from the Mode Programming table shown earlier. The data should be entered in " 1 "s and " 0 " s as shown in the table with DIO first. Next the program prompts for the number of SCLKs required for the programmed mode select instruction. For instance, to send all " 0 "'s to the A/D, selects CHO as the +input, CH 1 as the -input, 12-bit conversion, and 13 -bit MSB first data output format (if the sign bit was not turned off by a previous instruction). This would require 13 SCLK periods since the output data format is 13 bits. The part powers up with No Auto Cal, No Auto Zero, 10 CCLK

Acquisition Time, 12-bit conversion, data out with sign, power up, 12- or 13-bit MSB First, and user mode. Auto Cal, Auto Zero, Power Up and Power Down instructions do not change these default settings. Since there is no $\overline{\mathrm{CS}}$ signal to synchronize the serial interface the following power up sequence should be followed:

1. Run the program
2. Prior to responding to the prompt apply the power to the ADC12138
3. Respond to the program prompts

It is recommended that the first instruction issued to the ADC12138 be Auto Cal (see Section 1.1).

Application Hints (Continued)

'variables DOL=Data Out word length, DI=Data string for A/D DI input,

- $\quad D 0=A / D$ result string
'SET CS\# HIGH

```
OUT &H3FC, (&H2 OR INP (&H3FC)
'set RTS HIGH
OUT &H3FC, (&HFE AND INP(&H3FC)
'SET DTR LOW
OUT &H3FC, (&HFD AND INP (&H3FC)
'SET RTS LOW
OUT &H3FC, (&HEF AND INP(&H3FC))
'set B4 low
```

10
LINE INPUT "DI data for ADC12l38 (see Mode Table on data sheet)"; DI\$
INPUT "ADCl2138 output word length (12,13,16 or 17)"; DOL
20
'SET CS\# HIGH
OUT \&H3FC, ($\& H 2$ OR INP ($\& H 3 F C$)
OUT \&H3FC, (\&HFE AND INP(\&H3FC)
OUT \&H3FC, ($\& H F D$ AND INP ($\& H 3 F C)$
'set RTS HIGH
'SET DTR LOW
'SET CS\# LOW
OUT \&H3FC, ($\& H 2$ OR INP ($\& H 3 F C$)
OUT $\& H 3 F C$, ($\& H 1$ OR INP ($\& H 3 F C)$
OUT $\& H 3 F C$, ($\& H F D$ AND INP ($\& H 3 F C$)
DO\$=" "
OUT \&H3FC, ($\& H 1$ OR INP (\&H3FC)
OUT \&H3FC, ($\& H F D$ AND $\operatorname{INP}(\& H 3 F C))$
'set RTS HIGH
SET DTR HIGH
'SET RTS LOW
'reset DO variable
'SET DTR HIGH
OR N = 1 TO 8
Temp\$ = MID\$(DI\$, N, 1)
IF Temp $\$={ }^{\prime \prime} 0^{\prime \prime}$ THEN
OUT \&H3FC, (\&Hl OR INP(\&H3FC))
ELSE OUT \&H3FC, (\&HFE AND INP(\&H3FC))
END IF
OUT \&H3FC, (\&H2 OR INP(\&H3FC))
'out DI
'SCLK high
IF (INP (\&H3FE) AND 16) $=16$ THEN
DO\$ = DO\$ + "O"
ELSE
DO\$ = DO\$ + "1"
END IF
OUT \&H3FC, ($\& H 1$ OR INP($\& H 3 F C)$
OUT \&H3FC, ($\& H F D$ AND $\operatorname{INP}(\& H 3 F C))$
'Input DO
'SET DTR HIGH
'SCLK low
NEXT N
IF DOL >8 THEN FOR N=9 TO DOL OUT \&H3FC, ($\& H 1$ OR INP (\&H3FC)
OUT \&H3FC, (\&HFD AND INP(\&H3FC))
OUT $\& H 3 F C,(\& H 2$ OR INP(\&H3FC))
IF (INP(\&H3FE) AND $\& H 10)=\& H 1 O$ THEN
DO\$ = DO\$ + "0"
ELSE
DO\$ = DO\$+"l"
END IF NEXT N
END IF
OUT \&H3FC, (\&HFA AND INP(\&H3FC)) 'SCLK low and DI high
FOR N = 1 TO 500
NEXT N
PRINT DO\$
INPUT "Enter "C" to convert else "RETURN" to alter DI data"; s\$
IF $s \$=" C "$ OR $s \$=" c "$ THEN
GOTO 20
ELSE
GOTO 10
END IF
END

General Description

The ADC1205 and ADC1225 are CMOS, 12-bit plus sign successive approximation A/D converters. The 24-pin ADC1205 outputs the 13-bit data result in two 8-bit bytes, formatted high-byte first with sign extended. The 28 -pin ADC1225 outputs a 13-bit word in parallel for direct interface to a 16-bit data bus.
Negative numbers are represented in 2's complement data format. All digital signals are fully TTL and MOS compatible. A unipolar input (0 V to 5 V) can be accommodated with a single 5 V supply, while a bipolar input (-5 V to +5 V) requires the addition of a 5 V negative supply.
The ADC1205C and ADC1225C have a maximum non-linearity of 0.0224% of Full Scale.

Key Specifications

- Resolution-12 bits plus sign
- Linearity Error- ± 1 LSB
- Conversion Time-100 $\mu \mathrm{S}$

Features

- Compatible with all μ Ps
- True differential analog voltage inputs
(1) 0 V to 5 V analog voltage range with single 5 V supply

■ TTL/MOS input/output compatible
■ Low power-25 mW max
© Standard 24-pin or 28-pin DIP

Connection and Functional Diagrams

Top View
Dual-In-Line Package

TL/H/5676-1

TL/H/5676-3
See Ordering Information

Absolute Maximum Ratings (Notes 1 \& 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{DV}_{\mathrm{CC}}$ and $A V_{\mathrm{CC}}$)
Negative Supply Voltage (V^{-})
6.5 V

Logic Control Inputs
-15 V to GND

Voltage at Analog Inputs

$$
\begin{array}{lr}
\quad\left[\mathrm{V}_{I N(+)}, \mathrm{V}_{I N(-)}\right. & \left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V} \\
\text { Voltage at All Outputs, } \mathrm{V}_{\mathrm{REF}}, \mathrm{~V}_{\mathrm{OS}} & -0.3 \mathrm{~V} \text { to }\left(\mathrm{V}_{\mathrm{CC}}+0.3\right) \mathrm{V} \\
\text { Input Current per Pin } & \pm 5 \mathrm{~mA} \\
\text { Input Current per Package } & \pm 20 \mathrm{~mA} \\
\text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
\text { Package Dissipation at } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & 875 \mathrm{~mW} \\
\text { Lead Temp. (Soldering, } 10 \text { seconds) } & 300^{\circ} \mathrm{C} \\
\text { ESD Susceptibility (Note 12) } & 800 \mathrm{~V}
\end{array}
$$

Operating Conditions
 (Notes 1 \& 2)

Temperature Range
$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
ADC1205CCJ, ADC1225CCD $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
ADC1205CCJ-1, ADC1225CCD-1
Supply Voltage ($\mathrm{DV}_{\mathrm{CC}}$ and $\mathrm{AV}_{\mathrm{CC}}$)
Negative Supply Voltage (V-) $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ $4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.0 \mathrm{~V}_{\mathrm{DC}}$
-15 V to GND

Electrical Characteristics

The following specifications apply for $\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=1.0 \mathrm{MHz}, \mathrm{V}^{-}=-5 \mathrm{~V}$ for bipolar input range, or $\mathrm{V}^{-}=\mathrm{GND}$ for unipolar input range unless otherwise specified. Bipolar input range is defined as $-5.05 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}(+)} \leq 5.05 \mathrm{~V}$; $-5.05 \mathrm{~V} \leq \mathrm{V}_{\operatorname{IN}(-)} \leq 5.05 \mathrm{~V}$ and $\left|\mathrm{V}_{\mathbb{I N}(+)}-\mathrm{V}_{\mathbb{I N}(-)}\right| \leq 5.05 \mathrm{~V}$. Unipolar input range is defined as $-0.05 \mathrm{~V} \leq \mathrm{V}_{\operatorname{IN}(+)} \leq 5.05 \mathrm{~V}$; $-0.05 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}(-)} \leq 5.05 \mathrm{~V}$ and $\left|\mathrm{V}_{\mathbb{I N}(+)}-\mathrm{V}_{\mathbb{I N}(-)}\right| \leq 5.05 \mathrm{~V}$. Boldface limits apply from $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}$ $=25^{\circ} \mathrm{C}$ (Notes 3, 4, 5, 6, 7).

Parameter	Conditions	ADC1205CCJ, ADC1225CCD			ADC1205CCJ-1, ADC1225CCD-1			Limit Units
		Typ (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	Typ (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	

CONVERTER CHARACTERISTICS

Linearity Error ADC1205CCJ, ADC1225CCD ADC1205CCJ-1, ADC1225CCD-1	Unipolar Input Range (Note 11)		± 1			± 1	± 1	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \hline \end{aligned}$
Unadjusted Zero Error	Unipolar Input Range		± 2			± 2	± 2	LSB
Unadjusted Positive and Negative Full-Scale Error	Unipolar Input Range		± 30			± 30	± 30	LSB
Negative Full-Scale Error	Unipolar Input Range, Full Scale Adj. to Zero			$\pm 1 / 2$			$\pm 1 / 2$	LSB
Linearity Error ADC1205CCJ, ADC1225CCD ADC1205CCJ-1, ADC1225CCD-1	Bipolar Input Range (Note 11)	.	± 2			± 2	± 2	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \hline \end{aligned}$
Unadjusted Zero Error	Bipolar Input Range		± 2			± 2	± 2	LSB
Unadjusted Positive and Negative Full-Scale Error	Bipolar Input Range		± 30			± 30	± 30	LSB
Negative Full-Scale Error	Bipolar Input Range, Full Scale Adj. to Zero		± 2			± 2	± 2	LSB
Maximum Gain Temperature Coefficient		6		15	6		15	ppm $/{ }^{\circ} \mathrm{C}$
Maximum Offset Temperature Coefficient	-	0.5		1.5	0.5		1.5	ppm $/{ }^{\circ} \mathrm{C}$
Minimum $\mathrm{V}_{\text {REF }}$ Input Resistance		4.0	2		4.0	2	2	$\mathrm{k} \Omega$
Maximum $\mathrm{V}_{\text {REF }}$ Input Resistance		4.0	8		4.0	8	8	$\mathrm{k} \Omega$

Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=1.0 \mathrm{MHz}, \mathrm{V}^{-}=-5 \mathrm{~V}$ for bipolar input range, or $\mathrm{V}^{-}=$GND for unipolar input range unless otherwise specified. Bipolar input range is defined as $-5.05 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}(+)} \leq 5.05 \mathrm{~V}$; $-5.05 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}(-)} \leq 5.05 \mathrm{~V}$ and $\left|\mathrm{V}_{\mathbb{I N}(+)}-\mathrm{V}_{\mathbb{I N}(-)}\right| \leq 5.05 \mathrm{~V}$. Unipolar input range is defined as $-0.05 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}(+)} \leq 5.05 \mathrm{~V}$; $-0.05 \mathrm{~V} \leq \mathrm{V}_{\operatorname{IN}(-)} \leq 5.05 \mathrm{~V}$ and $\left|\mathrm{V}_{\operatorname{IN}(+)}-\mathrm{V}_{\operatorname{IN}(-)}\right| \leq 5.05 \mathrm{~V}$. Boldface limits apply from $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}} ;$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}$ $=25^{\circ} \mathrm{C}$ (Notes 3, 4, 5, 6, 7).

Parameter	Conditions	ADC1205CCJ, ADC1225CCD			ADC1205CCJ-1, ADC1225CCD-1			Limit Units
		Typ (Note 8)	Tested Limit (Note 9)	$\left\|\begin{array}{c} \text { Design } \\ \text { Limit } \\ \text { (Note 10) } \end{array}\right\|$	Typ (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	

CONVERTER CHARACTERISTICS (Continued)

Minimum Analog Input Voltage	Unipolar Input Range Bipolar Input Range		$\begin{gathered} \text { GND-0.05 } \\ -V_{C C}-0.05 \end{gathered}$		$\begin{aligned} & \text { GND-0.05 } \\ & -V_{C}-0.05 \end{aligned}$	$\begin{aligned} & \text { GND-0.05 } \\ & -V_{C C}-0.05 \end{aligned}$	V V
Maximum Analog Input Voltage	Unipolar Input Range Bipolar Input Range	$\mathrm{V}_{\mathbf{C c}}+0.05$	$\mathrm{V}_{\mathbf{c c}}+0.05$	'	$\begin{aligned} & v_{C C}+0.05 \\ & v_{C C}+0.05 \end{aligned}$	$\begin{aligned} & v_{c c}+0.05 \\ & v_{c c}+0.05 \end{aligned}$	V V
DC Common-Mode Error		$\pm 1 / 8$	$\pm 1 / 2$	$\pm 1 / 8$	$\pm 1 / 2$	$\pm 1 / 2$	LSB
Power Supply Sensitivity Zero Error Positive and Negative Full-Scale Error Linearity Error	$\begin{aligned} & \mathrm{AV} \mathrm{CC}_{\mathrm{CC}}=\mathrm{DV} \mathrm{~V}_{\mathrm{CC}}= \\ & 5 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~V}-=-5 \mathrm{~V} \pm 5 \% \end{aligned}$		$\begin{aligned} & \pm 3 / 4 \\ & \pm 3 / 4 \\ & \pm 1 / 4 \end{aligned}$		$\begin{aligned} & \pm 3 / 4 \\ & \pm 3 / 4 \\ & \pm 1 / 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 3 / 4 \\ & \pm 3 / 4 \\ & \pm 1 / 4 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$

DIGITAL AND DC CHARACTERISTICS

$V_{\text {IN(1) }}$, Logical " 1 " Input Voltage (Min)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, All Inputs except CLK IN		2.0		2.0	2.0	
$\mathrm{V}_{\text {IN(0) }}$, Logical "0" Input Voltage (Max)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$, All Inputs except CLK IN		0.8		0.8	0.8	V
$\operatorname{IIN}_{\mathrm{N}(1)}$, Logical " 1 ". Input Current (Max)	$\mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}$	0.005	1	0.005		1	$\mu \mathbf{A}$
IIN(0), Logical " 0 " Input Current (Max)	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	-0.005	-1	-0.005		-1	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{T}}{ }^{+}$(Min), Minimum PositiveGoing Threshold Voltage	CLK IN	3.1	2.7	3.1	2.7	2.7	V
$\mathrm{V}_{\mathrm{T}}{ }^{+}$(Max), Maximum PositiveGoing Threshold Voltage	CLK IN	3.1	3.5	3.1	3.5	3.5	V
$\mathrm{V}_{\mathrm{T}^{-}}$(Min), Minimum NegativeGoing Threshold Voltage	CLK IN	1.8	1.4	1.8	1.4	1.4	V
$\mathrm{V}_{\mathrm{T}^{-}}$(Max), Maximum NegativeGoing Threshold Voltage	CLK IN	1.8	2.1	1.8	2.1	2.1	V
$\mathrm{V}_{\mathrm{H}}(\mathrm{Min})$, Minimum Hysteresis $\left[V_{T}+(\operatorname{Min})-V_{T}-(\text { Max })\right]$	CLK IN	1.3	0.6	1.3	0.6	0.6	V
$\mathrm{V}_{\mathrm{H}}($ Max $)$, Maximum Hysteresis $\left[V_{T}+(\operatorname{Max})-V_{T^{-}}(\operatorname{Min})\right]$	CLK IN	1.3	2.1	1.3	2.1	2.1	V

Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV} \mathrm{VCC}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=1.0 \mathrm{MHz}, \mathrm{V}^{-}=-5 \mathrm{~V}$ for bipolar input range, or $\mathrm{V}^{-}=\mathrm{GND}$ for unipolar input range unless otherwise specified. Bipolar input range is defined as $-5.05 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I}}(+) \leq 5.05 \mathrm{~V}$; $-5.05 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}(-)} \leq 5.05 \mathrm{~V}$ and $\left|\mathrm{V}_{\mathbb{I N}(+)}-\mathrm{V}_{\mathbb{I N}(-)}\right| \leq 5.05 \mathrm{~V}$. Unipolar input range is defined as $-0.05 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}}(+) \leq 5.05 \mathrm{~V}$; $-0.05 \mathrm{~V} \leq \mathrm{V}_{I N(-)} \leq 5.05 \mathrm{~V}$ and $\left|\mathrm{V}_{I N(+)}-\mathrm{V}_{\mathrm{IN}(-)}\right| \leq 5.05 \mathrm{~V}$. Boldface limits apply from $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}$ $=25^{\circ} \mathrm{C}$ (Notes 3, 4, 5, 6, 7).

		ADC1205CCJ, ADC1225CCD			ADC1205CCJ-1, ADC1225CCD-1			
Parameter	Conditions	Typ (Note 8)		Design Limit (Note 10)	Typ (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	Limit

DIGITAL AND DC CHARACTERISTICS (Continued)

VOUT(1), Logical "1" Output Voltage (Min)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { lOUT }=-360 \mu \mathrm{~A} \\ & \text { loUT }=-10 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.5 \end{array}$			$\begin{aligned} & 2.4 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	V
$V_{\text {OUT(0) }}$, Logical "0" Output Voltage (Max)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{louT}^{2}=1.6 \mathrm{~mA} \end{aligned}$		0.4			0.4	0.4	V
IOUT, TRI-STATE Output Leakage Current (Max)	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.01 \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ 3 \\ \hline \end{gathered}$		$\begin{gathered} -0.01 \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} -0.3 \\ 0.3 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Isource, Output Source Current (Min)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-12	-6.0		-12	-7.0	-6.0	mA
ISINK, Output Sink Current (Min)	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	16	8.0		16	9.0	8.0	mA
DICC, DV ${ }_{\text {CC }}$ Supply Current (Max)	$\mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}, \overline{\mathrm{CS}}=1$	1	3		1	2.5	3	mA
Alcc, $\mathrm{AV}_{\text {CC }}$ Supply Current (Max)	$\mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}, \overline{\mathrm{CS}}=1$	1	3		1	2.5	3	mA
1-, V-Supply Current (Max)	$\mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}, \overline{\mathrm{CS}}=1$	10	100		10	100	100	$\mu \mathrm{A}$

AC Electrical Characteristics

The following specifications apply for $D V_{C C}=A V_{C C}=5.0 \mathrm{~V}, t_{r}=t_{f}=20 \mathrm{~ns}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Typ (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	Limit Units
fclk, Clock Frequency $\begin{array}{ll}\text { MIN } \\ & \text { MAX }\end{array}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Clock Duty Cycle $\begin{array}{ll}\text { MIN } \\ & \text { MAX }\end{array}$				$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
T $_{C}$, Conversion Time MIN MAX MIN MAX	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=1.0 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CLK}}=1.0 \mathrm{MHz} \end{aligned}$			$\begin{aligned} & 108 \\ & 109 \\ & 108 \\ & 109 \\ & \hline \end{aligned}$	$1 / \mathrm{fCLK}$ 1/fCLK $\mu \mathrm{S}$ $\mu \mathrm{S}$
${ }^{\text {tw }}$ ($\overline{W R}$)L, $\overline{\text { WR }}$ Pulse Width MAX	,	220		350	ns
$t_{\text {ACC }}$, Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Data Valid) (Max)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	210		340	ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$, TRI-STATE Control (Delay from Rising Edge of $\overline{R D}$ to Hi-Z State) (Max)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	170		290	ns
tPD(READYOUT), $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ to READYOUT Delay (Max)		250		400	ns
$\begin{aligned} & \text { tpD(INT), } \overline{\mathrm{RD}} \text { or } \overline{\mathrm{WR}} \text { to Reset of } \overline{\mathrm{INT}} \\ & \text { (Max) } \end{aligned}$		250		400	ns

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings.
Note 2: All voltages are measured with respect to ground, unless otherwise specified.
Note 3: A parasitic zener diode exists internally from $A V_{C C}$ and $D V_{C C}$ to ground. This parasitic zener has a typical breakdown voltage of $7 V_{D C}$

AC Electrical Characteristics (Continued)

Note 4: Two on-chip diodes are tied to each analog input as shown below.

TL/H/5676-4
Errors in the A / D conversion can occur if these diodes are forward biased more than 50 mV . This means that if $A V_{C C}$ and $D V_{C C}$ are minimum ($4.75 \mathrm{~V}_{\mathrm{DC}}$) and $\mathrm{V}-$ is minimum ($-4.75 \mathrm{~V}_{\mathrm{DC}}$), full-scale must be $\leq 4.8 \mathrm{~V}_{\mathrm{DC}}$.
Note 5: A diode exists between analog V_{CC} and digital V_{C}.

TL/H/5676-20
To guarantee accuracy, it is required that the $A V_{C C}$ and $D V_{C C}$ be connected together to a power supply with separate bypass filters at each $V_{C C}$ pin. Note 6: A diode exists between analog ground and digital ground.

TL/H/5676-21
To guarantee accuracy, it is required that the analog ground and digital ground be connected together externally. Note 7: Accuracy is guaranteed at $\mathrm{f}_{\mathrm{CLK}}=1.0 \mathrm{MHz}$. At higher clock frequencies accuracy may degrade.
Note 8: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 9: Tested and guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 10: Guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 11: Linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line which passes through positive full scale and zero, after adjusting zero error. (See Figures $1 b$ and 1c).
Note 12: Human body model; 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

ANALOG INPUT VOLTAGE [VIN(+)- $\mathbf{V}_{\operatorname{IN}(-)]}$
TL/H/5676-8
FIGURE 1a. Transfer Characteristic

TL/H/5676-22
FIGURE 1b. Simplified Error Curve vs. Output Code Without Zero and Fullscale Adjustment

FIGURE 1c. Simplified Error Curve vs. Output Code after Zero/Fullscale Adjustment

FIGURE 2. TRI-STATE Test Circuits and Waveforms

Timing Diagrams

FIGURE 3. Timing Diagram

TL/H/5676-13
FIGURE 4. Ready Out

FIGURE 5. Data Out

Functional Description

1.0 THE A/D CONVERSION

1.1 STARTING A CONVERSION

When using the ADC1225 or ADC1205 with a microprocessor, starting an A-to-D conversion is like writing to an external memory location. The $\overline{W R}$ and $\overline{\mathrm{CS}}$ lines are used to start the conversion. The simplified logic (Figure 6) shows that the falling edge of $\overline{W R}$ with $\overline{C S}$ low clocks the D-type flipflop and initiates the conversion sequence. A new conversion can therefore be restarted before the end of the previous sequence. $\overline{\mathbb{N T}}$ going low indicates the conversion's end.

1.2 THE CONVERSION PROCESS (Numbers designated by [] refer to portions of Figure 6.)

The SARS LOGIC [2] controls the A-to-D conversion process. When 'sars' goes high the clock (clk) is gated to the TIMING GENERATOR [9]. One of the outputs of the TIMING GENERATOR, T_{2}, provides the clock for the Successive Approximation Register, SAR LOGIC [5]. The T_{z} clock rate is $1 / 8$ of the CLK IN frequency.
Inputs to the 12-BIT DAC [11] and control of the SAMPLED DATA COMPARATOR [10] sign logic are provided by the SAR LOGIC. The first step in the conversion process is to set the sign to positive (logic ' 0 ') and the input of the DAC to 000 (HEX notation). If the differential input, $\mathrm{V}_{\mathrm{IN}(+)}-\mathrm{V}_{\mathrm{IN}(-)}$, is positive the sign bit will remain low. If it is negative the sign bit will be set high. Differential inputs of only a few hundred microvolts are enough to provide full logic swings at the output of the SAMPLED DATA COMPARATOR.
The sign bit indicates the polarity of the differential input. If it is set high, the negative input must have been greater than the positive input. By reversing the polarity of the differential input, $\mathrm{V}_{\mathrm{IN}(+)}$ and $\mathrm{V}_{\mathbb{I N}(-)}$ are interchanged and the DAC sees the negative input as positive. The input polarity reversal is done digitally by changing the timing on the input sampling switches of the SAMPLED DATA COMPARATOR. Thus, with almost no additional circuitry, the A/D is extended from a unipolar 12-bit to a bipolar 12-bit (12-bit plus sign) device.
After determining the input polarity, the conversion proceeds with the successive approximation process. The SAR LOGIC successively tries each bit of the 12-BIT DAC. The most significant bit (MSB), B11, has a weight of $1 / 2$ of $V_{\text {REF }}$. The next bit, B10, has a weight of $1 / 4 \mathrm{~V}_{\text {REF }}$. Each successive bit is reduced in weight by a factor of 2 which gives the least significant bit (LSB) a weight of $1 / 4096$ VREF.
When the MSB is tried, the comparator compares the DAC output, $\mathrm{V}_{\text {REF }} / 2$, to the analog input. If the analog input is greater than $\mathrm{V}_{\text {REF }} / 2$ the comparator tells the SAR LOGIC to set the MSB. If the analog input is less than $V_{\text {REF }} / 2$ the comparator tells the SAR LOGIC to reset the MSB. On the next bit-test the DAC output will either be $3 / 4 V_{\text {REF }}$ or $1 / 4$ $V_{\text {REF }}$ depending on whether the MSB was set or not. Following this sequence through for each successive bit will approximate the analog input to within 1-bit (one part in 4096).

On completion of the LSB bit-test the conversion-complete flip-flop (CC) is set, signifying that the conversion is finished. The end-of-conversion (EOC) and interrupt (INT) lines are not changed at this time. Some internal housekeeping tasks must be completed before the outside world is notified that the conversion is finished.

Setting CC enables the UPDATE LOGIC [12]. This logic controls the transfer of data from the SAR LOGIC to the OUTPUT LATCH [6] and resets the internal logic in preparation for a new conversion. This means that when EOC goes high, a new conversion can be immediately started since the internal logic has already been reset. In the same way, data is transferred to the OUTPUT LATCH prior to issuing an interrupt. This assures that data can be read immediately after INT goes low.

2.0 READING THE A/D

The ADC 1225 makes all thirteen bits of the conversion result available in parallel. Taking $\overline{C S}$ and $\overline{R D}$ low enables the TRI-STATE ${ }^{\circledR}$ output buffers. The conversion result is represented in 2's complement format.
The ADC1205 makes the conversion result available in two eight-bit bytes. The output format is 2's complement with extended sign. Data is right justified and presented high byte first. With $\overline{\mathrm{CS}}$ low and STATUS high, the high byte (DB12-DB8) will be enabled on the output buffers the first time $\overline{R D}$ goes low. When $\overline{R D}$ goes low a second time, the low byte (DB7-DB0) will be enabled. On each read operation, the 'byst' flip-flop is toggled so that on successive reads alternate bytes will be available on the outputs. The 'byst' flip-flop is always reset to the high byte at the end of a conversion. Table 1 below shows the data bit locations on the ADC1205.
The ADC1205's STATUS pin makes it possible to read the conversion status and the state of the 'byst' flip-flop. With $\overline{R D}$, STATUS and $\overline{C S}$ low, this information appears on the data bus. The 'byst' status appears on pin 18 (DB2/DB10). A low output on pin 18 indicates that the next data read will be the high byte. A high output indicates that the next data read will be the low byte. A high status bit on pin 22 (DB6/ DB12) indicates that the conversion is in progress. A high output appears on pin 17 (DB1/DB9) when the conversion is completed and the data has been transferred to the output latch. A high output on pin 16 (DB0/DB8) indicates that the conversion has been completed and the data is ready to read. This status bit is reset when a new conversion is initiated, data is read, or status is read. When reading status or a conversion result, STATUS should always change states at least 600 ns before $\overline{\mathrm{RD}}$ goes low. If the conversion status information is not needed, the STATUS pin should be hardwired to V^{+}. Table 2 summarizes the meanings of the four status bits.

TABLE I. Data Bit Locations, ADC1205

HIGH BYTE	DB12	DB12	DB12	DB12	DB11	DB10	DB9	DB8
LOW BYTE	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0

TABLE II. Status Bit Locations and Meanings

Status Bit Location	Status Bit	Meaning	Condition to Clear Status Bit
DB6	SARS	"High" indicates that the conversion is in progress	
DB2	BYST	"Low" indicates that the next data read is the high byte. "High" indicates that the next data read is the low byte	Status write or toggle it with data read

Functional Description (Continued)
TABLE II. Status Bit Locations and Meanings (Continued)

Status Bit Location	Status Bit	Meaning	Condition to Clear Status Bit
DB1	EOC	"High" indicates that the conversion is completed and data is transferred to the output latch.	
DB0	INT	"High" indicates that it is the end of the conversion and the data is ready to read	Data read or status read or status write

3.0 INTERFACE

3.1 RESET OF INTERRUPT

$\overline{\mathrm{INT}}$ goes low at the end of the conversion and indicates that data is transferred to the output latch. By reading data, INT will be reset to high on the leading edge of the first read ($\overline{\mathrm{RD}}$ going low). INT is also reset on the leading (falling) edge of WR when starting a conversion.

3.2 READY OUT

To simplify the hardware connection to high speed microprocessors, a READY OUT line is provided. This allows the A-to-D to insert a wait state in the $\mu \mathrm{P}$'s read cycle. The equivalent circuit and the timing diagram for READY OUT is shown in Figures 7 and 8.

TL/H/5676-9
FIGURE 7. READY OUT Equivalent Circuit

TL/H/5676-10
FIGURE 8. READY OUT Timing Diagram

3.3 RESETTING THE A/D

All the internal logic can be reset, which will abort any conversion in process and reset the status bits. The reset function is achieved by performing a status write ($\overline{C S}, \overline{W R}$ and STATUS are low).

3.4 ADDITIONAL TIMING AND INTERFACE OPTIONS ADC1225

1. $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ can be tied together with $\overline{\mathrm{CS}}$ low continuously or strobed. The previous conversion's data will be available when the $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ are low as shown below.
One drawback is that, since the conversion is started on the falling edge and the data read on the rising edge of $\overline{W R} / \overline{R D}$, the first data access will have erroneous information depending on the power-up state of the internal output latches.
If the $\overline{W R} / \overline{R D}$ strobe is longer than the conversion time, $\overline{\text { INTR }}$ will never go low to signal the end of a conversion. The conversion will be completed and the output latches will be updated. In this case the READY OUT signal can be used to sense the end of the conversion since it will go low when the output latches are being updated.

FIGURE 9

Functional Description (Continued)

FIGURE 10

FIGURE 11

TL/H/5676-27
FIGURE 12

Functional Description (Continued)

When using this method of conversion only one strobe is necessary and the rising edge of $\overline{W R} / \overline{R D}$ can be used to read the current conversion results. These methods reduce the throughput time of the conversion since the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ cycles are combined.
2. With the standard timing $\overline{W R}$ pulse width longer than the conversion time a conversion is completed but the INTR will never go low to signal the end of a conversion. The output latches will be updated and valid information will be available when the $\overline{\mathrm{RD}}$ cycle is accomplished.
3. Tying $\overline{C S}$ and $\overline{R D}$ low continuously and strobing $\overline{W R}$ to initiate a conversion will also yield valid data. The INTR will never go low to signal the end of a conversion and the digital outputs will always be enabled, so using INTR to strobe the WR line for a continuous conversion cannot be done with this part.
A simple stand-alone circuit can be accomplished by driving $\overline{W R}$ with the inverse of the READY OUT signal using a simple inverter as shown below.

FIGURE 14
TL/H/5676-30

Functional Description (Continued)

ADC1205

Case 1 would be the only one that would appy to the ADC1205 since two $\overline{R D}$ strobes are necessary to retrieve the 13 bits of information on the 8 bit data bus. Simultaneously strobing $\overline{W R}$ and $\overline{R D}$ low will enable the most significant byte on DBO-DB7 and start a conversion. Pulsing $\overline{W R} / \overline{R D}$ low before the end of this conversion will enable the least significant byte of data on the outputs and restart a conversion.

4.0 REFERENCE VOLTAGE

The voltage applied to the reference input of the converter defines the voltage span of the analog inputs (the difference between $\mathrm{V}_{\mathrm{IN}(+)}$ and $\mathrm{V}_{\mathrm{IN}(-)}$, over which 4096 positive output codes and 4096 negative output codes exist. The A-to-D can be used in either ratiometric or absolute reference applications. $V_{\text {REF }}$ must be connected to a voltage source capable of driving the reference input resistance (typically $4 \mathrm{k} \Omega$).
In a ratiometric system, the analog input voltage is proportional to the voltage used for the A/D reference. When this voltage is the system power supply, the VREF pin can be tied to V_{Cc}. This technique relaxes the stability requirement of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy, where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. In general, the magnitude of the reference voltage will require an initial adjustment to null out full-scale errors.

5.0 THE ANALOG INPUTS

5.1 DIFFERENTIAL VOLTAGE INPUTS AND COMMON MODE REJECTION

The differential inputs of the ADC1225 and ADC1205 actually reduce the effects of common-mode input noise, i.e., signals common to both $V_{I N(+)}$) and $V_{I N(-)}$ inputs (60 Hz is most typical). The time interval between sampling the " + " and "-" input is 4 clock periods. Therefore, a change in the common-mode voltage during this short time interval may cause conversion errors. For a sinusoidal common-mode signal the error would be:

$$
V_{\text {ERROR }}(\mathrm{MAX})=V_{\text {PEAK }}\left(2 \pi f_{\mathrm{C}}\right) \frac{4}{f_{\mathrm{CLK}}}
$$

where f_{CM} is the frequency of the common-mode signal, $V_{P E A K}$ is its peak voltage value and $f_{C L K}$ is the converter's clock frequency. In most cases $V_{\text {ERROR }}$ will not be significant. For a 60 Hz common-mode signal to generate a $1 / 4$ LSB error $(300 \mu \mathrm{~V})$ with the converter running at 1 MHz its peak value would have to be 200 mV .

5.2 INPUT CURRENT

Due to the sampling nature of the analog inputs, short duration spikes of current enter the " + " input and exit the "-" input at the leading clock edges during the actual conversion. These currents decay rapidly and do not cause errors as the internal comparator is strobed at the end of a clock period.

5.3 INPUT BYPASS CAPACITORS

Bypass capacitors at the inputs will average the current spikes mentioned in 5.2 and cause a DC current to flow
through the output resistance of the analog signal source. This charge pumping action is worse for continuous conversions with the $\mathrm{V}_{\mathrm{IN}(+)}$ input voltage at full-scale. For continuous conversions with a 1 MHz clock frequency and the $V_{I N(+)}$ input at 5 V , the average input current is approximately $5 \mu \mathrm{~A}$. For this reason bypass capacitors should not be used at the analog inputs for high resistance sources (R SOURCE 100Ω).
If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capacitor size, the detrimental effects of the voltage drop across this input resistance, due to the average value of the input current, can be minimized with a full-scale adjustment while the given source resistance and input bypass capacitor are both in place. This is effective because the average value of the input current is a linear function of the differential input voltage.

5.4 INPUT SOURCE RESISTANCE

Large values of source resistance where an input bypass capacitor is not used, will not cause errors as the input currents settle out prior to the comparison time. If a low pass filter is required in the system, use a low valued series resistor ($\mathrm{R} \leq 100 \Omega$) for a passive RC section or add an op amp RC active low pass filter. For low source resistance applications, ($\mathrm{R}_{\text {SOURCE }} \leq 100 \Omega$) a $0.001 \mu \mathrm{~F}$ bypass capacitor at the inputs will prevent pickup due to series lead inductance of a long wire. A 100Ω series resistor can be used to isolate this capacitor - both the R and C are placed outside the feedback loop - from the output of an op amp, if used.

5.5 NOISE

The leads to the analog inputs should be kept as short as possible to minimize input noise coupling. Both noise and undesired digital clock coupling to these inputs can cause errors. Input filtering can be used to reduce the effects of these sources, but careful note should be taken of sections 5.3 and 5.4 if this route is taken.

6.0 POWER SUPPLIES

Noise spikes on the VCC supply line can cause conversion errors as the comparator will respond to this noise. Low inductance tantalum capacitors of $1 \mu \mathrm{~F}$ or greater are recommended for supply bypassing. Separate bypass caps should be placed close to the $D V_{C C}$ and $A V_{C C}$ pins. If an unregulated voltage source is available in the system, a separate LM340LAZ-5.0 voltage regulator for the A-to-D's VCC (and other analog circuitry) will greatly reduce digital noise on the supply line.

7.0 ERRORS AND REFERENCE VOLTAGE ADJUSTMENTS

7.1 ZERO ADJUST

The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\mathrm{IN}(-)}$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\operatorname{IN}(+)}$ input. Zero error is the difference between the actual DC input voltage necessary to just cause an output digital code transition from all zeroes to $0,0000,0000,0001$ and the ideal $1 / 2$ LSB value ($1 / 2$ $\mathrm{LSB}=0.61 \mathrm{mV}$ for $\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}_{\mathrm{DC}}$). Zero error can be adjusted as shown in Figure 15. $\mathrm{V}_{\mathrm{IN}(+)}$ is forced to 0.61 mV , and $\mathrm{V}_{\mathrm{IN}(-)}$ is forced to OV . The potentiometer is adjusted until the digital output code changes from all zeroes to 0,000,0000,0001.

Functional Description（Continued）

A simpler，although slightly less accurate，approach is to ground $\mathrm{V}_{\mathrm{IN}(+)}$ and $\mathrm{V}_{\mathrm{IN}(-)}$ ，and adjust for all zeros at the output．Error will be well under $1 / 2$ LSB if the adjustment is done so that the potentiometer is＂centered＂within the $0,000,000$ range．A positive voltage at the $V_{O S}$ input will reduce the output code．The adjustment range is +4 to －30 LSB．

TL／H／5676－11
FIGURE 15．Zero Adjust Circuit

7．2 POSITIVE AND NEGATIVE FULL－SCALE ADJUSTMENT

Unipolar Inputs
Apply a differential input voltage which is 1.5 LSB below the desired analog full－scale voltage $\left(V_{F}\right)$ and adjust the magni－
tude of the $\mathrm{V}_{\text {REF }}$ input so that the output code is just chang－ ing from $0,1111,1111,1110$ to $0,1111,1111,1111$ ．

Blpolar Inputs

Do the same procedure outlined above for the unipolar case and then change the differential input voltage so that the digital output code is just changing from $1,0000,0000,0001$ to $1,0000,0000,0000$ ．Record the differential input voltage， V_{x} ．the ideal differential input voltage for that transition should be；

$$
\left(-V_{F}+\frac{V_{F}}{8192}\right)
$$

Calculate the difference between $V x$ and the ideal voltage；

$$
\Delta=V_{X}-\left(-V_{F}+\frac{V_{F}}{8192}\right)
$$

Then apply a differential input voltage of；

$$
\left(V_{x}-\frac{\Delta}{2}\right)
$$

and adjust the magnitude of $\mathrm{V}_{\text {REF }}$ so the digital output code is just changing from $1,0000,0000,0001$ to $1,0000,0000,0000$ ．That will obtain the positive and negative full－scale transition with symmetrical minimum error．

Typical Applications

＊Input must have some current return path to signal ground

Typical Applications (Continued)
Protecting the Input

TL/H/5676-16
${ }^{*} \mathrm{~V}_{\text {IN }}(-)=0.15 \mathrm{~V}_{\mathrm{CC}}$

Operating with Ratiometric Transducers

Typical Applications (Continued)

Bipolar Input Temperature Converter

TL/H/5676-18
+150 to $-55^{\circ} \mathrm{C}$ with $0.04^{\circ} \mathrm{C}$ resolution
Note: * resistors are 1\% metal film types

Ordering Information

Temperature Range		$0^{\circ} \mathrm{C}$ to $\mathbf{7 0}{ }^{\circ} \mathrm{C}$		$-\mathbf{4 0 ^ { \circ } \mathrm { C } \text { to } + \mathbf { 8 5 } 5 ^ { \circ } \mathrm { C }}$	
Non-Linearity	0.024%	ADC1205CCJ-1	ADC1225CCD-1	ADC1205CCJ	ADC1225CCD
Package Outline		J24A	D28D	J 24 A	D28D

ADC12062

12-Bit, 1 AAHz, 75 mW A/D Converter with Input Multiplexer and Sample/Hold

General Description

Using an innovative multistep conversion technique, the 12-bit ADC12062 CMOS analog-to-digital converter digitizes signals at a 1 MHz sampling rate while consuming a maximum of only 75 mW on a single +5 V supply. The ADC12062 performs a 12-bit conversion in three lower-resolution "flash" conversions, yielding a fast A/D without the cost and power dissipation associated with true flash approaches.
The analog input voltage to the ADC12062 is tracked and held by an internal sampling circuit, allowing high frequency input signals to be accurately digitized without the need for an external sample-and-hold circuit. The multiplexer output is available to the user in order to perform additional external signal processing before the signal is digitized.
When the converter is not digitizing signals, it can be placed in the Standby mode; typical power consumption in this mode is $100 \mu \mathrm{~W}$.

Features

■ Built-in sample-and-hold

- Single +5 V supply
- Single channel or 2 channel multiplexer operation
- Low Power Standby mode

Key Specifications

Sampling rate
Conversion time
Signal-to-Noise Ratio, $f_{\mathrm{I}}=100 \mathrm{kHz}$
Power dissipation $\left(\mathrm{f}_{\mathrm{s}}=1 \mathrm{MHz}\right)$
No missing codes over temperature
Applications
Digital signal processor front ends

- Instrumentation
Disk drives
Mobile telecommunications
Waveform digitizers

Applications

- Digital signal processor front ends

Instrumentation

- Mobile telecommunications
- Waveform digitizers

1 MHz (min)
740 ns (typ) $69.5 \mathrm{~dB}(\mathrm{~min})$ 75 mW (max)
Guaranteed

Block Diagram

Ordering Information

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ}\right)$	Package
ADC12062BIV	V44 Plastic Leaded Chip Carrier
ADC12062BIVF	VGZ44A Plastic Quad Flat Package
ADC12062CIV	V44 Plastic Leaded Chip Carrier
ADC12062CIVF	VGZ44A Plastic Quad Flat Package
ADC12062EVAL	Evaluation Board

Absolute Maximum Ratings (Notes 1, 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{DV} \mathrm{CC}=\mathrm{AV} \mathrm{CC}\right) \quad-0.3 \mathrm{~V}$ to +6 V
Voltage at Any Input or Output $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current at Any Pin (Note 3) 25 mA
Package Input Current (Note 3) 50 mA
Power Dissipation (Note 4)
875 mW
ESD Susceptibility (Note 5) 2000V

Soldering Information (Note 6)

V Package, Infrared, 15 seconds	$+300^{\circ} \mathrm{C}$
VF Package	
Vapor Phase (60 seconds)	$+215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$+220^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to
Maximum Junction Temperature (TJMAX)	$150^{\circ} \mathrm{C}$
Ma	$150^{\circ} \mathrm{C}$

Operating Ratings (Notes 1,2)

Temperature Range $\quad T_{M I N} \leq T_{A} \leq T_{M A X}$
ADC12062BIV, ADC12062CIV,
ADC12062BIVF, ADC12062CIVF $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Supply Voltage Range $\left(\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV} \mathrm{CC}\right) \quad 4.5 \mathrm{~V}$ to 5.5 V

Converter Characteristics The following specifications apply for $D V_{C C}=A V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}+(\mathrm{SENSE})}=$ $+4.096 \mathrm{~V}, \mathrm{~V}_{\text {REF-(SENSE) }}=\mathrm{AGND}$, and $\mathrm{f}_{\mathbf{s}}=1 \mathrm{MHz}$, unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}$ from $\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max; }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$.

Dynamic Characteristics (Note 10) The following specifications apply for $\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=+5 \mathrm{~V}$, $\mathrm{V}_{\text {REF }}+$ (SENSE) $=+4.096 \mathrm{~V}, \mathrm{~V}_{\text {REF }}$ (SENSE) $=A G N D, \mathrm{R}_{\mathrm{S}}=25 \Omega, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}, 0 \mathrm{~dB}$ from fullscale, and $\mathrm{f}_{\mathrm{S}}=1 \mathrm{MHz}$, unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}$ from $\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 7) } \end{gathered}$	$\begin{aligned} & \text { Limit } \\ & \text { (Note 8) } \end{aligned}$	Units (Limit)
SINAD	Signal-to-Noise Plus Distortion Ratio	$\mathbf{T m i n ~}^{\text {to }} \mathrm{T}_{\text {max }}$	71	68.0	dB (min)
SNR	Signal-to-Noise Ratio (Note 11)	$\mathbf{T m I N ~}^{\text {to }} \mathrm{T}_{\text {max }}$	72	69.5	dB (min)
THD	Total Harmonic Distortion (Note 12)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$	-82	$\begin{array}{r} -74 \\ -70 \\ \hline \end{array}$	dBc (max) dBc (max)
ENOB	Effective Number of Bits (Note 13)	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	11.5	11.0	Bits (min)
IMD	Intermodulation Distortion	$\mathrm{fin}^{\mathrm{N}}=102.3 \mathrm{kHz}, 102.7 \mathrm{kHz}$	-80		dBc

DC Electrical Characteristics The following specifications apply for $D V_{C C}=A V_{C C}=+5 \mathrm{~V}$, $\mathrm{V}_{\text {REF }}+$ (SENSE) $=+4.096 \mathrm{~V}, \mathrm{~V}_{\text {REF }}-($ SENSE $)=A G N D$, and $\mathrm{f}_{\mathrm{S}}=1 \mathrm{MHz}$, unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}$ from $\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\mathbf{M A X}}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & \text { (Note 7) } \end{aligned}$	$\begin{gathered} \text { Limit } \\ \text { (Note 8) } \end{gathered}$	Units (Limit)
$\mathrm{V}_{\mathrm{IN}(1)}$	Logical "1" Input Voltage	$\mathrm{DV}_{C C}=A V_{C C}=+5.5 \mathrm{~V}$		2.0	V (min)
$\mathrm{V}_{\mathrm{IN}(0)}$	Logical "0" Input Voltage	$\mathrm{DV}_{C C}=\mathrm{AV}_{\mathrm{CC}}=+4.5 \mathrm{~V}$		0.8	V (max)
$\ln (1)$	Logical "1" Input Current		0.1	1.0	$\mu \mathrm{A}$ (max)
$1 \mathrm{IN}(0)$	Logical "0" Input Current		0.1	1.0	$\mu \mathrm{A}$ (max)
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{DV}_{\mathrm{CC}}=\mathrm{AV} \mathrm{~V}_{\mathrm{CC}}=+4.5 \mathrm{~V}, \\ & \text { lout }=-360 \mu \mathrm{~A} \\ & \text { lout }=-100 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.25 \\ \hline \end{array}$	$\begin{aligned} & V(\text { min }) \\ & V(\text { min }) \end{aligned}$
V OUT(0)	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{DV}_{\mathrm{CC}}=\mathrm{AV} \mathrm{~V}_{\mathrm{CC}}=+4.5 \mathrm{~V}, \\ & \mathrm{louT}=1.6 \mathrm{~mA} \end{aligned}$		0.4	V (max)
Iout	TRI-STATE® Output Leakage Current	Pins DB0-DB11	0.1	3	$\mu \mathrm{A}$ (max)
Cout	TRI-STATE Output Capacitance	Pins DB0-DB11	5		pF
C_{IN}	Digital Input Capacitance		4		pF
DICC	DV ${ }_{\text {CC }}$ Supply Current		2	3	mA (max)
Alcc	AV CCC Supply Current		10	12	mA (max)
Istandby	Standby Current ($\mathrm{Dl}_{\mathrm{CC}}+\mathrm{Al}_{\mathrm{CC}}$)	$\overline{\mathrm{PD}}=0 \mathrm{~V}$	20		$\mu \mathrm{A}$

AC Electrical Characteristics The following specifications apply for $\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV} \mathrm{CC}=+5 \mathrm{~V}$, $V_{\text {REF }}+($ SENSE $)=+4.096 V_{;}, V_{\text {REF }}-($ (SENSE $)=A G N D, ~ a n d ~ f_{s}=1 \mathrm{MHz}$, unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}$ from $\mathbf{T}_{\mathbf{M I N}}$ to $\mathbf{T}_{\mathbf{M A X}}$; all other limits $\mathrm{T}_{\mathrm{A}^{\prime}}=\mathrm{T}_{\mathbf{J}}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ (Note 7)	Limit (Note 8)	Units (Limits)
$\mathrm{f}_{\text {S }}$.	Maximum Sampling Rate ($1 /$ t $_{\text {THROUGHPUT }}$)		.	1	MHz (min)
tconv	Conversion Time (S/패 Low to EOC High)	:,	740	$\begin{aligned} & 600 \\ & 980 \end{aligned}$	ns (min) ns (max)
$t_{\text {AD }}$	Aperture Delay ($\mathrm{S} / \overline{\mathrm{H}}$ Low to Input Voltage Held)		20		ns
${ }_{\text {ts } / \mathrm{H}}$	S/H Pulse Width		.	$\begin{gathered} 5 \\ 550 \end{gathered}$	ns (min) ns (max)
${ }^{\text {teOC }}$	S/(̄) Low to EOC Low		95	$\begin{gathered} 60 \\ 125 \\ \hline \end{gathered}$	ns (min) ns (max)
${ }^{\text {t }}$ ACC	Access Time ($\overline{\mathrm{RD}}$ Low or OE High to Data Valid)	$C_{L}=100 \mathrm{pF}$	10	20	ns (max)
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$	TRI-STATE Control ($\overline{\mathrm{RD}}$ High or OE Low to Databus TRI-STATE)	$R_{L}=1 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	25	40	$n s(\max)$
${ }_{\text {tiNT }}$ H	Delay. from $\overline{\mathrm{RD}}$ Low to INT High	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	35	60	ns (max)
tiNTL	Delay from EOC High to INT Low	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	-25	$\begin{array}{r} -35 \\ -10 \\ \hline \end{array}$	ns (min) ns (max)
tupdate	EOC High to New Data Valid		5	15	ns (max)
$t_{\text {MS }} \ldots$	Multiplexer Address Setup Time (MUX Address Valid to EOC Low)		.	50	ns (min)
$t_{\text {MH }}$	Multiplexer Address Hold Time (EOC Low to MUX Address Invalid)			50	ns (min)
tcss	$\overline{\mathrm{CS}}$ Setup Time ($\overline{\mathrm{CS}}$ Low to $\overline{\mathrm{RD}}$ Low, S/ $\overline{\mathrm{H}}$ Low, or OE High)		1	20	ns (min)
${ }^{\text {tess }}$	$\overline{\mathrm{CS}}$ Hold Time ($\overline{\mathrm{CS}}$ High after $\overline{\mathrm{RD}}$ High, $\mathrm{S} / \overline{\mathrm{H}}$ High, or OE Low)	.	.	20	ns (min)
twu	Wake-Up Time ($\overline{\text { PD High to First S }} / \bar{H}$ Low)		1	.	$\mu \mathrm{S}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional. These ratings do not guarantee specific performance limits, however. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to GND (GND = AGND = DGND), unless otherwise specified.
Note 3: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supply rails $\left(V_{I N}<G N D\right.$ or $\left.V_{I N}>V_{C C}\right)$ the absolute value of current at that pin should be limited to 25 mA or less. The 50 mA package input current limits the number of pins that can safely exceed the power supplies with an input current of 25 mA to two.
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$ and the ambient temperature T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. $\theta_{J A}$ for the V (PLCC) package is $55^{\circ} \mathrm{C} / \mathrm{W} . \theta_{\mathrm{JA}}$ for the VF (PQFP) package is $62^{\circ} \mathrm{C} / \mathrm{W}$. In most cases the maximum derated power dissipation will be reached only during fault conditions.

Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor. Machine model ESD rating is 200 V .
Note 6: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Note 7: Typicals are at $+25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 8: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 9: Integral Linearity Error is the maximum deviation from a straight line between the measured offset and full scale endpoints.
Note 10: Dynamic testing of the ADC12062 is done using the ADC IN input. The input multiplexer adds harmonic distortion at high frequencies. See the graph in the Typical Performance Characteristics section for a typical graph of THD performance vs input frequency with and without the input multiplexer.
Note 11: The signal-to-noise ratio is the ratio of the signal amplitude to the background noise level. Harmonics of the input signal are not included in its calculation. Note 12: The contributions from the first nine harmonics are used in the calculation of the THD.
Note 13: Effective Number of Bits (ENOB) is calculated from the measured signal-to-noise plus distortion ratio (SINAD) using the equation ENOB $=$ (SINAD 1.76)/6.02.

Note 14: The digital power supply current takes up to 10 seconds to decay to its final value after PD is pulled low. This prohibits production testing of the standby current. Some parts may exhibit significantly higher standby currents than the $20 \mu \mathrm{~A}$ typical.
Note 15: Power Supply Sensitivity is defined as the change in the Offset Error or the Full Scale Error due to a change in the supply voltage.

TRI-STATE Test Circuit and Waveforms

TL/H/11490-4

TL/H/11490-5

Typical Performance Characteristics

Digital Supply Current

 vs Temperature

Conversion Time (tconv) vs Temperature

${ }_{\mathrm{f}}^{\mathrm{iN}}$ (kHz)

Linearity Error Change vs Reference Voltage

REFERENCE VOLTAGE, $\left(V_{\text {REF }}\right)$ - $\left(V_{\text {Ref- }}\right)(v)$

Analog Supply Current vs Temperature

EOC Delay Time (teoc) vs Temperature

SNR vs Input Frequency (ADC IN)

$\mathrm{f}_{\mathrm{IN}}(\mathrm{KHz})$

Mux ON Resistance vs Input Voltage

Current Consumption in Standby Mode vs Voltage on Digital Input Pins

THD vs Input Frequency (ADC IN)

$\mathrm{f}_{\mathrm{IN}}(\mathrm{kHz})$

Typical Performance Characteristics (Continued)

TL/H/11490-28

Timing Diagrams

FIGURE 1. Interrupt Interface Timing ($M O D E=1, O E=1$)

Timing Diagrams (Continued)

FIGURE 2. High Speed Interface Timing ($M O D E=1, O E=1, \overline{C S}=0, \overline{R D}=0$)

TL/H/11490-11
FIGURE 3. CS Setup and Hold Timing for S/ $\bar{H}, \overline{R D}$, and OE

Connection Diagrams

Pin Descriptions

AVCC

DV $C C$

AGND,
DGND1,
DGND2

These are the two positive analog supply inputs. They should always be connected to the same voltage source, but are brought out separately to allow for separate bypass capacitors. Each supply pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor.
This is the positive digital supply input. It should always be connected to the same voltage as the analog supply, $\mathrm{AV}_{\mathrm{CC}}$. It should be bypassed to DGND2 with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor.
These are the power supply ground pins. There are separate analog and digital ground pins for separate bypassing of the analog and digital supplies. The ground pins should be connected to a stable, noise-free system ground. All of the ground pins should be returned to the same potential. AGND is the analog ground for the converter. DGND1 is the ground pin for the digital control lines. DGND2 is the ground return for the output databus. See Section 6.0 LAYOUT AND GROUNDING for more information.
DB0-DB11 These are the TRI-STATE output pins, enabled by $\overline{R D}, \overline{C S}$, and $O E$.
$\mathrm{V}_{\text {IN } 1}, \mathrm{~V}_{\text {IN2 }} \quad$ These are the analog input pins to the multiplexer. For accurate conversions, no input pin (even one that is not selected) should be driven more than 50 mV below ground or 50 mV above V_{Cc}.
MUX OUT This is the output of the on-board analog input multiplexer.
$A D C I N \quad$ This is the direct input to the 12-bit sampling A/D converter. For accurate conversions, this pin should not be driven more than 50 mV below AGND or 50 mV above $\mathrm{AV}_{\mathrm{Cc}}$.
S0

MODE
$\overline{\mathrm{CS}}$
$\overline{C S}$

INT
$\overline{\text { EOC }}$
$\overline{R D}$

OE

S/H
$\overline{P D}$
$V_{\text {REF }}+$ (FORCE),
$V_{\text {REF-(FORCE) }}$ are the positive and negative voltage reference force inputs, respectively. See Section 4, REFERENCE INPUTS, for more information.
$V_{\text {REF }}+$ (SENSE), These are the positive and negative volt-
$V_{\text {REF-(SENSE) }}$ age reference sense pins, respectively. See Section 4, REFERENCE INPUTS, for more information.
$V_{\text {REF }} / 16 \quad$ This pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
This pin should be tied to $\mathrm{DV}_{\mathrm{Cc}}$.

Functional Description

The ADC12062 performs a 12-bit analog-to-digital conversion using a 3 step flash technique. The first flash determines the six most significant bits, the second flash generates four more bits, and the final flash resolves the two least significant bits. Figure 4 shows the major functional blocks of the converter. It consists of a $21 / 2$-bit Voltage Estimator, a resistor ladder with two different resolution voltage spans, a sample/hold capacitor, a 4-bit flash converter with front end multiplexer, a digitally corrected DAC, and a capacitive voltage divider.
The resistor string near the center of the block diagram in Figure 4 generates the 6-bit and 10-bit reference voltages for the first two conversions. Each of the 16 resistors at the bottom of the string is equal to $1 / 1024$ of the total string resistance. These resistors form the LSB Ladder* and have a voltage drop of $1 / 1024$ of the total reference voltage ($V_{\text {REF }}+$ - VREF-) across each of them. The remaining resistors form the MSB Ladder. It is comprised of eight groups of eight resistors each connected in series (the lowest MSB ladder resistor is actually the entire LSB ladder). Each MSB Ladder section has $1 / 8$ of the total reference voltage across it. Within a given MSB ladder section, each of the eight MSB resistors has $1 / 64$ of the total reference voltage across it. Tap points are found between all of the resistors in both the MSB and LSB ladders. The Comparator Multiplexer can connect any of these tap points, in two adjacent groups of eight, to the sixteen comparators shown at the right of Figure 4. This function provides the necessary reference voltages to the comparators during the first two flash conversions.

The six comparators, seven-resistor string (Estimator DAC ladder), and Estimator Decoder at the left of Figure 4 form
*Note: The weight of each resistor on the LSB ladder is actually equivalent to four 12 -bit LSBs. It is called the LSB ladder because it has the highest resolution of all the ladders in the converter.
the Voltage Estimator. The Estimator DAC, connected between $\mathrm{V}_{\text {REF }}$ + and $\mathrm{V}_{\text {REF-, }}$, generates the reference voltages for the six Voltage Estimator comparators. The comparators perform a very low resolution A/D conversion to obtain an "estimate" of the input voltage. This estimate is used to control the placement of the Comparator Multiplexer, connecting the appropriate MSB ladder section to the sixteen flash comparators. A total of only 22 comparators (6 in the Voltage Estimator and 16 in the flash converter) is required to quantize the input to 6 bits, instead of the 64 that would be required using a traditional 6-bit flash.
Prior to a conversion, the Sample/Hold switch is closed, allowing the voltage on the S/H capacitor to track the input voltage. Switch 1 is in position 1. A conversion begins by opening the Sample/Hold switch and latching the output of the Voltage Estimator. The estimator decoder then selects two adjacent banks of tap points along the MSB ladder. These sixteen tap points are then connected to the sixteen flash converters. For example, if the input voltage is between $5 / 16$ and $7 / 16$ of $V_{\text {REF }}\left(V_{\text {REF }}=V_{\text {REF }}+-V_{\text {REF }}\right)$, the estimator decoder instructs the comparator multiplexer to select the sixteen tap points between $2 / 8$ and $4 / 8$ ($4 / 16$ and $8 / 16$) of $\mathrm{V}_{\text {REF }}$ and connects them to the sixteen comparators. The first flash conversion is now performed, producing the first 6 MSBs of data.
At this point, Voltage Estimator errors as large as $1 / 16$ of $V_{\text {REF }}$ will be corrected since the comparators are connected to ladder voltages that extend beyond the range specified by the Voltage Estimator. For example, if $(7 / 16) V_{\text {REF }}$ $<\mathrm{V}_{\text {IN }}<(9 / 16) \mathrm{V}_{\text {REF }}$, the Voltage Estimator's comparators tied to the tap points below $(9 / 16) V_{\text {REF }}$ will output " 1 "s (000111). This is decoded by the estimator decoder to " 10 ". The 16 comparators will be placed on the MSB ladder

FIGURE 4. Functional Block Diagram

Functional Description (Continued)

tap points between $(3 / 8) V_{\text {REF }}$ and $(5 / 8) V_{\text {REF }}$. This overlap of ($1 / 16$) $V_{\text {REF }}$ will automatically cancel a Voltage Estimator error of up to 256 LSBs. If the first flash conversion determines that the input voltage is between $(3 / 8) V_{\text {REF }}$ and ($(4 / 3) V_{\text {REF }}$ - LSB/2), the Voltage Estimator's output code will be corrected by subtracting " 1 ", resulting in a corrected value of " 01 " for the first two MSBs. If the first flash conversion determines that the input voltage is between $(4 / 8) V_{\text {REF }}$ - LSB/2) and ($5 / 8$) V REF, the voltage estimator's output code is unchanged.
The results of the first flash and the Voltage Estimator's output are given to the factory-programmed on-chip EEPROM which returns a correction code corresponding to the error of the MSB ladder at that tap. This code is converted to a voltage by the Correction DAC. To generate the next four bits, SW1 is moved to position 2, so the ladder voltage and the correction voltage are subtracted from the input voltage. The remainder is applied to the sixteen flash converters and compared with the 16 tap points from the LSB ladder.
The result of this second conversion is accurate to 10 bits and describes the input remainder as a voltage between two tap points $\left(V_{H}\right.$ and $\left.V_{L}\right)$ on the LSB ladder. To resolve the last two bits, the voltage across the ladder resistor (between V_{H} and V_{L}) is divided up into 4 equal parts by the capacitive voltage divider, shown in Figure 5. The divider also creates 6 LSBs below V_{L} and 6 LSBs above V_{H} to provide overlap used by the digital error correction. SW1 is moved to position 3, and the remainder is compared with these 16 new voltages. The output is combined with the results of the

Voltage Estimator, first flash, and second flash to yield the final 12-bit result.
By using the same sixteen comparators for all three flash conversions, the number of comparators needed by the multi-step converter is significantly reduced when compared to standard multi-step techniques.

Applications Information

1.0 MODES OF OPERATION

The ADC12062 has two interface modes: An interrupt/read mode and a high speed mode. Figures 1 and 2 show the timing diagrams for these interfaces.
In order to clearly show the relationship between $S / \bar{H}, \overline{\mathrm{CS}}$, $\overline{\mathrm{RD}}$, and $O E$, the control logic decoding section of the ADC12062 is shown in Figure 6.

Interrupt Interface

As shown in Figure 1, the falling edge of S / \bar{H} holds the input voltage and initiates a conversion. At the end of the conversion, the EOC output goes high and the INT output goes low, indicating that the conversion results are latched and may be read by pulling $\overline{R D}$ low. The falling edge of $\overline{R D}$ resets the $\overline{\mathrm{NT}}$ line. Note that $\overline{\mathrm{CS}}$ must be low to enable $\mathrm{S} / \overline{\mathrm{H}}$ or $\overline{R D}$.

High Speed Interface

This is the fastest interface, shown in Figure 2. Here the output data is always present on the databus, and the $\overline{\mathbb{N T}}$ to $\overline{R D}$ delay is eliminated.

Applications Information (Continued)

TL/H/11490-16
FIGURE 6. ADC Control Logic

2.0 THE ANALOG INPUT

The analog input of the ADC12062 can be modeled as two small resistances in series with the capacitance of the input hold capacitor $\left(\mathrm{C}_{\mathrm{I}}\right)$, as shown in Figure 7. The $\mathrm{S} / \overline{\mathrm{H}}$ switch is closed during the Sample period, and open during Hold. The source has to charge $\mathrm{C}_{\text {IN }}$ to the input voltage within the sample period. Note that the source impedance of the input voltage ($\mathrm{R}_{\text {SOURCE }}$) has a direct effect on the time it takes to charge $\mathrm{C}_{\text {IN }}$. If $\mathrm{R}_{\text {SOURCE }}$ is too large, the voltage across $\mathrm{C}_{\text {IN }}$ will not settle to within 0.5 LSBs of $V_{\text {SOURCE }}$ before the conversion begins, and the conversion results will be incorrect. From a dynamic performance viewpoint, the combination of Rsource, $R_{\text {MUX }}, \mathrm{R}_{\text {SW }}$, and C_{IN} form a low pass filter. Minimizing RSOURCE will increase the frequency response of the input stage of the converter.
Typical values for the components shown in Figure 7 are: $R_{\text {MUX }}=100 \Omega, R_{S W}=100 \Omega$, and $\mathrm{C}_{\mathbb{I N}}=25 \mathrm{pF}$. The settling time to n bits is:
$t_{\text {SETTLE }}=\left(R_{\text {SOURCE }}+R_{\text {MUX }}+R_{S W}\right){ }^{*} \mathrm{C}_{\mathrm{IN}}{ }^{*} n * \ln (2)$. The bandwidth of the input circuit is:

For maximum performance, the impedance of the source driving the ADC12062 should be made as small as possible. A source impedance of 100Ω or less is recommended. A plot of dynamic performance vs. source impedance is given in the Typical Performance Characteristics section.
If the signal source has a high output impedance, its output should be buffered with an operational amplifier capable of driving a switched $25 \mathrm{pF} / 100 \Omega$ load. Any ringing or instabilities at the op amp's output during the sampling period can result in conversion errors. The LM6361 high speed op amp is a good choice for this application due to its speed and its ability to drive large capacitive loads. Figure 8 shows the LM6361 driving the ADC IN input of an ADC12062. The 100 pF capacitor at the input of the converter absorbs some of the high frequency transients generated by the S / \bar{H} switching, reducing the op amp transient response requirements. The 100 pF capacitor should only be used with high speed op amps that are unconditionally stable driving capacitive loads.
$f_{-3 d B}=1 /\left(2 * 3.14\right.$ * $\left.\left(R_{\text {SOURCE }}+R_{M U X}+R_{S W}\right) * C_{I N}\right)$.

TL/H/11490-17
FIGURE 7. Simplified ADC12062 Input Stage

Applications Information（Continued）

TL／H／11490－18
FIGURE 8．Buffering the Input with an LM6361 High Speed Op Amp

Another benefit of using a high speed buffer is improved THD performance when using the multiplexer of the ADC12062．The MUX on－resistance is somewhat non－linear over input voltage，causing the RC time constant formed by $\mathrm{C}_{\mathrm{IN}}, \mathrm{R}_{\text {MUX }}$ ，and $\mathrm{R}_{\text {SW }}$ to vary depending on the input voltage． This results in increasing THD with increasing frequency． Inserting the buffer between the MUX OUT and the ADC IN terminals as shown in Figure 8 will eliminate the loading on $R_{\text {MUX }}$ ，significantly reducing the THD of the multiplexed sys－ tem．
Correct converter operation will be obtained for input volt－ ages greater than AGND -50 mV and less than $\mathrm{AV}_{\mathrm{CC}}+$

50 mV ．Avoid driving the signal source more than 300 mV higher than $\mathrm{AV}_{\mathrm{CC}}$ ，or more than 300 mV below AGND．If an analog input pin is forced beyond these voltages，the cur－ rent flowing through that pin should be limited to 25 mA or less to avoid permanent damage to the IC．The sum of all the overdrive currents into all pins must be less than 50 mA ． When the input signal is expected to extend more than 300 mV beyond the power supply limits for any reason（un－ known／uncontrollable input voltage range，power－on tran－ sients，fault conditions，etc．）some form of input protection， such as that shown in Figure 9，should be used．

FIGURE 9．Input Protection

Applications Information (Continued)

3.0 ANALOG MULTIPLEXER

The ADC12062 has an input multiplexer that is controlled by the logic level on pin SO when EOC goes low, as shown in Figures 1 and 2. Multiplexer setup and hold times with respect to the S / \bar{H} input can be determined by these two equations:
$\left.\mathrm{t}_{\mathrm{MS}(\mathrm{wrts}} / \overline{\mathrm{H}}\right)=\mathrm{t}_{\mathrm{MS}}-\mathrm{t}_{\mathrm{EOC}(\text { min) }}=50-60=-10 \mathrm{~ns}$
$t_{M H}(\mathbf{w r t s} / \bar{H})=t_{M H}+t_{E O C}(\max)=50+125=175 \mathrm{~ns}$
Note that $t_{\text {MS }}$ (wrt S / \bar{H}) is a negative number; this indicates that the data on SO must become valid within 10 ns after S / \bar{H} goes low in order to meet the setup time requirements. SO must be valid for a length of

$$
\left(t_{M H}+t_{E O C}(\max)\right)-\left(t_{M S}-t_{E O C}(\text { min })\right)=185 \mathrm{~ns}
$$

Table I shows how the input channels are assigned:
TABLE I. ADC12062 Input Multiplexer Programming

so	Channel
0	$\mathrm{~V}_{\mathrm{IN} 1}$
1	$\mathrm{~V}_{\mathrm{IN} 2}$

The output of the multiplexer is available to the user via the MUX OUT pin. This output allows the user to perform additional signal processing, such as filtering or gain, before the

FIGURE 10. Reference Ladder Force and Sense Inputs

Applications Information (Continued)

Since the current flowing through the SENSE lines is essentially zero, there is negligible voltage drop across R_{S} and the $1 \mathrm{k} \Omega$ resistor, so the voltage at the inverting input of the op amp accurately represents the voltage at the top (or bottom) of the ladder. The op amp drives the FORCE input and forces the voltage at the ends of the ladder to equal the voltage at the op amps's non-inverting input, plus or minus its input offset voltage. For this reason op amps with low $V_{\text {OS }}$, such as the LM627 or LM607, should be used for this application. When used in this configuration, the ADC12062 typically has less than 0.5 LSB of offset and gain error without any user adjustments.
The $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ capacitors on the force inputs provide high frequency decoupling of the reference ladder. The 500Ω force resistors isolate the op amps from this large capacitive load. The $0.01 \mu \mathrm{~F} / 1 \mathrm{k} \Omega$ network provides zero phase shift at high frequencies to ensure stability. Note that the op amp supplies in this example must be $\pm 10 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ to meet the input/output voltage range requirements of the LM627 and supply the sub-zero voltage to the $V_{\text {REF- }}$ (FORCE) pin. The $V_{\text {REF/16 }}$ output should be bypassed to analog ground with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.

The reference inputs are fully differential and define the zero to full-scale range of the input signal. They can be configured to span up to $5 \mathrm{~V}\left(\mathrm{~V}_{\text {REF- }}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }+}=5 \mathrm{~V}\right.$), or they can be connected to different voltages (within the 0 V to 5 V limits) when other input spans are required. The ADC12062 is tested at $\mathrm{V}_{\text {REF }}$ - (SENSE) $=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}+$ $($ SENSE $)=4.096 \mathrm{~V}$. Reducing the reference voltage span to less than 4 V increases the sensitivity (reduces the LSB size) of the converter; however noise performance degrades when lower reference voltages are used. A plot of dynamic performance vs reference voltage is given in the Typical Performance Characteristics section.
If the converter will be used in an application where DC accuracy is secondary to dynamic performance, then a simpler reference circuit may suffice. The circuit shown in Figure 11 will introduce several LSBs of offset and gain error, but INL, DNL, and all dynamic specifications will be unaffected.
All bypass capacitors should be located as close to the ADC12062 as possible to minimize noise on the reference ladder. The $\mathrm{V}_{\mathrm{REF} / 16}$ output should be bypassed to analog ground with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
The LM4040 shunt voltage reference is available with a 4.096 V output voltage. With initial accuracies as low as $\pm 0.1 \%$, it makes an excellent reference for the ADC12062.

FIGURE 11. Using the VREF Force Pins Only

Applications Information (Continued)

5.0 POWER SUPPLY CONSIDERATIONS

The ADC12062 is designed to operate from a single +5 V power supply. There are two analog supply pins ($\mathrm{AV}_{\mathrm{CC}}$) and one digital supply pin ($D V_{C C}$). These pins allow separate external bypass capacitors for the analog and digital portions of the circuit. To guarantee proper operation of the converter, all three supply pins should be connected to the same voltage source. In systems with separate analog and digital supplies, the converter should be powered from the analog supply.
The ground pins are AGND (analog ground), DGND1 (digital input ground), and DGND2 (digital output ground). These pins allow for three separate ground planes for these sections of the chip. Isolating the analog section from the two digital sections reduces digital interference in the analog circuitry, improving the dynamic performance of the converter. Separating the digital outputs from the digital inputs (particularly the $\mathrm{S} / \overline{\mathrm{H}}$ input) reduces the possibility of ground bounce from the 12 data lines causing jitter on the S / \bar{H} input. The analog ground plane should be connected to the Digital2 ground plane at the ground return for the power supply. The Digital1 ground plane should be tied to the Digital2 ground plane at the DGND1 and DGND2 pins.
Both $A V_{C C}$ pins should be bypassed to the AGND ground plane with $0.1 \mu \mathrm{~F}$ ceramic capacitors. One of the two $A V_{C C}$ pins should also be bypassed with a $10 \mu \mathrm{~F}$ tantalum capacitor. DV ${ }_{C C}$ should be bypassed to the DGND2 ground plane with a $0.1 \mu \mathrm{~F}$ capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor.

6.0 LAYOUT AND GROUNDING

In order to ensure fast, accurate conversions from the ADC12062, it is necessary to use appropriate circuit board layout techniques. Separate analog and digital ground planes are required to meet datasheet AC and DC limits. The analog ground plane should be low-impedance and free of noise from other parts of the system.
All bypass capacitors should be located as close to the converter as possible and should connect to the converter and to ground with short traces. The analog input should be isolated from noisy signal traces to avoid having spurious signals couple to the input. Any external component (e.g., a filter capacitor) connected across the converter's input should be connected to a very clean analog ground return point. Grounding the component at the wrong point will result in increased noise and reduced conversion accuracy.
Figure 12 gives an example of a suitable layout, including power supply routing, ground plane separation, and bypass capacitor placement. All analog circuitry (input amplifiers, filters, reference components, etc.) should be placed on the analog ground plane. All digital circuitry and I/O lines (excluding the S / H input) should use the digital2 ground plane as ground. The digital1 ground plane should only be used for the $\mathrm{S} / \overline{\mathrm{H}}$ signal generation.

TL/H/11490-22

FIGURE 12. PC Board Layout

7.0 DYNAMIC PERFORMANCE

The ADC12062 is AC tested and its dynamic performance is guaranteed. In order to meet these specifications, the clock source driving the $\mathrm{S} / \overline{\mathrm{H}}$ input must be free of jitter. For the best AC performance, a crystal oscillator is recommended. For operation at or near the ADC12062's 1 MHz maximum sampling rate, a 1 MHz squarewave will provide a good signal for the $\mathrm{S} / \overline{\mathrm{H}}$ input. As long as the duty cycle is near 50%, the waveform will be low for about 500 ns , which is within the 550 ns limit. When operating the ADC12062 at a sample rate of 910 kHz or below, the pulse width of the $\mathrm{S} / \overline{\mathrm{H}}$ signal must be smaller than half the sample period.

TL/H/11490-23
FIGURE 13. Crystal Clock Source
Figure 13 is an example of a low jitter $\mathrm{S} / \overline{\mathrm{H}}$ pulse generator that can be used with the ADC12062 and allow operation at sampling rates from DC to 1 MHz . A standard 4-pin DIP crystal oscillator provides a stable 1 MHz squarewave. Since most DIP oscillators have TTL outputs, a 4.7 k pullup resistor is used to raise the output high voltage to CMOS input levels. The output is fed to the trigger input (falling

Applications Information (Continued)

edge) of an MM74HC4538 one-shot. The 1 k resistor and 12 pF capacitor set the pulse length to approximately 100 ns . The $\mathrm{S} / \overline{\mathrm{H}}$ pulse stream for the converter appears on the Q output of the HC4538. This is the $\mathrm{S} / \overline{\mathrm{H}}$ clock generator used on the ADC12062EVAL evaluation board. For lower power, a CMOS inverter-based crystal oscillator can be used in place of the DIP crystal oscillator. See Application Note AN-340 in the National Semiconductor CMOS Logic Databook for more information on CMOS crystal oscillators.

8.0 COMMON APPLICATION PITFALLS

Driving inputs (analog or digital) outside power supply rails. The Absolute Maximum Ratings state that all inputs must be between GND -300 mV and $\mathrm{V}_{\mathrm{Cc}}+300 \mathrm{mV}$. This rule is most often broken when the power supply to the
converter is turned off, but other devices connected to it (op amps, microprocessors) still have power. Note that if there is no power to the converter, $\mathrm{DGND}=\mathrm{AGND}=\mathrm{DV} \mathrm{CC}=$ $A V_{C C}=O V$, so all inputs should be within $\pm 300 \mathrm{mV}$ of AGND and DGND.
Driving a high capacitance digital data bus. The more capacitance the data bus has to charge for each conversion, the more instantaneous digital current required from DV C cc and DGND. These large current spikes can couple back to the analog section, decreasing the SNR of the converter. While adequate supply bypassing and separate analog and digital ground planes will reduce this problem, buffering the digital data outputs (with a pair of MM74HC541s, for example) may be necessary if the converter must drive a heavily loaded databus.

9.0 APPLICATIONS

Ping-Ponging between $\mathrm{V}_{\mathrm{IN} 1}$ and $\mathrm{V}_{\mathrm{IN} 2}$

Applications Information (Continued)

ADC12662

12-Bit, $1.5 \mathrm{MAHz}, 200 \mathrm{~mW}$ A/D Converter with Input Multiplexer and Sample/Hold

General Description

Using an innovative multistep conversion technique, the 12-bit ADC12662 CMOS analog-to-digital converter digitizes signals at a 1.5 MHz sampling rate while consuming a maximum of only 200 mW on a single +5 V supply. The ADC12662 performs a 12-bit conversion in three lower-resolution "flash" conversions, yielding a fast A/D without the cost and power dissipation associated with true flash approaches.
The analog input voltage to the ADC12662 is tracked and held by an internal sampling circuit, allowing high frequency input signals to be accurately digitized without the need for an external sample-and-hold circuit. The ADC12662 feature two sample-and-hold/flash comparator sections which allow the converter to acquire one sample while converting the previous. This pipelining technique increases conversion speed without sacrificing performance. The multiplexer output is available to the user in order to perform additional external signal processing before the signal is digitized.
When the converter is not digitizing signals, it can be placed in the Standby mode; typical power consumption in this mode is $250 \mu \mathrm{~W}$.

Features
■ Built-in sample-and-hold

- Single +5 V supply
- Single channel or 2 channel multiplexer operation
- Low Power Standby mode

Key Specifications

- Sampling rate
- Conversion time

■ Signal-to-Noise Ratio, $\mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$
■ Power dissipation ($\mathrm{f}_{\mathrm{s}}=1.5 \mathrm{MHz}$)

- No missing codes over temperature
$1.5 \mathrm{MHz}(\mathrm{min})$ 580 ns (typ)
$67.5 \mathrm{~dB}(\mathrm{~min})$
200 mW (max)
Guaranteed

Applications

- Digital signal processor front ends
- Instrumentation
- Disk drives
- Mobile telecommunications
- Waveform digitizers

ADC12662 Block Diagram

Absolute Maximum Ratings (Notes 1,2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\left.\mathrm{V}_{\mathrm{CC}}=\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV} \mathrm{CC}\right) \quad-0.3 \mathrm{~V}$ to +6 V
Voltage at Any Input or Output $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current at Any Pin (Note 3)
Package Input Current (Note 3) 25 mA
50 mA
Power Dissipation (Note 4)
ADC12662CIV
875 mW
ESD Susceptibility (Note 5)

Soldering Information (Note 6)	
V Package, Infrared, 15 seconds	$+300^{\circ} \mathrm{C}$
VF Package	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (TJMAX)	$150^{\circ} \mathrm{C}$

Operating Ratings (Notes 1, 2)
Temperature Range $\quad T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ ADC12662CIV, ADC12662CIVF $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Supply Voltage Range ($D V_{C C}=A V_{C C}$) $\quad 4.75 \mathrm{~V}$ to 5.25 V

Converter Characteristics The following specifications apply for $\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\text {REF }+ \text { (SENSE) }}=$ $+4.096 \mathrm{~V}, \mathrm{~V}_{\text {REF-(SENSE) }}=\mathrm{AGND}$, and $\mathrm{f}_{\mathrm{S}}=1.5 \mathrm{MHz}$, unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}$ from $\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ (Note 7)	Limit (Note 8)	Units (Limit)
	Resolution	.		12	Bits
	Differential Linearity Error	TMIN to TMAX	± 0.4	± 0.95	LSB (max)
	Integral Linearity Error (Note 9)	TMIN $^{\text {to }} \mathbf{T}_{\text {MAX }}$	± 0.4	± 1.5	LSB (max)
	Offset Error	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$	± 0.3	± 2.0	LSB (max)
	Full-Scale Error	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	± 0.3	± 1.5	LSB (max)
	Power Supply Sensitivity (Note 15)	$D V_{C C}=A V_{C C}=5 V \pm 5 \%$		± 0.75	LSB (max)
$\mathrm{R}_{\text {REF }}$	Reference Resistance		750	$\begin{gathered} 500 \\ 1000 \end{gathered}$	Ω (min) Ω (max)
$\mathrm{V}_{\text {REF }(+)}$	$\mathrm{V}_{\text {REF + (SENSE) }}$ Input Voltage			AVCC	V (max)
$\mathrm{V}_{\text {REF }(-)}$	$\mathrm{V}_{\text {REF-(SENSE) }}$ Input Voltage			AGND	$V(\min)$
$\mathrm{V}_{\text {IN }}$	Input Voltage Range	To $\mathrm{V}_{\mathrm{IN} 1}, \mathrm{~V}_{\mathrm{IN} 2}$, or ADC IN		$\begin{aligned} & \text { AVCC }+0.05 V \\ & \text { AGND }-0.05 V \end{aligned}$	$\begin{aligned} & V(\max) \\ & V(\min) \end{aligned}$
	ADC IN Input Leakage	AGND to $\mathrm{AV}_{C C}-0.3 \mathrm{~V}$	0.1	3	$\mu \mathrm{A}$ (max)
$\mathrm{C}_{\text {ADC }}$	ADC IN Input Capacitance		25		pF
	MUX On-Channel Leakage	AGND to $A V_{C C}-0.3 V$	0.1	3	$\mu \mathrm{A}$ (max)
	MUX Off-Channel Leakage	AGND to $A V_{C C}-0.3 V$	0.1	3	$\mu \mathrm{A}$ (max)
$\mathrm{C}_{\text {MUX }}$	Multiplexer Input Cap		7		pF
	MUX Off Isolation	$\mathrm{fiN}=100 \mathrm{kHz}$	92		dB

Dynamic Characteristics (Note 10) The following specifications apply for $D V_{C C}=A V_{C C}=+5 \mathrm{~V}$, $\mathrm{V}_{\text {REF }}+$ (SENSE) $=+4.096 \mathrm{~V}, \mathrm{~V}_{\text {REF }}$-(SENSE) $=A G N D, R_{S}=25 \Omega, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}, 0 \mathrm{~dB}$ from fulliscale, and $\mathrm{f}_{\mathrm{s}}=1.5 \mathrm{MHz}$, unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}$ from $\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max; }}$ all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ (Note 7)	Limit (Note 8)	Units (Limit)
SINAD	Signal-to-Noise Plus Distortion Ratio	$\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$	70	67.0	dB (min)
SNR	Signal-to-Noise Ratio (Note 11)	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	70	67.5	dB (min)
THD	Total Harmonic Distortion (Note 12)	$\mathrm{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$	-80	-70	dBc (max)
ENOB	Effective Number of Bits (Note 13)	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{t}_{\text {MAX }}$	11.3	10.8	Bits (min)
IMD	Intermodulation Distortion	$\mathrm{f}_{\mathrm{IN}}=88.7 \mathrm{kHz}, 89.5 \mathrm{kHz}$	-80		dBc

DC Electrical Characteristics The following specifications apply for $D V_{C C}=A V_{C C}=+5 V$, $\mathrm{V}_{\text {REF }}+($ SENSE $)=+4.096 \mathrm{~V}, \mathrm{~V}_{\text {REF }}-($ SENSE $)=A G N D$, and $\mathrm{f}_{\mathrm{S}}=1.5 \mathrm{MHz}$, unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}$ from $\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ (Note 7)	$\begin{aligned} & \text { Limit } \\ & \text { (Note 8) } \end{aligned}$	Units (Limit)
$\mathrm{V}_{1 \times(1)}$	Logical "1" Input Voltage	$\mathrm{DV}_{C C}=\mathrm{AV}_{C C}=+5.5 \mathrm{~V}$		2.0	V (min)
$\mathrm{V}_{\mathrm{IN}(0)}$	Logical "0" Input Voltage	$\mathrm{DV}_{\text {CC }}=A \mathrm{~V}_{C C}=+4.5 \mathrm{~V}$		0.8	V (max)
$1{ }_{1 / 1}$	Logical "1" Input Current		0.1	1.0	$\mu \mathrm{A}$ (max)
$\operatorname{IIN}(0)$	Logical "0" Input Current		0.1	1.0	$\mu \mathrm{A}$ (max)
VOUT(1)	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{DV}_{\mathrm{CC}}=\mathrm{AV} \mathrm{CCC}_{\mathrm{C}}=+4.5 \mathrm{~V}, \\ & \text { lout }=-360 \mu \mathrm{~A} \\ & \text { lout }=-100 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.25 \\ \hline \end{array}$	$\begin{aligned} & V(\min) \\ & V(\text { min }) \end{aligned}$
$V_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=+4.5 \mathrm{~V}, \\ & \text { lout }=1.6 \mathrm{~mA} \end{aligned}$		0.4	V (max)
lout	TRI-STATE Output Leakage Current	Pins DB0-DB11	0.1	3	$\mu \mathrm{A}$ (max)
Cout	TRI-STATE Output Capacitance	Pins DB0-DB11	5		pF
$\mathrm{C}_{\text {IN }}$	Digital Input Capacitance		4		pF
DICC	DV ${ }_{\text {CC }}$ Supply Current		2	3	mA (max)
Alcc	$\mathrm{AV}_{\text {CC }}$ Supply Current		32	37	mA (max)
Istanday	Standby Current ($\left.\mathrm{Dl}_{\mathrm{cc}}+\mathrm{Alcc}\right)$	$\overline{\mathrm{PD}}=0 \mathrm{~V}$	50		$\mu \mathrm{A}$

AC Electrical Characteristics The following specifications apply for $D V_{C C}=A V_{C C}=+5 \mathrm{~V}$, $\mathrm{V}_{\text {REF }}+$ (SENSE) $=+4.096 \mathrm{~V}_{;} \mathrm{V}_{\text {REF }}-($ (SENSE) $)=A G N D$, and $\mathrm{f}_{\mathrm{S}}=1.5 \mathrm{MHz}$, unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}$ from $\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\mathbf{M A X}}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=+25^{\circ} \mathrm{C}$.

Symbol	- Parameter	Conditions	Typ (Note 7)	Limit (Note 8)	Units (Limits)
$\mathrm{f}_{\text {s }}$	Maximum Sampling Rate ($1 /$ t $_{\text {THROUGHPUT }}$)	: \quad :		1.5	MHz (min)
tCONV	Conversion Time (S/F Low to EOC High)	\because	580	$\begin{aligned} & 510 \\ & 660 \\ & \hline \end{aligned}$	ns (min) ns (max)
$t_{A D}$	Aperture Delay (S/Th Low to Input Voltage Held)	\because	20		ns
$\mathrm{t}_{\mathrm{S}} / \mathrm{H}$	S/F' Pulse Width	$\because \quad$	10	$\begin{gathered} 5 \\ 400 \end{gathered}$	ns (min) ns (max)
${ }^{\text {t }}$ EOC	S/TH Low to EOC Low		90	$\begin{gathered} 60 \\ 126 \\ \hline \end{gathered}$	ns (min) ns (max)
$t_{\text {ACC }}$	Access Time ($\overline{\mathrm{RD}}$ Low or OE High to Data Valid)	$C_{L}=100 \mathrm{pF}$	10	20	ns (max)
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{0 \mathrm{H}}$	TRI-STATE® Control ($\overline{\mathrm{RD}}$ High or OE Low to Databus TRI-STATE)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	25	40	ns (max)
INTH	Delay from $\overline{\text { RD }}$ Low to INT High	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	35	60	ns (max)
पINTL	Delay from EOC High to INT Low	$C_{L}=100 \mathrm{pF}$	-25	$\begin{aligned} & -35 \\ & -10 \end{aligned}$	ns (min) ns (max)
tupdate	EOC High to New Data Valid		5	15	ns (max)
$t_{\text {MS }}$	Multiplexer Address Setup Time (MUX Address Valid to EOC Low)	\cdots	\therefore	50	ns (min)
${ }^{\text {tMH }}$	Multiplexer Address Hold Time (EOC Low to MUX Address Invalid)	.		50	ns (min)
tcss	$\overline{\mathrm{CS}}$ Setup Time ($\overline{\mathrm{CS}}$ Low to $\overline{\mathrm{RD}}$ Low, $\mathrm{S} / \overline{\mathrm{H}}$ Low, or OE High)	.		20	ns (min)
${ }_{\text {t }}^{\text {CSH }}$	$\overline{\mathrm{CS}}$ Hold Time ($\overline{\mathrm{CS}}$ High after $\overline{\mathrm{RD}}$ High, $\mathrm{S} / \overline{\mathrm{H}}$ High, or OE Low)			20	ns (min)
twu	Wake-Up Time ($\overline{\mathrm{PD}}$ High to First S/개 Low)	$\cdots \quad$.	1	,	$\mu \mathrm{S}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional. These ratings do not guarantee specific performance limits, however. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to GND (GND = AGND = DGND), unless otherwise specified.
Note 3: When the input voltage (V_{IN}) at any pin exceeds the power supply rails ($\mathrm{V}_{\mathrm{IN}}<\mathrm{GND}$ or $\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{CC}}$) the absolute value of current at that pin should be limited to 25 mA or less. The 50 mA package input current limits the number of pins that can safely exceed the power supplies with an input current of 25 mA to two.
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$ and the ambient temperature T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. $\theta_{J A}$ for the V (PLCC) package is $55^{\circ} \mathrm{C} / \mathrm{W} . \theta_{\mathrm{JA}}$ for the VF (PQFP) package is $62^{\circ} \mathrm{C} / \mathrm{W}$. In most cases the maximum derated power dissipation will be reached only during fault conditions.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor. Machine model ESD rating is 200 V.
Note 6: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Note 7: Typicals are at $+25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 8: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

Note 9: Integral Linearity Error is the maximum deviation from a straight line between the measured offset and full scale endpoints.
Note 10: Dynamic testing of the ADC12662 is done using the ADC IN input. The input multiplexer adds harmonic distortion at high frequencies. See the graph in the Typical Performance Characteristics section for a typical graph of THD performance vs input frequency with and without the input multiplexer.
Note 11: The signal-to-noise ratio is the ratio of the signal amplitude to the background noise level. Harmonics of the input signal are not included in its calculation.
Note 12: The contributions from the first nine harmonics are used in the calculation of the THD.
Note 13: Effective Number of Bits (ENOB) is calculated from the measured signal-to-noise plus distortion ratio (SINAD) using the equation ENOB $=$ (SINAD 1.76)/6.02.

Note 14: The digital power supply current takes up to 10 seconds to decay to its final value after PD is pulled low. This prohibits production testing of the standby current. Some parts may exhibit significantly higher standby currents than the $50 \mu \mathrm{~A}$ typical.
Note 15: Power Supply Sensitivity is defined as the change in the Offset Error or the Full Scale Error due to a change in the supply voltage.

TRI-STATE Test Circuit and Waveforms

TL/H/11876-2

TL/H/11876-5

Typical Performance Characteristics

EOC Delay Time (tEOC) vs Temperature

AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)

SNR vs Input Frequency (ADC In)

${ }_{\mathrm{f}}^{\mathrm{N}}$ (kHz)

Current Consumption in Standby Mode vs Voltage on Digital Input Pins

INPUT VOLTAGE (V)

THD vs Input Frequency (ADC In)

$\mathrm{I}_{\mathrm{N}}(\mathrm{kHz})$

Typical Performance Characteristics (Continued)

SINAD vs Input Frequency (Through Mux)

SNR vs Input Frequency (Through Mux)

${ }^{f}{ }_{I N}(\mathrm{kHz})$
THD vs Input Frequency (Through Mux)

SNR and THD vs Source Impedance

罟
SNR and THD vs Reference Voltage

REFERENCE VOLTAGE, $\left(V_{\text {REF }}{ }^{+}\right)-\left(V_{\text {REF- }}\right)(V)$

Timing Diagrams

FIGURE 1. Interrupt Interface Timing (MODE $=0, O E=1$)

FIGURE 2. High Speed Interface Timing (MODE $=0, O E=1, \overline{C S}=0, \overline{R D}=0$)

TL/H/11876-13
FIGURE 3. $\overline{C S}$ Setup and Hold Timing for $S / \bar{H}, \overline{R D}$, and $O E$

Top View

Pin Descriptions

$A V_{C C}$

DVCC

AGND, DGND1, DGND2
$\mathrm{V}_{\mathrm{IN} 1}, \mathrm{~V}_{\mathrm{IN} 2}$

These are the two positive analog supply inputs. They should always be connected to the same voltage source, but are brought out separately to allow for separate bypass capacitors. Each supply pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor.
This is the positive digital supply input. It should always be connected to the same voltage as the analog supply, $A V_{C C}$. It should be bypassed to DGND2 with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor.
These are the power supply ground pins. There are separate analog and digital ground pins for separate bypassing of the analog and digital supplies. The ground pins should be connected to a stable, noise-free system ground. All of the ground pins should be returned to the same potential. AGND is the analog ground for the converter. DGND1 is the ground pin for the digital control lines. DGND2 is the ground return for the output databus. See Section 6.0 LAYOUT AND GROUNDING for more information.
DB0-DB11 These are the TRI-STATE output pins, enabled by $\overline{\mathrm{RD}}, \overline{\mathrm{CS}}$, and OE .
These are the analog input pins to the multiplexer. For accurate conversions, no input pin (even one that is not selected) should be driven more than 50 mV below ground or 50 mV above V_{Cc}.

MUX OUT
ADC IN \quad This is the direct input to the 12 -bit sampling A/D converter. For accurate conversions, this pin should not be driven more than 50 mV below ground or 50 mV above VC.
This pin selects the analog input that will be connected to the ADC12662 during the conversion. The input is selected based on the state of SO when EOC makes its high-to-low transition. Low selects $\mathrm{V}_{\text {IN1 }}$, high selects VIN2.
This pin should be tied to DGND1.
This is the active low Chip Select control input. When low, this pin enables the $\overline{R D}$, S / \bar{H}, and $O E$ inputs. This pin can be tied low.
This is the active low Interrupt output. When using the Interrupt Interface Mode (Figure. 1), this output goes low when a conversion has been completed and indicates that the conversion result is available in the output latches. This output is always high when RD is held low (Figure 2).

This is the End-of-Conversion control output. This output is low during a conversion. This is the active low Read control input. When $\overline{R D}$ is low (and $\overline{\mathrm{CS}}$ is low), the INT output is reset and (if OE is high) data appears on the data bus. This pin can be tied low.

Pin Descriptions (Continued)

This is the active high Output Enable control input. This pin can be thought of as an inverted version of the $\overline{\mathrm{RD}}$ input (see Figure 6). Data output pins DB0-DB11 are TRI-STATE when OE is low. Data appears on DB0-DB11 only when OE is high and $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are both low. This pin can be tied high.
This is the Sample/Hold control input. The analog input signal is held and a new conversion is initiated by the falling edge of this control input (when $\overline{\mathrm{CS}}$ is low).
$\overline{P D}$
This is the Power Down control input. This pin should be held high for normal operation. When this pin is pulled low, the device goes into a low power standby mode.
$V_{\text {REF }}+$ (FORCE),
VREF-(FORCE) These are the positive and negative voltage reference force inputs, respectively. See Section 4, REFERENCE INPUTS, for more information.
$V_{\text {REF }}+$ (SENSE),
VREF-(SENSE) These are the positive and negative voltage reference sense pins, respectively. See Section 4, REFERENCE INPUTS, for more information.
$V_{\text {REF }} / 16 \quad$ This pin should be bypassed to AGND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor. This pin should be tied to DVCc.

Functional Description

The ADC12662 performs a 12 -bit analog-to-digital conversion using a 3 step flash technique. The first flash determines the six most significant bits, the second flash generates four more bits, and the final flash resolves the two least significant bits. Figure 4 shows the major functional blocks of the converter. It consists of a $21 / 2$-bit Voltage Estimator, a resistor ladder with two different resolution voltage spans, a sample/hold capacitor, a 4-bit flash converter with front end multiplexer, a digitally corrected DAC, and a capacitive voltage divider. To pipeline the converter, there are two sample/hold capacitors and 4-bit flash sections, which allows the converter to acquire the next input sample while converting the previous one. Only one of the flash converter pairs is shown in Figure 4 to reduce complexity.

FIGURE 4. Functional Block Dlagram

Functional Description (Continued)

The resistor string near the center of the block diagram in Figure 4 generates the 6-bit and 10-bit reference voltages for the first two conversions. Each of the 16 resistors at the bottom of the string is equal to $1 / 1024$ of the total string resistance. These resistors form the LSB Ladder* and have a voltage drop of $1 / 1024$ of the total reference voltage ($V_{\text {REF }}+$ - $\mathrm{V}_{\mathrm{REF}}$) across each of them. The remaining resistors form the MSB Ladder. It is comprised of eight groups of eight resistors each connected in series (the lowest MSB ladder resistor is actually the entire LSB ladder). Each MSB Ladder section has $1 / 8$ of the total reference voltage across it. Within a given MSB ladder section, each of the eight MSB resistors has $1 / 64$ of the total reference voltage across it. Tap points are found between all of the resistors in both the MSB and LSB ladders. The Comparator Multiplexer can connect any of these tap points, in two adjacent groups of eight, to the sixteen comparators shown at the right of Figure 4. This function provides the necessary reference voltages to the comparators during the first two flash conversions.
*Note: The weight of each resistor on the LSB ladder is actually equivalent to four 12-bit LSBs. It is called the LSB ladder because it has the highest resolution of all the ladders in the converter.
The six comparators, seven-resistor string (Estimator DAC ladder), and Estimator Decoder at the left of Figure 4 form the Voltage Estimator. The Estimator DAC, connected between $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF-, }}$, generates the reference voltages for the six Voltage Estimator comparators. The comparators perform a very low resolution A/D conversion to obtain an "estimate" of the input voltage. This estimate is used to control the placement of the Comparator Multiplexer, connecting the appropriate MSB ladder section to the sixteen flash comparators. A total of only 22 comparators (6 in the Voltage Estimator and 16 in the flash converter) is required to quantize the input to 6 bits, instead of the 64 that would be required using a traditional 6 -bit flash.

Prior to a conversion, the Sample/Hold switch is closed, allowing the voltage on the S/H capacitor to track the input voltage. Switch 1 is in position 1. A conversion begins by opening the Sample/Hold switch and latching the output of the Voltage Estimator. The estimator decoder then selects two adjacent banks of tap points along the MSB ladder. These sixteen tap points are then connected to the sixteen flash converters. For example, if the input voltage is between $5 / 16$ and $7 / 16$ of $V_{\text {REF }}\left(V_{\text {REF }}=V_{\text {REF }}+-V_{\text {REF }}\right)$, the estimator decoder instructs the comparator multiplexer to select the sixteen tap points between $2 / 8$ and $4 / 8$ ($4 / 16$ and $8 / 16$) of $V_{\text {REF }}$ and connects them to the sixteen flash converters. The first flash conversion is now performed, producing the first 6 MSBs of data.
At this point, Voltage Estimator errors as large as $1 / 16$ of $V_{\text {REF }}$ will be corrected since the flash converters are connected to ladder voltages that extend beyond the range specified by the Voltage Estimator. For example, if $(7 / 16) V_{\text {REF }}<\mathrm{V}_{\text {IN }}<(9 / 16) \mathrm{V}_{\text {REF }}$, the Voltage Estimator's comparators tied to the tap points below $(9 / 16) V_{\text {REF }}$ will output " 1 "s (000111). This is decoded by the estimator decoder to " 10 ". The 16 comparators will be placed on the MSB ladder tap points between $(3 / 8) V_{\text {REF }}$ and $(5 / 8) V_{\text {REF }}$. This overlap of $(1 / 16) V_{\text {REF }}$ will automatically cancel a Voltage Estimator error of up to 256 LSBs. If the first flash conversion determines that the input voltage is between $(3 / 8) V_{\text {REF }}$ and $\left((4 / 8) V_{\text {REF }}\right.$ - LSB/2), the Voltage Estimator's output code will be corrected by subtracting " 1 ", resulting in a corrected value of " 01 " for the first two MSBs. If the first flash conversion determines that the input voltage is between $(4 / 8) V_{\text {REF }}$ - LSB/2) and ($\left.5 / 8\right) \mathrm{V}_{\text {REF }}$, the voltage estimator's output code is unchanged.
The results of the first flash and the Voltage Estimator's output are given to the factory-programmed on-chip EEPROM which returns a correction code corresponding to the error of the MSB ladder at that tap. This code is converted to a voltage by the Correction DAC. To generate the next four bits, SW1 is moved to position 2, so the ladder voltage and the correction voltage are subtracted from the input voltage. The remainder is applied to the sixteen flash converters and compared with the 16 tap points from the LSB ladder.

Functional Description (Continued)

The result of this second conversion is accurate to 10 bits and describes the input remainder as a voltage between two tap points (V_{H} and V_{L}) on the LSB ladder. To resolve the last two bits, the voltage across the ladder resistor (between V_{H} and V_{L}) is divided up into 4 equal parts by the capacitive voltage divider, shown in Figure 5. The divider also creates 6 LSBs below V_{L} and 6 LSBs above V_{H} to provide overlap used by the digital error correction. SW1 is moved to position 3, and the remainder is compared with these 16 new voltages. The output is combined with the results of the Voltage Estimator, first flash, and second flash to yield the final 12-bit result.
By using the same sixteen comparators for all three flash conversions, the number of comparators needed by the multi-step converter is significantly reduced when compared to standard multi-step techniques.

Applications Information

1.0 MODES OF OPERATION

The ADC12662 has two interface modes: An interrupt/read mode and a high speed mode. Figures 1 and 2 show the timing diagrams for these interfaces.
In order to clearly show the relationship between $\mathrm{S} / \overline{\mathrm{H}}, \overline{\mathrm{CS}}$, $\overline{R D}$, and $O E$, the control logic decoding section of the ADC12662 is shown in Figure 6.

Interrupt Interface

As shown in Figure 1, the falling edge of $\mathrm{S} / \overline{\mathrm{H}}$ holds the input voltage and initiates a conversion. At the end of the conversion, the EOC output goes high and the $\overline{N T}$ output goes low, indicating that the conversion results are latched and may be read by pulling $\overline{R D}$ low. The falling edge of $\overline{\mathrm{RD}}$ resets the $\overline{\mathrm{INT}}$ line. Note that $\overline{\mathrm{CS}}$ must be low to enable $\mathrm{S} / \overline{\mathrm{H}}$ or $\overline{\mathrm{RD}}$.

High Speed Interface

The Interrupt interface works well at lower speeds, but few microprocessors could keep up with the 1μ s interrupts that would be generated if the ADC12662 was running at full speed. The most efficient interface is shown in Figure 2. Here the output data is always present on the databus, and the $\overline{\mathrm{INT}}$ to $\overline{\mathrm{RD}}$ delay is eliminated.

FIGURE 5. The Capacitive Voltage Divider

FIGURE 6. ADC Control Logic

Applications Information (Continued)

2.0 THE ANALOG INPUT

The analog input of the ADC12662 can be modeled as two small resistances in series with the capacitance of the input hold capacitor $\left(\mathrm{C}_{\mathbb{I}}\right)$, as shown in Figure 7. The $\mathrm{S} / \overline{\mathrm{H}}$ switch is closed during the Sample period, and open during Hold. The source has to charge $\mathrm{C}_{\mathbb{I N}}$ to the input voltage within the sample period. Note that the source impedance of the input voltage ($\mathrm{R}_{\text {SOURCE }}$) has a direct effect on the time it takes to charge C_{IN}. If $\mathrm{R}_{\text {SOURCE }}$ is too large, the voltage across C_{IN} will not settle to within 0.5 LSBs of VSOURCE before the conversion begins, and the conversion results will be incorrect. From a dynamic performance viewpoint, the combination of Rsource, $R_{\text {MUX }}, R_{S W}$, and C_{IN} form a low pass filter. Minimizing Rsource will increase the frequency response of the input stage of the converter.
Typical values for the components shown in Figure 7 are: $R_{\text {MUX }}=100 \Omega$, $R_{S W}=100 \Omega$, and $\mathrm{C}_{\mathbb{I N}}=25 \mathrm{pF}$. The settling time to n bits is:

$$
\mathrm{t}_{\text {SETTLE }}=\left(\mathrm{R}_{\text {SOURCE }}+\mathrm{R}_{\text {MUX }}+\mathrm{R}_{\text {SW }}\right) * \mathrm{C}_{\mathrm{IN}} * n^{*} \ln (2)
$$

The bandwidth of the input circuit is:
$f_{-3 \mathrm{~dB}}=1 /\left(2{ }^{*} 3.14^{*}\left(R_{\text {SOURCE }}+R_{\text {MUX }}+R_{\text {SW }}\right){ }^{*} C_{I N}\right)$
The ADC12662 is operated in a pipelined sequence, with one hold capacitor acquiring the next sample while a conversion is being performed on the voltage stored on the other hold capacitor. This gives the source over tconv seconds to charge the hold capacitor to its final value. At 1.5 MHz , the settling time must be less than 667 ns . Using the settling time equation and component values given,
the maximum source impedance that will allow the input to settle to $1 / 2$ LSB $(\mathrm{n}=13)$ at full speed is $\sim 2.8 \mathrm{k} \Omega$. To ensure $1 / 2$ LSB settling over temperature and device-to-device variation, RSOURCE should be a maximum of 500Ω when the converter is operated at full speed.
If the signal source has a high output impedance, its output should be buffered with an operational amplifier capable of driving a switched $25 \mathrm{pF} / 100 \Omega$ load. Any ringing or instabilities at the op amp's output during the sampling period can result in conversion errors. The LM6361 high speed op amp is a good choice for this application due to its speed and its ability to drive large capacitive loads. Figure 8 shows the LM6361 driving the ADC IN input of an ADC12662. The 100 pF capacitor at the input of the converter absorbs some of the high frequency transients generated by the $\mathrm{S} / \overline{\mathrm{H}}$ switching, reducing the op amp transient response requirements. The 100 pF capacitor should only be used with high speed op amps that are unconditionally stable driving capacitive loads.
Another benefit of using a high speed buffer is improved THD performance when using the multiplexer of the ADC12662. The MUX on-resistance is somewhat non-linear over input voltage, causing the RC time constant formed by $\mathrm{C}_{I N}, R_{M U X}$, and $\mathrm{R}_{\text {SW }}$ to vary depending on the input voltage. This results in increasing THD with increasing frequency. Inserting the buffer between the MUX OUT and the ADC IN terminals as shown in Figure 8 will eliminate the loading on $\mathrm{R}_{\text {MUX }}$, significantly reducing the THD of the multiplexed system.

FIGURE 7. Simplified ADC12662 Input Stage

Applications Information (Continued)

TL/H/11876-20
FIGURE 8. Buffering the Input with an LM6361 High Speed Op Amp

Correct converter operation will be obtained for input voltages greater than AGND - 50 mV and less than $\mathrm{AV}_{\mathrm{CC}}+$ 50 mV . Avoid driving the signal source more than 300 mV higher than $A V_{C C}$, or more than 300 mV below AGND. If an analog input pin is forced beyond these voltages, the current flowing through that pin should be limited to 25 mA or less to avoid permanent damage to the IC. The sum of all
the overdrive currents into all pins must be less than 50 mA . When the input signal is expected to extend more than 300 mV beyond the power supply limits for any reason (unknown/uncontrollable input voltage range, power-on transients, fault conditions, etc.) some form of input protection, such as that shown in Figure 9, should be used.

TL/H/11876-21
FIGURE 9. Input Protection

Applications Information (Continued)

3.0 ANALOG MULTIPLEXER

The ADC12662 has an input multiplexer that is controlled by the logic level on pin SO when EOC goes low, as shown in Figures 1 and 2. Multiplexer setup and hold times with respect to the $\mathrm{S} / \overline{\mathrm{H}}$ input can be determined by these two equations:
$\left.\mathrm{t}_{\mathrm{MS}(\mathrm{wrt}} / \overline{\mathrm{H}}\right)=\mathrm{t}_{\mathrm{MS}}-\mathrm{t}_{\mathrm{EOC}(\mathrm{min})}=50-60=-10 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{MH}(\mathrm{wrt}}^{\mathrm{S} / \mathrm{H})} \mathrm{I}_{\mathrm{MH}}+\mathrm{t}_{\mathrm{EOC}(\max)}=50+125=175 \mathrm{~ns}$
Note that t_{MS} (wrt $\mathrm{S} / \mathrm{H}_{\text {) }}$ is a negative number; this indicates that the data on SO must become valid within 10 ns after $\mathrm{S} / \overline{\mathrm{H}}$ goes low in order to meet the setup time requirements. SO must be valid for a length of

$$
\left(t_{M H}+t_{E O C}(\max)\right)-\left(t_{M S}-t_{E O C}(\text { min })\right)=185 \mathrm{~ns} .
$$

Table I shows how the input channels are assigned:

TABLE I. ADC12662 Input Multiplexer Programming

S0	Channel
0	$\mathrm{~V}_{\mathbb{I N} 1}$
1	$\mathrm{~V}_{\mathbb{N} 2}$

The output of the multiplexer is available to the user via the MUX OUT pin. This output allows the user to perform addi-
tional signal processing, such as filtering or gain, before the signal is returned to the ADC IN input and digitized. If no additional signal processing is required, the MUX OUT pin should be tied directly to the ADC IN pin.
See Section 9.0 (APPLICATIONS) for a simple circuit that will alternate between the two inputs while converting at full speed.

4.0 REFERENCE INPUTS

In addition to the fully differential $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}$ - reference inputs used on most National Semiconductor ADCs, the ADC12662 has two sense outputs for precision control of the ladder voltage. These sense inputs compensate for errors due to IR drops between the reference source and the ladder itself. The resistance of the reference ladder is typically 750Ω. The parasitic resistance (R_{p}) of the package leads, bond wires, PCB traces, etc. can easily be 0.5Ω to 1.0Ω or more. This may not be significant at 8 -bit or 10 -bit resolutions, but at 12 bits it can introduce voltage drops causing offset and gain errors as large as 6 LSBs.
The ADC12662 provides a means to eliminate this error by bringing out two additional pins that sense the exact voltage at the top and bottom of the ladder. With the addition of two op amps, the voltages on these internal nodes can be forced to the exact value desired, as shown in Figure 10.

FIGURE 10. Reference Ladder Force and Sense Inputs

Applications Information (Continued)

Since the current flowing through the SENSE lines is essentially zero, there is negligible voltage drop across R_{S} and the $1 \mathrm{k} \Omega$ resistor, so the voltage at the inverting input of the op amp accurately represents the voltage at the top (or bottom) of the ladder. The op amp drives the FORCE input and forces the voltage at the ends of the ladder to equal the voltage at the op amps's non-inverting input, plus or minus its input offset voltage. For this reason op amps with low $V_{\text {OS }}$, such as the LM627 or LM607, should be used for this application. When used in this configuration, the ADC12662 has less than 2 LSBs of offset and 1.5 LSB of gain error without any user adjustments.
The $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ capacitors on the force inputs provide high frequency decoupling of the reference ladder. The 500Ω force resistors isolate the op amps from this large capacitive load. The $0.01 \mu \mathrm{~F} / 1 \mathrm{k} \Omega$ network provides zero phase shift at high frequencies to ensure stability. Note that the op amp supplies in this example must be $\pm 10 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ to meet the input/output voltage range requirements of the LM627 and supply the sub-zero voltage to the $V_{\text {REF- }}$ (FORCE) pin. The $V_{\text {REF/16 }}$ output should be bypassed to analog ground with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.

The reference inputs are fully differential and define the zero to full-scale range of the input signal. They can be configured to span up to 5 V ($\mathrm{V}_{\text {REF- }}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }+}=5 \mathrm{~V}$), or they can be connected to different voltages (within the 0 V to 5 V limits) when other input spans are required. The ADC12662 is tested at $\mathrm{V}_{\text {REF }}$ ((SENSE) $=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}+$ $($ SENSE $)=4.096 \mathrm{~V}$. Reducing the reference voltage span to less than 4 V increases the sensitivity (reduces the LSB size) of the converter; however noise performance degrades when lower reference voltages are used. A plot of dynamic performance vs reference voltage is given in the Typical Performance Characteristics section.
If the converter will be used in an application where DC accuracy is secondary to dynamic performance, then a simpler reference circuit may suffice. The circuit shown in Figure 11 will introduce several LSBs of offset and gain error, but INL, DNL, and all dynamic specifications will be unaffected.
All bypass capacitors should be located as close to the ADC12662 as possible to minimize noise on the reference ladder. The $\mathrm{V}_{\text {REF/16 }}$ output should be bypassed to analog ground with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
The LM4040 shunt voltage reference is available with a 4.096 V output voltage. With initial accuracies as low as $\pm 0.1 \%$, it makes an excellent reference for the ADC12662.

FIGURE 11. Using the VREF Force Pins Only

Applications Information（Continued）

5．0 POWER SUPPLY CONSIDERATIONS

The ADC12662 is designed to operate from a single +5 V power supply．There are two analog supply pins（ $A V_{C C}$ ）and one digital supply pin（ $D V_{C C}$ ）．These pins allow separate external bypass capacitors for the analog and digital por－ tions of the circuit．To guarantee proper operation of the converter，all three supply pins should be connected to the same voltage source．In systems with separate analog and digital supplies，the converter should be powered from the analog supply．
The ground pins are AGND（analog ground），DGND1（digital input ground），and DGND2（digital output ground）．These pins allow for three separate ground planes for these sec－ tions of the chip．Isolating the analog section from the two digital sections reduces digital interference in the analog cir－ cuitry，improving the dynamic performance of the converter． Separating the digital outputs from the digital inputs（particu－ larly the $\mathrm{S} / \overline{\mathrm{H}}$ input）reduces the possibility of ground bounce from the 12 data lines causing jitter on the S / H input．The analog ground plane should be connected to the Digital2 ground plane at the ground return for the power supply．The Digital1 ground plane should be tied to the Digital2 ground plane at the DGND1 and DGND2 pins．
Both $A V_{C C}$ pins should be bypassed to the AGND ground plane with $0.1 \mu \mathrm{~F}$ ceramic capacitors．One of the two $A V_{C C}$ pins should also be bypassed with a $10 \mu \mathrm{~F}$ tantalum capaci－ tor．DV ${ }_{C C}$ should be bypassed to the DGND2 ground plane with a $0.1 \mu \mathrm{~F}$ capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor．

6．0 LAYOUT AND GROUNDING

In order to ensure fast，accurate conversions from the ADC12662，it is necessary to use appropriate circuit board layout techniques．Separate analog and digital ground planes are required to meet datasheet $A C$ and $D C$ limits． The analog ground plane should be low－impedance and free of noise from other parts of the system．
All bypass capacitors should be located as close to the con－ verter as possible and should connect to the converter and to ground with short traces．The analog input should be iso－ lated from noisy signal traces to avoid having spurious sig－ nals couple to the input．Any external component（e．g．，a filter capacitor）connected across the converter＇s input should be connected to a very clean analog ground return point．Grounding the component at the wrong point will re－ sult in increased noise and reduced conversion accuracy．
Figure 12 gives an example of a suitable layout，including power supply routing，ground plane separation，and bypass capacitor placement．All analog circuitry（input amplifiers， filters，reference components，etc．）should be placed on the analog ground plane．All digital circuitry and I／O lines（ex－ cluding the S / \bar{H} input）should use the digital2 ground plane as ground．The digital1 ground plane should only be used for the $\mathrm{S} / \overline{\mathrm{H}}$ signal generation．

TL／H／11876－24
FIGURE 12．PC Board Layout

7．0 DYNAMIC PERFORMANCE

The ADC12662 is AC tested and its dynamic performance is guaranteed．In order to meet these specifications，the clock source driving the S / \bar{H} input must be free of jitter．For the best AC performance，a crystal oscillator is recommended． For operation at or near the ADC12662＇s 1.5 MHz maximum sampling rate，a 1.5 MHz squarewave will provide a good signal for the S / \bar{H} input．As long as the duty cycle is near 50% ，the waveform will be low for about 333 ns ，which is within the 400 ns limit．When operating the ADC12662 at a sample rate of 1.25 MHz or below，the pulse width of the $\mathrm{S} / \overline{\mathrm{H}}$ signal must be smaller than half the sample period．

TL／H／11876－25
FIGURE 13．Crystal Clock Source
Figure 13 is an example of a low jitter $\mathrm{S} / \overline{\mathrm{H}}$ pulse generator that can be used with the ADC12662 and allow operation at sampling rates from DC to 1.5 MHz ．A standard 4 －pin DIP crystal oscillator provides a stable 1.5 MHz squarewave． Since most DIP oscillators have TTL outputs，a 4.7 k pullup resistor is used to raise the output high voltage to CMOS input levels．The output is fed to the trigger input（falling

Applications Information (Continued)

edge) of an MM74HC4538 one-shot. The 1 k resistor and 12 pF capacitor set the pulse length to approximately 100 ns. The $\mathrm{S} / \overline{\mathrm{H}}$ pulse stream for the converter appears on the Q output of the HC4538. This is the S/H clock generator used on the ADC12062EVAL evaluation board. For lower power, a CMOS inverter-based crystal oscillator can be used in place of the DIP crystal oscillator. See Application Note AN-340 in the National Semiconductor CMOS Logic Databook for more information on CMOS crystal oscillators.

8.0 COMMON APPLICATION PITFALLS

Driving inputs (analog or digital) outside power supply rails. The Absolute Maximum Ratings state that all inputs must be between GND -300 mV and $\mathrm{V}_{\mathrm{CC}}+300 \mathrm{mV}$. This rule is most often broken when the power supply to the
converter is turned off, but other devices connected to it (op amps; microprocessors) still have power. Note that if there is no power to the converter, DGND $=A G N D=D V_{C C}=$ $A V_{C C}=O V$, so all inputs should be within $\pm 300 \mathrm{mV}$ of AGND and DGND.
Driving a high capacitance digital data bus. The more capacitance the data bus has to charge for each conversion, the more instantaneous digital current required from DV ${ }_{\text {Cc }}$ and DGND. These large current spikes can couple back to the analog section, decreasing the SNR of the converter. While adequate supply bypassing and separate ana\log and digital ground planes will reduce this problem, buffering the digital data outputs (with a pair of MM74HC541s, for example) may be necessary if the converter must drive a heavily loaded databus.

9.0 APPLICATIONS

2's Complement Output

TL/H/11876-26

Ping-Ponging between $\mathrm{V}_{\mathrm{IN} 1}$ and $\mathrm{V}_{\mathrm{IN} 2}$

TL/H/11876-27

Applications Information (Continued)

ADC1241 Self-Calibrating 12-Bit Plus Sign μ P-Compatible A/D Converter with Sample-and-Hold

General Description

The ADC1241 is a CMOS 12-bit plus sign successive approximation analog-to-digital converter. On request, the ADC1241 goes through a self-calibration cycle that adjusts positive linearity and full-scale errors to less than $\pm 1 / 2$ LSB each and zero error to less than ± 1 LSB. The ADC1241 also has the ability to go through an Auto-Zero cycle that corrects the zero error during every conversion.
The analog input to the ADC1241 is tracked and held by the internal circuitry, and therefore does not require an external sample-and-hold. A unipolar analog input voltage range (0 V to +5 V) or a bipolar range (-5 V to +5 V) can be accommodated with $\pm 5 \mathrm{~V}$ supplies.
The 13-bit word on the outputs of the ADC1241 gives a 2's complement representation of negative numbers. The digital inputs and outputs are compatible with TTL or CMOS logic levels.

Key Specifications

- Resolution
- Conversion Time
- Linearity Error
- Zero Error
$\pm 1 / 2$
- Positive Full Scale Error \pm 1LSB (max)
- Power Consumption

Features

- Self-calibrating
- Internal sample-and-hold
- Bipolar input range with $\pm 5 \mathrm{~V}$ supplies and single +5 V reference
- No missing codes over temperature
- TTL/MOS input/output compatible
- Standard 28-pin DIP

Applications

- Digital Signal Processing
- High Resolution Process Control
- Instrumentation

Simplified Schematic

Connection Diagram
Dual-In-Line Package

TL/H/10554-2
Top View
Order Number ADC1241CMJ, ADC1241CMJ/883, ADC1241BIJ or ADC1241CIJ
See NS Package Number J28A

Absolute Maximum Ratings (Notes 1 \& 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}_{\mathrm{CC}}=\mathrm{DV} \mathrm{CC}=A V_{\mathrm{CC}}$)
6.5 V

Negative Supply Voltage (V-)
$-6.5 \mathrm{~V}$
Voltage at Logic Control Inputs $\quad-0.3 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Voltage at Analog Input $\left(V_{I N}\right) \quad(\mathrm{V}--0.3 \mathrm{~V})$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
$A V_{C C}-D V_{C C}$ (Note 7)
0.3 V

Input Current at any Pin (Note 3)
$\pm 5 \mathrm{~mA}$
Package Input Current (Note 3)
Power Dissipation at $25^{\circ} \mathrm{C}$ (Note 4)
$\pm 20 \mathrm{~mA}$
875 mW
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Susceptability (Note 5)
2000 V
Soldering Information
J Package (10 sec)

Operating Ratings (Notes 1 \& 2)
Temperature Range . $T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$ ADC1241BIJ, ADC1241CIJ $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ ADC1241CMJ, ADC1241CMJ/883-55 ${ }^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
$D V_{C C}$ and $A V_{C C}$ Voltage
(Notes 6 \& 7)
4.5 V to 5.5 V

Negative Supply Voltage (V^{-}) $\quad-4.5 \mathrm{~V}$ to -5.5 V
Reference Voltage
($V_{\text {REF }}$, Notes 6 \& 7) $\quad 3.5 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}+50 \mathrm{mV}$

Converter Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}-=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+5.0 \mathrm{~V}$, and $\mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6,7 and 8)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Notes 10, 18)	Units (Limit)

STATIC CHARACTERISTICS

	Positive Integral Linearity Error	ADC1241BIJ	After Auto-Cal (Notes 11 \& 12)		$\pm 1 / 2$	LSB(max)
		ADC1241CMJ, CIJ			± 1	LSB max
	Negative Integral Linearity Error	ADC1241BIJ	After Auto-Cal (Notes 11 \& 12)		± 1	LSB(max)
		ADC1241CMJ, CIJ			± 1	LSB (max)
	Differential Linearity		After Auto-Cal (Notes 11 \& 12)		12	Bits(min)
	Zero Error		After Auto-Zero or Auto-Cal (Notes 12 \& 13)		± 1	LSB(max)
	Positive Full-Scale Error		After Auto-Cal (Note 12)	$\pm 1 / 2$	± 1	LSB(max)
	Negative Full-Scale Error		After Auto-Cal (Note 12)		$\pm 1 / \pm 2$	LSB(max)
CREF	$V_{\text {REF }}$ Input Capacitance			80		pF
$\mathrm{C}_{\text {IN }}$	Analog Input Capacitance			65		pF
V_{IN}	Analog Input Voltage				$\begin{gathered} \mathbf{v}^{-}-0.05 \\ \mathbf{v}_{\mathbf{C c}}+0.05 \end{gathered}$	$V(\min)$ V (max)
	Power Supply Sensitivity	Zero Error (Note 14)	$\begin{aligned} & A V_{C C}=D V_{C C}=5 \mathrm{~V} \pm 5 \%, \\ & V_{\mathrm{REF}}=4.75 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V} \pm 5 \% \end{aligned}$	$\pm 1 / 8$		LSB
		Full-Scale Error		$\pm 1 / 8$		LSB
		Linearity Error		$\pm 1 / 8$		LSB
DYNAMIC CHARACTERISTICS						
$\mathrm{S} /(\mathrm{N}+\mathrm{D})$	Unipolar Signal-to-Noise + Distortion Ratio (Note 17)		$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	72		dB
			$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	72		dB
$S /(N+D)$	Bipolar Signal-to-Noise + Distortion Ratio (Note 17)		$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\mathbb{I N}}= \pm 4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	76		dB
			$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}_{\mathrm{p} \text {-p }}$	76		dB
	Unipolar Full Power Bandwidth (Note 17)		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 4.85 V	32		kHz
	Bipolar Full Power Bandwidth (Note 17)		$\mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}_{\mathrm{p} \text {-p }}$	25		kHz
$t_{\text {Ap }}$	Aperture Time			100		ns
	Aperture Jitter			100		ps rms

Digital and DC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV} \mathrm{CC}=+5.0 \mathrm{~V}, \mathrm{~V}-=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+5.0 \mathrm{~V}$, and $\mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{M I N}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.
(Notes 6 and 7)

Symbol	Parameter	Condition	Typical (Note 9)	Limit (Notes 10, 18)	Units (Limits)
$\mathrm{V}_{\text {IN(1) }}$	Logical " 1 " Input Voltage for All Inputs except CLK IN	$V_{C C}=5.25 \mathrm{~V}$		2.0	$V($ min $)$
$V_{\text {IN }(0)}$	Logical "0" Input Voltage for All Inputs except CLK IN	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		0.8	V (max)
$\operatorname{liN(1)}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	0.005	1	$\mu \mathrm{A}$ (max)
InN(0)	Logical ' 0 "' Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-1	$\mu \mathrm{A}$ (max)
$\mathrm{V}_{\mathrm{T}}{ }^{+}$	CLK IN Positive-Going Threshold Voltage		2.8	2.7	$V(\min)$
$\mathrm{V}^{-}{ }^{-}$	CLK IN Negative-Going Threshold Voltage		2.1	2.3	V (max)
V_{H}	CLK IN Hysteresis $\left[\mathrm{V}_{T^{+}}(\min)-\mathrm{V}_{T^{-}}(\max)\right]$		0.7	0.4	$V($ min $)$
Vout(1)	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}: \\ & \text { IOUT }=-360 \mu \mathrm{~A} \\ & \text { IOUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & V(\min) \\ & V(\min) \end{aligned}$
VOUT(0)	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \\ & \hline \end{aligned}$		0.4	V (max)
lout	TRI-STATE® Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-0.01	-3	$\mu A($ max $)$
		$V_{\text {OUT }}=5 \mathrm{~V}$	0.01	3	$\mu A(\max)$
ISOURCE	Output Source Current	$V_{\text {OUT }}=0 \mathrm{~V}$	-20	-6.0	$\mathrm{mA}(\min)$
ISINK	Output Sink Current	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	20	8.0	mA (min)
Dlcc	DV ${ }_{\text {CC }}$ Supply Current	$\mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz}, \overline{\mathrm{CS}}=" 1$ "	1	2	mA(max)
Alcc	AV ${ }_{\text {CC }}$ Supply Current	$\mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz}, \overline{\mathrm{CS}}=" 1$ "	2.8	6	mA(max)
1^{-}	V-Supply Current	$\mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz}, \overline{\mathrm{CS}}=" 1 "$	2.8	6	mA(max)

AC Electrical Characteristics

The following specifications apply for $D V_{C C}=A V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\boldsymbol{J}}=25^{\circ} \mathrm{C}$. (Notes 6 and 7)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Notes 10, 18)	Units (Limits)
${ }^{\text {f CLK }}$	Clock Frequency		$\begin{aligned} & 0.5 \\ & 4.0 \end{aligned}$	2.0	$\begin{gathered} \mathrm{MHz} \\ \mathrm{MHz}(\min) \\ \mathrm{MHZ}(\max) \\ \hline \end{gathered}$
	Clock Duty Cycle		50	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	
${ }^{t} \mathrm{C}$	Conversion Time		27(1/f CLK)	27(1/fCLK) +300 ns	(max)
		$\mathrm{f}_{\text {CLK }}=2.0 \mathrm{MHz}$	13.5		$\mu \mathrm{s}$
$t_{\text {A }}$	Acquisition Time (Note 15)	$\begin{aligned} & R_{\text {SOURCE }}=50 \Omega \\ & \mathrm{f}_{\text {CLK }}=2.0 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{gathered} 7(1 / \mathrm{f} \text { GLK }) \\ 3.5 \\ \hline \end{gathered}$	7(1/fcLK) +300 ns	$\begin{gathered} (\max) \\ \mu \mathrm{s} \end{gathered}$
t_{z}	Auto Zero Time		26	26	1/f ${ }_{\text {CLK }}$ (max)
		$\mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$	13		$\mu \mathrm{s}$
tCAL	Calibration Time		1396		1/f ${ }_{\text {CLK }}$
		$\mathrm{f}_{\text {CLK }}=2.0 \mathrm{MHz}$	698	706	$\mu \mathrm{S}$ (max)
$t_{\text {W }}(\overline{C A L}) \mathrm{L}$	Calibration Pulse Width	(Note 16)	60	200	ns (min)
$t_{W}(\overline{W A}) L$	Minimum WR Pulse Width		60	200	$\mathrm{ns}(\mathrm{min})$
$t_{\text {ACC }}$	Maximum Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)	$C_{L}=100 \mathrm{pF}$	50	85	ns(max)
$\mathrm{t}_{\mathrm{OH}}, \mathrm{t}_{1 \mathrm{H}}$	TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to Hi -Z State)	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, \\ & C_{L}=100 \mathrm{pF} \end{aligned}$	30	90	ns(max)
$\operatorname{tPD}_{\text {(}}^{\text {NTT }}$)	Maximum Delay from Falling Edge of $\overline{\mathrm{RD}}$ or $\overline{W R}$ to Reset of $\overline{\mathrm{NT}}$		100	175	ns (max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: All voltages are measured with respect to AGND and DGND, unless otherwise specified.
Note 3: When the input voltage $\left(V_{\mathbb{N}}\right)$ at any pin exceeds the power supply rails $\left(V_{\mathbb{N}}<\mathrm{V}^{-}\right.$or $\mathrm{V}_{\mathbb{N}}>\left(A V_{C C}\right.$ or $\left.D V_{C C}\right)$, the current at that pin should be limited to 5 mA . The 20 mA maximum package input current rating allows the voltage at any four pins, with an input current limit of 5 mA , to simultaneously exceed the power supply voltages.
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{\text {JMAX }}$ (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_{A} (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{D \max }=\left(T_{J m a x}-\right.$ $\left.T_{A}\right) / \theta_{\mathrm{JA}}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{Jmax}}=125^{\circ} \mathrm{C}$, and the typical thermal resistance (θ_{JA}) of the ADC1241 with CMJ, BIJ, and CIJ suffixes when board mounted is $47^{\circ} \mathrm{C} / \mathrm{W}$.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: Two on-chip diodes are tied to the analog input as shown below. Errors in the A/D conversion can occur if these diodes are forward biased more than 50 mV .

TL/H/10554-3
This means that if $A V_{C C}$ and $D V_{C C}$ are minimum ($4.75 \mathrm{~V}_{D C}$) and V^{-}is maximum ($-4.75 V_{D C}$), full-scale must be $\leq 4.8 V_{D C}$

AC Electrical Characteristics (Continued)

Note 7: A diode exists between $A V_{C C}$ and $D V_{C C}$ as shown below.

TL/H/10554-4
To guarantee accuracy, it is required that the $A V_{C C}$ and $D V_{C C}$ be connected together to a power supply with separate bypass filters at each $V_{C C}$ pin.
Note 8: Accuracy is guaranteed at f CLK $=2.0 \mathrm{MHz}$. At higher and lower clock frequencies accuracy may degrade. See curves in the Typical Performance Characteristics Section.
Note 9: Typicals are at $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 10: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 11: Positive linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line that passes through positive full scale and zero. For negative linearity error the straight line passes through negative full scale and zero. (See Figures 1b and 1c).
Note 12: The ADC1241's self-calibration technique ensures linearity, full scale, and offset errors as specified, but noise inherent in the self-calibration process will result in a repeatability uncertainty of ± 0.20 LSB.
Note 13: If T_{A} changes then an Auto-Zero or Auto-Cal cycle will have to be re-started, see the typical performance characteristic curves.
Note 14: After an Auto-Zero or Auto-Cal cycle at the specified power supply extremes.
Note 15: If the clock is asynchronous to the falling edge of WR an uncertainty of one clock period will exist in the interval of t_{A}, therefore making the minimum $t_{A}=$ 6 clock periods and the maximum $t_{A}=7$ clock periods. If the falling edge of the clock is synchronous to the rising edge of $\overline{\mathrm{WR}}$ then t_{A} will be exactly 6.5 clock periods.
Note 16: The CAL line must be high before any other conversion is started.
Note 17: The specifications for these parameters are valid after an Auto-Cal cycle has been completed.
Note 18: A military RETS electrical test specification is available on request. At time of printing, the ADC1241CMJ/883 RETS specification complies fully with the boldface limits in this column.

analog input voltage ($V_{\mathbb{I}}$)
FIGURE 1a. Transfer Characteristic

AC Electrical Characteristics (Continued)

FIGURE 1b. Simplified Error Curve vs Output Code Without Auto-Cal or Auto-Zero Cycles

TL/H/10554-7
FIGURE 1c. Simplified Error Curve vs Output Code After Auto-Cal Cycle

Typical Performance Characteristics

Zero Error Change vs Ambient Temperature

Typical Performance Characteristics (Continued)

Bipolar Signal-to-
Noise + Distortion Ratio vs Input Frequency

Bipolar Signal-to-
Noise + Distortion Ratio vs Input Signal Level

Linearity Error vs Clock Frequency

Unipolar Signal-to-
Noise + Distortion Ratio vs Input Frequency

Unipolar Signal-toNoise + Distortion Ratio vs Input Signal Level

Unipolar Spectral Response with 1 kHz Sine Wave Input

Full Scale Error Change vs Ambient Temperature

Bipolar Signal-to-
Noise + Distortion Ratio vs Input Source Impedance

Bipolar Spectral Response with 10 kHz Sine Wave Input

Unipolar Spectral Response with 10 kHz Sine Wave Input

Test Circuits

TL/H/10554-10

TL/H/10554-9

TL/H/10554-11
FIGURE 2. TRI-STATE Test Circuits and Waveforms

Timing Diagrams

Timing Diagrams (Continued)

TL/H/10554-15

1．0 Pin Descriptions

DV CC （28），The digital and analog positive power supply $A V_{C C}$（4）pins．The digital and analog power supply voltage range of the ADC1241 is +4.5 V to +5.5 V ．To guarantee accuracy，it is required that the $A V_{C C}$ and $D V_{C C}$ be connected to－ gether to the same power supply with sepa－ rate bypass filters（ $10 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic）at each $\mathrm{V}_{\mathrm{CC}} \mathrm{pin}$.
V^{-}（5）The analog negative supply voltage pin． V^{-} has a range of -4.5 V to -5.5 V and needs a bypass filter of $10 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic．
DGND（14），The digital and analog ground pins．AGND AGND（3）and DGND must be connected together ex－ ternally to guarantee accuracy．
$V_{\text {REF }}$（2）The reference input voltage pin．To maintain accuracy the voltage at this pin should not exceed the $A V_{C C}$ or $D V_{C C}$ by more than 50 mV or go below 3.5 VDC ．
$\mathrm{V}_{\mathrm{IN}}(1) \quad$ The analog input voltage pin．To guarantee accuracy the voltage at this pin should not exceed $V_{C C}$ by more than 50 mV or go below V －by more than 50 mV ．
$\overline{\mathrm{CS}}(10) \quad$ The Chip Select control input．This input is active low and enables the $\overline{W R}$ and $\overline{\mathrm{RD}}$ func－ tions．
$\overline{\mathrm{RD}}$（11）The Read control input．With both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low the TRI－STATE output buffers are en－ abled and the INT output is reset high．
$\overline{W R}$（7）The Write control input．The converison is started on the rising edge of the $\overline{\mathrm{WR}}$ pulse when $\overline{\mathrm{CS}}$ is low．
CLK（8）The external clock input pin．The clock fre－ quency range is 500 kHz to 4 MHz ．
$\overline{\mathrm{CAL}}$（9）The Auto－Calibration control input．When $\overline{\mathrm{CAL}}$ is low the ADC1241 is reset and a cali－ bration cycle is initiated．During the calibra－ tion cycle the values of the comparator offset voltage and the mismatch errors in the ca－ pacitor reference ladder are determined and stored in RAM．These values are used to cor－ rect the errors during a normal cycle of A / D conversion．
$\overline{\mathrm{AZ}}$（6）The Auto－Zero control input．With the $\overline{\mathrm{AZ}}$ pin held low during a conversion，the ADC1241 goes into an auto－zero cycle before the actu－ al A／D conversion is started．This Auto－Zero cycle corrects for the comparator offset volt－ age．The total conversion time（ t_{C} ）is in－ creased by 26 clock periods when Auto－Zero is used．
EOC（12）The End－of－Conversion control output．This output is low during a conversion or a calibra－ tion cycle．
INT（13）The Interrupt control output．This output goes low when a conversion has been completed and indicates that the conversion result is available in the output latches．Reading the result or starting a conversion or calibration cycle will reset this output high．

DB0－DB12 The TRI－STATE output pins．The output is in （15－27） two＇s complement format with DB12 the sign bit，DB11 the MSB and DBO the LSB．

2．0 Functional Description

The ADC1241 is a 12－bit plus sign A／D converter with the capability of doing Auto－Zero or Auto－Cal routines to mini－ mize zero，full－scale and linearity errors．It is a successive－ approximation A／D converter consisting of a DAC，compar－ ator and a successive－approximation register（SAR）．Auto－ Zero is an internal calibration sequence that corrects for the A／D＇s zero error caused by the comparator＇s offset voltage． Auto－Cal is a calibration cycle that not only corrects zero error but also corrects for full－scale and linearity errors caused by DAC inaccuracies．Auto－Cal minimizes the errors of the ADC1241 without the need of trimming during its fab－ rication．An Auto－Cal cycle can restore the accuracy of the ADC1241 at any time，which ensures its long term stability．

2．1 DIGITAL INTERFACE

On power up，a calibration sequence should be initiated by pulsing $\overline{\mathrm{CAL}}$ low with $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$ ，and $\overline{\mathrm{WR}}$ high．To acknowl－ edge the $\overline{\mathrm{CAL}}$ signal，EOC goes low after the falling edge of $\overline{\mathrm{CAL}}$ ，and remains low during the calibration cycle of 1396 clock periods．During the calibration sequence，first the comparator＇s offset is determined，then the capacitive DAC＇s mismatch error is found．Correction factors for these errors are then stored in internal RAM．
A conversion is initiated by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ low．The $\overline{\mathrm{AZ}}$ （Auto Zero）signal line should be tied high or low during the conversion process．If $\overline{A Z}$ is low an auto zero cycle，which takes approximately 26 clock periods，occurs before the ac－ tual conversion is started．The auto zero cycle determines the correction factors for the comparator＇s offset voltage．If $\overline{\mathrm{AZ}}$ is high，the auto zero cycle is skipped．Next the analog input is sampled for 7 clock periods，and held in the capaci－ tive DAC＇s ladder structure．The EOC then goes low，signal－ ing that the analog input is no longer being sampled and that the A／D successive approximation conversion has started．
During a conversion，the sampled input voltage is succes－ sively compared to the output of the DAC．First，the ac－ quired input voltage is compared to analog ground to deter－ mine its polarity．The sign bit is set low for positive input voltages and high for negative．Next the MSB of the DAC is set high with the rest of the bits low．If the input voltage is greater than the output of the DAC，then the MSB is left high；otherwise it is set low．The next bit is set high，making the output of the DAC three quarters or one quarter of full scale．A comparison is done and if the input is greater than the new DAC value this bit remains high；if the input is less than the new DAC value the bit is set low．This process continues until each bit has been tested．The result is then stored in the output latch of the ADC1241．Next EOC goes high，and $\overline{\mathrm{NT}}$ goes low to signal the end of the conversion． The result can now be read by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low to enable the DB0－DB12 output buffers．

2．0 Functional Description（Continued）

Digital Control Inputs					A／D Function
$\overline{\mathbf{C S}}$	$\overline{W R}$	$\overline{\text { RD }}$	CAL	$\overline{\text { AZ }}$	
凹	Ч	1	1	1	Start Conversion without Auto－Zero
ㄴ	1	い	1	1	Read Conversion Result without Auto－Zero
ป	い	1	1	0	Start Conversion with Auto－Zero
Ч	1	บ	1	0	Read Conversion Result with Auto－Zero
1	X	X	Ч	X	Start Calibration Cycle
0	X	1	0	X	Test Mode（DB2，DB3，DB5 and DB6 become active）

FIGURE 1．Function of the A／D Control Inputs

The table in Figure 1 summarizes the effect of the digital control inputs on the function of the ADC1241．The Test Mode，where $\overline{\mathrm{RD}}$ is high and $\overline{\mathrm{CS}}$ and $\overline{\mathrm{CAL}}$ are low，is used by the factory to thoroughly check out the operation of the ADC1241．Care should be taken not to inadvertently be in this mode，since DB2，DB3，DB5，and DB6 become active outputs，which may cause data bus contention．

2．2 RESETTING THE A／D

All internal logic can be reset，which will abort any conver－ sion in process．The A／D is reset whenever a new conver－ sion is started by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ low．If this is done when the analog input is being sampled or when EOC is low，the Auto－Cal correction factors may be corrupted，therefore making it necessary to do an Auto－Cal cycle before the next conversion．This is true with or without Auto－Zero．The Cali－ bration Cycle cannot be reset once started．On power－up the ADC1241 automatically goes through a Calibration Cy－ cle that takes typically 1396 clock cycles．

3．0 Analog Considerations

3．1 REFERENCE VOLTAGE

The voltage applied to the reference input of the converter defines the voltage span of the analog input（the difference between $V_{I N}$ and AGND），over which 4095 positive output codes and 4096 negative output codes exist．The A－to－D can be used in either ratiometric or absolute reference ap－ plications．The voltage source driving $\mathrm{V}_{\text {REF }}$ must have a very low output impedance and very low noise．The circuit in Figure 2 is an example of a very stable reference that is appropriate for use with the ADC1241．
In a ratiometric system，the analog input voltage is propor－ tional to the voltage used for the A／D reference．When this voltage is the system power supply，the $\mathrm{V}_{\text {REF }}$ pin can be tied to V_{CC} ．This technique relaxes the stability requirement of the system reference as the analog input and A／D refer－ ence move together maintaining the same output code for given input condition．

FIGURE 2．Low Drift Extremely Stable Reference Circuit

3．0 Analog Considerations（Continued）

TL／H／10554－18
FIGURE 3．Analog Input Equivalent Circuit

For absolute accuracy，where the analog input varies be－ tween very specific voltage limits，the reference pin can be biased with a time and temperature stable voltage source． In general，the magnitude of the reference voltage will re－ quire an initial adjustment to null out full－scale errors．

3.2 INPUT CURRENT

A charging current will flow into or out of（depending on the input voltage polarity）of the analog input pin（ $\mathrm{V}_{\text {IN }}$ ）on the start of the analog input sampling period $\left(\mathrm{t}_{\mathrm{A}}\right)$ ．The peak val－ ue of this current will depend on the actual input voltage applied．

3．3 INPUT BYPASS CAPACITORS

An external capacitor can be used to filter out any noise due to inductive pickup by a long input lead and will not degrade the accuracy of the conversion result．

3．4 INPUT SOURCE RESISTANCE

The analog input can be modeled as shown in Figure 3. External R_{S} will lengthen the time period necessary for the voltage on CREF to settle to within $1 / 2$ LSB of the analog input voltage．With $\mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz} \mathrm{t}_{\mathrm{A}}=7$ clock periods $=$ $3.5 \mu \mathrm{~s}, \mathrm{R}_{\mathrm{S}} \leq 1 \mathrm{k} \Omega$ will allow a 5 V analog input voltage to settle properly．

3．5 NOISE

The leads to the analog input pin should be kept as short as possible to minimize input noise coupling．Both noise and undesired digital clock coupling to this input can cause er－ rors．Input filtering can be used to reduce the effects of these noise sources．

3．6 POWER SUPPLIES

Noise spikes on the V_{CC} and V^{-}supply lines can cause conversion errors as the comparator will respond to this noise．The A／D is especially sensitive during the auto－zero or auto－cal procedures to any power supply spikes．Low in
ductance tantalum capacitors of $10 \mu \mathrm{~F}$ or greater paralleled with $0.1 \mu \mathrm{~F}$ ceramic capacitors are recommended for supply bypassing．Separate bypass capacitors whould be placed close to the $\mathrm{DV}_{\mathrm{CC}}, \mathrm{AV}_{\mathrm{CC}}$ and V^{-}pins．If an unregulated voltage source is available in the system，a separate LM340LAZ－5．0 voltage regulator for the A－to－D＇s $V_{C C}$（and other analog circuitry）will greatly reduce digital noise on the supply line．

3．7 THE CALIBRATION CYCLE

On power up the ADC1241 goes through an Auto－Cal cycle which cannot be interrupted．Since the power supply，refer－ ence，and clock will not be stable at power up，this first calibration cycle will not result in an accurate calibration of the A／D．A new calibration cycle needs to be started after the power supplies，reference，and clock have been given enough time to stabilize．During the calibration cycle，cor－ rection values are determined for the offset voltage of the sampled data comparator and any linearity and gain errors． These values are stored in internal RAM and used during an analog－to－digital conversion to bring the overall gain，offset， and linearity errors down to the specified limits．It should be necessary to go through the calibration cycle only once af－ ter power up．

3．8 THE AUTO－ZERO CYCLE

To correct for any change in the zero（offset）error of the A／D，the auto－zero cycle can be used．It may be necessary to do an auto－zero cycle whenever the ambient temperature changes significantly．（See the curved titled＂Zero Error Change vs Ambient Temperature＂in the Typical Perform－ ance Characteristics．）A change in the ambient temperature will cause the $V_{O S}$ of the sampled data comparator to change，which may cause the zero error of the A／D to be greater than ± 1 LSB．An auto－zero cycle will maintain the zero error to ± 1 LSB or less．

4.0 Dynamic Performance

Many applications require the A/D converter to digitize ac signals, but the standard dc integral and differential nonlinearity specifications will not accurately predict the A/D converter's performance with ac input signals. The important specifications for ac applications reflect the converter's ability to digitize ac signals without significant spectral errors and without adding noise to the digitized signal. Dynamic characteristics such as signal-to-noise+distortion ratio $(S /(N+D))$, effective bits, full power bandwidth, aperture time and aperture jitter are quantitative measures of the A/D converter's capability.
An A/D converter's ac performance can be measured using Fast Fourier Transform (FFT) methods. A sinusoidal waveform is applied to the A/D converter's input, and the transform is then performed on the digitized waveform. $S /(N+D)$ is calculated from the resulting FFT data, and a spectral plot may also be obtained. Typical values for $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ are shown in the table of Electrical Characteristics, and spectral plots are included in the typical performance curves.
The A/D converter's noise and distortion levels will change with the frequency of the input signal, with more distortion and noise occurring at higher signal frequencies. This can be seen in the $S /(N+D)$ versus frequency curves. These curves will also give an indication of the full power bandwidth (the frequency at which the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ drops 3 dB$)$.
Two sample/hold specifications, aperture time and aperture jitter, are included in the Dynamic Characteristics table since the ADC1241 has the ability to track and hold the analog input voltage. Aperture time is the delay for the A / D to respond to the hold command. In the case of the ADC1241, the hold command is internally generated. When the Auto-Zero function is not being used, the hold command occurs at the end of the acquisition window, or seven clock periods after the rising edge of the $\overline{W R}$. The delay between the internally generated hold command and the time that the ADC1241 actually holds the input signal is the aperture time. For the ADC1241, this time is typically 100 ns . Aperture jitter is the change in the aperture time from sample to sample. Aperture jitter is useful in determining the maximum slew rate of the input signal for a given accuracy. For example, an ADC1241 with 100 ps of aperture jitter operating with a 5 V reference can have an effective gain variation of about 1 LSB with an input signal whose slew rate is $12 \mathrm{~V} / \mu \mathrm{s}$.

Protecting the Analog Inputs

TL/H/10554-20

ADC1242
 12－Bit Plus Sign Sampling A／D Converter

General Description

The ADC1242 is a CMOS 12－bit plus sign successive ap－ proximation analog－to－digital converter．On request，the ADC1242 goes through a self－calibration cycle that adjusts positive linearity error to less than ± 1 LSB full－scale error to less than ± 3 LSB，and zero error to less than ± 2 LSB．The ADC1242 also has the ability to go through an Auto－Zero cycle that corrects the zero error during every conversion．
The analog input to the ADC1242 is tracked and held by the internal circuitry，and therefore does not require an external sample－and－hold．A unipolar analog input voltage range（ 0 V to +5 V ）or a bipolar range（ -5 V to +5 V ）can be accom－ modated with $\pm 5 \mathrm{~V}$ supplies．
The 13－bit word on the outputs of the ADC1242 gives a 2＇s complement representation of negative numbers．The digi－ tal inputs and outputs are compatible with TTL or CMOS logic levels．

Key Specifications

－Resolution
－Conversion Time
－Linearity Error
■ Zero Error
－Positive Full Scale Error
－Power Consumption

12 Bits plus Sign
$13.8 \mu \mathrm{~s}$（max）
± 1 LSB（ $\pm 0.0244 \%$ ）（max）
± 2 LSB（max）
± 3 LSB（max）

Features

－Self－calibrating
－Internal sample－and－hold
－Bipolar input range with $\pm 5 \mathrm{~V}$ supplies and single +5 V reference
－No missing codes over temperature
－TTL／MOS input／output compatible
－Standard 28－pin ceramic DIP

Applications

－Digital Signal Processing
－High Resolution Process Control
－Instrumentation

Simplified Schematic

Connection Diagram
Dual－In－Line Package

TL／H／11735－2
Top View
Order Number ADC1242CIJ See NS Package Number J28A

ESD Susceptability (Note 5)
2000V
Soldering Information
J Package (10 seconds) $300^{\circ} \mathrm{C}$
Operating Ratings (Notes 1 and 2)

Temperature Range	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
ADC1242CIJ	$-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$

$D V_{C C}$ and $A V_{C c}$ Voltage
(Notes 6 and 7)
Negative Supply Voltage (\mathbf{V}^{-})
Reference Voltage
(VREF, Notes 6 and 7)
$-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$
4.5 V to 5.5 V
-4.5 V to -5.5 V
3.5 V to $\mathrm{AV} \mathrm{CC}+50 \mathrm{mV}$

Converter Electrical Characteristics

The following specifications apply for $V_{C C}=D V_{C C}=A V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+4.096 \mathrm{~V}$, and $\mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max; }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$. (Notes 6, 7 and 8)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Notes 10, 18)	Units (Limit)

STATIC CHARACTERISTICS

	Positive Integral Linearity Error		After Auto-Cal (Notes 11 and 12)		± 1	LSB(max)
	Differential Linearity		After Auto-Cal (Notes 11 and 12)		12	Bits(min)
	Zero Error		After Auto-Zero or Auto-Cal (Notes 12 and 13)		± 2	LSB(max)
	Positive and Negative Full-Scale Error		After Auto-Cal (Note 12)		± 3	LSB(max)
$\mathrm{C}_{\text {REF }}$	$V_{\text {REF }}$ Input Capacitance			80		pF
$\mathrm{C}_{\text {IN }}$	Analog Input Capacitance			65		pF
VIN	Analog Input Voltage				$\begin{aligned} & v^{-}-0.05 \\ & v_{c c}+0.05 \end{aligned}$	$V(\min)$ V (max)
	Power Supply Sensitivity	Zero Error (Note 14)	$\begin{aligned} & A V_{C C}=D V_{C C}=5 V \pm 5 \%, \\ & V_{\text {REF }}=4.75 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \pm 5 \% \end{aligned}$	$\pm 1 / 8$		LSB
		Full-Scale Error		$\pm 1 / 8$		LSB
		Linearity Error		$\pm 1 / 8$		LSB

DYNAMIC CHARACTERISTICS

$\mathrm{S} /(\mathrm{N}+\mathrm{D})$	Unipolar Signal-to-Noise + Distortion Ratio (Note 17)	$\mathrm{fIN}^{\prime}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}$ p-p	72		dB
		$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	72		dB
$\mathrm{S} /(\mathrm{N}+\mathrm{D})$	Bipolar Signal-to-Noise + Distortion Ratio (Note 17)	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\text {IN }}= \pm 4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	76		dB
		$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}_{\mathrm{p} \text { - }}$	76		dB
	Unipolar Full Power Bandwidth (Note 17)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 4.85 V	32		kHz
	Bipolar Full Power Bandwidth (Note 17)	$\mathrm{V}_{\text {IN }}= \pm 4.85 \mathrm{~V}_{\mathrm{p} \text {-p }}$	25		kHz
$\mathrm{t}_{\text {Ap }}$	Aperture Time		100		ns
	Aperture Jitter		100		ps ${ }_{\text {rms }}$

Digital and DC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+4.096 \mathrm{~V}$, and $\mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6 and 7)

Symbol	Parameter	Condition	Typical (Note 9)	Limit (Notes 10, 18)	Units (Limits)
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage for All Inputs except CLK IN	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		2.0	$V(\min)$
$\mathrm{V}_{\text {IN(0) }}$	Logical "0" Input Voltage for All Inputs except CLK IN	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		0.8	$V(\max)$
$\ln (1)$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	0.005	1	$\mu \mathrm{A}$ (max)
$\ln (0)$	Logical " 0 " Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-1	$\mu \mathrm{A}$ (max)
$\mathrm{V}_{\mathrm{T}}{ }^{+}$	CLK IN Positive-Going Threshold.Voltage		2.8	2.7	$V(\mathrm{~min})$
$\mathrm{V}_{\mathrm{T}}{ }^{-}$	CLK IN Negative-Going Threshold Voltage		2.1	2.3	$V(\max)$
V_{H}	CLK IN Hysteresis $\left[\mathrm{V}_{\mathrm{T}^{+}}(\min)-\mathrm{V}_{\mathrm{T}^{-}}(\max)\right]$		0.7	0.4	$V(\min)$
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}: \\ & \text { IOUT }=-360 \mu \mathrm{~A} \\ & \text { IOUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & V(\min) \\ & V(\min) \end{aligned}$
$V_{\text {OUT }}(0)$	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \\ & \hline \end{aligned}$		0.4	V (max)
I OUT	TRI-STATE® Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-0.01	-3	$\mu \mathrm{A}$ (max)
		$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	0.01	3	$\mu A(\max)$
IsOURCE	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-20	-6.0	mA (min)
ISINK	Output Sink Current	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	20	8.0	$\mathrm{mA}(\mathrm{min})$
DICC	DV ${ }_{\text {CC }}$ Supply Current	$\mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz}, \overline{\mathrm{CS}}={ }^{\text {c }} 1$ "	1	2	mA(max)
$\mathrm{Al}_{\mathrm{CC}}$	AV ${ }_{\text {CC }}$ Supply Current	$\mathrm{f}_{\text {CLK }}=2 \mathrm{MHz}, \overline{\mathrm{CS}}=$ " 1 "	2.8	6	mA(max)
$1-$	V-Supply Current	$\mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz}, \overline{\mathrm{CS}}=$ "1"	2.8	6	mA(max)

AC Electrical Characteristics
The following specifications apply for $\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20$ ns unless otherwise specified.
Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$. (Notes 6 and 7)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Notes 10, 18)	Units (Limits)
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency		$\begin{aligned} & 0.5 \\ & 4.0 \end{aligned}$	2.0	$\begin{gathered} \mathrm{MHz} \\ \mathrm{MHz}(\min) \\ \mathrm{MHz}(\max) \\ \hline \end{gathered}$
	Clock Duty Cycle		50	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	
${ }^{\text {t }}$	Conversion Time		27(1/f CLK)	27(1/fcLK) + 300 ns	(max)
		$\mathrm{f}_{\text {CLK }}=2.0 \mathrm{MHz}$	13.5		$\mu \mathrm{s}$
$t_{\text {A }}$	Acquisition Time (Note 15)	$\begin{aligned} & \text { RSOURCE }=50 \Omega \\ & \mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{gathered} 7(1 / \text { f CLK } \\ 3.5 \\ \hline \end{gathered}$	7(1/fcLK) +300 ns	$\begin{gathered} (\max) \\ \mu \mathrm{s} \end{gathered}$
t_{z}	Auto Zero Time		26	26	1/f ${ }_{\text {cLK }}$ (max)
		$\mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$	13.		$\mu \mathrm{s}$
${ }_{\text {t }}$ CAL	Calibration Time	-	1396		1/fCLK
		$\mathrm{f}_{\text {CLK }}=2.0 \mathrm{MHz}$	698	706	$\mu s(\max)$
$t^{W}(\overline{\text { CAL }}) \mathrm{L}$	Calibration Pulse Width	(Note 16)	60	200	$\mathrm{ns}(\mathrm{min})$
${ }^{+} \mathrm{W}(\overline{\mathrm{Wr}}) \mathrm{L}$	Minimum $\overline{W R}$ Pulse Width		60	200	ns (min)
$t_{\text {ACC }}$	Maximum Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)	$C_{L}=100 \mathrm{pF}$	50	- 85	ns(max)
${ }^{\text {toH }}, \mathrm{t}_{1 \mathrm{H}}$	TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to Hi-Z State)	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	30	90	ns(max)
$t_{P D}(\overline{\mathbb{N T}})$	Maximum Delay from Falling Edge of $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ to Reset of $\overline{\mathrm{NT}}$,	100	175	ns(max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to AGND and DGND, unless otherwise specified.
Note 3: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supply rails $\left(V_{I N}<V\right.$ - or $V_{I N}>\left(A V_{C C}\right.$ or $\left.D V_{C C}\right)$, the current at that pin should be limited to 5 mA . The 20 mA maximum package input current rating allows the voltage at any four pins, with an input current limit of 5 mA , to simultaneously exceed the power supply voltages.
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}$ (maximum junction temperature), $\boldsymbol{\theta}_{\text {JA }}$ (package junction to ambient thermal resistance), and T_{A} (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{D m a x}=\left(T_{J m a x}-\right.$ $\left.T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $T_{J m a x}=125^{\circ} \mathrm{C}$, and the typical thermal resistance ($\boldsymbol{\theta}_{\mathrm{JA}}$) of the ADC1242 CIJ when board mounted is $47^{\circ} \mathrm{C} / \mathrm{W}$.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: Two on-chip diodes are tied to the analog input as shown below. Errors in the A/D conversion can occur if these diodes are forward biased more than 50 mV .

TL/H/11735-3
This means that if $A V_{C C}$ and $D V_{C C}$ are minimum (4.75 $V_{D C}$) and V^{-}is maximum ($-4.75 \mathrm{~V}_{D C}$), full-scale must be $\leq 4.8 V_{D C}$.

AC Electrical Characteristics (Continued)

Note 7: A diode exists between $A V_{C C}$ and $D V_{C C}$ as shown below.

TL/H/11735-4
To guarantee accuracy, it is required that the $A V_{C C}$ and $D V_{C C}$ be connected together to a power supply with separate bypass filters at each $V_{C C}$ pin. Note 8: Accuracy is guaranteed at $\mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$. At higher and lower clock frequencies accuracy may degrade. See curves in the Typical Performance Characteristics Section.
Note 9: Typicals are at $\mathrm{T}_{j}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 10: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 11: Positive linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line that passes through positive full scale and zero. For negative linearity error the straight line passes through negative full scale and zero. (See Figures 1b and 1c).
Note 12: The ADC1242's self-calibration technique ensures linearity, full scale, and offset errors as specified, but noise inherent in the self-calibration process will result in a repeatability uncertainty of ± 0.20 LSB.
Note 13: If T_{A} changes then an Auto-Zero or Auto-Cal cycle will have to be re-started, see the typical performance characteristic curves.
Note 14: After an Auto-Zero or Auto-Cal cycle at the specified power supply extremes.
Note 15: If the clock is asynchronous to the falling edge of $\overline{W R}$ an uncertainty of one clock period will exist in the interval of t_{A}, therefore making the minimum $t_{A}=$ 6 clock periods and the maximum $t_{A}=7$ clock periods. If the falling edge of the clock is synchronous to the rising edge of \bar{W} then t_{A} will be exactly 6.5 clock periods.
Note 16: The $\overline{C A L}$ line must be high before any other conversion is started.
Note 17: The specifications for these parameters are valid after an Auto-Cal cycle has been completed.
Note 18: A military RETS electrical test specification is available upon request. At time of printing, the ADC1241CMJ/883 RETS specification complies fully with the boldface limits in this column.

ANALOG INPUT VOLTAGE $\left(V_{I N}\right)$
FIGURE 1a. Transfer Characteristic

AC Electrical Characteristics (Continued)

FIGURE 1b. Simplified Error Curve vs Output Code without Auto-Cal or Auto-Zero Cycles

TL/H/11735-7
FIGURE 1c. Simplified Error Curve vs Output Code after Auto-Cal Cycle

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Bipolar Signal-toNoise + Distortion Ratio vs Input Frequency

Bipolar Signal-to-
Noise + Distortion Ratio vs Input Signal Level
 infut signal level (dB)

Bipolar Spectral Response with $1 \mathbf{k H z}$ Sine Wave Input

Full Scale Error Change vs Amblent Temperature
ambient temperature (${ }^{\circ} \mathrm{C}$)

Bipolar Signal-to-
Noise + Distortion Ratio vs Input Source Impedance

Bipolar Spectral Response with 10 kHz Sine Wave Input

Unipolar Spectral Response with 10 kHz Sine Wave Input

Test Circuits

TL/H/11735-11

TL/H/11735-10

TL/H/11735-13
TL/H/11735-12
FIGURE 2. TRI-STATE Test Circuits and Waveforms

Timing Diagrams

Timing Diagrams (Continued)

1.0 Pin Descriptions

DV $C C$ (28), The digital and analog positive power supply
$\mathrm{AV}_{\mathrm{CC}}$ (4) pins. The digital and analog power supply voltage range of the ADC1242 is +4.5 V to +5.5 V . To guarantee accuracy, it is required that the $A V_{C C}$ and $D V_{C C}$ be connected together to the same power supply with separate bypass filters ($10 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic) at each V_{CC} pin.
V^{-}(5) The analog negative supply voltage pin. V^{-} has a range of -4.5 V to -5.5 V and needs a bypass filter of $10 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic.
DGND (14), The digital and analog ground pins. AGND
AGND (3) and DGND must be connected together externally to guarantee accuracy.
$V_{\text {REF }}$ (2) The reference input voltage pin. To maintain accuracy the voltage at this pin should not exceed the $A V_{C C}$ or $D V_{C C}$ by more than 50 mV or go below 3.5 VDC.
$\mathrm{V}_{\text {IN }}(1) \quad$ The analog input voltage pin. To guarantee accuracy the voltage at this pin should not exceed V_{Cc} by more than 50 mV or go below V - by more than 50 mV .
$\overline{C S}(10) \quad$ The Chip Select control input. This input is active low and enables the $\overline{W R}$ and $\overline{\mathrm{RD}}$ functions.
$\overline{R D}$ (11). The Read control input. With both $\overline{C S}$ and $\overline{R D}$ low the TRI-STATE output buffers are enabled and the $\overline{\text { INT }}$ output is reset high.
$\overline{W R}$ (7) The Write control input. The converison is started on the rising edge of the $\overline{\mathrm{WR}}$ pulse when $\overline{\mathrm{CS}}$ is low.
CLK (8) The external clock input pin. The clock frequency range is 500 kHz to 4 MHz .
$\overline{\mathrm{CAL}}$ (9) The Auto-Calibration control input. When $\overline{\mathrm{CAL}}$ is low the ADC1242 is reset and a calibration cycle is initiated. During the calibration cycle the values of the comparator offset voltage and the mismatch errors in the capacitor reference ladder are determined and stored in RAM. These values are used to correct the errors during a normal cycle of A / D conversion.
$\overline{\mathrm{AZ}}$ (6) The Auto-Zero control input. With the $\overline{\mathrm{AZ}}$ pin held low during a conversion, the ADC1242 goes into an auto-zero cycle before the actual A/D conversion is started. This Auto-Zero cycle corrects for the comparator offset voltage. The total conversion time (t_{C}) is increased by 26 clock periods when Auto-Zero is used.
EOC (12) The End-of-Conversion control output. This output is low during a conversion or a calibration cycle.
$\overline{\operatorname{NT}}(13)$

DB0-DB12 The TRI-STATE output pins. The output is in (15-27) two's complement format with DB12 the sign bit, DB11 the MSB and DB0 the LSB.

2.0 Functional Description

The ADC1242 is a 12-bit plus sign A/D converter with the capability of doing Auto-Zero or Auto-Cal routines to minimize zero, full-scale and linearity errors. It is a successiveapproximation A / D converter consisting of a DAC, comparator and a successive-approximation register (SAR). AutoZero is an internal calibration sequence that corrects for the A/D's zero error caused by the comparator's offset voltage. Auto-Cal is a calibration cycle that not only corrects zero error but also corrects for full-scale and linearity errors caused by DAC inaccuracies. Auto-Cal minimizes the errors of the ADC1242 without the need of trimming during its fabrication. An Auto-Cal cycle can restore the accuracy of the ADC1242 at any time, which ensures its long term stability.

2.1 DIGITAL INTERFACE

On power up, a calibration sequence should be initiated by pulsing CAL low with $\overline{C S}, \overline{R D}$, and $\overline{W R}$ high. To acknowledge the CAL signal, EOC goes low after the falling edge of $\overline{C A L}$, and remains low during the calibration cycle of 1396 clock periods. During the calibration sequence, first the comparator's offset is determined, then the capacitive DAC's mismatch error is found. Correction factors for these errors are then stored in internal RAM.
A conversion is initiated by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ low. The $\overline{\mathrm{AZ}}$ (Auto Zero) signal line should be tied high or low during the conversion process. If $\overline{\mathrm{AZ}}$ is low an auto zero cycle, which takes approximately 26 clock periods, occurs before the actual conversion is started. The auto zero cycle determines the correction factors for the comparator's offset voltage. If $\overline{\mathrm{AZ}}$ is high, the auto zero cycle is skipped. Next the analog input is sampled for 7 clock periods, and held in the capacitive DAC's ladder structure. The EOC then goes low, signaling that the analog input is no longer being sampled and that the A/D successive approximation conversion has started.
During a conversion, the sampled input voltage is successively compared to the output of the DAC. First, the acquired input voltage is compared to analog ground to determine its polarity. The sign bit is set low for positive input voltages and high for negative. Next the MSB of the DAC is set high with the rest of the bits low. If the input voltage is greater than the output of the DAC, then the MSB is left high; otherwise it is set low. The next bit is set high, making the output of the DAC three quarters or one quarter of full scale. A comparison is done and if the input is greater than the new DAC value this bit remains high; if the input is less than the new DAC value the bit is set low. This process continues until each bit has been tested. The result is then stored in the output latch of the ADC1242. Next EOC goes high, and INT goes low to signal the end of the conversion. The result can now be read by taking $\overline{C S}$ and $\overline{\mathrm{RD}}$ low to enable the DB0-DB12 output buffers.

2.0 Functional Description (Continued)

Digital Control Inputs					A/D Function
$\overline{\text { CS }}$	$\overline{W R}$	RD	$\overline{\text { CAL }}$	$\overline{\text { AZ }}$	
Ч	工	1	1	1	Start Conversion without Auto-Zero
บ	1	ㄷ	1	1	Read Conversion Result without Auto-Zero
บ	〕	1	1	0	Start Conversion with Auto-Zero
Ч	1	ㄷ	1	0	Read Conversion Result with Auto-Zero
1	X	X	บ	X	Start Calibration Cycle
0	X	1	0	X	Test Mode (DB2, DB3, DB5 and DB6 become active)

FIGURE 3. Function of the A/D Control Inputs

The table in Figure 3 summarizes the effect of the digital control inputs on the function of the ADC1242. The Test Mode, where $\overline{\mathrm{RD}}$ is high and $\overline{\mathrm{CS}}$ and $\overline{\mathrm{CAL}}$ are low, is used by the factory to thoroughly check out the operation of the ADC1242. Care should be taken not to inadvertently be in this mode, since DB2, DB3, DB5, and DB6 become active outputs, which may cause data bus contention.

2.2 RESETTING THE A/D

All internal logic can be reset, which will abort any conversion in process. The A/D is reset whenever a new conversion is started by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ low. If this is done when the analog input is being sampled or when EOC is low, the Auto-Cal correction factors may be corrupted, therefore making it necessary to do an Auto-Cal cycle before the next conversion. This is true with or without Auto-Zero. The Calibration Cycle cannot be reset once started. On power-up the ADC1242 automatically goes through a Calibration Cycle that takes typically 1396 clock cycles.

3.0 Analog Considerations

3.1 REFERENCE VOLTAGE

The voltage applied to the reference input of the converter defines the voltage span of the analog input (the difference between $V_{I N}$ and AGND), over which 4095 positive output codes and 4096 negative output codes exist. The A-to-D can be used in either ratiometric or absolute reference applications. The voltage source driving $\mathrm{V}_{\text {REF }}$ must have a very low output impedance and very low noise. The circuit in Figure 4 is an example of a very stable reference that is appropriate for use with the ADC1242.
In a ratiometric system, the analog input voltage is proportional to the voltage used for the A/D reference. When this voltage is the system power supply, the V REF pin can be tied to V_{CC}. This technique relaxes the stability requirement of the system reference as the analog input and A/D reference move together maintaining the same output code for given input condition.

FIGURE 4. Low Drift Extremely Stable Reference Circuit

3.0 Analog Considerations (Continued)

For absolute accuracy, where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. In general, the magnitude of the reference voltage will require an initial adjustment to null out full-scale errors.

3.2 INPUT CURRENT

A charging current will flow into or out of (depending on the input voltage polarity) of the analog input pin (V_{IN}) on the start of the analog input sampling period $\left(t_{A}\right)$. The peak value of this current will depend on the actual input voltage applied.

3.3 INPUT BYPASS CAPACITORS

An external capacitor can be used to filter out any noise due to inductive pickup by a long input lead and will not degrade the accuracy of the conversion result.

3.4 INPUT SOURCE RESISTANCE

The analog input can be modeled as shown in Figure 5. External RSE will lengthen the time period necessary for the voltage on C REF to settle to within $1 / 2$ LSB of the analog input voltage. With $\mathrm{f}_{\mathrm{CLK}}=2 \cdot \mathrm{MHz} \mathrm{t}_{\mathrm{A}}=7$ clock periods $=$ $3.5 \mu \mathrm{~s}$, $\mathrm{R}_{\mathrm{SE}} \leq 1 \mathrm{k} \Omega$ will allow a 5 V analog input voltage to settle properly.

3.5 NOISE

The leads to the analog input pin should be kept as short as possible to minimize input noise coupling. Both noise and undesired digital clock coupling to this input can cause errors. Input filtering can be used to reduce the effects of these noise sources.

3.6 POWER SUPPLIES

Noise spikes on the V_{CC} and V^{-}supply lines can cause conversion errors as the comparator will respond to this noise. The A / D is especially sensitive during the auto-zero or auto-cal procedures to any power supply spikes. Low in
ductance tantalum capacitors of $10 \mu \mathrm{~F}$ or greater paralleled with $0,1 \mu \mathrm{~F}$ ceramic capacitors are recommended for supply bypassing. Separate bypass capacitors whould be placed close to the $D V_{C C}, A V_{C C}$ and V^{-}pins. If an unregulated voltage source is available in the system, a separate LM340LAZ-5.0 voltage regulator for the A-to-D's VCC (and other analog circuitry) will greatly reduce digital noise on the supply line.

3.7 THE CALIBRATION CYCLE

On power up the ADC1242 goes through an Auto-Cal cycle which cannot be interrupted. Since the power supply, reference, and clock will not be stable at power up, this first calibration cycle will not result in an accurate calibration of the A/D. A new calibration cycle needs to be started after the power supplies, reference, and clock have been given enough time to stabilize. During the calibration cycle, correction values are determined for the offset voltage of the sampled data comparator and any linearity and gain errors. These values are stored in internal RAM and used during an analog-to-digital conversion to bring the overall gain; offset, and linearity errors down to the specified limits. It should be necessary to go through the calibration cycle only once after power up.

3.8 THE AUTO-ZERO CYCLE

To correct for any change in the zero (offset) error of the A/D, the auto-zero cycle can be used. It may be necessary to do an auto-zero cycle whenever the ambient temperature changes significantly. (See the curved titled "Zero Error Change vs Ambient Temperature" in the Typical Performance Characteristics.) A change in the ambient temperature will cause the $\mathrm{V}_{\text {OS }}$ of the sampled data comparator to change, which may cause the zero error of the A/D to be greater than the amount specified. An auto-zero cycle will maintain the zero error to the amount specified or less.

4．0 Dynamic Performance

Many applications require the A／D converter to digitize ac signals，but the standard dc integral and differential nonlin－ earity specifications will not accurately predict the A／D con－ verter＇s performance with ac input signals．The important specifications for ac applications reflect the converter＇s abil－ ity to digitize ac signals without significant spectral errors and without adding noise to the digitized signal．Dynamic characteristics such as signal－to－noise＋distortion ratio （ $S /(N+D)$ ），effective bits，full power bandwidth，aperture time and aperture jitter are quantitative measures of the A／D converter＇s capability．
An A／D converter＇s ac performance can be measured using Fast Fourier Transform（FFT）methods．A sinusoidal wave－ form is applied to the A／D converter＇s input，and the trans－ form is then performed on the digitized waveform．$S /(N+D)$ is calculated from the resulting FFT data，and a spectral plot may also be obtained．Typical values for $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ are shown in the table of Electrical Characteristics，and spectral plots are included in the typical performance curves．

The A／D converter＇s noise and distortion levels will change with the frequency of the input signal，with more distortion and noise occurring at higher signal frequencies．This can be seen in the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ versus frequency curves．These curves will also give an indication of the full power band－ width（the frequency at which the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ drops 3 dB$)$ ．
Two sample／hold specifications，aperture time and aperture jitter，are included in the Dynamic Characteristics table since the ADC1242 has the ability to track and hold the analog input voltage．Aperture time is the delay for the A／D to respond to the hold command．In the case of the ADC1242，the hold command is internally generated．When the Auto－Zero function is not being used，the hold command occurs at the end of the acquisition window，or seven clock periods after the rising edge of the $\overline{W R}$ ．The delay between the internally generated hold command and the time that the ADC1242 actually holds the input signal is the aperture time．For the ADC1242，this time is typically 100 ns ．Aper－ ture jitter is the change in the aperture time from sample to sample．Aperture jitter is useful in determining the maximum slew rate of the input signal for a given accuracy．For exam－ ple，an ADC1242 with 100 ps of aperture jitter operating with a 5 V reference can have an effective gain variation of about 1 LSB with an input signal whose slew rate is $12 \mathrm{~V} / \mu \mathrm{s}$ ．

＊Tantalum

ADC12441 Dynamically-Tested Self-Calibrating 12-Bit Plus Sign A/D Converter with Sample-and-Hold

General Description

The ADC12441 is a CMOS 12-bit plus sign successive approximation analog-to-digital converter whose dynamic specifications (S/N, THD, etc.) are tested and guaranteed. On request, the ADC12441 goes through a self-calibration cycle that adjusts positive linearity and full-scale errors to less than $\pm 1 / 2$ LSB each and zero error to less than ± 1 LSB. The ADC12441 also has the ability to go through an Auto-Zero cycle that corrects the zero error during every conversion.
The analog input to the ADC12441 is tracked and held by the internal circuitry, and therefore does not require an external sample-and-hold. A unipolar analog input voltage range (0 V to +5 V) or a bipolar range (-5 V to +5 V) can be accommodated with $\pm 5 \mathrm{~V}$ supplies.
The 13-bit word on the outputs of the ADC12441 gives a 2's complement representation of negative numbers. The digital inputs and outputs are compatible with TTL or CMOS logic levels.

Applications

■ Digital signal processing

- Telecommunications
- Audio
- High resolution process control
- Instrumentation

Key Specifications

\author{

- Resolution
}
- Conversion Time
- Bipolar Signal/Noise
- Total Harmonic Distortion
- Aperture Time
- Aperture Jitter
- Zero Error
- Positive Full Scale Error
- Power Consumption @ $\pm 5 \mathrm{~V}$
- Sampling rate

12 bits plus sign
$13.8 \mu \mathrm{~s}$ (max)
$76.5 \mathrm{~dB}(\mathrm{~min})$
-75 dB (max)
100 ns
$100 \mathrm{ps}_{\mathrm{rms}}$
± 1 LSB (max)
± 1 LSB (max)
70 mW (max)
55 kHz (max)

Features

- Self-calibration provides excellent temperature stability
- Internal sample-and-hold
- Bipolar input range with single +5 V reference

Simplified Block Diagram

Connection Diagram
Dual-In-Line Package

TL/H/11017-2
Top View
Order Number
ADC12441CMJ, ADC12441CMJ/883 or ADC12441CIJ
See NS Package Number J28A

Converter Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}-=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+5.0 \mathrm{~V}$, Analog Input Source Impedance $=600 \Omega$, and $f_{C L K}=2.0 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6, 7 and 8)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Note 10)	Units (Limit)

STATIC CHARACTERISTICS

	Positive Integral Linearity Error		After Auto-Cal (Notes 11 \& 12)	$\pm 1 / 2$		LSB
	Negative Integral Linearity Error		After Auto-Cal (Notes 11 \& 12)	$\pm 3 / 4$		LSB
	Positive or Negative Differential Linearity		After Auto-Cal (Notes 11 \& 12)	12		Bits
	Zero Error		After Auto-Zero or Auto-Cal (Notes 12 \& 13)		± 1	LSB (max)
	Positive Full-Scale Error		After Auto-Cal (Note 12)	$\pm 1 / 2$	± 1	LSB (max)
	Negative Full-Scale Error		After Auto-Cal (Note 12)		$\pm 1 / \pm 2$	LSB (max)
V_{IN}	Analog Input Voltage				$\begin{aligned} & \mathbf{v}^{-}-0.05 \\ & \mathbf{v}_{\mathbf{c c}}+\mathbf{0 . 0 5} \end{aligned}$	V (min) V (max)
	Power Supply Sensitivity	Zero Error (Note 14)	$\begin{aligned} & \mathrm{AV}_{\mathrm{CC}}=\mathrm{DV} \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~V}_{\mathrm{REF}}=4.75 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \pm 5 \% \end{aligned}$	$\pm 1 / 8$		LSB
		Full-Scale Error		$\pm 1 / 8$		LSB
		Linearity Error		$\pm 1 / 8$		LSB
$\mathrm{C}_{\text {REF }}$	VREF Input Capacitance (Note 18)			80		pF
C_{IN}	Analog Input Capacitance			65		pF

DYNAMIC CHARACTERISTICS

	Bipolar Effective Bits (Note 17)	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}$	12.6		Bits
		$\mathrm{fiN}=20 \mathrm{kHz}, \mathrm{V}_{\mathbb{N}}= \pm 4.85 \mathrm{~V}$	12.6	12.4	Bits (min)
	Unipolar Effective Bits (Note 17)	$\mathrm{fIN}^{\prime}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	11.8		Bits
		$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}$ p-p	11.8	11.6	Bits (min)
S/N	Bipolar Signal-to-Noise Ratio (Note 17)	$\mathrm{fIN}^{\prime}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}$	78		dB
		$\mathrm{fIN}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}$	78		dB
		$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}$	78	76.5	dB (min)
S/N	Unipolar Signal-to-Noise Ratio (Note 17)	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	73		dB
		$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}$ p-p	73		dB
		$\mathrm{fiN}=20 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	73	71.5	dB (min)

Converter Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{DV} \mathrm{V}_{\mathrm{C}}=\mathrm{A} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}-=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+5.0 \mathrm{~V}$, Analog Input Source impedance $=600 \Omega$, and $f_{C L K}=2.0 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6, 7 and 8) (Continued)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Notes 10, 19)	Units (Limit)
DYNAMIC CHARACTERISTICS (Continued)					
THD	Bipolar Total Harmonic Distortion (Note 17)	$\mathrm{fiN}^{\prime}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}$	-82		dB
		$\mathrm{f}_{\mathrm{IN}}=19.688 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}$	-80	-75	dB (max)
THD	Unipolar Total Harmonic Distortion (Note 17)	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p} \text {-p }}$	-82		dB
		$\mathrm{fIN}=19.688 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p} \text {-p }}$	-80	-75	dB (max)
	Bipolar Peak Harmonic or Spurious Noise (Note 17)	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}$	-88		dB
		$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz}, \mathrm{V}_{\mathbb{I}}= \pm 4.85 \mathrm{~V}$	-84		dB
		$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz}, \mathrm{V}_{\text {IN }}= \pm 4.85 \mathrm{~V}$	-80		dB
	Unipolar Peak Harmonic or Spurious Noise (Note 17)	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p} \text {-p }}$	-90		dB
		$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz} ; \mathrm{V}_{\text {IN }}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	-86		dB
		$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	-82		dB
	Bipolar Two Tone Intermodulation Distortion (Note 17)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}, \mathrm{f}_{\mathrm{NN} 1}=19.375 \mathrm{kHz}, \\ & \mathrm{f}_{\mathrm{IN} 2}=20.625 \mathrm{kHz} \end{aligned}$	-78	-74	dB (max)
	Unipolar Two Tone Intermodulation Distortion (Note 17)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p},}, \mathrm{f}_{\mathrm{IN} 1}=19.375 \mathrm{kHz}, \\ & \mathrm{f}_{\mathrm{IN} 2}=20.625 \mathrm{kHz} \end{aligned}$	-78	-73	dB (max)
	-3 dB Bipolar Full Power Bandwidth	$\mathrm{V}_{\text {IN }}= \pm 4.85 \mathrm{~V}$ (Note 17)	25	20	kHz (Min)
	-3 dB Unipolar Full Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p} \text {-p }}$ (Note 17)	30	20	kHz (Min)
	Aperture Time		100		ns
	Aperture Jitter		100		ps ${ }_{\text {rms }}$

Digital and DC Electrical Characteristics

The following specifications apply for $D V_{C C}=A V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+5.0 \mathrm{~V}$, and $\mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.
(Notes 6 and 7)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Notes 10, 19)	Units (Limits)
$\mathrm{V}_{\text {IN(1) }}$	Logical " 1 " Input Voltage for All Inputs except CLK IN	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$.	2.0	$V(\min)$
V IN(0)	Logical "0" Input Voltage for All Inputs except CLK IN	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$		0.8	V (max)
$\mathrm{I}_{\mathrm{N}(1)}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	0.005	1	$\mu \mathrm{A}$ (max)
$\mathrm{I}_{\mathbf{N}(0)}$	Logical '0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-1	$\mu \mathrm{A}$ (max)
$\mathrm{V}_{\mathrm{T}}{ }^{+}$	CLK IN Positive-Going Threshold Voltage		2.8	2.7	V (min)
$\mathrm{V}_{\mathrm{T}}{ }^{-}$	CLK IN Negative-Going Threshold Voltage		2.1	2.3	V (max)
V_{H}	CLK IN Hysteresis $\left[V_{T}+(\min)-V_{T}-(\max)\right]$		0.7	0.4	$V(\min)$
VOUT(1)	Logical "1" Output Voltage	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =4.75 \mathrm{~V}: \\ \text { IOUT } & =-360 \mu \mathrm{~A} \\ \text { I OUT } & =-10 \mu \mathrm{~A} \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.5 \end{array}$	$V(\min)$ V (min)
Vout(0)	Logical " 0 " Output Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{l}_{\mathrm{OUT}}=1.6 \mathrm{~mA}$		0.4	V (max)

Digital and DC Electrical Characteristics

The following specifications apply for $\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+5.0 \mathrm{~V}$, and $\mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.
(Notes 6 and 7) (Continued)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Notes 10, 19)	Units (Limits)
lout	TRI-STATE® Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-0.01	-3	$\mu \mathrm{A}$ (max)
		$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	0.01	3	$\mu \mathrm{A}$ (max)
ISOURCE	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-20	-6.0	$m A(\min)$
ISINK	Output Sink Current	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	20	8.0	$m A(\min)$
DICC	DV ${ }_{\text {CC }}$ Supply Current	$\mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz}, \overline{\mathrm{CS}}=$ "1"	1	2	mA (max)
Alcc	AV ${ }_{\text {CC }}$ Supply Current	$\mathrm{f}_{\text {CLK }}=2 \mathrm{MHz}, \overline{C S}=$ " 1 "	2.8	6	$m A(\max)$
$1-$	V-Supply Current	$\mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz}, \overline{\mathrm{CS}}=$ " 1 "	2.8	6	mA (max)

AC Electrical Characteristics

The following specifications apply for $D V_{C C}=A V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}-=-5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ unless otherwise specified.
Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6 and 7)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Notes 10, 19)	Units (Limits)
$\mathrm{f}_{\text {CLK }}$	Clock Frequency		$\begin{aligned} & 0.5 \\ & 4.0 \end{aligned}$	2.0	MHz (min) MHz (max)
	Clock Duty Cycle		50	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	
${ }^{\text {t }}$	Conversion Time		27(1/f ${ }_{\text {CLK }}$)	27(1/fCLK) +300 ns	(max)
		$\mathrm{f}_{\text {CLK }}=2.0 \mathrm{MHz}$	13.5		$\mu \mathrm{S}$
$t_{\text {A }}$	Acquisition Time (Note 15)	$\begin{aligned} & \mathrm{R}_{\text {SOURCE }}=50 \Omega \\ & \mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz} \end{aligned}$	7(1/f flLK)	7(1/ficLK) +300 ns	(max)
			3.5		$\mu \mathrm{s}$
t_{z}	Auto Zero Time		26(1/f ${ }_{\text {CLK }}$)	26(1/fCLK)	(max)
		$\mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$	13		$\mu \mathrm{s}$
${ }_{\text {t CAL }}$	Calibration Time		1396(1/f ${ }_{\text {CLK }}$)		max
		$\mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$	698	706	$\mu \mathrm{S}$ (max)
${ }^{\text {tw }}$ (CAL)L	Calibration Pulse Width	(Note 16)	60	200	ns (min)
$t_{\text {W }}$ (WR)L	Minimum WR Pulse Width		60	200	ns (min)
$t_{\text {ACC }}$	Maximum Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)	$C_{L}=100 \mathrm{pF}$	50	85	ns (max)
$\mathrm{t}_{\mathrm{OH}}, \mathrm{t}_{1 \mathrm{H}}$	TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to $\mathrm{Hi}-\mathrm{Z}$ State)	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	30	90	ns (max)
$t_{\text {PD (INT) }}$	Maximum Delay from Falling Edge of $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ to Reset of $\overline{\mathrm{NT}}$		100	175	ns (max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: All voltages are measured with respect to AGND and DGND, unless otherwise specified.
Note 3: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supply rails $\left(V_{I N}<V^{-}\right.$or $V_{I N}>\left(A V_{C C}\right.$ or $\left.D V_{C C}\right)$, the current at that pin should be limited to 5 mA . The 20 mA maximum package input current rating allows the voltage at any four pins, with an input current limit of 5 mA , to simultaneously exceed the power supply voltages.

AC Electrical Characteristics (Continued)

Note 4: The power dissipation of this device under normal operation should never exceed 169 mW (Quiescent Power Dissipation + TTL Loads on the digital outputs). Caution should be taken not to exceed absolute maximum power rating when the device is operating in a severe fault condition (ex. when any inputs or outputs exceed the power supply). The maximum power dissipation must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\text {Jmax }}$ (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_{A} (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{D \max }=\left(T_{J \max }-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{Jmax}}=125^{\circ} \mathrm{C}$, and the typical thermal resistance (θ_{JA}) of the ADC12441 with CMJ and ClJ suffixes when board mounted is $47^{\circ} \mathrm{C} / \mathrm{W}$.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: Two on-chip diodes are tied to the analog input as shown below. Errors in the A/D conversion can occur if these diodes are forward biased more than 50 mV .

TL/H/11017-3
This means that if $A V_{C C}$ and $D V_{C C}$ are minimum ($4.75 \mathrm{~V}_{\mathrm{DC}}$) and V^{-}is maximum ($-4.75 \mathrm{~V}_{\mathrm{DC}}$), full-scale must be $\leq 4.8 \mathrm{~V}_{\mathrm{DC}}$.
Note 7: A diode exists between $A V_{C C}$ and $D V_{C C}$ as shown below.

TL/H/11017-4
To guarantee accuracy, it is required that the $A V_{C C}$. and $D V_{C C}$ be connected together to a power supply with separate bypass filters at each $V_{C C}$ pin. Note 8: Accuracy is guaranteed at fCLK $=2.0 \mathrm{MHz}$. At higher and lower clock frequencies accuracy may degrade. See curves in the Typical Performance Characteristics section.
Note 9: Typicals are at $T_{j}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 10: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 11: Positive linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line that passes through positive full scale and zero. For negative linearity error the straight line passes through negative full scale and zero. (See Figures $1 b$ and 1c.)
Note 12: The ADC12441's self-calibration technique ensures linearity, full scale, and offset errors as specified, but noise inherent in the self-calibration process will result in a repeatability uncertainty of ± 0.20 LSB.
Note 13: If T_{A} changes then an Auto-Zero or Auto-Cal cycle will have to be re-started (see the Typical Performance Characteristic curves).
Note 14: After an Auto-Zero or Auto-Cal cycle at the specified power supply extremes.
Note 15: If the clock is asynchronous to the falling edge of $W R$ an uncertainty of one clock period will exist in the interval of t_{A}, therefore making the minimum $t_{A}=6$ clock periods and the maximum $t_{A}=7$ clock periods. If the falling edge of the clock is synchronous to the rising edge of \bar{W} then t_{A} will be exactly 6.5 clock periods.
Note 16: The CAL line must be high before a conversion is started.
Note 17: The specifications for these parameters are valid after an Auto-Cal cycle has been completed.
Note 18: The ADC12441 reference ladder is composed solely of capacitors.
Note 19: A Military RETS Electrical Test Specification is available on request. At time of printing the ADC12441CMJ/883 RETS complies fully with the boldface limits in this column.

TL/H/11017-5
FIGURE 1a. Transfer Characteristic

Electrical Characteristics (Continued)

.TLi/H/11017-6
FIGURE 1b. Simplified Error Curve vs Output Code without Auto-Cal or Auto-Zero Cycles

FIGURE 1c. Simplified Error Curve vs Output Code after Auto-Cal Cycle

Typical Performance Characteristics

Zero Error Change vs
Ambient Temperature

AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)
TL/H/11017-8

Typical Performance Characteristics (Continued)

Bipolar Signal-to-
Noise + Distortion Ratio vs Input Frequency

Bipolar Signal-to-
Noise + Distortion Ratio vs
Input Signal Level

Linearity Error vs Clock Frequency

Unipolar Signal-to-
Noise + Distortion Ratio vs Input Frequency

Unipolar Signal-to-
Noise + Distortion Ratio vs
Input Signal Level

Unipolar Spectral Response with 1 kHz Sine Wave Input

Full Scale Error Change vs Ambient Temperature

Bipolar Signal-to-
Noise + Distortion Ratio vs Input Source Impedance

Bipolar Spectral Response with 10 kHz Sine Wave Input

Unipolar Spectral Response with 10 kHz Sine Wave Input

Typical Performance Characteristics (Continued)

TL/H/11017-10

Unipolar Spectral Response
with 20 kHz Sine Wave Input

TL/H/11017-11

Test Circuits

TL/H/11017-13

TL/H/11017-12

TL/H/11017-15

TL/H/11017-14
FIGURE 2. TRI-STATE Test Circuits and Waveforms

Timing Diagrams

$$
\text { Auto-Cal Cycle }(\overline{\mathrm{CS}}=1, \overline{\mathrm{WR}}=X, \overline{\mathrm{RD}}=X, \overline{\mathrm{AZ}}=\mathrm{X}, \mathrm{X}=\text { Don't Care })
$$

Timing Diagrams (Continued)

DVCc（28）， $A V_{C C}(4)$

The digital and analog positive power supply pins．The digital and analog power supply voltage range of the ADC12441 is +4.5 V to +5.5 V ．To guarantee accuracy，it is required that the $A V_{C C}$ and $D V_{C C}$ be connected to－ gether to the same power supply with sepa－ rate bypass filters（ $10 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic）at each V_{CC} pin．
V^{-}（5）The analog negative supply voltage pin． V^{-} has a range of -4.5 V to -5.5 V and needs a bypass filter of $10 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic．
DGND（14），The digital and analog ground pins．AGND AGND（3）and DGND must be connected together ex－ ternally to guarantee accuracy．
$V_{\text {REF }}$（2）The reference input voltage pin．To maintain accuracy the voltage at this pin should not exceed the $A V_{C C}$ or $D V_{C C}$ by more than 50 mV or go below 3．5 VDC．
$\mathrm{V}_{\mathrm{IN}}(1) \quad$ The analog input voltage pin．To guarantee accuracy the voltage at this pin should not exceed $V_{C C}$ by more than 50 mV or go below V －by more than 50 mV ．
$\overline{\mathrm{CS}}$（10）The Chip Select control input．This input is active low and enables the WR and $\overline{\text { RD }}$ func－ tions．
$\overline{R D}$（11）The Read control input．With both $\overline{C S}$ and $\overline{R D}$ low the TRI－STATE output buffers are en－ abled and the INT output is reset high．
$\overline{W R}$（7）The Write control input．The converison is started on the rising edge of the WR pulse when $\overline{C S}$ is low．
CLK（8）The external clock input pin．The clock fre－ quency range is 500 kHz to 4 MHz ．
$\overline{\mathrm{CAL}}$（9）The Auto－Calibration control input．When $\overline{C A L}$ is low the ADC12441 is reset and a cali－ bration cycle is initiated．During the calibra－ tion cycle the values of the comparator offset voltage and the mismatch errors in the ca－ pacitor reference ladder are determined and stored in RAM．These values are used to cor－ rect the errors during a normal cycle of A／D conversion．
$\overline{A Z}$（6）The Auto－Zero control input．With the $\overline{A Z}$ pin held low during a conversion，the ADC12441 goes into an auto－zero cycle before the actu－ al A／D conversion is started．This Auto－Zero cycle corrects for the comparator offset volt－ age．The total conversion time（ t_{C} ）is in－ creased by 26 clock periods when Auto－Zero is used．
EOC（12）The End－of－Conversion control output．This output is low during a conversion or a calibra－ tion cycle．
INT（13）The Interrupt control output．This output goes low when a conversion has been completed and indicates that the conversion result is available in the output latches．Reading the result or starting a conversion or calibration cycle will reset this output high．

DB0－DB12 （15－27）

The TRI－STATE output pins．The output is in two＇s complement format with DB12 the sign bit，DB11 the MSB and DB0 the LSB．

2．0 Functional Description

The ADC12441 is a 12 －bit plus sign A／D converter with the capability of doing Auto－Zero or Auto－Cal routines to mini－ mize zero，full－scale and linearity errors．It is a successive－ approximation A／D converter consisting of a DAC，compar－ ator and a successive－approximation register（SAR）．Auto－ Zero is an internal calibration sequence that corrects for the A／D＇s zero error caused by the comparator＇s offset voltage． Auto－Cal is a calibration cycle that not only corrects zero error but also corrects for full－scale and linearity errors caused by DAC inaccuracies．Auto－Cal minimizes the errors of the ADC12441 without the need of trimming during its fabrication．An Auto－Cal cycle can restore the accuracy of the ADC12441 at any time，which ensures its long term sta－ bility．

2．1 DIGITAL INTERFACE

On power up，a calibration sequence should be initiated by pulsing $\overline{C A L}$ low with $\overline{C S}, \overline{R D}$ ，and $\overline{W R}$ high．To acknowl－ edge the $\overline{\mathrm{CAL}}$ signal，EOC goes low after the falling edge of $\overline{\mathrm{CAL}}$ ，and remains low during the calibration cycle of 1396 clock periods．During the calibration sequence，first the comparator＇s offset is determined，then the capacitive DAC＇s mismatch error is found．Correction factors for these errors are then stored in internal RAM．
A conversion is initiated by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ low．The $\overline{\mathrm{AZ}}$ （Auto Zero）signal line should be tied high or low during the conversion process．If $\overline{A Z}$ is low an auto zero cycle，which takes approximately 26 clock periods，occurs before the ac－ tual conversion is started．The auto zero cycle determines the correction factors for the comparator＇s offset voltage．If $\overline{\mathrm{AZ}}$ is high，the auto zero cycle is skipped．Next the analog input is sampled for 7 clock periods，and held in the capaci－ tive DAC＇s ladder structure．The EOC then goes low，signal－ ing that＇the analog input is no longer being sampled and that the A／D successive approximation conversion has started．
During a conversion，the sampled input voltage is succes－ sively compared to the output of the DAC．First，the ac－ quired input voltage is compared to analog ground to deter－ mine its polarity．The sign bit is set low for positive input voltages and high for negative．Next the MSB of the DAC is set high with the rest of the bits low．If the input voltage is greater than the output of the DAC，then the MSB is left high；otherwise it is set low．The next bit is set high，making the output of the DAC three quarters or one quarter of full scale．A comparison is done and if the input is greater than the new DAC value this bit remains high；if the input is less than the new DAC value the bit is set low．This process continues until each bit has been tested．The result is then stored in the output latch of the ADC12441．Next EOC goes high，and $\overline{\mathrm{NT}}$ goes low to signal the end of the conversion． The result can now be read by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low to enable the DB0－DB12 output buffers．

2．0 Functional Description（Continued）

Digital Control Inputs					A／D Function
$\overline{\text { CS }}$	\bar{W}	$\overline{\text { RD }}$	CAL	$\overline{\text { AZ }}$	
凹	T	1	1	1	Start Conversion without Auto－Zero
Ч	1	凹	1	1	Read Conversion Result without Auto－Zero
บ	以	1	1	0	Start Conversion with Auto－Zero
บ	1	凹	1	0	Read Conversion Result with Auto－Zero
1	X	X	ป	X	Start Calibration Cycle ，＇
0	X	1	0	X	Test Mode（DB2，DB3，DB5 and DB6 become active）

FIGURE 1．Function of the A／D Control Inputs

The table in Figure 1 summarizes the effect of the digital control inputs on the function of the ADC12441．The Test Mode，where $\overline{R D}$ is high and $\overline{\mathrm{CS}}$ and $\overline{\mathrm{CAL}}$ are low，is used during manufacture to thoroughly check out the operation of the ADC12441．Care should be taken not to inadvertently be in this mode，since DB2，DB3，DB5，and DB6 become active outputs，which may cause data bus contention．

2．2 RESETTING THE A／D

All internal logic can be reset，which will abort any conver－ sion in process．The A／D is reset whenever a new conver－ sion is started by taking $\overline{C S}$ and $\overline{W R}$ low．If this is done when the analog input is being sampled or when EOC is low，the Auto－Cal correction factors may be corrupted，therefore re－ quiring an Auto－Cal cycle before the next conversion．This is true with or without Auto－Zero．The Calibration Cycle cannot be reset once started．On power－up the ADC12441 auto－ matically goes through a Calibration Cycle that takes typi－ cally 1396 clock cycles．For reasons that will be discussed in Section 3．7，a new calibration cycle needs to be started after the completion of the automatic one．

3．0 Analog Considerations

3．1 REFERENCE VOLTAGE

The voltage applied to the reference input of the converter defines the voltage span of the analog input（the difference between V_{IN} and AGND），over which 4095 positive output codes and 4096 negative output codes exist．The A－to－D can be used in either ratiometric or absolute reference ap－ plications．The voltage source driving $\mathrm{V}_{\text {REF }}$ must have a very low output impedance and very low noise．The circuit in Figure $2 a$ is an example of a very stable reference that is appropriate for use with the ADC12441．The simple refer－ ence circuit of Figure $2 b$ may be used when the application does not require low full scale errors．
In a ratiometric system，the analog input voltage is propor－ tional to the voltage used for the A／D reference．When this voltage is the system power supply，the VREF pin can be tied to V_{CC} ．This technique relaxes the stability requirement of the system reference as the analog input and A／D refer－ ence move together maintaining the same output code for given input condition．

FIGURE 2a．Low Drift Extremely Stable Reference Circuit

TL／H／11017－20
FIGURE 2b．Simple Reference Circuit

3．0 Analog Considerations（Continued）

For absolute accuracy，where the analog input varies be－ tween very specific voltage limits，the reference pin can be biased with a time and temperature stable voltage source． In general，the magnitude of the reference voltage will re－ quire an initial adjustment to null out full－scale errors．

3．2 INPUT CURRENT

Because the input network of the ADC12441 is made up of a switch and a network of capacitors，a charging current will flow into or out of（depending on the input voltage polarity） of the analog input pin $\left(\mathrm{V}_{\mathrm{IN}}\right)$ on the start of the analog input sampling period $\left(\mathrm{t}_{\mathrm{A}}\right)$ ．The peak value of this current will de－ pend on the actual input voltage applied．

3．3 NOISE

The leads to the analog input pin should be kept as short as possible to minimize input noise coupling．Both noise and undesired digital clock coupling to this input can cause er－ rors．Input filtering can be used to reduce the effects of these noise sources．

3．4 INPUT BYPASS CAPACITORS

An external capacitor can be used to filter out any noise due to inductive pickup by a long input lead and will not degrade the accuracy of the conversion result．

3．5 INPUT SOURCE RESISTANCE

The analog input can be modeled as shown in Figure 3. External R_{S} will lengthen the time period necessary for the voltage on CREF to settle to within $1 / 2$ LSB of the analog input voltage．With $\mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz} \mathrm{t}_{\mathrm{A}}=7$ clock periods $=$ $3.5 \mu \mathrm{~s}, \mathrm{R}_{\mathrm{S}} \leq 1 \mathrm{k} \Omega$ will allow a 5 V analog input voltage to settle properly．

3．6 POWER SUPPLIES

Noise spikes on the V_{CC} and V^{-}supply lines can cause conversion errors as the comparator will respond to this noise．The A／D is especially sensitive during the auto－zero or auto－cal procedures to any power supply spikes．Low in ductance tantalum capacitors of $10 \mu \mathrm{~F}$ or greater paralleled
with $0.1 \mu \mathrm{~F}$ ceramic capacitors are recommended for supply bypassing．Separate bypass capacitors whould be placed close to the $D V_{C C}, A V_{C C}$ and V^{-}pins．If an unregulated voltage source is available in the system，a separate LM340LAZ－5．0 voltage regulator for the A－to－D＇s $V_{C C}$（and other analog circuitry）will greatly reduce digital noise on the supply line．

3．7 THE CALIBRATION CYCLE

On power up the ADC12441 goes through an Auto－Cal cy－ cle which cannot be interrupted．Since the power supply， reference，and clock will not be stable at power up，this first calibration cycle will not result in an accurate calibration of the A／D．A new calibration cycle needs to be started after the power supplies，reference，and clock have been given enough time to stabilize．During the calibration cycle，cor－ rection values are determined for the offset voltage of the sampled data comparator and any linearity and gain errors． These values are stored in internal RAM and used during an analog－to－digital conversion to bring the overall full scale， offset，and linearity errors down to the specified limits．Full scale error typically changes ± 0.1 LSB over temperature and linearity error changes even less；therefore it should be necessary to go through the calibration cycle only once af－ ter power up，if auto－zero is used to correct the zero error change．

3．8 THE AUTO－ZERO CYCLE

To correct for any change in the zero（offset）error of the A／D，the auto－zero cycle can be used．It may be necessary to do an auto－zero cycle whenever the ambient temperature changes significantly．（See the curved titled＂Zero Error Change vs Ambient Temperature＂in the Typical Perform－ ance Characteristics．）A change in the ambient temperature will cause the $V_{\text {OS }}$ of the sampled data comparator to change，which may cause the zero error of the A／D to be greater than ± 1 LSB．An auto－zero cycle will maintain the zero error to ± 1 LSB or less．

4.0 Dynamic Performance

Many applications require the A/D converter to digitize ac signals, but the standard de integral and differential nonlinearity specifications will not accurately predict the A/D converter's performance with ac input signals. The important specifications for ac applications reflect the converter's ability to digitize ac signals without significant spectral errors and without adding noise to the digitized signal. Dynamic characteristics such as signal-to-noise ratio (S / N), signal-tonoise + distortion ratio $(S /(N+D)$), effective bits, full power bandwidth, aperture time and aperture jitter are quantitative measures of the A/D converter's capability.
An A/D converter's ac performance can be measured using Fast Fourier Transform (FFT) methods. A sinusoidal waveform is applied to the A/D converter's input, and the transform is then performed on the digitized waveform. $S /(N+D)$ and S/N are calculated from the resulting FFT data, and a spectral plot may also be obtained. Typical values for S / N are shown in the table of Electrical Characteristics, and spectral plots of $S /(N+D)$ are included in the typical performance curves.
The A/D converter's noise and distortion levels will change with the frequency of the input signal, with more distortion and noise occurring at higher signal frequencies. This can be seen in the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ versus frequency curves. These curves will also give an indication of the full power bandwidth (the frequency at which the $S /(N+D)$ or S / N drops 3 dB).
Effective number of bits can also be useful in describing the A/D's noise performance. An ideal A/D converter will have some amount of quantization noise, determined by its resolution, which will yield an optimum S / N ratio given by the following equation:

$$
\mathrm{S} / \mathrm{N}=(6.02 \times \mathrm{n}+1.8) \mathrm{dB}
$$

where n is the A/D's resolution in bits.
The effective bits of a real A/D converter, therefore, can be found by:

$$
\mathrm{n} \text { (effective) }=\frac{\mathrm{S} / \mathrm{N}(\mathrm{~dB})-1.8}{6.02}
$$

As an example, an ADC12441 with a $\pm 5 \mathrm{~V}, 10 \mathrm{kHz}$ sine wave input signal will typically have a S / N of 78 dB , which is equivalent to 12.6 effective bits.
Two sample/hold specifications, aperture time and aperture jitter, are included in the Dynamic Characteristics table since the ADC12441 has the ability to track and hold the analog input voltage. Aperture time is the delay for the A/D
to respond to the hold command. In the case of the ADC12441, the hold command is internally generated. When the Auto-Zero function is not being used, the hold command occurs at the end of the acquisition window, or seven clock periods after the rising edge of the WR. The delay between the internally generated hold command and the time that the ADC12441 actually holds the input signal is the aperture time. For the ADC12441, this time is typically 100 ns . Aperture jitter is the change in the aperture time from sample to sample. Aperture jitter is useful in determining the maximum slew rate of the input signal for a given accuracy. For example, an ADC12441 with 100 ps of aperture jitter operating with a 5 V reference can have an effective gain variation of about 1 LSB with an input signal whose slew rate is $12 \mathrm{~V} / \mu \mathrm{s}$.

Note: External protection diodes should be able to withstand the op amp current limit.

ADC1251 Self-Calibrating 12-Bit Plus Sign A/D Converter with Sample-and-Hold

General Description

The ADC1251 is a CMOS 12-bit plus sign successive approximation analog-to-digital converter. On request, the ADC1251 goes through a self-calibration cycle that adjusts for any zero, full scale, or linearity errors. The ADC1251 also has the ability to go through an Auto-Zero cycle that corrects the zero error during every conversion.
The analog input to the ADC1251 is tracked and held by the internal circuitry, so an external sample-and-hold is not required. The ADC1251 has an \bar{S} / H control input which directly controls the track-and-hold state of the A/D. A unipolar analog input voltage range (0 to +5 V) or a bipolar range $(-5 \mathrm{~V}$ to +5 V) can be accommodated with $\pm 5 \mathrm{~V}$ supplies.
The 13-bit data result is available on the eight outputs of the ADC1251 in two bytes, high-byte first and sign extended. The digital inputs and outputs are compatible with TTL or CMOS logic levels.

Features

© Self-calibration provides excellent temperature stability m Internal sample-and-hold

- 8-bit μ P/DSP interface

■ Bipolar input range with a single +5 V reference
no missing codes over temperature

- TTL/MOS input/output compatible

Key Specifications

- Resolution

> 12 bits plus sign
> $8 \mu \mathrm{~s}$ (max)
> 83 kHz (max)
> $\pm 0.6 \mathrm{LSB}\left(\pm 0.0146 \%\right.$ (max $^{2}(\mathrm{max})$
> $\pm 1 \mathrm{LSB}$ (max)
> $\pm 1.5 \mathrm{LSB}$ (max)

- Sampling Rate
- Linearity Error
- Zero Error
- Full Scale Error
- Power Consumption @ $\pm 5 \mathrm{~V}$

Applications

m Digital signal processing
m High resolution process control - Instrumentation

Simplified Block Diagram

Connection Diagram

Dual-In-Line Package

TL/H/11024-2
Top View
Ordering Information

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}\right)$	Package
$A D C 1251 \mathrm{BIJ}$, $A D C 1251 \mathrm{ClJ}$	J24A
Military $\left(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq+125^{\circ} \mathrm{C}\right)$	Package
$A D C 1251 \mathrm{CMJ}$, $A D C 1251 \mathrm{CM} / 883$	J24A

Absolute Maximum Ratings (Notes 1 \& 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
$\begin{array}{lr}\text { Supply Voltage }\left(V_{C C}=D V_{C C}=A V_{C C}\right) & 6.5 \mathrm{~V} \\ \text { Negative Supply Voltage }\left(V^{-}\right) & -6.5 \mathrm{~V}\end{array}$
Voltage at Logic Control Inputs $\quad-0.3 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Voltage at Analog Inputs
($\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {IN }}$)
$\left(V^{-}-0.3 V\right)$ to $\left(V_{C C}+0.3 V\right)$
$\mathrm{AV}_{\mathrm{CC}}-\mathrm{DV}_{\mathrm{CC}}$ (Note 7)
Input Current at Any Pin (Note 3)
Package Input Current (Note 3)
Power Dissipation at $25^{\circ} \mathrm{C}$ (Note 4)
Storage Temperature Range
ESD Susceptability (Note 5)
Soldering Information
J Package (10 sec.)
$300^{\circ} \mathrm{C}$

Operating Ratings (Notes 1 \& 2)
Temperature Range ADC1251BIJ, ADC1251CIJ ADC1251CMJ ADC1251CMJ/883
$D V_{C C}$ and $A V_{C C}$ Voltage
(Notes 6 \& 7)
Negative Supply Voltage (V^{-})
Reference Voltage
(VEF, Notes 6 \& 7)
$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
4.5 V to 5.5 V
-4.5 V to -5.5 V
3.5 V to $\mathrm{AV}_{\mathrm{CC}}+50 \mathrm{mV}$

Converter Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{DV}_{\mathrm{CC}}=A \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}-=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+5.0 \mathrm{~V}, \overline{\mathrm{AZ}}=$ " 1 ", $\mathrm{f}_{\mathrm{CLK}}=$ 3.5 MHz and tested using $\overline{W R}$ control unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6, 7 and 8)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Notes 10, 19)	Units (Limit)

STATIC CHARACTERISTICS

	Positive Integral Linearity Error	ADC1251BIJ	After Auto-Cal (Notes 11 \& 12)		± 0.6	LSB (max)
		ADC1251CIJ			± 1	LSB (max)
		ADC1251CMJ			± 1	LSB(max)
	Negative Integral Linearity Error	ADC1251BIJ	After Auto-Cal (Notes 11 and 12)		± 0.6	LSB(max)
		ADC1251CIJ			± 1	LSB(max)
		ADC1251CMJ			± 1	LSB (max)
	Missing Codes		After Auto-Cal (Notes 11 and 12)		0	
	Zero Error (Notes 12 and 13)		$\overline{A Z}=$ " 0 " and $\mathrm{f}_{\text {CLK }}=1.75 \mathrm{MHz}$		± 2	LSB(max)
			After Auto-Cal Only		$\pm 2.0 / \pm \mathbf{3 . 0}$	LSB (max)
	Positive Full-Scale Error (Note 12)		$\overline{\mathrm{AZ}}=$ " 0 " and f $\mathrm{CLK}=1.75 \mathrm{MHz}$		± 1.5	LSB (max)
			After Auto-Cal Only		$\pm 1.5 / \pm 2.0$	LSB (max)
. .	Negative Full-Scale Error (Note 12)		$\overline{\mathrm{AZ}}=$ " 0 " and f $\mathrm{CLK}=1.75 \mathrm{MHz}$		± 1.5	LSB (max)
			After Auto-Cal Only		$\pm 1.5 / \pm 2.0$	LSB (max)
$\mathrm{C}_{\text {REF }}$	V REF Input Capacitance (Note 18)			80		pF
$\mathrm{C}_{\text {IN }}$	Analog Input Capacitance			65		pF
$\mathrm{V}_{\text {IN }}$	Analog Input Voltage				$\begin{aligned} & \mathbf{v}^{-}-0.05 \\ & \mathbf{v}_{\mathbf{c c}}+\mathbf{0 . 0 5} \end{aligned}$	V (min) V (max)
-	Power Supply Sensitivity	Zero Error (Note 14)	$\begin{aligned} & A V_{C C}=D V_{C C}=5 \mathrm{~V} \pm 5 \% \\ & V_{R E F}=4.75 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \pm 5 \% \end{aligned}$	$\pm 1 / 8$		LSB
		Full-Scale Error		$\pm 1 / 8$		LSB
		Linearity Error		$\pm 1 / 8$		LSB

Converter Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{DV}$ CC $=\mathrm{AV}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+5.0 \mathrm{~V}, \overline{\mathrm{AZ}}=" 1 "$ and $\mathrm{f}_{\mathrm{CLK}}$ $=3.5 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6, 7 and 8)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Notes 10, 19)	Units (Limit)
DYNARIC CHARACTERISTICS					
$\mathrm{S} /(\mathrm{N}+\mathrm{D})$	Unipolar Signal-to-Noise + Distortion Ratio (Note 17)	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\text {IN }}=4.85 \mathrm{~V}_{\mathrm{p} \text {-p }}$	72		dB
		$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz}, \mathrm{V}_{\text {IN }}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	72		dB
S/(N+D)	Bipolar Signal-to-Noise + Distortion Ratio (Note 17)	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\text {IN }}= \pm 4.85 \mathrm{~V}$	76		dB
		$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz}, \mathrm{V}_{\text {IN }}= \pm 4.85 \mathrm{~V}$	76		dB
	-3 dB Unipolar Full Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}$, (Note 17)	32		kHz
	-3 dB Bipolar Full Power Bandwidth	$\mathrm{V}_{\text {IN }}= \pm 4.85 \mathrm{~V}$, (Note 17)	25		kHz
$\mathrm{t}_{\text {Ap }}$	Aperture Time		100		ns
	Aperture Jitter		100		$\mathrm{ps}_{\text {rms }}$

Digital and DC Electrical Characteristics

The following specifications apply for $\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+5.0 \mathrm{~V}$, and $\mathrm{f}_{\mathrm{CLK}}=3.5 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6 and 7)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Notes 10, 19)	Units (Limit)
$\mathrm{V}_{\operatorname{IN}(1)}$	Logical " 1 " Input Voltage for All Inputs except CLK IN	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		2.0	$V(\min)$
$\mathrm{V}_{\text {IN(0) }}$	Logical " 0 " Input Voltage for All Inputs except CLK IN	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		0.8	V (max)
$1 \mathrm{IN}(1)$	Logical "1" Input Current	$V_{1 N}=5 \mathrm{~V}$	0.005	1	$\mu \mathrm{A}$ (max)
$\mathrm{I}_{\mathrm{IN}(0)}$	Logical '0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-1	$\mu A(\max)$
$\mathrm{V}^{+}{ }^{+}$	CLK IN Positive-Going Threshold Voltage		2.8	2.7	V (min)
$\mathrm{V}^{-}{ }^{-}$	CLK IN Negative-Going Threshold Voltage		2.1	2.3	V(max)
V_{H}	CLK IN Hysteresis $\left[\mathrm{V}_{T^{+}}(\min)-\mathrm{V}_{\mathrm{T}^{-}}(\max)\right]$		0.7	0.4	$V($ min $)$
Vout(1)	Logical " 1 " Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}: \\ & \text { IOUT }=-360 \mu \mathrm{~A} \\ & \text { IOUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & V(\min) \\ & V(\min) \end{aligned}$
V OUT(0)	Logical " 0 " Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \end{aligned}$		0.4	V (max)
lout	TRI-STATE® Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-0.01	-3	$\mu \mathrm{A}$ (max)
		$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	0.01	3	$\mu A($ max $)$
ISOURCE	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-20	-6.0	$m A(\min)$
$I_{\text {SINK }}$	Output Sink Current	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	20	8.0	$\mathrm{mA}(\mathrm{min})$
DICC	DV ${ }_{\text {CC }}$ Supply Current	$\overline{\mathrm{CS}}=$ "1"	1	2.5	mA(max)
$\mathrm{Al}_{\mathrm{CC}}$	$\mathrm{AV}_{\text {CC }}$ Supply Current	$\overline{\mathrm{CS}}=$ " 1 "	4	10	mA(max)
$1-$	V-Supply Current	$\overline{\mathrm{CS}}=$ " 1 "	2.8	10	mA(max)

AC Electrical Characteristics

The following specifications apply for $D V_{C C}=A V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}-=-5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6 and 7)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Notes 10, 19)	Units (Limit)
${ }^{\text {f CLK }}$	Clock Frequency	.	$\begin{aligned} & 0.5 \\ & 6.0 \end{aligned}$	3.5	MHz MHz (min) MHz (max)
	Clock Duty Cycle	- :	50	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{gathered} \% \\ \%(\min) \\ \%(\max) \end{gathered}$
${ }^{\text {t }}$ c	Conversion Time Using $\overline{\mathrm{WR}}$ to Start a Conversion		27(1/f ${ }_{\text {CLK }}$)	27(1/fCLK) + 250 ns	(max)
		$\mathrm{f}_{\mathrm{CLK}}=3.5 \mathrm{MHz}, \overline{\mathrm{AZ}}=$ " 1 "	7.7	7.95	$\mu \mathrm{s}$ (max)
		$\mathrm{f}_{\mathrm{CLK}}=1.75 \mathrm{MHz}, \overline{\mathrm{AZ}}=$ " 0 "	15.4	15.65	μs (max)
t_{C}	Conversion Time Using $\overline{\mathbf{S}} / \mathrm{H}$ to Start a Conversion	$\overline{\mathrm{AZ}}$ = "1"	34(1/f CLK)	34(1/fCLK) + 250 ns	(max)
		$\mathrm{f}_{\mathrm{CLK}}=3.5 \mathrm{MHz}, \overline{\mathrm{AZ}}=$ "1"	9.7	9.95	$\mu s(\max)$
$t_{\text {A }}$	Acquisition Time (Note 15)	$\mathrm{R}_{\text {SOURCE }}=50 \Omega$	3.5	3.5	$\mu \mathrm{s}$ (min)
$t_{I A}$	Internal Acquisition Time (When Using WR Control Only)		7(1/fCLK)	7(1/fcLK)	(max)
t_{ZA}	Auto Zero Time + Acquisition Time		$33\left(1 / f_{\text {CLK }}\right)$	33(1/fCLK) +250 ns	(max)
		$\mathrm{f}_{\mathrm{CLK}}=1.75 \mathrm{MHz}$	18.8	19.05	μs (max)
$t_{\text {D(EOC) }}$	Delay from Hold Command to Falling Edge of EOC	Using $\overline{\text { WR Control }}$	200	350	ns (max)
		Using $\overline{\text { S }} / \mathrm{H}$ Control	100	150	ns (max)
$t_{\text {CAL }}$	Calibration Time		1399(1/fCLK)	1399 (1/fCLK)	(max)
		$\mathrm{f}_{\text {CLK }}=3.5 \mathrm{MHz}$	399	400	$\mu \mathrm{s}$ (max)
$t^{\text {W }}(\overline{\text { CAL }}) \mathrm{L}$	Calibration Pulse Width	(Note 16)	60	200	$\mathrm{ns}(\min)$
${ }^{\text {t }}$ W($\left.\overline{\mathrm{WR}}\right) \mathrm{L}$	Minimum $\overline{\text { WR }}$ Pulse Width		60	200	$\mathrm{ns}(\mathrm{min})$
$t_{\text {ACC }}$	Maximum Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)	$C_{L} \doteqdot 100 \mathrm{pF}$	50	95	ns (max)
$\mathrm{t}_{\mathrm{OH}}, \mathrm{t}_{1 \mathrm{H}}$	TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to $\mathrm{Hi}-\mathrm{Z}$ State)	$R_{L}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	30	70	ns(max)
$t_{\text {PD }}(\overline{\mathrm{NT}})$	Maximum Delay from Falling Edge of $\overline{R D}$ or $\overline{W R}$ to Reset of $\overline{N T}$		100	175	ns (max)
t_{RR}	Delay between Successive $\overline{\text { RD Pulses }}$,	30	60	ns (min)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to AGND and DGND, unless otherwise specified.
Note 3: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supply rails $\left(V_{I N}<V^{-}\right.$or $V_{I N}>\left(A V_{C C}\right.$ or $\left.D V_{C C}\right)$, the current at that pin should be limited to 5 mA . The 20 mA maximum package input current rating allows the voltage at any four pins, with an input current limit of 5 mA , to simultaneously exceed the power supply voltages.
Note 4: The power dissipation of this device under normal operation should never exceed 191 mW (Quiescent Power Dissipation +1 TTL Load on each digital output). Caution should be taken not to exceed absolute maximum power rating when the device is operating in severe fault condition (ex. when any inputs or outputs exceed the power supply). The maximum power dissipation must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\mathrm{Jmax}}$ (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_{A} (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{D \max }=\left(T_{J \max }-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $T_{J m a x}=150^{\circ} \mathrm{C}$, and the typical thermal resistance (θ_{JA}) of the ADC1251 with CMJ, BIJ, and CIJ suffixes when board mounted is $51^{\circ} \mathrm{C} / \mathrm{W}$.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Electrical Characteristics (Continued)

Note 6: Two on-chip diodes are tied to the analog input as shown below. Errors in the A/D conversion can occur if these diodes are forward biased more than 50 mV . This means that if $A V_{C C}$ and $D V_{C C}$ are minimum ($4.75 \mathrm{~V}_{\mathrm{DC}}$) and V^{-}is maximum ($-4.75 \mathrm{~V}_{\mathrm{DC}}$), the analog input full-scale voltage must be $\leq \pm 4.8 \mathrm{~V}_{\mathrm{DC}}$.

TL/H/11024-4
Note 7: A diode exists between $\mathrm{AV}_{\mathrm{CC}}$ and $\mathrm{DV}_{\mathrm{CC}}$ as shown below.

TL/H/11024-5

To guarantee accuracy, it is required that the $A V_{C C}$ and $D V_{C C}$ be connected together to a power supply with separate bypass filters at each $V_{C C}$ pin.
Note 8: Accuracy is guaranteed at $\mathrm{f}_{\mathrm{CLK}}=3.5 \mathrm{MHz}$. At higher or lower clock frequencies accuracy may degrade. See the Typical Performance Characteristics curves.
Note 9: Typicals are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 10: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 11: Positive linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line that passes through positive full scale and zero. For negative linearity error the straight line passes through negative full scale and zero. (See Figures $1 b$ and 10).
Note 12: The ADC1251's self-calibration technique ensures linearity, full scale, and offset errors as specified, but noise inherent in the self-calibration process will result in a repeatability uncertainty of ± 0.20 LSB.
Note 13: If T_{A} changes then an Auto-Zero or Auto-Cal cycle will have to be re-started. See the typical performance characteristic curves.
Note 14: After an Auto-Zero or Auto-Cal cycle at the specified power supply extremes.
Note 15: When using the $\overline{W R}$ control to start a conversion if the clock is asynchronous to the rising edge of $\overline{W R}$ an uncertainty of one clock period will exist in the end of the interval t_{A}, therefore making t_{A} end a minimum 6 clock periods or a maximum 7 clock periods after the rising edge of \bar{W}. If the falling edge of the clock is synchronous to the rising edge of $\overline{W R}$ then t_{A} will end exactly 6.5 clock periods after the rising edge of $\overline{W R}$. This does not occur when $\overline{\mathrm{S}} / \mathrm{H}$ control is used.
Note 16: The CAL line must be high before a conversion is started.
Note 17: The specifications for these parameters are valid after an Auto-Cal cycle has been completed.
Note 18: The ADC1251 reference ladder is composed solely of capacitors.
Note 19: A Military RETS Electrical Test Specification is available on request. At time of printing the ADC1251CMJ/883 RETS specification complies fully with the boldface limits in this column.

FIGURE 1a. Transfer Characteristic

Electrical Characteristics (Continued)

FIGURE 1b. Simplified Error Curve vs Output Code without Auto-Cal or Auto-Zero Cycles

TL/H/11024-8
FIGURE 1c. Simplified Error Curve vs Output Code after Auto-Cal Cycle

Typical Performance Characteristics

TL/H/11024-9

Typical Performance Characteristics (Continued)

Bipolar Signal-to-
Noise + Distortion Ratio vs Input Frequency

Bipolar Signal-to-
Noise + Distortion Ratio vs Input Signal Level

Bipolar Spectral Response with $\mathbf{2 0} \mathbf{~ k H z}$ Sine Wave Input

Full Scale Error Change vs Ambient Temperature

Unipolar Signal-to-
Noise + Distortion Ratio vs Input Frequency

Bipolar Spectral Response with 1 kHz Sine Wave Input

Bipolar Spectral Response with 40 kHz Sine Wave Input

Bipolar Signal-to-
Noise + Distortion Ratio vs Input Source Impedance

Unipolar Signal-to-
Noise + Distortion Ratio vs Input Signal Level

Bipolar Spectral Response with 10 kHz Sine Wave Input

Unipolar Spectral Response with $1 \mathbf{k H z}$ Sine Wave Input

TL./H/11024-10

Typical Performance Characteristics (Continued)

Unipolar Spectral Response with $\mathbf{4 0} \mathbf{~ k H z}$ Sine Wave Input

Test Circuits

TL/H/11024-13

TL/H/11024-12

TL/H/11024-15
TL/H/11024-14
FIGURE 2. TRI-STATE Test Circuits and Waveforms

Timing Diagrams

Timing Diagrams (Continued)

1.0 Pin Descriptions

DVCC (24), The digital and analog positive power supply $\mathrm{AV}_{\mathrm{CC}}$ (4) pins. The digital and analog power supply voltage range of the ADC1251 is +4.5 V to +5.5 V . To guarantee accuracy, it is required that the $A V_{C C}$ and $D V_{C C}$ be connected together to the same power supply with separate bypass capacitors ($10 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic) at each V_{CC} pin.
V^{-}(5) The analog negative supply voltage pin. V^{-} has a range of -4.5 V to -5.5 V and needs bypass capacitors of $10 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic.
DGND (12), The digital and analog ground pins. AGND AGND (3) and DGND must be connected together externally to guarantee accuracy.
$V_{\text {REF }}$ (2) The reference input voltage pin. To maintain accuracy the voltage at this pin should not exceed the $A V_{C C}$ or $D V_{C C}$ by more than 50 mV or go below +3.5 V DC.
$\mathrm{V}_{\mathrm{IN}}(1) \quad$ The analog input voltage pin. To guarantee accuracy the voltage at this pin should not exceed $V_{C C}$ by more than 50 mV or go below V - by more than 50 mV .
$\overline{\mathrm{CS}}$ (10) The Chip Select control input. This input is active low and enables the $\overline{W R}, \overline{R D}$ and \bar{S} / H functions.
$\overline{\mathrm{RD}}$ (23) The Read control input. With both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low the TRI-STATE output buffers are enabled and the INT output is reset high.
$\overline{W R}$ (7) The Write control input. The conversion is started on the rising edge of the WR pulse when $\overline{\mathrm{CS}}$ is low. When this control line is used the end of the analog input voltage acquisition window is internally controlled by the ADC1251.
$\overline{\mathbf{S}} / \mathrm{H}$ (11) The sample and hold control input. This control input can also be used to start a conversion. With $\overline{\mathrm{CS}}$ low the falling edge of $\overline{\mathrm{S}} / \mathrm{H}$ starts the analog input acquisition window. The rising edge of \bar{S} / H ends the acquisition window and starts a conversion.
CLKIN (8) The external clock input pin. The typical clock frequency range is 500 kHz to 6.0 MHz .
$\overline{\mathrm{CAL}}$ (9) The Auto-Calibration control input. When $\overline{\mathrm{CAL}}$ is low the ADC1251 is reset and a calibration cycle is initiated. During the calibration cycle the values of the comparator offset voltage and the mismatch errors in the capacitor reference ladder are determined and stored in RAM. These values are used to correct the errors during a normal cycle of A/D conversion.
$\overline{\mathrm{AZ}}$ (6) \quad The Auto-Zero control input. With the $\overline{\mathrm{AZ}}$ pin held low during a conversion, the ADC1251 goes into an auto-zero cycle before the actual A/D conversion is started. This Auto-Zero cycle corrects for the comparator offiset voltage. The total conversion time (t C) is increased by 26 clock periods when Auto-Zero is used.

EOC (22) The End-of-Conversion control output. This output is low during a conversion or a calibration cycle.
INT (21) The Interrupt control output. This output goes low when a conversion has been completed and indicates that the conversion result is available in the output latches. Reading the result or starting a conversion or calibration cycle will reset this output high.
DB0/DB8DB7/DB12 (13-20)

The TRI-STATE output pins. Twelve bit plus sign output data access is accomplished using two successive $\overline{\mathrm{RD}}$ s of one byte each,
high byte first (DB8-DB12). The data format used is two's complement sign bit extended with DB12 the sign bit, DB11 the MSB and DBO the LSB.

2.0 Functional Description

The ADC1251 is a 12 -bit plus sign A/D converter with the capability of doing Auto-Zero or Auto-Cal routines to minimize zero, full-scale and linearity errors. It is a successiveapproximation A/D converter consisting of a DAC, comparator and a successive-approximation register (SAR). AutoZero is an internal calibration sequence that corrects for the A/D's zero error caused by the comparator's offset voltage. Auto-Cal is a calibration cycle that not only corrects zero error but also corrects for full-scale and linearity errors caused by DAC inaccuracies. Auto-Cal minimizes the errors of the ADC1251 without the need for trimming during its fabrication. An Auto-Cal cycle can restore the accuracy of the ADC1251 at any time, which ensures accuracy over temperature and time.

2.1 DIGITAL INTERFACE

On power up, a calibration sequence should be initiated by pulsing $\overline{\mathrm{CAL}}$ low with $\overline{\mathrm{CS}}$ and $\overline{\mathrm{S}} / \mathrm{H}$ high. To acknowledge the $\overline{\mathrm{CAL}}$ signal, EOC goes low after the falling edge of $\overline{\mathrm{CAL}}$, and remains low during the calibration cycle of 1399 clock periods. During the calibration sequence, first the comparator's offset is determined, then the capacitive DAC's mismatch errors are found. Correction factors for these errors are then stored in internal RAM.
A conversion can be initiated by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ low. If $\overline{\mathrm{AZ}}$ is low an Auto-Zero cycle, which takes approximately 26 clock periods, is inserted before the analog input is sampled and the actual conversion is started. $\overline{\mathrm{AZ}}$ must remain low during the complete conversion sequence. After Auto-Zero the acquisition opens and the analog input is sampled for approximately 7 clock periods. If $\overline{\mathrm{AZ}}$ is high, the Auto-Zero cycle is not inserted after the rising edge of $\overline{W R}$. In this case the acquisition window opens when the ADC1251 completes a conversion, signaled by the rising edge of EOC. At the end of the acquisition window EOC goes low, signaling that the analog input is no longer being sampled and that the A/D successive approximation conversion has started.

2.0 Functional Description (Continued)

A conversion sequence can also be controlled by the $\overline{\mathrm{S}} / \mathrm{H}$ and $\overline{\mathrm{CS}}$ inputs. Taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{S}} / \mathrm{H}$ low starts the acquisition window for the analog input voltage. The rising edge of $\overline{\mathrm{S}} / \mathrm{H}$ immediately puts the A/D in the hold mode and starts the conversion. Using $\overline{\mathrm{S}} / \mathrm{H}$ will simplify synchronizing the end of the acquisition window to other signals, which may be necessary in a DSP environment.
During a conversion, the sampled input voltage is successively compared to the output of the DAC. First, the acquired input voltage is compared to analog ground to determine its polarity. The sign bit is set low for positive input voltages and high for negative. Next the MSB of the DAC is set high with the rest of the bits low. If the input voltage is greater than the output of the DAC, then the MSB is left high; otherwise it is set low. The next bit is set high, making the output of the DAC three quarters or one quarter of full scale. A comparison is done and if the input is greater than the new DAC value this bit remains high; if the input is less than the new DAC value the bit is set low. This process continues until each bit has been tested. The result is then stored in the output latch of the ADC1251. Next INT goes low and EOC goes high to signal the end of the conversion. The result can now be read by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low to enable the DB0/DB8-DB7/DB12 output buffers. The high byte of data is relayed first on the data bus outputs as shown below:

DB0/ DB8	DB1/ DB9	DB2/ DB10	DB3/ DB11	DB4/ DB12	DB5/ DB12	DB6/ DB12	DB7/ DB12
Bit 8	Bit 9	Bit 10	MSB	Sign Bit	Sign Bit	Sign Bit	Sign Bit

Taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low a second time will relay the low byte of data on the data bus outputs as shown below:

DB0/	DB1/	DB2/	DB3/	DB4/	DB5/	DB6/	DB7/
DB8	DB9	DB10	DB11	DB12	DB12	DB12	DB12
LSB	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7

The table in Figure 3 summarizes the effect of the digital control inpuits on the function of the ADC1251. The Test

Mode, where $\overline{\mathrm{RD}}$ and $\overline{\mathrm{S}} / \mathrm{H}$ are high and $\overline{\mathrm{CS}}$ and $\overline{\mathrm{CAL}}$ are low, is used during manufacture to thoroughly check out the operation of the ADC1251. Care should be taken not to inadvertently be in this mode, since DB2, DB3, DB5, and DB6 become active outputs, which may cause data bus contention.

2.2 RESETTING THE A/D

The ADC1251 is reset whenever a new conversion is started by taking $\overline{\mathrm{CS}}$ and $\overline{W R}$ or $\overline{\mathrm{S}} / \mathrm{H}$ low. If this is done when the analog input is being sampled or when EOC is low, the Auto-Cal correction factors may be corrupted, therefore requiring an Auto-Cal cycle before the next conversion. When using $\overline{W R}$ or \bar{S} / H without Auto-Zero ($\overline{\mathrm{AZ}}=1$) to start a conversion, a new conversion can be restarted only after EOC has gone high, signaling the end' of the current conversion. When using $\overline{W R}$ with Auto-Zero $(\overline{A Z}=0)$ a new conversion can be restarted during the first 26 clock periods after the rising edge of $\overline{W R}$ ($t z$) or after EOC has returned high without corrupting the Auto-Cal correction factors.
The Calibration Cycle cannot be reset once started. On power-up the ADC1251 automatically goes through a Calibration Cycle that takes typically 1399 clock cycles. For reasons that will be discussed in Section 3.8, a new calibration cycle needs to be started after the completion of the automatic one.

3.0 Analog Considerations

3.1 REFERENCE VOLTAGE

The voltage applied to the reference input of the converter defines the voltage span of the analog input (the difference between $V_{\text {IN }}$ and AGND), over which 4095 positive output codes and 4096 negative output codes exist. The A-to-D can be used in either ratiometric or absolute reference applications. The voltage source driving $V_{\text {REF }}$ must have a very low output impedance and very low noise. The circuit in Figure 4 is an example of a very stable reference that is appropriate for use with the ADC1251.

Digital Control Inputs						A/D Function
$\overline{\mathrm{CS}}$	$\overline{W R}$	S/H	$\overline{\mathbf{R D}}$	CAL	$\overline{\text { AZ }}$	
Ч	Ч	1	1	1	1	Start Conversion without Auto-Zero
บ	1	Ч	1	1	1	Start Conversion synchronous with rising edge of $\overline{\mathbf{S}} / \mathrm{H}$ without Auto-Zero
-	1	1	乙	1	1	Read Conversion Result without Auto-Zero
■	工	1	1	1	0	Start Conversion with Auto-Zero
บ	1	1	Ч	1	0	Read Conversion Result with Auto-Zero.
1	X	1	X	Ч	X	Start Calibration Cycle :
0	X	X	1	0	X	Test Mode (DB2, DB3, DB5, and DB6 become active)

FIGURE 3. Function of the A/D Control Inputs

3.0 Analog Considerations (Continued)

FIGURE 4. Low Drift Extremely Stable Reference Circuit

In a ratiometric system, the analog input voltage is proportional to the voltage used for the A/D reference. When this voltage is the system power supply, the $V_{\text {REF }}$ pin can be tied to V_{Cc}. This technique relaxes the stability requirement of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy, where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. In general, the magnitude of the reference voltage will require an initial adjustment to null out full-scale errors.

3.2 ACQUISITION WINDOW

As shown in the timing diagrams there are three different methods of starting a conversion, each of which affects the acquisition window and timing.
With Auto-Zero high a conversion can be started with the $\overline{W R}$ or $\overline{\mathbf{S}} / \mathrm{H}$ controls. In either method of starting a conversion the rising edge of EOC signals the actual beginning of the acquisition window. At this time a voltage spike may be noticed on the analog input of the ADC1251 whose amplitude is dependent on the input voltage and the source resistance. The timing diagrams for these two methods of starting a conversion do not show the acquisition window starting at this time because the acquisition time $\left(\mathrm{t}_{\mathrm{A}}\right)$ must start after the conversion result high and low bytes have been read. This is necessary since activating and deactivating the digital outputs (DB0/DB7-DB8/DB12) causes current fluctuations in the ADC1251's internal DV ${ }_{C C}$ lines. This generates digital noise which couples into the capacitive ladder that stores the analog input voltage. Therefore, the time interval between the rising edge of EOC and the second read is inappropriate for analog input voltage acquisition.
When $\overline{W R}$ is used to start a conversion with $\overline{\mathrm{AZ}}$ low the Auto-Zero cycle is inserted before the acquisition window. In
this method the acquisition window is internally controlled by the ADC1251 and lasts for approximately 7 clock periods. Since the acquisition window needs to be at least $3.5 \mu \mathrm{~s}$ at all times, when using Auto-Zero the maximum clock frequency is limited to 2 MHz . The zero error with the Auto-Zero cycle is production tested at a clock frequency of 1.75 MHz . This accommodates easy switching between a conversion with the Auto-Zero cycle (fCLK $=1.75 \mathrm{MHz}$) and without (fCLK $=3.5 \mathrm{MHz}$) as shown in Figure 5.

FIGURE 5. Switching between a Conversion with and without Auto-Zero when Using WR Control

3.3 INPUT CURRENT

Because the input network of the ADC1251 is made up of a switch and a network of capacitors a charging current will flow into or out of (depending on the input voltage polarity) the analog input pin (V_{IN}) on the start of the analog input sampling period. The peak value of this current will depend on the actual input voltage applied and the source resistance.

3.4 NOISE

The leads to the analog input pin should be kept as short as possible to minimize input noise coupling. Both noise and undesired digital clock coupling to this input can cause errors. Input filtering can be used to reduce the effects of these noise sources.

3.0 Analog Considerations (Continued)

3.5 INPUT BYPASS CAPACITORS

An external capacitor can be used to filter out any noise due to inductive pickup by a long input lead and will not degrade the accuracy of the conversion result.

3.6 INPUT SOURCE RESISTANCE

The analog input can be modeled as shown in Figure 6. External R_{S} will lengthen the time period necessary for the voltage on C REF to settle to within $1 / 2$ LSB of the analog input voltage. With $t_{A}=3.5 \mu \mathrm{~s}, \mathrm{R}_{\mathrm{S}} \leq 1 \mathrm{k} \Omega$ will allow a 5 V analog input voltage to settle properly.

3.7 POWER SUPPLIES

Noise spikes on the V_{CC} and V^{-}supply lines can cause conversion errors as the comparator will respond to this noise. The A/D is especially sensitive during the Auto-Zero or -Cal procedures to any power supply spikes. Low inductance tantalum capacitors of $10 \mu \mathrm{~F}$ or greater paralleled with $0.1 \mu \mathrm{~F}$ ceramic capacitors are recommended for supply bypassing. Separate bypass capacitors should be placed close to the $D V_{C C}, A V_{C C}$ and V^{-}pins. If an unregulated voltage source is available in the system, a separate LM340LAZ-5.0 voltage regulator for the A-to-D's $V_{C C}$ (and other analog circuitry) will greatly reduce digital noise on the supply line.

3.8 THE CALIBRATION CYCLE

On power up the ADC1251 goes through an Auto-Cal cycle which cannot be interrupted. Since the power supply, reference, and clock will not be stable at power up, this first calibration cycle will not result in an accurate calibration of the A/D. A new calibration cycle needs to be started after the power supplies, reference, and clock have been given enough time to stabilize. During the calibration cycle, correction values are determined for the offset voltage of the sampled data comparator and any linearity and gain errors. These values are stored in internal RAM and used during an analog-to-digital conversion to bring the overall full scale, offset, and linearity errors down to the specified limits. Full scale error typically changes ± 0.2 LSB over temperature and linearity error changes even less; therefore it should be necessary to go through the calibration cycle only once after power up if Auto-Zero is used to correct the zero error
change. Since Auto-Zero cannot be activated with $\overline{\mathrm{S}} / \mathrm{H}$ conversion method it may be necessary to do a calibration cycle more than once.

3.9 THE AUTO-ZERO CYCLE

To correct for any change in the zero (offset) error of the A/D, the Auto-Zero cycle can be used. It may be necessary to do an Auto-Zero cycle whenever the ambient temperature changes significantly. (See the curve titled "Zero Error Change vs Ambient Temperature" in the Typical Performance Characteristics.) A change in the ambient temperature will cause the V_{OS} of the sampled data comparator to change, which may cause the zero error of the A/D to be greater than ± 1 LSB. An Auto-Zero cycle will maintain the zero error to ± 1 LSB or less.

4.0 Dynamic Performance

Many applications require the A/D converter to digitize AC signals, but the standard DC integral and differential nonlinearity specifications will not accurately predict the A/D converter's performance with AC input signals. The important specifications for AC applications reflect the converter's ability to digitize AC signals without significant spectral errors and without adding noise to the digitized signal. Dynamic characteristics such as signal-to-noise+distortion ratio ($\mathrm{S} /(\mathrm{N}+\mathrm{D})$), effective bits, full power bandwidth, aperture time and aperture jitter are quantitative measures of the A/D converter's capability.
An A/D converter's AC performance can be measured using Fast Fourier Transform (FFT) methods. A sinusoidal waveform is applied to the A/D converter's input, and the transform is then performed on the digitized waveform. S/ ($\mathrm{N}+\mathrm{D}$) is calculated from the resulting FFT data, and a spectral plot may also be obtained. Typical values for $\mathrm{S} /$ $(N+D)$ are shown in the table of Electrical Characteristics, and spectral plots are included in the typical performance curves.

The A/D converter's noise and distortion levels will change with the frequency of the input signal, with more distortion and noise occurring at higher signal frequencies. This can be seen in the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ versus frequency curves. These curves will also give an indication of the full power bandwidth (the frequency at which the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ drops 3 dB$)$.

TL/H/11024-22
FIGURE 6. Analog Input Equivalent Circuit

4.0 Dynamic Performance (Continued)

Two sample/hold specifications, aperture time and aperture jitter, are included in the Dynamic Characteristics table since the ADC1251 has the ability to track and hold the analog input voltage. Aperture time is the delay for the A / D to respond to the hold command. In the case of the ADC1251 when using the $\overline{\mathrm{S}} / \mathrm{H}$ control to start a conversion, the hold command is generated by the rising edge of $\overline{\mathrm{S}} / \mathrm{H}$. The delay between the rising edge of $\overline{\mathrm{S}} / \mathrm{H}$ and the time that
the ADC1251 actually holds the input signal is the aperture time. For the ADC1251, this time is typically 100 ns . Aperture jitter is the change in the aperture time from sample to sample. Aperture jitter is useful in determining the maximum slew rate of the input signal for a given accuracy. For example, an ADC1251 with 100 ps of aperture jitter operating with a 5 V reference can have an effective gain variation of about 1 LSB with an input signal whose slew rate is $12 \mathrm{~V} / \mu \mathrm{s}$.

5.0 Typical Applications

TL/H/11024-24
Note: External protection diodes should be able to withstand the op amp current limit.

ADC12451 Dynamically-Tested Self-Calibrating 12-Bit Plus Sign A/D Converter with Sample-and-Hold

General Description

The ADC12451 is a CMOS 12-bit plus sign successive approximation analog-to-digital converter whose dynamic specifications (S/N, THD, etc.) are tested and guaranteed. On request, the ADC12451 goes through a self-calibration cycle that adjusts linearity, zero and full-scale errors. The ADC12451 also has the ability to go through an Auto-Zero cycle that corrects the zero error during every conversion.
The analog input to the ADC12451 is tracked and held by the internal circuitry, so an external sample-and-hold is not required. The ADC12451 has a $\overline{\mathrm{S}} / \mathrm{H}$ control input which directly controls the track-and-hold state of the A/D. A unipolar analog input voltage range (0 V to +5 V) or a bipolar range (-5 V to +5 V) can be accommodated with $\pm 5 \mathrm{~V}$ supplies.
The 13-bit data result is available on the eight outputs of the ADC12451 in two bytes, high-byte first and sign extended. The digital inputs and outputs are compatible with TTL or CMOS logic levels.

Applications

- Digital Signal Processing
- Audio
- Telecommunications
- High Resolution Process Control
- Instrumentation

Features

- Self-calibration provides excellent temperature stability
- Internal sample-and-hold
- 8-bit μ P/DSP interface
- Bipolar input range with a single +5 V reference

Key Specifications

Resolution	12 bits plus sign
- Conversion Time	$7.7 \mu \mathrm{~s}$ (max)
- Sampling Rate	83 kHz (max)
- Bipolar Signal/Noise	73.5 dB (min)
- Total Harmonic Distortion	-78.0 dB (max)
- Aperture Time	100 ns
Aperture Jitter	$100 \mathrm{ps}_{\mathrm{rms}}$
Zero Error	± 2 LSB (max)
Positive Full-Scale Error	± 1.5 LSB (max)
- Power Consumption @ $\pm 5 \mathrm{~V}$	113 mW (max)

Simplified Block Diagram

TL/H/11025-1

Connection Diagram

Dual-In-Line Package

TL/H/11025-2 Top View

Ordering Information

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathbf{T}_{\mathbf{A}} \leq 85^{\circ} \mathrm{C}\right)$	Package
$A D C 12451 \mathrm{ClJ}$	J24A
Military $\left(-55^{\circ} \mathrm{C} \leq \mathbf{T}_{\mathbf{A}} \leq 125^{\circ} \mathrm{C}\right)$	Package
ADC12451CMJ, ADC12451CMJ/883	J24A

Absolute Maximum Ratings (Notes 1 \& 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage $\left(V_{C C}=D V_{C C}=A V_{C C}\right) \quad 6.5 \mathrm{~V}$
Negative Supply Voltage (V^{-}) -6.5 V
Voltage at Logic Control Inputs $\quad-0.3 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Voltage at Analog Inputs
$\left(V_{\text {IN }}, V_{\text {REF }}\right) \quad(V--0.3 V)$ to $\left(V_{C C}+0.3 V\right)$
$A V_{C C}-V_{C C}$ (Note 7)
Input Current at any Pin (Note 3) $\pm 5 \mathrm{~mA}$
Package Input Current (Note 3)
Power Dissipation at $25^{\circ} \mathrm{C}$ (Note 4)
Storage Temperature Range
ESD Susceptability (Note 5)
$-65^{\circ} \mathrm{C}$ to +150 C
$\pm 20 \mathrm{~mA}$
875 mW

Soldering Information
J Package (10 Seconds)

Operating Ratings (Notas 1 \& 2)

Temperature Range	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$
ADC12451CIJ	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
ADC12451CMJ,	
ADC12451CMJ/883	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
$D V_{C C}$ and $A V_{C C}$ Voltage (Notes 6 \& 7)	4.5 V to 5.5 V
Negative Supply Voltage (V^{-})	-4.5 V to -5.5 V
Reference Voltage (VREF, Notes 6 \& 7)	3.5 V to $\mathrm{AV}_{\mathrm{CC}}+50 \mathrm{mV}$

Converter Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}-=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+5.0 \mathrm{~V}$, using $\overline{\mathrm{S}} / \mathrm{H}$ input for conversion control, and $\mathrm{f}_{\mathrm{CLK}}=3.5 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6, 7 and 8)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Note 10, 19)	Units (Limit)

STATIC CHARACTERISTICS

	Positive Integral Linearity Error		After Auto-Cal, (Notes 11 \& 12)	$\pm 1 / 2$		LSB
	Negative Integral Linearity Error		After Auto-Cal, (Notes 11 \& 12)	$\pm 1 / 2$		LSB
	Positive or Negative Differential Linearity		After Auto-Cal (Notes 11 \& 12)	12		Bits
	Zero Error (Notes 12 \& 13)		$\overline{\mathrm{AZ}}=$ " 0 ", f $\mathrm{fCLK}=1.75 \mathrm{MHz}$	± 1		LSB
			After Auto-Cal Only		$\pm 2 / \pm 3.0$	LSB(max)
	Positive Full-Scale Error (Note 12)		$\overline{\mathrm{AZ}}=$ " 0 ", $\mathrm{f}_{\text {CLK }}=1.75 \mathrm{MHz}$	± 1		LSB
			Auto-Cal Only		$\pm 1.5 / \pm 2.5$	LSB (max)
	Negative Full-Scale Error (Note 12)		$\overline{\mathrm{AZ}}=$ " 0 ", $\mathrm{f}_{\mathrm{CLK}}=1.75 \mathrm{MHz}$	± 1		LSB
			Auto-Cal Only		$\pm 1.5 / \pm 3.0$	LSB(max)
V_{IN}	Analog Input Voltage				$\begin{aligned} & V^{-}-0.05 \\ & V_{\mathbf{c c}}+0.05 \end{aligned}$	$V(\min)$ V (max)
	Power Supply Sensitivity	Zero Error (Note 14)	$\begin{aligned} & A V_{C C}=D V_{C C}=5 V \pm 5 \%, \\ & V_{\text {REF }}=4.75 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \pm 5 \% \end{aligned}$	$\pm 1 / 8$		LSB
		Full-Scale Error		$\pm 1 / 8$		LSB
		Linearity Error		$\pm 1 / 8$		LSB
$\mathrm{C}_{\text {REF }}$	$V_{\text {REF }}$ Input Capacitance			80		pF
$\mathrm{C}_{\text {IN }}$	Analog Input Capacitance			65		pF

DYNAMIC CHARACTERISTICS

Converter Electrical Characteristics (Continued)
The following specifications apply for $V_{C C}=D V_{C C}=A V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+5.0 \mathrm{~V}$, using $\overline{\mathrm{S}} / \mathrm{H}$ input for conversion control, and fcLK $=3.5 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6, 7 and 8)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Note 10, 19)	Units (Limit)
DYNAMIC CHARACTERISTICS (Continued)					
S/N	Unipolar Signal to Noise Ratio (Note 17)	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	73		dB
		$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}$ p-p	73		dB
		$\mathrm{f}_{\mathrm{IN}}=20.67 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	73	68.7	$\mathrm{dB}(\min)$
THD	Bipolar Total Harmonic Distortion (Note 17)	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\text {IN }}= \pm 4.85 \mathrm{~V}$	-82		dB
		$\mathrm{f}_{\mathrm{IN}}=20.67 \mathrm{kHz}, \mathrm{V}_{\text {IN }}= \pm 4.85 \mathrm{~V}$	-80	-78.0	dB (max)
THD	Unipolar Total Harmonic Distortion (Note 17)	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	-82		dB
		$\mathrm{f}_{\mathrm{IN}}=20.67 \mathrm{kHz}, \mathrm{V}_{\text {IN }}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	-80	-73.1	dB (max)
	Bipolar Peak Harmonic or Spurious Noise (Note 17)	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{1 \mathrm{~N}}= \pm 4.85 \mathrm{~V}$	-88		dB
		$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}$	-84		dB
		$\mathrm{fiN}^{\prime}=20 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}$	-80		dB
	Unipolar Peak Harmonic or Spurious Noise (Note 17)	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{V}_{\text {IN }}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	-90	*	dB
		$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz}, \mathrm{V}_{\text {IN }}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	-86		dB
		$\mathrm{fiN}=20 \mathrm{kHz}, \mathrm{V}_{\text {IN }}=4.85 \mathrm{~V}_{\mathrm{p} \text {-p }}$	-82		dB
	Bipolar Two Tone Intermodulation Distortion (Note 17)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 4.85 \mathrm{~V}, \mathrm{f}_{\mathrm{IN} 1}=19.375 \mathrm{kHz} \\ & \mathrm{fIN}_{\mathrm{N} 2}=20 \mathrm{kHz} \end{aligned}$	-78		dB (max)
	Unipolar Two Tone Intermodulation Distortion (Note 17)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{f}_{\mathrm{IN} 1}=19.375 \mathrm{kHz}, \\ & \mathrm{f}_{\mathrm{IN} 2}=20 \mathrm{kHz} \end{aligned}$	-78		dB (max)
	-3 dB Bipolar Full Power Bandwidth	$\mathrm{V}_{\text {IN }}= \pm 4.85 \mathrm{~V}$, (Note 17)	25	20.67	kHz(min)
	-3 dB Unipolar Full Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}=4.85 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$, $($ Note 17)	32	20.67	kHz(min)
	Aperture Time		100		ns
	Aperture Jitter		100		ps ${ }_{\text {rms }}$

Digital and DC Electrical Characteristics

The following specifications apply for $\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}-=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+5.0 \mathrm{~V}$ ，and $\mathrm{f}_{\mathrm{CLK}}=3.5 \mathrm{MHz}$ unless otherwise specified．Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ ；all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$ ．（Notes 6 and 7）

Symbol	Parameter	Condition	Typical （Note 9）	Limit （Note 10，19）	Units （Limit）
$\mathrm{V}_{\text {IN（1）}}$	Logical＂1＂Input Voltage for All Inputs except CLK IN	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		2.0	$V(\min)$
$\mathrm{V}_{\text {IN }}(0)$	Logical＂ 0 ＂Input Voltage for All Inputs except CLK IN	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		0.8	V （max）
$1 / \mathrm{N}(1)$	Logical＂1＂Input Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	0.005	1	$\mu \mathrm{A}$（max）
$1 \mathrm{IN}(0)$	Logical＂0＂Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	－0．005	－1	$\mu \mathrm{A}$（max）
$\mathrm{V}_{\mathrm{T}}{ }^{+}$	CLK IN Positive－Going Threshold Voltage		2.8	2.7	$V(\mathrm{~min})$
$\mathrm{V}^{-}{ }^{-}$	CLK IN Negative－Going Threshold Voltage		2.1	2.3	V （max）
V_{H}	CLK IN Hysteresis $\left[\mathrm{V}_{\mathrm{T}^{+}}(\min)-\mathrm{V}_{\mathrm{T}^{-}}(\max)\right]$		0.7	0.4	$V(\min)$
$\mathrm{V}_{\text {OUT（1）}}$	Logical＂1＂Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}: \\ & \mathrm{l}_{\text {OUT }}=-360 \mu \mathrm{~A} \\ & \mathrm{l}_{\text {OUT }}=-10 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & V(\min) \\ & V(\min) \end{aligned}$
$\mathrm{V}_{\text {OUT（0）}}$	Logical＂0＇Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \end{aligned}$		0.4	$V(\max)$
IOUT	TRI－STATE ${ }^{\oplus}$ Output Leakage	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	－0．01	－3	$\mu \mathrm{A}$（max）
	Current	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	0.01	3	$\mu A(\max)$
Isource	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	－20	－6．0	mA （min）
ISINK	Output Sink Current	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	20	8.0	$\mathrm{mA}(\mathrm{min})$
DICC	DV ${ }_{\text {CC }}$ Supply Current	$\overline{\mathrm{CS}}=$＂1＂	1	2.5	mA（max）
$\mathrm{Al}_{\mathrm{CC}}$	AV ${ }_{\text {CC }}$ Supply Current	$\overline{\mathrm{CS}}=$＂1＂	2.8	10	mA（max）
$1-$	V－Supply Current	$\overline{\mathrm{CS}}=$＂1＂	2.8	10	mA（max）

AC Electrical Characteristics

The following specifications apply for $\mathrm{DV}_{\mathrm{CC}}=A \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}-=-5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ unless otherwise specified．
Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ ；all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$ ．（Notes 6 and 7 ）

Symbol	Parameter	Conditions	Typical （Note 9）	Limit （Note 10，19）	Units （Limit）
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency		$\begin{aligned} & 0.5 \\ & 6.0 \end{aligned}$	3.5	$\begin{gathered} \mathrm{MHz} \\ \mathrm{MHz}(\min) \\ \mathrm{MHz}(\max) \\ \hline \end{gathered}$
	Clock Duty Cycle		50	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	
${ }^{\text {t }} \mathrm{C}$	Conversion Time using $\overline{\mathrm{WR}}$ to start a Conversion		27（1／f ${ }_{\text {CLK }}$ ）	27（1／fCLK）＋ 250 ns	（max）
		$\mathrm{f}_{\text {CLK }}=3.5 \mathrm{MHz}, \overline{\mathrm{AZ}}=$＂ 1 ＂	7.7	7.95	$\mu \mathrm{S}$（max）
		$\mathrm{f}_{\text {CLK }}=1.75 \mathrm{MHz}, \overline{\mathrm{AZ}}=$＂ 0 ＂	15.4	15.65	μs（max）
${ }^{\text {t }}$	Conversion Time using $\overline{\mathrm{S}} / \mathrm{H}$ to start a Conversion	$\overline{\mathrm{AZ}}=$＂ 1 ＂	34（1／fCLK）	34（1／fcLK）＋ 250 ns	（max）
		$\mathrm{f}_{\mathrm{CLK}}=3.5 \mathrm{MHz}, \overline{\mathrm{AZ}}=$＂1＂	9.7	9.95	$\mu \mathrm{s}$（max）

AC Electrical Characteristics (Continued)

The following specifications apply for $D V_{C C}=A V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20$ ns unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Notes 6 and 7)

Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Note 10, 19)	Units (Limit)
$t_{\text {A }}$	Acquisition Time (Note 15)	RSOURCE $=50 \Omega$	3.5	3.5	$\mu \mathrm{s}$ (min)
$t_{\text {IA }}$	Internal Acquisition Time (when using WR Control Only)		7(1/f $\mathrm{f}_{\text {CLK }}$)	7(1/fCLK)	(max)
t_{ZA}	Auto Zero Time + Acquisition Time		33(1/f ${ }_{\text {CL.K }}$)	33(1/fCLK) + 250 ns	(max)
		$\mathrm{f}_{\mathrm{CLK}}=1.75 \mathrm{MHz}$	18.8	19.05	$\mu s(\max)$
$t_{\text {D(EOC }}$ L	Delay from Hold Command to Falling Edge of EOC	Using $\overline{\mathrm{WR}}$ Control	200	350	ns(max)
		Using $\overline{\text { S }} / \overline{\mathrm{H}}$ Control	100	150	ns(max)
$t_{\text {CAL }}$	Calibration Time		1399 (1/f ${ }_{\text {CLK }}$)	1399 (1/fCLK)	(max)
		$\mathrm{f}_{\mathrm{CLK}}=3.5 \mathrm{MHz}$	399	400	$\mu s(\max)$
$t_{\text {W }}(\overline{\text { CAL }}) \mathrm{L}$	Calibration Pulse Width	(Note 16)	60	200	$\mathrm{ns}(\mathrm{min})$
${ }^{t} \mathrm{~W}(\overline{\mathrm{WR}}) \mathrm{L}$	minimum $\overline{W R}$ Pulse Width		60	200	$\mathrm{ns}(\mathrm{min})$
$\mathrm{t}_{\text {ACC }}$	maximum Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)	$C_{L}=100 \mathrm{pF}$	50	95	ns(max)
$\mathrm{t}_{0 \mathrm{H},} \mathrm{t}_{1 \mathrm{H}}$	TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to Hi-Z State)	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	30	70	ns(max)
$t_{P D}(\overline{\text { NT }}$)	maximum Delay from Falling Edge of $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ to Reset of $\overline{\mathrm{NT}}$		100	175	ns(max)
$t_{\text {RR }}$	Delay between Successive $\overline{\mathrm{RD}}$ Pulses		30	60	$\mathrm{ns}(\mathrm{min})$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to AGND and DGND, unless otherwise specified.
Note 3: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supply rails $\left(V_{I N}<V^{-}\right.$or $V_{I N}>\left(A V_{C C}\right.$ or $\left.D V_{C C}\right)$, the current at that pin should be limited to 5 mA . The 20 mA maximum package input current rating allows the voltage at any four pins, with an input current limit of 5 mA , to simultaneously exceed the power supply voltages.
Note 4: The power dissipation of this device under normal operation should never exceed 191 mW (Quiescent Power Dissipation +1 .TTL Load on each digital output). Caution should be taken not to exceed absolute maximum power rating when the device is operating in a severe fault condition (ex. when any inputs or outputs exceed the power supply). The maximum power dissipation must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\mathrm{JMax}}$ (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_{A} (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{D M a x}=\left(T_{J M a x}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $T_{J M a x}=150^{\circ} \mathrm{C}$, and the typical thermal resistance (θ_{JA}) of the ADC12451 with CMJ, and CIJ suffixes when board mounted is $51^{\circ} \mathrm{C} / \mathrm{W}$.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: Two on-chip diodes are tied to the analog input as shown below. Errors in the A/D conversion can occur if these diodes are forward biased more than 50 mV . This means that if $A V_{C C}$ and $D V_{C C}$ are minimum ($4.75 \mathrm{~V}_{D C}$) and V^{-}is maximum ($-4.75 \mathrm{~V}_{\mathrm{DC}}$), the analog input full-scale voltage must be $\leq \pm 4.8 \mathrm{~V}_{\mathrm{DC}}$.

TL/H/11025-4

Electrical Characteristics (Continued)

Note 7: A diode exists between $A V_{C C}$ and $D V_{C C}$ as shown below.

TL/H/11025-5
To guarantee accuracy, it is required that the $A V_{C C}$ and $D V_{C C}$ be connected together to a power supply with separate bypass filters at each $V_{C C}$ pin.
Note 8: Accuracy is guaranteed at fCLK $=3.5 \mathrm{MHz}$. At higher or lower clock frequencies accuracy may degrade, see the typical performance characteristic curves. Note 9: Typicals are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 10: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 11: Positive linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line that passes through positive full scale and zero. For negative linearity error the straight line passes through negative full scale and zero. (See Figures $1 b$ and 1c).
Note 12: The ADC12451's self-calibration technique ensures linearity, full scale, and offset errors as specified, but noise inherent in the self-calibration process will result in a repeatability uncertainty of ± 0.20 LSB.
Note 13: If T_{A} changes then an Auto-Zero or Auto-Cal cycle will have to be re-started, see the typical performance characteristic curves.
Note 14: After an Auto-Zero or Auto-Cal cycle at the specified power supply extremes.
Note 15: When using the $\overline{W R}$ control to start a conversion if the clock is asynchronous to the rising edge of $\overline{W R}$ an uncertainty of one clock period will exist in the end of the interval of t_{A}, therefore making t_{A} end a minimum 6 clock periods or a maximum 7 clock periods after the rising edge of WR. If the falling edge of the clock is synchronous to the rising edge of $\overline{W R}$ then t_{A} will end exactly 6.5 clock periods after the rising edge of $\overline{W R}$. This does not occur when \bar{S} / H control is used.
Note 16: The CAL line must be high before a conversion is started.
Note 17: The specifications for these parameters are valid after an Auto-Cal cycle has been completed.
Note 18: The ADC12451 reference ladder is composed solely of capacitors.
Note 19: A military RETS electrical test specification is available on request. At time of printing, the ADC12451CMJ/883 RETS specification complies fully with the boldface limits in this column.

FIGURE 1a. Transfer Characteristic

Electrical Characteristics (Continued)

TL/H/11025-7
FIGURE 1b. Simplified Error Curve vs Output Code without Auto-Cal or Auto-Zero Cycles

TL/H/11025-8
FIGURE 1c. Simplified Error Curve vs Output Code after Auto-Cal Cycle

Typical Performance Characteristics

TL/H/11025-9

Typical Performance Characteristics (Continued)

Bipolar Signal-to-
Noise + Distortion Ratio vs Input Signal Level

Full Scale Error Change vs
Ambient Temperature

Unipolar Signal-to-
Noise + Distortion Ratio vs Input Frequency

Bipolar Spectral Response with 1 kHz Sine Wave Input

Bipolar Signal-to-
Noise + Distortion Ratio vs Input Source Impedance

Unipolar Signal-to-
Noise + Distortion Ratio vs Input Signal Level

Bipolar Spectral Response with $\mathbf{1 0} \mathbf{~ k H z}$ Sine Wave Input

Unipolar Spectral Response with 1 kHz Sine Wave Input

TL/H/11025-10

Typical Performance Characteristics (Continued)

TL/H/11025-11

Test Circuits

TL/H/11025-13

TL/H/11025-12

TL/H/11025-15

FIGURE 2. TRI-STATE Test Circuits and Waveforms

Timing Diagrams

Timing Diagrams (Continued)

1.0 Pin Descriptions

DV $C C$ (24), The digital and analog positive power supply $A V_{C C}(4) \quad$ pins. The digital and analog power supply voltage range of the $\mathrm{ADC1} 2451$ is +4.5 V to +5.5 V . To guarantee accuracy, it is required that the $A V_{C C}$ and $D V_{C C}$ be connected together to the same power supply with separate bypass capacitors ($10 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic) at each V_{CC} pin.
The analog negative supply voltage pin. V^{-} has a range of -4.5 V to -5.5 V and needs bypass capacitors of $10 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic.
DGND (12), The digital and analog ground pins. AGND AGND (3) and DGND must be connected together externally to guarantee accuracy.
$V_{\text {REF }}$ (2) The reference input voltage pin. To maintain accuracy the voltage at this pin should not exceed the $A V_{C C}$ or $D V_{C C}$ by more than 50 mV or go below +3.5 V DC .
$V_{\text {IN }}(1) \quad$ The analog input voltage pin. To guarantee accuracy the voltage at this pin should not exceed V_{CC} by more than 50 mV or go below V - by more than 50 mV .
$\overline{\mathrm{CS}}$ (10) The Chip Select control input. This input is active low and enables the $\overline{W R}, \overline{R D}$ and \bar{S} / H functions.
$\overline{\mathrm{RD}}$ (23) The Read control input. With both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low the TRI-STATE output buffers are enabled and the INT output is reset high.
$\overline{W R}$ (7) The Write control input. The conversion is started on the rising edge of the $\overline{W R}$ pulse when $\overline{\mathrm{CS}}$ is low. When this control line is used the end of the analog input voltage acquisition window is internally controlled by the ADC12451.
$\overline{\mathrm{S}} / \mathrm{H}$ (11) The sample and hold control input. This control input can also be used to start a conversion. With $\overline{\mathrm{CS}}$ low the falling edge of $\overline{\mathrm{S}} / \mathrm{H}$ starts the analog input acquisition window. The rising edge of \bar{S} / H ends the acquisition window and starts a conversion.
CLKIN (8) The external clock input pin. The typical clock frequency range is 500 kHz to 6.0 MHz .
$\overline{\mathrm{CAL}}$ (9) The Auto-Calibration control input. When $\overline{\mathrm{CAL}}$ is low the ADC12451 is reset and a calibration cycle is initiated. During the calibration cycle the values of the comparator offset voltage and the mismatch errors in the capacitor reference ladder are determined and stored in RAM. These values are used to correct the errors during a normal cycle of A/D conversion.
$\overline{\mathrm{AZ}}$ (6) \quad The Auto-Zero control input. With the $\overline{\mathrm{AZ}}$ pin held low during a conversion, the ADC12451 goes into an auto-zero cycle before the actual A/D conversion is started. This Auto-Zero cycle corrects for the comparator offset voltage. The total conversion time (t C) is increased by 26 clock periods when Auto-Zero is used.

EOC (22) The End-of-Conversion control output. This output is low during a conversion or a calibration cycle.
$\overline{\operatorname{INT}}(21)$ The Interrupt control output. This output goes low when a conversion has been completed and indicates that the conversion result is available in the output latches. Reading the result or starting a conversion or calibration cycle will reset this output high.
DB0/DB8 - The TRI-STATE output pins. Twelve bit plus DB7/DB12 sign output data access is accomplished using (13-20) two successive $\overline{\mathrm{RD}}$ s of one byte each, high byte first (DB8-DB12). The data format used is two's complement sign bit extended with DB12 the sign bit, DB11 the MSB and DB0 the LSB.

2.0 Functional Description

The ADC12451 is a 12 -bit plus sign A/D converter with the capability of doing Auto-Zero or Auto-Calibration routines to minimize zero, full-scale and linearity errors. It is a succes-sive-approximation A/D converter consisting of a DAC. comparator and a successive-approximation register (SAR) Auto-Zero is an internal calibration sequence that corrects for the A/D's zero error caused by the comparator's offset voltage. Auto-Cal is a calibration cycle that not only corrects zero error but also corrects for full-scale and linearity errors caused by DAC inaccuracies. Auto-Cal minimizes the errors of the ADC12451 without the need of trimming during its fabrication. An Auto-Cal cycle can restore the accuracy of the ADC12451 at any time, which ensures accuracy over temperature and time.

2.1 DIGITAL INTERFACE

On power up, a calibration sequence should be initiated by pulsing $\overline{\mathrm{CAL}}$ low with $\overline{\mathrm{CS}}$ and $\overline{\mathrm{S}} / \mathrm{H}$ high. To acknowledge the $\overline{C A L}$ signal, $E O C$ goes low after the falling edge of $\overline{C A L}$, and remains low during the calibration cycle of 1399 clock periods. During the calibration sequence, first the comparator's offset is determined, then the capacitive DAC's mismatch error is found. Correction factors for these errors are then stored in internal RAM.
A conversion is initiated by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ low. If $\overline{\mathrm{AZ}}$ is low an Auto-Zero cycle, which takes approximately 26 clock periods, is inserted before the analog input is sampled and the actual conversion is started. $\overline{\mathrm{AZ}}$ must remain low during the complete conversion sequence. After Auto-Zero the acquisition opens and the analog input is sampled for appproximately 7 clock periods. If $\overline{A Z}$ is high, the Auto-Zero cycle is not inserted after the rising edge of $\overline{W R}$. In this case the acquisition window opens when the ADC12451 completes a. conversion, signaled by the rising edge of EOC At the end of the acquisition window EOC goes low, signaling that the analog input is no longer being sampled and that the A / D successive approximation conversion has starter

2．0 Functional Description（Continued）

A conversion sequence can also be controlled by the $\overline{\mathrm{S}} / \mathrm{H}$ and $\overline{\mathrm{CS}}$ inputs．Taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{S}} / \mathrm{H}$ low starts the acquisition window for the analog input voltage．The rising edge of \bar{S} / H immediately puts the A／D in the hold mode and starts the conversion．Using $\overline{\mathrm{S}} / \mathrm{H}$ will simplify synchronizing the end of the acquisition window to other signals，which may be nec－ essary in a DSP environment．
During a conversion，the sampled input voltage is succes－ sively compared to the output of the DAC．First，the ac－ quired input voltage is compared to analog ground to deter－ mine its polarity．The sign bit is set low for positive input voltages and high for negative．Next the MSB of the DAC is set high with the rest of the bits low．If the input voltage is greater than the output of the DAC，then the MSB is left high；otherwise it is set low．The next bit is set high，making the output of the DAC three quarters or one quarter of full scale．A comparison is done and if the input is greater than the new DAC value this bit remains high；if the input is less than the new DAC value the bit is set low．This process continues until each bit has been tested．The result is then stored in the output latch of the ADC12451．Next INT goes low，and EOC goes high to signal the end of the conversion． The result can now be read by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low to enable the DB0／DB8－DB7／DB12 output buffers．The high byte of data is relayed first on the data bus outputs as shown below：

DB0／	DB1／	DB2／	DB3／	DB4／	DB5／	DB6／	DB7／ DB8
DB9	DB10	DB11	DB12	DB12	DB12	DB12	
Bit 8	Bit 9	Bit 10	MSB	Sign Bit	Sign Bit	Sign Bit	Sign Bit

Taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low a second time will relay the low byte of data on the data bus outputs as shown below：

DB0／	DB1／	DB2／	DB3／	DB4／	DB5／	DB6／	DB71
DB8	DB9	DB10	DB11	DB12	DB12	DB12	DB12
LSB	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7

The table in Figure 3 summarizes the effect of the digital control inputs on the function of the ADC12451．The Test Mode，where $\overline{\mathrm{RD}}$ and $\overline{\mathrm{S}} / \mathrm{H}$ are high and $\overline{\mathrm{CS}}$ and $\overline{\mathrm{CAL}}$ are low，is used during manufacture to thoroughly check out
the operation of the ADC12451．Care should be taken not to inadvertently be in this mode，since DB2，DB3，DB5，and DB6 become active outputs，which may cause data bus contention．

2．2 RESETTING THE A／D

The ADC12451 is reset whenever a new conversion is start－ ed by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ or $\overline{\mathrm{S}} / \mathrm{H}$ low．If this is done when the analog input is being sampled or when EOC is low，the Auto－Cal correction factors may be corrupted，therefore re－ quiring an Auto－Cal cycle before the next conversion．When using $\overline{\mathrm{WR}}$ or $\overline{\mathrm{S}} / \mathrm{H}$ without Auto－Zero $(\overline{\mathrm{AZ}}=1)$ to start a conversion，a new conversion can be restarted only after EOC has gone high signaling the end of the current conver－ sion．When using $\overline{W R}$ with Auto－Zero（ $\overline{\mathrm{AZ}}=0$ ）a new con－ version can be restarted during the first 26 clock periods after the rising edge of $\overline{W R}\left(\mathrm{t}_{\mathrm{z}}\right)$ or after EOC has returned high without corrupting the Auto－Cal correction factors．
The Calibration Cycle cannot be reset once started．On power－up the ADC12451 automatically goes through a Cali－ bration Cycle that takes typically 1399 clock cycles．For rea－ sons that will be discussed in Section 3．8，a new calibration cycle needs to be started after the completion of the auto－ matic one．

3．0 Analog Considerations

3．1 REFERENCE VOLTAGE

The voltage applied to the reference input of the converter defines the voltage span of the analog input（the difference between $\mathrm{V}_{\mathbb{I}}$ and AGND），over which 4095 positive output codes and 4096 negative output codes exist．The A－to－D can be used in either ratiometric or absolute reference ap－ plications．The voltage source driving $V_{\text {REF }}$ must have a very low output impedance and very low noise．The circuit in Figure $4 a$ is an example of a very stable reference that is appropriate for use with the ADC12451．The simple refer－ ence circuit of Figure $4 b$ may be used when the application does not require a low full－scale error．

Digital Control Inputs						A／D Function
$\overline{\text { CS }}$	$\overline{W R}$	$\overline{\mathbf{S}} / \mathbf{H}$	$\overline{\mathrm{RD}}$	$\overline{\text { CAL }}$	$\overline{\text { AZ }}$	
い	U	1	1	1	1	Start Conversion without Auto－Zero
ษ	1	． 5	1	1	1	Start Conversion synchronous with rising edge of $\overline{\mathbf{S}} / \mathrm{H}$ without Auto－Zero
い	1	1	U	1	1	Read Conversion Result without Auto－Zero
Ч	U	1	1	1	0	Start Conversion with Auto－Zero
๘	1	1	凹	1	0	Read Conversion Result with Auto－Zero
1	X	1	X	ᄂ	X	Start Calibration Cycle
0	X	X	1	0	X	Test Mode（DB2，DB3，DB5，and DB6 become active）

FIGURE 3．Function of the A／D Control Inputs

3.0 Analog Considerations (Continued)

FIGURE 4a. Low Drift Extremely Stable Reference Circuit

Errors without any trims:

	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Full Scale	$\pm 0.075 \%$	$\pm 0.2 \%$
Zero	$\pm 0.024 \%$	$\pm 0.024 \%$
Linearity	$\pm 1 / 2 \mathrm{LSB}$	$\pm 1 / 2 \mathrm{LSB}$

FIGURE 4b. Simple Reference Circuit

In a ratiometric system, the analog input voltage is proportional to the voltage used for the A/D reference. When this voltage is the system power supply, the $\mathrm{V}_{\text {REF }}$ pin can be tied to V_{Cc}. This technique relaxes the stability requirement of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy, where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. In general, the magnitude of the reference voltage will require an initial adjustment to null out full-scale errors.

3.2 ACQUISITION WINDOW

As shown in the timing diagrams there are three different methods of starting a conversion, each of which affects the acquisition window and timing.
With Auto-Zero high a conversion can be started with the $\overline{W R}$ or \bar{S} / H controls. In either method of starting a conversion the rising edge of EOC signals the actual beginning of the acquisition window. At this time a voltage spike may be noticed on the analog input of the ADC12451 whose amplitude is dependent on the input voltage and the source resistance. The timing diagrams for these two methods of starting a conversion do not show the acquisition window starting at this time because the acquisition time (t_{A}) must start after the conversion result high and low bytes have been read. This is necessary since activating and deactivating the digital outputs (DB0/DB7-DB8/DB12) causes current fluctuations in the ADC12451's internal $D V_{C C}$ lines. This generates digital noise which couples into the capacitive ladder that stores the analog input voltage. Therefore, the time interval between the rising edge of EOC and the second read is inappropriate for analog input voltage acquisition.
When $\overline{W R}$ is used to start a conversion with $\overline{A Z}$ low the Auto-Zero cycle is inserted before the acquisition window. In
this method the acquisition window is internally controlled by the ADC12451 and lasts for approximately 7 clock periods. Since the acquisition window needs to be at least $3.5 \mu \mathrm{~s}$ at all times, when using Auto-Zero the maximum clock frequency is limited to 2 MHz . The zero error with the Auto-Zero cycle is production tested at a clock frequency of 1.75 MHz . This accommodates easy switching between a conversion with the Auto-Zero cycle (f $\mathrm{f}_{\mathrm{CLK}}=1.75 \mathrm{MHz}$) and without ($\mathrm{f}_{\mathrm{CLK}}=3.5 \mathrm{MHz}$) as shown in Figure 5.

TL/H/11025-22
FIGURE 5. Switching between a Conversion with and without Auto-Zero when Using WR Control

3.3 INPUT CURRENT

Because the input network of the ADC12451 is made up of a switch and a network of capacitors a charging current will flow into or out of (depending on the input voltage polarity) of the analog input pin $\left(\mathrm{V}_{\mathrm{IN}}\right)$ on the start of the analog input sampling period. The peak value of this current will depend on the actual input voltage applied and the source resistance.

3.4 NOISE

The leads to the analog input pin should be kept as short as possible to minimize input noise coupling. Both noise and undesired digital clock coupling to this input can cause errors. Input filtering can be used to reduce the effects of these noise sources.

3.0 Analog Considerations (Continued)

3.5 INPUT BYPASS CAPACITORS

An external capacitor can be used to filter out any noise due to inductive pickup by a long input lead and will not degrade the accuracy of the conversion result.

3.6 INPUT SOURCE RESISTANCE

The analog input can be modeled as shown in Figure 6. External RS will lengthen the time period necessary for the voltage on C CREF to settle to within $1 / 2$ LSB of the analog input voltage. With $t_{A}=3.5 \mu \mathrm{~s}, \mathrm{R}_{\mathrm{S}} \leq 1 \mathrm{k} \Omega$ will allow a 5 V analog input voltage to settle properly.

3.7 POWER SUPPLIES

Noise spikes on the V_{CC} and V^{-}supply lines can cause conversion errors as the comparator will respond to this noise. The A/D is especially sensitive during the Auto-Zero or -Cal procedures to any power supply spikes. Low inductance tantalum capacitors of $10 \mu \mathrm{~F}$ or greater paralleled with $0.1 \mu \mathrm{~F}$ ceramic capacitors are recommended for supply bypassing. Separate bypass capacitors should be placed close to the $D V_{C C}, A V_{C C}$ and V^{-}pins. If an unregulated voltage source is available in the system, a separate LM340LAZ-5.0 voltage regulator for the A-to-D's $V_{C C}$ (and other analog circuitry) will greatly reduce digital noise on the supply line.

3.8 THE CALIBRATION CYCLE

On power up the ADC12451 goes through an Auto-Cal cycle which cannot be interrupted. Since the power supply, reference, and clock will not be stable at power up, this first calibration cycle will not result in an accurate calibration of the A/D. A new calibration cycle needs to be started after the power supplies, reference, and clock have been given enough time to stabilize. During the calibration cycle, correction values are determined for the offset voltage of the sampled data comparator and any linearity and gain errors. These values are stored in internal RAM and used during an analog-to-digital conversion to bring the overall full-scale, offset, and linearity errors down to the specified limits. Fullscale error typically changes ± 0.2 LSB over temperature and linearity error changes even less; therefore it should be necessary to go through the calibration cycle only once after power up if Auto-Zero is used to correct the zero error
change. Since Auto-Zero cannot be activated with $\overline{\mathrm{S}} / \mathrm{H}$ conversion method it may be necessary to do a calibration cycle more than once.

3.9 THE AUTO-ZERO CYCLE

To correct for any change in the zero (offset) error of the A/D, the auto-zero cycle can be used. It may be necessary to do an auto-zero cycle whenever the ambient temperature changes significantly. (See the curve titled "Zero Error Change vs Ambient Temperature" in the Typical Performance Characteristics.) A change in the ambient temperature will cause the $V_{\text {OS }}$ of the sampled data comparator to change, which may cause the zero error of the A/D to be greater than ± 1 LSB. An auto-zero cycle will typically maintain the zero error to ± 1 LSB or less.

4.0 Dynamic Performance

Many applications require the A/D converter to digitize ac signals, but the standard dc integral and differential nonlinearity specifications will not accurately predict the A/D converter's performance with ac input signals. The important specifications for ac applications reflect the converter's ability to digitize ac signals without significant spectral errors and without adding noise to the digitized signal. Dynamic characteristics such as signal-to-noise (S / N), signal-tonoise + distortion ratio ($\mathrm{S} /(\mathrm{N}+\mathrm{D}$)), effective bits, full power bandwidth, aperture time and aperture jitter are quantitative measures of the A/D converter's capability.
An A/D converter's ac performance can be measured using Fast Fourier Transform (FFT) methods. A sinusoidal waveform is applied to the A/D converter's input, and the transform is then performed on the digitized waveform: $S /(N+D)$ and S / N are calculated from the resulting FFT data, and a spectral plot may also be obtained. Typical values for S / N are shown in the table of Electrical Characteristics, and spectral plots of $S /(N+D)$ are included in the typical performance curves.

The A/D converter's noise and distortion levels will change with the frequency of the input signal, with more distortion and noise occurring at higher signal frequencies. This can be seen in the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ versus frequency curves. These curves will also give an indication of the full power bandwidth (the frequency at which the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ or S / N drops 3 dB).

TL/H/11025-23
FIGURE 6. Analog Input Equivalent Circuit

4．0 Dynamic Performance（Continued）

Effective number of bits can also be useful in describing the A／D＇s noise performance．An ideal A／D converter will have some amount of quantization noise，determined by its reso－ lution，which will yield an optimum S / N ratio given by the following equation：

$$
S / N=(6.02 \times n+1.8) d B
$$

where n is the A / D＇s resolution in bits．
The effective bits of a real A／D converter，therefore，can be found by：

$$
\mathrm{n} \text { (effective) }=\frac{\mathrm{S} / \mathrm{N}(\mathrm{~dB})-1.8}{6.02}
$$

As an example，an ADC12451 with a $\pm 5 \mathrm{~V}, 10 \mathrm{kHz}$ sine wave input signal will typically have a S / N of 78 dB ，which is equivalent to 12.6 effective bits．

Two sample／hold specifications，aperture time and aperture jitter，are included in the Dynamic Characteristics table since the ADC12451 has the ability to track and hold the analog input voltage．Aperture time is the delay for the A／D to respond to the hold command．In the case of the ADC12451，the hold command is internally generated． When the Auto－Zero function is not being used，the hold command occurs at the end of the acquisition window，or seven clock periods after the rising edge of the WR．The delay between the internally generated hold command and the time that the ADC12451 actually holds the input signal is the aperture time．For the ADC12451，this time is typically 100 ns ．Aperture jitter is the change in the aperture time from sample to sample．Aperture jitter is useful in determin－ ing the maximum slew rate of the input signal for a given accuracy．For example，an ADC12451 with 100 ps of aper－ ture jitter operating with a 5 V reference can have an effec－ tive gain variation of about 1 LSB with an input signal whose slew rate is $12 \mathrm{~V} / \mu \mathrm{s}$ ．

5．0 Typical Applications

Protecting the Analog Inputs

Note：External protection diodes should be able to withstand the op amp current limit．

ADC16071/ADC16471
 16-Bit Delta-Sigma 192 ks/s Analog-to-Digital Converters

General Description

The ADC16071/ADC16471 are 16-bit delta-sigma analog-to-digital converters using $64 \times$ oversampling at 12.288 MHz . A 5th-order comb filter and a 246 tap FIR decimation filter are used to achieve an output data rate of up to 192 kHz . The combination of oversampling and internal digital filtering greatly reduces the external anti-alias filter requirements to a simple RC low pass filter. The FIR filters offer linear phase response, 0.005 dB passband ripple, and $\geq 90 \mathrm{~dB}$ stopband rejection. The ADC16071/ADC16471's analog fourth-order modulator uses switched capacitor technology. A built-in fully-differential bandgap voltage reference is also included in the ADC16471. The ADC16071 has no internal reference and requires externally applied reference voltages.
The ADC16071/ADC16471 use an advanced BiCMOS process for a low power consumption of 500 mW (max) while operating from a single 5 V supply. A power-down mode reduces the power supply current from 100 mA (max) in the active mode to 1.3 mA (max).
The ADC16071/ADC16471 are ideal analog-to-digital front ends for signal processing applications. They provide a complete high resolution signal acquisition system that requires a minimal external anti-aliasing filter, reference, or interface logic.
The ADC16071/ADC16471's serial interface is compatible with the DSP56001, TMS320, and ADSP2100 digital signal processors.

Key Specifications

- Resolution	16 bits
- Total harmonic distortion	$-94 \mathrm{~dB}($ typ $)$
48 kHz output data rate	$-80 \mathrm{~dB}($ (typ)
192 kHz output data rate	$192 \mathrm{kHz}(\min)$
Maximum output data rate	
- Power dissipation	
- Active	
192 kHz output data rate	$500 \mathrm{~mW}(\max)$
48 kHz output data rate	$275 \mathrm{~mW}(\max)$
- Power-down	6.5 mW (max)

Key Features

- Voltage reference (ADC16471 only)
- Fourth-order modulator
- $64 \times$ oversampling with a 12.288 MHz sample rate
- Adjustable output data rate from 7 kHz to 192 kHz
- Linear-phase digital anti-aliasing filter:
-0.005 dB passband ripple
- 90 dB stopband rejection
- Single +5 V supply
- Power-down mode
- Serial data interface compatible with popular DSP devices

Applications

- Medical instrumentation
- Process control systems
- Test equipment
- High sample-rate audio
- Digital Signal Processing (DSP) analog front-end
- Vibration and noise analysis

Connection Diagram

Ordering Information

Part No.	Package	NS Package No.
ADC16471CIN	24-Pin Molded DIP	N24C
ADC16471CIWM	24-Pin SOIC	M24B
ADC16071CIN	24-Pin Molded DIP	N24C
ADC16071CIWM	24-Pin SOIC	M24B

Block Diagram

ADC16471

ADC16071

Absolute Maximum Ratings (Notes 1 and 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage $\left(\mathrm{V}_{\mathrm{A}^{+}}, \mathrm{V}_{\mathrm{D}^{+}}\right.$, and $\left.\mathrm{V}_{\mathrm{M}}{ }^{+}\right) \quad+6.5 \mathrm{~V}$
Logic Control Inputs $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{D}}{ }^{+}+0.3 \mathrm{~V}$
Voltage at Other
Inputs and Outputs $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{M}^{+}}+0.3 \mathrm{~V}$
Input Current at Any Pin (Note 3) $\pm 25 \mathrm{~mA}$
Package Input Current (Note 3) $\pm 100 \mathrm{~mA}$
Maximum Junction Temperature (Note 4) $150^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature
N Package (Soldering, 10 sec .) $300^{\circ} \mathrm{C}$
WM Package (Infrared, 15 sec.) $220^{\circ} \mathrm{C}$
WM Package (Vapor Phase, 60 sec .) $215^{\circ} \mathrm{C}$
$\begin{array}{lr}\text { ESD Susceptibility (Note 5) } & \\ \quad \text { Human Body Model } & 4000 \mathrm{~V} \\ \text { Machine Model } & 250 \mathrm{~V}\end{array}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Operating Ratings (Notes 1 and 2)
Temperature Range
$\left(T_{\text {min }} \leq T_{A} \leq T_{\max }\right)$
ADC16471CIN, ADC16071CIN, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ ADC16471CIWM, ADC16071CIWM
Supply Voltage
$\mathrm{V}_{\mathrm{A}}{ }^{+}, \mathrm{V}_{\mathrm{D}}{ }^{+}, \mathrm{V}_{\mathrm{M}}{ }^{+}$
4.75 V to 5.25 V

Converter Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{M}}{ }^{+}=\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{MID}}=\mathrm{V}_{\mathrm{A}}+/ 2=2.50 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}+=\mathrm{V}_{\mathrm{MID}}+1.25 \mathrm{~V}$, $\mathrm{V}_{\text {REF- }}=\mathrm{V}_{\text {MID }}-1.25 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=24.576 \mathrm{MHz}$, and dynamic tests are performed with an input signal magnitude set at -6 dB with respect to a full-scale input unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\mathbf{m i n}}$ to $\mathbf{T}_{\text {max }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 6)	Limits (Note 7)	Units (Limit)
	Resolution			16	Bits
$\mathrm{f}_{\text {CLK }}=24.576 \mathrm{MHz}\left(\mathrm{f}_{\mathbf{s}}=192 \mathrm{kHz}\right.$)					
S/(N+D)	Signal-to-Noise + Distortion Ratio	$\begin{aligned} & \text { Measurement bandwidth }=0.45 \mathrm{f}_{\mathrm{s}} \\ & \mathrm{f}_{\mathrm{IN}}=19 \mathrm{kHz} \end{aligned}$	76	72	$\mathrm{dB}(\mathrm{min})$
THD	Total Harmonic Distortion	$\mathrm{fiN}_{\mathrm{N}}=19 \mathrm{kHz}$	0.010	0.022	\% (max)
IMD	Intermodulation Distortion	$\mathrm{f}_{1}=18.5 \mathrm{kHz}, \mathrm{f}_{2}=19.5 \mathrm{kHz}$	0.010	0.017	\% (max)
	Converter Noise Floor (Note 8)	Measurement Bandwidth $=0.45 \mathrm{f}_{\text {s }}$	-88	-77	dBFS (min)
$\mathbf{f}_{\text {CLK }}=6.144 \mathrm{MHz}\left(\mathrm{f}_{\mathbf{S}}=\mathbf{4 8} \mathbf{~ k H z}\right)$					
S/(N+D)	Signal-to-Noise + Distortion Ratio	$\begin{aligned} & \text { Measurement bandwidth }=0.45 f_{\mathrm{s}} \\ & \mathrm{f}_{\mathrm{IN}}=5 \mathrm{kHz} \end{aligned}$	85	$\begin{array}{r} 80 \\ 73 \\ \hline \end{array}$	$\mathrm{dB}(\mathrm{min})$ dB (min)
THD	Total Harmonic Distortion	$\mathrm{fiN}^{\prime}=5 \mathrm{kHz}$	0.002	$\begin{aligned} & 0.0055 \\ & 0.008 \end{aligned}$	\% (max) \% (max)
IMD	Intermodulation Distortion	$\mathrm{f}_{1}=4 \mathrm{kHz}, \mathrm{f}_{2}=5.5 \mathrm{kHz}$	0.003	$\begin{aligned} & 0.009 \\ & \mathbf{0 . 0 1} \end{aligned}$	\% (max) \% (max)
	Converter Noise Floor (Note 8)	Measurement Bandwidth $=0.45 \mathrm{f}_{\mathrm{s}}$	-99	$\begin{array}{r} -92 \\ -89 \end{array}$	dBFS (min) dBFS (min)

OTHER CONVERTER CHARACTERISTICS

Z_{IN}	Input Impedance (Note 9)		34		k Ω
ΔA_{V}	Gain Error		± 0.2	± 1.0	\%FS (max)
V_{OS}	Input Offset Voltage		15		mV
I_{A}	Analog Power Supply Current		23	31	mA (max)
${ }^{\prime} \mathrm{M}$	Modulator Power Supply Current	$\begin{aligned} \mathrm{f}_{\mathrm{CLK}} & =24.576 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{CLK}} & =6.144 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 1.6 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \hline \end{aligned}$	mA (max)
Io	Digital Power Supply Current	$\begin{aligned} \mathrm{f}_{\mathrm{CLK}} & =24.576 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{CLK}} & =6.144 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 50 \\ & 13 \end{aligned}$	$\begin{aligned} & 65 \\ & 23 \\ & \hline \end{aligned}$	mA (max)
$I_{\text {SPD }}$	Power-Down Supply Current	$I_{A}+I_{D}+I_{M}$	0.25	1.3	mA
P_{D}	Power Dissipation		0.375	0.5	W
$V_{\text {MID }}$			$\mathrm{V}_{\mathrm{A}}+12$		V

Digital Filter Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}^{+}}=\mathrm{V}_{\mathrm{M}^{+}}=5 \mathrm{~V}$ unless otherwise specified. Boldface IImits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\boldsymbol{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typlcal (Note 6)	Limits (Note 7)	Units (Limit)
	Stopband Rejection		-90.0		dB
	Passband Ripple		± 0.005		dB
	3 dB Cutoff Frequency		0.45		fs
	Data Latency		3,968		Clock Cycles

Reference Characteristics (ADC16471 Only)

The following specifications apply for $V_{A}{ }^{+}=V_{D}+=V_{M}{ }^{+}=5 \mathrm{~V}$, unless otherwise specified. Boldface limits apply for T_{A} $=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 6)	Limits (Note 7)	Units (Limit)
$\mathrm{V}_{\text {REF }}{ }^{+}$	Positive Internal Reference Output Voltage		$\mathrm{V}_{\text {MID }}+1.25$	$\begin{aligned} & V_{\text {MID }}+1.175 \\ & V_{\text {MID }}+1.325 \end{aligned}$	$\begin{aligned} & V(\min) \\ & V(\max) \end{aligned}$
$\mathrm{V}_{\text {REF }}{ }^{-}$	Negative Internal Reference Output Voltage		$\mathrm{V}_{\text {MID }}-1.25$	$\begin{aligned} & \mathbf{V}_{\text {MID }}-1.325 \\ & \mathbf{V}_{\text {MID }}-1.175 \\ & \hline \end{aligned}$	$\begin{aligned} & V(\min) \\ & V(\max) \end{aligned}$
$\begin{aligned} & \Delta\left(\mathrm{V}_{\mathrm{REF}+}+-\right. \\ & \left.\mathrm{V}_{\mathrm{REF}-}\right) / \Delta \mathrm{T} \end{aligned}$	Internal Reference Temperature Coefficient		30		ppm $/{ }^{\circ} \mathrm{C}$
$\Delta V_{\text {REF }}+/ \Delta \mathrm{I}$	Positive Internal Reference Load Regulation	Sourcing ($0 \mathrm{~mA} \leq \mathrm{I} \leq+10 \mathrm{~mA}$) Sinking ($-1 \mathrm{~mA} \leq 1 \leq 0 \mathrm{~mA}$)	3.4	6.0	mV (max)
$\Delta V_{\text {REF }} / / \Delta \mathrm{I}$	Negative Internal Reference Load Regulation	Sinking ($-1 \mathrm{~mA} \leq 1 \leq 0 \mathrm{~mA}$) Sourcing ($0 \mathrm{~mA} \leq \mathrm{I} \leq 10 \mathrm{~mA}$)	3.2	6.0	

Input Reference Characteristics (ADC16071 Only)
The following specifications apply for $\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=\mathrm{V}_{\mathrm{M}}{ }^{+}=5 \mathrm{~V}$.

Symbol	Parameter	Conditions	Typical (Note 6)	Limits (Note 7)	Units
$V_{\text {REF }+}$	Positive Reference Voltage		1		V
$V_{\text {REF }-}$	Negative Reference Voltage		V_{A+}		V
$V_{\text {REF }+}-V_{\text {REF- }}$		Total Reference Voltage		$V_{A}+-1:$	V

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{D^{+}}=\mathrm{V}_{\mathrm{M}}{ }^{+}=5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\mathbf{A}}$ $=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {mIN }}$ to $\mathbf{T}_{\text {MAX }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 6)	Limits (Note 7)	Units (Limit)
V_{IH}	Logic High Input Voltage	$\mathrm{V}_{\mathrm{D}}{ }^{+}=5.25 \mathrm{~V}$		$\begin{gathered} \mathbf{V}_{\mathbf{D}}{ }^{+} \\ 2.3 \end{gathered}$	$\begin{aligned} & V(\max) \\ & V(\min) \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Logic Low Input Voltage	$\mathrm{V}_{\mathrm{D}}{ }^{+}=4.75 \mathrm{~V}$		$\begin{gathered} 0.8 \\ -0.3 \\ \hline \end{gathered}$	$\begin{aligned} & V(\max) \\ & V(\min) \end{aligned}$
$\mathrm{VOH}^{\text {O }}$	Logic High Output Voltage	$\begin{aligned} & \text { Logic High Output Current }=-400 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{D}}{ }^{+}=4.75 \mathrm{~V} \end{aligned}$		2.4	V (min)
V_{OL}	Logic Low Output Voltage	Logic Low Output Current $=2 \mathrm{~mA}$, $\mathrm{V}_{\mathrm{D}}{ }^{+}=5.25 \mathrm{~V}$		0.5	V (max)
$\operatorname{liN(1)}$	Logical "1" Input Current	.	1.0	5.0	$\mu \mathrm{A}$ (max)
$\mathrm{I} \mathrm{N}(0)$	Logical "0" Input Current		-1.0	-5.0	$\mu \mathrm{A}$ (max)
$\mathrm{I}_{\text {TSI }}$	SDO TRI-STATE® Leakage Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$ to 2.4 V	1.0	5.0	$\mu A(\max)$
$\mathrm{C}_{\text {IN }}$	Logic Input Capacitance	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\mathrm{D}}{ }^{+}$	5		pF

AC Electrical Characteristics for Clock In (CLK), Serial Clock Out (SCO), and Frame Sync In (FSI)

The following specifications apply for $\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=\mathrm{V}_{\mathrm{M}}{ }^{+}=5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}$ $=\mathbf{T}_{\boldsymbol{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 6)	Limits (Note 7)	Units (Limit)
fclk	CLK Frequency Range $\left(f_{\text {CLK }}=1 / t_{\text {CLK }}\right)$			$\begin{gathered} 25 \\ 1 \end{gathered}$	MHz (max) MHz (min)
${ }_{\text {t CLK }}$	CLK Period ($\mathrm{t}_{\mathrm{CLK}}=1 / \mathrm{f} \mathrm{CLK}$)			$\begin{gathered} 1000 \\ 40 \\ \hline \end{gathered}$	ns (max) ns (min)
$\mathrm{t}_{\text {CLKL }}$	CLK Low Pulse Width			16	ns (min)
$\mathrm{t}_{\text {CLKH }}$	CLK High Pulse Width			14	ns (min)
t_{R}	CLK Rise Time			$\begin{gathered} 10 \\ 3 \\ \hline \end{gathered}$	ns (max) ns (min)
${ }_{\text {t }}$	CLK Fall Time			$\begin{gathered} 10 \\ 3 \end{gathered}$	ns (max) ns (min)
$t_{\text {FSILOW }}$	Minimum Frame Sync Input Low Time before Frame Sync Input Asserted High		2		$t_{\text {CLK }}(\mathrm{min})$
$t_{\text {trsisu }}$	Frame Sync Input Setup Time			10	ns (min)
$\mathrm{t}_{\text {FSIH }}$	Frame Sync Input Hold Time			10	ns (min)
${ }_{\text {tSCOD }}$	Serial Clock Output Delay Time from Rising Edge of CLK		12	$\begin{gathered} 20 \\ 5 \end{gathered}$	ns (max) ns (min)
tsco	Serial Clock Output Period			4	$\mathrm{t}_{\text {CLK }}$

AC Electrical Characteristics for Frame Sync Out (FSO), Serial Clock Out (SCO), and Serial Data Out (SDO)
 The following specifications apply for $\mathrm{V}_{A}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=\mathrm{V}_{\mathrm{M}}{ }^{+}=5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\mathbf{A}}$

 $=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\boldsymbol{J}}=25^{\circ} \mathrm{C}$.| Symbol | Parameter | Conditions | Typical
 (Note 6) | Limits
 (Note 7) | Units
 (Limit) |
| :---: | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {SCOFSOH }}$ | Delay from Serial Clock Out to
 Frame Sync Output High | | 2 | $\mathbf{5}$ | ns (max) |
| $\mathrm{t}_{\text {SCOFSOL }}$ | Delay from Serial Clock Out to
 Frame Sync Output Low | | 2 | $\mathbf{5}$ | ns (max) |
| $\mathrm{t}_{\text {SDOV }}$ | Delay from Serial Clock Out to
 Serial Data Output Valid | | 3 | $\mathbf{8}$ | ns (max) |
| $\mathrm{t}_{\text {FSIFSOL }}$ | Delay from Frame Sync Input to
 Frame Sync Output Low | | $\mathbf{8}$ | $\mathrm{t}_{\mathrm{CLKK}}(\max)$ | |

AC Electrical Characteristics for Data Output Enable (DOE)

The following specifications apply for $\mathrm{V}_{\mathrm{A}}{ }^{+}=\mathrm{V}_{\mathrm{D}}{ }^{+}=\mathrm{V}_{\mathrm{M}}{ }^{+}=5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\mathbf{A}}$ $=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 6)	Limits (Note 7)	Units (Limit)
$\mathrm{t}_{\text {DOEE }}$	Data Output Enable Delay Time		20	$\mathbf{2 5}$	$\mathrm{~ns}(\mathrm{max})$
$\mathrm{t}_{\text {DOED }}$	Data Output Disable Delay Time		16	$\mathbf{2 0}$	$\mathrm{~ns}(\mathrm{max})$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: When the input voltage ($\mathrm{V}_{\mathbb{I N}}$) at any pin exceeds the power supply rails ($\mathrm{V}_{\mathbb{I}}<\mathrm{GND}$ or $\mathrm{V}_{\mathbb{I N}}>\left(\mathrm{V}_{\mathrm{A}}{ }^{+}, \mathrm{V}_{\mathrm{M}}{ }^{+}\right.$, or $\left.\mathrm{V}_{\mathrm{D}}+\right)$), the current at that pin should be limited to 25 mA . The 100 mA maximum package input current rating allows the voltage at any four pins, with an input current of 25 mA each, to simultaneously exceed the power supply voltages.
Note 4: The maximum power dissipation is a function of the maximum junction temperature $\left(T_{J(M A X)}\right)$, total thermal resistance $\left(\theta_{J A}\right)$, and ambient temperature $\left(T_{A}\right)$. The maximum allowable power dissipation at any ambient temperature is $P_{D(\max)}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. When board mounted, the ADC16071/ADC16471's typical thermal resistance is:

Order Number	$\theta_{\text {JA }}$
ADC16071CIN, ADC16471CIN	$47^{\circ} \mathrm{C} / \mathrm{W}$
ADC16071CIWM, ADC16471CIWM	$72^{\circ} \mathrm{C} / \mathrm{W}$

Note 5: Human body model, 100 pF discharge through a $1.5 \mathrm{k} \Omega$ resistor. The machine model is a 200 pF capacitor discharged directly into each pin.
Note 6: Typicals are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Limits are guaranteed to National's AOQL (Average Output Quality Level).
Note 8: The $\mathrm{V}_{\mathrm{IN}^{+}}$pin is shorted to the $\mathrm{V}_{\mathrm{IN}^{-}}$pin.
Note 9: The input impedance between $\mathrm{V}_{\mathbb{I}}+$ and V_{IN} - due to the effective resistance of the switch capacitor input varies as follows:

$$
Z_{I N}=\frac{10^{12}}{2.35^{*}\left(\frac{f(L K}{2}\right)}
$$

Typical Performance Characteristics

Digital Supply Current (ID) vs Output Data Rate (fs)

Frequency Response of Digital Filter

 FSI (MASTER) IIT

LOW FOR MASTER D15-DO
HIGH FOR SLAVE D15-DO

FIGURE 4. Master/Slave Mode Timing Diagrams

Pin Description

$\mathrm{V}_{\mathrm{REF}}{ }^{+}, \mathrm{V}_{\mathrm{REF}}{ }^{-}$These are the ADC16471's internal differential reference's bypass pins. Their nominal output voltage is $\pm 1.25 \mathrm{~V}$ centered around the voltage at the $\mathrm{V}_{\text {MID }}$ pin, typically $\mathrm{V}_{\mathrm{A}}+/ 2 . \mathrm{V}_{\text {REF }+,} \mathrm{V}_{\text {MID }}$, and $\mathrm{V}_{\text {REF - should }}$ be bypassed with a parallel combination of $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ capacitors. For the ADC16071, these are the reference voltage inputs. $\mathrm{V}_{\text {REF }}$ and $\mathrm{V}_{\text {MID }}$ should be bypassed with a parallel combination of $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ capacitors.
$V_{\text {MID }} \quad$ This pin is the internal differential reference's $V_{A}+/ 2$ output pin. $V_{\text {MID }}$ should be bypassed with a parallel combination of $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ capacitors.
$\mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}} \quad$ These are the ADC's differential input pins. Signals applied to these pins can be singleended or differential with respect to the $V_{\text {MID }}$ voltage.
$\overline{P D} \quad$ This is the input pin used to activate the power-down mode. When a logic LOW (0) is applied to this pin the supply current drops from 100 mA (max) to 1.3 mA (max).
AGND This is the connection to system analog ground. Internally, this ground is connected to the analog circuitry, including the fourthorder modulator.
DGND This is the connection to system digital ground. Internally, this ground is connected to all digital circuitry except the modulator's clock.
MGND This is the ground pin for the modulator's clock. It should be connected to analog ground through its own connection that is separate from that used by AGND.
$\mathrm{V}_{\mathrm{A}}+\quad$ This pin is the connection to the system analog voltage supply. Best performance is achieved when this pin is bypassed with a parallel combination of $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ capacitors.
$\mathrm{V}_{\mathrm{M}}{ }^{+} \quad$ This is the modulator's supply pin. $\mathrm{V}_{\mathrm{M}}{ }^{+}$should be connected to the system analog voltage supply with a circuit board trace or connection that is separate from that used to supply $\mathrm{V}_{\mathrm{A}}{ }^{+}$. Best performance is achieved when this pin is bypassed with a parallel combination of $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ capacitors.
$\mathrm{V}_{\mathrm{D}}{ }^{+} \quad$ This pin is the connection to the system digital voltage supply. Best performance is achieved when this pin is bypassed with a parallel combination of $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ capacitors.
SFMT This is the Serial Format pin. The logic level applied to the SFMT pin determines whether conversion data shifted out of the SDO pin is valid on the rising or falling edge of SCO. It also controls the format of the Frame Sync Out (FSO) signal. See the Serial Interface section for details.
TM0, TM1 Used to enabled test mode during production. Connect both pins to DGND.
FSI This is the Frame Sync Input pin. FSI is an input used to synchronize the ADC16071/ ADC16471's conversions to an external source. The state of FSI is sampled on the falling edge of CLK. See the Serial Interface section for details.
CLK This is the clock signal input pin. The signal applied to this pin sets the sample rate of the ADC16071/ADC16471's modulator to fCLK/2. The frequency range can be $1 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{CLK}} \leq$ 25 MHz .
SCO This is the Serial Clock Output pin. The ADC16071/ADC16471's serial data transmission is synchronous with the SCO signal. SCO has a frequency of fCLK/4. See the Serial Interface section for details.
SDO This is the Serial Data Output pin. The ADC16071/ADC16471's conversion data is shifted out from this pin synchronous to the SCO signal. See the Serial Interface section for details.

Pin Description (Continued)

FSO This is the Frame Sync Output pin. FSO is used to synchronize an external device to the ADC16071/ADC16471's 32 SCO cycle data transmission frame. The format of the signal on FSO depends on the logic level applied to the SFMT pin. See the Serial Interface section for details.
TSI This is the Time Slot Input pin. TSI can be used to allow two ADC16071/ADC16471's to share a single serial data line. The logic level applied to TSI controls the active state of the ADC16071/ ADC16471's DOE pin. See the Serial Interface and the Two Channel Multiplexed Operation sections for details.
This is the Data Output Enable pin. DOE is used to control SDO's TRI-STATE output buffer. The active state of DOE is controlled by the logic level applied to the TSI pin. See the Serial Interface and the Two Channel Multiplexed Operation sections for details.

Applications Information

TYPICAL PERFORMANCE RESULTS

Figure 6 shows a 16k point FFT plot of the baseband output spectrum during conversion of a 24 kHz input signal.

CLOCK GENERATION

The ADC16071/ADC16471 requires a sampling-clock signal that is free of ringing (over/undershoot of no more than $100 \mathrm{mV} \mathrm{p}_{\mathrm{p}-\mathrm{p}}$) and has a rise and fall time in the range of 3 ns 10 ns . We have tested and recommended crystal clock oscillators from Ecliptek (EC1100 series) and SaRonix (NCH060 and NCH080 series). Both of these families use HCMOS logic circuitry for very fast rise and fall times.

FIGURE 6. Typical Performance of the ADC16071/ADC16471 at $\mathbf{f}_{\mathrm{S}}=\mathbf{1 9 2} \mathbf{~ k H z}, \mathbf{f}_{\mathrm{IN}}=\mathbf{2 4} \mathbf{~ k H z}$

Applications Information (Continued)

Overshoot and ringing can be reduced by adding a series damping resistor between the crystal oscillator's output (pin 8) and the ADC16071/ADC16471's CLK (pin 12), as shown in Figure 7. The actual resistor value is dependent on the board layout and trace length that connects the oscillator or CLK source to the ADC. A typical starting value is 50Ω with a range of 27Ω to 150Ω.

TL/H/11454-23
FIGURE 7. Damping Resistor Reduces Clock Signal Overshoot

SERIAL INTERFACE

The ADC16071 and the ADC16471 have three serial interface output pins: Serial Data Output (SDO), Frame Sync Output (FSO), and Serial Clock Output (SCO). SCO has a frequency of fCLK/4. Each of the ADC16071/ADC16471's 16-bit conversions is transmitted within the first half of the data transmission frame. A data transmission frame is 32 SCO cycles in duration. Two's complement data shifts out on the SDO pin beginning with bit 15 (MSB) and ending with bit 0 (LSB), taking 16 SCO cycles. SDO then shifts out zeroes for the next 16 SCO cycles to maintain compatibility with two channel multiplexed operation.
The serial data that is shifted out of the SDO pin is synchronous with SCO. Depending on the logic level applied to the Serial Format pin (SFMT), the data on the SDO pin is valid on either the falling or rising edge of SCO. If a logic Low is applied to SFMT, then the data on SDO is valid on the falling edge of SCO. If a logic High is applied to SFMT, then the data on SDO is valid on the rising edge of SCO. See Figure 2.
The FSO signal is used to synchronize other devices to the ADC16071/ADC16471's data transmission frame. Depending on the logic level applied to SFMT, the signal on FSO is either a short pulse (approximately one SCO cycle in duration) ending just before the transmission of bit 15 on SDO, or a square wave with a period of 32 SCO cycles going low just before the transmission of bit 15 and going high just after the transmission of bit 0 . If a logic Low is applied to SFMT, FSO will be high for approximately one SCO cycle and fall low just before the transmission of bit 15 and stay low for the remainder of the transmission frame. If a logic High is applied to SFMT, FSO will be low during the transmission of bits 15-0 and high during the next 16 SCO cycles. See Figure 3.
The Frame Sync Input (FSI), is used to synchronize the ADC16071/ADC16471's conversions to an external source. The logic state of FSI is captured by the ADC16071/ ADC16471 on the falling edge of CLK. If an FSI low to high transition is sensed between adjacent CLK falling edges, the ADC16071/ADC16471 will interrupt its current data transmission frame and begin a new one. See Figure 4.

Due to the data latency of the ADC16071/ADC16471's digital filters, the first 31 conversions following a frame sync input signal will represent inaccurate data, unless the frame syncs are applied at constant 32 SCO cycle intervals. If no FSI signal is applied (FSI is kept High or Low), the ADC16071/ADC16471 will internally create a frame sync every 32 SCO cycles.
The Data Output Enable pin (DOE), is used to enable and disable the output of data on SDO. When DOE is deactivated, SDO stops driving the serial data line by entering a high impedance TRI-STATE. DOE's active state matches the logic level applied to the Time Slot Input pin (TSI). If a logic Low is applied to TSI, the ADC16071/ADC16471's SDO pin will shift out data when DOE is Low, and be in a high impedance TRI-STATE when DOE is High. If a logic High is applied to TSI, SDO will shift out data when DOE is High, and be in a high impedance TRI-STATE when DOE is Low.

TWO CHANNEL MULTIPLEXED OPERATION

Two ADC16071/ADC16471's can easily be configured to share a single serial data line and operate in a "stereo", or two channel multiplexed mode. They share the serial data bus by alternating transmission of conversion data on their respective SDO pins. One of the ADC16071/ADC16471's, the Master, shifts its conversion data out of SDO during the first 16 SCO cycles of the data transmission frame. The other ADC16071/ADC16471, the Slave, shifts its data out during the second 16 SCO cycles of the data transmission frame.
The Slave is selected by applying a logic High to its TSI pin and a logic High to its SFMT pin. The Master is chosen by applying a logic Low to its TSI pin and a logic High to its SFMT pin. As shown in Figure 8, the Master's FSO is used to control the DOE of both the Master and the Slave as well as to synchronize the two ADC16071/ADC16471's by driving the Slave's Frame Sync Input pin, FSI. As the Master finishes transmitting its 16 bits of conversion data, its FSO goes High. This triggers the Slave's FSI, causing the Slave to begin transmitting its 16 bits of conversion data.
The Master's DOE is active Low and the Slave's DOE is active High. Since the same signal, the Master's FSO, is connected to both of the converters' DOE pins, one converter will shift out data on its SDO pin while the other is in TRI-STATE, allowing the two ADC16071/ADC16471's to share the same serial data transmission line.

POWER SUPPLY AND GROUNDING

The ADC16071/ADC16471 has on-chip 50 pF bypass capacitors between the supply-pin bonding pads and their corresponding grounds. There are 24 of these capacitors, 6 for the analog section and 18 for the digital, resulting in a total value of 1200 pF . They help control ringing on the on-chip power supply busses, especially in the digital section. Further, they help enhance the baseband noise performance of the analog modulator.

Applications Information (Continued)

TL/H/11454-14
FIGURE 8. Two Channel Multiplexed Operation Connection Diagram

Best converter performance is achieved when these internal bypass capacitors are supplemented with additional external power-supply decoupling capacitors. This ensures the lowest ac-bypass impedance path for the ADC16071/ ADC16471's dynamic current requirements. Each of the ADC16071/ADC16471's four supply pins should be individually bypassed, using a parallel combination of $10 \mu \mathrm{~F}$ (tantalum) and $0.1 \mu \mathrm{~F}$ (monolithic ceramic), to its corresponding ground pin:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{A}}+(\operatorname{Pin} 21) \rightarrow \text { AGND (Pin 4) } \\
& \mathrm{V}_{\mathrm{M}}+(\operatorname{Pin} 20) \rightarrow \text { MGND (Pin 5) } \\
& \mathrm{V}_{\mathrm{D}}+(\operatorname{Pin} 19) \rightarrow \text { DGND (Pin 6) } \\
& \mathrm{V}_{\mathrm{D}}+(\operatorname{Pin} 18) \rightarrow \text { DGND (Pin 7) }
\end{aligned}
$$

Short lead lengths are mandatory. Therefore, surface mount capacitors are strongly recommended.

POWER SUPPLY VOLTAGES FOR BEST PERFORMANCE

While adequate performance will be achieved by operating the ADC16071/ADC16471 with +5 V connected to $\mathrm{V}_{\mathrm{A}}+$, $\mathrm{V}_{\mathrm{M}}+$ and $\mathrm{V}_{\mathrm{D}}+$, dynamic performance, as measured by $S /(N+D)$, can be further enhanced by slightly raising the analog supply voltage and lowering the digital supply voltage.

ANALOG INPUT

The ADC16071 and the ADC16471 generate a two's complement output determined by the following equation:

$$
\text { Output Code }=\frac{\left(V_{I N}+-V_{I N}-\right)(32768)}{\left(V_{\text {REF }}+-V_{R E F}\right)}
$$

Round off to the nearest integer value between - 32768 and 32767.
The signals applied to $\mathrm{V}_{1 N^{+}}$and $\mathrm{V}_{\mathbb{N}}{ }^{-}$must be between $\mathrm{V}_{\mathrm{A}}{ }^{+}$and analog ground. For accurate conversions, the absolute difference between $\mathrm{V}_{\mathrm{IN}}{ }^{+}$and $\mathrm{V}_{\mathrm{IN}}{ }^{-}$should be less than the difference between $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$. Best harmonic performance will result when a differential voltage is applied to $\mathrm{V}_{\mathrm{IN}^{+}}$and $\mathrm{V}_{\mathrm{IN}^{-}}$that has a common mode voltage at or below $\mathrm{V}_{\text {MID }}$.
Due to overloading in the ADC16071/ADC16471's $\Delta \Sigma$ modulator, performance degrades considerably as the input amplitude approaches full scale. With an input that peaks at -2 dB from full scale, $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ is about 2 dB worse than with a -6 dB input. With a -1 dB input, $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ can be 10 dB worse than with a -6 dB input.

Applications Information（Continued）

ANALOG SIGNAL CONDITIONING

The ADC16071／ADC16471＇s digital comb and FIR filter combine to create the band－limiting anti－aliasing filter，gen－ erating a steep cutoff at the upper range of the sampled baseband．Additional external filtering is needed to ensure that the best conversion performance is maintained．The external filtering uses a simple R－C lowpass filter．A sug－ gested circuit is shown in Figure 9 ．The values of $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{C}_{1}$ ， C_{2} ，and C_{3} are found using the following equation：

$$
f_{\mathrm{C}(-3 \mathrm{~dB})}=\frac{1}{6 \pi R C}
$$

where $R=R_{1}=R_{2}$ and $C=C_{1}=C_{2}=C_{3}$ ．
The effects of the external filter are minimized by choosing a minimum cutoff frequency equal to $\mathrm{f}_{\mathrm{CLK}} / 32$ ．As an exam－ ple，for $\mathrm{f}_{\mathrm{CLK}}$ equal to 6.144 MHz ，set $R_{1}=R_{2}=82.5 \Omega$ and $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=3300 \mathrm{pF}$ ．This sets the input network＇s cutoff frequency at 194 kHz ．For f CLK equal to 24.576 MHz ， set $R_{1}=R_{2}=20 \Omega$ and $C_{1}=C_{2}=C_{3}=3300 \mathrm{pF}$ ．This sets the input network＇s cutoff frequency at 803 kHz ．

RELATION BETWEEN CAPACITOR DIELECTRIC AND SIGNAL DISTORTION

For any capacitors connected to the ADC16071／ ADC16471＇s analog inputs，the dielectric plays an important role in determining the amount of distortion generated in the input signal．The capacitors used must have low dielectric absorption．This requirement is fulfilled using capacitors that
have film dielectrics．Of these，polypropylene and polysty－ rene are the best．These are followed by polycarbonate and mylar．If ceramic capacitors are chosen，use only capacitors with NPO dielectrics．

INTERNAL DIFFERENTIAL BANDGAP REFERENCE

A fully differential bandgap reference generates local feed－ back voltages， $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}-$ ，for the analog modula－ tor．The outputs of this reference are trimmed to be equal to $V_{\text {MID }}$ plus or minus 1.25 V ．This gives a differential reference voltage of 2.5 V which results in a $\pm 2.5 \mathrm{~V}$ differential input range．The ADC16071 does not have the internal differen－ tial bandgap reference，allowing the user the flexibility to determine the full scale range by using an external voltage reference．

EXTERNAL VOLTAGE REFERENCE FOR THE ADC16071

Figure 10 shows the suggested connection diagram for the ADC16071．The LM4041－ADJ is set to 2.0 V and is applied to the ADC16071＇s $V_{\text {REF }}+$ input．
The reference voltage must be free of noise．This is accom－ plished using the same capacitor combination used with the ADC16471＇s reference pins with the exception of $\mathrm{V}_{\text {REF }}-$ ， which is connected to analog ground．
Figures 11 and 12 show the suggested circuits for ac－cou－ pled applications．

＊Parallel combination of $10 \mu \mathrm{~F}$ tan－ talum and a $0.1 \mu \mathrm{~F}$ monolithic ce－ ramic capacitors．
FIGURE 9．Typical Connection Diagram for the ADC16471

FIGURE 10. Typical Connection Diagram for the ADC16071

Suggested values:

$R_{1}=R_{2}=20 \Omega, 5 \%$, metal film
$\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=3300 \mathrm{pF}, 5 \%$, polypropylene

FIGURE 11. Typical Connection Diagram for the ADC16471 with AC-Coupled Inputs

FIGURE 12. Typical Connection Dlagram for the ADC16071 with AC-Coupled Inputs

Applications Information (Continued)

DSP INTERFACES

The ADC16071/ADC16471 was designed to connect to popular DSPs without intervening "glue logic". Figures 13, 14, and 15 show suggested connection schematics for the DSP56001, TMS320C3x, and the ADSP-2101 families.

FIGURE 14. Interface Connections between the ADC16071/ADC16471 and the Texas Instruments TMS320C3x

FIGURE 15. Interface Connections between the ADC16071/ADC16471 and the Analog Devices ADSP-2101

LM131A/LM131, LM231A/LM231, LM331A/LM331 Precision Voltage-to-Frequency Converters

General Description

The LM131/LM231/LM331 family of voltage-to-frequency converters are ideally suited for use in simple low-cost circuits for analog-to-digital conversion, precision frequency-to-voltage conversion, long-term integration, linear frequency modulation or demodulation, and many other functions. The output when used as a voltage-to-frequency converter is a pulse train at a frequency precisely proportional to the applied input voltage. Thus, it provides all the inherent advantages of the voltage-to-frequency conversion techniques, and is easy to apply in all standard voltage-to-frequency converter applications. Further, the LM131A/ LM231A/LM331A attains a new high level of accuracy versus temperature which could only be attained with expensive voltage-to-frequency modules. Additionally the LM131 is ideally suited for use in digital systems at low power supply voltages and can provide low-cost analog-to-digital conversion in microprocessor-controlled systems. And, the frequency from a battery powered voltage-to-frequency converter can be easily channeled through a simple photoisolator to provide isolation against high common mode levels.
The LM131/LM231/LM331 utilizes a new temperaturecompensated band-gap reference circuit, to provide excellent accuracy over the full operating temperature range, at power supplies as low as 4.0 V . The precision timer circuit
has low bias currents without degrading the quick response necessary for 100 kHz voltage-to-frequency conversion. And the output is capable of driving 3 TTL loads, or a high voltage output up to 40 V , yet is short-circuit-proof against vcc.

Features

- Guaranteed linearity 0.01% max
- Improved performance in existing voltage-to-frequency conversion applications
- Split or single supply operation
- Operates on single 5 V supply
- Pulse output compatible with all logic forms
- Excellent temperature stability, $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max

Low power dissipation, 15 mW typical at 5 V

- Wide dynamic range, $100 \mathrm{~dB} \min$ at 10 kHz full scale frequency
- Wide range of full scale frequency, 1 Hz to 100 kHz
- Low cost

Typical Applications

[^7]FIGURE 1. Simple Stand-Alone Voltage-to-Frequency Converter with $\pm \mathbf{0 . 0 3 \%}$ Typical Linearity ($f=10 \mathrm{~Hz}$ to $\mathbf{1 1} \mathbf{~ k H z}$)

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage
Output Short Circuit to Ground
Output Short Circuit to $V_{C C}$ Input Voltage

Operating Ambient Temperature Range
Power Dissipation (PD_{D} at $25^{\circ} \mathrm{C}$)
and Thermal Resistance (θ_{jA})
(H Package) P_{D}
θ_{jA}
(N Package) P_{D}
θ_{jA}
(M Package) P_{D} $\theta_{J A}$
Lead Temperature (Soldering, 10 sec .)
Dual-In-Line Package (Plastic)
Metal Can Package (TO-5)
ESD Susceptibility (Note 4)
Metal Can Package (TO-5)
Other Packages

LM131A/LM131
40 V
Continuous
Continuous
-0.2 V to $+\mathrm{V}_{\mathrm{S}}$
$\mathrm{T}_{\text {MIN }} \quad \mathrm{T}_{\text {MAX }}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

670 mW
$150^{\circ} \mathrm{C} / \mathrm{W}$

	1.25 W	1.25 W
	$100^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$
	1.25 W	
	$85^{\circ} \mathrm{C} / \mathrm{W}$	
$260^{\circ} \mathrm{C}$		
$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
2000 V		
	500 V	500 V

LM331A/LM331

40 V

Continuous
Continuous
-0.2 V to $+\mathrm{V}_{\mathrm{S}}$
$\mathrm{T}_{\text {MIN }} \quad \mathrm{T}_{\text {MAX }}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

500 V

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Note 2)

Parameter	Conditions	Min	Typ	Max	Units
VFC Non-Linearity (Note 3)	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 20 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}} \end{aligned}$		$\begin{aligned} & \pm 0.003 \\ & \pm 0.006 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.02 \end{aligned}$	\% Full- Scale \% Full- Scale
VFC Non-Linearity In Circuit of Figure 1	$V_{S}=15 \mathrm{~V}, \mathrm{f}=10 \mathrm{~Hz}$ to 11 kHz		± 0.024	± 0.14	\%FullScale
Conversion Accuracy Scale Factor (Gain) LM131, LM131A, LM231, LM231A LM331, LM331A	$\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=14 \mathrm{k} \Omega$	$\begin{aligned} & 0.95 \\ & 0.90 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.05 \\ & 1.10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{kHz} / \mathrm{V} \\ & \mathrm{kHz} / \mathrm{V} \end{aligned}$
Temperature Stability of Gain LM131/LM231/LM331 LM131A/LM231A/LM331A	$\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 20 \mathrm{~V}$		$\begin{aligned} & \pm 30 \\ & \pm 20 \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
Change of Gain with V_{S}	$\begin{aligned} & 4.5 V \leq V_{S} \leq 10 V \\ & 10 V \leq V_{S} \leq 40 V \end{aligned}$		$\begin{gathered} 0.01 \\ 0.006 \\ \hline \end{gathered}$	$\begin{gathered} 0.1 \\ 0.06 \end{gathered}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
Rated Full-Scale Frequency	$\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}$	10.0			kHz
Gain Stability vs Time (1000 Hrs)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$		± 0.02		\% FullScale
Overrange (Beyond Full-Scale) Frequency	$\mathrm{V}_{\mathrm{IN}}=-11 \mathrm{~V}$	10			\%
INPUT COMPARATOR					
Offset Voltage LM131/LM231/LM331 LM131A/LM231A/LM331A	$\begin{aligned} & T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \\ & T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{aligned}$		$\begin{aligned} & \pm 3 \\ & \pm 4 \\ & \pm 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 14 \\ & \pm 10 \end{aligned}$	mV mV mV
Bias Current			-80	-300	nA
Offset Current			± 8	± 100	nA
Common-Mode Range	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	-0.2		$\mathrm{V}_{C C}-2.0$	V

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Note 2) (Continued)

Parameter	Conditions	Min	Typ	Max	Units
TIMER					
Timer Threshold Voltage, Pin 5		0.63	0.667	0.70	$\times \mathrm{V}_{\text {S }}$
Input Bias Current, Pin 5 All Devices LM131/LM231/LM331 LM131A/LM231A/LM331A	$\begin{aligned} & V_{S}=15 \mathrm{~V} \\ & 0 V \leq V_{\text {PIN } 5} \leq 9.9 \mathrm{~V} \\ & V_{\text {PIN } 5}=10 \mathrm{~V} \\ & V_{\text {PIN } 5}=10 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 10 \\ & 200 \\ & 200 \end{aligned}$	$\begin{gathered} \pm 100 \\ 1000 \\ 500 \end{gathered}$	nA nA nA
$\mathrm{V}_{\text {SAT PIN } 5}$ (Reset)	$1=5 \mathrm{~mA}$		0.22	0.5	V
CURRENT SOURCE (Pin 1)					
Output Current LM131, LM131A, LM231, LM231A LM331, LM331A	$\mathrm{R}_{\mathrm{S}}=14 \mathrm{k} \Omega, \mathrm{V}_{\text {PIN } 1}=0$	$\begin{aligned} & 126 \\ & 116 \\ & \hline \end{aligned}$	$\begin{array}{r} 135 \\ 136 \\ \hline \end{array}$	$\begin{aligned} & 144 \\ & 156 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Change with Voltage	$0 \mathrm{~V} \leq \mathrm{V}_{\text {PIN } 1} \leq 10 \mathrm{~V}$		0.2	1.0	$\mu \mathrm{A}$
Current Source OFF Leakage LM131, LM131A LM231, LM231A, LM331, LM331A All Devices	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$		$\begin{gathered} 0.01 \\ 0.02 \\ 2.0 \end{gathered}$	$\begin{array}{r} 1.0 \\ 10.0 \\ 50.0 \\ \hline \end{array}$	nA nA nA
Operating Range of Current (Typical)			(10 to 500)		$\mu \mathrm{A}$
REFERENCE VOLTAGE (Pin 2)					
LM131, LM131A, LM231, LM231A LM331, LM331A		$\begin{aligned} & 1.76 \\ & 1.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.89 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 2.02 \\ & 2.08 \end{aligned}$	$V_{D C}$ $V_{D C}$
Stability vs Temperature			± 60		ppm $/{ }^{\circ} \mathrm{C}$
Stability vs Time, 1000 Hours			± 0.1		\%
LOGIC OUTPUT (Pin 3)					
$V_{S A T}$ OFF Leakage	$\begin{aligned} & \mathrm{I}=5 \mathrm{~mA} \\ & \mathrm{I}=3.2 \mathrm{~mA} \text { (2 TTL Loads), } \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\mathrm{MAX}} \end{aligned}$		$\begin{gathered} 0.15 \\ 0.10 \\ \pm 0.05 \\ \hline \end{gathered}$	$\begin{gathered} 0.50 \\ 0.40 \\ 1.0 \\ \hline \end{gathered}$	$\begin{gathered} V \\ V \\ \mu \mathrm{~A} \end{gathered}$
SUPPLY CURRENT					
LM131, LM131A, LM231, LM231A LM331, LM331A	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=40 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=40 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \\ & 6.0 \\ & 8.0 \end{aligned}$	mA mA mA mA

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All specifications apply in the circuit of Figure 3, with $4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 40 \mathrm{~V}$, unless otherwise noted.
Note 3: Nonlinearity is defined as the deviation of fout from $V_{\mathbb{N}} \times\left(10 \mathrm{kHz} /-10 \mathrm{~V}_{\mathrm{DC}}\right)$ when the circuit has been trimmed for zero error at 10 Hz and at 10 kHz , over the frequency range 1 Hz to 11 kHz . For the timing capacitor, C_{T}, use NPO ceramic, Teflon ${ }^{\oplus}$, or polystyrene.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Functional Block Diagram

Pin numbers apply to 8 －pin packages only．See connection diagram for LM231WM pin numbers．

Typical Performance Characteristics

(All electrical characteristics apply for the circuit of Figure 3, unless otherwise noted.)
Nonlinearity Error, LM131

Family, as Precision V-to-F
Converter (Figure 3)

Frequency vs Temperature, LM131A

100 kHz Nonlinearity Error,
LM131 Family (Figure 4)

Nonlinearity Error, LM131 Family

$V_{\text {REF }}$ vs Temperature, LM131A

Nonlinearity Error, LM131
(Figure 1)

Output Saturation Voltage vs
Iout (Pin 3)

Nonlinearity vs Power Supply Voltage

POWER SUPPLY VOLTAGE, VS
Output Frequency vs
VSUPPLY

Input Current (Pins 6, 7) vs Temperature

Nonlinearity Error, Precision F-to-V Converter (Figure 6)

Typical Applications (Continued)

PRINCIPLES OF OPERATION OF A SIMPLIFIED VOLTAGE-TO-FREQUENCY CONVERTER

The LM131 is a monolithic circuit designed for accuracy and versatile operation when applied as a voltage-to-frequency (V-to-F) converter or as a frequency-to-voltage (F -to-V) converter. A simplified block diagram of the LM131 is shown in Figure 2 and consists of a switched current source, input comparator, and 1 -shot timer.
The operation of these blocks is best understood by going through the operating cycle of the basic V-to-F converter, Figure 2, which consists of the simplified block diagram of the LM131 and the various resistors and capacitors connected to it.
The voltage comparator compares a positive input voltage, V 1 , at pin 7 to the voltage, V_{x}, at pin 6 . If V 1 is greater, the comparator will trigger the 1 -shot timer. The output of the timer will turn ON both the frequency output transistor and the switched current source for a period $t=1.1 R_{t} C_{t}$. During this period, the current i will flow out of the switched current source and provide a fixed amount of charge, $Q=i \times t$, into the capacitor, C_{L}. This will normally charge V_{x} up to a higher level than V1. At the end of the timing period, the current i will turn OFF, and the timer will reset itself.
Now there is no current flowing from pin 1, and the capacitor C_{L} will be gradually discharged by R_{L} until V_{X} falls to the level of $V 1$. Then the comparator will trigger the timer and start another cycle.
The current flowing into C_{L} is exactly $I_{A V E}=i \times\left(1.1 \times R_{t} C_{t}\right)$ $\times f$, and the current flowing out of C_{L} is exactly $V_{x} / R_{L} \cong$ $V_{\mathbb{I}} / R_{L}$. If $V_{\mathbb{I N}}$ is doubled, the frequency will double to maintain this balance. Even a simple V-to-F converter can provide a frequency precisely proportional to its input voltage over a wide range of frequencies.

TL/H/5680-4
FIGURE 2. Simplified Block Dlagram of Stand-Alone Voltage-to-Frequency Converter Showing LM131 and External Components

DETAIL OF OPERATION, FUNCTIONAL BLOCK DIAGRAM (FIGURE 1a)

The block diagram shows a band gap reference which provides a stable $1.9 \mathrm{~V}_{\mathrm{DC}}$ output. This $1.9 \mathrm{~V}_{\mathrm{DC}}$ is well regulated over a V_{S} range of 3.9 V to 40 V . It also has a flat, low temperature coefficient, and typically changes less than $1 / 2 \%$ over a $100^{\circ} \mathrm{C}$ temperature change.
The current pump circuit forces the voltage at pin 2 to be at 1.9 V , and causes a current $i=1.90 \mathrm{~V} / \mathrm{R}_{\mathrm{S}}$ to flow. For $R_{S}=14 \mathrm{k}, \mathrm{i}=135 \mu \mathrm{~A}$. The precision current reflector provides a current equal to i to the current switch. The current switch switches the current to pin 1 or to ground depending on the state of the RS flip-flop.
The timing function consists of an R_{S} flip-flop, and a timer comparator connected to the external $R_{t} C_{t}$ network. When the input comparator detects a voltage at pin 7 higher than pin 6, it sets the R R_{S} flip-flop which turns ON the current switch and the output driver transistor. When the voltage at pin 5 rises to $2 / 3 \mathrm{~V}_{\mathrm{CC}}$, the timer comparator causes the R_{S} flip-flop to reset. The reset transistor is then turned ON and the current switch is turned OFF.
However, if the input comparator still detects pin 7 higher than pin 6 when pin 5 crosses $2 / 3 \mathrm{~V}_{\mathrm{CC}}$, the flip-flop will not be reset, and the current at pin 1 will continue to flow, in its attempt to make the voltage at pin 6 higher than pin 7 . This condition will usually apply under start-up conditions or in the case of an overload voltage at signal input. It should be noted that during this sort of overload, the output frequency will be 0 ; as soon as the signal is restored to the working range, the output frequency will be resumed.
The output driver transistor acts to saturate pin 3 with an ON resistance of about 50 . In case of overvoltage, the output current is actively limited to less than 50 mA .
The voltage at pin 2 is regulated at $1.90 \mathrm{~V}_{\mathrm{DC}}$ for all values of i between $10 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$. It can be used as a voltage reference for other components, but care must be taken to ensure that current is not taken from it which could reduce the accuracy of the converter.

PRINCIPLES OF OPERATION OF BASIC VOLTAGE-TO-FREQUENCY CONVERTER (FIGURE I)

The simple stand-alone V-to-F converter shown in Figure 1 includes all the basic circuitry of Figure 2 plus a few components for improved performance.
A resistor, $\mathrm{R}_{\mathrm{IN}}=100 \mathrm{k} \Omega \pm 10 \%$, has been added in the path to pin 7, so that the bias current at pin 7 (-80 nA typical) will cancel the effect of the bias current at pin 6 and help provide minimum frequency offset.
The resistance R_{S} at pin 2 is made up of a $12 \mathrm{k} \Omega$ fixed resistor plus a $5 \mathrm{k} \Omega$ (cermet, preferably) gain adjust rheostat. The function of this adjustment is to trim out the gain tolerance of the LM131, and the tolerance of R_{t}, R_{L} and C_{t}.

Typical Applications (Continued)

For best results, all the components should be stable low-temperature-coefficient components, such as metal-film resistors. The capacitor should have low dielectric absorption; depending on the temperature characteristics desired, NPO ceramic, polystyrene, Teflon or polypropylene are best suited.
A capacitor $\mathrm{C}_{\mathbb{N}}$ is added from pin 7 to ground to act as a filter for V_{IN}. A value of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ will be adequate in most cases; however, in cases where better filtering is required, a $1 \mu \mathrm{~F}$ capacitor can be used. When the RC time constants are matched at pin 6 and pin 7, a voltage step at $V_{I N}$ will cause a step change in fout. If C_{IN} is much less than C_{L}, a step at $V_{I N}$ may cause fout to stop momentarily. A 47Ω resistor, in series with the $1 \mu \mathrm{~F} \mathrm{C}_{\mathrm{L}}$, is added to give hysteresis effect which helps the input comparator provide the excellent linearity (0.03% typical).

DETAIL OF OPERATION OF PRECISION V-TO-F CONVERTER (FIGURE 3)

In this circuit, integration is performed by using a conventional operational amplifier and feedback capacitor, C_{F}. When the integrator's output crosses the nominal threshold level at pin 6 of the LM131, the timing cycle is initiated.

The average current fed into the op amp's summing point (pin 2) is $\mathrm{i} \times\left(1.1 R_{t} C_{t}\right) \times f$ which is perfectly balanced with $-\mathrm{V}_{\mathbb{I}} / R_{\operatorname{IN}}$. In this circuit, the voltage offset of the LM131 input comparator does not affect the offset or accuracy of the V-to-F converter as it does in the stand-alone V-to-F converter; nor does the LM131 bias current or offset current. Instead, the offset voltage and offset current of the operational amplifier are the only limits on how small the signal can be accurately converted. Since op amps with voltage offset well below 1 mV and offset currents well below 2 nA are available at low cost, this circuit is recommended for best accuracy for small signals. This circuit also responds immediately to any change of input signal (which a stand-alone circuit does not) so that the output frequency will be an accurate representation of V_{IN}, as quickly as 2 output pulses' spacing can be measured.
In the precision mode, excellent linearity is obtained because the current source (pin 1) is always at ground potential and that voltage does not vary with $\mathrm{V}_{\mathbb{I N}}$ or fout. (In the stand-alone V-to-F converter, a major cause of non-linearity is the output impedance at pin 1 which causes i to change as a function of V_{IN}).
The circuit of Figure 4 operates in the same way as Figure 3, but with the necessary changes for high speed operation.

TL/H/5680-5
*Use stable components with low temperature coefficients. See Typical Applications section.
**This resistor can be $5 \mathrm{k} \Omega$ or $10 \mathrm{k} \Omega$ for $\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$ to 22 V , but must be $10 \mathrm{k} \Omega$ for $\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to 8 V .
***Use low offset voltage and low offset current op amps for A1: recommended types LM108, LM308A, LF411A
FIGURE 3. Standard Test Circuit and Applications Circult, Precision Voltage-to-Frequency Converter

Typical Applications (Continued)

DETAILS OF OPERATION, FREQUENCY-TOVOLTAGE CONVERTERS (FIGURES 5 AND 6)

In these applications, a pulse input at f_{IN} is differentiated by a C-R network and the negative-going edge at pin 6 causes the input comparator to trigger the timer circuit. Just as with a V-to-F converter, the average current flowing out of pin 1 is $I_{\text {aVerage }}=\mathrm{i} \times\left(1.1 \mathrm{R}_{\mathrm{t}} \mathrm{C}_{\mathrm{t}}\right) \times \mathrm{f}$.
In the simple circuit of FIGURE 5, this current is filtered in the network $R_{L}=100 \mathrm{k} \Omega$ and $1 \mu \mathrm{~F}$. The ripple will be less than 10 mV peak, but the response will be slow, with a
0.1 second time constant, and settling of 0.7 second to 0.1% accuracy.
In the precision circuit, an operational amplifier provides a buffered output and also acts as a 2-pole filter. The ripple will be less than 5 mV peak for all frequencies above 1 kHz , and the response time will be much quicker than in Figure 5. However, for input frequencies below 200 Hz , this circuit will have worse ripple than Figure 5. The engineering of the filter time-constants to get adequate response and small enough ripple simply requires a study of the compromises to be made. Inherently, V-to-F converter response can be fast, but F-to-V response can not.

TL/H/5680-6
FIGURE 4. Precision Voltage-to-Frequency Converter, 100 kHz Full-Scale, $\pm \mathbf{0 . 0 3 \%}$ Non-Linearity

$V_{\text {OUT }}=f_{I N} \times 2.09 \mathrm{~V} \times \frac{R_{L}}{R_{S}} \times\left(R_{t} C_{t}\right)$
*Use stable components with low temperature coefficients.
FIGURE 5. Simple Frequency-to-Voltage Converter, 10 kHz Full-Scale, $\pm \mathbf{0 . 0 6 \%}$ Non-Linearity

SELECT $R x=\frac{\left(\mathrm{V}_{\mathrm{S}}-2 \mathrm{~V}\right)}{0.2 \mathrm{~mA}}$
*Use stable components with low temperature coefficients.
FIGURE 6. Precision Frequency-to-Voltage Converter, 10 kHz Full-Scale with 2-Pole Filter, $\pm \mathbf{0 . 0 1 \%}$ Non-Linearity Maximum

Typical Applications (Continued)

Light Intensity to Frequency Converter

*L14F-1, L14G-1 or L14H-1, photo transistor (General Electric Co.) or similar

Temperature to Frequency Converter

TL/H/5680-9

L/H/5680-10

Long-Term Digital Integrator Using VFC

Basic Analog-to-Digital Converter Using Voltage-to-Frequency Converter

Remote Voltage-to-Frequency Converter with 2-Wire Transmitter and Receiver

Voltage-to-Frequency Converter with Square-Wave Output Using $\div 2$ Flip-Flop

TL/H/5680-15

Typical Applications (Continued)

Voltage-to-Frequency Converter with Isolators

TL/H/5680-17

Voltage-to-Frequency Converter with Isolators

Connection Diagrams

Top View
Order Number LM231WM
See NS Package Number M14B
20L-Z

Schematic Diagram

N

Section 3

Digital-to-Analog Converters

Section 3 Contents
Digital-to-Analog Converters Definition of Terms 3-3
Digital-to-Analog Converters Selection Guide 3-4
DAC0800/DAC0801/DAC0802 8-Bit D/A Converters 3-6
DAC0808/DAC0807/DAC0806 8-Bit D/A Converters 3-15
DAC0830/DAC0831/DAC0832 8-Bit μ P Compatible Double-Buffered D/A Converters 3-23
DAC0854 Quad 8-Bit Voltage-Output Serial D/A Converter with Readback 3-41
DAC0890 Dual 8-Bit μ P-Compatible D/A Converter 3-53
DAC1006/DAC1007/DAC1008 μ P Compatible, Double-Buffered D/A Converters 3-63
DAC1020/DAC1021/DAC1022 10-Bit Binary Multiplying D/A Converters 3-83
DAC1220/DAC1222 12-Bit Binary Multiplying D/A Converters 3-83
DAC1054 Quad 10-Bit Voltage-Output Serial D/A Converter with Readback 3-93
DAC1208/DAC1209/DAC1210/DAC1230/DAC1231/DAC1232 12-Bit μ P Compatible Double-Buffered D/A Converters 3-105
DAC1218/DAC1219 12-Bit Binary Multiplying D/A Converters 3-121

Definition of Terms D/A Converters

Differential Nonlinearity: Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly one LSB apart. Differential non-linearity is a measure of the worst case deviation from the ideal 1 LSB step. For example, a DAC with a 1.5 LSB output change for a 1 LSB digital code change exhibits $1 / 2$ LSB differential non-linearity. Differential non-linearity may be expressed in fractional bits or as a percentage of full scale. A differential non-linearity greater than 1 LSB will lead to a non-monotonic transfer function in a DAC.
Gain Error (Full Scale Error): The difference between the output voltage (or current) with full scale input code and the ideal voltage (or current) that should exist with a full scale input code.
Gain Temperature Coefficient (Full Scale Temperature Coefficient): Change in gain error divided by change in temperature. Usually expressed in parts per million per degree Celsius (ppm/ ${ }^{\circ} \mathrm{C}$).
Integral Nonlinearity (Linearity Error): Worst case deviation from the line between the endpoints (zero and full scale). Can be expressed as a percentage of full scale or in fractions of an LSB.
LSB (Least-Significant Bit): In a binary coded system this is the bit that carries the smallest value or weight. Its value is the full scale voltage (or current) divided by 2^{n}, where n is the resolution of the converter.
Monotonicity: A monotonic function has a slope whose sign does not change. A monotonic DAC has an output that changes in the same direction (or remains constant) for each increase in the input code. The converse is true for decreasing codes.

MSB (Most Significant Bit): In a binary coded system this is the bit that has the largest value or weight. Its value is one half of full scale.
Multiplying DAC: In a sense, every DAC is a multiplying DAC since the output voltage (or current) is equal to the reference voltage times a constant determined by the digital input code divided by 2^{n} (n is the number of bits of resolution). In a two quadrant multiplying DAC the reference voltage or the digital input code can change the output voltage polarity. If both the reference voltage and the digital code change the output voltage polarity, four quadrant multiplication exists.
Offset Error (Zero Error): The output voltage that exists when the input digital code is set to give an ideal output of zero volts. All the digital codes in the transfer curve are offset by the same value. Offset error is usually expressed in LSBs.
Power Supply Rejection (Power Supply Sensitivity): The sensitivity of a converter to changes in the dc power supply voltages.
Resolution: The smallest analog increment corresponding to a 1 LSB converter code change. For converters, resolution is normally expressed in bits, where the number of analog levels is equal to 2^{n}.
Settling Time: The time from a change in input code until a DAC's output signal remains within $\pm 1 / 2$ LSB (or some other specified tolerance) of the final value.

National Semiconductor D/A Converter Selection Guide									
Part No.	Resolution (Bits)	Linearity @ $25^{\circ} \mathrm{C}$ \% (Max)	$\begin{gathered} \hline \text { Settling } \\ \text { Time } \\ (+1 / 2 \text { LSB }) \end{gathered}$	Supplies (V)	Temperature Range*			Package	Comments
					M	1	c		
ADC0852	8	0.19		5		-	-	8 -Pin DIP	DAC, Comparator, Serial Input
ADC0854	8	0.19		5		-	-	14-Pin DIP	DAC, Comparator, Serial Input
DAC0800	8	0.19	100 ns	± 5 to ± 15			-	$\begin{aligned} & 16 \text {-Pin DIP } \\ & 16 \text {-Pin S.O. } \end{aligned}$	High-Speed Multiplying
DAC0801	8	0.39	100 ns	± 5 to ± 15			-	$\begin{aligned} & \text { 16-Pin DIP } \\ & \text { 16-Pin S.O. } \end{aligned}$	High-Speed Multiplying
DAC0802	8	0.10	100 ns	± 5 to ± 15			-	$\begin{aligned} & \text { 16-Pin DIP } \\ & \text { 16-Pin S.O. } \end{aligned}$	High-Speed Multiplying
DAC0806	8	0.78	150 ns	± 5 to ± 15	,		-	$\begin{aligned} & \hline \text { 16-Pin DIP } \\ & \text { 16-Pin S.O. } \end{aligned}$	Multiplying
DAC0807	8	0.39	150 ns	± 5 to ± 15			-	$\begin{aligned} & \text { 16-Pin DIP } \\ & \text { 16-Pin S.O. } \end{aligned}$	Multiplying
DAC0808	8	0.19	150 ns	± 5 to ± 15			-	$\begin{aligned} & \text { 16-Pin DIP } \\ & \text { 16-Pin S.O. } \end{aligned}$	Multiplying
DAC0830	8	0.05	$1 \mu \mathrm{~s}$	5 to 15		-	-	$\begin{aligned} & \text { 20-Pin DIP } \\ & 20 \text {-Pin S.O. } \\ & 20-\mathrm{Pin} \text { PCC } \\ & \hline \end{aligned}$	μ P Compatible 4-Quadrant Multiplying
DAC0831	8	0.10	$1 \mu \mathrm{~s}$	5 to 15			\bullet	20-Pin DIP	μ P Compatible 4-Quadrant Multiplying
DAC0832	8	0.20	$1 \mu \mathrm{~s}$	5 to 15		-	-	$\begin{aligned} & \text { 20-Pin DIP } \\ & \text { 20-Pin S.O. } \\ & \text { 20-Pin PCC } \end{aligned}$	μ P Compatible 4-Quadrant Multiplying
DAC0854	8	0.19	$2.7 \mu \mathrm{~s}$	5	-	-		$\begin{aligned} & \text { 20-Pin DIP } \\ & \text { 20-Pin S.O. } \end{aligned}$	Quad Serial DAC with Readback
DAC0890	8	0.19	$2.7 \mu \mathrm{~s}$	5 to 15		-		20-Pin DIP	Dual Voltage Output DAC
- DAC1001	10	0.1	500 ns	5 to 15			-	24-Pin DIP	μ P Compatible Double Buffered
DAC1002	10	0.2	500 ns	5 to 15			-	24-Pin DIP	$\mu \mathrm{P}$ Compatible Double Buffered
DAC1006	10	0.05	500 ns	5 to 15			-	20-Pin DIP	μ P Compatible Double Buffered
DAC1007	10	0.1	500 ns	5 to 15			-	20-Pin DIP	μ P Compatible Double Buffered
DAC1008	10	0.2	500 ns	5 to 15		-	-	20-Pin DIP	$\mu \mathrm{P}$ Compatible Double Buffered

D/A Converter Selection Guide (Continued)

Part No.	Resolution (Bits)	Linearity @ $\mathbf{2 5}^{\circ} \mathrm{C}$ \% (Max)	$\begin{aligned} & \text { Settling } \\ & \text { Time } \\ & (+1 / 2 \text { LSB }) \end{aligned}$	Supplies (V)	Temperature Range*			Package	Comments
					M	1	C		
DAC1020	10	0.05	500 ns	5 to 15		\bullet	\bullet	16-Pin DIP	4-Quadrant Multiplying
DAC1021	10	0.1	500 ns	5 to 15		\bullet	\bullet	16-Pin DIP	4-Quadrant Multiplying
DAC1022	10	0.2	500 ns	5 to 15		\bullet	\bullet	16-Pin DIP	4-Quadrant Multiplying
DAC1054	10	0.02	$3.7 \mu \mathrm{~s}$	5	\bullet	-		$\begin{aligned} & \text { 24-Pin DIP } \\ & \text { 24-Pin SO } \end{aligned}$	Quad Serial DAC with Readback
DAC1208	12	0.018	$1 \mu \mathrm{~s}$	5 to 15		\bullet	\bullet	24-Pin DIP	μ P Compatible 4-Quadrant Multiplying
DAC1209	12	0.024	$1 \mu \mathrm{~s}$	5 to 15		-	-	24-Pin DIP	μ P Compatible 4-Quadrant Multiplying
DAC1210	12	0.05	$1 \mu \mathrm{~s}$	5 to 15		\bullet	-	24-Pin DIP	μ P Compatible 4-Quadrant Multiplying
DAC1218	12	0.012	$1 \mu \mathrm{~s}$	5 to 15		-	\bullet	18-Pin DIP	4-Quadrant Multiplying
DAC1219	12	0.024	$1 \mu \mathrm{~s}$	5 to 15		-	-	18-Pin DIP	4-Quadrant Multiplying
DAC1220	12	0.05	500 ns	5 to 15		-	\bullet	18-Pin DIP	4-Quadrant Multiplying
DAC1222	12	0.2	500 ns	5 to 15		-	-	18-Pin DIP	4-Quadrant Multiplying
DAC1230	12	0.018	$1 \mu \mathrm{~s}$	5 to 15		\bullet	\bullet	20-Pin DIP	$\mu \mathrm{P}$ Compatible 4-Quadrant Multiplying
DAC1231	12	0.024	$1 \mu \mathrm{~s}$	5 to 15		-	\bullet	20-Pin DIP	μ P Compatible 4-Quadrant Multiplying
DAC1232	12	0.05	$1 \mu \mathrm{~s}$	5 to 15		\bullet	-	20-Pin DIP	μ P Compatible 4-Quadrant Multiplying

DAC0800/DAC0801/DAC0802 8-Bit Digital-to-Analog Converters

General Description

The DAC0800 series are monolithic 8 -bit high-speed cur-rent-output digital-to-analog converters (DAC) featuring typical settling times of 100 ns . When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 series also features high compliance complementary current outputs to allow differential output voltages of 20 Vp -p with simple resistor loads as shown in Figure 1. The reference-to-full-scale current matching of better than ± 1 LSB eliminates the need for full-scale trims in most applications while the nonlinearities of better than $\pm 0.1 \%$ over temperature minimizes system error accumulations.
The noise immune inputs of the DAC0800 series will accept TTL levels with the logic threshold pin, V_{LC}, grounded. Changing the V_{LC} potential will allow direct interface to other logic families. The performance and characteristics of the device are essentially unchanged over the full $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply range; power dissipation is only 33 mW with $\pm 5 \mathrm{~V}$ supplies and is independent of the logic input states.

The DAC0800, DAC0802, DAC0800C, DAC0801C and DAC0802C are a direct replacement for the DAC-08, DAC08A, DAC-08C, DAC-08E and DAC-08H, respectively.

Features

t settling output current	100 ns
Full scale error	± 1 LSB
Nonlinearity over temperature	$\pm 0.1 \%$
Full scale current drift	$\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- High output compliance	-10 V to +18 V
■ Complementary current outputs 引	
- Interface directly with TTL, CMOS, PMOS and others	
- 2 quadrant wide range multiplying capability	
Wide power supply range	$\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
Low power consumption	33 mW at $\pm 5 \mathrm{~V}$
Low cost	

Typical Applications

TL/H/5686-1
FIGURE 1. ± 20 VP-p Output Digital-to-Analog Converter (Note 4)

Ordering Information

Non-Linearity	Temperature Range	Order Numbers				
		J Package (J16A)*		N Package (N16A)*	SO Package (M16A)	
$\pm 0.1 \% \mathrm{FS}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	DAC0802LCJ	DAC-08HQ	DAC0802LCN	DAC-08HP	DAC0802LCM
$\pm 0.19 \% \mathrm{FS}$	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	DAC0800LJ	DAC-08Q			
$\pm 0.19 \% \mathrm{FS}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	DAC0800LCJ	DAC-08EQ	DAC0800LCN	DAC-08EP	DAC0800LCM
$\pm 0.39 \% \mathrm{FS}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			DAC0801LCN	DAC-08CP	DAC0801LCM

*Devices may be ordered by using either order number.

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified dev please contact the National Sem	ces are required, conductor Sales
Office/Distributors for availability and specifications.	
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	$\pm 18 \mathrm{~V}$ or 36 V
Power Dissipation (Note 2)	500 mW
Reference Input Differential Voltage (V14 to V15)	V- to V+
Reference Input Common-Mode Range (V14, V15)	V - to V^{+}
Reference Input Current	5 mA
Logic Inputs	V - plus 36 V
Analog Current Outputs ($\mathrm{V}_{\mathrm{S}^{-}}=-15 \mathrm{~V}$)	4.25 mA
ESD Susceptibility (Note 3)	TBD V
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temp. (Soldering, 10 seconds)

Dual-In-Line Package (plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)	$300^{\circ} \mathrm{C}$
Surface Mount Package	
\quad Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

Operating Conditions (Note 1)

	Min	Max	Units
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
DAC0800L	-55	+125	${ }^{\circ} \mathrm{C}$
DAC0800LC	0	+70	${ }^{\circ} \mathrm{C}$
DAC0801LC	0	+70	${ }^{\circ} \mathrm{C}$
DAC0802LC	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Continued)

The following specifications apply for $V_{S}= \pm 15 \mathrm{~V}$, $l_{\text {REF }}=2 \mathrm{~mA}$ and $T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ unless otherwise specified. Output characteristics refer to both lout and IOUT.

Symbol	Parameter	Conditions	DAC0802LC			$\begin{aligned} & \text { DAC0800L/ } \\ & \text { DAC0800LC } \end{aligned}$			DAC0801LC			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
P_{D}	Power Dissipation	$\begin{aligned} & \pm 5 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=1 \mathrm{~mA} \\ & 5 \mathrm{~V},-15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=2 \mathrm{~mA} \\ & \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=2 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 33 \\ 108 \\ 135 \end{gathered}$	$\begin{gathered} \hline 48 \\ 136 \\ 174 \\ \hline \end{gathered}$		$\begin{gathered} 33 \\ 108 \\ 135 \end{gathered}$	$\begin{gathered} 48 \\ 136 \\ 1.74 \end{gathered}$		$\begin{gathered} 33 \\ 108 \\ 135 \end{gathered}$	$\begin{gathered} 48 \\ 136 \\ 174 \end{gathered}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \\ & \mathrm{~mW} \end{aligned}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: The maximum junction temperature of the DAC0800, DAC0801 and DAC0802 is $125^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the Dual-In-Line J package must be derated based on a thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$, junction-to-ambient, $175^{\circ} \mathrm{C} / \mathrm{W}$ for the molded Dual-In-Line N package and $100^{\circ} \mathrm{C} / \mathrm{W}$ for the Small Outline M package.
Note 3: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 4: Pin-out numbers for the DAC080X represent the Dual-In-Line package. The Small Outline package pin-out differs from the Dual-In-Line package.

Connection Diagrams

TL/H/5686-13
See Ordering Information

Block Diagram (Note 4)

TL/H/5686-2

Typical Performance Characteristics

Reference Amp Common-Mode Range

V15 - REFERENCE COMMON-MODE VOLTAGE (V)

Note. Positive common-mode range is always (V+) - 1.5 V

Reference Input Frequency Response

Curve 1: $\mathrm{C}_{\mathrm{C}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=2 \mathrm{Vp}-\mathrm{p}$
centered at 1 V .
Curve 2: $\mathrm{C}_{\mathrm{C}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mVp}-\mathrm{p}$ centered at 200 mV .
Curve 3: $\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mVp}$-p
at 0 V and applied through 50Ω con-
nected to pin 14.2V applied to R14.

TL/H/5686-3

Note. B1-B8 have identical transfer characteristics. Bits are fully switched with less than $1 / 2$ LSB error, at less than $\pm 100 \mathrm{mV}$ from actual threshold. These switching points are guaranteed to lie between 0.8 and 2 V over the operating temperature range $\left(\mathrm{V}_{\mathrm{LC}}=\mathrm{OV}\right)$.

Typical Performance Characteristics (Continued)

TL/H/5686-4
Equivalent Circuit

TL/H/5886-15

Typical Applications (Continued)

FIGURE 2

$I_{\text {FS }} \approx \frac{+V_{\text {REF }}}{R_{\text {REF }}} \times \frac{255}{256}$
$10+\Gamma_{0}=l_{\text {Fs }}$ for afl
logic states
For fixed reference, TTL operation,
typical values are:
$\mathrm{V}_{\text {REF }}=10.000 \mathrm{~V}$
$R_{\text {REF }}=5.000 \mathrm{k}$
R15 $\approx \mathrm{R}_{\text {REF }}$
$\mathrm{C}_{\mathrm{C}}=0.01 \mu \mathrm{~F}$
$\mathrm{V}_{\mathrm{LC}}=\mathrm{OV}$ (Ground)
TL/H/5686-5
FIGURE 3. Basic Positive Reference Operation (Note 4)

FIGURE 4. Recommended Full Scale Adjustment Circuit

TL/H/5686-16

$$
I_{F S} \approx \frac{-V_{\text {REF }}}{R_{\text {REF }}} \times \frac{255}{256} \quad \begin{aligned}
& \text { Note. R REF sets } \\
& \text { for bias current cancellation }
\end{aligned}
$$

FIGURE 5. Basic Negative Reference Operation (Note 4)

Typical Applications (Continued)

TL/H/5686-17

	B1	B2	B3	B4	B5	B6	B7	B8	$\mathbf{I O}_{\mathbf{O}} \mathbf{~ m A}$	$\overline{\mathbf{O}} \mathbf{~ m A}$	$\mathbf{E}_{\mathbf{O}}$	$\overline{\mathbf{E}_{\mathbf{O}}}$
Full Scale	1	1	1	1	1	1	1	1	1.992	0.000	-9.960	0.000
Fuill Scale-LSB	1	1	1	1	1	1	1	0	1.984	0.008	-9.920	-0.040
Half Scale+LSB	1	0	0	0	0	0	0	1	1.008	0.984	-5.040	-4.920
Half Scale	1	0	0	0	0	0	0	0	1.000	0.992	-5.000	-4.960
Half Scale-LSB	0	1	1	1	1	1	1	1	0.992	1.000	-4.960	-5.000
Zero Scale+LSB	0	0	0	0	0	0	0	1	0.008	1.984	-0.040	-9.920
Zero Scale	0	0	0	0	0	0	0	0	0.000	1.992	0.000	-9.960

FIGURE 6. Basic Unipolar Negative Operation (Note 4)

TL/H/5686-6

| | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | $\mathbf{E}_{\mathbf{O}}$ | $\overline{\mathbf{E}_{\mathbf{O}}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pos. Full Scale | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -9.920 | +10.000 |
| Pos. Full Scale-LSB | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | -9.840 | +9.920 |
| Zero Scale+LSB | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -0.080 | +0.160 |
| Zero Scale | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | +0.080 |
| Zero Scale-LSB | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | +0.080 | 0.000 |
| Neg. Full Scale+LSB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | +9.920 | -9.840 |
| Neg. Full Scale | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +10.000 | -9.920 |

FIGURE 7. Basic Bipolar Output Operation (Note 4)

TL/H/5686-18
If $R_{L}=\overline{R_{L}}$ within $\pm 0.05 \%$, output is symmetrical about ground

	B1	B2	B3	B4	B5	B6	B7	B8	E $_{\mathbf{O}}$
Pos. Full Scale	1	1	1	1	1	1	1	1	+9.960
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	+9.880
(+)Zero Scale	1	0	0	0	0	0	0	0	+0.040
(-)Zero Scale	0	1	1	1	1	1	1	1	-0.040
Neg. Full Scale+LSB	0	0	0	0	0	0	0	1	-9.880
Neg. Full Scale	0	0	0	0	0	0	0	0	-9.960

FIGURE 8. Symmetrical Offset Binary Operation (Note 4)

Typical Applications (Continued)

For complementary output (operation as negative logic DAC), connect inverting input of op amp to Γ_{O} (pin 2), connect I_{O} (pin 4) to ground.

FIGURE 9. Positive Low Impedance Output Operation (Note 4)

TL/H/5686-20
For complementary output (operation as a negative logic DAC) connect non-in verting input of op am to Γ_{O} (pin 2); connect l_{O} (pin 4) to ground.
FIGURE 10. Negative Low Impedance Output Operation (Note 4)

TL/H/5686-9
Note. Do not exceed negative logic input range of DAC.
FIGURE 11. Interfacing with Various Logic Families

FIGURE 12. Pulsed Reference Operation (Note 4)

Typical Applications (Continued)
(a) IREF \geq peak negative swing of $l_{\text {N }}$

TL/H/5686-7
FIGURE 14. Settling Time Measurement (Note 4)

Typical Applications (Continued)

Note. For 1μ s conversion time with 8 -bit resolution and 7 -bit accuracy, an LM361 comparator replaces the LM319 and the reference current is doubled by reducing R1, R2 and R3 to $2.5 \mathrm{k} \Omega$ and R4 to $2 \mathrm{M} \Omega$.

FIGURE 15. A Complete $2 \mu \mathrm{~s}$ Conversion Time, 8-Bit A/D Converter (Note 4)

General Description

The DAC0808 series is an 8-bit monolithic digital-to-analog converter (DAC) featuring a full scale output current settling time of 150 ns while dissipating only 33 mW with $\pm 5 \mathrm{~V}$ supplies. No reference current (IREF) trimming is required for most applications since the full scale output current is typically ± 1 LSB of 255 I REF/ 256. Relative accuracies of better than $\pm 0.19 \%$ assure 8 -bit monotonicity and linearity while zero level output current of less than $4 \mu \mathrm{~A}$ provides 8 -bit zero accuracy for $I_{\text {REF }} \geq 2 \mathrm{~mA}$. The power supply currents of the DAC0808 series are independent of bit codes, and exhibits essentially constant device characteristics over the entire supply voltage range.
The DAC0808 will interface directly with popular TTL, DTL or CMOS logic levels, and is a direct replacement for the

MC1508/MC1408. For higher speed applications, see DAC0800 data sheet.

Features

- Relative accuracy: $\pm 0.19 \%$ error maximum (DAC0808)

■ Full scale current match: ± 1 LSB typ
■ 7 and 6-bit accuracy available (DAC0807, DAC0806)

- Fast settling time: 150 ns typ
- Noninverting digital inputs are TTL and CMOS compatible
- High speed multiplying input slew rate: $8 \mathrm{~mA} / \mu \mathrm{s}$

■ Power supply voltage range: $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
■ Low power consumption: 33 mW @ $\pm 5 \mathrm{~V}$

Block and Connection Diagrams

TL/H/5687-2

Small-Outline Package

TL/H/5687-13

Ordering Information

| ACCURACY | OPERATING TEMPERATURE | ORDER NUMBERS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | RANGE | | | | |

[^8]Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Power Supply Voltage

$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +18 V_{D C} \\ & -18 V_{D C} \end{aligned}$
Digital Input Voltage, V5-V12	$-10 V_{D C}$ to $+18 V_{D C}$
Applied Output Voltage, V_{O}	-11. $V_{D C}$ to $+18 V_{D C}$
Reference Current, I_{14}	5 mA
Reference Amplifier Inputs, V14, V15	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$
Power Dissipation (Note 3)	1000 mW
ESD Susceptibility (Note 4)	TBD

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)	
Dual-In-Line Package (Plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (Ceramic)	$300^{\circ} \mathrm{C}$
Surface Mount Package	
\quad Vapor Phase (60 seconds).	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

Operating Ratings

Temperature Range DAC0808LC Series
$T_{M I N} \leq T_{A} \leq T_{M A X}$ $0 \leq T_{A} \leq+75^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}} / \mathrm{R} 14=2 \mathrm{~mA}, \mathrm{DAC} 0808: \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{DAC} 0808 \mathrm{C}, \mathrm{DAC0807C}, \mathrm{DAC} 0806 \mathrm{C}, \mathrm{T}_{\mathrm{A}}$ $=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, and all digital inputs at high logic level unless otherwise noted.)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
E_{r}	Relative Accuracy (Error Relative to Full Scale Io) DAC0808LC (LM1408-8) DAC0807LC (LM1408-7), (Note 5) DAC0806LC (LM1408-6), (Note 5) Settling Time to Within $1 / 2$ LSB (Includes tPLH)	(Figure 4) $T_{A}=25^{\circ} \mathrm{C}(\text { Note } 6),$ (Figure 5)		150	$\begin{gathered} \pm 0.19 \\ \pm 0.39 \\ \pm 0.78 \end{gathered}$	\% \% \% \% 'ns
$\mathrm{tPLH}^{\text {, }}$ tPHL	Propagation Delay Time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 5)		30	100	ns
TClo	Output Full Scale Current Drift			± 20		ppm $/{ }^{\circ} \mathrm{C}$
MSB V_{IH} $V_{\text {IL }}$	Digital Input Logic Levels Hioh Level, Logic "1" Low Level, Logic "0"	(Figure 3)	2	,	0.8	$\begin{aligned} & V_{D C} \\ & V_{D C} \end{aligned}$
MSB	Digital Input Current High Level Low Level	$\begin{aligned} & \text { (Figure 3) } \\ & \mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0 \\ -0.003 \end{gathered}$	$\begin{array}{r} 0.040 \\ -0.8 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
l_{15}	Reference Input Bias Current	(Figure 3)		-1	-3	$\mu \mathrm{A}$
	Output Current Range	(Figure 3) $V_{E E}=-5 V$ $V_{E E}=-15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
10	Output Current Output Current, All Bits Low	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=2.000 \mathrm{~V}, \\ & \mathrm{R} 14=1000 \Omega, \\ & \text { (Figure 3) } \\ & \text { (Figure 3) } \end{aligned}$	1.9	$\begin{gathered} 1.99 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 2.1 \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
	Output Voltage Compliance (Note 2) $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=1 \mathrm{~mA}$ $V_{E E}$ Below -10 V	$\mathrm{E}_{\mathrm{r}} \leq 0.19 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & -0.55,+0.4 \\ & -5.0,+0.4 \\ & \hline \end{aligned}$	$V_{D C}$ $V_{D C}$

Electrical Characteristics (Continued)
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}} / \mathrm{R} 14=2 \mathrm{~mA}, \mathrm{DAC} 0808: \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{DAC} 0808 \mathrm{C}, \mathrm{DAC0807C}, \mathrm{DAC0806C}, \mathrm{~T}_{\mathrm{A}}$
$=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, and all digital inputs at high logic leve! unless otherwise noted.)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
SRI ${ }_{\text {REF }}$	Reference Current Slew Rate	(Figure 6)	4	8		$\mathrm{mA} / \mu \mathrm{s}$
	Output Current Power Supply Sensitivity	$-5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EE}} \leq-16.5 \mathrm{~V}$		0.05	2.7	$\mu \mathrm{A} / \mathrm{V}$
$\begin{aligned} & \mathrm{I}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{EE}} \end{aligned}$	Power Supply Current (All Bits Low)	(Figure 3)		$\begin{gathered} 2.3 \\ -4.3 \\ \hline \end{gathered}$	$\begin{array}{r} 22 \\ -13 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & V_{C C} \\ & V_{E E} \end{aligned}$	Power Supply Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 3)	$\begin{gathered} 4.5 \\ -4.5 \\ \hline \end{gathered}$	$\begin{gathered} 5.0 \\ -15 \\ \hline \end{gathered}$	$\begin{gathered} 5.5 \\ -16.5 \\ \hline \end{gathered}$	$V_{D C}$ $V_{D C}$
	Power Dissipation All Bits Low All Bits High	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 33 \\ 106 \\ 90 \\ 160 \\ \hline \end{gathered}$	$\begin{aligned} & 170 \\ & 305 \end{aligned}$	mW mW mW mW

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: Range control is not required.
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maixmum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance of the dual-in-line J package when the board mounted is $100^{\circ} \mathrm{C} / \mathrm{W}$. For the dual-inline N package, this number increases to $175^{\circ} \mathrm{C} / \mathrm{W}$ and for the small outline M package this number is $100^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: All current switches are tested to guarantee at least 50% of rated current.
Note 6: All bits switched.
Note 7: Pin-out numbers for the DAL080X represent the dual-in-line package. The small outline package pinout differs from the dual-in-line package.

Typical Application

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Typical Power Supply Current vs $V_{E E}$

V_{L} - LOGIC INPUT VOLTAGE (V)

Typical Power Supply Current vs VCC

Reference Input Frequency Response

TL/H/5687-5
Unless otherwise specified: R14 = $R 15=1 \mathrm{k} \Omega, C=15 \mathrm{pF}$, pin 16 to $V_{E E} ; R_{L}=50 \Omega$, pin 4 to ground.
Curve A: Large Signal Bandwidth Method of Figure 7, VREF $=2 \mathrm{Vp}-\mathrm{p}$ offset 1 V above ground.
Curve B: Small Signal Bandwidth Method of Figure 7, $\mathrm{R}_{\mathrm{L}}=250 \Omega$, $\mathrm{V}_{\mathrm{REF}}$ $=50 \mathrm{mVp}-\mathrm{p}$ offset 200 mV above ground.
Curve C: Large and Small Signal Bandwidth Method of Figure 9 (no op $\mathrm{amp}, \mathrm{R}_{\mathrm{L}}=50 \Omega$), $\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{REF}}=$ $2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=100 \mathrm{mVp}-\mathrm{p}$ centered at 0 V .

Test Circuits

V_{1} and I_{1} apply to inputs $\mathrm{A} 1-\mathrm{AB}$.
The resistor tied to pin 15 is to temperature compensate the bias current and may not be necessary for all applications.
$I_{0}=K\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right)$
where $K \cong \frac{V_{\text {REF }}}{R 14}$
and $A_{N}=" 1 "$ if A_{N} is at high level
$A_{N}=$ " 0 " if A_{N} is at low level

FIGURE 3. Notation Definitions Test Circuit (Note 7)

TL/H/5687-7
FIGURE 4. Relative Accuracy Test Circuit (Note 7)

FIGURE 5. Transient Response and Settling Time (Note 7)

Test Circuits (Continued)

TL/H/5687-9

FIGURE 6. Reference Current Slew Rate Measurement (Note 7)

TL/H/5687-11
FIGURE 8. Negative $V_{\text {REF }}$ (Note 7)

Application Hints

REFERENCE AMPLIFIER DRIVE AND COMPENSATION

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input currrent, I_{14}, must always flow into pin 14, regardless of the set-up method or reference voltage polarity. Connections for a positive voltage are shown in Figure 7. The reference voltage source supplies the full current I_{14}. For bipolar reference signals, as in the multiplying mode,

FIGURE 9. Programmable Gain Amplifier or Digital Attenuator Circuit (Note 7)

R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift.
The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of $1,2.5$ and $5 \mathrm{k} \Omega$, minimum capacitor values are 15 , 37 and 75 pF . The capacitor may be tied to either V_{EE} or ground, but using V_{EE} increases negative supply rejection.

Application Hints (Continued)

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to $V_{E E}$ on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 4 V above the V_{EE} supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.
When a DC reference voltage is used, capacitive bypass to ground is recommended. The 5 V logic supply is not recommended as a reference voltage. If a well regulated 5 V supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to 5 V through another resistor and bypassing the junction of the 2 resistors with $0.1 \mu \mathrm{~F}$ to ground. For reference voltages greater than 5 V , a clamp diode is recommended between pin 14 and ground.
If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

OUTPUT VOLTAGE RANGE

The voltage on pin 4 is restricted to a range of -0.55 to 0.4 V when $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$ due to the current switching methods employed in the DAC0808.
The negative output voltage compliance of the DAC0808 is extended to -5 V where the negative supply voltage is more negative than -10V. Using a full-scale current of 1.992 mA and load resistor of $2.5 \mathrm{k} \Omega$ between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 V . Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R_{L} up to 500Ω do not significantly affect performance, but a $2.5 \mathrm{k} \Omega$ load increases worst-case settling time to $1.2 \mu \mathrm{~s}$ (when all bits are switched ON). Refer to the subsequent text section on Settling Time for more details on output loading.

OUTPUT CURRENT RANGE

The output current maximum rating of 4.2 mA may be used only for negative supply voltages more negative than -8 V , due to the increased voltage drop across the resistors in the reference current amplifier.

ACCURACY

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full-scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full-scale current. The relative accuracy of the DAC0808 is essentially constant with temperature due to
the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the DAC0808 has a very low full-scale current drift with temperature.
The DAC0808 series is guaranteed accurate to within $\pm 1 / 2$ LSB at a full-scale output current of 1.992 mA . This corresponds to a reference amplifier output current drive to the ladder network of 2 mA , with the loss of $1 \mathrm{LSB}(8 \mu \mathrm{~A})$ which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA , allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12bit converter is calibrated for a full-scale output current of 1.992 mA . This is an optional step since the DAC0808 accuracy is essentially the same between 1.5 and 2.5 mA . Then the DAC0808 circuits' full-scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.
Two 8-bit D-to-A converters may not be used to construct a 16-bit accuracy D-to-A converter. 16-bit accuracy implies a total error of $\pm 1 / 2$ of one part in 65,536 or $\pm 0.00076 \%$, which is much more accurate than the $\pm 0.019 \%$ specification provided by the DAC0808.

MULTIPLYING ACCURACY

The DAC0808 may be used in the multiplying mode with 8 -bit accuracy when the reference current is varied over a range of $\mathbf{2 5 6} \mathbf{1} \mathbf{1}$. If the reference current in the multiplying mode ranges from $16 \mu \mathrm{~A}$ to 4 mA , the additional error contributions are less than $1.6 \mu \mathrm{~A}$. This is well within 8-bit accuracy when referred to full-scale.
A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the DAC0808 is monotonic for all values of reference current above 0.5 mA . The recommended range for operation with a $D C$ reference current is 0.5 to 4 mA .

SETTLING TIME

The worst-case switching condition occurs when all bits are switched ON, which corresponds to a low-to-high transition for all bits. This time is typically 150 ns for settling to within $\pm 1 / 2$ LSB, for 8 -bit accuracy, and 100 ns to $1 / 2$ LSB for 7 and 6 -bit accuracy. The turn OFF is typically under 100 ns . These times apply when $\mathrm{R}_{\mathrm{L}} \leq 500 \Omega$ and $\mathrm{C}_{\mathrm{O}} \leq 25 \mathrm{pF}$.
Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, $100 \mu \mathrm{~F}$ supply bypassing for low frequencies, and minimum scope lead length are all mandatory.

DAC0830/DAC0831/DAC0832 8-Bit $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converters

General Description

The DAC0830 is an advanced CMOS/Si-Cr 8-bit multiplying DAC designed to interface directly with the 8080, 8048 , $8085, Z 80{ }^{\oplus}$, and other popular microprocessors. A deposited silicon-chromium R-2R resistor ladder network divides the reference current and provides the circuit with excellent temperature tracking characteristics (0.05% of Full Scale Range maximum linearity error over temperature). The circuit uses CMOS current switches and control logic to achieve low power consumption and low output leakage current errors. Special circuitry provides TTL logic input voltage level compatibility.
Double buffering allows these DACs to output a voltage corresponding to one digital word while holding the next digital word. This permits the simultaneous updating of any number of DACs.
The DAC0830 series are the 8 -bit members of a family of microprocessor-compatible DACs (MICRO-DACTM). For applications demanding higher resolution, the DAC1000 series (10-bits) and the DAC1208 and DAC1230 (12-bits) are available alternatives.

Features

- Double-buffered, single-buffered or flow-through digital data inputs
- Easy interchange and pin-compatible with 12-bit DAC1230 series
- Direct interface to all popular microprocessors
- Linearity specified with zero and full scale adjust onlyNOT BEST STRAIGHT LINE FIT.
[Works with $\pm 10 \mathrm{~V}$ reference-full 4-quadrant multiplication
- Can be used in the voltage switching mode
- Logic inputs which meet TTL voltage level specs (1.4V logic threshold)
- Operates "STAND ALONE" (without $\mu \mathrm{P}$) if desired
- Available in 20-pin small-outline or molded chip carrier package

Key Specifications

- Current settling time	$1 \mu \mathrm{~s}$
- Resolution	8 bits
© Linearity (guaranteed over temp.)	8,9 or 10 bits
- Gain Tempco	0.0002\% FS $/{ }^{\circ} \mathrm{C}$
- Low power dissipation	20 mW
囫 Single power supply	5 to $15 \mathrm{~V}_{\mathrm{DC}}$

Typical Application

TL/H/5608-1

Connection Diagrams (Top Views)

\dagger This is necessary for the 12-bit DAC1230 series to permit interchanging from an 8-bit to a 12 -bit DAC with No PC board changes and no software changes, See applications section.

Molded Chip Carrier Package

TL/H/5608-22

Absolute Maximum Ratings (Notes $1 \& 2$)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
$17 V_{D C}$
Voltage at Any Digital Input
$V_{C C}$ to $G N D$
$\pm 25 \mathrm{~V}$
Voltage at $V_{\text {REF }}$ Input
Storage Temperature Range
Package Dissipation
at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)
500 mW
DC Voltage Applied to
lout1 or louta (Note 4)
ESD Susceptability (Note 14)
-100 mV to V_{CC}
800 V

Lead Temperature (soldering, 10 sec.$)$	
Dual-In-Line Package (plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)	$300^{\circ} \mathrm{C}$
Surface Mount Package	
Vapor Phase (60 sec.)	215°
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$
Operating Conditions	
Temperature Range	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$
Part numbers with 'LCN' suffix	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Part numbers with 'LCWM' suffix	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Part numbers with 'LCV' suffix:	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Part numbers with 'LCJ' suffix	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Part numbers with 'LJ' suffix	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage at Any Digital Input	$V_{C C}$ to G

Electrical Characteristics $\mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted. Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter		Conditions		See Note	$\begin{aligned} & V_{C C}=4.75 V_{D C} \\ & V_{C C}=15.75 V_{D C} \end{aligned}$		$\begin{gathered} V_{C C}=5 V_{D C} \pm 5 \% \\ V_{C C}=12 V_{D C} \pm 5 \% \\ \text { to } 15 V_{D C} \pm 5 \% \\ \hline \end{gathered}$ Design Limit (Note 6)	Limit Units		
		$\begin{gathered} \text { Typ } \\ \text { (Note 12) } \end{gathered}$	Tested Limit (Note 5)							
CONVERTER CHARACTERISTICS										
Resolution :							8	8	8	bits
Linearity Error Max DAC0830LJ \& LCJ DAC0832LJ \& LCJ DAC0830LCN, LCWM \& LCV DAC0831LCN DAC0832LCN, LCWM \& LCV		Zero and full s $-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}}$	justed	4, 8		$\begin{gathered} 0.05 \\ 0.2 \\ 0.05 \\ 0.1 \\ 0.2 \end{gathered}$	$\begin{gathered} 0.05 \\ 0.2 \\ 0.05 \\ 0.1 \\ 0.2 \end{gathered}$	\% FSR \% FSR \% FSR \% FSR \% FSR		
Differential Nonlinearity Max DAC0830LJ \& LCJ DAC0832LJ \& LCJ DAC0830LCN, LCWM \& LCV DAC0831LCN DAC0832LCN, LCWM \& LCV		Zero and full s $-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}}$	justed	4, 8		$\begin{aligned} & 0.1 \\ & 0.4 \\ & 0.1 \\ & 0.2 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.4 \\ & 0.1 \\ & 0.2 \\ & 0.4 \end{aligned}$	\% FSR \% FSR \% FSR \% FSR \% FSR		
Monotonicity		$\begin{gathered} -10 V \leq V_{\text {REF }} \\ \leq+10 V \end{gathered}$	$\begin{aligned} & \text { LJ \& } 1 \\ & \text { LCN, } \end{aligned}$	4		$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	bits bits		
Gain Error Max		Using Internal $-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }}$		7	± 0.2	± 1	± 1	\% FS		
Gain Error Tempco Max		Using internal			0.0002		$\therefore 0.0006$	$\begin{gathered} \% \\ \text { FS/ } /{ }^{\circ} \mathrm{C} \end{gathered}$		
Power Supply Rejection		All digital inpu $\begin{array}{r} \mathrm{V}_{\mathrm{CC}}=14.5 \mathrm{~V} \text { tc } \\ 11.5 \mathrm{tc} \\ 4.5 \mathrm{~V} \end{array}$	ed high		$\begin{gathered} 0.0002 \\ 0.0006 \\ 0.013 \end{gathered}$	$\begin{aligned} & 0.0025 \\ & 0.015 \end{aligned}$	\cdots	$\begin{gathered} \% \\ \text { FSR/V } \end{gathered}$		
Reference Input	Max				15	20	20	k Ω		
	Min				15	10	10	$\mathrm{k} \Omega$		
Output Feedthrough Error		$\mathrm{V}_{\mathrm{REF}}=20 \mathrm{Vp}-$ All data inputs	00 kHz d low		3			mVp-p		

Electrical Characteristics $\mathrm{V}_{\text {REF }}=10.000 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted. Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathbf{A}} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Parameter		Conditions		See Note	$\begin{aligned} & V_{C C}=4.75 V_{D C} \\ & V_{C C}=15.75 V_{D C} \end{aligned}$		$\begin{gathered} V_{C C}=5 V_{D C} \pm 5 \% \\ V_{C C}=12 V_{D C} \pm 5 \% \\ \text { to } 15 V_{D C} \pm 5 \% \\ \hline \end{gathered}$	Limit Units		
		Typ (Note 12)	Tested Limit (Note 5)		Design Limit (Note 6)					
CONVERTER CHARACTERISTICS (Continued)										
Output Leakage Current Max	lout1			All data inputs latched low	LJ \& LCJ LCN, LCWM \& LCV	10		$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	nA
	lout2	All data inputs latched high	LJ \& LCJ LCN, LCWM \& LCV			$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	nA		
Output Capacitance	lout1 lout2	All data inputs latched low			$\begin{gathered} 45 \\ 115 \\ \hline \end{gathered}$			pF		
	lout1 louta	All data inputs latched high			$\begin{gathered} 130 \\ 30 \\ \hline \end{gathered}$			pF		
DIGITAL AND DC CHARACTERISTICS										
Digital Input Voltages	Max	Logic Low LJ 4.75 V LJ 15.75 V LCJ 4.75 V LCJ 15.75 V LCN, LCWM, LCV			\because.	$\begin{aligned} & 0.6 \\ & 0.8 \\ & 0.7 \\ & 0.8 \\ & 0.95 \end{aligned}$	0.8	$V_{D C}$		
	Min	Logic High	LJ \& LCJ LCN, LCWM, LCV			$\begin{aligned} & 2.0 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$V_{D C}$		
Digital Input Currents	Max	Digital inputs	$\begin{aligned} & \text { LJ \& LCJ } \\ & \text { LCN, LCWM, LCV } \end{aligned}$		-50	$\begin{gathered} -200 \\ -160 \end{gathered}$	$\begin{array}{r} -200 \\ -200 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$		
		Digital inputs $>$. 0 V LJ \& LCJ LCN, LCWM, LCV		0.1	$\begin{gathered} +10 \\ +8 \\ \hline \end{gathered}$	$\begin{array}{r} +10 \\ +10 \\ \hline \end{array}$	$\mu \mathrm{A}$		
Supply Current Drain	Max		LJ \& LCJ LCN, LCWM, LCV		1.2	$\begin{array}{r} 3.5 \\ 1.7 \\ \hline \end{array}$	$\begin{aligned} & 3.5 \\ & 2.0 \end{aligned}$	mA		

Electrical Characteristics $V_{R E F}=10.000 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted. Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathbf{A}} \leq \mathrm{T}_{\text {max }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter	Conditions	See Note	$V_{c c}=1$	5 V DC	$\begin{gathered} V_{C C}=12 V_{D C} \pm 5 \% \\ \text { to } 15 V_{D C} \pm 5 \% \\ \hline \end{gathered}$	$\mathbf{V}_{\mathbf{c c}}=$	5 V DC	$\left\lvert\, \begin{gathered} V_{C C}=5 V_{D C} \\ \pm 5 \% \end{gathered}\right.$	
				Typ (Note 12)	Tested Limit (Note 5)	Design Limit (Note 6)	Typ (Note 12)	Tested Limit (Note 5)	Design Limit (Note 6)	Units

AC CHARACTERISTICS

t_{s}	Current Setting Time	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=5 \mathrm{~V}$		1.0			1.0			$\mu \mathrm{S}$
tw	Write and XFER Pulse Width Min	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	$\begin{gathered} 11 \\ 9 \end{gathered}$	100	$\begin{aligned} & 250 \\ & 320 \end{aligned}$	320	375	$\begin{aligned} & 600 \\ & 900 \end{aligned}$	900	ns
${ }^{\text {t }}$ S	Data Setup Time Min	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	9	100	$\begin{array}{r} 250 \\ \mathbf{3 2 0} \\ \hline \end{array}$	320	375	$\begin{gathered} 600 \\ 900 \end{gathered}$	900	
${ }^{\text {t }}$ DH	Data Hold Time Min	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	9		$\begin{aligned} & 30 \\ & \mathbf{3 0} \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		
$t_{\text {cs }}$	Control Setup Time Min	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	9	110	$\begin{array}{r} 250 \\ 320 \end{array}$	320	600	$\begin{gathered} 900 \\ 1100 \end{gathered}$	1100	
${ }^{\mathrm{t}_{\mathrm{CH}}}$	Control Hold Time Min	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	9	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	10	0	0		

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}$ (plastic) or $150^{\circ} \mathrm{C}$ (ceramic), and the typical junction-to-ambient thermal resistance of the J package when board mounted is $80^{\circ} \mathrm{C} / \mathrm{W}$. For the N package, this number increases to $100^{\circ} \mathrm{C} / \mathrm{W}$ and for the V package this number is $120^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: For current switching applications, both IOUT1 and IOUT2 must go to ground or the "Virtual Ground" of an operational amplifier. The linearity error is degraded by approximately $\mathrm{V}_{\mathrm{OS}} \div \mathrm{V}_{\text {REF }}$. For example, if $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ then a 1 mV offset, V_{OS}, on louT1 or louT2 will introduce an additional 0.01% linearity error.
Note 5: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 6: Guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 7: Guaranteed at $V_{R E F}= \pm 10 V_{D C}$ and $V_{\text {REF }}= \pm 1 V_{D C}$.
Note 8: The unit "FSR" stands for "Full Scale Range." "Linearity Error" and "Power Supply Rejection" specs are based on this unit to eliminate dependence on a particular VREF value and to indicate the true performance of the part. The "Linearity Error" specification of the DAC0830 is " 0.05% of FSR (MAX)". This guarantees that after performing a zero and full scale adjustment (see Sections 2.5 and 2.6), the plot of the 256 analog voltage outputs will each be within $0.05 \% \times V_{\text {REF }}$ of a straight line which passes through zero and full scale.
Note 9: Boldface tested limits apply to the LJ and LCJ suffix parts only.
Note 10: A 100 nA leakage current with $\mathrm{R}_{\mathrm{fb}}=20 \mathrm{k}$ and $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ corresponds to a zero error of $\left(100 \times 10^{-9} \times 20 \times 10^{3}\right) \times 100 / 10$ which is 0.02% of FS .
Note 11: The entire write pulse must occur within the valid data interval for the specified $t_{W}, t_{D S}, t_{D H}$, and t_{S} to apply.
Note 12: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 13: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Switching Waveform

Definition of Package Pinouts

Control Signals (All control signals level actuated)
$\overline{\mathrm{CS}}: \quad$ Chip Select (active low). The $\overline{\mathrm{CS}}$ in combination with ILE will enable $\overline{W R}_{1}$.
ILE: Input Latch Enable (active high). The ILE in combination with $\overline{\mathrm{CS}}$ enables $\overline{\mathrm{WR}_{1}}$.
$\overline{W R_{1}}: \quad$ Write 1. The active low $\overline{W R_{1}}$ is used to load the digital input data bits (DI) into the input latch. The data in the input latch is latched when $\overline{W_{1}}$ is high. To update the input latch- $\overline{\mathrm{CS}}$ and $\overline{\mathrm{W} R_{1}}$ must be low while ILE is high.
$\overline{W R_{2}}$: \quad Write 2 (active low). This signal, in combination with XFER, causes the 8 -bit data which is available in the input latch to transfer to the DAC register.
XFER: Transfer control signal (active low). The XFER will enable $\overline{W_{2}}$.

Other Pin Functions

$\mathrm{Dl}_{0}-\mathrm{Dl}_{7}$: Digital Inputs. Dl_{0} is the least significant bit (LSB) and DI_{7} is the most significant bit (MSB).
IOUT1: DAC Current Output 1. IOUT1 is a maximum for a digital code of all 1's in the DAC register, and is zero for all 0's in DAC register.
IOUT2: DAC Current Output 2. IOUT2 is a constant minus lout1, or lout1 + lout2 $=$ constant (1 full scale for a fixed reference voltage).
\mathbf{R}_{fb} : Feedback Resistor. The feedback resistor is provided on the IC chip for use as the shunt
feedback resistor for the external op amp which is used to provide an output voltage for the DAC. This on-chip resistor should always be used (not an external resistor) since it matches the resistors which are used in the on-chip R-2R ladder and tracks these resistors over temperature.
$V_{\text {REF }}$ Reference Voltage Input. This input connects an external precision voltage source to the internal R$2 R$ ladder. $V_{\text {REF }}$ can be selected over the range of +10 to -10 V . This is also the analog voltage input for a 4-quadrant multiplying DAC application.
$V_{\text {CC }}$: Digital Supply Voltage. This is the power supply pin for the part. $V_{C C}$ can be from +5 to $+15 \mathrm{~V}_{\mathrm{DC}}$. Operation is optimum for +15 V DC .
GND: The pin 10 voltage must be at the same ground potential as lout1 and lout2 for current switching applications. Any difference of potential (Vos pin 10) will result in a linearity change of

$$
\frac{V_{\text {OS }} \operatorname{pin} 10}{3 V_{\text {REF }}}
$$

For example, if $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}$ and pin 10 is 9 mV offset from lout1 and lout2 the linearity change will be 0.03%.
Pin 3 can be offset $\pm 100 \mathrm{mV}$ with no linearity change, but the logic input threshold will shift.

Linearity Error

c) Shifting fs adj. to pass best straight line test

Definition of Terms

Resolution: Resolution is directly related to the number of switches or bits within the DAC. For example, the DAC0830 has 2^{8} or 256 steps and therefore has 8 -bit resolution.
Linearity Error: Linearity Error is the maximum deviation from a straight line passing through the endpoints of the DAC transfer characteristic. It is measured after adjusting for zero and full-scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.
National's linearity "end point test" (a) and the "best straight line" test (b, c) used by other suppliers are illustrated above. The "end point test" greatly simplifies the adjustment procedure by eliminating the need for multiple iterations of checking the linearity and then adjusting full scale until the linearity is met. The "end point test" guarantees that linearity is met after a single full scale adjust. (One adjustment vs. multiple iterations of the adjustment.) The "end point test" uses a standard zero and F.S. adjustment procedure and is a much more stringent test for DAC linearity.

Settling Time: Settling time is the time required from a code transition until the DAC output reaches within $\pm 1 / 2$ LSB of the final output value. Full-scale settling time requires a zero to full-scale or full-scale to zero output change.
Full-Scale Error: Full scale error is a measure of the output error between an ideal DAC and the actual device output. Ideally, for the DAC0830 series, full-scale is VREF -1LSB. For $V_{\text {REF }}=10 \mathrm{~V}$ and unipolar operation, $\mathrm{V}_{\text {FULL-SCALE }}=$ $10.0000 \mathrm{~V}-39 \mathrm{mV}=9.961 \mathrm{~V}$. Full-scale error is adjustable to zero,
Differential Nonlinearity: The difference between any two consecutive codes in the transfer curve from the theoretical 1 LSB is differential nonlinearity.
Monotonic: If the output of a DAC increases for increasing digital input code, then the DAC is monotonic. An 8-bit DAC which is monotonic to 8 bits simply means that increasing digital input codes will produce an increasing analog output.

Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the DAC full-scale output.

FIGURE 1. DAC0830 Functional Diagram

Typical Performance Characteristics

DAC0830 Series Application Hints

These DAC's are the industry's first microprocessor compatible, double-buffered 8 -bit multiplying D to A converters. Double-buffering allows the utmost application flexibility from a digital control point of view. This 20-pin device is also pin for pin compatible (with one exception) with the DAC1230, a 12-bit MICRO-DAC. In the event that a system's analog output resolution and accuracy must be upgraded, substituting the DAC1230 can be easily accomplished. By tying address bit A_{0} to the ILE pin, a two-byte $\mu \mathrm{P}$ write instruction (double precision) which automatically increments the address for the second byte write (starting with $A_{0}=$ " 1 ") can be used. This allows either an 8 -bit or the 12-bit part to be used with no hardware or software changes. For the simplest 8-bit application, this pin should be tied to $\mathrm{V}_{\text {cc }}$ (also see other uses in section 1.1).
Analog signal control versatility is provided by a precision R2R ladder network which allows full 4-quadrant multiplication of a wide range bipolar reference voltage by an applied digital word.

1.0 DIGITAL CONSIDERATIONS

A most unique characteristic of these DAC's is that the 8 -bit digital input byte is double-buffered. This means that the data must transfer through two independently controlled 8bit latching registers before being applied to the R-2R ladder network to change the analog output. The addition of a second register allows two useful control features. First, any DAC in a system can simultaneously hold the current DAC data in one register (DAC register) and the next data word in the second register (input register) to allow fast updating of the DAC output on demand. Second, and probably more important, double-buffering allows any number of DAC's in a
system to be updated to their new analog output levels simultaneously via a common strobe signal.
The timing requirements and logic level convention of the register control signals have been designed to minimize or eliminate external interfacing logic when applied to most popular microprocessors and development systems. It is easy to think of these converters as 8 -bit "write-only" memory locations that provide an analog output quantity. All inputs to these DAC's meet TTL voltage level specs and can also be driven directly with high voltage CMOS logic in nonmicroprocessor based systems. To prevent damage to the chip from static discharge, all unused digital inputs should be tied to $V_{C C}$ or ground. If any of the digital inputs are inadvertantly left floating, the DAC interprets the pin as a logic " 1 ".

1.1 Double-Buffered Operation

Updating the analog output of these DAC's in a double-buffered manner is basically a two step or double write operation. In a microprocessor system two unique system addresses must be decoded, one for the input latch controlled by the $\overline{C S}$ pin and a second for the DAC latch which is controlled by the XFER line. If more than one DAC is being driven, Figure 2, the $\overline{C S}$ line of each DAC would typically be decoded individually, but all of the converters could share a common XFER address to allow simultaneous updating of any number of DAC's. The timing for this operation is shown, Figure 3.
It is important to note that the analog outputs that will change after a simultaneous transfer are those from the DAC's whose input register had been modified prior to the $\overline{\text { XFER }}$ command.

DAC0830 Series Application Hints (Continued)

*TIE TO LOGIC 1 IF NOT NEEDED (SEE SEC. 1.1).
FIGURE 2. Controlling Mutiple DACs

FIGURE 3

The ILE pin is an active high chip select which can be decoded from the address bus as a qualifier for the normal $\overline{C S}$ signal generated during a write operation. This can be used to provide a higher degree of decoding unique control signals for a particular DAC, and thereby create a more efficient addressing scheme.
Another useful application of the ILE pin of each DAC in a multiple DAC system is to tie these inputs together and use this as a control line that can effectively "freeze" the outputs of all the DAC's at their present value. Pulling this line low latches the input register and prevents new data from being written to the DAC. This can be particularly useful in multiprocessing systems to allow a processor other than the
one controlling the DAC's to take over control of the data bus and control lines. If this second system were to use the same addresses as those decoded for DAC control (but for a different purpose) the ILE function would prevent the DAC's from being erroneously altered.
In a "Stand-Alone" system the control signals are generated by discrete logic. In this case double-buffering can be controlled by simply taking $\overline{\text { CS }}$ and $\overline{\text { XFER }}$ to a logic " 0 ", ILE to a logic " 1 " and pulling $\overline{W R_{1}}$ low to load data to the input latch. Pulling $W R_{2}$ low will then update the analog output. A logic " 1 " on either of these lines will prevent the changing of the analog output.

DAC0830 Series Application Hints（Continued）

TL／H／5608－7

$$
\text { ILE = LOGIC " } 1 \text { "; } \overline{\text { WR2 }} \text { and } \overline{\text { XFER }} \text { GROUNDED }
$$

FIGURE 4

1．2 Single－Buffered Operation

In a microprocessor controlled system where maximum data throughput to the DAC is of primary concern，or when only one DAC of several needs to be updated at a time，a single－buffered configuration can be used．One of the two internal registers allows the data to flow through and the other register will serve as the data latch．
Digital signal feedthrough（see Section 1．5）is minimized if the input register is used as the data latch．Timing for this mode is shown in Figure 4.
Single－buffering in a＂stand－alone＂system is achieved by strobing $\overline{W R_{1}}$ low to update the DAC with $\overline{\mathrm{CS}}, \overline{\mathrm{WR}} \mathrm{R}_{2}$ and XFER grounded and ILE tied high．

1．3 Flow－Through Operation

Though primarily designed to provide microprocessor inter－ face compatibility，the MICRO－DAC＇s can easily be config－ ured to allow the analog output to continuously reflect the state of an applied digital input．This is most useful in appli－ cations where the DAC is used in a continuous feedback control loop and is driven by a binary up－down counter，or in function generation circuits where a ROM is continuously providing DAC data．
Simply grounding $\overline{\mathrm{CS}}, \overline{\mathrm{WR}_{1}}, \overline{\mathrm{WR}_{2}}$ ，and $\overline{\mathrm{XFER}}$ and tying ILE high allows both internal registers to follow the applied digi－ tal inputs（flow－through）and directly affect the DAC analog output．

1．4 Control Signal Timing

When interfacing these MICRO－DAC to any microprocessor， there are two important time relationships that must be con－ sidered to insure proper operation．The first is the minimum $\overline{W R}$ strobe pulse width which is specified as 900 ns for all valid operating conditions of supply voltage and ambient temperature，but typically a pulse width of only 180ns is adequate if $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$ DC．A second consideration is that the guaranteed minimum data hold time of 50 ns should
be met or erroneous data can be latched．This hold time is defined as the length of time data must be held valid on the digital inputs after a qualified（via $\overline{\mathrm{CS}}$ ）$\overline{\mathrm{WR}}$ strobe makes a low to high transition to latch the applied data．
If the controlling device or system does not inherently meet these timing specs the DAC can be treated as a slow mem－ ory or peripheral and utilize a technique to extend the write strobe．A simple extension of the write time，by adding a wait state，can simultaneously hold the write strobe active and data valid on the bus to satisfy the minimum WR pulse－ width．If this does not provide a sufficient data hold time at the end of the write cycle，a negative edge triggered one－ shot can be included between the system write strobe and the $\overline{W R}$ pin of the DAC．This is illustrated in Figure 5 for an exemplary system which provides a $250 \mathrm{~ns} \overline{\mathrm{WR}}$ strobe time with a data hold time of less than 10ns．
The proper data set－up time prior to the latching edge（LO to HI transition）of the $\overline{\mathrm{WR}}$ strobe，is insured if the WR pulse－ width is within spec and the data is valid on the bus for the duration of the DAC $\overline{W R}$ strobe．

1．5 Digital Signal Feedthrough

When data is latched in the internal registers，but the digital inputs are changing state，a narrow spike of current may flow out of the current output terminals．This spike is caused by the rapid switching of internal logic gates that are re－ sponding to the input changes．
There are several recommendations to minimize this effect． When latching data in the DAC，always use the input regis－ ter as the latch．Second，reducing the $V_{C C}$ supply for the DAC from +15 V to +5 V offers a factor of 5 improvement in the magnitude of the feedthrough，but at the expense of internal logic switching speed．Finally，increasing C_{C}（Figure 8）to a value consistent with the actual circuit bandwidth requirements can provide a substantial damping effect on any output spikes．

DAC0830 Series Application Hints (Continued)

FIGURE 5. Accommodating a High Speed System

2.0 ANALOG CONSIDERATIONS

The fundamental purpose of any D to A converter is to provide an accurate analog output quantity which is representative of the applied digital word. In the case of the DAC0830, the output, lout1, is a current directly proportional to the product of the applied reference voltage and the digital input word. For application versatility, a second output, lout2, is provided as a current directly proportional to the complement of the digital input. Basically:
lout $^{\prime}=\frac{V_{\text {REF }}}{15 \mathrm{k} \Omega} \times \frac{\text { Digital Input }}{256} ;$
$I_{\text {OUT2 }}=\frac{V_{\text {REF }}}{15 \mathrm{k} \Omega} \times \frac{255-\text { Digital Input }}{256}$
where the digital input is the decimal (base 10) equivalent of the applied 8 -bit binary word (0 to 255), $V_{\text {REF }}$ is the voltage at pin 8 and $15 \mathrm{k} \Omega$ is the nominal value of the internal resistance, R, of the R-2R ladder network (discussed in Section 2.1).

Several factors external to the DAC itself must be considered to maintain analog accuracy and are covered in subsequent sections.

2.1 The Current Switching R-2R Ladder

The analog circuitry, Figure 6, consists of a silicon-chromium (SiCr or Si-chrome) thin film R-2R ladder which is deposited on the surface oxide of the monolithic chip. As a result, there are no parasitic diode problems with the ladder (as there may be with diffused resistors) so the reference voltage, $\mathrm{V}_{\text {REF }}$, can range -10 V to +10 V even if V_{CC} for the device is $5 V_{D C}$.
The digital input code to the DAC simply controls the position of the SPDT current switches and steers the available ladder current to either lout1 or lout2 as determined by the logic input level (" 1 " or " 0 ") respectively, as shown in

Figure 6. The MOS switches operate in the current mode with a small voltage drop across them and can therefore switch currents of either polarity. This is the basis for the 4quadrant multiplying feature of this DAC.

2.2 Basic Unipolar Output Voltage

To maintain linearity of output current with changes in the applied digital code, it is important that the voltages at both of the current output pins be as near ground potential $\left(0 V_{\mathrm{DC}}\right)$ às possible. With $\mathrm{V}_{\mathrm{REF}}=+10 \mathrm{~V}$ every millivolt appearing at either lout1 or lout2 will cause a 0.01% linearity error. In most applications this output current is converted to a voltage by using an op amp as shown in Figure 7.
The inverting input of the op amp is a "virtual ground" created by the feedback from its output through the internal 15 $\mathrm{k} \Omega$ resistor, R_{fb}. All of the output current (determined by the digital input and the reference voltage) will flow through R_{fb} to the output of the amplifier. Two-quadrant operation can be obtained by reversing the polarity of VREF thus causing louts to flow into the DAC and be sourced from the output of the amplifier. The output voltage, in either case, is always equal to lout $1 \times \mathrm{R}_{\mathrm{fb}}$ and is the opposite polarity of the reference voltage.
The reference can be either a stable DC voltage source or an $A C$ signal anywhere in the range from -10 V to +10 V . The DAC can be thought of as a digitally controlled attenuator: the output voltage is always less than or equal to the applied reference voltage. The $\mathrm{V}_{\text {REF }}$ terminal of the device presents a nominal impedance of $15 \mathrm{k} \Omega$ to ground to external circuitry.
Always use the internal R_{fb} resistor to create an output voltage since this resistor matches (and tracks with temperature) the value of the resistors used to generate the output current (louti).

TL/H/5608-9

2.3 Op Amp Considerations

The op amp used in Figure 7 should have offset voltage nulling capability (See Section 2.5).
The selected op amp should have as low a value of input bias current as possible. The product of the bias current times the feedback resistance creates an output voltage error which can be significant in low reference voltage applications. BI-FET op amps are highly recommended for use with these DACs because of their very low input current.
Transient response and settling time of the op amp are important in fast data throughput applications. The largest stability problem is the feedback pole created by the feedback resistance, R_{fb}, and the output capacitance of the DAC. This appears from the op amp output to the (-) input and includes the stray capacitance at this node. Addition of a lead capacitance, C_{C} in Figure 8, greatly reduces overshoot and ringing at the output for a step change in DAC output current.
Finally, the output voltage swing of the amplifier must be greater than $V_{\text {REF }}$ to allow reaching the full scale output voltage. Depending on the loading on the output of the amplifier and the available op amp supply voltages (only ± 12 volts in many development systems), a reference voltage less than 10 volts may be necessary to obtain the full analog output voltage range.

2.4 Bipolar Output Voltage with a Fixed Reference

The addition of a second op amp to the previous circuitry can be used to generate a bipolar output voltage from a fixed reference voltage. This, in effect, gives sign significance to the MSB of the digital input word and allows twoquadrant multiplication of the reference voltage. The polarity of the reference can also be reversed to realize full 4-quadrant multiplication: $\pm \mathrm{V}_{\mathrm{REF}} \times \pm$ Digital Code $= \pm \mathrm{V}_{\text {OUT }}$. This circuit is shown in Figure 9.

This configuration features several improvements over existing circuits for bipolar outputs with other multiplying DACs. Only the offset voltage of amplifier 1 has to be nulled to preserve linearity of the DAC. The offset voltage error of the second op amp (although a constant output voltage error) has no effect on linearity. It should be nulled only if absolute output accuracy is required. Finally, the values of the resistors around the second amplifier do not have to match the internal DAC resistors, they need only to match and temperature track each other. A thin film 4-resistor network available from Beckman Instruments, Inc. (part no. 694-3-R10K-D) is ideally suited for this application. These resistors are matched to 0.1% and exhibit only $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ resistance tracking temperature coefficient. Two of the four available $10 \mathrm{k} \Omega$ resistors can be paralleled to form R in Figure 9 and the other two can be used independently as the resistances labeled 2R.

2.5 Zero Adjustment

For accurate conversions, the input offset voltage of the output amplifier must always be nulled. Amplifier offset errors create an overall degradation of DAC linearity.
The fundamental purpose of zeroing is to make the voltage appearing at the DAC outputs as near $O V_{D C}$ as possible. This is accomplished for the typical DAC - op amp connection (Figure 7) by shorting out R_{fb}, the amplifier feedback resistor, and adjusting the $V_{O S}$ nulling potentiometer of the op amp until the output reads zero volts. This is done, of course, with an applied digital code of all zeros if lOUT1 is driving the op amp (all one's for lout2). The short around R_{fb} is then removed and the converter is zero adjusted.

DAC0830 Series Application Hints (Continued)

OP Amp	$\mathbf{C}_{\mathbf{c}}$	$\mathbf{t}_{\mathbf{s}}$ (O to Full Scale)
LF356	22 pF	$4 \mu \mathrm{~s}$
LF351	22 pF	$5 \mu \mathrm{~s}$
LF357*	10 pF	$2 \mu \mathrm{~s}$

*2.4 k Ω RESISTOR ADDED FROM - INPUT TO GROUND TO INSURE STABILITY

$$
1 \mathrm{LSB}=\frac{\left|\mathrm{V}_{\mathrm{REF}}\right|}{128}
$$

*THESE RESISTORS ARE AVAILABLE FROM BECKMAN INSTRUMENTS, INC. AS THEIR PART NO. 694-3-R10K-D

FIGURE 9

2.6 Full-Scale Adjustment

In the case where the matching of R_{fb} to the R value of the R-2R ladder (typically $\pm 0.2 \%$) is insufficient for full-scale accuracy in a particular application, the $V_{\text {REF }}$ voltage can be adjusted or an external resistor and potentiometer can be added as shown in Figure 10 to provide a full-scale adjustment.
The temperature coefficients of the resistors used for this adjustment are an important concern. To prevent degradation of the gain error temperature coefficient by the external resistors, their temperature coefficients ideally would have to match that of the internal DAC resistors, which is a highly impractical constraint. For the values shown in Figure 10, if the resistor and the potentiometer each had a temperature coefficient of $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum, the overall gain error temperature coefficent would be degraded a maximum of $0.0025 \% /{ }^{\circ} \mathrm{C}$ for an adjustment pot setting of less than 3% of R_{fb}.

2.7 Using the DAC0830 in a Voltage Switching Configuration

The R-2R ladder can also be operated as a voltage switching network. In this mode the ladder is used in an inverted
manner from the standard current switching configuration. The reference voltage is connected to one of the current output terminals (lout1 for true binary digital control, IOUT2 is for complementary binary) and the output voltage is taken from the normal $V_{\text {REF }}$ pin. The converter output is now a voltage in the range from OV to $255 / 256 \mathrm{~V}_{\text {REF }}$ as a function of the applied digital code as shown in Figure 11.

FIGURE 10. Adding Full-Scale Adjustment

DAC0830 Series Application Hints (Continued)

TL/H/5608-12
FIGURE 11. Voltage Mode Switching

This configuration offers several useful application advantages. Since the output is a voltage, an external op amp is not necessarily required but the output impedance of the DAC is fairly high (equal to the specified reference input resistance of $10 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$) so an op amp may be used for buffering purposes. Some of the advantages of this mode are illustrated in Figures 12, 13, 14 and 15.
There are two important things to keep in mind when using this DAC in the voltage switching mode. The applied reference voltage must be positive since there are internal parasitic diodes from ground to the IOUT1 and lout2 terminals which would turn on if the applied reference went negative. There is also a dependence of conversion linearity and

- Voltage switching mode eliminates output signal inversion and therefore a need for a negative power supply.
- Zero code output voltage is limited by the low level output saturation voltage of the op amp. The $2 \mathrm{k} \Omega$ pull-down resistor helps to reduce this voltage.
- $V_{O S}$ of the op amp has no effect on DAC linearity.

FIGURE 12. Single Supply DAC
gain error on the voltage difference between V_{CC} and the voltage applied to the normal current output terminals. This is a result of the voltage drive requirements of the ladder switches. To ensure that all 8 switches turn on sufficiently (so as not to add significant resistance to any leg of the ladder and thereby introduce additional linearity and gain errors) it is recommended that the applied reference voltage be kept less than $+5 \mathrm{~V}_{\mathrm{DC}}$ and V_{CC} be at least 9 V more positive than $V_{\text {REF }}$. These restrictions ensure less than 0.1% linearity and gain error change. Figures 16, 17 and 18 characterize the effects of bringing $V_{\text {REF }}$ and $V_{C C}$ closer together as well as typical temperature performance of this voltage switching configuration.

TL/H/5608-13

- $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}\left(\frac{\mathrm{D}}{128}-1\right)$
- Slewing and settling time for a full scale output change is $\approx 1.8 \mu \mathrm{~s}$

FIGURE 13. Obtaining a Bipolar Output from a Fixed Reference with a Single Op Amp

FIGURE 14. Bipolar Output with Increased Output Voltage Swing

- Only a single +15 V supply required
- Non-interactive full-scale and zero code output adjustments
- $\mathrm{V}_{\text {MAX }}$ and $\mathrm{V}_{\text {MIN }}$ must be $\leq+5 \mathrm{VDC}$ and $\geq 0 \mathrm{~V}$.
- Incremental Output Step $=\frac{1}{256}\left(V_{\text {MAX }}-V_{\text {MIN }}\right)$.
$\bullet_{\text {OUT }}=\frac{D}{256}\left(V_{\text {MAX }}-V_{\text {MIN }}\right)+\frac{255}{256} V_{\text {MIN }}$
FIGURE 15. Single Supply DAC with Level Shift and SpanAdjustable Output

FIGURE 16

FIGURE 17
Note: For these curves, $\mathrm{V}_{\text {REF }}$ is the voltage applied to pin 11 (lout1) with pin 12 (lout2) grounded.

Gain and Linearity Error Variation vs. Reference Voltage

TL/H/5608-15
FIGURE 18

DAC0830 Series Application Hints (Continued)

2.8 Miscellaneous Application Hints

These converters are CMOS products and reasonable care should be exercised in handling them to prevent catastrophic failures due to static discharge.
Conversion accuracy is only as good as the applied reference voltage so providing a stable source over time and temperature changes is an important factor to consider.
A "good" ground is most desirable. A single point ground distribution technique for analog signals and supply returns keeps other devices in a system from affecting the output of the DACs.
During power-up supply voltage sequencing, the -15 V (or -12 V) supply of the op amp may appear first. This will cause the output of the op amp to bias near the negative supply potential. No harm is done to the DAC, however, as the on-chip $15 \mathrm{k} \Omega$ feedback resistor sufficiently limits the current flow from lout1 when this lead is internally clamped to one diode drop below ground.
Careful circuit construction with minimization of lead lengths around the analog circuitry, is a primary concern. Good high frequency supply decoupling will aid in preventing inadvertant noise from appearing on the analog output.

Applications

DAC Controlled Amplifier (Volume Control)

- $V_{\text {OUT }}=\frac{-V_{\text {IN }}(256)}{D}$
- When $D=0$, the amplifier will go open loop and the output will saturate.
- Feedback impedance from the -input to the output varies from $15 \mathrm{k} \Omega$ to ∞ as the input code changes from full-scale to zero.

Overall noise reduction and reference stability is of particular concern when using the higher accuracy versions, the DAC0830 and DAC0831, or their advantages are wasted.

3.0 GENERAL APPLICATION IDEAS

The connections for the control pins of the digital input registers are purposely omitted. Any of the control formats discussed in Section 1 of the accompanying text will work with any of the circuits shown. The method used depends on the overall system provisions and requirements.
The digital input code is referred to as D and represents the decimal equivalent value of the 8 -bit binary input, for example:

$\begin{aligned} & \text { Pin } 13 \\ & \text { MSB } \end{aligned}$		Binary Input				$\begin{array}{r} \text { Pin } 7 \\ \text { LSB } \end{array}$		$\begin{gathered} \text { D } \\ \text { Decimal Equivalent } \end{gathered}$	
1	1	1	1	1	1	1	1		255
1	0	0	0	0	0	0	0		128
0	0	0	1	0	0	0	0		16
0	0	0	0	0	0	1	0		2
0	0	0	0	0	0	0	0		0

Capacitance Multiplier

TL/H/5608-16

- $\mathrm{C}_{\text {EQUIV }}=\mathrm{C}_{1}\left(1+\frac{256}{\mathrm{D}}\right)$
- Maximum voltage across the equivalent capacitance is
limited to $\frac{V_{\text {OMAX (op amp) }}}{1+\frac{256}{D}}$
- C_{2} is used to improve settling time of op amp.

Applications (Continued)

Variable fo, Variable $\mathbf{Q}_{\mathbf{0}}$, Constant BW Bandpass Filter

TL/H/5608-17

$$
\begin{aligned}
& \text { - } f_{O}=\frac{\sqrt{\frac{K D}{256}}}{2 \pi R_{1} C} ; Q_{O}=\sqrt{\frac{K D}{256}} \frac{\left(2 R_{Q}+R_{1}\right)}{R_{Q}(K+1)} ; 3 d b B W=\frac{R_{Q}(K+1)}{2 \pi R_{1} C\left(2 R_{Q}+R_{1}\right)} \\
& \text { where } C_{1}=C_{2}=C ; K=\frac{R_{6}}{R_{5}} \text { and } R_{1}=R \text { of } D A C=15 k \\
& \text { - } H_{O}=1 \text { for } R_{I N}=R_{4}=R_{1} \\
& \text { - Range of fo and } Q \text { is } \approx 16 \text { to } 1 \text { for circuit shown. The } \\
& \text { range can be extended to } 255 \text { to } 1 \text { by replacing } R_{1} \text { with a } \\
& \text { second DAC } 0830 \text { driven by the same digital input word. } \\
& \text { - Maximum fo } \times Q \text { product should be } \leq 200 \mathrm{kHz} \text {. }
\end{aligned}
$$

DAC Controlled Function Generator

TL/H/5608-18

- DAC controls the frequency of sine, square, and triangle outputs.
- $f=\frac{D}{256(20 k) C}$ for $V_{\text {OMAX }}=V_{\text {OMIN }}$ of square wave output and $R_{1}=3 R_{2}$.
- 255 to 1 linear frequency range; oscillator stops with $D=0$
- Trim symmetry and wave-shape for minimum sine wave distortion.

Applications (Continued)

Two Terminal Floating $\mathbf{4}$ to $\mathbf{2 0} \mathbf{~ m A}$ Current Loop Controller

TL/H/5608-19
lout $=V_{R E F}\left[\frac{1}{R_{1}}+\frac{D}{256 R_{f b}}\right]\left[1+\frac{R_{2}}{R_{3}}\right]$

- DAC0830 lineariy controls the current flow from the input terminal to the output terminal to be 4 mA (for $\mathrm{D}=0$) to 19.94 mA (for $\mathrm{D}=255$).
- Circuit operates with a terminal voltage differential of 16 V to 55 V .
- P_{2} adjusts the magnitude of the output current and P_{1} adjusts the zero to full scale range of output current.
- Digital inputs can be supplied from a processor using opto isolators on each input or the DAC latches can flow-through (connect control lines to pins 3 and 10 of the DAC) and the input data can be set by SPST toggle switches to ground (pins 3 and 10).

DAC Controlled Exponential Time Response

- Output responds exponentially to input changes and automatically stops when $V_{\text {OUT }}=V_{\text {IN }}$
- Output time constant is directly proportional to the DAC input code and capacitor C
- Input voltage must be positive (See section 2.7)

Ordering Information

Temperature Range		$0^{\circ} \mathrm{C}$ to $+70^{\circ}$			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Non Linearity	0.05\% FSR	DAC0830LCN	DAC0830LCM	DAC0830LCV	DAC0830LCJ	DAC0830LJ
	0.1\% FSR	DAC0831LCN				
	0.2\% FSR	DAC0832LCN	DAC0832LCM	DAC0832LCV	DAC0832LCJ	DAC0832LJ
Package Outline		N20A-Molded DIP	M20B Small Outline	V20A Chip Carrier	J20A-Ceramic DIP	

DAC0854 Quad 8-Bit Voltage-Output Serial D/A Converter with Readback

General Description

The DAC0854 is a complete quad 8-bit voltage-output digi-tal-to-analog converter that can operate on a single 5 V supply. It includes on-chip output amplifiers, internal voltage reference, and a serial microprocessor interface. By combining in one package the reference, amplifiers, and conversion circuitry for four D/A converters, the DAC0854 minimizes wiring and parts count and is hence ideally suited for applications where cost and board space are of prime concern.
The DAC0854 also has a data readback function, which can be used by the microprocessor to verify that the desired input word has been properly latched into the DAC0854's data registers. The data readback function simplifies the design and reduces the cost of systems which need to verify data integrity.
The logic comprises a MICROWIRETM-compatible serial interface and control circuitry. The interface allows the user to write to any one of the input registers or to all four at once. The latching registers are double-buffered, consisting of 4 separate input registers and 4 DAC registers. Double buffering allows all 4 DAC outputs to be updated simultaneously. The four reference inputs allow the user to configure the system to have a separate output voltage range for each DAC. The output voltage of each DAC can range between 0.3 V and 2.8 V and is a function of $\mathrm{V}_{\text {BIAS }}, \mathrm{V}_{\text {REF, }}$, and the input word.

Features

■ Single +5 V supply operation

- MICROWIRE serial interface allows easy interface to many popular microcontrollers including the COPSTM and HPCTM families of microcontrollers
- Data readback capability
- Output data can be formatted to read back MSB or LSB first
- Versatile logic allows selective or global update of the DACs
- Power fail flag
- Output amplifiers can drive $2 \mathrm{k} \Omega$ load
- Synchronous/asynchronous update of the DAC outputs

Key Specifications

- Guaranteed monotonic over temperature
- Integral linearity error
$\pm 1 / 2$ LSB max
- Output settling time
$2.7 \mu \mathrm{~s}$ max
- Analog output voltage range
0.3 V to 2.8 V
- Supply voltage range
4.5 V to 5.5 V

10 MHz max
95 mW max
$2.65 \mathrm{~V} \pm 2 \%$ max

Applications

. Automatic test equipment
m Industrial process controls

- Automotive controls and diagnostics
- Instrumentation

Connection Diagram

TL/H/11261-1

Top View

Ordering Information

Industrial $\left(-\mathbf{4 0} 0^{\circ} \mathbf{C}<\mathbf{T}_{\mathbf{A}}+\mathbf{8 5}{ }^{\circ} \mathbf{C}\right)$	Package
DAC0854BIN, DAC0854CIN	N20A Molded DIP
DAC0854CIJ	J20A Ceramic DIP
DAC0854BIWM, DAC0854CIWM	M20B Small Outline
Military ($\left.\mathbf{- 5 5 ^ { \circ }} \mathbf{C}<\mathbf{T}_{\mathbf{A}}<+\mathbf{1 2 5}{ }^{\circ} \mathbf{C}\right)$	
DAC0854CMJ/883	J20A Ceramic DIP

Absolute Maximum Ratings (Notes 1 \& 2)	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales	
Note 24)	
Supply Voltage (AV ${ }_{\text {cc }}$, DV	7V
Supply Voltage Difference ($\mathrm{AV}_{C C}-\mathrm{DV}_{C C}$)	c) $\pm 5.5 \mathrm{~V}$
Voltage at Any Pin (Note 3) A	$\begin{array}{r} \mathrm{GND}-0.3 \mathrm{~V} \text { to } \\ \mathrm{AV}_{\mathrm{CC}} / D V_{\mathrm{CC}}+0.3 \mathrm{~V} \end{array}$
Input Current at Any Pin (Note 3)	5 mA
Package Input Current (Note 4)	20 mA
Power Dissipation (Note 5)	105 mW
ESD Susceptibility (Note 6)	1250 V

Soldering Information	
J Package (10 sec.)	$300^{\circ} \mathrm{C}$
N Package (10 sec.)	$260^{\circ} \mathrm{C}$
SO Package	
Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.) (Note 7)	$220^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Ratings (Notes 1 \& 2)	
Supply Voltage	4.5 V to 5.5 V
Supply Voltage Difference (AVCC	$\mathrm{VVCC}_{\text {c }}$ ($\mathrm{IV}^{\text {d }}$
Temperature Range $\quad T_{\text {MIN }}<T_{A}<T_{\text {MAX }}$	
DAC0854BIN, DAC0854CIN,	
DAC0854CIJ, DAC0854BIWM,	
DAC0854CIWM	$-40^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C}$
DAC0854CMJ/883	$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$

Converter Electrical Characteristics

The following specifications apply for $A V_{C C}=D V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (R_{L} is the load resistor on the analog outputs - pins 1, 11, 14, and 19) and $f_{C L K}=10 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for T_{A} $=\mathbf{T}_{\mathbf{J}}$ from $\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {maX }}$. All other limits apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 8)	Limit (Note 9)	Units (Limits)

STATIC CHARACTERISTICS

n	Resolution	$\mathrm{fCLK}=10 \mathrm{MHz}$	8	8	bits
	Monotonicity	(Note 10)	8	8	bits
	Integral Linearity Error DAC0854BIN, DAC0854BIWM DAC0854CIN, DAC0854CIJ, DAC0854CIWM, DAC0854CMJ	(Note 11)		$\begin{aligned} & \pm \mathbf{0 . 5} \\ & \pm \mathbf{1 . 0} \end{aligned}$	$\begin{aligned} & \text { LSB (max) } \\ & \text { LSB (max) } \end{aligned}$
	Differential Linearity Error			± 1.0	LSB (max)
	Fullscale Error	(Note 12)		± 35	mV
	Fullscale Error Tempco	(Note 13)	-30		ppm $/{ }^{\circ} \mathrm{C}$
	Zero Error	(Note 14)		± 35	mV
	Zero Error Tempco	(Note 13)	-30		ppm/ ${ }^{\circ} \mathrm{C}$
	Power Supply Sensitivity	(Note 15)	-42	-34	dB (max)

DYNAMIC CHARACTERISTICS

$\mathrm{t}_{\mathrm{s}}+$	Positive Voltage Output Settling Time	(Note 16) $C_{L}=200 \mathrm{pF}$	1.5	2.1	$\mu \mathrm{S}$
$t_{\text {s }}$ -	Negative Voltage Output Settling Time	(Note 16) $\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	1.8	2.7	$\mu \mathrm{S}$
	Digital Crosstalk	(Note 17)	1.8		$m V_{p-p}$
	Digital Feedthrough	(Note 18)	8.5		$m V_{p-p}$
	Clock Feedthrough	(Note 19)	3.3		$m V_{p-p}$
	Channel-to-Channel Isolation	(Note 20)	-78		dB
	Glitch Energy	(Note 21)	7		$n \mathrm{~V}-\mathrm{s}$
	Peak Value of Largest Glitch		38		mV
PSRR	Power Supply Rejection Ratio	(Note 22)	-49		dB

Converter Electrical Characteristics (Continued)

The following specifications apply for $A V_{C C}=D V_{C C}=5 \mathrm{~V}, V_{R E F}=2.65 \mathrm{~V}, \mathrm{~V}_{B I A S}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (R_{L} is the load resistor on the analog outputs - pins $1,11,14$, and 19) and $f_{C L K}=10 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}$ $=\mathbf{T}_{\mathbf{J}}$ from $\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$. All other limits apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 3)	Limit (Note 4)	Units (Limits)

DIGITAL AND DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\text {IN }}(1)$	Logical '1" Input Voltage	$\mathrm{AV}_{\mathrm{CC}}=\mathrm{DV}_{C C}=5.5 \mathrm{~V}$		2.0	$V(\min)$
V IN(0)	Logical " 0 " Input Voltage	$\mathrm{AV}_{\mathrm{CC}}=\mathrm{DV}_{\mathrm{CC}}=4.5 \mathrm{~V}$		0.8	V (max)
I/L	Digital Input Leakage Current		1	5	$\mu \mathrm{A}$ (max)
$\mathrm{C}_{\text {IN }}$	Input Capacitance		4		pF
COUT	Output Capacitance		5		pF
V OUT(1)	Logical "1" Output Voltage	$\mathrm{I}_{\text {SOURCE }}=0.8 \mathrm{~mA}$		2.4	$V(\min)$
$\mathrm{V}_{\text {OUT(0) }}$	Logical " 0 " Output Voltage	$\mathrm{I}_{\text {SINK }}=3.2 \mathrm{~mA}$		0.4	V (max)
VINT	Interrupt Pin Output Voltage	$10 \mathrm{k} \Omega$ Pullup		0.4	V (max)
Is	Supply Current	Outputs Unloaded	14	19	mA

REFERENCE INPUT CHARACTERISTICS

$V_{\text {REF }}$	Input Voltage Range		$0-2.75$		V
$\mathrm{R}_{\text {REF }}$	Input Resistance		7	$\mathbf{4}$ $\mathbf{1 0}$	$\mathrm{k} \Omega(\min)$ $\mathrm{k} \Omega(\mathrm{max})$
$\mathrm{C}_{\text {REF }}$	Input Capacitance	Full-Scale Data Input	40		pF

VBIAS INPUT CHARACTERISTICS

$V_{\text {BIAS }}$	$V_{\text {BIAS }}$ Input Voltage Range		$0.3-1.4$		V
	Input Leakage		1		$\mu \mathrm{~A}$
$\mathrm{C}_{\text {BIAS }}$	Input Capacitance		9		pF

BANDGAP REFERENCE CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=220 \mu \mathrm{~F}$)

$\mathrm{V}_{\text {REF }} \mathrm{OUT}$	Output Voltage			$\mathbf{2 . 6 5} \pm \mathbf{2 \%}$	V
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{T}$	Tempco	(Note 23)	22		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Line Regulation	$4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=4 \mathrm{~mA}$	2	$\mathbf{5}$	mV
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{I}_{\mathrm{L}}$	Load Regulation	$0<\mathrm{I}_{\mathrm{L}}<4 \mathrm{~mA}$	2	$\mathbf{6}$	mV
		$0<\mathrm{I}_{\mathrm{L}}<4 \mathrm{~mA} ; \mathrm{CMJ}$ Suffix	2	$\mathbf{1 5}$	mV
		$-1<\mathrm{I}_{\mathrm{L}}<0 \mathrm{~mA}$	2.5		mV
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{\text {REF }} \mathrm{OUT}=0 \mathrm{~V}$	12		mA

AC ELECTRICAL CHARACTERISTICS

$t_{D S}$	Data Setup Time			$\mathbf{1 0}$	$\mathrm{ns}(\mathrm{min})$
t_{DH}	Data Hold Time			$\mathbf{0}$	$\mathrm{ns}(\mathrm{min})$
t_{CS}	Control Setup Time			$\mathbf{1 5}$	$\mathrm{ns}(\mathrm{min})$
t_{CH}	Control Hold Time			$\mathbf{0}$	$\mathrm{ns}(\mathrm{min})$
$\mathrm{t}_{\mathrm{MIN}}$	Clock Frequency			$\mathbf{1 0}$	$\mathrm{MHz}(\mathrm{max})$
t_{H}	Minimum Clock High Time			$\mathbf{2 0}$	$\mathrm{ns}(\mathrm{min})$
t_{L}	Minimum Clock Low Time		$\mathbf{4 0}$	$\mathrm{ns}(\mathrm{min})$	

Converter Electrical Characteristics (Continued)

The following specifications apply for $A V_{C C}=D V_{C C}=5 V, V_{R E F}=2.65 \mathrm{~V}, V_{B I A S}=1.4 \mathrm{~V}, R_{L}=2 \mathrm{k} \Omega\left(R_{L}\right.$ is the load resistor on the analog outputs - pins 1, 11, 14, and 19) and $f_{C L K}=10 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\mathbf{A}}$ $=\mathbf{T}_{\mathbf{J}}$ from $\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {MAX }}$. All other limits apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 3)	Limit (Note 4)	Units (Limits)
AC ELECTRICAL CHARACTERISTICS (Continued)					
$\mathrm{t}_{\mathrm{CZ} 1}$	Output Hi-Z to Valid 1			37	ns (max)
tczo	Output Hi-Z to Valid 0			42	ns (max)
$\mathrm{t}_{1 \mathrm{H}}$	$\overline{\mathrm{CS}}$ to Output Hi-Z	$10 \mathrm{k} \Omega$ with 60 pF		130	ns (max)
t_{OH}	$\overline{\mathrm{CS}}$ to Output Hi-Z	$10 \mathrm{k} \Omega$ with 60 pF		117	ns (max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional. These ratings do not guarantee specific performance limits, however. For guaranteed specifications and test conditions, see the Converter Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to ground, unless otherwise specified.
Note 3: When the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ at any pin exceeds the power supply rails $\left(\mathrm{V}_{\mathrm{IN}}<\mathrm{GND}\right.$ or $\mathrm{V}_{\text {IN }}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 5 mA or less.
Note 4: The sum of the currents at all pins that are driven beyond the power supply voltages should not exceed 20 mA .
Note 5: The maximum power dissipation must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\mathrm{Jmax}}$ (maximum junction temperature), © JA_{A} (package junction to ambient thermal resistance), and T_{A} (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{D \max }=\left(T_{J \max }-T_{A}\right) / \Theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. The table below details $T_{J m a x}$ and $\Theta_{J A}$ for the various packages and versions of the DAC0854.

Part Number	$\mathbf{T}_{\text {Jmax }}\left({ }^{\circ} \mathbf{C}\right)$	$\Theta_{\text {JA }}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$
DAC0854BIN, DAC0854CIN	125	46
DAC0854BIJ, DAC0854CIJ	125	53
DAC0854BIWM, DAC0854CIWM	125	64
DAC0854CMJ/883	150	53

Note 6: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: See AN450 "Surface Mounting Methods and Their Effect on Production Reliability" of the section titled "Surface Mount" found in any current Linear Databook for other methods of soldering surface mount devices.
Note 8: Typicals are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 9: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 10: A monotonicity of 8 bits for the DAC0854 means that the output voltage changes in the same direction (or remains constant) for each increase in the input code.
Note 11: Integral linearity error is the maximum deviation of the output from the line drawn between zero and full-scale (excluding the effects of zero error and fullscale error).
Note 12: Full-scale error is measured as the deviation from the ideal 2.800 V full-scale output when $\mathrm{V}_{\mathrm{REF}}=2.650 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BIAS}}=1.400 \mathrm{~V}$.
Note 13: Full-scale error tempco and zero error tempco are defined by the following equation:

$$
\text { Error tempco }=\left[\frac{\operatorname{Error}\left(\mathrm{T}_{\text {MAX }}\right)-\operatorname{Error}\left(\mathrm{T}_{\text {MIN }}\right)}{\mathrm{V}_{\text {SPAN }}}\right]\left[\frac{10^{6}}{\mathrm{~T}_{\text {MAX }}-\mathrm{T}_{\text {MIN }}}\right]
$$

where Error ($\mathrm{T}_{\text {MAX }}$) is the zero error or full-scale error at $\mathrm{T}_{\text {MAX }}$ (in volts), and Error ($\mathrm{T}_{\text {MIN }}$) is the zero error or full-scale error at $\mathrm{T}_{\text {MIN }}$ (in volts); $\mathrm{V}_{\text {SPAN }}$ is the output voltage span of the DAC0854, which depends on $\mathrm{V}_{\text {BIAS }}$ and $\mathrm{V}_{\text {REF }}$.
Note 14: Zero error is measured as the deviation from the ideal 0.310 V output when $\mathrm{V}_{\mathrm{REF}}=2.650 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=1.400 \mathrm{~V}$, and the digital input word is all zeros.
Note 15: Power Supply Sensitivity is the maximum change in the offset error or the full-scale error when the power supply differs from its optimum 5 V by up to $0.25 \mathrm{~V}(5 \%)$. The load resistor $R_{L}=5 \mathrm{k} \Omega$.
Note 16: Positive or negative settling time is defined as the time taken for the output of the DAC to settle to its final full-scale or zero output to within ± 0.5 LSB. This time shall be referenced to the 50% point of the positive edge of $\overline{\mathrm{CS}}$, which initiates the update of the analog outputs.
Note 17: Digital crosstalk is the glitch measured on the output of one DAC while applying an all Os to all 1s transition at the input of the other DACs.
Note 18: All DACs have full-scale outputs latched and DI is clocked with no update of the DAC outputs. The glitch is then measured on the DAC outputs.
Note 19: Clock feedthrough is measured for each DAC with its output at full-scale. The serial clock is then applied to the DAC at a frequency of 10 MHz and the glitch on each DAC full-scale output is measured.
Note 20: Channel-to-channel isolation is a measure of the effect of a change in one DAC's output on the output of another DAC. The VREF of the first DAC is varied between 1.4 V and 2.65 V at a frequency of 15 kHz while the change in full-scale output of the second DAC is measured. The first DAC is loaded with all Os.
Note 21: Glitch energy is the difference between the positive and negative glitch areas at the output of the DAC when a 1 LSB digital input code change is applied to the input. The glitch energy will have its largest value at one of the three major transitions. The peak value of the maximum glitch is separately specified.
Note 22: Power Supply Rejection Ratio is measured by varying $A V_{C C}=D V_{C C}$ between 4.75 V and 5.25 V with a frequency of 10 kHz and measuring the proportion of this signal imposed on a full-scale output of the DAC under consideration.
Note 23: The bandgap reference tempco is defined by the following equation:

$$
\text { Tempco }=\left[\frac{V_{\text {REF }}\left(T_{\text {MAX }}\right)-V_{\text {REF }}\left(T_{\text {MIN }}\right)}{V_{\text {REF }}\left(T_{\text {ROOM }}\right)}\right]\left[\frac{106}{T_{\text {MAX }}-T_{\text {MIN }}}\right]
$$

where $T_{\text {ROOM }}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}\left(T_{\text {MAX }}\right)$ is the reference output at $T_{\text {MAX }}$, and similarly for $V_{\text {REF }}$ ($T_{\text {MIN }}$) and $V_{\text {REF }}\left(T_{\text {ROOM }}\right)$.
Note 24: A Military RETS specification is available upon request.

Typical Converter Performance Characteristics

Zero Error vs Temperature

Typical Reference Performance Characterisर̌ics

TL/H/11261-3

TL/H/11261-4

TRI-STATE Test Circuits and Waveforms

TL/H/11261-5

TL/H/11261-7
Timing Waveforms

TL/H/11261-10

Timing Diagrams

Instruction Byte \longrightarrow
$V_{\text {OUT }}$

Settled to $1 / 2$ LSB
TL/H/11261-11
FIGURE 1. Write to One DAC with Update of Output ($\overline{A U}=1$)

Timing Diagrams (Continued)

TL/H/11261-12

* DACs are written to LSB first.

DAC1 is written to first, then DACs 2,3 , and 4.
FIGURE 2. Write to All DACs with Update of Outputs ($\overline{\mathrm{AU}}=1$)

DI

FIGURE 3. Read One DAC, DO Changes on Falling Edge, DO LSB First ($\overline{\mathrm{AU}}=1$)

*DAC1 is read first, then DACs 2, 3, and 4.
FIGURE 4. Read All DACs, DO LSB First, DO Changes on Falling Edge ($\overline{\mathrm{AU}}=1$)

Block Diagram

Pin Description

Vouti (19) The voltage output connections of the
VOUT2(1) four DACS. These provide output
$V_{\text {OUT3 }}(14) \quad$ voltages in the range $0.3 \mathrm{~V}-2.8 \mathrm{~V}$.
VOUT4(11)
$\mathrm{V}_{\text {REF }}$ OUT(16)
The internal voltage reference output. The output of the reference is 2.65 V $\pm 2 \%$. This pin should be bypassed with a $220 \mu \mathrm{~F}$ capacitor.
$\mathrm{V}_{\text {BIAS1 }}(2) \quad \mathrm{V}_{\text {BIAS1 }}$ is connected to the non-inverting
$V_{B I A S 2}{ }^{(13)}$ inputs of output amplifiers 1 and 2 , thereby setting the virtual ground voltage for DAC's 1 and 2, while $V_{\text {BIAS2 }}$ performs this function for DAC's 3 and 4. The allowed range is $0.3 \mathrm{~V}-1.4 \mathrm{~V}$.
GND(7) The system ground pin. Connect to clean ground point.
$\mathrm{DV}_{\mathrm{CC}}(10) \quad$ The digital and analog power supply
$A V_{C C}(17) \quad$ pins. The power supply range of the DAC0854 is $4.5 \mathrm{~V}-5.5 \mathrm{~V}$. To guarantee accuracy, it is required that the $\mathrm{AV}_{\mathrm{CC}}$ and DV ${ }_{C C}$ pins be bypassed separately with bypass capacitors of $10 \mu \mathrm{~F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic.

CLK(5)

$$
\mathrm{DI}(9)
$$

DO(6)
$\overline{\mathrm{INT}}(8)$

When this pin is taken low, all DAC outputs will be asynchronously updated. $\overline{C S}$ must be held high during the update.
The voltage reference inputs for the four DACs. The allowed range is $0 \mathrm{~V}-2.75 \mathrm{~V}$.

The Chip Select control input. This input is active low.
The external clock input pin.
The serial data input. The data is clocked in LSB first. Preceding the data byte are 4 or 6 bits of instructions.
The serial data output. The data can be clocked out either MSB or LSB first, and on either the positive or negative edge of the clock.
The power interrupt output. On an interruption of the power supply, this pin goes low. Since this pin has an open drain output, a $10 \mathrm{k} \Omega$ pull-up resistor must be connected to the supply.

Applications Information
 FUNCTIONAL DESCRIPTION

The DAC0854 is a monolithic quad 8-bit digital-to-analog converter that is designed to operate on a single 5 V supply. Each of the four units is comprised of an input register, a DAC register, a shift register, a current output DAC, and an output amplifier. In addition, the DAC0854 has an onboard bandgap reference and a logic unit which controls the internal operation of the DAC0854 and interfaces it to microprocessors.
Each of the four internal 8-bit DACs uses a modified R-2R ladder to effect the digital-to-analog conversion (Figure 5). The resistances corresponding to the 2 most significant bits are segmented to reduce glitch energy and to improve matching. The bottom of the ladder has been modified so that the voltage across the LSB resistor is much larger than the input offset voltage of the buffer amplifier. The input digital code determines the state of the switches in the ladder network. The sum of currents lout1 and lout2 is fixed and is given by

The current output lout2 is applied to the internal output amplifier and converted to a voltage. The output voltage of each DAC is a function of $\mathrm{V}_{\text {BIAS }}, \mathrm{V}_{\text {REF }}$, and the digital input word, and is given by
$V_{\text {OUT }}=2\left(V_{\text {REF }}-V_{\text {BIAS }}\right) \frac{\text { DATA }}{256}+\frac{511}{128} V_{\text {BIAS }}-\frac{255}{128} V_{\text {REF }}$
The output voltage range for each DAC is $0.3 \mathrm{~V}-2.8 \mathrm{~V}$. This range can be achieved by using the internal 2.65 V reference and a voltage divider network which provides a $V_{\text {BIAS }}$ of 1.40 V (Figure 6). In this case the DAC transfer function is

$$
V_{\text {OUT }}=2.5 \frac{(\text { DATA })}{256}+0.310
$$

The output impedance of any external reference that is used will affect the accuracy of the conversion. In order that this error be less than $1 / 2$ LSB, the output impedance of the external reference must be less than 7.8Ω.

$$
\mathrm{l}_{\mathrm{OUT}}+\mathrm{l}_{\text {OUT2 }}=\left(\frac{\mathrm{V}_{\text {REF }}-\mathrm{V}_{\text {BIAS }}}{R}\right) \frac{255}{256}
$$

TL/H/11261-16
FIGURE 5. Equivalent Circuit of R-2R Ladder and Output Amplifier

FIGURE 6. Generating a $\mathrm{V}_{\text {BIAS }}=1.40 \mathrm{~V}$ from the Internal Reference

Digital Interface

The DAC0854 has two interface modes: a WRITE mode and a READ mode. The WRITE mode is used to convert an 8 -bit digital input word into a voltage. The READ mode is used to read back the digital data that was sent to one or all of the DACs. These modes are selected by the appropriate setting of the RD/WR bit, which is part of the instruction byte. The instruction byte precedes the data byte at the DI pin. In both modes, a high level on the Start Bit (SB) alerts the DAC to respond to the remainder of the input stream.

Table I lists the instruction set for the WRITE mode when writing to only a single DAC, and Table II lists the instruction set for a global write. The DACs are always written to LSB first. All DACs will be written to if the global bit (G) is high; DAC 1 is written to first, then DACs 2,3 and 4 (in that order). If the update bit is high, then the DAC output will be updated on the rising edge of $\overline{\mathrm{CS}}$; otherwise, the new data byte will be placed only in the input register. Chip Select ($\overline{\mathrm{CS}}$) must remain low for at least one clock cycle after the last data bit has been entered. (See Figures 1 and 2)

TABLE I. WRITE Mode Instruction Set (Writing to a Single DAC)

SB	RD/WR	G	U	A1	A0	Description	
Bit \# 1	Bit \#2	Bit \# 3	Bit \#4	Bit \#5	Bit \#6		
1	0	0	0	0	0	Write DAC 1, no update of DAC outputs	
1	0	0	0	0	1	Write DAC 2, no update of DAC outputs	
1	0	0	0	1	0	Write DAC 3, no update of DAC outputs	
1	0	0	0	1	1	Write DAC 4, no update of DAC outputs	
1	0	0	1	0	0	Write DAC 1, update DAC 1 on $\overline{\mathrm{CS}}$ rising edge	
1	0	0	1	0	1	Write DAC 2, update DAC 2 on $\overline{\mathrm{CS}}$ rising edge	
1	0	0	1	1	0	Write DAC 3, update DAC 3 on $\overline{\mathrm{CS}}$ rising edge	
1	0	0	1	1	1	Write DAC 4, update DAC 4 on $\overline{\mathrm{CS}}$ rising edge	

TABLE II. WRITE Mode Instruction Set (Writing to all DACs)

SB	RD/WR	\mathbf{G}	\mathbf{U}	Description
Bit \# 1	Bit \#2	Bit \#3	Bit \#4	
1	0	1	0	Write all DACs, no update of outputs
1	0	1	1	Write all DACs, update all outputs on $\overline{\mathrm{CS}}$ rising edge

Digital Interface (Continued)

Table III lists the instruction set for the READ mode. By the appropriate setting of the global (G) and address (A1 and AO) bits, one can select a specific DAC to be read, or one can read all the DACs in succession, starting with DAC 1. The R/F bit determines whether the data changes on the rising or the falling edge of the system clock. With the R/F bit high, the data changes on the rising edge that occurs $11 / 2$ clock cycles after the end of the instruction byte. With the R / \bar{F} bit low, the data changes on the falling edge that oc-
curs 1 clock cycle after the end of the instruction byte. One can choose to read the data back MSB first or LSB first by setting the M / \bar{L} bit. (See Figures 3 and 4)
An asynchronous update of all the DAC outputs can be achieved by taking $\overline{A U}$ low. The contents of the input registers are loaded into the DAC registers, with the update occurring on the falling edge of $\overline{\mathrm{AU}} . \overline{\mathrm{CS}}$ must be held high during an asynchronous update.
All DAC registers will have their contents reset to all zeros on power up.

TABLE III. READ MODE Instruction Set

SB	RD/ $\overline{W R}$	G	R/F'	M/L	A1	A0	
Bit \# 1	Bit \# 2	Bit \#3	Bit \# 4	Bit \# 5	Bit \# 6	Bit \# 7	
1	1	0	0	0	0	0	Read DAC 1, LSB first, data changes on the falling edge
1	1	0	0	0	0	1	Read DAC 2, LSB first, data changes on the falling edge
1	1	0	0	0	1	0	Read DAC 3, LSB first, data changes on the falling edge
1	1	0	0	0	1	1	Read DAC 4, LSB first, data changes on the falling edge
1	1	0	0	1	0	0	Read DAC 1, MSB first, data changes on the falling edge
1	1	0	0	1	0	1	Read DAC 2, MSB first, data changes on the falling edge
1	1	0	0	1	1	0	Read DAC 3, MSB first, data changes on the falling edge
1	1	0	0	1	1	1	Read DAC 4, MSB first, data changes on the falling edge
1	1	0	1	0	0	0	Read DAC 1, LSB first, data changes on the rising edge
1	1	0	1	0	0	1	Read DAC 2, LSB first, data changes on the rising edge
1	1	0	1	0	1	0	Read DAC 3, LSB first, data changes on the rising edge
1	1	0	1	0	1	1	Read DAC 4, LSB first, data changes on the rising edge
1	1	0	1	1	0	0	Read DAC 1, MSB first, data changes on the rising edge
1	1	0	1	1	0	1	Read DAC 2, MSB first, data changes on the rising edge
1	1	0	1	1	1	0	Read DAC 3, MSB first, data changes on the rising edge
1	1	0	1	1	1	1	Read DAC 4, MSB first, data changes on the rising edge
1	1	1	0	0	1	0	Read all DACs, LSB first, data changes on the falling edge
1	1	1	0	1	1	0	Read all DACs, MSB first, data changes on the falling edge
1	1	1	1	0	1	0	Read all DACs, LSB first, data changes on the rising edge
1	1	1	1	1	1	0	Read all DACs, MSB first, data changes on the rising edge

Power Fail Function

If a power failure occurs on the system using the DAC0854 then the INT pin will be pulled low on the next power-up cycle. To force this output high again and reset this flag, the $\overline{C S}$ pin will have to be brought low. When this is done the $\mathbb{N T}$ output will be pulled high again via an external $10 \mathrm{k} \Omega$ pull-up resistor. This feature may be used by the microprocessor to discard data whose integrity is in question.

Power Supplies

The DAC0854 is designed to operate from a +5 V (nominal) supply. There are two supply pins, $\mathrm{AV}_{\mathrm{CC}}$ and $D V_{\mathrm{CC}}$. These pins allow separate external bypass capacitors for the analog and digital portions of the circuit. To guarantee accurate conversions, the two supply pins should each be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor.

FIGURE 7. Trimming the Offset of a 5V Op Amp Biased at Mid Supply

FIGURE 8. Trimming the Offset of a Dual Supply Op Amp Biased at Ground

TL/H/11261-20
FIGURE 9. Bringing the Output Range Down to Ground

DAC0890
 Dual 8-bič μ P-Compaitibie Digitai-Ao-Analog Converter

General Description

The DAC0890 is a complete dual 8-bit voltage output digital-to-analog converter that can operate on a single 5 V supply. It includes on-chip output amplifiers, precision bandgap voltage reference, and full microprocessor interface.
Each DAC0890 output amplifier has two externally selectable output ranges, 0 V to 2.55 V and OV to 10.2 V . The amplifiers are internally trimmed for offset and full-scale accuracy and therefore require no external user trims.
The DAC0890 is supplied in 20-pin ceramic DIP package.

Features

m Two 8-bit voltage output DACs
回 4.75 V to 16.5 V single operation

Block Diagram

Ordering Information

Industrial $\left(-40^{\circ} \mathrm{C} \leq \mathbf{T}_{\mathbf{A}} \leq+85^{\circ} \mathrm{C}\right)$	Package
DAC0890CIJ	J20A Cerdip

- Guaranteed monotonic over temperature
- Internal precision bandgap reference
- Two calibrated output ranges; 2.55 V and 10.2 V

ㅁ $2 \mu \mathrm{~s}$ settling time for full-scale output change

- No external trims
- Microprocessor interface

Applications

- Industrial processing controls
\square Automotive controls
\square Disk drive motor controls
\square Automatic test equipment

Connection Diagram

Dual-In-Line Package

Soldering Information J package (10 sec.)
$300^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Junction Temperature (Note 5)
Operating Ratings
(Notes 1 \& 2)

Temperature Range
$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ DAC0890CIJ

$$
-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}
$$

Positive Supply Voltage, V^{+}

Electrical Characteristics The following specifications apply for $\mathrm{V}+=+5 \mathrm{~V}$ and $\mathrm{V}+=+15 \mathrm{~V}$ and AGND $=$ DGND $=0 \mathrm{~V}$, unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units
	Resolution			8	Bits(min)
	Monotonicity			8	Bit(min)
	Integral Linearity Error		± 0.16	± 0.5	LSB(min)
	Fullscale Error			$\pm 1.5 / \pm 2.5$	LSB(max)
	Zero Error			$\pm 1.0 / \pm 2.0$	LSB(max)
	Full Scale DAC-to-DAC Tracking (Note 9)		± 0.25		LSB
	Analog Crosstalk (Note 10)	$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V}, 10.2 \mathrm{~V} \text { range } \\ & \mathrm{V}+=5 \mathrm{~V}, 2.55 \mathrm{~V} \text { range } \end{aligned}$	$\begin{aligned} & -74 \\ & -66 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	Glitch Energy (Note 11)		45		V-ns
	Digital Feedthrough (Note 12)		60		V-ns
ts	Positive Output Settling Time (Note 13)	$\begin{aligned} & \mathrm{C}_{\text {LOAD }} \leq 500 \mathrm{pF} \\ & \mathrm{C}_{\text {LOAD }} \leq 1000 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
10	Output Current Drive Capability	(Note 14)	8	5/3.5	mA(min)
ISC	Output Short Circuit Current (Note 15)	$V^{+}=15 \mathrm{~V}$	20		mA
PSRR	Power Supply Rejection Ratio (Note 16)	$\begin{aligned} & \mathrm{f}<30 \mathrm{~Hz} \\ & 10.2 \mathrm{~V} \text { range } \\ & 13.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 16.5 \mathrm{~V} \end{aligned}$	7	15	ppm/\% (max)
		2.55 V range $\begin{aligned} & 13.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 16.5 \mathrm{~V} \\ & 4.75 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5.25 \mathrm{~V} \\ & 4.75 \mathrm{~V} \leq \mathrm{V}^{+} \leq 16.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 59 \\ & 20 \end{aligned}$	ppm/\% (max) ppm/\% (max) ppm/\%
I_{S}	Supply Current	All Inputs Low $\begin{aligned} & V^{+}=16.5 \\ & V^{+}=4.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 23 \end{aligned}$	30/35	$\begin{gathered} \mathrm{mA}(\max) \\ \mathrm{mA} \end{gathered}$
VILD	Data Logic Low Threshold			0.8	V (max)
$\mathrm{V}_{\text {IHD }}$	Data Logic High Threshold			2.0	V (min)
VILC	Control Logic Low Threshold			0.8	V (max)

Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}$ and $\mathrm{V}^{+}=+15 \mathrm{~V}$ and $\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$, unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units
$\mathrm{V}_{\mathrm{IHC}}$	Control Logic High Threshold			$\mathbf{2 . 2}$	$\mathrm{V}(\mathrm{min})$
	Digital Input Current	(Note 17)	2.2	$\mathbf{2 5}$	$\mu \mathrm{~A}(\mathrm{max})$
t_{WR}	Write Time		18	40	$\mathrm{~ns}(\mathrm{~min})$
t_{DS}	Data Setup Time		18	35	$\mathrm{~ns}(\mathrm{~min})$
t_{DH}	Data Hold Time		3		$\mathrm{~ns}(\mathrm{max})$
t_{CS}	Control Setup Time		18	40	$\mathrm{~ns}(\min)$
t_{CH}	Control Hold Time			$\mathbf{0}$	$\mathrm{ns}(\mathrm{max})$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings. Operating Ratings indicate conditions for which the device is functional, but do not guarantee performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to AGND, unless otherwise specified.
Note 3: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supply rails ($V_{\mathbb{I N}}<A G N D$ or $\left.V_{\mathbb{I N}}>V^{+}\right)$the absolute value of current at that pin should be limited to 5 mA or less.
Note 4: The sum of the currents at all pins that are driven beyond the power supply voltages should not exceed 20 mA .
Note 5: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{\mathrm{JMAX}}-\mathrm{T}_{A}\right) / \theta_{\mathrm{JA}}$ or the number given in the Absolute Maximum Ratings, whichever is lower. The $\mathrm{T}_{\mathrm{JMAX}}\left({ }^{\circ} \mathrm{C}\right)$ and $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ for the DAC0890CIJ are $125^{\circ} \mathrm{C}$ and $53^{\circ} \mathrm{C} / \mathrm{W}$, respectively.

Part Number	$\mathrm{T}_{\text {JMAX }}\left({ }^{\circ} \mathrm{C}\right)$	$\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
DAC0890CIJ	125	53

Note 6: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: Typicals are at $25^{\circ} \mathrm{C}$, unless otherwise specified, and represent the most likely parametric norm.
Note 8: Guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 9: Full Scale DAC-to-DAC Tracking is defined as the change in the voltage difference between the full scale output levels of DAC1 and DAC2. The result is expressed in LSBs and it referred to the full-scale voltage difference at $25^{\circ} \mathrm{C}$.
Note 10: Analog Crosstalk is a measure of the change in one DAC's full scale output voltage as the second DAC's output voltage changes value. It is measured as the voltage change in one DAC's full scale output voltage divided by the voltage range through which the second DAC's output has changed (zero to full scale). This ratio is then expressed in dB.
Note 11: Glitch Energy is a worst case measurement, over the entire input code range, of transients that occur when changing code. The positive and negative areas of the transient waveforms are summed together to obtain the value listed.
Note 12: Digital Feedthrough is measured with both DAC outputs latched at full scale and a $2 \mathrm{~ns}, 5 \mathrm{~V}$ step applied to all 8 data inputs. This gives the worst case digital feedthrough for the DAC0890.
Note 13: Settling Time is specified for a positive full scale step to $\pm 1 / 2$ LSB. Settling time for negative steps will be slower but may be improved with an external pull-down resistor. Negative settling time to $\pm 1 / 2 \mathrm{LSB}$ can be calculated for each range where $\mathrm{t}_{\mathrm{S}}=6.23\left(\mathrm{C}_{\mathrm{LOAD}}\right)\left(\mathrm{R}_{\mathrm{LOAD}} / 10 \mathrm{k} \Omega\right)$ for the high range and $\mathrm{t}_{\mathrm{S}}=6.23$ ($\mathrm{C}_{\text {LOAD }}$) ($\mathrm{R}_{\text {LOAD }} / 2.5 \mathrm{k} \Omega$) for the low range.
Note 14: Output Current Drive Capability is the minimum current that can be sourced by the output amplifiers with less than $1 / 2$ LSB reduction in full scale. Current sinking capability is provided by a passive internal resistance of $10 \mathrm{k} \Omega$ in the high range and $2.5 \mathrm{k} \Omega$ in the low range.
Note 15: Output Short Circuit Current is measured with the output at full-scale and shorted to AGND.
Note 16: Power Supply Rejection Ratio is a measure of how much the output voltage changes (in parts-per-million) per change (in percent) in the power supply voltage.
Note 17: Digital Input Current is measured with $O V$ and $V+$ input levels. The limit specified is the higher of these two measurements.

Typical Performance Characteristics

Fullscale Dac to Dac Tracking vs Temperature

Data Threshold
vs Temperature

Power Supply Rejection vs Temperature

Control Threshold vs Temperature

Typical Performance Characteristics

Minimum Supply Voltage vs Temperature （10．2V Range）

Short Circuit Current vs Temperature

Minimum Supply Voltage vs Temperature （2．55V Range）

Power Supply Rejection vs Frequency

Digital Input Current vs Temperature

Timing Waveforms

TL/H/10592-5

Connection Diagram

\author{

Dual-In-Line Package
 (LSB)
 |) $\mathrm{DBO}-1$ | \checkmark | 20 | - ${ }^{+}$ |
| :---: | :---: | :---: | :---: |
| D81-2 | | 19 | -SENSE 1 |
| D82-3 | | 18 | - $\mathrm{V}_{\text {OUT } 1}$ |
| D83-4 | | 17 | - SELECT 1 |
| D84-5 | | 16 | - AGND |
| D85-6 | DAC0890 | 15 | -SELECT 2 |
| D86-7 | | 14 | - $\mathrm{V}_{\text {OUT } 2}$ |
|) $\mathrm{DB7}$-8 | | 13 | -SENSE 2 |
| $\overline{W R}-9$ | | 12 | -DGND |
| $\overline{\mathrm{CS1}}-10$ | | 11 | - $\overline{\mathrm{CS} 2}$ |

Pin Description

DB0-DB7 (1-8) These pins are data inputs for each of the internal 8 -bit DACs. DBO is the least-sig-nificant-bit.
$\overline{W R}$ (9) This is the WRITE command input pin. This input is used in conjunction with CS1 and CS2 to write data into either of the internal DACs. The data is latched into a selected DAC with the rising edge of either WR or CS1 for DAC1 or CS2 for DAC2, whichever occurs first.
$\overline{\mathrm{CS1}}$ (10) This is the input pin used to select DAC1. This input is used in conjunction with the WR input to write data into either of the internal DACs. The data is latched into DAC1 with the rising edge of either CS1 or WR, whichever occurs first.
$\overline{C S 2}$ (11) This is the input pin used to select DAC2. This input is used in conjunction with the WR input to write data into either of the internal DACs. The data is latched into DAC2 with the rising edge of either CS2 or WR, whichever occurs first.
DGND (12) The system digital ground is connected to this pin. For proper operation, this and AGND must be connected together.
SENSE 2 (13) DAC2's output sense connection. When this pin is connected to the VOUT2's load impedance, the feedback loop will compensate for any voltage drops between the VOUT2 pin and the load.

VOUT2 (14) DAC2's voltage output connection. It provides two full-scale output voltage ranges, 2.55 V and 10.2 V .

SELECT 2 (15) The two output voltage ranges available from DAC2 are selected by connecting this pin to SENSE2 for the 2.55 V full-scale range and leaving it unconnected for the 10.2 V full-scale range.

AGND (16) The system digital ground is connected to this pin. For proper operation, this and DGND must be connected together.
SELECT 1 (17) The two output voltage ranges available from DAC1 are selected by connecting this pin to SENSE1 for he 2.55 V full-scale range and leaving it unconnected for the 10.2 V full-scale range.

VOUT1 (18) DAC1's voltage output connection. It provides two full-scale output voltage ranges, 2.55 V and 10.2 V .

SENSE 1 (19) DAC1's output sense connection. When this pin is connected to the VOUT1's load impedance, the feedback loop will compensate for any voltage drops between the VOUT1 pin and the load.
$\mathrm{V}+(20) \quad$ The power supply voltage, ranging from 4.75 V to 16.5 V , is applied to this pin. It should be bypassed, to AGND, with a 0.01 $\sim 0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $2.2 \sim 22 \mu \mathrm{~F}$ electrolytic capacitor.

Functional Description

The DAC0890 is a monolithic dual 8-bit bipolar Digital-to-Analog converter comprising six major functional blocks designed to operate on a single supply as low as $5 \mathrm{~V}(\pm 5 \%)$. These include two latch/DAC combinations, two high-speed output amplifiers, band-gap reference, and control/interface logic.
The two internal 8 -bit DACs use equal valued current sources. Controlled by a corresponding bit in the input data, each current source's output is switched into either an R/2R ladder or AGND. Each internal DAC has an 8-bit latch to store a digital input. See Figure 1.
The high-speed output amplifiers operate in the non-inverting mode. The R-2R's output current is applied to the output amplifier and converted to a voltage. The amplifier's gain is
externally set through the range select pin. The two ranges are 0 V to 2.55 V and OV to 10.2 V . The internal resistors that set the gain are matched to the unit resistor of the R/2R ladder. This ensures that these resistors match over process variations and temperature. This greatly reduces gain variations that would exist if external gain setting resistors were used.

An internal band-gap reference and its control amplifier generate a full scale reference voltage for the DACs. It produces a 1.2 V output from a single supply.
The DAC0890 provides a TTL and CMOS-compatible control interface and allows writing and latching digital values to each of the internal DACs.

FIGURE 1. Simplified Internal Schematic (One DAC Shown)

Applications Information

Full-Scale Output Voltage Range Selection

The DAC0890 has been designed for ease of use. All reference voltage and output amplifier connections are internal. All trims such as full-scale (gain) and zero (offset) are performed during manufacturing. Therefore, no external trimming is required to achieve the specified accuracy. The only external connections required select the desired full-scale output voltage range.
The two full-scale output voltage ranges are selected by connecting SENSE, SELECT and VOUT as shown in Figure $2 a, b$. The 2.55 V range can be used with supply voltages as low as 4.75 V . The 10.2 V range can be selected with supplies as low as 12.0 V .

TL/H/10592-8
FIGURE 2a. OV to 2.55V Output Voltage Range

TL/H/10592~9
FIGURE 2b. OV to $\mathbf{1 0 . 2 V}$ Output Voltage Range

Power Supply Voltage

The DAC0890 is designed to operate on a single power supply voltages +4.75 V and +16.5 V . For 2.55 V full-scale operation the power supply voltage can be as low as +4.75 V . When the 10.2 V full-scale is used the supply voltage needs to be between +12 V to +16.5 V .

Grounding and Power Supply Bypassing

Proper grounding is essential to extract all the precision and full rated performance that the DAC0890 is capable of delivering. Typical applications for the DAC0890 include operation with a microprocessor. In this environment digital noise is prevalent and anticipated. Therefore, special care must be taken to ensure that proper operation will be achieved.
The DAC0890 uses two ground pins, AGND and DGND, to minimize ground drops and noise in the analog signal paths. Figure 3 details the proper bypassing and ground connections.
The DAC0890's best performance can be ensured by connecting $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with an electrolytic of $2.2 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}$ between the V^{+}pin and AGND.

Sense Inputs

The SENSE inputs (pins 13 and 19) allow compensation for voltage drops in long output lines to remote loads. This places the drops in the internal amplifier's feedback loop. An example of this is shown in Figure 3. The I-R drop, which might be caused by printed circuit board traces or long cables, between the VOUT2 and the load impedance R_{L} is placed inside the feedback loop if SENSE1 is connected directly to the load. This forces the voltage at the load to be the correct value. It is important to remember that the voltage at the DAC0890's VOUT pins may become higher than the full-scale output voltage selected using the SELECT pins. Therefore, the power supply voltage applied to V^{+} must be $\geq 2.2 \mathrm{~V}$ above the resulting output voltage (at pins 14 and 18) when the SENSE inputs are used.
The SENSE inputs have a finite input impedance. The range-setting resistors load the output with $2.5 \mathrm{k} \Omega$ when the 0 V to 2.55 V range is selected and $10 \mathrm{k} \Omega$ when the 0 V to 10.2 V range is selected.

FIGURE 3. Typical Connection Showing Power Supply Bypassing, and the Use of SENSE Inputs

Minimizing Settling Time

The DAC0890's output stage uses a passive pull-down resistor to achieve single supply operation and an output voltage range that includes ground. This results in a negativegoing settling time that is longer than the settling time or positive-going signals. The actual settling time is dependant on the load resistance and capacitance. If available, a negative power supply can be used to improve the negative settling time by connecting a pull down resistor between the output and the negative supply. The resistor's value is chosen so that the current through the pull down resistor is not greater than 0.5 mA when the output voltage is 0 V . See Figure 4.

(in $\mathrm{k} \Omega$)

FIGURE 4. Improving Negative Slew Rate

Bipolar Operation

While the DAC0890 was designed to operate on a single positive supply voltage and generate a unipolar output voltage, bipolar operation is still possible if a negative supply is available or added. As shown in Figure 5, the output voltage
is offset and scaled to achieve a -1.27 V to +1.28 V output range with the addition of a -5 V supply. The required offset is generated with an LM385-1.2V reference. The external output amplification is provided by the LMC660. The output voltage is generated with a complementary binary offset input code.

Microprocessor Interface

When interfacing with a microprocessor, the DAC0890 appears as a two byte write-only memory location for memory mapped and I/O mapped input-output. Each of the internal DACs is chosen through one of the two chips selects, CS1 or CS2. The action of the control signals is detailed in Table I. The data is latched on the rising edge of either Chip Select or $\overline{W R}$, whichever occurs first for a given selected DAC. For interfacing ease, $\overline{W R}$ can be tied low and $\overline{\mathrm{CS1}}$ or $\overline{\mathrm{CS} 2}$ can be used to latch the data. Both DACs can be updated simultaneously by pulling both $\overline{\mathrm{CS} 1}$ and $\overline{\mathrm{CS} 2}$ low. Further versatility is provided by the ability of $\overline{\mathrm{WR}}$ and $\overline{\mathrm{CS1}}$ and/or CS2 to be tied together.

TABLE I. DAC0890 Control Logic Truth Table

Input Data	$\overline{\text { WR }}$	$\overline{\mathbf{C S}}$	DAC Data	Latch Condition
0	0	0	0	"transparent"
1	0	0	1	"transparent"
0	\uparrow	0	0	latching
1	\uparrow	0	1	latching
0	0	\uparrow	0	latching
1	0	\uparrow	1	latching
X	1	X	previous data	latching
X	X	1	previous data	latching
X	$\mathbf{1}$	1	previous data	latching

FIGURE 5. Bipolar Operation

National Semiconductor

DAC1006／DAC1007／DAC1008 μ P Compatible， Double－Buffered D to A Converters

General Description

The DAC1006／7／8 are advanced CMOS／Si－Cr 10－，9－and 8 －bit accurate multiplying DACs which are designed to inter－ face directly with the $8080,8048,8085, Z-80$ and other pop－ ular microprocessors．These DACs appear as a memory lo－ cation or an I／O port to the $\mu \mathrm{P}$ and no interfacing logic is needed．
These devices，combined with an external amplifier and voltage reference，can be used as standard D／A converters； and they are very attractive for multiplying applications （such as digitally controlled gain blocks）since their linearity error is essentially independent of the voltage reference． They become equally attractive in audio signal processing equipment as audio gain controls or as programmable at－ tenuators which marry high quality audio signal processing to digitally based systems under microprocessor control．
All of these DACs are double buffered．They can load all 10 bits or two 8 －bit bytes and the data format is left justified． The analog section of these DACs is essentially the same as that of the DAC1020．
The DAC1006 series are the 10 －bit members of a family of microprocessor－compatible DAC＇s（MICRO－DACTM＇s）．For applications requiring other resolutions，the DAC0830 series （ 8 bits）and the DAC1208 and DAC1230（12 bits）are avail－ able alternatives．

Part \＃	Accuracy （bits）	Pin	Description
DAC1006	10		For left－ justified data
DAC1007	9	20	
DAC1008	8		DA

Features

\llbracket Uses easy to adjust END POINT specs，NOT BEST STRAIGHT LINE FIT
घ Low power consumption
－Direct interface to all popular microprocessors
－Integrated thin film on CMOS structure
a Double－buffered，single－buffered or flow through digital data inputs
a Loads two 8 －bit bytes or a single 10－bit word
\square Logic inputs which meet TTL voltage level specs（1．4V logic threshold）
\square Works with $\pm 10 \mathrm{~V}$ reference－full 4－quadrant multiplica－ tion
\square Operates STAND ALONE（without $\mu \mathrm{P}$ ）if desired
－Available in $0.3^{\prime \prime}$ standard 20－pin package
\square Differential non－linearity selection available as special order

Key Specifications

口 Output Current Settling Time 500 ns
－Resolution 10 bits
－Linearity
－Gain Tempoo
－Low Power Dissipation
10,9 ，and 8 bits （guaranteed over temp．）
-0.0003% of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$
20 mW
（including ladder）
－Single Power Supply
5 to $15 V_{D C}$

Typical Application

DAC1006／1007／1008


```
Absolute Maximum Ratings (Notes 1& 2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage (VCC)
17 VDC
Voltage at Any Digital Input
Voltage at V REF Input
Storage Temperature Range
Package Dissipation at TA}=2\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ (Note 3) }500\textrm{mW
DC Voltage Applied to lOUT1 or lOUT2
    (Note 4)
                        -100 mV to VCC
```

ESD Susceptibility (Note 11)	800 V
Lead Temp. (Soldering, 10 seconds)	
Dual-In-Line Package (plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)	$300^{\circ} \mathrm{C}$
Operating Ratings (Note 1)	
Temperature Range	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$
Part numbers with	
"LCN" and "LCWN" suffix	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Voltage at Any Digital Input	V_{CC} to GND

Electrical Characteristics

Tested at $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$ and $15.75 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted

Parameter	Conditions	See Note	$\begin{gathered} V_{C C}=12 V_{D C} \pm 5 \% \\ \text { to } 15 V_{D C} \pm 5 \% \end{gathered}$			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}} \pm 5 \%$			Units
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Resolution					10			10	bits
Linearity Error	Endpoint adjust only $\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$ $-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq+10 \mathrm{~V}$ DAC1006 DAC1007 DAC1008	$\begin{gathered} 4,7 \\ 6 \\ 5 \end{gathered}$			$\begin{gathered} 0.05 \\ 0.1 \\ 0.2 \\ \hline \end{gathered}$			$\begin{gathered} 0.05 \\ 0.1 \\ 0.2 \\ \hline \end{gathered}$	\% of FSR \% of FSR \% of FSR
Differential Nonlinearity	Endpoint adjust only $T_{\text {MIN }}<T_{A}<T_{\text {MAX }}$ $-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V}$ DAC1006 DAC1007 DAC1008	$\begin{gathered} 4,7 \\ 6 \\ 5 \end{gathered}$			$\begin{aligned} & 0.1 \\ & 0.2 \\ & 0.4 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.2 \\ & 0.4 \\ & \hline \end{aligned}$	$\%$ of FSR $\%$ of FSR \% of FSR
Monotonicity	$\begin{aligned} & T_{\text {MIN }}<T_{A}<T_{\text {MAX }} \\ & -10 \mathrm{~V} \leq V_{\text {REF }} \leq+10 V \\ & \text { DAC1006 } \\ & \text { DAC1007 } \\ & \text { DAC1008 } \end{aligned}$	$\begin{gathered} 4,6 \\ 5 \end{gathered}$	$\begin{gathered} 10 \\ 9 \\ 8 \\ \hline \end{gathered}$			$\begin{gathered} 10 \\ 9 \\ 8 \\ \hline \end{gathered}$			bits bits bits
Gain Error	$\begin{aligned} & \text { Using internal } \mathrm{R}_{\mathrm{fb}} \\ & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq+10 \mathrm{~V} \\ & \hline \end{aligned}$	5	-1.0	± 0.3	1.0	-1.0	± 0.3	1.0	\% of FS
Gain Error Tempco	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$ Using internal R_{fb}	$\begin{aligned} & 6 \\ & 9 \\ & \hline \end{aligned}$		-0.0003	-0.001		-0.0006	-0.002	\% of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection	All digital inputs latched high $\begin{array}{r} \mathrm{V}_{\mathrm{CC}}=14.5 \mathrm{~V} \text { to } 15.5 \mathrm{~V} \\ 11.5 \mathrm{~V} \text { to } 12.5 \mathrm{~V} \\ 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \end{array}$			$\begin{aligned} & 0.003 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.010 \end{aligned}$		0.033	0.10	\% FSR/V \% FSR/V \% FSR/V
Reference Input Resistance			10	15	20	10	15	20	k Ω
Output Feedthrough Error	$\begin{aligned} & \mathrm{V}_{\text {REF }}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{f}=100 \mathrm{kHz} \\ & \text { All data inputs } \\ & \text { latched low } \end{aligned}$			90			90		$m V_{p-p}$
Output louT1 Capacitance louT2 louT1 louT2	All data inputs latched low All data inputs latched high			$\begin{gathered} 60 \\ 250 \\ 250 \\ 60 \\ \hline \end{gathered}$			$\begin{gathered} 60 \\ 250 \\ 250 \\ 60 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Supply Current Drain	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	6		0.5	3.5		0.5	3.5	mA

Electrical Characteristics

Tested at $\mathrm{V}_{C C}=4.75 \mathrm{~V}_{\mathrm{DC}}$ and $15.75 \mathrm{~V}_{\mathrm{DC}}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted (Continued)

Parameter		Conditions	See Note	$\begin{aligned} & V_{C C}=12 V_{D C} \pm 5 \% \\ & \text { to } 15 V_{D C} \pm 5 \% \end{aligned}$			$V_{C C}=5 V_{\text {DC }} \pm 5 \%$			Units	
		Min.		Typ.	Max.	Min.	Typ.	Max.			
Output Leakage Current lout1 lout2			$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ All data inputs latched low All data inputs latched high	6 10			$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$	nA nA
Digital Input Voltages		$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ Low level LCN and LCWM suffix High level (all parts)	6	2.0		0.8, 0.8	2.0		0.7, 0.8	$V_{D C}$ $V_{D C}$	
Digital Input Currents		$\begin{aligned} & \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \\ & \text { Digital inputs }<0.8 \mathrm{~V} \\ & \text { Digital inputs }>2.0 \mathrm{~V} \end{aligned}$	6		$\begin{gathered} -40 \\ 1.0 \end{gathered}$	$\begin{array}{r} -150 \\ +10 \\ \hline \end{array}$		$\begin{gathered} -40 \\ 1.0 \\ \hline \end{gathered}$	$\begin{aligned} & -150 \\ & +10 \\ & \hline \end{aligned}$	$\mu A_{D C}$ $\mu A_{D C}$	
Current Settling Time	ts	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=5 \mathrm{~V}$			500			500		ns	
Write and $\overline{\mathrm{XFER}}$ Pulse Width	tw	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \end{gathered}$	$\begin{aligned} & 8 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 320 \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ 100 \end{gathered}$		$\begin{array}{r} 320 \\ 500 \\ \hline \end{array}$	$\begin{array}{r} 200 \\ 250 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
Data Set Up Time	$t_{\text {DS }}$	$\begin{gathered} \mathrm{V}_{I L}=0 \mathrm{~V}, \mathrm{~V}_{I H}=5 \mathrm{~V}, \\ T_{A}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }} \end{gathered}$	9	$\begin{aligned} & 150 \\ & 320 \\ & \hline \end{aligned}$	$\begin{gathered} 80 \\ 120 \end{gathered}$		$\begin{array}{r} 320 \\ 500 \\ \hline \end{array}$	$\begin{array}{r} 170 \\ 250 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
Data Hold Time	$t_{\text {DH }}$	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=\mathrm{OV}, \mathrm{~V}_{I H}=5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}} \end{gathered}$	9	$\begin{aligned} & 200 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$		$\begin{aligned} & 320 \\ & 500 \end{aligned}$	$\begin{aligned} & 220 \\ & 320 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
Control Set Up Time	t_{CS}	$\begin{gathered} \mathrm{V}_{I L}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=5 \mathrm{~V}, \\ T_{A}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\mathrm{MAX}} \end{gathered}$	9	$\begin{aligned} & 150 \\ & 320 \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ 100 \end{gathered}$		$\begin{array}{r} 320 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 180 \\ & 260 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
Control Hold Time	t_{CH}	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}, \\ \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }} \end{gathered}$	9	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{array}{r} 10 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: This 500 mW specification applies for all packages. The low intrinsic power dissipation of this part (and the fact that there is no way to significantly modify the power dissipation) removes concern for heat sinking.
Note 4: For current switching applications, both lout1 and louT2 must go to ground or the "Virtual Ground" of an operational amplifier. The linearity error is degraded by approximately $\mathrm{V}_{\mathrm{OS}} \div \mathrm{V}_{\mathrm{REF}}$. For example, if $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ then a 1 mV offset, V_{OS}, on lout1 or IOUT2 will introduce an additional 0.01% linearity error.
Note 5: Guaranteed at $\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{V}_{\mathrm{REF}}= \pm 1 \mathrm{~V}_{\mathrm{DC}}$.
Note 6: $\mathrm{T}_{\mathrm{MIN}}=0^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {MAX }}=70^{\circ} \mathrm{C}$ for "LCN" and "LCWM" suffix parts.
Note 7: The unit "FSR" stands for "Full Scale Range." "Linearity Error" and "Power Supply Rejection" specs are based on this unit to eliminate dependence on a particular $V_{\text {REF }}$ value and to indicate the true performance of the part. The "Linearity Error" specification of the DAC1006 is " 0.05% of FSR (MAX)." This guarantees that after performing a zero and full scale adjustment (See Sections 2.5 and 2.6), the plot of the 1024 analog voltage outputs will each be within $0.05 \% \times V_{\text {REF }}$ of a straight line which passes through zero and full scale.
Note 8: This specification implies that all parts are guaranteed to operate with a write pulse or transfer pulse width (t_{w}) of 320 ns . A typical part will operate with t_{W} of only 100 ns . The entire write pulse must occur within the valid data interval for the specified $\mathrm{t}_{\mathrm{W}}, \mathrm{t}_{\mathrm{DS}}, \mathrm{t}_{\mathrm{DH}}$, and t_{S} to apply.
Note 9: Guaranteed by design but not tested.
Note 10: A 200 nA leakage current with $\mathrm{R}_{\mathrm{fb}}=20 \mathrm{~K}$ and $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ corresponds to a zero error of $\left(200 \times 10^{-9} \times 20 \times 10^{3}\right) \times 100 \div 10$ which is 0.04% of FS .
Note 11: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Switching Waveforms

TL/H/5688-2

Typical Performance Characteristics

Digital Input Threshold
vs. Temperature

Block and Connection Diagrams

TL/H/5688-7

Notes:

1. For $V_{R E F}=-10.240 V_{D C}$ the output voltage steps are approximately 10 mV each.
2. SW1 is a normally closed switch. While SW1 is closed, the DAC register is latched and new data
can be loaded into the input latch via the 10 SW2 switches.
When SW1 is momentarily opened the new data is transferred from the input latch to the DAC register and is latched when SW1 again closes.

1.0 DEFINITION OF PACKAGE PINOUTS

1.1 Control Signals (All control signals are level actuated.)
$\overline{\mathbf{C S}}$: Chip Select - active low, it will enable $\overline{\mathrm{WR}}$.
$\overline{\text { WR: }}$ Write - The active low $\overline{\mathrm{WR}}$ is used to load the digital data bits (DI) into the input latch. The data in the input latch is latched when $\overline{W R}$ is high. The 10-bit input latch is split into two latches; one holds 8 bits and the other holds 2 bits. The Byte1/ $\overline{\text { Byte2 }}$ control pin is used to select both input latches when Byte1/Byte2 $=1$ or to overwrite the 2-bit input latch when in the low state.
Byte1/Byte2: Byte Sequence Control - When this control is high, all ten locations of the input latch are enabled. When low, only two locations of the input latch are enabled and these two locations are overwritten on the second byte write: On the DAC1006, 1007, and 1008, the Byte1/Byte2 must be low to transfer the 10-bit data in the input latch to the DAC register.
XFER: Transfer Control Signal, active low - This signal, in combination with others, is used to transfer the 10-bit data which is available in the input latch to the DAC register see timing diagrams.

1.2 Other Pin Functions

$\mathrm{Dl}_{\mathrm{i}}(\mathrm{i}=0$ to 9$)$: Digital Inputs - Dl_{0} is the least significant bit (LSB) and DI_{g} is the most significant bit (MSB).
lout1: DAC Current Output 1 - lout1 is a maximum for a digital input code of all 1 s and is zero for a digital input code of all 0 s .
Iout2: DAC Current Output 2 - lout2 is a constant minus Iout1, or
$\mathrm{l}_{\text {OUT1 }}+\mathrm{l}_{\text {OUT2 }}=\frac{1023 \mathrm{~V}_{\text {REF }}}{1024 \mathrm{R}}$
where $R \cong 15 \mathrm{k} \Omega$.
$\mathbf{R}_{\text {FB: }}$: Feedback Resistor - This is provided on the IC chip for use as the shunt feedback resistor when an external op amp is used to provide an output voltage for the DAC. This on-chip resistor should always be used (not an external resistor) because it matches the resistors used in the on-chip R-2R ladder and tracks these resistors over temperature.
$\mathbf{V}_{\text {REF: }}$: Reference Voltage Input - This is the connection for the external precision voltage source which drives the R-2R ladder. VREF can range from -10 to +10 volts. This is also the analog voltage input for a 4-quadrant multiplying DAC application.
$\mathbf{V}_{\mathbf{C C}}$: Digital Supply Voltage - This is the power supply pin for the part. V_{CC} can be from +5 to $+15 \mathrm{~V}_{\mathrm{DC}}$. Operation is optimum for +15 V . The input threshold voltages are nearly independent of V_{Cc}. (See Typical Performance Characteristics and Description in Section 3.0, T2L compatible logic inputs.)
GND: Ground - the ground pin for the part.

1.3 Definition of Terms

Resolution: Resolution is directly related to the number of switches or bits within the DAC. For example, the DAC1006 has 2^{10} or 1024 steps and therefore has 10-bit resolution.
Linearity Error: Linearity error is the maximum deviation from a straight line passing through the endpoints of the DAC transfer characteristic. It is measured after adjusting for zero and full-scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.
National's linearity test (a) and the "best straight line" test (b) used by other suppliers are illustrated below. The "best straight line" requires a special zero and FS adjustment for each part, which is almost impossible for user to determine. The "end point test" uses a standard zero and FS adjustment procedure and is a much more stringent test for DAC linearity.
Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the DAC full-scale output (which is the worst case).

b. Best Straight Line

TL/H/5688-8

Settling Time: Settling time is the time required from a code transition until the DAC output reaches within $\pm 1 / 2$ LSB of the final output value. Full-scale settling time requires a zero to full-scale or full-scale to zero output change.
Full-Scale Error: Full scale error is a measure of the output error between an ideal DAC and the actual device output. Ideally, for the DAC1006 series, full-scale is $\mathrm{V}_{\text {REF }}-1$ LSB. For $V_{\text {REF }}=-10 \mathrm{~V}$ and unipolar operation, $V_{\text {FULL-SCA }}$. $L E=10.0000 \mathrm{~V}-9.8 \mathrm{mV}=9.9902 \mathrm{~V}$. Full-scale error is adjustable to zero.
Monotonicity: If the output of a DAC increases for increasing digital input code, then the DAC is monotonic. A 10 -bit DAC with 10-bit monotonicity will produce an increasing analog output when all 10 digital inputs are exercised. A 10 -bit DAC with 9 -bit monotonicity will be monotonic when only the most significant 9 bits are exercised. Similarly, 8 -bit monotonicity is guaranteed when only the most significant 8 bits are exercised.

2.0 DOUBLE BUFFERING

These DACs are double-buffered, microprocessor compatible versions of the DAC1020 10-bit multiplying DAC. The addition of the buffers for the digital input data not only allows for storage of this data, but also provides a way to assemble the 10-bit input data word from two write cycles when using an 8 -bit data bus. Thus, the next data update for the DAC output can be made with the complete new set of 10-bit data. Further, the double buffering allows many DACs in a system to store current data and also the next data. The updating of the new data for each DAC is also not time critical. When all DACs are updated, a common strobe signal can then be used to cause all DACs to switch to their new analog output levels.

3.0 TTL COMPATIBLE LOGIC INPUTS

To guarantee TTL voltage compatibility of the logic inputs, a novel bipolar (NPN) regulator circuit is used. This makes the input logic thresholds equal to the forward drop of two diodes (and also matches the temperature variation) as occurs naturally in TTL. The basic circuit is shown in Figure 1. A curve of digital input threshold as a function of power supply voltage is shown in the Typical Performance Characteristics section.

4.0 APPLICATION HINTS

The DC stability of the $V_{\text {REF }}$ source is the most important factor to maintain accuracy of the DAC over time and temperature changes. A good single point ground for the analog signals is next in importance.
These MICRO-DAC converters are CMOS products and reasonable care should be exercised in handling them prior to final mounting on a PC board. The digital inputs are protected, but permanent damage may occur if the part is subjected to high electrostatic fields. Store unused parts in conductive foam or anti-static rails.

4.1 Power Supply Sequencing \& Decoupling

Some IC amplifiers draw excessive current from the Analog inputs to V - when the supplies are first turned on. To prevent damage to the DAC - an external Schottky diode connected from lout1 or lout2 to ground may be required to prevent destructive currents in louT1 or lout2. If an LM741 or LF356 is used - these diodes are not required.
The standard power supply decoupling capacitors which are used for the op amp are adequate for the DAC.

4.2 Op Amp Bias Current \& Input Leads

The op amp bias current (I_{B}) CAN CAUSE DC ERRORS. BIFETTM op amps have very low bias current, and therefore the error introduced is negligible. BI-FET op amps are strongly recommended for these DACs.
The distance from the louT1 pin of the DAC to the inverting input of the op amp should be kept as short as possible to prevent inadvertent noise pickup.

5.0 ANALOG APPLICATIONS

The analog section of these DACs uses an R-2R ladder which can be operated both in the current switching mode and in the voltage switching mode.
The major product changes (compared with the DAC1020) have been made in the digital functioning of the DAC. The analog functioning is reviewed here for completeness. For additional analog applications, such as multipliers, attenuators, digitally controlled amplifiers and low frequency sine wave oscillators, refer to the DAC1020 data sheet. Some basic circuit ideas are presented in this section in addition to complete applications circuits.

5.1 Operation in Current Switching Mode

The analog circuitry, Figure 2, consists of a silicon-chromium ($\mathrm{Si}-\mathrm{Cr}$) thin film R-2R ladder which is deposited on the surface oxide of the monolithic chip. As a result, there is no parasitic diode connected to the $\mathrm{V}_{\text {REF }}$ pin as would exist if diffused resistors were used. The reference voltage input ($\mathrm{V}_{\text {REF }}$) can therefore range from -10 V to +10 V .
The digital input code to the DAC simply controls the position of the SPDT current switches, SW0 to SW9. A logical 1 digital input causes the current switch to steer the avail-
able ladder current to the lout1 output pin. These MOS switches operate in the current mode with a small voltage drop across them and can therefore switch currents of either polarity. This is the basis for the 4-quadrant multiplying feature of this DAC.

5.1.1 Providing a Unipolar Output Voltage with the DAC in the Current Switching Mode

A voltage output is provided by making use of an external op amp as a current-to-voltage converter. The idea is to use the internal feedback resistor, R_{FB}, from the output of the op amp to the inverting (-) input. Now, when current is entered at this inverting input, the feedback action of the op amp keeps that input at ground potential. This causes the applied input current to be diverted to the feedback resistor. The output voltage of the op amp is forced to a voltage given by:

$$
V_{O U T}=-\left(l_{O U T 1} \times R_{F B}\right)
$$

Notice that the sign of the output voltage depends on the direction of current flow through the feedback resistor.
In current switching mode applications, both current output pins (louT1 and IOUT2) should be operated at $0 \mathrm{~V}_{\mathrm{DC}}$. This is accomplished as shown in Figure 3. The capacitor, C_{C}, is used to compensate for the output capacitance of the DAC and the input capacitance of the op amp. The required feedback resistor, R_{FB}, is available on the chip (one end is internally tied to loutr) and must be used since an external resistor will not provide the needed matching and temperature tracking. This circuit can therefore be simplified as

FIGURE 2. Current Mode Switching

shown in Figure 4, where the sign of the reference voltage has been changed to provide a positive output voltage. Note that the output current, IOUT1, now flows through the RFB pin.

5.1.2 Providing a Bipolar Output Voltage with the DAC in the Current Switching Mode

The addition of a second op amp to the circuit of Figure 4 can be used to generate a bipolar output voltage from a fixed reference voltage Figure 5. This, in effect, gives sign significance to the MSB of the digital input word to allow two quadrant multiplication of the reference voltage. The polarity of the reference can also be reversed to realize the full fourquadrant multiplication.
The applied digital word is offset binary which includes a code to output zero volts without the need of a large valued resistor common to existing bipolar multiplying DAC circuits. Offset binary code can be derived from 2's complement data (most common for signed processor arithmetic) by inverting the state of the MSB in either software or hardware. After doing this the output then responds in accordance to the following expression:

$$
V_{O}=V_{R E F} \times \frac{D}{512}
$$

where $V_{\text {REF }}$ can be positive or negative and D is the signed decimal equivalent of the 2's complement processor data. $(-512 \leq \mathrm{D} \leq+511$ or $1000000000 \leq \mathrm{D} \leq 0111111111)$. If the applied digital input is interpreted as the decimal equivalent of a true binary word, V OUT can be found by:
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {REF }}\left(\frac{\mathrm{D}-512}{512}\right)$
$0 \leq D \leq 1023$
With this configuration, only the offset voltage of amplifier 1 need be nulled to preserve linearity of the DAC. The offset voltage error of the second op amp has no effect on linearity. It presents a constant output voltage error and should be nulled only if absolute accuracy is needed. Another advantage of this configuration is that the values of the external resistors required do not have to match the value of the internal DAC resistors; they need only to match and temperature track each other.
A thin film 4 resistor network available from Beckman Instruments, Inc. (part no. 694-3-R10K-D) is ideally suited for this application. Two of the four available $10 \mathrm{k} \Omega$ resistor can be paralleled to form R in Figure 5 and the other two can be used separately as the resistors labeled 2R.
Operation is summarized in the table below:
$\left.\begin{array}{lc|cc|cc}\hline \text { 2's Comp. } \\ \text { (Decimal) }\end{array} \quad \begin{array}{c}\text { 2's Comp. } \\ \text { (Binary) }\end{array} \quad \begin{array}{c}\text { Applied } \\ \text { Digital Input }\end{array} \quad \begin{array}{c}\text { True Binary } \\ \text { (Decimal) }\end{array}\right]$
with: $1 \mathrm{LSB}=\frac{\left|\mathrm{V}_{\text {REF }}\right|}{512}$

5.2 Analog Operation in the Voltage Switching Mode

Some useful application circuits result if the R-2R ladder is operated in the voltage switching mode. There are two very important things to remember when using the DAC in the voltage mode. The reference voltage (+V) must always be positive since there are parasitic diodes to ground on the lout1 pin which would turn on if the reference voltage went negative. To maintain a degradation of linearity less than $\pm 0.005 \%$, keep $+\mathrm{V} \leq 3 \mathrm{~V}_{\mathrm{DC}}$ and V_{CC} at least 10 V more positive than +V . Figures 6 and 7 show these errors for the voltage switching mode. This operation appears unusual, since a reference voltage $(+\mathrm{V})$ is applied to the lout1 pin and the voltage output is the $\mathrm{V}_{\text {REF }}$ pin. This basic idea is shown in Figure 8.
This $V_{\text {OUT }}$ range can be scaled by use of a non-inverting gain stage as shown in Figure 9.

FIGURE 6

Notice that this is unipolar operation since all voltages are positive. A bipolar output voltage can be obtained by using a single op amp as shown in Figure 10. For a digital input code of all zeros, the output voltage from the $V_{\text {REF }}$ pin is zero volts. The external op amp now has a single input of +V and is operating with a gain of -1 to this input. The output of the op amp therefore will be at -V for a digital input of all zeros. As the digital code increases, the output voltage at the $\mathrm{V}_{\text {REF }}$ pin increases.
Notice that the gain of the op amp to voltages which are applied to the $(+)$ input is +2 and the gain to voltages which are applied to the input resistor, R, is -1 . The output voltage of the op amp depends on both of these inputs and is given by:

$$
V_{O U T}=(+V)(-1)+V_{R E F}(+2)
$$

FIGURE 7

DIGITAL INPUT CODE

TL/H/5688-12
FIGURE 9. Amplifying the Voltage Mode Output (Single Supply Operation)

FIGURE 10. Providing a Bipolar Output Voltage with a Single Op Amp

TL/H/5688-13
FIGURE 11. Increasing the Output Voltage Swing

The output voltage swing can be expanded by adding 2 resistors to Figure 10 as shown in Figure 11. These added resistors are used to attenuate the +V voltage. The overall gain, $A_{V}(-)$, from the $+V$ terminal to the output of the op amp determines the most negative output voltage, $-4(+\mathrm{V})$ (when the $\mathrm{V}_{\text {REF }}$ voltage at the + input of the op amp is zero) with the component values shown. The complete dynamic range of $V_{\text {OUT }}$ is provided by the gain from the $(+)$ input of the op amp. As the voltage at the $\mathrm{V}_{\text {REF }}$ pin ranges from OV to $+V(1023 / 1024)$ the output of the op amp will range from $-10 \mathrm{~V}_{\mathrm{DC}}$ to $+10 \mathrm{~V}(1023 / 1024)$ when using a +V voltage of $+2.500 \mathrm{~V}_{\mathrm{DC}}$. The $2.5 \mathrm{~V}_{\mathrm{DC}}$ reference voltage can be easily developed by using the LM336 zener which can be biased through the $R_{\text {FB }}$ internal resistor, connected to V_{Cc}.

5.3 Op Amp Vos Adjust (Zero Adjust) for Current Switching Mode

Proper operation of the ladder requires that all of the $2 R$ legs always go to exactly $0 \mathrm{~V}_{\mathrm{DC}}$ (ground). Therefore offset voltage, V_{OS}, of the external op amp cannot be tolerated as every millivolt of $V_{\text {OS }}$ will introduce 0.01% of added linearity error. At first this seems unusually sensitive, until it becomes clear the 1 mV is 0.01% of the 10 V reference! High resolution converters of high accuracy require attention to every detail in an application to achieve the available performance which is inherent in the part. To prevent this source of error, the $V_{\text {OS }}$ of the op amp has to be initially zeroed. This is the "zero adjust" of the DAC calibration sequence and should be done first.

If the $V_{O S}$ is to be adjusted there are a few points to consider. Note that no "dc balancing" resistance should be used in the grounded positive input lead of the op amp. This resistance and the input current of the op amp can also create errors. The low input biasing current of the BI-FET op amps makes them ideal for use in DAC current to voltage applications. The $V_{O S}$ of the op amp should be adjusted with a digital input of all zeros to force lout $=0 \mathrm{~mA}$. A $1 \mathrm{k} \Omega$ resistor can be temporarily connected from the inverting input to ground to provide a dc gain of approximately 15 to the $V_{O S}$ of the op amp and make the zeroing easier to sense.

5.4 Full-Scale Adjust

The full-scale adjust procedure depends on the application circuit and whether the DAC is operated in the current switching mode or in the voltage switching mode. Techniques are given below for all of the possible application circuits.

5.4.1 Current Switching with Unipolar Output Voltage

After doing a "zero adjust," set all of the digital input levels HIGH and adjust the magnitude of $\mathrm{V}_{\text {REF }}$ for
$V_{\text {OUT }}=-$ (ideal $V_{\text {REF }} \frac{1023}{1024}$
This completes the DAC calibration.

5.4.2 Current Switching with Bipolar Output Voltage

The circuit of Figure 12 shows the 3 adjustments needed. The first step is to set all of the digital inputs LOW (to force lout1 to 0) and then trim "zero adj." for zero volts at the inverting input (pin 2) of OA1. Next, with a code of all zeros still applied, adjust "-FS adj.", the reference voltage, for $\mathrm{V}_{\text {OUT }}= \pm \mid$ (ideal $\left.\mathrm{V}_{\text {REF }}\right) \mid$. The sign of the output voltage will be opposite that of the applied reference.
Finally, set all of the digital inputs HIGH and adjust " + FS adj." for $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {REF }}(511 / 512)$. The sign of the output at this time will be the same as that of the reference voltage. The addition of the 200Ω resistor in series with the $\mathrm{V}_{\text {REF }}$ pin of the DAC is to force the circuit gain error from the DAC to be negative. This insures that adding resistance to R_{fb}, with the 500Ω pot, will always compensate the gain error of the DAC.
5.4.3 Voltage Switching with a Unipolar Output Voltage

Refer to the circuit of Figure 13 and set all digital inputs LOW. Trim the "zero adj." for $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}_{\mathrm{DC}} \pm 1 \mathrm{mV}$. Then set all digital inputs HIGH and trim the "FS Adj." for:
$V_{\text {OUT }}=(+V)\left(1+\frac{R_{1}}{R_{2}}\right) \frac{1023}{1024}$

5.4.4 Voltage Switching with a Bipolar Output Voltage

Refer to Figure 14 and set all digital inputs LOW. Trim the "-FS Adj." for $\mathrm{V}_{\mathrm{OUT}}=-2.5 \mathrm{~V}_{\mathrm{DC}}$. Then set all digital inputs HIGH and trim the "+FS Adj." for $\mathrm{V}_{\mathrm{OUT}}=+2.5(511 / 512)$ V_{DC}. Test the zero by setting the MS digital input HIGH and all the rest LOW. Adjust $V_{\text {Os }}$ of amp \#3, if necessary, and recheck the full-scale values.

FIGURE 12. Full Scale Adjust - Current Switching with Bipolar Output Voltage

TL/H/5688-14
FIGURE 13. Full Scale Adjust - Voltage Switching with a Unipolar Output Voltage

6.0 DIGITAL CONTROL DESCRIPTION

The DAC1006 series of products can be used in a wide variety of operating modes. Most of the options are shown in Table 1. Also shown in this table are the section numbers of this data sheet where each of the operating modes is discussed. For example, if your main interest in interfacing to a $\mu \mathrm{P}$ with an 8 -bit data bus you will be directed to Section 6.1.0.

The first consideration is "will the DAC be interfaced to a μP with an 8 -bit or a 16 -bit data bus or used in the stand-alone mode?" For the 8 -bit data bus, a second selection is made on how the 2nd digital data buffer (the DAC Latch) is updated by a transfer from the 1st digital data buffer (the Input Latch). Three options are provided: 1) an automatic transfer when the 2nd data byte is written to the DAC, 2) a transfer which is under the control of the $\mu \mathrm{P}$ and can include more than one DAC in a simultaneous transfer, or 3) a transfer which is under the control of external logic. Further, the data format can be either left justified or right justified.
When interfacing to a $\mu \mathrm{P}$ with a 16 -bit data bus only two selections are available: 1) operating the DAC with a single digital data buffer (the transfer of one DAC does not have to be synchronized with any other DACs in the system), or
2) operating with a double digital data buffer for simultaneous transfer, or updating, of more than one DAC.
For operating without a $\mu \mathrm{P}$ in the stand alone mode, three options are provided: 1) using only a single digital data buffer, 2) using both digital data buffers - "double buffered," or 3) allowing the input digital data to "flow through" to provide the analog output without the use of any data latches.
To reduce the required reading, only the applicable sections of 6.1 through 6.4 need be considered.

6.1 Interfacing to an 8-Bit Data Bus

Transferring 10 bits of data over an 8-bit bus requires two write cycles and provides four possible combinations which depend upon two basic data format and protocol decisions:
1 . Is the data to be left justified (considered as fractional binary data with the binary point to the left) or right justified (considered as binary weighted data with the binary point to the right)?
2. Which byte will be transferred first, the most significant byte (MS byte) or the least significant byte (LS byte)?

Table 1

Operating Mode	Automatic Transfer		$\mu \mathrm{P}$ Control Transfer		External Transfor	
	Section	Figure No.	Section	Figure No.	Section	Figure No.
8-Bit Data Bus (6.1.0) Left Justified (6.1.1)	6.2.1	16	6.2.2	16	6.2.3	16
16-Bit Data Bus (6.3.0)	Single Buffered		Double Buffered		Flow Through	
	6.3.1	17	6.3 .2 17 Double Buffered		Not Applicable	
Stand Alone (6.4.0)	Single Buffered		Double Buffered		Flow Through	
	6.4.1	17	6.4.2	17	NA	

These data possibilities are shown in Figure 15. Note that the justification of data depends on how the 10-bit data word is located within the 16-bit data source (CPU) register. In either case, there is a surplus of 6 bits and these are shown as "don't care" terms (" \times ") in this figure.
All of these DACs load 10 bits on the 1st write cycle. A particular set of 2 bits is then overwritten on the 2nd write cycle, depending on the justification of the data. For all left justified data options, the 1st write cycle must contain the MS or Hi Byte data group.

6.1.1 For Left Justified Data

For applications which require left justified data, DAC10061008 can be used. A simplified logic diagram which shows the external connections to the data bus and the internal functions of both of the data buffer registers (Input Latch and DAC Register) is shown in Figure 16. These
parts require the MS or Hi Byte data group to be transferred on the 1st write cycle.

6.2 Controlling Data Transfer for an 8-Bit Data Bus

Three operating modes are possible for controlling the transfer of data from the Input Latch to the DAC Register, where it will update the analog output voltage. The simplest is the automatic transfer mode, which causes the data transfer to occur at the time of the 2nd write cycle. This is recommended when the exact timing of the changes of the DAC analog output are not critical. This typically happens where each DAC is operating individually in a system and the analog updating of one DAC is not required to be synchronized to any other DAC. For synchronized DAC updating, two options are provided: $\mu \mathrm{P}$ control via a common $\overline{\mathrm{XFER}}$ strobe or external update timing control via an external strobe. The details of these options are now shown.

DAC1006/1007/1008 (20-Pin Parts for Left Justified Data)

TL/H/5688-16
FIGURE 15. Fitting a 10-Bit Data Word into 16 Available Bit Locations

TL/H/5688-17
FIGURE 16. Input Connections and Controls for DAC1006/1007/1008 Left Justified Data

6.2.1 Automatic Transfer

This makes use of a double byte (double precision) write. The first byte (8 bits) is strobed into the input latch and the second byte causes a simultaneous strobe of the two remaining bits into the input latch and also the transfer of the complete 10-bit word from the input latch to the DAC register. This is shown in the following timing diagram; the point in time where the analog output is updated is also indicated on this diagram.

DAC1006/1007/1008 (20-Pin Parts)

*SIGNIFIES CONTROL INPUTS WHICH ARE DRIVEN IN PARALLEL

6.2.2 Transfer Using $\mu \mathrm{P}$ Write Stroke

The input latch is loaded with the first two write strobes. The $\overline{X F E R}$ signal is provided by external logic, as shown below, to cause the transfer to be accomplished on a third write strobe. This is shown in the following diagram:

WHERE THE XFER CONTROL CAN BE GENERATED BY USING A SECOND CHIP SELECT AS:

and the byte control can be derived from the address bus signals.

6.2.3 Transfer Using an External Strobe

This is similar to the previous operation except the XFER signal is not provided by the $\mu \mathrm{P}$. The timing diagram for this is:

6.3 Interfacing to a 16-Bit Data Bus

The interface to a 16 -bit data bus is easily handled by connecting to 10 of the available bus lines. This allows a wiring selected right justified or left justified data format. This is shown in the connection diagram of Figure 17, where the use of DB6 to DB15 gives left justified data operation. Note that any part number can be used and the Byte1/Byte2 control should be wired Hi .

FIGURE 17. Input Connections and Logic for DAC1006/1007/1008 with 16-Bit Data Bus

Three operating modes are possible: flow through, single buffered, or double buffered. The timing diagrams for these are shown below:

6.3.2 Double Buffered

DAC1006/1007/1008 (20-Pin Parts)

6.4 Stand Alone Operation

For applications for a DAC which are not under $\mu \mathrm{P}$ control (stand alone) there are two basic operating modes, single buffered and double buffered. The timing diagrams for these are shown below:

6.4.2 Double Buffered

DAC1006/1007/1008 (20-Pin Parts)*

TL/H/5688-23

7.0 MICROPROCESSOR INTERFACE

The logic functions of the DAC1006 family have been oriented towards an ease of interface with all popular μ Ps. The following sections discuss in detail a few useful interface schemes.

7.1 DAC1001/1/2 to INS8080A Interface

Figure 18 illustrates the simplicity of interfacing the DAC1006 to an INS8080A based microprocessor system.

The circuit will perform an automatic transfer of the 10 bits of output data from the CPU to the DAC register as outlined in Section 6.2.1, "Controlling Data Transfer for an 8-Bit Data Bus."
Since a double byte write is necessary to control the DAC with the INS8080A, a possible instruction to achieve this is a PUSH of a register pair onto a "stack" in memory. The 16bit register pair word will contain the 10 bits of the eventual DAC input data in the proper sequence to conform to both

NOTE: DOUBLE BYTE STORES CAN BE USED.
e.g. THE INSTRUCTION SHLD F001 STORES THE L REG INTO B1 AND THE H REG INTO B2 AND TRANSFERS THE RESULT TO THE DAC REGISTER. THE OPERAND OF THE SHLD INSTRUCTION MUST BE AN ODD ADDRESS FOR PROPER TRANSFER.

FIGURE 18. Interfacing the DAC1000 to the INS8080A CPU Group
the requirements of the DAC (with regard to left justified data) and the implementation of the PUSH instruction which will output the higher order byte of the register pair (i.e., register B of the $B C$ pair) first. The DAC will actually appear as a two-byte "stack" in memory to the CPU. The auto-decrementing of the stack pointer during a PUSH allows using address bit 0 of the stack pointer as the Byte1/Byte2 and XFER strobes if bit 0 of the stack pointer address -1 , ($\mathrm{SP}-1$), is a " 1 " as presented to the DAC. Additional address decoding by the DM8131 will generate a unique DAC chip select (CS) and synchronize this CS to the two memory write strobes of the PUSH instruction.
To reset the stack pointer so new data may be output to the same DAC, a POP instruction followed by instructions to insure that proper data is in the DAC data register pair before it is "PUSHED" to the DAC should be executed, as the POP instruction will arbitrarily alter the contents of a register pair.
Another double byte write instruction is Store H and L Direct (SHLD), where the HL register pair would temporarily contain the DAC data and the two sequential addresses for the DAC are specified by the instruction op code. The auto incrementing of the DAC address by the SHLD instruction permits the same simple scheme of using address bit 0 to generate the byte number and transfer strobes.

7.2 DAC1006 to MC6820/1 PIA Interface

In Figure 19 the DAC1006 is interfaced to an M6800 system through an MC6820/1 Peripheral Interface Adapter (PIA). In this case the CS pin of the DAC is grounded since the PIA is already mapped in the 6800 system memory space and no decoding is necessary. Furthermore, by using both Ports A and B of the PIA the 10-bit data transfer, assumed left justified again in two 8 -bit bytes, is greatly simplified. The HIGH byte is loaded into Output Register A (ORA) of the

PIA, and the LOW byte is loaded into ORB. The 10-bit data transfer to the DAC and the corresponding analog output change occur simultaneously upon CB2 going LOW under program control. The 10-bit data word in the DAC register will be latched (and hence VOUT will be fixed) when CB2 is brought back HIGH.
If both output ports of the PIA are not available, it is possible to interface the DAC1006 through a single port without much effort. However, additional logic at the CB2(or CA2) lines or access to some of the 6800 system control lines will be required.

7.3 Noise Considerations

A typical digital/microprocessor bus environment is a tremendous potential source of high frequency noise which can be coupled to sensitive analog circuitry. The fast edges of the data and address bus signals generate frequency components of 10's of megahertz and can cause noise spikes to appear at the DAC output. These noise spikes occur when the data bus changes state or when data is transferred between the latches of the device.
In low frequency or DC applications, low pass filtering can reduce these noise spikes. This is accomplished by overcompensating the DAC output amplifier by increasing the value of the feedback capacitor (C_{C} in Figure 3).
In applications requiring a fast transient response from the DAC and op amp, filtering may not be feasible. Adding a latch, DM74LS374, as shown in Figure 20 isolates the device from the data bus, thus eliminating noise spikes that occur every time the data bus changes state. Another method for eliminating noise spikes is to add a sample and hold after the DAC op amp. This also has the advantage of eliminating noise spikes when changing digital codes.

FIGURE 19. DAC1000 to MC6820/1 PIA Interface

NOTE: DATA HOLD TIME REDUCED TO THAT OF DM74LS374 ($\approx 10 \mathrm{~ns}$)

FIGURE 20. Isolating Data Bus from DAC Circuitry to Eliminate Digital Noise Coupling

TL/H/5688-26

7.4 Digitally Controlled Amplifier/Attenuator

An unusual application of the DAC, Figure 21, applies the input voltage via the on-chip feedback resistor. The lower op amp automatically adjusts the $\mathrm{V}_{\text {REF IN }}$ voltage such that lout1 is equal to the input current ($\mathrm{V}_{\mathrm{IN}} / \mathrm{Rf}_{\mathrm{B}}$). The magnitude of this $V_{\text {REF IN }}$ voltage depends on the digital word which is in the DAC register. IOUT2 then depends upon both the magnitude of V_{IN} and the digital word. The second op amp converts IOUT2 to a voltage, $\mathrm{V}_{\text {OUT }}$, which is given by:
$V_{\text {OUT }}=V_{\text {IN }}\left(\frac{1023-N}{N}\right)$, where $0<N \leq 1023$.

Note that $\mathrm{N}=0$ (or a digital code of all zeros) is not allowed or this will cause the output amplifier to saturate at either $\pm \mathrm{V}_{\mathrm{MAX}}$, depending on the sign of V_{IN}.
To provide a digitally controlled divider, the output op amp can be eliminated. Ground the IOUT2 pin of the DAC and $V_{\text {OUT }}$ is now taken from the lower op amp (which also drives the $V_{\text {REF }}$ input of the DAC). The expression for $V_{O U T}$ is now given by
$V_{\text {OUT }}=-\frac{V_{I N}}{M}$ where $M=$ Digital input (expressed as a $0<M<1$.

FIGURE 22. Digital to Synchro Converter

Ordering Information

For Left Justified Data - 20-pin package.

Accuracy	Temperature Range $\mathbf{0}^{\circ}$ to $+70^{\circ} \mathbf{C}$	
0.05% (10-bit)	DAC1006LCN	DAC1006LCWM
0.10% (9-bit)	DAC1007LCN	
0.20% (8-bit)	DAC1008LCN	
Package Outline	N20A	M20B

General Description

The DAC1020 and the DAC1220 are, respectively, 10 and 12-bit binary multiplying digital-to-analog converters. A deposited thin film R-2R resistor ladder divides the reference current and provides the circuit with excellent temperature tracking characteristics $\left(0.0002 \% /{ }^{\circ} \mathrm{C}\right.$ linearity error temperature coefficient maximum). The circuit uses CMOS current switches and drive circuitry to achieve low power consumption (30 mW max) and low output leakages (200 nA max). The digital inputs are compatible with DTL/TTL logic levels as well as full CMOS logic level swings. This part, combined with an external amplifier and voltage reference, can be used as a standard D/A converter; however, it is also very attractive for multiplying applications (such as digitally controlled gain blocks) since its linearity error is essentially independent of the voltage reference. All inputs are protected from damage due to static discharge by diode clamps to V^{+} and ground.
This part is available with 10 -bit (0.05%), 9 -bit (0.10%), and 8 -bit (0.20%) non-linearity guaranteed over temperature
(note 1 of electrical characteristics). The DAC1020, DAC1021 and DAC1022 are direct replacements for the 10bit resolution AD7520 and AD7530 and equivalent to the AD7533 family. The DAC1220 and DAC1222 are direct replacements for the 12-bit resolution AD7521 and AD7531 family.

Features

E Linearity specified with zero and full-scale adjust only
Non-linearity guaranteed over temperature
© Integrated thin film on CMOS structure

- 10-bit or 12-bit resolution

■ Low power dissipation 10 mW @15V typ

- Accepts variable or fixed reference $-25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq 25 \mathrm{~V}$
- 4-quadrant multiplying capability
- Interfaces directly with DTL, TTL and CMOS
- Fast settling time-500 ns typ
(1) Low feedthrough error- $1 / 2$ LSB @100 kHz typ

TL/H/5689-1
Ordering Information

Temperature Range		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
NonLinearity	0.05\%	DAC1020LCN	AD7520LN,AD7530LN	DAC1020LCV	DAC1020LIV
	0.10\%	DAC1021LCN	AD7520KN,AD7530KN	,	
	0.20\%	DAC1022LCN	AD7520JN,AD7530JN		
Package Outline		N16A		V20A	
12-BIT D/A CONVERTERS					
Temperature Range		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
NonLinearity	0.05\%	DAC1220LCN	AD7521LN,AD7531LN	DAC1220LCJ	AD7521LD,AD7531LD
	0.20\%	DAC1222LCN	AD7521JN,AD7531JN	DAC1222LCJ	AD7521JD,AD7531JD
Package Outline		N18A		J18A	

Note. Devices may be ordered by either part number.

Absolute Maximum Ratings (Note 5)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
V^{+}to Gnd
17 V
$V_{\text {REF }}$ to Gnd $\pm 25 \mathrm{~V}$
Digital Input Voltage Range
DC Voltage at Pin 1 or Pin 2 (Note 3)
Storage Temperature Range Lead Temperature (Soldering, 10 sec .)

Dual-In-Line Package (plastic)
Dual-In-Line Package (ceramic)
ESD Susceptibility (Note 4)

Operating Ratings

	Min	Max	Units
Temperature (T, \mathbf{A}^{\prime}) DAC1020LIV, DAC1220LCJ,			
DAC1222LCJ	-40	+85	${ }^{\circ} \mathrm{C}$
DAC1020LCN, DAC1020LCV,			
DAC1021LCN	0	+70	${ }^{\circ} \mathrm{C}$
DAC1022LCN, DAC1220LCN	0	+70	${ }^{\circ} \mathrm{C}$
DAC1222LCN	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics ($\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=10.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Conditions	DAC1020, DAC1021, DAC1022			DAC1220, DAC1222			Units
		Min	Typ	Max	Min	Typ	Max	
Resolution		10			12			Bits
Linearity Error 10-Bit Parts 9 -Bit Parts 8-Bit Parts	$\begin{aligned} & T_{M I N}<T_{A}<T_{M A X} \\ & -10 V<V_{\text {REF }}<+10 \mathrm{~V}, \end{aligned}$ (Note 1) End Point Adjustment Only (See Linearity Error in Definition of Terms) DAC1020, DAC1220 DAC1021 DAC1022, DAC1222			$\begin{aligned} & 0.05 \\ & 0.10 \\ & 0.20 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.10 \\ & 0.20 \end{aligned}$	\% FSR \% FSR \% FSR
Linearity Error Tempco	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq+10 \mathrm{~V}, \\ & \text { (Notes } 1 \text { and } 2 \text {) } \end{aligned}$			0.0002			0.0002	\% FS/ $/{ }^{\circ} \mathrm{C}$
Full-Scale Error	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq+10 \mathrm{~V}, \\ & \text { (Notes } 1 \text { and } 2 \text {) } \end{aligned}$		0.3	1.0		0.3	1.0	\% FS
Full-Scale Error Tempco	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$, (Note 2)			0.001			0.001	\% FS/ $/{ }^{\circ} \mathrm{C}$
Output Leakage Current IOUT 1 lout 2	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ All Digital Inputs Low All Digital Inputs High		.	$\begin{aligned} & 200 \\ & 200 \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Power Supply Sensitivity	All Digital Inputs High, $14 \mathrm{~V} \leq \mathrm{V}+\leq 16 \mathrm{~V}$, (Note 2), (Figure 2)		0.005			0.005		\% FS/V
$\mathrm{V}_{\text {REF }}$ Input Resistance		10	15	20	10	15	20	k Ω
Full-Scale Current Settling Time	$R_{L}=100 \Omega \text { from } 0 \text { to } 99.95 \%$ FS All Digital Inputs Switched Simultaneously		500			500	,	ns
$\mathrm{V}_{\text {REF }}$ Feedthrough	All Digital Inputs Low, $V_{\text {REF }}=20 \mathrm{Vp}-\mathrm{p}$ @ 100 kHz J Package (Note 4) N Package		$\begin{aligned} & 6 \\ & 2 \end{aligned}$	10 $\begin{aligned} & 9 \\ & 5 \\ & \hline \end{aligned}$		$\begin{aligned} & 6 \\ & 2 \end{aligned}$	$\begin{array}{r} 10 \\ 9 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & m \vee p-p \\ & m \vee p-p \\ & m \vee p-p \end{aligned}$
Output Capacitance lout 1 lout 2	All Digital Inputs Low All Digital Inputs High All Digital Inputs Low All Digital Inputs High		$\begin{gathered} 40 \\ 200 \\ 200 \\ 40 \end{gathered}$			$\begin{gathered} 40 \\ 200 \\ 200 \\ 40 \end{gathered}$		pF pF pF pF

Electrical Characteristics ($\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=10.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Continued)

Parameter	Conditions	DAC1020, DAC1021, DAC1022			DAC1220, DAC1222			Units
		Min	Typ	Max	Min	Typ	Max	
Digital Input Low Threshold High Threshold	(Figure 1) $T_{\text {MIN }}<T_{A}<T_{\text {MAX }}$ $T_{\text {MIN }}<T_{A}<T_{\text {MAX }}$	2.4		0.8	2.4		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Digital Input Current	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ Digital Input High Digital Input Low		$\begin{gathered} 1 \\ -50 \end{gathered}$	$\begin{gathered} 100 \\ -200 \end{gathered}$		$\begin{gathered} 1 \\ -50 \end{gathered}$	$\begin{gathered} 100 \\ -200 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Supply Current	All Digital Inputs High All Digital Inputs Low		$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{gathered} 1.6 \\ 2 \end{gathered}$		$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{gathered} 1.6 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Operating Power Supply Range	(Figures 1 and 2)	5		15	5		15	V

Note 1: $\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}$ and $\mathrm{V}_{\text {REF }}= \pm 1 \mathrm{~V}$. A linearity error temperature coefficient of $0.0002 \% \mathrm{FS}$ for a $45^{\circ} \mathrm{C}$ rise only guarantees 0.009% maximum change in linearity error. For instance, if the linearity error at $25^{\circ} \mathrm{C}$ is $0.045 \% \mathrm{FS}$ it could increase to 0.054% at $70^{\circ} \mathrm{C}$ and the DAC will be no longer a 10 -bit part. Note, however, that the linearity error is specified over the device full temperature range which is a more stringent specification since it includes the linearity error temperature coefficient.

Note 2: Using internal feedback resistor as shown in Figure 3.
Note 3: Both lout 1 and IOUT 2 must go to ground or the virtual ground of an operational amplifier. If $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}$, every millivolt offset between lout 1 or IOUT 2, 0.005% linearity error will be introduced.

Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 6: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temepature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance of the J 18 package when board mounted is $85^{\circ} \mathrm{C} / \mathrm{W}$. For the N 18 package, θ_{JA} is $120^{\circ} \mathrm{C} / \mathrm{W}$, for the N 16 this number is $125^{\circ} \mathrm{C} / \mathrm{W}$, and for the V20 this number is $95^{\circ} \mathrm{C} / \mathrm{W}$.

Typical Performance Characteristics

FIGURE 1. Digital Input Threshold vs Ambient Temperature

TL/H/5689-2

FIGURE 2. Gain Error Variation vs \mathbf{V}^{+}

Typical Applications

The following applications are also valid for 12 -bit systems using the DAC1220 and 2 additional digital inputs.

Operational Amplifier Bias Current (Figure 3)

The op amp bias current, I_{b}, flows through the 15 k internal feedback resistor. BI-FET op amps have low I_{b} and, therefore, the $15 \mathrm{k} \times \mathrm{I}_{\mathrm{b}}$ error they introduce is negligible; they are strongly recommended for the DAC1020 applications.

Vos Considerations

The output impedance, R the digital input code which causes a modulation of the operational amplifier output offset. It is therefore recommended to adjust the op amp V_{OS}. R ROUT is $\sim 15 \mathrm{k}$ if more than 4 digital inputs are high; ROUT is $\sim 45 \mathrm{k}$ if a single digital input is high, and ROUT approaches infinity if all inputs are low.

Operational Amplifier Vos Adjust (Figure 3)

Connect all digital inputs, A1-A10, to ground and adjust the potentiometer to bring the op amp V $\mathrm{V}_{\text {OUT }}$ pin to within ± 1 mV from ground potential. If $\mathrm{V}_{\text {REF }}$ is less than 10 V , a finer $V_{O S}$ adjustment is required. It is helpful to increase the resolution of the $\mathrm{V}_{\text {OS }}$ adjust procedure by connecting a $1 \mathrm{k} \Omega$ resistor between the inverting input of the op amp to ground. After V_{OS} has been adjusted, remove the $1 \mathrm{k} \Omega$.

Full-Scale Adjust (Figure 4)

Switch high all the digital inputs, A1-A10, and measure the op amp. output voltage. Use a 500Ω potentiometer, as shown, to bring $\left\|V_{\text {OUT }}\right\|$ to a voltage equal to $V_{\text {REF }} \times$ 1023/1024.

SELECTING AND COMPENSATING THE OPERATIONAL AMPLIFIER

Op Amp Family	$\mathbf{C}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{i}}$	\mathbf{P}	$\mathbf{V}_{\mathbf{W}}$	Circuit Settling Time, $\mathbf{t}_{\mathbf{s}}$	Circuit Small Signal BW
LF357	10 pF	2.4 k	25 k	$\mathrm{V}+$	$1.5 \mu \mathrm{~s}$	1 M
LF356	22 pF	∞	25 k	$\mathrm{V}+$	$3 \mu \mathrm{~s}$	0.5 M
LF351	24 pF	∞	10 k	$\mathrm{V}-$	$4 \mu \mathrm{~s}$	0.5 M
LM741	0	∞	10 k	$\mathrm{V}-$	$40 \mu \mathrm{~s}$	200 kHz

TL/H/5689-3
$V_{\text {OUT }}=-V_{\text {REF }}\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\cdots \cdot \frac{A 10}{1024}\right)$
$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 10 \mathrm{~V}$
$0 \leq V_{\text {OUT }} \leq-\frac{1023}{1024} V_{\text {REF }}$
where $A_{N}=1$ if the A_{N} digital input is high
$A_{N}=0$ if the A_{N} digital input is low
FIGURE 3. Basic Connection: Unipolar or 2-Quadrant Multiplying Configuration (Digital Attenuator)

FIGURE 4. Full-Scale Adjust

FIGURE 5. Alternate Full-Scale Adjust: (Allows Increasing or Decreasing the Gain)

$$
V_{\text {OUT } 1}=-V_{R E F}\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\cdots \cdot \frac{A 10}{1024}\right)
$$

$$
V_{O U T 2}=V_{\text {REF }}\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\cdots \bullet \frac{A 10}{1024}\right) \times\left(\frac{B 1}{2}+\frac{B 2}{4}+\frac{B 3}{8}+\cdots \cdot \frac{B 10}{1024}\right)
$$

where $V_{\text {REF }}$ can be an AC signal

FIGURE 6. Precision Analog-to-Digital Multiplier

Typical Applications (Continued)

TL/H/5689-5
$V_{\text {OUT }}=-V_{\text {REF }}\left(\frac{A 1}{2}+\frac{A 2}{4}+\cdots \cdot+\frac{A 10}{1024}-\frac{1}{1024}\right)$
where: $A N=+1$ if A_{N} input is high
$A N=-1$ if A_{N} input is low

COMPLEMENTARY OFFSET BINARY (BIPOLAR) OPERATION

	DIGITAL INPUT		$V_{\text {OUT }}$							
0	0	0	0	0	0	0	0	0	0	$+V_{\text {REF }}$
0	0	0	0	0	0	0	0	0	1	$V_{\text {REF }} \times 1022 / 1024$
0	1	1	1	1	1	1	1	1	1	$V_{\text {REF }} \times 2 / 1024$
1	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1	$-V_{\text {REF }} \times 2 / 1024$
1	1	1	1	1	1	1	1	1	1	$-\mathrm{V}_{\text {REF }}(1022 / 1024)$

Note that:

- IOUT $1+$ IOUT $2=\frac{V_{\text {REF }}}{\text { R}_{\text {LADDER }}} \times\left(\frac{1023}{1024}\right)$
- By doubling the output range we get half the resolution
- The 10 M resistor, adds a 1 LSB "thump", to allow full offset binary operation where the output reaches zero for the half-scale code. If symmetrical output excursions are required, omit the 10 M resistor.

FIGURE 7. Bipolar 4-Quadrant Multiplying Configuration

Operational Amplifiers Vos Adjust (Figure 7)

a) Switch all the digital inputs high; adjust the $V_{\text {OS }}$ potentiometer of op amp B to bring its output to a value equal to-(VREF/1024) (V).
b) Switch the MSB high and the remaining digital inputs low. Adjust the V_{OS} potentiometer of op amp A, to bring its output value to within a 1 mV from ground potential. For $V_{\text {REF }}<10 \mathrm{~V}$, a finer adjust is necessary, as already mentioned in the previous application.

TRUE OFFSET BINARY OPERATION

DIGITAL INPUT							V OUT			
1	1	1	1	1	1	1	1	1	1	V $_{\text {REF }} \times 1022 / 1024$
1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	$-V_{\text {REF }}$

$\mathrm{t}_{\mathrm{s}}=1.8 \mu \mathrm{~s}$
use LM336 for a voltage reference
FIGURE 8. Blpolar Configuration with a Single Op Amp

Gain Adjust (Full-Scale Adjust)

Assuming that the external 10k resistors are matched to better than 0.1%, the gain adjust of the circuit is the same with the one previously discussed.

TL/H/5689-6

- $R 4=\left(2 A_{V}--1\right) R, \frac{R 2}{R 1}=\frac{A_{V^{-}}}{A_{V^{-}}-1}$,
$R 3+R 1 \| R 2=R ; A^{-}=\frac{V_{\text {OUT(PEAK) }}}{V_{\text {REF }}}, R=20 \mathrm{k}$
- Example: $\mathrm{V}_{\text {REF }}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}$ (swing) $\cong \pm 10 \mathrm{~V}: \mathrm{A}^{-}{ }^{-}=5 \mathrm{~V}$

Then R4 $=9 R, R 1=0.8 R 2$. If $R 1=0.2 R$ then $R 2=0.25 R$,
$\mathrm{R} 3=0.64 \mathrm{R}$
FIGURE 9. Bipolar Configuration with Increased Output Swing

Typical Applications (Continued)

where: $V_{\text {REF }}$ can be an $A C$ signal

- By connecting the DAC in the feedback loop of an operational amplifier a linear digitally control gain block can be realized
- Note that with all digital inputs low, the gain of the amplifier is infinity, that is, the op amp will saturate. In other words, we cannot divide the $V_{\text {REF }}$ by zero!
FIGURE 10. Analog-to-Digital Divider (or Digitally Gain Controlled Amplifier)

$$
\begin{aligned}
& V_{\text {OUT }}=V_{\text {REF }}\left[\frac{\frac{\overline{A 1}}{2}+\frac{\overline{A 2}}{4}+\ldots+\frac{\overline{A 10}}{1024}}{\frac{A 1}{2}+\frac{A 2}{4}+\ldots+\frac{A 10}{1024}}\right] \text { or } V_{\text {OUT }}=V_{\text {REF }}\left(\frac{1023-N}{N}\right) \\
& \text { where: } 0 \leq N \leq 1023 \\
& N=0 \text { for } A_{N}=\text { all zeros } \\
& N=1 \text { for } A 10=1, A 1-A 9=0 \\
& \cdot \\
& \cdot \\
& \cdot \\
& N=1023 \text { for } A_{N}=\text { all } 1 ' s
\end{aligned}
$$

Typical Applications (Continued)

TL/H/5689-8

- Output frequency $=\frac{f_{C L K}}{512} ; f_{\text {MAX }} \cong 2 \mathrm{kHz}$
- Output voltage range $=0 \mathrm{~V}-10 \mathrm{~V}$ peak
- THD < 0.2\%
- Excellent amplitude and frequency stability with temperature
- Low pass filter shown has a 1 kHz corner (for output frequencies below 10 Hz , filter corner should be reduced)
- Any periodic function can be implemented by modifying the contents of the look up table ROM
- No start up problems

FIGURE 12. Precision Low Frequency Sine Wave Oscillator Using Sine Look-Up ROM

Typical Applications (Continued)

TL/H/5689-9

- Binary up/down counter digitally "ramps" the DAC output
- Can stop counting at any desired 10-bit input code
- Senses up or down count overflow and automatically reverses direction of count

FIGURE 13. A Useful Digital Input Code Generator for DAC Attenuator or Amplifier Circuits

Definition of Terms

Resolution: Resolution is defined as the reciprocal of the number of discrete steps in the D/A output. It is directly related to the number of switches or bits within the D/A. For example, the DAC1020 has 210 or 1024 steps while the DAC1220 has 212 or 4096 steps. Therefore, the DAC1020 has 10-bit resolution, while the DAC1220 has 12-bit resolution.

Linearity Error: Linearity error is the maximum deviation from a straight line passing through the endpoints of the D / A transfer characteristic. It is measured after calibrating for zero (see $\mathrm{V}_{\text {OS }}$ adjust in typical applications) and fullscale. Linearity error is a design parameter intrinsic to the device and cannot be externally adjusted.

Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the D/A full-scale output.
Settling Time: Full-scale settling time requires a zero to fullscale or full-scale to zero output change. Settling time is the time required from a code transition until the D/A output reaches within $\pm 1 / 2$ LSB of final output value.
Full-Scale Error: Full-scale error is a measure of the output error between an ideal D/A and the actual device output. Ideally, for the DAC1020 full-scale is $\mathrm{V}_{\mathrm{REF}}-1$ LSB. For $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ and unipolar operation, $\mathrm{V}_{\text {FULL-SCA }}$ $\mathrm{LE}=10.0000 \mathrm{~V}-9.8 \mathrm{mV}=9.9902 \mathrm{~V}$. Full-scale error is adjustable to zero as shown in Figure 5.

(a) End point test after zero and full-scale adjust. The DAC has 1 LSB linearity error.

Note. (a), (b1) and (b2) above illustrate the difference between "end point" National's linearity test (a) and "best straight line" test. Note that both devices in (a) and (b2) meet the $\pm 1 / 2$ LSB linearity error specification but the end point test is a more "real life" way of characterizing the DAC.

Connection Diagrams

DAC1020 PLCC Package

Dual-In-Line Package

TL/H/5689-11

DAC1054 Quad 10-Bit Voltage-Output Serial D/A Converter with Readback

General Description

The DAC1054 is a complete quad 10-bit voltage-output digi-tal-to-analog converter that can operate on a single 5 V supply. It includes on-chip output amplifiers, internal voltage reference, and serial microprocessor interface. By combining in one package the reference, amplifiers, and conversion circuitry for four D/A converters, the DAC1054 minimizes wiring and parts count and is hence ideally suited for applications where cost and board space are of prime concern. The DAC1054 also has a data readback function, which can be used by the microprocessor to verify that the desired input word has been properly latched into the DAC1054's data registers. The data readback function simplifies the design and reduces the cost of systems which need to verify data integrity.
The logic comprises a MICROWIRETM-compatible serial interface and control circuitry. The interface allows the user to write to any one of the input registers or to all four at once. The latching registers are double-buffered, consisting of 4 separate input registers and 4 DAC registers. Each DAC register may be written to individually. Double buffering allows all 4 DAC outputs to be updated simultaneously or individually.
The four reference inputs allow the user to configure the system to have a separate output voltage range for each DAC. The output voltage of each DAC can range between 0.3 V and 2.8 V and is a function of $\mathrm{V}_{\mathrm{BIAS}}, \mathrm{V}_{\text {REF }}$, and the input word.

Features

a Single +5 V supply operation
m MICROWIRE serial interface allows easy interface to many popular microcontrollers including the COPSTM and HPCTM families of microcontrollers
■ Data readback capability
© Output data can be formatted to read back MSB or LSB first
© Versatile logic allows selective or global update of the DACs
\square Power fail flag

- Output amplifiers can drive $2 \mathrm{k} \Omega$ load
\square Synchronous/asynchronous update of the DAC outputs

Key Specifications

- Guaranteed monotonic over temperature
- Integral linearity error
$\pm 3 / 4$ LSB max
@ Output settling time $3.7 \mu \mathrm{~s}$ max
\square Analog output voltage range
0.3 V to 2.8 V
\square Supply voltage range
4.5 V to 5.5 V
- Clock frequency for write
10 MHz max
$5 \mathrm{MHz} \max$
100 mW max
© Power dissipation (fCLK $=10 \mathrm{MHz}$)
$2.65 \mathrm{~V} \pm 2 \% \max$

Applications

- Automatic test equipment
\square Industrial process controls
- Automotive controls and diagnostics
- Instrumentation

Connection Diagram

Ordering Information

Industrial $\left(-40^{\circ} \mathbf{C}<\mathbf{T}_{\mathbf{A}}<+85^{\circ} \mathrm{C}\right)$	Package
DAC1054CIN	N24A Molded DIP
DAC1054CIWM	M24B Small Outline
Military $\left(-55^{\circ} \mathbf{C}<\mathbf{T}_{\mathbf{A}}<+125^{\circ} \mathrm{C}\right)$	
DAC1054CMJ/883 or $5962-9466201 M J A ~$	J24A Ceramic DIP

Top Vlows

Soldering Information	
N Package $(10$ sec. $)$	$260^{\circ} \mathrm{C}$
SO Package	
Vapor Phase $(60 \mathrm{sec})$.	$215^{\circ} \mathrm{C}$
Infrared $(15 \mathrm{sec}$.$) (Note 7)$	$220^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings (Notes 1 \& 2)

Supply Voltage 4.5 V to 5.5 V
Supply Voltage Difference $\left(A V_{C C}-D V_{C C}\right) \pm 1 V$
Temperature Range $\quad T_{\text {MIN }}<T_{A}<T_{\text {MAX }}$
DAC1054CIN, DAC1054CIWM $\quad-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$
DAC1054CMJ/883 $\quad-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$

Converter Electrical Characteristics

The following specifications apply for $\mathrm{AV}_{\mathrm{CC}}=\mathrm{DV} \mathrm{CC}^{=}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (R_{L} is the load resistor on the analog outputs - pins 2, 13, 17, and 23) and $f_{C L K}=10 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}$
$=\mathbf{T}_{\mathbf{J}}$ from $\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$. All other limits apply for $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 8)	Limit (Note 9)	Units (Limits)

STATIC CHARACTERISTICS

n	Resolution		10	10	bits
	Monotonicity	(Note 10)	10	10	bits
	Integral Linearity Error DAC1054CIN, DAC1054CIWM	(Note 11)		± 0.75	LSB (max)
	Differential Linearity Error			± 1.0	LSB (max)
	Fullscale Error	(Note 12)		± 30	mV
	Fullscale Error Tempco	(Note 13)	-38		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Zero Error	(Note 14)		± 25	mV
	Zero Error Tempco	(Note 13)	-38		ppm $/{ }^{\circ} \mathrm{C}$
	Power Supply Sensitivity.	(Note 15)		-34	dB (max)
DYNAMIC CHARACTERISTICS					
$t_{\text {s }+}$	Positive Voltage Output Settling Time	(Note 16) $\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	1.8	3.2	$\mu \mathrm{S}$
t_{s} -	Negative Voltage Output Settling Time	(Note 16) $\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	2.3	3.7	$\mu \mathrm{s}$
	Digital Crosstalk	(Note 17)	15		$m V_{p-p}$
	Digital Feedthrough	(Note 18)	15		$m V_{p-p}$
	Clock Feedthrough	(Note 19)	20		$m V_{p-p}$
	Channel-to-Channel Isolation	(Note 20)	-71		dB
	Glitch Energy	(Note 21)	7		nV -s
	Peak Value of Largest Glitch		38		mV
PSRR	Power Supply Rejection Ratio	(Note 22)	- 49		dB

Converter Electrical Characteristics (Continued)

The following specifications apply for $A V_{C C}=D V_{C C}=5 \mathrm{~V}, V_{R E F}=2.65 \mathrm{~V}, V_{B I A S}=1.4 \mathrm{~V}, R_{L}=2 \mathrm{k} \Omega$ (R_{L} is the load resistor on the analog outputs - pins 2, 13, 17, and 23) and $f_{C L K}=10 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}$ $=\mathbf{T}_{\mathbf{J}}$ from $\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$. All other limits apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 3)	Limit (Note 4)	Units (Limits)

DIGITAL AND DC ELECTRICAL CHARACTERISTICS

V IN(1)	Logical "1" Input Voltage	$\mathrm{AV}_{C C}=\mathrm{DV}_{C C}=5.5 \mathrm{~V}$		2.0	V (min)
$\mathrm{V}_{\text {IN(0) }}$	Logical "0" Input Voltage	$\mathrm{AV}_{\mathrm{CC}}=\mathrm{DV}_{C C}=4.5 \mathrm{~V}$		0.8	V (max)
IIL	Digital Input Leakage Current			1	$\mu \mathrm{A}$ (max)
$\mathrm{CIN}_{\text {I }}$	Input Capacitance		4		pF
COUT	Output Capacitance		5		pF
$\mathrm{V}_{\text {OUT(1) }}$	Logical " 1 " Output Voltage	$\mathrm{I}_{\text {SOURCE }}=0.8 \mathrm{~mA}$		2.4	V (min)
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0' Output Voltage	$\mathrm{I}_{\mathrm{SINK}}=3.2 \mathrm{~mA}$		0.4	V (max)
$\mathrm{V}_{\text {INT }}$	Interrupt Pin Output Voltage	$10 \mathrm{k} \Omega$ Pullup		0.4	V (max)
Is	Supply Current	Outputs Unloaded	14	20	mA
REFERENCE INPUT CHARACTERISTICS					
$\mathrm{V}_{\text {REF }}$	Input Voltage Range		0-2.75		V
$\mathrm{R}_{\text {REF }}$	Input Resistance		7	$\begin{aligned} & 4 \\ & 9 \\ & \hline \end{aligned}$	$k \Omega$ (min) $k \Omega$ (max)
$\mathrm{C}_{\text {REF }}$	Input Capacitance	Full-Scale Data Input	25		pF
V BIAS INPUT CHARACTERISTICS					
$\mathrm{V}_{\text {BIAS }}$	$V_{\text {BIAS }}$ Input Voltage Range		0.3-1.4		V
	Input Leakage		1		$\mu \mathrm{A}$
$\mathrm{C}_{\text {BIAS }}$	Input Capacitance		9		pF

BANDGAP REFERENCE CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=220 \mu \mathrm{~F}$)

$V_{\text {REFOUT }}$	Output Voltage			$\mathbf{2 . 6 5} \pm \mathbf{2 \%}$	V
$\Delta V_{\text {REF }} / \Delta T$	Tempco	(Note 23)	29		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Line Regulation	$4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=4 \mathrm{~mA}$		$\mathbf{5}$	mV
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{I}_{\mathrm{L}}$	Load Regulation	$0<\mathrm{I}_{\mathrm{L}}<4 \mathrm{~mA}$ $-1<\mathrm{I}_{\mathrm{L}}<0 \mathrm{~mA}$	2.5	$\mathbf{1 0}$	mV
ISC	Short Circuit Current	$\mathrm{V}_{\text {REFOUT }}=0 \mathrm{~V}$	12		mV

AC ELECTRICAL CHARACTERISTICS

Converter Electrical Characteristics (Continued)

The following specifications apply for $A V_{C C}=D V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{BI}} \mathrm{AS}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (R_{L} is the load resistor on the analog outputs - pins $2,13,17$, and 23) and $f_{C L K}=10 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply.for $\mathrm{T}_{\mathbf{A}}$ $=\mathbf{T}_{\mathbf{J}}$ from $\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$. All other limits apply for $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 3)	Limit (Note 4)	Units (Limits)

AC ELECTRICAL CHARACTERISTICS (Continued)

$\mathrm{t}_{\mathrm{CZ} 1}$	Output Hi-Z to Valid 1	$\mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}$		$\mathbf{7 0}$
$\mathrm{t}_{\mathrm{CZO}}$	Output Hi-Z to Valid 0	$\mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}$	$\mathrm{ns}(\mathrm{max})$	
$\mathrm{t}_{1 \mathrm{H}}$	$\overline{\mathrm{CS}}$ to Output Hi-Z	$10 \mathrm{k} \Omega$ with $60 \mathrm{pF}, \mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}$		$\mathbf{7 0}$
t_{OH}	$\overline{\mathrm{CS}}$ to Output Hi-Z	$10 \mathrm{kS} \Omega$ with $60 \mathrm{pF}, \mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}$		$\mathbf{1 5 0}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional. These ratings do not guarantee specific performance limits, however. For guaranteed specifications and test conditions, see the Converter Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to ground, unless otherwise specified.
Note 3: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supply rails ($\mathrm{V}_{\mathbb{I}}<\mathrm{GND}$ or $\mathrm{V}_{\mathbb{I N}}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 5 mA or less.

Note 4: The sum of the currents at all pins that are driven beyond the power supply voltages should not exceed 30 mA .
Note 5: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J m a x}$ (maximum junction temperature), Θ_{JA} (package junction to ambient thermal resistance), and T_{A} (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{D \max }=\left(T_{J_{\max }}-T_{A}\right) / \Theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. The table below details $T_{J m a x}$ and $\Theta_{J A}$ for the various packages and versions of the DAC1054.

Part Number	$\mathbf{T}_{\text {Jmax }}\left({ }^{\circ} \mathbf{C}\right)$	$\Theta_{\mathbf{J A}}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$
DAC1054CIN	125	42
DAC1054CIWM	125	57

Note 6: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: See AN450 "Surface Mounting Methods and Their Effect on Production Reliability" of the section titled "Surface Mount" found in any current Linear Databook for other methods of soldering surface mount devices.
Note 8: Typicals are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 9: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 10: A monotonicity of 10 bits for the DAC1054 means that the output voltage changes in the same direction (or remains constant) for each increase in the input code.
Note 11: Integral linearity error is the maximum deviation of the output from the line drawn between zero and full-scale (excluding the effects of zero error and fullscale error).
Note 12: Full-scale error is measured as the deviation from the ideal 2.800 V full-scale output when $\mathrm{V}_{\text {REF }}=2.650 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BIAS}}=1.400 \mathrm{~V}$.
Note 13: Full-scale error tempco and zero error tempco are defined by the following equation:

$$
\text { Error tempco }=\left[\frac{\operatorname{Error}\left(T_{M A X}\right)-\operatorname{Error}\left(T_{M I N}\right)}{V_{S P A N}}\right]\left[\frac{10^{6}}{T_{\text {MAX }}-T_{M I N}}\right]
$$

where Error ($T_{\text {MAX }}$) is the zero error or full-scale error at $T_{\text {MAX }}$ (in volts), and Error ($\mathrm{T}_{\text {MIN }}$) is the zero error or full-scale error at $\mathrm{T}_{\text {MIN }}$ (in volts); $\mathrm{V}_{\text {SPAN }}$ is the output voltage span of the DAC1054, which depends on $V_{\text {BIAS }}$ and $\mathrm{V}_{\text {REF }}$.
Note 14: Zero error is measured as the deviation from the ideal 0.302 V output when $\mathrm{V}_{\mathrm{REF}}=2.650 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=1.400 \mathrm{~V}$, and the digital input word is all zeros.
Note 15: Power Supply Sensitivity is the maximum change in the offset error or the full-scale error when the power supply differs from its optimum 5 V by up to $0.50 \mathrm{~V}(10 \%)$. The load resistor $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$.
Note 16: Positive or negative settling time is defined as the time taken for the output of the DAC to settle to its final full-scale or zero output to within ± 0.5 LSB. This time shall be referenced to the 50% point of the positive edge of $\overline{C S}$, which initiates the update of the analog outputs.
Note 17: Digital crosstalk is the glitch measured on the output of one DAC while applying an all 0 s to all 1 s transition at the input of the other DACs.
Note 18: All DACs have full-scale outputs latched and DI is clocked with no update of the DAC outputs. The glitch is then measured on the DAC outputs.
Note 19: Clock feedthrough is measured for each DAC with its output at full-scale. The serial clock is then applied to the DAC'at a frequency of 10 MHz and the glitch on each DAC full-scale output is measured.
Note 20: Channel-to-channel isolation is a measure of the effect of a change in one DAC's output on the output of another DAC. The $V_{\text {REF }}$ of the first DAC is varied between 1.4 V and 2.65 V at a frequency of 15 kHz while the change in full-scale output of the second DAC is measured. The first DAC is loaded with all Os.
Note 21: Glitch energy is the difference between the positive and negative glitch areas at the output of the DAC when a 1 LSB digital input code change is applied to the input. The glitch energy will have its largest value at one of the three major transitions. The peak value of the maximum glitch is separately specified.
Note 22: Power Supply Rejection Ratio is measured by varying $A V_{C C}=D V_{C C}$ between 4.50 V and 5.50 V with a frequency of 10 kHz and measuring the proportion of this signal imposed on a full-scale output of the DAC under consideration.
Note 23: The bandgap reference tempco is defined by the largest value from the following equations:

$$
\operatorname{Tempco}\left(T_{\text {MAX }}\right)=\left[\frac{V_{\text {REF }}\left(T_{\text {MAX }}\right)-V_{\text {REF }}\left(T_{\text {ROOM }}\right)}{V_{\text {REF }}\left(T_{\text {ROOM }}\right)}\right]\left[\frac{10^{6}}{T_{\text {MAX }}-T_{\text {ROOM }}}\right] \text { or Tempco }\left(T_{\text {MIN }}\right)=\left[\frac{V_{\text {REF }}\left(T_{\text {MIN }}\right)-V_{\text {REF }}\left(T_{\text {ROOM }}\right)}{V_{\text {REF }}\left(T_{\text {ROOM }}\right)}\right]\left[\frac{10^{6}}{T_{\text {ROOM }}-T_{\text {MIN }}}\right]
$$

where $T_{\text {ROOM }}=25^{\circ} \mathrm{C}, V_{\text {REF }}\left(T_{\text {MAX }}\right)$ is the reference output at $T_{\text {MAX }}$, and similarly for $V_{\text {REF }}$ ($T_{\text {MIN }}$) and $V_{\text {REF }}\left(T_{\text {ROOM }}\right.$).
Note 24: A Military RETS specification is available upon request.

Typical Converter Performance Characteristics

Typical Reference Performance Characteristics

TRI-STATE Test Circuits and Waveforms

TL/H/11437-5

TL/H/11437-7
Timing Waveforms

Timing Diagrams

$V_{\text {OUT }}$

FIGURE 1. Write to One DAC with Update of Output ($\overline{\mathrm{AU}}=1$), 10 MHz Maximum CLK Rate

Timing Diagrams (Continued)

* DACs are written to MSB first. DAC1 is written to first, then DACs 2,3 , and 4.

FIGURE 2. Write to All DACs with Update of Outputs ($\overline{\mathbf{A U}}=1$), 10 MHz Maximum CLK Rate

$\overline{C S}$

01

DO

TL/H/11437-13
FIGURE 3. Read One DAC, DO LSB First, DO Changes on Falling Edge of CLK ($\overline{\mathrm{AU}}=\mathbf{1}$), 5 MHz Maximum CLK Rate

TL/H/11437-14
*DAC1 is read first, then DACs 2,3 , and 4.
FIGURE 4. Read All DACs, DO LSB First, DO Changes on Falling Edge of CLK ($\overline{\mathrm{AU}}=1$), 5 MHz Maximum CLK Rate

Pin Description

$\overline{\mathrm{AU}}$ (11) When this pin is taken low, all DAC outputs will be asynchronously updated. $\overline{C S}$ must be held high during the update. $\overline{\mathrm{AU}}$ must be held high during Read back.
$V_{\text {REF1 }}(1)$, The voltage reference inputs for the four
$\mathrm{V}_{\mathrm{REF} 2}(22)$, DACs. The allowed range is $0 \mathrm{~V}-2.75 \mathrm{~V}$.
$V_{\text {REF3 }}(18)$,
$\mathrm{V}_{\text {REF4 }}(14)$
$\overline{\mathrm{CS}}(9)$
CLK(8)
DI(10)

DO(7)
$\overline{\mathrm{INT}}(12)$

The Chip Select control input. This input is active low.
The external clock input pin.
The serial data input. The data is clocked in MSB first. Preceding the data byte are 4 or 6 bits of instructions. The read back command requires 7 bits of instructions.
The serial data output. The data can be clocked out either MSB or LSB first, and on either the positive or negative edge of the clock.
The power interrupt output. On an interruption of the digital power supply, this pin goes low. Since this pin has an open drain output, a $10 \mathrm{k} \Omega$ pull-up resistor must be connected to the supply.

Applications Information

FUNCTIONAL DESCRIPTION

The DAC1054 is a monolithic quad 10 -bit digital-to-analog converter that is designed to operate on a single 5 V supply. Each of the four units is comprised of an input register, a DAC register, a shift register, a current output DAC, and an output amplifier. In addition, the DAC1054 has an onboard bandgap reference and a logic unit which controls the internal operation of the DAC1054 and interfaces it to microprocessors.
Each of the four internal 10-bit DACs uses a modified R-2R ladder to effect the digital-to-analog conversion (Figure 5). The resistances corresponding to the 2 most significant bits are segmented to reduce glitch energy and to improve matching. The bottom of the ladder has been modified so that the voltage across the LSB resistor is much larger than the input offset voltage of the buffer amplifier. The input digital code determines the state of the switches in the ladder network. An internal EEPROM, which is programmed at the factory, is used to correct for linearity errors in the resistor ladder of each of the four internal DACs. The codes stored in the EEPROM's memory locations are converted to a current, IEEPROM, with a small trim DAC. The sum of currents IOUT1 and IOUT2 is fixed and is given by

The current output louta, summed with the correction current $\mathrm{I}_{\text {EEPROM }}$, is applied to the internal output amplifier and converted to a voltage. The output voltage of each DAC is a function of $\mathrm{V}_{\text {BIAS }}, \mathrm{V}_{\text {REF }}$, and the digital input word, and is given by
$V_{\text {OUT }}=2\left(V_{\text {REF }}-V_{\text {BIAS }}\right) \frac{\text { DATA }}{1024}+\frac{2047}{512} V_{\text {BIAS }}-\frac{1023}{512} V_{\text {REF }}$
The output voltage range for each DAC is $0.3 \mathrm{~V}-2.8 \mathrm{~V}$. This range can be achieved by using the internal 2.65 V reference and a voltage divider network which provides a $\mathrm{V}_{\text {BIAS }}$ of 1.40 V (Figure 6). In this case the DAC transfer function is

$$
V_{\text {OUT }}=2.5 \frac{(\text { DATA })}{1024}+0.30244
$$

The output impedance of any external reference that is used will affect the accuracy of the conversion. In order that this error be less than $1 / 2$ LSB, the output impedance of the external reference must be less than 2Ω.

$$
I_{\text {OUT1 }}+\mathrm{I}_{\text {OUT2 }}=\left(\frac{\mathrm{V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{BIAS}}}{\mathrm{R}} \frac{1023}{1024}\right.
$$

TL/H/11437-16
FIGURE 5. Equivalent Circuit of R-2R Ladder and Output Amplifier

TL/H/11437-17
FIGURE 6. Generating a $V_{\text {BIAS }}=1.40 \mathrm{~V}$ from the Internal Reference, Typical Application

Digital Interface

The DAC1054 has two interface modes: a WRITE mode and a READ mode. The WRITE mode is used to convert a 10-bit digital input word into a voltage. The READ mode is used to read back the digital data that was sent to one or all of the DACs. The WRITE mode maximum clock rate is 10 MHz . READ mode is limited to a 5 MHz maximum clock rate. These modes are selected by the appropriate setting of the RD/WR bit, which is part of the instruction byte. The instruction byte precedes the data byte at the DI pin. In both modes, a high level on the Start Bit (SB) alerts the DAC to respond to the remainder of the input stream.
Table I lists the instruction set for the WRITE mode when writing to only a single DAC, and Table II lists the instruction set for a global write. Bits A0 and A1 select the DAC to be written to. The DACs are always written to MSB first. All DACs will be written to sequentially if the global bit (G) is
high; DAC 1 is written to first, then DACs 2, 3 and 4 (in that order). For a global write bits AO and A1 of the instruction byte are not required (see Figure 2 timing diagram). If the update bit (U) is high, then the DAC output(s) will be updated on the rising edge of $\overline{C S}$; otherwise, the new data byte will be placed only in the input register. Chip Select (CS) mustt remain low for at least one clock cycle after the last data bit has been entered. (See Figures 1 and 2)
When the U bit is set low an asynchronous update of all the DAC outputs can be achieved by taking $\overline{A U}$ low. The contents of the input registers are loaded into the DAC registers, with the update occurring on the falling edge of $\overline{\mathrm{AU}} . \overline{\mathrm{CS}}$ must be held high during an asynchronous update.
All DAC registers will have their contents reset to all zeros on power up.

TABLE I. WRITE Mode Instruction Set (Writing to a Single DAC)

SB	RD/ $\overline{W R}$	G	\mathbf{U}	A1	AO	Description
Bit \# 1	Bit \# 2	Bit \# 3	Bit \#4	Bit \# 5	Bit \#6	
1	0	0	0	0	0	Write DAC 1, no update of DAC outputs
1	0	0	0	0	1	Write DAC 2, no update of DAC outputs
1	0	0	0	1	0	Write DAC 3, no update of DAC outputs
1	0	0	0	1	1	Write DAC 4, no update of DAC outputs
1	0	0	1	0	0	Write DAC 1, update DAC 1 on $\overline{\mathrm{CS}}$ rising edge
1	0	0	1	0	1	Write DAC 2, update DAC 2 on $\overline{\mathrm{CS}}$ rising edge
1	0	0	1	1	0	Write DAC 3, update DAC 3 on $\overline{\mathrm{CS}}$ rising edge
1	0	0	1	1	1	Write DAC 4, update DAC 4 on $\overline{\mathrm{CS}}$ rising edge

TABLE II. WRITE Mode Instruction Set (Writing to all DACs)

SB	RD/仵	G	\mathbf{U}	Description
Bit \# 1	Bit \#2	Bit \#3	Bit \#4	
1	0	1	0	Write all DACs, no update of outputs
1	0	1	1	Write all DACs, update all outputs on $\overline{\text { CS }}$ rising edge

Digital Interface (Continued)

Table III lists the instruction set for the READ mode. By the appropriate setting of the global (G) and address (A1 and AO) bits, one can select a specific DAC to be read, or one can read all the DACs in succession, starting with DAC 1. The R / \bar{F} bit determines whether the data changes on the rising or the falling edge of the system clock. With the R/F bit high, DO goes out of TRI-STATE on the rising edge that occurs $11 / 2$ clock cycles after the end of the instruction byte; the data will continue to be sequentially clocked out by the
following rising clock edges. With the R/F bit low, DO goes out of TRI-STATE on the falling edge that occurs 1 clock cycle after the end of the instruction byte; the data will continue to be sequentially clocked by the next falling clock edges. The rising edge of $\overline{\mathrm{CS}}$ returns DO to TRI-STATE. Read back with the R/F bit set high is not MICROWIRE compatible. One can choose to read the data back MSB first or LSB first by setting the M / \bar{L} bit. (See Figures 3 and 4)

TABLE III. READ MODE Instruction Set

SB	RD/ $\overline{W R}$	G	R/F	M/L	A1	AO	Description
Bit \# 1	Bit \#2	Bit \#3	Bit \# 4	Bit \# 5	Bit \# 6	Bit \#7	
1	1	0	0	0	0	0	Read DAC 1, LSB first, data changes on the falling edge
1	1	0	0	0	0	1	Read DAC 2, LSB first, data changes on the falling edge
1	1	0	0	0	1	0	Read DAC 3, LSB first, data changes on the falling edge
1	1	0	0	0	1	1	Read DAC 4, LSB first, data changes on the falling edge
1	1	0	0	1	0	0	Read DAC 1, MSB first, data changes on the falling edge
1	1	0	0	1	0	1	Read DAC 2, MSB first, data changes on the falling edge
1	1	0	0	1	1	0	Read DAC 3, MSB first, data changes on the falling edge
1	1	0	0	1	1	1	Read DAC 4, MSB first, data changes on the falling edge
1	1	0	1	0	0	0	Read DAC 1, LSB first, data changes on the rising edge
1	1	0	1	0	0	1	Read DAC 2, LSB first, data changes on the rising edge
1	1	0	1	0	1	0	Read DAC 3, LSB first, data changes on the rising edge
1	1	0	1	0	1	1	Read DAC 4, LSB first, data changes on the rising edge
1	1	0	1	1	0	0	Read DAC 1, MSB first, data changes on the rising edge
1	1	0	1	1	0	1	Read DAC 2, MSB first, data changes on the rising edge
1	1	0	1	1	1	0	Read DAC 3, MSB first, data changes on the rising edge
1	1	0	1	1	1	1	Read DAC 4, MSB first, data changes on the rising edge
1	1	1	0	0	1	0	Read all DACs, LSB first, data changes on the falling edge
1	1	1	0	1	1	0	Read all DACs, MSB first, data changes on the falling edge
1	1	1	1	0	1	0	Read all DACs, LSB first, data changes on the rising edge
1	1	1	1	1	1	0	Read all DACs, MSB first, data changes on the rising edge

Power Fail Function

The DAC1054 powers up with the $\overline{\mathrm{NT}}$ pin in a Low state. To force this output high and reset this flag, the $\overline{\mathrm{CS}}$ pin will have to be brought low. When this is done the $\overline{\mathrm{NT}}$ output will be pulled high again via an external $10 \mathrm{k} \Omega$ pull-up resistor. Anytime a power failure occurs on the $\mathrm{DV}_{C C}$ line, the $\overline{\mathrm{INT}}$ will be set low when power is reapplied. This feature may be used by the microprocessor to discard data whose integrity is in question.

Power Supplies

The DAC1054 is designed to operate from a +5 V (nominal) supply. There are two supply lines, $\mathrm{AV}_{\mathrm{CC}}$ and $D V_{C C}$. These pins allow separate external bypass capacitors for the ana\log and digital portions of the circuit. To guarantee accurate conversions, the two supply lines should each be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum capacitor.

FIGURE 7. Trimming the Offset of a 5V Op Amp Whose Output is Biased at 2.5V

TL/H/11437-19
FIGURE 8. Trimming the Offset of a Dual Supply Op Amp (VIN is Ground Referenced)

FIGURE 9. Bringing the Output Range Down to Ground

General Description

The DAC1208 and the DAC1230 series are 12-bit multiplying D to A converters designed to interface directly with a wide variety of microprocessors (8080, 8048, 8085, Z-80, etc.). Double buffering input registers and associated control lines allow these DACs to appear as a two-byte "stack" in the system's memory or I/O space with no additional interfacing logic required.
The DAC1208 series provides all 12 input lines to allow single buffering for maximum throughput when used with 16 -bit processors. These input lines can also be externally configured to permit an 8 -bit data interface. The DAC1230 series can be used with an 8 -bit data bus directly as it internally formulates the 12-bit DAC data from its 8 input lines. All of these DACs accept left-justified data from the processor.
The analog section is a precision silicon-chromium ($\mathrm{Si}-\mathrm{Cr}$) R-2R ladder network and twelve CMOS current switches. An inverted R-2R ladder structure is used with the binary weighted currents switched between the lout1 and lout2 maintaining a constant current in each ladder leg independent of the switch state. Special circuitry provides TTL logic input voltage level compatibility.
The DAC1208 series and DAC1230 series are the 12-bit members of a family of microprocessor compatible DACs (MICRO-DACs ${ }^{\text {TM }}$). For applications requiring other resolutions, the DAC1000 series for 10-bit and DAC0830 series for 8 -bit are available alternatives.

Features

- Linearity specified with zero and full-scale adjust only
- Direct interface to all popular microprocessors

■ Double-buffered, single-buffered or flow through digital data inputs
■ Logic inputs which meet TTL voltage level specs (1.4V logic threshold)
⿴囗 Works with $\pm 10 \mathrm{~V}$ reference-full 4-quadrant multiplication

- Operates stand-alone (without $\mu \mathrm{P}$) if desired
- All parts guaranteed 12-bit monotonic
\square DAC1230 series is pin compatible with the DAC0830 series 8-bit MICRO-DACs

Key Specifications

- Current Settling Time
$1 \mu \mathrm{~s}$
\square Resolution 12 Bits
- Linearity (Guaranteed over temperature)
- Gain Tempco
- Low Power Dissipation

10, 11, or 12 Bits of FS
$1.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ 20 mW

- Single Power Supply
$5 V_{D C}$ to $15 V_{D C}$

Typical Application

TL/H/5690-1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Notes 1 and 2)
Supply Voltage (V_{CC})
$17 V_{D C}$
Voltage at Any Digital Input
Voltage at $\mathrm{V}_{\text {REF }}$ Input
$V_{C C}$ to GND

Storage Temperature Range
Package Dissipation at $T_{A}=25^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
(Note 3)
DC Voltage Applied to louT1 or louT2
(Note 4)
-100 mV to V_{CC}
ESD Susceptability
800 V

Operating Conditions

Lead Temperature (Soldering, 10 sec .)
$300^{\circ} \mathrm{C}$
Temperature Range
$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
DAC1208LCJ, DAC1209LCJ,
DAC1210LCJ, DAC1230LCJ,
DAC1231LCJ, DAC1232LCJ,
DAC1231LIN, DAC1232LIN
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
DAC1208LCJ-1, DAC1210LCJ-1, DAC1230LCJ-1, DAC1231LCJ-1, DAC1232LCJ-1, DAC1231LCN, DAC1232LCN, DAC1231LCWM, DAC1232LCWM
Range of $V_{C C}$
Voltage at Any Digital Input
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
4.75 V_{DC} to $16 \mathrm{~V}_{\mathrm{DC}}$ $V_{C C}$ to GND

Electrical Characteristics

$\mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{CC}}=11.4 \mathrm{~V}_{\mathrm{DC}}$ to $15.75 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted. Boldface limits apply from $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ (see Note 13); all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	Notes	Typ (Note 10)	Tested Limit (Note 5)	Design Limit (Note 6)	Units
Resolution			12	12	12	Bits
Linearity Error (End Point Linearity)	Zero and Full-Scale Adjusted DAC1208, DAC1230 DAC1209, DAC1231 DAC1210, DAC1232	4, 7, 13		$\begin{aligned} & \pm 0.018 \\ & \pm 0.024 \\ & \pm 0.050 \end{aligned}$	$\begin{gathered} \pm 0.018 \\ \pm 0.024 \\ \pm 0.05 \end{gathered}$	\% of FSR \% of FSR \% of FSR
Differential Non-Linearity	Zero and Full-Scale Adjusted DAC1208, DAC1230 DAC1209, DAC1231 DAC1210, DAC1232	4, 7, 13		$\begin{aligned} & \pm 0.018 \\ & \pm 0.024 \\ & \pm 0.050 \end{aligned}$	$\begin{gathered} \pm 0.018 \\ \pm 0.024 \\ \pm 0.05 \end{gathered}$	\% of FSR \% of FSR \% of FSR
Monotonicity		4	12	12	12	Bits
Gain Error (Min)	Using Internal R_{F}	7	-0.1	0.0		\% of FSR
Gain Error (Max)	V_{r}	7	-0.1	-0.2		\% of FSR
Gain Error Tempco		7	± 1.3		± 6.0	ppm of FS/ ${ }^{\circ} \mathrm{C}$
Power Supply Rejection	All Digital Inputs Latched High	7	± 3.0	± 30		ppm of FSR/V
Reference Input Resistance (Min) Reference Input Resistance (Max)		13	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	k Ω
Output Feedthrough Error	$\mathrm{V}_{\text {REF }}=20 \mathrm{Vp-p,f}=100 \mathrm{kHz}$ All Data Inputs Latched Low	9	3.0			mVp-p
Output Capacitance	All Data Inputs IOUT1 Latched High lout2 All Data Inputs IOUT1 Latched Low loutz			,	$\begin{gathered} 200 \\ 70 \\ 70 \\ 200 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \\ & \hline \end{aligned}$
Supply Current Drain		13		2.0	2.5	mA
Output Leakage Current lout1 lout2	All Data Inputs Latched Low All Data Inputs Latched High	$\begin{aligned} & 11,13 \\ & 11,13 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	nA $n A$
Digital Input Threshold	Low Threshold High Threshold	$\begin{aligned} & 13 \\ & 13 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 2.2 \end{aligned}$	$V_{D C}$ $V_{D C}$
Digital Input Currents	Digital Inputs $<0.8 \mathrm{~V}$ Digital Inputs $>2.2 \mathrm{~V}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$		$\begin{gathered} -200 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} -200 \\ 10 \\ \hline \end{gathered}$	$\mu A_{D C}$ $\mu A_{D C}$

Electrical Characteristics (Continued)

$V_{R E F}=10.000 V_{D C}, V_{C C}=11.4 \mathrm{~V}_{D C}$ to $15.75 \mathrm{~V}_{D C}$ unless otherwise noted. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$ (see Note 13); all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	See Note	Typ (Note 10)	Tested Limit (Note 5)		Units
AC CHARACTERISTICS							
t_{s}	Current Setting Time	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=5 \mathrm{~V}$		1.0			$\mu \mathrm{s}$
tw	Write and XFER Pulse Width Min.	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	8	50		$\begin{aligned} & 320 \\ & 320 \end{aligned}$	ns
$t_{\text {DS }}$	Data Setup Time Min.	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$		70		$\begin{aligned} & 320 \\ & 320 \end{aligned}$	
$t_{\text {th }}$	Data Hold Time Min.	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$		30		$\begin{aligned} & 90 \\ & \mathbf{9 0} \\ & \hline \end{aligned}$	
$t_{\text {cs }}$	Control Setup Time Min.	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$		60		$\begin{aligned} & 320 \\ & 320 \end{aligned}$	
${ }^{\text {t }}$ CH	Control Hold Time Min.	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{1 H}=5 \mathrm{~V}$		0		10	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: This 500 mW specification applies for all packages. The low intrinsic power dissipation of this part (and the fact that there is no way to significantly modify the power dissipation) removes concern for heat sinking.
Note 4: Both lout1 and louT2 must go to ground or the virtual ground of an operational amplifier. The linearity error is degraded by approximately $\mathrm{V}_{\text {OS }} \div \mathrm{V}_{\text {REF }}$. For example, if $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}$ then a 1 mV offset, V_{OS}, on IOUT1 or lOUT2 will introduce an additional 0.01% linearity error.
Note 5: Tested and guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 6: Design limits are guaranteed but not 100% tested. These limits are not used to calculate outgoing quality levels. Guaranteed for $\mathrm{V}_{\mathrm{CC}}=11.4 \mathrm{~V}$ to 15.75 V and $V_{\text {REF }}=-10 \mathrm{~V}$ to +10 V .
Note 7: The unit FSR stands for full-scale range. Linearity Error and Power Supply Rejection specs are based on this unit to eliminate dependence on a particular $V_{\text {REF }}$ value to indicate the true performance of the part. The Linearity Error specification of the DAC1208 is 0.012% of FSR(max). This guarantees that after performing a zero and full-scale adjustment, the plot of the 4096 analog voltage outputs will each be within $0.012 \% \times V_{\text {REF }}$ of a straight line which passes through zero and full-scale. The unit ppm of FSR(parts per million of full-scale range) and ppm of FS(parts per million of full-scale) are used for convenience to define specs of very small percentage values, typical of higher accuracy converters. In this instance, 1 ppm of $\mathrm{FSR}=\mathrm{V}_{\mathrm{REF}} / 10^{6}$ is the conversion factor to provide an actual output voltage quantity. For example, the gain error tempco spec of $\pm 6 \mathrm{ppm}$ of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ represents a worst-case full-scale gain error change with temperature from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ of $\pm(6)\left(\mathrm{V}_{\text {REF }} / 10^{6}\right)\left(125^{\circ} \mathrm{C}\right)$ or $\pm 0.75\left(10^{-3}\right) \mathrm{V}_{\text {REF }}$ which is $\pm 0.075 \%$ of $\mathrm{V}_{\text {REF }}$.
Note 8: This spec implies that all parts are guaranteed to operate with a write pulse or transfer pulse width (t_{W}) of 320 ns . A typical part will operate with tw of only 100 ns . The entire write pulse must occur within the valid data interval for the specified $\mathrm{t}_{\mathrm{W}}, \mathrm{t}_{\mathrm{DS}}, \mathrm{t}_{\mathrm{DH}}$ and t_{s} to apply.
Note 9: To achieve this low feedthrough in the D package, the user must ground the metal lid. If the lid is left floating the feedthrough is typically 6 mV .
Note 10: Typicals are at $25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 11: A 10 nA leakage current with $\mathrm{R}_{\mathrm{Fb}}=20 \mathrm{k}$ and $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ corresponds to a zero error of $\left(10 \times 10^{-9} \times 20 \times 10^{3}\right) \times 100 \% 10 \mathrm{~V}$ or 0.002% of FS .
Note 12: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 13: Tested limit for -1 suffix parts applies only at $25^{\circ} \mathrm{C}$.

Connection Diagrams

Dual-In-Line Package

See Ordering Information

Switching Waveforms

TL/H/5690-3

Typical Performance Characteristics

Data Set-Up Time, $t_{D S}$

Definition of Package Pinouts

CONTROL SIGNALS (all control signals are level actuated) $\overline{\mathrm{CS}}$: Chip Select (active low). The CS will enable $\overline{\mathrm{WR1}}$.
$\overline{W R 1}:$ Write 1. The active low $\overline{W R 1}$ is used to load the digital data bits (DI) into the input latch. The data in the input latch is latched when WR1 is high. The 12-bit input latch is split into two latches. One holds the first 8 bits, while the other holds 4 bits. The Byte $1 / \overline{\text { Byte } 2}$ control pin is used to select both latches when Byte $1 / \overline{\text { Byte } 2}$ is high or to overwrite the 4-bit input latch when in the low state.
Byte 1/Byte 2: Byte Sequence Control. When this control is high, all 12 locations of the input latch are enabled. When low, only the four least significant locations of the input latch are enabled.
WR2: Write 2 (active low). The $\overline{W R 2}$ will enable $\overline{\text { XFER }}$.
$\overline{\text { XFER: }}$ Transfer Control Signal (active low). This signal, in combination with WR2, causes the 12-bit data which is available in the input latches to transfer to the DAC register.
DI_{0} to Dl_{11} : Digital Inputs. DI_{0} is the least significant digital input (LSB) and DI_{11} is the most significant digital input (MSB).
Iouti: DAC Current Output 1. IOUT1 is a maximum for a digital code of all 1 s in the DAC register, and is zero for all Os in the DAC register.
Iout2: DAC Current Output 2. IOUT2 is a constant minus lout1, or lout1 + lout2 $=$ constant (for a fixed reference voltage). This constant current is

$$
V_{\mathrm{REF}} \times\left(1-\frac{1}{4096}\right)
$$

divided by the reference input resistance.
$\mathbf{R}_{\text {Fb }}$: Feedback Resistor. The feedback resistor is provided on the IC chip for use as the shunt feedback resistor for the external op amp which is used to provide an output voltage for the DAC. This on-chip resistor should always be used (not an external resistor) since it matches the resistors in the on-chip R-2R ladder and tracks these resistors over temperature.
$\mathbf{V}_{\text {REF: }}$ Reference Voltage Input. This input connects an external precision voltage source to the internal R-2R ladder. $V_{\text {REF }}$ can be selected over the range of 10 V to -10 V . This is also the analog voltage input for a 4-quadrant multiplying DAC application.
$\mathbf{V}_{\mathbf{C C}}$: Digital Supply Voltage. This is the power supply pin for the part. V_{CC} can be from $5 \mathrm{~V}_{\mathrm{DC}}$ to $15 \mathrm{~V}_{\mathrm{DC}}$. Operation is optimum for $15 \mathrm{~V}_{\mathrm{DC}}$.
GND: Pins 3 and 12 of the DAC1208, DAC1209, and DAC1210 must be connected to ground. Pins 3 and 10 of

a) End Point Test After Zero and FS Adjust
the DAC1230, DAC1231, and DAC1232 must be connected to ground. It is important that IOUT_{1} and IOUT_{2} are at ground potential for current switching applications. Any difference of potential ($V_{O S}$ on these pins) will result in a linearity change of

$$
\frac{V_{\mathrm{OS}}}{3 \mathrm{~V}_{\mathrm{REF}}}
$$

For example, if $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}$ and these ground pins are 9 mV offset from IOUT_{1} and IOUT_{2}, the linearity change will be 0.03\%.

Definition of Terms

Resolution: Resolution is defined as the reciprocal of the number of discrete steps in the DAC output. It is directly related to the number of switches or bits within the DAC. For example, the DAC1208 has 2^{12} or 4096 steps and therefore has 12-bit resolution.
Linearity Error: Linearity error is the maximum deviation from a straight line passing through the endpoints of the DAC transfer characteristic. It is measured after adjusting for zero and full-scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.
National's linearity test (a) and the best straight line test (b) used by other suppliers are illustrated below. The best straight line (b) requires a special zero and FS adjustment for each part, which is almost impossible for the user to determine. The end point test uses a standard zero FS adjustment procedure and is a much more stringent test for DAC linearity.
Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the DAC full-scale output.
Settling Time: Full-scale current settling time requires zero to full-scale or full-scale to zero output change. Settling time is the time required from a code transition until the DAC output reaches within $\pm 1 / 2$ LSB of the final output value.
Full-Scale Error: Full-scale error is a measure of the output error between an ideal DAC and the actual device output. Ideally, for the DAC1208 or DAC1230 series, full-scale is $\mathrm{V}_{\text {REF }}-1$ LSB. For $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ and unipolar operation, $V_{\text {FULL-SCALE }}=10.0000 \mathrm{~V}-2.44 \mathrm{mV}=9.9976 \mathrm{~V}$. Full-scale error is adjustable to zero.
Differential Non-Linearity: The difference between any two consecutive codes in the transfer curve from the theoretical 1 LSB is differential non-linearity.
Monotonic: If the output of a DAC increases for increasing digital input code, then the DAC is monotonic. A 12-bit DAC which is monotonic to 12 bits simply means that input increasing digital input codes will produce an increasing analog output.

TL/H/5690-5
b) Shifting FS Adjust to Pass Best Straight Line Test

Application Hints

1.0 DIGITAL INTERFACE

These DACs are designed to provide all of the necessary digital input circuitry to permit a direct interface to a wide variety of microprocessor systems. The timing and logic level convention of the input control signals allow the DACs to be treated as a typical memory device or I/O peripheral with no external logic required in most systems. Essentially these DACs can be mapped as a two-byte stack in memory (or I/O space) to receive their 12 bits of input data in two successive 8 -bit data writing sequences. The DAC1230 series is intended for use in systems with an 8-bit data bus. The DAC1208 series provides all 12 digital input lines which can be externally configured to be controlled from an 8-bit bus or can be driven directly from a 16-bit data bus.

All of the digital inputs to these DACs contain a unique threshold regulator circuit to maintain TTL voltage level compatibility independent of the applied $V_{C C}$ to the DAC. Any input can also be driven from higher voltage CMOS logic levels in non-microprocessor based systems. To prevent damage to the chip from static discharge, all unused digital inputs should be tied to V_{CC} or ground. As a troubleshooting aid, if any digital input is inadvertently left floating, the DAC will interpret the pin as a logic " 1 ".
Double buffered digital inputs allow the DAC to internally format the 12-bit word used to set the current switching R2R ladder network (see section 2.0) from two 8-bit data write cycles. Figures 1 and 2 show the internal data registers and their controlling logic circuitry. The timing diagrams for updating the DAC output are shown in sections 1.1, 1.2 and 1.3 for three possible control modes. The method used depends strictly upon the particular application.

FIGURE 1. DAC1208, DAC1209, DAC1210 Functional Diagram

FIGURE 2. DAC1230, DAC1231, DAC1232 Functional Diagram

Application Hints (Continued)

1.1 Automatic Transfer

The 12-bit DAC word is automatically transferred to the DAC register and the R-2R ladder when the second write (the 4 LSBs of the data) occurs.

1.2 Independent Processor Transfer Control

In this case a separate address is decoded to provide the $\overline{\mathrm{XFER}}$ signal. This allows the processor to load the next required DAC word but not change the analog output until some time later, most useful for the simultaneous updating of several DACs in a system where their XFER lines would be tied together.

TL/H/5690-8

1.3 Transfer via an External Strobe

This method is basically the same as the previous operation except the XFER signal is provided by a device other than the processor. This allows the DAC to hold the code for a conditional analog output signal which will be required on demand from an external monitoring device (an analog voltage comparator for instance).

Application Hints (Continued)

1.4 Left-Justified Data Format

It is important to realize that the input registers of these DACs are arranged to accept a left-justified data word from the microprocessor with the most significant 8 bits coming first (Byte 1) and the lower 4 bits second. Left justification simply means that the binary point is assumed to be located to the left of the most significant bit. Figure 3 shows how the 12 bits of DAC data should be arranged in 28 -bit registers of an 8 -bit processor before being written to the DAC.

TL/H/5690-10

> X = don't care

1.5 16-Bit Data Bus Interface

The DAC1208 series provides all 12 digital input lines to permit a direct parallel interface to a 16 -bit data bus. In this instance, double buffering is not always necessary (unless a simultaneous updating of several DACs or a data transfer via an external strobe is desired) so the 12-bit DAC register can be wired to flow-through whereby its Q outputs always reflect the state of its D inputs. The external connections required and the timing diagram for this single buffered application are shown in Figure 4. Note that either left or rightjustified data from the processor can be accommodated with a 16-bit data bus.

1.6 Flow-Through Operation

Through primarily designed to provide microprocessor interface compatibility, the MICRO-DACs can easily be configured to allow the analog output to continuously reflect the state of an applied digital input. This is most useful in appli-

FIGURE 3. Left-Justified Data Format

FIGURE 4. 16-Bit Data Bus Interface for the DAC1208 Series

Application Hints (Continued)

cations where the DAC is used in a continuous feedback control loop and is driven by a binary up/down counter, or in function generation circuits where a ROM is continuously providing DAC data.
Only the DAC1208, DAC1209, DAC1210 devices can have all 12 inputs flow-through. Simply grounding $\overline{\mathrm{CS}}, \overline{\text { WR1 }}, \overline{\text { WR2 }}$ and $\overline{\text { XFER }}$ and tying Byte $1 / \overline{\text { Byte } 2}$ high allows both internal registers to follow the applied digital inputs (flow-through) and directly affect the DAC analog output.

1.7 Address Decoding Tips

It is possible to map the MICRO-DACs into system ROM space to allow more efficient use of existing address decoding hardware. The DAC in effect can share the same addresses of any number of ROM locations. The ROM outputs will only be enabled by a READ of its address (gated by the system READ strobe) and the DAC will only accept data that is written to the same address (gated by the system WRITE strobe).
The Byte 1/ $\overline{\text { Byte } 2}$ control function can easily be generated by the processor's least significant address bit (AO) by placing the DAC at two consecutive address locations and utilizing double-byte WRITE instructions which automatically increment or decrement the address. The $\overline{\mathrm{CS}}$ and $\overline{\mathrm{XFER}}$ signals can then be decoded from the remaining address bits. Care must be taken in selecting the actual address used for Byte 1 of the DAC to prevent a carry (as a result of
incrementing the address for Byte 2) from propagating through the address word and changing any of the bits decoded for $\overline{\mathrm{CS}}$ or $\overline{\mathrm{XFER}}$. Figure 5 shows how to prevent this effect.
The same problem can occur from a borrow when an autodecremented address is used; but only if the processor's address outputs are inverted before being decoded.

1.8 Control Signal Timing

When interfacing these MICRO-DACs to any microprocessor, there are two important time relationships that must be considered to insure proper operation. The first is the minimum $\overline{W R}$ strobe pulse width which is specified as 320 ns for $\mathrm{V}_{\mathrm{CC}}=11.4 \mathrm{~V}$ to 15.75 V and operation over temperature, but typically a pulse width of only 250 ns is adequate. A second consideration is that the guaranteed minimum data hold time of 90 ns should be met or erroneous data can be latched. This hold time is defined as the length of time data must be held valid on the digital inputs after a qualified (via $\overline{\mathrm{CS}}) \overline{\mathrm{WR}}$ strobe makes a low to high transition to latch the applied data.
If the controlling device or system does not inherently meet these timing specs the DAC can be treated as a slow memory or peripheral and utilize a technique to extend the write strobe. A simple extension of the write time, by adding a wait state, can simultaneously hold the write strobe active and data valid on the bus to satisfy the minimum $\overline{W R}$ pulse

Write Cycle	Address Bits			
	15	2	1*	0**
First (Byte 1)			0	1
Second (Byte 2)			1	0

*Starting with a 0 prevents a carry on address incrementing.
**Used as Byte $1 / \overline{\text { Byte2 }}$ Control.
FIGURE 5

FIGURE 6. Accommodating a High Speed System

Application Hints (Continued)

width. If this does not provide a sufficient data hold time at the end of the write cycle, a negative edge triggered oneshot can be included between the system write strobe and the $\overline{W R}$ pin of the DAC. This is illustrated in Figure 6 for an exemplary system which provides a $250 \mathrm{~ns} \overline{\mathrm{WR}}$ strobe time with a data hold time of only 10 ns .
The proper data set-up time prior to the latching edge (low to high transition) of the $\overline{W R}$ strobe, is insured if the $\overline{W R}$ pulse width is within spec and the data is valid on the bus for the duration of the DAC $\overline{W R}$ strobe.

1.9 Digital Signal Feedthrough

A typical microprocessor is a tremendous potential source of high frequency noise which can be coupled to sensitive analog circuitry. The fast edges of the data and address bus signals generate frequency components of 10's of megahertz and may cause fast transients to appear at the DAC output, even when data is latched internally.
In low frequency or DC applications, low pass filtering can reduce the magnitude of any fast transients. This is most
easily accomplished by over-compensating the DAC output amplifier by increasing the value of its feedback capacitor. In applications requiring a fast output response from the DAC and op amp, filtering may not be feasible. In this event, digital signals can be completely isolated from the DAC circuitry, by the use of a DM74LS374 latch, until a valid $\overline{\mathrm{CS}}$ signal is applied to update the DAC. This is shown in Figure 7.
A single TRI-STATE® data buffer such as the DM81LS95 can be used to isolate any number of DACs in a system. Figure 8 shows this isolating circuitry and decoding hardware for a multiple DAC analog output card. Pull-up resistors are used on the buffer outputs to limit the impedance at the DAC digital inputs when the card is not selected. A unique feature of this card is that the DAC XFER strobes are controlled by the data bus. This allows a very flexible update of any combination of analog outputs via a transfer word which would contain a zero in the bit position assigned to any of the DACs required to change to a new output value.

FIGURE 7. Isolating Data Bus from DAC Circuitry to Eliminate Digital Noise Coupling

Application Hints (Continued)

TL/H/5690-14
FIGURE 8. TRI-STATE ${ }^{\circledR}$ Buffers Isolate the Data and Control Lines from the DACs. A Transfer Word Provides a Flexible Update.

Application Hints (Continued)

2.0 ANALOG APPLICATIONS

The analog output signal for these DACs is derived from a conventional R-2R current switching ladder network. A detailed description of this network can be found on the DAC1000 series data sheet. Basically, output IOUT1 provides a current directly proportional to the product of the applied reference voltage and the digital input word. A second output, lout2 will be a current proportional to the complement of the digital input. Specifically:

$$
\begin{aligned}
& \text { I OUT1 }=\frac{V_{\text {REF }}}{R} \times \frac{D}{4096} ; \\
& \text { IOUT2 }=\frac{V_{\text {REF }}}{R} \times \frac{4095-D}{4096}
\end{aligned}
$$

where D is the decimal equivalent of the applied 12-bit binary word (ranging from 0 to 4095), V VEF is the voltage applied to the $V_{\text {REF }}$ terminal and R is the internal resistance of the $R-2 R$ ladder. R is nominally $15 \mathrm{k} \Omega$.

2.1 Obtaining a Unipolar Output Voltage

To maintain linearity of output current with changes in the applied digital code, it is important that the voltages at both of the current output pins be as near ground potential (0 V_{DC}) as possible. With $\mathrm{V}_{\mathrm{REF}}=+10 \mathrm{~V}$ every millivolt appearing at either lout1 or lout2 will cause a 0.01% linearity error. In most applications this output current is converted to a voltage by using an op amp as shown in Figure 9.

The inverting input of the op amp is a virtual ground created by the feedback from its output through the internal $15 \mathrm{k} \Omega$ resistor, R_{Fb}. All of the output current (determined by the digital input and the reference voltage) will flow through R_{Fb} to the output of the amplifier. Two-quadrant operation can be obtained by reversing the polarity of $V_{\text {REF }}$ thus causing lout1 to flow into the DAC and be sourced from the output of the amplifier. The output voltage, in either case, is always equal to lout1 $\times \mathrm{R}_{\mathrm{Fb}}$ and is the opposite polarity of the reference voltage.
The reference can be either a stable DC voltage source or an $A C$ signal anywhere in the range from -10 V to +10 V . The DAC can be thought of as a digitally controlled attenuator: the output voltage is always less than the applied reference voltage. The $\mathrm{V}_{\text {REF }}$ terminal of the device presents a nominal impedance of $15 \mathrm{k} \Omega$ to ground to external circuitry.
Always use the internal R_{Fb} resistor to create an output voltage since this resistor matches (and tracks with temperature) the value of the resistors used to generate the output current (lout1).
The selected op amp should have as low a value of input bias current as possible. The product of the bias current times the feedback resistance creates an output voltage error which can be significant in low reference voltage applications. BI-FETTM op amps are highly recommended for use with these DACs because of their very low input current.

FIGURE 9. Unipolar Output Configuration

Application Hints (Continued)

Transient response and settling time of the op amp are important in fast data throughput applications. The largest stability problem is the feedback pole created by the feedback resistance, R_{Fb}, and the output capacitance of the DAC. This appears from the op amp output to the (-) input and includes the stray capacitance at this node. Addition of a lead capacitance, C_{C} in Figure 9 , greatly reduces overshoot and ringing at the output for a step change in DAC output current.

2.1.1 Zero and Full-Scale Adjustments

For accurate conversions, the input offset voltage of the output amplifier must always be nulled. Amplifier offset errors create an overall degradation of DAC linearity.
The fundamental purpose of zeroing is to make the voltage appearing at the DAC outputs as near $0 V_{D C}$ as possible. This is accomplished by shorting out $\mathrm{R}_{\text {Fb }}$, the amplifier feedback resistor, and adjusting the vos nulling potentiometer of the op amp until the output reads zero volts. This is done, of course, with an applied digital code of all zeros if lout1 is driving the op amp (all ones for lout2). The short around R_{Fb} is then removed and the converter is zero adjusted.
A unique feature of this series of DACs is that the full-scale or gain error is guaranteed to be negative. The gain error specification is a measure of how close the value of the
internal feedback resistor, $R_{F b}$, matches the R-2R ladder resistors. A negative gain error indicates that $R_{F b}$ is a smaller resistance value than it should be. To adjust this gain error, some resistance must always be added in series with R_{Fb}. The 50Ω potentiometer shown is sufficient to adjust the worst-case gain error for these devices.

2.2 Bipolar Output Voltage from a Fixed Reference

The addition of a second op amp to the unipolar circuit can generate a bipolar output voltage from a fixed reference voltage. This, in effect, gives sign significance to the MSB of the digital input word to allow two quadrant multiplication of the reference voltage. The polarity of the reference can also be reversed to realize full 4-quadrant multiplication. This circuit is shown in Figure 10.
This configuration features several improvements over existing circuits for a bipolar output shown with other multiplying DACs. Only the offset voltage of amplifier 1 affects the linearity of the DAC. The offset voltage error of the second op amp (although a constant output error) has no effect on linearity. In addition, this configuration offers a non-interactive positive and negative full-scale calibration procedure.

Input Code MSB......LSB	Ideal $\mathrm{V}_{\text {OUT }}$	
	$+\mathrm{V}_{\text {REF }}$	$-\mathrm{V}_{\text {REF }}$
111111111111	$\mathrm{~V}_{\text {REF }}-1 \mathrm{LSB}$	$-\left\|\mathrm{V}_{\mathrm{REF}}\right\|+1 \mathrm{LSB}$
110000000000	$\mathrm{~V}_{\mathrm{REF}} / 2$	$-\left\|\mathrm{V}_{\mathrm{REF}}\right\| / 2$
100000000000	0	0
011111111111	-1 LSB	+1 LSB
001111111111	$-\frac{\mathrm{V}_{\text {REF }}}{2}-1 \mathrm{LSB}$	$\frac{\left\|\mathrm{V}_{\mathrm{REF}}\right\|}{2}+1 \mathrm{LSB}$
000000000000	$-\mathrm{V}_{\text {REF }}$	$+\left\|\mathrm{V}_{\text {REF }}\right\|$

FIGURE 10. Bipolar Output Voltage Configuration

Application Hints (Continued)

2.2.1 Zero and Full-Scale Adjustments

To calibrate the bipolar output circuit, three adjustments are required. The first step is to set all of the digital inputs LOW (to force lout1 to 0) then null the $\mathrm{V}_{\text {OS }}$ of amplifier 1 by setting the voltage at its inverting input (pin 2) to zero volts. Next, with a code of all zeros still applied, adjust "-fullscale adjust", the reference voltage, for $\mathrm{V}_{\text {OUT }}= \pm \mid \mathrm{V}_{\text {REF }}$ ideal|. The polarity of the output voltage at this time will be opposite that of the applied reference. Finally, set all of the digital inputs HIGH and adjust "+full-scale adjust" for

$$
V_{\text {OUT }}=V_{\text {REF }} \frac{2047}{2048} .
$$

The polarity of the output will be the same as that of the reference voltage.

3.0 APPLICATION IDEAS

In this section the digital input word is represented by the letter D and is equal to the decimal equivalent of the 12 -bit binary input. Hence D can be any integer value between 0 and 4095.

Composite Amplifier for Good DC Characteristics and Fast Output Response

TL/H/5690-17

Application Hints (Continued)

High Current Controller

8-Bit Course, 4-Bit Vernier DAC

TL/H/5690-20

Ordering Information

Part Number	Non-Linearity	Package	Temperature Range
DAC1208LCJ	0.018\%	J24A Cerdip	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1208LCJ-1	0.018\%	J24A Cerdip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC1209LCJ	0.024\%	J24A Cerdip	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1210LCJ	0.050\%	J24A Cerdip	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1210LCJ-1	0.050\%	J24A Cerdip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC1230LCJ	0.018\%	J20A Cerdip	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1230LCJ-1	0.018\%	J20A Cerdip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC1231LCJ	0.024\%	J20A Cerdip	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1231LCJ-1	0.024\%	J20A Cerdip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC1231LCN	0.024\%	N20A Plastic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC1231LCWM	0.024\%	M20B SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC1231LIN	0.024\%	N20A Plastic	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1232LCJ	0.050\%	J20A Cerdip	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1232LCJ-1	0.050\%	J20A Cerdip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC1232LCN	0.050\%	N20A Plastic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC1232LCWM	0.050\%	M20B SO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC1232LIN	0.050\%	N20A Plastic	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DAC1218/DAC1219
 12-Bit Binary Multiplying D/A Converter

General Description

The DAC1218 and the DAC1219 are 12-bit binary, 4-quadrant multiplying D to A converters. The linearity, differential non-linearity and monotonicity specifications for these converters are all guaranteed over temperature. In addition, these parameters are specified with standard zero and fullscale adjustment procedures as opposed to the impractical best fit straight line guarantee.

This level of precision is achieved though the use of an advanced silicon-chromium (SiCr) R-2R resistor ladder network. This type of thin-film resistor eliminates the parasitic diode problems associated with diffused resistors and allows the applied reference voltage to range from -25 V to 25 V , independent of the logic supply voltage.
CMOS current switches and drive circuitry are used to achieve low power consumption (20 mW typical) and minimize output leakage current errors (10 nA maximum). Unique digital input circuitry maintains TTL compatible input threshold voltages over the full operating supply voltage range.
The DAC1218 and DAC1219 are direct replacements for the AD7541 series, AD7521 series, and AD7531 series with a significant improvement in the linearity specification. In applications where direct interface of the D to A converter to
a microprocessor bus is desirable, the DAC1208 and DAC1230 series eliminate the need for additional interface logic.

Features

- Linearity specified with zero and full-scale adjust only
- Logic inputs which meet TTL voltage level specs (1.4V logic threshold)
- Works with $\pm 10 \mathrm{~V}$ reference-full 4-quadrant multiplication
- All parts guaranteed 12-bit monotonic

Key Specifications

- Current Settling Time	$1 \mu \mathrm{~s}$
图 Resolution	12 Bits
■ Linearity (Guaranteed	12 Bits (DAC1218)
over temperature)	11 Bits (DAC1219)
图 Gain Tempco	$1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Low Power Dissipation	20 mW
\% Single Power Supply	$5 \mathrm{~V}_{\mathrm{DC}}$ to $15 \mathrm{~V}_{\mathrm{DC}}$

Typical Application

TL/H/5691-1
$V_{\text {OUT }}=-V_{\text {REF }}\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\ldots \frac{A 12}{4096}\right)$
where: $A N=1$ if digital input is high

$$
\text { AN }=0 \text { if digital input is low }
$$

Connection Diagram

Ordering Information

Temperature Range		$\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$	$-\mathbf{4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5} 5^{\circ} \mathrm{C}$	Package Outline
Non	0.012%	DAC1218LCJ-1	DAC1218LCJ	J18A Cerdip
Linearity	0.024%		DAC1219LCJ	J18A Cerdip

Absolute Maximum Ratings (Notes 1 and 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
$17 V_{D C}$
Voltage at Any Digital Input
Voltage at $V_{\text {REF }}$ Input
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $T_{A}=25^{\circ} \mathrm{C}$ (Note 3) 500 mW
DC Voltage Applied to lout1 or lout2 $\quad-100 \mathrm{mV}$ to V_{CC}
(Note 4)
Lead Temp. (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$
ESD Susceptibility (Note 11) 800V

Operating Conditions

Temperature Range
DAC1218LCJ, DAC1219LCJ
DAC1218LCJ-1
Range of V_{CC}
Voltage at Any Digital Input
$T_{M I N} \leq T_{A} \leq T_{M A X}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
$5 V_{D C}$ to $16 V_{D C}$
$V_{C C}$ to $G N D$

Electrical Characteristics

$\mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC},} \mathrm{V}_{\mathrm{CC}}=11.4 \mathrm{~V}_{\mathrm{DC}}$ to $15.75 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted. Boldface limits apply from $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ (see Note 9); all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	Notes	Typ (Note 10)	$\begin{gathered} \hline \text { Tested } \\ \text { Limit } \\ \text { (Note 11) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 12) } \\ \hline \end{gathered}$	\cdots Units
Resolution			12	12	12	Bits
Linearity Error (End Point Linearity)	Zero and Full-Scale Adjusted DAC1218 DAC1219	4, 5, 9		$\begin{aligned} & \pm 0.018 \\ & \pm 0.024 \end{aligned}$	$\begin{aligned} & \pm 0.018 \\ & \pm 0.024 \end{aligned}$	\% of FSR \% of FSR
Differential Non-Linearity	Zero and Full-Scale Adjusted DAC1218 DAC1219	4, 5, 9		$\begin{aligned} & \pm 0.018 \\ & \pm 0.024 \end{aligned}$	$\begin{aligned} & \pm 0.018 \\ & \pm 0.024 \\ & \hline \end{aligned}$	\% of FSR \% of FSR
Monotonicity		4	12	12	12	Bits
Gain Error (Min)	Using Internal R_{Fb}, $V_{\text {REF }}= \pm 10 \mathrm{~V}, \pm 1 \mathrm{~V}$	5	-0.1	0.0		\% of FSR
Gain Error (Max)		5	-0.1	-0.2		\% of FSR
Gain Error Tempco		5	± 1.3		± 6.0	ppm of FS/ ${ }^{\circ} \mathrm{C}$
Power Supply Rejection	All Digital Inputs High	5	± 3.0	± 30		ppm of FSR/V
Reference Input Resistance	(Min)	9	15	10	10	$\mathrm{k} \Omega$
	(Max)	9	15	20	20	$\mathrm{k} \Omega$
Output Feedthrough Error	$V_{\text {REF }}=120 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=100 \mathrm{kHz}$ All Data Inputs Low	6	3.0			mVp-p
Output Capacitance	All Data Inputs lout1 High lout2 All Data Inputs lout1 Low lout2				$\begin{array}{r} 200 \\ 70 \\ 70 \\ 200 \\ \hline \end{array}$	pF pF pF pF
Supply Current Drain		9		2.0	2.5	mA
Output Leakage Current IOUT1 lout2	All Data Inputs Low All Data Inputs High	7, 9		$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Digital Input Threshold	Low Threshold High Threshold	9		$\begin{aligned} & 0.8 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 2.2 \\ & \hline \end{aligned}$	$V_{D C}$ $V_{D C}$
Digital Input Currents	Digital Inputs $<0.8 \mathrm{~V}$ Digital Inputs $>2.2 \mathrm{~V}$	9		$\begin{gathered} -200 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} -200 \\ 10 \\ \hline \end{gathered}$	$\mu A_{D C}$ $\mu A_{D C}$
$\mathrm{t}_{\text {s }}$ Current Settling Time	$R_{\mathrm{L}}=100 \Omega$, Output Settled to 0.01%, All Digital Inputs Switched Simultaneously		1			$\mu \mathrm{S}$

Electrical Characteristics Notes

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: This 500 mW specification applies for all packages. The low intrinsic power dissipation of this part (and the fact that there is no way to significantly modify the power dissipation) removes concern for heat sinking.
Note 4: Both IOUT1 and lOUT2 must go to ground or the virtual ground of an operational amplifier. The linearity error is degraded by approximately $\mathrm{V}_{\mathrm{OS}} \div \mathrm{V}_{\mathrm{REF}}$. For example, if $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}$ then a 1 mV offset, V_{OS}, on lout1 or lout2 will introduce an additional 0.01% linearity error.
Note 5: The unit FSR stands for full-scale range. Linearity Error and Power Supply Rejection specs are based on this unit to eliminate dependence on a particular $V_{\text {REF }}$ value to indicate the true performance of the part. The Linearity Error specification of the DAC1218 is 0.012% of FSR. This guarantees that after performing a zero and full-scale adjustment, the plot of the 4096 analog voltage outputs will each be within $0.012 \% \times V_{\text {REF }}$ of a straight line which passes through zero and fullscale. The unit ppm of FSR (parts per million of full-scale range) and ppm of FS (parts per million of full-scale) are used for convenience to define specs of very small percentage values, typical of higher accuracy converters. 1 ppm of $\mathrm{FSR}=\mathrm{V}_{\mathrm{REF}} / 10^{6}$ is the conversion factor to provide an actual output voltage quantity. For example, the gain error tempco spec of $\pm 6 \mathrm{ppm}$ of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ represents a worst-case full-scale gain error change with temperature from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ of $\pm(6)\left(V_{\text {REF }} / 10^{6}\right)\left(125^{\circ} \mathrm{C}\right)$ or $\pm 0.75\left(10^{-3}\right) V_{\text {REF }}$ which is $\pm 0.075 \%$ of $V_{\text {REF. }}$
Note 6: To achieve this low feedthrough in the D package, the user must ground the metal lid. If the lid is left floating the feedthrough is typically 6 mV .
Note 7: A 10 nA leakage current with $\mathrm{R}_{\mathrm{Fb}}=20 \mathrm{k}$ and $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ corresponds to a zero error of $\left(10 \times 10^{-9} \times 20 \times 10^{3}\right) \times 100 \% 10 \mathrm{~V}$ or 0.002% of FS .
Note 8: Human body model, 100 pF discharged through $1.5 \mathrm{k} \Omega$ resistor.
Note 9: Tested limit for -1 suffix parts applies only at $25^{\circ} \mathrm{C}$.
Note 10: Typicals are at $25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 11: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 12: Design limits are guaranteed but not 100% production tested. These limits are not used to calculate outgoing quality levels.

Typical Performance Characteristics

Gain and Linearity Error Variation vs Temperature

Digital Input Threshold vs Temperature

Gain and Linearity Error Variation vs Supply Voltage

Definition of Package Pinouts

(A1-A12): Digital Inputs. A12 is the least significant digital input (LSB) and A1 is the most significant digital input (MSB).
Iout1: DAC Current Output 1. Iouty is a maximum for a digital input of all 1 s , and is zero for a digital input of all 0 s .
lout2: DAC Current Output 2. IOUT2 is a constant minus lout1, or lout1 + l OUT2 $=$ constant (for a fixed reference voltage).
$\mathbf{R}_{\text {Fb: }}$: Feedback Resistor. The feedback resistor is provided on the IC chip for use as the shunt feedback resistor for the external op amp which is used to provide an output voltage for the DAC. This on-chip resistor should always be used (not an external resistor) since it matches the resistors in the on-chip R-2R ladder and tracks these resistors over temperature.
$V_{\text {REF: }}$ Reference Voltage Input. This input connects to an external precision voltage source to the internal R-2R ladder. $V_{\text {REF }}$ can be selected over the range of 10 V to -10 V . This is also the analog voltage input for a 4-quadrant multiplying DAC application.
$\mathbf{V}_{\mathbf{c c}}$: Digital Supply Voltage. This is the power supply pin for the part. $V_{C C}$ can be from $5 V_{D C}$ to $15 V_{D C}$. Operation is optimum for 15 V DC .
GND: Ground. This is the ground for the circuit.

Definition of Terms

Resolution: Resolution is defined as the reciprocal of the number of discrete steps in the DAC output. It is directly related to the number of switches or bits within the DAC. For example, the DAC1218 has $\mathbf{2}^{12}$ or 4096 steps and therefore has 12-bit resolution.
Linearity Error: Linearity error in the maximum deviation from a straight line passing through the endpoints of the

DAC transfer characteristic. It is measured after adjusting for zero and full scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.
National's linearity test (a) and the best straight line test (b) used by other suppliers are illustrated below. The best straight line (b) requires a special zero and FS adjustment for each part, which is almost impossible for the user to determine. The end point test uses a standard zero FS adjustment procedure and is a much more stringent test for DAC linearity.
Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the DAC full-scale output.
Settling Time: Full-scale current settling time requires zero to full-scale or full-scale to zero output change. Settling time is the time required from a code transition until the DAC output reaches within $\pm 1 / 2$ LSB of the final output value.
Full-scale Error: Full-scale error is a measure of the output error between an ideal DAC and the actual device output. Ideally, for the DAC1218 full-scale is $V_{\text {REF }}-1$ LSB. For $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ and unipolar operation, $\mathrm{V}_{\text {FULL }}$ SCALE $=10.0000 \mathrm{~V}-2.44 \mathrm{mV}=9.9976 \mathrm{~V}$. Full-scale error is adjustable to zero.
Differential Non-Linearity: The difference between any two consecutive codes in the transfer curve from the theoretical 1 LSB is differential non-linearity.
Monotonic: If the output of a DAC increases for increasing digital input code, then the DAC is monotonic. A 12-bit DAC which is monotonic to 12 bits simply means that input increasing digital input codes will produce an increasing analog output.
b) Shifting FS adjust to pass best straight line test

TL/H/5691-3

Application Hints

The DAC1218 and DAC1219 are pin-for-pin compatible with the DAC1220 series but feature 12 and 11-bit linearity specifications. To preserve this degree of accuracy, care must be taken in the selection and adjustments of the output amplifier and reference voltage. Careful PC board layout is important, with emphasis made on compactness of components to prevent inadvertent noise pickup and utilization of single point grounding and supply distribution.

1.0 BASIC CIRCUIT DESCRIPTION

Figure 1 illustrates the R-2R current switching ladder network used in the DAC1218 and DAC1219. As a function of the logic state of each digital input, the binarily weighted current in each leg of the ladder is switched to either lout1 or lout2. The voltage potential at louT1 and lout2 must be at zero volts to keep the current in each leg the same, independent of the switch state.
The switches operate with a small voltage drop across them and can therefore conduct currents of either polarity. This permits the reference to be positive or negative, thereby allowing 4 -quadrant multiplication by the digital input word. The reference can be a stable DC source or a bipolar AC signal within the range of $\pm 10 \mathrm{~V}$, for specified accuracy, with an absolute maximum range of $\pm 25 \mathrm{~V}$. The reference can also exceed the applied $V_{C C}$ of the DAC.
The maximum output current from either louT1 or lout2 is equal to

$$
\frac{V_{\mathrm{REF}(\max)}}{R}\left(\frac{4095}{4096}\right),
$$

where R is the reference input resistance (typically $15 \mathrm{k} \Omega$). A high level on any digital input steers current to lout1 and a low level steers current to lout2.

2.0 CREATING A UNIPOLAR OUTPUT VOLTAGE (A DIGITAL ATTENUATOR)

To generate an output voltage and keep the potential at the current output terminals at OV , an op amp current to voltage converter is used. As shown in Figure 2, the current from lout1 flows through the feedback resistor, forcing a proportional voltage at the amplifier output. The voltage at louT1 is held at a virtual ground potential. The feedback resistor is provided on the chip and should always be used as it matches and tracks the R value of the R-2R ladder. The output voltage is the opposite polarity of the applied reference voltage.

2.1 Amplifier Considerations

To maintain linearity of the output voltage with changing digital input codes the input offset voltage of the amplifier must be nulled. The resistance from lout1 to ground $\left(\mathrm{R}_{\text {IOUT1 }}\right)$ varies non-linearly with the applied digital code from a minimum of R with all ones applied to the input to near ∞ with an all zeros code. Any offset voltage between the amplifier inputs appears at the output with a gain of

$$
1+\frac{R_{\mathrm{F}}}{\mathrm{R}_{\text {IOUT1 }}}
$$

Since $R_{\text {lOUT1 }}$ varies with the input code, any offset will degrade output linearity. (See Note 4 of Electrical Characteristics.)
If the desired amplifier does not have offset balancing pins available (it could be part of a dual or quad package) the nulling circuit of Figure 3 can be used. The voltage at the non-inverting input will be set to - VOS initially to force the inverting input to 0 V . The common technique of summing current into the amplifier summing junction cannot be used as it directly introduces a zero code output current error.

Application Hints (Continued)

TL/H/5691-5
FIGURE 2. Unipolar Output Voltage

TL/H/5691-6
FIGURE 3. Zeroing an Amplifier Which Does Not Have Balancing Provisions

The selected amplifier should have as low an input bias current as possible since input bias current contributes to the current flowing through the feedback resistor. BI-FETTM op amps such as the LF356 or LF351 or bipolar op amps with super β input transistors like the LM11 or LM308A produce negligible errors.

2.2 Zero and Full-Scale Adjustments

The fundamental purpose is to make the output voltages as near $0 V_{D C}$ as possible. This is accomplished in the circuit of Figure 2 by shorting out the amplifier feedback resistance, and adjusting the $V_{O S}$ nulling potentiometer of the op amp until the output reads zero volts. This is done, of course, with an applied digital input of all zeros if IOUT1 is driving the op amp (all ones for loutr). The feedback short is then removed and the converter is zero adjusted.
A unique characteristic of these DACs is that any full-scale or gain error is always negative. This means that for a fullscale input code the output voltage, if not inherently correct, will always be less than what it should be. This ensures that adding an appropriate resistance in series with the internal feedback resistor, R_{Fb}, will always correct for any gain error. The 50Ω potentiometer in Figure 2 is all that is needed to adjust the worst case DAC gain error.
Conversion accuracy is only as good as the applied reference voltage, so providing a source that is stable over time and temperature is important.

2.3 Output Settling Time

The output voltage settling time for this circuit in response to a change of the digital input code (a full-scale change is the worst case) is a combination of the DAC's output current settling characteristics and the settling characteristics of the output amplifier. The amplifier settling is further degraded by a feedback pole formed by the feedback resistance and the DAC output capacitance (which varies with the digital code). First order compensation for this pole is achieved by adding a feedback zero with capacitor C_{C} shown in Figure 2.
In many applications output response time and settling is just as important as accuracy. It can be difficult to find a single op amp that combines excellent DC characteristics (low $\mathrm{V}_{\text {OS }}, \mathrm{V}_{\text {OS }}$ drift and bias current) with fast response and settling time. BI-FET op amps offer a reasonable compromise of high speed and good DC characteristics. The circuit of Figure 4 illustrates a composite amplifier connection that combines the speed of a BI-FET LF351 with the excellent DC input characteristics of the LM11. If output settling time is not so critical, the LM11 can be used alone.
Figure 5 is a settling time test circuit for the complete voltage output DAC circuit. The circuit allows the settling time of the DAC amplifier to be measured to a resolution of 1 mV out of a zero to $\pm 10 \mathrm{~V}$ full-scale output change on an oscilloscope. Figure 6 summarizes the measured settling times for several output amplifiers and feedback compensation capacitors.

Application Hints (Continued)

TL/H/5691-7
FIGURE 4. Composite Output Amplifier Connection

TL/H/5691-8
FIGURE 5. DAC Settling Time Test Circuit

Amplifier	$\mathbf{C}_{\mathbf{C}}$	Settling Time to $\mathbf{0 . 0 1 \%}$
LM11	20 pF	$30 \mu \mathrm{~s}$
LF351	15 pF	$8 \mu \mathrm{~s}$
LF351	30 pF	$5 \mu \mathrm{~s}$
Composite	20 pF	$8 \mu \mathrm{~s}$
LM11-LF351	15 pF	$6 \mu \mathrm{~s}$
LF356		

FIGURE 6. Some Measured Settling Times

Application Hints (Continued)

3.0 OBTAINING A BIPOLAR OUTPUT VOLTAGE FROM A FIXED REFERENCE

The addition of a second op amp to the circuit of Figure 2 can generate a bipolar output voltage from a fixed reference voltage (Figure 7). This, in effect gives sign significance to the MSB of the digital input word to allow two quadrant multiplication of the reference voltage. The polarity of the reference voltage can also be reversed to realize full 4-quadrant multiplication.
The output responds in accordance to the following expression:

$$
V_{O}=V_{R E F}\left(\frac{D-2048}{2048}\right), 0 \leq D \leq 4095
$$

where D is the decimal equivalent of the true binary input word. This configuration inherently accepts a code (halfscale or $D=2048$) to provide OV out without requiring an external $1 / 2$ LSB offset as needed by other bipolar multiplying DAC circuits.
Only the offset voltage of amplifier A1 need be nulled to preserve linearity. The gain setting resistors around A2 must match and track each other. A thin film, 4-resistor network available from Beckman Instruments, Inc. (part no. 694-3-R10K-D) is ideally suited for this application. Two of the four resistors can be paralleled to form R and the other two can be used separately as the resistors labeled 2R.
Operation is summarized in the table below:

MSB	Applied Digital Input											Decimal Equivalent	$+\mathrm{V}_{\text {REF }} \mathrm{V}_{\text {OUT }}{ }^{\text {- }}$ VREF	
		.	.	.	,		.	.	.		LSB			
1	1	1	1	1	1	1	1	1	1	1	1	4095	$\mathrm{V}_{\text {REF }}-1$ LSB	$-V_{\text {REF }} \mid+1$ LSB
1	1	0	0	0	0	0	0	0	0	0	0	3072	$\mathrm{V}_{\text {REF }} / 2$	$-\left\|\mathrm{V}_{\text {REF }}\right\| / 2$
1	0	0	0	0	0	0	0	0	0	0	0	2048	0	0
0	1	1	1	1	1	1	1	1	1	1	1	2047	-1 LSB	+ 1 LSB
0	1	0	0	0	0	0	0	0	0	0	0	1024	$-\mathrm{V}_{\text {REF }} / 2$	$+\left\|\mathrm{V}_{\text {REF }}\right\| / 2$
0	0	0	0	0	0	0	0	0	0	0	0	0	$-V_{\text {REF }}$	$+\left\|\mathrm{V}_{\text {REF }}\right\|$

Where 1 LSB $=\frac{\left|V_{\text {REF }}\right|}{2048}$

*0.1\% matching
FIGURE 7. Obtaining a Bipolar Output from a Fixed Reference

Application Hints (Continued)

3.1 Zero and Full-Scale Adjustments

The three adjustments needed for this circuit are shown in Figure 7. The first step is to set all of the digital inputs LOW (to force lout1 to 0) and then trim "zero adjust" for zero volts at the inverting input (pin 2) of OA1. Next, with a code of all zeros still applied, adjust "- full-scale adjust", the reference voltage, for $\mathrm{V}_{\text {OUT }}= \pm \mid$ (ideal $\left.\mathrm{V}_{\text {REF }}\right) \mid$. The sign of the output voltage will be opposite that of the applied reference. Finally, set all of the digital inputs HIGH and adjust " + fullscale adjust" for $V_{\text {OUT }}=V_{\text {REF }}(511 / 512)$. The sign of the output at this time will be the same as that of the reference voltage. This + full-scale adjustment scheme takes into account the effects of the V_{OS} of amplifier A2 (as long as this offset is less than 0.1% of $V_{\text {REF }}$) and any gain errors due to external resistor mismatch.

4.0 MISCELLANEOUS APPLICATION HINTS

The devices are CMOS products and reasonable care should be exercised in handling them to prevent catastrophic failures due to electrostatic discharge.
During power-up supply voltage sequencing, the negative supply of the output amplifier may appear first. This will typically cause the output of the op amp to bias near the negative supply potential. No harm is done to the DAC, however, as the on-chip $15 \mathrm{k} \Omega$ feedback resistor sufficiently limits the current flow from lout1 when this lead is clamped to one diode drop below ground.
As a general rule, any unused digital inputs should be tied high or low as required by the application. As a troubleshooting aid, if any digital input is left floating, the DAC will interpret that input as a logical 1 level.

Additional Application Ideas

For the circuits shown, D represents the decimal equivalent of the binary digital input code. D ranges from 0 (for an all zeros input code) to 4095 (for an all ones input code) and for any code can be determined from:
$D=2048(A 1)+1024(A 2)+512(A 2)+\ldots 2(A 11)+1(A 12)$

$$
\begin{aligned}
\text { where } A N & =1 \text { if that input is high } \\
A N & =0 \text { if that input is low }
\end{aligned}
$$

Additional Application Ideas (Continued)

High Current Controller

Additional Application Ideas (Continued)

- C1 controls maximum frequency
- <0.5\% sine wave THD over range
- Range 30 kHz maximum
- Linearity-DAC limit

$$
\cdot f=\frac{D}{4096\left(4 / 3 R_{F b} C\right)}
$$

DAC Controlled Function Generator

Digitally Programmable Pulse-Width Generator

$P W \approx \frac{C(7.5 \mathrm{~V})(4086)\left(R_{F b}\right)}{\mathrm{D} \| V_{R E F}}$

Section 4
Voltage ReferencesSection 4 Contents
Voltage Reference Selection Guide 4-3
LH0070 Series BCD Buffered Reference 4-8
LH0071 Series Precision Buffered Reference 4-8
LM113/LM313 Reference Diode 4-12
LM129/LM329 Precision Reference 4-15
LM134/LM234/LM334 3-Terminal Adjustable Current Sources 4-20
LM136-2.5/LM236-2.5/LM336-2.5V Reference Diodes 4-29
LM136-5.0/LM236-5.0/LM336-5.0V Reference Diodes 4-36
LM169/LM369 Precision Voltage References 4-43
LM185/LM285/LM385 Adjustable Micropower Voltage References 4-53
LM185-1.2/LM285-1.2/LM385-1.2 Micropower Voltage Reference Diodes 4-60
LM185-2.5/LM285-2.5/LM385-2.5 Micropower Voltage Reference Diodes 4-67
LM199/LM299/LM399/LM3999 Precision References 4-73
LM368-2.5 Precision Voltage Reference 4-82
LM368-5.0, LM368-10 Precision Voltage References 4-88
LM4040 Precision Micropower Shunt Voltage Reference 4-94
LM4041 Precision Micropower Shunt Voltage Reference 4-113
LM4431 Micropower Shunt Voltage Reference 4-125
LM9140 Precision Micropower Shunt Voltage Reference 4-131

Voltage Reference Selection Guide

Shunt Type

Reverse Breakdown Voltage (\mathbf{V}_{R})	Device	Operating Temp. Range*	Voltage Tolerance Max, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Temperature Drift		Operating Current Range, I_{R}	Output Dynamic Impedance (Typ)
				ppm $/{ }^{\circ} \mathrm{C}$ (Max)	Over Range		
1.2**	LM4041A-1.2	1	$\pm 0.1 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	1.5 Max
1.2**	LM4041B-1.2	1	$\pm 0.2 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	1.5 Max
1.2**	LM4041C-1.2	1	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	1.5 Max
1.2**	LM4041D-1.2	1	$\pm 1.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 12 mA	2.0 Max
1.2**	LM4041E-1.2	1	$\pm 2.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 12 mA	2.0 Max
1.22	LM113-2	M	$\pm 1 \%$	100 (Typ)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	1.0 Max
1.22	LM113-1	M	$\pm 2 \%$	100 (Typ)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	1.0 Max
1.22	LM113	M	$\pm 5 \%$	100 (Typ)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	1.0 Max
1.22	LM313	C	$\pm 5 \%$	100 (Typ)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	1.0 Max
1.235	LM185BX-1.2	M	$\pm 1 \%$	30	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM185BY-1.2	M	$\pm 1 \%$	50	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM185-1.2	M	$\pm 1 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM285AX-1.2	I	$\pm 0.32 \%$	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.2
1.235	LM285AY-1.2	1	$\pm 0.32 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.2
1.235	LM285A-1.2	1	$\pm 0.32 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.2
1.235	LM285BX-1.2	1	$\pm 1 \%$	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM285BY-1.2	1	$\pm 1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM285-1.2	1	$\pm 1 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM385AX-1.2	C	$\pm 0.32 \%$	30	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.2
1.235	LM385AY-1.2	C	$\pm 0.32 \%$	50	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.2
1.235	LM385A-1.2	C	$\pm 0.32 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.2
1.235	LM385BX-1.2	C	$\pm 1 \%$	30	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM385BY-1.2	C	$\pm 1 \%$	50	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM385B-1.2	C	$\pm 1 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM385-1.2	C	+2\%, -2.4\%	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~A}$ to 20 mA	1
1.24 to 5.3 (Adj.)	LM185B	M	$\pm 1 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
1.24 to 5.3 (Adj.)	LM185BX	M	$\pm 1 \%$	30	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
1.24 to 5.3 (Adj.)	LM185BY	M	$\pm 1 \%$	50	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
1.24 to 5.3 (Adj.)	LM285BX	1	$\pm 1 \%$	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
1.24 to 5.3 (Adj.)	LM285BY	1	$\pm 1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
1.24 to 5.3 (Adj.)	LM285	1	$\pm 2 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
1.24 to 5.3 (Adj.)	LM385BX	C	$\pm 1 \%$	30	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$13 \mu \mathrm{~A}$ to 20 mA	0.4
1.24 to 5.3 (Adj.)	LM385BY	C	$\pm 1 \%$	50	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$13 \mu \mathrm{~A}$ to 20 mA	0.4
1.24 to 5.3 (Adj.)	LM385	C	$\pm 2 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$13 \mu \mathrm{~A}$ to 20 mA	0.4
1.225 V to 10V (Adj)	LM4041D-ADJ	1	$\pm 0.5 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 12 mA	2.0
1.225 V to 10V (Adj)	LM4041C-ADJ	1	$\pm 1.0 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 12 mA	2.0
1.24 to 6.3 (Adj.)	LM611AM	M	$\pm 0.6 \%$	80	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
1.24 to 6.3 (Adj.)	†LM611M	M	$\pm 0.6 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
1.24 to 6.3 (Adj.)	LM611AI	I	$\pm 0.6 \%$	80	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
1.24 to 6.3 (Adj.)	LM6111	1	$\pm 2.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
1.24 to 6.3 (Adj.)	LM611C	C	$\pm 2.0 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
1.24 to 6.3 (Adj.)	†tLM613AM	M	$\pm 0.6 \%$	80	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2

Reverse Breakdown Voltage (\mathbf{V}_{R})	Device	Operating Temp. Range*	Voltage Tolerance Max, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Temperature Drift		Operating Current Range, $\mathbf{I}_{\mathbf{R}}$	Output Dynamic Impedance (Typ)
				$\begin{array}{\|c} \hline \text { ppm } /{ }^{\circ} \mathrm{C} \\ \text { (Max) } \end{array}$	Over Range		
1.24 to 6.3 (Adj.)	$\dagger \dagger$ LM613M	M	$\pm 2.0 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
1.24 to 6.3 (Adj.)	LM613AI	I	$\pm 0.6 \%$	80	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
1.24 to 6.3 (Adj.)	LM613I	1	$\pm 2.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
1.24 to 6.3 (Adj.)	LM613C	C	$\pm 2.0 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
1.24 to 6.3 (Adj.)	LM614AM	M	$\pm 0.6 \%$	80	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
1.24 to 6.3 (Adj.)	\#LM614M	M	$\pm 2.0 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
1.24 to 6.3 (Adj.)	LM614AI	1 -	$\pm 0.6 \%$	80	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
1.24 to 6.3 (Adj.)	LM614I	1	$\pm 2.0 \%$	150	$-40^{\circ} \mathrm{C}$ to ${ }^{+} 85^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
1.24 to 6.3 (Adj.)	LM614C	C	$\pm 2.0 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$16 \mu \mathrm{~A}$ to 10 mA	0.2
2.49	LM136A	M	$\pm 1 \%$	72	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
2.49	LM136	M	$\pm 2 \%$	72	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
2.49	LM236A	1	$\pm 1 \%$	72	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
2.49	LM236	1	$\pm 2 \%$	72	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
2.49	LM336	1	$\pm 4 \%$	54	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
2.49	LM336B	C	$\pm 2 \%$	54	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
2.5**	LM4040A-2.5	1	$\pm 0.1 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 15 mA	0.8 Max
2.5**	LM4040B-2.5	1	$\pm 0.2 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 15 mA	0.8 Max
2.5**	LM4040C-2.5	1	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$65 \mu \mathrm{~A}$ to 15 mA	0.8 Max
2.5**	LM4040D-2.5	1	$\pm 1.0 \%$.	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$70 \mu \mathrm{~A}$ to 15 mA	0.9 Max
2.5**	LM4040E-2.5	1	$\pm 2.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$70 \mu \mathrm{~A}$ to 15 mA	1.1 Max
2.5**	LM4431-2.5	C	$\pm 2.0 \%$	30 Typ.	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$100 \mu \mathrm{~A}$ to 15 mA	1.0
2.5	LM9140BY-2.5	1.	$\pm 0.5 \%$	25	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$60 \mu \mathrm{~A}$ to 15 mA	0.8 Max
2.5	LM185BX-2.5	M	$\pm 1.5 \%$	30	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM185BY-2.5	M	$\pm 1.5 \%$	50	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM185B-2.5	M	$\pm 1.5 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM285AX-2.5	1	$\pm 0.8 \%$	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	0.2
2.5	LM285AY-2.5	1	$\pm 0.8 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	0.2
2.5	LM285A-2.5	1	$\pm 0.8 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	0.2
2.5	LM285BX-2.5	1	$\pm 1.5 \%$	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM285BY-2.5	1	$\pm 1.5 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM285-2.5	1	$\pm 1.5 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM385AX-2.5	C	$\pm 0.8 \%$	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	0.2
2.5	LM385AY-2.5	C	$\pm 0.8 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	0.2
2.5	LM385A-2.5	C	$\pm 0.8 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	0.2
2.5	LM385BX-2.5	C	$\pm 1.5 \%$	30	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM385BY-2.5	C	$\pm 1.5 \%$	50	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM385B-2.5	C	$\pm 1.5 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM385-2.5	C	$\pm 3 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
4.1**	LM4040A-4.1	1	$\pm 0.1 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$68 \mu \mathrm{~A}$ to 15 mA	1.0 Max
4.1**	LM4040B-4.1	1	$\pm 0.2 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$68 \mu \mathrm{~A}$ to 15 mA	1.0 Max
4.1**	LM4040C-4.1	1	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$68 \mu \mathrm{~A}$ to 15 mA	1.0 Max
4.1**	LM4040D-4.1	1	$\pm 1.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$73 \mu \mathrm{~A}$ to 15 mA	1.3 Max
4.1	LM9140BY-4.1	1	$\pm 0.5 \%$	25	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$68 \mu \mathrm{~A}$ to 15 mA	1.0 Max
5.0	LM136A	M	$\pm 1 \%$	72	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1.0 Max
5.0	LM136	M	$\pm 2 \%$	72	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1.0 Max
5.0	LM236A	1	$\pm 1 \%$	72	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1.0 Max
5.0	LM236	1	$\pm 2 \%$	72	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1.0 Max
5.0	LM336B	C	$\pm 2 \%$	54	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1.4 Max
5.0	LM336	C	$\pm 4 \%$. 54	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1.4 Max
5.0**	LM4040A-5.0	1	$\pm 0.1 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mu \mathrm{~A}$ to 15 mA	1.1 Max
5.0**	LM4040B-5.0	I	$\pm 0.2 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mu \mathrm{~A}$ to 15 mA	1.1 Max
5.0**	LM4040C-5.0	1	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mu \mathrm{~A}$ to 15 mA	1.1 Max

Shunt Type (Continued)

Reverse Breakdown Voltage (\mathbf{V}_{R})	Device	Operating Temp. Range*	Voltage Tolerance Max, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Temperature Drift		Operating Current Range, I_{R}	Output Dynamic Impedance (Typ)
				$\begin{gathered} \text { ppm } /{ }^{\circ} \mathrm{C} \\ \text { (Max) } \end{gathered}$	Over Range		
5.0**	LM4040D-5.0	I	$\pm 1.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$79 \mu \mathrm{~A}$ to 15 mA	1.5 Max
5.0	LM9140BY-5.0	1	$\pm 0.5 \%$	25	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mu \mathrm{~A}$ to 15 mA	1.1 Max
6.9	LM129A	M	+3\%, -2\%	10	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.6
6.9	LM129B	M	+3\%, -2\%	20	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.6
6.9	LM129C	M	+3\%, -2\%	50	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.6
6.9	LM329A	C	$\pm 5 \%$	50	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.8
6.9	LM329B	C	$\pm 5 \%$	50	- $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.8
6.9	LM329C	C	$\pm 5 \%$	20	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.8
6.9	LM329D	C	$\pm 5 \%$	100	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.8
6.95	LM199A	M	$\pm 2 \% \quad 0.5 \quad-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \quad 500 \mu \mathrm{~A} \text { to } 10 \mathrm{~mA}$ Same as LM199A with 20 ppm guaranteed long term drift.				0.5
6.95	LM199A-20.	M					
6.95	LM199	M	$\pm 2 \%$	1.0	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 10 mA	0.5
6.95	LM299A	1	$\pm 2 \% \quad 0.5 \quad-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \quad 500 \mu \mathrm{~A}$ to 10 mA Same as LM299A with 20 ppm guaranteed long term drift.				0.5
6.95	LM299A-20	1					
6.95	LM299	1	$\pm 2 \%$	1	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 10 mA	0.5
6.95	LM399A	C	$\pm 5 \%$	1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 10 mA	0.5
6.95	LM399A-50	C	Same as LM399A with 50 ppm guaranteed long term drift.				
6.95	LM399	C	$\pm 5 \%$	2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 10 mA	0.5
6.95	LM3999	C	$\pm 5 \%$	5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 10 mA	0.6
8.2**	LM4040A-8.2	1	$\pm 0.1 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$91 \mu \mathrm{~A}$ to 15 mA	1.5 Max
8.2**	LM4040B-8.2	1	$\pm 0.2 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$91 \mu \mathrm{~A}$ to 15 mA	1.5 Max
8.2**	LM4040C-8.2	1	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$91 \mu \mathrm{~A}$ to 15 mA	1.5 Max
8.2**	LM4040D-8.2	1	$\pm 1.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$96 \mu \mathrm{~A}$ to 15 mA	1.9 Max
10.0**	LM4040A-10.0	1	$\pm 0.1 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mu \mathrm{~A}$ to 15 mA	1.7 Max
10.0**	LM4040B-10.0	1	$\pm 0.2 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mu \mathrm{~A}$ to 15 mA	1.7 Max
10.0**	LM4040C-10.0	1	$\pm 0.5 \%$	100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mu \mathrm{~A}$ to 15 mA	1.7 Max
10.0**	LM4040D-10.0	I	$\pm 1.0 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$110 \mu \mathrm{~A}$ to 15 mA	2.3 Max
10.0	LM9140BY-10.0	1	$\pm 0.5 \%$	25	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mu \mathrm{~A}$ to 15 mA	1.7 Max

[^9]
Current References

Output Current Range	Device	Operating Temperature Range	Set Current Error			Operating Voltage Range	Set Current Temperature Dependence*
			$2 \mu \mathrm{~A}$ to $10 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$ to 1 mA	1 mA to 5 mA		
$2 \mu \mathrm{~A}$ to 10 mA	LM134	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 8 \%$	$\pm 3 \%$	$\pm 5 \%$	1 V to 40V	0.96 T to 0.104T
$2 \mu \mathrm{~A}$ to 10 mA	LM134-3	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	N/A	$\pm 1 \%$	N/A	1 V to 40V	0.98 T to 0.102T
$2 \mu \mathrm{~A}$ to 10 mA	LM134-6	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	N/A	$\pm 2 \%$	N/A	1 V to 40V	0.97 T to 0.103T
$2 \mu \mathrm{~A}$ to 10 mA	LM234	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$\pm 8 \%$	$\pm 3 \%$	± 5	1 V to 40V	0.96 T to 0.104T
$2 \mu \mathrm{~A}$ to 10 mA	LM234-3	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	N/A	$\pm 1 \%$	N/A	1 V to 40 V	0.98 T to 0.102T
$2 \mu \mathrm{~A}$ to 10 mA	LM234-6	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	N/A	$\pm 2 \%$	N/A	1 V to 40V	0.97 T to 0.103T
$2 \mu \mathrm{~A}$ to 10 mA	LM334	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 12 \%$	$\pm 6 \%$	$\pm 8 \%$	1 V to 40 V	0.96 T to 0.104T

[^10]| Series Type (Buffered Output) | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Voltage | Device | Oper.
 Temp.
 Range* | Voltage Tolerance Max, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | Temperature Drift | | Load Reg. ppm/mA | Operating
 Current
 Range | Quiescent Current (mA) |
| | | | | $\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \text { (Max) } \end{gathered}$ | Over Range | | | |
| 0.2 (Adj) | †LM10 | M | $\pm 2.5 \%$ | 20 typ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 100 | 0 mA to +1 mA | 0.27 |
| 0.2 (Adj) | $\dagger \mathrm{LM10B}$ | 1 | $\pm 2.5 \%$ | 20 typ | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 100 | 0 mA to +1 mA | 0.27 |
| 0.2 (Adj) | \dagger LM10C | c | $\pm 5.0 \%$ | 30 typ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 100 | 0 mA to +1 mA | 0.30 |
| 2.5 | LM368Y-2.5 | C | $\pm 0.2 \%$ | 20 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 25 | 0 mA to +10 mA | 0.55 |
| 2.5 | LM368-2.5 | C | $\pm 0.2 \%$ | 30 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 25 | 0 mA to +10 mA | 0.55 |
| 5.0 | LM368BY-5.0 | c | $\pm 0.1 \%$ | 20 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 10 | $-10 \mathrm{~mA} \mathrm{to}+10 \mathrm{~mA}$ | 0.35 |
| 5.0 | LM368-5.0 | c | $\pm 0.1 \%$ | 30 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 10 | -10 mA to +10 mA | 0.35 |
| 10 | LM169B | M | $\pm 0.05 \%$ | 3 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8 | -10 mA to +10 mA | 1.8 |
| 10 | LM169 | M | $\pm 0.05 \%$ | 5 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8 | -10 mA to +10 mA | 1.8 |
| 10 | LH0070-2 | M | $\pm 0.05 \%$ | 8 | $-25^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$ | 60 | 0 to 5 mA | 5 |
| 10 | LH0070-0 | M | $\pm 0.1 \%$ | 40 | $-25^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$ | 60 | 0 mA to 5 mA | 5 |
| 10 | LH0070-1 | M | $\pm 0.1 \%$ | 20 | $-25^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$ | 60 | 0 mA to 5 mA | 5 |
| 10 | LM369B | c ${ }^{\text {c }}$ | $\pm 0.05 \%$ | 3 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 8 | -10 mA to +10 mA | 1.8 |
| 10 | LM369 | c | $\pm 0.05 \%$ | 5 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 8 | -10 mA to +10 mA | 1.8 |
| 10 | LM369C | c | $\pm 0.05 \%$ | 10 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 8 | -10 mA to +10 mA | 1.8 |
| 10 | LM368Y-10 | c | $\pm 0.1 \%$ | 20 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 10 | -10 mA to +10 mA | 0.35 |
| 10 | LM368-10 | c | $\pm 0.1 \%$ | 30 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 10 | -10 mA to +10 mA | 0.35 |
| 10 | LM369D | c | $\pm 0.1 \%$ | 30 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 8 | -10 mA to +10 mA | 2 |
| 10.24 | LH0071-2 | M | $\pm 0.05 \%$ | 8 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 60 | 0 mA to 5 mA | 5 |
| 10.24 | LH0071-1 | M | $\pm 0.1 \%$ | 20 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 60 | 0 mA to 5 mA | 5 |
| 10.24 | LH0071-0 | M | $\pm 0.1 \%$ | 40 | $-25^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$ | 60. | 0 mA to 5 mA | 5 |

${ }^{*} \mathrm{C}$ (Commercial) $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{I}$ (Industrial) $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{M}$ (Military) $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
\dagger Reference has on-board Op Amp.
Low Current Reference Diodes

Output Voltage	Device	Operating Temp. Range*	Voltage Tolerance Max, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Temperature Drift		Operating Current Range, $\mathbf{I}_{\mathbf{R}}$	Output Dynamic Impedance (Typ)
				ppm $/{ }^{\circ} \mathrm{C}$ (Max)	Over Range		
3.0	LM103-3.0	M	$\pm 10 \%$	-1700	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25
3.3	LM103-3.3	M	$\pm 10 \%$	-1500	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25
3.6	LM103-3.6	M	$\pm 10 \%$	-1400	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25
3.9	LM103-3.9	M	$\pm 10 \%$	-1300	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25

[^11]| "Reference Grade" Voltage Regulators | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Voltage | Device | Operating Temperature Range | Voltage Tolerance Max, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | Output Variation Over Operating Range | Load Reg. ppm/mA | Line Reg. ppm/V | Output
 Current
 (Max) | Quiescent Current |
| Adjustable:
 1.235 V to 30 V | LP2951 | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ | $\pm 0.5 \%$ | $\pm 0.5 \%$ | 100 | 42 | 100 mA | $120 \mu \mathrm{~A}$ |
| | LP2951AC | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 0.5 \%$ | $\pm 0.5 \%$ | 100 | 42 | 100 mA | $120 \mu \mathrm{~A}$ |
| | LP2951C | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 1 \%$ | $\pm 1 \%$ | 200 | 83 | 100 mA | $120 \mu \mathrm{~A}$ |
| 5V, 3.3V, 3.0V | LP2950AC | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 0.5 \%$ | $\pm 0.5 \%$ | 100 | 42 | 100 mA | $120 \mu \mathrm{~A}$ |
| 5V, 3.3V, 3.0V | LP2950C | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 1 \%$ | $\pm 1 \%$ | 200 | 83 | 100 mA | $120 \mu \mathrm{~A}$ |
| $5 \mathrm{~V}, 3.3 \mathrm{~V}, 3.0 \mathrm{~V}$ | LP2980A | $-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 0.5 \%$ | 2.5\% | * | 140 | 50 mA | $95 \mu \mathrm{~A}$ |
| 5V, 3.3V, 3.0V | LP2980 | $-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 1 \%$ | 3.5\% | * | 140 | 50 mA | $95 \mu \mathrm{~A}$ |

LH0070 Series Precision BCD Buffered Reference LH0071 Series Precision Binary Buffered Reference

General Description

The LH0070 and LH0071 are precision, three terminal, voltage references consisting of a temperature compensated zener diode driven by a current regulator and a buffer amplifier. The devices provide an accurate reference that is virtually independent of input voltage, load current, temperature and time. The LH0070 has a 10.000 V nominal output to provide equal step sizes in BCD applications. The LH0071 has a 10.240 V nominal output to provide equal step sizes in binary applications.
The output voltage is established by trimming ultra-stable, low temperature drift, thin film resistors under actual operating circuit conditions. The devices are shortcircuit proof in both the current sourcing and sinking directions.

The LH0070 and LH0071 series combine excellent long term stability, ease of application, and low cost, making
them ideal choices as reference voltages in precision D to A and A to D systems.

Features

- Accuracy output voltage

LH0070
$10 \mathrm{~V} \pm 0.02 \%$
LH0071
$10.24 \mathrm{~V} \pm 0.02 \%$

- Single supply operation
11.4 V to 40 V
- Low output impedance 0.2Ω
- Excellent line regulation
$0.1 \mathrm{mV} / \mathrm{V}$
- Low zener noise
$20 \mu \mathrm{Vp}-\mathrm{p}$
- 3-lead TO-5 (pin compatible with the LM109)
- Short circuit proof
- Low standby current

3 mA

Equivalent Schematic

Connection Diagram

TO-5 Metal Can Package

BOTTOM VIEW
TL/H/5550-7
Order Number LH0070-OH, LH0071-OH, LH0070-1H, LH0071-1H, LH0070-2H or LH0071-2H See NS Package Number H03B

Typical Applications

[^12]
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 4)

Supply Voltage 40V
Power Dissipation (See Curve)
600 mW

Short Circuit Duration	Continuous
Output Current	$\pm 20 \mathrm{~mA}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $\pm 150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions	Min	Typ	Max	Units
$\begin{aligned} & \text { Output Voltage } \\ & \text { LH0070 } \\ & \text { LH0071 } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 10.000 \\ 10.24 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Accuracy $\begin{aligned} & -0,-1 \\ & -2 \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & \pm 0.03 \\ & \pm 0.02 \end{aligned}$	$\begin{gathered} \pm 0.1 \\ \pm 0.05 \end{gathered}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Output Accuracy $\begin{aligned} & -0,-1 \\ & -2 \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$			$\begin{aligned} & \pm 0.3 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Output Voltage Change With Temperature $\begin{aligned} & -0 \\ & -1 \\ & -2 \end{aligned}$	(Note 2)		$\begin{aligned} & \pm 0.02 \\ & \pm 0.01 \end{aligned}$	$\begin{gathered} \pm 0.2 \\ \pm 0.1 \\ \pm 0.04 \end{gathered}$	$\begin{aligned} & \% \\ & \% \\ & \% \end{aligned}$
Line Regulation $\begin{aligned} & -0,-1 \\ & -2 \\ & \hline \end{aligned}$	$13 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 33 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & 0.02 \\ & 0.01 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.03 \end{gathered}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Input Voltage Range	$\mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega$	11.4		40	V
Load Regulation	$0 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 5 \mathrm{~mA}$		0.01	0.03	\%
Quiescent Current	$13 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 33 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}$	1	3	5	mA
Change In Quiescent Current	$\Delta \mathrm{V}_{1 \mathrm{~N}}=20 \mathrm{~V}$ From 23 V To 33V		0.75	1.5	mA
Output Noise Voltage	$B W=0.1 \mathrm{~Hz}$ To $10 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20		$\mu \vee p$-p
Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$		0.01		\%/Vp-p
Output Resistance			0.2	0.6	Ω
Long Term Stability $\begin{aligned} & -0,-1 \\ & -2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)			$\begin{gathered} \pm 0.2 \\ \pm 0.05 \end{gathered}$	\%/yr. \%/yr.
Thermal Resistance $\theta_{\text {ja }}$ (Junction to Ambient) θ_{jc} (Junction to Case)	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$		$\begin{aligned} & 200 \\ & 100 \end{aligned}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

Note 1: Unless otherwise specified, these specifications apply for $V_{I N}=15.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, and over the temperature range of $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$.
Note 2: This specification is the difference in output voltage measured at $T_{A}=85^{\circ} \mathrm{C}$ and $T_{A}=25^{\circ} \mathrm{C}$ or $T_{A}=25^{\circ} \mathrm{C}$ and $T_{A}=-25^{\circ} \mathrm{C}$ with readings taken after test chamber and device-under-test stabilization at temperature using a suitable precision voltmeter.
Note 3: This parameter is guaranteed by design and not tested.
Note 4: Refer to the following RETS drawings for military specifications:

RETS $0070-0 \mathrm{H}$ for LH0070-0H RETS0070-1H for LH0070-1H RETS0070-2H for LH0070-2H

RETS0071-OH for LH0071-OH
RETS0071-1H for LH0071-1H
RETS0071-2H for LH0071-2H

Typical Performance Characteristics

Typical Applications (Continued)
Expanded Scale AC Voltmeter

Typical Applications (Continued)

Precision Process Control Interface

Negative 10V Reference

Boosted Reference For Low Input Voltages

LM113/LM313 Reference Diode

General Description

The LM113/LM313 are temperature compensated, low voltage reference diodes. They feature extremely-tight regulation over a wide range of operating currents in addition to an unusually-low breakdown voltage and good temperature stability.
The diodes are synthesized using transistors and resistors in a monolithic integrated circuit. As such, they have the same low noise and long term stability as modern IC op amps. Further, output voltage of the reference depends only on highly-predictable properties of components in the IC; so they can be manufactured and supplied to tight tolerances.

- Dynamic impedance of 0.3Ω from $500 \mu \mathrm{~A}$ to 20 mA
- Temperature stability typically 1% over $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ range (LM113), $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (LM313)
- Tight tolerance: $\pm 5 \%, \pm 2 \%$ or $\pm 1 \%$

The characteristics of this reference recommend it for use in bias-regulation circuitry, in low-voltage power supplies or in battery powered equipment. The fact that the breakdown voltage is equal to a physical property of silicon-the ener-gy-band gap voltage-makes it useful for many tempera-ture-compensation and temperature-measurement functions.

Features

■ Low breakdown voltage: 1.220 V

Schematic and Connection Diagrams

Metal Can Package
 TOP VIEW
Order Number
LM113H, LM113H/883, LM113-1H, LM113-1H/883, LM113-2H, LM113-2H/883, or LM313H See NS Package Number H02A

TL/H/5713-1

Typical Applications

Level Detector for Photodiode

Low Voltage Regulator

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 3)
Power Dissipation (Note 1)
100 mW
50 mA
50 mA

Storage Temperature Range Lead Temperature
(Soldering, 10 seconds)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range
LM113
LM313
$300^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2)

Parameter	Conditions	Min	Typ	Max	Units
Reverse Breakdown Voltage LM113/LM313 LM113-1 LM113-2	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	$\begin{aligned} & 1.160 \\ & 1.210 \\ & 1.195 \end{aligned}$	$\begin{gathered} 1.220 \\ 1.22 \\ 1.22 \end{gathered}$	$\begin{aligned} & 1.280 \\ & 1.232 \\ & 1.245 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Reverse Breakdown Voltage Change	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$		6.0	15	mV
Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA} \\ & I_{R}=10 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 0.2 \\ 0.25 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Forward Voltage Drop	$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}$		0.67	1.0	V
RMS Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \end{aligned}$		5		$\mu \mathrm{V}$
Reverse Breakdown Voltage Change with Current	$\begin{aligned} & 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$			15	mV
Breakdown Voltage Temperature Coefficient	$\begin{aligned} & 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$		0.01		\%/ ${ }^{\circ} \mathrm{C}$

Note 1: For operating at elevated temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction and a thermal resistance of $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to case or $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Note 2: These specifications apply for $T_{A}=25^{\circ} \mathrm{C}$, unless stated otherwise. At high currents, breakdown voltage should be measured with lead lengths less than $1 / 4$ inch. Kelvin contact sockets are also recommended. The diode should not be operated with shunt capacitances between 200 pF and $0.1 \mu \mathrm{~F}$, unless isolated by at least a 100Ω resistor, as it may oscillate at some currents.
Note 3: Refer to the following RETS drawings for military specifications: RETS113-1X for LM113-1, RETS113-2X for LM113-2 or RETS113X for LM113.

Typical Performance Characteristics

Reverse Characteristics

Typical Performance Characteristics (Continued)

TL/H/5713-4

Typical Applications (Continued)

Amplifier Biasing for Constant Gain with Temperature

Constant Current Source

Thermometer

General Description

The LM129 and LM329 family are precision multi-current temperature-compensated 6.9V zener references with dynamic impedances a factor of 10 to 100 less than discrete diodes. Constructed in a single silicon chip, the LM129 uses active circuitry to buffer the internal zener allowing the device to operate over a 0.5 mA to 15 mA range with virtually no change in performance. The LM129 and LM329 are available with selected temperature coefficients of 0.001 , $0.002,0.005$ and $0.01 \% /{ }^{\circ} \mathrm{C}$. These new references also have excellent long term stability and low noise.
A new subsurface breakdown zener used in the LM129 gives lower noise and better long-term stability than conventional IC zeners. Further the zener and temperature compensating transistor are made by a planar process so they are immune to problems that plague ordinary zeners. For example, there is virtually no voltage shift in zener voltage due to temperature cycling and the device is insensitive to stress on the leads.
The LM129 can be used in place of conventional zeners with improved performance. The low dynamic impedance
simplifies biasing and the wide operating current allows the replacement of many zener types.
The LM129 is packaged in a 2-lead TO-46 package and is rated for operation over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The LM329 for operation over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ is available in both a hermetic TO-46 package and a TO-92 epoxy package.

Features

■ 0.6 mA to 15 mA operating current

- 0.6Ω dynamic impedance at any current
- Available with temperature coefficients of $0.001 \% /{ }^{\circ} \mathrm{C}$
- $7 \mu \mathrm{~V}$ wideband noise
- 5\% initial tolerance

■ 0.002% long term stability

- Low cost
- Subsurface zener

Connection Diagrams

Pin 2 is electrically connected to case

Typical Applications

Simple Reference

TL/H/5714-1

```
Absolute Maximum Ratings
If Military/Aerospace specifled devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 2)
Reverse Breakdown Current 30 mA
Forward Current
-55*}\textrm{C}\mathrm{ to }+12\mp@subsup{5}{}{\circ}\textrm{C
    LM129
    LM329
    0.}\textrm{C}\mathrm{ to +70
```

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales (Note 2)
Reverse Breakdown Current 30 mA
Forward Current 2 mA
Operating Temperature Range

$$
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information	
TO-92 package: 10 sec.	$260^{\circ} \mathrm{C}$
TO-46 package: 10 sec.	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions	LM129A, B, C			LM329A, B, C, D			Units
		Min	Typ	Max	Min	Typ	Max	
Reverse Breakdown Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 0.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA} \end{aligned}$	6.7	6.9	7.2	6.6	6.9	7.25	V
Reverse Breakdown Change with Current (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 0.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA} \end{aligned}$		9	14		9	20	mV
Reverse Dynamic Impedance (Note 3)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.6	1		0.8	2	Ω
RMS Noise	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 10 \mathrm{~Hz} \leq \mathrm{F} \leq 10 \mathrm{kHz} \end{aligned}$		7	20		7	100	$\mu \mathrm{V}$
Long Term Stability (1000 hours)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=45^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.3 \% \end{aligned}$		20			20		ppm
Temperature Coefficient LM129A, LM329A LM129B, LM329B LM129C, LM329C LM329D	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$.		$\begin{gathered} 6 \\ 15 \\ 30 \end{gathered}$	$\begin{aligned} & 10 \\ & 20 \\ & 50 \end{aligned}$		$\begin{gathered} 6 \\ 15 \\ 30 \\ 50 \end{gathered}$	$\begin{gathered} 10 \\ 20 \\ 50 \\ 100 \end{gathered}$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$
Change In Reverse Breakdown Temperature Coefficient	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$		1			1		ppm $/{ }^{\circ} \mathrm{C}$
Reverse Breakdown Change with Current	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$		12			12		mV
Reverse Dynamic Impedance	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$		0.8			1		Ω

Note 1: These specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LM 129 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the LM 329 unless otherwise specified. The maximum junction temperature for an LM129 is $150^{\circ} \mathrm{C}$ and LM329 is $100^{\circ} \mathrm{C}$. For operating at elevated temperature, devices in TO-46 package must be derated based on a thermal resistance of $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. For the TO-92 package, the derating is based on $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.4^{\prime \prime}$ leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.125^{\prime \prime}$ lead length to a PC board.
Note 2: Refer to RETS129H for LM129 family military specifications.
Note 3: These changes are tested on a pulsed basis with a low duty-cycle. For changes versus temperature, compute in terms of tempco.

Typical Applications (Continued)

Schematic Diagram

Typical Performance Characteristics

Dynamic Impedance

Reverse Voltage Change

Forward Characteristics

Zener Noise Voltage

ヘnational Semiconductor
 LM134/LM234/LM334
 3-Terminal Adjustable Current Sources

General Description

The LM134/LM234/LM334 are 3-terminal adjustable current sources featuring 10,000:1 range in operating current, excellent current regulation and a wide dynamic voltage range of 1 V to 40 V . Current is established with one external resistor and no other parts are required. Initial current accuracy is $\pm 3 \%$. The LM134/LM234/LM334 are true floating current sources with no separate power supply connections. In addition, reverse applied voltages of up to 20 V will draw only a few dozen microamperes of current, allowing the devices to act as both a rectifier and current source in AC applications.
The sense voltage used to establish operating current in the LM 134 is 64 mV at $25^{\circ} \mathrm{C}$ and is directly proportional to absolute temperature (${ }^{\circ} \mathrm{K}$). The simplest one external resistor connection, then, generates a current with $\approx+0.33 \% /{ }^{\circ} \mathrm{C}$ temperature dependence. Zero drift operation can be obtained by adding one extra resistor and a diode.
Applications for the current sources include bias networks, surge protection, low power reference, ramp generation, LED driver, and temperature sensing. The LM134-3/

LM234-3 and LM134-6/LM234-6 are specified as true temperature sensors with guaranteed initial accuracy of $\pm 3^{\circ} \mathrm{C}$ and $\pm 6^{\circ} \mathrm{C}$, respectively. These devices are ideal in remote sense applications because series resistance in long wire runs does not affect accuracy. In addition, only 2 wires are required.
The LM134 is guaranteed over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM 234 from $-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ and the LM334 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. These devices are available in TO-46 hermetic, TO-92 and SO-8 plastic packages.

Features

- Operates from 1 V to 40 V
- $0.02 \% / \mathrm{V}$ current regulation
- Programmable from $1 \mu \mathrm{~A}$ to 10 mA
- True 2-terminal operation
- Available as fully specified temperature sensor
- $\pm 3 \%$ initial accuracy

Connection Diagrams

TO-46
Metal Can Package

TL/H/5697-12
Bottom View
V-Pin is electrically connected to case.
Order Number LM134H, LM134H-3, LM134H-6, LM234H or LM334H See NS Package Number H03H

TO-92 Plastic Package

TL/H/5697-10
Bottom View
Order Number LM334Z, LM234Z-3 or LM234Z-6 See NS Package Number Z03A

Basic 2-Terminal Current Source

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
V^{+}to V^{-}Forward Voltage

LM134/LM234/LM334
LM134-3/LM134-6/LM234-3/LM234-6
40 V
V^{+}to V^{-}Reverse Voltage 20 V
R Pin to V^{-}Voltage 5 V
Set Current
10 mA
Power Dissipation
ESD Susceptibility (Note 5)

Operating Temperature Range (Note 4)

LM134/LM134-3/LM134-6	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM234/LM234-3/LM234-6	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
LM334	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Soldering Information	$260^{\circ} \mathrm{C}$
TO-92 Package (10 sec.)	$300^{\circ} \mathrm{C}$
TO-46 Package (10 sec.)	$215^{\circ} \mathrm{C}$
SO Package	$220^{\circ} \mathrm{C}$
Vapor Phase (60 sec.)	
Infrared (15 sec.)	
See AN-450 "Surface Mounting Methods and Their Effect	
on Product Reliability" (Appendix D) for other methods of	
soldering surface mount devices.	

Electrical Characteristics (Note 1)

Parameter	Conditions	LM134/LM234			LM334			Units
		Min	Typ	Max	Min	Typ	Max	
Set Current Error, $\mathrm{V}^{+}=2.5 \mathrm{~V}$, (Note 2)	$\begin{aligned} & 10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA}<\mathrm{ISET} \leq 5 \mathrm{~mA} \\ & 2 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}}<10 \mu \mathrm{~A} \end{aligned}$			3			$\begin{gathered} 6 \\ 8 \\ 12 \end{gathered}$	$\begin{aligned} & \% \\ & \% \\ & \% \end{aligned}$
Ratio of Set Current to Bias Current	$\begin{aligned} & 100 \mu \mathrm{~A} \leq I_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA} \leq I_{\mathrm{SET}} \leq 5 \mathrm{~mA} \\ & 2 \mu \mathrm{~A} \leq I_{\mathrm{SET}} \leq 100 \mu \mathrm{~A} \\ & \hline \end{aligned}$	14	$\begin{aligned} & 18 \\ & 14 \\ & 18 \\ & \hline \end{aligned}$	23 23	14	$\begin{aligned} & 18 \\ & 14 \\ & 18 \\ & \hline \end{aligned}$	26 26	
Minimum Operating Voltage	$\begin{aligned} & 2 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 100 \mu \mathrm{~A} \\ & 100 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{SET}} \leq 5 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.9 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.9 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Average Change in Set Current with Input Voltage	$\begin{aligned} & 2 \mu \mathrm{~A} \leq I_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1.5 \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 40 \mathrm{~V} \\ & 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{SET}} \leq 5 \mathrm{~mA} \\ & 1.5 \mathrm{~V} \leq \mathrm{V} \leq 5 \mathrm{~V} \\ & 5 \mathrm{~V} \leq \mathrm{V} \leq 40 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.02 \\ & 0.01 \\ & \\ & 0.03 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.03 \end{aligned}$		$\begin{aligned} & 0.02 \\ & 0.01 \\ & \\ & 0.03 \\ & 0.02 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.05 \end{gathered}$	$\begin{aligned} & \text { \%/V } \\ & \% / V \\ & \% / V \\ & \% / V \end{aligned}$
Temperature Dependence of Set Current (Note 3)	$25 \mu \mathrm{~A} \mathrm{I}_{\text {SET }} \leq 1 \mathrm{~mA}$	0.96 T	T	1.04T	0.96T	T	1.04 T	
Effective Shunt Capacitance			15			15		pF

Note 1: Unless otherwise specified, tests are performed at $T_{j}=25^{\circ} \mathrm{C}$ with pulse testing so that junction temperature does not change during test
Note 2: Set current is the current flowing into the V^{+}pin. For the Basic 2-Terminal Current Source circuit shown on the first page of this data sheet. ISET is determined by the following formula: $I_{\text {SET }}=67.7 \mathrm{mV} / \mathrm{R}_{\text {SET }}$ (@ $25^{\circ} \mathrm{C}$). Set current error is expressed as a percent deviation from this amount. ISET increases at $0.336 \% /{ }^{\circ} \mathrm{C} @ \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\left(227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$.
Note 3: $I_{S E T}$ is directly proportional to absolute temperature (${ }^{\circ} \mathrm{K}$). $I_{S E T}$ at any temperature can be calculated from: $I_{S E T}=I_{0}\left(T / T_{0}\right)$ where I_{0} is $I_{S E T}$ measured at T_{0} (${ }^{\circ} \mathrm{K}$).
Note 4: For elevated temperature operation, $T_{j} \max$ is:

LM134	$150^{\circ} \mathrm{C}$
LM234	$125^{\circ} \mathrm{C}$
LM334	$100^{\circ} \mathrm{C}$

Thermal Resistance	TO-92	TO-46	SO-8
$\theta_{\text {ja }}$ (Junction to Ambient)	$180^{\circ} \mathrm{C} / \mathrm{W}\left(0.4^{\prime \prime}\right.$ leads) $160^{\circ} \mathrm{C} / \mathrm{W}\left(0.125^{\prime \prime}\right.$ leads)	$440^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {jc }}$ (Junction to Case)	N/A	$32^{\circ} \mathrm{C} / \mathrm{W}$	$80^{\circ} \mathrm{C} / \mathrm{W}$

Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Electrical Characteristics (Note 1) (Continued)

Parameter	Conditions	LM134-3, LM234-3			LM134-6, LM234-6			Units
		Min	Typ	Max	Min	Typ	Max	
Set Current Error, ${ }^{+}+=2.5 \mathrm{~V}$, (Note 2)	$\begin{aligned} & 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \end{aligned}$			± 1			± 2	\%
Equivalent Temperature Error	\cdots			± 3			± 6	${ }^{\circ} \mathrm{C}$
Ratio of Set Current to Bias Current	$100 \mu \mathrm{~A} \leq \mathrm{I}_{\text {SET }} \leq 1 \mathrm{~mA}$	14	18	26	14	18	26	
Minimum Operating Voltage	$100 \mu \mathrm{~A} \mathrm{I}_{\text {SET }} \leq 1 \mathrm{~mA}$		0.9			0.9		V
Average Change in Set Current with Input Voltage	$\begin{aligned} & 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1.5 \leq \mathrm{V}+\leq 5 \mathrm{~V} \\ & 5 \mathrm{~V} \leq \mathrm{V}+\leq 30 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.02 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.03 \end{aligned}$,	$\begin{aligned} & 0.02 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
Temperature Dependence of Set Current (Note 3) and	$100 \mu \mathrm{~A} \leq \mathrm{I}_{\text {SET }} \leq 1 \mathrm{~mA}$	0.98T	T	1.02 T	0.97T	T	1.03 T	
Equivalent Slope Error				± 2			± 3	\%
Effective Shunt Capacitance			15		,	15		pF

Typical Performance Characteristics

Transient Response

TIME (Note scale changes for esch current)

Start-Up

TL/H/5697-29

Application Hints

The LM134 has been designed for ease of application, but a general discussion of design features is presented here to familiarize the designer with device characteristics which may not be immediately obvious. These include the effects of slewing, power dissipation, capacitance, noise, and contact resistance.

CALCULATING RSET

The total current through the LM134 (ISET) is the sum of the current going through the SET resistor (I_{R}) and the LM134's bias current (IBIAS), as shown in Figure 1.

TL/H/5697-27
FIGURE 1. Basic Current Source
A graph showing the ratio of these two currents is supplied under Ratio of ISET to IBIAS in the Typical Performance Characteristics section. The current flowing through RSET is determined by V_{R}, which is approximately $214 \mu \mathrm{~V} /{ }^{\circ} \mathrm{K}$ ($64 \mathrm{mV} / 298^{\circ} \mathrm{K} \sim 214 \mu \mathrm{~V} /{ }^{\circ} \mathrm{K}$).

$$
I_{S E T}=I_{R}+I_{B I A S}=\frac{v_{R}}{R_{S E T}}+I_{B I A S}
$$

Since (for a given set current) $I_{B I A S}$ is simply a percentage of ISET, the equation can be rewritten

$$
I_{S E T}=\left(\frac{V_{R}}{R_{S E T}}\right)\left(\frac{n}{n-1}\right)
$$

where n is the ratio of $I_{\text {SET }}$ to $I_{\text {BIAS }}$ as specified in the Electrical Characteristics Section and shown in the graph. Since n is typically 18 for $2 \mu \mathrm{~A} \leq \mathrm{I}_{\text {SET }} \leq 1 \mathrm{~mA}$, the equation can be further simplified to

$$
I_{S E T}=\left(\frac{V_{R}}{R_{S E T}}\right)(1.059)=\frac{227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{K}}{R_{\mathrm{SET}}}
$$

for most set currents.

SLEW RATE

At slew rates above a given threshold (see curve), the LM134 may exhibit non-linear current shifts. The slewing rate at which this occurs is directly proportional to ISET. At $\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$, maximum $\mathrm{dV} / \mathrm{dt}$ is $0.01 \mathrm{~V} / \mu \mathrm{s}$; at $\mathrm{I}_{\mathrm{SET}}=$ 1 mA , the limit is $1 \mathrm{~V} / \mu \mathrm{s}$. Slew rates above the limit do not harm the LM134, or cause large currents to flow.

THERMAL EFFECTS

Internal heating can have a significant effect on current regulation for ISET greater than $100 \mu \mathrm{~A}$. For example, each 1V increase across the LM134 at ISET $=1 \mathrm{~mA}$ will increase junction temperature by $\approx 0.4^{\circ} \mathrm{C}$ in still air. Output current (ISET) has a temperature coefficient of $\approx 0.33 \% /{ }^{\circ} \mathrm{C}$, so the change in current due to temperature rise will be $(0.4)(0.33)=0.132 \%$. This is a $10: 1$ degradation in regulation compared to true electrical effects. Thermal effects, therefore, must be taken into account when DC regulation is critical and ISET exceeds $100 \mu \mathrm{~A}$. Heat sinking of the TO-46 package or the TO-92 leads can reduce this effect by more than 3:1.

Application Hints（Continued）

SHUNT CAPACITANCE

In certain applications，the 15 pF shunt capacitance of the LM134 may have to be reduced，either because of loading problems or because it limits the AC output impedance of the current source．This can be easily accomplished by buff－ ering the LM134 with an FET as shown in the applications． This can reduce capacitance to less than 3 pF and improve regulation by at least an order of magnitude．DC character－ istics（with the exception of minimum input voltage），are not affected．

NOISE

Current noise generated by the LM134 is approximately 4 times the shot noise of a transistor．If the LM134 is used as an active load for a transistor amplifier，input referred noise will be increased by about 12 dB ．In many cases，this is acceptable and a single stage amplifier can be built with a voltage gain exceeding 2000.

LEAD RESISTANCE

The sense voltage which determines operating current of the LM134 is less than 100 mV ．At this level，thermocouple or lead resistance effects should be minimized by locating the current setting resistor physically close to the device． Sockets should be avoided if possible．It takes only 0.7Ω contact resistance to reduce output current by 1% at the 1 mA level．

SENSING TEMPERATURE

The LM134 makes an ideal remote temperature sensor be－ cause its current mode operation does not lose accuracy over long wire runs．Output current is directly proportional to absolute temperature in degrees Kelvin，according to the following formula：

$$
\mathrm{I}_{\mathrm{SET}}=\frac{\left(227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{K}\right)(\mathrm{T})}{\mathrm{R}_{\mathrm{SET}}}
$$

Calibration of the LM134 is greatly simplified because of the fact that most of the initial inaccuracy is due to a gain term （slope error）and not an offset．This means that a calibration consisting of a gain adjustment only will trim both slope and zero at the same time．In addition，gain adjustment is a one point trim because the output of the LM134 extrapolates to zero at $0^{\circ} \mathrm{K}$ ，independent of $\mathrm{R}_{\text {SET }}$ or any initial inaccuracy．

FIGURE 2．Gain Adjustment
This property of the LM134 is illustrated in the accompany－ ing graph．Line abc is the sensor current before trimming． Line $a^{\prime} b^{\prime} c^{\prime}$ is the desired output．A gain trim done at \mathbf{T}^{2} will move the output from b to b^{\prime} and will simultaneously correct the slope so that the output at T1 and T3 will be correct． This gain trim can be done on R $\mathrm{R}_{\text {SET }}$ or on the load resistor
used to terminate the LM134．Slope error after trim will nor－ mally be less than $\pm 1 \%$ ．To maintain this accuracy，howev－ er，a low temperature coefficient resistor must be used for RSET．
A $33 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift of $\mathrm{R}_{\text {SET }}$ will give a 1% slope error be－ cause the resistor will normally see about the same temper－ ature variations as the LM134．Separating RSET from the LM134 requires 3 wires and has lead resistance problems， so is not normally recommended．Metal film resistors with less than $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift are readily available．Wire wound resistors may also be used where best stability is required．

APPLICATION AS A ZERO TEMPERATURE COEFFICENT CURRENT SOURCE

Adding a diode and a resistor to the standard LM134 config－ uration can cancel the temperature－dependent characteris－ tic of the LM134．The circuit shown in Figure 3 balances the positive tempco of the LM134（about $+0.23 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ ）with the negative tempco of a forward－biased silicon diode （about $-2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ ）．

TL／H／5697－28
FIGURE 3．Zero Tempco Current Source
The set current（ISET）is the sum of l_{1} and l_{2} ，each contribut－ ing approximately 50% of the set current，and $I_{\text {BIAS }}$ ．$I_{\text {BIAS }}$ is usually included in the I_{1} term by increasing the V_{R} value used for calculations by 5.9% ．（See CALCULATING RSET．）

$$
\begin{aligned}
I_{S E T} & =I_{1}+l_{2}+I_{B I A S}, \text { where } \\
I_{1} & =\frac{V_{R}}{R_{1}} \text { and } I_{2}=\frac{V_{R}+V_{D}}{R_{2}}
\end{aligned}
$$

The first step is to minimize the tempco of the circuit，using the following equations．An example is given using a value of $+227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ as the tempco of the LM134（which in－ cludes the $\mathrm{I}_{\mathrm{BIAS}}$ component），and $-2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ as the temp－ co of the diode（for best results，this value should be directly measured or obtained from the manufacturer of the diode）．

$$
\begin{aligned}
\mathrm{I}_{\text {SET }} & =\mathrm{l}_{1}+\mathrm{l}_{2} \\
\frac{\mathrm{~d} \mathrm{l}_{\text {SET }}}{\mathrm{dT}} & =\frac{\mathrm{d} \mathrm{l}_{1}}{\mathrm{dT}}+\frac{\mathrm{d} l_{2}}{\mathrm{dT}} \\
& \approx \frac{227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}}{\mathrm{R}_{1}}+\frac{227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}-2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}}{\mathrm{R}_{2}} \\
& =0(\text { solve for tempco }=0)
\end{aligned}
$$

Application Hints（Continued）

$$
\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}} \approx \frac{2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}-227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}}{227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}} \approx 10.0
$$

With the R_{1} to R_{2} ratio determined，values for R_{1} and R_{2} should be determined to give the desired set current．The formula for calculating the set current at $\mathrm{T}=25^{\circ} \mathrm{C}$ is shown below，followed by an example that assumes the forward voltage drop across the diode（ V_{D} ）is 0.6 V ，the voltage across R_{1} is $67.7 \mathrm{mV}\left(64 \mathrm{mV}+5.9 \%\right.$ to account for $\left.\mathrm{I}_{\mathrm{BIAS}}\right)$ ， and $R_{2} / R_{1}=10$（from the previous calculations）．

$$
\begin{aligned}
I_{S E T} & =I_{1}+I_{2}+I_{B I A S} \\
& =\frac{V_{R}}{R_{1}}+\frac{V_{R}+V_{D}}{R_{2}} \\
& \approx \frac{67.7 \mathrm{mV}}{R_{1}}+\frac{67.7 \mathrm{mV}+0.6 \mathrm{~V}}{10.0 R_{1}} \\
I_{\text {SET }} & \approx \frac{0.134 \mathrm{~V}}{R_{1}}
\end{aligned}
$$

This circuit will eliminate most of the LM134＇s temperature coefficient，and it does a good job even if the estimates of the diode＇s characteristics are not accurate（as the following example will show）．For lowest tempco with a specific diode at the desired $\mathrm{I}_{\mathrm{SET}}$ ，however，the circuit should be built and tested over temperature．If the measured tempco of $I_{S E T}$ is positive， R_{2} should be reduced．If the resulting tempco is negative， R_{2} should be increased．The recommended diode for use in this circuit is the 1 N457 because its tempco is centered at 11 times the tempco of the LM134，allowing R_{2} $=10 R_{1}$ ．You can also use this circuit to create a current source with non－zero tempcos by setting the tempco com－ ponent of the tempco equation to the desired value instead of 0 ．
EXAMPLE：A 1 mA ，Zero－Tempco Current Source
First，solve for R_{1} and R_{2} ：

$$
\begin{gathered}
\mathrm{I}_{\mathrm{SET}} \approx 1 \mathrm{~mA}=\frac{0.134 \mathrm{~V}}{\mathrm{R}_{1}} \\
\mathrm{R}_{1}=134 \Omega=10 \mathrm{R}_{2} \\
\mathrm{R}_{2}=1340 \Omega
\end{gathered}
$$

Typical Applications

Ground Referred Fahrenheit Thermometer

TL／H／5697－15

[^13]The values of R_{1} and R_{2} can be changed to standard 1\％ resistor values（ $R_{1}=133 \Omega$ and $R_{2}=1.33 \mathrm{k} \Omega$ ）with less than a 0.75% error．
If the forward voltage drop of the diode was 0.65 V instead of the estimate of 0.6 V （an error of 8% ），the actual set cur－ rent will be

$$
\begin{aligned}
I_{S E T} & =\frac{67.7 \mathrm{mV}}{R_{1}}+\frac{67.7 \mathrm{mV}+0.65 \mathrm{~V}}{R_{2}} \\
& =\frac{67.7 \mathrm{mV}}{133}+\frac{67.7 \mathrm{mV}+0.65 \mathrm{~V}}{1330} \\
& =1.049 \mathrm{~mA}
\end{aligned}
$$

an error of less than 5% ．
If the estimate for the tempco of the diode＇s forward voltage drop was off，the tempco cancellation is still reasonably ef－ fective．Assume the tempco of the diode is $2.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ in－ stead of $2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$（an error of 4% ）．The tempco of the circuit is now：

$$
\begin{aligned}
\frac{\mathrm{d}_{\mathrm{SET}}}{\mathrm{dT}} & =\frac{\mathrm{d} l_{1}}{\mathrm{dT}}+\frac{\mathrm{d} \mathrm{l}_{2}}{\mathrm{dT}} \\
& =\frac{227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}}{133 \Omega}+\frac{227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}-2.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}}{1330 \Omega} \\
& =-77 \mathrm{nA} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

A 1 mA LM134 current source with no temperature compen－ sation would have a set resistor of 68Ω and a resulting tempco of

$$
\frac{227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}}{68 \Omega}=3.3 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}
$$

So even if the diode＇s tempco varies as much as $\pm 4 \%$ from its estimated value，the circuit still eliminates 98% of the LM134＇s inherent tempco．

TL／H／5697－14

Typical Applications (Continued)

Low Output Impedance Thermometer

$\mathrm{V}_{\mathrm{IN}} \geq 4.8$
 approximately $\frac{-R_{2}}{16}$ where R_{2} is the equivalent external resistance connected from the V^{-}pin to ground. This negative resistance can be reduced by a factor of 5 or more by inserting an equivalent resistor $R_{3}=\left(R_{2} / 16\right)$ in series with the output.

Low Output Impedance Thermometer

TL/H/5697-16

Micropower Bias

Higher Output Current

*Select R1 and C1 for optimum stability

Low Input Voltage Reference Driver

Typical Applications (Continued)

1.2V Regulator with 1.8 V Minimum Input

TL/H/5697-7
*Select ratio of R1 to R2 for zero temperature drift

Zener Biasing

Alternate Trimming Technique

Buffer for Photoconductive Cell

TL/H/5697-8
*For $\pm 10 \%$ adjustment, select RSET 10% high, and make R1 ≈ 3 RSET

Typical Applications (Continued)

TL/H/5697-22
*Select Q1 or Q2 to ensure at least 1 V across the LM134. $\mathrm{V}_{\mathrm{p}}\left(1-\mathrm{I}_{\mathrm{SET}} / I_{\mathrm{DSS}}\right) \geq 1.2 \mathrm{~V}$.

Generating Negative Output Impedance

TL/H/5697-23
${ }^{*} Z_{\text {OUT }} \approx-16 \cdot R_{1}\left(R_{1} / V_{I N}\right.$ must not exceed $\left.I_{S E T}\right)$

TL/H/5697-9
*Use minimum value required to ensure stability of protected device. This minimizes inrush current to a direct short.

Schematic Diagram

TL/H/5697-11

LM136-2.5/LM236-2.5/LM336-2.5V Reference Diode

General Description

The LM136-2.5/LM236-2.5 and LM336-2.5 integrated circuits are precision 2.5 V shunt regulator diodes. These monolithic IC voltage references operate as a low-tempera-ture-coefficient 2.5 V zener with 0.2Ω dynamic impedance. A third terminal on the LM136-2.5 allows the reference voltage and temperature coefficient to be trimmed easily.
The LM136-2.5 series is useful as a precision 2.5 V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 2.5 V make it convenient to obtain a stable reference from 5 V logic supplies. Further, since the LM136-2.5 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.
The LM136-2.5 is rated for operation over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM236-2.5 is rated over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

The LM336-2.5 is rated for operation over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range. See the connection diagrams for available packages.

Features

凹 Low temperature coefficient
m Wide operating current of $400 \mu \mathrm{~A}$ to 10 mA (0.2Ω dynamic impedance
■ $\pm 1 \%$ initial tolerance available

- Guaranteed temperature stability

■ Easily trimmed for minimum temperature drift

- Fast turn-on

■ Three lead transistor package

Connection Diagrams

TO-92
Plastic Package

TL/H/5715-8
Bottom View
Order Number LM236Z-2.5,
LM236AZ-2.5, LM336Z-2.5 or LM336BZ-2.5
See NS Package Number Z03A

2.5V Reference with Minimum Temperature Coefficient

SO Package

TL/H/5715-12
Top View
Order Number LM236M-2.5, LM236AM-2.5, LM336M-2.5 or LM336BM-2.5 See NS Package Number M08A

Wide Input Range Reference

TL/H/5715-11

Typical Applications

Soldering Information

TO-92 Package $(10 \mathrm{sec})$.	$260^{\circ} \mathrm{C}$
TO-46 Package $(10 \mathrm{sec})$.	$300^{\circ} \mathrm{C}$
SO Package	
Vapor Phase $(60$ sec. $)$	$215^{\circ} \mathrm{C}$
Infrared $(15$ sec. $)$	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

Electrical Characteristics (Note 3)

Parameter	Conditions	$\begin{gathered} \text { LM136A-2.5/LM236A-2.5 } \\ \text { LM136-2.5/LM236-2.5 } \end{gathered}$			$\begin{gathered} \text { LM336B-2.5 } \\ \text { LM336-2.5 } \end{gathered}$			Units
		Min	Typ	Max	Min	Typ	Max	
Reverse Breakdown Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$ LM136, LM236, LM336 LM136A, LM236A, LM336B	$\begin{aligned} & 2.440 \\ & 2.465 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.490 \\ & 2.490 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.540 \\ 2.515 \\ \hline \end{array}$	$\begin{aligned} & 2.390 \\ & 2.440 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.490 \\ & 2.490 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.590 \\ & 2.540 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Reverse Breakdown Change With Current	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C}, \\ & 400 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \end{aligned}$		2.6	6		2.6	10	mV
Reverse Dynamic Impedance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \mathrm{f}=100 \mathrm{~Hz}$		0.2	0.6		0.2	1	Ω
Temperature Stability (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{R}} \text { Adjusted to } 2.490 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \text {, (Figure 2) } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \text { (LM336) } \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \text { (LM236H, LM236Z) } \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \text { (LM236M) } \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \text { (LM136) } \\ & \hline \end{aligned}$		$\begin{aligned} & 3.5 \\ & 7.5 \\ & 12 \end{aligned}$	9 18 18	.	1.8	6	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Reverse Breakdown Change With Current	$400 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$		3	10		3	12	mV
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.4	1		0.4	1.4	Ω
Long Term Stability	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \\ & \mathrm{t}=1000 \mathrm{hrs} \end{aligned}$		20			20		ppm

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: For elevated temperature operation, $T_{j} \max$ is:

LM136 $150^{\circ} \mathrm{C}$			
LM236 $125^{\circ} \mathrm{C}$			
LM336 $100^{\circ} \mathrm{C}$			
Thermal Resistance	TO-92	TO-46	SO-8
$\theta_{\text {ja }}$ (Junction to Ambient)	$\begin{aligned} & 180^{\circ} \mathrm{C} / \mathrm{W}\left(0.4^{\prime \prime} \text { leads }\right) \\ & 170^{\circ} \mathrm{C} / \mathrm{W}\left(0.125^{\prime \prime}\right. \text { lead) } \end{aligned}$	$440^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {ja }}$ (Junction to Case)	n/a	$80^{\circ} \mathrm{C} / \mathrm{W}$	n/a

Note 3: Unless otherwise specified, the LM136-2.5 is specified from $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, the $\mathrm{LM} 236-2.5$ from $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and the $\mathrm{LM} 336-2.5$ from $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.
Note 4: Temperature stability for the LM336 and LM236 family is guaranteed by design. Design limits are guaranteed (but not 100\% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels. Stability is defined as the maximum change in $\mathrm{V}_{\text {ref }}$ from $25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{A}}(\min)$ or $\mathrm{T}_{\mathrm{A}}(\max)$.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

TL/H/5715-3

Application Hints

The LM136 series voltage references are much easier to use than ordinary zener diodes. Their low impedance and wide operating current range simplify biasing in almost any circuit. Further, either the breakdown voltage or the temperature coefficient can be adjusted to optimize circuit performance.
Figure 1 shows an LM136 with a 10k potentiometer for adjusting the reverse breakdown voltage. With the addition of R1 the breakdown voltage can be adjusted without affecting the temperature coefficient of the device. The adjustment range is usually sufficient to adjust for both the initial device tolerance and inaccuracies in buffer circuitry.

FIGURE 1. LM136 WIth Pot for Adjustment of Breakdown Voltage
(Trim Range $= \pm 120 \mathrm{mV}$ typical)

If minimum temperature coefficient is desired, two diodes can be added in series with the adjustment potentiometer as shown in Figure 2. When the device is adjusted to 2.490 V the temperature coefficient is minimized. Almost any silicon signal diode can be used for this purpose such as a 1N914, 1N4148 or a 1N457. For proper temperature compensation the diodes should be in the same thermal environment as the LM136. It is usually sufficient to mount the diodes near the LM136 on the printed circuit board. The absolute resistance of $R 1$ is not critical and any value from $2 k$ to $20 k$ will work.

TL/H/5715-4
FIGURE 2. Temperature Coefficient Adjustment (Trim Range $= \pm 70 \mathrm{mV}$ typical)

Typical Applications (Continued)

*L1 60 turns \#16 wire on Arnold Core A-254168-2
\dagger Efficiency $\approx 80 \%$
-
Precision Power Regulator with Low Temperature Coefficient

TL/H/5715-13

TL/H/5715-14

Typical Applications (Continued)
Adjustable Shunt Regulator

Typical Applications (Continued)
Op Amp with Output Clamped

TL/H/5715-17

Bipolar Output Reference

TL/H/5715-18
2.5V Square Wave Calibrator

TL/H/5715-19

Typical Applications (Continued)

5V Buffered Reference

Low Noise Buffered Reference

TL/H/5715-7

Schematic Diagram

LM136-5.0/LM236-5.0/LM336-5.0, 5.0V Reference Diode

General Description

The LM136-5.0/LM236-5.0/LM336-5.0 integrated circuits are precision 5.0 V shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient 5.0 V zener with 0.6Ω dynamic impedance. A third terminal on the LM136-5.0 allows the reference voltage and temperature coefficient to be trimmed easily.
The LM136-5.0 series is useful as a precision 5.0 V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 5.0 V makes it convenient to obtain a stable reference from low voltage supplies. Further, since the LM136-5.0 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.
The LM136-5.0 is rated for operation over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM236-5.0 is rated over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LM336-5.0 is rated for oper-
ation over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range. See the connection diagrams for available packages. For applications requiring 2.5V see LM136-2.5.

Features

- Adjustable 4 V to 6 V
- Low temperature coefficient
- Wide operating current of $600 \mu \mathrm{~A}$ to 10 mA
- 0.6Ω dynamic impedance

■ $\pm 1 \%$ initial tolerance available

- Guaranteed temperature stability
- Easily trimmed for minimum temperature drift
- Fast turn-on
- Three lead transistor package

Connection Diagrams

TO-92
Plastic Package

TL/H/5716-4
Bottom View
Order Number LM236AZ-5.0, LM336Z-5.0 or LM336BZ-5.0 See NS Package Number Z03A

TO-46 Metal Can Package

TL/H/5716-5
Bottom View
Order Number LM136H-5.0, LM136H-5.0/883, LM236H-5.0, LM136AH-5.0, LM136AH-5.0/883, or LM236AH-5.0 See NS Package Number H03H
Typical Applications

TL/H/5716-1
\dagger Adjust to 5.00 V
*Any silicon signal diode
5.0V Reference with Minimum Temperature Coefficient

SO Package

TL/H/5716-7
Order Number LM336M-5.0 or LM336BM-5.0 See NS Package Number M08A

Trimmed 4V to 6V Reference with Temperature Coefficient Independent of Breakdown Voltage

TL/H/5716-3
*Does not affect temperature coefficient

Absolute Maximum Ratings (Note 1)														
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.			Soldering Information TO-92 Package (10 sec.) TO-46 Package (10 sec .) SO Package							$260^{\circ} \mathrm{C}$				
Reverse Current 15 mA														
Forward Current		10 mA	Infrared (15 sec.)						$\begin{aligned} & 215^{\circ} \mathrm{C} \\ & 220^{\circ} \mathrm{C} \end{aligned}$					
Storage Temperature $\quad-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$							See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (appendix D) for other methods of soldering surface mount devices.							
Operating Temperature Range (Note LM136-5.0 LM236-5.0 LM336-5.0		$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{array}$												
Electrical Characteristics (Note 3)														
Parameter	Conditions			LM136A-5.0/LM236A-5.0 LM136-5.0/LM236-5.0			$\begin{gathered} \text { LM336B-5.0 } \\ \text { LM336-5.0 } \end{gathered}$			Units				
				Min	Typ	Max	Min	Typ	Max					
Reverse Breakdown Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \\ & \text { LM136-5.0/LM236-5.0/LM336-5.0 } \\ & \text { LM136A-5.0/LM236A-5.0, LM336B-5.0 } \end{aligned}$			$\begin{gathered} 4.9 \\ 4.95 \end{gathered}$	$\begin{aligned} & 5.00 \\ & 5.00 \end{aligned}$	$\begin{gathered} 5.1 \\ 5.05 \end{gathered}$	$\begin{gathered} 4.8 \\ 4.90 \end{gathered}$	$\begin{aligned} & 5.00 \\ & 5.00 \end{aligned}$	5.2 5.1	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$				
Reverse Breakdown Change With Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 600 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \end{aligned}$				6	12		6	20	mV				
Reverse Dynamic Impedance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \mathrm{f}=100 \mathrm{~Hz}$				0.6	1.2		0.6	2	Ω				
Temperature Stability (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{R}} \text { Adjusted } 5.00 \mathrm{~V} \\ & \left.\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \text { (Figure } 2\right) \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}(\text { LM336-5.0) } \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \text { (LM236-5.0) } \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \text { (LM136-5.0) } \end{aligned}$				7 20	$\begin{aligned} & 18 \\ & 36 \end{aligned}$		4	12	mV mV mV				
Reverse Breakdown Change With Current	$600 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$				6	17		6	24	mV				
Adjustment Range	Circuit of Figure 1				± 1			± 1		V				
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$				0.8	1.6		0.8	2.5	Ω				
Long Term Stability	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \mathrm{t}=1000 \mathrm{hrs}$				20			20		ppm				

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: For elevated temperature operation, $T_{j} \max$ is:

LM136	$150^{\circ} \mathrm{C}$
LM236	$125^{\circ} \mathrm{C}$
LM336	$100^{\circ} \mathrm{C}$

Thermal Resistance	TO-92	TO-46	SO-8
$\theta_{\text {ja }}$ (Junction to Ambient)	$180^{\circ} \mathrm{C} / \mathrm{W}\left(0.4^{\prime \prime}\right.$ Leads) $170^{\circ} \mathrm{C} / \mathrm{W}\left(0.125^{\prime \prime}\right.$ Leads)	$440^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
θ_{ja} (Junction to Case)	N/A	$80^{\circ} \mathrm{C} / \mathrm{W}$	N / A

Note 3: Unless otherwise specified, the $L M 136-5.0$ is specified from $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$, the $\mathrm{LM} 236-5.0$ from $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ and the $\mathrm{LM} 336-5.0$ from $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.
Note 4: Temperature stability for the LM336 and LM236 family is guaranteed by design. Design limits are guaranteed (but not 100\% percent production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels. Stability is defined as the maximum charge in $V_{\text {REF }}$ from $25^{\circ} \mathrm{C}$ to $\mathrm{T}_{A}($ min $)$ or $\mathrm{T}_{A}($ max $)$.

Typical Performance Characteristics

Dynamic Impedance

Temperature Drift

Forward Characteristics

TL/H/5716-8

Application Hints

The LM136-5.0 series voltage references are much easier to use than ordinary zener diodes. Their low impedance and wide operating current range simplify biasing in almost any circuit. Further, either the breakdown voltage or the temperature coefficient can be adjusted to optimize circuit performance.
Figure 1 shows an LM136-5.0 with a 10k potentiometer for adjusting the reverse breakdown voltage. With the addition of R1 the breakdown voltage can be adjusted without affecting the temperature coefficient of the device. The adjustment range is usually sufficient to adjust for both the initial device tolerance and inaccuracies in buffer circuitry.

If minimum temperature coefficient is desired, four diodes can be added in series with the adjustment potentiometer as shown in Figure 2. When the device is adjusted to 5.00 V the temperature coefficient is minimized. Almost any silicon signal diode can be used for this purpose such as a 1N914, 1 N4148 or a 1 N457. For proper temperature compensation the diodes should be in the same thermal environment as the LM136-5.0. It is usually sufficient to mount the diodes near the LM136-5.0 on the printed circuit board. The absolute resistance of the network is not critical and any value from 2 k to 20 k will work. Because of the wide adjustment range, fixed resistors should be connected in series with the pot to make pot setting less critical.

Application Hints (Continued)

TL/H/5716-9
FIGURE 1. LM136-5.0 with Pot for Adjustment of
Breakdown Voltage (Trim Range $= \pm 1.0 \mathrm{~V}$ Typical)

TL/H/5716-10
FIGURE 2. Temperature Coefficient Adjustment (Trim Range $= \pm 0.5 \mathrm{~V}$ Typical)

Typical Applications (Continued)
Precision Power Regulator with Low Temperature Coefficient

Typical Applications (Continued)

TL/H/5716-12

Adjustable Shunt Regulator

Typical Applications (Continued)

Op Amp with Output Clamped

5.0V Square Wave Calibrator

Bipolar Output Reference

10V Buffered Reference

Wide Input Range Reference

LM169/LM369 Precision Voltage Reference

General Description

The LM169/LM369 are precision monolithic temperaturecompensated voltage references. They are based on a buried zener reference as pioneered in the LM199 references, but do not require any heater, as they rely on special tem-perature-compensation techniques (Patent Pending). The LM169 makes use of thin-film technology enhanced by the discrete laser trimming of resistors to achieve excellent Temperature coefficient (Tempco) of $\mathrm{V}_{\text {out }}$ (as low as 1 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$), along with tight initial tolerances (as low as 0.05% max). The trim scheme is such that individual resistors are cut open rather than being trimmed (partially cut), to avoid resistor drift caused by electromigration in the trimmed area. The LM169 also provides excellent stability vs. changes in input voltage and output current (both sourcing and sinking). The devices have a 10.000 V output and will operate in either series or shunt mode; the output is short-circuit-proof to ground. A trim pin is available which permits fine-trimming of $V_{\text {out }}$, and also permits filtering to greatly decrease the output noise by adding a small capacitor (0.05 to $0.5 \mu \mathrm{~F}$).

Features

- Low Tempco
- Excellent initial accuracy
$3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (max)
- Excellent line regulation
$\pm 5 \mathrm{mV}$ (max)
4 ppm/V (max)
■ Excellent output impedance $\pm 0.8 \Omega$ (max)
- Excellent thermal regulation $\pm 20 \mathrm{ppm} / 100 \mathrm{~mW}$ (max)
- Low noise
- Easy to filter output noise
- Operates in series or shunt mode

Applications

■ High-Resolution Data Acquisition Systems

- Digital volt meters
- Weighing systems
(Precision current sources
国 Test Equipment

Connection Diagrams

Metal Can Package (H)

TL/H/9110-1
Top View
(Case is connected to ground.)
*Do not connect; internal connection for factory trims.

Order Number LM169H, LM169BH, LM169H/883, LM369H or LM369BH See NS Package Number H08C

Dual-In-Line Package (\mathbf{N})
or S.O. Package (M)

TL/H/9110-5
Top View
Order Number LM369DM, LM369DMX,** LM369N, LM369BN, LM369CN or LM369DN See NS Package Number M08A or N08E
**X denotes 2500 units on Tape and Reel and is not included in the device part number marking

TO-226 Plastic Package (RC)

TL/H/9110-28 Bottom View

Order Number LM369DRC See NS Package Number RC03A

Absolute Maximum Ratings (Note 8)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Input Voltage (Series Mode)	35 V
Reverse Current (Shunt Mode)	50 mA
Power Dissipation (Note 7)	600 mW
Storage Temperature Range	$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$\left(T_{j} \min\right.$ to T_{j} max)
LM169H, LM169H/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM369	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Soldering Information

$$
\begin{array}{lr}
\text { DIP (N) or Plastic (RC) Package, } 10 \text { sec. } & +260^{\circ} \mathrm{C} \\
\text { H08 (H) Package, } 10 \text { sec. } & +300^{\circ} \mathrm{C} \\
\text { SO (M) Package, Vapor Phase (} 60 \text { sec.) } & +215^{\circ} \mathrm{C} \\
\text { Infrared (} 15 \text { sec.) } & +220^{\circ} \mathrm{C} \\
\text { See AN-450 "Surface Mounting Methods and Their Effect } \\
\text { on Product Reliability" (Appendix D) for other methods of } \\
\text { soldering surface mount devices. } \\
\text { ESD Tolerance } \\
\text { C } \begin{array}{l}
\text { zap }=100 \mathrm{pF}, \text { R }_{\text {zap }}=1.5 \mathrm{k}
\end{array} \\
\hline
\end{array}
$$

Electrical Characteristics, LM169, LM369 (Note 1)

Parameter	Conditions	Typical	\qquad	Design Limit (Note 3)	Units (Max Unless Noted)
$\mathrm{V}_{\text {out }}$ Nominal		+10.000			V
$\mathrm{V}_{\text {out }}$ Error	(Note 11)	$\begin{gathered} 50 \\ 0.50 \end{gathered}$	$\begin{gathered} \pm 500 \\ \pm 5 \end{gathered}$		$\begin{aligned} & \mathrm{ppm} \\ & \mathrm{mV} \end{aligned}$
$V_{\text {out }}$ Tempco LM169B, LM369B LM169, LM369 LM369C (Note 6) (Note 11)	$\begin{aligned} & T_{\min }<T_{j}<T_{\max } \\ & T_{\min }<T_{j}<T_{\max } \\ & T_{\min }<T_{j}<T_{\max } \end{aligned}$	$\begin{gathered} 1.0 \\ 2.7 \\ 6 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & 10 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	
Line Regulation	$13 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	2.0	4.0	8.0	ppm/V
Load Regulation Sourcing Sinking (Note 12) (Note 4, Note 9)	0 to 10 mA 0 to -10 mA	$\begin{gathered} +3 \\ +80 \end{gathered}$	$\begin{array}{r} \pm 8.0 \\ +150 \end{array}$	20.0	ppm/mA ppm/mA
Thermal Regulation Sourcing Sinking (Note 12) (Note 5)	$\mathrm{t}=10 \mathrm{msec}$ After Load is Applied)	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	± 20	-	ppm/ 100 mW ppm/100 mW
Supply Current		1.4	1.8	2.0	mA
Δ Supply Current	$13 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	0.06	0.12	0.2	mA
Short Circuit Current		27	$\begin{aligned} & 15 \\ & 50 \end{aligned}$	$\begin{aligned} & 11 \\ & 65 \end{aligned}$	$m A \min$ mA max
Noise Voltage	10 Hz to 1 kHz 0.1 Hz to 10 Hz (10 Hz to 10 kHz , $\left.\mathrm{C}_{\text {filter }}=0.1 \mu \mathrm{~F}\right)$	$\begin{gathered} 10 \\ 4 \\ 4 \end{gathered}$	30 - -	-	$\mu \mathrm{V}$ rms $\mu \vee \mathrm{p}-\mathrm{p}$ $\mu \mathrm{V}$ rms
Long-term Stability (Non-Cumulative) (Note 10)	1000 hours, $T_{j}<T_{\text {max }}$ (Measured at $\left.+25^{\circ} \mathrm{C}\right)$	6	-	-	ppm
Temperature Hysteresis of $\mathrm{V}_{\text {out }}$	$\Delta T=25^{\circ} \mathrm{C}$	3	-	-	ppm
Output Shift per $1 \mu \mathrm{~A}$ at Pin 5	.	1500	2600	-	ppm

Parameter	Conditions	Typical	Tested Limits (Notes 2, 13)	Design Limit (Note 3)	Units (Max Unless Noted)
$\mathrm{V}_{\text {out }}$ Nominal		+10.000			V
$V_{\text {out }}$ Error, LM369D		$\begin{aligned} & 70 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \pm 1000 \\ & \pm 10.0 \end{aligned}$	-	ppm mV
$V_{\text {out }}$ Tempco (Note 6)	$T_{\text {min }} \leq T_{j} \leq T_{\text {max }}$	5		30	ppm $/{ }^{\circ} \mathrm{C}$
Line Regulation	$13 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	2.4	± 6.0	12	ppm/V
Load Regulation Sourcing Sinking (Note 12) (Note 4, Note 9)	0 to 10 mA 0 to -10 mA	$\begin{gathered} +3 \\ +80 \end{gathered}$	$\begin{gathered} \pm 12 \\ +160 \end{gathered}$	± 25	ppm/mA ppm/mA
Thermal Regulation Sourcing Sinking (Note 12) (Note 5)	$(\mathrm{t}=10 \mathrm{msec}$ After Load is Applied)	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	± 25	-	ppm/100 mW ppm/100 mW
Supply Current		1.5	2.0	2.4	mA
Δ Supply Current	$13 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	0.06	0.16	0.3	mA
Short Circuit Current		27	$\begin{aligned} & 14 \\ & 50 \end{aligned}$	$\begin{aligned} & 10 \\ & 65 \end{aligned}$	mA min mA max
Noise Voltage	10 Hz to 1 kHz 0.1 Hz to 10 Hz (10 Hz to 10 kHz , $\left.\mathrm{C}_{\text {filter }}=0.1 \mu \mathrm{~F}\right)$	$\begin{gathered} 10 \\ 4 \\ 4 \end{gathered}$	30 - -	-	
Long-Term Stability (Non-Cumulative)	1000 Hours, $\mathrm{T}_{\mathrm{j}}<\mathrm{T}_{\text {max }}$ (Measured at $\left.+25^{\circ} \mathrm{C}\right)$	8	-	-	ppm
Temperature Hysteresis of $\mathrm{V}_{\text {out }}$	$\Delta T=25^{\circ} \mathrm{C}$	5	-	-	ppm
Output Shift Per $1 \mu A$ at Pin 5		1500	2800	-	ppm

Note 1: Unless otherwise noted, these conditions apply: $T_{j}=+25^{\circ} \mathrm{C}, 13 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 17 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {load }} \leq 1.0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=\leq 200$ pF. Specifications in BOLDFACED TYPE apply over the rated operating temperature range.
Note 2: Tested limits are guaranteed and 100% tested in production.
Note 3: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not to be used to calculate outgoing quality levels.
Note 4: The LM169 has a Class B output, and will exhibit transients at the crossover point. This point occurs when the device is required to sink approximately 1.0 mA. In some applications it may be advantageous to pre-load the output to either $\mathrm{V}_{\text {in }}$ or to ground, to avoid this crossover point.
Note 5: Thermal regulation is defined as the change in the output voltage at a time T after a step change of power dissipation of 100 mW .
Note 6: Temperature Coefficient of $\mathrm{V}_{\text {OUT }}$ is defined as the worst-case $\Delta \mathrm{V}_{\text {out }}$ measured at Specified Temperatures divided by the total span of the Specified Temperature Range (see graphs). There is no guarantee that the Specified Temperatures are exactly at the minimum or maximum deviation.
Note 7: In metal can (H), θ_{J-C} is $75^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{\mathrm{J}-\mathrm{A}}$ is $150^{\circ} \mathrm{C} / \mathrm{W}$. In plastic DIP, $\theta_{\mathrm{J}-\mathrm{A}}$ is $160^{\circ} \mathrm{C} / \mathrm{W}$. In S0-8, $\theta_{\mathrm{J}-\mathrm{A}}$ is $180^{\circ} \mathrm{C} / \mathrm{W}$, in TO-226, $\theta_{\mathrm{J}-\mathrm{A}}$ is $160^{\circ} \mathrm{C} / \mathrm{W}$.
Note 8: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not guaranteed beyond the Rated Operating Conditions.
Note 9: Regulation is measured at constant temperature using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specifications for Thermal Regulation and Tempco. Load Regulation is measured at a point on the output pin $1 / 8^{\prime \prime}$ below the bottom of the package.
Note 10: Consult factory for availability of devices with Guaranteed Long-term Stability.
Note 11: Consult factory for availability of devices with tighter Accuracy and Tempco Specifications.
Note 12: In Sinking mode, connect $0.1 \mu \mathrm{~F}$ tantalum capacitor from output to ground.
Note 13: A military RETS electrical test specification is available on request.

Typical Performance Characteristics (Note 1)

Dropout Voltage vs Output Current (Series Mode Sourcing Current)

Ripple Rejection vs Frequency

TL/H/9110-24

LM369 Temperature Coefficient Specified Temperatures (see Note 6)

Output Change vs Output Current

LM169 Temperature Coefficient Specified Temperatures (see Note 6)

TL/H/9110-26
Typical Temperature Coefficient Calculations:
LM169 (see curve above):
T.C. $=1.6 \mathrm{mV} /\left(180^{\circ} \times 10 \mathrm{~V}\right)$
$=8.9 \times 10^{-7}=0.89 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM369 (see curve at left):
T.C. $=0.5 \mathrm{mV} /\left(75^{\circ} \times 10 \mathrm{~V}\right)$
$=6.7 \times 10^{-7}=0.67 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Application Hints

The LM169/LM369 can be applied in the same way as any other voltage reference. The adjacent Typical Applications Circuits suggest various uses for the LM169/LM369. The LM169 is recommended for applications where the highest stability and lowest noise is required over the full military temperature range. The LM369 is suitable for limited-temperature operation. The curves showing the Noise vs. Capacitance in the Typical Performance Characteristics section show graphically that a modest capacitance of 0.1 to 0.3 microfarads can cut the broadband noise down to a level of only a few microvolts, less than 1 ppm of the output voltage. The capacitor used should be a low-leakage type. For the temperature range 0 to $50^{\circ} \mathrm{C}$, polyester or Mylar ${ }^{\oplus}$ will be suitable, but at higher temperatures, a premium film capacitor such as polypropylene is recommended. For operation at $+125^{\circ} \mathrm{C}$, a Teflon ${ }^{\circledR}$ capacitor would be required, to ensure sufficiently low leakage. Ceramic capacitors may seem to do the job, but are not recommended for production use, as the high-K ceramics cannot be guaranteed for low leakage, and may exhibit piezo-electric effects, converting vibration or mechanical stress into excessive electrical noise.
Additionally, the inherent superiority of the LM169/369's buried Zener diode provides freedom from low-frequency noise, wobble, and jitter, in the frequency range 0.01 to 10 Hertz, where capacitive filtering is not feasible.
Pins 1, 3, 7, and 8 of the LM169/369 are connected to internal trim circuits which are used to trim the device's output voltage and Tempco during final testing at the factory. Do not connect anything to these pins, or improper operation may result. These pins would not be damaged by a short to ground, or by Electrostatic Discharges; however, keep them away from large transients or AC signals, as stray capacitance could couple noises into the output. These pins may be cut off if desired. Alternatively, a shield foil can be laid out on the printed circuit board, surrounding these pins and pin 5, and this guard foil can be connected to ground or to $\mathrm{V}_{\text {out }}$, effectively acting as a guard against $A C$ coupling and DC leakages.
The trim pin (pin 5) should also be guarded away from noise signals and leakages, as it has a sensitivity of 15 millivolts of $\Delta V_{\text {out }}$ per microampere. The trim pin can also be used in
the circuits shown, to provide an output trim range of ± 10 millivolts. Trimming to a wider range is possible, but is not recommended as it may degrade the Tempco and the Tempco linearity at temperature extremes. For example, if the output were trimmed up to 10.240 V , the Tempco would be degraded by $8 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. As a general rule, Tempco will be degraded by $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ per 30 mV of output adjustment. The output can sink current as well as source it, but the output impedance is much better for sourcing current. Also, the LM169/369 requires a $0.1 \mu \mathrm{~F}$ tantalum capacitor (or, $0.1 \mu \mathrm{~F}$ in series with 10Ω) bypass from the output to ground, for stable operation in shunt mode (output sinking current). The output has a class-B stage, so if the load current changes from sourcing to sinking, an output transient will occur. To avoid this transient, it may be advisable to preload the output with a few milliamperes of load to ground. The LM169/369 does have an excellent tolerance of load capacitance, and in cases of load transients, electrolytic or tantalum capacitors in the range 1 to 500 microfarads have been shown to improve the output impedance without degrading the dynamic stability of the device. The LM169/369 are rated to drive an output of $\pm 10 \mathrm{~mA}$, but for best accuracy , any load current larger than 1 mA can cause thermal errors (such as, $1 \mathrm{~mA} \times 5 \mathrm{~V} \times 4 \mathrm{ppm} / 100 \mathrm{~mW}=0.2 \mathrm{ppm}$ or 2 microvolts) and degrade the ultimate precision of the output voltage.
The output is short-circuit-proof to ground. However, avoid overloads at high ambient temperatures, as a prolonged short-circuit may cause the junction temperature to exceed the Absolute Maximum Temperature. The device does not include a thermal shut-down circuit. If the output is pulled to a positive voltage such as +15 or +20 V , the output current will be limited, but overheating may occur. Avoid such overloads for voltages higher than +20 V , for more than 5 seconds, or, at high ambient temperatures.
The LM169/369 has an excellent long-term stability, and is suitable for use in high-resolution Digital Voltmeters or Data Acquisition systems. Its long-term stability is typically 3 to 10 ppm per 1000 hours when held near $T_{\text {max }}$, and slightly better when operated at room temperature. Contact the factory for availability of devices with proven long-term stability.

Typical Applications

Series Reference

TL/H/9110-2

Shunt Reference with Optional Trim

Series Reference with Optional Filter for Reduced Noise

TL/H/9110-3
NOTE: Pin numbers for H, M or N packages.

Typical Applications (Continued)

\pm 5V Reference

TL/H/9110-8

Multiple Output Voltages

TL/H/9110-10

TL/H/9110-9

R = Thin Film Resistor Network
0.05\% Matching and 5 ppm Tracking (Beckman 694-3-R-10K-A),
(Caddock T-914-10K-100-05)
(Allen Bradley F08B103A)
or similar.

Typical Applications (Continued)
Precision Wide-Range Current Source

TL/H/9110-18
(Beckman 694-3-R-10K-A)
or similar
$A_{1}=$ LF411A, LM607, LM308A
or similar
$\mathrm{Q}_{1}, \mathrm{Q}_{2}=\operatorname{high} \beta$ PNP,
PN4250, 2N3906,
or similar

* = Part of Precision Resistor Network,
$\pm 0.05 \%$ Matching,
(Allen Bradley F08B103A)
(Caddock T-914-10K-100-05)

Reference with Booster

TL/H/9110-13

100 mA Boosted Reference

Typical Applications (Continued)

Typical Applications (Continued)

Precision Wide-Range Current Sink
$\mathrm{I}_{\text {out }}=\frac{10 \mathrm{~V}}{\mathrm{Rx}}$
$A_{1}=$ LM11, LM607 or similar.
$(\mathrm{V} 3+2 \mathrm{~V}) \leq \mathrm{V}_{\text {out }} \leq+20 \mathrm{~V}$.
Q1, Q2 = high Beta NPN, 2N3707, 2N3904 or similar.

TL/H/9110-19

Typical Applications (Continued)

$200 \Omega \leq R \leq 1 k$
When N pieces of LM369 are used, the $V_{\text {out }}$ noise is decreased by a factor of $\frac{1}{\sqrt{N}}$
If the output buffer is not used, for lowest noise add $0.1 \mu \mathrm{~F}$ Mylar® from ground to pin 5 of each LM369.

LM169 Block Diagram

*Do not connect; internal connection for factory trim.

National Semiconductor

LM185／LM285／LM385
 Adjustable Micropower Voltage References

General Description

The LM185／LM285／LM385 are micropower 3－terminal ad－ justable band－gap voltage reference diodes．Operating from 1.24 to 5.3 V and over a $10 \mu \mathrm{~A}$ to 20 mA current range，they feature exceptionally low dynamic impedance and good temperature stability．On－chip trimming is used to provide tight voltage tolerance．Since the LM185 band－gap refer－ ence uses only transistors and resistors，low noise and good long－term stability result．
Careful design of the LM185 has made the device tolerant of capacitive loading，making it easy to use in almost any reference application．The wide dynamic operating range allows its use with widely varying supplies with excellent regulation．
The extremely low power drain of the LM185 makes it useful for micropower circuitry．This voltage reference can be used to make portable meters，regulators or general purpose an－
alog circuitry with battery life approaching shelf life．Further， the wide operating current allows it to replace older refer－ ences with a tighter tolerance part．
The LM185 is rated for operation over a $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range，while the LM285 is rated $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and the LM385 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ．The LM185 is available in a hermetic TO－46 package and a leadless chip carrier pack－ age，while the LM285／LM385 are available in a low－cost TO－92 molded package，as well as S．O．

Features

（1）Adjustable from 1.24 V to 5.30 V
⿴囗 Operating current of $10 \mu \mathrm{~A}$ to 20 mA
（ 1\％and 2\％initial tolerance
© 1Ω dynamic impedance
国 Low temperature coefficient

Connection Diagrams

TO－92
Plastic Package

TL／H／5250－9
Bottom View
Order Number LM285BXZ， LM285BYZ，LM285Z，LM385BXZ， LM385BYZ，LM385BZ or LM385Z See NS Package Number Z03A

Block Diagram

TL／H／5250－13

TO－46
Metal Can Package

TL／H／5250－1

Bottom View

Order Number
LM185BH，LM185BH／883， LM185BYH or LM185BYH／883 See NS Package Number H03H

SO Package

TL／H／5250－10
Order Number LM285M，LM285BYM， LM385BM or LM385M See NS Package Number M08A

1．2V Reference

TL／H／5250－14

5．0V Reference

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 2)
$\begin{array}{ll}\text { Reverse Current } & 30 \mathrm{~mA} \\ \text { Forward Current } & 10 \mathrm{~mA}\end{array}$
Operating Temperature Range (Note 3)

LM185 Series	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LM285 Series	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LM385 Series	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Soldering Information

TO-92 Package (10 sec.)		$260^{\circ} \mathrm{C}$
TO-46 Package (10 sec.)		$300^{\circ} \mathrm{C}$
SO Package		
Vapor Phase $(60$ sec.)	\ddots	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)		$220^{\circ} \mathrm{C}$

See An-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics (Note 4)

Parameter	Conditions	LM185, LM 285					LM385					Units (Limit)
		Typ	LM185BX, LM185BY LM185B, LM285BX, LM285BY		$\begin{array}{r} \text { LM285 } \\ \hline \end{array}$		Typ	LM385BX, LM385BY		LM385		
			$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 5) } \end{aligned}$	Design Limit (Note 6)	$\begin{array}{\|l\|} \hline \text { Tested } \\ \text { Limit } \\ \text { (Note 5) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 6) } \end{array}$		$\begin{array}{\|c\|} \hline \text { Tested } \\ \text { Limit } \\ \text { (Note 5) } \end{array}$	Design Limit (Note 6	$\begin{gathered} \text { Tested } \\ \text { Limit } \\ \text { (Note 5) } \end{gathered}$	$\begin{gathered} \text { Design } \\ \text { Limit } \\ \text { (Note 6) } \end{gathered}$	
Reference Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	1.240	$\begin{gathered} 1.252 \\ \mathbf{1 . 2 5 5} \\ 1.228 \\ \mathbf{1 . 2 1 5} \end{gathered}$		$\begin{aligned} & 1.265 \\ & 1.215 \end{aligned}$	$\begin{gathered} 1.270 \\ 1.205 \end{gathered}$	1.240	$\begin{aligned} & 1.252 \\ & 1.228 \end{aligned}$	$\begin{aligned} & 1.255 \\ & 1.215 \end{aligned}$	$\begin{aligned} & 1.265 \\ & 1.215 \end{aligned}$	$\begin{gathered} 1.270 \\ 1.205 \end{gathered}$	$\begin{gathered} V \\ (\max) \\ V \\ (\min) \end{gathered}$
Reference Voltage Change with Current	$\begin{aligned} & I_{\mathrm{MIN}}<I_{\mathrm{R}}<1 \mathrm{~mA} \\ & 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{R}}<20 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 0.2 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} 0.2 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 25 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 25 \\ & \hline \end{aligned}$	$\begin{gathered} m V \\ (\max) \end{gathered}$
Dynamic Output Impedance	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{I}_{\mathrm{AC}}=0.1 I_{\mathrm{R}} V_{\text {OUT }}=V_{\text {REF }} \\ & V_{\text {OUT }}=5.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.7 \\ & \hline \end{aligned}$					$\begin{gathered} 0.4 \\ 1 \end{gathered}$					Ω
Reference Voltage Change with Output Voltage	$\mathrm{l}_{\mathrm{R}}=100 \mu \mathrm{~A}$	1	3	6	3	6	2	5	10	5	10	$\mathrm{mV}_{(\max)}$
Feedback Current		13	20	25	20	25	16	30	35	30	35	$n A(\max)$
Minimum Operating Current (see curve)	$\begin{aligned} & V_{\text {OUT }}=V_{\text {REF }} \\ & V_{\text {OUT }}=5.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 6 \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ 45 \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ 45 \end{gathered}$	$\begin{aligned} & 10 \\ & 50 \end{aligned}$	$\begin{gathered} 7 \\ 35 \\ \hline \end{gathered}$	$\begin{array}{r} 11 \\ 55 \end{array}$	$\begin{aligned} & 13 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 \\ & 55 \end{aligned}$	$\begin{aligned} & 13 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} \mu A \\ (\max) \\ \hline \end{gathered}$
Output Wideband Noise	$\begin{aligned} & \begin{array}{l} \mathrm{l}_{\mathrm{R}}=100 \mu \mathrm{~A}, 10 \mathrm{~Hz}<\mathrm{f}<10 \mathrm{kHz} \\ V_{\text {OUT }}=\mathrm{V}_{\text {REF }} \\ V_{\text {OUT }}=5.3 \mathrm{~V} \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 50 \\ 170 \\ \hline \end{array}$,				$\begin{gathered} 50 \\ 170 \\ \hline \end{gathered}$	'.			.	$\mu \mathrm{V}_{\text {rms }}$
Average Temperature Coefficient (Note 7)	$\begin{array}{rl} \mathrm{l}_{\mathrm{R}}=100 \mu \mathrm{~A} & X \text { Suffix } \\ & \text { Y Suffix } \\ & \text { All Others } \end{array}$		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ (\mathrm{max}) \end{gathered}$
Long Term Stability	$\begin{aligned} & l_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~T}=1000 \mathrm{Hr}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \end{aligned}$	20					20					ppm

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Refer to RETS185H for military specifications.
Note 3: For elevated temperature operation, $\mathrm{T}_{\mathrm{j}} \max$ is:

LM185	$150^{\circ} \mathrm{C}$
LM285	$125^{\circ} \mathrm{C}$
LM385	$100^{\circ} \mathrm{C}$

Thermal Resistance	TO-92	TO-46	SO-8
$\theta_{\text {ja }}$ (Junction to Ambient)	$180^{\circ} \mathrm{C} / \mathrm{W}\left(0.4^{\prime \prime}\right.$ leads) $170^{\circ} \mathrm{C} / \mathrm{W}\left(0.125^{\prime \prime}\right.$ leads) $)$	$440^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
θ_{jc} (Junction to Case)	N/A	$80^{\circ} \mathrm{C} / \mathrm{W}$	N/A

Note 4: Parameters identified with boldface type apply at temperature extremes. All other numbers apply at $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Unless otherwise specified, all parameters apply for $\mathrm{V}_{\text {REF }}<\mathrm{V}_{\text {OUT }}<5.3 \mathrm{~V}$.
Note 5: Guaranteed and 100\% production tested.
Note 6: Guaranteed, but not 100% production tested. These limits are not to be used to calculate average outgoing quality levels.
Note 7: The average temperature coefficient is defined as the maximum deviation of reference voltage at all measured temperatures from $T_{\min }$ to $T_{\text {max }}$, divided by $T_{\text {max }}-T_{\text {min }}$. The measured temperatures are $-55,-40,0,25,70,85,125^{\circ} \mathrm{C}$.

Typical Performance Characteristics

LM185
Temperature Coefficient Typical

LM385
Temperature Coefficient Typical

TL/H/5250-4

Precision 10V Reference

25V Low Current Shunt Regulator

Series-Shunt 20 mA Regulator

Low AC Noise Reference

200 mA Shunt Regulator

High Efficiency Low Power Regulator

Typical Applications (Continued)

Voltage Level Detector

Fast Positive Clamp
$\mathbf{2 . 4 V}+\Delta \mathbf{V}_{\mathbf{D} 1}$

Bidirectional Adjustable Clamp $\pm 1.8 \mathrm{~V}$ to $\pm \mathbf{2 . 4 V}$

Voltage Level Detector

Bidirectional Clamp
$\pm 2.4 \mathrm{~V}$

Bidirectional Adjustable Clamp $\pm 2.4 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$

Typical Applications (Continued)

Precision Floating Current Detector

TL/H/5250-7

* D1 can be any LED, $V_{F}=1.5 \mathrm{~V}$ to 2.2 V at 3 mA . D1 may act as an indicator. D1 will be on if ITHRESHOLD falls below the threshold current, except with $\mathrm{I}=0$.

Typical Applications (Continued)

Schematic Diagram

Connection Diagrams (Continued)

Order Number LM185BE/883
See NS Package Number E20A

LM185-1.2/LM285-1.2/LM385-1.2 Micropower Voltage Reference Diode

General Description

The LM185-1.2/LM285-1.2/LM385-1.2 are micropower 2-terminal band-gap voltage regulator diodes. Operating over a $10 \mu \mathrm{~A}$ to 20 mA current range, they feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185-1.2 band-gap reference uses only transistors and resistors, low noise and good long term stability result.
Careful design of the LM185-1.2 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.
The extremely low power drain of the LM185-1.2 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance part.

The LM185-1.2 is rated for operation over a $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range while the LM285-1.2 is rated $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and the LM385-1.2 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LM185-1.2/LM285-1.2 are available in a hermetic TO-46 package and the LM285-1.2/LM385-1.2 are also available in a lowcost TO-92 molded package, as well as S.O. The LM1851.2 is also available in a hermetic leadless chip carrier package.

Features

- $\pm 4 \mathrm{mV}(\pm 0.3 \%)$ max. initial tolerance (A grade)

■ Operating current of $10 \mu \mathrm{~A}$ to 20 mA

- 0.6Ω max dynamic impedance (A grade)
- Low temperature coefficient
- Low voltage reference- 1.235 V
- 2.5 V device and adjustable device also available - LM185-2.5 series and LM185 series, respectively

Connection Diagrams

TO-92
Plastic Package (Z)

TL/H/5518-10
Bottom View
Order Number LM285Z-1.2, LM285AZ-1.2, LM285AXZ-1.2, LM285AYZ-1.2, LM285BXZ-1.2, LM285BYZ-1.2, LM385Z-1.2, LM385AZ-1.2, LM385AXZ-1.2, LM385AYZ-1.2, LM385BZ-1.2, LM385BXZ-1.2 or LM385BYZ-1.2 See NS Package Number Z03A

SO Package Alternate Pinout

TO-46 Metal Can Package (H)

TL/H/5518-6
Bottom View

Order Number LM185H-1.2, LM185H-1.2/883, LM185BXH-1.2, LM185BYH-1.2/883, LM285H-1.2, LM285BXH-1.2 or LM285BYH-1.2 See NS Package Number H02A

Order Number LM385SM-1.2, LM385ASM-1.2 or LM385BSM-1.2 See NS Package Number M08A

TL/H/5518-9
Order Number LM285M-1.2, LM285AM-1.2, LM285AXM-1.2, LM285AYM-1.2, LM285BXM-1.2, LM285BYM-1.2, LM385M-1.2, LM385AM-1.2, LM385AXM-1.2, LM385AYM-1.2, LM385BM-1.2, LM385BXM-1.2 or LM385BYM-1.2 See NS Package Number M08A

Typical Application

Wide Input Range Reference

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 2)
Reverse Current 30 mA
Forward Current 10 mA
Operating Temperature Range (Note 3)

LM185-1.2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM285-1.2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM385-1.2	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information	
TO-92 package: 10 sec.	$260^{\circ} \mathrm{C}$
TO-46 package: 10 sec.	$300^{\circ} \mathrm{C}$
SO package: Vapor phase $(60$ sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.$)$	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics (Note 4)

Parameter	Conditions	LM285A-1.2 LM285AX-1.2 LM285AY-1.2			$\begin{aligned} & \text { LM385A-1.2 } \\ & \text { LM385AX-1.2 } \\ & \text { LM385AY-1.2 } \end{aligned}$			Units (Limit)
		Typ	$\begin{gathered} \text { Tested } \\ \text { Limit } \\ \text { (Notes 5, 8) } \end{gathered}$	Design Limit (Note 6)	Typ	Tested Limit (Note 5)	Design Limit (Note 6)	
Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	1.235 1.230	$\begin{aligned} & 1.231 \\ & 1.239 \end{aligned}$	$\begin{aligned} & 1.220 \\ & 1.245 \end{aligned}$	$\begin{array}{r} 1.235 \\ \mathbf{1 . 2 3 5} \end{array}$	$\begin{aligned} & 1.231 \\ & 1.239 \end{aligned}$	$\begin{aligned} & 1.225 \\ & 1.245 \end{aligned}$	$V($ Min $)$ $V($ Max) $V(M i n)$ V(Max)
Minimum Operating Current		7	8	10	7	8	10	$\begin{gathered} \mu \mathrm{A} \\ (\mathrm{Max}) \end{gathered}$
Reverse Breakdown Voltage Change with Current	$\mathrm{I}_{\mathrm{MIN}} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$		1	1.5		1	1.5	$\begin{gathered} \mathrm{mV} \\ (\mathrm{Max}) \end{gathered}$
	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$		10	20		10	20	$\begin{gathered} \mathrm{mV} \\ (\mathrm{Max}) \end{gathered}$
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{f}=20 \mathrm{~Hz}$	0.2		$\begin{aligned} & 0.6 \\ & 1.5 \\ & \hline \end{aligned}$	0.2		$\begin{aligned} & 0.6 \\ & \mathbf{1 . 5} \\ & \hline \end{aligned}$	$\begin{gathered} \Omega \\ (\mathrm{Max}) \end{gathered}$
Wideband Noise (rms)	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	60			60			$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~T}=1000 \mathrm{Hr}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \end{aligned}$	20			20			ppm
Average Temperature Coefficient (Note 7)	$\mathrm{I}_{\mathrm{MIN}} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$ X Suffix Y Suffix All Others		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ (\mathrm{Max}) \end{gathered}$

Electrical Characteristics (Continued) (Note 4)

Parameter	Conditions	Typ	$\begin{gathered} \text { LM185-1.2 } \\ \text { LM185BX-1.2 } \\ \text { LM185BY-1.2 } \\ \text { LM285-1.2 } \\ \text { LM285BX-1.2 } \\ \text { LM285BY-1.2 } \end{gathered}$		LM385B-1.2 LM385BX-1.2 LM385BY-1.2		LM385-1.2		Units (Limit)
			$\begin{array}{\|c\|} \hline \text { Tested } \\ \text { Limit } \\ (\text { Notes 5, 8) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{array}$	Tested Limit (Note 5)	Design Limit (Note 6)	$\begin{array}{\|c\|} \hline \text { Tested } \\ \text { Limit } \\ \text { (Note 5) } \\ \hline \end{array}$	Design Limit (Note 6)	
Reverse Breakdown Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA} \end{aligned}$	1.235	$\begin{aligned} & 1.223 \\ & 1.247 \end{aligned}$		$\begin{aligned} & 1.223 \\ & 1.247 \end{aligned}$		$\begin{aligned} & 1.205 \\ & 1.260 \end{aligned}$		V(Min) V(Max)
Minimum Operating Current		8	10	20	15	20	15	20	$\begin{gathered} \mu \mathrm{A} \\ (\mathrm{Max}) \end{gathered}$
Reverse Breakdown Voltage Change with	$10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$		1	1.5	1	1.5	1	1.5	$\underset{(\max)}{\mathrm{mV}}$
Current	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$		10	20	20	25	20	25	$\underset{(\mathrm{max})}{\mathrm{mV}}$
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{f}=20 \mathrm{~Hz}$	1							Ω
Wideband Noise (rms)	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	60						.	$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~T}=1000 \mathrm{Hr}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \end{aligned}$	20	,	:					ppm
Average Temperature Coefficient (Note 7)	$I_{R}=100 \mu \mathrm{~A}$ X Suffix Y Suffix All Others		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150	.	150	ppm $/{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ (Max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Refer to RETS185H-1.2 for military specifications.
Note 3: For elevated temperature operation, $T_{j} \max$ is:

LM185	$150^{\circ} \mathrm{C}$
LM285	$125^{\circ} \mathrm{C}$
LM385	$100^{\circ} \mathrm{C}$

Thermal Resistance	TO-92	TO-46	SO-8
θ_{JA} (junction to ambient)	$180^{\circ} \mathrm{C} / \mathrm{W}\left(0.4^{\prime \prime}\right.$ leads) $170^{\circ} \mathrm{C} / \mathrm{W}\left(0.125^{\prime \prime}\right.$ leads $)$	$440^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC} (junction to case)	N / A	$80^{\circ} \mathrm{C} / \mathrm{W}$	N / A

Note 4: Parameters identified with boldface type apply at temperature extremes. All other numbers apply at $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.
Note 5: Guaranteed and 100% production tested.
Note 6: Guaranteed, but not 100% production tested. These limits are not used to calculate average outgoing quality levels.
Note 7: The average temperature coefficient is defined as the maximum deviation of reference voltage at all measured temperatures between the operating $\mathrm{T}_{\text {MAX }}$ and $T_{M I N}$, divided by $T_{\text {MAX }}-T_{\text {MIN }}$. The measured temperatures are $-55^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$.
Note 8: A military RETS electrical specification is available on request.

Typical Performance Characteristics

Typical Applications (Continued)

Reference from .5V Battery

TL/H/5518-2

Micropower* 10V Reference

${ }^{*} I_{Q} \cong 20 \mu \mathrm{~A}$ standby current

Precision $1 \mu \mathrm{~A}$ to 1 mA Current Sources

$$
\text { *IOUT }=\frac{1.23 V}{R 2}
$$

Typical Applications (Continued)

METER THERMOMETERS

Calibration

1. Short LM385-1.2, adjust R3 for lout $=$ temp at $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
2. Remove short, adjust R2 for correct reading in centigrade
\dagger_{Q} at $1.3 \mathrm{~V} \cong 500 \mu \mathrm{~A}$
I_{Q} at $1.6 \mathrm{~V} \cong 2.4 \mathrm{~mA}$

Callbration

1. Short LM385-1.2, adjust R3 for IOUT $=$ temp at $1.8 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
2. Remove short, adjust R2 for correct reading in ${ }^{\circ} \mathrm{F}$

Micropower Thermocouple Cold Junction Compensator

TL/H/5518-5

Adjustment Procedure

1. Adjust TC ADJ pot until voltage across R1 equals Kelvin temperature multiplied by the thermocouple Seebeck coefficient.
2. Adjust zero ADJ pot until voltage across R2 equals the thermocouple Seebeck coefficient multiplied by 273.2.

Seebeck R1

Type	Coefficient $\left(\mu \mathbf{V} /{ }^{\circ} \mathbf{C}\right)$	(Ω)	(Ω)	Across R1 $@ 25{ }^{\circ} \mathbf{C}$	Across R2 $(\mathbf{m V})$
				$(\mathbf{m V})$	
J	52.3	523	1.24 k	15.60	14.32
T	42.8	432	1 k	12.77	11.78
K	40.8	412	953Ω	12.17	11.17
S	6.4	63.4	150Ω	1.908	1.766

Typical Applications (Continued)

Schematic Diagram

TL/H/5518-7
Connection Diagrams (Continued)

TL/H/5518-12
Order Number LM185E-1.2/883
See NS Package Number E20A

LM185-2.5/LM285-2.5/LM385-2.5 Micropower Voltage Reference Diode

General Description

The LM185-2.5/LM285-2.5/LM385-2.5 are micropower 2terminal band-gap voltage regulator diodes. Operating over a $20 \mu \mathrm{~A}$ to 20 mA current range, they feature exceptionally low dynamic impedance and good temperature stability. Onchip trimming is used to provide tight voltage tolerance. Since the LM-185-2.5 band-gap reference uses only transistors and resistors, low noise and good long term stability result.
Careful design of the LM185-2.5 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.
The extremely low power drain of the LM185-2.5 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life.

Further, the wide operating current allows it to replace older references with a tighter tolerance part. For applications requiring 1.2V see LM185-1.2.
The LM185-2.5 is rated for operation over a $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range while the LM285-2.5 is rated $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and the LM385-2.5 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LM185-2.5/LM285-2.5 are available in a hermetic TO-46 package and the LM285-2.5/LM385-2.5 are also available in a lowcost TO-92 molded package, as well as S.O. The LM185-25 is also available in a hermetic leadless chip carrier package.

Features

- $\pm 20 \mathrm{mV}$ ($\pm 0.8 \%$) max. initial tolerance (A grade)
- Operating current of $20 \mu \mathrm{~A}$ to 20 mA
- 0.6Ω dynamic impedance (A grade)
- Low temperature coefficient
- Low voltage reference- 2.5 V
- 1.2V device and adjustable device also available-LM185-1.2 series and LM185 series, respectively

Applications

Wide Input Range Reference

Micropower Reference from 9V Battery

TL/H/5519-2

Connection Diagrams

TO-92
Plastic Package

TL/H/5519-8
Bottom View
Order Number LM285Z-2.5, LM285AZ-2.5, LM285AXZ-2.5, LM285AYZ-2.5,
LM285BXZ-2.5, LM285BYZ-2.5, LM385Z-2.5, LM385AZ-2.5, LM385AXZ-2.5, LM385AYZ-2.5, LM385BZ-2.5, LM385BXZ-2.5 or LM385BYZ-2.5
See NS Package Number Z03A

TO-46
Metal Can Package

TL/H/5519-13
Bottom View
Order Number LM185H-2.5, LM185H-2.5/883
LM185BXH-2.5, LM185BXH-2.5/883, LM185BYH-2.5, LM185BYH2.5/883, LM285H-2.5, LM285BXH-2.5 or LM285BYH-2.5 See NS Package Number H02A

SO Package

Order Number LM285M-2.5, LM285AM-2.5, LM285AXM-2.5, LM285A YM-2.5, LM285BXM-2.5, LM285BYM-2.5, LM385M-2.5, LM385AM-2.5, LM385AXM-2.5, LM385AYM-2.5, LM385BM-2.5, LM385BXM-2.5 or LM385BYM-2.5 See NS Package Number M08A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 2)
Reverse Current
30 mA
Forward Current
10 mA
Operating Temperature Range (Note 3)

LM185-2.5	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM285-2.5	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM385-2.5	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

LM385-2.5 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information	
TO-92 Package $(10 \mathrm{sec})$.	$260^{\circ} \mathrm{C}$
TO-46 Package $(10 \mathrm{sec})$.	$300^{\circ} \mathrm{C}$
SO Package	
Vapor Phase $(60 \mathrm{sec})$.	$215^{\circ} \mathrm{C}$
Infrared $(15 \mathrm{sec})$.	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics (Note 4)

Parameter	Conditions	Typ	$\begin{aligned} & \text { LM285A-2.5 } \\ & \text { LM285AX-2.5 } \\ & \text { LM285AY-2.5 } \end{aligned}$		$\begin{aligned} & \text { LM385A-2.5 } \\ & \text { LM385AX-2.5 } \\ & \text { LM385AY-2.5 } \end{aligned}$		Units (Limits)
			Tested Limit (Notes 5, 8)	Design Limit (Note 6)	Tested Limit (Note 5)	Design Limit (Note 6)	
Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	2.500 2.500	$\begin{aligned} & 2.480 \\ & 2.520 \end{aligned}$	$\begin{aligned} & 2.460 \\ & 2.535 \end{aligned}$	$\begin{aligned} & 2.480 \\ & 2.520 \end{aligned}$	$\begin{aligned} & 2.470 \\ & 2.530 \end{aligned}$	V (Min) V(Max) $V($ Min $)$ V(Max)
Minimum Operating Current		12	18	20	18	20	$\begin{gathered} \mu A \\ (\mathrm{Max}) \\ \hline \end{gathered}$
Reverse Breakdown Voltage Change with Current	$\mathrm{I}_{\mathrm{MIN}} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$.	1	1.5	1	1.5	$\begin{gathered} \mathrm{mV} \\ (\mathrm{Max}) \end{gathered}$
	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$		10	20	10	20	$\begin{gathered} \mathrm{mV} \\ (\mathrm{Max}) \end{gathered}$
Reverse Dynamic Impedance	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \\ & \mathrm{f}=20 \mathrm{~Hz} \end{aligned}$	0.2		$\begin{aligned} & 0.6 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 0.6 \\ & \mathbf{1 . 5} \end{aligned}$	Ω
Wideband Noise (rms)	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	120			.		$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A}, \\ & T=1000 \mathrm{Hr}, \\ & T_{A}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \end{aligned}$	20					ppm
Average Temperature Coefficient (Note 7)	$\begin{aligned} & I_{\text {MIN }} \leq I_{R} \leq 20 \mathrm{~mA} \\ & X \text { Suffix } \\ & \text { Y Suffix } \\ & \text { All Others } \end{aligned}$		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150	ppm $/{ }^{\circ} \mathrm{C}$ (Max)

Electrical Characteristics (Continued) (Note 4)

Parameter	Conditions	Typ	$\begin{gathered} \text { LM185-2.5 } \\ \text { LM185BX-2.5 } \\ \text { LM185BY-2.5 } \\ \text { LM285-2.5 } \\ \text { LM285BX-2.5 } \\ \text { LM285BY-2.5 } \end{gathered}$		LM385B-2.5 LM385BX-2.5 LM385BY-2.5		LM385-2.5		Units (Limit)
			Tested Limit (Notes 5, 8)	Design Limit (Note 6)	Tested Limit (Note 5)	Design Limit (Note 6)	Tested Limit (Note 5)	Design Limit (Note 6)	
Reverse Breakdown Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \\ & 20 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA} \end{aligned}$	2.5	$\begin{aligned} & 2.462 \\ & 2.538 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.462 \\ & 2.538 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.425 \\ & 2.575 \\ & \hline \end{aligned}$		V(Min) V(Max)
Minimum Operating Current		13	20	30	20	30	20	30	$\begin{gathered} \mu \mathrm{A} \\ (\mathrm{Max}) \end{gathered}$
Reverse Breakdown Voltage Change with	$20 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$		1	1.5	2.0	2.5	2.0	2.5	$\begin{gathered} \mathrm{mV} \\ \text { (Max) } \end{gathered}$
Current	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$		10	20	20	25	20	25	$\begin{gathered} \mathrm{mV} \\ (\mathrm{Max}) \end{gathered}$
Reverse Dynamic Impedance	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \\ & \mathrm{f}=20 \mathrm{~Hz} \end{aligned}$	1		.					Ω
Wideband Noise (rms)	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	120							$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \\ & \mathrm{~T}=1000 \mathrm{Hr}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \end{aligned}$	20							ppm
Average Temperature Coefficient (Note 7)	$\begin{aligned} & I_{\mathrm{R}}=100 \mu \mathrm{~A} \\ & X \text { Suffix } \\ & \text { Y Suffix } \\ & \text { All Others } \end{aligned}$		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150		150	ppm $/{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ (Max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Refer to RETS185H-2.5 for military specifications.
Note 3: For elevated temperature operation, $T_{J \text { max }}$ is:

LM185	$150^{\circ} \mathrm{C}$
LM285	$125^{\circ} \mathrm{C}$
LM385	$100^{\circ} \mathrm{C}$

Thermal Resistance	TO-92	TO-46	SO-8
θ_{ja} (Junction to Ambient)	$180^{\circ} \mathrm{C} / \mathrm{W}\left(0.4^{\prime \prime}\right.$ Leads) $170^{\circ} \mathrm{C} / \mathrm{W}\left(0.125^{\prime \prime}\right.$ Leads) $)$	$440^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
θ_{ja} (Junction to Case)	N / A	$80^{\circ} \mathrm{C} / \mathrm{W}$	N / A

Note 4: Parameters identified with boldface type apply at temperature extremes. All other numbers apply at $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.
Note 5: Guaranteed and 100% production tested.
Note 6: Guaranteed, but not 100% production tested. These limits are not used to calculate average outgoing quality levels.
Note 7: The average temperature coefficient is defined as the maximum deviation of reference voltage at all measured temperatures between the operating $\mathrm{T}_{\text {MAX }}$ and $\mathrm{T}_{\mathrm{MIN}}$, divided by $\mathrm{T}_{\mathrm{MAX}}-\mathrm{T}_{\mathrm{MIN}}$. The measured temperatures are $-55^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$.
Note 8: A military RETS electrical specification available on request.

Typical Performance Characteristics

Reverse Dynamic Impedance

Filtered Output Noise

Forward Characteristics

Reverse Dynamic Impedance

Response Time

Connection Diagram

TL/H/5519-14
Order Number LM185E-2.5/883
See NS Package Number E20A

LM385-2.5 Applications

${ }^{*} \mathrm{l}_{\mathrm{Q}} \cong 40 \mu \mathrm{~A}$
Precision $1 \mu A$ to 1 mA Current Sources

METER THERMOMETERS

Callibration

1. Short LM385-2.5, adjust R3 for IOUT $=$ temp at $1 \mu \mathrm{~A} / /^{\circ} \mathrm{K}$
2. Remove short, adjust R2 for correct reading in centigrade

TL/H/5519-5

Calibration

1. Short LM385-2.5, adjust R3 for IOUT $=$ temp at $1.8 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
2. Remove short, adjust R2 for correct reading in ${ }^{\circ} \mathrm{F}$

Schematic Diagram

LM199/LM299/LM399/LM3999 Precision Reference

General Description

The LM199 series are precision, temperature-stabilized monolithic zeners offering temperature coefficients a factor of ten better than high quality reference zeners. Constructed on a single monolithic chip is a temperature stabilizer circuit and an active reference zener. The active circuitry reduces the dynamic impedance of the zener to about 0.5Ω and allows the zener to operate over 0.5 mA to 10 mA current range with essentially no change in voltage or temperature coefficient. Further, a new subsurface zener structure gives low noise and excellent long term stability compared to ordinary monolithic zeners. The package is supplied with a thermal shield to minimize heater power and improve temperature regulation.
The LM199 series references are exceptionally easy to use and free of the problems that are often experienced with ordinary zeners. There is virtually no hysteresis in reference voltage with temperature cycling. Also, the LM199 is free of voltage shifts due to stress on the leads. Finally, since the unit is temperature stabilized, warm up time is fast.
The LM199 can be used in almost any application in place of ordinary zeners with improved performance. Some ideal applications are analog to digital converters, calibration standards, precision voltage or current sources or precision power supplies. Further in many cases the LM199 can replace references in existing equipment with a minimum of wiring changes.

The LM199 series devices are packaged in a standard hermetic TO-46 package inside a thermal shield. The LM199 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM299 is rated for operation from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and the LM399 is rated from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
The LM3999 is packaged in a standard TO-92 package and is rated from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Features

■ Guaranteed $0.0001 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient
■ Low dynamic impedance - 0.5Ω

- Initial tolerance on breakdown voltage - 2%
- Sharp breakdown at $400 \mu \mathrm{~A}$
a Wide operating current - $500 \mu \mathrm{~A}$ to 10 mA
图 Wide supply range for temperature stabilizer
国 Guaranteed low noise
- Low power for stabilization - 300 mW at $25^{\circ} \mathrm{C}$
© Long term stability - 20 ppm
[1] Proven reliability, low-stress packaging in TO-46 inte-grated-circuit hermetic package, for low hysteresis after thermal cycling. 33 million hours MTBF at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ($\mathrm{T}_{\mathrm{J}}=+86^{\circ} \mathrm{C}$)
- Certified long term stability available
(1) MIL-STD-883 compliant

Connection Diagrams

Metal Can Package (TO-46)

TL/H/5717-14
Top View
LM199/LM299/LM399 (See Table on fourth page) NS Package Number H04D

Plastic Package TO-92

TL/H/5717-10
Bottom View
LM3999 (See Table on fourth page) NS Package Number Z03A

Functional Block Diagrams

LM199/LM299/LM399

TL/H/5717-15

LM3999

Reference to Substrate Voltage $V_{(R S)}$ (Note 1)	40 V
Operating Temperature Range	
LM199	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM299	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM399/LM3999	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information	
TO-92 package $(10$ sec.)	$+260^{\circ} \mathrm{C}$
TO-46 package $(10$ sec.)	$+300^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2, 5)

Parameter	Conditions	LM199H/LM299H			LM399H			Units
		Min	Typ	Max	Min	Typ	Max	
Reverse Breakdown Voltage	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$	6.8	6.95	7.1	6.6	6.95	7.3	V
Reverse Breakdown Voltage Change with Current	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$		6	9		6	12	mV
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.5	1		0.5	1.5	Ω
Reverse Breakdown Temperature Coefficient	$\left.\begin{array}{lr}-55^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \\ +85^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}\end{array}\right\} \quad$ LM199		0.00003 0.0005 0.00003	$\begin{aligned} & 0.0001 \\ & 0.0015 \\ & 0.0001 \end{aligned}$		0.00003	0.0002	$\begin{aligned} & \% /{ }^{\circ} \mathrm{C} \\ & \% /{ }^{\circ} \mathrm{C} \\ & \% /{ }^{\circ} \mathrm{C} \\ & \% /{ }^{\circ} \mathrm{C} \end{aligned}$
RMS Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		7	20		7	50	$\mu \mathrm{V}$
Long Term Stability	Stabilized, $22^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 28^{\circ} \mathrm{C}$, 1000 Hours, $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.1 \%$		20	,		20		ppm
Temperature Stabilizer Supply Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \text { Still Air, } \mathrm{V}_{S}=30 \mathrm{~V} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 8.5 \\ & 22 \\ & \hline \end{aligned}$	$\begin{array}{r} 14 \\ 28 \\ \hline \end{array}$		8.5	15	mA
Temperature Stabilizer Supply Voltage		9		40	9		40	V
Warm-Up Time to 0.05\%	$\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3			3		sec.
Initial Turn-on Current	$9 \leq \mathrm{V}_{S} \leq 40, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, (Note 3)		140	200		140	200	mA

Electrical Characteristics (Note 2)

Parameter	Conditions	LM3999Z			Units
		Min	Typ	Max	
Reverse Breakdown Voltage	$0.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$	6.6	6.95	7.3	V
Reverse Breakdown Voltage Change with Current	$0.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$		6	20	mV
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.6	2.2	Ω
Reverse Breakdown Temperature Coefficient	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$		0.0002	0.0005	\%/ ${ }^{\circ} \mathrm{C}$
RMS Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		7		$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & \text { Stabilized, } 22^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 28^{\circ} \mathrm{C} \\ & 1000 \text { Hours, } \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.1 \% \end{aligned}$		20		ppm
Temperature Stabilizer	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Still Air, $\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}$		12	18	mA
Temperature Stabilizer Supply Voltage				36	V
Warm-Up Time to 0.05\%	$V_{S}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5		sec.
Initial Turn-On Current	$9 \leq \mathrm{V}_{S} \leq 40, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		140	200	mA

Electrical Characteristics (Notes 2, 5)

Parameter	Conditions	LM199AH, LM299AH			LM399AH			Units
		Min	Typ	Max	Min	Typ	Max	
Reverse Breakdown Voltage	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$	6.8	6.95	7.1	6.6	6.95	7.3	V
Reverse Breakdown Voltage Change with Current	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$		6	9		6	12	mV
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.5	1		0.5	1.5	Ω
Reverse Breakdown Temperature Coefficient	$\left.\begin{array}{ll}-55^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \\ +85^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}\end{array}\right\}$ LM199A		0.00002 0.0005 0.00002			0.00003	0.0001	$\begin{aligned} & \% /{ }^{\circ} \mathrm{C} \\ & \% /{ }^{\circ} \mathrm{C} \\ & \% /{ }^{\circ} \mathrm{C} \\ & \% /{ }^{\mathrm{C}} \end{aligned}$
RMS Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		7	20		7	50	$\mu \mathrm{V}$
Long Term Stability	Stabilized, $22^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 28^{\circ} \mathrm{C}$, 1000 Hours, $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.1 \%$		20			20		ppm
Temperature Stabilizer Supply Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \text { Still Air, } \mathrm{V}_{\mathrm{S}}=30 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 8.5 \\ & 22 \\ & \hline \end{aligned}$	$\begin{array}{r} 14 \\ 28 \\ \hline \end{array}$		8.5	15	mA
Temperature Stabilizer Supply Voltage		9		40	9		40	V
Warm-Up Time to 0.05\%	$\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3			3		sec.
Initial Turn-on Current	$9 \leq \mathrm{V}_{S} \leq 40, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}$, (Note 3)		140	200		140	200	mA

Electrical Characteristics (Notes 2, 5)

Parameter	Conditions	LM199AH-20, LM299AH-20			LM399AH-50			Units
		Min	Typ	Max	Min	Typ	Max	
Reverse Breakdown Voltage	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$	6.8	6.95	7.1	6.6	6.95	7.3	V
Reverse Breakdown Voltage Change With Current	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$		6	9		6	12	mV
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.5	1		0.5	1.5	Ω
Reverse Breakdown Temperature Coefficient	$\left.\begin{array}{ll}-55^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \\ 85^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}\end{array}\right\}$ LM199A		0.00002 0.0005 0.00002			0.00003	0.0001	$\begin{aligned} & \% /{ }^{\circ} \mathrm{C} \\ & \% /{ }^{\circ} \mathrm{C} \\ & \% /{ }^{\circ} \mathrm{C} \\ & \% /{ }^{\circ} \mathrm{C} \end{aligned}$
RMS Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		7	20		7	50	$\mu \mathrm{V}$
Long Term Stability	Stabilized, $22^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 28^{\circ} \mathrm{C}$, 1000 Hours, $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.1 \%$		8	20		9	50	ppm
Temperature Stabilizer Supply Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \text { Still Air, } \mathrm{V}_{S}=30 \mathrm{~V} \\ & T_{A}=55^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 8.5 \\ & 22 \\ & \hline \end{aligned}$	$\begin{array}{r} 14 \\ 28 \\ \hline \end{array}$		8.5	15	mA
Temperature Stabilizer Supply Voltage		9		40	9		40	V
Warm-Up Time to 0.05\%	$\mathrm{V}_{S}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3			3		s
Initial Turn-on Current	$9 \leq \mathrm{V}_{S} \leq 40, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 3)		140	200		140	200	mA

Note 1: The substrate is electrically connected to the negative terminal of the temperature stabilizer. The voltage that can be applied to either terminal of the reference is 40 V more positive or 0.1 V more negative than the substrate.
Note 2: These specifications apply for 30 V applied to the temperature stabilizer and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 199 ;-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for the LM 299 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the LM399 and LM3999.
Note 3: This initial current can be reduced by adding an appropriate resistor and capacitor to the heater circuit. See the performance characteristic graphs to determine values.
Note 4: Do not wash the LM199 with its polysulfone thermal shield in TCE.
Note 5: A military RETS electrical test specification is available for the LM199H/883, LM199AH/883, and LM199AH-20/883 on request.

Ordering Information

Initial Tolerance	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	- $\mathbf{- 5 5}{ }^{\circ} \mathrm{C}$ to $+\mathbf{1 2 5}{ }^{\circ} \mathrm{C}$	NS Package
2\%		LM299AH	LM199AH, LM199AH/883	H04D
5\%	LM399H LM399AH	LM299H	LM199H, LM199H/883	H04D
5\%	LM3999Z			Z03A
Guaranteed Long Term Stability	LM399AH-50	LM299AH-20	LM199AH-20, LM199AH-20/883	H04D

Certified Long Term Drift

The National Semiconductor LM199AH-20, LM299AH-20, and LM399AH-50 are ultra-stable Zener references specially selected from the production runs of LM199AH, LM299AH, LM399AH and tested to confirm a long-term stability of 20,20 , or 50 ppm per 1000 hours, respectively. The devices are measured every 168 hours and the voltage of each device is logged and compared in such a way as to show the deviation from its initial value. Each measurement is taken with a probable-worst-case deviation of $\pm 2 \mathrm{ppm}$, compared to the Reference Voltage, which is derived from several groups of NBS-traceable references such as LM199AH-20's, 1N827's, and saturated standard cells, so
that the deviation of any one group will not cause false indications. Indeed, this comparison process has recently been automated using a specially prepared computer program which is custom-designed to reject noisy data (and require a repeat reading) and to record the average of the best 5 of 7 readings, just as a sagacious standards engineer will reject unbelievable readings.
The typical characteristic for the LM199AH-20 is shown below. This computerized print-out form of each reference's stability is shipped with the unit.

Typical Characteristics

National Semiconductor Certified Long Term Drift

Hrs	Drift
168	-20
336	-24
504	-36
672	-34
840	-40
1008	-36

Testing Conditions
$\begin{array}{lr}\text { Heater Voltage } & 30 \mathrm{~V} \\ \text { Zener Current } & 1 \mathrm{~mA} \\ \text { Ambient Temp. } & 25^{\circ} \mathrm{C}\end{array}$

TL/H/5717-12

Typical Performance Characteristics

Zener Noise Voltage

Stabilization Time

Initial Heater Current

Heater Current (To Limit This Surge, See Next Graph)

TL/H/5717-3

Single Supply Operation

Negative Heater Supply with Positive Reference

Positive Current Source

Typical Applications (Continued)

Bipolar Output Reference

TL/H/5717-6
Voltage Reference

Schematic Diagrams

TL/H/5717-01

Reference

TL/H/5717-13

LM368-2.5 Precision Voltage Reference

General Description

The LM368-2.5 is a precision, monolithic, temperature-compensated voltage reference. The LM368-2.5 makes use of thin-film technology enhanced by the discrete laser trimming of resistors to achieve excellent Temperature coefficient (Tempco) of $\mathrm{V}_{\text {OUT }}$ (as low as $11 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$), along with tight initial tolerance, (as low as 0.02\%). The trim scheme is such that individual resistors are cut open rather than being trimmed (partially cut), to avoid resistor drift caused by electromigration in the trimmed area. The LM368-2.5 also provides excellent stability vs. changes in input voltage and output current. The output is short circuit proof. A trim pin is made available for fine trimming of VOUT or for obtaining intermediate values without greatly affecting the Tempco of the device.

Features

■ $400 \mu \mathrm{~A}$ operating current

- Low output impedance
- Excellent line regulation (. $0001 \% / \mathrm{V}$ typical)
- Single-supply operation
- Externally trimmable
- Low temperature coefficient

■ Excellent initial accuracy (0.02% typical)

- Best reference available for low-voltage operation $\left(\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.500 \mathrm{~V}\right)$

Connection Diagram

TL/H/8446-1
Top View
*case connected to V^{-}
Order Number LM368H-2.5 LM368YH-2.5
See NS Package Number H08C

Typical Applications

$$
\begin{array}{lr}
\text { Absolute Maximum Ratings (Note } 7 \text {) } \\
\text { If Military/Aerospace specified devices are required, } \\
\text { please contact the National Semiconductor Sales } \\
\text { Office/Distributors for availability and specifications. } \\
\text { Input Voltage } & 35 \mathrm{~V} \\
\text { Power Dissipation } & 600 \mathrm{~mW} \\
\text { Storage Temperature Range } & -60^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
\text { Operating Temperature Range } & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{array}
$$

Soldering Information
TO-5 (H) Package (10 sec .) $+300^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

Electrical Characteristics (Note 1)

Parameter	Conditions	LM368-2.5			
		Typical	Tested Limit (Note 2)	Design Limit (Note 3)	Units (Max. unless noted)
V ${ }_{\text {OUT }}$ Error: LM368		± 0.02	± 0.2		\%
Line Regulation	$5.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	± 0.0001	± 0.0005		\%/V
Load Regulation (Note 8)	$0 \mathrm{~mA} \leq \mathrm{I}_{\text {SOURCE }} \leq 10 \mathrm{~mA}$	± 0.0003	± 0.0025		\%/mA
Thermal Regulation	$\mathrm{T}=20 \mathrm{mS}$ (Note 4)	± 0.005	± 0.02		\%/100 mW
Quiescent Current		350	550		$\mu \mathrm{A}$
Change of Quiescent Current vs. $\mathrm{V}_{\text {IN }}$	$5.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	3	5		$\mu \mathrm{A} / \mathrm{V}$
Temperature Coefficient of $V_{\text {OUT }}$ (see graph): LM368Y-2.5 (Note 5) LM368-2.5	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 11 \\ & \pm 15 \end{aligned}$	± 20	± 30	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0$	30	70	100	mA
$\begin{array}{ll}\text { Noise: } & 0.1-10 \mathrm{~Hz} \\ & 100 \mathrm{~Hz}-10 \mathrm{kHz}\end{array}$		$\begin{gathered} 12 \\ 420 \\ \hline \end{gathered}$			uVp-p $\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{V}_{\text {OUT }}$ Adjust Range	$0 \leq \mathrm{V}_{\text {PIN5 }} \leq \mathrm{V}_{\text {OUT }}$	1.9-5.2		2.2-5.0	V min.

Note 1: Unless otherwise noted, these specifications apply: $T_{A}=25^{\circ} \mathrm{C}, 4.9 \mathrm{~V} \leq \mathrm{V}_{I N} \leq 10.5 \mathrm{~V}, 0 \leq \mathrm{I}_{\mathrm{LOAD}} \leq 0.5 \mathrm{~mA}, 0 \leq \mathrm{C}_{\mathrm{L}} \leq 200 \mathrm{pF}$.
Note 2: Tested Limits are guaranteed and 100% tested in production.
Note 3: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 4: Thermal Regulation is defined as the change in the output Voltage at a time T after a step change in power dissipation of 100 mW .
Note 5: Temperature Coefficient of $V_{O U T}$ is defined as the worst case delta-V OUT measured at Specified Temperatures divided by the total span of the Specified Temperature Range (See graphs). There is no guarantee that the Specified Temperatures are exactly at the minimum or maximum deviation.
Note 6: In metal can (H), $\theta_{J-\mathrm{C}}$ is $75^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{\mathrm{J}-\mathrm{A}}$ is $150^{\circ} \mathrm{C} / \mathrm{W}$.
Note 7: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its Rated Operating Conditions (see Note 1 and Conditions).
Note 8: Load regulation is measured on the output pin at a point $1 / \mathrm{s}^{\prime \prime}$ below the base of the package. Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

Typical Performance Characteristics (Note 1)

(1) LM368 as is.
(2) with $0.01 \mu \mathrm{f}$ Mylar, Trim to Gnd.
(3) with 10Ω in series with $10 \mu \mathrm{f}$, $V_{\text {OUT }}$ to Gnd.
(4) with Both.

Typical Temperature Coefficient Calculations: LM368-2.5 (see Curve A)

$$
\mathrm{T} . \mathrm{C} .=1.7 \mathrm{mV} /\left(70^{\circ} \times 2.5 \mathrm{~V}\right)
$$

$$
=9.7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
$$

Output Noise vs.
Frequency

TL/H/8446-3

Typical Applications

Wide Range Trimmable Regulator

Narrow Range Trimmable Regulator ($\pm \mathbf{1 \%}$ min.)

TL/H/8446-6

Improved Noise Performance

TL/H/8446-7

Typical Applications (Continued)

Multiple Output Voltages

TL/H/8446-9

TL/H/8446-10
R = Thin Film Resistor Network
0.05\% Matching and 5 ppm Tracking
(Beckman 694-3-R-10K-A),
(Caddock T-914-10K-100-05)
or similar.

Typical Applications (Continued)

Buffered High-Current Reference with Filter

Simplified Schematic Diagram

TL/H/8446-14
*Reg. U.S. Pat. Off.

LM368-5.0 and LM368-10 Precision Voltage References

General Description

The LM368 is a precision, monolithic, temperature-compensated voltage reference. The LM368 makes use of thin-film technology enhanced by the discrete laser trimming of resistors to achieve excellent Temperature coefficient (Tempco) of $\mathrm{V}_{\text {OUT }}$ (as low as $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$), along with tight initial tolerance, (as low as 0.02%). The trim scheme is such that individual resistors are cut open rather than being trimmed (partially cut), to avoid resistor drift caused by electromigration in the trimmed area. The LM368 also provides excellent stability vs. changes in input voltage and output current (both sourcing and sinking). This device is available in output voltage options of 5.0 V and 10.0 V and will operate in both series or shunt mode. Also see the LM368-2.5 data sheet for a 2.5 V output. The devices are short circuit proof when sourcing current. A trim pin is made available for fine trimming of $V_{\text {OUT }}$ or for obtaining intermediate values without greatly affecting the Tempco of the device.

Features

- $300 \mu \mathrm{~A}$ operating current
- Low output impedance
- Excellent line regulation (.0001\%/V typical)
- Single-supply operation
© Externally trimmable
- Low temperature coefficient
- Operates in series or shunt mode
- 10.0 V or 5.0 V
- Excellent initial accuracy (0.02% typical)

Connection Diagram

Top View
TL/H/5522-1
TL/

Order Number LM368YH-10, LM368YH-5.0, LM368H-10, LM368H-5.0 See NS Package Number H08C

Typical Applications

Series Regulator

Shunt Regulator

Absolute Maximum Ratings (Note 8)

Input Voltage (Series Mode)	35 V
Reverse Current (Shunt Mode)	50 mA
Power Dissipation	600 mW
Storage Temperature Range	$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
LM368 $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$,$~$	

Electrical Characteristics (Note 1)

Soldering Information
TO-5 (H) Package, 10 sec .
$+300^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

Parameter	Conditions	LM368			
		Typical	Tested Limit (Note 2)	Design Limit (Note 3)	Units (Max. unless noted)
Vout Error		± 0.02	± 0.1		\%
Line Regulation	$\left(\mathrm{V}_{\text {OUT }}+3 \mathrm{~V}\right) \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	± 0.0001	± 0.0005		\%/V
Load Regulation (Note 4)	$\begin{aligned} & 0 \mathrm{~mA} \leq I_{\text {SOURCE }} \leq 10 \mathrm{~mA} \\ & -10 \mathrm{~mA} \leq I_{\text {SINK }} \leq 0 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \pm 0.0003 \\ \pm 0.003 \end{gathered}$	$\begin{aligned} & \pm 0.001 \\ & \pm 0.008 \end{aligned}$		\%/mA \%/mA
Thermal Regulation	$\mathrm{T}=20 \mathrm{mS}$ (Note 5)	± 0.005	± 0.01		\%/100 mW
Quiescent Current		250	350		$\mu \mathrm{A}$
Change of Quiescent Current vs. $\mathrm{V}_{\text {IN }}$	$\left(\mathrm{V}_{\text {OUT }}+3 \mathrm{~V}\right) \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	3	5		$\mu \mathrm{A} / \mathrm{V}$
Temperature Coefficient of $\mathrm{V}_{\text {OUT }}$ (see graph): LM368Y (Note 6) LM368	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 11 \\ & \pm 15 \end{aligned}$	± 20	± 30	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0$	30	70	100	mA
Noise: $10.0 \mathrm{~V}: 0.1-10 \mathrm{~Hz}$ $100 \mathrm{~Hz}-10 \mathrm{kHz}$ $6.2 \mathrm{~V}: 0.1-10 \mathrm{~Hz}$ $100 \mathrm{~Hz}-10 \mathrm{kHz}$ $5.0 \mathrm{~V}: 0.1-10 \mathrm{~Hz}$ $100 \mathrm{~Hz}-10 \mathrm{kHz}$		$\begin{gathered} 30 \\ 1100 \\ 20 \\ 700 \\ 16 \\ 575 \\ \hline \end{gathered}$			
	$\mathrm{OV} \leq \mathrm{V}_{\text {PIN5 }} \leq \mathrm{V}_{\text {OUT }}$	$\begin{gathered} 4.5-17.0 \\ 4.4-7.0 \end{gathered}$		$\begin{gathered} 6.0-15.5 \\ 4.5-6.0 \end{gathered}$	V min. V min.

Note 1: Unless otherwise noted, these specifications apply: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=15 \mathrm{~V}, \mathrm{l}_{\mathrm{LOAD}}=0,0 \leq \mathrm{C}_{\mathrm{L}} \leq 200 \mathrm{pF}$, Circuit is operating in Series Mode. Or, circuit is operating in Shunt Mode, $\mathrm{V}_{I N}=+15 \mathrm{~V}$ or $\mathrm{V}_{I N}=\mathrm{V}_{\text {OUT }}, T A=+25^{\circ} \mathrm{C}$, $\mathrm{I}_{\mathrm{LOAD}}=-1.0 \mathrm{~mA}, 0 \leq \mathrm{C}_{\mathrm{L}} \leq 200 \mathrm{pF}$.
Note 2: Tested Limits are guaranteed and 100% tested in production.
Note 3: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 4: The LM368 has a Class B output, and will exhibit transients at the crossover point. This point occurs when the device is asked to sink approximately $120 \mu \mathrm{~A}$. In some applications it may be advantageous to preload the output to either V_{IN} or Ground, to avoid this crossover point.
Note 5: Thermal Regulation is defined as the change in the output Voltage at a time T after a step change in power dissipation of 100 mW .
Note 6: Temperature Coefficient of VOUT is defined as the worst case delta-V OUT measured at Specified Temperatures divided by the total span of the Specified Temperature Range (See graphs). There is no guarantee that the Specified Temperatures are exactly at the minimum or maximum deviation.
Note 7: In metal can (H), $\theta_{\mathrm{J}-\mathrm{C}}$ is $75^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{\mathrm{J}-\mathrm{A}}$ is $150^{\circ} \mathrm{C} / \mathrm{W}$.
Note 8: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its Rated Operating Conditions (see Note 1 and Conditions).

Typical Performance Characteristics (Note 1)

Output Impedance vs. Frequency (Sourcing Current)

Dropout Voltage vs. Output Current Output Change vs. (Series Mode Sourcing Current)

Ripple Rejection vs. Frequency

Output Current

Output Impedance vs. Frequency (Sinking Current)

Typical Temperature Coefficient Calculations:
LM368-10 (see Curve A)
TL/H/5522-4

$$
\mathrm{T} . \mathrm{C} .=7.7 \mathrm{mV} /\left(70^{\circ} \times 10 \mathrm{~V}\right)
$$

$$
=11 \times 10 \mathrm{E}-6=11 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
$$

Output Noise vs. Frequency

(1) LM368 alone.
(2) with $0.01 \mu f$ Mylar, Trim to Gnd.
(3) with 10Ω in series with $10 \mu \mathrm{f}, \mathrm{V}_{\text {OUT }}$ to Gnd.
(4) with Both.

Typical Applications

Wide Range Trimmable Regulator

TL/H/5522-7

TL/H/5522-9

TL/H/5522-11

Narrow Range Trimmable Regulator ($\pm \mathbf{1 \%} \mathbf{~ m i n}$.)

TL/H/5522-8

Improved Noise Performance

TL/H/5522-10
$\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$ References

TL/H/5522-12
$R=$ Thin Film Resistor Network,
$\pm 0.05 \%$ Matching and 5 ppm Tracking
(Beckman 694-3-R-10K-A),
(Caddock T-914-10K-100-05)
or similar.

Typical Applications (Continued)

Multiple Output Voltages

R $=$ Thin Film Resistor Network 0.05\% Matching and 5ppm Tracking (Beckman 694-3-R-10K-A), (Caddock T-914-10K-100-05) or similar.

TL/H/5522-15

Typical Applications (Continued)

TL/H/5522-18

Simplified Schematic Diagram

TL/H/5522-6
${ }^{\bullet}$ Reg. U.S. Pat. Off.

LM4040

Precision Micropower Shunt Voltage Reference

General Description

Ideal for space critical applications, the LM4040 precision voltage reference is available in the sub-miniature (3 mmx 1.3 mm) SOT-23 surface-mount package. The LM4040's advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4040 easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: $2.500 \mathrm{~V}, 4.096 \mathrm{~V}, 5.000 \mathrm{~V}, 8.192 \mathrm{~V}$, and 10.000 V . The minimum operating current increases from $60 \mu \mathrm{~A}$ for the LM4040-2.5 to $100 \mu \mathrm{~A}$ for the LM4040-10.0. All versions have a maximum operating current of 15 mA .
The LM4040 utilizes fuse and zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than $\pm 0.1 \%$ (A grade) at $25^{\circ} \mathrm{C}$. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.
Also available is the LM4041 with two reverse breakdown voltage versions: adjustable and 1.2 V . Please see the LM4041 data sheet.

Features

- Small packages: SOT-23, TO-92, and SO-8
- No output capacitor required
- Tolerates capacitive loads

■ Fixed reverse breakdown voltages of $2.500 \mathrm{~V}, 4.096 \mathrm{~V}$, $5.000 \mathrm{~V}, 8.192 \mathrm{~V}$, and 10.000 V
■ Contact National Semiconductor Analog Marketing for parts with extended temperature range

Key Specifications (LM4040-2.5)

■ Output voltage tolerance (A grade, $25^{\circ} \mathrm{C}$) $\pm 0.1 \%$ (max)
■ Low output noise (10 Hz to 10 kHz) $\quad 35 \mu \mathrm{~V}_{\text {rms }}$ (typ)
■ Wide operating current range $60 \mu \mathrm{~A}$ to 15 mA

- Industrial temperature range $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

■ Low temperature coefficient $\quad 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (max)

- Contact National Semiconductor Analog Marketing for parts with lower temperature coefficient

Applications

- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Product Testing
- Automotive
- Precision Audio Components

Connection Diagrams

TL/H/11323-1
*This pin must be left floating or connected to pin 3.
Top View
See NS Package Number M03B (JEDEC Registration TO-236AB)

TL/H/11323-2
Top View
See NS Package Number M08A

Bottom View
See NS Package Number Z03A

Ordering Information

Reverse Breakdown Voltage Tolerance at $25^{\circ} \mathrm{C}$ and Average Reverse Breakdown Voltage Temperature Coefficient	Package		
	M3 (SOT-23)	Z (TO-92)	M (SO-8)
$\pm 0.1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (A grade)	LM4040AIM3-2.5, LM4040AIM3-4.1, LM4040AIM3-5.0, LM4040AIM3-8.2, LM4040AIM3-10.0 See NS Package Number M03B	LM4040AIZ-2.5, LM4040AIZ-4.1, LM4040AIZ-5.0, LM4040AIZ-8.2, LM4040AIZ-10.0 See NS Package Number Z03A	LM4040AIM-2.5, LM4040AIM-4.1, LM4040AIM-5.0, LM4040AIM-8.2, LM4040AIM-10.0 See NS Package Number M08A
$\pm 0.2 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (B grade)	LM4040BIM3-2.5, LM4040BIM3-4.1, LM4040BIM3-5.0, LM4040BIM3-8.2, LM4040BIM3-10.0 See NS Package Number M03B	LM4040BIZ-2.5, LM4040BIZ-4.1, LM4040BIZ-5.0, LM4040BIZ-8.2, LM4040BIZ-10.0 See NS Package Number Z03A	LM4040BIM-2.5, LM4040BIM-4.1, LM4040BIM-5.0, LM4040BIM-8.2, LM4040BIM-10.0 See NS Package Number M08A
$\pm 0.5 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (C grade)	LM4040CIM3-2.5, LM4040CIM3-4.1, LM4040CIM3-5.0, LM4040CIM3-8.2, LM4040CIM3-10.0 See NS Package Number M03B	LM4040CIZ-2.5, LM4040CIZ-4.1, LM4040CIZ-5.0, LM4040CIZ-8.2, LM4040CIZ-10.0 See NS Package Number Z03A	LM4040CIM-2.5, LM4040CIM-4.1, LM4040CIM-5.0, LM4040CIM-8.2, LM4040CIM-10.0 See NS Package Number M08A
$\pm 1.0 \%, 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (D grade)	LM4040DIM3-2.5, LM4040DIM3-4.1, LM4040DIM3-5.0, LM4040DIM3-8.2, LM4040DIM3-10.0 See NS Package Number Mозв	LM4040DIZ-2.5, LM4040DIZ-4.1, LM4040DIZ-5.0, LM4040DIZ-8.2, LM4040DIZ-10.0, See NS Package Number Z03A	LM4040DIM-2.5, LM4040DIM-4.1, LM4040DIM-5.0, LM4040DIM-8.2, LM4040DIM-10.0 See NS Package Number M08A
$\pm 2.0 \%, 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (E grade)	LM4040EIM3-2.5 See NS Package Number M03B	LM4040EIZ-2.5 See NS Package Number Z03A	

SOT-23 Package Marking Information

Only three fields of marking are possible on the SOT-23's small surface. This table gives the meaning of the three fields.

Part Marking	Field Definition
R2A	First Field:
R4A	$\mathrm{R}=$ Reference
R5A	Second Field:
R8A	$2=2.500 \mathrm{~V}$ Voltage Option
ROA	$4=4.096 \mathrm{~V}$ Voltage Option
R2B	$5=5.000 \mathrm{~V}$ Voltage Option
R4B	$8=8.192 \mathrm{~V}$ Voltage Option
R5B	$0=10.000 \mathrm{~V}$ Voltage Option Third Field:
R8B ROB	A-E = Initial Reverse Breakdown Voltage or Reference Voltage Tolerance
	$A= \pm 0.1 \%, B= \pm 0.2 \%, C=+0.5 \%, D= \pm 1.0 \%, E= \pm 2.0 \%$
R2C	
R4C	
R5C	
R8C	
ROC	
R2D	
R4D	.
R5D	
R8D	
ROD	
R2E	

$\begin{array}{lr}\text { Absolute Maximum Ratings (Note 1) } \\ \text { If Military/Aerospace specified devices are required, } \\ \text { please contact the National Semiconductor Sales } \\ \text { Office/Distributors for availability and specifications. } \\ \text { Reverse Current } & 20 \mathrm{~mA} \\ \text { Forward Current } & 10 \mathrm{~mA} \\ \text { Power Dissipation (} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {) (Note 2) } & \\ \text { M Package } & 540 \mathrm{~mW} \\ \text { M3 Package } & 306 \mathrm{~mW} \\ \text { Z Package } & 550 \mathrm{~mW} \\ \text { Storage Temperature } & \\ \text { Lead Temperature } & \\ \text { M and M3 Packages } & \\ \quad \text { Vapor phase (} 60 \text { seconds) } & +25^{\circ} \mathrm{C} \text { to } \\ \text { Infrared (15 seconds) } & +150^{\circ} \mathrm{C} \\ \text { Z Package } & \\ \text { Soldering (10 seconds) } & +220^{\circ} \mathrm{C} \\ & \\ \end{array}$

LM4040-2.5

Electrical Characteristics

Boldface limits apply for $T_{A}=T_{J}=T_{M I N}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. The grades A and B designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1 \%$ and $\pm 0.2 \%$, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040AIM LM4040AIM3 LM4040AIZ Limits (Note 5)	LM4040BIM LM4040BIM3 LM4040BIZ Limits (Note 5)	Units (Limit)
V_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	2.500			V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		$\begin{aligned} & \pm 2.5 \\ & \pm 19 \end{aligned}$	$\begin{aligned} & \pm 5.0 \\ & \pm \mathbf{2 1} \end{aligned}$	$m V(\max)$ $m V$ (max)
$\mathrm{I}_{\text {RMIN }}$	Minimum Operating Current		45	$\begin{aligned} & 60 \\ & 65 \end{aligned}$	$\begin{aligned} & 60 \\ & 65 \end{aligned}$	$\begin{gathered} \mu A \\ \mu A(\max) \\ \mu A(\max) \end{gathered}$
$\Delta V_{R} / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=100 \mu A \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 15 \\ & \pm 15 \end{aligned}$	± 100	± 100	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\text { max }) \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
$\Delta V_{R} / \Delta l_{R}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\mathrm{RMIN}} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.3	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{gathered} m V \\ m V(\max) \\ m V(\max) \end{gathered}$
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	2.5	$\begin{aligned} & 6.0 \\ & \mathbf{8 . 0} \end{aligned}$	$\begin{aligned} & 6.0 \\ & \mathbf{8 . 0} \end{aligned}$	```mV mV (max) mV (max)```
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \\ & I_{A C}=0.1 I_{\mathrm{R}} \end{aligned}$	0.3	0.8	0.8	$\begin{gathered} \Omega \\ \Omega(\max) \\ \hline \end{gathered}$
${ }^{\text {en }}$	Wideband Noise	$\begin{aligned} & I_{R}=100 \mu A \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	35			$\mu \mathrm{V}_{\text {rms }}$
$\Delta \mathrm{V}_{\mathrm{R}}$	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & t=1000 \mathrm{hrs} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \end{aligned}$	120			ppm

Electrical Characteristics (Continued)
Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5 \%, \pm 1.0 \%$ and $\pm 2.0 \%$, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040CIM LM4040CIM3 LM4040CIZ Limits (Note 5)	LM4040DIM LM4040DIM3 LM4040DIZ Limits (Note 5)	LM4040EIM3 LM4040EIZ Limits (Note 5)	Units (Limit)
V_{R}	Reverse Breakdown Voltage	$I_{R}=100 \mu \mathrm{~A}$	2.500				V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$.		$\begin{array}{r} \pm 12 \\ \pm \mathbf{2 9} \end{array}$	$\begin{array}{r} \pm 25 \\ \pm 49 \end{array}$	$\begin{aligned} & \pm 50 \\ & \pm 74 \end{aligned}$	$\begin{aligned} & \operatorname{mV}(\max) \\ & m V(\max) \end{aligned}$
$\mathrm{I}_{\text {RMIN }}$	Minimum Operating Current		45	$\begin{aligned} & 60 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\mu \mathrm{A}$ $\mu A(\max)$ $\mu \mathrm{A}$ (max)
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{T}$	Average Reverse Breakdown Voltage Temperature Coefficient	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 15 \\ & \pm 15 \\ & \hline \end{aligned}$	± 100	± 150	± 150	$\begin{array}{\|c\|} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{max}) \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{array}$
$\Delta V_{R} / \Delta l_{R}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.4	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	mV $m V(\max)$ mV (max)
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	2.5	$\begin{aligned} & 6.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \\ \mathrm{mV}(\max) \\ \hline \end{gathered}$
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & I_{\mathrm{R}}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz} \\ & I_{A C}=0.1 \mathrm{I}_{\mathrm{R}} \end{aligned}$	0.3	0.9	1.1	1.1	$\begin{gathered} \Omega \\ \Omega(\max) \\ \hline \end{gathered}$
${ }^{\text {en }}$	Wideband Noise	$\begin{aligned} & l_{R}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	35				$\mu \mathrm{V}_{\text {rms }}$
ΔV_{R}	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & \mathrm{t}=1000 \mathrm{hrs} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \end{aligned}$	120				ppm

LM4040-4.1

Electrical Characteristics

Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} C$. The grades A and B designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1 \%$ and $\pm 0.2 \%$, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040AIM LM4040AIM3 LM4040AIZ Limits (Note 5)	LM4040BIM LM4040BIM3 LM4040BIZ Limits (Note 5)	Units (Limit)
V_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	4.096			V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		$\begin{aligned} & \pm 4.1 \\ & \pm \mathbf{3 1} \end{aligned}$	$\begin{aligned} & \pm 8.2 \\ & \pm 35 \end{aligned}$	mV (max) mV (max)
$\mathrm{I}_{\text {RMIN }}$	Minimum Operating Current		50	$\begin{aligned} & 68 \\ & 73 \end{aligned}$	$\begin{aligned} & 68 \\ & 73 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ (max) $\mu \mathrm{A}$ (max)
$\Delta V_{R} / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 30 \\ & \pm 20 \\ & \pm 20 \\ & \hline \end{aligned}$	± 100	± 100	$\begin{array}{\|c\|} \hline \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\max) \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{array}$
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{l}_{\mathrm{R}}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\mathrm{RMIN}} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.5	$\begin{aligned} & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.2 \end{aligned}$	$\begin{gathered} m V \\ m V(\max) \\ m V(\max) \end{gathered}$
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	3.0	$\begin{gathered} 7.0 \\ 10.0 \end{gathered}$	$\begin{gathered} 7.0 \\ 10.0 \end{gathered}$	mV $m V(\max)$ mV (max)
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \\ & \mathrm{I}_{\mathrm{AC}}=0.1 \mathrm{I}_{\mathrm{R}} \\ & \hline \end{aligned}$	0.5	1.0	1.0	$\begin{gathered} \Omega \\ \Omega(\max) \\ \hline \end{gathered}$
e_{N}	Wideband Noise	$\begin{aligned} & l_{R}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	80			$\mu \mathrm{V}_{\text {rms }}$
ΔV_{R}	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & t=1000 \mathrm{hrs} \\ & T=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\ & \hline \end{aligned}$	120			ppm

LM4040-4.1 (Continued)
Electrical Characteristics (Continued)
Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. The grades C and D designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5 \%$ and $\pm 1.0 \%$, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040CIM LM4040CIM3 LM4040CIZ Limits (Note 5)	LM4040DIM LM4040DIM3 LM4040DIZ Limits (Note 5)	Units (Limit)
$V_{\text {R }}$	Reverse Breakdown Voltage	$I_{R}=100 \mu \mathrm{~A}$	4.096			V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		$\begin{aligned} & \pm 20 \\ & \pm 47 \end{aligned}$	$\begin{aligned} & \pm 41 \\ & \pm 81 \end{aligned}$	$\begin{aligned} & \mathrm{mV}(\max) \\ & \mathrm{mV}(\max) \end{aligned}$
IRMIN	Minimum Operating Current		50	$\begin{aligned} & 68 \\ & 73 \end{aligned}$	$\begin{aligned} & 73 \\ & 78 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ (max) $\mu \mathrm{A}$ (max)
$\Delta V_{R} / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 30 \\ & \pm 20 \\ & \pm 20 \\ & \hline \end{aligned}$	± 100	± 150	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{max}) \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
$\Delta V_{R} / \Delta I_{R}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\mathrm{RMIN}} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.5	$\begin{aligned} & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	mV $m V(\max)$ $m V(\max)$
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	3.0	$\begin{gathered} 7.0 \\ 10.0 \end{gathered}$	$\begin{gathered} 9.0 \\ 13.0 \end{gathered}$	mV mV (max) $m V$ (max)
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \\ & \mathrm{I}_{\mathrm{AC}}=0.1 \mathrm{I}_{\mathrm{R}} \\ & \hline \end{aligned}$	0.5	1.0	1.3	$\begin{gathered} \Omega \\ \Omega(\max) \\ \hline \end{gathered}$
${ }^{\text {e }}$	Wideband Noise	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	80			$\mu \mathrm{V}_{\text {rms }}$
$\Delta \mathrm{V}_{\mathrm{R}}$	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & t=1000 \mathrm{hrs} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \end{aligned}$	120			ppm

LM4040-5.0

Electrical Characteristics

Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. The grades A and B designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1 \%$ and $\pm 0.2 \%$, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040AIM LRA4040A1R3 LM4040AIZ Limits (Note 5)	LM4040BIM LR44040BIN3 LM4040BIZ Limits (Note 5)	Units (Limit)
V_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	5.000			V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		$\begin{aligned} & \pm 5.0 \\ & \pm \mathbf{3 8} \\ & \hline \end{aligned}$	$\begin{gathered} \pm 10 \\ \pm \mathbf{4 3} \end{gathered}$	$m V(\max)$ $m V(\max)$
$I_{\text {RMIN }}$	Minimum Operating Current		54	$\begin{aligned} & 74 \\ & \mathbf{8 0} \end{aligned}$	$\begin{aligned} & 74 \\ & \mathbf{8 0} \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\max) \\ \mu \mathrm{A}(\max) \end{gathered}$
$\Delta V_{R} / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 30 \\ & \pm 20 \\ & \pm 20 \end{aligned}$	± 100	± 100	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{max}) \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
$\Delta V_{R} / \Delta l_{R}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.5	$\begin{aligned} & 1.0 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.4 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \\ \mathrm{mV}(\max) \end{gathered}$
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	3.5	$\begin{gathered} 8.0 \\ 12.0 \end{gathered}$	$\begin{gathered} 8.0 \\ 12.0 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \\ \mathrm{mV}(\max) \end{gathered}$
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA}, f=120 \mathrm{~Hz}, \\ & I_{A C}=0.1 I_{R} \end{aligned}$	0.5	1.1	1.1	$\begin{gathered} \Omega \\ \Omega(\max) \\ \hline \end{gathered}$
e_{N}	Wideband Noise	$\begin{aligned} & l_{\mathrm{R}}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	80			$\mu \mathrm{V}_{\text {rms }}$
ΔV_{R}	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & t=1000 \mathrm{hrs} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \end{aligned}$	40			ppm

LM4040-5.0 (Continued)
Electrical Characteristics (Continued)
Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. The grades C and D designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5 \%$ and $\pm 1.0 \%$, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040CIM LM4040CIM3 LM4040CIZ Limits (Note 5)	LM4040DIM LM4040DIM3 LM4040DIZ Limits (Note 5)	Units (Limit)
$V_{\text {R }}$	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	5.000			V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		$\begin{aligned} & \pm 25 \\ & \pm \mathbf{5 8} \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 99 \end{aligned}$	mV (max) mV (max)
$\mathrm{I}_{\text {RMIN }}$	Minimum Operating Current		54	74 80	$\begin{aligned} & 79 \\ & \mathbf{8 5} \end{aligned}$	$\begin{gathered} \mu A \\ \mu A(\max) \\ \mu A(\max) \end{gathered}$
$\Delta V_{R} / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=100 \mu A \end{aligned}$	$\begin{aligned} & \pm 30 \\ & \pm 20 \\ & \pm 20 \end{aligned}$	± 100	± 150	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{max}) \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{l}_{\mathrm{R}}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.5	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$\begin{array}{r} 1.3 \\ 1.8 \\ \hline \end{array}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \\ \mathrm{mV}(\max) \end{gathered}$
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	3.5	$\begin{gathered} 8.0 \\ 12.0 \end{gathered}$	$\begin{gathered} 10.0 \\ 15.0 \end{gathered}$	```mV mV (max) mV (max)```
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \\ & I_{A C}=0.1 I_{R} \end{aligned}$	0.5	1.1	1.5	$\begin{gathered} \Omega \\ \Omega(\max) \end{gathered}$
e_{N}	Wideband Noise	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	80			$\mu \mathrm{V}_{\text {rms }}$
$\Delta \mathrm{V}_{\mathrm{R}}$	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & \mathrm{t}=1000 \mathrm{hrs} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\ & \hline \end{aligned}$	120		,	ppm

LM4040-8.2

Electrical Characteristics

Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. The grades A and B designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1 \%$ and $\pm 0.2 \%$, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040AIM LM4040AINT3 LM4040AIZ Limits (Note 5)	LM4040BIM LM4040BIN3 LM4040BIZ Limits (Note 5)	Units (Limit)
V_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}$	8.192			V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}$		$\begin{array}{r} \pm 8.2 \\ \pm \mathbf{6 1} \\ \hline \end{array}$	$\begin{array}{r} \pm 16 \\ \pm \mathbf{7 0} \\ \hline \end{array}$	$m V$ (max) mV (max)
$I_{\text {RMIN }}$	Minimum Operating Current		67	$\begin{aligned} & 91 \\ & 95 \end{aligned}$	$\begin{aligned} & 91 \\ & 95 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\max) \\ \mu \mathrm{A}(\max) \end{gathered}$
$\Delta V_{R} / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=150 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 40 \\ & \pm 20 \\ & \pm 20 \end{aligned}$	± 100	± 100	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{max}) \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{I}_{\mathrm{R}}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.6	$\begin{aligned} & 1.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 2.5 \end{aligned}$	```mV mV (max) mV (max)```
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	7.0	$\begin{gathered} 10.0 \\ 18.0 \end{gathered}$	$\begin{gathered} 10.0 \\ 18.0 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \\ \mathrm{mV}(\max) \end{gathered}$
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA}, f=120 \mathrm{~Hz}, \\ & I_{A C}=0.1 I_{\mathrm{R}} \end{aligned}$	0.6	1.5	1.5	$\begin{gathered} \Omega \\ \Omega(\max) \end{gathered}$
${ }^{\text {en }}$	Wideband Noise	$\begin{aligned} & l_{R}=150 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	130			$\mu \mathrm{V}_{\text {rms }}$
ΔV_{R}	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & t=1000 \mathrm{hrs} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A} \end{aligned}$	120			ppm

LM4040-8.2 (Continued)

Electrical Characteristics (Continued)
Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. The grades C and D designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5 \%$ and $\pm 1.0 \%$, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4040CIM LM4040CIM3 LM4040CIZ Limits (Note 5)	LM4040DIM LM4040DIM3 LM4040DIZ Limits (Note 5)	Units (Limit)
V_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}$	8.192			V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}$		$\begin{gathered} \pm 41 \\ \pm 94 \\ \hline \end{gathered}$	$\begin{gathered} \pm 82 \\ \pm 162 \end{gathered}$	$m V$ (max) mV (max)
$\mathrm{I}_{\text {RMIN }}$	Minimum Operating Current		67	$\begin{aligned} & 91 \\ & 95 \end{aligned}$	$\begin{gathered} 96 \\ 100 \end{gathered}$	$\begin{gathered} \mu A \\ \mu A(\max) \\ \mu A(\max) \end{gathered}$
$\Delta V_{R} / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=150 \mu A \end{aligned}$	$\begin{aligned} & \pm 40 \\ & \pm 20 \\ & \pm 20 \end{aligned}$	± 100	± 150	```ppm/ }\mp@subsup{}{}{\circ}\textrm{C ppm/ }\mp@subsup{}{}{\circ}\textrm{C}(\mathrm{ max) ppm/ }\mp@subsup{}{}{\circ}\textrm{C```
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{I}_{\mathrm{R}}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.6	$\begin{aligned} & 1.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 3.0 \end{aligned}$	```mV mV (max) mV (max)```
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	7.0	$\begin{gathered} 10.0 \\ 18.0 \end{gathered}$	$\begin{gathered} 15.0 \\ 24.0 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \\ \mathrm{mV}(\max) \end{gathered}$
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA}, f=120 \mathrm{~Hz}, \\ & I_{A C}=0.1 I_{R} \end{aligned}$	0.6	1.5	1.9	$\begin{gathered} \Omega \\ \Omega(\max) \\ \hline \end{gathered}$
e_{N}	Wideband Noise	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	130			$\mu V_{\text {rms }}$
ΔV_{R}	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & \mathrm{t}=1000 \mathrm{hrs} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{l}_{\mathrm{R}}=150 \mu \mathrm{~A} \end{aligned}$	120		-	ppm

LM4040-10.0						
Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. The grades A and B designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1 \%$ and $\pm 0.2 \%$, respectively.						
Symbol	Parameter	Conditions	Typical (Note 4)	LM4040AIM LM4040AIM3 LM4040AIZ Limits (Note 5)	LM4040BIM LM4040BIM3 LM4040BIZ Limits (Note 5)	Units (Limit)
V_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}$	10.00			V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}$		$\begin{aligned} & \pm 10 \\ & \pm 75 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm \mathbf{8 5} \end{aligned}$	mV (max) $m V$ (max)
IRMIN	Minimum Operating Current		75	$\begin{aligned} & 100 \\ & 103 \end{aligned}$	$\begin{aligned} & 100 \\ & 103 \end{aligned}$	$\begin{gathered} \mu A \\ \mu A(\max) \\ \mu A(\max) \\ \hline \end{gathered}$
$\Delta V_{R} / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=150 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 40 \\ & \pm 20 \\ & \pm 20 \end{aligned}$	± 100	± 100	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\text { max }) \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
$\Delta V_{R} / \Delta l_{R}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.8	$\begin{array}{r} 1.5 \\ 3.5 \\ \hline \end{array}$	$\begin{array}{r} 1.6 \\ \mathbf{3 . 5} \\ \hline \end{array}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \\ \mathrm{mV}(\max) \\ \hline \end{gathered}$
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	8.0	$\begin{array}{r} 12.0 \\ 23.0 \end{array}$	$\begin{gathered} 12.0 \\ 23.0 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \\ \mathrm{mV}(\max) \end{gathered}$
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA}, f=120 \mathrm{~Hz}, \\ & I_{A C}=0.1 I_{\mathrm{R}} \end{aligned}$	0.7	1.7	1.7	$\begin{gathered} \Omega \\ \Omega(\max) \end{gathered}$
${ }^{\text {N }}$	Wideband Noise	$\begin{aligned} & I_{R}=150 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	180			$\mu \mathrm{V}_{\text {rms }}$
$\Delta V_{\text {R }}$	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & t=1000 \mathrm{hrs} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A} \end{aligned}$	120			ppm

Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. The grades A and B designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1 \%$ and $\pm 0.2 \%$, respectively.

LM4040-10.0 (Continued)

Electrical Characteristics (Continued)
Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. The grades C and D designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5 \%$ and $\pm 1.0 \%$, respectively.

Symbol	Parameter	Conditions .-	Typical (Note 4)	LM4040CIM LM4040CIM3 LM4040CIZ Limits (Note 5)	LM4040DIM LM4040DIM3 LM4040DIZ Limits (Note 5)	Units (Limit)
V_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}$	10.00			V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}$:	$\begin{gathered} \pm 50 \\ \pm \mathbf{1 1 5} \end{gathered}$	$\begin{gathered} \pm 100 \\ \pm 198 \end{gathered}$	mV (max) mV (max)
$\mathrm{I}_{\text {RMIN }}$	Minimum Operating Current		75	$\begin{gathered} 100 \\ 103 \end{gathered}$	$\begin{aligned} & 110 \\ & 113 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ (max) $\mu \mathrm{A}$ (max)
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{T}$	Average Reverse Breakdown Voltage Temperature Coefficient	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=150 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 40 \\ & \pm 20 \\ & \pm 20 \end{aligned}$	± 100	- ± 150	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{max}) \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{l}_{\mathrm{R}}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.8	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} \quad \mathrm{mV} \\ m V(\max) \\ \mathrm{mV}(\max) \end{gathered}$
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	8.0	$\begin{gathered} 12.0 \\ 23.0 \end{gathered}$	$\begin{gathered} 18.0 \\ 29.0 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \\ \mathrm{mV}(\max) \end{gathered}$
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA}, f=120 \mathrm{~Hz}, \\ & I_{A C}=0.1 I_{R} \end{aligned}$	0.7	1.7	2.3	$\begin{gathered} \Omega \\ \Omega(\max) \end{gathered}$
e_{N}	Wideband Noise	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	180		" .	$\mu \mathrm{V}_{\text {rms }}$
ΔV_{R}	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & t=1000 \mathrm{hrs} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A} \end{aligned}$	120		'	ppm

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J m a x}$ (maximum junction temperature), $\theta_{J A}$ (junction to ambient thermal resistance), and T_{A} (ambient temperature). The maximum allowable power dissipation at any temperature is $P D_{\max }=\left(T_{J m a x}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040, $\mathrm{T}_{\mathrm{Jmax}}=125^{\circ} \mathrm{C}$, and the typical thermal resistance (θ_{JA}), when board mounted, is $185^{\circ} \mathrm{C} / \mathrm{W}$ for the M package, $326^{\circ} \mathrm{C} / \mathrm{W}$ for the SOT-23 package, and $180^{\circ} \mathrm{C} / \mathrm{W}$ with $0.4^{\prime \prime}$ lead length and $170^{\circ} \mathrm{C} / \mathrm{W}$ with $0.125^{\prime \prime}$ lead length for the TO-92 package.
Note 3: The human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.
Note 4: Typicals are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 5: Limits are 100% production tested at $25^{\circ} \mathrm{C}$. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL.
Note 6: The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm\left[\left(\Delta V_{R} / \Delta T\right)\left(65^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{R}}\right)\right] . \Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{T}$ is the V_{R} temperature coefficient, $65^{\circ} \mathrm{C}$ is the temperature range from $-40^{\circ} \mathrm{C}$ to the reference point of $25^{\circ} \mathrm{C}$, and V_{R} is the reverse breakdown voltage. The total over-temperature tolerance for the different grades is shown below:
A-grade: $\pm 0.75 \%= \pm 0.1 \% \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}$
B-grade: $\pm 0.85 \%= \pm 0.2 \% \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}$
C-grade: $\pm 1.15 \%= \pm 0.5 \% \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}$
D-grade: $\pm 1.98 \%= \pm 1.0 \% \pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}$
E-grade: $\pm 2.98 \%= \pm 2.0 \% \pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}$
Therefore, as an example, the A-grade LM4040-2.5 has an over-temperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \mathrm{~V} \times 0.75 \%= \pm 19 \mathrm{mV}$.

Typical Performance Characteristics

Start-Up Characteristics

TL/H/11323-5

TL/H/11323-7

TL/H/11323-8

TL/H/11323-9

Functional Block Diagram

TL/H/11323-14

Applications Information

The LM4040 is a precision micro-power curvature-corrected bandgap shunt voltage reference. For space critical applications, the LM4040 is available in the sub-miniature SOT-23 surface-mount package. The LM4040 has been designed for stable operation without the need of an external capacitor connected between the " + " pin and the " - " pin. If, however, a bypass capacitor is used, the LM4040 remains stable. Reducing design effort is the availability of several fixed reverse breakdown voltages: $2.500 \mathrm{~V}, 4.096 \mathrm{~V}, 5.000 \mathrm{~V}$, 8.192 V , and 10.000 V . The minimum operating current increases from $60 \mu \mathrm{~A}$ for the LM4040-2.5 to $100 \mu \mathrm{~A}$ for the LM4040-10.0. All versions have a maximum operating current of 15 mA .
LM4040s in the SOT-23 packages have a parasitic Schottky diode between pin $3(-)$ and pin 1 (Die attach interface contact). Therefore, pin 1 of the SOT-23 package must be left floating or connected to pin 3.
The 4.096 V version allows single +5 V 12 -bit ADCs or DACs to operate with an LSB equal to 1 mV . For 12-bit ADCs or DACs that operate on supplies of 10 V or greater, the 8.192 V version gives 2 mV per LSB.
In a conventional shunt regulator application (Figure 1), an external series resistor (R_{S}) is connected between the supply voltage and the LM4040. Rs determines the current that flows through the load (L_{L}) and the LM4040 (I_{Q}). Since load current and supply voltage may vary, R R_{S} should be small
enough to supply at least the minimum acceptable I_{Q} to the LM4040 even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and I_{L} is at its minimum, R_{S} should be large enough so that the current flowing through the LM4040 is less than 15 mA .
R_{S} is determined by the supply voltage, $\left(\mathrm{V}_{\mathrm{S}}\right)$, the load and operating current, (I_{L} and I_{Q}), and the LM4040's rovorso breakdown voltage, V_{R}.

$$
R_{S}=\frac{V_{S}-V_{R}}{I_{L}+I_{Q}}
$$

Typical Applications

TL/H/11323-15
FIGURE 1. Shunt Regulator

Typical Applications (Continued)

FIGURE 2. LM4040-4.1's Nominal 4.096 breakdown voltage gives ADC12451 1 mV/LSB

TL/H/11323-17
FIGURE 3. Bounded amplifier reduces saturation-induced delays and can prevent succeeding stage damage. Nominal clamping voltage is $\pm 11.5 \mathrm{~V}$ (LM4040's reverse breakdown voltage +2 diode V_{F}).

Typical Applications (Continued)

FIGURE 4. Protecting Op Amp input. The bounding voltage is $\pm 4 \mathrm{~V}$ with the LM4040-2.5
(LM4040's reverse breakdown voltage +3 diode V_{F}).

TL/H/11323-19
FIGURE 5. Precision $\pm 4.096 \mathrm{~V}$ Reference

Typical Applications (Continued)

FIGURE 6. Programmable Current Source

FIGURE 7. Precision $1 \mu \mathrm{~A}$ to 1 mA Current Sources

LM4041
 Precision Micropower Shunt Voltage Reíerence

General Description

Ideal for space critical applications，the LM4041 precision voltage reference is available in the sub－miniature（ $3 \mathrm{~mm} x$ 1.3 mm ）SOT－23 surface－mount package．The LM4041＇s advanced design eliminates the need for an external stabi－ lizing capacitor while ensuring stability with any capacitive load，thus making the LM4041 easy to use．Further reducing design effort is the availability of a fixed（1．225V）and adjust－ able reverse breakdown voltage．The minimum operating current is $60 \mu \mathrm{~A}$ for the LM4041－1．2 and the LM4041－ADJ． Both versions have a maximum operating current of 12 mA ． The LM4041 utilizes fuse and zener－zap reverse breakdown or reference voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than $\pm 0.1 \%$ （A grade）at $25^{\circ} \mathrm{C}$ ．Bandgap reference temperature drift cur－ vature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents．

Features

■ Small packages：SOT－23，TO－92，and SO－8
－No output capacitor required
－Tolerates capacitive loads

■ Reverse breakdown voltage options of 1.225 V and adjustable
－Contact National Semiconductor Analog Marketing for parts with extended temperature range

Key Specifications（LM4041－1．2）

■ Output voltage tolerance（A grade， $25^{\circ} \mathrm{C}$ ）$\pm 0.1 \%$（max）
田 Low output noise（ 10 Hz to 10 kHz ） $20 \mu \mathrm{~V}_{\text {rms }}$（typ）
－Wide operating current range
－Industrial temperature range
$60 \mu \mathrm{~A}$ to 12 mA
－Low temperature coefficient
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Applications

－Portable，Battery－Powered Equipment
－Data Acquisition Systems
－Instrumentation
－Process Control
－Energy Management
．Product Testing
a Automotive
－Precision Audio Components

Connection Diagrams

SOT－23

TL／H／11392－1
＊This pin must be left floating or connected to pin 3.

Top View
See NS Package Number M03B
（JEDEC Registration TO－236AB）

SO－8

Top View
See NS Package Number M08A

Ordering Information

Reverse Breakdown Voltage Tolerance at $25^{\circ} \mathrm{C}$ and Average Reverse Breakdown Voltage Temperature Coefficient	Package		
	M3 (SOT-23)	Z (TO-92)	M (SO-8)
$\pm 0.1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (A grade)	LM4041AIM3-1.2 See NS Package Number M03B	LM4041AIZ-1.2 See NS Package Number Z03A	LM4041AIM-1.2 See NS Package Number M08A
$\pm 0.2 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (B grade)	LM4041BIM3-1.2 See NS Package Number M03B	LM4041BIZ-1.2 See NS Package Number Z03A	LM4041BIM-1.2 See NS Package Number M08A
$\pm 0.5 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (C grade)	LM4041CIM3-1.2 LM4041CIM3-ADJ See NS Package Number M03B	LM4041CIZ-1.2, LM4041CIZ-ADJ See NS Package Number Z03A	LM4041CIM-1.2, LM4041CIM-ADJ See NS Package Number M08A
$\pm 1.0 \%, 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (D grade)	LM4041DIM3-1.2 LM4041DIM3-ADJ See NS Package Number M03B	LM4041DIZ-1.2, LM4041DIZ-ADJ See NS Package Number Z03A	LM4041DIM-1.2, LM4041DIM-ADJ See NS Package Number M08A
$\pm 2.0 \%, 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max (E grade)	LM4041EIM3-1.2 See NS Package Number M03B	LM4041EIZ-1. 2 See NS Package Number Z03A	

SOT-23 Package Marking Information

Only three fields of marking are possible on the SOT-23's small surface. This table gives the meaning of the three fields.

Part Marking	Field Definition
R1A	First Field:
R1B	R = Reference
R1C	Second Field:
R1D	$1=1.225 \mathrm{~V}$ Voltage Option
R1E	A Adjustable
	Third Field:
RAC	A-E Initial Reverse Breakdown
RAD	$A= \pm 0.1 \%, B= \pm 0.2 \%, C= \pm 0.5 \%, D= \pm 1.0 \%, E= \pm 2.0 \%$

LM4041-1.2

Electrical Characteristics

Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. The grades A and B designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1 \%$ and $\pm 0.2 \%$, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4041AIM LM4041AIM3 LM4041AIZ Limits (Note 5)	LM4041BIM LM4041BIM3 LM4041BIZ Limits (Note 5)	Units (Limit)
V_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	1.225			V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		$\begin{array}{r} \pm 1.2 \\ \pm \mathbf{9 . 2} \end{array}$	$\begin{gathered} \pm 2.4 \\ \pm 10.4 \end{gathered}$	$m V(\max)$ mV (max)
$I_{\text {RMIN }}$	Minimum Operating Current		45	$\begin{aligned} & 60 \\ & 65 \end{aligned}$	$\begin{array}{r} 60 \\ 65 \end{array}$	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\max) \\ \mu \mathrm{A}(\max) \\ \hline \end{gathered}$
$\Delta V_{R} / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 15 \\ & \pm 15 \end{aligned}$	± 100	± 100	```ppm/*}\textrm{C ppm/ }\mp@subsup{}{}{\circ}\textrm{C}(\mathrm{ max) ppm/ }\mp@subsup{}{}{\circ}\textrm{C```
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{I}_{\mathrm{R}}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.7	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	mV $m V(\max)$ mV (max)
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 12 \mathrm{~mA}$	4.0	$\begin{aligned} & 6.0 \\ & \mathbf{8 . 0} \end{aligned}$	$\begin{aligned} & 6.0 \\ & \mathbf{8 . 0} \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \\ \mathrm{mV}(\max) \end{gathered}$
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \\ & I_{A C}=0.1 I_{\mathrm{R}} \end{aligned}$	0.5	1.5	1.5	$\begin{gathered} \Omega \\ \Omega(\max) \end{gathered}$
e_{N}	Wideband Noise	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	20			$\mu \mathrm{V}_{\text {rms }}$
$\Delta \mathrm{V}_{\mathrm{R}}$	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & t=1000 \mathrm{hrs} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \end{aligned}$	120			ppm

LM4041-1.2 (Continued)

Electrical Characteristics (Continued)
Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {miN }}$ to $\mathbf{T}_{\text {mAX }} ;$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of $\pm 0.5 \%, \pm 1.0 \%$ and $\pm 2.0 \%$, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	$\begin{gathered} \text { LM4041CIM } \\ \text { LM4041CIM3 } \\ \text { LM4041CIZ } \\ \text { Limits } \\ \text { (Note 5) } \end{gathered}$	LM4041DIM LM4041DIM3 LM4041DIZ Limits (Note 5)	LM4041EIM3 LM4041EIZ Limits (Note 5)	Units (Limit)
V_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	1.225				V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		$\begin{gathered} \pm 6 \\ \pm \mathbf{1 4} \end{gathered}$	$\begin{aligned} & \pm 12 \\ & \pm 24 \end{aligned}$	$\begin{aligned} & \pm 25 \\ & \pm \mathbf{3 6} \end{aligned}$	$\begin{aligned} & m V(\max) \\ & m V(\max) \end{aligned}$
IRMIN	Minimum Operating Current		45	$\begin{array}{r} 60 \\ 65 \\ \hline \end{array}$	$\begin{aligned} & 65 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \\ & \hline \end{aligned}$	$\begin{gathered} \mu A \\ \mu A(\max) \\ \mu A(\max) \end{gathered}$
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{T}$	Average Reverse Breakdown Voltage Temperature Coefficient	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 15 \\ & \pm 15 \\ & \hline \end{aligned}$	± 100	± 150	± 150	$\begin{array}{\|c\|} \hline \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\text { max }) \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{array}$
$\Delta V_{R} / \Delta l_{R}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.7	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{array}{r} 2.0 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	mV $m V(\max)$ $m \mathrm{~m}$ (max)
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 12 \mathrm{~mA}$	2.5	$\begin{aligned} & 6.0 \\ & \mathbf{8 . 0} \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	mV $m V(\max)$ mV (max)
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & I_{\mathrm{R}}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz} \\ & I_{A C}=0.1 I_{\mathrm{R}} \end{aligned}$	0.5	1.5	2.0	2.0	$\begin{gathered} \Omega \\ \Omega(\max) \\ \hline \end{gathered}$
e_{N}	Wideband Noise	$\begin{aligned} & \mathrm{IR}_{\mathrm{R}}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	20		, '.	.	$\mu V_{\text {rms }}$
ΔV_{R}	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & t=1000 \mathrm{hrs} \\ & T=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\ & \hline \end{aligned}$	120			\cdots	ppm

LM4041-ADJ (Adjustable)

Electrical Characteristics

Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified (SOT-23, see Note 7), $\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 12 \mathrm{~mA}, \mathrm{~V}_{\text {REF }} \leq \mathrm{V}_{\text {OUT }} \leq 10 \mathrm{~V}$. The grades C and D designates initial Reference Voltage Tolerances of $\pm 0.5 \%$ and $\pm 1 \%$, respectively for $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4041CIM LM4041CIM3 LM4041CIZ (Note 5)	LM4041DIM LM4041DIM3 LM4041DIZ (Note 5)	Units (Limit)
$V_{\text {REF }}$	Reference Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	1.233			V
	Reference Voltage Tolerance (Note 8)	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$,	$\begin{array}{r} \pm 6.2 \\ \pm 14 \\ \hline \end{array}$	$\begin{aligned} & \pm 12 \\ & \pm 24 \end{aligned}$	$\begin{aligned} & \mathrm{mV}(\max) \\ & \mathrm{mV}(\max) \end{aligned}$
$I_{\text {RMIN }}$	Minimum Operating Current		45	$\begin{array}{r} 60 \\ 65 \end{array}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{gathered} \mu A \\ \mu A(\max) \\ \mu A(\max) \end{gathered}$

LM4041-ADJ (Adjustable) (Continued)

Electrical Characteristics (Continued)

Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$ all other limits $\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified (SOT-23, see Note 7), $\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 12 \mathrm{~mA}, \mathrm{~V}_{\text {REF }} \leq \mathrm{V}_{\text {OUT }} \leq 10 \mathrm{~V}$. The grades C and D designates initial Reference Voltage Tolerances of $\pm 0.5 \%$ and $\pm 1 \%$, respectively for $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4041CIR LM4041CIM3 LM4041CIZ (Note 5)	LM4041DIM LM4041DIM3 LM4041DIZ (Note 5)	Units (Limit)
$\Delta V_{\text {REF }} / \Delta I_{R}$	Reference Voltage Change with Operating Current Change	$\begin{aligned} & \mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA} \\ & \text { SOT-23: } \mathrm{V}_{\text {OUT }} \geq 1.6 \mathrm{~V} \text { (Note 7) } \end{aligned}$	0.7	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} m V \\ m V(\max) \\ m V(\max) \end{gathered}$
		$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 12 \mathrm{~mA} \\ & \text { SOT-23: } \mathrm{V}_{\text {OUT }} \geq 1.6 \mathrm{~V} \text { (Note 7) } \end{aligned}$	2	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{array}{r} 6 \\ 8 \\ \hline \end{array}$	mV $m V(\max)$ $m V$ (max)
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{V}_{\mathrm{O}}$	Reference Voltage Change with Output Voltage Change	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	-1.3	$\begin{array}{r} -2.0 \\ -2.5 \end{array}$	$\begin{aligned} & -2.5 \\ & -3.0 \end{aligned}$	mV / V mV/V (max) mV/V (max)
$\mathrm{I}_{\text {FB }}$	Feedback Current		60	$\begin{aligned} & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	nA nA (max) $n A$ (max)
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{T}$	Average Reference Voltage Temperature Coefficient (Note 8)	$\begin{array}{ll} \text { V OUT }=5 \mathrm{~V}, & I_{\mathrm{R}}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=100 \mu \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$	± 100	± 150	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{max}) \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
$\mathrm{Z}_{\text {OUT }}$	Dynamic Output Impedance	$\begin{array}{\|ll\|} \hline I_{\mathrm{R}}=1 \mathrm{~mA}, f= & 120 \mathrm{~Hz}, \\ \mathrm{I}_{\mathrm{AC}}=0.1 I_{\mathrm{R}} & \\ & V_{\mathrm{OUT}}=V_{\mathrm{REF}} \\ & V_{\text {OUT }}=10 \mathrm{~V} \\ \hline \end{array}$	$\begin{gathered} 0.3 \\ 2 \\ \hline \end{gathered}$	'		$\begin{aligned} & \Omega \\ & \Omega \\ & \hline \end{aligned}$
e_{N}	Wideband Noise	$\begin{aligned} & I_{\mathrm{R}}=100 \mu \mathrm{~A} \quad \mathrm{~V}_{\mathrm{OUT}}=V_{\mathrm{REF}} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	20			$\mu V_{\text {rms }}$
$\Delta V_{\text {REF }}$	Reference Voltage Long Term Stability	$\begin{aligned} & \mathrm{t}=1000 \mathrm{hrs}, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \end{aligned}$	120			ppm

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J m a x}$ (maximum junction temperature), $\theta_{J A}$ (junction to ambient thermal resistance), and T_{A} (ambient temperature). The maximum allowable power dissipation at any temperature is $P D_{\max }=\left(T_{J m a x}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4041, $T_{J m a x}=125^{\circ} \mathrm{C}$, and the typical thermal resistance (θ_{JA}), when board mounted, is $185^{\circ} \mathrm{C} / \mathrm{W}$ for the M package, $326^{\circ} \mathrm{C} / \mathrm{W}$ for the SOT-23 package, and $180^{\circ} \mathrm{C} / \mathrm{W}$ with $0.4^{\prime \prime}$ lead length and $170^{\circ} \mathrm{C} / \mathrm{W}$ with $0.125^{\prime \prime}$ lead length for the TO-92 package.
Note 3: The human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.
Note 4: Typicals are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 5: Limits are 100% production tested at $25^{\circ} \mathrm{C}$. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL.
Note 6: The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm\left[\left(\Delta V_{R} / \Delta T\right)\left(65^{\circ} \mathrm{C}\right)\left(V_{R}\right)\right] . \Delta V_{R} / \Delta T$ is the V_{R} temperature coefficient, $65^{\circ} \mathrm{C}$ is the temperature range from $-40^{\circ} \mathrm{C}$ to the reference point of $25^{\circ} \mathrm{C}$, and V_{R} is the reverse breakdown voltage. The total over-temperature tolerance for the different grades is shown below:
A-grade: $\pm 0.75 \%= \pm 0.1 \% \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}$
B-grade: $\pm 0.85 \%= \pm 0.2 \% \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}$
C-grade: $\pm 1.15 \%= \pm 0.5 \% \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}$
D-grade: $\pm 1.98 \%= \pm 1.0 \% \pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}$
E-grade: $\pm 2.98 \%= \pm 2.0 \% \pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}$
Therefore, as an example, the A-grade LM4041-1.2 has an over-temperature Reverse Breakdown Voltage tolerance of $\pm 1.2 \mathrm{~V} \times 0.75 \%= \pm 9.2 \mathrm{mV}$.
Note 7. When $V_{\text {OUT }} \leq 1.6 \mathrm{~V}$, the LM4041-ADJ in the SOT-23 package must operate at reduced I_{R}. This is caused by the series resistance of the die attach between the die (-) output and the package (-) output pin. See the Output Saturation (SOT-23 only) curve in the Typical Performance Characteristics section.
Note 8. Reference voltage and temperature coefficient will change with output voltage. See Typical Performance Characteristics curves.

Typical Performance Characteristics

TL/H/11392-5

RESPONSE TIME ($\mu \mathrm{s}$)
TL/H/11392-7

Output Impedance vs Frequency

TL/H/11392-4

Reverse Characteristics and Minimum Operating Current

TL/H/11392-9

TL/H/11392-8

Typical Performance Characteristics（Continued）

TL／H／11392－11

Feedback Current vs Output Voltage and Temperature

TL／H／11392－12

Reference Voltage vs Temperature and Output Voltage

TL／H／11392－10

Output Saturation

（SOT－23 Only）

TL／H／11392－33

Output Impedance vs Frequency

TL／H／11392－14

Typical Performance Characteristics (Continued)

Functional Block Diagram

Applications Information

The LM4041 is a precision micro－power curvature－corrected bandgap shunt voltage reference．For space critical applica－ tions，the LM4041 is available in the sub－miniature SOT－23 surface－mount package．The LM4041 has been designed for stable operation without the need of an external capaci－ tor connected between the＂+ ＂pin and the＂- ＂pin．If， however，a bypass capacitor is used，the LM4041 remains stable．Design effort is further reduced with the choice of either a fixed 1.2 V or an adjustable reverse breakdown volt－ age．The minimum operating current is $60 \mu \mathrm{~A}$ for the LM4041－1．2 and the LM4041－ADJ．Both versions have a maximum operating current of 12 mA ．
LM4041s using the SOT－23 package have pin 1 connected as the（－）output through the package＇s die attach interface． Therefore，the LM4041－1．2＇s pin 1 must be left floating or connected to pin 3 and the LM4041－ADJ＇s pin 1 is the（ - ） output．
In a conventional shunt regulator application（Figure 1），an external series resistor（ R_{S} ）is connected between the sup－ ply voltage and the LM4041．Rs determines the current that flows through the load（ L_{L} ）and the LM4041（ I_{Q} ）．Since load current and supply voltage may vary，R_{S} should be small enough to supply at least the minimum acceptable I_{Q} to the LM4041 even when the supply voltage is at its minimum and the load current is at its maximum value．When the supply voltage is at its maximum and I_{L} is at its minimum，R_{S} should be large enough so that the current flowing through the LM4041 is less than 12 mA ．
R_{S} is determined by the supply voltage，$\left(V_{S}\right)$ ，the load and operating current，（ I_{L} and I_{Q} ），and the LM4041＇s reverse breakdown voltage， V_{R} ．

$$
R_{S}=\frac{V_{S}-V_{R}}{I_{L}+I_{Q}}
$$

The LM4041－ADJ＇s output voltage can be adjusted to any value in the range of 1.24 V through 10 V ．It is a function of the internal reference voltage（ $\mathrm{V}_{\text {REF }}$ ）and the ratio of the external feedback resistors as shown in Figure 2．The out－ put is found using the equation

$$
\begin{equation*}
\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{REF}}\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}+1\right) \tag{1}
\end{equation*}
$$

where V_{O} is the desired output voltage．The actual value of the internal $\mathrm{V}_{\text {REF }}$ is a function of V_{O} ．The＂corrected＂ $\mathrm{V}_{\text {REF }}$ is determined by

$$
\begin{equation*}
V_{R E F}{ }^{\prime}=V_{O}\left(\Delta V_{R E F} / \Delta V_{O}\right)+V_{Y} \tag{2}
\end{equation*}
$$

where V_{O} is the desired output voltage．$\Delta V_{R E F} / \Delta V_{O}$ is found in the Electrical Characteristics and it typically $-1.3 \mathrm{mV} / \mathrm{V}$ and V_{Y} is equal to 1.240 V ．Replace the value of $V_{\text {REF }}$ in equation（1）with the value found using equation （2）．

Note that the actual output voltage can deviate from that predicted using the typical $\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{V}_{\mathrm{O}}$ in equation（2）：for C －grade parts，the worst－case $\Delta \mathrm{V}_{\mathrm{REF}} / \Delta \mathrm{V}_{\mathrm{O}}$ is $-2.5 \mathrm{mV} / \mathrm{V}$ and $V_{Y}=1.246 \mathrm{~V}$ ．For D－grade parts，the worst－case $\Delta V_{R E F} / \Delta V_{O}$ is $-3.0 \mathrm{mV} / \mathrm{V}$ and $V_{Y}=1.248 \mathrm{~V}$ ．
The following example shows the difference in output volt－ age resulting from the typical and worst case values of $\Delta V_{\text {REF }} / \Delta V_{O}$ ．Let $V_{O}=+9 \mathrm{~V}$ ．Using the typical value of $\Delta V_{\text {REF }} / \Delta V_{O}, V_{\text {REF }}$ is 1.228 V ．Choosing a value of R1 $=10 \mathrm{k} \Omega, \mathrm{R} 2=63.272 \mathrm{k} \Omega$ ．Using the worst case $\Delta V_{\text {REF }} / \Delta V_{O}$ for the C－grade and D－grade parts，the output voltage is actually 8.965 V and 8.946 V ，respectively．This re－ sults in possible errors as large as 0.39% for the C－grade parts and 0.59% for the D－grade parts．Once again，resistor values found using the typical value of $\Delta V_{R E F} / \Delta V_{O}$ will work in most cases，requiring no further adjustment．

Typical Applications

TL／H／11392－22
FIGURE 1．Shunt Regulator

TL／H／11392－34
FIGURE 2．Adjustable Shunt Regulator

Typical Applications (Continued)

TL/H/11392-24
FIGURE 3. Bounded amplifier reduces saturation-induced delays and can prevent succeeding stage damage.
Nominal clamping voltage is $\pm V_{O}$ (LM4041's reverse breakdown voltage) +2 diode V_{F}.

TL/H/11392-20
FIGURE 4. Voltage Level Detector

TL/H/11392-25

FIGURE 6. Fast Positive Clamp

Typical Applications (Continued)

TL/H/11392-35
FIGURE 7. Bidirectional Adjustable Clamp $\pm 18 \mathrm{~V}$ to $\pm 2.4 \mathrm{~V}$

TL/H/11392-36
FIGURE 8. Bidirectional Adjustable Clamp $\pm 2.4 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$

FIGURE 9. Simple Fioating Current Detector

TL/H/11392-39

FIGURE 11. Precision Floating Current Detector
*D1 can be any LED, $\mathrm{V}_{\mathrm{F}}=1.5 \mathrm{~V}$ to 2.2 V at 3 mA . D1 may act as an
indicator. D1 will be on if ITHRESHOLD falls below the threshold current, except with $\mathrm{I}=0$.

Typical Applications (Continued)

TL/H/11392-27
FIGURE 12. Programmable Current Source

FIGURE 13. Precision $1 \mu \mathrm{~A}$ to 1 mA Current Sources

LM4431

Micropower Shunt Voltage Reference

General Description

Ideal for space critical applications，the LM4431 voltage ref－ erence is available in the sub－miniature（ $3 \mathrm{~mm} \times 1.3 \mathrm{~mm}$ ） SOT－23 surface－mount package．The LM4431＇s advanced design eliminates the need for an external stabilizing capac－ itor while ensuring stability with any capacitive load，thus making the LM4431 easy to use．The operating current range is $100 \mu \mathrm{~A}$ to 15 mA ．
The LM4431 utilizes fuse and zener－zap reverse breakdown voltage trim during wafer sort to ensure that the parts have an accuracy of better than $\pm 2.0 \%$ at $25^{\circ} \mathrm{C}$ ．Bandgap refer－ ence temperature drift curvature correction and low dynam－ ic impedance ensure stable reverse breakdown voltage ac－ curacy over a wide range of operating temperatures and currents．

Key Specifications

－Output voltage tolerance $25^{\circ} \mathrm{C}$
－Low output noise（ 10 Hz to 10 kHz ）
■ Wide operating current range
－Commercial temperature range
－Low temperature coefficient

Applications

－Portable，Battery－Powered Equipment
－Data Acquisition Systems
－Instrumentation
－Process Control
（4）Energy Management
－Product Testing
－Power Supplies

Features

－Small package：SOT－23
－No output capacitor required
■ Tolerates capacitive loads
－Fixed reverse breakdown voltage of 2.50 V

Connection Diagram

TL／H／11374－1
＊This pin must be left floating or connected to pin 3.
Top View
Order Number LM4431M3－2．5
See NS Package Number M03B
（JEDEC Registration TO－236AB）

SOT－23 Package Marking Information

Only three fields of marking are possible on the SOT－23＇s small surface．The following table gives the meaning of the three fields．

Part Marking	Field Definition
S2E	First Field：
	S＝Reference
	Second Field：
	$2=2.500 \mathrm{~V}$ Voltage Option
	Third Field：
	$E=$ Initial Reverse Breakdown Voltage Tolerance of $\pm 2.0 \%$

```
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
```

Reverse Current
Forward Current
Power Dissipation ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) (Note 2)
M3 Package
Storage Temperature
Lead Temperature
M3 Package
Vapor phase (60 seconds) $+215^{\circ} \mathrm{C}$
Infrared (15 seconds)

306 mW
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+220^{\circ} \mathrm{C}$

ESD Susceptibility
Human Body Model (Note 3) . 2 kV
Machine Model (Note 3) 200V
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Operating Ratings (Notes 1\&2)

Temperature Range
($T_{\text {min }} \leq T_{A} \leq T_{\text {max }}$)
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Reverse Current
LM4431-2.5
$100 \mu \mathrm{~A}$ to 15 mA

LM4431-2.5

Electrical Characteristics

Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4431M3 Limits (Note 5)	Units (Limit)
V_{R}	Reverse Breakdown Voltage	$I_{R}=100 \mu \mathrm{~A}$	2.500		V
	Reverse Breakdown Voltage Tolerance	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		± 50	mV (max)
$I_{\text {RMIN }}$	Minimum Operating Current		45	100	$\begin{gathered} \mu A \\ \mu A(\text { max }) \end{gathered}$
$\Delta V_{R} / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 30 \\ & \pm 30 \\ & \pm 30 \end{aligned}$.	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{I}_{\mathrm{R}}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.4	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \\ \mathrm{mV}(\max) \end{gathered}$
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	2.5	$\begin{aligned} & 8.0 \\ & 25 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \\ \mathrm{mV}(\max) \end{gathered}$
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz} \\ & I_{A C}=0.1 I_{\mathrm{R}} \end{aligned}$	1.0		Ω
e_{N}	Wideband Noise	$\begin{aligned} & I_{R}=100 \mu A \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	35		$\mu V_{\text {rms }}$
$\Delta V_{\text {R }}$	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & t=1000 \mathrm{hrs} \\ & T=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \end{aligned}$	120	,	ppm

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{\text {Jmax }}$ (maximum junction temperature), θ_{JA} (junction to ambient thermal resistance), and T_{A} (ambient temperature). The maximum allowable power dissipation at any temperature is $P D_{\max }=\left(T_{J m a x}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4431, $\mathrm{T}_{\mathrm{Jmax}}=125^{\circ} \mathrm{C}$, and the typical thermal resistance (θ_{JA}), when board mounted, is $326^{\circ} \mathrm{C} / \mathrm{W}$ for the SOT-23 package.
Note 3: The human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.
Note 4: Typicals are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 5: Limits are 100% production tested at $25^{\circ} \mathrm{C}$. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL.

Typical Performance Characteristics

TL/H/11374-4

Start-Up Characteristics

TL/H/11374-3

TL/H/11374-7

Functional Block Diagram

TL/H/11374-8

Applications Information

The LM4431 is a micro-power curvature-corrected 2.5 V bandgap shunt voltage reference. For space critical applications, the LM4431 is available in the sub-miniature SOT-23 surface-mount package. The LM4431 has been designed for stable operation without the need of an external capacitor connected between the " + " pin and the "-" pin. If, however, a bypass capacitor is used, the LM4431 remains stable. The operating current range is $100 \mu \mathrm{~A}$ to 15 mA .
The LM4431's 'SOT-23 package has a parasitic Schottky diode between pin 3 (-) and pin 1 (Die attach interface contact). Therefore, pin 1 of the SOT-23 package must be left floating or connected to pin 3.
In a conventional shunt regulator application (Figure 1), an external series resistor $\left(\mathrm{R}_{\mathrm{S}}\right)$ is connected between the supply voltage and the LM4431. R R_{S} determines the current that flows through the load (I_{L}) and the LM4431 (I_{Q}). Since load current and supply voltage may vary, R_{S} should be small enough to supply at least the minimum acceptable I_{Q} to the LM4431 even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and I_{L} is at its minimum, R_{S}
should be large enough so that the current flowing through the LM4431 is less than 15 mA
R_{S} is determined by the supply voltage, $\left(V_{S}\right)$, the load and operating current, (I_{L} and I_{Q}), and the LM4431's reverse breakdown voltage, V_{R}.

$$
R_{S}=\frac{V_{S}-V_{R}}{I_{L}+I_{Q}}
$$

Typical Applications

TL/H/11374-9
FIGURE 1. Shunt Regulator

Typical Applications（Continued）

TL／H／11374－10
FIGURE 2．Bounded amplifier reduces saturation－induced delays and can prevent succeeding stage damage． Nominal clamping voltage is $\pm 3.9 \mathrm{~V}$（LM4431＇s reverse breakdown voltage +2 diode V_{F} ）．

TL／H／11374－11
FIGURE 3．Protecting Op Amp input．The bounding voltage is $\pm \mathbf{4 V}$ with the LM4431 （LM4431＇s reverse breakdown voltage +3 diode V_{F} ）．

Typical Applications (Continued)

$$
\text { IOUT }=\frac{2.5 \mathrm{~V}}{249 \Omega}\left[\frac{1}{\text { gain set \# }}\right]
$$

FIGURE 4. Programmable Current Source

TL/H/11374-13
FIGURE 5. Precision $1 \mu \mathrm{~A}$ to 1 mA Current Sources

LM9140

Precision Micropower Shunt Voltage Reference

General Description

The LM9140's reverse breakdown voltage temperature coefficients of $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ are ideal for precision applications. The LM9140's advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM9140 easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: $2.500 \mathrm{~V}, 4.096 \mathrm{~V}$, 5.000 V , and 10.000 V . The minimum operating current increases from $60 \mu \mathrm{~A}$ for the LM9140-2.5 to $100 \mu \mathrm{~A}$ for the LM9140-10.0. All versions have a maximum operating current of 15 mA .

The LM9140 utilizes fuse and zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than $\pm 0.5 \%$ (B grade) at $25^{\circ} \mathrm{C}$. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.

Features

- Guaranteed temperature coefficient of $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Reverse breakdown voltage tolerance of $\pm 0.5 \%$
- Small package: TO-92
m No output capacitor required
- Tolerates capacitive loads

■ Fixed reverse breakdown voltages of $2.500 \mathrm{~V}, 4.096 \mathrm{~V}$, 5.000 V , and 10.000 V

Key Specifications (LM9140-2.5)

- Temperature coefficient $\quad \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (max)

■ Output voltage tolerance $\pm 0.5 \%$ (max)
■ Low output noise (10 Hz to 10 kHz) $\quad 35 \mu \mathrm{~V}_{\text {rms }}$ (typ)

- Wide operating current range $60 \mu \mathrm{~A}$ to 15 mA
- Industrial temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Applications

- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Product Testing
- Automotive
- Precision Audio Components

Connection Diagrams

Bottom View

TL/H/11393-2

See NS Package Number Z03A

Ordering Information

Reverse Breakdown Voltage Tolerance at $25^{\circ} \mathrm{C}$ and Average Reverse Breakdown Voltage Temperature Coefficient	\mathbf{Z} (TO-92)
$0.5 \%, 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max	LM9140BYZ-2.5,
	LM9140BYZ-4.1,
	LM9140BYZ-5.0,
	LM9140BYZ-10.0

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Reverse Current	20 mA
Forward Current	10 mA
Power Dissipation ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)	
\quad Z Package	550 mW
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	
\quad Z Package	
\quad Soldering (10 seconds)	$+260^{\circ} \mathrm{C}$

ESD Susceptibility
Human Boddy Mode (Note 3)
Machine Model (Note 3)
200V

Operating Ratings (Notes 1 and 2)

Temperature Range

$$
\left(T_{\min } \leq T_{A} \leq T_{\max }\right)
$$

Reverse Current
LM9140-2.5 . $60 \mu \mathrm{~A}$ to 15 mA

LM9140-4.1 $68 \mu \mathrm{~A}$ to 15 mA
LM9140-5.0
LM9140-10.0
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
$60 \mu \mathrm{~A}$ to 15 mA
$74 \mu A$ to 15 mA $100 \mu \mathrm{~A}$ to 15 mA

LM9140BYZ-2.5

Electrical Characteristics
Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $T_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Typical (Note 4)	Limits (Note 5)	Units (Limit)
V_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	2.500		V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		$\begin{gathered} \pm 12.5 \\ \pm 16.6 \end{gathered}$	$m V(\max)$ mV (max)
$\mathrm{I}_{\text {RMIN }}$	Minimum Operating Current		45	$\begin{array}{r} 60 \\ 65 \end{array}$	$\begin{gathered} \mu A \\ \mu A(\max) \\ \mu A(\max) \\ \hline \end{gathered}$
$\Delta V_{R} / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient (Note 7)	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 10 \end{aligned}$	± 25	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{max}) \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{l}_{\mathrm{R}}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\mathrm{RMIN}} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.3	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{gathered} m V \\ m V(\max) \\ m V(\max) \end{gathered}$
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	2.5	$\begin{aligned} & 6.0 \\ & \mathbf{8 . 0} \end{aligned}$	$\begin{gathered} m V \\ m V(\max) \\ m V(\max) \\ \hline \end{gathered}$
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \\ & \mathrm{I}_{\mathrm{AC}}=0.1 \mathrm{I}_{\mathrm{R}} \end{aligned}$	0.3	0.8	$\begin{gathered} \Omega \\ \Omega(\max) \end{gathered}$
${ }^{e} N$	Wideband Noise	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	35		$\mu \mathrm{V}_{\text {rms }}$
ΔV_{R}	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & t=1000 \mathrm{hrs} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \end{aligned}$	120		ppm

LM9140BYZ-4.1

Electrical Characteristics
Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max; }}$ all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Typical (Note 4)	Limits (Note 5)	Units (Limit)
V_{R}	Reverse Breakdown Voltage	$I_{R}=100 \mu \mathrm{~A}$	4.096	,	V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		$\begin{gathered} \pm 20.5 \\ \pm \mathbf{2 7 . 1} \\ \hline \end{gathered}$	$m V(\max)$ $m V($ max $)$
IRMIN	Minimum Operating Current		50	$\begin{array}{r} 68 \\ 73 \\ \hline \end{array}$	$\begin{gathered} \mu A \\ \mu \mathrm{~A}(\max) \\ \mu \mathrm{A}(\max) \end{gathered}$
$\Delta V_{R} / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient (Note 7)	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 10 \end{aligned}$	± 25	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{max}) \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{gathered}$
$\Delta V_{R} / \Delta I_{R}$	Reverse Breakdown Voltage Change with Operating Current Change	$I_{R M I N} \leq I_{R} \leq 1 \mathrm{~mA}$	0.5	$\begin{aligned} & 0.9 \\ & 1.2 \end{aligned}$	$\begin{gathered} m V \\ m V(\max) \\ m V(\max) \end{gathered}$
	. .	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	3.0	$\begin{gathered} 7.0 \\ 10.0 \end{gathered}$	```mV mV (max) mV (max)```
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA}, f=120 \mathrm{~Hz}, \\ & I_{A C}=0.1 I_{R} \end{aligned}$	0.5	1.0	$\begin{gathered} \Omega \\ \Omega(\max) \end{gathered}$
e_{N}	Wideband Noise	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	80		$\mu \mathrm{V}_{\text {rms }}$
ΔV_{R}	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & t=1000 \mathrm{hrs} \\ & T=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \end{aligned}$	120	,	ppm

LM9140BYZ-5.0

Electrical Characteristics
Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max; }}$ all other limits $T_{A}=T_{\mathbf{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Typical (Note 4)	Limits (Note 5)	Units (Limit)
V_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	5.000	1. ${ }^{\text {c }}$.	V
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$,	$\begin{gathered} \pm 25.0 \\ \pm 33.1 \\ \hline \end{gathered}$	$m V(\max)$ mV (max)
IRMIN	Minimum Operating Current		55	74 80	$\begin{gathered} \mu A \\ \mu A(\max) \\ \mu A(\max) \end{gathered}$
$\Delta V_{R} / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient (Note 7)	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=100 \mu A \end{aligned}$	$\begin{array}{r} \pm 10 \\ \pm 10 \\ \pm 10 \end{array}$	± 25	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\max) \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
$\Delta V_{R} / \Delta l_{R}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\mathrm{RMIN}} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.5	$\begin{array}{r} 1.0 \\ 1.4 \\ \hline \end{array}$	mV mV (max) mV (max)
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	3.5	$\begin{gathered} 8.0 \\ 12.0 \end{gathered}$	mV mV (max) mV (max)
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA}, f=120 \mathrm{~Hz}, \\ & I_{A C}=0.1 I_{R} \end{aligned}$	0.5	1.1	$\begin{gathered} \Omega \\ \Omega(\max) \\ \hline \end{gathered}$
e_{N}	Wideband Noise	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	80	\therefore	$\mu V_{\text {rms }}$
$\Delta \mathrm{V}_{\mathrm{R}}$	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & t=1000 \mathrm{hrs} \\ & T=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \end{aligned}$	120	\cdots.	ppm

LM9140BYZ-10.0

Electrical Characteristics

Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Typical (Note 4)	Limits (Note 5)	Units (Limit)	
V_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}$	10.00		V	
	Reverse Breakdown Voltage Tolerance (Note 6)	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		$\begin{gathered} \pm 50.0 \\ \pm 66.3 \\ \hline \end{gathered}$	mV (max) mV (max)	
IRMIN	Minimum Operating Current		75	$\begin{gathered} 100 \\ 103 \end{gathered}$	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{max}) \end{gathered}$ $\mu \mathrm{A}(\max)$	
$\Delta V_{R} / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient (Note 7)	$\begin{aligned} & I_{R}=10 \mathrm{~mA} \\ & I_{R}=1 \mathrm{~mA} \\ & I_{R}=150 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 10 \end{aligned}$	± 25	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (max) $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
$\Delta V_{R} / \Delta \\|_{R}$	Reverse Breakdown Voltage Change with Operating Current Change	$\mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$	0.8	$\begin{aligned} & 1.6 \\ & 3.5 \end{aligned}$	mV $m V(\max)$ mV (max)	
		$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$	8.0	$\begin{aligned} & 12.0 \\ & 23.0 \end{aligned}$	mV $\mathrm{mV}(\max)$ $\mathrm{mV}(\max)$	
Z_{R}	Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \\ & I_{A C}=0.1 I_{R} \end{aligned}$	0.7	1.7	$\begin{gathered} \Omega \\ \Omega(\max) \end{gathered}$	
${ }^{\text {e }}$	Wideband Noise	$\begin{aligned} & I_{R}=150 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	180		$\mu \mathrm{V}_{\text {rms }}$	
ΔV_{R}	Reverse Breakdown Voltage Long Term Stability	$\begin{aligned} & t=1000 \mathrm{hrs} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A} \end{aligned}$	120		ppm	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\text {Jmax }}$ (maximum junction temperature), θ_{JA} (junction to ambient thermal resistance), and T_{A} (ambient temperature). The maximum allowable power dissipation at any temperature is $\mathrm{PD}_{\mathrm{MAX}}=\left(\mathrm{T}_{\mathrm{Jmax}}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM9140, $T_{J \max }=125^{\circ} \mathrm{C}$, and the typcial thermal resistance ($\theta_{J A}$), when board mounted, is $170^{\circ} \mathrm{C} / \mathrm{W}$ with $0.125^{\prime \prime}$ lead length for the TO-92 package.
Note 3: The human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin. The machine mode is a 200 pF capacitor discharged directly into each pin.
Note 4: Typicals are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 5: Limits are 100% production tested at $25^{\circ} \mathrm{C}$. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL.
Note 6: The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as a room termperature Reverse Breakdown Voltage Tolerance $\left.\pm\left[\Delta V_{R} / \Delta T\right)\left(65^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{R}}\right)\right] . \Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{T}$ is the V_{R} temperature coefficent, $65^{\circ} \mathrm{C}$ is the temperature range from $-40^{\circ} \mathrm{C}$ to the reference point of $25^{\circ} \mathrm{C}$, and V_{R} is the reverse breakdown voltage. The total over-temperature tolerence for the different grades is shown below:
B-grade: $\pm 0.66 \%= \pm 0.5 \% \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times 65^{\circ} \mathrm{C}$
Therefore, as an example, the B-grade LM9140-2.5 has an over-temperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \mathrm{~V} \times 0.66 \%= \pm 16.6 \mathrm{mV}$.
Note 7: The average temperature coefficient is defined as the maximum deviation of reference voltage at all measured temperatures between the operating $T_{\text {MAX }}$ and $T_{\text {MIN }}$, divided by $T_{\text {MAX }}-\mathrm{T}_{\text {MIN }}$. The measured temperatures are $-55^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Start-Up Characteristics

TL/H/11393-8

TL/H/11393-9

TL/H/11393-10

TL/H/11393-11

Functional Block Diagram

TL/H/11393-12

Applications Information

The LM9140 is a precision micro-power curvature-corrected bandgap shunt voltage reference. The LM9140 has been designed for stable operation without the need of an external capacitor connected between the " + " pin and the " - " pin. If, however, a bypass capacitor is used, the LM9140 remains stable. Reducing design effort is the availability of several fixed reverse breakdown voltages: $2.500 \mathrm{~V}, 4.096 \mathrm{~V}$, 5.000 V , and 10.000 V . The minimum operating current increases from $60 \mu \mathrm{~A}$ for the LM9140-2.5 to $100 \mu \mathrm{~A}$ for the LM9140-10.0. All versions have a maximum operating current of 15 mA .
The 4.096 V version allows single +5 V 12-bit ADCs or DACs to operate with an LSB equal to 1 mV . For 12-bit ADCs or DACs that operate on supplies of 10 V or greater, the 8.192 V version gives 2 mV per LSB.
In a conventional shunt regulator application (Figure 1), an external series resistor (R_{S}) is connected between the supply voltage and the LM9140. Rs determines the current that flows through the load (I_{L}) and the LM9140 (I_{Q}). Since load current and supply voltage may vary, R_{S} should be small enough to supply at least the minimum acceptable l_{Q} to the LM9140 even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply
voltage is at its maximum and I_{L} is at its minimum, R_{S} should be large enough so that the current flowing through the LM9140 is less than 15 mA .
R_{S} is determined by the supply voltage, (V_{S}), the load and operating current, (I_{L} and I_{Q}), and the LM9140's reverse breakdown voltage, V_{R}.

$$
R_{S}=\frac{V_{S}-V_{R}}{I_{L}+I_{Q}}
$$

Typical Applications

TL/H/11393-20
FIGURE 1. Shunt Regulator

Typical Applications (Continued)

FIGURE 2. LM9140-4.1's Nominal 4.096 breakdown voltage gives ADC12451 1 mV/LSB

TL/H/11393-14
FIGURE 3. Bounded amplifier reduces saturation-induced delays and can prevent succeeding stage damage. Nominal clamping voltage is $\pm 11.5 \mathrm{~V}$ (LM9140's reverse breakdown voltage +2 diode V_{F}).

TL/H/11393-15
FIGURE 4. Protecting Op Amp input. The bounding voltage is $\pm 4 \mathrm{~V}$ with the LM9140-2.5 (LM9140's reverse breakdown voltage +3 diode V_{F}).

FIGURE 5. Precision \pm 4.096V Reference

Typical Applications (Continued)

FIGURE 6. Programmable Current Source

TL/H/11393-18
FIGURE 7. Precision $1 \mu \mathrm{~A}$ to 1 mA Current Sources

0

Section 5
 Temperature Sensors

Section 5 Contents
Temperature Sensors Selection Guide 5-3
LM34/LM34A/LM34C/LM34CA/LM34D Precision Fahrenheit Temperature Sensors 5-4
LM35/LM35A/LM35C/LM35CA/LM35D Precision Centigrade Temperature Sensors 5-12
LM45B/LM45C SOT-23 Precision Centigrade Temperature Sensors 5-21
LM50B/LM50C Single Supply Precision Centigrade Temperature Sensors 5-28
LM134/LM234/LM334 3-Terminal Adjustable Current Sources 5-29
LM135/LM235/LM335/LM135A/LM235A/LM335A Precision Temperature Sensors 5-38

National Semiconductor Temperature Sensor Selection Guide			
Part	Temp. Range	*Accuracy	Output Scale
LM34A LM34 LM34CA LM34C LM34D	$\begin{aligned} & -50^{\circ} \mathrm{F} \text { to }+300^{\circ} \mathrm{F} \\ & -50^{\circ} \mathrm{F} \text { to }+300^{\circ} \mathrm{F} \\ & -40^{\circ} \mathrm{F} \text { to }+230^{\circ} \mathrm{F} \\ & -40^{\circ} \mathrm{F} \text { to }+230^{\circ} \mathrm{F} \\ & +32^{\circ} \mathrm{F} \text { to }+212^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 2.0^{\circ} \mathrm{F} \\ & \pm 3.0^{\circ} \mathrm{F} \\ & \pm 2.0^{\circ} \mathrm{F} \\ & \pm 3.0^{\circ} \mathrm{F} \\ & \pm 4.0^{\circ} \mathrm{F} \end{aligned}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$ $10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$
LM35A LM35 LM35CA LM35C LM35D	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+110^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+110^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 1.0^{\circ} \mathrm{C} \\ & \pm 1.5^{\circ} \mathrm{C} \\ & \pm 1.0^{\circ} \mathrm{C} \\ & \pm 1.5^{\circ} \mathrm{C} \\ & \pm 2.0^{\circ} \mathrm{C} \end{aligned}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
LM45B LM45C	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \\ & -20^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 2.0^{\circ} \mathrm{C} \\ & \pm 3.0^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \mathrm{mV} /{ }^{\circ} \mathrm{C} \\ & 10 \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{aligned}$
LM134-3 LM134-6 LM234-3 LM234-6 LM334	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 3.0^{\circ} \mathrm{C} \\ & \pm 6.0^{\circ} \mathrm{C} \\ & \pm 3.0^{\circ} \mathrm{C} \\ & \pm 6.0^{\circ} \mathrm{C} \\ & \pm 6.0^{\circ} \mathrm{C} \end{aligned}$	$I_{S E T} \propto{ }^{\circ} \mathrm{K}$ $I_{S E T} \propto{ }^{\circ} \mathrm{K}$
LM135A LM135 ${ }^{\dagger}$ LM235A LM235 LM335A LM335	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{to}+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 1.3^{\circ} \mathrm{C} \\ & \pm 2.0^{\circ} \mathrm{C} \\ & \pm 1.3^{\circ} \mathrm{C} \\ & \pm 2.0^{\circ} \mathrm{C} \\ & \pm 2.0^{\circ} \mathrm{C} \\ & \pm 4.0^{\circ} \mathrm{C} \end{aligned}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$ $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$

*Note: Accuracy is measured over $T(M i n)$ to $T(M a x)$ uncalibrated
Note: The LM134/234/334 3-Terminal Adjustable current sources Datasheet can be found in Section 4.
†Note: Military screening available

LM34/LM34A/LM34C/LM34CA/LM34D Precision Fahrenheit Temperature Sensors

General Description

The LM34 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Fahrenheit temperature. The LM34 thus has an advantage over linear temperature sensors calibrated in degrees Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Fahrenheit scaling. The LM34 does not require any external calibration or trimming to provide typical accuracies of $\pm 1 / 2^{\circ} \mathrm{F}$ at room temperature and $\pm 112^{\circ} \mathrm{F}$ over a full -50 to $+300^{\circ} \mathrm{F}$ temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM34's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies or with plus and minus supplies. As it draws only $75 \mu \mathrm{~A}$ from its supply, it has very low self-heating, less than $0.2^{\circ} \mathrm{F}$ in still air. The LM34 is rated to operate over a -50° to $+300^{\circ} \mathrm{F}$ temperature range, while the LM34C is rated for a -40° to $+230^{\circ} \mathrm{F}$ range ($0^{\circ} \mathrm{F}$ with improved accuracy). The LM34 series is available packaged in hermetic TO-46 transistor packages,
while the LM34C, LM34CA and LM34D are also available in the plastic TO-92 transistor package. The LM34D is also available in an 8 -lead surface mount small outline package. The LM34 is a complement to the LM35 (Centigrade) temperature sensor.

Features

- Calibrated directly in degrees Fahrenheit
- Linear $+10.0 \mathrm{mV} /{ }^{\circ} \mathrm{F}$ scale factor
- $1.0^{\circ} \mathrm{F}$ accuracy guaranteed (at $+77^{\circ} \mathrm{F}$)
- Rated for full -50° to $+300^{\circ} \mathrm{F}$ range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 5 to 30 volts
- Less than $90 \mu \mathrm{~A}$ current drain
- Low self-heating, $0.18^{\circ} \mathrm{F}$ in still air
- Nonlinearity only $\pm 0.5^{\circ} \mathrm{F}$ typical
- Low-impedance output, 0.4Ω for 1 mA load

Connection Diagrams

TO-46
Metal Can Package*

TL/H/6685-1
*Case is connected to negative pin (GND).
Order Numbers LM34H, LM34AH, LM34CH, LM34CAH or LM34DH See NS Package Number H03H

TO-92
Plastic Package

TL/H/6685-2 Order Number LM34CZ, LM34CAZ or LM34DZ
See NS Package Number Z03A

SO-8
Small Outline Molded Package

Top View
N.C. $=$ No Connection

Order Number LM34DM
See NS Package Number M08A

Typical Applications

FIGURE 1. Basic Fahrenheit Temperature Sensor $\left(+5^{\circ}\right.$ to $\left.+300^{\circ} \mathrm{F}\right)$

CHOOSE $\mathrm{R}_{1}=\left(-\mathrm{V}_{\mathrm{S}}\right) / 50 \mu \mathrm{~A}$
$V_{O U T}=+3,000 \mathrm{mV} \mathrm{AT}+300^{\circ} \mathrm{F}$
$=+750 \mathrm{mV} \mathrm{AT}+75^{\circ} \mathrm{F}$
$=-500 \mathrm{mV}$ AT $-50^{\circ} \mathrm{F}$

Absolute Maximum Ratings (Note 10)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage
Output Voltage
Output Current
Storage Temperature,
$\begin{array}{lr}\text { TO-46 Package } & -76^{\circ} \mathrm{F} \text { to }+356^{\circ} \mathrm{F} \\ \text { TO-92 Package } & -76^{\circ} \mathrm{F} \text { to }+300^{\circ} \mathrm{F} \\ \text { SO-8 Package } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { ESD Susceptibility (Note 11) } & 800 \mathrm{~V}\end{array}$
+35 V to -0.2 V
+6 V to -1.0 V
10 mA

DC Electrical Characteristics (Note 1, Note 6)

Parameter	Conditions	LM34A			LM34CA			Units (Max)
		Typical	Tested Limit (Note 4)	$\begin{aligned} & \text { Design } \\ & \text { Limit } \\ & \text { (Note 5) } \\ & \hline \end{aligned}$	Typical	Tested Limit (Note 4)	Design Limit (Note 5)	
Accuracy (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \end{aligned}$	$\begin{aligned} & \pm 0.4 \\ & \pm 0.6 \\ & \pm 0.8 \\ & \pm 0.8 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 2.0 \\ & \pm 2.0 \end{aligned}$		$\begin{aligned} & \pm 0.4 \\ & \pm 0.6 \\ & \pm 0.8 \\ & \pm 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & \pm 2.0 \\ & \pm 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \end{aligned}$
Nonlinearity (Note 8)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	± 0.35		± 0.7	± 0.30		± 0.6	${ }^{\circ} \mathrm{F}$
Sensor Gain (Average Slope)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	+10.0	$\begin{array}{r} +9.9 \\ +10.1 \\ \hline \end{array}$		+ 10.0		$\begin{array}{r} +9.9 \\ +10.1 \\ \hline \end{array}$	$\mathrm{mV} /{ }^{\circ} \mathrm{F}, \min$ $\mathrm{mV} /{ }^{\circ} \mathrm{F}, \max$
Load Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \\ & 0 \leq \mathrm{I}_{\mathrm{L}} \leq 1 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \pm 0.4 \\ \pm 0.5 \end{gathered}$	± 1.0	± 3.0	$\begin{gathered} \pm 0.4 \\ \pm \mathbf{0 . 5} \end{gathered}$	± 1.0	± 3.0	$\mathrm{mV} / \mathrm{mA}$ $\mathrm{mV} / \mathrm{mA}$
Line Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \\ \hline \end{gathered}$	± 0.05	± 0.1	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \\ \hline \end{gathered}$	± 0.05	± 0.1	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Quiescent Current (Note 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 75 \\ 131 \\ 76 \\ 132 \\ \hline \end{gathered}$	$\begin{aligned} & 90 \\ & 92 \end{aligned}$	$\begin{array}{r} 160 \\ 163 \\ \hline \end{array}$	$\begin{gathered} \hline 75 \\ 116 \\ 76 \\ 117 \\ \hline \end{gathered}$	$\begin{aligned} & 90 \\ & 92 \end{aligned}$	$\begin{aligned} & 139 \\ & 142 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
Change of Quiescent Current (Note 3)	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} +0.5 \\ +\mathbf{1 . 0} \\ \hline \end{array}$	2.0	3.0	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	2.0	3.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Temperature Coefficient of Quiescent Current		+0.30		+ 0.5	+0.30		+ 0.5	$\mu \mathrm{A} /{ }^{\circ} \mathrm{F}$
Minimum Temperature for Rated Accuracy	In circuit of Figure 1, $\mathrm{I}_{\mathrm{L}}=0$	+3.0		+ 5.0	+3.0		+ 5.0	${ }^{\circ} \mathrm{F}$
Long-Term Stability	$\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\text {MAX }}$ for 1000 hours	± 0.16			± 0.16			${ }^{\circ} \mathrm{F}$

Note 1: Unless otherwise noted, these specifications apply: $-50^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq+300^{\circ} \mathrm{F}$ for the LM34 and LM34A; $-40^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq+230^{\circ} \mathrm{F}$ for the LM34C and LM34CA; and $+32^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq+212^{\circ} \mathrm{F}$ for the LM34D. $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{Vdc}$ and $\mathrm{L}_{\mathrm{LOAD}}=50 \mu \mathrm{~A}$ in the circuit of Figure $2 ;+6 \mathrm{Vdc}$ for LM34 and LM34A for $230^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq$ $300^{\circ} \mathrm{F}$. These specifications also apply from $+5^{\circ} \mathrm{F}$ to $\mathrm{T}_{\mathrm{MAX}}$ in the circuit of Figure 1.
Note 2: Thermal resistance of the TO-46 package is $720^{\circ} \mathrm{F} / \mathrm{W}$ junction to ambient and $43^{\circ} \mathrm{F} / \mathrm{W}$ junction to case. Thermal resistance of the TO-92 package is $324^{\circ} \mathrm{F} / \mathrm{W}$ junction to ambient. Thermal resistance of the small outline molded package is $400^{\circ} \mathrm{F} / \mathrm{W}$ junction to ambient. For additional thermal resistance information see table in the Typical Applications section.
Note 3: Regulation is measured at constant junction temperature using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.
Note 4: Tested limits are guaranteed and 100% tested in production.
Note 5: Design limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 6: Specification in BOLDFACE TYPE apply over the full rated temperature range.
Note 7: Accuracy is defined as the error between the output voltage and $10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$ times the device's case temperature at specified conditions of voltage, current, and temperature (expressed in ${ }^{\circ} \mathrm{F}$).
Note 8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line over the device's rated temperature range.
Note 9: Quiescent current is defined in the circuit of Figure 1.
Note 10: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions (see Note 1).
Note 11: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 12: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.

DC Electrical Characteristics (Note 1, Note 6) (Continued)

Parameter	Conditions	LM34			LM34C, LM34D			Units (Max)
		Typical	Tested Limit (Note 4)		Typical		Design Limit (Note 5)	
Accuracy, LM34, LM34C (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \end{aligned}$	$\begin{aligned} & \pm 0.8 \\ & \pm 1.0 \\ & \pm 1.6 \\ & \pm 1.6 \end{aligned}$	$\begin{aligned} & \pm 2.0 \\ & \pm 3.0 \end{aligned}$	± 3.0	$\begin{aligned} & \pm 0.8 \\ & \pm 1.0 \\ & \pm 1.6 \\ & \pm 1.6 \\ & \hline \end{aligned}$	± 2.0	$\begin{aligned} & \pm 3.0 \\ & \pm 3.0 \\ & \pm 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \end{aligned}$
Accuracy, LM34D (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \end{aligned}$				$\begin{aligned} & \pm 1.2 \\ & \pm 1.8 \\ & \pm 1.8 \\ & \hline \end{aligned}$	± 3.0	$\begin{aligned} & \pm 4.0 \\ & \pm 4.0 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & \hline \end{aligned}$
Nonlinearity (Note 8)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	± 0.6		± 1.0	± 0.4		± 1.0	${ }^{\circ} \mathrm{F}$
Sensor Gain (Average Slope)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	+10.0	$\begin{array}{r} +9.8 \\ +10.2 \end{array}$		+10.0		$\begin{array}{r} +9.8 \\ +10.2 \end{array}$	$\mathrm{mV} /{ }^{\circ} \mathrm{F}, \min$ $\mathrm{mV} /{ }^{\circ} \mathrm{F}, \max$
Load Regulation (Note 3)	$\begin{aligned} & T_{A}=+77^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq+150^{\circ} \mathrm{F} \\ & 0 \leq \mathrm{I}_{\mathrm{L}} \leq 1 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 0.4 \\ \pm 0.5 \end{array}$	± 2.5	± 6.0	$\begin{gathered} \pm 0.4 \\ \pm 0.5 \end{gathered}$	± 2.5	± 6.0	$\mathrm{mV} / \mathrm{mA}$ $\mathrm{mV} / \mathrm{mA}$
Line Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 0.01 \\ \pm 0.02 \end{gathered}$	± 0.1	± 0.2	$\begin{gathered} \pm 0.01 \\ \pm 0.02 \end{gathered}$	± 0.1	± 0.2	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Quiescent Current (Note 9)	$\begin{aligned} & V_{S}=+5 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V} \end{aligned}$	$\begin{gathered} 75 \\ 131 \\ 76 \\ 132 \end{gathered}$	$\begin{aligned} & 100 \\ & 103 \end{aligned}$	$\begin{aligned} & 176 \\ & 181 \end{aligned}$	$\begin{gathered} 75 \\ 116 \\ 76 \\ 117 \end{gathered}$	$\begin{aligned} & 100 \\ & 103 \end{aligned}$	$\begin{aligned} & 154 \\ & 159 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Change of Quiescent Current (Note 3)	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{array}{r} +0.5 \\ +1.0 \\ \hline \end{array}$	3.0	5.0	$\begin{aligned} & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$	3.0	5.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Temperature Coefficient of Quiescent Current		+0.30		+ 0.7	+0.30		+ 0.7	$\mu \mathrm{A} /{ }^{\circ} \mathrm{F}$
Minimum Temperature for Rated Accuracy	In circuit of Figure 1, $\mathrm{I}_{\mathrm{L}}=0$	+3.0		+5.0	+3.0		+5.0	${ }^{\circ} \mathrm{F}$
Long-Term Stability	$\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\text {MAX }}$ for 1000 hours	± 0.16			± 0.16			${ }^{\circ} \mathrm{F}$

Typical Performance Characteristics

frequency (Hz)

TIME (microseconds)
TL/H/6685-21

Typical Applications

The LM34 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface and its temperature will be within about $0.02^{\circ} \mathrm{F}$ of the surface temperature. This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature of the LM34 die would be at an intermediate temperature between the surface temperature and the air temperature. This is expecially true for the TO-92 plastic package, where the copper leads are the principal thermal path to carry heat into the device, so its temperature might be closer to the air temperature than to the surface temperature.
To minimize this problem, be sure that the wiring to the LM34, as it leaves the device, is held at the same temperature as the surface of interest. The easiest way to do this is to cover up these wires with a bead of epoxy which will insure that the leads and wires are all at the same temperature as the surface, and that the LM34 die's temperature will not be affected by the air temperature.
The TO-46 metal package can also be soldered to a metal surface or pipe without damage. Of course in that case, the V_ terminal of the circuit will be grounded to that metal. Alternatively, the LM34 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM34 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often

Temperature Sensor, Single Supply, -50° to $+300^{\circ} \mathrm{F}$

TL/H/6685-6
used to insure that moisture cannot corrode the LM34 or its connections.
These devices are sometimes soldered to a small, lightweight heat fin to decrease the thermal time constant and speed up the response in slowly-moving air. On the other hand, a small thermal mass may be added to the sensor to give the steadiest reading despite small deviations in the air temperature.

Capacitive Loads

Like most micropower circuits, the LM34 has a limited ability to drive heavy capacitive loads. The LM34 by itself is able to drive 50 pF without special precautions. If heavier loads are anticipated, it is easy to isolate or decouple the load with a resistor; see Figure 3. Or you can improve the tolerance of capacitance with a series R-C damper from output to ground; see Figure 4. When the LM34 is applied with a 499Ω load resistor (as shown), it is relatively immune to wiring capacitance because the capacitance forms a bypass from ground to input, not on the output. However, as with any linear circuit connected to wires in a hostile environment, its performance can be affected adversely by intense electromagnetic sources such as relays, radio transmitters, motors with arcing brushes, SCR's transients, etc., as its wiring can act as a receiving antenna and its internal junctions can act as rectifiers. For best results in such cases, a bypass capacitor from $\mathrm{V}_{\text {IN }}$ to ground and a series R-C damper such as 75Ω in series with 0.2 or $1 \mu \mathrm{~F}$ from output to ground are often useful. These are shown in the following circuits.

Tì/H/6685-7
FIGURE 3. LM34 with Decoupling from Capacitive Load

FIGURE 4. LM34 with R-C Damper
Temperature Rise of LM34 Due to Self-Heating (Thermal Resistance)

Conditions	TO-46, No Heat Sink	TO-46, Small Heat Fin*	TO-92, No Heat Sink	TO-92, Small Heat Fin**	SO-8 No Heat Sink	SO-8 Small Heat Fin**				
Still air	$720^{\circ} \mathrm{F} / \mathrm{W}$	$180^{\circ} \mathrm{F} / \mathrm{W}$	$324^{\circ} \mathrm{F} / \mathrm{W}$	$252^{\circ} \mathrm{F} / \mathrm{W}$	$400^{\circ} \mathrm{F} / \mathrm{W}$	$200^{\circ} \mathrm{F} / \mathrm{W}$				
Moving air	$180^{\circ} \mathrm{F} / \mathrm{W}$	$72^{\circ} \mathrm{F} / \mathrm{W}$	$162^{\circ} \mathrm{F} / \mathrm{W}$	$126^{\circ} \mathrm{F} / \mathrm{W}$	$190^{\circ} \mathrm{F} / \mathrm{W}$	$160^{\circ} \mathrm{F} / \mathrm{W}$				
Still oil	$180^{\circ} \mathrm{F} / \mathrm{W}$	$72^{\circ} \mathrm{F} / \mathrm{W}$	$162^{\circ} \mathrm{F} / \mathrm{W}$	$126^{\circ} \mathrm{F} / \mathrm{W}$						
Stirred oil	$90^{\circ} \mathrm{F} / \mathrm{W}$	$54^{\circ} \mathrm{F} / \mathrm{W}$	$81^{\circ} \mathrm{F} / \mathrm{W}$	$72^{\circ} \mathrm{F} / \mathrm{W}$						
(Clamped to metal,	$\left(43^{\circ} \mathrm{F} / \mathrm{W}\right)$									
infinite heat sink)				$\left(95^{\circ} \mathrm{F} / \mathrm{W}\right)$						

[^14]
Typical Applications (Continued)

Two-WIre Remote Temperature Sensor (Grounded Sensor)

TL/H/6685-9

TL/H/6685-11

Expanded Scale Thermometer (50° to 80° Fahrenhelt, for Example Shown)

TL/H/6685-13

Two-Wire Remote Temperature Sensor (Output Referred to Ground)

TL/H/6685-10

Fahrenheit Thermometer (Analog Meter)

TL/H/6685-12

Temperature-to-Digital Converter (Serial Output, $+128^{\circ}$ F Full Scale)

LM34 with Voltage-to-Frequency Converter and Isolated Output

 ($3^{\circ} \mathrm{F}$ to $+300^{\circ} \mathrm{F} ; \mathbf{3 0 ~ H z}$ to $\mathbf{3 0 0 0 ~ H z}$)

TL/H/6685-15
Bar-Graph Temperature Display (Dot Mode)

TL/H/6685-16
$*=1 \%$ or 2% film resistor
-Trim R_{B} for $V_{B}=3.525 \mathrm{~V}$
-Trim R_{C} for $V_{C}=2.725 \mathrm{~V}$
-Trim R_{A} for $V_{A}=0.085 \mathrm{~V}+40 \mathrm{mV} /{ }^{\circ} \mathrm{F} \times$ TAMBIENT $^{\text {- Example, } V_{A}=3.285 \mathrm{~V} \text { at } 80^{\circ} \mathrm{F}}$

Typical Applications (Continued)

Temperature-to-Digital Converter
(Parallel TRI-STATE ${ }^{\circledR}$ Outputs for Standard Data Bus to μ P Interface, $128{ }^{\circ}$ F Full Scale)

TL/H/6685-17

Temperature Controller

TL/H/6685-18
Block Diagram

LM35/LM35A/LM35C/LM35CA/LM35D Precision Centigrade Temperature Sensors
 General Description

The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in ${ }^{\circ}$ Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Centigrade scaling. The LM35 does not require any external calibration or trimming to provide typical accuracies of $\pm 1 / 4^{\circ} \mathrm{C}$ at room temperature and $\pm 3 / 4^{\circ} \mathrm{C}$ over a full -55 to $+150^{\circ} \mathrm{C}$ temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM35's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies, or with plus and minus supplies. As it draws only $60 \mu \mathrm{~A}$ from its supply, it has very low self-heating, less than $0.1^{\circ} \mathrm{C}$ in still air. The LM35 is rated to operate over a -55° to $+150^{\circ} \mathrm{C}$ temperature range, while the LM35C is rated for a -40° to $+110^{\circ} \mathrm{C}$ range (-10° with improved accuracy). The LM35 series is
available packaged in hermetic TO-46 transistor packages, while the LM35C, LM35CA, and LM35D are also available in the plastic TO-92 transistor package. The LM35D is also available in an 8 -lead surface mount small outline package and a plastic TO-202 package.

Features

- Calibrated directly in ${ }^{\circ}$ Celsius (Centigrade)
- Linear $+10.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ scale factor
- $0.5^{\circ} \mathrm{C}$ accuracy guaranteeable (at $+25^{\circ} \mathrm{C}$)
- Rated for full -55° to $+150^{\circ} \mathrm{C}$ range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 4 to 30 volts
- Less than $60 \mu \mathrm{~A}$ current drain
- Low self-heating, $0.08^{\circ} \mathrm{C}$ in still air
- Nonlinearity only $\pm 1 / 4^{\circ} \mathrm{C}$ typical
- Low impedance output, 0.1Ω for 1 mA load

Connection Diagrams

TO-46
 Metal Can Package*

TL/H/5516-1
*Case is connected to negative pin (GND)
Order Number LM35H, LM35AH, LM35CH, LM35CAH or LM35DH See NS Package Number H03H

TO-202
Plastic Package

TL/H/5516-24
Order Number LM35DP See NS Package Number P03A

TO-92
Plastic Package

TL/H/5516-2
Order Number LM35CZ, LM35CAZ or LM35DZ
See NS Package Number Z03A

Typical Applications

TL/H/5516-3
FIGURE 1. Basic Centigrade
Temperature
Sensor ($+\mathbf{2}^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$)

SO-8 Small Outline Molded Package

TL/H/5516-21
Top View
N.C. $=$ No Connection

Order Number LM35DM See NS Package Number M08A

TL/H/5516-4
Choose $\mathrm{R}_{1}=-\mathrm{V}_{\mathrm{S}} / 50 \mu \mathrm{~A}$
$V_{\text {OUT }}=+1,500 \mathrm{mV}$ at $+150^{\circ} \mathrm{C}$
$=+250 \mathrm{mV}$ at $+25^{\circ} \mathrm{C}$
$=-550 \mathrm{mV}$ at $-55^{\circ} \mathrm{C}$
FIGURE 2. Full-Range Centigrade
Temperature Sensor

Absolute Maximum Ratings (Note 10)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage
Output Voltage
Output Current
Storage Temp., TO-46 Package, TO-92 Package,
SO-8 Package,
TO-202 Package,
+35 V to -0.2 V
+6 V to -1.0 V
10 mA
$-60^{\circ} \mathrm{C}$ to $+180^{\circ} \mathrm{C}$
$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp.:

TO-46 Package, (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
TO-92 Package, (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
TO-202 Package, (Soldering, 10 seconds)	$+230^{\circ} \mathrm{C}$

SO Package (Note 12):	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$
ESD Susceptibility (Note 11)	2500 V
Specified Operating Temperature Range: T $_{\text {MIN }}$ to $T_{\text {MAX }}$	
(Note 2)	
LM35, LM35A	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM35C, LM35CA	$-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$
LM35D	$0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1) (Note 6)

Parameter	Conditions	LM35A			LM35CA			Units (Max.)
		Typical	Tested Limit (Note 4)	Design Limit (Note 5)	Typical	Tested Limit (Note 4)	Design Limit (Note 5)	
Accuracy (Note 7)	$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-10^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.3 \\ & \pm 0.4 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \\ & \pm 1.0 \end{aligned}$		$\begin{aligned} & \pm 0.2 \\ & \pm 0.3 \\ & \pm 0.4 \\ & \pm 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \end{aligned}$	$\begin{array}{r} \pm 1.0 \\ \pm 1.5 \\ \hline \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Nonlinearity (Note 8)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}$	± 0.18		± 0.35	± 0.15	.	± 0.3	${ }^{\circ} \mathrm{C}$
Sensor Gain (Average Slope)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	+10.0	$\begin{array}{r} +9.9 \\ +10.1 \end{array}$		+10.0		$\begin{array}{r} +9.9 \\ +10.1 \end{array}$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Load Regulation (Note 3) $0 \leq \mathrm{I}_{\mathrm{L}} \leq 1 \mathrm{~mA}$	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{aligned}$	$\begin{array}{r} \pm 0.4 \\ \pm 0.5 \\ \hline \end{array}$	± 1.0	± 3.0	$\begin{array}{r} \pm 0.4 \\ \pm \mathbf{0 . 5} \end{array}$	± 1.0	± 3.0	$\mathrm{mV} / \mathrm{mA}$ $\mathrm{mV} / \mathrm{mA}$
Line Regulation (Note 3)	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \end{gathered}$	± 0.05	± 0.1	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \end{gathered}$	± 0.05	± 0.1	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Quiescent Current (Note 9)	$\begin{aligned} & V_{S}=+5 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 56 \\ 105 \\ 56.2 \\ \mathbf{1 0 5 . 5} \end{gathered}$	67 68	$\begin{array}{r} 131 \\ 133 \\ \hline \end{array}$	$\begin{gathered} 56 \\ 91 \\ 56.2 \\ \mathbf{9 1 . 5} \\ \hline \end{gathered}$	67 68	$\begin{array}{r} 114 \\ 116 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Change of Quiescent Current (Note 3)	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{S} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	1.0	2.0	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	1.0	2.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Temperature Coefficient of Quiescent Current		+0.39		+0.5	+0.39		+0.5	$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Minimum Temperature for Rated Accuracy	In circuit of Figure 1, $\mathrm{I}_{\mathrm{L}}=0$	+1.5		+2.0	+1.5		+2.0	${ }^{\circ} \mathrm{C}$
Long Term Stability	$\begin{gathered} T_{J}=T_{M A X} \text {, for } \\ 1000 \text { hours } \end{gathered}$	± 0.08			± 0.08			${ }^{\circ} \mathrm{C}$

Note 1: Unless otherwise noted, these specifications apply: $-55^{\circ} \mathrm{C} \leq T_{J} \leq+150^{\circ} \mathrm{C}$ for the LM 35 and LM35A; $-40^{\circ} \leq T_{J} \leq+110^{\circ} \mathrm{C}$ for the LM35C and LM35CA; and $0^{\circ} \leq T_{J} \leq+100^{\circ} \mathrm{C}$ for the LM35D. $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{Vdc}$ and $\mathrm{LOAD}^{\prime}=50 \mu \mathrm{~A}$, in the circuit of Figure 2. These specifications also apply from $+2^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}$ in the circuit of Figure 1. Specifications in boldface apply over the full rated temperature range.
Note 2: Thermal resistance of the TO-46 package is $400^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, and $24^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. Thermal resistance of the TO-92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient. Thermal resistance of the small outline molded package is $220^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient. Thermal resistance of the TO-202 package is $85^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient. For additional thermal resistance information see table in the Applications section.

Electrical Characteristics (Note 1) (Note 6) (Continued)

Parameter	Conditions	LM35			LM35C, LM35D			Units (Max.)
		Typical		Design Limit (Note 5)	Typical		Design Limit (Note 5)	
Accuracy, LM35, LM35C (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \\ & \pm 0.8 \\ & \pm 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 1.5 \end{aligned}$	± 1.5	$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \\ & \pm 0.8 \\ & \pm 0.8 \end{aligned}$	± 1.0	$\begin{aligned} & \pm 1.5 \\ & \pm 1.5 \\ & \pm 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Accuracy, LM35D (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \\ & \hline \end{aligned}$				$\begin{aligned} & \pm 0.6 \\ & \pm 0.9 \\ & \pm 0.9 \end{aligned}$	± 1.5	$\begin{array}{r} \pm 2.0 \\ \pm 2.0 \\ \hline \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Nonlinearity (Note 8)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	± 0.3		± 0.5	± 0.2		± 0.5	${ }^{\circ} \mathrm{C}$
Sensor Gain (Average Slope)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	+10.0	$\begin{array}{r} +9.8 \\ +10.2 \\ \hline \end{array}$		+10.0		$\begin{array}{r} +9.8 \\ +10.2 \\ \hline \end{array}$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Load Regulation (Note 3) $0 \leq \mathrm{I}_{\mathrm{L}} \leq 1 \mathrm{~mA}$	$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{array}{r} \pm 0.4 \\ \pm \mathbf{0 . 5} \end{array}$	± 2.0	± 5.0	$\begin{array}{r} \pm 0.4 \\ \pm \mathbf{0 . 5} \end{array}$	± 2.0	± 5.0	$\mathrm{mV} / \mathrm{mA}$ $\mathrm{mV} / \mathrm{mA}$
Line Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \end{gathered}$	± 0.1	± 0.2	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \end{gathered}$	± 0.1	± 0.2	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Quiescent Current (Note 9)	$\begin{aligned} & V_{S}=+5 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & V_{S}=+5 \mathrm{~V} \\ & V_{S}=+30 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & V_{S}=+30 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 56 \\ 105 \\ 56.2 \\ \mathbf{1 0 5 . 5} \\ \hline \end{gathered}$	80 82	158 161	$\begin{gathered} 56 \\ 91 \\ 56.2 \\ 91.5 \\ \hline \end{gathered}$	80 82	$\begin{array}{r} 138 \\ 141 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Change of Quiescent Current (Note 3)	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{S} \leq 30 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	2.0	3.0	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	2.0	3.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Temperature Coefficient of Quiescent Current		+0.39		$+0.7$	+0.39		+ 0.7	$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Minimum Temperature for Rated Accuracy	In circuit of Figure 1, $\mathrm{I}_{\mathrm{L}}=0$	+1.5		+2.0	+1.5		+2.0	${ }^{\circ} \mathrm{C}$
Long Term Stability	$\begin{gathered} T_{J}=T_{\text {MAX }} \text {, for } \\ 1000 \text { hours } \end{gathered}$	± 0.08			± 0.08			${ }^{\circ} \mathrm{C}$

Note 3: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.
Note 4: Tested Limits are guaranteed and 100% tested in production.
Note 5: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 6: Specifications in boldface apply over the full rated temperature range.
Note 7: Accuracy is defined as the error between the output voltage and $10 \mathrm{mv} /{ }^{\circ} \mathrm{C}$ times the device's case temperature, at specified conditions of voltage, current, and temperature (expressed in ${ }^{\circ} \mathrm{C}$).
Note 8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device's rated temperature range.
Note 9: Quiescent current is defined in the circuit of Figure 1.
Note 10: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions. See Note 1.
Note 11: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 12: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.

Typical Performance Characteristics

Thermal Time Constant

Minimum Supply Voltage vs. Temperature

Accuracy vs. Temperature (Guaranteed)

Thermal Response
in Still Air

Quiescent Current
vs. Temperature (In Circuit of Figure 1.)

TL/H/5516-17
Accuracy vs. Temperature (Guaranteed)

TL/H/5516-18

Start-Up Response

Applications

The LM35 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface and its temperature will be within about $0.01^{\circ} \mathrm{C}$ of the surface temperature.
This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature of the LM35 die would be at an intermediate temperature between the surface temperature and the air temperature. This is expecially true for the TO-92 plastic package, where the copper leads are the principal thermal path to carry heat into the device, so its temperature might be closer to the air temperature than to the surface temperature.
To minimize this problem, be sure that the wiring to the LM35, as it leaves the device, is held at the same temperature as the surface of interest. The easiest way to do this is to cover up these wires with a bead of epoxy which will insure that the leads and wires are all at the same temperature as the surface, and that the LM35 die's temperature will not be affected by the air temperature.

The TO-46 metal package can also be soldered to a metal surface or pipe without damage. Of course, in that case the V - terminal of the circuit will be grounded to that metal. Alternatively, the LM35 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM35 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to insure that moisture cannot corrode the LM35 or its connections.
These devices are sometimes soldered to a small lightweight heat fin, to decrease the thermal time constant and speed up the response in slowly-moving air. On the other hand, a small thermal mass may be added to the sensor, to give the steadiest reading despite small deviations in the air temperature.

	no heat sink	small heat fin*	no heat sink	small heat fin**	no heat sink	small heat fin ${ }^{* *}$	no heat sink	small heat fin
Still air	$400^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$180^{\circ} \mathrm{C} / \mathrm{W}$	$140^{\circ} \mathrm{C} / \mathrm{W}$	$220^{\circ} \mathrm{C} / \mathrm{W}$	$110^{\circ} \mathrm{C} / \mathrm{W}$	$85^{\circ} \mathrm{C} / \mathrm{W}$	$60^{\circ} \mathrm{C} / \mathrm{W}$
Moving air	$100^{\circ} \mathrm{C} / \mathrm{W}$	$40^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$70^{\circ} \mathrm{C} / \mathrm{W}$	$105^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$25^{\circ} \mathrm{C} / \mathrm{W}$	$40^{\circ} \mathrm{C} / \mathrm{W}$
Still oil	$100^{\circ} \mathrm{C} / \mathrm{W}$	$40^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$70^{\circ} \mathrm{C} / \mathrm{W}$				
Stirred oil	$50^{\circ} \mathrm{C} / \mathrm{W}$	$30^{\circ} \mathrm{C} / \mathrm{W}$	$45^{\circ} \mathrm{C} / \mathrm{W}$	$40^{\circ} \mathrm{C} / \mathrm{W}$				
(Clamped to metal,								
Infinite heat sink)	$\left(24^{\circ} \mathrm{C} / \mathrm{W}\right)$					$\left(55^{\circ} \mathrm{C} / \mathrm{W}\right)$		$\left(23^{\circ} \mathrm{C} / \mathrm{W}\right)$

"Wakefield type 201, or $\mathbf{1 "}^{\prime \prime}$ disc of 0.020 " sheet brass, soldered to case, or similar.
** TO-92 and SO-8 packages glued and leads soldered to $1^{\prime \prime}$ square of $1 / 16^{\prime \prime}$ printed circuit board with 2 oz. foil or similar.

Typical Applications (Continued)

FIGURE 3. LM35 with Decoupling from Capacitive Load

CAPACITIVE LOADS

Like most micropower circuits, the LM35 has a limited ability to drive heavy capacitive loads. The LM35 by itself is able to drive 50 pf without special precautions. If heavier loads are anticipated, it is easy to isolate or decouple the load with a resistor; see Figure 3. Or you can improve the tolerance of capacitance with a series R-C damper from output to ground; see Figure 4.
When the LM35 is applied with a 200Ω load resistor as shown in Figure 5, 6, or 8, it is relatively immune to wiring

capacitance because the capacitance forms a bypass from ground to input, not on the output. However, as with any linear circuit connected to wires in a hostile environment, its performance can be affected adversely by intense electromagnetic sources such as relays, radio transmitters, motors with arcing brushes, SCR transients, etc, as its wiring can act as a receiving antenna and its internal junctions can act as rectifiers. For best results in such cases, a bypass capacitor from $V_{\mathbb{N}}$ to ground and a series R-C damper such as 75Ω in series with 0.2 or $1 \mu \mathrm{~F}$ from output to ground are often useful. These are shown in Figures 13, 14, and 16.

Typical Applications (Continued)

TL/H/5516-5
FIGURE 5. Two-Wire Remote Temperature Sensor (Grounded Sensor)

TL/H/5516-7
FIGURE 7. Temperature Sensor, Single Supply, $\mathbf{- 5 5 ^ { \circ }}$ to $+150^{\circ} \mathrm{C}$

TL/H/5516-9
FIGURE 9. 4-To-20 mA Current Source $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$

TL/H/5516-6
FIGURE 6. Two-Wire Remote Temperature Sensor (Output Referred to Ground)

TL/H/5516-8
FIGURE 8. Two-Wire Remote Temperature Sensor (Output Referred to Ground)

TL/H/5516-10
FIGURE 10. Fahrenheit Thermometer

Typical Applications (Continued)

TL/H/5516-11
FIGURE 11. Centigrade Thermometer (Analog Meter)

TL/H/5516-12
FIGURE 12. Expanded Scale Thermometer (50° to $\mathbf{8 0}{ }^{\circ}$ Fahrenheit, for Example Shown)

TL/H/5516-13
FIGURE 13. Temperature To Digital Converter (Serial Output) ($+128^{\circ} \mathrm{C}$ Full Scale)

TL/H/5516-14
FIGURE 14. Temperature To Digital Converter (Parallel TRI-STATE® Outputs for Standard Data Bus to $\mu \mathrm{P}$ Interface) ($128^{\circ} \mathrm{C}$ Full Scale)

Typical Applications (Continued)

TL/H/5516-16

* $=1 \%$ or 2% film resistor
-Trim R_{B} for $V_{B}=3.075 \mathrm{~V}$
-Trim R_{C} for $V_{C}=1.955 \mathrm{~V}$
-Trim R_{A} for $V_{A}=0.075 \mathrm{~V}+100 \mathrm{mV} /{ }^{\circ} \mathrm{C} \times \mathrm{T}_{\text {ambient }}$
-Example, $\mathrm{V}_{\mathrm{A}}=2.275 \mathrm{~V}$ at $22^{\circ} \mathrm{C}$
FIGURE 15. Bar-Graph Temperature Display (Dot Mode)

FIGURE 16. LM35 With Voltage-To-Frequency Converter And Isolated Output ($2^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} ; 20 \mathrm{~Hz}$ to 1500 Hz)

TL/H/5516-23

LM45B/LM45C SOT-23 Precision Centigrade Temperature Sensors

General Description

The LM45 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM45 does not require any external calibration or trimming to provide accuracies of $\pm 2^{\circ} \mathrm{C}$ at room temperature and $\pm 3^{\circ} \mathrm{C}$ over a full -20 to $+100^{\circ} \mathrm{C}$ temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM45's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with a single power supply, or with plus and minus supplies. As it draws only $120 \mu \mathrm{~A}$ from its supply, it has very low self-heating, less than $0.2^{\circ} \mathrm{C}$ in still air. The LM45 is rated to operate over a -20° to $+100^{\circ} \mathrm{C}$ temperature range.

Applications

- Battery Management
- FAX Machines

国 Printers

- Portable Medical Instruments
- HVAC
- Power Supply Modules
- Disk Drives
- Computers
- Automotive

Features

- Calibrated directly in ${ }^{\circ}$ Celsius (Centigrade)
- Linear $+10.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ scale factor
- $\pm 3^{\circ} \mathrm{C}$ accuracy guaranteed
- Rated for full -20° to $+100^{\circ} \mathrm{C}$ range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 4.0 V to 10 V
- Less than $120 \mu \mathrm{~A}$ current drain

Low self-heating, $0.20^{\circ} \mathrm{C}$ in still air

- Nonlinearity only $\pm 0.8^{\circ} \mathrm{C}$ max over temp

Low impedance output, 20Ω for 1 mA load

Connection Diagram

TL/H/11754-1
Top View
See NS' Package Number M03B
(JEDEC Registration TO-236AB)

Order Number	SOT-23 Device Marking	Supplied As
LM45BIM3	T4B	250 Units on Tape and Reel
LM45BIM3X	T4B	3000 Units on Tape and Reel
LM45CIM3	T4C	250 Units on Tape and Reel
LM45CIM3X	T4C	3000 Units on Tape and Reel

Absolute Maximum Ratings (Note 1)

Supply Voltage
+12 V to -0.2 V
$+\mathrm{V}_{\mathrm{S}}+0.6 \mathrm{~V}$ to -1.0 V
10 mA
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature
Lead Temperature SOT Package (Note 2):
Vapor Phase (60 seconds)
$215^{\circ} \mathrm{C}$
Infrared (15 seconds)

ESD Susceptibility (Note 3):
Human Body Model 2000V
Machine Model
TBD

Operating Ratings (Note 1)

Specified Temperature Range (Note 4)
$T_{\text {MIN }}$ to $T_{\text {MAX }}$
$-20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
+4.0 V to +10 V

Electrical Characteristics Unless otherwise noted, these specifications apply for $+\mathrm{V}_{\mathbf{S}}=+5 \mathrm{Vdc}$ and $\mathrm{I}_{\text {LOAD }}=$ $+50 \mu \mathrm{~A}$, in the circuit of Figure 2. These specifications also apply from $+2.5^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}$ in the circuit of Figure 1 for $+\mathrm{V}_{\mathrm{S}}=$ +5 Vdc . Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\mathbf{M A X}}$; all other limits $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Conditions	LM45B		LM45C		Units (Limit)
		Typical	Limit (Note 5)	Typical	Limit (Note 5)	
Accuracy (Note 6)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 2.0 \\ & \pm 3.0 \\ & \pm 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 3.0 \\ & \pm 4.0 \\ & \pm 4.0 \\ & \hline \end{aligned}$	
Nonlinearity (Note 7)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}$		± 0.8		± 0.8	${ }^{\circ} \mathrm{C}$ (max)
Sensor Gain (Average Slope)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$		$\begin{gathered} +9.7 \\ +10.3 \end{gathered}$		$\begin{array}{r} +9.7 \\ +10.3 \\ \hline \end{array}$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$ (min) $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ (max)
Load Regulation (Note 8)	$0 \leq L_{L} \leq+1 \mathrm{~mA}$		± 35		± 35	$\mathrm{mV} / \mathrm{mA}$ (max)
Line Regulation (Note 8)	$+4.0 \mathrm{~V} \leq+\mathrm{V}_{\mathrm{S}} \leq+10 \mathrm{~V}$		$\begin{aligned} & \pm 0.80 \\ & \pm \mathbf{1 . 2} \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 0.80 \\ & \pm \mathbf{1 . 2} \end{aligned}$	mV/V (max) mV/V (max)
Quiescent Current (Note 9)	$\begin{aligned} & +4.0 \mathrm{~V} \leq+\mathrm{V}_{\mathrm{S}} \leq+10 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & +4.0 \mathrm{~V} \leq+\mathrm{V}_{S} \leq+10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 120 \\ & 160 \end{aligned}$		$\begin{gathered} 120 \\ 160 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ (max) $\mu \mathrm{A}(\max)$
Change of Quiescent Current (Note 8)	$4.0 \mathrm{~V} \leq+\mathrm{V}_{S} \leq 10 \mathrm{~V}$		2.0		2.0	$\mu \mathrm{A}$ (max)
Temperature Coefficient of Quiescent Current		+2.0		+2.0		$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Minimum Temperature for Rated Accuracy	In circuit of Figure $1, \mathrm{I}_{\mathrm{L}}=0$		+2.5		+2.5	${ }^{\circ} \mathrm{C}$ (min)
Long Term Stability (Note 10)	$\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {MAX }}$, for 1000 hours	± 0.12		± 0.12		${ }^{\circ} \mathrm{C}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.
Note 3: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor. Machine model, 200 pF discharged directly into each pin.
Note 4: Thermal resistance of the SOT-23 package is $260^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient when attached to a printed circuit board with 2 oz. foil as shown in Figure 3.
Note 5: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 6: Accuracy is defined as the errnr between the output voltage and $10 \mathrm{mv} /{ }^{\circ} \mathrm{C}$ times the device's case temperature, at specified conditions of voltage, current, and temperature (expressed in ${ }^{\circ} \mathrm{C}$).

Note 7: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device's rated temperature range.

Note 8: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.
Note 9: Quiescent current is measured using the circuit of Figure 1.
Note 10: For best long-term stability, any precision circuit will give best results if the unit is aged at a warm temperature, and/or temperature cycled for at least 46 hours before long-term life test begins. This is especially true when a small (Surface-Mount) part is wave-soldered; allow time for stress relaxation to occur.

Typical Performance Characteristics

To generate these curves the LM45 was mounted to a printed circuit board as shown in Figure 3.

Thermal Response in Stirred Oil Bath with Heat Sink

Quiescent Current vs Temperature (In Circuit of Figure 2)

Thermal Time Constant

Accuracy vs Temperature (Guaranteed)

TL/H/11754-5

Thermal Response in Still Air with Heat Sink (Figure 3)

Quiescent Current vs Temperature (In Circuit of Figure 1)

TL/H/11754-23
FIGURE 3. Printed Circuit Board Used for Heat Sink to Generate All Curves. $1 / 2^{\prime \prime}$ Square Printed Circuit Board with 2 oz. Foil or Similar

Applications

The LM45 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface and its temperature will be within about $0.2^{\circ} \mathrm{C}$ of the surface temperature.
This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature of the LM45 die would be at an intermediate temperature between the surface temperature and the air temperature.
To ensure good thermal conductivity the backside of the LM45 die is directly attached to the GND pin. The lands and traces to the LM45 will, of course, be part of the printed circuit board, which is the object whose temperature is being measured. These printed circuit board lands and traces will not cause the LM45s temperature to deviate from the desired temperature.
Alternatively, the LM45 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed

Typical Applications

CAPACITIVE LOADS

Like most micropower circuits, the LM45 has a limited ability to drive heavy capacitive loads. The LM45 by itself is able to drive 500 pF without special precautions. If heavier loads are anticipated, it is easy to isolate or decouple the load with a resistor; see Figure 4. Or you can improve the tolerance of capacitance with a series R-C damper from output to ground; see Figure 5.
Any linear circuit connected to wires in a hostile environment can have its performance affected adversely by intense electromagnetic sources such as relays, radio transmitters, motors with arcing brushes, SCR transients, etc, as its wiring can act as a receiving antenna and its internal junctions can act as rectifiers. For best results in such cases, a bypass capacitor from $\mathrm{V}_{1 N}$ to ground and a series R-C damper such as 75Ω in series with 0.2 or $1 \mu \mathrm{~F}$ from output to ground, as shown in Figure 5, are often useful.

FIGURE 4. LM45 with Decoupling from Capacitive Load
into a threaded hole in a tank. As with any IC, the LM45 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to insure that moisture cannot corrode the LM45 or its connections.

TemperatureRise of LM45 Due to Self-Heating (Thermal Resistance) SOT-23** SOT-23 no heat sink \quad small heat fin*		
Still air	$450^{\circ} \mathrm{C} / \mathrm{W}$	$260^{\circ} \mathrm{C} / \mathrm{W}$
Moving air		$180^{\circ} \mathrm{C} / \mathrm{W}$

* Heat sink used is $1 / 2^{\prime \prime}$ square printed circuit board with 2 oz . foil with part attached as shown in Figure 3.
** Part soldered to 30 gauge wire.

FIGURE 5. LM45 with R-C Damper

TL/H/11754-12
FIGURE 6. Temperature Sensor, Single Supply, $-20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Typical Applications (Continued)

FIGURE 7. 4-to-20 mA Current Source ($\mathbf{0}^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$)

TL/H/11754-16
FIGURE 9. Centigrade Thermometer (Analog Meter)

TL/H/11754-15
FIGURE 8. Fahrenheit Thermometer

TL/H/11754-17
FIGURE 10. Expanded Scale Thermometer (50° to 80° Fahrenheit, for Example Shown)

TL/H/11754-18
FIGURE 11. Temperature To Digital Converter (Serial Output) ($+128^{\circ} \mathrm{C}$ Full Scale)

Typical Applications (Continued)

TL/H/11754-19
FIGURE 12. Temperature To Digital Converter (Parallel TRI-STATE® Outputs for Standard Data Bus to $\mu \mathrm{P}$ Interface) ($128^{\circ} \mathrm{C}$ Fuli Scale)

* $=1 \%$ or 2% film resistor
$-\operatorname{Trim} R_{B}$ for $V_{B}=3.075 \mathrm{~V}$
-Trim R_{C} for $V_{C}=1.955 \mathrm{~V}$
-Trim R_{A} for $V_{A}=0.075 \mathrm{~V}+100 \mathrm{mV} /{ }^{\circ} \mathrm{C} \times \mathrm{T}_{\text {ambient }}$
-Example, $\mathrm{V}_{\mathrm{A}}=2.275 \mathrm{~V}$ at $22^{\circ} \mathrm{C}$
FIGURE 13. Bar-Graph Temperature Display (Dot Mode)

Typical Applications (Continued)

TL/H/11754-21
FIGURE 14. LM45 With Voltage-To-Frequency Converter And Isolated Output ($2.5^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C} ; \mathbf{2 5 ~ H z}$ to $\mathbf{1 0 0 0 ~ H z}$)

Block Diagram

LM50B/LM50C Single-Supply Centigrade Temperature Sensor

General Description

The LM50 is a precision integrated-circuit temperature sensor that can sense a $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range using a single positive supply. The LM50's output voltage is linearly proportional to Celsius (Centigrade) temperature $\left(+10 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$ and has a DC offset of +500 mV . The offset allows reading negative temperatures without the need for a negative supply. The ideal output voltage of the LM50 ranges from +100 mV to +1.75 V for $\mathrm{a}-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The LM50 does not require any external calibration or trimming to provide accuracies of $\pm 3^{\circ} \mathrm{C}$ at room temperature and $\pm 4^{\circ} \mathrm{C}$ over the full $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. Trimming and calibration of the LM50 at the wafer level assure low cost and high accuracy. The LM50's linear output, +500 mV offset, and factory calibration simplify circuitry required in a single supply environment where reading negative temperatures is required. Because the LM50's quiescent current is less than $130 \mu \mathrm{~A}$, self-heating is limited to a very low $0.2^{\circ} \mathrm{C}$ in still air.

- Battery Management

- Automotive
- FAX Machines
- Printers
- Portable Medical Instruments
- HVAC
- Power Supply Modules

Features

- Calibrated directly in ${ }^{\circ}$ Celsius (Centigrade)
- Linear $+10.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ scale factor
- $\pm 2^{\circ} \mathrm{C}$ accuracy guaranteed at $+25^{\circ} \mathrm{C}$
- Specified for full -40° to $+125^{\circ} \mathrm{C}$ range
- Suitable for remote applications

■ Low cost due to wafer-level trimming

- Operates from 4.5 V to 10 V
- Less than $130 \mu \mathrm{~A}$ current drain
- Low self-heating, less than $0.2^{\circ} \mathrm{C}$ in still air
- Nonlinearity less than $0.8^{\circ} \mathrm{C}$ over temp

Applications

- Computers
- Disk Drives

Connection Diagrams

See NS Package Number M03B
(JEDEC Registration TO-236AB)

TO-92
Plastic Package

bottom view
TL/H/12370-2
Order Number LM50BIZ
or LM50CIZ
See NS Package Number Z03A

Order Number	SOT-23 Device Marking	Supplied As
LM50BIM3	T5B	250 Units on Tape and Reel
LM50CIM3	T5C	250 Units on Tape and Reel
LM50BIM3X	T5B	3000 Units on Tape and Reel
LM50CIM3X	T5C	3000 Units on Tape and Reel

Typical Applications

$$
\begin{aligned}
& \text { (4.5V TO 1OV) } \\
& \text { LM50 } \\
& \text { OUTPUT } \\
& V_{\text {OUT }}=\left(10 \mathrm{mV} /{ }^{\circ} \mathrm{C} \times \text { Temp }{ }^{\circ} \mathrm{C}\right)+500 \mathrm{mV} \\
& \mathrm{~V}_{\text {OUT }}=+1.750 \mathrm{~V} \text { at }+125^{\circ} \mathrm{C} \\
& V_{\text {OUT }}=+750 \mathrm{mV} \text { at }+25^{\circ} \mathrm{C} \\
& V_{\text {OUT }}=+100 \mathrm{mV} \text { at }-40^{\circ} \mathrm{C}
\end{aligned}
$$

TL/H/12370-3
FIGURE 1. Full-Range Centigrade Temperature Sensor ($-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

National Semiconductor

LM134/LM234/LM334

3-Terminal Adjustable Current Sources

General Description

The LM134/LM234/LM334 are 3-terminal adjustable current sources featuring 10,000:1 range in operating current, excellent current regulation and a wide dynamic voltage range of 1 V to 40 V . Current is established with one external resistor and no other parts are required. Initial current accuracy is $\pm 3 \%$. The LM134/LM234/LM334 are true floating current sources with no separate power supply connections. In addition, reverse applied voltages of up to 20 V will draw only a few dozen microamperes of current, allowing the devices to act as both a rectifier and current source in AC applications.
The sense voltage used to establish operating current in the LM134 is 64 mV at $25^{\circ} \mathrm{C}$ and is directly proportional to absolute temperature $\left({ }^{\circ} \mathrm{K}\right)$. The simplest one external resistor connection, then, generates a current with $\approx+0.33 \% /{ }^{\circ} \mathrm{C}$ temperature dependence. Zero drift operation can be obtained by adding one extra resistor and a diode.
Applications for the current sources include bias networks, surge protection, low power reference, ramp generation, LED driver, and temperature sensing. The LM134-3/

LM234-3 and LM134-6/LM234-6 are specified as true temperature sensors with guaranteed initial accuracy of $\pm 3^{\circ} \mathrm{C}$ and $\pm 6^{\circ} \mathrm{C}$, respectively. These devices are ideal in remote sense applications because series resistance in long wire runs does not affect accuracy. In addition, only 2 wires are required.
The LM134 is guaranteed over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM 234 from $-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ and the LM334 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. These devices are available in TO-46 hermetic, TO-92 and SO-8 plastic packages.

Features

m Operates from 1 V to 40 V

- $0.02 \% / \mathrm{V}$ current regulation

■ Programmable from $1 \mu \mathrm{~A}$ to 10 mA

- True 2-terminal operation
- Available as fully specified temperature sensor

国 $\pm 3 \%$ initial accuracy

Connection Diagrams

SO-8 Surface Mount Package

Order Number LM334M See NS Package Number M08A

SO-8 Alternative Pinout Surface Mount Package

Order Number LM334SM See NS Package Number M08A

T0-46
Metal Can Package

TL/H/5697-12
Bottom View
v- Pin is electrically connected to case.
Order Number LM134H,
LM134H-3, LM134H-6, LM234H or LM334H See NS Package Number H03H

TO-92 Plastic Package

TL/H/5697-10
Bottom View
Order Number LM334Z, LM234Z-3 or LM234Z-6

See NS Package Number Z03A

Basic 2-Terminal Current Source


```
Absolute Maximum Ratings
```

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
V^{+}to V^{-}Forward Voltage
LM134/LM234/LM334
LM134-3/LM134-6/LM234-3/LM234-6
V^{+}to V^{-}Reverse Voltage 20 V
R Pin to V^{-}Voltage 5 V
Set Current
Power Dissipation
ESD Susceptibility (Note 5)

Operating Temperature Range (Note 4)

LM134/LM134-3/LM134-6	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM234/LM234-3/LM234-6	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
LM334	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Soldering Information

TO-92 Package $(10 \mathrm{sec})$.	$260^{\circ} \mathrm{C}$
TO-46 Package $(10 \mathrm{sec})$.	$300^{\circ} \mathrm{C}$
SO Package	
Vapor Phase $(60 \mathrm{sec})$.	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

Electrical Characteristics (Note 1)

Parameter	Conditions	LM134/LM234			LM334			Units
		Min	Typ	Max	Min	Typ	Max	
Set Current Error, $\mathrm{V}^{+}=2.5 \mathrm{~V}$, (Note 2)	$\begin{aligned} & 10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{SET}} \leq 5 \mathrm{~mA} \\ & 2 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}}<10 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 3 \\ & 5 \\ & 8 \end{aligned}$			$\begin{gathered} 6 \\ 8 \\ 12 \end{gathered}$	$\begin{aligned} & \% \\ & \% \\ & \% \end{aligned}$
Ratio of Set Current to Bias Current	$\begin{aligned} & 100 \mu \mathrm{~A} \leq I_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA} \leq I_{\mathrm{SET}} \leq 5 \mathrm{~mA} \\ & 2 \mu \mathrm{~A} \leq I_{\mathrm{SET}} \leq 100 \mu \mathrm{~A} \end{aligned}$	14	$\begin{aligned} & 18 \\ & 14 \\ & 18 \end{aligned}$	23	14	$\begin{aligned} & 18 \\ & 14 \\ & 18 \end{aligned}$	$\begin{array}{r} 26 \\ 26 \end{array}$	
Minimum Operating Voltage	$\begin{aligned} & 2 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 100 \mu \mathrm{~A} \\ & 100 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{SET}} \leq 5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.9 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.9 \\ & 1.0 \end{aligned}$.	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{v} \end{aligned}$
Average Change in Set Current with Input Voltage	$\begin{aligned} & 2 \mu \mathrm{~A} \leq 1_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1.5 \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 40 \mathrm{~V} \\ & 1 \mathrm{~mA}<I_{\mathrm{SET}} \leq 5 \mathrm{~mA} \\ & 1.5 \mathrm{~V} \leq \mathrm{V} \leq 5 \mathrm{~V} \\ & 5 \mathrm{~V} \leq \mathrm{V} \leq 40 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.02 \\ & 0.01 \\ & \\ & 0.03 \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.03 \end{aligned}$		$\begin{aligned} & 0.02 \\ & 0.01 \\ & \\ & 0.03 \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{gathered} 0.1 \\ 0.05 \end{gathered}$	$\begin{aligned} & \% / V \\ & \% / V \\ & \% / V \\ & \% / V \end{aligned}$
Temperature Dependence of Set Current (Note 3)	$25 \mu \mathrm{~A} \leq \mathrm{I}_{\text {SET }} \leq 1 \mathrm{~mA}$	0.96 T	T	1.04T	0.96 T	T	1.04 T	
Effective Shunt Capacitance			15			15		pF

Note 1: Unless otherwise specified, tests are performed at $\mathrm{T}_{j}=25^{\circ} \mathrm{C}$ with pulse testing so that junction temperature does not change during test.
Note 2: Set current is the current flowing into the V^{+}pin. For the Basic 2-Terminal Current Source circuit shown on the first page of this data sheet. ISET is determined by the following formula: $I_{S E T}=67.7 \mathrm{mV} / \mathrm{R}_{\text {SET }}$ (@ $25^{\circ} \mathrm{C}$). Set current error is expressed as a percent deviation from this amount. ISET increases at $0.336 \% /{ }^{\circ} \mathrm{C} @ \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\left(227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$.
Note 3: ISET is directly proportional to absolute temperature (${ }^{\circ} \mathrm{K}$). $I_{S E T}$ at any temperature can be calculated from: $I_{S E T}=I_{0}\left(T / T_{0}\right)$ where I_{0} is $I_{S E T}$ measured at T_{0} (${ }^{\circ} \mathrm{K}$).
Note 4: For elevated temperature operation, T_{j} max is:

LM134	$150^{\circ} \mathrm{C}$
LM234	$125^{\circ} \mathrm{C}$
LM334	$100^{\circ} \mathrm{C}$

Thermal Resistance	TO-92	TO-46	SO-8
θ_{ja} (Junction to Ambient)	$180^{\circ} \mathrm{C} / \mathrm{W}\left(0.4^{\prime \prime}\right.$ leads) $160^{\circ} \mathrm{C} / \mathrm{W}\left(0.125^{\prime \prime}\right.$ leads)	$440^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
θ_{jc} (Junction to Case)	N / A	$32^{\circ} \mathrm{C} / \mathrm{W}$	$80^{\circ} \mathrm{C} / \mathrm{W}$

Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Electrical Characteristics (Note 1) (Continued)

Parameter	Conditions	LM134-3, LM234-3			LM134-6, LM234-6			Units
		Min	Typ	Max	Min	Typ	Max	
Set Current Error, $\mathrm{V}^{+}=2.5 \mathrm{~V}$, (Note 2)	$\begin{aligned} & 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \end{aligned}$			± 1			± 2	\%
Equivalent Temperature Error				± 3			± 6	${ }^{\circ} \mathrm{C}$
Ratio of Set Current to Bias Current	$100 \mu \mathrm{~A} \leq \mathrm{I}_{\text {SET }} \leq 1 \mathrm{~mA}$	14	18	26	14	18	26	
Minimum Operating Voltage	$100 \mu \mathrm{~A} \mathrm{I}_{\text {SET }} \leq 1 \mathrm{~mA}$		0.9			0.9		V
Average Change in Set Current with Input Voltage	$\begin{aligned} & 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1.5 \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.02 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.03 \end{aligned}$		$\begin{aligned} & 0.02 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
Temperature Dependence of Set Current (Note 3) and	$100 \mu \mathrm{~A} \leq \mathrm{I}_{\text {SET }} \leq 1 \mathrm{~mA}$	0.98T	T	1.02 T	0.97T	T	1.037	
Equivalent Slope Error				± 2			± 3	\%
Effective Shunt Capacitance			15			15		pF

Typical Performance Characteristics

Transient Response

TIME (Note scale changes for each current)

TL/H/5697-2

Typical Performance Characteristics（Continued）

TL／H／5697－29

Application Hints

The LM134 has been designed for ease of application，but a general discussion of design features is presented here to familiarize the designer with device characteristics which may not be immediately obvious．These include the effects of slewing，power dissipation，capacitance，noise，and con－ tact resistance．

CALCULATING RSET

The total current through the LM134（ISET）is the sum of the current going through the SET resistor（ I_{R} ）and the LM134＇s bias current（IBIAS），as shown in Figure 1.

TL／H／5697－27
FIGURE 1．Basic Current Source
A graph showing the ratio of these two currents is supplied under Ratio of $I_{\text {SET }}$ to $I_{\text {BIAS }}$ in the Typical Performance Characteristics section．The current flowing through R RET $^{\text {is }}$ determined by V_{R} ，which is approximately $214 \mu \mathrm{~V} /{ }^{\circ} \mathrm{K}$ （ $64 \mathrm{mV} / 298^{\circ} \mathrm{K} \sim 214 \mu \mathrm{~V} /{ }^{\circ} \mathrm{K}$ ）．

$$
I_{S E T}=I_{R}+I_{B I A S}=\frac{V_{R}}{R_{S E T}}+I_{B I A S}
$$

Since（for a given set current）$I_{\text {BIAS }}$ is simply a percentage of $I_{S E T}$ ，the equation can be rewritten

$$
\mathrm{I}_{\mathrm{SET}}=\left(\frac{V_{R}}{R_{S E T}}\right)\left(\frac{n}{n-1}\right)
$$

where n is the ratio of $\mathrm{I}_{\text {SET }}$ to I IBIAS as specified in the Elec－ trical Characteristics Section and shown in the graph．Since n is typically 18 for $2 \mu \mathrm{~A} \leq \mathrm{I}_{\text {SET }} \leq 1 \mathrm{~mA}$ ，the equation can be further simplified to

$$
I_{\mathrm{SET}}=\left(\frac{\mathrm{V}_{\mathrm{R}}}{R_{\mathrm{SET}}}\right)(1.059)=\frac{227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{K}}{\mathrm{R}_{\mathrm{SET}}}
$$

for most set currents．

SLEW RATE

At slew rates above a given threshold（see curve），the LM134 may exhibit non－linear current shifts．The slewing rate at which this occurs is directly proportional to ISET．At $\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$ ，maximum $\mathrm{dV} / \mathrm{dt}$ is $0.01 \mathrm{~V} / \mu \mathrm{s}$ ；at $\mathrm{I}_{\text {SET }}=$ 1 mA ，the limit is $1 \mathrm{~V} / \mu \mathrm{s}$ ．Slew rates above the limit do not harm the LM134，or cause large currents to flow．

THERMAL EFFECTS

Internal heating can have a significant effect on current reg－ ulation for ISET greater than $100 \mu \mathrm{~A}$ ．For example，each 1 V increase across the LM134 at ISET $=1 \mathrm{~mA}$ will increase junction temperature by $\approx 0.4^{\circ} \mathrm{C}$ in still air．Output current （ISET）has a temperature coefficient of $\approx 0.33 \% /{ }^{\circ} \mathrm{C}$ ，so the change in current due to temperature rise will be （0．4）$(0.33)=0.132 \%$ ．This is a $10: 1$ degradation in regula－ tion compared to true electrical effects．Thermal effects， therefore，must be taken into account when DC regulation is critical and ISET exceeds $100 \mu \mathrm{~A}$ ．Heat sinking of the TO－46 package or the TO－92 leads can reduce this effect by more than 3：1．

Application Hints (Continued)

SHUNT CAPACITANCE

In certain applications, the 15 pF shunt capacitance of the LM134 may have to be reduced, either because of loading problems or because it limits the AC output impedance of the current source. This can be easily accomplished by buffering the LM134 with an FET as shown in the applications. This can reduce capacitance to less than 3 pF and improve regulation by at least an order of magnitude. DC characteristics (with the exception of minimum input voltage), are not affected.

NOISE

Current noise generated by the LM134 is approximately 4 times the shot noise of a transistor. If the LM134 is used as an active load for a transistor amplifier, input referred noise will be increased by about 12 dB . In many cases, this is acceptable and a single stage amplifier can be built with a voltage gain exceeding 2000.

LEAD RESISTANCE

The sense voltage which determines operating current of the LM134 is less than 100 mV . At this level, thermocouple or lead resistance effects should be minimized by locating the current setting resistor physically close to the device. Sockets should be avoided if possible. It takes only 0.7Ω contact resistance to reduce output current by 1% at the 1 mA level.

SENSING TEMPERATURE

The LM134 makes an ideal remote temperature sensor because its current mode operation does not lose accuracy over long wire runs. Output current is directly proportional to absolute temperature in degrees Kelvin, according to the following formula:

$$
\mathrm{I}_{\mathrm{SET}}=\frac{\left(227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{K}\right)(\mathrm{T})}{\mathrm{R}_{\mathrm{SET}}}
$$

Calibration of the LM134 is greatly simplified because of the fact that most of the initial inaccuracy is due to a gain term (slope error) and not an offset. This means that a calibration consisting of a gain adjustment only will trim both slope and zero at the same time. In addition, gain adjustment is a one point trim because the output of the LM134 extrapolates to zero at $0^{\circ} \mathrm{K}$, independent of RSET or any initial inaccuracy.

FIGURE 2. Gain Adjustment
This property of the LM134 is illustrated in the accompanying graph. Line abc is the sensor current before trimming. Line $a^{\prime} b^{\prime} c^{\prime}$ is the desired output. A gain trim done at T2 will move the output from b to b^{\prime} and will simultaneously correct the slope so that the output at T1 and T3 will be correct. This gain trim can be done on RSET or on the load resistor
used to terminate the LM134. Slope error after trim will normally be less than $\pm 1 \%$. To maintain this accuracy, however, a low temperature coefficient resistor must be used for $\mathrm{R}_{\mathrm{SET}}$.
A $33 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift of RSET will give a 1% slope error because the resistor will normally see about the same temperature variations as the LM134. Separating RSET from the LM134 requires 3 wires and has lead resistance problems, so is not normally recommended. Metal film resistors with less than $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift are readily available. Wire wound resistors may also be used where best stability is required.

APPLICATION AS A ZERO TEMPERATURE COEFFICENT CURRENT SOURCE

Adding a diode and a resistor to the standard LM134 configuration can cancel the temperature-dependent characteristic of the LM134. The circuit shown in Figure 3 balances the positive tempco of the LM134 (about $+0.23 \mathrm{mV} /{ }^{\circ} \mathrm{C}$) with the negative tempco of a forward-biased silicon diode (about - $2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$).

TL/H/5697-28
FIGURE 3. Zero Tempco Current Source
The set current ($l_{\text {SET }}$) is the sum of I_{1} and l_{2}, each contributing approximately 50% of the set current, and I IIAS. I IIAS is usually included in the I_{1} term by increasing the V_{R} value used for calculations by 5.9%. (See CALCULATING RSET.)

$$
\begin{aligned}
I_{S E T} & =I_{1}+I_{2}+I_{B I A S}, \text { where } \\
I_{1} & =\frac{V_{R}}{R_{1}} \quad \text { and } I_{2}=\frac{V_{R}+V_{D}}{R_{2}}
\end{aligned}
$$

The first step is to minimize the tempco of the circuit, using the following equations. An example is given using a value of $+227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ as the tempco of the LM134 (which includes the $\mathrm{I}_{\mathrm{BIAS}}$ component), and $-2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ as the tempco of the diode (for best results, this value should be directly measured or obtained from the manufacturer of the diode).

$$
\begin{aligned}
\mathrm{ISET} & =\mathrm{I}_{1}+\mathrm{I}_{2} \\
\frac{\mathrm{~d} \mathrm{ISET}}{\mathrm{dT}} & =\frac{\mathrm{d} l_{1}}{\mathrm{dT}}+\frac{\mathrm{dl}_{2}}{\mathrm{dT}} \\
& \approx \frac{227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}}{\mathrm{R}_{1}}+\frac{227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}-2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}}{\mathrm{R}_{2}} \\
& =0(\text { solve for tempco }=0)
\end{aligned}
$$

Application Hints (Continued)

$$
\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}} \approx \frac{2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}-227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}}{227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}} \approx 10.0
$$

With the R_{1} to R_{2} ratio determined, values for R_{1} and R_{2} should be determined to give the desired set current. The formula for calculating the set current at $T=25^{\circ} \mathrm{C}$ is shown below, followed by an example that assumes the forward voltage drop across the diode (V_{D}) is 0.6 V , the voltage across R_{1} is $67.7 \mathrm{mV}\left(64 \mathrm{mV}+5.9 \%\right.$ to account for $\left.l_{\text {BIAS }}\right)$, and $R_{2} / R_{1}=10$ (from the previous calculations).

$$
\begin{aligned}
I_{S E T} & =I_{1}+I_{2}+I_{B I A S} \\
& =\frac{V_{R}}{R_{1}}+\frac{V_{R}+V_{D}}{R_{2}} \\
& \approx \frac{67.7 \mathrm{mV}}{R_{1}}+\frac{67.7 \mathrm{mV}+0.6 \mathrm{~V}}{10.0 R_{1}} \\
I_{\text {SET }} & \approx \frac{0.134 V}{R_{1}}
\end{aligned}
$$

This circuit will eliminate most of the LM134's temperature coefficient, and it does a good job even if the estimates of the diode's characteristics are not accurate (as the following example will show). For lowest tempco with a specific diode at the desired $I_{\text {SET }}$, however, the circuit should be built and tested over temperature. If the measured tempco of ISET is positive, R_{2} should be reduced. If the resulting tempco is negative, R_{2} should be increased. The recommended diode for use in this circuit is the 1 N 457 because its tempco is centered at 11 times the tempco of the LM134, allowing R_{2} $=10 R_{1}$. You can also use this circuit to create a current source with non-zero tempcos by setting the tempco component of the tempco equation to the desired value instead of 0 .
EXAMPLE: A 1 mA , Zero-Tempco Current Source
First, solve for R_{1} and R_{2} :

$$
\begin{gathered}
\mathrm{I}_{\mathrm{SET}} \approx 1 \mathrm{~mA}=\frac{0.134 \mathrm{~V}}{R_{1}} \\
\mathrm{R}_{1}=134 \Omega=10 \mathrm{R}_{2} \\
\mathrm{R}_{2}=1340 \Omega
\end{gathered}
$$

Typical Applications

TL/H/5697-15
*Select R3 $=V_{\text {REF }} / 583 \mu A . V_{\text {REF }}$ may be any stable positive voltage $\geq 2 V$ Trim R3 to calibrate

The values of R_{1} and R_{2} can be changed to standard 1\% resistor values ($R_{1}=133 \Omega$ and $R_{2}=1.33 \mathrm{k} \Omega$) with less than a 0.75% error.
If the forward voltage drop of the diode was 0.65 V instead of the estimate of 0.6 V (an error of 8%), the actual set current will be

$$
\begin{aligned}
I_{\text {SET }} & =\frac{67.7 \mathrm{mV}}{R_{1}}+\frac{67.7 \mathrm{mV}+0.65 \mathrm{~V}}{R_{2}} \\
& =\frac{67.7 \mathrm{mV}}{133}+\frac{67.7 \mathrm{mV}+0.65 \mathrm{~V}}{1330} \\
& =1.049 \mathrm{~mA}
\end{aligned}
$$

an error of less than 5%.
If the estimate for the tempco of the diode's forward voltage drop was off, the tempco cancellation is still reasonably effective. Assume the tempco of the diode is $2.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ instead of $2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ (an error of 4%). The tempco of the circuit is now:

$$
\begin{aligned}
\frac{\mathrm{dl} \text { SET }}{\mathrm{dT}} & =\frac{\mathrm{d} l_{1}}{\mathrm{dT}}+\frac{\mathrm{d} l_{2}}{\mathrm{dT}} \\
& =\frac{227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}}{133 \Omega}+\frac{227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}-2.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}}{1330 \Omega} \\
& =-77 \mathrm{nA} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

A 1 mA LM134 current source with no temperature compensation would have a set resistor of 68Ω and a resulting tempco of

$$
\frac{227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}}{68 \Omega}=3.3 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}
$$

So even if the diode's tempco varies as much as $\pm 4 \%$ from its estimated value, the circuit still eliminates 98% of the LM134's inherent tempco.

TL/H/5697-14

Typical Applications（Continued）
Low Output Impedance Thermometer
$V_{I N} \geq 4.8 \mathrm{~V}$
 $V_{\text {OUT }}=10 \mathrm{mV} / \mathrm{K}$
$Z_{\text {OUT }} \leq 100 \Omega$
＂Output impedance of the LM134 at the＂R＂pin is approximately $\frac{-R_{2}}{16}$ where R_{2} is the equivalent external resistance connected from the V^{-}pin to ground．This negative resistance can be reduced by a factor of 5 or more by inserting an equivalent resistor $R_{3}=\left(R_{2} / 16\right)$ in series with the output．

TL／H／5697－6

Higher Output Current

Micropower Bias

Low Input Voltage Reference Driver

Typical Applications (Continued)

*Select ratio of R1 to R2 to obtain zero temperature drift
1.2V Regulator with 1.8 V Minimum Input

TL/H/5697-7
*Select ratio of R1 to R2 for zero temperature drift

Zener Biasing

Alternate Trimming Technique

Buffer for Photoconductive Cell

TL/H/5697-8
*For $\pm 10 \%$ adjustment, select R $_{\text {SET }}$
10% high, and make R1 ≈ 3 R $_{\text {SET }}$

Typical Applications (Continued)
FET Cascoding for Low Capacitance and/or Ultra High Output Impedance

TL/H/5697-22
*Select Q1 or Q2 to ensure at least 1 V across the LM134. $\mathrm{V}_{\mathrm{p}}\left(1-\mathrm{I}_{\mathrm{SET}} / I_{\mathrm{DSS}}\right) \geq 1.2 \mathrm{~V}$.

Schematic Diagram

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors

General Description

The LM135 series are precision, easily-calibrated, integrated circuit temperature sensors. Operating as a 2-terminal zener, the LM135 has a breakdown voltage directly proportional to absolute temperature at $+10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$. With less than 1Ω dynamic impedance the device operates over a current range of $400 \mu \mathrm{~A}$ to 5 mA with virtually no change in performance. When calibrated at $25^{\circ} \mathrm{C}$ the LM135 has typically less than $1^{\circ} \mathrm{C}$ error over a $100^{\circ} \mathrm{C}$ temperature range. Unlike other sensors the LM135 has a linear output.
Applications for the LM135 include almost any type of temperature sensing over a $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ temperature range. The low impedance and linear output make interfacing to readout or control circuitry especially easy.
The LM135 operates over a $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ temperature range while the LM235 operates over a $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
temperature range. The LM 335 operates from $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The LM135/LM235/LM335 are available packaged in hermetic TO-46 transistor packages while the LM335 is also available in plastic TO-92 packages.

Features

- Directly calibrated in ${ }^{\circ}$ Kelvin
- $1^{\circ} \mathrm{C}$ initial accuracy available
- Operates from $400 \mu \mathrm{~A}$ to 5 mA
- Less than 1Ω dynamic impedance
- Easily calibrated
- Wide operating temperature range
- $200^{\circ} \mathrm{C}$ overrange
- Low cost

Schematic Diagram

Connection Diagrams

TO-92
Plastic Package

Bottom View
Order Number LM335Z or LM335AZ See NS Package Number Z03A

SO-8
Surface Mount Package

TL/H/5698-25
Order Number LM335M or LM335AM
See NS Package Number M08A

TO-46
Metal Can Package*

TL/H/5698-26
Bottom View
*Case is connected to negative pin
Order Number LM135H,

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
(Note 4)
Reverse Current
15 mA
10 mA
Forward Current
Storage Temperature

TO-46 Package	$-60^{\circ} \mathrm{C}$ to $+180^{\circ} \mathrm{C}$
TO-92 Package	$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
SO-8 Package	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Specified Operating Temp. Range

	Continuous	Intermittent (Note 2)
LM135, LM135A	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
LM235, LM235A	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LM335, LM335A	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)		
TO-92 Package:	$260^{\circ} \mathrm{C}$	
TO-46 Package:	$300^{\circ} \mathrm{C}$	
SO-8 Package:	$300^{\circ} \mathrm{C}$	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$	
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$	

Temperature Accuracy LM135/LM235, LM135A/LM235A (Note 1)

Parameter	Conditions	LM135A/LM235A			LM135/LM235			Units
		Min	Typ	Max	Min	Typ	Max	
Operating Output Voltage	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	2.97	2.98	2.99	2.95	2.98	3.01	V
Uncalibrated Temperature Error	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.5	1		1	3	${ }^{\circ} \mathrm{C}$
Uncalibrated Temperature Error	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{C}} \leq \mathrm{T}_{\text {MAX }}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		1.3	2.7		2	5	${ }^{\circ} \mathrm{C}$
Temperature Error with $25^{\circ} \mathrm{C}$ Calibration	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{C}} \leq \mathrm{T}_{\text {MAX }}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.3	1		0.5	1.5	${ }^{\circ} \mathrm{C}$
Calibrated Error at Extended Temperatures	$\mathrm{T}_{\mathrm{C}}=\mathrm{T}_{\text {MAX }}$ (Intermittent)		2			2		${ }^{\circ} \mathrm{C}$
Non-Linearity	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.3	0.5		0.3	1	${ }^{\circ} \mathrm{C}$

Temperature Accuracy Lмз35, Lм335A (Note 1)

Parameter	Conditions	LM335A			LM335			Units
		Min	Typ	Max	Min	Typ	Max	
Operating Output Voltage	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	2.95	2.98	3.01	2.92	2.98	3.04	V
Uncalibrated Temperature Error	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		1	3		2	6	${ }^{\circ} \mathrm{C}$
Uncalibrated Temperature Error	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{C}} \leq \mathrm{T}_{\text {MAX }}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		2	5		4	9	${ }^{\circ} \mathrm{C}$
Temperature Error with $25^{\circ} \mathrm{C}$ Calibration	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{C}} \leq \mathrm{T}_{\text {MAX }}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.5	1		1	2	${ }^{\circ} \mathrm{C}$
Calibrated Error at Extended Temperatures	$\mathrm{T}_{\mathrm{C}}=\mathrm{T}_{\text {MAX }}$ (Intermittent)		2			2		${ }^{\circ} \mathrm{C}$
Non-Linearity	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.3	1.5		0.3	1.5	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions	LM135/LM235LM135A/LM235A			LM335LM335A			Units
		Min	Typ	Max	Min	Typ	Max	
Operating Output Voltage Change with Current	$400 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 5 \mathrm{~mA}$ At Constant Temperature		2.5	10		3	14	mV
Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.5			0.6		Ω
Output Voltage Temperature Coefficient			+10			+10		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Time Constant	$\begin{aligned} & \text { Still Air } \\ & 100 \mathrm{ft} / \mathrm{Min} \text { Air } \\ & \text { Stirred Oil } \\ & \hline \end{aligned}$		$\begin{gathered} 80 \\ 10 \\ 1 \\ \hline \end{gathered}$			80 10 1		sec sec sec
Time Stability	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.2			0.2		${ }^{\circ} \mathrm{C} / \mathrm{khr}$

Note 1: Accuracy measurements are made in a well-stirred oil bath. For other conditions, self heating must be considered.
Note 2: Continuous operation at these temperatures for 10,000 hours for H package and 5,000 hours for \mathbf{Z} package may decrease life expectancy of the device.

Note 3: Thermal Resistance	TO-92	TO-46	SO-8
	$\boldsymbol{\theta}_{\text {JA }}$ (junction to ambient)	$202^{\circ} \mathrm{C} / \mathrm{W}$	$400^{\circ} \mathrm{C} / \mathrm{W}$
$\boldsymbol{\theta}_{\mathrm{JC}}$ (junction to case)	$170^{\circ} \mathrm{C} / \mathrm{W}$	N / A	N / A

Note 4: Refer to RETS135H for military specifications.

Typical Performance Characteristics

Thermal Response in Stirred Oil Bath

Application Hints

CALIBRATING THE LM135

Included on the LM135 chip is an easy method of calibrating the device for higher accuracies. A pot connected across the LM135 with the arm tied to the adjustment terminal allows a 1-point calibration of the sensor that corrects for inaccuracy over the full temperature range.
This single point calibration works because the output of the LM135 is proportional to absolute temperature with the extrapolated output of sensor going to OV output at $0^{\circ} \mathrm{K}$ $\left(-273.15^{\circ} \mathrm{C}\right)$. Errors in output voltage versus temperature are only slope (or scale factor) errors so a slope calibration at one temperature corrects at all temperatures.
The output of the device (calibrated or uncalibrated) can be expressed as:

$$
V_{\text {OUTT }}=V_{\text {OUT }_{T_{0}}} \times \frac{T}{T_{0}}
$$

where T is the unknown temperature and T_{0} is a reference temperature, both expressed in degrees Kelvin. By calibrating the output to read correctly at one temperature the output at all temperatures is correct. Nominally the output is calibrated at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$.

To insure good sensing accuracy several precautions must be taken. Like any temperature sensing device, self heating can reduce accuracy. The LM135 should be operated at the lowest current suitable for the application. Sufficient current, of course, must be available to drive both the sensor and the calibration pot at the maximum operating temperature as well as any external loads.
If the sensor is used in an ambient where the thermal resistance is constant, self heating errors can be calibrated out. This is possible if the device is run with a temperature stable current. Heating will then be proportional to zener voltage and therefore temperature. This makes the self heating error proportional to absolute temperature the same as scale factor errors.

WATERPROOFING SENSORS

Meltable inner core heat shrinkable tubing such as manufactured by Raychem can be used to make low-cost waterproof sensors. The LM335 is inserted into the tubing about $1 / 2^{\prime \prime}$ from the end and the tubing heated above the melting point of the core. The unfilled $1 / 2^{\prime \prime}$ end melts and provides a seal over the device.

Typical Applications

Basic Temperature Sensor

Calibrated Sensor

*Calibrate for 2.982 V at $25^{\circ} \mathrm{C}$

Wide Operating Supply

TL/H/5698-10
Remote Temperature Sensing

TL/H/5698-19
Wire length for $1^{\circ} \mathrm{C}$ error due to wire drop

AWG	$\mathbf{I}_{\mathbf{R}}=\mathbf{1 ~ m A}$ FEET	$\mathbf{I}_{\mathbf{R}}=\mathbf{0 . 5} \mathbf{~} \mathrm{mA}^{*}$
FEET		

Isolated Temperature Sensor

TL/H/5698-20

TL/H/5698-5

Simple Temperature Control

TL/H/5698-21

Typical Applications (Continued)

Ground Referred Fahrenheit Thermometer

TL/H/5698-22
*Adjust R2 for 2.554V across LM336.
Adjust R1 for correct output.

Centigrade Thermometer

TL/H/5698-23
*Adjust for 2.7315 V at output of LM308

Fahrenheit Thermometer

TL/H/5698-24
*To calibrate adjust R2 for 2.554 V across LM336.
Adjust R1 for correct output.

THERMOCOUPLE COLD JUNCTION COMPENSATION
 Compensation for Grounded Thermocouple

*Select R3 for proper thermocouple type		
THERMO-	R3	SEEBECK
COUPLE	$\mathbf{(\pm 1 \%)}$	COEFFICIENT
J	377Ω	$52.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
T	308Ω	$42.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
K	293Ω	$40.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
S	45.8Ω	$6.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Adjustments: Compensates for both sensor and resistor tolerances

1. Short LM329B
2. Adjust R1 for Seebeck Coefficient times ambient temperature (in degrees K) across R3.
3. Short LM335 and adjust R2 for voltage across R3 corresponding to thermocouple type

J	14.32 mV	K	11.17 mV

T	11.79 mV	S	1.768 mV

TL/H/5698-6

Typical Applications (Continued)

Single Power Supply Cold Junction Compensation

* Select R3 THERMO-	R4 for thermocouple type		
COUPLE	R3	R4	SEEBECK
COEFFICIENT			

Adjustments:

1. Adjust R1 for the voltage across R3 equal to the Seebeck Coefficient times ambient temperature in degrees Kelvin.
2. Adjust R2 for voltage across R4 corresponding to thermocouple

J	14.32 mV
T	11.79 mV
K	11.17 mV
S	1.768 mV

Terminate thermocouple reference junction in close proximity to LM335.
Adjustments:

1. Apply signal in place of thermocouple and adjust R3 for a gain of 245.7.
2. Short non-inverting input of LM308A and output of LM329B to ground.
3. Adjust R1 so that $\mathrm{V}_{\text {OUT }}=2.982 \mathrm{~V} @ 25^{\circ} \mathrm{C}$.
4. Remove short across LM329B and adjust R2 so that $\mathrm{V}_{\text {OUT }}=246 \mathrm{mV}$ @ $25^{\circ} \mathrm{C}$.
5. Remove short across thermocouple.

TL/H/5698-12
Fast Charger for Nickel-Cadmium Batteries
Differential Temperature

Typical Applications (Continued)

Ground Referred Centigrade Thermometer

TL/H/5698-16

Definition of Terms

Operating Output Voltage: The voltage appearing across the positive and negative terminals of the device at specified conditions of operating temperature and current.
Uncalibrated Temperature Error: The error between the operating output voltage at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$ and case temperature at specified conditions of current and case temperature.

Calibrated Temperature Error: The error between operating output voltage and case temperature at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$ over a temperature range at a specified operating current with the $25^{\circ} \mathrm{C}$ error adjusted to zero.

Section 6

Sample and Hold

Section 6 Contents
Sample and Hold Definition of Terms 6-3
Sample and Hold Selection Guide 6-4
LF198/LF298/LF398/LF198A/LF398A Monolithic Sample and Hold Circuits 6-5
LF13006/LF13007 Digital Gain Set 6-15

Sample and Hold Defininition of Terms

Acquisition Time: The time required to acquire a new analog input voltage once a sample command has been given. A signal is "acquired" when it has settled within a specified error band around its final value of output voltage. The maximum value of the acquisition time occurs when the hold capacitor must change to a full-scale voltage change. Note that acquisition time is not just the time required for the output to settle, but also includes the time required for all internal nodes to settle so that the output assumes the proper value when switched to the hold mode.
Aperture Jetter: The uncertainty in the aperture time. Aperture jitter results from noise which is superimposed on the hold command which affects its timing.
Aperture Time (Aperture Delay): The delay required between "Hold" command and an input analog transition, so that the transition does not affect the held output.
Droop Rate: The rate at which the output voltage is changing in hold mode as a result of leakage from the hold capacitor.
Dynamic Sampling Error: The error introduced into the held output due to a changing analog input at the time the hold command is given. Error is expressed in mV with a given hold capacitor value and input slew rate. Note that this error term occurs even for long sample times.

Feedthrough Attenuation Ratio: The fraction of the input signal that appears at the output while the S/H is in hold mode.
Gain Error: The ratio of output voltage swing to input voltage swing in the sample mode expressed as a percent difference.
Hold Capacitor Leakage Current: The current which flows into or out of the hold capacitor while the S/H is in hold mode.
Hold Settling Time: The time required for the output to settle within a specified error band after the "hold" logic command has been given.
Hold Step: The voltage step at the output of the sample and hold when switching from sample mode to hold mode with a steady (DC) analog input voltage.
Sample-to-Hold Transient: The transient that appears at the output due to a sample-to-hold transition.

Sample and Hold Selection Guide

	LF198A	LF398A	LF198	LF398	LF298	Units
Accuracy Gain/Offset Error	0.01	0.01	0.02	0.02	0.02	$\%$ Max
Offset Voltage	2	3	5	10	5	mV Max
Droop Rate $\left(25^{\circ} \mathrm{C}\right)$						
$\mathrm{C}_{\mathrm{S}}=1000 \mathrm{pF}$						
$\mathrm{C}_{\mathrm{S}}=10000 \mathrm{pF}$	30	30	30	30	30	$\mathrm{mV} / \mathrm{sec}$
Acquisition Time (25						

LF198/LF298/LF398, LF198A/LF398A Monolithic Sample-and-Hoid Circuits

General Description

The LF198/LF298/LF398 are monolithic sample-and-hold circuits which utilize BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is 0.002% typical and acquisition time is as low as $6 \mu \mathrm{~s}$ to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin, and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of 1 MHz op amps without having stability problems. Input impedance of $10^{10} \Omega$ allows high source impedances to be used without degrading accuracy. P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as $5 \mathrm{mV} / \mathrm{min}$ with a $1 \mu \mathrm{~F}$ hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design guarantees no feed-through from input to output in the hold mode, even for input signals equal to the supply voltages.

Features

m Operates from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies

- Less than 10μ s acquisition time
- TTL, PMOS, CMOS compatible logic input
0.5 mV typical hold step at $\mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$
- Low input offset
. 0.002\% gain accuracy
- Low output noise in hold mode
- Input characteristics do not change during hold mode

High supply rejection ratio in sample or hold
(1) Wide bandwidth
@ Space qualified
Logic inputs on the LF198 are fully differential with low input current, allowing direct connection to TTL, PMOS, and CMOS. Differential threshold is 1.4 V . The LF198 will operate from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies.
$A n$ " A " version is available with tightened electrical specifications.

Typical Connection and Performance Curve

HOLD CAPACITOR (μ F)

Connection Diagrams

Order Number LF398N or LF398AN See NS Package Number N08E

Order Number LF298M or LF398M See NS Package Number M14A

TOP VIEW
TL/H/5692-14
Order Number LF198H, LF198H/883, LF298H, LF398H, LF198AH or LF398AH See NS Package Number H08C

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
$\pm 18 \mathrm{~V}$
Power Dissipation (Package Limitation) (Note 1) 500 mW
Operating Ambient Temperature Range
LF198/LF198A
LF298
LF398/LF398A
Storage Temperature Range Input Voltage (Note 2)
Output Short Circuit Duration Indefinite
Hold Capacitor Short Circuit Duration
Electrical Characteristics
The following specifcations apply for $-\mathrm{V}_{\mathrm{S}}+3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+\mathrm{V}_{\mathrm{S}}-3.5 \mathrm{~V},+\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, $\mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LOGIC REFERENCE $=0 \mathrm{~V}$, LOGIC HIGH $=2.5 \mathrm{~V}$, LOGIC LOW $=0 \mathrm{~V}$ unless otherwise specified.

Parameter	Conditions	LF198/LF298			LF398			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage, (Note 4)	$T_{j}=25^{\circ} \mathrm{C}$ Full Temperature Range		1	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		2	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Bias Current, (Note 4)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ Full Temperature Range		5	$\begin{aligned} & 25 \\ & 75 \end{aligned}$		10	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1010			1010		Ω
Gain Error	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ Full Temperature Range		0.002	$\begin{gathered} 0.005 \\ 0.02 \end{gathered}$		0.004	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Feedthrough Attenuation Ratio at 1 kHz	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$	86	96		80	90		dB
Output Impedance	$T_{j}=25^{\circ} \mathrm{C}, \text { "HOLD" mode }$ Full Temperature Range		0.5	$\begin{aligned} & 2 \\ & 4 \end{aligned}$		0.5	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
"HOLD" Step, (Note 5)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\text {OUT }}=0$		0.5	2.0		1.0	2.5	mV
Supply Current, (Note 4)	$\mathrm{T}_{\mathrm{j}} \geq 25^{\circ} \mathrm{C}$		4.5	5.5		4.5	6.5	mA
Logic and Logic Reference Input Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		2	10		2	10	$\mu \mathrm{A}$
Leakage Current into Hold Capacitor (Note 4)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Note } 6)$ Hold Mode		30	100		30	200	pA
Acquisition Time to 0.1\%	$\begin{aligned} \Delta V_{\text {OUT }}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{h}} & =1000 \mathrm{pF} \\ \mathrm{C}_{\mathrm{h}} & =0.01 \mu \mathrm{~F} \end{aligned}$		$\begin{gathered} 4 \\ 20 \end{gathered}$			$\begin{gathered} 4 \\ 20 \end{gathered}$		$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~s} \end{aligned}$
Hold Capacitor Charging Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$		5			5		mA
Supply Voltage Rejection Ratio	$\mathrm{V}_{\text {OUT }}=0$	80	110		80	110		dB
Differential Logic Threshold	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.8	1.4	2.4	0.8	1.4	2.4	V
Input Offset Voltage, (Note 4)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ Full Temperature Range		1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		2	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Bias Current, (Note 4)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ Full Temperature Range		5	$\begin{aligned} & 25 \\ & 75 \end{aligned}$		10	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$

Electrical Characteristics

The following specifcations apply for $-V_{S}+3.5 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}} \leq+\mathrm{V}_{\mathrm{S}}-3.5 \mathrm{~V},+\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$, $\mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LOGIC REFERENCE $=0 \mathrm{~V}$, LOGIC HIGH $=2.5 \mathrm{~V}$, LOGIC LOW $=0 \mathrm{~V}$ unless otherwise specified. (Continued)

Parameter	Conditions	LF198A			LF398A			Units
		Min	Typ	Max	Min	Typ	Max	
Input Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1010			1010		Ω
Gain Error	$T_{j}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ Full Temperature Range		0.002	$\begin{gathered} 0.005 \\ 0.01 \end{gathered}$		0.004	$\begin{gathered} 0.005 \\ 0.01 \end{gathered}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Feedthrough Attenuation Ratio at 1 kHz	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$	86	96		86	90		dB
Output Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, "HOLD" mode Full Temperature Range		0.5	$\begin{aligned} & 1 \\ & 4 \end{aligned}$		0.5	$\begin{aligned} & 1 \\ & 6 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
"HOLD" Step, (Note 5)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\text {OUT }}=0$		0.5	1		1.0	1	mV
Supply Current, (Note 4)	$\mathrm{T}_{\mathrm{j}} \geq 25^{\circ} \mathrm{C}$		4.5	5.5		4.5	6.5	mA
Logic and Logic Reference Input Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		2	10		2	10	$\mu \mathrm{A}$
Leakage Current into Hold Capacitor (Note 4)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Note } 6)$ Hold Mode		30	100		30	100	pA
Acquisition Time to 0.1\%	$\begin{array}{r} \Delta V_{\text {OUT }}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{h}}=1000 \mathrm{pF} \\ \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F} \end{array}$		$\begin{gathered} 4 \\ 20 \end{gathered}$	$\begin{gathered} 6 \\ 25 \end{gathered}$		$\begin{gathered} 4 \\ 20 \end{gathered}$	$\begin{gathered} 6 \\ 25 \end{gathered}$	$\mu \mathrm{S}$ $\mu \mathrm{s}$
Hold Capacitor Charging Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$		5			5		mA
Supply Voltage Rejection Ratio	$V_{\text {OUT }}=0$	90	110		90	110		dB
Differential Logic Threshold	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.8	1.4	2.4	0.8	1.4	2.4	V

Note 1: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $\mathrm{P}_{\mathrm{D}}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$, or the number given in the Absolute Maximum Ratings, whichever is lower. The maximum junction temperature, $T_{J M A X}$, for the LF198/LF198A is $150^{\circ} \mathrm{C}$; for the LF298, $115^{\circ} \mathrm{C}$; and for the LF398/LF398A, $100^{\circ} \mathrm{C}$.
Note 2: Although the differential voltage may not exceed the limits given, the common-mode voltage on the logic pins may be equal to the supply voltages without causing damage to the circuit. For proper logic operation, however, one of the logic pins must always be at least 2 V below the positive supply and 3 V above the negative supply.
Note 3: See AN-450 "Surface Mounting Methods and their effects on Product Reliability" for other methods of soldering surface mount devices.
Note 4: These parameters guaranteed over a supply voltage range of ± 5 to $\pm 18 \mathrm{~V}$, and an input range of $-\mathrm{V}_{\mathrm{S}}+3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+\mathrm{V}_{\mathrm{S}}-3.5 \mathrm{~V}$.
Note 5: Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor. 1 pF , for instance, will create an additional 0.5 mV step with a 5 V logic swing and a $0.01 \mu \mathrm{~F}$ hold capacitor. Magnitude of the hold step is inversely proportional to hold capacitor value.
Note 6: Leakage current is measured at a junction temperature of $25^{\circ} \mathrm{C}$. The effects of junction temperature rise due to power dissipation or elevated ambient can be calculated by doubling the $25^{\circ} \mathrm{C}$ value for each $11^{\circ} \mathrm{C}$ increase in chip temperature. Leakage is guaranteed over full input signal range.
Note 7: A military RETS electrical test specification is available on request. The LF198 may also be procured to Standard Military Drawing *5962-8760801GA or to MIL-STD-38510 part ID JM38510/12501SGA.

Typical Performance Characteristics

Dielectric Absorption Error in Hold Capacitor

TL/H/5692-3

Typical Performance Characteristics (Continued)

Leakage Current into Hold Capacitor

JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)

 JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Phase and Gain (Input to Output, Small Signal)

Feedthrough Rejection Ratio

"Hold" Settling Time*

*See definition

TL/H/5692-4

Typical Performance Characteristics (Continued) Output Transient at Start of Sample Mode

Output Transient at Start of Hold Mode

Logic Input Configurations

TTL \& CMOS
$3 \mathrm{~V} \leq \mathrm{V}_{\text {LOGIC }}($ Hi State $) \leq 7 \mathrm{~V}$

Threshold $=1.4 \mathrm{~V}$

$$
\text { Threshold }=0.6\left(\mathrm{~V}^{+}\right)+1.4 \mathrm{~V}
$$

Threshold $=0.6\left(\mathrm{~V}^{+}\right)-1.4 \mathrm{~V}$

Application Hints

Hold Capacitor

Hold step, acquisition time, and droop rate are the major trade-offs in the selection of a hold capacitor value. Size and cost may also become important for larger values. Use of the curves included with this data sheet should be helpful in selecting a reasonable value of capacitance. Keep in mind that for fast repetition rates or tracking fast signals, the capacitor drive currents may cause a significant temperature rise in the LF198.
A significant source of error in an accurate sample and hold circuit is dielectric absorption in the hold capacitor. A mylar cap, for instance, may "sag back" up to 0.2% after a quick change in voltage. A long sample time is required before the circuit can be put back into the hold mode with this type of capacitor. Dielectrics with very low hysteresis are polystyrene, polypropylene, and Teflon. Other types such as mica and polycarbonate are not nearly as good. The advantage of polypropylene over polystyrene is that it extends the maximum ambient temperature from $85^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Most ceramic capacitors are unusable with $>1 \%$ hysteresis. Ceramic "NPO" or "COG" capacitors are now available for $125^{\circ} \mathrm{C}$ operation and also have low dielectric absorption. For more exact data, see the curve Dielectric Absorption Error. The hysteresis numbers on the curve are final values, taken after full relaxation. The hysteresis error can be significantly reduced if the output of the LF198 is digitized quickly after the hold mode is initiated. The hysteresis relaxation time constant in polypropylene, for instance, is $\mathbf{1 0 - 5 0 ~ m s}$. If A-to-D conversion can be made within 1 ms , hysteresis error will be reduced by a factor of ten.

DC and AC Zeroing

DC zeroing is accomplished by connecting the offset adjust pin to the wiper of a $1 \mathrm{k} \Omega$ potentiometer which has one end tied to V^{+}and the other end tied through a resistor to ground. The resistor should be selected to give $\approx 0.6 \mathrm{~mA}$ through the 1 k potentiometer.
AC zeroing (hold step zeroing) can be obtained by adding an inverter with the adjustment pot tied input to output. A 10 pF capacitor from the wiper to the hold capacitor will give $\pm 4 \mathrm{mV}$ hold step adjustment with a $0.01 \mu \mathrm{~F}$ hold capacitor and 5V logic supply. For larger logic swings, a smaller capacitor ($<10 \mathrm{pF}$) may be used.

Logic Rise Time

For proper operation, logic signals into the LF198 must have a minimum $\mathrm{dV} / \mathrm{dt}$ of $1.0 \mathrm{~V} / \mu \mathrm{s}$. Slower signals will cause excessive hold step. If a R/C network is used in front of the logic input for signal delay, calculate the slope of the waveform at the threshold point to ensure that it is at least $1.0 \mathrm{~V} / \mu \mathrm{s}$.

Sampling Dynamic Signals

Sample error to moving input signals probably causes more confusion among sample-and-hold users than any other parameter. The primary reason for this is that many users make the assumption that the sample and hold amplifier is truly locked on to the input signal while in the sample mode. In actuality, there are finite phase delays through the circuit creating an input-output differential for fast moving signals. In addition, although the output may have settled, the hold capacitor has an additional lag due to the 300Ω series resis-
tor on the chip. This means that at the moment the "hold" command arrives, the hold capacitor voltage may be somewhat different than the actual analog input. The effect of these delays is opposite to the effect created by delays in the logic which switches the circuit from sample to hold. For example, consider an analog input of $20 \mathrm{Vp}-\mathrm{p}$ at 10 kHz . Maximum $\mathrm{dV} / \mathrm{dt}$ is $0.6 \mathrm{~V} / \mu \mathrm{s}$. With no analog phase delay and 100 ns logic delay, one could expect up to ($0.1 \mu \mathrm{~s}$) $(0.6 \mathrm{~V} / \mu \mathrm{s})=60 \mathrm{mV}$ error if the "hold" signal arrived near maximum $\mathrm{dV} / \mathrm{dt}$ of the input. A positive-going input would give a +60 mV error. Now assume a $1 \mathrm{MHz}(3 \mathrm{~dB})$ bandwidth for the overall analog loop. This generates a phase delay of 160 ns . If the hold capacitor sees this exact delay, then error due to analog delay will be $(0.16 \mu \mathrm{~s})(0.6 \mathrm{~V} / \mu \mathrm{s})$ $=-96 \mathrm{mV}$. Total output error is +60 mV (digital) -96 mV (analog) for a total of -36 mV . To add to the confusion, analog delay is proportioned to hold capacitor value while digital delay remains constant. A family of curves (dynamic sampling error) is included to help estimate errors.
A curve labeled Aperture Time has been included for sampling conditions where the input is steady during the sampling period, but may experience a sudden change nearly coincident with the "hold" command. This curve is based on a 1 mV error fed into the output.
A second curve, Hold Settling Time indicates the time required for the output to settle to 1 mV after the "hold" command.

Digital Feedthrough

Fast rise time logic signals can cause hold errors by feeding externally into the analog input at the same time the amplifier is put into the hold mode. To minimize this problem, board layout should keep logic lines as far as possible from the analog input and the $\mathrm{C}_{\mathrm{h}} \mathrm{pin}$. Grounded guarding traces may also be used around the input line, especially if it is driven from a high impedance source. Reducing high amplitude logic signals to 2.5 V will also help.

Guarding Technique

TL/H/5692-5
Use 10-pin layout. Guard around C_{h} is tied to output.

Functional Diagram

TL/H/5692-1

Typical Applications (Continued)

*For lower gains, the LM108 must be frequency compensated

$$
\text { Use } \approx \frac{100}{A_{V}} \mathrm{pF} \text { from comp } 2 \text { to ground }
$$

Sample and Difference Circuit (Output Follows Input in Hold Mode)

$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{B}}+\Delta \mathrm{V}_{\text {IN }}$ (HOLD MODE)
TL/H/5692-7

Typical Applications (Continued)

Ramp Generator with Variable Reset Level

$\begin{gathered}\text { *Select for ramp rate } \\ \mathrm{R} 2 \geq 10 \mathrm{k}\end{gathered} \frac{\Delta V}{\Delta T}=\frac{1.2 \mathrm{~V}}{(\mathrm{R} 2)\left(\mathrm{C}_{\mathrm{h}}\right)}$

Integrator with Programmable Reset Level

$$
V_{\text {OUT }}(\text { Hold Mode })=\left[\frac{1}{(R 1)\left(C_{h}\right)} \int_{0}^{t} V_{I N} d t\right]+\left[V_{R}\right]
$$

Output Holds at Average of Sampled Input

Select $\left(R_{h}\right)\left(C_{h}\right)>\frac{1}{2 \pi f_{i N}(\operatorname{Min})}$

Reset Stabilized Amplifier (Gain of 1000)

$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{T}} \approx 0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Increased Slew Current

Fast Acquisition, Low Droop Sample \& Hold

Typical Applications (Continued)

Synchronous Correlator for Recovering Signals Below Noise Level

DC \& AC Zeroing

2-Channel Switch

	A	B
Gain	$1 \pm 0.02 \%$	$1 \pm 0.2 \%$
$Z_{I N}$	$10^{10} \Omega$	$47 \mathrm{k} \Omega$
BW	$\cong 1 \mathrm{MHz}$	$\cong 400 \mathrm{kHz}$
Crosstalk	-90 dB	-90 dB
@ 1 kHz		
Offset	$\leq 6 \mathrm{mV}$	$\leq 75 \mathrm{mV}$

Typical Applications (Continued)

Capacitor Hysteresis Compensation

*Select for time constant $\mathrm{C1}=\frac{\tau}{100 \mathrm{k}}$
**Adjust for amplitude

Differential Hold

TL/H/5692-10

Definition of Terms

Hold Step: The voltage step at the output of the sample and hold when switching from sample mode to hold mode with a steady (dc) analog input voltage. Logic swing is 5 V .
Acquisition Time: The time required to acquire a new ana\log input voltage with an output step of 10 V . Note that acquisition time is not just the time required for the output to settle, but also includes the time required for all internal nodes to settle so that the output assumes the proper value when switched to the hold mode.

Gain Error: The ratio of output voltage swing to input voltage swing in the sample mode expressed as a per cent difference.

Hold Settling Time: The time required for the output to settle within 1 mV of final value after the "hold" logic command.
Dynamic Sampling Error: The error introduced into the held output due to a changing analog input at the time the hold command is given. Error is expressed in mV with a given hold capacitor value and input slew rate. Note that this error term occurs even for long sample times.
Aperture Time: The delay required between "Hold" command and an input analog transition, so that the transition does not affect the held output.

LF13006/LF13007 Digital Gain Set

General Description

The LF13006 and LF13007 are precision digital gain sets used for accurately setting non-inverting op amp gains. Gains are set with a 3-bit digital word which can be latched in with $\overline{W R}$ and $\overline{\mathrm{CS}}$ pins. All digital inputs are TTL and CMOS compatible.
The LF13006 shown below will set binary scaled gains of 1 , $2,4,8,16,32,64$, and 128 . The LF13007 will set gains of 1 , $2,5,10,20,50$, and 100 (a common attenuator sequence). In addition, both versions have several taps and two uncommitted matching resistors that allow customization of the gain.
The gains are set with precision thin film resistors. The low temperature coefficient of the thin film resistors and their excellent tracking result in gain ratios which are virtually independent of temperature.

The LF13006, LF13007 used in conjunction with an amplifier not only satisfies the need for a digitally programmable amplifier in microprocessor based systems, but is also useful for discrete applications, eliminating the need to find 0.5% resistors in the ratio of 100 to 1 which track each other over temperature.

Features

- TTL and CMOS compatible logic levels
- Microprocessor compatible
- Gain error 0.5\% max
- Binary or scope knob gains
- Wide supply range +5 V to $\pm 18 \mathrm{~V}$
- Packaged in 16-pin DIP

Block Diagram and Typical Application (LF13006)

TL/H/5114-1
Note: $R \cong 15 \mathrm{k} \Omega$
Order Number LF13006N or LF13007N
See NS Package Number N16A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage, V^{+}to V^{-} 36 V
Supply Voltage, ${ }^{+}+$to GND 25 V
Voltage at Any Digital Input Analog Voltage
Electrical Characteristics

$$
\begin{array}{r}
V+\text { to GND } \\
V+\text { to }\left(V^{-}+2 V\right)
\end{array}
$$

Operating Ratings (Note 1)

$\begin{array}{lr}\text { Operating Temperature Range } & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { Lead Temp. (Soldering, } 10 \text { seconds) } & 260^{\circ} \mathrm{C}\end{array}$

Parameter	Conditions	Typ (Note 3)	Tested Limit (Note 4)	Design Limit (Note 5)	Units
Gain Error	$\mathrm{A}_{\text {OUT }}= \pm 10 \mathrm{~V}$ ANA GND $=0 \mathrm{~V}$ $I_{\text {INPUT }}<10 \mathrm{nA}$	0.3	0.5	0.5	\%(max)
Gain Temperature Coefficient	$\begin{aligned} & \text { AOUT }= \pm 10 \mathrm{~V} \\ & \text { ANA GND }=0 \mathrm{~V} \end{aligned}$	0.001			\%/ ${ }^{\circ} \mathrm{C}$
Digital Input Voltage Low High		$\begin{aligned} & 1.4 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 2.0 \\ & \hline \end{aligned}$	V (max) $V(\min)$
Digital Input Current Low High	$\begin{aligned} & V_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -38 \\ 0.0001 \\ \hline \end{gathered}$	$\begin{gathered} -100 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} -100 \\ 1 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ (max) $\mu A($ max $)$
Positive Power Supply Current	All Logic Inputs Low	2	5	5	mA(max)
Negative Power Supply Current	All Logic Inputs Low	-1.7	-5	-5	mA (max)
Write Pulse Width, ${ }^{\text {w }}$ W	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=5 \mathrm{~V}$		150		ns (min)
$\overline{\text { Chip Select Set-Up Time, }{ }_{\text {c }} \text { CS }}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$		250		ns (min)
Chip Select Hold Time, t_{CH}	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$		0		ns (min)
DIG IN Set-Up Time, tDS	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=5 \mathrm{~V}$		150		ns (min)
DIG IN Hold Time, to	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$		60		ns (min)
Switching Time for Gain Change	(Note 4)	200			ns (max)
Switch On Resistance		3			$\mathrm{k} \Omega$
Unit Resistance, R		15	12-18		$\mathrm{k} \Omega$
R1 and R2 Mismatch		0.3	0.5	0.5	\%(max)
R1/R2 Temperature Coefficient		0.001			\%/ ${ }^{\circ} \mathrm{C}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: Parameters are specified at $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{V}-=-15 \mathrm{~V}$. Min $\mathrm{V}+$ to ground voltage is 5 V . Min V^{-}to V^{-}voltage is 5 V . Boldface numbers apply over full operating temperature ranges. All other numbers apply at $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.
Note 3: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 4: Guaranteed and 100\% production tested.
Note 5: Guaranteed (but not 100\% production tested) over the operating temperature. These limits are not used to calculate outgoing quality levels.
Note 6: Settling time for gain change is the switching time for gain change plus settling time (see section on Settling Time).
Note 7: $\bar{W} R$ minimum high threshold voltage increases to 2.4 V under the extreme conditions when all three digital inputs are simultaneously taken from 0 V to 5 V at a slew rate of greater than $500 \mathrm{~V} / \mu \mathrm{S}$.

Connection Diagram

GAIN TABLE

Digital Input			Gain			
		LF13006			LF13007	
DIG in 3	DIG in 2	DIG in 1	AOUT	BOUT	AOUT	BOUT
0	0	0	1	1	1	1
0	0	1	2	1.25	1.25	1
0	1	0	4	2.5	2	1.6
0	1	1	8	5	5	4
1	0	0	16	10	10	8
1	0	1	32	20	20	16
1	1	0	64	40	50	40
1	1	1	128	80	100	80

Dual-In-Line Package

Switching Waveforms

Block Diagram and Typical Application (Continued) (LFi3007)

TL/H/5114-4
Note: $R \cong 15 \mathrm{k} \Omega$

Typical Performance Characteristics

Application Information

FLOW-THROUGH OPERATION

THE LF13006, LF13007 can be operated with control lines $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ grounded. In this mode new data on the digital inputs will immediately set the new gain value. Input data cannot be latched in this mode.

INPUT CURRENT

Current flowing through the input (pin 2) due to bias current of the op amp will result in a gain error due to switch impedance. Normally this error is very small. For example, 10 nA of bias current flowing through $3 \mathrm{k} \Omega$ of switch resistance will result in an error of $30 \mu \mathrm{~V}$ at the summing node. However, applications that have significant current flowing through the input must take this effect into account.

SETTLING TIME

Settling time is a function of the particular op amp used with the LF13006/7 and the gain that is selected. It can be optimized and stability problems can be prevented through the
use of a lead capacitor from the inverting input to the output of the amplifier. A lead capacitor is effective whenever the feedback around an amplifier is resistive, whether with discrete resistors or with the LF13006/7. It compensates for the feedback pole created by the parallel resistance and capacitance from the inverting input of the op amp to AC ground.

Settling Time Test Circuit

Typical Applications (Continued)
Programmable Current Source

TL/H/5114-10
$1_{\text {OUT }}=\frac{1.2 \mathrm{~V}}{120 \Omega}\left[\frac{1}{\text { gain set \# }}\right]$

Inverting Gains

TL/H/5114-12
Inverting gain with high input im-
pedance can be obtained with the LF13006, LF13007 by using the two on-board resistors and a dual op amp as shown.

Switchable Gain of ± 1

TL/H/5114-11
Note: Digital code $=000, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {IN }}$;
Digital code $=001, V_{\text {OUT }}=-V_{I N}$

Programmable Differential Amp

TL/H/5114-13

Note 1: Actual gain= set gain-1 since LF13006s are in
"inverting mode".
Note 2: Set gain must be same on both LF13006s.

Section 7 Active Filters
Section 7 Contents
Active Filters Definition of Terms 7-3
Active Filters Selection Guide 7-4
LMF40 High Performance 4th-Order Switched Capacitor Butterworth Low-Pass Filter 7-5
LMF60 High Performance 6th-Order Switched Capacitor Butterworth Low-Pass Filter 7-19
LMF90 4th-Order Elliptic Notch Filter 7-37
LMF100 High Performance Dual Switched Capacitor Filter 7-57
LMF380 Triple One-Third Octave Switched Capacitor Active Filter 7-79
MF4 4th Order Switched Capacitor Butterworth Lowpass Filter 7-89
MF5 Universal Monolithic Switched Capacitor Filter 7-102
MF6 6th Order Switched Capacitor Butterworth Lowpass Filter 7-117
MF8 4th Order Switched Capacitor Bandpass Filter 7-135
MF10 Universal Monolithic Dual Switched Capacitor Filter 7-157
fclk: the switched capacitor filter external clock frequency. f_{0} : center of frequency of the second order function complex pole pair. f_{0} is measured at the bandpass output of each $1 / 2$ MF10, and it is the frequency of the bandpass peak occurrence.
Q: quality factor of the 2nd order function complex pole pair. Q is also measured at the bandpass output of each $1 / 2$ MF10 and it is the ratio of f_{0} over the -3 dB bandwidth of the 2nd order bandpass filter. The value of Q is not measured at the lowpass or highpass outputs of the filter, but its value relates to the possible amplitude peaking at the above outputs.
Hobp: the gain in (V/V) of the bandpass output at $f=f_{0}$. Holp: the gain in (V/V) of the lowpass output of each $1 / 2$ MF10 at $\mathrm{f} \rightarrow 0 \mathrm{~Hz}$.

Hонp: the gain in (V/V) of the highpass output of each $1 / 2$ MF10 as $f \rightarrow \mathrm{f}_{\mathrm{CLK}} / 2$.
Q_{z} : the quality factor of the 2nd order function complex zero pair, if any. (Q_{Z} is a parameter used when an allpass output is sought and unlike Q it cannot be directly measured).
f_{Z} : the center frequency of the 2nd order function complex zero pair, if any. If f_{Z} is different from f_{0}, and if the Q_{Z} is quite high it can be observed as a notch frequency at the allpass output.
$\mathbf{f}_{\text {notch }}$: the notch frequency observed at the notch output(s) of the MF10.
$\mathrm{H}_{\mathrm{ON}_{1} \text { : }}$ the notch output gain as $\mathrm{f} \rightarrow 0 \mathrm{~Hz}$.
$\mathrm{H}_{\mathrm{ON}_{2}}$: the notch output gain as $\mathrm{f} \rightarrow \mathrm{f}_{\mathrm{CLK}} / 2$.

Active Filter Selection Guide

Device \#	Type	Function	Max Order	Max Freq Accuracy	Freq Range	Typ. Q Accuracy	Max $\mathbf{F}^{*} \times \mathbf{Q}$
MF10 (S, T)	Universal	Universal	4 th	$\pm 0.6 \%$	$0.1-30 \mathrm{kHz}$	$\pm 2 \%$	200 kHz
MF8 (T)	Bandpass	Chebyshev Butterworth	4 th	$\pm 1.0 \%$	$0.1-20 \mathrm{kHz}$	$\pm 2 \%$	$5 \mathrm{MHz}^{*}$
MF6 (S, T)	Lowpass	Butterworth	6 th	$\pm 1.0 \%$	$0.1-20 \mathrm{kHz}$	N / A	N / A
MF5 (S)	Universal	Universal	2 nd	$\pm 1.0 \%$	$0.1-30 \mathrm{kHz}$	$\pm 6 \%$	200 kHz
MF4 (S)	Lowpass	Butterworth	4 th	$\pm 0.6 \%$	$0.1-20 \mathrm{kHz}$	N / A	N / A
LMF40 (S, T)	Lowpass	Butterworth	4 th	$\pm 1.0 \%$	$0.1-40 \mathrm{kHz}$	N / A	N / A
LMF60 (S, T)	Lowpass	Butterworth	6 th	$\pm 1.0 \%$	$0.1-30 \mathrm{kHz}$	N / A	N / A
LMF100 (S, T)	Universal	Universal	4 th	$\pm 0.6 \%$	$0.1-40 \mathrm{kHz}$	$\pm 2 \%$	1.8 MHz
LMF90 (S, T)	Notch	Elliptic	4 th	$\pm 1 \%$	$0.1-30 \mathrm{kHz}$	N / A	N / A
LMF380	Triple One-Third Octave	Triple Bandpass	12 th	$\pm 0.5 \%$	$0.1-25 \mathrm{kHz}$	N / A	N / A

S Surface Mount Available
T Extended Temperature Available
*For the MF8 use clock frequency for the parameter F. For all other parts use the center or cut off frequency.

LMF40 High Performance 4th-Order Switched-Capacitor Butterworth Low-Pass Filter

General Description

The LMF40 is a versatile, easy to use, precision 4th-order Butterworth low-pass filter fabricated using National's high performance LMCMOS process. Switched-capacitor techniques eliminate external component requirements and allow a clock-tunable cutoff frequency. The ratio of the clock frequency to the low-pass cutoff frequency is internally set to 50-to-1 (LMF40-50) or 100-to-1 (LMF40-100). A Schmitt trigger clock input stage allows two clocking options, either self-clocking (via an external resistor and capacitor) for stand-alone applications, or for tighter cutoff frequency control, an external TTL or CMOS logic compatible clock can be applied. The maximally flat passband frequency response together with a DC gain of $1 \mathrm{~V} / \mathrm{V}$ allows cascading LMF40 sections together for higher-order filtering.

Features

■ Cutoff frequency range of 0.1 Hz to 40 kHz
■ Cutoff frequency accuracy of $\pm 1.0 \%$, maximum
■ Low offset voltage, $\pm 100 \mathrm{mV}$, maximum, $\pm 5 \mathrm{~V}$ supply

- Low clock feedthrough of 5 mV P-p, typical
- Dynamic range of 88 dB , typical
- No external components required
- 8-pin mini-DIP or 14-pin wide-body small-outline packages
m 4 V to 14 V single/dual supply operation
- Cutoff frequency set by external or internal clock
. Pin-compatible with MF4

Applications

a Communication systems

- Instrumentation

■ Automated control systems

Block and Connection Diagrams

TL/H/10557-2
Top View

Small-Outline-Wide-Body Package

Top View
Absolute Maximum Ratings
(Notes 1 \& 2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}-$)
Voltage at Any Pin
Input Current at Any Pin (Note 13)
Package Input Current (Note 13)
Power Dissipation (Note 14)
Storage Temperature

Lead Temperature	
N Package, Soldering (10 sec.)	$+260^{\circ}$
J Package, Soldering (10 sec.)	$+300^{\circ}$
WM Package, Vapor Phase (60 sec.) (Note 16)	$+215^{\circ}$
WM Package, Infrared (15 sec .)	$+220^{\circ} \mathrm{C}$
ESD Susceptibility (Note 12) Pin 1 CLK IN	$\begin{aligned} & 2000 \mathrm{~V} \\ & 1700 \mathrm{~V} \end{aligned}$
Operating Ratings (Notes 1 \& 2)	
Temperature Range $\quad T_{M I N} \leq T_{A} \leq T_{M}$	
LMF40CIWM-50,	
LMF40CIWM-100 $\quad-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }}$	$\leq+85^{\circ} \mathrm{C}$
LMF40CMJ-50, LMF40CMJ-100-550 ${ }^{\circ} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	
Supply Voltage Range (V^{+}- V^{-})	4 V to 14

Filter Electrical Characteristics

The following specifications apply for $f_{C L K}=500 \mathrm{kHz}$. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}=\mathbf{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$: All other limits T_{A} $=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limit)
$\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$					
${ }_{f} \mathrm{CLK}$	Clock Frequency Range (Note 17)		5	2	Hz (min) MHz (max)
Is	Supply Current	CMJ CIN, CIJ, CIWM		$\begin{aligned} & 3.5 / 7.0 \\ & 3.5 / 5.0 \end{aligned}$	mA (max) mA (max)
H_{O}	DC Gain	$\mathrm{R}_{\text {Source }} \leq 2 \mathrm{k} \boldsymbol{\Omega}$		$\begin{aligned} & +0.05 /+\mathbf{0 . 0 5} \\ & -0.15 /-0.20 \\ & \hline \end{aligned}$	dB (max) dB (min)
$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{c}}$	Clock to Cutoff Frequency Ratio (Note 3) $\begin{array}{r} \text { LMF40-50 } \\ \text { LMF40-100 } \end{array}$			$\begin{aligned} & 49.80 \pm 0.8 \% / 49.80 \pm \mathbf{1 . 0 \%} \\ & 99.00 \pm 0.8 \% / 99.00 \pm \mathbf{1 . 0 \%} \end{aligned}$	$\begin{aligned} & (\max) \\ & (\max) \end{aligned}$
$\Delta f_{C L K} / \mathrm{f}_{\mathrm{C}} / \Delta \mathrm{T}$	Clock to Cutoff Frequency Ratio Temperature Coefficient $\begin{array}{r} \text { LMF40-50 } \\ \text { LMF40-100 } \end{array}$		$\begin{aligned} & 5 \\ & 5 \end{aligned}$		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{A}_{\text {MIN }}$	Stopband Attenuation	At $2 \mathrm{f}_{\mathrm{c}}$		24.0	$\mathrm{dB}(\mathrm{min})$

Filter Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}$. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$: All other limits T_{A} $=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limit)
$\mathbf{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$ (Continued)					
$\mathrm{V}_{\text {OS }}$	Unadjusted DC Offset Voltage LMF40-50 LMF40-100			$\begin{aligned} & \pm 80 / \pm \mathbf{1 0 0} \\ & \pm 80 / \pm \mathbf{1 0 0} \end{aligned}$	$\begin{aligned} & \mathrm{mV}(\max) \\ & \mathrm{mV}(\max) \end{aligned}$
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		$\begin{aligned} & +3.9 /+\mathbf{3 . 7} \\ & -4.2 /-4.0 \end{aligned}$	V (min) V (max)
ISC	Output Short Circuit Current (Note 8)	Source Sink	$\begin{array}{r} 90 \\ 2.2 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	Dynamic Range (Note 4)		88		dB
	Additional Magnitude Response Test Points (Note 6) LMF40-50	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=12 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=9 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -7.50 \pm 0.26 /-\mathbf{7 . 5 0} \pm \mathbf{0 . 3 0} \\ & -1.46 \pm 0.12 /-\mathbf{1 . 4 6} \pm \mathbf{0 . 1 6} \end{aligned}$	$\begin{aligned} & \mathrm{dB}(\max) \\ & \mathrm{dB}(\max) \end{aligned}$
	LMF40-100	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=6 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=4.5 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -7.15 \pm 0.26 /-\mathbf{7 . 1 5} \pm \mathbf{0 . 3 0} \\ & -1.42 \pm 0.12 /-\mathbf{1 . 4 2} \pm \mathbf{0 . 1 6} \end{aligned}$	dB (max) $d B$ (max)
	Clock Feedthrough	Filter Output $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	5		$\mathrm{m} \mathrm{V}_{\mathrm{P}-\mathrm{P}}$

Filter Electrical Characteristics The following specifications apply for $f_{\text {CLK }}=250 \mathrm{kHz}$. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$: All other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limit)
$\mathrm{V}^{+}=+2.5 \mathrm{~V}, \mathrm{~V}^{-}=-2.5 \mathrm{~V}$					
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency Range (Note 17)		5	1.0	$\begin{gathered} \mathrm{Hz}(\min) \\ \mathrm{MHz}(\max) \end{gathered}$
Is	Supply Current	CMJ CIN, CIJ, CIWM		$\begin{aligned} & 2.1 / 4.0 \\ & 2.1 / 3.0 \\ & \hline \end{aligned}$	$m A(\max)$ mA (max)
H_{O}	DC Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 2 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & +0.05 /+\mathbf{0 . 0 5} \\ & -0.15 /-\mathbf{0 . 2 0} \\ & \hline \end{aligned}$	dB (max) dB (min)
		$\mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}$	-0.1		dB
$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{c}}$	Clock to Cutoff Frequency Ratio LMF40-50	$\mathrm{f}_{\text {CLK }}=250 \mathrm{kHz}$		$49.80 \pm 0.8 \%$	(max)
		$\mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}$	$\begin{gathered} 49.80 \\ \pm 0.6 \% \end{gathered}$		
		$\mathrm{f}_{\text {CLK }}=250 \mathrm{kHz}$		$99.00 \pm 1.0 \% / 99.00 \pm 1.2 \%$	(max)
		$\mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}$	$\begin{gathered} 99.00 \\ \pm 1.2 \% \\ \hline \end{gathered}$		

Filter Electrical Characteristics (Continued)
The following specifications apply for fCLK $=250 \mathrm{kHz}$. Boldface limits apply for $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\mathbf{J}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$: All other limits T_{A} $=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limit)

$\Delta f_{\text {CLK }} / f_{\mathrm{c}} / \Delta \mathrm{T}$	Clock to Cutoff Frequency Ratio Temperature Coefficient LMF40-50 LMF40-100		5		ppm $/{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{A}_{\text {MIN }}$	Stopband Attenuation	At $2 \mathrm{f}_{\mathrm{c}}$		-24.0	dB (min)
$\mathrm{V}_{\text {OS }}$	Unadjusted DC Offset Voltage LMF40-50 LMF40-100			$\begin{aligned} & \pm 80 / \pm \mathbf{1 0 0} \\ & \pm 80 / \pm \mathbf{1 0 0} \end{aligned}$	mV (max) mV (max)
V_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		$\begin{array}{r} +1.4 /+\mathbf{1 . 2} \\ -2.0 /-\mathbf{1 . 8} \\ \hline \end{array}$	$\begin{aligned} & V(\text { min }) \\ & V(\text { max }) \end{aligned}$
Isc	Output Short Circuit Current (Note 8)	Source Sink	$\begin{aligned} & 42 \\ & 0.9 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	Dynamic Range (Note 4)		81		dB
	Additional Magnitude Response Test Points (Note 6) LMF40-50	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=6 \mathrm{kHz} \\ & \mathrm{fiN}^{2}=4.5 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -7.50 \pm 0.26 /-\mathbf{7 . 5 0} \pm \mathbf{0 . 3 0} \\ & -1.46 \pm 0.12 /-\mathbf{1 . 4 6} \pm \mathbf{0 . 1 6} \end{aligned}$	dB (max) dB (max)
	LMF40-100	$\begin{aligned} & f_{I N}=3 \mathrm{kHz} \\ & f_{\mathrm{IN}}=2.25 \mathrm{kHz} \\ & \hline \end{aligned}$		$\begin{aligned} & -7.15 \pm 0.26 /-\mathbf{- 7 . 1 5} \pm \mathbf{0 . 3 0} \\ & -1.42 \pm 0.12 / \mathbf{- 1 . 4 2} \pm \mathbf{0 . 1 6} \end{aligned}$	dB (max) dB (max)
	Clock Feedthrough	Filter Output $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	5		mV P-P

Logic Input-Output Characteristics The following specifications apply for $\mathrm{V}^{-}=0 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX: }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limit)

TTL CLOCK INPUT, CLK R PIN (Note 9)

	TTL CLK R Pin Input Voltage Logic "1" Logic "0"	$\begin{aligned} & V^{+}=+5 V \\ & V^{-}=-5 V \end{aligned}$		$\begin{aligned} & 2.0 / 2.1 \\ & 0.8 / 0.8 \end{aligned}$	$\begin{aligned} & V(\text { min }) \\ & V(\text { max }) \end{aligned}$
	CLK R Input Voltage Logic "1" Logic "0"	$\begin{aligned} & \mathrm{V}^{+}=+2.5 \mathrm{~V} \\ & \mathrm{~V}^{-}=-2.5 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 2.0 / 2.0 \\ 0.6 / 0.4 \\ \hline \end{array}$	$\begin{aligned} & V(\text { min }) \\ & V(\text { max }) \end{aligned}$
	Maximum Leakage Current at CLK R Pin		2.0		$\mu \mathrm{A}$
SCHMITT TRIGGER					
$\mathrm{V}_{\mathrm{T}}+$	Positive Going Input Threshold Voltage CLK IN Pin	$\mathrm{V}+=+10 \mathrm{~V}$		$\begin{aligned} & 6.1 / 6.0 \\ & 8.8 / 8.9 \end{aligned}$	$\begin{aligned} & \mathrm{V}(\min) \\ & \mathrm{V}(\max) \end{aligned}$
		$\mathrm{V}+=+5 \mathrm{~V}$		$\begin{array}{r} 3.0 / 2.9 \\ 4.3 / 4.4 \\ \hline \end{array}$	$\begin{aligned} & V(\text { min }) \\ & V(\text { max }) \end{aligned}$

Logic Input-Output Characteristics (Continued) The following specifications apply for $V^{-}=0 \vee$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{M A X}$: all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limit)
SCHMITT TRIGGER (Continued)					
$\mathrm{V}_{\mathrm{T}}{ }^{-}$	Negative Going Input Threshold Voltage CLK IN Pin	$\mathrm{V}+=+10 \mathrm{~V}$		$\begin{aligned} & 1.4 / 1.3 \\ & 3.8 / 3.9 \end{aligned}$	$\begin{aligned} & \mathrm{V}(\min) \\ & \mathrm{V}(\max) \end{aligned}$
		$\mathrm{V}^{+}=+5 \mathrm{~V}$		$\begin{aligned} & 0.7 / 0.6 \\ & 1.9 / 2.0 \end{aligned}$	$\begin{aligned} & V \text { (min) } \\ & \mathrm{V} \text { (max) } \end{aligned}$
$\mathrm{V}_{\mathrm{T}}+-\mathrm{V}^{-}$	Hysteresis CLK IN Pin	$\mathrm{V}+=+10 \mathrm{~V}$		$\begin{aligned} & 2.3 / 2.1 \\ & 7.4 / 7.6 \\ & \hline \end{aligned}$	$\begin{aligned} & V(\min) \\ & V(\max) \end{aligned}$
		$\mathrm{V}^{+}=+5 \mathrm{~V}$		$\begin{aligned} & 1.1 / 0.9 \\ & 3.6 / 3.8 \end{aligned}$	$\begin{aligned} & V(\min) \\ & V(\max) \end{aligned}$
	Logical "1" Output Voltage CLK R Pin	$\begin{aligned} & \mathrm{l}=-10 \mu \mathrm{~A} \\ & \mathrm{~V}+=+10 \mathrm{~V} \\ & \mathrm{~V}^{+}=+5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 9.1 / 9.0 \\ & 4.6 / 4.5 \end{aligned}$	$\begin{aligned} & V(\min) \\ & V(\min) \end{aligned}$
	Logical "0" Output Voltage CLK R Pin	$\begin{aligned} & \mathrm{l}=-10 \mu \mathrm{~A} \\ & \mathrm{~V}^{+}=+10 \mathrm{~V} \\ & \mathrm{~V}^{+}=+5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.9 / 1.0 \\ & 0.4 / 0.5 \end{aligned}$	\checkmark (max) V (max)
	Output Source Current CLK R Pin	$\begin{aligned} & \text { CLKR to } V^{-} \\ & V^{+}=+10 V \\ & V^{+}=+5 V^{2} \end{aligned}$		$\begin{aligned} & 4.9 / 3.7 \\ & 1.6 / 1.2 \\ & \hline \end{aligned}$	mA (min) mA (min)
	Output Sink Current CLK R Pin	$\begin{aligned} & \text { CLKR to } V^{+} \\ & V^{+}=+10 \mathrm{~V} \\ & \mathrm{~V}^{+}=+5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 4.9 / 3.7 \\ & 1.6 / 1.2 \\ & \hline \end{aligned}$	mA (min) mA (min)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating range.
Note 2: All voltages are specified with respect to ground.
Note 3: The filter's cutoff frequency is defined as the frequency where the magnitude response is 3.01 dB less than the DC gain of the filter.
Note 4: For $\pm 5 \mathrm{~V}$ supplies the dynamic range is referenced to $2.62 \mathrm{~V}_{\text {rms }}$ (3.7 V peak) where the wideband noise over a 20 kHz bandwidth is typically $100 \mu \mathrm{~V}_{\mathrm{rms}}$ for the LMF40. For $\pm 2.5 \mathrm{~V}$ supplies the dynamic range is referenced to $0.849 \mathrm{~V}_{\mathrm{rms}}$ (1.2 V peak) where the wideband noise over a 20 kHz bandwidth is typically $75 \mu \mathrm{~V}_{\text {rms }}$ for the LMF40.
Note 5: The specifications for the LMF40 have been given for a clock frequency (fcLk) of 500 kHz at $\pm 5 \mathrm{~V}$ and 250 kHz at $\pm 2.5 \mathrm{~V}$. Above this clock frequency the cutoff frequency begins to deviate from the specified error band of $\pm 0.8 \%$ over the temperature range, but the filter still maintains its magnitude characteristics. See Application Information, Section 1.4.
Note 6: The filter's magnitude response is tested at the cutoff frequency, $f_{c}, f_{S}=2 f_{c}$, and at these other two additional frequencies.
Note 7: For simplicity all logic levels have been referenced to $\mathrm{V}^{-}=0 \mathrm{~V}$ (except for the TTL input logic levels). The logic levels will scale accordingly for $\pm 5 \mathrm{~V}$ and $\pm 2.5 \mathrm{~V}$ supplies.
Note 8: The short circuit source current is measured by forcing the output that is being tested to its maximum positive swing and then shorting that output to the negative supply. The short circuit sink current is measured by forcing the output that is being tested to its maximum negative voltage and then shorting that output to the positive supply. These are worst case conditions.
Note 9: The LMF40 is operated with symmetrical supplies and L. Sh. is tied to ground.
Note 10: Typicals are at $T_{J}=25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 11: Guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 12: Human body model; 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 13: When the input voltage $\left(V_{\mathbb{N}}\right)$ at any pin exceeds the power supply voltages ($V_{\mathbb{N}}<V_{-}$or $V_{\mathbb{N}}>V^{+}$) the absolute value of the current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply voltages with 5 mA current limit to four.
Note 14: The maximum power dissipation must be de-rated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature T_{A}. The maximum allowable power dissipation is $\mathrm{PD}=\left(\mathrm{T}_{\mathrm{JMAX}}-\mathrm{T}_{A}\right) / \theta_{\mathrm{JA}}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For the LMF40, $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance, when board mounted, is $67^{\circ} \mathrm{C} / \mathrm{W}$ for the LMF40CIN, $62^{\circ} \mathrm{C} / \mathrm{W}$ for the LMF40CIJ and LMF40CMJ, and $78^{\circ} \mathrm{C} / \mathrm{W}$ for the LMC40CIWM.
Note 15: In popular usage the term cutoff frequency defines that frequency at which a filter's gain drops 3.01 dB below its DC value. Equations (2) and (3) and design example 2.1, however, use the term cutoff frequency (f_{b}) to define that frequency at which a filter's gain drops by a variable amount as determined from the given design specifications.
Note 16: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices or see the section titled "Surface Mount" in the Linear Data Book.
Note 17: The nominal ratio of the clock frequency to the low-pass cutoff frequency is internally set to 50-to-1 (LMF40-50) or 100-to-1 (LMF40-100).

Typical Performance Characteristics

DC Gain Deviation vs Temperature

$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{c}}$ Deviation vs Temperature

DC Gain Deviation vs Temperature

$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{c}}$ Deviation vs Clock Frequency

TL/H/10557-5

Typical Performance Characteristics (Continued)

Power Supply Current vs Temperature

DC Offset Voltage Deviation vs Temperature

Schmitt Trigger Threshold vs Power Supply Voltage

Positive Voltage Swing vs Power Supply Voltage

Negative Voltage Swing vs Temperature

CLK R Trigger Threshold vs Power Supply Voltage

Pin Descriptions

(Numbers in () are for 14-pin package).

Pin \#	Pin Name	Function
$\begin{gathered} 1 \\ (1) \end{gathered}$	\therefore CLKIN	A CMOS Schmitt-trigger input to be used with an external CMOS logic level clock. Also used for self clocking Schmitttrigger oscillator (see Section 1.1).
2 (3)	CLK R	A TTL logic level clock input when in split supply operation ($\pm 2.0 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$) with L . Sh tied to system ground. This pin becomes a low impedance output when L. Sh is tied to V -. Also used in conjunction with the CLK IN pin for a self clocking Schmitt-trigger oscillator (see Section 1.1). The TTL input signal must not exceed the supply voltages by more than 0.2 V .
3 (5)	L. Sh	Level shift pin; selects the logic threshold levels for the clock. When tied to V - it enables an internal TRISTATE® ${ }^{\oplus}$ buffer stage between the Schmitt trigger and the internal clock level shift stage thus enabling the CLK IN Schmitt-trigger input and making the CLK R pin a low impedance output. When the voltage level at this input exceeds $25 \%\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)+$ V - the internal TRI-STATE buffer is disabled allowing the CLK R pin to become the clock input for the internal clock level-shift stage. The CLK R threshold level is now 2 V above the voltage on the L . Sh pin. The CLK R pin will be compatible with TTL logic levels when the LMF40 is operated on split supplies with the L. Sh pin connected to system ground.
5 (8)	FILTER OUT	The output of the low-pass filter.
$\begin{gathered} 6 \\ (10) \end{gathered}$	AGND	The analog ground pin. This pin sets the DC bias level for the filter section and must be tied to the system ground for split supply operation or to mid-supply for single supply operation (see Section 1.2). When tied to mid-supply this pin should be well bypassed.

Pin	Pin
$\#$	Name
7,4	V^{+}, V^{-}
$(7,12)$	
8	FILTER
(14)	IN

Function

The positive and negative supply pins. The total power supply range is 4 V , to 14 V . Decoupling these pins with $0.1 \mu \mathrm{~F}$ capacitors is highly recommended. The input to the low-pass filter. To minimize gain errors the source impedance that drives this input should be less than 2k (see Section 3). For single supply operation the input signal must be biased to midsupply or AC coupled through a capacitor.

1.0 LMF40 Application Information

The LMF40 is a non-inverting unity gain low-pass fourth-order Butterworth switched-capacitor filter. The switched-capacitor topology makes the cutoff frequency (where the gain drops 3.01 dB below the DC gain) a direct ratio (100:1 or $50: 1$) of the clock frequency supplied to the filter. Internal integrator time constants set the filter's cutoff frequency. The resistive element of these integrators is actually a capacitor which is "switched" at the clock frequency (for a detailed discussion see Input Impedance section). Varying the clock frequency changes the value of this resistive element and thus the time constant of the integrators. The clock-to-cutoff-frequency ratio ($\mathrm{fCLK}^{\prime} / \mathrm{f}_{\mathrm{c}}$) is set by the ratio of the input and feedback. capacitors in the integrators. The higher the clock-to-cutoff-frequency ratio the closer this approximation is to the theoretical Butterworth response.

1.1 CLOCK INPUTS

The LMF40 has a Schmitt-trigger inverting buffer which can be used to construct a simple R/C oscillator. Pin 3 is connected to V^{-}, making Pin 2 a low impedance output. The oscillator's frequency is nominally

$$
\begin{equation*}
f_{C L K}=\frac{1}{R C \ln \left[\left(\frac{V_{C C}-V_{t}-}{V_{C C}-V_{t}+}\right)\left(\frac{V_{t}+}{V_{t^{-}}}\right)\right]} \tag{1}
\end{equation*}
$$

which is typically

$$
\begin{equation*}
\mathrm{f}_{\mathrm{CLK}} \cong \frac{1}{1.37 \mathrm{RC}} \tag{1a}
\end{equation*}
$$

for $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$.
Note that $\mathrm{f}_{\mathrm{CLK}}$ is dependent on the buffer's threshold levels as well as the resistor/capacitor tolerance (see Figure 1). Schmitt-trigger threshold voltage levels can change significantly causing the R/C oscillator's frequency to vary greatly from part to part.
Where accurate cutoff frequency is required, an external clock can be used to drive the CLK R input of the LMF40. This input is TTL logic level compatible and also presents a very light load to the external clock source ($\sim 2 \mu \mathrm{~A}$). With split supplies and the level shift (L. Sh) tied to system ground, the logic level is about 2V. (See the Pin Description for L. Sh).

1.0 LMF40 Application Information (Continued)

1.2 POWER SUPPLY

The LMF40 can be powered from a single supply or split supplies. The split supply mode shown in Figure 2 is the most flexible and easiest to implement. Supply voltages of $\pm 5 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$ enable the use of TTL or CMOS clock logic levels. Figure 3 shows AGND resistor-biased to $\mathrm{V}+/ 2$ for single supply operation. In this mode only CMOS clock logic, levels can be used, and input signals should be capacitorcoupled or biased near mid-supply.

1.3 INPUT IMPEDANCE

The LMF40 low-pass filter input (FILTER IN) is not a high impedance buffer input. This input is a switched-capacitor resistor equivalent, and its effective impedance is inversely proportional to the clock frequency. The equivalent circuit of the filter's input can be seen in Figure 4. The input capacitor charges to V_{IN} during the first half of the clock period; during the second half the charge is transferred to the feedback capacitor. The total transfer of charge in one clock cycle is therefore $Q=C_{I N} V_{I N}$, and since current is defined as the flow of charge per unit time, the average input current becomes

$$
\mathbb{I}_{\mathbb{N}}=\mathrm{Q} / \mathrm{T}
$$

(where T equals one clock period) or

$$
I_{I N A V E}=\frac{C_{I N} V_{I N}}{T}=C_{I N} V_{I N} f_{C L K}
$$

The equivalent input resistor $\left(R_{I N}\right)$ then can be expressed as

$$
R_{I N}=\frac{V_{\mathbb{I N}}}{I_{\mathbb{I N}}}=\frac{1}{C_{I N} f_{C L K}}
$$

The input capacitor is 2 pF for the LMF40-50 and 1 pF for the LMF40-100, so for the LMF40-100

$$
R_{I N}=\frac{1 \times 10^{12}}{f_{C L K}}=\frac{1 \times 10^{12}}{f_{c} \times 100}=\frac{1 \times 10^{10}}{f_{c}}
$$

and

$$
R_{I N}=\frac{5 \times 10^{11}}{f_{C L K}}=\frac{5 \times 10^{11}}{f_{\mathrm{C}} \times 50}=\frac{1 \times 10^{10}}{f_{\mathrm{c}}}
$$

for the LMF40-50. The above equation shows that for a given cutoff frequency (f_{c}), the input resistance of the LMF40-50 is the same as that of the LMF40-100. The higher the clock-to-cutoff-frequency ratio, the greater equivalent input resistance for a given clock frequency.
This input resistance will form a voltage divider with the source impedance ($R_{\text {Source }}$). Since $R_{I N}$ is inversely proportional to the cutoff frequency, operation at higher cutoff frequencies will be more likely to attenuate the input signal which would appear as an overall decrease in gain to the output of the filter. Since the filter's ideal gain is unity, the overall gain is given by:

$$
A_{V}=\frac{R_{I N}}{R_{I N}+R_{\text {Source }}}
$$

If the LMF40-50 or the LMF40-100 were set up for a cutoff frequency of 10 kHz the input impedance would be:

$$
\mathrm{R}_{\mathrm{IN}}=\frac{1 \times 10^{10}}{10 \mathrm{kHz}}=1 \mathrm{M} \Omega
$$

2.0 Designing with the LMF40 (Continued)

Likewise, the attenuation at f_{s} can be found using (3) with the above values and $n=4$:

$$
\begin{aligned}
\text { Attn }(2 \mathrm{kHz}) & \left.=10 \log [1+100.1-1)(2 \mathrm{kHz} / 1 \mathrm{kHz})^{8}\right] \\
& =18.28 \mathrm{~dB}
\end{aligned}
$$

This result also meets the design specification given in Figure 6 again verifying that a single LMF40 section will be adequate.
Since the LMF40's cutoff frequency (f_{c}), which corresponds to a gain attenuation of -3.01 dB , was not specified in this example, it needs to be calculated. Solving equation (3) where $f=f_{c}$ as follows:

$$
\begin{aligned}
f_{c} & =f_{b}\left[\frac{10^{0.1(3.01 \mathrm{~dB})-1}}{\left(10^{\left.0.1 A_{\max }-1\right)}\right.}\right]^{1 /(2 \mathrm{n})} \\
& =1 \mathrm{kHz}\left[\frac{10^{0.301-1}}{10^{0.1}-1}\right]^{1 / 8} \\
& =1.184 \mathrm{kHz}
\end{aligned}
$$

where $f_{c}=f_{C L K} / 50$ or $f_{C L K} / 100$. To implement this example for the LMF40-50 the clock frequency will have to be set to $\mathrm{f}_{\mathrm{CLK}}=50(1.184 \mathrm{kHz})=59.2 \mathrm{kHz}$, or for the LMF40-100, $\mathrm{f}_{\mathrm{CLK}}=100(1.184 \mathrm{kHz})=118.4 \mathrm{kHz}$.

2.2 CASCADING LMF40s

When a steeper stopband attenuation rate is required, two LMF40s can be cascaded (Figure 7) yielding an 8th order slope of 48 dB per octave. Because the LMF40 is a Butterworth filter and therefore has no ripple in its passband, when LMF40s are cascaded the resulting filter also has no ripple in its passband. Likewise the DC and passband gains will remain at 1V/V. The resulting response is shown in Figure 8 a.
In determining whether the cascaded LMF40s will yield a filter that will meet a particular amplitude response specification, as above, equations (4) and (5) can be used, shown below.

$$
\begin{equation*}
n=\frac{\log \left[\left(10,{ }^{\left.\left.0.05 A_{\min }-1\right) /(100.05 A \max -1)\right]}\right.\right.}{2 \log \left(f_{\mathrm{s}} / f_{\mathrm{b}}\right)} \tag{4}
\end{equation*}
$$

Attn $(f)=10 \log \left[1+\left(10^{\left.\left.0.05 A_{\max }-1\right)\left(f / f_{b}\right)^{2}\right] d B}\right.\right.$
where $n=4$ (the order of each filter).

TL/H/10557-7
FIGURE 1. Schmitt Trigger R/C Oscillator

FIGURE 2. Split Supply Operation with CMOS Level Clock (a), and TTL Level Clock (b)

FIGURE 3. Single Supply Operation. AGND Resistor Biased to V+/2

TL/H/10557-11
a) Equivalent Circuit for LMF40 Filter Input

TL/H/10557-12
b) Actual Circuit for LMF40 Filter Input

FIGURE 4. LMF40 Filter Input
2.0 Designing with the LMF40 (Continued)

FIGURE 5a. LMF40-100 Amplitude Response with $\pm 5 \mathrm{~V}$ Supplies

TL/H/10557-14
FIGURE 5b. LMF40-50 Amplitude Response with $\pm 5 \mathrm{~V}$ Supplies

TL/H/10557-15
FIGURE 5c. LMF40-100 Amplitude Response with $\pm 2.5 \mathrm{~V}$ Supplies

FIGURE 5d. LMF40-50 Amplitude Response with $\pm 2.5 \mathrm{~V}$ Supplies

FIGURE 6. Design Example Magnitude Response Specification. The response of the filter design must fall within the shaded area of the specification.
2.0 Designing with the LMF40 (Continued)

FIGURE 7. Cascading Two LMF40s

FIGURE 8a. One LMF40-50 vs Two LMF40-50s Cascaded

FIGURE 8b. Phase Response of Two Cascaded LMF40-50s

TL/H/10557-20
FIGURE 9. LMF40-50 Abrupt Clock Frequency Change

FIGURE 10. LMF40-50 Input Step Response

2.0 Designing with the LMF40 (Continued)

TL/H/10557-23
(b)Output Signal Spectrum. Note that the input signal at $\mathbf{f}_{\mathbf{s}} / \mathbf{2}+\mathbf{f}$ causes an output signal to appear at $\mathbf{f}_{\mathbf{s}} / \mathbf{2 - \mathbf { f }}$.

FIGURE 11. The phenomenon of aliasing in sampled-data systems. An input signal whose frequency is greater than one-half the sampling frequency will cause an output to appear at a frequency lower than one-half the sampling frequency. In the LMF40, $f_{s}=\mathbf{f c L K}_{\text {c }}$.

LMF60 High Performance 6th－Order Switched Capacitor Butterworth Lowpass Filter

General Description

The LMF60 is a high performance，precision，6th－order But－ terworth lowpass active filter．It is fabricated using Nation－ al＇s LMCMOS process，an improved silicon－gate CMOS pro－ cess specifically designed for analog products．Switched－ capacitor techniques eliminate external component require－ ments and allow a clock－tunable cutoff frequency．The ratio of the clock frequency to the low－pass cutoff frequency is internally set to 50：1（LMF60－50）or 100：1（LMF60－100）．A Schmitt trigger clock input stage allows two clocking op－ tions，either self－clocking（via an external resistor and ca－ pacitor）for stand－alone applications，or for tighter cutoff fre－ quency control，a TTL or CMOS logic compatible clock can be directly applied．The maximally flat passband frequency response together with a $D C$ gain of $1 \mathrm{~V} / \mathrm{V}$ allows cascading LMF60 sections for higher－order filtering．In addition to the filter，two independent CMOS op amps are included on the die and are useful for any general signal conditioning appli－ cations．The LMF60 is pin－and functionally－compatible with the MF6，but provides improved performance．

Features

［1．Cutoff frequency accuracy of $\pm 1.0 \%$ ，maximum
回 Low offset voltage $\pm 100 \mathrm{mV}$ ，maximum，$\pm 5 \mathrm{~V}$ supply
国 Low clock feedthrough of 10 mV p－p，typical
■ Dynamic range of 88 dB ，typical
■ Two uncommitted op amps available
四 No external components required
－14－pin DIP or 14 －pin wide－body S．O．package
图 Single／Dual Supply Operation： +4 V to $+14 \mathrm{~V}(\pm 2 \mathrm{~V}$ to $\pm 7 \mathrm{~V})$
国 Cutoff frequency set by external or internal clock
－Pin－compatible with the MF6

Applications

畗 Communication systems
■ Audio filtering
－Anti－alias filtering
mata acquisition noise filtering
© Instrumentation
（ ：High－order tracking filters

Block and Connection Diagrams

TL／H／9294－1

All Packages

Order Number LMF60CMJ－50， （5962－9096 701MCA or LMF60CMJ50／883）， LMF60CMJ－100，or （5962－9096 702MCA or LMF60CMJ100／883）
See NS Package Number J14A
Order Number LMF60CIWM－50 or LMF60CIWM－100
See NS Package Number M14B
Order Number LMF60CIN－50 or LMF60CIN－100
See NS Package Number N14A

Absolute Maximum Ratings (Note 1)	
If Milltary/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availablity and specifications.	
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right.$) (Note 2)	15 V
Voltage at Any Pin	$\mathrm{V}^{+}+0.2 \mathrm{~V}$
	$\mathrm{~V}^{-}-0.2 \mathrm{~V}$
Input Current at Any Pin (Note 3)	5 mA
Package Input Current (Note 3)	20 mA
Power Dissipation (Note 4)	500 mW
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Susceptibility (Note 5)	2000 V
CLK IN Pin	1700 V

Soldering Information:

- N Package: 10 sec.	$260^{\circ} \mathrm{C}$
- J Package: 10 sec.	$300^{\circ} \mathrm{C}$
- SO Package: Vapor Phase (60 sec.$)$	$215^{\circ} \mathrm{C}$
	$20^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Temperature Range $\quad T_{\text {Min }} \leq T_{A} \leq T_{\text {Max }}$ LMF60CIN-50, LMF60CIN-100
LMF60ClJ-50, LMF60ClJ-100,
LMF60CIWM-50,
LMF60CIWM-100
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
LMF60CMJ-50, LMF60CMJ-100,
LMF60CMJ50/883,
LMF60CMJ100/883
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
4 V to 14 V

Filter Electrical Characteristics

The following specifications apply for $\mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}$ (Note 7) unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}$
$=T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 8)	Limits (Note 9)	Units (Limits)
$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$					
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency Range (Note 16)		5	1.5	$\begin{gathered} \mathrm{Hz}(\text { Min }) \\ \mathrm{MHz}(\text { Max }) \end{gathered}$
I_{S}	Total Supply Current	-		7.0 / 12.0	mA (Max)
	Clock Feedthrough	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \quad \text { Filter }$ Opamp	$\begin{gathered} 10 \\ 5 \end{gathered}$		$\begin{aligned} & m V p-p \\ & m V p-p \end{aligned}$
H_{0}	DC Gain	$\mathrm{R}_{\text {Source }} \leq 2 \mathrm{k} \Omega$		$\begin{array}{ccc} \hline 0.10 & / & \mathbf{0 . 1 0} \\ -0.26 & / & -0.30 \\ \hline \end{array}$	dB (Max) dB (Min)
$\mathrm{fCLK} / \mathrm{f} \mathrm{C}$	Clock to LMF60-50 Cutoff Frequency LMF60-100 Ratio (Note 10)			$\begin{array}{ll} 49.00 \pm 0.8 \% & / 49.00 \pm \mathbf{1 . 0 \%} \\ 98.10 \pm 0.8 \% & / 98.10 \pm \mathbf{1 . 0 \%} \end{array}$	(Max) (Max)
	Temperature Coefficient of $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}$		4		ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{A}_{\text {MIN }}$	Stopband Attenuation	At $2 \times \mathrm{f}_{\mathrm{C}}$		36	dB (Min)
$\mathrm{V}_{\text {OS }}$	DC Offset LMF60-50 Voltage LMF60-100			$\begin{aligned} & \pm 100 \\ & \pm 150 \end{aligned}$	mV (Max) mV (Max)
Vout	Output Voltage Swing (Note 2)			$\begin{array}{lll} +3.9 & 1 & +3.7 \\ -4.2 & / & -4.0 \\ \hline \end{array}$	V (Min) V (Max)
ISC	Output Short Circuit Current (Note 11)	Source Sink	$\begin{array}{r} 90 \\ 2.2 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	Dynamic Range (Note 12)		88		dB
	Additional	$\mathrm{f}_{\mathrm{IN}}=12 \mathrm{kHz}$		$-9.45 \pm 0.46 /-9.45 \pm 0.50$	dB
	Magnitude Response	$\mathrm{f}_{\mathrm{N}}=9 \mathrm{kHz}$		$-0.87 \pm 0.16 /-0.87 \pm 0.20$	dB
	Test Points LMF60-100	$\mathrm{f}_{\mathrm{I}}=6 \mathrm{kHz}$		$-9.30 \pm 0.46 \quad /-9.30 \pm 0.50$	dB
		$\mathrm{f}_{\mathrm{IN}}=4.5 \mathrm{kHz}$		$-0.87 \pm 0.16 \quad /-0.87 \pm 0.20$	dB

Filter Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$ (Note 7) unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\mathbf{J}}$
$=T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 8)	Limits (Note 9)	Units (Limits)
$\mathrm{V}^{+}=+2.5 \mathrm{~V}, \mathrm{~V}^{-}=-2.5 \mathrm{~V}$					
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency Range (Note 16)		5	750	Hz (Min) kHz (Max)
Is	Total Supply Current			5.0 / 6.5	mA (Max)
	Clock Feedthrough (Peak to Peak)	$\begin{array}{ll} \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} & \text { Filter } \\ & \text { Opamp } \\ \hline \end{array}$	$\begin{aligned} & 6 \\ & 3 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
H_{0}	DC Gain (with $R_{\text {Source }} \leq 2 \mathrm{k} \Omega$)	$\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$		$\begin{array}{ccc} 0.10 & / & \mathbf{0 . 1 0} \\ -0.26 & / & -\mathbf{0 . 3 0} \\ \hline \end{array}$	dB (Max) dB (Min)
		$\mathrm{f}_{\text {CLK }}=500 \mathrm{kHz}$	-0.08		dB
${ }^{\mathrm{f}} \mathrm{CLK} / \mathrm{f}_{\mathrm{C}}$	Clock to Cutoff LMF60-50 Frequency Ratio (Note 10)	$\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$		$149.00 \pm 1.0 \%$	(Max)
		$\mathrm{f}_{\text {CLK }}=500 \mathrm{kHz}$	$49.00 \pm 0.6 \%$		
		$\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$		$98.10 \pm 0.8 \% \quad / 98.10 \pm \mathbf{1 . 0} \%$	(Max)
		$\mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}$	$98.10 \pm 0.6 \%$		
	Temperature Coefficient of $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}$		4		ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{A}_{\text {MIN }}$		At $2 \times \mathrm{fc}^{\text {c }}$		36	dB (Min)
$\mathrm{V}_{\text {OS }}$	DC Offset LMF60-50 Voltage LMF60-100			$\begin{aligned} & \pm \mathbf{6 0} \\ & \pm \mathbf{9 0} \end{aligned}$	mV (Max) mV (Max)
V OUT	Output Voltage Swing (Note 2)	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		$\begin{array}{lll} +1.4 & / & +\mathbf{1 . 2} \\ -2.0 & / & \mathbf{- 1 . 8} \\ \hline \end{array}$	$\begin{aligned} & V(\operatorname{Max}) \\ & V(\operatorname{Min}) \end{aligned}$
ISC	Output Short Circuit Current (Note 11)	Source Sink	$\begin{array}{r} 42 \\ 0.9 \\ \hline \end{array}$		mA mA
	Dynamic Range (Note 12)		81		dB
	Additional Magnitude LMF60-50 Response Test Points (Note 13)	$\begin{aligned} \mathrm{fiN} & =6 \mathrm{kHz} \\ \mathrm{f}_{\mathrm{IN}} & =4.5 \mathrm{kHz} \end{aligned}$		-9.45 $\pm 0.46 /-9.45 \pm 0.50$	dB
				$-0.87 \pm 0.16 /-0.87 \pm 0.20$	dB
		$\begin{aligned} f_{\mathrm{IN}} & =3 \mathrm{kHz} \\ \mathrm{f}_{\mathrm{IN}} & =2.25 \mathrm{kHz} \end{aligned}$		$-9.30 \pm 0.46 /-9.30 \pm 0.50$	dB
				$-0.87 \pm 0.16 /-\mathbf{0 . 8 7} \pm \mathbf{0 . 2 0}$	dB

Boidface limits apply for $T_{A}=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 8)	Limits (Note 9)	Units (Limits)
$\mathbf{v}^{+}=+5 \mathrm{~V}, \mathrm{v}^{-}=-5 \mathrm{~V}$					
Vos	Input Offset Voltage			± 20	mV (Max)
I_{B}	Input Bias Current		10		pA
CMRR	Common Mode Rejection Ratio (Op Amp \#2 Only)	Test Input Range $=$ -2.2 V to +1.8 V		55	dB
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		$\begin{array}{ccc} 3.8 & / & 3.6 \\ -4.2 & / & -4.0 \\ \hline \end{array}$	V (Min) V (Max)
ISC	Output Short Circuit Current (Note 13)	Source Sink	$\begin{aligned} & 90 \\ & 2.1 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
SR	Slew Rate		4		$\mathrm{V} / \mu \mathrm{s}$
Avol	DC Open Loop Gain		80		dB (Min)
GBW	Gain Bandwidth Product	.	2.0		MHz
$\mathrm{V}^{+}=+2.5 \mathrm{~V}, \mathrm{~V}^{-}=-2.5 \mathrm{~V}$					
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			± 20	$m \mathrm{~V}$ (Max)
I_{B}	Input Bias Current		10		pA
CMRR	Common Mode Rejection Ratio (Op Amp \#2 Only)	$\begin{aligned} & \text { Test Input Range }= \\ & -0.9 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \end{aligned}$		55	dB
Vo	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		$\begin{array}{ccc} \hline 1.3 & / & 1.1 \\ -1.8 & / & -1.6 \\ \hline \end{array}$	$\begin{aligned} & V(\operatorname{Min}) \\ & V(\operatorname{Max}) \end{aligned}$
Isc	Output Short Circuit Current (Note 13)	Source . Sink	$\begin{aligned} & 42 \\ & 0.9 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
SR	Slew Rate		3		$\mathrm{V} / \mu \mathrm{s}$
Avol	DC Open Loop Gain		74		dB (Min)
GBW	Gain Bandwidth Product		2.0	*	MHz

Logic Input-Output Characteristics

The following specifications apply for $\mathrm{V}^{-}=\mathrm{OV}$ (Note 15), $\mathrm{L} . \mathrm{Sh}=0 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for T_{A} $=T_{J}=T_{\text {MIN }}$ to $T_{\text {MAX; }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 8)	Limits (Note 9)	Units (Limits)

TTL CLOCK INPUT, CLK R PIN (NOTE 14)

$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	TTL Input Voltage	$\begin{aligned} & \text { Logical " } 1 \text { "" } \\ & \text { Logical "0" } \end{aligned}$	$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$		$\begin{aligned} & 2.0 \\ & 0.8 \end{aligned}$		V (Min) V (Max)
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	CLK R Input Voltage	$\begin{aligned} & \text { Logical " } 1 \text { " } \\ & \text { Logical "0" } \end{aligned}$	$\mathrm{V}^{+}=+2.5 \mathrm{~V}, \mathrm{~V}^{-}=-2.5 \mathrm{~V}$		2.0		V (Min) V (Max)
	Maximum Leakage Current at CLK R			2.0			$\mu \mathrm{A}$

Logic Input-Output Characteristics (Continued)
The following specifications apply for $\mathrm{V}^{-}=0 \mathrm{~V}$ (Note 15), $\mathrm{L} . \mathrm{Sh}=0 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for T_{A}
$=\mathbf{T}_{J}=\mathbf{T}_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 8)	Limits (Note 9)			Units (Limits)
SCHMITT TRIGGER							
$\mathrm{V}_{\text {+ }}$	Positive Going Input Threshold Voltage	$\mathrm{V}^{+}=10 \mathrm{~V}$		$\begin{aligned} & 6.1 \\ & 8.8 \end{aligned}$	1	$\begin{aligned} & 6.0 \\ & 8.9 \end{aligned}$	$V(\text { Min })$ $\mathrm{V} \text { (Max) }$
		$\mathrm{V}^{+}=5 \mathrm{~V}$		3.0 4.3	1	$\begin{aligned} & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \text { V (Min) } \\ & \text { V (Max) } \end{aligned}$
$\mathrm{V}_{\text {T- }}$	Negative Going Input Threshold Voltage	$\mathrm{V}^{+}=10 \mathrm{~V}$		$\begin{aligned} & 1.4 \\ & 3.8 \end{aligned}$	1	$\begin{aligned} & 1.3 \\ & 3.9 \end{aligned}$	$\begin{aligned} & V(\text { Min }) \\ & V(\text { Max }) \end{aligned}$
		$\mathrm{V}^{+}=5 \mathrm{~V}$		$\begin{aligned} & 0.7 \\ & 1.9 \end{aligned}$	1	$\begin{aligned} & 0.6 \\ & 2.0 \end{aligned}$	V (Min) V (Max)
$\mathrm{V}_{\mathrm{T}+} \mathrm{V}^{\text {V- }}$	Hysteresis	$\mathrm{V}^{+}=10 \mathrm{~V}$		$\begin{aligned} & 2.3 \\ & 7.4 \\ & \hline \end{aligned}$	1	$\begin{aligned} & 2.1 \\ & 7.6 \\ & \hline \end{aligned}$	$\begin{aligned} & V(\text { Min }) \\ & V(\text { Max }) \\ & \hline \end{aligned}$
		$\mathrm{V}^{+}=5 \mathrm{~V}$		$\begin{aligned} & 1.1 \\ & 3.6 \end{aligned}$	1	$\begin{aligned} & 0.9 \\ & 3.8 \end{aligned}$	V (Min) V (Max)
V OH	Logical "1" Voltage $\mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A}, \operatorname{Pin} 11$	$\begin{aligned} & \mathrm{V}^{+}=+10 \mathrm{~V} \\ & \mathrm{~V}^{+}=+5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 9.1 \\ & 4.6 \end{aligned}$	1	$\begin{aligned} & 9.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{V}(\operatorname{Min}) \\ & \mathrm{V}(\operatorname{Min}) \end{aligned}$
VOL	Logical " 0 " Voltage $\mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A}, \operatorname{Pin} 11$	$\begin{aligned} & \mathrm{V}^{+}=+10 \mathrm{~V} \\ & \mathrm{~V}^{+}=+5 \mathrm{~V} \end{aligned}$		0.9 0.4	1		V (Max) $\mathrm{V} \text { (Max) }$
IsOURCE	Output Source Current, Pin 11	$\begin{aligned} & \text { CLKR to } \mathrm{V}^{-} \\ & \mathrm{V}^{+}=+10 \mathrm{~V} \\ & \mathrm{~V}^{+}=+5 \mathrm{~V} \end{aligned}$		4.9 1.6	1	$\begin{aligned} & 3.7 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \mathrm{mA}(\text { Min }) \\ & \mathrm{mA}(\mathrm{Min}) \\ & \hline \end{aligned}$
IsINK	Output Sink Current, Pin 11	$\begin{aligned} & \text { CLKR to } \mathrm{V}^{+} \\ & \mathrm{V}^{+}=+10 \mathrm{~V} \\ & \mathrm{~V}^{+}=+5 \mathrm{~V} \end{aligned}$		4.9 1.6	1	$\begin{aligned} & 3.7 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \mathrm{mA}(\mathrm{Min}) \\ & \mathrm{mA}(\mathrm{Min}) \end{aligned}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional. Specified Electrical Characteristics do not apply when operating the device outside its specified conditions.
Note 2: All voltages are measured with respect to AGND, unless otherwise specified.
Note 3: When the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ at any pin exceeds the power supply rails ($\mathrm{V}_{\mathrm{IN}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathrm{IN}}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with 5 mA to four.
Note 4: The Maximum power dissipation must be derated at elevated temperatures and is dictated by T_{J} Max, $\theta_{J A}$, and the ambient temperature T_{A}. The maximum allowable power dissipation is $\mathrm{PD}=\left(\mathrm{T}_{J \operatorname{Max}}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{J A}$ or the number given in the absolute ratings, whichever is lower. For this device, $\mathrm{T}_{J \text { Max }}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance of the LMF60CCN when board mounted is $67^{\circ} \mathrm{C} / \mathrm{W}$. For the LMF60ClJ this number decreases to $62^{\circ} \mathrm{C} / \mathrm{W}$. For the LMF60CIWM, $\theta_{J A}=78^{\circ} \mathrm{C} / \mathrm{W}$.
Note 5: Human body model: 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: See AN450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in any current Linear Databook for other methods of soldering surface mount devices.
Note 7: The specifications given are for a clock frequency ($\mathrm{f}_{\mathrm{CLK}}$) of 500 kHz at +5 V and 250 kHz at $\pm 2.5 \mathrm{~V}$. Above this frequency, the cutoff frequency begins to deviate from the specified error band over the temperature range but the filter still maintains its amplitude characteristics. See application hints.
Note 8: Typicals are at $25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 9: Guaranteed to National's Average Outgoing Quality Level (AOQL).
Note 10: The cutoff frequency of the filter is defined as the frequency where the magnitude response is 3.01 dB less than the DC gain of the filter.
Note 11: The short circuit source current is measured by forcing the output to its maximum positive swing and then shorting that output to the negative supply. The short circuit sink current is measured by forcing the output being tested to its maximum negative voltage and then shorting that output to the positive supply. These are worst case conditions.
Note 12: For $\pm 5 \mathrm{~V}$ supplies the dynamic range is referenced to $2.62 \mathrm{~V}_{\mathrm{rms}}$ (3.7 V peak), where the wideband noise over a 20 kHz bandwidth is typically $100 \mu \mathrm{~V}$. For $\pm 2.5 \mathrm{~V}$ supplies the dynamic range is referenced to $0.849 \mathrm{~V}_{\text {rms }}$ (1.2 V peak), where the wideband noise over a 20 kHz bandwidth is typically $75 \mu \mathrm{~V}_{\text {rms }}$.
Note 13: The filter's magnitude response is tested at the cutoff frequency, f_{C}, at $\mathrm{f}_{\mathrm{IN}}=2 \mathrm{f}_{\mathrm{C}}$, and at these two additional frequencies.
Note 14: The LMF60 is operated with symmetrical supplies and L.Sh is tied to GND.
Note 15: For simplicity all the logic levels (except for the TTL input logic levels) have been referenced to $\mathrm{V}^{-}=0 \mathrm{~V}$. The logic levels will scale accordingly for $\pm 5 \mathrm{~V}$ and $\pm 2.5 \mathrm{~V}$ supplies.
Note 16: The nominal ratio of the clock frequency to the low-pass cutoff frequency is internally set to 50 -to-1 (LMF60-50) or 100-to-1 (LMF60-100).

Typical Performance Characteristics

$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}$. Deviation vs Power Supply Voltage

DC Gain Deviation vs Power Supply Voltage

$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}$ Deviation vs Temperature

$\mathbf{f}_{\mathbf{C L K}} / \mathrm{ff}_{\mathrm{C}}$ Deviation vs Temperature

DC Gain Deviation
vs Temperature

$\mathrm{f}_{\mathrm{CLK}} / \mathrm{fc}$ Deviation vs Clock Frequency

DC Gain Deviation vs Clock Frequency

TL/H/9294-3

Typical Performance Characteristics (Continued)

DC Offset Voltage Deviation vs Power Supply Voltage

Positive Voltage Swing vs Power Supply Voltage

DC Gain Deviation vs Temperature

Power Supply Current vs Power Supply Voltage

Power Supply Current vs Temperature

Positive Voltage Swing vs Temperature

TL/H/9294-4

Typical Performance Characteristics (Continued)

TL/H/9294-5

From Filter to Op-Amps

TL/H/9294-6
From Either Op-Amp to Filter Output

TL/H/9294-7

Pin Description (Pin Numbers)
 Pin
 Description

FILTER OUT (3) The output of the lowpass filter will typically swing to within IV of each supply rail.
FILTER IN (8) The input to the lowpass filter. To minimize gain errors the source impedance that drives this input should be less than $2 k$ (See Section 1.4). For single supply operation the input signal must be biased to mid-supply or AC coupled.
VosADJ (7)
This pin is used to adjust the DC offset of the filter output; if not used it must be tied to the AGND potential. (See Section 1.3)

AGND (5) The analog ground pin. This pin sets the DC bias level for the filter section and the noninverting input of Op-Amp \#1 and must be tied to the system ground for split supply operation or to mid-supply for single supply operation (See Section 1.2). When tied to mid-supply this pin should be well bypassed.
$\mathrm{V}_{\mathrm{O1}}(4), \quad \mathrm{V}_{\mathrm{O} 1}$ is the output and INV1 is the invertINV1 (13) ing input of Op-Amp \# 1. The non-inverting input of this Op-Amp is internally connected to the AGND pin.
$\mathrm{V}_{\mathrm{O} 2}(2), \quad \mathrm{V}_{\mathrm{O} 2}$ is the output, INV2 is the inverting
INV2 (14),
NINV2 (1)
V+(6), V^{-}(10)

Pin

CLKIN (9) A CMOS Schmitt-trigger input to be used with an external CMOS logic level clock. Also used for self-clocking Schmitt-trigger oscillator (See Section 1.1).

CLKR(11) A TTL logic level clock input when in split supply operation ($\pm 2 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$) and L. Sh tied to system ground. This pin becomes a low impedance output when L.Sh is tied to V^{-}. Also used in conjunction with the CLK IN pin for self clocking Schmitt-trigger oscillator (See Section 1.1).
L.Sh (12) Level shift pin, selects the logic threshold levels for the desired clock. When tied to V^{-}it enables an internal TRISTATE ${ }^{\circledR}$ buffer stage between the Schmitt trigger and the internal clock level shift stage thus enabling the CLK IN Schmitt-trigger input and making the CLK R pin a low impedance output.
When the voltage level at this input exceeds [25\% ($\mathrm{V}^{+}-\mathrm{V}^{-}$) $+\mathrm{V}^{-}$] the internal TRI-STATE ${ }^{\circledR}$ buffer is disabled allowing the CLK R pin to become the clock input for the internal clock level shift stage. The CLK R threshold level is now 2 V above the voltage applied to the L.Sh pin. Driving the CLK R pin with TTL logic levels can be accomplished through the use of split supplies and by tying the L.Sh pin to system ground.

1.0 LMF60 Application Hints

The LMF60 is comprised of a non-inverting unity gain lowpass sixth-order Butterworth switched capacitor filter section and two undedicated CMOS Op-Amps. The switchedcapacitor topology makes the cutoff frequency (where the gain drops 3.01 dB below the DC gain) a direct ratio (100:1 or $50: 1$) of the clock frequency supplied to the lowpass filter. Internal integrator time constants set the filter's cutoff frequency. The resistive element of these integrators is actually a capacitor which is "switched" at the clock frequency (for a detailed discussion see input Impedance section). Varying the clock frequency changes the value of this resistive element and thus the time constant of the integrators. The clock to cutoff frequency ratio ($\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}$) is set by the ratio of the input and feedback capacitors in the integrators. The higher the clock to cutoff frequency ratio (or the sampling rate) the closer the approximation is to the theoretical Butterworth response. The LMF60 is available in $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}$ ratios of 50:1 (LMF60-50) or 100:1 (LMF60-100).

1.1 CLOCK INPUTS

The LMF60 has a Schmitt-trigger inverting buffer which can be used to construct a simple R/C oscillator. The oscillator
frequency is dependent on the buffer's threshold levels as well as on the resistor/capacitor tolerance (See Figure 1). Schmitt-trigger threshold voltage levels can vary significantly causing the R/C oscillator's frequency to vary greatly from part to part.
Where accuracy in f_{C} is required an external clock can be used to drive the CLK R input of the LMF60. This input is TTL logic level compatible and also presents a very light load to the external clock source $(\sim 2 \mu \mathrm{~A})$ with split supplies and L.Sh tied to system ground. The logic level is programmed by the voltage applied to level shift (L.Sh) pin (See the Pin Description for L.Sh pin).

1.2 POWER SUPPLY BIASING

The LMF60 can be biased from a single supply or dual split ' supplies. The split supply mode shown in Figures 2 and 3 is the most flexible and easiest to implement. As discussed earlier split supplies, $\pm 2 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$, will enable the use of TTL or CMOS clock logic levels. Figure 4 shows two schemes for single supply biasing. In this mode only CMOS clock logic levels can be used.

$f_{C L K}=\frac{1}{R C \ln \left[\left(\frac{V_{C C}-V_{T-}}{V_{C C}-V_{T+}}\right) \frac{V_{T+}}{V_{T-}}\right]}$
Typically for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}^{+}-\mathrm{V}^{-}=10 \mathrm{~V}$:
$\mathrm{t}_{\mathrm{CLK}}=\frac{1}{1.37 \mathrm{RC}}$

FIGURE 1. Schmitt Trigger R/C Oscillator

1.0 LMF60 Application Hints (Continued)

If the LMF60-50 or the LMF60-100 were set up for a cutoff frequency of 10 kHz the input impedance would be:

$$
\mathrm{R}_{\mathrm{IN}}=\frac{1 \times 10^{10}}{10 \mathrm{kHz}}=1 \mathrm{M} \Omega
$$

In this example with a source impedance of 10 k the overall gain, if the LMF60 had an ideal gain of $1(0 \mathrm{~dB})$ would be:

$$
A_{V}=\frac{1 \mathrm{M} \Omega}{10 \mathrm{k} \Omega+1 \mathrm{M} \Omega}=0.99009(-86.4 \mathrm{mdB})
$$

Since the maximum overall gain error for the LMF60 is +0.1 $\mathrm{dB},-0.3 \mathrm{~dB}$ with a R $\mathrm{S} \leq 2 \mathrm{k} \Omega$ the actual gain error for this case would be +0.21 dB to -0.39 dB .

1.5 CUTOFF FREQUENCY RANGE

The filter's cutoff frequency (f_{C}) has a lower limit caused by leakage currents through the internal switches discharging the stored charge on the capacitors. At lower clock frequen-
cies these leakage currents can cause millivolts of error, for example:

$$
\begin{gathered}
\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{~Hz}, \mathrm{I}_{\text {LEAKAGE }}=1 \mathrm{pA}, \mathrm{C}=1 \mathrm{pF} \\
\mathrm{~V}=\frac{1 \mathrm{pA}}{1 \mathrm{pF}(100 \mathrm{~Hz})}=10 \mathrm{mV}
\end{gathered}
$$

The propagation delay in the logic and the settling time required to acquire a new voltage level on the capacitors increases as the LMF60 power supply voltage decreases. This causes a shift in the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}$ ratio which will become noticeable when the clock frequency exceeds 500 kHz . The amplitude characteristic will stay within tolerance until fCLK exceeds 750 kHz and will peak at about 0.4 dB at the cutoff frequency with a 2 MHz clock. The response of the LMF60 is still a reasonable approximation of the ideal Butterworth lowpass characteristic as can be seen in Figure 7.

TL/H/9294-18
FIGURE 7b. LMF60-50 $\pm 5 \mathrm{~V}$ Supplies
Amplitude Response

TL/H/9294-20
FIGURE 7d. LMF60-50 $\pm \mathbf{2 . 5 V}$ Supplies Amplitude Response

TL/H/9294-17
FIGURE 7a. LMF60-100 $\pm 5 \mathrm{~V}$ Supplies
Amplitude Response

TL/H/9294-19
FIGURE 7c. LMF60-100 $\pm \mathbf{2 . 5 V}$ Supplies
Amplitude Response

1.0 LMF60 Application Hints (Continued)

FIGURE 2. Dual Supply Operation LMF60 Driven with CMOS Logic Level Clock ($\mathrm{V}_{\mathbf{H}} \geq \mathrm{V}^{+}-0.3 \mathbf{V}_{\mathbf{S}}$ and

FIGURE 3. Dual Supply Operation LMF60 Driven with TTL Logic Level Clock
$\mathbf{V}_{\mathbf{I L}} \leq \mathbf{V}^{-}+\mathbf{0 . 3} \mathbf{V}_{\mathbf{S}}$ where $\mathbf{V}_{\mathbf{S}}=\mathbf{V}^{+}-\mathbf{V}^{-}$)

TL/H/9294-11
a) Resistor Biasing of AGND

b) Using Op-Amp 2 to Buffer AGND

FIGURE 4. Single Supply Operation

1.0 LMAF60 Application Hints (Continued)

FIGURE 5. Vos Adjust Schemes

1.3 OFFSET ADJUST

The VOSADJ pin is used in adjusting the output offset level of the filter section. If this pin is not used it must be tied to the analog ground (AGND) level, either mid-supply for single ended supply operation or ground for split supply operation. This pin sets the zero reference for the output of the filter. The implementation of this pin can be seen in Figure 5. In $5(a)$ DC offset is adjusted using a potentiometer; in 5(b) the Op-Amp integrator circuit keeps the average DC output level at AGND. The circuit in 5(b) is therefore appropriate only for AC-coupled signals and signals biased at AGND.

1.4 INPUT IMPEDANCE

The LMF60 lowpass filter input (FILTER IN pin) is not a high impedance buffer input. This input is a switched capacitor resistor equivalent, and its effective impedance is inversely proportional to the clock frequency. The equivalent circuit of the input to the filter can be seen in Figure 6. The input capacitor charges to the input voltage (V_{IN}) during one half of the clock period, during the second half the charge is transferred to the feedback capacitor. The total transfer of charge in one clock cycle is therefore $Q=C_{I N} V_{I N}$, and since current is defined as the flow of charge per unit time the average input current becomes

$$
\operatorname{liN}=Q / T
$$

(where T equals one clock period) or

$$
\mathrm{I}_{\mathbb{N}}=\frac{\mathrm{C}_{\mathbb{I N}} V_{\mathbb{I N}}}{T}=\mathrm{C}_{\mathbb{I N}} V_{I N} f_{C L K}
$$

TL/H/9294-15
a) Equivalent Circuit for LMF60 Filter Input

The equivalent input resistor $\left(R_{I N}\right)$ then can be defined as

$$
R_{I N}=V_{\mathbb{I N}} / l_{I N}=\frac{1}{C_{I N}{ }^{\text {CLLK}}}
$$

The input capacitor is 2 pF for the LMF60-50 and 1 pF for the LMF60-100, so for the LMF60-100

$$
R_{\text {IN }}=\frac{1 \times 10^{12}}{f_{\mathrm{CLK}}}=\frac{1 \times 10^{12}}{\mathrm{f}_{\mathrm{C}} \times 100}=\frac{1 \times 10^{10}}{\mathrm{f}_{\mathrm{C}}}
$$

and

$$
R_{I N}=\frac{5 \times 10^{11}}{f_{C L K}}=\frac{5 \times 10^{11}}{f_{C} \times 50}=\frac{1 \times 10^{10}}{f_{C}}
$$

for the LMF60-50. As shown in the above equations, for a given cutoff frequency (f C) the input impedance remains the same for the LMF60-50 and the LMF60-100. The higher the clock to cutoff frequency ratio, the greater equivalent input resistance for a given clock frequency. As the cutoff frequency increases the equivalent input impedance decreases. This input resistance will form a voltage divider with the source impedance ($R_{\text {SOURCE }}$). Since $R_{I N}$ is inversely proportional to the cutoff frequency, operation at higher cutoff frequencies will be more likely to load the input signal which would appear as an overall decrease in gain at the output of the filter. Since the filter's ideal gain is unity, its overall gain is given by:

$$
A_{V}=\frac{R_{I N}}{R_{I N}+R_{S O U R C E}}
$$

TL/H/9294-16
b) Actual Circuit for LMF60 Filter Input

FIGURE 6. LMF60 Filter Input

2.0 Designing with the LMF60

Given any lowpass filter specification, two equations will come in handy in trying to determine whether the LMF60 will do the job. The first equation determines the order of the lowpass filter required:
$n=\frac{\log \left(10^{0.1} \mathrm{~A}_{\text {Min }}-1\right)-\log \left(10^{0.1} \mathrm{~A}_{\text {Max }}-1\right)}{2 \log \left(\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{b}}\right)}$
where n is the order of the filter, $\mathrm{A}_{\mathrm{Min}}$ is the minimum stopband attenuation (in dB) desired at frequency f_{s}, and $A_{M a x}$ is the passband ripple or attenuation (in dB) at frequency f_{b}. If the result of this equation is greater than 6 , then more than a single LMF60 is required.
The attenuation at any frequency can be found by the following equation:
$\operatorname{Attn}(f)=10 \log \left[1+\left(10^{\left.\left.0.1 A_{M a x}-1\right)\left(f / f_{b}\right)^{2 n}\right] d B}\right.\right.$
where $\mathrm{n}=6$ (the order of the filter).

2.1 A LOWPASS DESIGN EXAMPLE

Suppose the amplitude response specification in Figure 8 is given. Can the LMF60 be used? The order of the Butterworth approximation will have to be determined using eq. 1 :

$$
\begin{gathered}
A_{\text {Min }}=30 \mathrm{~dB}, A_{M a x}=1.0 \mathrm{~dB}, \mathrm{f}_{\mathrm{s}}=2 \mathrm{kHz}, \text { and } \mathrm{f}_{\mathrm{b}}=1 \mathrm{kHz} \\
\mathrm{n}=\frac{\log \left(10^{3}-1\right)-\log \left(10^{0.1}-1\right)}{2 \log (2)}=5.96
\end{gathered}
$$

Since n can only take on integer values, $n=6$. Therefore the LMF60 can be used. In general, if n is 6 or less a single LMF60 stage can be utilized.
Likewise, the attenuation at f_{s} can be found using equation 2 with the above values and $\mathrm{n}=6$ giving:

$$
\begin{aligned}
\text { Atten }(2 \mathrm{kHz}) & =10 \log \left[1+(100.1-1)(2 / 1)^{12}\right] \\
& =30.26 \mathrm{~dB}
\end{aligned}
$$

This result also meets the design specification given in Figure 8 again verifying that a single LMF60 section will be adequate.

TL/H/9294-21
FIGURE 8. Design Example Magnitude Response Specification Where the Response of the Filter Design Must Fall Within the Shaded Area of the Specification
Since the LMF60's cutoff freqency f_{C}, which corresponds to a gain attenuation of -3.01 dB , was not specified in this example it needs to be calculated. Solving equation 2 where $f=f_{C}$ as follows:

$$
\begin{aligned}
f_{c} & =f_{b}\left[\frac{10^{0.1(3.01 \mathrm{~dB})-1)}}{\left(10^{\left.0.1 A_{M a x}-1\right)}\right.}\right]_{1 /(2 \mathrm{n})} \\
& =1\left(\frac{10^{0.301-1}}{10^{0.1}-1}\right)^{1 / 12} \\
& =1.119 \mathrm{kHz}
\end{aligned}
$$

where $\mathrm{f}_{\mathrm{C}}=\mathrm{f}_{\mathrm{CLK}} / 50$ or $\mathrm{f}_{\mathrm{CLK}} / 100$.

To implement this example for the LMF60-50 the clock frequency will have to be set to fCLK $=50(1.119 \mathrm{kHz})=$ 55.95 kHz or for the LMF60-100 $\mathrm{f}_{\mathrm{CLK}}=100(1.119 \mathrm{kHz})=$ 111.9 kHz

2.2 CASCADING LMF60s

In the case where a steeper stopband attenuation rate is required two LMF60's can be cascaded (Figure 9) yielding a 12th order slope of 72 dB per octave. Because the LMF60 is a Butterworth filter and therefore has no ripple in its passband, when LMF60's are cascaded the resulting filter also has no ripple in its passband. Likewise the DC and passband gains will remain at 1V/V. The resulting response is shown in Figure 10.
In determining whether the cascaded LMF60's will yield a filter that will meet a particular amplitude response specification, as above, equations 3 and 4 can be used, shown below.
$n=\frac{\log \left(10^{0.05} A_{\text {min }}-1\right)-\log \left(10^{0.05} A_{\text {Max }}-1\right)}{2 \log \left(f_{s} / f_{b}\right)}$
$\operatorname{Attn}(f)=10 \log \left[1+\left(10^{0.05} A_{\text {Max }}-1\right)\left(f / f_{b}\right)^{2 n}\right] d B$
where $n=6$ (the order of each filter).
Equation 3 will determine whether the order of the filter is adequate ($n \leq 6$) while equation 4 can determine if the required stopband attenuation is met and what actual cutoff frequency (f_{c}) is required to obtain the particular frequency response desired. The design procedure would be identical to the one shown in Section 2.1.

2.3 IMPLEMENTING A "NOTCH" FILTER WITH THE LMF60

A "notch" filter with 60 dB of attenuation can be obtained by using one of the Op-Amps available in the LMF60 and three external resistors. The circuit and amplitude response are shown in Figure 11.
The frequency where the "notch" will occur is equal to the frequency at which the output signal of the LMF60 will have the same magnitude but be 180 degrees out of phase with its input signal. For a sixth order Butterworth filter 180° phase shift occurs where $f=f_{n}=0.742 \mathrm{f}$. The attenuation at this frequency is 0.12 dB which must be compensated for by making $R_{1}=1.014 \times R_{2}$.
Since R_{1} does not equal R_{2} there will be a gain inequality above and below the notch frequency. At frequencies below the notch frequency ($f \ll f_{n}$), the signal through the filter has a gain of one and is non-inverting. Summing this with the input signal through the Op-Amp yields an overall gain of two or +6 dB . For $f \gg f_{n}$, the signal at the output of the filter is greatly attenuated thus only the input signal will appear at the output of the Op-Amp. With $R_{3}=R_{1}=1.014$ R_{2} the overall gain is 0.986 or -0.12 dB at frequencies above the notch.

2.0 Designing with the LMF60 (Continued)

TIL LOGIC LEVELS
TL/H/9294-22
FIGURE 9. Cascading Two LMF60s

TL/H/9294-23
FIGURE 10a. One LMF60-50 vs.
Two LMF60-50s Cascaded

FIGURE 10b. Phase Response of Two Cascaded LMF60-50s

2.0 Designing with the LMF60 (Continued)

TL/H/9294-25
FIGURE 11a. "Notch" Filter

TL/H/9294-26
FIGURE 11b. LMF60-50 "Notch" Filter Amplitude Response

2.0 Designing with the LMF60
 (Continued)

2.4 CHANGING CLOCK FREQUENCY INSTANTANEOUSLY

The LMF60 will respond well to a sudden change in clock frequency. Distortion in the output signal occurs at the transition of the clock frequency and lasts approximately three cutoff frequency (fc) cycles. As shown in Figure 12, if the control signal is low the LMF60-50 has a 100 kHz clock making $\mathrm{f}_{\mathrm{C}}=2 \mathrm{kHz}$; when this signal goes high the clock frequency changes to 50 kHz yielding $1 \mathrm{kHz} \mathrm{f}_{\mathrm{C}}$.
The transient response of the LMF60 seen in Figure 13 is also dependent on the f_{c} and thus the $f_{\text {CLK }}$ applied to the filter. The LMF60 responds as a classical sixth order Butterworth lowpass filter.

TL/H/9294-27
$\mathrm{f}_{\mathrm{N}}=1.5 \mathrm{kHz}$ (Scope Time Base $=2 \mathrm{~ms} /$ Div)
FIGURE 12. LMF60-50 Abrupt Clock Frequency Change

2.5 ALIASING CONSIDERATIONS

Aliasing effects have to be taken into consideration when input signal frequencies exceed half the sampling rate. For the LMF60 this equals half the clock frequency (fCLK). When the input signal contains a component at a frequency higher than half the clock frequency, as in Figure 14a, that

TL/H/9294-29
(a) Input Signal Spectrum
component will be "reflected" about fcLK/2 into the frequency range below fCLK/2 as in Figure 14b. If this component is within the passband of the filter and of large enough amplitude it can cause problems. Therefore if frequency components in the input signal exceed $\mathrm{f}_{\mathrm{CLK}} / 2$ they must be attenuated before being applied to the LMF60 input. The necessary amount of attenuation will vary depending on system requirements. In critical applications the signal components above $\mathrm{f}_{\mathrm{CLK}} / 2$ will have to be attenuated at least to the filter's residual noise level. An example circuit is shown in Figure 15 using one of the uncommitted Op-Amps available in the LMF60.

FIGURE 13. LMF60-50 Step Input Response, Vertical = 2V/Div., Horizontal = $1 \mathrm{~ms} /$ Div., $_{\text {CLK }}=100 \mathrm{kHz}$

FIGURE 14. The phenomenon of allasing in sampled-data systems. An input signal whose frequency is greater than one-half the sampling frequency will cause an output to appear at a frequency lower than one-half the sampling frequency. In the LMF60, $\mathrm{f}_{\mathrm{s}}=$ fCLK.

2.0 Designing with the LMF60 (Continued)

$f_{0}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}$
$H_{0}=R_{4} / R_{3}$ ($H_{0}=1$ when R_{3} and R_{4} are omitted and $V_{O 2}$ is directly tied to INV2).
Design Procedure:
pick C_{1}
$R_{2}=\frac{1}{2 Q C_{1} \omega_{0}}$
for a 2nd Order Butterworth Q = 0.707
$R_{2}=\frac{0.113}{C_{1} f_{0}}$
make $\mathrm{R}_{1}=\mathrm{R}_{2}$
and
$C_{2}=\frac{1}{\left(2 \pi f_{0} R_{1}\right)^{2} C_{1}}$
Note: The parallel combination of R_{4} (if used), R_{1} and R_{2} should be $\geq 10 \mathrm{k} \Omega$ in order not to load Op-Amp \#2.
FIGURE 15. Second Order Butterworth Anti-Aliasing Filter Using Uncommitted Op-Amp \# 2

LMF90

4th-Order Elliptic Notch Filter

General Description

The LMF90 is a fourth-order elliptic notch (band-reject) filter based on switched-capacitor techniques. No external components are needed to define the response function. The depth of the notch is set using a two-level logic input, and the width is programmed using a three-level logic input. Two different notch depths and three different ratios of notch width to center frequency may be programmed by connecting these pins to V^{+}, ground, or V^{-}. Another three-level logic pin sets the ratio of clock frequency to notch frequency.
An internal crystal oscillator is provided. Used in conjunction with a low-cost color TV crystal and the internal clock frequency divider, a notch filter can be built with center frequency at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 100 \mathrm{~Hz}, 120 \mathrm{~Hz}, 150 \mathrm{~Hz}$, or 180 Hz for rejection of power line interference. Several LMF90s can be operated from a single crystal. An additional input is provided for an externally-generated clock signal.

Features

- Center frequency set by external clock or on-board clock oscillator
- No external components needed to set response characteristics
- Notch width, attenuation, and clock-to-center-frequency ratio independently programmable
■ 14 pin $0.3^{\prime \prime}$ wide package

Key Specifications

- for Range
0.1 Hz to 30 kHz

团 f_{0} accuracy over full temperature range (max) 1.5%
■ Supply voltage range $\pm 2 \mathrm{~V}$ to $\pm 7.5 \mathrm{~V}$ or 4 V to 15 V
\square Passband Ripple (typ)
\square Attenuation at f_{0} (typ)
39 dB or 48 dB (selectable)

- fCLK: f_{0}

100:1, 50:1, or 33.3:1

- Notch Bandwidth (typ) $0.127 \mathrm{f}_{0}, 0.26 \mathrm{f}_{0}$, or $0.55 \mathrm{f}_{0}$
\square Output offset voltage (max)
120 mV

Applications

\square Automatic test equipment
\square Communications

- Power line interference rejection

Typical Connection
60 Hz Notch Filter Diagram

Connection

Absolute Maximum Ratings (Notes 1 \& 3) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.	
Supply Voltage ($\mathrm{V}_{\mathrm{S}}=\mathrm{V}^{+}-\mathrm{v}^{-}$)	-0.3 V to +16 V
Voltage at any Input or Output	$\mathrm{V}^{-}-0.3 \mathrm{~V}$ to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Input Current at any Pin (Note 10)	5 mA
Package Input Current (Note 10)	20 m
Power Dissipation (Note 5)	500 m
ESD Susceptability (Note 6)	
Pin 9	1800 V
All Other Pins	2000

Soldering Information (Note 4)
N Package (Soldering, 10 sec.) $260^{\circ} \mathrm{C}$
J Package (Soldering, 10 sec.$) \quad 300^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature $150^{\circ} \mathrm{C}$

Operating Ratings (Notes 2 \& 3)
Temperature Range $\quad T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
LMF90CCN, LMF90CCWM

> LMF90CCJ $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
LMF90CIJ, LMF90CIWM, LMF90CIN

$$
-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}
$$

$$
\text { LMF90CMJ, LMF90CMJ/883 }-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}
$$

Supply Voltage Range

AC Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}$ and $\mathrm{V}^{-}=-5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LMF90CCJ, LMF90CCN, LMF90CCWM			LMF90CIJ, LMF90CIWM, LMF90CIN, LMF90CMJ			Units (Limit)
			Typ (Note 7)	Tested Limit (Note 8)	Design Limit (Note 9)	Typ (Note 7)	Tested Limit (Note 8)	Design Limit (Note 9)	
f_{0}	Center Frequency Range		0.1	30	30	0.1	30		$\begin{gathered} \mathrm{Hz} \text { (Min) } \\ \mathrm{kHz} \text { (Max) } \end{gathered}$
$\mathrm{f}_{\text {CLK }}$	Clock Frequency Range	Pin 6 Pin 6 Pins 4 and 5	10	$\begin{aligned} & 1.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 4.0 \end{aligned}$	10	$\begin{aligned} & 1.5 \\ & 4.0 \end{aligned}$		Hz (Min) MHz (Max) MHz (Max)
$\mathbf{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}$ $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}$ $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O} 3}$	Clock-to-CenterFrequency Ratio	$\begin{aligned} & \mathrm{W}=\mathrm{D}=\mathrm{V}^{-}, \mathrm{R}=\mathrm{V}^{+}, \\ & \mathrm{f}_{\mathrm{CLK}}=167 \mathrm{kHz} \\ & \mathrm{~W}=\mathrm{D}=\mathrm{R}=\mathrm{GND}, \\ & \mathrm{f}_{\mathrm{LLK}}=250 \mathrm{kHz} \\ & \mathrm{~W}=\mathrm{V}^{+}, \mathrm{D}=\mathrm{GND}, \mathrm{R}=\mathrm{V}^{-}, \\ & \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz} \\ & \hline \end{aligned}$		$\begin{gathered} 33.5 \pm 1 \% \\ 50.25 \pm 1 \% \\ 100.5 \pm 1 \% \end{gathered}$	$\begin{gathered} 33.5 \pm 1.5 \% \\ 50.25 \pm 1.5 \% \\ 100.5 \pm 1.5 \% \end{gathered}$		$\begin{gathered} 33.5 \pm 1.5 \% \\ 50.25 \pm 1.5 \% \\ 100.5 \pm 1.5 \% \end{gathered}$		(Max) (Max) (Max)
HoN	Passband Gain	$\begin{aligned} & \mathrm{DC} \text { and } 20 \mathrm{kHz}, \mathrm{~W}=\mathrm{D}=\mathrm{V}^{-}, \mathrm{R}=\mathrm{V}^{+}, \\ & \mathrm{f}_{\mathrm{CLK}}=167 \mathrm{kHz} \\ & \mathrm{~W}=\mathrm{D}=\mathrm{R}=\mathrm{GND} \\ & \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \\ & \mathrm{~W}=\mathrm{V}^{+}, \mathrm{D}=\mathrm{GND}, \mathrm{R}=\mathrm{V}^{-} \\ & \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz} \end{aligned}$	0 0 0	$\begin{aligned} & \pm 0.2 \\ & \pm 0.2 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \pm \mathbf{0 . 2} \\ & \pm \mathbf{0 . 2} \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.2 \\ & \pm 0.2 \end{aligned}$		dB (Max) dB (Max) dB (Max)

AC Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}$ and $\mathrm{V}^{-}=-5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\boldsymbol{T}_{A}=\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max; }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter	Conditions	LMF90CCJ, LMF90CCN, LMF90CCWM			LMF90CIJ, LMF90CIWM, LMF90CIN, LMF90CMJ			Units (Limit)
			$\begin{array}{\|c} \text { Typ } \\ \text { (Note 7) } \end{array}$	Tested Limit (Note 8)	Design Limit (Note 9)	$\begin{array}{\|c} \text { Typ } \\ \text { (Note 7) } \end{array}$	Tested Limit (Note 8)		
PBW	Ratio of Passband Width to Center Frequency	$\begin{aligned} & \mathrm{W}=\mathrm{D}=\mathrm{V}^{-}, \mathrm{R}=\mathrm{V}^{+}, \\ & \mathrm{f}_{\mathrm{CLK}}=167 \mathrm{kHz} \\ & \mathrm{~W}=\mathrm{D}=\mathrm{R}=\mathrm{GND}, \\ & \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \\ & \mathrm{~W}=\mathrm{V}^{+}, \mathrm{D}=\mathrm{GND}, \mathrm{R}=\mathrm{v}^{-}, \\ & \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz} \\ & \hline \end{aligned}$		$\left(\begin{array}{c} 0.1275 \pm 0.0175 \\ 0.265 \pm 0.025 \\ 0.550 \pm 0.05 \end{array}\right.$	$\left\lvert\, \begin{gathered} 0.1275 \pm 0.0175 \\ 0.265 \pm 0.025 \\ 0.550 \pm 0.05 \end{gathered}\right.$		$\left\lvert\, \begin{gathered} 0.1275 \pm 0.0175 \\ 0.265 \pm 0.025 \\ 0.550 \pm 0.05 \end{gathered}\right.$		(Max) (Max) (Max)
${\text { A min1 } @ \mathrm{f}_{\mathrm{O}}}$ A $_{\text {Min2 }}$ @fo2 A min 3 @fo3	Gain at Center Frequency	$\begin{aligned} & \mathrm{W}=\mathrm{D}=\mathrm{v}^{-}, \mathrm{R}=\mathrm{V}^{+}, \\ & \mathrm{f}_{\mathrm{CLK}}=167 \mathrm{kHz} \\ & \mathrm{~W}=\mathrm{D}=\mathrm{R}=\mathrm{GND}, \\ & \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \\ & \mathrm{~W}=\mathrm{V}^{+}, \mathrm{D}=\mathrm{GND}, \mathrm{R}=\mathrm{v}^{-}, \\ & \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz} \\ & \hline \end{aligned}$	$\begin{aligned} & -39 \\ & -48 \\ & -48 \end{aligned}$	$\begin{gathered} -30 \\ -36.5 \\ -36.5 \end{gathered}$	$\begin{gathered} -30 \\ -36.5 \\ -36.5 \end{gathered}$	$\begin{aligned} & -39 \\ & -48 \\ & -48 \end{aligned}$	$\begin{gathered} -30 \\ -36.5 \\ -36.5 \end{gathered}$		dB (Max) dB (Max) dB (Max)
	Additional Center Frequency Gain Tests at fo1	$\begin{aligned} & \mathrm{W}=\mathrm{GND}, \mathrm{D}=\mathrm{V}^{-}, \mathrm{R}=\mathrm{V}^{+}, \\ & \mathrm{f}_{\mathrm{CLK}}=167 \mathrm{kHz} \\ & \mathrm{~W}=\mathrm{V}^{+}, \mathrm{D}=\mathrm{V}^{-}, \mathrm{R}=\mathrm{V}^{+}, \\ & \mathrm{f}_{\mathrm{CLK}}=167 \mathrm{kHz} \\ & \mathrm{~W}=\mathrm{V}^{-}, \mathrm{D}=\mathrm{GND}, \mathrm{R}=\mathrm{v}^{+}, \\ & \mathrm{f}_{\mathrm{CLK}}=167 \mathrm{kHz} \\ & \mathrm{~W}=\mathrm{D}=\mathrm{GND}, \mathrm{R}=\mathrm{V}^{+}, \\ & \mathrm{f}_{\mathrm{CLK}}=167 \mathrm{kHz} \\ & \mathrm{~W}=\mathrm{V}+, \mathrm{D}=\mathrm{GND}, \mathrm{R}=\mathrm{V}^{+}, \\ & \mathrm{f}_{\mathrm{CLK}}=167 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & -36 \\ & -36 \\ & -42 \\ & -48 \\ & -48 \end{aligned}$	$\begin{aligned} & -30 \\ & -30 \\ & -30 \\ & -35 \\ & -35 \end{aligned}$	$\begin{aligned} & -30 \\ & -30 \\ & -30 \\ & -35 \\ & -35 \end{aligned}$	$\begin{aligned} & -36 \\ & -36 \\ & -42 \\ & -48 \\ & -48 \end{aligned}$	$\begin{aligned} & -30 \\ & -30 \\ & -30 \\ & -35 \\ & -35 \end{aligned}$		dB (Max) dB (Max) dB (Max) dB (Max) dB (Max)

AC Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}$ and $\mathrm{V}^{-}=-5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $T_{A}=T_{\text {min }}$ to $T_{\text {MAX }}$; al other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter	Conditions		LMF90CCJ, LMF90CCN, LmF9occwm			LMF90CIJ, LMF90CIWM, LMF90CIN, LMF90CMJ			Units (Limit)
				$\begin{aligned} & \text { Typ } \\ & \text { (Note 7) } \end{aligned}$	$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 8) } \\ & \hline \end{aligned}$	Design Limit (Note 9)	$\begin{gathered} \text { Typ } \\ \text { (Note 7) } \end{gathered}$	Tested Limit (Note 8)	Design Limit (Note 9)	
$A_{\text {max } 2}$	Passband Ripple	$\begin{aligned} & \mathrm{W}=\mathrm{D}=\mathrm{R}=\mathrm{GND}, \\ & \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \end{aligned}$	$\mathrm{f}_{5}=0.830 \mathrm{f}_{2}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\begin{gathered} 0.9 \\ 0 \end{gathered}$	$\begin{gathered} 0.9 \\ 0 \end{gathered}$	$\begin{aligned} & 0.26 \\ & 0.25 \end{aligned}$	$\begin{gathered} 0.9 \\ 0 \end{gathered}$		dB (Max) dB (Min)
			$\mathrm{f}_{6}=1.205 \mathrm{f}_{02}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\begin{gathered} 0.9 \\ 0 \end{gathered}$	$\begin{gathered} 0.9 \\ 0 \end{gathered}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\begin{gathered} 0.9 \\ 0 \end{gathered}$		dB (Max) dB (Min)
$A_{\text {max }}$	Passband Ripple	$\begin{aligned} & \mathrm{W}=\mathrm{V}^{+}, \mathrm{D}=\mathrm{GND}, \mathrm{R}=\mathrm{V}^{-} \\ & \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz} \end{aligned}$	$\mathrm{f}_{5}=0.700 \mathrm{f}_{03}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\begin{gathered} 0.9 \\ 0 \end{gathered}$	$\begin{gathered} 0.9 \\ 0 \end{gathered}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\begin{gathered} 0.9 \\ 0 \end{gathered}$		dB (Max) dB (Min)
			$\mathrm{f}_{6}=1.428 \mathrm{f}_{0}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\begin{gathered} 0.9 \\ 0 \end{gathered}$	$\begin{gathered} 0.9 \\ 0 \end{gathered}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\begin{gathered} 0.9 \\ 0 \end{gathered}$		dB (Max) dB (Min)
E_{n}	Output Noise	20 kHz Bandwidth $\mathrm{W}=\mathrm{D}=\mathrm{V}^{-}, \mathrm{R}=\mathrm{V}^{+}, \mathrm{f}_{\mathrm{CLK}}$ $\mathrm{W}=\mathrm{D}=\mathrm{R}=\mathrm{GND}, \mathrm{f}_{\mathrm{CLK}}=$ $\mathrm{W}=\mathrm{V}^{+}, \mathrm{D}=\mathrm{GND}, \mathrm{R}=\mathrm{V}^{-}$ $\mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}$	67 kHz kHz	$\begin{aligned} & 670 \\ & 370 \\ & 250 \end{aligned}$			$\begin{aligned} & 670 \\ & 370 \\ & 250 \end{aligned}$			μ Vrms μ Vrms $\mu \mathrm{Vrms}$
	Clock Feedthrough			50			50			mVp-p
GBW	Output Buffer Gain Bandwidth			1			1			MHz
SR	Output Buffer Slew Rate			3			3			$\mathrm{V} / \mu \mathrm{s}$
C_{L}	Maximum Capacitive Load			200			200			pF

			LMF9	J, LMF90 F90CCWM		LMF90 LMF9	J, LMF90C IN, LMF90		
Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 7) } \end{gathered}$	Tested Limit (Note 8)	Design Limit (Note 9)	Typ (Note 7)	Tested Limit (Note 8)	Design Limit (Note 9)	(Limit)
Is	Power Supply Current	$\mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN} 1}=\mathrm{V}_{\mathrm{IN} 2}=\mathrm{GND}$	2.35	5.0	5.0	2.35	5.0		mA (Max)
Vos	Output Offset Voltage	$\begin{aligned} & \mathrm{W}=\mathrm{D}=\mathrm{V}^{-}, \mathrm{R}=\mathrm{V}^{+}, \mathrm{f}_{\mathrm{CLK}}=167 \mathrm{kHz} \\ & \mathrm{~W}=\mathrm{D}=\mathrm{R}=\mathrm{GND}, \mathrm{f} \mathrm{CLK}=250 \mathrm{kHz} \\ & \mathrm{~W}=\mathrm{V}^{+}, \mathrm{D}=\mathrm{GND}, \mathrm{R}=\mathrm{V}^{-}, \\ & \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 60 \\ & \pm 80 \end{aligned}$	$\begin{aligned} & \pm 120 \\ & \pm 140 \\ & \pm 170 \end{aligned}$	$\begin{aligned} & \pm 120 \\ & \pm 140 \\ & \pm 170 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 60 \\ & \pm 80 \end{aligned}$	$\begin{aligned} & \pm 120 \\ & \pm 140 \\ & \pm 170 \end{aligned}$	\cdots	mV (Max) mV (Max) mV (Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	+4.2, -4.7	± 4.0	± 4.0	+4.2, -4.7	± 4.0		V (Min)
V_{11}	Logical "Low" Input Voltage	Pins 1, 2, 3, 7, and 10		-4.0	-4.0		-4.0		V (Max)
V_{12}	Logical "GND" Input Voltage	Pins 1, 2, 3, 7, and 10		$\begin{array}{r} +1.0 \\ -1.0 \\ \hline \end{array}$	$\begin{array}{r} +1.0 \\ -1.0 \\ \hline \end{array}$		$\begin{array}{r} +1.0 \\ -1.0 \\ \hline \end{array}$		$\begin{aligned} & V(\text { Max }) \\ & V(\text { Min }) \end{aligned}$
V_{13}	Logical "High" Input Voltage	Pins 1, 2, 3, and 7		+4.0	+4.0		+4.0		V (Min)
IN	Input Current	Pins 1, 2, 3, 7, and 10		± 10	± 10		± 10		$\mu \mathrm{A}$ (Max)
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage, Pins 5 and 6	$\begin{aligned} & \text { Pin } 5, \mathrm{XLS}=\mathrm{V}^{+} \\ & \text {or Pin } 6, \mathrm{XLS}=\mathrm{GND} \end{aligned}$,	-4.0	-4.0		-4.0		V (Max)
V_{IH}	Logical "1" Input Voltage, Pins 5 and 6			+4.0	+4.0		+4.0		$V(\mathrm{Min})$
$\mathrm{V}_{\text {IL }}$	Logical " 0 " Input Voltage, Pin 6	$\begin{aligned} & \mathrm{V}^{+}-\mathrm{V}^{-}=10 \mathrm{~V}, \mathrm{XLS}=\mathrm{V}^{-} \text {or } \\ & \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{XLS}=+2.5 \mathrm{~V} \end{aligned}$		+0.8	+0.8		+0.8		V (Max)
V_{IH}	Logical "1" Input Voltage, Pin 6			+2.0	+2.0		+2.0	- .	V (Min)
$\mathrm{V}_{\text {OL }}$	Logical "0" Output Voltage, Pin 6	$\mathrm{XLS}=\mathrm{V}^{+},\|\mathrm{lout}\|=4 \mathrm{~mA}$		-4.0	-4.0		-4.0		V (Max)
V_{OH}	Logical "1" Output Voltage, Pin 6			+4.0	+4.0		+4.0		V (Min)

DC Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
Note 2: Operating Ratings indicate conditions for which the device is intended to be functional. These ratings do not guarantee specific performance limits, however. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 3: All voltages are measured with respect to GND unless otherwise specified.
Note 4: See AN450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in any current Linear Data Book for other methods of soldering surface mount devices.
Note 5: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \Theta_{J A}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \Theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}$, and the typical thermal resistance ($\Theta_{J A}$) when board mounted is $61^{\circ} \mathrm{C} / \mathrm{W}$ for the $\mathrm{LMF90CCN}$ and $\mathrm{CIN}, 134^{\circ} \mathrm{C} / \mathrm{W}$ for the $\mathrm{LMF90CCWM}$ and CWIM and $59^{\circ} \mathrm{C} / \mathrm{W}$ for the LMF90CCJ, CIJ and CMJ.
Note 6: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: Typicals are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 8: Tested Limits are guaranteed and 100% tested.
Note 9: Design Limits are guaranteed, but not 100% tested.
Note 10: When the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ at any pin exceeds the power supplies ($\mathrm{V}_{\mathrm{IN}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathbb{I N}}>\mathrm{V}^{+}$), the current at that pin should be limited to 5 mA . The 20 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 5 mA to four.

Typical Performance Characteristics

Power Supply Current vs Power Supply Voltage

Passband Width vs

 Supply Voltage

Notch Depth vs Supply Voltage

Power Supply Current vs Temperature

Offset Voltage vs
Temperature

Passband Width vs Temperature

Offset Voltage vs Clock Frequency

Passband Width vs Clock Frequency

Stopband Width vs Clock Frequency

Typical Performance Characteristics (Continued)

Stopband Width vs Temperature

Clock-to-Center-Frequency Ratio Deviation
vs Temperature
 AMBIENT TEMPERATURE (${ }^{\circ}$ C)

Clock-to-Center-Frequency Ratio Deviation vs Clock Frequency

Output Swing vs Supply Voltage

Positive Output Swing vs Temperature

AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Pin Descriptions

W (Pin 1) This three-level logic input sets the width of the notch. Notch width is $\mathrm{f}_{\mathrm{c} 2}-\mathrm{f}_{\mathrm{c} 1}$ (see Figure 1). When W is tied to $\mathrm{V}^{+}(\operatorname{pin} 14)$, GND (pin 13), or V^{-}(pin 8), the notch width is $0.55 f_{0}$, $0.26 f_{0}$, or $0.127 f_{0}$, respectively.
R (Pin 2) This three-level logic input sets the ratio of the clock frequency (folk) to the center frequency (f_{0}). When R is tied to V^{+}, GND, or V^{-}, the clock-to-center-frequency ratio is $33.33: 1,50: 1$, or $100: 1$, respectively.
LD (Pin 3) This three-level logic input sets the division factor of the clock frequency divider. When LD is tied to V^{+}, GND, or V^{-}, the division factor is 716,596 , or 2 , respectively.
XTAL2 (Pin 4) This is the output of the internal crystal oscillator. When using the internal oscillator, the crystal should be tied between XTAL2 and XTAL1. (The capacitors are internalno external capacitors are needed for the oscillator to operate.) When not using the internal oscillator this pin should be left open.
XTAL1 (Pin 5) This is the crystal oscillator input. When using the internal oscillator, the crystal should be tied between XTAL1 and XTAL2. XTAL1 can also be used as an input for an external clock signal swinging from V^{+}to V^{-}. The frequency of the crystal or the external clock will be divided internally by the clock divider as determined by the programming voltage on pin 3.
CLK (Pin 6) This is the filter clock pin. The clock signal appearing on this pin is the filter clock (fCLK). When using the internal crystal oscillator or an external clock signal applied to pin 5 while pin 7 is tied to V^{+}, the CLK pin is the output of the divider and can be used to drive other LMF90s with its rail-to-rail output swing. When not using the internal crystal oscillator or an external clock on pin 5 , the CLK pin can be used as a CMOS or TTL clock input provided that pin 7 is tied to GND or V^{-}. For best performance, the duty cycle of a clock signal applied to this pin should be near 50%, especially at higher clock frequencies.
XLS (Pin 7) This is a three-level logic pin. When XLS is tied to V^{+}, the crystal oscillator and frequency divider are enabled and CLK (pin 6) is an output. When XLS is tied to GND (pin 13), the crystal oscillator and frequency divider are disabled and pin 6 is an input for a clock swinging between V^{-}and V^{+}. When XLS is tied to V^{-}, the crystal oscillator and frequency divider are disabled and pin 6 is a TTL level clock input for a clock signal swinging between GND and V^{+}or between V^{-}and GND.

V^{-}(Pin 8)	This is the negative power supply pin. It should be bypassed with at least a $0.1 \mu \mathrm{~F}$ capacitor. For single-supply operation, connect this pin to system ground.
$\mathrm{V}_{\text {OUT }}$ (Pin 9)	This is the filter output.
D (Pin 10)	This two-level logic input is used to set the depth of the notch (the attenuation at fo). When D is tied to GND or V^{-}, the typical notch depth is 48 dB or 39 dB, respective- ly. Note, however, that the notch depth is also dependent on the width setting (pin
1). See the Electrical Characteristics for	
tested limits.	

1.0 Definition of Terms

A max : the maximum amount of gain variation within the filter's passband (See Figure 1). For the LMF90, A Max is nominally equal to 0.25 dB .
$A_{\text {min }}$: the minimum attenuation within the notch's stopband. (See Figure 1). This parameter is adjusted by programming voltage applied to pin 10 (D).
Bandwidth (BW) or Passband Width: the difference in frequency between the notch filter's two cutoff frequencies.
Cutoff Frequency: for a notch filter, one of the two frequencies, $\mathrm{f}_{\mathrm{C} 1}$ and $\mathrm{f}_{\mathrm{C} 2}$ that define the edges of the passband. At these two frequencies, the filter has a gain equal to the passband gain.
fclk: the frequency of the clock signal that appears at the CLK pin. This frequency determines the filter's center frequency. Depending on the programming voltage on pin 2 (R), fCLK will be either $33.33,50$, or 100 times the center frequency of the notch.
f_{0} or $f_{\text {Notch: }}$ the center frequency of the notch filter. This frequency is measured by finding the two frequencies for which the gain -3 dB relative to the passband gain, and calculating their geometrical mean.
Passband: for a notch filter, frequencies above the upper cutoff frequency ($\mathrm{f}_{\mathrm{C} 2}$ in Figure 1) and below the lower cutoff frequency ($\mathrm{f}_{\mathrm{C} 1}$ in Figure 1).

1.0 Definition of Terms (Continued)

Passband Gain: the notch filter's gain for signal frequencies near dc or $\mathrm{f}_{\mathrm{CLK}} / 2$. The passband gain of a notch filter is also called "HON". For the LMF90, the passband gain is nominally 0 dB .
Passband Ripple: the variation in gain within the filter's passband.
Stopband: for a notch filter, the range of frequencies for which the attenuation is at least $A_{\text {min }}\left(\mathrm{f}_{\mathrm{S} 1}\right.$ to $\mathrm{f}_{\mathrm{S} 2}$) in Figure 1).

Stop Frequency: one of the two frequencies ($\mathrm{f}_{\mathrm{S} 1}$ and $\mathrm{f}_{\mathrm{S} 2}$) at the edges of the notch's stopband.
Stopband Width (SBW): the difference in frequency between the two stopband edges ($\mathrm{f}_{\mathrm{S} 2}-\mathrm{f}_{\mathrm{S} 1}$).

FIGURE 1. General Form of Notch Response

2.0 Applications Information

2.1 FUNCTIONAL DESCRIPTION

The LMF90 uses switched-capacitor techniques to realize a fourth-order elliptic notch transfer function with 0.25 dB passband ripple. No external components other than supply bypass capacitors and a clock (or crystal) are required.
As is evident from the block diagram, the analog signal path consists of a fourth-order bandpass filter and a summing amplifier. The analog input signal is applied to the input of the bandpass filter, and to one of the summing amplifier inputs. The bandpass filter's output drives the other summing amplifier input. The output of the summing amplifier is the difference between the input signal and the bandpass output, and has a notch filter characteristic. Notch width and depth are controlled by the dc programming voltages applied to two pins (1 and 10), and the center frequency is proportional to the clock frequency, which may be generated externally or internally with the aid of an external crystal. The clock-to-center-frequency ratio can be one of three different values, and is selected by the voltage on a three-level logic input (pin 2).
The clock signal passes through a digital frequency divider circuit that can divide the clock frequency by any of three different factors before it reaches the filters. This divider can also be disabled, if desired. Pin 7 enables and disables the frequency divider and also configures the clock inputs for operation with an external CMOS or TTL clock or with the internal oscillator circuit.

TL/H/10354-6
FIGURE 2. LMF90 Block Diagram

2.0 Applications Information (Continued)

2.2 PROGRAMMING PINS

The LMF90 has five control pins that are used to program the filter's characteristics via a three-level logic scheme. In dual-supply applications, these inputs are tied to either V^{+}, V^{-}, or GND in order to select a particular set of characteristics. For example, the W input (pin 1) sets the filter's passband width to $0.55 f_{0}, 0.26 f_{0}$ or $0.127 \mathrm{f}_{0}$ when the W input is connected to V^{+}, GND, or V^{-}, respectively. Applying V^{-} and GND to the D input (pin 10) will set the notch depth to 40 dB or 30 dB , respectively.
The R input (pin 2) is another three-level logic input, and it sets the clock-to-center-frequency ratio to $33.33: 1,50: 1$, or 100:1 for input voltages equal to V^{+}, GND, or V^{-}, respectively. Note that the clock frequency referred to here is the frequency at the CLK pin and at the frequency divider output (if used). This is different from the frequency at the divider's input. LD (pin 3) sets the frequency divider's division factor to either 716,596 , or 2 for input voltages equal to V^{+}, GND, or V^{-}, respectively. XLS (pin 7) enables and disables the crystal oscillator and clock divider. When XLS is connected to the positive supply, the oscillator and divider are enabled, and CLK is the output of the divider and can drive the clock inputs of other LMF90s. When XLS is connected to GND, the oscillator and divider are disabled, and the CLK pin becomes a clock input for CMOS-level signals. Connecting XLS to the negative supply disables the oscillator and divider and causes CLK to operate as a TTL-level clock input.
Using an external 3.579545 MHz color television crystal with the internal oscillator and divider, it is possible to build a power line frequency notch for 50 Hz or 60 Hz line frequencies or their second and third harmonics using the LMF90. A 60 Hz notch is shown in the Typical Application circuit on the first page of this data sheet. Connecting LD to V^{+} changes the notch frequency to 50 Hz . Changing the clock-to-center-frequency ratio to $50: 1$ results in a second-harmonic notch, and a 33:1 ratio causes the LMF90 to notch the third harmonic.
Table I illustrates 18 different combinations of filter bandwidth, depth, and clock-to-center-frequency ratio obtained by choosing the appropriate W, D, and R programming voltages.

2.3 DIGITAL INPUTS AND OUTPUTS

As mentioned above, the CLK pin can serve as either an input or an output, depending on the programming voltage on XLS. When CLK is operating as a TTL input, it will operate properly in both dual-supply and single-supply applications, because it has two logic thresholds-one referred to V^{-}, and one referred to GND. When operating as an output, CLK swings rail-to-rail (CMOS logic levels).
XTAL1 and XTAL2 are the input and output pins for the internal crystal oscillator. When using the internal oscillator (XLS connected to V^{+}), the crystal is connected between these two pins. When the internal oscillator is not used, XTAL2 should be left open. XTAL1 can be used as an input for an external CMOS-level clock signal swinging from V^{-} to V^{+}. The frequency of the crystal or the external clock applied to XTAL1 will be divided by the internal frequency divider as determined by programming voltage on the LD pin.

2.4 SAMPLED-DATA SYSTEM CONSIDERATIONS OUTPUT STEPS

Because the LMF90 uses switched-capacitor techniques, its performance differs in several ways from non-sampled (continuous) circuits. The analog signal at the input to the internal bandpass filter (pin 12) is sampled during each clock cycle, and, since the output voltage can change only once every clock cycle, the result is a discontinuous output signal. The bandpass output takes the form of a series of voltage "steps", as shown in Figure 3. The steps are smaller when the clock frequency is much greater than the signal frequency.
Switched-capacitor techniques are used to set the summing amplifier's gain. Its input and feedback "resistors" are actually made from switches and capacitors. Two sets of these "resistors" are alternated during each clock cycle. Each time these gain-setting components are switched, there will be no feedback connected to the op amp for a short period of time (about 50 ns). This generates very low-amplitude output signals at $f_{C L K}+f_{I N}, f_{C L K}-f_{I N}, 2 f_{C L K}+f_{I N}$, etc. The amplitude of each of these intermodulation components will typically be at least 70 dB below the input signal amplitude and well beyond the spectrum of interest.

TABLE I. Operation of LMF90 Programming Pins. Values given are for nominal levels of attenuation.

R		$\mathrm{V}^{-}\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}=100\right)$			GND ($\mathrm{fCLK}^{\text {/ }} \mathrm{f}_{0}=50$)			$\mathrm{V}^{+}\left(\mathrm{fCLK} / \mathrm{f}_{0}=33.33\right)$		
D	W	$A_{\text {min }}$ (dB)	BW/fo	$\mathbf{S B W} / \mathrm{f}_{0}$	$A_{\text {min }}$ (dB)	$B W / f_{0}$	$\mathbf{S B W} / \mathrm{f}_{0}$	$A_{\text {min }}$ (dB)	BW/fo	$\mathbf{S B W} / \mathrm{f}_{0}$
V^{-}	V^{-}	-30	0.12	0.019	-30	0.12	0.019	-30	0.12	0.019
	GND	-30	0.26	0.040	-30	0.26	0.040	-30	0.26	0.040
	V^{+}	-30	0.55	0.082	-30	0.55	0.082	-30	0.55	0.082
GND	V^{-}	-35	0.12	0.010	-35	0.12	0.010	-35	0.12	0.010
	GND	-40	0.26	0.024	-40	0.26	0.024	-40	0.26	0.024
	V^{+}	-40	0.55	0.050	-40	0.55	0.050	-40	0.55	0.050

2.0 Applications Information (Continued)

ALIASING

Another important characteristic of sampled-data systems is their effect on signals at frequencies greater than one-half the sampling frequency. (The LMF90's sampling frequency is the same as the filter's clock frequency. This is the frequency at the CLK pin). If a signal with a frequency greater than one-half the sampling frequency is applied to the input of a sampled-data system, it will be "reflected" to a frequency less than one-half the sampling frequency. Thus, an input signal whose frequency is $\mathrm{f}_{\mathrm{S}} / 2+10 \mathrm{~Hz}$ will cause the system to respond as though the input frequency was $\mathrm{f}_{\mathrm{s}} / 2$ 10 Hz . This phenomenon is known as "aliasing". Aliasing can be reduced or eliminated by limiting the input signal spectrum to less than $f_{s} / 2$.
In some cases, it may be necessary to use a bandwidth limiting filter (often a simple passive RC low-pass) ahead of the bandpass input. Although the summing amplifier uses switched-capacitor techniques, it does not exhibit aliasing behavior, and the anti-aliasing filter need not be in its input signal path. The filter can be placed ahead of pin 12 as shown in Figure 4, with the non-band limited input signal applied to pin 11. The output spectrum will therefore be wideband, although limited by the bandwidth of the summing amplifier's output buffer amplifier (typically 1 MHz), even if f CLK is less than 1 MHz . Phase shift in the anti-aliasing filter will affect the accuracy of the notch transfer func-
tion, however, so it is best to use the highest available clock-to-center-frequency ratio (100:1) and set the RC filter cutoff frequency to about 15 to 20 times the notch frequency. This will provide reasonable attenuation of high-frequency input signals, while avoiding degradation of the overall notch response. If the anti-aliasing filter's cutoff frequency is too low, it will introduce phase shift and gain errors large enough to shift the frequency of the notch and reduce its depth. A cutoff frequency that is too high may not provide sufficient attenuation of unwanted high-frequency signals.

TL/H/10354-7
FIGURE 3. Output waveform of a switched-capacitor filter. Note the voltage steps caused by sampling at the clock frequency.

TL/H/10354-8
FIGURE 4. Using a simple passive low-pass filter to prevent aliasing in the presence of high-frequency input signals.

2.0 Applications Information (Continued)

NOISE

Switched-capacitor filters have two kinds of noise at their outputs. There is a random, "thermal" noise component whose level is typically on the order of hundreds of microvolts. The other kind of noise is digital clock feedthrough. This will have an amplitude in the vicinity of 50 mV peak-topeak. In some applications, the clock noise frequency is so high compared to the signal frequency that it is unimportant. In other cases, clock noise may have to be removed from the output signal with, for example, a passive low-pass filter at the LMF90's output pin.

CLOCK FREQUENCY LIMITATIONS

The performance characteristics of a switched-capacitor filter depend on the switching (clock) frequency. At very low clock frequencies (below 10 Hz), the time between clock cycles is relatively long, and small parasitic leakage currents cause the internal capacitors to discharge sufficiently to affect the filter's offset voltage and gain. This effect becomes more pronounced at elevated operating temperatures.
At higher clock frequencies, performance deviations are primarily due to the reduced time available for the internal operational amplifiers to settle. Best performance with high clock frequencies will be obtained when the filter clock's duty cycle is 50%. The clock frequency divider, when used, provides a 50% duty cycle clock to the filter, but when an external clock is applied to CLK, it should have a duty cycle close to 50% for best performance.

Input Impedance

The input to the bandpass section of the LMF90 $\left(\mathrm{V}_{\mathrm{IN} 1}\right)$ is similar to the switched-capacitor circuit shown in Figure 5. During the first half of a clock cycle, the θ_{1} switch closes, charging C_{IN} to the input voltage V_{IN}. During the second half-cycle, the θ_{2} switch closes, and the charge on $C_{\mathbb{N}}$ is transferred to the feedback capacitor. At frequencies well below the clock frequency, the input impedance approximates a resistor whose value is

$$
R_{I N}=\frac{1}{C_{I N} f_{C L K}}
$$

At the bandpass filter input, C_{IN} is nominally 3.0 pF . For a worst-case calculation of effective $R_{\mathbb{I N}}$, assume $\mathrm{C}_{\mathbb{N}}=$ 3.0 pF and $\mathrm{f}_{\mathrm{CLK}}=1.5 \mathrm{MHz}$. Thus,

$$
\mathrm{R}_{\mathrm{IN}}(\operatorname{Min})=\frac{1}{4.5 \times 10^{-6}}=222 \mathrm{k} \Omega
$$

At the maximum clock frequency of 1.5 MHz , the lowest typical value for the effective $R_{I N}$ at the $V_{I N 1}$ input is therefore $222 \mathrm{k} \Omega$. Note that RIN increases as fCLK decreases, so the input impedance will be greater than or equal to this value. Source impedance should be low enough that this input impedance doesn't significantly affect gain.
The summing amplifier input impedance at $\mathrm{V}_{\mathrm{IN} 2}$ is calculated in a similar manner, except that $\mathrm{C}_{\mathrm{IN}}=5.0 \mathrm{pF}$. This yields a minimum input impedance of $133 \mathrm{k} \Omega$ at $\mathrm{V}_{\mathrm{IN} 2}$. When both inputs are connected together, the combined input impedance will be $83.3 \mathrm{k} \Omega$ with a 1.5 MHz filter clock.

TL/H/10354-9
FIGURE 5. Simplified LMF90 bandpass section input stage. At frequencies well below the center frequency, the input impedance appears to be resistive.

2.5 POWER SUPPLY AND CLOCK OPTIONS

The LMF90 is designed to operate from either single or dual power supply voltages from 5 V to 15 V . In either case, the supply pins should be well-bypassed to minimize any feedthrough of power supply noise into the filter's signal path. Such feedthrough can significantly reduce the depth of the notch. For operation from dual supply voltages, connect V^{-} (pin 8) to the negative supply, GND (pin 13) to the system ground, and V^{+}to the positive supply.
For single supply operation, simply connect V^{-}to system ground and GND (Pin 13) to a "clean" reference voltage at mid-supply. This reference voltage can be developed with a pair of resistors and a capacitor as shown in Figures 10 through 16. Note that for single supply operation, the threelevel logic inputs should be connected to system ground and $\mathrm{V}^{+} / 2$ instead of V^{-}and GND. The CLK input will operate properly with TTL-level clock signals when the LMF90 is powered from either single or dual supplies because it has two TTL thresholds, one referred to the V^{-}pin and one referred to the GND pin. XLS should be connected to the V^{-}pin when an external TTL clock is used. Figures 6 through 16 illustrate a wide variety of power supply and clock options.

2.0 Applications Information (Continued)

DUAL-SUPPLY CLOCK OPTIONS

FIGURE 6. Dual supply; external CMOS-level clock. Internal frequency divider disabled.

FIGURE 7. Dual supply; TTL-level clock. Internal frequency divider disabled.

2.0 Applications Information (Continued) DUAL-SUPPLY CLOCK OPTIONS

FIGURE 8. Dual Supply; external CMOS-level clock. Internal frequency divider enabled. Output of logic divider available on pin 6.

FIGURE 9. Dual supply; Internal crystal clock oscillator. Internal frequency divider enabled. Output of logic divider available on pin 6.

2.0 Applications Information (Continued)

SINGLE-SUPPLY CLOCK OPTIONS

FIGURE 10. Single +5 V supply; external TTL-level clock. Internal frequency divider disabled.

FIGURE 11. Single +5 V supply; external CMOS-level clock.
2.0 Applications Information (Continued)

SINGLE-SUPPLY CLOCK OPTIONS

TL/H/10354-16
FIGURE 12. Single + 10V supply; external TTL-level clock. Internal frequency divider disabled.

TL/H/10354-17
FIGURE 13. Single + 10V supply; external CMOS-level clock. Internal frequency divider disabled.

2.0 Applications Information (Continued)
 SINGLE-SUPPLY CLOCK OPTIONS

FIGURE 14. Single + 10V supply; external CMOS-level clock. Internal frequency divider enabled. Output of logic divider available on pin 6.

TL/H/10354-19
FIGURE 15. Single +5 V or +10 V supply; internal crystal clock oscillator. Internal frequency divider enabled. Output of logic divider available on pin 6.

LMF100 High Performance Dual Switched Capacitor Filter

General Description

The LMF100 consists of two independent general purpose high performance switched capacitor filters. With an external clock and 2 to 4 resistors, various second-order and first-order filtering functions can be realized by each filter block. Each block has 3 outputs. One output can be configured to perform either an allpass, highpass, or notch function. The other two outputs perform bandpass and lowpass functions. The center frequency of each filter stage is tuned by using an external clock or a combination of a clock and resistor ratio. Up to a 4th-order biquadratic function can be realized with a single LMF100. Higher order filters are implemented by simply cascading additional packages, and all the classical filters (such as Butterworth, Bessel, Elliptic, and Chebyshev) can be realized.
The LMF100 is fabricated on National Semiconductor's high performance analog silicon gate CMOS process, LMCMOSTM. This allows for the production of a very low
offset, high frequency filter building block. The LMF100 is pin-compatible with the industry standard MF10, but provides greatly improved performance.

Features

- Wide 4 V to 15 V power supply range

■ Operation up to 100 kHz

- Low offset voltage typically
Vos1 $= \pm 5 \mathrm{mV}$
Vos2 $= \pm 15 \mathrm{mV}$
Vos3 $= \pm 15 \mathrm{mV}$
- Low crosstalk -60 dB
- Clock to center frequency ratio accuracy $\pm 0.2 \%$ typical
- $\mathrm{f}_{0} \times \mathrm{Q}$ range up to 1.8 MHz
- Pin-compatible with MF10

4th Order 100 kHz Butterworth Lowpass Filter

TL/H/5645-3

TL/H/5645-2

Connection Diagram

Surface Mount and Dual-In-Line Package

Order Number LMF100AE/883 or 5962-9153301M2A, LMF100AJ, LMF100AJ/883 or 5962-9153301MRA, LMF100CIJ, LMF100ACN, LMF100CCN, LMF100CIN or LMF100CIWM
See NS Package Number J20A, N20A or M20B

Top View

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 14)
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Voltage at Any Pin
Input Current at Any Pin (Note 2)
Package Input Current (Note 2)
Power Dissipation (Note 3)
Storage Temperature
ESD Susceptability (Note 11)

16 V

$$
V^{+}+0.3 V
$$

$$
V--0.3 V
$$

$$
5 \mathrm{~mA}
$$

$$
20 \mathrm{~mA}
$$

$$
500 \mathrm{~mW}
$$

$$
150^{\circ} \mathrm{C}
$$

$$
2000 \mathrm{~V}
$$

Soldering Information
N Package: 10 sec.
$260^{\circ} \mathrm{C}$
J Package: 10 sec.
SO Package: Vapor Phase (60 sec.) Infrared (15 sec.)
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.
Operating Ratings (Note 1)
Temperature Range
LMF100ACN, LMF100CCN
LMF100CIJ, LMF100CIN, LMF100CIWM
LMF100AJ, MF100AJ/883, LMF100AE/883
Supply Voltage

$$
\begin{array}{r}
\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\mathrm{MAX}} \\
0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\
4 \mathrm{~V} \leq \mathrm{V}^{+}-\mathrm{V}-\leq 15 \mathrm{~V}
\end{array}
$$

Electrical Characteristics

The following specifications apply for Mode $1, \mathrm{Q}=10\left(\mathrm{R}_{1}=\mathrm{R}_{3}=100 \mathrm{k}, \mathrm{R}_{2}=10 \mathrm{k}\right)$, $\mathrm{V}+=+5 \mathrm{~V}$ and $\mathrm{V}-=-5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter		Conditions		LMF100ACN, LMF100CCN			LMF100AJ, LMF100CIN, LMF100CIWM, LMF100CIJ			Units		
			Typical (Note 8)	$\begin{array}{\|c\|} \text { Tested } \\ \text { Limit } \\ \text { (Note 9) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 10) } \\ \hline \end{array}$	Typical (Note 8)	Tested Limit (Note 9)	$\begin{array}{\|c} \hline \begin{array}{c} \text { Design } \\ \text { Limit } \\ \text { (Note 10) } \end{array} \\ \hline \end{array}$					
I_{s}	Maximum Supply Current				$\mathrm{fCLK}=250 \mathrm{kHz}$ No Input Signal		9	13	13	9	13		mA
f_{0}	Center Frequency Range	MIN			0.1			0.1			Hz		
		MAX			100			100			kHz		
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency Range	MIN			5.0			5.0			Hz		
		MAX			3.5			3.5			MHz		
$\mathrm{fcLK}^{\prime} \mathrm{f}_{0}$	Clock to Center Frequency Ratio Deviation		$\begin{aligned} & \mathrm{V}_{\text {Pin12 }}=5 \mathrm{~V} \\ & \text { or OV } \\ & \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz} \end{aligned}$	LMF100A	± 0.2	± 0.6	± 0.6	± 0.2	± 0.6		\%		
			LMF100C	± 0.2	± 0.8	± 0.8	± 0.2	± 0.8		\%			
$\overline{\frac{\Delta Q}{Q}}$	$\begin{aligned} & \text { Q Error (MAX) } \\ & \text { (Note 4) } \end{aligned}$			$\begin{aligned} & Q=10, \text { Mode } 1 \\ & V_{\text {Pin12 }}=5 \mathrm{~V} \\ & \text { or } 0 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz} \end{aligned}$	LMF100A	± 0.5	± 4	± 5	± 0.5	± 5		\%	
			LMF100C		± 0.5	± 5	± 6	± 0.5	± 6		\%		
HoBP	Bandpass Gain at f_{0}		$\mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}$		0	± 0.4	± 0.4	0	± 0.4		dB		
HoLP	DC Lowpass Gain		$\begin{aligned} & \mathrm{R}_{1}=\mathrm{R}_{2}=10 \mathrm{k} \\ & \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \end{aligned}$		0	± 0.2	± 0.2	0	± 0.2		dB		
$\mathrm{V}_{\text {OS1 }}$	DC Offset Voltage (Note 5)		$\mathrm{f}_{\text {CLK }}=250 \mathrm{kHz}$		± 5.0	± 15	± 15	± 5.0	± 15		mV		
Vos2	DC Offset Voltage (Note 5)		$\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$	$S^{A / B}$ $=\mathrm{V}^{+}$	± 30	± 80	± 80	± 30	± 80		mV		
			$\mathrm{S}_{\mathrm{A} / \mathrm{B}}=\mathrm{V}^{-}$	± 15	± 70	± 70	± 15	± 70		mV			
Vos3	DC Offset Voltage (Note 5)			$\mathrm{f}_{\text {CLK }}=250 \mathrm{kHz}$		± 15	± 40	± 60	± 15	± 60		mV	
	Crosstalk (Note 6)		A Side to B Side or B Side to A Side		-60			-60			dB		
	Output Noise (Note 12)		$\begin{array}{\|l\|} \hline \mathrm{f} C L K \\ 20 \mathrm{kHz} \text { Bandwidth } \\ 100: 1 \text { Mode } \end{array}$	N	40			40					
			BP	320			320			$\mu \mathrm{V}$			
			LP	300			300						
	Clock Feedthrough (Note 13)			$\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$ 100:1 Mode		6			6			mV	
$\mathrm{V}_{\text {OUT }}$	Minimum Output Voltage Swing			$\begin{aligned} & R_{L}=5 k \\ & \text { (All Outputs) } \end{aligned}$		$\begin{aligned} & +4.0 \\ & -4.7 \\ & \hline \end{aligned}$	± 3.8	± 3.7	$\begin{aligned} & \hline+4.0 \\ & -4.7 \end{aligned}$	± 3.7		V	
			$\begin{array}{\|l} \hline \mathrm{R}_{\mathrm{L}}=3.5 \mathrm{k} \\ \text { (All Outputs) } \\ \hline \end{array}$		$\begin{array}{r} +3.9 \\ -4.6 \\ \hline \end{array}$			$\begin{array}{r} +3.9 \\ -4.6 \\ \hline \end{array}$			V		
GBW	Op Amp Gain BW Product				5			5			MHz		
SR	Op Amp Slew Rate				20			20			$\mathrm{V} / \mu \mathrm{s}$		

Electrical Characteristics

The following specifications apply for Mode $1, Q=10\left(R_{1}=R_{3}=100 \mathrm{k}, R_{2}=10 \mathrm{k}\right), \mathrm{V}+=+5 \mathrm{~V}$ and $\mathrm{V}-=-5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter		Conditions	LMF100ACN, LMF100CCN			LMF100AJ, LMF100CIN, LMF100CIWM, LMF100CIJ			Units	
			Typical (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	Typical (Note 8)	$\begin{array}{\|c} \text { Tested } \\ \text { Limit } \\ \text { (Note 9) } \end{array}$	$\begin{gathered} \text { Design } \\ \text { Limit } \\ \text { (Note 10) } \\ \hline \end{gathered}$			
I_{sc}	Maximum Output Short Circuit Current (Note 7)	Source		(All Outputs)	12			12			mA
		Sink	45				45			mA	
IN	Input Current on Pins: 4, 5, $6,9,10,11,12,16,17$				10			10		$\mu \mathrm{A}$	

Electrical Characteristics

The following specifications apply for Mode $1, \mathrm{Q}=10\left(\mathrm{R}_{1}=\mathrm{R}_{3}=100 \mathrm{k}, \mathrm{R}_{2}=10 \mathrm{k}\right), \mathrm{V}+=+2.50 \mathrm{~V}$ and $\mathrm{V}^{-}=-2.50 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter		Conditions		LMF100ACN, LMF100CCN			LMF100AJ, LMF100CIN, LMF100CIWM, LMF100CIJ			Units		
			Typical (Note 8)	Tested Limit (Note 9)	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 10) } \end{array}$	Typical (Note 8)	$\begin{array}{\|c} \text { Tested } \\ \text { Limit } \\ \text { (Note 9) } \end{array}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Design } \\ \text { Limit } \\ \text { (Note 10) } \end{array} \\ \hline \end{array}$					
I_{s}	Maximum Supply Current				$\mathrm{fCLK}=250 \mathrm{kHz}$ No Input Signal		8	12	12	8	12		mA
f_{0}	Center Frequency Range	MIN			0.1			0.1			Hz		
		MAX			50			50			kHz		
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency Range	MIN			5.0			5.0			Hz		
		MAX			1.5			1.5			MHz		
${ }_{\text {flek }} / \mathrm{f}_{0}$	Clock to Center Frequency Ratio Deviation		$\begin{array}{r} \mathrm{V}_{\mathrm{Pin} 12}=2.5 \mathrm{~V} \\ \text { or } 0 \mathrm{~V} \end{array}$	LMF100A	± 0.2	± 0.6	± 0.8	± 0.2	± 0.8		\%		
			$\mathrm{f}_{\mathrm{GL}}=1 \mathrm{MHz}$	LMF100C	± 0.2	± 1	± 1	± 0.2	± 1		\%		
$\frac{\Delta \mathrm{Q}}{\mathrm{Q}}$	$\begin{aligned} & \text { Q Error (MAX) } \\ & \text { (Note 4) } \end{aligned}$		$\begin{aligned} & \mathrm{Q}=10, \text { Mode } 1 \\ & \mathrm{~V}_{\text {Pin12 }}=5 \mathrm{~V} \\ & \text { or OV } \\ & \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz} \end{aligned}$	LMF100A	± 0.5	± 4	± 6	± 0.5	± 6		\%		
				LMF100C	± 0.5	± 5	± 8	± 0.5	± 8		\%		
HobP	Bandpass Gain at fo		$\mathrm{f}_{\text {CLK }}=1 \mathrm{MHz}$		0	± 0.4	± 0.5	0	± 0.5		dB		
Holp	DC Lowpass Gain		$\begin{aligned} & R_{1}=R_{2}=10 k \\ & \mathrm{fCLK}=250 \mathrm{kHz} \end{aligned}$		0	± 0.2	± 0.2	0	± 0.2		dB		
$\mathrm{V}_{\text {OS } 1}$	DC Offset Voltage (Note 5)		fCLK $=250 \mathrm{kHz}$		± 5.0	± 15	± 15	± 5.0	± 15		mV		
VOS2	DC Offset Voltage (Note 5)		$\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$	$\mathrm{S}_{\mathrm{A} / \mathrm{B}}=\mathrm{V}+$	± 20	± 60	± 60	± 20	± 60		mV		
			$\mathrm{S}_{\mathrm{A} / \mathrm{B}}=\mathrm{V}^{-}$	± 10	± 50	± 60	± 10	± 60		mV			
$\mathrm{V}_{\text {OS3 }}$	DC Offset Voltage (Note 5)			$\mathrm{f}_{\text {CLK }}=250 \mathrm{kHz}$		± 10	± 25	± 30	± 10	$\pm \mathbf{3 0}$		mV	
	Crosstalk (Note 6)		A Side to B Side or B Side to A Side		-65			-65			dB		
	Output Noise (Note 12)		$\begin{array}{\|l\|} \mathrm{f} C L K \\ 20 \mathrm{kHz} \text { Bandwidth } \\ 100: 1 \text { Mode } \end{array}$	N	25			25			$\mu \mathrm{V}$		
			BP	250			250						
			LP	220			220						
	Clock Feedthrough (Note 13)			$\mathrm{fCLK}=250 \mathrm{kHz}$ 100:1 Mode		2			2			mV	
V OUT	Minimum Output Voltage Swing			$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \text { (All Outputs) } \end{aligned}$		$\begin{array}{r} +1.6 \\ -2.2 \\ \hline \end{array}$	± 1.5	± 1.4	$\begin{aligned} & +1.6 \\ & -2.2 \end{aligned}$	± 1.4		V	
			$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=3.5 \mathrm{k} \\ & \text { (All outputs) } \end{aligned}$		$\begin{array}{r} +1.5 \\ -2.1 \\ \hline \end{array}$			$\begin{aligned} & +1.5 \\ & -01 \end{aligned}$			V		
GBW	Op Amp Gain BW Product				5			5			MHz		
SR	Op Amp Slew Rate				18			18			$\mathrm{V} / \mu \mathrm{s}$		
I_{sc}	Maximum Output Short Circuit Current (Note 7)	Source	(All Outputs)		10			10			mA		
		Sink			20			20			mA		

Logic Input Characteristics Boldace limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter		Conditions	LMF100ACN, LMF100CCN			LMF100AJ, LMF100CIN, LMF100CIWM, LMF100CIJ			Units	
		Typical (Note 8)	$\begin{array}{\|c\|} \hline \text { Tested } \\ \text { Limit } \\ \text { (Note 9) } \\ \hline \end{array}$	Design Limit (Note 10)	Typical (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)			
CMOS Clock Input Voltage	MIN Logical "1"		$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LSh}}=0 \mathrm{~V} \end{aligned}$		+3.0	+3.0		+3.0		V
	MAX Logical "0"			-3.0	-3.0		-3.0	.	V	
	MIN Logical "1"	$\left\{\begin{array}{l} \mathrm{V}+=+10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{LSh}}=+5 \mathrm{~V} \end{array}\right.$		+8.0	+8.0		+8.0		V	
	MAX Logical "0"			+2.0	+2.0		+2.0		V	
TTL Clock Input Voltage	MIN Logical "1"	$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LSh}}=0 \mathrm{~V} \end{aligned}$		+2.0	+2.0		+2.0		V	
	MAX Logical "0"			+ 0.8	+ 0.8		+0.8		V	
	MIN Logical "1",	$\begin{aligned} & \mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LSh}}=0 \mathrm{~V} \end{aligned}$		+2.0	+2.0		+2.0		V	
	MAX Logical "0"			+0.8	+0.8		+0.8		V	
CMOS Clock Input Voltage	MIN Logical "1"	$\left\{\begin{array}{l} \mathrm{V}+=+2.5 \mathrm{~V}, \mathrm{~V}^{-}=-2.5 \mathrm{~V} \\ \mathrm{~V} \mathrm{LSh}=0 \mathrm{~V} \end{array}\right.$		+1.5	+1.5		+1.5		V	
	MAX Logical "0"			-1.5	-1.5		-1.5		V	
	MIN Logical "1"	$\begin{aligned} & \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LSh}}=+2.5 \mathrm{~V} \end{aligned}$		+4.0	+4.0		+4.0		V	
	MAX Logical "0"'			+1.0	+1.0		+1.0		V	
TTL Clock Input Voltage	MIN Logical "1"	$\begin{aligned} & \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LSh}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}^{+}}=0 \mathrm{~V} \end{aligned}$		+2.0	+2.0		+2.0	!	V	
	MAX Logical "0"			+ 0.8	+ 0.8		+0.8		V	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional. These ratings do not guarantee specific performance limits, however. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: When the input voltage $\left(V_{\mathbb{I N}}\right)$ at any pin exceeds the power supply rails ($\mathrm{V}_{\mathbb{I}}<\mathrm{V}$ - or $\mathrm{V}_{\mathbb{I N}}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 5 mA or less. The sum of the currents at all pins that are driven beyond the power supply voltages should not exceed 20 mA .
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\mathrm{JMAX}}, \theta_{J A}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $T_{J M A X}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance of the LMF100ACN/CCN/CIN when board mounted is $55^{\circ} \mathrm{C} / \mathrm{W}$. For the LMF100AJ/CIJ, this number increases to $95^{\circ} \mathrm{C} / \mathrm{W}$ and for the LMF100CIWM this number is $66^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: The accuracy of the Q value is a function of the center frequency (f_{0}). This is illustrated in the curves under the heading "Typical Peformance Characteristics".

Note 5: $\mathrm{V}_{\text {os1 }}, \mathrm{V}_{\mathrm{os} 2}$, and $\mathrm{V}_{\text {os3 }}$ refer to the internal offsets as discussed in the Applications Information section 3.4.
Note 6: Crosstalk between the internal filter sections is measured by applying a $1 \mathrm{~V}_{\mathrm{RMS}} 10 \mathrm{kHz}$ signal to one bandpass filter section input and grounding the input of the other bandpass filter section. The crosstalk is the ratio between the output of the grounded filter section and the $1 \mathrm{~V}_{\mathrm{RMs}}$ input signal of the other section.
Note 7: The short circuit source current is measured by forcing the output that is being tested to its maximum positive voltage swing and then shorting that output to the negative supply. The short circuit sink current is measured by forcing the output that is being tested to its maximum negative voltage swing and then shorting that output to the positive supply. These are the worst case conditions.
Note 8: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 9: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 10: Design limits are guaranteed to National's AOQL (Average Outgoing Quality Level) but are not 100% tested.
Note 11: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 12: In $50: 1$ mode the output noise is 3 dB higher.
Note 13: In 50:1 mode the clock feedthrough is 6 dB higher.
Note 14: A military RETS specification is available upon request.

Typical Performance Characteristics

Q Deviation vs Clock Frequency

$\mathbf{f C L K}_{\mathbf{C}} / \mathbf{f}_{\mathbf{0}}$ Ratio vs Temperature

Q Deviation vs Clock Frequency

$\mathbf{f C L K}_{\mathbf{/ f}}^{\mathbf{0}}$ Ratio vs Temperature

Q Deviation vs Clock Frequency

TL/H/5645-9

LMF100 System Block Diagram

TL/H/5645-1

Pin Descriptions

$\operatorname{LP}(1,20), \mathrm{BP}(2,19)$, The second order lowpass, bandN/AP/HP(3,18) pass and notch/allpass/highpass outputs. These outputs can typically swing to within 1 V of each supply when driving a $5 \mathrm{k} \Omega$ load. For optimum performance, capacitive loading on these outputs should be minimized. For signal frequencies above 15 kHz the capacitance loading should be kept below 30 pF .
$\operatorname{INV}(4,17) \quad$ The inverting input of the summing opamp of each filter. These are high impedance inputs. The non-inverting input is internally tied to AGND so the opamp can be used only as an inverting amplifier.
S1 $(5,16)$ S1 is a signal input pin used in
$\mathrm{S}_{\mathrm{A} / \mathrm{B}}{ }^{(6)}$ modes $1 \mathrm{~b}, 4$, and 5 . The input impedance is $1 / \mathrm{f}_{\mathrm{CLK}} \times 1 \mathrm{pF}$. The pin should be driven with a source impedance of less than $1 \mathrm{k} \Omega$. If S 1 is not driven with a signal it should be tied to AGND (mid-supply).

This pin activates a switch that connects one of the inputs of each filter's second summer either to AGND ($\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ tied to V^{-}) or to the lowpass (LP) output ($\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ tied to V^{+}). This offers the flexibility needed for configuring the filter in its various modes of operation.
$\mathrm{V}_{\mathrm{A}}{ }^{+}(7)^{*} \quad$ This is both the analog and digital positive supply.
$V_{D}{ }^{+}(8)^{*} \quad$ This pin needs to be tied to V^{+}except when the device is to operate on a single 5 V supply and a TTL level clock is applied. For 5 V , TTL operation, $\mathrm{V}_{\mathrm{D}}{ }^{+}$should be tied to ground (OV).
$V_{A}{ }^{-}(14), V_{D}{ }^{-}$(13) Analog and digital negative supplies. $\mathrm{V}_{\mathrm{A}^{-}}$and $\mathrm{V}_{\mathrm{D}^{-}}$should be derived from the same source. They have been brought out separately so they can be bypassed by separate capacitors, if desired. They can also be tied together externally and bypassed with a single capacitor.

Pin Descriptions (Continued)
$\operatorname{LSh}(9) \quad$ Level shift pin. This is used to accommodate various clock levels with dual or single supply operation. With dual $\pm 5 \mathrm{~V}$ supplies and CMOS ($\pm 5 \mathrm{~V}$) or TTL ($0 \mathrm{~V}-5 \mathrm{~V}$) clock levels, LSh should be tied to system ground.
For OV-10V single supply operation the AGND pin should be biased at +5 V and the LSh pin should be tied to the system ground for TTL clock levels. LSh should be biased at +5 V for $\pm 5 \mathrm{~V}$ CMOS clock levels.
The LSh pin is tied to system ground for $\pm 2.5 \mathrm{~V}$ operation. For single 5 V operation the LSh and $\mathrm{V}_{\mathrm{D}}+$ pins are tied to system ground for TTL clock levels.
$\operatorname{CLK}(10,11) \quad$ Clock inputs for the two switched capacitor filter sections. Unipolar or bipolar clock levels may be applied to the CLK inputs according to the programming voltage applied to the LSh pin. The duty cycle of the clock should be close to 50%, especially when clock frequencies above 200 kHz are used. This allows the maximum time for the internal opamps to settle, which yields optimum filter performance.
50/100(12)* : By tying this pin to $V+$ a 50:1 clock to filter center frequency ratio is obtained. Tying this pin at mid-supply (i.e., system ground with dual supplies) or to V^{-}allows the filter to operate at a 100:1 clock to center frequency ratio.
AGND(15) This is the analog ground pin. This pin should be connected to the system ground for dual supply operation or biased to mid-supply for single supply operation. For a further discussion of mid-supply biasing techniques see the Applications Information (Section 3.2). For optimum filter performance a "clean" ground must be provided.
*This device is pin-for-pin compatible with the MF10 except for the following changes:

1. Unlike the MF10, the LMF100 has a single positive supply pin ($\mathrm{V}_{\mathrm{A}}+$).
2. On the LMF100 $\mathrm{V}_{\mathrm{D}}{ }^{+}$is a control pin and is not the digital positive supply as on the MF10.
3. Unlike the MF10, the LMF100 does not support the current limiting mode. When the $\mathbf{5 0 / 1 0 0}$ pin is tied to \mathbf{V} - the LMF100 will remain in the $100: 1$ mode.

1.0 Definitions of Terms

fclu: the frequency of the external clock signal applied to pin 10 or 11.
f_{0} : center frequency of the second order function complex pole pair. f_{0} is measured at the bandpass outputs of the LMF100, and is the frequency of maximum bandpass gain. (Figure 1).
$\mathrm{f}_{\text {notch: }}$ the frequency of minimum (ideally zero) gain at the notch outputs.
$f_{\mathbf{z}}$: the center frequency of the second order complex zero pair, if any. If f_{z} is different from f_{0} and if Q_{z} is high, it can be observed as the frequency of a notch at the allpass output. (Figure 13).
Q: "quality factor" of the 2nd order filter. \mathbf{Q} is measured at the bandpass outputs of the LMF100 and is equal to f_{0} divided by the -3 dB bandwidth of the 2nd order bandpass filter (Figure 1). The value of Q determines the shape of the 2nd order filter responses as shown in Figure 6.
$\mathbf{Q}_{\mathbf{z}}$: the quality factor of the second order complex zero pair, if any. Q_{z} is related to the allpass characteristic, which is written:
$H_{A P}(s)=\frac{H_{O A P}\left(s^{2}-\frac{s \omega_{0}}{Q_{z}}+\omega_{0}^{2}\right)}{s^{2}+\frac{s \omega_{0}}{Q}+\omega_{0}^{2}}$
where $Q_{Z}=Q$ for an all-pass response.
Hobp: the gain (in V/V) of the bandpass output at $f=f_{0}$.
Holp: the gain (in V/V) of the lowpass output as $f \rightarrow 0 \mathrm{~Hz}$ (Figure 2).
Hohp: the gain (in V/V) of the highpass output as $\mathbf{f} \rightarrow_{\rightarrow}$ fCLK/2 (Figure 3).
$H_{\text {ON: }}$ the gain (in V/V) of the notch output as f $\rightarrow 0 \mathrm{~Hz}$ and as $f \rightarrow f_{C L K} / 2$, when the notch filter has equal gain above and below the center frequency (Figure 4). When the low-frequency gain differs from the high-frequency gain, as in modes 2 and 3a (Figures 10 and 12), the two quantities below are used in place of HON.
HoN1: the gain (in V/V) of the notch output as $f \rightarrow 0 \mathrm{~Hz}$.
$H_{\text {ON2: }}$ the gain (in V/V) of the notch output as $f \rightarrow \mathrm{f}_{\mathrm{CLK}} / 2$.

1.0 Definitions of Terms (Continued)

(a)

(b)

$$
\begin{aligned}
& H_{B P}(s)=\frac{H_{O B P} \frac{\omega_{O}}{Q} s}{s^{2}+\frac{s \omega_{O}}{Q}+\omega_{o}^{2}} \\
& Q=\frac{f_{0}}{f_{H}-f_{L}} ; f_{0}=\sqrt{f_{L} f_{H}} \\
& f_{L}=f_{0}\left(\frac{-1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right) \\
& f_{H}=f_{0}\left(\frac{1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right) \\
& \omega_{O}=2 \pi f_{0}
\end{aligned}
$$

FIGURE 1. 2nd-Order Bandpass Response

(a)

TL/H/5645-22
(b)

$$
\begin{aligned}
& H_{L P}(s)=\frac{H_{O L P} \omega_{O}{ }^{2}}{s^{2}+\frac{s_{0}}{\mathbf{Q}}+\omega_{O}^{2}} \\
& f_{C}=f_{0} \times \sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}} \\
& f_{p}=f_{0} \sqrt{1-\frac{1}{2 Q^{2}}}
\end{aligned}
$$

$$
H_{O P}=H_{O L P} \times \frac{1}{\frac{1}{Q} \sqrt{1-\frac{1}{4 Q^{2}}}}
$$

FIGURE 2. 2nd-Order Low-Pass Response

$$
\begin{aligned}
& \underset{\substack{\mathrm{I}_{\mathrm{c}} \\
\mathrm{I} \text { (LOG SCALE) }}}{\substack{\mathrm{I}_{\mathrm{o}} \\
\mathrm{H}_{\text {Hop }}}} \\
& \text { TL/H/5645-23 } \\
& \text { (a) } \\
& H_{H P}(s)=\frac{H_{O H P S^{2}}}{s^{2}+\frac{s \omega_{0}}{Q}+\omega_{0}{ }^{2}} \\
& f_{c}=f_{0} \times\left[\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}}\right]^{-1} \\
& f_{p}=f_{0} \times\left[\sqrt{1-\frac{1}{2 Q^{2}}}\right]^{-1} \\
& H_{O P}=H_{O H P} \times \frac{1}{\frac{1}{Q} \sqrt{1-\frac{1}{4 Q^{2}}}}
\end{aligned}
$$

(b)

FIGURE 3. 2nd-Order High-Pass Response

1.0 Definitions of Terms (Continued)

TL/H/5645-25
(a)

TL/H/5645-27
(a)

(b)

$$
\begin{aligned}
& H_{N}(s)=\frac{H_{O N}\left(s^{2}+\omega_{0}{ }^{2}\right)}{s^{2}+\frac{s \omega_{O}}{Q}+\omega_{o}^{2}} \\
& Q=\frac{f_{0}}{f_{H}-f_{L}} ; f_{0}=\sqrt{f_{L} f_{H}} \\
& f_{L}=f_{0}\left(\frac{-1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right) \\
& f_{H}=f_{0}\left(\frac{1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right)
\end{aligned}
$$

FIGURE 4. 2nd-Order Notch Response

.. TL/H/5645-28
(b)
der All-Pass Response

FIGURE 6. Response of various 2 nd-order filters as a function of Q. Gains and center frequencies are normalized to unity.

2.0 Modes of Operation

The LMF100 is a switched capacitor (sampled data) filter. To fully describe its transfer functions, a time domain analysis is appropriate. Since this is cumbersome, and since the LMF100 closely approximates continuous filters, the following discussion is based on the well-known frequency domain. Each LMF100 can produce two full 2nd order functions. See Table I for a summary of the characteristics of the various modes.

$$
\begin{aligned}
& \text { MODE 1: Notch 1, Bandpass, Lowpass Outputs: } \\
& \mathbf{f}_{\text {notch }}=\mathbf{f}_{0} \text { (See Figure 7) } \\
& \mathrm{f}_{0} \quad=\text { center frequency of the complex pole pair } \\
& =\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \text { or } \frac{\mathrm{f}_{\text {CLK }}}{50} \\
& f_{\text {notch }}=\text { center frequency of the imaginary zero pair }=f_{0} \text {. } \\
& H_{\text {OLP }}=\text { Lowpass gain (as } f \rightarrow 0 \text {) }=-\frac{R 2}{R 1} \\
& \left.H_{\text {OBP }}=\text { Bandpass gain (at } f=f_{0}\right)=-\frac{R 3}{R 1} \\
& \left.H_{\mathrm{ON}}=\text { Notch output gain as } \underset{\mathrm{f}}{\mathrm{f}} \rightarrow \mathrm{f}_{\mathrm{CLK}} / 2\right\}=\frac{-\mathrm{R}_{2}}{\mathrm{R}_{1}}
\end{aligned}
$$

Q $\quad=\frac{\mathrm{f}_{0}}{\mathrm{BW}}=\frac{\mathrm{R} 3}{\mathrm{R} 2}$

$$
=\text { quality factor of the complex pole pair }
$$

BW $\quad=$ the -3 dB bandwidth of the bandpass output.
Circuit dynamics:

$$
\begin{aligned}
\mathrm{H}_{\mathrm{OLP}} & =\frac{H_{\mathrm{OBP}}}{\mathrm{Q}} \text { or } H_{\mathrm{OBP}}=H_{\mathrm{OLP}} \times \mathrm{Q} \\
& =H_{\mathrm{ON}} \times \mathrm{Q} .
\end{aligned}
$$

$H_{\text {OLP(peak) }} \cong Q \times H_{\text {OLP }}$ (for high Q's)
MODE 1a: Non-Inverting BP, LP (See Figure 8)

$$
\begin{aligned}
& f_{0}=\frac{f_{C L K}}{100} \text { or } \frac{f_{C L K}}{50} \\
& Q=\frac{R 3}{R 2} \\
& \left.H_{O L P}=-1 ; H_{O L P}(\text { peak }) \cong Q \times H_{O L P} \text { (for high } Q^{\prime} \mathrm{s}\right) \\
& H_{\mathrm{OBP}_{1}}=-\frac{R 3}{R 2} \\
& H_{\mathrm{OBP}_{2}}=1 \text { (non-inverting) } \\
& C_{\text {Circuit dynamics: } H_{O B P_{1}}=Q}^{\text {Note: } V_{\text {IN }} \text { should be driven from a low impedance }(<1 \mathrm{k} \Omega) \text { source. }}
\end{aligned}
$$

TL/H/5645-11
FIGURE 7. MODE 1

TL/H/5645-4
FIGURE 8. MODE 1a
2.0 Modes of Operation (Continued)

MODE 1b: Notch 1, Bandpass, Lowpass Outputs:
$\mathbf{f}_{\text {notch }}=\mathbf{f}_{0}$ (See Figure 9)
$\mathrm{f}_{0} \quad=$ center frequency of the complex pole pair
$=\frac{\mathrm{fCLK}}{100} \times \sqrt{2}$ or $\frac{\mathrm{fCLK}}{50} \times \sqrt{2}$
$f_{\text {notch }}=$ center frequency of the imaginary zero pair $=f_{0}$.
$H_{\text {OLP }}=$ Lowpass gain (as $f \rightarrow 0$) $=-\frac{R 2}{2 R 1}$
$H_{\text {OBP }}=$ Bandpass gain (at $\left.f=f_{0}\right)=-\frac{R 3}{R 1}$
$H_{\mathrm{ON}}=$ Notch output gain as $\left.\underset{f}{ } \rightarrow 0 \quad 0 \quad \mathrm{f}_{\mathrm{CLK}} / 2\right\}=\frac{-\mathrm{R}_{2}}{\mathrm{R}_{1}}$
$Q \quad=\frac{f_{0}}{B W}=\frac{R 3}{R 2} \times \sqrt{2}$
$=$ quality factor of the complex pole pair
BW $=$ the -3 dB bandwidth of the bandpass output.
Circuit dynamics:
$H_{\text {OLP }}=\frac{H_{\text {OBP }}}{\sqrt{2} Q}$ or $H_{O B P}=H_{O L P} \times Q \times \sqrt{2}$
$H_{\mathrm{OBP}}=\frac{\mathrm{H}_{\mathrm{ON}} \times \mathrm{Q}}{\sqrt{2}}$
$H_{O L P(\text { peak })} \cong Q \times H_{O L P}$ (for high Q's)

MODE 2: Notch 2, Bandpass, Lowpass: $\mathbf{f}_{\text {notch }}<\mathbf{f}_{\mathbf{0}}$ (See Figure 10)
$\mathrm{f}_{0} \quad=$ center frequency
$=\frac{\mathrm{f} \mathrm{CLK}}{100} \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}+1}$ or $\frac{\mathrm{fCLK}}{50} \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}+1}$
$f_{\text {notch }}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100}$ or $\frac{\mathrm{f} \text { CLK }}{50}$
Q $\quad=$ quality factor of the complex pole pair
$=\frac{\sqrt{R 2 / R 4+1}}{\text { R2/R3 }}$
HoLP $=$ Lowpass output gain (as $f \rightarrow 0$)
$=-\frac{\mathrm{R} 2 / \mathrm{R} 1}{\mathrm{R} 2 / \mathrm{R} 4+1}$
$H_{\text {OBP }}=$ Bandpass output gain (at $f=f_{0}$) $=-R 3 / R 1$
$\mathrm{H}_{\mathrm{ON}}^{1} \boldsymbol{}=$ Notch output gain (as $\mathrm{f} \rightarrow 0$)
$=-\frac{\mathrm{R} 2 / \mathrm{R} 1}{\mathrm{R} 2 / \mathrm{R} 4+1}$
$\mathrm{H}_{\mathrm{ON}}^{2}$ $=$ Notch output gain $\left(\right.$ as $\left.\mathrm{f} \rightarrow \frac{\mathrm{f} \mathrm{CLK}}{2}\right)=-\mathrm{R} 2 / \mathrm{R} 1$
Filter dynamics: $\mathrm{H}_{\mathrm{OBP}}=\mathrm{Q} \sqrt{\mathrm{HOLP}_{\mathrm{HON}_{2}}}=\sqrt{\mathrm{HON}_{1} \mathrm{HON}_{2}}$

FIGURE 9. MODE 1b

FIGURE 10. MODE 2

2.0 Modes of Operation (Continued)

MODE 3: Highpass, Bandpass, Lowpass Outputs
(See Figure 11)
$\mathrm{f}_{0}=\frac{\mathrm{f} \mathrm{CLK}}{100} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$ or $\frac{\mathrm{f} L \mathrm{~K}}{50} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$
Q $\quad=$ quality factor of the complex pole pair
$=\sqrt{\frac{R 2}{R} 4} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$\mathrm{H}_{\mathrm{OHP}}=$ Highpass gain $\left(\right.$ at $\left.\mathrm{f} \rightarrow \frac{\mathrm{f} C L K}{2}\right)=-\frac{\mathrm{R} 2}{\mathrm{R} 1}$
$H_{\text {OBP }}=$ Bandpass gain $\left(\right.$ at $\left.f=f_{0}\right)=-\frac{R 3}{R 1}$
$H_{\text {OLP }}=$ Lowpass gain (as $\left.f \rightarrow 0\right)=-\frac{R 4}{R 1}$
Circuit dynamics: $\frac{\mathrm{R} 2}{\mathrm{R} 4}=\frac{\mathrm{H}_{\mathrm{OHP}}}{\mathrm{H}_{\mathrm{OLP}}} ; \mathrm{H}_{\mathrm{OBP}}=\sqrt{\mathrm{H}_{\mathrm{OHP}} \times \mathrm{H}_{\mathrm{OLP}}} \times \mathrm{Q}$
$H_{\text {OLP(peak) }} \cong Q \times H_{\text {OLP }}$ (for high Q's)
H_{OHP} (peak) $\cong \mathrm{Q} \times \mathrm{H}_{\mathrm{OHP}}$ (for high Q's)
*In Mode 3, the feedback loop is closed around the input summing amplifier; the finite GBW product of this op amp causes a slight Q enhancement. If this is a problem, connect a small capacitor ($10 \mathrm{pF}-100 \mathrm{pF}$) across R4 to provide

FIGURE 11. MODE 3

MODE 3a: HP, BP, LP and Notch with External Op Amp

(See Figure 12)

$\mathrm{f}_{0} \quad=\frac{\mathrm{f} \mathrm{CLK}}{100} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$ or $\frac{\mathrm{f} \mathrm{CLK}}{50} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$
Q $\quad=\sqrt{\frac{R 2}{R 4}} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$\mathrm{H}_{\mathrm{OHP}}=-\frac{\mathrm{R} 2}{\mathrm{R} 1}$
$\mathrm{H}_{\mathrm{OBP}}=-\frac{\mathrm{R} 3}{\mathrm{R} 1}$
$H_{\text {OLP }}=-\frac{\mathrm{R} 4}{\mathrm{R} 1}$
$f_{n} \quad=$ notch frequency $=\frac{f_{C L K}}{100} \sqrt{\frac{R_{h}}{R_{l}}}$ or $\frac{f C L K}{50} \sqrt{\frac{R_{h}}{R_{l}}}$
$\mathrm{H}_{\mathrm{ON}} \quad=$ gain of notch at
$f=f_{0}=\left\|Q\left(\frac{R_{g}}{R_{l}} H_{O L P}-\frac{R_{g}}{R_{h}} H_{O H P}\right)\right\|$
$H_{n 1} \quad=$ gain of notch (as $f \rightarrow 0$) $=\frac{\mathbf{R}_{g}}{\mathbf{R}_{\mathrm{l}}} \times \mathrm{H}_{\mathrm{OLP}}$
$\mathrm{H}_{\mathrm{n} 2}=$ gain of notch $\left(\right.$ as $\left.\mathrm{f} \rightarrow \frac{\mathrm{f}_{\mathrm{CLK}}}{2}\right)$
$=-\frac{R_{g}}{R_{h}} \times H_{\text {OHP }}$
 some phase lead.

TL/H/5645-5

FIGURE 12. AIODE 3a

2.0 Modes of Operation (Continued)

MODE 4: Allpass, Bandpass, Lowpass Outputs

(See Figure 13)
$\mathrm{f}_{0} \quad=$ center frequency
$=\frac{\mathrm{f}^{\mathrm{CLK}}}{100}$ or $\frac{\mathrm{f} \text { CLK }}{50}$;
$\mathrm{f}_{\mathrm{z}}{ }^{*}=$ center frequency of the complex zero $\approx \mathrm{f}_{0}$
Q $\quad=\frac{f_{0}}{B W}=\frac{R 3}{R 2}$;
$Q_{z}=$ quality factor of complex zero pair $=\frac{R 3}{R 1}$
For AP output make R1 = R2
$H_{O A P}{ }^{*}=$ Allpass gain $\left(\right.$ at $\left.0<f<\frac{f C L K}{2}\right)=-\frac{R 2}{R 1}=-1$
HOLP $=$ Lowpass gain (as $f \rightarrow 0$)

$$
=-\left(\frac{R 2}{R 1}+1\right)=-2
$$

$H_{\text {OBP }}=$ Bandpass gain (at $f=f_{0}$)
$=-\frac{\mathrm{R} 3}{\mathrm{R} 2}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)=-2\left(\frac{\mathrm{R} 3}{\mathrm{R} 2}\right)$
Circuit dynamics: $H_{O B P}=\left(H_{O L P}\right) \times Q=\left(H_{O A P}+1\right) Q$
*Due to the sampled data nature of the filter, a slight mismatch of f_{z} and f_{0} occurs causing a 0.4 dB peaking around f_{0} of the allpass filter amplitude response (which theoretically should be a straight line). If this is unacceptable, Mode 5 is recommended.

MODE 5: Numerator Complex Zeros, BP, LP
(See Figure 14)
$\mathrm{f}_{0}=\sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{f} C L K}{100}$ or $\sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{f} C \mathrm{~K}}{50}$
$f_{z}=\sqrt{1-\frac{R 1}{R 4}} \times \frac{f C L K}{100}$ or $\sqrt{1-\frac{R 1}{R 4}} \times \frac{f_{C L K}}{50}$
$\mathrm{Q}=\sqrt{1+\mathrm{R} 2 / \mathrm{R} 4} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$\mathrm{Q}_{\mathrm{Z}} \quad=\sqrt{1-\mathrm{R} 1 / \mathrm{R} 4} \times \frac{\mathrm{R} 3}{\mathrm{R} 1}$
$\mathrm{H}_{0_{z 1}}=$ gain at C.Z. output (as $\mathrm{f} \rightarrow 0 \mathrm{~Hz}$)
$\frac{\text {-R2(R4-R1) }}{R 1(R 2+R 4)}$
$=$ gain at C.Z. output $\left(\right.$ as $\left.f \rightarrow \frac{f(C L K}{2}\right)=\frac{-R 2}{R 1}$
$H_{O B P}=-\left(\frac{R 2}{R 1}+1\right) \times \frac{R 3}{R 2}$
$H_{\text {OLP }}=-\left(\frac{R 2+R 1}{R 2+R 4}\right) \times \frac{R 4}{R 1}$

TL/H/5645-6
FIGURE 13. MODE 4

TL/H/5645-15
FIGURE 14. MODE 5

2.0 Modes of Operation (Continued)

MODE 6a: Single Pole, HP, LP Filter (See Figure 15)
$\begin{aligned} \mathrm{f}_{\mathrm{c}} & =\text { cutoff frequency of LP or HP output } \\ & =\frac{R 2}{\mathrm{R} 3} \frac{\mathrm{f}_{\mathrm{CLK}}}{100} \text { or } \frac{R 2}{\mathrm{R} 3} \frac{\mathrm{f}_{\mathrm{CLK}}}{50} \\ H_{O L P} & =-\frac{R 3}{R 1} \\ H_{O H P} & =-\frac{R 2}{R 1}\end{aligned}$
MODE 6b: Single Pole LP Filter (Inverting and Non-

TL/H/5645-16
FIGURE 15. MODE 6a

FIGURE 16. MODE 6b
2.0 Modes of Operation (Continued)

MODE 6c: Single Pole, AP, LP Filter (See. Figure 17)

f_{c}	$=\frac{f C L K}{50}$ or $\frac{f \text { CLK }}{100}$
$H_{O A P}$	$=1($ as $f \rightarrow 0)$
$H_{O A P}$	$=-1\left(\right.$ as $\left.f \rightarrow f_{C L K} / 2\right)$
$H_{O L P}$	$=-2$
R_{1}	$=R_{2}=R_{3}$

MODE 7: Summing Integrator (See Figure 18)
$\tau \quad=$ integrator time constant
$=\frac{16}{f_{C L K}}$ or $\frac{8}{f_{C L K}}$
$\mathrm{H}_{\mathrm{OAP}}=-1$ (as $\mathrm{f} \rightarrow \mathrm{f}_{\mathrm{CLK}} / 2$)
HOLP $=-2$
$R_{1} \quad=R_{2}=R_{3}$

TL/H/5645-17
FIGURE 17. MODE 6c

TL/H/5645-37
Equivalent Circult

$$
\begin{aligned}
& \mathrm{K}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}} \\
& \text { OUT1 }=-\frac{\mathrm{K}}{\tau} \int \operatorname{NN} 1 \mathrm{dt}-\frac{1}{\tau} \int \text { IN } 2 \mathrm{dt} \\
& \text { OUT2 }=\frac{1}{\tau} \int \text { OUT1 } 1 \mathrm{dt}
\end{aligned}
$$

FIGURE 18. MODE 7

2.0 Modes of Operation (Continued)

TABLE I. Summary of Modes. Realizable filter types (e.g. low-pass) denoted by asterisks.

Mode	BP	LP	HP	N	AP	Number of Resistors	Adjustable $\mathbf{f C L K}^{\mathbf{f}} \mathbf{f}_{0}$	Notes
1	*	*		*		3	No	
1 a	(2) $\begin{aligned} & H_{\mathrm{OBP1} 1}=-\mathrm{Q} \\ & \mathrm{H}_{\mathrm{OBP} 2}=+1 \end{aligned}$	$\mathrm{H}_{\text {OLP }}=+1$				2	No	May need input buffer. Poor dynamics for high Q.
1b	*	* .		*		3	No	Useful for high frequency applications.
2	*	*		*		3	Yes (above $\mathrm{f}_{\mathrm{CLK}} / 50$ or $\mathrm{f}_{\mathrm{CLK}} / 100$)	
3	*	*	*			4	Yes	Universal StateVariable Filter. Best general-purpose mode.
3 a	*	*	*	*		7	Yes	As above, but also includes resistortuneable notch.
4	*	*			*	3	No	Gives Allpass response with $\mathrm{H}_{\mathrm{OAP}}=-1$ and $\mathrm{H}_{\mathrm{OLP}}=-2$.
5	*	*			*	4	Yes	Gives flatter allpass response than above if $R_{1}=R_{2}=0.02 R_{4}$.
6 a		*	*			3	Yes	Single pole.
6b		(2) $\begin{aligned} & \mathrm{H}_{\mathrm{OLP} 1}=+1 \\ & \mathrm{H}_{\mathrm{OLP} 2}=\frac{-\mathrm{R} 3}{\mathrm{R} 2} \end{aligned}$				2	Yes	Single pole.
6 c		*			*	3	No	Single pole.
7						2	Yes	Summing integutor with adjustable time constant.

3.0 Applications Information

The LMF100 is a general purpose dual second-order state variable filter whose center frequency is proportional to the frequency of the square wave applied to the clock input (fCLK). The various clocking options are summarized in the following table.

Clocking Options			
Power Supply	Clock Levels	LSh	$\mathbf{V}_{\mathbf{D}}{ }^{+}$
$\left\lvert\, \begin{aligned} & -5 \mathrm{~V} \text { and }+5 \mathrm{~V} \\ & -5 \mathrm{~V} \text { and }+5 \mathrm{~V} \end{aligned}\right.$	$\begin{aligned} & \operatorname{TTL}(0 \mathrm{~V} \text { to }+5 \mathrm{~V}) \\ & \operatorname{CMOS}(-5 \mathrm{~V} \text { to }+5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{OV} \\ & \mathrm{OV} \end{aligned}$	$\begin{aligned} & +5 V \\ & +5 V \end{aligned}$
0 V and 10 V 0 V and 10 V	TTL (0 V to 5 V) CMOS (0V to +10 V)	$\begin{gathered} 0 \mathrm{~V} \\ +5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & +10 V \\ & +10 V \end{aligned}$
$-2.5 \mathrm{~V} \text { and }+2.5 \mathrm{~V}$ OV and 5 V 0 V and 5 V	CMOS $\begin{aligned} & (-2.5 \mathrm{~V} \text { to }+2.5 \mathrm{~V}) \\ & \text { TTL (} 0 \mathrm{~V} \text { to }+5 \mathrm{~V} \text {) } \\ & \text { CMOS (} 0 \mathrm{~V} \text { to }+5 \mathrm{~V} \text {) } \end{aligned}$	$\begin{gathered} \mathrm{OV} \\ \mathrm{oV} \\ +2.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} +2.5 \mathrm{~V} \\ 0 \mathrm{~V} \\ +5 \mathrm{~V} \end{gathered}$

By connecting pin 12 to the appropriate dc voltage, the filter center frequency, f_{0}, can be made equal to either $\mathrm{f}_{\mathrm{CLK}} / 100$ or $\mathrm{f}_{\mathrm{CLK}} / 50$. f_{0} can be very accurately set (within $\pm 0.6 \%$) by using a crystal clock oscillator, or can be easily varied over a wide frequency range by adjusting the clock frequency. If desired, the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ ratio can be altered by external resistors as in Figures 10, 11, 12, 13, 14, 15 and 16. This is useful when high-order filters (greater than two) are to be realized by cascading the second-order sections. This allows each stage to be stagger tuned while using only one clock. The filter Q and gain are set by external resistor ratios.
All of the five second-order filter types can be built using either section of the LMF100. These are illustrated in Figures 1 through 5 along with their transfer functions and some related equations. Figure 6 shows the effect of Q on the shapes of these curves.

3.0 Applications Information (Continued)

3.1 DESIGN EXAMPLE

In order to design a filter using the LMF100, we must define the necessary values of three parameters for each secondorder section: f_{0}, the filter section's center frequency; H_{0}, the passband gain; and the filter's Q . These are determined by the characteristics required of the filter being designed.
As an example, let's assume that a system requires a fourth-order Chebyshev low-pass filter with 1 dB ripple, unity gain at dc, and 1000 Hz cutoff frequency. As the system order is four, it is realizable using both second-order sections of an LMF100. Many filter design texts (and National's Switched Capacitor Filter Handbook) include tables that list the characteristics (f_{0} and Q) of each of the second-order filter sections needed to synthesize a given higher-order filter. For the Chebyshev filter defined above, such a table yields the following characteristics:
$f_{0 A}=529 \mathrm{~Hz}$
$Q_{A}=0.785$
$f_{0 B}=993 \mathrm{~Hz}$
$Q_{B}=3.559$

For unity gain at dc, we also specify:
$H_{0 A}=1$
$H_{0 B}=1$
The desired clock-to-cutoff-frequency ratio for the overall filter of this example is 100 and a 100 kHz clock signal is available. Note that the required center frequencies for the two second-order sections will not be obtainable with clock-to-center-frequency ratios of 50 or 100. It will be necessary to adjust $\frac{\mathrm{f}_{\mathrm{CLK}}}{\mathrm{f}_{0}}$ externally. From Table I, we see that Mode 3
can be used to produce a low-pass filter with resistor-adjustable center frequency.

In most filter designs involving multiple second-order stages, it is best to place the stages with lower Q values ahead of stages with higher Q, especially when the higher Q is greater than 0.707 . This is due to the higher relative gain at the center frequency of a higher-Q stage. Placing a stage with lower Q ahead of a higher-Q stage will provide some attenuation at the center frequency and thus help avoid clipping of signals near this frequency. For this example, stage A has the lower $Q(0.785)$ so it will be placed ahead of the other stage.
For the first section, we begin the design by choosing a convenient value for the input resistance: $\mathrm{R}_{1 \mathrm{~A}}=20 \mathrm{k}$. The absolute value of the passband gain HOLPA is made equal to 1 by choosing $\mathrm{R}_{4 \mathrm{~A}}$ such that: $\mathrm{R}_{4 \mathrm{~A}}=-\mathrm{H}_{\text {OLPA }} \mathrm{R}_{1 \mathrm{~A}}=\mathrm{R}_{1 \mathrm{~A}}$ $=20 \mathrm{k}$. If the $50 / 100 / \mathrm{CL}$ pin is connected to mid-supply for nominal 100:1 clock-to-center-frequency ratio, we find $\mathrm{R}_{2 \mathrm{~A}}$ by:
$R_{2 A}=R_{4 A} \frac{f_{0 A^{2}}}{\left(f_{C L K} / 100\right)^{2}}=2 \times 10^{4} \times \frac{(529)^{2}}{(1000)^{2}}=5.6 \mathrm{k}$ and
$R_{3 A}=Q_{A} \sqrt{R_{2 A} R_{4 A}}=0.785 \sqrt{5.6 \times 10^{3} \times 2 \times 10^{4}}=8.3 \mathrm{k}$
The resistors for the second section are found in a similar fashion:
$R_{1 B}=20 k$
$R_{4 B}=R_{1 B}=20 k$
$R_{2 B}=R_{4 B} \frac{f_{0 B}{ }_{\left(f_{C L K} / 100\right)^{2}}=20 k \frac{(993)^{2}}{(1000)^{2}}=19.7 \mathrm{k}, ~(1)}{}$
$R_{3 B}=Q_{B} \sqrt{R_{2 B} R_{4 B}}=3.559 \sqrt{1.97 \times 10^{4} \times 2 \times 10^{4}}=70.6 \mathrm{k}$
The complete circuit is shown in Figure 19 for split $\pm 5 \mathrm{~V}$ power supplies. Supply bypass capacitors are highly recommended.

TL/H/5645-30
FIGURE 19. Fourth-order Chebyshev low-pass filter from example in 3.1. $\pm 5 \mathrm{~V}$ power supply. $0 \mathrm{~V}-5 \mathrm{~V}$ TTL or $\pm 5 \mathrm{~V}$ CMOS logic levels.

3.0 Applications Information (Continued)

TL/H/5645-31
FIGURE 20. Fourth-order Chebyshev low-pass filter from example in 3.1. Single +10 V power supply. 0V-5V TTL logic levels. Input signals should be referred to half-supply or applied through a coupling capacitor.

FIGURE 21. Three Ways of Generating $\frac{\mathrm{V}^{+}}{2}$ for Single-Supply Operation

3.0 Applications Information (Continued)

3.2 SINGLE SUPPLY OPERATION

The LMF100 can also operate with a single-ended power supply. Figure 20 shows the example filter with a single-ended power supply. $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$are again connected to the positive power supply (4 to 15 volts), and $V_{A}-$ and $V_{D}{ }^{-}$are connected to ground. The $\mathrm{A}_{\mathrm{GND}}$ pin must be tied to $\mathrm{V}+/ 2$ for single supply operation. This half-supply point should be very "clean", as any noise appearing on it will be treated as an input to the filter. It can be derived from the supply voltage with a pair of resistors and a bypass capacitor (Figure 21a), or a low-impedance half-supply voltage can be made using a three-terminal voltage regulator or an operational amplifier (Figures 21b and 21c). The passive resistor divider with a bypass capacitor is sufficient for many applications, provided that the time constant is long enough to reject any power supply noise. It is also important that the half-supply reference present a low impedance to the clock frequency, so at very low clock frequencies the regulator or op-amp approaches may be preferable because they will require smaller capacitors to filter the clock frequency. The main power supply voltage should be clean (preferably regulated) and bypassed with $0.1 \mu \mathrm{~F}$.

3.3 DYNAMIC CONSIDERATIONS

The maximum signal handling capability of the LMF100, like that of any active filter, is limited by the power supply voltages used. The amplifiers in the LMF100 are able to swing to within about 1 volt of the supplies, so the input signals must be kept small enough that none of the outputs will exceed these limits. If the LMF100 is operating on ± 5 volts, for example, the outputs will clip at about $8 V_{p-p}$. The maximum input voltage multiplied by the filter gain should therefore be less than $8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$.
Note that if the filter Q is high, the gain at the lowpass or highpass outputs will be much greater than the nominal filter gain (Figure 6). As an example, a lowpass filter with a Q of 10 will have a 20 dB peak in its amplitude response at f_{0}. If the nominal gain of the filter (HOLP) is equal to 1 , the gain at f_{0} will be 10 . The maximum input signal at f_{0} must therefore be less than $800 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ when the circuit is operated on ± 5 volt supplies.
Also note that one output can have a reasonable small voltage on it while another is saturated. This is most likely for a circuit such as the notch in Mode 1 (Figure 7). The notch output will be very small at f_{0}, so it might appear safe to apply a large signal to the input. However, the bandpass will have its maximum gain at f_{0} and can clip if overdriven. If one output clips, the performance at the other outputs will be degraded, so avoid overdriving any filter section, even ones whose outputs are not being directly used. Accompanying Figures 7 through 17 are equations labeled "circuit dynamics", which relate the Q and the gains at the various outputs. These should be consulted to determine peak circuit gains and maximum allowable signals for a given application.

3.4 OFFSET VOLTAGE

The LMF100's switched capacitor integrators have a slightly higher input offset voltage than found in a typical continuous time active filter integrator. Because of National's new LMCMOS process and new design techniques the internal offsets have been minimized, compared to the industry standard MF10. Figure 22 shows an equivalent circuit of the LMF100 from which the output dc offsets can be calculated.

Typical values for these offsets with $\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ tied to $\mathrm{V}+$ are:
$\mathrm{V}_{\mathrm{OS} 1}=$ opamp offset $= \pm 5 \mathrm{mV}$
$V_{\text {OS2 }}= \pm 30 \mathrm{mV}$ at $50: 1$ or 100:1
$\mathrm{V}_{\mathrm{OS} 3}= \pm 15 \mathrm{mV}$ at 50:1 or 100:1
When $S_{A / B}$ is tied to V^{-}, $\mathrm{V}_{\mathrm{OS} 2}$ will approximately halve. The dc offset at the BP output is equal to the input offset of the lowpass integrator ($\mathrm{V}_{\mathrm{OS} 3}$). The offsets at the other outputs depend on the mode of operation and the resistor ratios, as described in the following expressions.

Mode 1 and Mode 4

$V_{\text {OS(} N} \quad=V_{O S 1}\left(\frac{1}{Q}+1+\left\|H_{O L P}\right\|\right)-\frac{V_{O S 3}}{Q}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{BP})} \quad=\mathrm{V}_{\mathrm{OS} 3}$
$V_{\text {OS(LP) }} \quad=V_{\text {OS(N) }}-V_{\text {OS2 }}$
Mode 1a
$V_{\mathrm{OS}}($ N.INV.BP $)=\left(1+\frac{1}{\mathrm{Q}}\right) \mathrm{V}_{\mathrm{OS} 1}-\frac{V_{\mathrm{OS} 3}}{\mathrm{Q}}$
$V_{O S}(I N V . B P)=V_{O S 3}$
$\mathrm{V}_{\mathrm{OS}}(\mathrm{LP}) \quad=\mathrm{V}_{\mathrm{OS}}(\mathrm{N} . \operatorname{INV} . \mathrm{BP})-\mathrm{V}_{\mathrm{OS} 2}$
Mode 1b
$\mathrm{V}_{\mathrm{OS}(\mathrm{N})} \quad=\mathrm{V}_{\mathrm{OS} 1}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 3}+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)-\frac{\mathrm{R} 2}{\mathrm{R} 3} \mathrm{~V}_{\mathrm{OS} 3}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{BP})} \quad=\mathrm{V}_{\text {OS3 }}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{LP})}$

$$
=\frac{V_{\mathrm{OS}(\mathrm{~N})}}{2}-\frac{\mathrm{V}_{\mathrm{OS} 2}}{2}
$$

Mode 2 and Mode 5
$\mathrm{V}_{\mathrm{OS}(\mathrm{N})} \quad=\left(\frac{\mathrm{R} 2}{\mathrm{Rp}}+1\right) \mathrm{V}_{\mathrm{OS} 1} \times \frac{1}{1+\mathrm{R} 2 / \mathrm{R} 4}$

$$
\begin{aligned}
& +V_{\mathrm{OS} 2} \frac{1}{1+\mathrm{R} 4 / \mathrm{R} 2}-\frac{V_{\mathrm{OS} 3}}{\mathrm{Q} \sqrt{1+\mathrm{R} 2 / R 4}} \\
& R_{\mathrm{p}}=\mathrm{R} 1\|\mathrm{R} 3\| \mathrm{R} 4
\end{aligned}
$$

$V_{\text {OS(BP) }} \quad=V_{\text {OS3 }}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{LP})} \quad=\mathrm{V}_{\mathrm{OS}(\mathrm{N})}-\mathrm{V}_{\mathrm{OS} 2}$
Mode 3
$V_{\text {OS(HP) }} \quad=V_{\text {OS2 }}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{BP})} \quad=\mathrm{V}_{\text {OS3 }}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{LP})} \quad=\mathrm{V}_{\mathrm{OS} 1}\left[1+\frac{\mathrm{R} 4}{\mathrm{R}_{\mathrm{p}}}\right]-\mathrm{V}_{\mathrm{OS} 2}\left(\frac{\mathrm{R} 4}{\mathrm{R} 2}\right)$
$-\operatorname{V}_{\text {OS3 }}\left(\frac{R 4}{R 3}\right)$

$$
R_{p}=R 1\|R 2\| R 3
$$

Mode 6a and 6c

$V_{O S(H P)}$	$=V_{O S 2}$
$V_{O S(L P)}$	$=V_{O S 1}\left(1+\frac{R_{3}}{R_{2}}+\frac{R_{3}}{R_{1}}\right)-\frac{R_{3}}{R_{2}} V_{O S 2}$

Mode 6b
$\mathrm{V}_{\mathrm{OS}(\mathrm{LP}}$ (N.INV)) $=\mathrm{V}_{\mathrm{OS} 2}$
$V_{\mathrm{OS}(\mathrm{LP}(\text { INV }))}=V_{\mathrm{OS} 1}\left(1+\frac{R_{3}}{R_{2}}\right)-\frac{R_{3}}{R_{2}} V_{\mathrm{OS} 2}$.

3.0 Applications Information (Continued)

TL/H/5645-12
FIGURE 22. Offset Voltage Sources

In many applications, the outputs are ac coupled and dc offsets are not bothersome unless large signals are applied to the filter input. However, larger offset voltages will cause clipping to occur at lower ac signal levels, and clipping at any of the outputs will cause gain nonlinearities and will change f_{0} and Q. When operating in Mode 3, offsets can become excessively large if R_{2} and R_{4} are used to make $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ significantly higher than the nominal value, especially if Q is also high.
For example, Figure 23 shows a second-order 60 Hz notch filter. This circuit yields a notch with about 40 dB of attenuation at 60 Hz . A notch is formed by subtracting the bandpass output of a mode 3 configuration from the input using
the unused side B opamp. The Q is 10 and the gain is $1 \mathrm{~V} / \mathrm{V}$ in the passband. However, $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}=1000$ to allow for a wide input spectrum. This means that for pin 12 tied to ground (100:1 mode), R4/R2 $=100$. The offset voltage at the lowpass output (LP) will be about 3 V . However, this is an extreme case and the resistor ratio is usually much smaller. Where necessary, the offset voltage can be adjusted by using the circuit of Figure 24. This allows adjustment of $\mathrm{V}_{\mathrm{OS} 1}$, which will have varying effects on the different outputs as described in the above equations. Some outputs cannot be adjusted this way in some modes, however (VOS(BP) in modes 1 a and 3 , for example).

3.0 Applications Information (Continued)

TL/H/5645-13
FIGURE 24. Method for Trimming $\mathbf{V}_{\text {OS }}$

3.5 SAMPLED DATA SYSTEM CONSIDERATIONS

The LMF100 is a sampled data filter, and as such, differs in many ways from conventional continuous-time filters. An important characteristic of sampled-data systems is their effect on signals at frequencies greater than one-half the sampling frequency. (The LMF100's sampling frequency is the same as its clock frequency.) If a signal with a frequency greater than one-half the sampling frequency is applied to the input of a sampled data system, it will be "reflected" to a frequency less than one-half the sampling frequency. Thus, an input signal whose frequency is $\mathrm{f}_{\mathrm{s}} / 2+100 \mathrm{~Hz}$ will cause the system to respond as though the input frequency was $\mathrm{f}_{\mathrm{s}} / 2-100 \mathrm{~Hz}$. This phenomenon is known as "aliasing", and can be reduced or eliminated by limiting the input signal spectrum to less than $f_{s} / 2$. This may in some cases require the use of a bandwidth-limiting filter ahead of the LMF100 to limit the input spectrum. However, since the clock frequency is much higher than the center frequency, this will often not be necessary.

Another characteristic of sampled-data circuits is that the output signal changes amplitude once every sampling period, resulting in "steps" in the output voltage which occur at the clock rate (Figure 25). If necessary, these can be "smoothed" with a simple R-C low-pass filter at the LMF100 output.
The ratio of fCLK to f_{c} (normally either $50: 1$ or $100: 1$) will also affect performance. A ratio of $100: 1$ will reduce any aliasing problems and is usually recommended for wideband input signals. In noise-sensitive applications, a ratio of 100:1 will result in 3 dB lower output noise for the same filter configuration.
The accuracy of the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ ratio is dependent on the value of Q. This is illustrated in the curves under the heading "Typical Performance Characteristics". As Q is changed, the true value of the ratio changes as well. Unless the Q is low, the error in $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ will be small. If the error is too large for a specific application, use a mode that allows adjustment of the ratio with external resistors.

FIGURE 25. The Sampled-Data Output Waveform

LMF380 Triple One-Third Octave Switched-Capacitor Active Filter

General Description

The LMF380 is a triple, one-third octave filter set designed for use in audio, audiological, and acoustical test and measurement applications. Built using advanced switched-capacitor techniques, the LMF380 contains three filters, each having a bandwidth equal to one-third of an octave in frequency. By combining several LMF380s, each covering a frequency range of one octave, a filter set can be implemented that encompasses the entire audio frequency range while using only a small fraction of the number of components and circuit board area that would be required if a conventional active filter approach were used. The center frequency range is not limited to the audio band, however. Center frequencies as low as 0.125 Hz or as high as 25 kHz are attainable with the LMF380.
The center frequency of each filter is determined by the clock frequency. The clock signal can be supplied by an external source, or it can be generated by the internal oscillator, using an external crystal and two capacitors. Since the LMF380 has an internal clock frequency divider ($\div 2$) and an output pin for the half-frequency clock signal, a single clock oscillator for the top-octave LMF380 becomes the master clock for the entire array of filters in a multiple LMF380 application.

Accuracy is enhanced by close matching of the internal components: the ratio of the clock frequency to the center frequency is typically accurate to $\pm 0.5 \%$, and passband gain and stopband attenuation are guaranteed over the full temperature range.

Features

(Three bandpass filters with one-third octave center frequency spacing

- Choice of internal or external clock
- No external components other than clock or crystal and two capacitors

Key Specifications

- Passband gain accuracy: Better than 0.7 dB over temperature
曰 Supply voltage range: $\pm 2 \mathrm{~V}$ to $\pm 7.5 \mathrm{~V}$ or +4 V to +14 V

Applications

- Real-Time Audio Analyzers (ANSI Type E, Class II)
- Acoustical Instrumentation
- Noise Testing

Simplified Block Diagram

Absolute Maximum Ratings (Notes 1 \& 2)	
If Military/Aerospace specified please contact the Nationa Office/Distributors for availab	d devices are required, Semiconductor Sales lity and specifications.
Total Supply Voltage	-0.3 V to +16 V
Voltage at Any Pin	-0.3 V to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Input Current per Pin (Note 3)	$\pm 5 \mathrm{~mA}$
Total Input Current (Note 3)	$\pm 20 \mathrm{~mA}$
Lead Temperature (Soldering 10 sec .)	
Dual-In-Line Package (Plastic)	$300^{\circ} \mathrm{C}$
Surface Mount Package (Note 4)	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

Power Dissipation (Note 5)	500 mW
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Susceptibility (Note 6)	2000 V

Operating Ratings (Note 1)

Temperature Range	$\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$
LMF380CIN, LMF380CIV,	\vdots
LMF380CIJ	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
LMF380CMJ	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
Supply Voltage $(\mathrm{V}+-\mathrm{V}-)$	4.0 V to 14 V
Clock Input Frequency	

Filter Electrical Characteristics The following specifications apply for $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$, and fCLK $=320 \mathrm{kHz}$ unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$; all other limits apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 7)	Limit (Note 8)	Units (Limit)
fCLK:f01	Clock-to-Center-Frequency Ratio, Filter 1		50:1	- .	
f ${ }_{\text {CLK:f02 }}$	Clock-to-Center-Frequency Ratio, Filter 2		62.5:1		
$\mathrm{f}_{\mathrm{CLK}:} \mathrm{f03}$	Clock-to-Center-Frequency Ratio, Filter 3		80:1		;
A_{1}	$\begin{aligned} & \text { Gain at } f_{1}=3720 \mathrm{~Hz} \text { (Filter 1), } \\ & 2960 \mathrm{~Hz} \text { (Filter 2), } 2340 \mathrm{~Hz} \text { (Filter 3) } \end{aligned}$	(Note 9)	-32	-30	dB (max)
A_{2}	$\begin{aligned} & \text { Gain at } f_{2}=6080 \mathrm{~Hz} \text { (Filter 1), } \\ & 4820 \mathrm{~Hz} \text { (Filter 2), } 3820 \mathrm{~Hz} \text { (Filter 3) } \end{aligned}$	(Note 9)	+0.1	0.1 ± 0.7	dB (max)
A_{3}	$\begin{aligned} & \text { Gain at } f_{3}=6200 \mathrm{~Hz} \text { (Filter 1), } \\ & 4960 \mathrm{~Hz} \text { (Filter 2), } 3940 \mathrm{~Hz} \text { (Filter 3) } \end{aligned}$	(Note 9	0.0	-0.0 ± 0.7	$\mathrm{dB}(\max)$
A_{4}	$\begin{aligned} & \text { Gain at } f_{4}=6400 \mathrm{~Hz} \text { (Filter 1), } \\ & 5080 \mathrm{~Hz} \text { (Filter 2), } 4040 \mathrm{~Hz} \text { (Filter 3) } \end{aligned}$	(Note 9)	-0.2	-0.2 ± 0.7	dB (max)
A_{5}	$\begin{aligned} & \text { Gain at } f_{5}=6540 \mathrm{~Hz} \text { (Filter 1), } \\ & 5180 \mathrm{~Hz} \text { (Filter 2), } 4120 \mathrm{~Hz} \text { (Filter 3) } \end{aligned}$	(Note 9)	-0.1	-0.1 ± 0.7	dB (max)
A_{6}	$\begin{aligned} & \text { Gain at } f_{6}=6720 \mathrm{~Hz} \text { (Filter 1), } \\ & 5340 \mathrm{~Hz} \text { (Filter 2), } 4240 \mathrm{~Hz} \text { (Filter 3) } \end{aligned}$	(Note 9)	+0.15	-0.15 ± 0.7	dB (max)
A_{7}	Gain at $\mathrm{f}_{7}=8900 \mathrm{~Hz}$ (Filter 1), 7060 Hz (Filter 2), 5600 Hz (Filter 3)	(Note 9)	-22	-20	dB (max)
Vos	Output Offset Voltage, Each Filter		$+50$	$\begin{gathered} +120 \\ -30 \\ \hline \end{gathered}$	mV (max) mV (min)
En	Total Output Noise, OUT1 Total Output Noise, OUT2 Total Output Noise, OUT3	0.1 Hz to 20 kHz	$\begin{aligned} & 240 \\ & 210 \\ & 190 \\ & \hline \end{aligned}$		$\mu \mathrm{Vrms}$
C_{L}	Maximum Capacitive Load		200		pF
	Crosstalk	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vrms}, \mathrm{f}=\mathrm{f}_{\mathrm{O}}$	-67		dB
	Clock Feedthrough, Each Filter	$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$	10		$m V_{p-p}$
V ${ }_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	$\begin{aligned} & +4.2 \\ & -4.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.8 \\ -4.2 \\ \hline \end{array}$	$\begin{aligned} & V(\min) \\ & V(\max) \end{aligned}$
THD	Total Harmonic Distortion	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vrms}, \mathrm{f}=\mathrm{fo}^{\text {o }}$	0.05		\%
I_{S}	Supply Current		6.0	9.0	mA (max)

Logic Input and Output Electrical Characteristics

The following specifications for $\mathrm{V}^{+}=+5 \mathrm{~V}$ and $\mathrm{V}^{-}=-5 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\text {man }}$ to
$\mathbf{T}_{\text {max; }}$ all other limits apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter		Conditions	Typical (Note 7)	Tested Limit	Units (Limit)
$\begin{aligned} & V_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	XTAL1 CMOS Clock Input Voltage	$\begin{aligned} & \text { Logical " } 1 \text { " } \\ & \text { Logical " } 0 \text { " } \end{aligned}$	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$		$\begin{aligned} & +3.0 \\ & -3.0 \\ & \hline \end{aligned}$	$V(\min)$ $\mathrm{V}(\max)$
$\begin{aligned} & V_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$		Logical "1" Logical " 0 "	$\mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$		$\begin{array}{r} +8.0 \\ +2.0 \end{array}$	$V(\min)$ V (max)
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$		Logical " 1 " Logical "0"	$\mathrm{V}^{+}=2.5 \mathrm{~V}, \mathrm{~V}^{-}=-2.5 \mathrm{~V}$		$\begin{aligned} & +1.5 \\ & -1.5 \\ & \hline \end{aligned}$	$V(\min)$ V (max)
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$		Logical " 1 " Logical "0"	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$		$\begin{array}{r} +4.0 \\ +1.0 \\ \hline \end{array}$	$V(\min)$ V (max)
V_{OH} V_{OL}	Clock Output Logical " 1 " Clock Output Logical "0"		$\begin{aligned} & \text { IOUT }=-1 \mathrm{~mA} \\ & \text { IOUT }=+1 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & V^{+}-1.0 \\ & V^{-}+1.0 \\ & \hline \end{aligned}$	$V(\min)$ V (max)
1 IN	Input Current XTAL. 1				± 20	$\mu \mathrm{A}$ (max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional. These ratings do not guarantee specific performance limits, however. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to GND unless otherwise specified.
Note 3: When the input voltage ($\mathrm{V}_{\mathbb{I N}}$) at any pin exceeds the power supplies ($\mathrm{V}_{\mathbb{I N}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathbb{I}}>\mathrm{V}^{+}$), the current at that pin should be limited to 5 mA . The 20 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 5 mA to four.
Note 4: See AN450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in any volume of the Linear Data Book Rev. 1 for other methods of soldering surface mount devices.
Note 5: The maximum power dissipation must be derated at elevated temperatures and is a function of $T_{J m a x}, \theta_{J A}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J \max }-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For guaranteed operation, $\mathrm{T}_{\mathrm{Jmax}}=125^{\circ} \mathrm{C}$. The typical thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ of the LMF380N when board-mounted is $51^{\circ} \mathrm{C}$.W. θ_{JA} is typically $52^{\circ} \mathrm{C} / \mathrm{W}$ for the LMF380J, and $86^{\circ} \mathrm{C} / \mathrm{W}$ for the LMF380V.
Note 6: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: Typicals are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 8: Limits are guaranteed to National's Averge Outgoing Quality Level (AOQL).
Note 9: The nominal test frequencies are: $f_{1}=0.58 f_{0}, f_{2}=0.95 f_{0}, f_{3}=0.98 f_{0}, f_{4}=f_{0}, f_{5}=1.02 f_{0}, f_{6}=1.05 f_{0}$, and $f_{7}=1.39 f_{0}$. The actual test frequencies listed in the table may differ slightly from the nominal values.

Typical Performance Characteristics

Offset Voltage vs Supply Voltage

Power Supply Current vs Temperature

T_{A}, AMBIENT TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right.$)

Positive Output Swing vs Temperature

T_{A}, AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Offset Voltage vs Temperature

Negative Output Swing vs Temperature
 T_{A}, AMBIENT TEMPERature (${ }^{\circ} \mathrm{C}$)

Offset Voltage vs Clock Frequency

Connection Diagrams

Dual-In-Line Package

TL/H/11123-2
Top View
Order Number LMF380CIJ, LMF380CMJ or LMF380CIN
See NS Package Number J16A or N16E
Plastic Chip Carrier Package

TL/H/11123-3
Top View
Order Number LMF380CIV See NS Package Number V20A

Pin Description

GND This is the analog ground reference for the LMF380. In split supply applications, GND should be connected to the system ground. When operating the LMF380 from a single positive power supply voltage, pin 1 should be connected to a "clean" reference voltage midway between V^{+}and V^{-}.
N.C. These pins are not connected to the internal circuitry.
OUT1, OUT2, These are the outputs of the filters.
OUT3

XTAL1 This is the crystal oscillator input pin. When using the internal oscillator, the crystal should be tied between XTAL1 and XTAL2. XTAL1 also serves as the input for an external CMOS-level clock.
XTAL2 This is the output of the internal crystal oscillator. When using the internal oscillator, the crystal should be tied between XTAL1 and XTAL2.
$\mathrm{V}^{-} \quad$ This is the negative power supply pin. It should be bypassed with at least a $0.1 \mu \mathrm{~F}$ ceramic capacitor. For best results, a
$1.0 \mu \mathrm{~F}$ to $10.0 \mu \mathrm{~F}$ tantalum capacitor should also be used. For single-supply operation, connect this pin to system ground.
CLOCK OUT This is the clock output pin. It can drive the clock inputs (XTAL1) of additional LMF380s or other components. The clock output frequency is one-half the clock frequency at XTAL1.
INPUT1, INPUT2, INPUT3

These are the signal inputs to the filters.

This is the positive power supply pin. It should be bypassed with at least a $0.1 \mu \mathrm{~F}$ ceramic capacitor. For best results, a 1.0 $\mu \mathrm{F}$ to $10.0 \mu \mathrm{~F}$ tantalum capacitor should also be used.

Functional Description

The LMF380 contains three fourth-order Chebyshev bandpass filters whose center frequencies are spaced one-third of an octave apart, making it ideal for use in "real time" audio spectrum analysis applications. As with other switched-capacitor filters, the center frequencies are proportional to the clock frequency applied to the IC; the center frequencies of the LMF380's three filters are located at $\mathrm{f}_{\mathrm{CLK}} / 50, \mathrm{f}_{\mathrm{CLK}} / 62.5$, and $\mathrm{f}_{\mathrm{CLK}} / 80$.
The three filters in an LMF380 cover a full octave in frequency, so that by using several LMF380s with clock frequencies separated by a factor of 2 n , a complex audio program can be analyzed for frequency content over a range of several octaves. To facilitate this, the CLK OUT pin of the LMF380 supplies an output clock signal whose frequency is one-half that of the incoming clock frequency. Therefore, a single clock source can provide the clock reference for all of the 30 filters (10LMF380s) in a real time analyzer that covers the entire 10 -octave audio frequency range. The LMF380 contains an internal clock oscillator that requires an external crystal and two capacitors to operate. Since the clock divider is on-board, only a single crystal is needed for the top-octave filter chip; the remaining devices can derive their clock signals from the master. If desired, an external oscillator can be used instead.

Figure 1 shows the magnitude versus frequency curves for the three filters in the LMF380. Separate input and output pins are provided for the three internal filters. The input pins will normally be connected to a common signal source, but can also be connected to separate input signals when necessary.

TL/H/11123-6
FIGURE 1. Response curves for the three filters in the LMF380. The clock frequency is 250 kHz .

Applications Information

POWER SUPPLIES

The LMF380 can operate from a total supply voltage (V^{+}-V^{-}) ranging from 4.0 V up to 14 V , but the choice of supply voltage can affect circuit performance. The IC depends on MOS switches for its operation. All such switches have inherent "ON" resistances, which can cause small delays in charging internal capacitances. Increasing the supply voltage reduces this "ON" resistance, which improves the accuracy of the filter in high-frequency applications. The maximum practical center frequency improves by roughly 10% to 20% when the supply voltage increases from 5 V to 10 V .
Dynamic range is also affected by supply voltage. The maximum signal voltage swing capability increases as supply voltage increases, so the dynamic range is greater with higher power supply voltages. It is therefore recommended that the supply voltage be kept near the maximum operating voltage when dynamic range and/or high-frequency performance are important.
As with all switched-capacitor filters, each of the LMF380's power supply pins should be bypassed with a minimum of $0.1 \mu \mathrm{~F}$ located close to the chip. An additional $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum capacitor on each supply pin is recommended for best results.

Sampled-Data System Considerations

CLOCK CIRCUITRY

The LMF380's clock input circuitry accepts an external CMOS-level clock signal at XTAL1, or can serve as a selfcontained oscillator with the addition of an external 1 MHz crystal and two 30 pF capacitors (see Figure 3).
The Clock Output pin provides a clock signal whose frequency is one-half that of the clock signal at XTAL1. This allows multiple LMF380s to operate from a single internal or external clock oscillator.

CLOCK FREQUENCY LIMITATIONS

The performance characteristics of a switched-capacitor filter depend on the switching (clock) frequency. At very low clock frequencies (below 10 Hz), the time between clock cycles is relatively long, and small parasitic leakage currents cause the internal capacitors to discharge sufficiently to affect the filter's offset voltage and gain. This effect becomes more pronounced at elevated operating temperatures.
At higher clock frequencies, performance deviations are due primarily to the reduced time available for the internal operational amplifiers to settle. For this reason, when the filter clock is externally generated, care should be taken to ensure that the clock waveform's duty cycle is as close to 50% as possible, especially at high clock frequencies.

OUTPUT STEPS

Because the LMF380 uses switched-capacitor techniques, its performance differs in several ways from non-sampled (continuous) circuits. The analog signal at any input is sampled during each filter clock cycle, and since the output voltage can change only once every clock cycle, the result is a discontinuous output signal. The output signal takes the form of a series of voltage "steps", as shown in Figure 2 for clock-to-center-frequency ratios of 50:1 and 100:1.

TL/H/11123-8
FIGURE 2. Switched-Capacitor Filter Output Waveform. Note the sampling "steps".

Abstract

ALIASING Another important characteristic of sampled-data systems is their effect on signals at frequencies greater than one-half the sampling frequency, fs. (The LMF380's sampling frequency is the same as the filter clock frequency). If a signal with a frequency greater than one-half the sampling frequency is applied to the input of a sampled-data system, it will be "reflected" to a frequency less than one-half the sampling frequency. Thus, an input signal whose frequency is $\mathrm{f}_{\mathrm{S}} / 2+10 \mathrm{~Hz}$ will cause the system to respond as though the input frequency was $\mathrm{f}_{\mathrm{S}} / 2-10 \mathrm{~Hz}$. If this frequency happens to be within the passband of the filter, it will appear at the filter's output, even though it was not present in the input signal. This phenomenon is known as "aliasing". Aliasing can be reduced or eliminated by limiting the input signal spectrum to less than $\mathrm{f}_{\mathrm{S}} / 2$. In some cases, it may be necessary to use a bandwidth-limiting filter (often a simple passive RC low-pass) between the signal source and the switched-capacitor filter's input. In the application example shown in Figure 3, two LMF60 6th-order low-pass filters provide anti-aliasing filtering.

OFFSET VOLTAGE

Switched-capacitor filters often have higher offset voltages than non-sampling filters with similar topologies. This is due to charge injection from the MOS switches into the sampling and integrating capacitors. The LMF380's offset voltage ranges from a minimum of -30 mV to a maximum of +120 mV .

NOISE

Switched-capacitor filters have two kinds of noise at their outputs. There is a random, "thermal" noise component whose amplitude is typically on the order of $210 \mu \mathrm{~V}$. The other kind of noise is digital clock feedthrough. This will have an amplitude in the vicinity of 10 mV peak-to-peak. In some applications, the clock noise frequency is so high compared to the signal frequency that it is unimportant. In other cases, clock noise may have to be removed from the output signal with, for example, a passive low-pass filter at the LMF380's output (see Figure 4).

INPUT IMPEDANCE

The LMF380's input pins are connected directly to the internal biquad filter sections. The input impedance is purely capacitive and is approximately 6.2 pF at each input pin, including package parasitics.

TL/H/11123-7
FIGURE 3. Complete, one-third octave filter set for the entire audio frequency range. Ten LMF380s provide the thirty bandpass filters required for this function. Power supply connections and bypass capacitors are not shown. Pin numbers are for the dual-In-line package.

Typical Applications (Continued)

THIRD-OCTAVE ANALYZER FILTER SET

The circuit shown in Figure 3 uses the LMF380 to implement a $1 / 3$-octave filter set for use in "real time" audio program analyzers. Ten LMF380s provide all of the bandpass filtering for the full audio frequency range. The power supply connections are not shown, but each power supply pin should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $1 \mu \mathrm{~F}$ tantalum capacitor.
The first LMF380, at the top of Figure 3, handles the highest octave, with center frequencies of $20 \mathrm{kHz}, 16 \mathrm{kHz}$, and 12.6 kHz . It also contains the 1 MHz master clock oscillator for the entire system. Its Clock Out pin provides a 500 kHz clock for the second LMF380, which supplies 250 kHz to the third LMF380, and so on.
If the audio input signal were applied to all of the LMF380 input pins, aliasing might occur in the lower frequency filters due to audio components near their clock frequencies. For example, the LMF380 at the bottom of Figure 3 has a clock frequency equal to 1.953125 kHz . An input signal at 1.93 kHz will be aliased down to 23.125 Hz , which is near the band center of the 24.4 Hz bandpass filter and will appear at the output of that filter.
This problem is solved by two LMF60-100 6th order Butterworth low-pass filters serving as anti-aliasing filters, as shown in Figure 3. The first LMF60-100 is connected to the input signal. The clock for this LMF60 is 250 kHz and comes from pin 10 of the second LMF380. The cutoff frequency is therefore 2.5 kHz . The output of this first LMF60-100 drives the inputs of the fifth, sixth, and seventh LMF380s. The seventh LMF380 has a 15.625 kHz clock, so aliasing will begin to become a problem around 15.2 kHz . With a sixth-order, 2.5 kHz low-pass filter preceding this circuit, the attenuation at 15.2 kHz is theoretically about 94 dB , which prevents aliasing from occuring at this bandpass filter.
The output of the first LMF60 also drives the input of the second LMF60, which provides anti-aliasing filtering for the three LMF380s that handle the lowest part of the audio frequency spectrum.
Note that no anti-aliasing filtering is provided for the four LMF380s at the top of Figure 3. These devices will not encounter aliasing problems for frequencies below about 120 kHz ; if higher input frequencies are expected, an additional low-pass filter at V_{IN} may be required.

DETECTORS

In a real-time analyzer, the amplitude of the signal at the output of each filter is displayed, usually in "bar-graph" form. The AC signal at the output of each bandpass filter must be converted to a unipolar signal that is appropriate for driving the display circuit.
The detector can take any of several forms. It can respond to the peaks of the input signal, to the average value, or to the rms value. The best type of detector depends on the application. For example, peak detectors are useful when monitoring audio program signals that are likely to overdrive an amplifier. Since the output of the peak detector is propor-
tional to the peak signal voltage, it provides a good indication of the voltage swing. Generally, the output of the peak detector must have a moderately fast (about 1 ms) attack time and a much slower (tens or hundreds of milliseconds) decay time. The actual attack and decay times depend on the expected application. An average detector responds to the average value of the rectified input signal and provides a good solution when measuring random noise. An average detector will normally respond relatively slowly to a rapid change in input amplitude. An rms detector gives an output that is proportional to signal power, and is therefore useful in many instrumentation applications, especially those that involve complex signals.
Peak detectors and average-responding detectors require precision rectifiers to convert the bipolar input signal into a unipolar output. Half-wave rectifiers are relatively inexpensive, but respond to only one polarity of input signal; therefore, they can potentially ignore information. Full-wave rectifiers need more components, but respond to both polarities of input signal. Examples of half- and full-wave peak- and average-responding detectors are shown in Figure 4. The component values shown may need to be adjusted to meet the requirements of a particular application. For example, peak detector attack and decay times may be changed by changing the value of the "hold" capacitor.
The input to each detector should be capacitively-coupled as shown in Figure 4. This prevents any errors due to voltage offsets in the preceding circuitry. The cutoff frequency of the resulting high-pass filter should be less than half the center frequency of the band of interest.
Note that a passive low-pass filter is shown at the input to each detector in Figure 4. These filters attenuate any clockfrequency signals at the outputs of the third-octave switched-capacitor filters. The typical clock feedthrough at a filter output is 10 mV rms, or 40 dB down from a nominal 1 Vrms signal amplitude. When more than 40 dB dynamic range is needed, a passive low-pass filter with a cutoff frequency about three times the center frequency of the bandpass will attenuate the clock feedthrough by about 24 dB , yielding about 64 dB dynamic range. The component values shown produce a cutoff frequency of 1 kHz ; changing the capacitor value will alter the cutoff frequency in inverse proportion to the capacitance.
The offset voltage of the operational amplifier used in the detector will also affect the detector's dynamic range. The LF353 used in the circuits in Figure 3 is appropriate for systems requiring up to 40 dB dynamic range.

DISPLAYS

The output of the detector will drive the input of the display circuit. An example of an LED display driver using the LM3915 is shown in Figure 5. The LM3915 drives 10 LEDs with 3 dB steps between LEDs; the total display range for an LM3915 is therefore 27 dB . Two LM3915s can be cascaded to yield a total range of 57 dB . See the LM3915 data sheet for more information.

(d)

TL/H/11123-12
FIGURE 4. Examples of detectors for audio signals. (a) Half-wave peak detector. (b) Half-wave average detector. (c) Full-wave peak detector. (d) Full-wave average detector. All diodes are 1N914 or 1N4148. Input RC low-pass filters attenuate clock noise from switched-capacitor filters; values shown are for $1 \mathbf{k H z}$ cutoff frequency. $\mathrm{C}_{\mathbf{I N}}$ should be at least $0.27 \mu \mathrm{~F}$ for frequency bands below 50 Hz and $0.1 \mu \mathrm{~F}$ for higher frequencies. Power supplies (not shown) should be bypassed with at least $0.1 \mu \mathrm{~F}$ close to the amplifiers.

Typical Applications (Continued)

TL/H/11123-13
FIGURE 5. LED display using LM3915 bar graph driver. The input voltage range is $\mathbf{2 V}$ full-scale, with $\mathbf{3} \mathbf{d B}$ per step.

MF4 4th Order Switched Capacitor Butterworth Lowpass Filter

General Description

The MF4 is a versatile，easy to use，precision 4th order Butterworth low－pass filter．Switched－capacitor techniques eliminate external component requirements and allow a clock－tunable cutoff frequency．The ratio of the clock fre－ quency to the low－pass cutoff frequency is internally set to 50 to 1 （MF4－50）or 100 to 1 （MF4－100）．A Schmitt trigger clock input stage allows two clocking options，either self－ clocking（via an external resistor and capacitor）for stand－ alone applications，or for tighter cutoff frequency control an external TTL or CMOS logic compatible clock can be ap－ plied．The maximally flat passband frequency response to－ gether with a DC gain of $1 \mathrm{~V} / \mathrm{V}$ allows cascading MF4 sec－ tions together for higher order filtering．

Features

回 Low Cost
－Easy to use
8－pin mini－DIP or 14－pin wide－body S．O．
© No external components
（a 5 V to 14 V supply voltage
国 Cutoff frequency range of 0.1 Hz to 20 kHz
－Cutoff frequency accuracy of $\pm 0.3 \%$ typical
－Cutoff frequency set by external clock
a Separate TTL and CMOS／Schmitt－trigger clock inputs

Block and Connection Diagrams

Absolute Maximum Ratings (Notes 1,2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (V+_V-)
14 V
Voltage At Any Pin
Input Current at Any Pin (Note 14)
Package Input Current (Note 14)
Power Dissipation (Note 15)
Storage Temperature
ESD Susceptibility (Note 13)
$\mathrm{V}++0.2 \mathrm{~V}$
$\mathrm{V}--0.2 \mathrm{~V}$
5 mA
20 mA
500 mW
$150^{\circ} \mathrm{C}$
800 V

Soldering Information:

- N Package: 10 sec.
$260^{\circ} \mathrm{C}$
- SO Package: Vapor Phase (60 sec.) $215^{\circ} \mathrm{C}$ Infrared (15 sec .) $220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
Operating Ratings (Note 2)
Temperature Range MF4CN-50, MF4CN-100 MF4CWM-50, MF4CWM-100
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)

$T_{\text {min }} \leq T_{A} \leq T_{\text {max }}$
$0^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$
$\leq T_{A} \leq 70^{\circ} \mathrm{C}$
$\leq 70^{\circ} \mathrm{C}$
5 V to 14 V

Filter Electrical Characteristics The following specifications apply for fack $\leq 250 \mathrm{kHz}$ (see Note 5) unless otherwise specified. Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Filter Electrical Characteristics The following specifications apply for fcLk $\leq 250 \mathrm{kHz}$ (see Note 5) unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Continued)

Parameter			Conditions	MF4-50			MF4-100			Unit	
			Typical (Note 10)	Tested Limit (Note 11)	Design Limit (Note 12)	Typical (Note 10)	Tested Limit (Note 11)	Design Limit (Note 12)			
$\mathrm{V}^{+}=+2.5 \mathrm{~V}, \mathrm{~V}^{-}=-2.5 \mathrm{~V}$											
f_{C} Cutoff Frequen Range (Note 3)		min max					$\begin{gathered} 0.1 \\ 10 \mathrm{k} \end{gathered}$			$\begin{aligned} & 0.1 \\ & 5 k \end{aligned}$	Hz
Supply Current			$\mathrm{f}_{\text {clk }}=250 \mathrm{kHz}$	1.5	2.25	2.25	1.5	2.25	2.25	mA	
Maximum Clock Feedthrough (Peak-to-Peak)	Filter Output		$V_{\text {in }}=0 \mathrm{~V}$	15			15			mV	
H_{0}, DC Gain			$\mathrm{R}_{\text {source }} \leq 2 \mathrm{k} \Omega$	0.0	± 0.15	± 0.15	0.0	± 0.15	± 0.15	dB	
$\mathrm{f}_{\mathrm{clk}} / \mathrm{f}_{\mathrm{c}}$, Clock to Cutoff Frequency Ratio				$\begin{gathered} 50.07 \\ \pm 0.3 \% \end{gathered}$	$\begin{gathered} 50.07 \\ \pm 1.0 \% \end{gathered}$		$\begin{gathered} 99.16 \\ \pm 0.3 \% \end{gathered}$	$\begin{gathered} 99.16 \\ \pm 1.0 \% \end{gathered}$			
$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f} \mathrm{C}$ Temperature Coefficient				± 25			± 60			ppm $/{ }^{\circ} \mathrm{C}$	
Stopband Attenuation (Min)			at $2 \mathrm{f}_{\mathrm{c}}$	-25.0	-24.0	-24.0	-25.0	-24.0	-24.0	dB	
DC Offset Voltage				-150			-300			mV	
Minimum Output Swing			$R_{L}=10 \mathrm{k} \Omega$	$\begin{aligned} & +1.5 \\ & -2.2 \end{aligned}$	$\begin{array}{r} +1.0 \\ -1.7 \end{array}$	$\begin{aligned} & +1.0 \\ & -1.7 \end{aligned}$	$\begin{aligned} & +1.5 \\ & -2.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +1.0 \\ -1.7 \end{array}$	$\begin{aligned} & +1.0 \\ & -1.7 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
Output Short Circuit Current (Note 8)		Source Sink		$\begin{aligned} & 28 \\ & 0.5 \end{aligned}$			$\begin{aligned} & 28 \\ & 0.5 \end{aligned}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
Dynamic Range (Note 4)				78			78			dB	
Additional Magnitude Response Test Points (Note 6)$\left(f_{c}=5 \mathrm{kHz}\right)$			$\begin{aligned} & \mathrm{f}_{\mathrm{clk}}=250 \mathrm{kHz} \\ & \mathrm{f}=6000 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & -7.57 \\ & \pm 0.47 \end{aligned}$	$\begin{aligned} & -7.57 \\ & \pm 0.47 \end{aligned}$.		dB	
Magnitude at			$\mathrm{f}=4500 \mathrm{~Hz}$		$\begin{array}{r} -1.46 \\ \pm 0.12 \\ \hline \end{array}$	$\begin{aligned} & -\mathbf{1 . 4 6} \\ & \pm 0.12 \end{aligned}$				dB	
$\left(f_{c}=2.5 \mathrm{kHz}\right)$ Magnitude			$\mathrm{f}=3000 \mathrm{~Hz}$					$\begin{gathered} -7.21 \\ \pm 0.2 \end{gathered}$	$\begin{gathered} -7.21 \\ \pm 0.2 \end{gathered}$	dB	
			$\mathrm{f}=2250 \mathrm{~Hz}$					$\begin{gathered} -1.39 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} -1.39 \\ \pm 0.1 \end{gathered}$		

Logic Input-Output Characteristics The following specifications apply for $\mathrm{V}^{-}=\mathrm{OV}$ (see Note 7) unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX; }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Parameter		Conditions	Typical (Note 10)	```Tested Limit (Note 11)```	Design Limit (Note 12)	Unit
SCHMITT TRIGGER						
$\mathrm{V}_{\mathrm{T}}+$, Positive Going Threshold Voltage	Min Max	$V^{+}=10 \mathrm{~V}$	7.0	6.1	$\begin{aligned} & 6.1 \\ & 8.9 \\ & \hline \end{aligned}$	V
	Min Max	$\mathrm{V}+=5 \mathrm{~V}$	3.5	$\begin{aligned} & 3.1 \\ & 4.4 \end{aligned}$	$\begin{array}{r} 3.1 \\ 4.4 \\ \hline \end{array}$	V

Logic Input-Output Characteristics The following specifications apply for $\mathrm{V}^{-}=\mathrm{OV}$ (see Note 7) unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX; }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{t}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Continued)

Parameter		Conditions		Typical (Note 10)	Tested Limit (Note 11)	Design Limit (Note 12)	Unit	
SCHMITT TRIGGER (Continued)								
$\mathrm{V}_{\mathrm{T}^{-}}$, Negative Going Threshold Voltage	Min Max	$V^{+}=10 \mathrm{~V}$		3.0	$\begin{aligned} & 1.3 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 3.8 \end{aligned}$	V	
	Min Max	$\mathrm{V}+=5 \mathrm{~V}$		1.5	$\begin{aligned} & 0.6 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.9 \\ & \hline \end{aligned}$	V	
Hysteresis ($\mathrm{V}_{\mathrm{T}^{+}} \mathrm{V}_{\mathrm{T}^{-}}$)	Min Max	$V^{+}=10 \mathrm{~V}$		4.0	$\begin{aligned} & 2.3 \\ & 7.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.3 \\ & 7.6 \end{aligned}$	V	
	Min Max	$\mathrm{V}+=5 \mathrm{~V}$		2.0	$\begin{aligned} & 1.2 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 3.8 \end{aligned}$	V	
Minimum Logical " 1 " Output Voltage (pin 2)		$\mathrm{I}_{0}=-10 \mu \mathrm{~A}$	$\mathrm{V}+=10 \mathrm{~V}$		9.0	9.0	V	
		$\mathrm{V}+=5 \mathrm{~V}$		4.5	4.5	V		
Maximum Logical " 0 " Output Voltage (pin 2)			$\mathrm{I}_{0}=10 \mu \mathrm{~A}$	$\mathrm{V}+=10 \mathrm{~V}$		1.0	1.0	V
		$\mathrm{V}+=5 \mathrm{~V}$			0.5	0.5	V	
Minimum Output Source Current (pin 2 2)		CLK R Shorted to Ground	$\mathrm{V}+=10 \mathrm{~V}$	6.0	3.0	3.0	mA	
		$\mathrm{V}+=5 \mathrm{~V}$	1.5	0.75	0.75	mA		
Maximum Output Sink Current (pin 2)			CLK R Shorted to V^{+}	$\mathrm{V}+=10 \mathrm{~V}$	5.0	2.5	2.5	mA
		$\mathrm{V}+=5 \mathrm{~V}$		1.3	0.65	0.65	mA	
TTL CLOCK INPUT, CLK R PIN (Note 9)								
Maximum V_{IL}, Logical " 0 " Input Voltage				0.8			V	
Minimum V ${ }_{\text {IH }}$, Logical " 1 " Input Voltage				2.0			V	
Maximum Leakage Current at CLK R Pin		L. Sh Pin at Mid-Supply		2.0			$\mu \mathrm{A}$	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. AC and DC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are with respect to GND.
Note 3: The cutoff frequency of the filter is defined as the frequency where the magnitude response is 3.01 dB less than the DC gain of the filter.
Note 4: For $\pm 5 \mathrm{~V}$ supplies the dynamic range is referenced to 2.82 Vrms (4 V peak) where the wideband noise over a 20 kHz bandwidth is typically $280 \mu \mathrm{Vrms}$ for the MF4-50 and $230 \mu \mathrm{Vrms}$ for the MF4-100. For $\pm 2.5 \mathrm{~V}$ supplies the dynamic range is referenced to 1.06 Vrms (1.5 V peak) where the wideband noise over a 20 kHz bandwidth is typically $130 \mu \mathrm{Vrms}$ for both the MF4-50 and the MF4-100.
Note 5: The specificatioris for the MF4 have been given for a clock frequency ($f_{C L K}$) of 250 kHz or less. Above ths clock frequency the cutoff frequency begins to deviate from the specified error band of $\pm 0.6 \%$ but the filter still maintains its magnitude characteristics. See Application Hints.
Note 6: Besides checking the cutoff frequency (f_{c}) and the stopband attenuation at $2 f_{c}$, two additional frequencies are used to check the magnitude response of the filter. The magnitudes are referenced to a DC gain of 0.0 dB .
Note 7: For simplicity all the logic levels have been referenced to $\mathrm{V}-=0 \mathrm{~V}$ (except for the TTL input logic levels). The logic levels will scale accordingly for $\pm 5 \mathrm{~V}$ and $\pm 2.5 \mathrm{~V}$ supplies.

Note 8: The short circuit source current is measured by forcing the output that is being tested to its maximum positive voltage swing and then shorting that output to the negative supply. The short circuit sink current is measured by forcing the output that is being tested to its maximum negative voltage and then shorting that output to the positive supply. These are worst case conditions.
Note 9: The MF4 is operating with symmetrical split supplies and L. Sh is tied to ground.
Note 10: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 11: Guaranteed to National's Average Outgoing Quality Level (AOOL).
Note 12: Guaranteed, but not 100% production tested. These limits are not used to determine outgoing quality levels.
Note 13: Human body model; 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 14: When the input voltage $\left(V_{\mathbb{I N}}\right)$ at any pin exceeds the power supply rails ($\mathrm{V}_{\mathbb{N}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathbb{N}}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 15: Thermal Resistance
$\boldsymbol{\theta}_{\text {JA }}$ (Junction to Ambient) N Package
$105^{\circ} \mathrm{C} / \mathrm{W}$.
$\boldsymbol{\theta}_{\text {JA }}$ M Package . 95 ${ }^{\circ} \mathrm{C} / \mathrm{W}$.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

TL/H/5064-10

Pin Descriptions

	ers in ()	
$\begin{gathered} \text { Pin } \\ \# \end{gathered}$	Pin Name	Function
$\begin{gathered} 1 \\ (1) \end{gathered}$	CLK IN	A CMOS Schmitt-trigger input to be used with an external CMOS logic level clock. Also used for self clocking Schmitt-trigger oscillator (see section 1.1).
$\begin{gathered} 2 \\ (3) \end{gathered}$	CLK R	A TTL logic level clock input when in split supply operation ($\pm 2.5 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$) with L . Sh tied to system ground. This pin becomes a low impedance output when L . Sh is tied to V^{-}. Also used in conjunction with the CLK IN pin for a self clocking Schmitt-trigger oscillator (see section 1.1). The TTL input signal must not exceed the supply voltages by more than 0.2 V .
$\begin{gathered} 3 \\ (5) \end{gathered}$	L. Sh	Level shift pin; selects the logic threshold levels for the clock. When tied to V - it enables an internal tri-state buffer stage between the Schmitt trigger and the internal clock level shift stage thus enabling the CLK IN Schmitt-trigger input and making the CLK R pin a low impedance output. When the voltage level at this input exceeds 25% $\left(V^{+}-V^{-}\right)+V^{-}$the internal tri-state buffer is disabled allowing the CLK R pin to become the clock input for the internal clock level-shift stage. The CLK R threshold level is now 2 V above the voltage on the L . Sh pin. The CLK R pin will be compatible with TTL logic levels when the MF4 is operated on split supplies with the L. Sh pin connected to system ground.
5 (8)	FILTER OUT	The output of the low-pass filter. It will typically sink 0.9 mA and source 3 mA and swing to within 1 V of each supply rail.
$\begin{gathered} 6 \\ (10) \end{gathered}$	AGND	The analog ground pin. This pin sets the DC bias level for the filter section and must be tied to the system ground for split supply operation or to mid-supply for single supply operation (see section 1.2). When tied to mid-supply this pin should be well bypassed.
$\begin{gathered} 7,4 \\ (7,12) \end{gathered}$	$\mathrm{V}+, \mathrm{V}-$	The positive and negative supply pins. The total power supply range is 5 V to 14 V . Decoupling these pins with $0.1 \mu \mathrm{~F}$ capacitors is highly recommended.
$\begin{gathered} 8 \\ (14) \end{gathered}$	FILTER IN	The input to the low-pass filter. To minimize gain errors the source impedance that drives this input should be less than 2 K (see section 1.3 of the Application Hints). For single supply operation the input signal must be biased to mid-supply or AC coupled through a capacitor.

1.0 MF4 Application Hints

The MF4 is a non-inverting unity gain low-pass fourth-order Butterworth switched-capacitor filter. The switched-capacitor topology makes the cutoff frequency (where the gain drops 3.01 dB below the DC gain) a direct ratio (100:1 or
$50: 1$) of the clock frequency supplied to the filter. Internal integrator time constants set the filter's cutoff frequency. The resistive element of these integrators is actually a capacitor which is "switched" at the clock frequency (for a detailed discussion see Input Impedance Section). Varying the clock frequency changes the value of this resistive element and thus the time constant of the integrators. The clock-to-cutoff-frequency ratio ($\mathrm{f}_{\mathrm{CLK}} \mathrm{f}_{\mathrm{c}}$) is set by the ratio of the input and feedback capacitors in the integrators. The higher the clock-to-cutoff-frequency ratio the closer this approximation is to the theoretical Butterworth response. The MF4 is available in $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}$ ratios of $50: 1$ (MF4-50) or 100:1 (MF4-100).

1.1 CLOCK INPUTS

The MF4 has a Schmitt-trigger inverting buffer which can be used to construct a simple R/C oscillator. Pin 3 is connected to V - which makes Pin 2 a low impedance output. The oscillator's frequency is nominally

$$
\begin{equation*}
\mathrm{f}_{\mathrm{CLK}}=\frac{1}{R C \ln \left[\left(\frac{V_{C C}-V_{T-}}{V_{C C}-V_{T^{+}}}\right)\left(\frac{V_{T^{+}}}{V_{T^{-}}}\right)\right]} \tag{1}
\end{equation*}
$$

which, is typically

$$
\begin{equation*}
\mathrm{f}_{\mathrm{CLK}} \cong \frac{1}{1.69 \mathrm{RC}} \tag{1a}
\end{equation*}
$$

for $V_{C C}=10 \mathrm{~V}$.
Note that $\mathrm{f}_{\mathrm{CLK}}$ is dependent on the buffer's threshold levels as well as the resistor/capacitor tolerance (see Figure 1). Schmitt-trigger threshold voltage levels can change significantly causing the R/C oscillator's frequency to vary greatly from part to part.
Where accurate cutoff frequency is required, an external clock can be used to drive the CLK R input of the MF4. This input is TTL logic level compatible and also presents a very light load to the external clock source ($\sim 2 \mu \mathrm{~A}$). With split supplies and the level shift (L. Sh) tied to system ground, the logic level is about 2V. (See the Pin Description for L. $\mathrm{Sh})$.

1.2 POWER SUPPLY

The MF4 can be powered from a single supply or split supplies. The split supply mode shown in Figure 2 is the most flexible and easiest to implement. Supply voltages of $\pm 5 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$ enable the use of TTL or CMOS clock logic levels. Figure 3 shows AGND resistor-biased to $\mathrm{V}+/ 2$ for single supply operation. In this mode only CMOS clock logic levels can be used, and input signals should be capacitor-coupled or biased near mid-supply.

1.3 INPUT IMPEDANCE

The MF4 low-pass filter input (FILTER IN) is not a high impedance buffer input. This input is a switched-capacitor resistor equivalent, and its effective impedance is inversely proportional to the clock frequency. The equivalent circuit of the filter's input can be seen in Figure 4. The input capacitor charges to $\mathrm{V}_{\text {in }}$ during the first half of the clock period; during the second half the charge is transferred to the feedback capacitor. The total transfer of charge in one clock cycle is therefore $\mathrm{Q}=\mathrm{C}_{\mathrm{in}} \mathrm{V}_{\mathrm{in}}$, and since current is defined as the flow of charge per unit time, the average input current becomes

$$
l_{\text {in }}=Q / T
$$

1.0 MF4 Application Hints (Continued)

(where T equals one clock period) or

$$
\mathrm{l}_{\text {in }}=\frac{\mathrm{C}_{\text {in }} V_{\text {in }}}{T}=C_{\text {in }} V_{\text {inf }}
$$

The equivalent input resistor $\left(\mathrm{R}_{\text {in }}\right)$ then can be expressed as

$$
\mathrm{R}_{\text {in }}=\frac{V_{\text {in }}}{l_{\text {in }}}=\frac{1}{C_{\text {in }}{ }^{f} \text { cLK }}
$$

The input capacitor is 2 pF for the MF4-50 and 1 pF for the MF4-100, so for the MF4-100

$$
R_{\text {in }}=\frac{1 \times 10^{12}}{f_{\text {CLK }}}=\frac{1 \times 10^{12}}{f_{c} \times 100}=\frac{1 \times 10^{10}}{f_{c}}
$$

and

$$
R_{\text {in }}=\frac{5 \times 1011}{f_{C L K}}=\frac{5 \times 10^{11}}{f_{c} \times 50}=\frac{1 \times 10^{10}}{f_{c}}
$$

for the MF4-50. The above equation shows that for a given cutoff frequency (f_{c}), the input resistance of the MF4-50 is the same as that of the MF4-100. The higher the clock-to-cutoff-frequency ratio, the greater equivalent input resistance for a given clock frequency.
This input resistance will form a voltage divider with the source impedance ($\mathrm{R}_{\text {source }}$). Since $\mathrm{R}_{\text {in }}$ is inversely proportional to the cutoff frequency, operation at higher cutoff frequencies will be more likely to load the input signal which would appear as an overall decrease in gain to the output of the filter. Since the filter's ideal gain is unity, the overall gain is given by:

$$
A_{v}=\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {source }}}
$$

If the MF4-50 or the MF-100 were set up for a cutoff frequency of 10 kHz the input impedance would be:

$$
R_{\text {in }}=\frac{1 \times 10^{10}}{10 \mathrm{kHz}}=1 \mathrm{M} \Omega
$$

In this example with a source impedance of 10 K the overall gain, if the MF4 had an ideal gain of 1 or 0 dB , would be:

$$
A_{v}=\frac{1 \mathrm{M} \Omega}{10 \mathrm{k} \Omega+1 \mathrm{M} \Omega}=0.99009 \text { or }-0.086 \mathrm{~dB}
$$

Since the maximum overall gain error for the MF4 is $\pm 0.15 \mathrm{~dB}$ with $\mathrm{R}_{\mathrm{S}} \leq 2 \mathrm{k} \Omega$ the actual gain error for this case would be +0.06 dB to -0.24 dB .

1.4 CUTOFF FREQUENCY RANGE

The filter's cutoff frequency (f_{c}) has a lower limit due to leakage currents through the internal switches draining the charge stored on the capacitors. At lower clock frequencies these leakage currents can cause millivolts of error, for example:

$$
\begin{gathered}
f_{\text {CLK }}=100 \mathrm{~Hz}, I_{\text {leakage }}=1 \mathrm{pA}, C=1 \mathrm{pF} \\
\mathrm{~V}=\frac{1 \mathrm{pA}}{1 \mathrm{pF}(100 \mathrm{~Hz})}=10 \mathrm{mV}
\end{gathered}
$$

The propagation delay in the logic and the settling time required to acquire a new voltage level on the capacitors limit the filter's accuracy at high clock frequencies. The amplitude characteristic on $\pm 5 \mathrm{~V}$ supplies will typically stay flat until fCLK exceeds 750 kHz and then peak at about 0.5 dB at the corner frequency with a 1 MHz clock. As supply voltage drops to $\pm 2.5 \mathrm{~V}$, a shift in the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{c}}$ ratio occurs
which will become noticeable when the clock frequency exceeds 250 kHz . The response of the MF4 is still a good approximation of the ideal Butterworth low-pass characteristic shown in Figure 5.

2.0 Designing With The MF4

Given any low-pass filter specification, two equations will come in handy in trying to determine whether the MF4 will do the job. The first equation determines the order of the low-pass filter required to meet a given response specification:

$$
\begin{equation*}
n=\frac{\log \left[\left(10^{0.1} A_{\min }-1\right) /\left(10^{0.1} A_{\max }-1\right)\right]}{2 \log \left(f_{s} / f_{b}\right)} \tag{2}
\end{equation*}
$$

where n is the order of the filter, $\mathrm{A}_{\text {min }}$ is the minimum stopband attenuation (in dB) desired at frequency f_{S}, and $\mathrm{A}_{\text {max }}$ is the passband ripple or attenuation (in dB) at cutoff frequency f_{b}. If the result of this equation is greater than 4 , more than a single MF4 is required.
The attenuation at any frequency can be found by the following equation:

$$
\begin{equation*}
\operatorname{Attn}(f)=10 \log \left[1+\left(10^{0.1} A_{\max }-1\right)\left(f / f_{b}\right)^{2 n}\right] d B \tag{3}
\end{equation*}
$$

where $\mathrm{n}=4$ for the MF4.

2.1 A LOW-PASS DESIGN EXAMPLE

Suppose the amplitude response specification in Figure 6 is given. Can the MF4 be used? The order of the Butterworth approximation will have to be determined using (1):

$$
\begin{gathered}
A_{\min }=18 \mathrm{~dB}, A_{\max }=1.0 \mathrm{~dB}, \mathrm{f}_{\mathrm{s}}=2 \mathrm{kHz} \text {, and } \mathrm{f}_{\mathrm{b}}=1 \mathrm{kHz} \\
\mathrm{n}=\frac{\log \left[\left(10^{1.8}-1\right) /\left(10^{0.1}-1\right)\right]}{2 \log (2)}=3.95
\end{gathered}
$$

Since n can only take on integer values, $n=4$. Therefore the MF4 can be used. In general, if n is 4 or less a single MF4 stage can be utilized.
Likewise, the attenuation at f_{s} can be found using (3) with the above values and $n=4$:
$\left.\operatorname{Attn}(2 \mathrm{kHz})=10 \log \left[1+10^{0.1}-1\right)(2 \mathrm{kHz} / 1 \mathrm{kHz})^{8}\right]=$ 18.28 dB

This result also meets the design specification given in Figure 6 again verifying that a single MF4 section will be adequate.
Since the MF4's cutoff frequency (f_{c}), which corresponds to a gain attenuation of -3.01 dB , was not specified in this example, it needs to be calculated. Solving equation 3 where $f=f_{c}$ as follows:

$$
\begin{aligned}
f_{c} & =f_{b}\left[\frac{\left(10^{0.1(3.01 \mathrm{~dB})-1}\right.}{\left(10^{\left.0.1 A_{\max }-1\right)}\right.}\right]^{1 /(2 n)} \\
& =1 \mathrm{kHz}\left[\frac{10^{0.301-1}}{10^{0.1}-1}\right]^{1 / 8} \\
& =1.184 \mathrm{kHz}
\end{aligned}
$$

where $f_{c}=f_{C L K} / 50$ or $\mathrm{f}_{\mathrm{CLK}} / 100$. To implement this example for the MF4-50 the clock frequency will have to be set to $\mathrm{f}_{\mathrm{CLK}}=50(1.184 \mathrm{kHz})=59.2 \mathrm{kHz}$, or for the MF4-100, f. CLK $=100(1.184 \mathrm{kHz})=118.4 \mathrm{kHz}$.

2.2 CASCADING MF4s

When a steeper stopband attenuation rate is required, two MF4s can be cascaded (Figure 7) yielding an 8th order

2.0 Designing With The MF4 (Continued)

slope of 48 dB per octave. Because the MF4 is a Butterworth filter and therefore has no ripple in its passband when MF4s are cascaded, the resulting filter also has no ripple in its passband. Likewise the DC and passband gains will remain at $1 \mathrm{~V} / \mathrm{V}$. The resulting response is shown in Figure 9. In determining whether the cascaded MF4s will yield a filter that will meet a particular amplitude response specification, as above, equations 3 and 4 can be used, shown below.

$$
\begin{gather*}
n=\frac{\log \left[\left(10^{\left.0.05 A \min -1) /\left(10.0 .05 A_{\max }-1\right)\right]}\right.\right.}{2 \log \left(f_{\mathrm{f}} / f_{c}\right)} \tag{2}\\
\operatorname{Attn}(f)=10 \log \left[1+\left(10^{\left.\left.0.05 A_{\mathrm{max}}-1\right)\left(f / f_{c}\right)^{2}\right] d B}\right.\right. \tag{3}
\end{gather*}
$$

where $\mathrm{n}=4$ (the order of each filter).
Equation 2 will determine whether the order of the filter is adequate ($n \leq 4$) while equation 3 can determine the actual stopband attenuation and cutoff frequency (f_{c}) necessary to obtain the desired frequency response. The design procedure would be identical to the one shown in section 2.0.

2.3 CHANGING CLOCK FREQUENCY INSTANTANEOUSLY

The MF4 will respond favorably to an instantaneous change in clock frequency. If the control signal in Figure 9 is low the

MF4-50 has a 100 kHz clock making $\mathrm{f}_{\mathrm{c}}=2 \mathrm{kHz}$; when this signal goes high the clock frequency changes to 50 kHz yielding $f_{c}=1 \mathrm{kHz}$. As the Figure illustrates, the output signal changes quickly and smoothly in response to a sudden change in clock frequency.
The step response of the MF4 in Figure 10 is dependent on f_{c}. The MF4 responds as a classical fourth-order Butterworth low-pass filter.

2.4 ALIASING CONSIDERATIONS

Aliasing effects have to be considered when input signal frequencies exceed half the sampling rate. For the MF4 this equals half the clock frequency ($\mathrm{f}_{\mathrm{CLK}}$). When the input signal contains a component at a frequency higher than half the clock frequency $\mathrm{f}_{\mathrm{CLK}} / 2$, as in Figure 11a, that component will be "reflected" about fCLK/2 into the frequency range below $\mathrm{f}_{\mathrm{CLK}} / 2$, as in Figure 11b. If this component is within the passband of the filter and of large enough amplitude it can cause problems. Therefore, if frequency components in the input signal exceed fclk 2 they must be attenuated before being applied to the MF4 input. The necessary amount of attenuation will vary depending on system requirements. In critical applications the signal components above $\mathrm{f}_{\mathrm{CLK}} / 2$ will have to be attenuated at least to the filter's residual noise level.

TL/H/5064-13
(b)

FIGURE 2. Split Supply Operation with CMOS Level Clock (a) and TTL Level Clock (b)

FIGURE 3. Single Supply Operation. ANGD Resistor Biased to $\mathbf{V}+/ 2$

TL/H/5064-15
a) Equivalent Circuit for MF4 Filter Input

TL/H/5064-20
b) Actual Circuit for MF4 Filter Input

FIGURE 4. MF4 Filter Input

FIGURE 5a. MF4-100 Amplitude Response with $\pm 5 \mathrm{~V}$ Supplies

FIGURE 5b. MF4-50 Amplitude Response with $\pm 5 \mathrm{~V}$ Supplies

FIGURE 5c. MF4-100 Amplitude Response with $\pm 2.5 \mathrm{~V}$ Supplies

FIGURE 5d. MF4-50 Amplitude Response with $\pm 2.5 \mathrm{~V}$ Supplies

TL/H/5064-22
FIGURE 6. Design Example Magnitude Response Specification where the Response of the Filter Design must fall within the shaded area of the specification

FIGURE 7. Cascading Two MF4s

FIGURE 8a. One MF4-50 vs Two MF4-50s Cascaded

FIGURE 9. MF4-50 Abrupt Clock Frequency Change

TL/H/5064-18
FIGURE 8b. Phase Response of Two Cascaded MF4-50s

FIGURE 10. MF4-50 Input Step Response

FIGURE 11. The phenomenon of aliasing in sampled-data systems. An input signal whose frequency is greater than one-half the sampling frequency will cause an output to appear at a frequency lower than one-half the sampling frequency. In the MF4, $\mathrm{f}_{\mathbf{s}}=\mathrm{f}_{\mathrm{c}} \mathrm{fK}$.

MF5 Universal Monolithic Switched Capacitor Filter

General Description

The MF5 consists of an extremely easy to use, general purpose CMOS active filter building block and an uncommitted op amp. The filter building block, together with an external clock and a few resistors, can produce various second order functions. The filter building block has 3 output pins. One of the output pins can be configured to perform highpass, allpass or notch functions and the remaining 2 output pins perform bandpass and lowpass functions. The center frequency of the filter can be directly dependent on the clock frequency or it can depend on both clock frequency and external resistor ratios. The uncommitted op amp can be used for cascading purposes, for obtaining additional allpass and notch functions, or for various other applications. Higher order filter functions can be obtained by cascading several MF5s or by using the MF5 in conjuction with the MF10 (dual switched capacitor filter building block). The MF5 is functionally compatible with the MF10. Any of the classical filter configurations (such as Butterworth, Bessel, Cauer and Chebyshev) can be formed.

Features

- Low cost
- 14-pin DIP or 14 -pin Surface Mount (SO) wide-body package
- Easy to use
- Clock to center frequency ratio accuracy $\pm 0.6 \%$
- Filter cutoff frequency stability directly dependent on external clock quality
- Low sensitivity to external component variations
- Separate highpass (or notch or allpass), bandpass, lowpass outputs
- $f_{0} \times Q$ range up to 200 kHz
- Operation up to 30 kHz (typical)
- Additional uncommitted op-amp

Block and Connection Diagrams

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Power Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (note 1) 500 mW
Storage Temp. $150^{\circ} \mathrm{C}$
Soldering Information:

N Package:	10 sec.	$260^{\circ} \mathrm{C}$
SO Package:	Vapor phase $(60$ sec. $)$	$215^{\circ} \mathrm{C}$
	Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
Input Voltage (any pin)
Operating Temp. Range
$\mathrm{V}^{-} \leq \mathrm{V}_{\text {in }} \leq \mathrm{V}^{+}$
MF5CN, MF5CWM
$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}^{+}=5 \mathrm{~V} \pm 0.5 \%, \mathrm{~V}^{-}=-5 \mathrm{~V} \pm 0.5 \%$ unless otherwise noted. Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter		Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units

Filter Electrical Characteristics $\mathrm{V}^{+}=5 \mathrm{~V} \pm 0.5 \%, \mathrm{~V}^{-}=-5 \mathrm{~V} \pm 0.5 \%$ unless otherwise noted. Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter		Conditions		Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
Center Frequency Range (f_{o})	Max			30		20	kHz
	Min			0.1		0.2	Hz
Clock Frequency Range (fCLK)	Max			1.5		1.0	MHz
	Min			5.0		10	Hz
Clock to Center Frequency Ratio ($\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$)		Ideal $Q=10$ Mode 1	$\begin{aligned} & V_{\text {pin9 }}=+5 \mathrm{~V} \\ & F_{\mathrm{CLK}}=250 \mathrm{kHz} \\ & \hline \end{aligned}$	$50.11 \pm 0.2 \%$	$50.11 \pm 1.5 \%$		
			$\begin{aligned} & V_{\text {pin9 }}=-5 \mathrm{~V} \\ & F_{\text {CLK }}=500 \mathrm{kHz} \end{aligned}$	$100.04 \pm 0.2 \%$	$100.04 \pm 1.5 \%$		
$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ Temp. Coefficient		$\begin{aligned} & \mathrm{V}_{\text {pin9 }}=+5 \mathrm{~V} \\ & (50: 1 \text { CLK ratio) } \end{aligned}$		± 10			ppm $/{ }^{\circ} \mathrm{C}$
		$\begin{aligned} & V_{\text {pin9 }}=-5 \mathrm{~V} \\ & \text { (100:1 CLK ratio) } \end{aligned}$		± 20			ppm $/{ }^{\circ} \mathrm{C}$
Q Accuracy (Max) (Note 2)		Ideal $Q=10$ Mode 1	$\begin{aligned} & V_{\text {pin9 }}=+5 \mathrm{~V} \\ & F_{\mathrm{CLK}}=250 \mathrm{kHz} \\ & \hline \end{aligned}$		± 10		\%
			$\begin{aligned} & V_{\text {pin9 }}=-5 \mathrm{~V} \\ & \mathrm{~F}_{\text {CLK }}=500 \mathrm{kHz} \end{aligned}$		± 10		\%
Q Temperature Coefficient		$\begin{aligned} & V_{\text {pin9 }}=+5 V \\ & (50: 1 \text { CLK ratio }) \end{aligned}$		-200			ppm $/{ }^{\circ} \mathrm{C}$
		$\begin{aligned} & V_{\text {pin9 }}=-5 V \\ & \text { (100:1 CLK ratio) } \end{aligned}$		-70			ppm $/{ }^{\circ} \mathrm{C}$
DC Lowpass Gain Accuracy (Max)		Mode 1$\mathrm{R} 1=\mathrm{R} 2=10 \mathrm{k} \Omega$			± 0.2		dB
DC Offset Voltage (Max)	$\mathrm{V}_{\text {os1 }}$			± 5.0			mV
	$V_{\text {os2 }}$	$\begin{aligned} & \mathrm{V}_{\text {pin9 }}=+5 \mathrm{~V} \\ & (50: 1 \text { CLK ratio) } \\ & \hline \end{aligned}$		-185			mV
	V_{033}			+115			mV
(Note 3)	$V_{0 \text { os2 }}$	$\begin{aligned} & V_{\text {pin9 }}=-5 V \\ & \text { (100:1 CLK ratio) } \end{aligned}$		-310			mV
	$\mathrm{V}_{0} 3$			+240			mV

Filter Electrical Characteristics $\mathrm{V}^{+}=5 \mathrm{~V} \pm 0.5 \%, \mathrm{~V}^{-}=-5 \mathrm{~V} \pm 0.5 \%$ unless otherwise noted. Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathbf{A}} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Parameter			Conditions	Typical (Note 6)	Tested Limit	Design Limit (Note 8)	Units
Output Swing (Min)	BP, LP pins		$\mathrm{RL}=5 \mathrm{k} \Omega$	± 4.0	± 3.8		V
	N/AP/HP		RL $=3.5 \mathrm{k} \Omega$	± 4.2	± 3.8		V
Dynamic Range (Note 4)			$\begin{aligned} & \mathrm{V}_{\text {pin9 }}=+5 \mathrm{~V} \\ & \text { (50:1 CLK ratio) } \end{aligned}$	83			dB
			$\begin{aligned} & V_{\text {pin9 }}=-5 \mathrm{~V} \\ & \text { (100:1 CLK ratio) } \end{aligned}$	80			dB
Maximum Output Short Circuit Current (Note 5)		Source		20			mA
		Sink		3.0			mA

OP-AMP Electrical Characteristics $\mathrm{V}^{+}=+5 \mathrm{~V} \pm 0.5 \%, \mathrm{~V}^{-}=-5 \mathrm{~V} \pm 0.5 \%$ unless other noted. Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter		Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
Gain Bandwidth Product			2.5			MHz
Output Voltage Swing (Min)		$\mathrm{RL}=3.5 \mathrm{k} \Omega$	± 4.2	± 3.8		V
Slew Rate			7.0			$\mathrm{V} / \mu \mathrm{s}$
DC Open-Loop Gain			80			db
Input Offset Voltage (Max)			± 5.0	± 20		mV
Input Bias Current			10			pA
Maximum Output Short Circuit Current (Note 5)	Source		20		-	mA
	Sink	,	3.0			mA

Logic Input Characteristics Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$.

All other limits $T_{A}=25^{\circ} \mathrm{C}$.

Parameter		Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
CMOS Clock Input	Min Logical "1" Input Voltage	$\begin{aligned} & \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{L} . \mathrm{Sh} .}=0 \mathrm{~V} \end{aligned}$		3.0		V
	Max Logical "0" Input Voltage			-3.0		V
	Min Logical " 1 " Input Voltage	$\begin{aligned} & \mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{L} . \text { Sh. }}=+5 \mathrm{~V} \end{aligned}$		8.0		v
	Max Logical "0" Input Voltage			2.0		v
TTL Clock Input	Min Logical "1" Input Voltage	$\begin{aligned} & \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {L.Sh. }}=0 \mathrm{~V} \end{aligned}$		2.0		v
	Max Logical "0" Input Voltage			0.8		V

Note 1: The typical junction-to-ambient thermal resistance (θ_{JA}) of the 14 pin N package is $160^{\circ} \mathrm{C} / \mathrm{W}$, and $82^{\circ} \mathrm{C} / \mathrm{W}$ for the M package.
Note 2: The accuracy of the Q value is a function of the center frequency (f_{0}). This is illustrated in the curves under the heading "Typical Performance Characteristics".
Note 3: $\mathrm{V}_{\mathrm{os} 1}, \mathrm{~V}_{\mathrm{Os} 2}$, and $\mathrm{V}_{\mathrm{os} 3}$ refer to the internal offsets as discussed in the Application Information section 3.4.
Note 4: For $\pm 5 \mathrm{~V}$ supplies the dynamic range is referenced to $2.82 \mathrm{~V} \mathrm{rms} \mathrm{(} 4 \mathrm{~V}$ peak) where the wideband noise over a 20 kHz bandwidth is typically $200 \mu \mathrm{Vrms}$ for the MF5 with a $50: 1$ CLK ratio and $280 \mu \mathrm{~V}$ rms for the MF5 with a 100:1 CLK ratio.
Note 5: The short circuit source current is measured by forcing the output that is being tested to its maximum positive voltage swing and then shorting that output to the negative supply. The short circuit sink current is measured by forcing the output that is being tested to its maximum negative voltage swing and then shorting
that output to the positive supply. These are the worst case conditions.
Note 6: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Guaranteed and 100% tested.
Note 8: Guaranteed, but not 100% tested. These limits are not used to calculate outgoing quality levels.

Pin Description
LP(14), BP(1),
N/AP/HP(2): The second order lowpass, bandpass, and notch/allpass/highpass outputs. The LP and BP outputs can typically sink 1 mA and source 3 mA . The N/AP/HP output can typically sink 1.5 mA and source 3 mA . Each output typically swings to within 1V of each supply.
INV1(3): The inverting input of the summing op amp of the filter. This is a high impedance input, but the non-inverting input is internally tied to AGND, making INV1 behave like a summing junction (low impedance current input).
S1(4): $\quad S 1$ is a signal input pin used in the allpass filter configurations (see modes 4 and 5). The pin should be driven with a source impedance of less than $1 \mathrm{k} \Omega$. If S 1 is not driven with a signal it should be tied to AGND (mid-supply).
SA(5): \quad This pin activates a switch that connects one of the inputs of the filter's second summer to either AGND (SA tied to $\mathrm{V}-$) or to the lowpass (LP) output (SA tied to $V+$). This offers the flexibility needed for configuring the filter in its various modes of operation.
50/100(9): \quad This pin is used to set the internal clock to center frequency ratio $\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}\right)$ of the filter. By tying the pin to $\mathrm{V}+\mathrm{an} \mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ ratio of about $50: 1$ (typically $50.11 \pm$ 0.2%) is obtained. Tying the 50/100 pin to either AGND or V - will set the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ ratio to about 100:1 (typically $100.04 \pm$ 0.2%).
AGND(11): This is the analog ground pin. This pin should be connected to the system ground for dual supply operation or biased to mid-supply for single supply operation. For a further discussion of mid-supply biasing techniques see the Applications Information (Section 3.2). For optimum filter performance a "clean" ground must be provided.
$V^{+}(6), V^{-}(10)$: These are the positive and negative supply pins. The MF5 will operate over a total supply range of 8 V to 14 V . Decoupling the supply pins with $0.1 \mu \mathrm{~F}$ capacitors is highly recommended. This is the clock input for the filter. CMOS or TTL logic level clocks can be accomodated by setting the L . Sh pin to the levels described in the L. Sh pin description. For optimum filter performance a 50% duty cycle clock is recommended for clock frequencies greater than 200 kHz . This gives each op amp the maximum amount of time to settle to a new sampled input. This pin allows the MF5 to accommodate either CMOS or TTL logic level clocks. For dual supply operation (i.e., $\pm 5 \mathrm{~V}$), a CMOS or TTL logic level clock can be accepted if the L. Sh pin is tied to mid-supply (AGND), which should be the system ground.
For single supply operation the L. Sh pin should be tied to mid-supply (AGND) for a CMOS logic level clock. The mid-supply bias should be a very low impedance node. See Applications Information for biasing techniques. For a TTL logic level clock the L. Sh pin should be tied to Vwhich should be the system ground. This is the inverting input of the uncommitted op amp. This is a very high impedance input, but the non-inverting input is internally tied to AGND, making INV2 behave like a summing junction (low-impedance current input). This is the output of the uncommitted op amp. It will typically sink 1.5 mA and source 3.0 mA . It will typically swing to within 1V of each supply.

Typical Performance Characteristics

TL/H/5066-3

Typical Performance Characteristics (Continued)

TL/H/5066-4

1.0 Definitions of Terms

fcle: the frequency of the external clock signal applied to pin 8.
$\mathbf{f}_{\mathbf{0}}$: center frequency of the second order function complex pole pair. f_{o} is measured at the bandpass output of the MF5, and is the frequency of maximum bandpass gain. (Figure 1). $f_{\text {notch: }}$ the frequency of minimum (ideally zero) gain at the notch output.
$\mathrm{f}_{\mathbf{z}}$: the center frequency of the second order complex zero pair, if any. If f_{z} is different from f_{0} and if Q_{z} is high, it can be
observed as the frequency of a notch at the allpass output. (Figure 10).
Q: "quality factor" of the 2nd order filter. \mathbf{Q} is measured at the bandpass output of the MF5 and is equal to f_{0} divided by the -3 dB bandwidth of the 2 nd order bandpass filter (Figure 1). The value of Q determines the shape of the 2nd order filter responses as shown in Figure 6.
$\mathbf{Q}_{\mathbf{z}}$: the quality factor of the second order complex zero pair, if any. Q_{z} is related to the allpass characteristic, which is written:
$H_{A P}(s)=\frac{H_{O A P}\left(s^{2}-\frac{s \omega_{0}}{Q_{z}}+\omega_{0}{ }^{2}\right)}{s^{2}+\frac{s \omega_{0}}{Q}+\omega_{0}{ }^{2}}$
where $Q_{z}=Q$ for an all-pass response.
$H_{\text {OBP: }}$ the gain (in V/V) of the bandpass output at $f=f_{0}$. Holp: the gain (in V/V) of the lowpass output as $f \rightarrow 0 \mathrm{~Hz}$ (Figure 2).
$\mathrm{H}_{\mathrm{OHP}}$: the gain (in V/V) of the highpass output as $\mathrm{f} \rightarrow \mathrm{f}_{\mathrm{clk}} / 2$ (Figure 3).
$H_{O N}$: the gain (in V/V) of the notch output as $\mathrm{f} \rightarrow 0 \mathrm{~Hz}$ and as $f \rightarrow f_{\text {clk }} / 2$, when the notch filter has equal gain above and below the center frequency (Figure 4). When the lowfrequency gain differs from the high-frequency gain, as in modes 2 and 3 a (Figures 11 and 8), the two quantities below are used in place of H_{ON}.
$H_{\text {ON1 }}$: the gain (in V/V) of the notch output as $f \rightarrow 0 \mathrm{~Hz}$.
HON2: $^{\text {t }}$ the gain (in V / V) of the notch output as $f \rightarrow \mathrm{f}_{\mathrm{clk}} / 2$.

$$
\begin{aligned}
& H_{B P}(s)=\frac{H_{O B P} \frac{\omega_{0}}{\mathbf{Q}} s}{s^{2}+\frac{s \omega_{O}}{Q}+\omega_{0}^{2}} \\
& Q=\frac{f_{0}}{f_{H}-f_{L}} ; f_{O}=\sqrt{f_{L} f_{H}} \\
& f_{L}=f_{O}\left(\frac{-1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right) \\
& f_{H}=f_{0}\left(\frac{1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right) \\
& \omega_{O}=2 \pi f_{0}
\end{aligned}
$$

FIGURE 1. 2nd-Order Bandpass Response

$$
\begin{aligned}
& H_{L P}(s)=\frac{H_{O L P} \omega_{o}^{2}}{s^{2}+\frac{s \omega_{0}}{Q}+\omega_{o}^{2}} \\
& f_{C}=f_{0} \times \sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}} \\
& f_{p}=f_{o} \sqrt{1-\frac{1}{2 Q^{2}}} \\
& H_{O P}=H_{O L P} \times \frac{1}{\frac{1}{Q} \sqrt{1-\frac{1}{4 Q^{2}}}}
\end{aligned}
$$

FIGURE 2. 2nd-Order Low-Pass Response

$$
\begin{aligned}
& H_{H P}(s)=\frac{H_{O H P S^{2}}}{s^{2}+\frac{s \omega_{O}}{Q}+\omega_{o}{ }^{2}} \\
& f_{c}=f_{0} \times\left[\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}}\right]^{-1} \\
& f_{p}=f_{O} \times\left[\sqrt{\left.1-\frac{1}{2 Q^{2}}\right]^{-1}}\right. \\
& H_{O P}=H_{O H P} \times \frac{1}{\frac{1}{Q} \sqrt{1-\frac{1}{4 Q^{2}}}}
\end{aligned}
$$

FIGURE 3. 2nd-Order High-Pass Response

1.0 Definition of Terms (Continued)

FIGURE 5. 2nd-Order All-Pass Response

$H_{A P}(s)=\frac{H_{O A P}\left(s^{2}-\frac{s \omega_{0}}{Q}+\omega_{0}{ }^{2}\right)}{s^{2}+\frac{s \omega_{0}}{Q}+\omega_{0}{ }^{2}}$
(b)

FIGURE 4. 2nd-Order Notch Response

FIGURE 6. Responses of various 2nd-order filters as a function of \mathbf{Q}. Gains and center frequencies are normalized to unity.

2.0 Modes of Operation

The MF5 is a switched capacitor (sampled data) filter. To fully describe its transfer functions, a time domain approach is appropriate. Since this is cumbersome, and since the MF5 closely approximates continuous filters, the following discussion is based on the well known frequency domain. Each MF5 can produce a full 2 nd order function. See Table 1 for a summary of the characteristics of the various modes.
MODE 1: Notch 1, Bandpass, Lowpass Outputs:

$$
\mathbf{f}_{\text {notch }}=\mathbf{f}_{\mathbf{0}}(\text { See Figure } 7)
$$

$\mathrm{f}_{0} \quad=$ center frequency of the complex pole pair

$$
=\frac{f_{C L K}}{100} \text { or } \frac{f_{C L K}}{50}
$$

$f_{\text {notch }}=$ center frequency of the imaginary zero pair $=f_{0}$.
$H_{O L P}=$ Lowpass gain (as $\left.f \rightarrow 0\right)=-\frac{R 2}{R 1}$
$H_{O B P}=$ Bandpass gain $\left(a t f=f_{0}\right)=-\frac{R 3}{R 1}$
$\mathrm{H}_{\mathrm{ON}}=$ Notch output gain as $\boldsymbol{f} \rightarrow 0$

$Q \quad=\frac{f_{0}}{B W}=\frac{R 3}{R 2}$
BW $=$ the -3 dB bandwidth of the bandpass output.
Circuit dynamics:

$$
\begin{aligned}
& H_{O L P}=\frac{H_{\text {OBP }}}{Q} \text { or } H_{O B P}=H_{O L P} \times Q=H_{O N} \times Q . \\
& H_{\text {OLP(peak) }} \cong Q \times H_{\text {oLP }} \text { (for high } Q^{\prime} \text { s) }
\end{aligned}
$$

MODE 1a: Non-Inverting BP, LP (See Figure 8)
fo $=\frac{f_{\text {fLK }}}{100}$ or $\frac{\text { CLL }^{50}}{50}$
Q $=\frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{\text {OLP }}=-1 ; H_{\text {OLP (peak) }} \cong Q \times H_{\text {OLP }}$ (for high Q's)
$\mathrm{H}_{\mathrm{OBP}_{1}}=-\frac{\mathrm{R} 3}{\mathrm{R} 2}$
$\mathrm{H}_{\mathrm{OBP}_{2}}=1$ (non-inverting)
Circuit dynamics: $\mathrm{H}_{\mathrm{OBP}}^{1} 10=\mathrm{Q}$
Note: $\mathrm{V}_{\mathbb{N}}$ should be driven from a low impedance ($<1 \mathrm{k} \Omega$)

FIGURE 7. MODE 1

TL/H/5066-17
FIGURE 8. MODE 1a

2.0 Modes of Operation (Continued)

MODE 2: Notch 2, Bandpass, Lowpass: $\boldsymbol{f}_{\text {notch }}<f_{0}$
(See Figure 9)
$\mathrm{f}_{\mathrm{o}} \quad=$ center frequency
$=\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \sqrt{\frac{R 2}{\mathrm{R} 4}+1}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50} \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}+1}$
$f_{\text {notch }}=\frac{\mathrm{f}_{\text {CLK }}}{100}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50}$
Q = quality factor of the complex pole pair
$=\frac{\sqrt{R 2 / R 4+1}}{R 2 / R 3}$
$H_{\text {OLP }}=$ Lowpass output gain (as $f \rightarrow 0$)
$=-\frac{\mathrm{R} 2 / \mathrm{R} 1}{\mathrm{R} 2 / \mathrm{R} 4+1}$
H $_{\text {OBP }}=$ Bandpass output gain (at $\mathrm{f}=\mathrm{f}_{\mathrm{O}}$) $=-\mathrm{R} 3 / \mathrm{R} 1$
$\mathrm{H}_{\mathrm{ON}}^{1} 1=$ Notch output gain (as $\mathrm{f} \rightarrow 0$)

$$
=-\frac{\mathrm{R} 2 / \mathrm{R} 1}{\mathrm{R} 2 / \mathrm{R} 4+1}
$$

$\mathrm{H}_{\mathrm{ON}_{2}}=$ Notch output gain $\left(\right.$ as $\left.\mathrm{f} \rightarrow \frac{\mathrm{f}_{\mathrm{CLK}}}{2}\right)=-\mathrm{R} 2 / \mathrm{R} 1$
Filter dynamics: $\mathrm{H}_{\mathrm{OBP}}=\mathrm{Q} \sqrt{\mathrm{HOLP}^{\mathrm{H}_{\mathrm{ON}}^{2}}}=Q \sqrt{\mathrm{H}_{\mathrm{ON}_{1} \mathrm{H}_{\mathrm{ON}}^{2}}}$

MODE 3: Highpass, Bandpass, Lowpass Outputs (See Figure 10)
$f_{0}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$ or $\frac{\mathrm{f} \text { CLK }}{50} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$
$\mathrm{Q} \quad=$ quality factor of the complex pole pair
$=\sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{O H P}=$ Highpass gain $\left(\right.$ as $\left.f \rightarrow \frac{f_{C L K}}{2}\right)=-\frac{R 2}{R 1}$
$H_{O B P}=$ Bandpass gain (at $\left.f=f_{0}\right)=-\frac{R 3}{R 1}$
$H_{O L P}=$ Lowpass gain (as $\left.f \rightarrow 0\right)=-\frac{R 4}{R 1}$
Circuit dynamics: $\frac{R 2}{R 4}=\frac{H_{O H P}}{H_{O L P}} ; H_{O B P}=\sqrt{H_{O H P} \times H_{O L P}} \times Q$
$H_{O L P(\text { peak })} \cong Q \times H_{\text {OLP }}$ (for high Q's)
$H_{O H P}$ (peak) $\cong Q \times H_{\text {OHP }}$ (for high Q's)

FIGURE 9. MODE 2

*In Mode 3, the feedback loop is closed around the input summing amplifier; the finite GBW product of this op amp causes a slight Q enhancement. If this is a problem, connect a small capacitor ($10 \mathrm{pF}-100 \mathrm{pF}$) across R4 to provide some phase lead.

FIGURE 10. MODE 3

2.0 Modes of Operation (Continued)

MODE 3a: HP, BP, LP and Notch with External Op amp

(See Figure 11)
$\mathrm{f}_{0}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$ or $\frac{\mathrm{f} \mathrm{CLK}}{50} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$
$Q=\sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{O H P}=-\frac{R 2}{R 1}$
$H_{\mathrm{OBP}}=-\frac{\mathrm{R} 3}{\mathrm{R} 1}$
$H_{\text {OLP }}=-\frac{\mathrm{R} 4}{\mathrm{R} 1}$
$f_{n} \quad=$ notch frequency $=\frac{f_{C L K}}{100} \sqrt{\frac{R_{h}}{R_{l}}}$ or $\frac{f_{C L K}}{50} \sqrt{\frac{R_{h}}{R_{I}}}$
$H_{\text {on }}=$ gain of notch at $f=f_{0}=\left\|Q\left(\frac{R_{g}}{R_{f}} H_{O L P}-\frac{R_{g}}{R_{h}} H_{O H P}\right)\right\|$
$H_{n 1}=$ gain of notch (as $\left.f \rightarrow 0\right)=\frac{R_{g}}{R_{l}} \times H_{O L P}$
$H_{n 2}=$ gain of notch $\left(\right.$ as $\left.f \rightarrow \frac{f_{\text {CLK }}}{2}\right)=-\frac{R_{g}}{R_{h}} \times H_{O H P}$

MODE 4: Allpass, Bandpass, Lowpass Outputs (See Figure 12)
$\mathrm{f}_{\mathrm{o}} \quad=$ center frequency
$=\frac{\mathrm{f}^{\mathrm{CLKK}}}{100}$ or $\frac{\mathrm{f} \text { CLK }}{50}$;
$\mathrm{f}_{\mathrm{z}}^{*}=$ center frequency of the complex zero pair $\cong \mathrm{f}_{0}$
$Q \quad=\frac{f_{0}}{B W}=\frac{R 3}{R 2}$;
$Q_{z}=$ quality factor of complex zero pair $=\frac{R 3}{R 1}$
For AP output make R1 = R2
$\mathrm{H}^{*} \mathrm{OAP}=$ Allpass gain $\left(\right.$ at $\left.0<\mathrm{f}<\frac{\mathrm{f} C L K}{2}\right)=-\frac{\mathrm{R} 2}{\mathrm{R} 1}=-1$
HoLP $=$ Lowpass gain (as $f \rightarrow 0$)
$=-\left(\frac{R 2}{R 1}+1\right)=-2$
$H_{\text {OBP }}=$ Bandpass gain (at $f=f_{0}$)

$$
=-\frac{R 3}{R 2}\left(1+\frac{R 2}{R 1}\right)=-2\left(\frac{R 3}{R 2}\right)
$$

Circuit dynamics: $H_{O B P}=\left(H_{O L P}\right) \times Q=\left(H_{O A P}+1\right) Q$ *Due to the sampled data nature of the filter, a slight mismatch of f_{z} and f_{0} occurs causing a 0.4 dB peaking around f_{0} of the allpass filter amplitude response (which theoretically should be a straight line). If this is unacceptable, Mode 5 is recommended.

FIGURE 11. MODE 3a

FIGURE 12. MODE 4

2.0 Modes of Operation (Continued)

MODE 5: Numerator Complex Zeros, BP, LP
(See Figure 13)
$\mathrm{f}_{0}=\sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{fCLK}}{100}$ or $\sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{f}_{\mathrm{CLK}}}{50}$
$\mathrm{f}_{\mathrm{z}}=\sqrt{1-\frac{\mathrm{R} 1}{\mathrm{R} 4}} \times \frac{\mathrm{f}_{\mathrm{CLK}}}{100}$ or $\sqrt{1-\frac{\mathrm{R} 1}{\mathrm{R} 4}} \times \frac{\mathrm{f}_{\mathrm{CLK}}}{50}$
$\mathrm{Q}=\sqrt{1+\mathrm{R} 2 / \mathrm{R} 4} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$\mathrm{Q}_{\mathrm{z}}=\sqrt{1-\mathrm{R} 1 / \mathrm{R} 4} \times \frac{\mathrm{R} 3}{\mathrm{R} 1}$
$\mathrm{H}_{0_{\mathrm{z} 1}}=$ gain at C.Z. output (as $\mathrm{f} \rightarrow 0 \mathrm{~Hz}$) $=\frac{-\mathrm{R} 2(\mathrm{R} 4-\mathrm{R} 1)}{\mathrm{R} 1(\mathrm{R} 4+\mathrm{R} 2)}$
$\mathrm{H}_{0_{\mathrm{z} 2}}=$ gain at C.Z. output $\left(\right.$ as $\left.\mathrm{f} \rightarrow \frac{\mathrm{f}_{\mathrm{CLK}}}{2}\right)=\frac{-\mathrm{R} 2}{\mathrm{R} 1}$
$H_{O B P}=-\left(=\frac{R 2}{R 1}+1\right) \times \frac{R 3}{R 2}$
$H_{\text {OLP }}=-\left(\frac{R 2+R 1}{R 2+R 4}\right) \times \frac{R 4}{R 1}$

MODE 6a: Single Pole, HP, LP Filter (See Figure 14)
$\mathrm{f}_{\mathrm{c}} \quad=$ cutoff frequency of LP or HP output
$=\frac{\mathrm{R} 2}{\mathrm{R} 3} \frac{\mathrm{f} \text { CLK }}{100}$ or $\frac{\mathrm{R} 2}{\mathrm{R} 3} \frac{\mathrm{f} C \mathrm{~K}}{50}$
$\mathrm{H}_{\mathrm{OLP}}=-\frac{\mathrm{R} 3}{\mathrm{R} 1}$
$\mathrm{H}_{\mathrm{OHP}}=-\frac{\mathrm{R} 2}{\mathrm{R} 1}$

MODE 6b: Single Pole LP Filter (Inverting and NonInverting) (See Figure 15)
$\mathrm{f}_{\mathrm{c}} \quad=$ cutoff frequency of LP outputs
$\cong \frac{R 2}{\mathrm{R} 3} \frac{\mathrm{f}_{\mathrm{CLK}}}{100}$ or $\frac{\mathrm{R} 2}{\mathrm{R} 3} \frac{\mathrm{f}_{\mathrm{CLK}}}{50}$
$\mathrm{H}_{\mathrm{OLP}}^{1} 10=1$ (non-inverting)
$\mathrm{H}_{\mathrm{OLP}}^{2} 2=-\frac{\mathrm{R} 3}{\mathrm{R} 2}$

FIGURE 13. MODE 5

TL/H/5066-23
FIGURE 14. MODE 6a

FIGURE 15. MODE 6b

2.0 Modes of Operation (Continued)

TABLE I. Summary of Modes. Realizable filter types (e.g. low-pass) denoted by asterisks. Unless otherwise noted, gains of various filter outputs are inverting and adjustable by resistor ratios.

Mode	BP	LP	HP	N	AP	Number of resistors	Adjustable fCLK/fo	Notes
1	*	*		*		3	No	
1 a	(2) $\mathrm{H}_{\mathrm{OBP}} 1=-\mathrm{Q}$ $\mathrm{H}_{\mathrm{OBP} 2}=+1$	$\mathrm{HOLP}^{\text {a }}+1$				2	No	May need input buffer. Poor dynamics for high Q.
2	*	*		*		3	Yes (above $\mathrm{f}_{\mathrm{CLK}} / 50$ or $\mathrm{f}_{\mathrm{CLK}} / 100$)	' ${ }^{\text {. }}$
3	*	*	*			${ }^{\prime} 4$	- Yes ..	Universal StateVariable Filter. Best general-purpose mode.
3a	*	*	*	*		7	Yes	As above, but also includes resistortuneable notch.
4	*	*			*	3	No	Gives Allpass response with $\mathrm{H}_{\mathrm{OAP}}=-1$ and $\mathrm{H}_{\mathrm{OLP}}=-2$.
5	*	*			*	4		Gives flatter allpass response than above if $R_{1}=R_{2}=0.02 R_{4}$.
6a		*	*			3	.	Single pole.
6b		(2) $\begin{aligned} \mathrm{H}_{\mathrm{OLP}} & =+1 \\ \mathrm{H}_{\mathrm{OLP} 2} & =\frac{-\mathrm{R} 3}{\mathrm{R} 2} \end{aligned}$				2		Single pole

3.0 Applications Information

The MF5 is a general-purpose second-order state variable filter whose center frequency is proportional to the frequency of the square wave applied to the clock input (fclk). By connecting pin 9 to the appropriate DC voltage, the filter center frequency f_{0} can be made equal to either $f_{C L K} / 100$ or $\mathrm{f}_{\mathrm{CLK}} / 50$. f_{o} can be very accurately set (within $\pm 0.6 \%$) by using a crystal clock oscillator, or can be easily varied over a wide frequency range by adjusting the clock frequency. If desired, the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ ratio can be altered by external resistors as in Figures $9,10,11,13,14$, and 15. The filter Q and gain are determined by external resistors.
All of the five second-order filter types can be built using the MF5. These are illustrated in Figures 1 through 5 along with their transfer functions and sume related equations. Figure 6 shows the effect of Q on the shapes of these curves. When filter orders greater than two are desired, two or more MF5s can be cascaded. The MF5 also includes an uncommitted CMOS operational amplifier for additional signal processing applications.

3.1 DESIGN EXAMPLE

An example will help illustrate the MF5 design procedure. For the example, we will design a 2nd order Butterworth low-pass filter with a cutoff frequency of 200 Hz , and a passband gain of -2 . The circuit will operate from a $\pm 5 \mathrm{~V}$ power supply, and the clock amplitude will be $\pm 5 \mathrm{v}$ (CMOS) levels).

From the specifications, the filter parameters are: $\mathrm{f}_{\mathrm{o}}=200 \mathrm{~Hz}, \mathrm{H}_{\mathrm{OLP}}=-2$, and, for Butterworth response, $\mathrm{Q}=0.707$.
In section 2.0 are several modes of operation for the MF5, each having different characteristics. Some allow adjustment of $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$, others produce different combinations of filter types, some are inverting while others are non-inverting, etc. These characteristics are summarized in Table I. To keep the example simple, we will use mode 1 , which has notch, bandpass, and lowpass outputs, and inverts the signal polarity. Three external resistors determine the filter's Q and gain. From the equations accompanying Figure 7, $Q=R_{3} / R_{2}$ and the passband gain $H_{O L P}=-R_{2} / R_{1}$. Since the input signal is driving a summing junction through R_{1}, the input impedance will be equal to R_{1}. Start by choosing a value for R_{1}. 10k is convenient and gives a reasonable input impedance. For Holp $=-2$, we have:
$R_{2}=-R_{1} H_{\text {OLP }}=10 \mathrm{k} \times 2=20 \mathrm{k}$.
For $Q=0.707$ we have:
$R_{3}=R_{2} Q=20 \mathrm{k} \times 0.707=14.14 \mathrm{k}$. Use 15 k .
For operation on $\pm 5 \mathrm{~V}$ supplies, $\mathrm{V}+$ is connected to +5 V , V^{-}to -5 V , and AGND to ground. The power supplies should be "clean" (regulated supplies are preferred) and $0.1 \mu \mathrm{~F}$ bypass capacitors are recommended.

3.0 Applications Information (Continued)

FIGURE 16. 2nd-Order Butterworth Low-Pass Filter of Design
Example. For $\frac{\mathrm{f}_{\mathrm{CLK}}}{\mathrm{f}_{0}}=50$, Connect Pin 9 to +5 V , and
Change Clock Frequency to $\mathbf{1 0} \mathbf{~ k H z}$.

TL/H/5066-26
FIGURE 17. Butterworth Low-Pass Circuit of Example, but Designed for Single-Supply Operation

3.0 Applications Information (Continued)

(a) Resistive Divider with Decoupling Capaciter

TL/H/5066-28
(b) Voltage Regulator

TL/H/5066-29
(c) Operational Amplifier with Divider

FIGURE 18. Three Ways of Generating $\frac{\mathbf{V}^{+}}{2}$ for Single-supply Operation

For a cutoff frequency of 200 Hz , the external clock can be either 10 kHz with pin 9 connected to $\mathrm{V}+(50: 1)$ or 20 kHz with pin 9 tied to $A_{G N D}$ or V^{-}(100:1). The voltage on the Logic Level Shift pin (7) determines the logic threshold for the clock input. The threshold is approximately 2 V higher than the voltage applied to pin 7 . Therefore, when pin 7 is grounded, the clock logic threshold will be 2 V , making it compatible with $0-5$ volt TTL logic levels and ± 5 volt CMOS levels. Pin 7 should be connected to a clean, low-impedance (less than 1000Ω) voltage source.
The complete circuit of the design example is shown for a 100:1 clock ratio in Figure 16.

3.2 SINGLE SUPPLY OPERATION

The MF5 can also operate with a single-ended power supply. Figure 17 shows the example filter with a single-ended power supply. V^{+}is again connected to the positive power supply (8 to 14 volts), and V^{-}is connected to ground. The $\mathrm{A}_{\text {GND }}$ pin must be tied to $\mathrm{V}+/ 2$ for single supply operation. This half-supply point should be very "clean", as any noise appearing on it will be treated as an input to the filter. It can be derived from the supply voltage with a pair of resistors and a bypass capacitor (Figure 18a), or a low-impedance half-supply voltage can be made using a three-terminal voltage regulator or an operational amplifier (Figures $18 b$ and 18c). The passive resistor divider with a bypass capacitor is sufficient for many applications, provided that the time constant is long enough to reject any power supply noise. It is also important that the half-supply reference present a low impedance to the clock frequency, so at very low clock frequencies the regulator or op-amp approaches may be preferable because they will require smaller capacitors to filter the clock frequency. The main power supply voltage should be clean (preferably regulated) and bypassed with $0.1 \mu \mathrm{~F}$.

3.3 DYNAMIC CONSIDERATIONS

The maximum signal handling capability of the MF5, like that of any active filter, is limited by the power supply voltages used. The amplifiers in the MF5 are able to swing to within about 1 volt of the supplies, so the input signals must be kept small enough that none of the outputs will exceed
these limits. If the MF5 is operating on ± 5 volts, for example, the outputs will clip at about $8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$. The maximum input voltage multiplied by the filter gain should therefore be less than $8 V_{p-p}$.
Note that if the filter has high Q, the gain at the lowpass or highpass outputs will be much greater than the nominal filter gain (Figure 6). As an example, a lowpass filter with a Q of 10 will have a 20 dB peak in its amplitude response at f_{0}. If the nominal gain of the filter HOLP is equal to 1 , the gain at f_{0} will be 10. The maximum input signal at f_{0} must therefore be less than $800 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ when the circuit is operated on ± 5 volt supplies.
Also note that one output can have a reasonable small voltage on it while another is saturated. This is most likely for a circuit such as the notch in Mode 1 (Figure 7). The notch output will be very small at f_{0}, so it might appear safe to apply a large signal to the input. However, the bandpass will have its maximum gain at f_{0} and can clip if overdriven. If one output clips, the performance at the other outputs will be degraded, so avoid overdriving any filter section, even ones whose outputs are not being directly used. Accompanying Figures 7 through 15 are equations labeled "circuit dynamics", which relate the Q and the gains at the various outputs. These should be consulted to determine peak circuit gains and maximum allowable signals for a given application.

3.4 OFFSET VOLTAGE

The MF5's switched capacitor integrators have a higher equivalent input offset voltage than would be found in a typical continuous-time active filter integrator. Figure 19 shows an equivalent circuit of the MF5 from which the output dc offsets can be calculated. Typical values for these offsets are:
$\mathrm{V}_{\mathrm{os} 1}=$ opamp offset $= \pm 5 \mathrm{mV}$
$V_{\text {os2 }}=-185 \mathrm{mV}$ @ 50:1 $\quad-310 \mathrm{mV} @ 100: 1$
$V_{\text {os3 }}=+115 \mathrm{mV}$ @ 50:1 +240 mV @ 100:1
The dc offset at the BP output is equal to the input offset of the lowpass integrator ($\mathrm{V}_{\mathrm{os} 3}$). The offsets at the other outputs depend on the mode of operation and the resistor ratios, as described in the following expressions.

3.0 Applications Information (Continued)

Mode 1 and Mode 4

$\mathrm{V}_{\mathrm{OS}(\mathrm{N})}$

$$
=V_{O S 1}\left(\frac{1}{Q}+1+\left\|H_{O L P}\right\|\right)-\frac{V_{O S 3}}{Q}
$$

$V_{\text {OS(BP) }}$
$=\mathrm{V}_{\mathrm{OS} 3}$
VOS(LP)
$=\mathrm{V}_{\mathrm{OS}(\mathrm{N})}-\mathrm{V}_{\mathrm{OS} 2}$
Mode 1a
V_{OS} (N.INV.BP) $=\left(1+\frac{1}{\mathrm{Q}}\right) \mathrm{V}_{\mathrm{OS} 1}-\frac{\mathrm{V}_{\mathrm{OS} 3}}{\mathrm{Q}}$
V_{OS} (INV.BP) $=\mathrm{V}_{\text {OS3 }}$
$\mathrm{V}_{\mathrm{OS}}(\mathrm{LP}) \quad=\mathrm{V}_{\mathrm{OS}}($ N.INV.BP $)-\mathrm{V}_{\mathrm{OS} 2}$

Mode 2 and Mode 5

$V_{O S}(\mathrm{~N}) \quad=\left(\frac{R 2}{R p}+1\right) V_{O S 1} \times \frac{1}{1+R 2 / R 4}$

$$
+V_{\mathrm{OS} 2} \frac{1}{1+R 4 / R 2}-\frac{V_{\mathrm{OS} 3}}{\mathrm{Q} \sqrt{1+R 2 / R 4}}
$$

$$
R_{p}=R 1 / / R 2 / / R 4
$$

$V_{O S(B P)} \quad=V_{O S 3}$
$\mathrm{V}_{\text {OS(LP) }}=\mathrm{V}_{\text {OS(N) }}-\mathrm{V}_{\text {OS2 }}$
Mode 3
$V_{O S(H P)} \quad=V_{O S 2}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{BP})} \quad=\mathrm{V}_{\text {OS3 }}$
$V_{\text {OS(LP) }}$
$=-\frac{R 4}{\mathrm{R} 2}\left(\frac{\mathrm{R} 2}{\mathrm{R} 3} \mathrm{~V}_{\mathrm{OS} 3}+\mathrm{V}_{\mathrm{OS} 2}\right)+$

$$
-\frac{R 4}{R 2}\left(1+\frac{R 2}{R_{p}}\right) V_{O S 1} ; R_{p}=R 1 / / R 3 / / R 4
$$

FIGURE 19. Block Diagram Showing MF5 Offset Voltage Sources

FIGURE 20. Method for Trimming $V_{\text {OS }}$, See Text, Section 3.4

3.0 Applications Information (Continued)

For most applications, the outputs are AC coupled and DC offsets are not bothersome unless large signals are applied to the filter input. However, larger offset voltages will cause clipping to occur at lower ac signal levels, and clipping at any of the outputs will cause gain nonlinearities and will change f_{0} and Q. When operating in Mode 3, offsets can become excessively large if R_{2} and R_{4} are used to make $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ significantly higher than the nominal value, especially if Q is also high. An extreme example is a bandpass filter having unity gain, a Q of 20 , and $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}=250$ with pin 9 tied to V^{-}(100:1 nominal). $\mathrm{R}_{4} / \mathrm{R}_{2}$ will therefore be equal to 6.25 and the offset voltage at the lowpass output will be about +1.9 V . Where necessary, the offset voltage can be adjusted by using the circuit of Figure 20 . This allows adjustment of $V_{\text {os1 }}$, which will have varying effects on the different outputs as described in the above equations. Some outputs cannot be adjusted this way in some modes, however ($\mathrm{V}_{\mathrm{OS}(\mathrm{BP})}$ in modes 1a and 3 , for example).

3.5 SAMPLED DATA SYSTEM CONSIDERATIONS

The MF5 is a sampled data filter, and as such, differs in many ways from conventional continuous-time filters. An important characteristic of sampled-data systems is their effect on signals at frequencies greater than one-half the sampling frequency. (The MF5's sampling frequency is the same as its clock frequency). If a signal with a frequency greater than one-half the sampling frequency is applied to the input of a sampled data system, it will be "reflected" to a frequency less than one-half the sampling frequency. Thus, an input signal whose frequency is $f_{\mathrm{S}} / 2+100 \mathrm{~Hz}$ will cause the system to respond as though the input frequency was $\mathrm{f}_{\mathrm{S}} / 2-100 \mathrm{~Hz}$. This phenomenon is known as "alias-
ing", and can be reduced or eliminated by limiting the input signal spectrum to less than $f_{\mathrm{s}} / 2$. This may in some cases require the use of a bandwidth-limiting filter ahead of the MF5 to limit the input spectrum. However, since the clock frequency is much higher than the center frequency, this will often not be necessary.
Another characteristic of sampled-data circuits is that the output signal changes amplitude once every sampling period, resulting in "steps" in the output voltage which occur at the clock rate. (Figure 21) If necessary, these can be "smoothed" with a simple R-C low-pass filter at the MF5 output.
The ratio of $f_{C L K}$ to f_{c} (normally either $50: 1$ or $100: 1$) will also affect performance. A ratio of $100: 1$ will reduce any aliasing problems and is usually recommended for wideband input signals. In noise sensitive applications, however, a ratio of 50:1 may be better as it will result in 3 dB lower output noise. The 50:1 ratio also results in lower DC offset voltages, as discussed in 3.4.
The accuracy of the $\mathrm{f}_{\mathrm{clk}} / \mathrm{f}_{\mathrm{o}}$ ratio is dependent on the value of Q. This is illustrated in the curves under the heading "Typical Performance Characteristics". As Q is changed, the true value of the ratio changes as well. Unless the Q is low, the error in $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ will be small. If the error is too large for a specific application, use a mode that allows adjustment of the ratio with external resistors.

It should also be noted that the product of Q and f_{0} should be limited to 300 kHz when $\mathrm{f}_{\mathrm{o}}<5 \mathrm{kHz}$, and to 200 kHz for $\mathrm{f}_{0}>5 \mathrm{kHz}$.

FIGURE 21. The Sampled-Data Output Waveform

MF6 6th Order Switched Capacitor Butterworth Lowpass Filter

General Description

The MF6 is a versatile easy to use, precision 6th order Butterworth lowpass active filter. Switched capacitor techniques eliminate external component requirements and allow a clock tunable cutoff frequency. The ratio of the clock frequency to the lowpass cutoff frequency is internally set to 50 to 1 (MF6-50) or 100 to 1 (MF6-100). A Schmitt trigger clock input stage allows two clocking options, either selfclocking (via an external resistor and capacitor) for standalone applications, or an external TTL or CMOS logic compatible clock can be used for tighter cutoff frequency control. The maximally flat passband frequency response together with a DC gain of $1 \mathrm{~V} / \mathrm{V}$ allows cascading MF6 sections for higher order filtering. In addition to the filter, two independent CMOS op amps are included on the die and are useful for any general signal conditioning applications.

Features

- No external components
- 14-pin DIP or 14-pin wide-body S.O. package
- Cutoff frequency accuracy of $\pm 0.3 \%$ typical

■ Cutoff frequency range of 0.1 Hz to 20 kHz

- Two uncommitted op amps available
- 5 V to 14 V total supply voltage
- Cutoff frequency set by external or internal clock

Block and Connection Diagrams

Top View
Order Number MF6CWM-50 or MF6CWM-100
See NS Package Number M14B
Order Number MF6CN-50 or MF6CN-100
See NS Package Number N14A
Order Number MF6CJ-50 or MF6CJ-100
See NS Package Number J14A
$\begin{array}{lr}\text { Absolute Maximum Ratings (Note 11) } \\ \text { If Military/Aerospace specified devices are required, } \\ \text { please contact the National Semiconductor Sales } \\ \text { Office/Distributors for availability and specifications. } \\ \text { Supply Voltage } & 14 \mathrm{~V} \\ \text { Voltage at Any Pin } & \mathrm{V}--0.2 \mathrm{~V}, \mathrm{~V}+\begin{array}{r}0.2 \mathrm{~V} \\ \text { Input Current at Any Pin (Note 13) }\end{array} \\ \begin{array}{l}\text { Package Input Current (Note 13) } \\ \text { Power Dissipation (Note 14) }\end{array} & 20 \mathrm{~mA} \\ \text { Storage Temperature } & 500 \mathrm{~mW} \\ \text { ESD Susceptibility (Note 12) } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Soldering Information } & 800 \mathrm{~V} \\ \text { N Package (10 sec.) } & \\ \text { J Package (10 sec.) } & 260^{\circ} \mathrm{C} \\ \text { SO Package } & 300^{\circ} \mathrm{C} \\ \text { Vapor Phase (} 60 \mathrm{sec} .) & 215^{\circ} \mathrm{C} \\ \text { Infrared (} 15 \mathrm{sec} .) & 220^{\circ} \mathrm{C}\end{array}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

Operating Ratings (Note 11)

Temperature Range	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
MF6CN-50, MF6CN-100	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$
MF6CWM-50, MF6CWM-100	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$
MF6CJ-50, MF6CJ-100	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Supply Voltage $\left(V_{S}=\mathrm{V}^{+-}-\mathrm{V}^{-}\right)$	5 V to 14 V

MF6CN-50, MF6CN-100
MF6CWM-50, MF6CWM-100

Supply Voltage ($\mathrm{V}_{\mathrm{S}}=\mathrm{V}^{+}-\mathrm{V}^{-}$)

Filter Electrical Characteristics The following specifications apply for fclk $\leq 250 \mathrm{kHz}$ (see Note 3) unless otherwise specified. Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter		Conditions	MF6CWM-50, MF6CWM-100, MF6CN-50, MF6CN-100			MF6CJ-50, MF6CJ-100			Units	
		Typical (Note 8)	Tested Limit (Note 9)	Design Limit (Noie 10)	Typical (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)			
$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$										
f_{c}, Cutoff MF6 Frequency Range (Note 1)	6-50 Min Max Min Max					$\begin{gathered} 0.1 \\ 20 k \\ 0.1 \\ 10 k \end{gathered}$			0.1 20k 0.1 10k	Hz
Total Supply Current		$\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$	4.0	6.0	8.5	4.0	8.5		mA	
Maximum Clock Feedthrough	Filter Output Op Amp 1 Out Op Amp 2 Out		$\begin{aligned} & 30 \\ & 25 \\ & 20 \\ & \hline \end{aligned}$		-	$\begin{aligned} & 30 \\ & 25 \\ & 20 \\ & \hline \end{aligned}$			mV (peak-topeak)	
H_{0}, DC Gain		$\begin{aligned} & \mathrm{R}_{\text {source }} \\ & \mathrm{S} 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	0.0	± 0.30	± 0.30	0.0	± 0.30		dB	
$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{c}}$, Clock to Cutoff Frequency Ratio	$\begin{array}{r} \text { MF6-50 } \\ \text { MF6-100 } \end{array}$		$\left\lvert\, \begin{aligned} & 49.27 \pm 0.3 \% \\ & 98.97 \pm 0.3 \% \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 49.27 \pm 1 \% \\ & 98.97 \pm 1 \% \end{aligned}\right.$	$\begin{aligned} & 49.27 \pm 1 \% \\ & 98.97 \pm 1 \% \end{aligned}$	$\left\|\begin{array}{l} 49.27 \pm 0.3 \% \\ 98.97 \pm 0.3 \% \end{array}\right\|$	$\begin{aligned} & 49.27 \pm 1 \% \\ & 98.97 \pm 1 \% \end{aligned}$			
DC Offset Voltage	$\begin{array}{r} \text { MF6-50 } \\ \text { MF6-100 } \end{array}$		$\begin{aligned} & -200 \\ & -400 \end{aligned}$.		$\begin{aligned} & -200 \\ & -400 \end{aligned}$			mV	
Minimum Output Voltage Swing		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\begin{aligned} & +4.0 \\ & -4.1 \end{aligned}$	$\begin{aligned} & +3.5 \\ & -3.8 \end{aligned}$	$\begin{aligned} & +3.5 \\ & -3.5 \end{aligned}$	$\begin{aligned} & +4.0 \\ & -4.1 \end{aligned}$	$\begin{array}{r} +3.5 \\ -3.5 \end{array}$		V	
			$\begin{aligned} & 50 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 50 \\ & 1.5 \end{aligned}$			mA	
Dynamic Range MF6-50 (Note 2) MF6-100			$\begin{aligned} & 83 \\ & 81 \end{aligned}$			$\begin{aligned} & 83 \\ & 81 \end{aligned}$			dB	
Additional MF6-50 Magnitude Response Test Points (Note 4) MF6-100		$\begin{aligned} & \mathrm{f} \mathrm{fLK}=250 \mathrm{kHz} \\ & \mathrm{f}=6000 \mathrm{~Hz} \\ & \mathrm{f}=4500 \mathrm{~Hz} \\ & \hline \end{aligned}$	$\begin{array}{r} -9.47 \\ -0.92 \\ \hline \end{array}$	$\left\|\begin{array}{l} -9.47 \pm 0.6 \\ -0.92 \pm 0.6 \end{array}\right\|$	$\left\lvert\, \begin{gathered} -9.47 \pm 0.75 \\ -0.92 \pm 0.4 \end{gathered}\right.$	$\begin{aligned} & -9.47 \\ & -0.92 \end{aligned}$	$\left\|\begin{array}{c} -9.47 \pm 0.75 \\ -0.92 \pm 0.4 \end{array}\right\|$		dB	
		$\left\lvert\, \begin{aligned} & \mathrm{f} \mathrm{CLK}=250 \mathrm{kHz} \\ & \mathrm{f}=3000 \mathrm{~Hz} \\ & \mathrm{f}=2250 \mathrm{~Hz} \end{aligned}\right.$	$\begin{aligned} & -9.48 \\ & -0.97 \end{aligned}$	$\left\|\begin{array}{l} -9.48 \pm 0.3 \\ -0.97 \pm 0.3 \end{array}\right\|$	$\left\lvert\, \begin{gathered} -9.48 \pm 0.75 \\ -0.97 \pm 0.4 \end{gathered}\right.$	$\begin{array}{r} -9.48 \\ -0.97 \\ \hline \end{array}$	$\left\|\begin{array}{c} -9.48 \pm 0.75 \\ -0.97 \pm 0.4 \end{array}\right\|$		dB	

Filter Electrical Characteristics (Continued) The following specifications apply for fCLK $\leq 250 \mathrm{kHz}$ (see
Note 3) unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Op Amp Electrical Characteristics

Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	MF6CN-50, MF6CN-100, MF6CWM-50, MF6CWM-100			MF6CJ-50, MF6CJ-100			Units
		Typical (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	Typical (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	
$\mathrm{V}+=,+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$								
Input Offset Voltage		± 8.0	± 20	± 20	± 8.0	± 20		mV
Input Bias Current		10			10			pA
CMRR (Op Amp \#2 Only)	$\begin{aligned} & \mathrm{V}_{\mathrm{CM} 1}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM} 2}=-2.2 \mathrm{~V} \end{aligned}$	60	55		60	55		dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\begin{aligned} & +4.0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & +3.8 \\ & -4.0 \end{aligned}$	$\begin{array}{r} +3.6 \\ -4.0 \end{array}$	$\begin{aligned} & +4.0 \\ & -4.5 \end{aligned}$	$\begin{array}{r} +3.6 \\ -4.0 \end{array}$		V
Maximum Output Short Source Circuit Current (Note 6) Sink		$\begin{aligned} & 54 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 65 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 54 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 6.0 \end{aligned}$		mA
Slew Rate		7.0			7.0			$\mathrm{V} / \mu \mathrm{s}$
DC Open Loop Gain		72			72			dB
Gain Bandwidth Product		1.2			1.2			MHz
$\mathrm{V}^{+}=+2.5 \mathrm{~V}, \mathrm{~V}^{-}=-2.5 \mathrm{~V}$								
Input Offset Voltage		± 8.0	± 20	± 20	± 8.0	± 20		mV
Input Bias Current		10			10			pA
CMRR (Op-Amp \# 2 Only)	$\begin{aligned} & \mathrm{V}_{\mathrm{CM} 1}=+0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM} 2}=-0.9 \mathrm{~V} \end{aligned}$	60	55 :		60	55	,	dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\begin{aligned} & +1.5 \\ & -2.2 \end{aligned}$	$\begin{aligned} & +1.3 \\ & -1.7 \end{aligned}$	$\begin{aligned} & +1.1 \\ & -1.7 \end{aligned}$	$\begin{aligned} & +1.5 \\ & -2.2 \end{aligned}$	$\begin{array}{r} +1.1 \\ -1.7 \\ \hline \end{array}$		V
Maximum Output Short Source Circuit Current (Note 6) Sink	. -	$\begin{aligned} & 24 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 24 \\ & 1.0 \end{aligned}$			mA
Slew Rate		6.0			6.0			$\mathrm{V} / \mu \mathrm{s}$
DC Open Loop Gain		67			67			dB
Gain Bandwidth Product		1.2			1.2		.	MHz

Logic Input-Output Electrical Characteristics The following specifications apply for $\mathrm{V}^{-}=\mathrm{ov}$
(see Note 5) unless otherwise specified. Boldface limits apply for $T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	MF6CN-50, MF6CN-100 MF6CWM-50, MF6CWM-100			MF6CJ-50, MF6CJ-100			Units
		Typical (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	Typical (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	

TTL CLOCK INPUT, CLK R PIN (Note 7)

Note 1: The cutoff frequency of the filter is defined as the frequency where the magnitude response is 3.01 dB less than the DC gain of the filter.
Note 2: For $\pm 5 \mathrm{~V}$ supplies the dynamic range is referenced to 2.82 Vrms (4 V peak) where the wideband noise over a 20 kHz bandwidth is typically $200 \mu \mathrm{Vrms}$ for the MF6-50 and $250 \mu \mathrm{Vrms}$ for the MF6-100. For $\pm 2.5 \mathrm{~V}$ supplies the dynamic range is referenced to 1.06 Vrms (1.5 V peak) where the wideband noise over a 20 kHz bandwidth is typically $140 \mu \mathrm{Vrms}$ for both the MF6-50 and the MF6-100.
Note 3: The specifications for the MF6 have been given for a clock frequency (fclk) of 250 kHz and less. Above this clock frequency the cutoff frequency begins to deviate from the specified error band of $\pm 1.0 \%$ but the filter still maintains its magnitude characteristics. See Application Hints, Section 1.5.
Note 4: Besides checking the cutoff frequency (f_{c}) and the stopband attenuation at $2 \mathrm{f}_{\mathrm{c}}$, two additional frequencies are used to check the magnitude response of the filter. The magnitudes are referenced to a DC gain of 0.0 dB .
Note 5: For simplicity all the logic levels have been referenced to $\mathrm{V}^{-}=0 \mathrm{~V}$ and will scale accordingly for $\pm 5 \mathrm{~V}$ and $\pm 2.5 \mathrm{~V}$ supplies (except for the $T \mathrm{~L}$ input logic levels).
Note 6: The short circuit source current is measured by forcing the output that is being tested to its maximum positive voltage swing and then shorting that output to the negative supply. The short circuit sink current is measured by forcing the output that is being tested to its maximum negative voltage swing and then shorting that output to the positive supply. These are the worst-case conditions.
Note 7: The MF6 is operating with symmetrical split supplies and L.Sh is tied to ground.
Note 8: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 9: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level.
Note 10: Design limits are guaranteed, but not 100% tested. These limits are not used to calculate outgoing quality levels.
Note 11: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified conditions.
Note 12: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 13: When the input voltage $\left(\mathrm{V}_{\mathbb{N}}\right)$ at any pin exceeds the power supply rails $\left(\mathrm{V}_{\mathbb{N}}<\mathrm{V}^{-}\right.$or $\left.\mathrm{V}_{\mathbb{N}}>\mathrm{V}^{+}\right)$the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 14: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance of the MF6CN when board mounted is $67^{\circ} \mathrm{C} / \mathrm{W}$. For the MF6CJ this number decreases to $62^{\circ} \mathrm{C} / \mathrm{W}$. For MF6CWM, $\theta_{\mathrm{JA}}=78^{\circ} \mathrm{C} / \mathrm{W}$.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{c}}$ Deviation vs Power Supply Voltage

TL/H/5065-36
DC Gain Deviation vs Clock Frequency

DC Gain Deviation vs Clock Frequency

TL/H/5065-39

Crosstalk Test Circuits

From Filter to Opamps

TL/H/5065-10

TL/H/5065-11

Pin Descriptions (Pin Numbers)

Pin	Description	Pin	Description
FILTER OUT (3)	The output of the lowpass filter. It will typically sink 0.9 mA and source 3 mA and swing to within 1V of each supply rail.	$\mathrm{V}_{\mathrm{O} 2}(2)$, INV2 (14), NINV2 (1)	$\mathrm{V}_{\mathrm{O} 2}$ is the output, INV2 is the inverting input, and NINV2 is the non-inverting input of Op-Amp \#2.
FILTER IN (8)	The input to the lowpass filter. To minimize gain errors the source impedance that drives this input should be less than $2 k$	$\mathrm{V}+(6), \mathrm{V}-(10)$	The positive and negative supply pins. The total power supply range is 5 V to 14 V . Decoupling these pins with
	(see section 1.4). For single supply operation the input signal must be biased to mid-supply or AC coupled.	CLK IN (9)	$0.1 \mu \mathrm{~F}$ capacitors is highly recommended. A CMOS Schmitt-trigger input to be used with an external CMOS
VosADJ (7)	This pin is used to adjust the DC offset of the filter output; if not used it must be tied to the AGND potential. (See section 1.3)	CLK R (11)	logic level clock. Also used for self-clocking Schmitt-trigger oscillator (see section 1.1). A TTL logic level clock input when in split supply operation
AGND (5)	The analog ground pin. This pin sets the DC bias level for the filter section and the noninverting input of Op-Amp \# 1 and must be tied to the system ground for'split supply operation or to mid-supply for single supply operation (see section		($\pm 2.5 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$) and L. Sh tied to system ground. This pin becomes a low impedance output when L . Sh is tied to V^{-}. Also used in conjunction with the CLK IN pin for a self clocking Schmitt-trigger oscillator (see section 1.1).
	1.2). When tied to mid-supply this pin should be well bypassed.	L. Sh (12)	Level shift pin, selects the logic threshold levels for the desired clock. When tied to V - it
$V_{01}(4)$, INV1 (13)	$\mathrm{V}_{\mathrm{O} 1}$ is the output and INV1 is the inverting input of Op-Amp \#1. The non-inverting input of this Op-Amp is internally connected to the AGND pin.		enables an internal tri-state buffer stage between the Schmitt trigger and the internal clock level shift stage thus enabling the CLK IN Schmitttrigger input and making the CLK R pin a low impedance output.

Pin Descriptions (Pin Numbers) (Continued)

Pin

L. Sh (12) Description
When the voltage level at this input exceeds [25\%($\mathrm{V}^{+}-\mathrm{V}^{-}$) $+\mathrm{V}-\mathrm{]}$ the internal tri-state buffer is disabled allowing the CLK R pin to become the clock input for the internal clock level shift stage. The CLK R threshold level is now 2 V above the voltage applied to the L . Sh pin. Driving the CLK R pin with TTL logic levels can be accomplished through the use of split supplies and by tying the L. Sh pin to system ground.

1.0 MF6 Application Hints

The MF6 is comprised of a non-inverting unity gain lowpass sixth order Butterworth switched capacitor filter section and two undedicated CMOS Op-Amps. The switched capacitor topology makes the cutoff frequency (where the gain drops
3.01 dB below the DC gain) a direct ratio (100:1 or $50: 1$) of the clock frequency supplied to the lowpass filter. Internal integrator time constants set the filter's cutoff frequency. The resistive element of these integrators is actually a capacitor which is "switched" at the clock frequency (for a detailed discussion see Input Impedance Section). Varying the clock frequency changes the value of this resistive element and thus the time constant of the integrators. The clock to cutoff frequency ratio ($\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{c}}$) is set by the ratio of the input and feedback capacitors in the integrators. The higher the clock to cutoff frequency ratio (or the sampling rate) the closer this approximation is to the theoretical Butterworth response. The MF6 is available in $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}$ ratios of 50:1 (MF6-50) or 100:1 (MF6-100).

1.1 CLOCK INPUTS

The MF6 has a Schmitt-trigger inverting buffer which can be used to construct a simple R/C oscillator. The oscillator's frequency is dependent on the buffer's threshold levels as well as on the resistor/capacitor tolerance (see Figure 1).

$\mathrm{f}_{\mathrm{CLK}}=\frac{1}{R C \ln \left[\left(\frac{\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{T}-}}{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{T}+}}\right) \frac{\mathrm{V}_{\mathrm{T}+}}{\mathrm{V}_{\mathrm{T}-}}\right]}$
Typically for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}^{+}-\mathrm{V}^{-}=10 \mathrm{~V}$:
$\mathrm{f}_{\mathrm{CLK}}=\frac{1}{1.69 \mathrm{RC}}$

FIGURE 1. Schmitt Trigger R/C Oscillator

TL/H/5065-3
FIGURE 2. Dual Supply Operation MF6 Driven with CMOS Logic Level Clock $\left(V_{\mathbf{I H}} \geq 0.8 \mathrm{~V}_{\mathbf{C C}}\right.$ and $\mathrm{V}_{\mathbf{I L}} \leq 0.2 \mathrm{~V}_{\mathbf{C C}}$ where $\mathrm{V}_{\mathbf{C C}}=\mathrm{V}^{+}-\mathrm{V}^{-}$)

TL/H/5065-4
FIGURE 3. Dual Supply Operation MF6 Driven with TTL Logic Level Clock

Application Hints (Continued)

TL/H/5065-14
a) Resistor Biasing of AGND

b) Using Op-Amp 2 to Buffer AGND

FIGURE 4. Single Supply Operation

Application Hints (Continued)

FIGURE 5. Vos Adjust Schemes

Schmitt-trigger threshold voltage levels can change significantly causing the R/C oscillator's frequency to vary greatly from part to part.
Where accuracy in f_{c} is required an external clock can be used to drive the CLK R input of the MF6. This input is TTL logic level compatible and also presents a very light load to the external clock source ($\sim 2 \mu \mathrm{~A}$) with split supplies and L. Sh tied to system ground. The logic level is programmed by the voltage applied to level shift (L. Sh) pin (See the Pin description for L. Sh pin).

1.2 POWER SUPPLY BIASING

The MF6 can be biased from a single supply or dual split supplies. The split supply mode shown in Figures 2 and 3 is the most flexible and easiest to implement. As discussed earlier split supplies, $\pm 5 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$, will enable the use of TTL or CMOS clock logic levels. Figure 4 shows two schemes for single supply biasing. In this mode only CMOS clock logic levels can be used.

1.3 OFFSET ADJUST

The VosADJ pin is used in adjusting the output offset level of the filter section. If this pin is not used it must be tied to the analog ground (AGND) level, either mid-supply for single ended supply operation or ground for split supply operation. This pin sets the zero reference for the output of the filter. The implementation of this pin can be seen in Figure 5. In $5(a)$, DC offset is adjusted using a potentiometer; in 5(b), the Op-Amp integrator circuit keeps the average DC output level at AGND. The circuit in 5(b) is therefore appropriate only for AC-coupled signals and signals biased at AGND.

1.4 INPUT IMPEDANCE

The MF6 lowpass filter input (FILTER IN pin) is not a high impedance buffer input. This input is a switched capacitor resistor equivalent, and its effective impedance is inversely proportional to the clock frequency. The equivalent circuit of the input to the filter can be seen in Figure 6. The input capacitor charges to the input voltage ($\mathrm{V}_{\text {in }}$) during one half of the clock period, during the second half the charge is

TL/H/5065-18
a) Equivalent Circuit for MF6 Filter Input

TL/H/5065-19

b) Actual Circuit for MF6 Filter Input

FIGURE 6. MF6 Filter Input
transferred to the feedback capacitor. The total transfer of charge in one clock cycle is therefore $\mathrm{Q}=\mathrm{C}_{\mathrm{in}} \mathrm{V}_{\mathrm{in}}$, and since current is defined as the flow of charge per unit time the average input current becomes

$$
I_{\text {in }}=Q / T
$$

(where T equals one clock period) or

$$
\mathrm{I}_{\text {in }}=\frac{\mathrm{C}_{\text {in }} V_{\text {in }}}{T}=C_{\text {in }} V_{\text {in }} \mathrm{C}_{L K}
$$

The equivalent input resistor ($\mathrm{R}_{\text {in }}$) then can be defined as

$$
\mathrm{R}_{\text {in }}=\mathrm{V}_{\text {in }} / l_{\text {in }}=\frac{1}{\mathrm{C}_{\mathrm{in}} \mathrm{f}_{\text {cLK }}}
$$

The input capacitor is 2 pF for the MF6-50 and 1 pF for the

Application Hints (Continued)

MF6-100, so for the MF6-100

$$
R_{\text {in }}=\frac{1 \times 10^{12}}{f_{C L K}}=\frac{1 \times 10^{12}}{f_{\mathrm{c}} \times 100}=\frac{1 \times 10^{10}}{f_{\mathrm{c}}}
$$

and

$$
R_{\text {in }}=\frac{5 \times 10^{11}}{f_{C L K}}=\frac{5 \times 10^{11}}{f_{c} \times 50}=\frac{1 \times 10^{10}}{f_{c}}
$$

for the MF6-50. As shown in the above equations for a given cutoff frequency (f_{c}) the input impedance remains the same for the MF6-50 and the MF6-100. The higher the clock to center frequency ratio, the greater equivalent input resistance for a given clock frequency. As the cutoff frequency increases the equivalent input impedance decreases. This input resistance will form a voltage divider with the source impedance ($\mathrm{R}_{\text {source }}$). Since $\mathrm{R}_{\text {in }}$ is inversely proportional to the cutoff frequency, operation at higher cutoff frequencies will be more likely to load the input signal which would appear as an overall decrease in gain to the output of the filter. Since the filter's ideal gain is unity its overall gain is given by:

$$
A_{v}=\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {source }}}
$$

If the MF6-50 or the MF6-100 were set up for a cutoff frequency of 10 kHz the input impedance would be:

$$
R_{\text {in }}=\frac{1 \times 10^{10}}{10 \mathrm{kHz}}=1 \mathrm{M} \Omega
$$

In this example with a source impedance of 10k the overall gain, if the MF6 had an ideal gain of 1 or 0 dB , would be:

$$
A_{v}=\frac{1 \mathrm{M} \Omega}{10 \mathrm{k} \Omega+1 \mathrm{M} \Omega}=0.99009 \text { or }-86.4 \mathrm{mdB}
$$

FIGURE 7a. MF6-100 $\pm 5 \mathrm{~V}$ Supplies Amplitude Response

TL/H/5065-22
FIGURE 7c. MF6-100 $\pm \mathbf{2 . 5 V}$ Supplies Amplitude Response

Since the maximum overall gain error for the MF6 is $\pm 0.3 \mathrm{~dB}$ with a $R_{\mathrm{s}} \leq 2 \mathrm{k} \Omega$ the actual gain error for this case would be +0.21 dB to -0.39 dB .

1.5 CUTOFF FREQUENCY RANGE

The filter's cutoff frequency (f_{c}) has a lower limit caused by leakage currents through the internal switches discharging the stored charge on the capacitors. At lower clock frequencies these leakage currents can cause millivolts of error, for example:

$$
\begin{gathered}
\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{~Hz}, l_{\text {leakage }}=1 \mathrm{pA}, \mathrm{C}=1 \mathrm{pF} \\
\mathrm{~V}=\frac{1 \mathrm{pA}}{1 \mathrm{pF}(100 \mathrm{~Hz})}=10 \mathrm{mV}
\end{gathered}
$$

The propagation delay in the logic and the settling time required to acquire a new voltage level on the capacitors increases as the MF6 power supply voltage decreases. This causes a shift in the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}$ ratio which will become noticeable when the clock frequency exceeds 250 kHz . The amplitude characteristic will stay within tolerance until fCLK exceeds 500 kHz and will peak at about 0.5 dB at the corner frequency with a 1 MHz clock. The response of the MF6 is still a reasonable approximation of the ideal Butterworth lowpass characteristic as can be seen in Figure 7.

2.0 Designing with the MF6

Given any lowpass filter specification two equations will come in handy in trying to determine whether the MF6 will do the job. The first equation determines the order of the lowpass filter required:

$$
\begin{equation*}
\mathrm{n}=\frac{\log \left(10^{0.1} A_{\min }-1\right)-\log \left(10^{0.1} A_{\max }-1\right)}{2 \log \left(\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{b}}\right)} \tag{1}
\end{equation*}
$$

TL/H/5065-21
FIGURE 7b. MF6-50 $\pm 5 \mathrm{~V}$ Supplies Amplitude Response

TL/H/5065-23
FIGURE 7d. MF6-50 $\pm \mathbf{2 . 5 V}$ Supplies Amplitude Response

Designing with the MF6 (Continued)

where n is the order of the filter, $\mathrm{A}_{\text {min }}$ is the minimum stopband attenuation (in dB) desired at frequency f_{s}, and $\mathrm{A}_{\text {max }}$ is the passband ripple or attenuation (in dB) at frequency f_{b}. If the result of this equation is greater than 6, then more than a single MF6 is required.
The attenuation at any frequency can be found by the following equation:

$$
\begin{equation*}
\operatorname{Attn}(f)=10 \log \left[1+\left(10^{0.1} A_{\max }-1\right)\left(f / f_{b}\right)^{2 n}\right] d B \tag{2}
\end{equation*}
$$

where $n=6$ (the order of the filter).

2.1 A LOWPASS DESIGN EXAMPLE

Suppose the amplitude response specification in Figure 8 is given. Can the MF6 be used? The order of the Butterworth approximation will have to be determined using eq. 1 :

$$
\begin{gathered}
A_{\min }=30 \mathrm{~dB}, A_{\max }=1.0 \mathrm{~dB}, \mathrm{f}_{\mathrm{s}}=2 \mathrm{kHz} \text {, and } \mathrm{f}_{\mathrm{b}}=1 \mathrm{kHz} \\
\mathrm{n}=\frac{\log \left(10^{3}-1\right)-\log \left(10^{0.1}-1\right)}{2 \log (2)}=5.96
\end{gathered}
$$

Since n can only take on integer values, $\mathrm{n}=6$. Therefore the MF6 can be used. In general, if \mathbf{n} is 6 or less a single MF6 stage can be utilized.
Likewise, the attenuation at f_{s} can be found using equation 2 with the above values and $\mathrm{n}=6$ giving:

$$
\begin{aligned}
\text { Atten }(2 \mathrm{kHz}) & =10 \log \left[1+\left(10^{0.1}-1\right)(2 \mathrm{kHz} / 1 \mathrm{kHz})^{12}\right] \\
& =30.26 \mathrm{~dB}
\end{aligned}
$$

This result also meets the design specification given in Figure 8 again verifying that a single MF6 section will be adequate.

frequency (Hz)

> TL/H/5065-24

FIGURE 8. Design Example Magnitude Response Specification Where the Response of the Filter Design Must Fall Within the Shaded Area of the Specification
Since the MF6's cutoff frequency f_{c}, which corresponds to a gain attenuation of -3.01 dB , was not specified in this example it needs to be calculated. Solving equation 2 where f $=f_{c}$ as follows:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{c}}=\mathrm{f}_{\mathrm{b}}\left[\frac{\left(10^{0.1(3.01 \mathrm{~dB})-1)}\right.}{\left(10^{\left.0.1 A_{\max }-1\right)}\right.}\right]^{1 /(2 \mathrm{n})} \\
& =1 \mathrm{kHz}\left[\frac{10^{0.301-1}}{10^{0.1-1}}\right]^{1 / 12} \\
& =1.119 \mathrm{kHz} \\
& \text { where } \mathrm{f}_{\mathrm{c}}=\mathrm{f}_{\mathrm{CLK}} / 50 \text { or } \mathrm{f}_{\mathrm{CLK}} / 100 \text {. }
\end{aligned}
$$

To implement this example for the MF6-50 the clock frequency will have to be set to $f_{\mathrm{CLK}}=50(1.116 \mathrm{kHz})=55.8$ kHz or for the MF6-100 $\mathrm{f}_{\mathrm{CLK}}=100(1.116 \mathrm{kHz})=111.6$ kHz .

2.2 CASCADING MF6s

In the case where a steeper stopband attenuation rate is required two MF6's can be cascaded (Figure 9) yielding a 12th order slope of 72 dB per octave. Because the MF6 is a Butterworth filter and therefore has no ripple in its passband, when MF6s are cascaded the resulting filter also has no ripple in its passband. Likewise the DC and passband gains will remain at 1V/V. The resulting response is shown in Figure 10.
In determining whether the cascaded MF6s will yield a filter that will meet a particular amplitude response specification, as above, equations 3 and 4 can be used, shown below.

$$
\begin{equation*}
n=\frac{\log \left(10^{\left.0.05 A_{\min }-1\right)-\log \left(10^{\left.0.05 A_{\max }-1\right)}\right.}\right.}{2 \log \left(f_{\mathrm{s}} / \mathrm{f}_{\mathrm{b}}\right)} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Attn}(f)=10 \log \left[1+\left(10^{\left.\left.0.05 A_{\max }-1\right)\left(f / f_{b}\right)^{2 n}\right] d B}\right.\right. \tag{4}
\end{equation*}
$$

where $n=6$ (the order of each filter).
Equation 3 will determine whether the order of the filter is adequate ($n \leq 6$) while equation 4 can determine if the required stopband attenuation is met and what actual cutoff frequency $\left(f_{c}\right)$ is required to obtain the particular frequency response desired. The design procedure would be identical to the one shown in section 2.1.

2.3 IMPLEMENTING A "NOTCH" FILTER WITH THE MF6

A "notch" filter with 60 dB of attenuation can be obtained by using one of the Op-Amps, available in the MF6, and three external resistors. The circuit and amplitude response are shown in Figure 11.
The frequency where the "notch" will occur is equal to the frequency at which the output signal of the MF6 will have the same magnitude but be 180 degrees out of phase with its input signal. For a sixth order Butterworth filter 180° phase shift occurs where $f=f_{n}=0.742 f_{c}$. The attenuation at this frequency is 0.12 dB which must be compensated for by making $R_{1}=1.014 \times R_{2}$.
Since R_{1} does not equal R_{2} there will be a gain inequality above and below the notch frequency. At frequencies below the notch frequency ($f \ll f_{n}$), the signal through the filter has a gain of one and is non-inverting. Summing this with the input signal through the Op-Amp yields an overall gain of two or +6 dB . For $f \gg f_{n}$, the signal at the output of the filter is greatly attenuated thus only the input signal will appear at the output of the Op-Amp. With $R_{3}=R_{1}=1.014$ R_{2} the overall gain is 0.986 or -0.12 dB at frequencies above the notch.

TL/H/5065-25
FIGURE 9. Cascading Two MF6s

TL/H/5065-26
FIGURE 10a. One MF6-50 vs. Two MF6-50s Cascaded

FIGURE 10b. Phase Response of Two Cascaded MF6-50s

FIGURE 11a. "Notch" Filter

TL/H/5065-29
FIGURE 11b. MF6-50 "Notch" Filter Amplitude Response

Designing with the MF6 (Continued)

2.4 CHANGING CLOCK FREQUENCY INSTANTANEOUSLY

The MF6 will respond favorably to a sudden change in clock frequency. Distortion in the output signal occurs at the transition of the clock frequency and lasts approximately three cutoff frequency (f_{c}) cycles. As shown in Figure 12, if the control signal is low the MF6-50 has a 100 kHz clock making $f_{c}=2 \mathrm{kHz}$; when this signal goes high the clock frequency changes to 50 kHz yielding $1 \mathrm{kHz} \mathrm{f}_{\mathrm{c}}$.
The transient response of the MF6 seen in Figure 13 is also dependent on the f_{c} and thus the $\mathrm{f}_{\mathrm{CLK}}$ applied to the filter. The MF6 responds as a classical sixth order Butterworth lowpass filter.

$f_{I N}=1.5 \mathrm{kHz}$ (scope time base $=2 \mathrm{~ms} /$ div)
FIGURE 12. MF6-50 Abrupt Clock Frequency Change

2.5 ALIASING CONSIDERATIONS

Aliasing effects have to be taken into consideration when input signal frequencies exceed half the sampling rate. For the MF6 this-equals-half the-clock frequency (fcLK). When

Figure 14. The phenomenon of aliasing in sampled-data systems. An input signal whose frequency is greater than onehalf the sampling frequency will cause an output to appear at a frequency lower than one-half the sampling frequency. In the MF6, $\mathrm{f}_{\mathbf{s}}=\mathrm{f}_{\text {CLK }}$.

$\mathrm{f}_{0}=\frac{1}{2 \pi \sqrt{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}}$
$H_{0}=R_{4} / R_{3}$ ($H_{0}=1$ when R_{3} and R_{4} are omitted and $V_{O 2}$ is directly tied to INV2).
Design Procedure:
pick C_{1}
$\mathrm{R}_{2}=\frac{1}{2 \mathrm{QC}_{1} \omega_{0}}$
for a 2nd Order Butterworth $Q=0.707$
$R_{2}=\frac{0.113}{C_{1} f_{0}}$
make $R_{1}=R_{2}$
and
$\mathrm{C}_{2}=\frac{1}{\left(2 \pi \mathrm{f}_{0} \mathrm{R}_{1}\right)^{2} \mathrm{C}_{1}}$
Note: The parallel combination of R_{4} (if used), R_{1} and R_{2} should be $\geq 10 \mathrm{k} \Omega$ in order not to load Op-Amp \#2.
FIGURE 15. Second Order Butterworth Anti-Aliasing Filter Using Uncommitted Op-Amp \# 2

MF8 4th－Order Switched Capacitor Bandpass Filter

General Description

The MF8 consists of two second－order bandpass filter stages and an inverting operational amplifier．The two filter stages are identical and may be used as two tracking sec－ ond－order bandpass filters，or cascaded to form a single fourth－order bandpass filter．The center frequency is con－ trolled by an external clock for optimal accuracy，and may be set anywhere between 0.1 Hz and 20 kHz ．The ratio of clock frequency to center frequency is programmable to 100：1 or 50：1．Two inputs are available for TTL or CMOS clock signals．The TTL input will accept logic levels refer－ enced to either the negative power supply pin or the ground pin，allowing operation on single or split power supplies．The CMOS input is a Schmitt inverter which can be made to self－ oscillate using an external resistor and capacitor．
By using the uncommitted amplifier and resistors for nega－ tive feedback，any all－pole（Butterworth，Chebyshev，etc．） filter can be formed．This requires only three resistors for a fourth－order bandpass filter．Q of the second－order stages may be programmed to any of 31 different values by the five ＂Q logic＂pins．The available Q values span a range from 0.5 through 90 ．Overall filter bandwidth is programmed by connecting the appropriate Q logic pins to either V^{+}or $\mathrm{V}-$ ． Filters with order higher than four can be built by cascading MF8s．

Features

－Center frequency set by external clock
－Q set by five－bit digital word
－Uncommitted inverting op amp
－4th－order all－pole filters using only three external resistors
－Cascadable for higher－order filters
－Bandwidth，response characteristic，and center frequency independently programmable
－Separate TTL and CMOS clock inputs
【 18 pin $0.3^{\prime \prime}$ wide package

Key Specifications

国 Center frequency range 0.1 Hz to 20 kHz
（1）Q range 0.5 to 90
四 Supply voltage range 9 V to $14 \mathrm{~V}(\pm 4.5 \mathrm{~V}$ to $\pm 7 \mathrm{~V})$
－Center frequency accuracy 1% over full temperature range

Typical Application \＆Connection Diagrams

TL／H／8694－1

Top View
Order Number MF8CCJ or MF8CCN See NS Package Number J18A or N18A

Fourth－Order Butterworth Bandpass Filter

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage ($\mathrm{V}_{\mathrm{S}}=\mathrm{V}^{+}-\mathrm{V}^{-}$)		-0.3 V to +15 V
Input Current at	Input Pin (Note 2)	$\pm 1 \mathrm{~mA}$
Output Short-Cir	t Current (Note 7)	$\pm 1 \mathrm{~mA}$
Power Dissipatio	Note 3)	500 mW
Storage Temper		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information:		
J Package:	10 sec .	$260^{\circ} \mathrm{C}$
N Package:	10 sec.	$300^{\circ} \mathrm{C}$
SO Package:	Vapor Phase (60 sec.)) $215^{\circ} \mathrm{C}$
	Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Operating Ratings (Note 1)

Temperature Range MF8CCN	$\begin{aligned} & T_{M I N} \leq T_{A} \leq T_{\text {MAX }} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C} \end{aligned}$
MF8CCJ	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Supply Voltage ($\mathrm{V}_{\mathrm{S}}=\mathrm{V}^{+}-\mathrm{V}^{-}$)	+9 V to +14
$\mathrm{f}_{\mathrm{CLK}} \times \mathrm{Q}$ Range for $10 \mathrm{~Hz} \leq$ fcLk $\leq 250 \mathrm{kHz}$ for $250 \mathrm{kHz} \leq$ f $\mathrm{CLK} \leq 1 \mathrm{MHz}$	$\mathrm{fCLK} \times \mathrm{Q} \leq \mathrm{rang}_{\text {and }}$

ESD rating is to be determined.
Filter Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=$ 50 pF and $\mathrm{R}_{\text {LOAD }}=50 \mathrm{k} \Omega$ on filter output unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter (Notes 4, 5)	Conditions	MF8CCN			MF8CCJ			Units
			Typical (Note 9)	Tested Limit (Note 10)	Design Limit (Note 11)	Typical (Note 9)	Tested Limit (Note 10)	Design Limit (Note 11)	
H_{0}	Gain at f_{0}	$\begin{aligned} & \mathrm{fCLK}=250 \mathrm{kHz} \\ & 100: 1 \\ & \text { ABCDE }=11100 \end{aligned}$	$6.02 \pm .05$	6.02 ± 0.2		6.02 ± 0.05	6.02 ± 0.2		dB
Q	Q		$3.92 \pm 2 \%$	$3.92 \pm 10 \%$		$3.92 \pm 2 \%$	$3.92 \pm 10 \%$		
R	$\mathrm{fCLK}^{\prime} / \mathrm{f}_{\mathrm{O}}$		$99.2 \pm 0.3 \%$	$99.2 \pm 1 \%$		$99.2 \pm 0.3 \%$	$99.2 \pm 1 \%$		
H_{0}	Gain at f_{0}	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \\ & 100: 1 \\ & \mathrm{ABCDE}=10011 \end{aligned}$	6.02 ± 0.2	6.02 ± 0.5		6.02 ± 0.2	6.02 ± 0.5		dB
Q	Q		$15.5 \pm 3 \%$	$15.5 \pm 12 \%$		$15.5 \pm 3 \%$	$15.5 \pm 12 \%$		
R	$\mathrm{fCLK}^{\prime} \mathrm{f}_{0}$		$99.7 \pm 0.3 \%$	$99.7 \pm 1 \%$		$99.7 \pm 0.3 \%$	$99.7 \pm 1 \%$		
H_{0}	Gain at f_{0}	$\begin{aligned} & \mathrm{f} \mathrm{fLK}=250 \mathrm{kHz} \\ & 50: 1 \\ & \mathrm{ABCDE}=00001 \end{aligned}$	5.85 ± 0.4	5.85 ± 1		5.85 ± 0.4	5.85 ± 1		dB
Q	Q		$55 \pm 5 \%$	$55 \pm 14 \%$		$55 \pm 5 \%$	$55 \pm 14 \%$		
R	$\mathrm{fCLK} / \mathrm{f}_{0}$		$49.9 \pm 0.2 \%$	$49.9 \pm 1 \%$		$49.9 \pm 0.2 \%$	$49.9 \pm 1 \%$		
H_{0}	Gain at f_{o}	$\begin{aligned} & V_{\mathrm{S}}= \pm 5 \mathrm{~V} \pm 5 \% \\ & \mathrm{f}_{\mathrm{CLK}} \leq 250 \mathrm{kHz} \end{aligned}$	6.02 ± 0.5		$\begin{aligned} & 6.02 \\ & \pm 1.5 \\ & \hline \end{aligned}$	6.02 ± 0.5		6.02 ± 1.5	dB
$\Delta Q / Q_{\text {TH }}$	Q Deviation from Theoretical (See Table I)	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \pm 5 \% \\ & \mathrm{f}_{\mathrm{CLK}} \leq 250 \mathrm{kHz}, \mathrm{Q}>1 \\ & \mathrm{f}_{\mathrm{CLK}} \leq 100 \mathrm{kHz} \\ & \quad 1<\mathrm{Q}<57 \end{aligned}$	$\begin{aligned} & \pm 5 \% \\ & \pm 2 \% \\ & \hline \end{aligned}$,	$\begin{gathered} \pm 15 \% \\ \pm 6 \% \\ \hline \end{gathered}$	$\begin{aligned} & \pm 5 \% \\ & \pm 2 \% \end{aligned}$		$\begin{gathered} \pm 15 \% \\ \pm 6 \% \\ \hline \end{gathered}$	
$\Delta \mathrm{R} / \mathrm{R}_{\text {TH }}$	$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ Deviation from Theoretical (See Table I)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \pm 5 \% \\ & \mathrm{f}_{\mathrm{CLK}} \leq 250 \mathrm{kHz} \end{aligned}$	$\pm 0.3 \%$		$\pm 1 \%$	$\pm 0.3 \%$		$\pm 1 \%$	
Q	Q	$\begin{aligned} & \mathrm{f} C L K=250 \mathrm{kHz}, 50: 1 \\ & \mathrm{ABCDE}=00110 \\ & \hline \end{aligned}$	$10.6 \pm 2 \%$		$\begin{gathered} 10.6 \\ \pm 10 \% \\ \hline \end{gathered}$	$10.6 \pm 2 \%$	$10.6 \pm 10 \%$		
	Dynamic Range (Note 6)	$\begin{aligned} & \mathrm{ABCDE}=11100 \\ & \mathrm{ABCDE}=10011 \\ & \mathrm{ABCDE}=00001 \end{aligned}$	$\begin{aligned} & 86 \\ & 80 \\ & 75 \end{aligned}$			$\begin{aligned} & 86 \\ & 80 \\ & 75 \\ & \hline \end{aligned}$			dB dB dB
	Clock Feedthrough	Filter and Op Amp $\mathrm{f} \mathrm{CLK} \leq 250 \mathrm{kHz}$ $\mathrm{Q} \leq 1$ $\mathrm{Q}>1$ $Q>1$	$\begin{aligned} & 80 \\ & 40 \end{aligned}$			$\begin{aligned} & 80 \\ & 40 \end{aligned}$			$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Is	Maximum Supply Current	$\begin{aligned} & \mathrm{fCLK}=250 \mathrm{kHz}, \text { no } \\ & \text { loads on outputs } \end{aligned}$	9	12	12	9	13		mA
V ${ }_{\text {OS }}$	Maximum Filter Output Offset Voltage	$\begin{array}{\|l\|} \mathrm{f} \mathrm{CLK}=250 \mathrm{kHz}, \mathrm{Q}=4 \\ 50: 1 \\ 100: 1 \end{array}$	$\begin{aligned} & \pm 40 \\ & \pm 80 \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 120 \\ \pm 240 \\ \hline \end{array}$		$\begin{array}{r} \pm 40 \\ \pm 80 \\ \hline \end{array}$	$\begin{array}{r} \pm 120 \\ \pm 240 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
V OUT	Minimum Filter Output Swing	$\begin{aligned} & \mathrm{R}_{\text {LOAD }}=5 \mathrm{k} \Omega \\ & \text { (Note 6) } \end{aligned}$	± 4.1	± 3.8	± 3.8	± 4.1	± 3.6		V

Op Amp Electrical Characteristics The following specifications apply for $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$ and no load on the Op Amp output unless otherwise specified. Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	MF8CCN			MF8CCJ			Units
			Typical (Note 9)	$\begin{gathered} \text { Tested } \\ \text { Limit } \\ \text { (Note 10) } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 11) } \\ \hline \end{array}$	Typical (Note 9)	Tested Limit (Note 10)	Design Limit (Note 11)	
$\mathrm{V}_{\text {OS }}$	Maximum Input Offset Voltage		± 8	± 20		± 8	± 20		mV
I_{B}	Maximum Input Bias Current		10			10			pA
$\mathrm{V}_{\text {OUT }}$	Minimum Output Voltage Swing	$\mathrm{R}_{\text {LOAD }}=5 \mathrm{k} \Omega$	± 3.5			± 3.5			V
Avol	Open Loop Gain		80			80			dB
GBW	Gain Bandwidth Product		1.8			1.8			MHz
SR	Slew Rate		10			10			$\mathrm{V} / \mu \mathrm{s}$

Logic Input and Output Characteristics The following specifications apply for $\mathrm{V}+=+10 \mathrm{~V}$ and $\mathrm{V}-$
$=0 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter		Conditions	MF8CCN			MF8CCJ			Units	
				$\begin{array}{\|c\|} \text { Tested } \\ \text { Limit } \\ \text { (Note } 10 \\ \hline \end{array}$	Design Limit (Note 11)	Typical (Note 9)	$\begin{array}{\|c} \text { Tested } \\ \text { Limit } \\ \text { (Note 10) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 11) } \\ \hline \end{array}$			
$\mathrm{V}^{+}{ }^{+}$	Positive Threshold Voltage on pin 8			$V_{S}=V+-V-$ referred to $\mathrm{V}^{-}=0 \mathrm{~V}$ (Note 8)	$0.7 \mathrm{~V}_{\mathrm{S}}$	$0.58 \mathrm{~V}_{\mathrm{S}}$		$0.7 \mathrm{~V}_{\mathrm{S}}$	0.58 V S		V
			$0.7 \mathrm{~V}_{S}$		$0.89 \mathrm{~V}_{\mathrm{S}}$		$0.7 \mathrm{~V}_{\mathrm{S}}$	$0.89 \mathrm{~V}_{\mathrm{S}}$		V	
$\mathrm{V}^{-}{ }^{-}$	Negative Threshold Voltage on pin 8		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}^{+}-\mathrm{V} \text { - referred } \\ & \text { to } \mathrm{V}-=0 \mathrm{~V} \text { (Note 8) } \end{aligned}$	$0.35 \mathrm{~V}_{\mathrm{S}}$	$0.11 \mathrm{~V}_{\mathrm{S}}$		$0.35 \mathrm{~V}_{\mathrm{S}}$	$0.11 \mathrm{~V}_{\mathrm{S}}$		V	
			0.35 V S	$0.47 \mathrm{~V}_{\mathrm{S}}$		$0.35 \mathrm{~V}_{\mathrm{S}}$	$0.47 \mathrm{~V}_{\text {S }}$		V		
V_{OH}	Output Voltage on pin 9 (Note 12)	Min High		$\mathrm{l}_{0}=-10 \mu \mathrm{~A}$		9.0	9.0		9.0		V
V_{OL}		Max Low	$\mathrm{l}_{0}=+10 \mu \mathrm{~A}$		1.0	1.0		1.0		V	
${ }^{\mathrm{IOH}}$	Output Current on pin 9	Min Source	Pin 9 tied to V^{-}	6.0	3.0		6.0	3.0		mA	
$\mathrm{l}^{\text {OL }}$		Min Sink	Pin 9 tied to V+	5.0	2.5		5.0	2.5		mA	
V_{IH}	Input Voltage on pins: 1, 2, 3, 10, 17, \& 18 (Note 12)	Min High		7.0		9.0	7.0	9.0		V	
$\mathrm{V}_{\text {IL }}$		Max Low		3.0		1.0	3.0	1.0		V	
I_{N}	Input Current on pins: 1, 2, $3,7,8,10,17, \& 18$				10	10		10		$\mu \mathrm{A}$	
$\mathrm{V}_{1 \mathrm{H}}$	Input Voltage on pin 7	Min High	$\begin{aligned} & \mathrm{V}+=+10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \text { or } \\ & \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V} \end{aligned}$		2.0	2.0		2.0		V	
V_{IL}		Max Low			0.8	0.8		0.8		V	

Note 1: Absolute Maximum Raings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: When the applied voltage at any pin falls outside the power supply voltages ($\mathrm{V}_{\mathrm{IN}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathrm{IN}}>\mathrm{V}^{+}$), the absolute value of current at that pin should be limited to 1 mA or less.
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \Theta_{J A}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \Theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $T_{J M A X}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance of the MF8CCN when board mounted is $50^{\circ} \mathrm{C} / \mathrm{W}$. For the MF8CCJ, this number increases to $65^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: The center frequency of each 2nd-order filter section is defined as the frequency where the phase shift through the filter is zero.
Note 5: Q is defined as the measured center frequency divided by the measured bandwidth, where the bandwidth is the difference between the two frequencies where the gain is 3 dB less than the gain measured at the center frequency.
Note 6: Dynamic range is defined as the ratio of the tested minimum output swing of 2.69 Vrms ($\pm 3.8 \mathrm{~V}$ peak-to-peak) to the wideband noise over a 20 kHz bandwidth. For Qs of 1 or less the dynamic range and output swing will degrade because the gain at an internal node is 2/Q. Keeping the input signal level below 1.23xQ Vrms will avoid distortion in this case.

Note 7: If it is possible for a signal output (pin 6, 14, or 15) to be shorted to $\mathrm{V}^{+}, \mathrm{V}^{-}$or ground, add a series resistor to limit output current.
Note 8: If V^{-}is anything other than OV then the value of V^{-}should be added to the values given in the table. For example for $\mathrm{V}^{+}=+5 \mathrm{~V}$ and $\mathrm{V}^{-}=-5 \mathrm{~V}$ the typical $\mathrm{V}_{\mathrm{T}^{+}}=0.7(10 \mathrm{~V})+(-5 \mathrm{~V})=+2 \mathrm{~V}$.
Note 9: Typicals are at $25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 10: Tested Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 11: Design Limits are guaranteed but not 100% tested. These limits are not used to calculate outgoing quality levels.
Note 12: These logic levels have been referenced to \mathbf{V}^{-}. The logic levels will shift accordingly for split supplies.

Pin Descriptions

Q Logic Inputs
A, B, C, D, E
(3, 2, 1, 18, 17):
AGND (4):

V+(12),
V-(11):

F1 IN (16), \quad These are the inputs to the bandpass filF2 IN (5): ter stages. To minimize gain error the source impedance should be less than 2 $\mathrm{k} \Omega$. Input signals should be referenced to AGND.
F1 OUT (15), These are the outputs of the bandpass F2 OUT (6):
A IN (13):
This is the inverting input to the uncommitted operational amplifier. The non-inverting input is internally connected to AGND.
A OUT (14): This is the output of the uncommitted operational amplifier.
50/100 (10): This pin sets the ratio of the clock frequency to the bandpass center frequency. Connecting this pin to V^{+}sets the ratio to 100:1. Connecting it to V^{-}sets the ratio to 50:1.
TTL CLK (7): This is the TTL-level clock input pin. There are two logic threshold levels, so the MF8 can be operated on either sin-gle-ended or split supplies with the logic input referred to either V^{-}or AGND. When this pin is not used (or when CMOS logic levels are used), it should be connected to either V^{+}or V^{-}.
CMOS CLK (8): This pin is the input to a CMOS Schmitt inverter. Clock signals with CMOS logic levels may be applied to this input. If the TTL input is used this pin should be connected to V^{-}.

RC (9):
This pin allows the MF8 to generate its own clock signal. To do this, connect an external resistor between the RC pin and the CMOS Clock input, and an external capacitor from the CMOS Clock input to AGND. The TTL Clock input should be connected to V^{-}or V^{+}. When the MF8 is driven from an external clock, the RC pin should be left open.

1.0 Application Information 1.1 INTRODUCTION

A simplified block diagram for the MF8 is shown in Figure 1. The analog signal path components are two identical 2ndorder bandpass filters and an operational amplifier. Each filter has a fixed voltage gain of 2 . The filters' cutoff frequency is proportional to the clock frequency, which may be applied to the chip from an external source or generated internally with the aid of an external resistor and capacitor. The proportionality constant $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ can be set to either 50 or 100 depending on the logic level on pin 10. The " Q " of the two filters can have any of 31 values ranging from 0.5 to 90 and is set by the logic levels on pins 1, 2, 3, 17, and 18. Table I shows the available values of Q and the logic levels required to obtain them. The operational amplifier's non-inverting input is internally grounded, so it may be used only for inverting applications.
The components in the analog signal path can be interconnected in several ways, three of which are illustrated in Figures $2 a, 2 b$ and $2 c$. The two second-order filter sections can be used as separate filters whose center frequencies track very closely as in Figure 2a. Each filter section has a high input impedance and low output impedance. The op amp may be used for gain scaling or other inverting functions. If sharper cutoff slopes are desired, the two filter sections may be cascaded as in Figure 2b. Again, the op amp is uncommitted. The circuit in Figure $2 c$ uses both filter sections with the op amp and three resistors to build a "multiple feedback loop" filter. This configuration offers the greatest flexibility for fourth-order bandpass designs. Virtually any fourth-order all pole response shape (Butterworth, Chebyshev) can be obtained with a wide range of bandwidths, simply by proper choice of resistor values and Q. The three connection schemes in Figure 2 will be discussed in more detail in Sections 1.4 and 1.5.

Typical Performance Characteristics

$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ Ratio vs Temperature-100:1 Mode

Q vs Supply Voltage50:1 and 100:1

Op Amp-Open Loop Frequency Response

$\mathbf{f}_{\mathbf{C L K}} / \mathrm{f}_{\mathrm{o}}$ Ratio vs Clock
Frequency-100:1 Mode

$f_{\text {CLK }} / f_{0}$ Ratio vs
Temperature-50:1 Mode

Q vs Clock Frequency50:1 and 100:1

Positive Power
Supply Rejection

$\mathbf{f}_{\mathbf{C L K}} / \mathbf{f}_{\mathbf{0}}$ Ratio vs Supply
Voltage-50:1 and 100:1 Mode

Q vs Temperature50:1 and 100:1

Q vs Clock Frequency50:1 and 100:1

CLOCK FREQUENCY (Hz)

Negative Power

 Supply Rejection

Typical Performance Characteristics (Continued)

Positive Swing vs Supply Voltage

Filter Offset Voltage vs

Negative Swing vs Temperature (Filter and Op Amp)

Supply Current vs Supply Voltage

Negative Swing vs Supply Voltage

Positive Swing vs Temperature (Filter and Op Amp)

Filter Offset Voltage vs Temperature-50:1 and 100:1

FIGURE 1. Simplified Block Diagram of the MF8

FIGURE 2a. Separate Second-Order "Tracking" Filters

FIGURE 2b. Fourth-Order Bandpass Made by Cascading Two Second-Order Stages

1.0 Application Information (Continued)

TL/H/8694-6
FIGURE 2c. Multiple Feedback Loop Connection

1.2 CLOCKS

The MF8 has two clock input pins, one for CMOS logic levels and the other for TTL levels. The TTL (pin 7) input automatically adjusts its switching threshold to enable operation on either single or split power supplies. When this input is used, the CMOS logic input should be connected to pin $11\left(\mathrm{~V}^{-}\right)$. The CMOS Schmitt trigger input at pin 8 accepts CMOS logic levels. When it is used, the TTL input should be connected to either pin $11\left(\mathrm{~V}^{-}\right)$or pin $12\left(\mathrm{~V}^{+}\right)$. The basic clock hookups for single and split supply operation are shown in Figures 3 and 4.

TL/H/8694-7
(a) MF8 Driven with CMOS Logic Level Clock

Clock signals derived from a crystal-controlled oscillator are recommended when maximum center frequency accuracy is desired, but in less critical applications the MF8 can generate its own clock signal as in Figures $3 c$ and 4c. An external resistor and capacitor determine the oscillation frequency. Tolerance of these components and part-to-part variations in Schmitt-trigger logic thresholds limit the accuracy of the RC clock frequency. In the self-clocked mode the TTL Clock input should be connected to either pin 11 or pin 12.

TL/H/8694-8
(b) MF8 Driven with TTL Logic Level Clock

1.0 Application Information (Continued)

1.3 POWER SUPPLIES AND ANALOG GROUND

The MF8 can be operated from single or dual-polarity power supplies. For dual-supply operation, the analog ground (pin 4) should be connected to system ground. When single supplies are used, pin 4 should be biased to $\mathrm{V}+/ 2$ as in Figures 3 and 4. The input signal should either be capacitively cou-
pled to the filter input or biased to $\mathrm{V}+/ 2$. It is strongly recommended that each power supply pin be bypassed to ground with at least a $0.1 \mu \mathrm{~F}$ ceramic capacitor. In single supply applications, with V^{-}connected to ground, V^{+}and AGND should be bypassed to system ground.

(b) MF8 Driven with TTL Logic Clock

(c) MF8 Driven with the Schmitt Trigger Oscillator

FIGURE 4. Single supply operation. The AGND pin must be biased to mid-supply. The input signal should be dc biased to mid-supply or capacitor-coupled to the input pin.

1.0 Application Information (Continued)

1.4 MULTIPLE FEEDBACK LOOP CONFIGURATION

The multi-loop approach to building bandpass filters is highly flexible and stable, yet uses few external components. Figure 5 shows the MF8's internal operational amplifier and two second-order filter stages with three external resistors in a fourth-order multiple feedback configuration. Higher-order filters may be built by adding more second-order sections and feedback resistors as in Figure 6. The filter's response is determined by the clock frequency, the clock-to-center-frequency ratio, the ratios of the feedback resistor values, and the Qs of the second-order filter sections. The design procedure for multiple feedback filters can be broken down into a few simple steps:

1) Determine the characteristics of the desired filter. This will depend on the requirements of the particular application. For a given application, the required bandpass response can be shown graphically as in Figure 7, which shows the limits for the filter response. Figure 7 also makes use of several parameters that must be known in order to design a filter. These parameters are defined below in terms of Figure 7.

TL/H/8694-15
FIGURE 7. Graphical representation of the amplitude response specifications for a bandpass filter. The filter's response should fall within the shaded area.

TL/H/8694-13
FIGURE 5. General fourth-order multiple-feedback bandpass filter circuit. MF8 pin numbers are shown.

TL/H/8694-14
FIGURE 6. By adding more second-order filter stages and feedback resistors, higher order multiple-feedback filters may be built.

1.0 Application Information (Continued)

$\mathrm{f}_{\mathrm{C} 1}$ and $\mathrm{f}_{\mathrm{C} 2}$: The filter's lower and upper cutoff frequencies. These define the filter's passband.
$\mathrm{f}_{\mathrm{S} 1}$ and $\mathrm{f}_{\mathrm{S} 2}$: The boundaries of the filter's stopband.
$B W$: The filter's bandwidth. $B W=f_{C 2}-f_{C 1}$.
SBW: The width of the filter's stopband. $\mathrm{SBW}=\mathrm{f}_{\mathrm{S} 2}-\mathrm{f}_{\mathrm{S} 1}$. f_{0} : The center frequency of the filter. f_{0} is equal to the geometric mean of $f_{\mathrm{C}_{1}}$ and $\mathrm{f}_{\mathrm{C}_{2}}: f_{0}=\sqrt{\mathrm{f}_{\mathrm{C}} f_{\mathrm{C}}} . \mathrm{f}_{0}$ is also equal to the geometric mean of $\mathrm{f}_{\mathrm{S} 1}$ and $\mathrm{f}_{\mathrm{S} 2}$.
$\mathrm{H}_{08 P}$: The nominal passband gain of the bandpass filter. This is normally taken to be the gain at f_{0}.
$\mathrm{f}_{0} / \mathrm{BW}$: The ratio of the center frequency to the bandwidth. For second-order filters, this quantity is also known as " Q ". SBW/BW: The ratio of stopband width to bandwidth. This quantity is also called "Omega" and may be represented by the symbol " Ω ".
$A_{\text {max }}$: The maximum allowable gain variation within the filter passband. This will depend on the system requirements, but typically ranges from a fraction of a dB to 3 dB .
$A_{\text {min }}$: The minimum allowable attenuation in the stopband. Again, the required value will depend on system constraints.
2). Choose a Butterworth or Chebyshev response characteristic. Butterworth bandpass filters are monotonic on either side of the center frequency, while Chebyshev filters will have "ripple" in the passband, but generally faster attenuation outside the passband. Chebyshev filters are specified according to the amount of ripple (in dB) within the passband.
3) Determine the filter order necessary to meet the response requirements defined above. This may be done with the aid of the nomographs in Figures 8 and 9 for Butterworth and Chebyshev filters. To use the nomographs, draw a line through the desired values on the $A_{\text {MAX }} / A_{\text {MIN }}$ scales to the left side of the graph. Draw a horizontal line to the right of this point and mark its intersection with the vertical line corresponding to the required ratio SBW/BW. The required filter order will be equal to the number of the curve falling on or just above the intersection of the two lines. This is illustrated in Figure 10 for a Chebyshev filter with 1 dB ripple, 30 dB minimum attenuation in the stopband, and SBW/BW $=3$. From the Figure, the required filter order is 6.
4) The design tables in section 2.0 can now be used to find the component values that will yield the desired response for filters of order 4 through 12. The " K_{n} " give the ratios of resistors " R_{n} " to R_{F}, and K_{Q} is Q divided by $f_{0} / B W$.
As an example of the Tables' use, consider a fourth-order Chebyshev filter with 0.5 dB ripple and $\mathrm{f}_{0} / \mathrm{BW}=6$. Begin by choosing a convenient value for R_{F}, such as $100 \mathrm{k} \Omega$. From the " 0.5 dB Chebyshev" filter table, $\mathrm{K}_{0}=\mathrm{R}_{0} / \mathrm{R}_{\mathrm{F}}=1.3405$. This gives $R_{0}=R_{F} \times 1.345=134.05 \mathrm{k}$. In a similar manner, R_{2} is found to equal 201.61 k . Q is found using the column labeled K_{Q}. This gives $Q=K_{Q} \times f_{0} / B W=8.4174$.

Table I shows the available Q values; the nearest value is 8.5 , which is programmed by tying pins $1,2,3$, and 18 to V^{+} and pin 17 to V^{-}.
Note that the resistor values obtained from the tables are normalized for center frequency gain $\mathrm{H}_{\mathrm{OBP}}=1$. For different gains, simply divide R_{0} by the desired gain.
5) Choose the clock-to-center-frequency ratio. This will nominally be 100:1 when pin 10 is connected to pin 12(V^{+}) and $50: 1$ when pin 10 is connected to pin $11\left(\mathrm{~V}^{-}\right) .100: 1$ generally gives a response curve nearer the ideal and fewer (if any) problems with aliasing, while 50:1 allows operation over the highest octave of center frequencies (10 kHz to 20 kHz). Supply the MF8 with a clock signal of the appropriate frequency to either the TTL or CMOS input, depending on the available clock logic levels.

TABLE I. Q and Clock-to-Center-Frequency Ratio Versus Logic Levels on "Q-set" Pins

	$50: 1$ mode		100:1 mode	
ABCDE	${\text { FCLK } / F_{\mathbf{O}}}^{l \mid}$	\mathbf{Q}	$\mathbf{F}_{\text {CLK }} / F_{\mathbf{O}}$	\mathbf{Q}
10000	43.7	0.45	94.0	0.47
11000	45.8	0.71	95.8	0.73
01000	46.8	0.96	96.8	0.98
10100	48.4	2.0	98.4	2.0
00100	48.7	2.5	98.7	2.5
01100	48.9	3.0	98.9	3.0
11100	49.2	4.0	99.2	4.0
01010	49.3	5.0	99.3	5.0
10010	49.4	5.7	99.4	5.7
10110	49.4	6.4	99.4	6.4
00010	49.5	7.6	99.5	7.6
11110	49.6	8.5	99.6	8.5
00110	49.6	10.6	99.6	10.6
11001	49.6	11.7	99.6	11.7
11010	49.7	12.5	99.7	12.5
11101	49.7	13.6	99.7	13.6
01001	49.7	14.7	99.7	14.7
10011	49.7	15.8	99.7	15.8
10101	49.7	16.5	99.7	16.5
01110	49.7	17	99.7	17
10001	49.8	19	99.8	19
10111	49.8	22	99.8	22
11011	49.8	27	99.8	27
11111	49.8	30	99.8	30
00101	49.8	33	99.8	33
01011	49.8	40	99.8	40
00111	49.8	44	99.8	44
00001	49.9	57	99.9	57
01101	49.9	68	99.9	68
00011	49.9	79	99.9	79
01111	49.9	90	99.9	90

1.0 Application Information (Continued)

Higher-order filters are designed in a similar manner. An eighth-order Chebyshev with 0.1 dB ripple, center frequency equal to 1 kHz , and 100 Hz bandwidth, for example, could be built as in Figure 11 with the following component values:
$\mathrm{R}_{0}=79.86 \mathrm{k}$
$\mathrm{R}_{\mathrm{F}}=100 \mathrm{k}$
$\mathrm{R}_{2}=57.82 \mathrm{k}$
$\mathrm{R}_{3}=188.08 \mathrm{k}$
$R_{4}=203.42 \mathrm{k}$
Pins 1, 3, 17 and 18 high, pin 2 low. For 100:1 clock-to-cen-ter-frequency ratio, pin 10 is tied to V^{+}and the clock frequency is 100 kHz . For 50:1 clock-to-center-frequency ratio, pin 10 is tied to V^{-}and the clock frequency is 50 kHz .
When building filters of order 4 or higher, best performance will always be realized when the filter blocks are cascaded
in numerical order: Filter 1 (pins 16 and 15) should always precede Filter 2 (pins 5 and 6). If a second MF8 is used, Filter 2 of the first MF8 should precede Filter 1 of the second MF8, and so on.

Dynamic Considerations

Some filter response characteristics will result in high gain at certain internal nodes, particularly at the op amp output. This can cause clipping in intermediate stages even when no clipping is evident at the filter output. The consequences are significant distortion and degradation of the overall transfer function. The likelihood of clipping at the op amp output becomes greater as R_{F} / R_{0} increases. As the design tables show, R_{F} / R_{0} increases with increasing filter order and increasing ripple. It is good practice to keep out-of-band input signal levels small enough that the first stage can't overload.

FIGURE 9. Chebyshev Bandpass. Filter Design Nomograph

FIGURE 10. Example of Chebyshev Bandpass Nomograph Use.
$A_{\text {max }}=1 \mathrm{~dB}, A_{\text {min }}=30 \mathrm{~dB}$, and $\frac{\mathrm{SBW}}{B W}=3$, resulting in $\mathrm{n}=6$.

1.0 Application Information (Continued)

TL/H/8694-19
FIGURE 11. Eighth-Order multiple-feedback bandpass filter using two MF8s. The circuit shown accepts a TTL-level clock signal and has a clock-to-center-frequency ratio of 100:1.

1.5 TRACKING AND CASCADED SECOND-ORDER
 BANDPASS FILTERS

The individual second-order bandpass stages may be used as "stand-alone" filters without adding external feedback resistors. The clock frequency and Q logic voltages set the center frequency and bandwidth of both second-order bandpass filters, so the two filters will have equivalent responses. Thus, they may be used as separate "tracking" filters for two different signal sources as in Figure 2a, or cascaded as in Figure 2b. For individual or cascaded sec-ond-order bandpass filters, the -3 dB bandwidth and the amplitude response are given by the following two equations:

$$
\begin{gather*}
B W(-3)=\frac{f_{0}}{Q} \sqrt{2(1 / N)-1} \tag{1}\\
H(s)=\left[2 \times \frac{\frac{w_{0}}{Q} s}{s^{2}+\frac{W_{0}}{Q} s+w_{0}^{2}}\right]^{N} \tag{2}
\end{gather*}
$$

where
$\mathrm{BW}(-3)=$ the -3 dB bandwidth of the overall filter

TL/H/8694-20
FIGURE 12. H(s) For second-order bandpass filters with various values of \mathbf{Q}. H_{0} normalized in each case to 0 dB .

TL/H/8694-21
FIGURE 13. Design Nomograph for Cascaded Identical Second-Order Bandpass Filters
$Q \quad=$ the Q of each second order bandpass stage
$f_{0}=$ the center frequency of the filter in Hertz
$\mathrm{w}_{0}=2 \pi \mathrm{f}_{0}=$ the center frequency of the filter in radians per second
$N=$ the number of cascaded second-order stages $=\frac{n}{2}$
$H(s)=$ the overall filter transfer function
$\mathrm{H}(\mathbf{s})$ for a second order bandpass filter is plotted in Figure 12. Curves are shown for several different values of Q. Center frequency is normalized to 1 Hz and center-frequency gain is normalized to 0 dB .
To find the necessary order n for cascaded second-order bandpass filters using the nomograph in Figure 13, first determine the -3 dB bandwidth $\mathrm{BW}(-3)$, stopband width SBW, and minimum stopband attenuation $A_{\text {min }}$. Draw a vertical line up from SBW/BW (-3), and a horizontal line across from $A_{\text {min }}$. The required order is shown on the curve just above the point of intersection of the two lines. Remember that each second-order filter section will have a center frequency gain of 2 , so the overall gain of a cascaded filter will be 2 N .
Cascading filters in this way may provide acceptable performance when minimum external parts count is very impor-

1.0 Application Information (Continued)

tant, but much greater flexibility and better performance will be obtained by using the feedback techniques described in 1.4.

1.6 INPUT IMPEDANCE

The input to each filter block is a switched-capacitor circuit as shown in Figure 14. During the first half of a clock cycle, the input capacitor charges to the input voltage V_{in}, and during the second half-cycle, its charge is transferred to a feedback capacitor. The input impedance approximates a resistor of value

$$
\mathrm{R}_{\mathrm{in}} \cong \frac{1}{\mathrm{C}_{\mathrm{in}} \mathrm{f}_{\mathrm{CLK}}} .
$$

$C_{i n}$ depends on the value of Q selected by the Q logic pins, and varies from about 1 pF to about 5 pF . For a worst-case calculation of R_{in}, assume $\mathrm{C}_{\mathrm{in}}=5 \mathrm{pF}$. Thus,

TL/H/8694-22
FIGURE 14. Simplified MF8 Input Stage
At the maximum clock frequency of 1 MHz , this gives $R_{\text {in }} \cong 200 k$. Note that $R_{\text {in }}$ increases as $f_{\text {CLK }}$ decreases, so the input impedance should never be less than this number. Source impedance should be low enough that the gain isn't significantly affected.

1.7 OUTPUT DRIVE

The filter outputs can typically drive a $5 \mathrm{k} \Omega$ load resistor to over $\pm 4 \mathrm{~V}$ peak-to-peak. Load resistors smaller than $5 \mathrm{k} \Omega$ should not be used. The operational amplifier can drive the minimum recommended load resistance of $5 \mathrm{k} \Omega$ to at least $\pm 3.5 \mathrm{~V}$.

1.8 SAMPLED-DATA SYSTEM CONSIDERATIONS

Aliasing

The MF8 is a sampled-data filter, and as such, differs in many ways from conventional continuous-time filters. An important characteristic of sampled-data systems is their effect on signals at frequencies greater than one-half the sampling frequency. (The MF8's sampling frequency is the same as its clock frequency). If a signal with a frequency greater than one-half the sampling frequency is applied to the input of a sampled-data system, it will be "reflected" to a frequency less than one-half the sampling frequency. Thus, an input signal whose frequency is $\mathrm{f}_{\mathrm{s}} / 2+10 \mathrm{~Hz}$ will cause the system to respond as though the input frequency
was $f_{s} / 2-10 \mathrm{~Hz}$. This phenomenon is known as "aliasing". Aliasing can be reduced or eliminated by limiting the input signal spectrum to less than $\mathrm{f}_{\mathrm{s}} / 2$. This may in some cases require the use of a bandwidth-limiting filter (a simple passive RC network will generally suffice) ahead of the MF8 to attenuate unwanted high-frequency signals. However, since the clock frequency is much greater than the center frequency, this will usually not be necessary.

Output Steps

Another characteristic of sampled-data circuits is that the output voltage changes only once every clock cycle, resulting in a discontinuous output signal (Figure 15). The "steps" are smaller when the clock-to-center-frequency ratio is $100: 1$ than when the ratio is $50: 1$.

Clock Frequency Limitations

The performance characteristics of a switched-capacitor filter depend on the switching (clock) frequency. At very low clock frequencies (below 10 Hz), the internal capacitors begin to discharge slightly between clock cycles. This is due to very small parasitic leakage currents. At very low clock frequencies, the time between clock cycles is relatively long, allowing the capacitors to discharge enough to affect the filters' output offset voltage and gain. This effect becomes stronger at elevated operating temperatures.
At higher clock frequencies, performance deviations are primarily due to the reduced time available for the internal integrating op amps to settle. For this reason, the clock waveform's duty cycle should be as close as possible to 50%, especially at higher frequencies. Filter Q shows more variation from the nominal values at higher frequencies, as indicated in the typical performance curves. This is the reason for the different maximum limits on Q accuracy at $\mathrm{f}_{\mathrm{CLK}}=$ 250 kHz and $\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{kHz}$ in the table of performance specifications.

Center Frequency Accuracy

Ideally, the ratio $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ should be precisely 100 or 50 , depending on the logic voltage on pin 10. However, as Table I shows, this ratio will change slightly depending on the Q selected. As the table shows, the largest errors occur at the lowest values of Q .

TL/H/8694-23
FIGURE 15. Output Waveform of MF8 Showing Sampling Steps

2.0 Design Tables for Multiple Feedback Loop Bandpass Filters

BUTTERWORTH RIPPLE 3 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	2.0000	4.0000					1.4142
6	2.3704	2.6667	9.1429			1.5000	
8	2.9142	2.0000	5.8284	14.3145			
10	3.6340	1.6000	4.4112	6.9094	27.2014		1.5451
${ }^{*} 12$	4.5635	1.3333	3.5800	4.3198	11.5043	49.0673	1.5529

CHEBYSHEV RIPPLE 0.01 dB

Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{Q}
4	1.9041	3.6339					0.4489
6	1.8277	1.8450	6.6170				0.9438
8	1.4856	0.9919	3.1209	5.0414			1.4257
*10	1.0171	0.5740	1.7484	1.2943	4.8814		1.8908
CHEBYSHEV RIPPLE 0.02 dB							
Order	K_{0}	K 2	K_{3}	K_{4}	K_{5}	K ${ }_{6}$	K_{Q}
4	1.8644	3.4922					0.5393
6	1.7024	1.6787	6.0772				1.0849
8	1.2893	0.8707	2.7661	4.0779			1.6106
*10	0.8163	0.4934	1.5155	0.9879	3.7119		2.1179

CHEBYSHEV RIPPLE 0.03 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{a}}$
4	1.8341	3.3871					0.6016
6	1.6183	1.5713	5.7231			1.1808	
8	1.1688	0.7977	2.5491	3.5270		1.7362	
${ }^{*} 10$	0.7034	0.4467	1.3786	0.8252	3.0938		2.2724

CHEBYSHEV RIPPLE 0.04 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.8085	3.3009					0.6508
6	1.5535	1.4908	5.4548			1.2560	
8	1.0814	0.7454	2.3919	3.1471			1.8348
$* 10$	0.6264	0.4139	1.2818	0.7181	2.6883		2.3940

CHEBYSHEV RIPPLE 0.05 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.7860	3.2268					0.6923
6	1.5002	1.4260	5.2373			1.3191	
8	1.0129	0.7046	2.2685	2.8609			1.9175
$* 10$	0.5686	0.3888	1.2072	0.6402	2.3938		2.4961

CHEBYSHEV RIPPLE 0.06 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.7657	3.1612					0.7285
6	1.4548	1.3717	5.0536			1.3741	
8	0.9566	0.6713	2.1670	2.6336			1.9897
$* 10$	0.5230	0.3685	1.1467	0.5800	2.1666		2.5852

2.0 Design Tables for Multiple Feedback Loop Bandpass Filters (Continued)							
CHEBYSHEV RIPPLE 07 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	$\mathbf{K}_{\mathbf{Q}}$
4	1.7471	3.1020					0.7609
6	1.4150	1.3249	4.8943				1.4232
8	0.9089	0.6431	2.0808	2.4466			2.0543
*10	0.4856	0.3516	1.0959	0.5316	1.9842		2.6649
CHEBYSHEV RIPPLE. 08 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	$\mathrm{K}_{\mathbf{Q}}$
4	1.7298	3.0478					0.7905
6	1.3795	1.2837	4.7534				1.4679
8	0.8675	0.6187	2.0060	2.2887			2.1130
CHEBYSHEV RIPPLE 09 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{Q}
		2.9978					0.8177
6	1.3475	1.2469	4.6271				1.5090
8	0.8311	0.5973	1.9400	2.1529			2.1671
CHEBYSHEV RIPPLE 0.1 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	$\mathrm{K}_{\mathbf{Q}}$
							0.8430
6	1.3183	1.2137	4.5125				1.5473
			1.8809	2.0343			2.2176
CHEBYSHEV RIPPLE 0.2 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	$\mathrm{K}_{\mathbf{Q}}$
							1.0378
6	1.1128	0.9894	3.7271				1.8413
8	0.5891	0.4551	1.4954	1.3309			2.6057
CHEBYSHEV RIPPLE 0.3 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	$\mathrm{K}_{\mathbf{Q}}$
4	1.4833	2.3575					1.1804
6	0.9835	0.8560	3.2501				2.0568
* 8	0.4732		1.2760	0.9885			2.8914
CHEBYSHEV RIPPLE 0.4 dB							
Order	\mathbf{K}_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{Q}
4	1.4067	2.1698					1.2988
6	0.8888	0.7618	2.9088				2.2363
* 8	0.3956	0.3391	1.1250	0.7792			3.1299
CHEBYSHEV RIPPLE 0.5 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{Q}
4	1.3405	2.0161					1.4029
6	0.8143	0.6897	2.6447				2.3944
* 8	0.3389	0.3040	1.0114	0.6365			3.3406

2.0 Design Tables for Multiple Feedback Loop Bandpass Filters (Continued)

CHEBYSHEV RIPPLE 0.6 dB

Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	Ka
4	1.2816	1.8857					1.4975
6	0.7530	0.6316	2.4305				2.5385
*8	0.2952	0.2762	0.9212	0.5326			3.5329
CHEBYSHEV RIPPLE 0.7 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{0}
4	1.2283	1.7727					1.5852
6	0.7012	0.5834	2.2515				2.6724
* 8	0.2601	0.2535	0.8471	0.4535			3.7119

CHEBYSHEV RIPPLE 0.8 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.1797	1.6731					1.6678
6	0.6564	0.5424	2.0983				2.7989
$* 8$	0.2314	0.2344	0.7846	0.3913			3.8811

CHEBYSHEV RIPPLE 0.9 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.1347	1.5841					1.7464
6	0.6171	0.5068	1.9650			2.9194	
${ }^{*} 8$	0.2073	0.2181	0.7309	0.3413			4.0426

CHEBYSHEV RIPPLE 1.0 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.0930	1.5039					1.8219
6	0.5822	0.4756	1.8475				3.0354
$* 8$	0.1869	0.2038	0.6840	0.3002			4.1981

CHEBYSHEV RIPPLE 1.1 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.0539	1.4310					1.8949
6	0.5509	0.4479	1.7428				3.1476
$* 8$	0.1693	0.1913	0.6426	0.2660			4.3487

CHEBYSHEV RIPPLE 1.2 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.0173	1.3643					1.9657
6	0.5226	0.4231	1.6487				3.2567
$* 8$	0.1540	0.1801	0.6056	0.2372			4.4952

CHEBYSHEV RIPPLE 1.3 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.9828	1.3029					2.0348
6	0.4969	0.4006	1.5634			3.3633	
$* 8$	0.1406	0.1701	0.5724	0.2125			4.6385

2.0 Design Tables for Multiple Feedback Loop Bandpass Filters (Continued)

CHEBYSHEV RIPPLE 1.4 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.9501	1.2461					2.1024
6	0.4733	0.3803	1.4857				3.4678

CHEBYSHEV RIPPLE 1.5 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.9192	1.1934					2.1688
6	0.4515	0.3616	1.4145				3.5705

CHEBYSHEV RIPPLE 1.6 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.8897	1.1443					2.2341
6	0.4315	0.3445	1.3490				3.6717

CHEBYSHEV RIPPLE 1.7 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.8617	1.0983					2.2986
6	0.4128	0.3287	1.2883				3.7717

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.8350	1.0553					2.3624
6	0.3955	0.3141	1.2321				3.8706

CHEBYSHEV RIPPLE 1.9 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.8095	1.0148					2.4255
6	0.3793	0.3005	1.1797				3.9687

CHEBYSHEV RIPPLE 2.0 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.7850	0.9767					2.4881
6	0.3641	0.2878	1.1308				4.0660

CHEBYSHEV RIPPLE 2.1 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.7616	0.9407					2.5503
6	0.3498	0.2759	1.0850				4.1628

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.7391	0.9067					2.6122
6	0.3364	0.2648	1.0420				4.2591

2.0 Design Tables for Multiple Feedback Loop Bandpass Filters (Continued)

CHEBYSHEV RIPPLE 2.3 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.7176	0.8744					2.6737
6	0.3237	0.2544	1.0016				4.3550

CHEBYSHEV RIPPLE 2.4 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.6968	0.8438					2.7350
6	0.3118	0.2446	0.9635				4.4507

CHEBYSHEV RIPPLE 2:5 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.6769	0.8148					2.7962
6	0.3005	0.2353	0.9275				4.5462

CHEBYSHEV RIPPLE 2.6 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.6577	0.7871					2.8573
6	0.2897	0.2265	0.8935				4.6415

CHEBYSHEV RIPPLE 2.7 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.6392	0.7607					2.9183
6	0.2796	0.2182	0.8612				4.7368

CHEBYSHEV RIPPLE 2.8 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.6213	0.7356					2.9792
6	0.2699	0.2104	0.8306				4.8322

CHEBYSHEV RIPPLE 2.9 dB							
Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{a}}$
4	0.6041	0.7116					3.0402
6	0.2607	0.2029	0.8016				4.9276

CHEBYSHEV RIPPLE 3.0 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{a}}$
4	0.5875	0.6886					3.1013
6	0.2519	0.1959	0.7739				5.0231

Note: Multiple feedback loop filters of higher order than those specified in the tables will oscillate due to phase shift at the output of the summing amplifier. This phase shift is not the fault of the MF8; it is inherent in this type of multiple feedback loop topology. In addition, all filters marked with an asterisk (${ }^{*}$) will be unstable for $Q \leq 1$, due to phase shifts caused by the MF8's switched-capacitor design approach.

MF10

Universal Monolithic Dual
Switched Capacitor Filler

General Description

The MF10 consists of 2 independent and extremely easy to use, general purpose CMOS active filter building blocks. Each block, together with an external clock and 3 to 4 resistors, can produce various 2nd order functions. Each building block has 3 output pins. One of the outputs can be configured to perform either an allpass, highpass or a notch function; the remaining 2 output pins perform lowpass and bandpass functions. The center frequency of the lowpass and bandpass 2nd order functions can be either directly dependent on the clock frequency, or they can depend on both clock frequency and external resistor ratios. The center frequency of the notch and allpass functions is directly dependent on the clock frequency, while the highpass center frequency depends on both resistor ratio and clock. Up to 4th order functions can be performed by cascading the two 2nd order building blocks of the MF10; higher than 4th order functions can be obtained by cascading MF10 packages.

Any of the classical filter configurations (such as Butterworth, Bessel, Cauer and Chebyshev) can be formed.
For pin-compatible device with improved performance refer to LMF100 datasheet.

Features

- Easy to use
- Clock to center frequency ratio accuracy $\pm 0.6 \%$
r Filter cutoff frequency stability directly dependent on external clock quality
\square Low sensitivity to external component variation
- Separate highpass (or notch or allpass), bandpass, lowpass outputs
\square fo $\times Q$ range up to 200 kHz
- Operation up to 30 kHz
- 20-pin 0.3" wide Dual-In-Line package
- 20-pin Surface Mount (SO) wide-body package

System Block Diagram

Connection Diagram
Surface Mount and Dual-In-Line Package

Top View

Order Number MF10AJ or MF10CCJ See NS Package Number J20A
Order Number MF10ACWM or MF10CCWM See NS Package Number M20B Order Number MF10ACN or MF10CCN See NS Package Number N20A

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	14 V
Voltage at Any Pin	$\mathrm{V}++0.3 \mathrm{~V}$
	$\mathrm{~V}--0.3 \mathrm{~V}$
Input Current at Any Pin (Note 2)	5 mA
Package Input Current (Note 2)	20 mA
Power Dissipation (Note 3)	500 mW
Storage Temperature	$150^{\circ} \mathrm{C}$
ESD Susceptability (Note 11)	2000 V

Soldering Information

N Package: 10 sec.	$260^{\circ} \mathrm{C}$
J Package: 10 sec.	$300^{\circ} \mathrm{C}$
SO Package: Vapor Phase $(60 \mathrm{Sec})$.	$215^{\circ} \mathrm{C}$
Infrared (15 Sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

Operating Ratings (Note 1)

Temperature Range	$T_{M I N} \leq T_{A} \leq T_{M A X}$
MF10ACN, MF10CCN	$0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$
MF10CCWM, MF10ACWM	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}$
MF10CCJ	$-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$
MF10AJ	$-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}^{+}=+5.00 \mathrm{~V}$ and $\mathrm{V}-=-5.00 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX; }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter		Conditions		MF10ACN, MF10CCN, MF10ACWM, MF10CCWM			MF10CCJ, MF10AJ			Units		
			Typical (Note 8)	Tested Limit (Note 9)	$\|$Design Limit (Note 10)	Typical (Note 8)	$\begin{gathered} \text { Tested } \\ \text { Limit } \\ \text { (Note 9) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { Note 10 } \end{array}$					
$\overline{V^{+}-V^{-}}$	Supply Voltage	Min							9			9	V
		Max					14			14	V		
Is	Maximum Supply Current		Clock Applied to Pins 10 \& 11 No Input Signal		8	12	12	8	12		mA		
fo	Center Frequency Range	Min	fo \times Q $<200 \mathrm{kHz}$		0.1		0.2	0.1		0.2	Hz		
		Max			30		20	30		20	kHz		
fcLK	Clock Frequency Range	Min	$\mathrm{Q}=10$ $\mathrm{V}_{\text {pin12 }}=5 \mathrm{~V}$ Mode 1 $\mathrm{fCLK}=250 \mathrm{kHz}$		5.0		10	5.0		10	Hz		
		Max			1.5		1.0	1.5		1.0	MHz		
$\mathrm{fCLK} / \mathrm{fo}$	50:1 Clock to Center Frequency Ratio Deviation	MF10A			± 0.2	± 0.6	± 0.6	± 0.2	± 1.0		\%		
		MF10C			± 0.2	± 1.5	± 1.5	± 0.2	± 1.5		\%		
$\mathrm{f}_{\text {CLK } / \mathrm{fo}}$	100:1 Clock to Center Frequency Ratio Deviation	MF10A	$Q=10$	$\begin{aligned} & V_{\text {pin12 }}=0 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz} \end{aligned}$	± 0.2	± 0.6	± 0.6	± 0.2	± 1.0		\%		
		MF10C			± 0.2	± 1.5	± 1.5	± 0.2	± 1.5		\%		
	Clock Feedthrough		$\begin{aligned} & Q=10 \\ & \text { Mode } 1 \end{aligned}$		10			10			mV		
	$\begin{aligned} & \text { Q Error (MAX) } \\ & \text { (Note 4) } \end{aligned}$		$Q=10$ Mode 1	$\begin{aligned} & V_{\text {pin12 }}=5 \mathrm{~V} \\ & \text { fCLK }=250 \mathrm{kHz} \end{aligned}$	± 2	± 6	± 6	± 2	± 10		\%		
			$\begin{aligned} & \mathrm{V}_{\text {pin12 }}=0 \mathrm{~V} \\ & \mathrm{fCLK}=500 \mathrm{kHz} \end{aligned}$	± 2	± 6	± 6	± 2	± 10		\%			
HoLP	DC Lowpass Gain			Mode 1 R1 = R2 $=10 \mathrm{k}$		0	± 0.2	± 0.2	0	± 0.2		dB	
$\mathrm{V}_{\text {OS } 1}$	DC Offset Voltage (Note 5)				± 5.0	± 20	± 20	± 5.0	± 20		mV		
Vos2	DC Offset Voltage (Note 5)	Min	$\begin{aligned} & \mathrm{V}_{\mathrm{pin} 12}=+5 \mathrm{~V} \\ & \left(\mathrm{f}_{\mathrm{GLK}} / \mathrm{f}_{\mathrm{O}}=50\right) \end{aligned}$	$S_{A / B}=V^{+}$	-150	-185	-185	-150	-185		mV		
		Max				-85	-85		-85				
		Min Max	$\begin{aligned} & \mathrm{V}_{\mathrm{pin} 12}=+5 \mathrm{~V} \\ & \left(\mathrm{f}_{\mathrm{GLK}} / \mathrm{fo}_{\mathrm{O}}=50\right) \end{aligned}$	$S_{A / B}=V^{-}$	-70			-70			mV		
VOS3	DC Offset Voltage (Note 5)	Min	$\begin{aligned} & \mathrm{V}_{\mathrm{pin12}}=+5 \mathrm{~V} \\ & \left(\mathrm{f} \mathrm{fLK} / \mathrm{fo}_{\mathrm{O}}=50\right) \end{aligned}$	All Modes	-70	-100	-100	-70	-100		mV		
		Max				-20	-20		-20				
$\mathrm{V}_{\text {OS2 }}$	DC Offset Voltage (Note 5) (Note 5)		$\begin{aligned} & \mathrm{V}_{\mathrm{pin12}}=0 \mathrm{~V} \\ & \left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{fo}_{\mathrm{O}}=100\right) \end{aligned}$	$S_{A / B}=V^{+}$	-300			-300			mV		
			$\begin{array}{\|l\|} \hline V_{\text {pin12 }}=0 V \\ \left(f_{\mathrm{CLK}} / \mathrm{fO}_{\mathrm{O}}=100\right) \end{array}$	$S_{A / B}=V^{-}$	-140			-140			mV		
$\mathrm{V}_{\text {OS3 }}$	DC Offset Voltage (Note 5)		$\begin{aligned} & V_{\text {pin12 }}=0 V \\ & \left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{fO}=100\right) \end{aligned}$	All Modes	-140			-140			mV		

Electrical Characteristics (Continued) $\mathrm{V}^{+}=+5.00 \mathrm{~V}$ and $\mathrm{V}^{-}=-5.00 \mathrm{~V}$ unless otherwise specified.
Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter		Conditions	MF10ACN, MF10CCN, MF10ACWM, MF10CCWM			MF10CCJ, MF10AJ			Units	
			Typical (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	Typical (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)			
V OUT	Minimum Output Voltage Swing	BP, LP Pins		$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k}$	± 4.25	± 3.8	± 3.8	± 4.25	± 3.8		V
		N/AP/HP Pin	$\mathrm{R}_{\mathrm{L}}=3.5 \mathrm{k}$	± 4.25	± 3.8	± 3.8	± 4.25	± 3.6		V	
GBW	Op Amp Gain BW Product			2.5			2.5			MHz	
SR	Op Amp Slew Rate			7			7			$\mathrm{V} / \mu \mathrm{s}$	
	Dynamic Range (Note 6)		$\begin{aligned} & V_{\text {pin12 }}=+5 \mathrm{~V} \\ & \left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}=50\right) \end{aligned}$	83			83			dB	
			$\begin{aligned} & V_{\text {pin12 }}=0 V \\ & \left(f_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}=100\right) \end{aligned}$	80			80			dB	
Isc	Maximum Output Short Circuit Current (Note 7)	Source		20			20			mA	
		Sink		3.0			3.0			mA	

Logic Input Characteristics Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$

Parameter		Conditions	MF10ACN, MF10CCN, MF10ACWM, MF10CCWM			MF10CCJ, MF10AJ			Units	
		Typical (Note 8)		Design Limit (Note 10)	Typical (Note 8)		Design Limit (Note 10)			
CMOS Clock Input Voltage	Min Logical " 1 "		$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LSh}}=0 \mathrm{~V} \end{aligned}$		+3.0	+3.0		+3.0		V
	Max Logical "0"			-3.0	-3.0		-3.0		V	
	Min Logical "1"	$\begin{aligned} & \mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LSh}}=+5 \mathrm{~V} \end{aligned}$		+8.0	+8.0		+8.0		V	
	Max Logical "0"			+2.0	+2.0		+2.0		V	
TTL Clock Input Voltage	Min Logical "1"	$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LSh}}=0 \mathrm{~V} \end{aligned}$		+2.0	+2.0		+2.0		V	
	Max Logical "0"			+0.8	+ 0.8		+0.8		V	
	Min Logical "1"	$\begin{aligned} & \mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LSh}} \end{aligned}$		+2.0	+2.0		+2.0		V	
	Max Logical '0"			+0.8	+ 0.8		+ 0.8		V	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: When the input voltage $\left(\mathrm{V}_{\mathbb{I}}\right)$ at any pin exceeds the power supply rails $\left(\mathrm{V}_{\mathrm{IN}}<\mathrm{V}^{-}\right.$or $\left.\mathrm{V}_{\mathbb{I N}}>\mathrm{V}^{+}\right)$the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.

Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX $\theta_{\text {JA }}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance of the MF10ACN/CCN when board mounted is $55^{\circ} \mathrm{C} / \mathrm{W}$. For the MF10AJ/CCJ, this number increases to $95^{\circ} \mathrm{C} / \mathrm{W}$ and for the MF10ACWM/CCWM this number is $66^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: The accuracy of the Q value is a function of the center frequency (fo). This is illustrated in the curves under the heading "Typical Performance Characteristics".

Note 5: $\mathrm{V}_{\mathrm{OS} 1}, \mathrm{~V}_{\mathrm{OS} 2}$, and $\mathrm{V}_{\mathrm{OS3}}$ refer to the internal offsets as discussed in the Applications Information Section 3.4.
Note 6: For $\pm 5 \mathrm{~V}$ supplies the dynamic range is referenced to $2.82 \mathrm{~V} \mathrm{rms} \mathrm{(} 4 \mathrm{~V}$ peak) where the wideband noise over a 20 kHz bandwidth is typically $200 \mu \mathrm{Vrms}$ for the MF10 with a 50:1 CLK ratio and $280 \mu \mathrm{~V}$ rms for the MF10 with a 100:1 CLK ratio.

Note 7: The short circuit source current is measured by forcing the output that is being tested to its maximum positive voltage swing and then shorting that output to the negative supply. The short circuit sink current is measured by forcing the output that is being tested to its maximum negative voltage swing and then shorting that output to the positive supply. These are the worst case conditions.
Note 8: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 9: Tested limits are guaranteed to National's AOQL. (Average Outgoing Quality Level).
Note 10: Design limits are guaranteed but not 100% tested. These limits are not used to calculate outgoing quality levels.
Note 11: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Typical Performance Characteristics

age Swing (NAP/HP Output)

Positive Output Swing vs Temperature

Negative Output Voltage Swing vs Load
Resistance (N/AP/HP Output)

Crosstalk vs Clock
Frequency

Q Deviation vs Clock Frequency

Typical Performance Characteristics (Continued)

Pin Descriptions

$L P(1,20), B P(2,19)$, The second order lowpass, bandpass N/AP/HP(3,18) and notch/allpass/highpass outputs. These outputs can typically sink 1.5 mA and source 3 mA . Each output typically swings to within 1V of each supply.
INV $(4,17) \quad$ The inverting input of the summing opamp of each filter. These are high impedance inputs, but the non-inverting input is internally tied to AGND, making $\mathrm{INV}_{\mathrm{A}}$ and $\mathbb{I N V _ { B } \text { behave like summing }}$ junctions (low impedance, current inputs).
$\mathrm{S} 1(5,16) \quad \mathrm{S} 1$ is a signal input pin used in the allpass filter configurations (see modes 4 and 5). The pin should be driven with a source impedance of less than $1 \mathrm{k} \Omega$. If $S 1$ is not driven with a signal it should be tied to AGND (mid-supply).
$\mathrm{S}_{\mathrm{A} / \mathrm{B}^{(6)}}$
$-\longrightarrow$

This pin activates a switch that connects one of the inputs of each filter's second summer to either AGND ($\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ tied to V^{-}) or to the lowpass (LP) output ($\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ tied to V^{+}). This offers the flexibility needed for configuring the filter in its various modes of operation.
$\mathrm{V}_{\mathrm{A}}{ }^{+}(7), \mathrm{V}_{\mathrm{D}}{ }^{+}(8) \quad$ Analog positive supply and digital positive supply. These pins are internally connected through the IC substrate and therefore $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$should be derived from the same power supply source. They have been brought out separately so they can be bypassed by separate capacitors, if desired. They can be externally tied together and bypassed by a single capacitor.
$V_{A}{ }^{-}(14), V_{D}-(13)$ Analog and digital negative supplies. The same comments as for $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$apply here.

Pin Descriptions (Continued)

LSh(9)
mputs toach switched capacitor filter building block. They should both be of the same level (TTL or CMOS). The level shift (LSh) pin description discusses how to accommodate their levels. The duty cycle of the clock should be close to 50% especially when clock frequencies above 200 kHz are used. This allows the maximum time for the internal op-amps to settle, which yields optimum filter operation.
50/100/CL(12) By tying this pin high a 50:1 clock-to-fil-ter-center-frequency ratio is obtained. Tying this pin at mid-supplies (i.e, analog ground with dual supplies) allows the filter to operate at a 100:1 clock-to-cen-ter-frequency ratio. When the pin is tied low (i.e., negative supply with dual supplies), a simple current limiting circuit is triggered to limit the overall supply current down to about 2.5 mA . The filtering action is then aborted.
AGND(15)
Level shift pin; it accommodates various clock levels with dual or single supply operation. With dual $\pm 5 \mathrm{~V}$ supplies, the MF10 can be driven with CMOS clock levels ($\pm 5 \mathrm{~V}$) and the LSh pin should be tied to the system ground. If the same supplies as above are used but only TTL clock levels, derived from 0 V to +5 V supply, are available, the LSh pin should be tied to the system ground. For single supply operation (0 V and +10 V) the $\mathrm{V}_{\mathrm{A}^{-}}, \mathrm{V}_{\mathrm{D}^{-}}$pins should be connected to the system ground, the AGND pin should be biased at +5 V and the LSh pin should also be tied to the system ground for TTL clock levels. LSh should be biased at +5 V for CMOS clock levels in 10 V single-supply applications.

This is the analog ground pin. This pin should be connected to the system ground for dual supply operation or biased to mid-supply for single supply operation. For a further discussion of midsupply biasing techniques see the Applications Information (Section 3.2). For optimum filter performance a "clean" ground must be provided.

1.0 Definition of Terms

fCLK: the frequency of the external clock signal applied to pin 10 or 11.
fo: center frequency of the second order function complex pole pair. f_{O} is measured at the bandpass outputs of the MF10, and is the frequency of maximum bandpass gain. (Figure 1)
$f_{\text {notch: }}$ the frequency of minimum (ideally zero) gain at the notch outputs.
$\mathbf{f}_{\mathbf{z}}$: the center frequency of the second order complex zero pair, if any. If f_{z} is different from f_{O} and if Q_{z} is high, it can be observed as the frequency of a notch at the allpass output. (Figure 10)
Q: "quality factor" of the 2nd order filter. Q is measured at the bandpass outputs of the MF10 and is equal to fo divided by the -3 dB bandwidth of the 2nd order bandpass filter (Figure 1). The value of Q determines the shape of the 2 nd order filter responses as shown in Figure 6.
$\mathbf{Q}_{\mathbf{z}}$: the quality factor of the second order complex zero pair, if any. Q_{Z} is related to the allpass characteristic, which is written:
$H_{A P}(s)=\frac{H_{O A P}\left(s^{2}-\frac{s \omega_{O}}{Q_{Z}}+\omega_{O}{ }^{2}\right)}{s^{2}+\frac{s \omega_{O}}{Q}+\omega_{O^{2}}}$
where $Q_{Z}=Q$ for an all-pass response.
$H_{\text {OBp: }}$ the gain (in V/V) of the bandpass output at $f=f_{0}$.
Holp: the gain (in V/V) of the lowpass output as $f \rightarrow 0 \mathrm{~Hz}$ (Figure 2).
$\mathbf{H}_{\text {OHp: }}$ the gain (in V/V) of the highpass output as $f \rightarrow$ $\mathrm{f}_{\mathrm{CLK}} / 2$ (Figure 3).
$H_{O N}$: the gain (in V/V) of the notch output as $f \rightarrow 0 \mathrm{~Hz}$ and as $\mathrm{f} \rightarrow \mathrm{f}_{\mathrm{CLK}} / 2$, when the notch filter has equal gain above and below the center frequency (Figure 4). When the low-frequency gain differs from the high-frequency gain, as in modes 2 and 3 a (Figures 11 and 8), the two quantities below are used in place of H_{ON}.
HON1: the gain (in V/V) of the notch output as $f \rightarrow 0 \mathrm{~Hz}$. $H_{\text {ON2 }}$: the gain (in V/V) of the notch output as $f \rightarrow f_{\mathrm{CLK}} / 2$.

1.0 Definition of Terms (Continued)

(a)

(b)

$$
H_{B P}(s)=\frac{H_{O B P} \frac{\omega 0}{Q} s}{s^{2}+\frac{s \omega_{0}}{Q}+\omega_{0}{ }^{2}}
$$

$$
Q=\frac{f_{O}}{f_{H}-f_{L}} ; f_{O}=\sqrt{L_{L} f_{H}}
$$

$$
f_{L}=f_{O}\left(\frac{-1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right)
$$

$$
f_{H}=f_{O}\left(\frac{1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right)
$$

$$
\omega_{\mathrm{O}}=2 \pi \mathrm{f}_{\mathrm{O}}
$$

FIGURE 1. 2nd-Order Bandpass Response

(a)

(b)

$$
\begin{aligned}
& H_{L P}(s)=\frac{H_{O L P} \omega_{O^{2}}}{s^{2}+\frac{\mathbf{S} \omega_{O}}{\mathrm{Q}}+\omega_{O^{2}}} \\
& \mathrm{f}_{\mathrm{C}}=\mathrm{f}_{\mathrm{O}} \times \sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}} \\
& \mathrm{f}_{\mathrm{p}}=\mathrm{f}_{\mathrm{O}} \sqrt{1-\frac{1}{2 \mathrm{Q}^{2}}} \\
& H_{O P}=H_{O L P} \times \frac{1}{\frac{1}{\mathrm{Q}} \sqrt{1-\frac{1}{4 \mathrm{Q}^{2}}}}
\end{aligned}
$$

FIGURE 2. 2nd-Order Low-Pass Response

(a)

(b)

$$
\begin{aligned}
& H_{H P}(s)=\frac{H_{O H P s^{2}}}{\mathbf{s}^{2}+\frac{\mathbf{s} \omega_{\mathrm{O}}}{\mathrm{Q}}+\omega_{\mathbf{O}^{2}}} \\
& \mathrm{f}_{\mathrm{C}}=\mathrm{f}_{\mathrm{O}} \times\left[\sqrt{\left(1-\frac{1}{2 \mathrm{Q}^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}}\right]^{-1} \\
& \mathrm{f}_{\mathrm{p}}=\mathrm{fo}_{\mathrm{O}} \times\left[\sqrt{1-\frac{1}{2 \mathrm{Q}^{2}}}\right]^{-1} \\
& H_{\mathrm{OP}}=H_{\mathrm{OHP}} \times \frac{1}{\frac{1}{\mathrm{Q}} \sqrt{1-\frac{1}{4 Q^{2}}}}
\end{aligned}
$$

FIGURE 3. 2nd-Order High-Pass Response

1.0 Definitions of Terms (Continued)

(a)

TL/H/10399-12
(b)

$$
H_{N}(s)=\frac{H_{O N}\left(s^{2}+\omega_{0}{ }^{2}\right)}{s^{2}+\frac{s \omega_{0}}{Q}+\omega_{0}{ }^{2}}
$$

$$
Q=\frac{f_{0}}{f_{H}-f_{L}} ; f_{O}=\sqrt{f_{L} f_{H}}
$$

$$
f_{L}=f_{O}\left(\frac{-1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right)
$$

$$
f_{H}=f_{0}\left(\frac{1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right)
$$

FIGURE 4. 2nd-Order Notch Response

(b)

FIGURE 5. 2nd-Order All-Pass Response
(a) Bandpass

(b) Low Pass

(c) High-Pass

FIGURE 6. Response of various 2 nd-order filters as a function of \mathbf{Q}.
Gains and center frequencies are normalized to unity.

2.0 Modes of Operation

The MF10 is a switched capacitor (sampled data) filter. To fully describe its transfer functions, a time domain approach is appropriate. Since this is cumbersome, and since the MF10 closely approximates continuous filters, the following discussion is based on the well know frequency domain. Each MF10 can produce a full 2nd order function. See Table I for a summary of the characteristics of the various modes.
MODE 1: Notch 1, Bandpass, Lowpass Outputs:
$\mathbf{f}_{\text {notch }}=\mathbf{f}_{0}$ (See Figure 7)
$\mathrm{f}_{\mathrm{O}}=$ center frequency of the complex pole pair
$=\frac{\mathrm{f}_{\mathrm{CLK}}}{100}$ or $\frac{\mathrm{f} \text { CLK }}{50}$
$f_{\text {notch }}=$ center frequency of the imaginary zero pair $=f_{0}$.
$H_{\text {OLP }}=$ Lowpass gain (as $f \rightarrow 0$) $=-\frac{R 2}{R 1}$
$H_{O B P}=$ Bandpass gain $\left(\right.$ at $\left.f=f_{O}\right)=-\frac{R 3}{R 1}$
$\mathrm{H}_{\mathrm{ON}}=$ Notch output gain as $\underset{\mathrm{f} \rightarrow \mathrm{f}_{\mathrm{CLK}} / 2}{\mathrm{f}} \mathrm{m}^{0}=\frac{-\mathrm{R}_{2}}{\mathrm{R}_{1}}$
$Q=\frac{f_{0}}{B W}=\frac{R 3}{R 2}$
$=$ quality factor of the complex pole pair
$\mathrm{BW}=$ the -3 dB bandwidth of the bandpass output.
Circuit dynamics:

$$
\begin{aligned}
H_{\mathrm{OLP}} & =\frac{H_{\mathrm{OBP}}}{Q} \text { or } H_{\mathrm{OBP}}=H_{\mathrm{OLP}} \times Q \\
& =H_{\mathrm{ON}} \times Q
\end{aligned}
$$

MODE 1a: Non-Inverting BP, LP (See Figure 8)
$f_{0}=\frac{f_{C L K}}{100}$ or $\frac{f_{C L K}}{50}$
$Q=\frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{\text {OLP }}=-1 ; H_{\text {OLP(peak) }} \cong Q \times H_{\text {OLP }}$ (for high Q's)
$\mathrm{H}_{\mathrm{OBP}_{1}}=-\frac{\mathrm{R} 3}{\mathrm{R} 2}$
$\mathrm{H}_{\mathrm{OBP}_{2}}=1$ (Non-Inverting)
Circuit Dynamics: $\mathrm{H}_{\mathrm{OBP} 1}=\mathrm{Q}$
Note: V_{IN} should be driven from a low impedance ($<1 \mathrm{k} \Omega$) source.

TL/H/10399-16
FIGURE 7. MODE 1

FIGURE 8. MODE 1a

2.0 Modes of Operation (Continued)

MODE 2: Notch 2, Bandpass, Lowpass: $f_{\text {notch }}<\mathrm{f}_{\mathrm{O}}$ (See Figure 9)
$\mathrm{f}_{\mathrm{O}}=$ center frequency
$=\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}+1}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50} \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}+1}$
$f_{\text {notch }}=\frac{f_{\text {CLK }}}{100}$ or $\frac{f_{\text {CLK }}}{50}$
Q = quality factor of the complex pole pair

$$
=\frac{\sqrt{R 2 / R 4+1}}{\text { R2/R3 }}
$$

$H_{\text {OLP }}=$ Lowpass output gain (as $f \rightarrow 0$)

$$
=-\frac{\mathrm{R} 2 / \mathrm{R} 1}{\mathrm{R} 2 / \mathrm{R} 4+1}
$$

$H_{\text {OBP }}=$ Bandpass output gain (at $\left.f=f_{0}\right)=-R 3 / R 1$
$\mathrm{H}_{\mathrm{ON}_{1}}=$ Notch output gain (as $f \rightarrow 0$)

$$
=-\frac{\mathrm{R} 2 / \mathrm{R} 1}{\mathrm{R} 2 / \mathrm{R} 4+1}
$$

$\mathrm{H}_{\mathrm{ON}}^{2}$ $=$ Notch output gain $\left(\right.$ as $\left.\mathrm{f} \rightarrow \frac{\mathrm{f} C \mathrm{LK}}{2}\right)=-\mathrm{R} 2 / \mathrm{R} 1$
Filter dynamics: $\mathrm{H}_{\mathrm{OBP}}=\mathrm{Q} \sqrt{\mathrm{H}_{\mathrm{OLP}} \mathrm{H}_{\mathrm{ON}}^{2}} \mid=\sqrt{\mathrm{HON}_{\mathrm{ON} 1} \mathrm{H}_{\mathrm{ON} 2}}$

MODE 3: Highpass, Bandpass, Lowpass Outputs (See Figure 10)
$\mathrm{f}_{\mathrm{O}}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$
Q = quality factor of the complex pole pair
$=\sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{O H P}=$ Highpass Gain $\left(\right.$ as $\left.f \rightarrow \frac{f_{C L K}}{2}\right)=-\frac{R 2}{R 1}$
$H_{O B P}=$ Lowpass Gain $\left(\right.$ at $\left.f=f_{O}\right)=-\frac{R 3}{R 1}$
$H_{\text {OLP }}=$ Lowpass Gain $($ as $f \rightarrow 0)=-\frac{R 4}{R 1}$
Circuit dynamics: $\frac{\mathrm{R} 2}{\mathrm{R} 4}=\frac{\mathrm{H}_{\mathrm{OHP}}}{\mathrm{H}_{\mathrm{OLP}}}$;

$$
\mathrm{H}_{\mathrm{OBP}}=\sqrt{\mathrm{H}_{\mathrm{OHP}} \times \mathrm{H}_{\mathrm{OLP}}} \times \mathrm{Q}
$$

$H_{\text {OLP(peak) }} \cong Q \times H_{\text {OLP }}$ (for high Q's)
$H_{O H P}$ (peak) $\cong Q \times H_{\text {OHP }}$ (for high Q 's)

TL/H/10399-18
FIGURE 9. MODE 2

TL/H/10399-19
${ }^{*}$ In Mode 3, the feedback loop is closed around the input summing amplifier; the finite GBW product of this op amp causes a slight Q enhancement. If this is a problem, connect a small capacitor ($10 \mathrm{pF}-100 \mathrm{pF}$) across R4 to provide some phase lead.

FIGURE 10. MODE 3

2.0 Modes of Operation (Continued)

MODE 3a: HP, BP, LP and Notch with External Op Amp (See Figure 11)
$\mathrm{fo}_{\mathrm{O}}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$
$Q=\sqrt{\frac{R 2}{R 4}} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{O H P}=-\frac{R 2}{R 1}$
$H_{O B P}=-\frac{R 3}{R 1}$
$H_{\text {OLP }}=-\frac{R 4}{R 1}$
$f_{n}=$ notch frequency $=\frac{f_{C L K}}{100} \sqrt{\frac{R_{h}}{R_{l}}}$ or $\frac{f_{C L K}}{50} \sqrt{\frac{R_{h}}{R_{l}}}$
$\mathrm{H}_{\mathrm{ON}}=$ gain of notch at

$$
f=f_{\mathrm{O}}=\left\|Q\left(\frac{R_{\mathrm{g}}}{R_{l}} H_{\mathrm{OLP}}-\frac{R_{\mathrm{g}}}{R_{\mathrm{h}}} H_{\mathrm{OHP}}\right)\right\|
$$

$H_{n 1}=$ gain of notch (as $\left.f \rightarrow 0\right)=\frac{R_{g}}{R_{l}} \times H_{\text {OLP }}$
$\mathrm{H}_{\mathrm{n} 2}=$ gain of notch $\left(\right.$ as $\left.\mathrm{f} \rightarrow \frac{\mathrm{f} \mathrm{CLK}}{2}\right)$
$=-\frac{R_{g}}{R_{h}} \times H_{\mathrm{OHP}}$

MODE 4: Allpass, Bandpass, Lowpass Outputs (See Figure 12)

$$
\begin{aligned}
f_{0}= & \text { center frequency } \\
= & \frac{f_{C L K}}{100} \text { or } \frac{f_{C L K}}{50} ; \\
& f_{z^{*}}=\text { center frequency of the complex zero } \approx f_{O} \\
Q= & \frac{f_{0}}{B W}=\frac{R 3}{R 2} ; \\
& Q_{Z}=\text { quality factor of complex zero pair }=\frac{R 3}{R 1}
\end{aligned}
$$

For AP output make R1 = R2

$$
\begin{aligned}
\mathrm{H}_{\mathrm{OAP}}{ }^{*} & =\text { Allpass gain }\left(\text { at } 0<\mathrm{f}<\frac{\mathrm{f} \mathrm{fLK}}{2}\right)=-\frac{\mathrm{R} 2}{\mathrm{R} 1}=-1 \\
\mathrm{H}_{\mathrm{OLP}} & =\text { Lowpass gain (as } \mathrm{f} \rightarrow 0) \\
& =-\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}+1\right)=-2 \\
\mathrm{H}_{\mathrm{OBP}} & \left.=\text { Bandpass gain (at } f=\mathrm{f}_{\mathrm{O}}\right) \\
& =-\frac{\mathrm{R} 3}{\mathrm{R} 2}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)=-2\left(\frac{\mathrm{R} 3}{\mathrm{R} 2}\right)
\end{aligned}
$$

Circuit Dynamics: $H_{\text {OBP }}=\left(H_{\text {OLP }}\right) \times Q=\left(H_{\text {OAP }}+1\right) Q$
*Due to the sampled data nature of the filter, a slight mismatch of f_{z} and f_{0} occurs causing a 0.4 dB peaking around fo of the allpass filter amplitude response (which theoretically should be a straight line). If this is unacceptable, Mode 5 is recommended.

TL/H/10399-20
FIGURE 11. MODE 3a

2.0 Modes of Operation (Continued)

 MODE 5: Numerator Complex Zeros, BP, LP (See Figure 13)fo $=\sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{f} \mathrm{CLK}}{100}$ or $\sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{f} \text { CK }}{50}$
$\mathrm{f}_{\mathrm{z}}=\sqrt{1-\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{f} \text { CLK }}{100}$ or $\sqrt{1-\frac{\mathrm{R} 1}{\mathrm{R} 4}} \times \frac{\mathrm{f}_{\text {CLK }}}{50}$
$Q=\sqrt{1+\mathrm{R} 2 / \mathrm{R} 4} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$\mathrm{Q}_{\mathrm{Z}}=\sqrt{1-\mathrm{R} 1 / \mathrm{R} 4} \times \frac{\mathrm{R} 3}{\mathrm{R} 1}$
$\mathrm{H}_{0_{z 1}}=$ gain at $\mathrm{C} . \mathrm{Z}$. output (as $\mathrm{f} \rightarrow .0 \mathrm{~Hz}$)

$$
\frac{-R 2(R 4-R 1)}{R 1(R 2+R 4)}
$$

$\mathrm{H}_{\mathrm{Oz}_{2}}=$ gain at C.z. output $\left(\right.$ as $\left.f \rightarrow \frac{\mathrm{f} \mathrm{CLK}}{2}\right)=\frac{-\mathrm{R} 2}{\mathrm{R} 1}$
$H_{O B P}=-\left(\frac{R 2}{R 1}+1\right) \times \frac{R 3}{R 2}$
$H_{\text {OLP }}=-\left(\frac{R 2+R 1}{R 2+R 4}\right) \times \frac{R 4}{R 1}$

MODE 6a: Single Pole, HP, LP Filter (See Figure 14)
$\mathrm{f}_{\mathrm{c}} \quad=$ cutoff frequency of LP or HP output
$=\frac{\mathrm{R} 2}{\mathrm{R} 3} \frac{\mathrm{f} C L K}{100}$ or $\frac{\mathrm{R} 2}{\mathrm{R} 3} \frac{\mathrm{f} \text { CLK }}{50}$
$H_{\text {OLP }}=-\frac{\mathrm{R} 3}{\mathrm{R} 1}$
$H_{O H P}=-\frac{R 2}{R 1}$
MODE 6b: Single Pole LP Filter (Inverting and Non-Inverting) (See Figure 15)

$$
\begin{aligned}
f_{c} & =\text { cutoff frequency of LP outputs } \\
& \cong \frac{R 2}{R 3} \frac{f_{C L K}}{100} \text { or } \frac{R 2}{R 3} \frac{f_{C L K}}{50} \\
H_{O L P 1} & =1 \text { (non-inverting) } \\
H_{O L P 2} & =-\frac{R 3}{R 2}
\end{aligned}
$$

FIGURE 13. MODE 5

FIGURE 14. MODE 6a

TL/H/10399-24
FIGURE 15. MODE 6b

2.0 Modes of Operation (Continued)

TABLE I. Summary of Modes. Realizable filter types (e.g. low-pass) denoted by asterisks. Unless otherwise noted, gains of various filter outputs are inverting and adjustable by resistor ratios.

Mode	BP	LP	HP	N	AP	Number of Resistors	Adjustable flek/fo	Notes
1	*	*		*		3	No	
1 a	$\begin{aligned} &(2) \\ & \mathrm{H}_{\mathrm{OBP} 1}=-\mathrm{Q} \\ & \mathrm{H}_{\mathrm{OBP} 2}=+1 \end{aligned}$	Holp +1				2	No	May need input buffer. Poor dynamics for high Q.
2	*	*		*		3	$\begin{aligned} & \hline \text { Yes (above } \mathrm{f}_{\text {CLK }} / 50 \\ & \text { or } \mathrm{f}_{\mathrm{CLK}} / 100 \text {) } \\ & \hline \end{aligned}$	
3	*	*	*			4	Yes	Universal State-Variable Filter. Best general-purpose mode.
3 a	*	*	*	*		7	Yes	As above, but also includes resistor-tuneable notch.
4	*	*			*	3	No	Gives Allpass response with $\mathrm{H}_{\mathrm{OAP}}=-1$ and $\mathrm{H}_{\mathrm{OLP}}=-2$.
5	*	*			*	4		Gives flatter allpass response than above if $R_{1}=R_{2}=0.02 R_{4}$.
6 a		*	*			3		Single pole.
6b		$\begin{gathered} (2) \\ \text { HOLP1 }^{2}=+1 \\ \text { HOLP2 }^{2}=\frac{-\mathrm{R} 3}{\mathrm{R} 2} \end{gathered}$				2		Single Pole.

3.0 Applications Information

The MF10 is a general-purpose dual second-order state variable filter whose center frequency is proportional to the frequency of the square wave applied to the clock input (fCLK). By connecting pin 12 to the appropriate DC voltage, the filter center frequency f_{O} can be made equal to either $\mathrm{f}_{\mathrm{CLK}} / 100$ or $\mathrm{f}_{\mathrm{CLK}} / 50$. fo can be very accurately set (within $\pm 6 \%$) by using a crystal clock oscillator, or can be easily varied over a wide frequency range by adjusting the clock frequency. If desired, the folk/fo ratio can be altered by external resistors as in Figures 9, 10, 11, 13,-14 and 15. The filter Q and gain are determined by external resistors.
All of the five second-order filter types can be built using either section of the MF10. These are illustrated in Figures 1 through 5 along with their transfer functions and some related equations. Figure 6 shows the effect of Q on the shapes of these curves. When filter orders greater than two are desired, two or more MF10 sections can be cascaded.

3.1 DESIGN EXAMPLE

In order to design a second-order filter section using the MF10, we must define the necessary values of three parameters: f_{0}, the filter section's center frequency; H_{0}, the passband gain; and the filter's Q . These are determined by the characteristics required of the filter being designed.
As an example, let's assume that a system requires a fourth-order Chebyshev low-pass filter with 1 dB ripple, unity gain at DC, and 1000 Hz cutoff frequency. As the system order is four, it is realizable using both second-order sections of an MF10. Many filter design texts include tables that list the characteristics (fo and Q) of each of the second-order filter sections needed to synthesize a given higher-order
filter. For the Chebyshev filter defined above, such a table yields the following characteristics:
$f_{O A}=529 \mathrm{~Hz} \quad Q_{A}=0.785$
$f_{0 B}=993 \mathrm{~Hz} \quad Q_{B}=3.559$
For unity gain at DC, we also specify:
$H_{0 A}=1$
$H_{0 B}=1$
The desired clock-to-cutoff-frequency ratio for the overall filter of this example is 100 and a 100 kHz clock signal is available. Note that the required center frequencies for the two second-order sections will not be obtainable with clock-to-center-frequency ratios of 50 or 100 . It will be necessary to adjust $\frac{\mathrm{f}_{\mathrm{CLK}}}{f_{0}}$ externally. From Table I, we see that Mode 3 can be used to produce a low-pass filter with resistor-adjustable center frequency.
In most filter designs involving multiple second-order stages, it is best to place the stages with lower Q values ahead of stages with higher Q, especially when the higher Q is greater than 0.707 . This is due to the higher relative gain at the center frequency of a higher- Q stage. Placing a stage with lower Q ahead of a higher- Q stage will provide some attenuation at the center frequency and thus help avoid clipping of signals near this frequency. For this example, stage A has the lower $Q(0.785)$ so it will be placed ahead of the other stage.
For the first section, we begin the design by choosing a convenient value for the input resistance: $R_{1 A}=20 \mathrm{k}$. The absolute value of the passband gain HOLPA is made equal

3.0 Applications Information (Continued)

to 1 by choosing $R_{4 A}$ such that: $R_{4 A}=-H_{O L P A} R_{1 A}=$ $R_{1 A}=20 \mathrm{k}$. If the $50 / 100 / \mathrm{CL}$ pin is connected to mid-supply for nominal 100:1 clock-to-center-frequency ratio, we find $R_{2 A}$ by:
$R_{2 A}=R_{4 A} \frac{f_{O A}{ }^{2}}{\left(f_{C L K} / 100\right)^{2}}=2 \times 10^{4} \times \frac{(529)^{2}}{(1000)^{2}}=5.6 \mathrm{k}$ and
$R_{3 A}=Q_{A} \sqrt{R_{2 A} R_{4 A}}=0.785 \sqrt{5.6 \times 10^{3} \times 2 \times 10^{4}}=8.3 \mathrm{k}$

The resistors for the second section are found in a similar fashion:
$R_{1 B}=20 k$
$R_{4 B}=R_{1 B}=20 k$
$R_{2 B}=R_{4 B} \frac{f_{0 B}{ }^{2}}{\left(f_{C L K} / 100\right)^{2}}=20 k \frac{(993)^{2}}{(1000)^{2}}=19.7 k$
$R_{3 B}=Q_{B} \sqrt{R_{2 B} R_{4 B}}=3.559 \sqrt{1.97 \times 10^{4} \times 2 \times 10^{4}}=70.6 \mathrm{k}$
The complete circuit is shown in Figure 16 for split $\pm 5 \mathrm{~V}$ power supplies. Supply bypass capacitors are highly recommended.

TL/H/10399-25
FIGURE 16. Fourth-Order Chebyshev Low-Pass Filter from Example in 3.1. $\pm 5 \mathrm{~V}$ Power Supply. 0V-5V TTL or $\mathbf{- 5 V} \pm 5 \mathrm{~V}$ CMOS Logic Levels.

FIGURE 17. Fourth-Order Chebyshev Low-Pass Filter from Example in 3.1.
Single + 10V Power Supply. 0V-5V TTL Logic Levels. Input Signals
Should be Referred to Half-Supply or Applied through a Coupiling Capacitor.

3.0 Applications Information (Continued)

FIGURE 18. Three Ways of Generating $\frac{\mathrm{V}^{+}}{2}$ for Single-Supply Operation

3.2 SINGLE SUPPLY OPERATION

The MF10 can also operate with a single-ended power supply. Figure 17 shows the example filter with a single-ended power supply. $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$are again connected to the positive power supply (8 V to 14 V), and $\mathrm{V}_{A^{-}}$and $\mathrm{V}_{D^{-}}$are connected to ground. The $\mathrm{A}_{\text {GND }}$ pin must be tied to $\mathrm{V}+/ 2$ for single supply operation. This half-supply point should be very "clean", as any noise appearing on it will be treated as an input to the filter. It can be derived from the supply voltage with a pair of resistors and a bypass capacitor (Figure 18a), or a low-impedance half-supply voltage can be made using a three-terminal voltage regulator or an operational amplifier (Figures $18 b$ and 18c). The passive resistor divider with a bypass capacitor is sufficient for many applications, provided that the time constant is long enough to reject any power supply noise. It is also important that the half-supply reference present a low impedance to the clock frequency, so at very low clock frequencies the regulator or op-amp approaches may be preferable because they will require smaller capacitors to filter the clock frequency. The main power supply voltage should be clean (preferably regulated) and bypassed with $0.1 \mu \mathrm{~F}$.

3.3 DYNAMIC CONSIDERATIONS

The maximum signal handling capability of the MF10, like that of any active filter, is limited by the power supply voltages used. The amplifiers in the MF10 are able to swing to within about 1V of the supplies, so the input signals must be kept small enough that none of the outputs will exceed these limits. If the MF10 is operating on $\pm 5 \mathrm{~V}$, for example, the outputs will clip at about $8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$. The maximum input voltage multiplied by the filter gain should therefore be less than $8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$.
Note that if the filter Q is high, the gain at the lowpass or highpass outputs will be much greater than the nominal filter gain (Figure 6). As an example, a lowpass filter with a Q of

10 will have a 20 dB peak in its amplitude response at f_{O}. If the nominal gain of the filter HOLP is equal to 1 , the gain at f_{0} will be 10 . The maximum input signal at f_{O} must therefore be less than $800 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ when the circuit is operated on $\pm 5 \mathrm{~V}$ supplies.

Also note that one output can have a reasonable small voltage on it while another is saturated. This is most likely for a circuit such as the notch in Mode 1 (Figure 7). The notch output will be very small at f_{0}, so it might appear safe to apply a large signal to the input. However, the bandpass will have its maximum gain at fo and can clip if overdriven. If one output clips, the performance at the other outputs will be degraded, so avoid overdriving any filter section, even ones whose outputs are not being directly used. Accompanying Figures 7 through 15 are equations labeled "circuit dynamics", which relate the Q and the gains at the various outputs. These should be consulted to determine peak circuit gains and maximum allowable signals for a given application.

3.4 OFFSET VOLTAGE

The MF10's switched capacitor integrators have a higher equivalent input offset voltage than would be found in a typical continuous-time active filter integrator. Figure 19 shows an equivalent circuit of the MF10 from which the output DC offsets can be calculated. Typical values for these offsets with $\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ tied to V^{+}are:
$\mathrm{V}_{\mathrm{os} 1}=$ opamp offset $= \pm 5 \mathrm{mV}$
$V_{\text {os2 }}=-150 \mathrm{mV}$ @ 50:1 $\quad-300 \mathrm{mV}$ @ 100:1
$\mathrm{V}_{\text {os3 }}=-70 \mathrm{mV}$ @ 50:1 $\quad-140 \mathrm{mV}$ @ 100:1
When $\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ is tied to V^{-}, $\mathrm{V}_{\text {os2 }}$ will approximately halve. The DC offset at the BP output is equal to the input offset of the lowpass integrator ($\mathrm{V}_{\mathrm{os} 3}$). The offsets at the other outputs depend on the mode of operation and the resistor ratios, as described in the following expressions.
3.0 Applications Information (Continued)

Mode 1 and Mode 4

V OS(N)
$=V_{\text {OS } 1}\left(\frac{1}{Q}+1\left\|H_{\text {OLP }}\right\|\right)-\frac{V_{\text {OS3 }}}{Q}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{BP})} \quad=\mathrm{V}_{\text {OS3 }}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{LP})} \quad=\mathrm{V}_{\mathrm{OS}(\mathrm{N})}-\mathrm{V}_{\mathrm{OS} 2}$
Mode 1a
$V_{O S}(N . I N V . B P)=\left(1+\frac{1}{Q}\right) V_{O S 1}-\frac{V_{O S 3}}{Q}$
$\mathrm{V}_{\mathrm{OS}}(\mathrm{INV} . \mathrm{BP})=\mathrm{V}_{\text {OS3 }}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{LP})} \quad=\mathrm{V}_{\text {OS }}$ (N.INV.BP) $-\mathrm{V}_{\text {OS2 }}$

Mode 2 and Mode 5

$$
\begin{aligned}
& V_{O S(N)}=\left(\frac{R 2}{R_{p}}+1\right) V_{O S 1} \times \frac{1}{1+R 2 / R 4} \\
& +V_{\text {OS } 2} \frac{1}{1+R 4 / R 2}-\frac{V_{\text {OS3 }}}{Q \sqrt{1+R 2 / R 4}}: \\
& R_{p}=R 1 / / R 3 / / R 4 \\
& V_{\mathrm{OS}(\mathrm{BP})}=\mathrm{V}_{\mathrm{OS} 3} \\
& \mathrm{~V}_{\text {OS(LP) }}=\mathrm{V}_{\text {OS(N) }}-\mathrm{V}_{\text {OS2 }} \\
& \text { Mode } 3 \\
& \mathrm{~V}_{\mathrm{OS}(\mathrm{HP})}=\mathrm{V}_{\mathrm{OS} 2} \\
& \mathrm{~V}_{\mathrm{OS}(\mathrm{BP})}=\mathrm{V}_{\mathrm{OS} 3} \\
& \begin{aligned}
V_{O S}(B P) & =V_{O S 3} \\
V_{O S(L P)} & =V_{O S 1}\left[1+\frac{R 4}{R_{p}}\right]-V_{\text {OS2 }}\left(\frac{R 4}{R 2}\right)
\end{aligned} \\
& -V_{\text {OS3 }}\left(\frac{R 4}{\mathrm{R} 3}\right) \\
& R p=R 1 / / R 2 / / R 3
\end{aligned}
$$

FIGURE 19. MF10 Offset Voltage Sources

FIGURE 20. Method for Trimming V_{OS}

3.0 Applications Information (Continued)

For most applications, the outputs are AC coupled and DC offsets are not bothersome unless large signals are applied to the filter input. However, larger offset voltages will cause clipping to occur at lower AC signal levels, and clipping at any of the outputs will cause gain nonlinearities and will change f_{0} and Q. When operating in Mode 3, offsets can become excessively large if R2 and R4 are used to make $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}$ significantly higher than the nominal value, especially if Q is also high. An extreme example is a bandpass filter having unity gain, a Q of 20 , and $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}=250$ with pin 12 tied to ground (100:1 nominal). R4/R2 will therefore be equal to 6.25 and the offset voltage at the lowpass output will be about +1 V . Where necessary, the offset voltage can be adjusted by using the circuit of Figure 20. This allows adjustment of $\mathrm{V}_{\mathrm{OS} 1}$, which will have varying effects on the different outputs as described in the above equations. Some outputs cannot be adjusted this way in some modes, however ($\mathrm{V}_{\mathrm{OS}(\mathrm{BP})}$ in modes 1a and 3, for example).

3.5 SAMPLED DATA SYSTEM CONSIDERATIONS

The MF10 is a sampled data filter, and as such, differs in many ways from conventional continuous-time filters. An important characteristic of sampled-data systems is their effect on signals at frequencies greater than one-half the sampling frequency. (The MF10's sampling frequency is the same as its clock frequency.) If a signal with a frequency greater than one-half the sampling frequency is applied to the input of a sampled data system, it will be "reflected" to a frequency less than one-half the sampling frequency. Thus, an input signal whose frequency is $\mathrm{f}_{\mathrm{s}} / 2+100 \mathrm{~Hz}$ will cause the system to respond as though the input frequency
was $\mathrm{f}_{\mathrm{S}} / 2-100 \mathrm{~Hz}$. This phenomenon is known as "aliasing", and can be reduced or eliminated by limiting the input signal spectrum to less than $f_{\mathrm{s}} / 2$. This may in some cases require the use of a bandwidth-limiting filter ahead of the MF10 to limit the input spectrum. However, since the clock frequency is much higher than the center frequency, this will often not be necessary.
Another characteristic of sampled-data circuits is that the output signal changes amplitude once every sampling period, resulting in "steps" in the output voltage which occur at the clock rate (Figure 21). If necessary, these can be "smoothed" with a simple R-C low-pass filter at the MF10 output.
The ratio of $f_{C L K}$ to f_{C} (normally either $50: 1$ or $100: 1$) will also affect performance. A ratio of 100:1 will reduce any aliasing problems and is usually recommended for wideband input signals. In noise sensitive applications, however, a ratio of $50: 1$ may be better as it will result in 3 dB lower output noise. The 50:1 ratio also results in lower DC offset voltages, as discussed in Section 3.4.
The accuracy of the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}$ ratio is dependent on the value of Q. This is illustrated in the curves under the heading "Typical Performance Characteristics". As Q is changed, the true value of the ratio changes as well. Unless the Q is low, the error in $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}$ will be small. If the error is too large for a specific application, use a mode that allows adjustment of the ratio with external resistors.
It should also be noted that the product of Q and f_{0} should be limited to 300 kHz when $\mathrm{f}_{\mathrm{O}}<5 \mathrm{kHz}$, and to 200 kHz for $\mathrm{f}_{\mathrm{O}}>5 \mathrm{kHz}$.

FIGURE 21. The Sampled-Data Output Waveform

Section 8
 Analog Switches/
 Multiplexers

Section 8 Contents
Analog Switches/Multiplexers Definition of Terms 8-3
Analog Switches/Multiplexers Selection Guide 8-4
AH0014/AH0014C DPDT, AH0015/AH0015C Quad SPST, AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switches 8-5
AH5010/AH5011/AH5012 Monolithic Analog Current Switches 8-9
AH5020C Monolithic Analog Current Switch 8-20
LF11331/LF13331/LF11332/LF13332/LF11333/LF13333, LF11201/LF13201/LF11202/ LF13202 Quad SPST JFET Analog Switches 8-28
LF13508 8-Channel Analog Multiplexer 8-39
LF13509 4-Channel Differential Analog Multiplexer 8-39

Analog Switch Definition of Terms

RON: Resistance between the output and the input of an addressed channel.
C_{s} : Capacitance between any open terminal " S " and ground.
C_{D} : Capacitance between any open terminal " D " and ground.
$\mathbf{I}_{\mathbf{D}}$ - $\mathbf{I}_{\mathbf{S}}$: Leakage current that flows from the closed switch into the body. This leakage is the difference between the
current I_{D} going into the switch and the current I_{S} going out of the switch.
$t_{\text {RAN }}$: Delay time when switching from one address state to another.
ton: $^{\text {: Delay time between the } 50 \% \text { points of an enable input }}$ and the switch ON condition.
$\mathbf{t}_{\text {OFF }}$: Delay time between the 50% points of the enable input and the switch OFF condition.

Analog Switch/Multiplexer Selection Guide

Part Number	Function	Logic Input	$\mathbf{V}_{\mathbf{S}}$ (Typ)	Ton/TOFF ns (Typ)	$\mathbf{R}_{\mathbf{O N}}$ $\boldsymbol{\Omega}$
AH5011	QUAD SPST	TTL, CMOS	-	$150 / 300$	100
AH5012		TTL, CMOS	-	$150 / 300$	150
LF11201/LF13201	QUAD SPST	TTL	± 15	$90 / 500$	200
LF11202/LF13202		TTL	± 15	$90 / 500$	200
LF11331/LF13331		TTL	± 15	$90 / 500$	200
LF11332/LF13332		TTL	± 15	$90 / 500$	200
LF11333/LF13333		TTL	± 15	$90 / 500$	200
AH5020	DUAL SPDT	TTL, CMOS	-	$150 / 300$	150
AH5010	4-CHANNEL	TTL, CMOS	-	$150 / 300$	150
LF13509	4-CHANNEL DIFFERENTIAL	TTL, CMOS	± 18	$1600 / 200$	350
LF13508	8-CHANNEL	TTL, CMOS	± 18	$1600 / 200$	350

AH0014/AH0014C* DPDT, AH0015/AH0015C Quad SPST, AH0019/AH0019C* Dual DPST-TTL/DTL Compatible MOS Analog Switches

General Description

This series of TTL/DTL compatible MOS analog switches feature high speed with internal level shifting and driving. The package contains two monolithic integrated circuit chips: the MOS analog chip is similar to the MM450 type which consists of four MOS analog switch transistors; the second chip is a bipolar I.C. gate and level shifter. The series is available in hermetic dual-in-line package.
These switches are particularly suited for use in both military and industrial applications such as commutators in data acquisition systems, multiplexers, A/D and D/A converters, long time constant integrators, sample and hold circuits, modulators/demodulators, and other analog signal switching applications.

The AH0014, AH0015 and AH0019 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The AH0014C, AH0015C and AH0019C are specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- Large analog voltage switching $\pm 10 \mathrm{~V}$
- Fast switching speed 500 ns
- Operation over wide range of power supplies
- Low ON resistance
200Ω
- High OFF resistance $10^{11} \Omega$
- Analog signals in excess of 25 MHz
- Fully compatible with DTL or TTL logic
- Includes gating and level shifting

Block and Connection Diagrams

Note: All logic inputs shown at logic " 1 ".
TL/K/10125-1
Order Number AH0014D or AH0014CD See NS Package Number D14D

Quad SPST

Note: All logic inputs shown at logic " 1 ".
TL/K/10125-2
Order Number AH0015D or AH0015CD
See NS Package Number D16C

Dual DPST

Note: All logic inputs shown at logic " 1 ".

TL/K/10125-3
Order Number AH0019D or AH0019CD See NS Package Number D14D

Absolute Maximum Ratings

If Military/Aerospace specified devices are required;	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
VCC Supply Voltage	7.0 V
V- Supply Voltage	-30 V
V+ Supply Voltage	+30 V

V+/V-Voltage Differential	40 V
Logic Input Voltage	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
AHO014, AH0015, AH0019	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AH0014C, AH0015C, AH0019C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 1 and 2)

Parameter	Conditions	Min	Typ	Max	Units
Logical "1" Input Voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	2.0			V
Logical "0" Input Voltage	$V_{C C}=4.5 \mathrm{~V}$			0.8	V
Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{I N}=2.4 \mathrm{~V}$			5	$\mu \mathrm{A}$
Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$			1	$\mu \mathrm{A}$
Logical " 0 " Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		0.2	0.4	mA
Power Supply Current Logical "1" Input-Each Gate (Note 3)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		0.85	1.6	mA
Power Supply Current Logical " 0 " Input-Each Gate (Note 3) AH0014, AH0014C AH0015, AH0015C AH0019, AH0019C	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$		$\begin{gathered} 1.5 \\ 0.22 \\ 0.22 \\ \hline \end{gathered}$	$\begin{gathered} 3.0 \\ 0.41 \\ 0.41 \\ \hline \end{gathered}$	mA $m A$ mA
Analog Switch ON Resistance-Each Gate	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}(\text { Analog })=+10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}(\text { Analog })=-10 \mathrm{~V} \end{aligned}$		$\begin{gathered} 75 \\ 150 \end{gathered}$	$\begin{aligned} & 200 \\ & 600 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Analog Switch OFF Resistance			1011		Ω
Analog Switch Input Leakage CurrentEach Input (Note 4) AH0014, AH0015, AH0019 AH0014C, AH0015C, AH0019C	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \\ & 0.1 \\ & 30 \end{aligned}$	$\begin{gathered} 200 \\ 200 \\ 10 \\ 100 \\ \hline \end{gathered}$	pA nA nA nA
Analog Switch Output Leakage Current-Each Output (Note 4) AH0014, AH0015, AH0019 AH0014C, AH0015C, AH0019C	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=-10 \mathrm{~V} \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{gathered} 40 \\ 40 \\ 0.05 \\ 4 \end{gathered}$	$\begin{gathered} 400 \\ 400 \\ 10 \\ 50 \end{gathered}$	pA nA nA nA
Analog Input (Drain) Capacitance	1 MHz @ Zero Bias		8	10	pF
Output Source Capacitance	1 MHz @ Zero Bias		11	13	pF
Analog Turn-OFF Time-toff	See Test Circuit; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		600	750	ns
$\begin{aligned} & \text { Analog Turn-ON Time-toN } \\ & \text { AH0014, AH0014C } \\ & \text { AH0015, AH0015C } \\ & \text { AH0019, AH0019C } \end{aligned}$	See Test Circuit; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & 350 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 425 \\ & 150 \\ & 150 \end{aligned}$	

Note 1: $\mathrm{Min} / \mathrm{max}$ limits apply across the guaranteed temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for $\mathrm{AH} 0014, \mathrm{AH} 0015, \mathrm{AH} 0019$ and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for AH 0014 C , AH0015C, AH0019C. $\mathrm{V}^{-}=-20 \mathrm{~V} . \mathrm{V}^{+}=+10 \mathrm{~V}$ and an analog test current of 1 mA unless otherwise specified.
Note 2: All typical values are measured at $T_{A}=25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} . \mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}^{-}=-22 \mathrm{~V}$.
Note 3: Current measured is drawn from $V_{C C}$ supply.
Note 4: All analog switch pins except measurement pin are tied to $\mathrm{V}+$.

Analog Switch Characteristics（Note 2）

Analog Switching Time Test Circuit

TL／K／10125－8

Selecting Power Supply Voltage

The graph shows the boundary conditions which must be used for proper operation of the unit．The range of operation for power supply V^{-}is shown on the X axis．It must be between -25 V and -8 V ．The allowable range for power supply V^{+}is governed by supply V^{-}．With a value chosen for V^{-}, V^{+}may be selected as any value along a vertical line passing through the V^{-}value and terminated by the boundaries of the operating region．A voltage difference be－ tween power supplies of at least 5 V should be maintained for adequate signal swing．

TL／K／10125－10

Typical Applications

TL/K/10125-5

AH5010/AH5011/AH5012 Monolithic Analog Current Switches

General Description

A versatile family of monolithic JFET analog switches economically fulfills a wide variety of multiplexing and analog switching applications.
Even numbered switches may be driven directly from standard 5V logic, whereas the odd numbered switches are intended for applications utilizing 10 V or 15 V logic. The monolithic construction guarantees tight resistance match and track.
For voltage switching applications see LF13331, LF13332, and LF13333 Analog Switch Family, or the CMOS Analog Switch Family.

Applications

A/D and D/A converters

- Micropower converters
- Industrial controllers
- Position controllers
- Data acquisition
\square Active filters
■ Signal multiplexers/demultiplexers
- Multiple channel AGC
- Quad compressors/expanders
- Choppers/demodulators
- Programmable gain amplifiers
- High impedance voltage buffer
\square Sample and hold

Features

\square Interfaces with standard TTL and CMOS

- "ON" resistance match
- Low "ON" resistance
100Ω
- Very low leakage 50 pA
\square Large analog signal range $\pm 10 \mathrm{~V}$ peak
\square High switching speed
150 ns
- Excellent isolation between

80 dB
channels
at 1 kHz

Connection and Schematic Diagrams (All switches shown are for logical " 1 " input)

Dual-In-Line Package

AH5010C MUX Switches (4-Channel Version Shown) Order Number AH5010CN
See NS Package Number M14A or N14A

Dual-In-Line Package

TOP VIEW
AH5011C and AH5012C SPST Switches (Quad Version Shown) Order Number AH5011CN, AH5012CM or AH5012CN See NS Package Number M16A or N16A

[^15]
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Input Voltage
AH5010/AH5011/AH5012 30V
$\begin{array}{lr}\text { Positive Analog Signal Voltage } & 30 \mathrm{~V} \\ \text { Negative Analog Signal Voltage } & -15 \mathrm{~V} \\ \text { Diode Current } & 10 \mathrm{~mA}\end{array}$

Electrical Characteristics AH5010 and AH5012 (Notes 2 and 3)

Symbol	Parameter	Conditions	Typ	Max	Units
$I_{\text {GSX }}$	Input Current "OFF"	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{GD}} \leq 11 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=0.7 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.01	$\begin{gathered} 0.2 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
ID(OFF)	Leakage Current "OFF"	$\begin{aligned} & \mathrm{V}_{\mathrm{SD}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=3.8 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.02	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.08	$\begin{gathered} 1 \\ 200 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.13	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & n A \\ & \mu A \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & V_{G D}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.1	$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
ros(on)	Drain-Source Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0.35 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	90	$\begin{aligned} & 150 \\ & 240 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \hline \end{aligned}$
V DIOdE	Forward Diode Drop	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$		0.8	V
rDS(ON)	Match	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	4	20	Ω
TON	Turn "ON" Time	See AC Test Circuit	150	500	ns
TofF	Turn "OFF" Time	See AC Test Circuit	300	500	ns
CT	Cross Talk	See AC Test Circuit	120		dB

Electrical Characteristics AH5011 (Notes 2 and 3)

Symbol	Parameter	Conditions	Typ	Max	Units
IGSX	Input Current "OFF"	$\begin{aligned} & 11 \mathrm{~V} \leq \mathrm{V}_{\mathrm{GD}} \leq 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=0.7 \mathrm{~V} \\ & T_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.01	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
ID(OFF)	Leakage Current "OFF"	$\begin{aligned} & \mathrm{V}_{\mathrm{SD}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10.3 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.01	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.04	$\begin{aligned} & 0.5 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & V_{G D}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & V_{G D}=0 \mathrm{~V}, I_{S}=-2 \mathrm{~mA} \\ & T_{A}=85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 5 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
rDS(ON)	Drain-Source Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	60	$\begin{aligned} & 100 \\ & 160 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
$V_{\text {DIODE }}$	Forward Diode Drop	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$		0.8	V
$\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$	Match	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	2	10	Ω
TON	Turn "ON" Time	See AC Test Circuit	150	50	ns
Toff	Turn "OFF" Time	See AC Test Circuit	300	500	ns
CT	Cross Talk	See AC Test Circuit. $f=100 \mathrm{~Hz}$	120		dB

[^16]| | $\theta_{\text {JA }}$ |
| :--- | ---: |
| N14A, N16A | $92^{\circ} \mathrm{C} / \mathrm{W}$ |
| M14A, M16A | $115^{\circ} \mathrm{C} / \mathrm{W}$ |

Test Circuits and Switching Time Waveforms

$V_{G S}$ GATE SOURCE CUTOFF VOLTAGE (V)
"ON" Resistance, rDS(ON) vs Temperature

Transconductance vs Drain Current

Normalized Drain Resistance vs Bias Voltage

Applications Information

Theory of Operation

The AH series of analog switches are primarily intended for operation in current mode switch applications; i.e., the drains of the FET switch are held at or near ground by operating into the summing junction of an operational amplifier. Limiting the drain voltage to under a few hundred millivolts eliminates the need for a special gate driver, allowing the switches to be driven directly by standard TTL, 5V-10V CMOS, open collector 15V TTL/CMOS.
Two basic switch configurations are available: 4 independent switches (SPST) and 4 pole switches used for multiplexing (4 PST-MUX). The MUX versions such as the AH5010 offer common drains and include a series FET operated at $\mathrm{V}_{\mathrm{GS}}=\mathrm{OV}$. The additional FET is placed in the feedback path in order to compensate for the "ON" resistance of the switch FET as shown in Figure 1.
The closed-loop gain of Figure 1 is:

$$
A_{\mathrm{VCL}}=\frac{\mathrm{R} 2+\mathrm{r}_{\mathrm{DS}(\mathrm{ON}) \mathrm{Q} 2}}{\mathrm{R} 1+\mathrm{r}_{\mathrm{DS}}(\mathrm{ON}) \mathrm{Q} 1}
$$

For R1 = R2, gain accuracy is determined by the rDS(ON) match between Q1 and Q2. Typical match between Q1 and Q2 is 4 ohms resulting in a gain accuracy of 0.05% (for R1 $=R 2=10 \mathrm{k} \Omega$).

Noise Immunity

The switches with the source diodes grounded exhibit improved noise immunity for positive analog signals in the
"OFF" state. With $\mathrm{V}_{\mathbb{N}}=15 \mathrm{~V}$ and the $\mathrm{V}_{\mathrm{A}}=10 \mathrm{~V}$, the source of Q1 is clamped to about 0.7 V by the diode ($\mathrm{V}_{\mathrm{GS}}=14.3 \mathrm{~V}$) ensuring that ac signals imposed on the 10 V input will not gate the FET "ON."

Selection of Gain Setting Resistors

Since the AH series of analog switches are operated in current mode, it is generally advisable to make the signal current as large as possible. However, current through the FET switch tends to forward bias the source to gate junction and the signal shunting diode resulting in leakage through these junctions. As shown in Figure 2, $\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$ represents a finite error in the current reaching the summing junction of the op amp.
Secondly, the rDS(ON) of the FET begins to "round" as IS approaches IDSS. A practical rule of thumb is to maintain Is at less than $1 / 10$ of IDSS.
Combining the criteria from the above discussion yields:

$$
\begin{equation*}
\mathrm{R} 1_{\min } \geq \frac{\mathrm{V}_{\mathrm{A}(\mathrm{MAX})} \mathrm{A}_{\mathrm{D}}}{\mathrm{I}_{\mathrm{G}(\mathrm{ON})}} \tag{2a}
\end{equation*}
$$

or:

$$
\begin{equation*}
\geq \frac{V_{A(M A X)}}{I_{D S S} / 10} \tag{2b}
\end{equation*}
$$

whichever is larger.

FIGURE 2. On Leakage Current, $I_{G(O N)}$

Applications Information (Continued)

$$
\text { Where: } \begin{aligned}
\mathrm{V}_{\mathrm{A}(\mathrm{MAX})} & =\text { Peak amplitude of the analog } \\
& \text { input signal } \\
& =\text { Desired accuracy } \\
\mathrm{A}_{\mathrm{D}} & =\text { Leakage at a given } \mathrm{Is} \\
\mathrm{I}_{\mathrm{G}(\mathrm{ON})} & =\text { Saturation current of the FET } \\
\mathrm{I}_{\mathrm{DSS}} & =\text { Saitch } \\
& \cong 20 \mathrm{~mA}
\end{aligned}
$$

In a typical application, V_{A} might $= \pm 10 \mathrm{~V}, A_{D}=0.1 \%$, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$. The criterion of equation (2b) predicts:

$$
R 1_{(\mathrm{MIN})} \geq \frac{(10 \mathrm{~V})}{\left(\frac{20 \mathrm{~mA}}{10}\right)}=5 \mathrm{k} \Omega
$$

For R1 $=5 \mathrm{k}$, Is $\cong 10 \mathrm{~V} / 5 \mathrm{k}$ or 2 mA . The electrical characteristics guarantee an $\mathrm{I}_{\mathrm{G}(\mathrm{ON})} \leq 1 \mu \mathrm{~A}$ at $85^{\circ} \mathrm{C}$ for the AH 5010 . Per the criterion of equation (2a):

$$
R 1_{(\mathrm{MIN})} \geq \frac{(10 \mathrm{~V})\left(10^{-3}\right)}{1 \times 10^{-6}} \geq 10 \mathrm{k} \Omega
$$

Since equation (2a) predicts a higher value, the 10k resistor should be used.
The "OFF" condition of the FET also affects gain accuracy. As shown in Figure 3, the leakage across Q2, ID(OFF) represents a finite error in the current arriving at the summing junction of the op amp.

Accordingly:

$$
\mathrm{R}_{1}(\mathrm{MAX}) \leq \frac{\mathrm{V}_{\mathrm{A}(\mathrm{MIN})} A_{D}}{(\mathrm{~N}) \mathrm{I}_{\mathrm{D}(\mathrm{OFF})}}
$$

$$
\text { Where: } \begin{aligned}
\mathrm{V}_{\mathrm{A}(\mathrm{MIN})} & =\text { Minimum value of the analog } \\
& \text { input signal } \\
& =\text { Desired accuracy } \\
\mathrm{A}_{\mathrm{D}} & \\
\mathrm{~N} & =\text { Number of channels } \\
\mathrm{I}_{\mathrm{D}(\mathrm{OFF})} & =\text { "OFF" leakage of a given FET } \\
& \text { switch }
\end{aligned}
$$

As an example, if $\mathrm{N}=10, \mathrm{~A}_{\mathrm{D}}=0.1 \%$, and $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})} \leq 10 \mathrm{nA}$ at $85^{\circ} \mathrm{C}$ for the AH5010. R1 (MAX) is:

$$
R 1_{(\mathrm{MAX})} \leq \frac{(1 \mathrm{~V})\left(10^{-3}\right)}{(10)\left(10 \times 10^{-9}\right)}=10 \mathrm{k}
$$

Selection of R2, of course, depends on the gain desired and for unity gain R1 = R2.
Lastly, the foregoing discussion has ignored resistor tolerances, input bias current and offset voltage of the op ampall of which should be considered in setting the overall gain accuracy of the circuit.

TTL Compatibility

The AH series can be driven with two different logic voltage swings: the even numbered part types are specified to be driven from standard 5V TTL logic and the odd numbered types from 15 V open collector TTL.

FIGURE 3

Applications Information (Continued)

Standard TTL gates pull-up to about 3.5V (no load). In order to ensure turn-off of the even numbered switches such as AH5010, a pull-up resistor, $\mathrm{R}_{\text {EXT }}$, of at least $10 \mathrm{k} \Omega$ should be placed between the $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and the gate output as shown in Figure 4.
Likewise, the open-collector, high voltage TTL outputs should use a pull-up resistor as shown in Figure 5. In
both cases, $t_{\text {(OFF) }}$ is improved for lower values of REXT at the expense of power dissipation in the low state.

Definition of Terms

The terms referred to in the electrical characteristics tables are as defined in Figure 6.

Applications Information (Continued)

FIGURE 6. Definition of Terms

Typical Applications

TL/H/5659-7

3-Channel Multiplexer with Sample and Hold

TL/H/5659-8

8-Bit Binary (BCD) Multiplying D/A Converter*

2 Beckman resistor arrays Part \#698-1-R 100k B recommended

$$
\mathrm{R}_{\mathrm{f}}\left(\overline{\mathrm{G} 1} \mathrm{l}_{1}+\overline{\mathrm{G} 2} \mathrm{l}_{2}+\overline{\mathrm{G} 3} \mathrm{l}_{3}+\overline{\mathrm{G} 4} \mathrm{I}_{4}+\right.
$$

$\frac{\overline{\mathrm{G}} \mathrm{I}_{5}}{16}+\frac{\overline{\mathrm{G} 6} \mathrm{I}_{6}}{16}+\frac{\overline{\mathrm{G} 7} \mathrm{I}_{7}}{16}+\frac{\overline{\mathrm{G}} \mathrm{I}_{8}}{16}$
Note: The switch is "ON" when G is at $0 V$ (Logic " 0 ")
$I=\frac{V_{\text {R }}}{R}$

Typical Applications (Continued) 16-Channel Multiplexer

CHARACTERISTICS: ERROR $=0.4 \mu \mathrm{~V}$ TYPICAL © $25^{\circ} \mathrm{C}$ $10 \mu \mathrm{~V}$ TYPICAL @ $70^{\circ} \mathrm{C}$

Note: The analog switch between the op amp and the 16 input switches reduces the errors due to leakage.

All resistors are 10k.

Typical Applications (Continued)

AH5020C Monolithic Analog	urrent Switch
General Description	Applications
This versatile dual monolithic JFET analog switch economically fulfills a wide variety of multiplexing and analog switching applications.	A/D and D/A converters Micropower converters Industrial controllers
These switches may be driven directly from standard 5V logic.	- Position controllers - Data acquisition
The monolithic construction guarantees tight resistance match and track.	- Active filters - Signal multiplexers/demultiplexers - Multiple channel AGC
Features	- Quad compressors/expanders - Choppers/demodulators
- Interfaces with standard TTL	- Programmable gain amplifiers
- "ON" resistance match . 2Ω	- High impedance voltage buffer
■ Low "ON" resistance 150Ω	- Sample and hold
- Very low leakage 50 pA	For voltage switching applications see LF13201, LF13202,
- Large analog signal range $\pm 10 \mathrm{~V}$ peak	LF13331, LF13332, and LF13333 Analog Switch Family, or
- High switching speed 150 ns	the CMOS Analog Switch Family.

Connection and Schematic Diagrams (All switches shown are for logical " 1 ")

Dual-In-Line Package

Top View
Order Number AH5020CJ
See NS Package Number J08A

TL/H/5166-2

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Input Voltage	30 V
Positive Analog Signal Voltage	30 V
Negative Analog Signal Voltage	-15 V
Diode Current	10 mA

Drain Current	30 mA
Power Dissipation	500 mW
Operating Temp. Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbols	Parameter	Conditions	Typ	Max	Units
IGSX	Input Current "OFF"	$\begin{aligned} & V_{G D}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=0.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GD}}=11 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=0.7 \mathrm{~V} \\ & T_{\mathrm{A}}=85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{GD}}=11 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=0.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
ID(OFF)	Leakage Current "OFF"	$\begin{aligned} & \mathrm{V}_{\mathrm{SD}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=3.8 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.01	$\begin{gathered} 0.2 \\ 10 \end{gathered}$	$n A$ nA
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & V_{G D}=0 \mathrm{~V}, I_{S}=1 \mathrm{~mA} \\ & T_{A}=85^{\circ} \mathrm{C} \end{aligned}$	0.08	$\begin{gathered} 1 \\ 200 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & V_{G D}=0 V, I_{S}=2 \mathrm{~mA} \\ & T_{A}=85^{\circ} \mathrm{C} \end{aligned}$	0.13	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	nA $\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.1	$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$	nA $\mu \mathrm{A}$
${ }^{\text {r }}$ (${ }^{(O)}$	Drain-Source Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	90	$\begin{aligned} & 150 \\ & 240 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
$V_{\text {DIODE }}$	Forward Diode Drop	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$		0.8	V
$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	Match	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	2	20	Ω
TON	Turn "ON" Time	See ac Test Circuit	150	500	ns
TOFF	Turn "OFF"' Time	See ac Test Circuit	300	500	ns
CT	Cross Talk	See ac Test Circuit	120		dB

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating
the device beyond its specified operating conditions.
Note 2: Test conditions $25^{\circ} \mathrm{C}$ unless otherwise noted.
Note 3: "OFF" and "ON" notation refers to the conduction state of the FET switch.
Note 4: Thermal Resistance:
$\boldsymbol{\theta}_{\mathrm{JC}}$ (Junction to Case) .N/A

Test Circuits

Switching Time Waveforms

TL/H/5166-5

Typical Performance Characteristics

Parameter Interaction

TL／H／5166－6

TL／H／5166－8

TL／H／5166－10
（очшш）ЗכN甘IJחONOJSNYY」
教

Leakage Current，$I_{\text {D（OFF）}}$ vs Temperature

TL／H／5166－7

TL／H／5166－9
Transconductance vs Drain Current

Normalized Drain Resistance vs Bias Voltage

［VGs／Vas（off）｜－NORMALIzed
GATE－TO－SOURCE VOLIAGE（V）

Applications Information

THEORY OF OPERATION

The AH5020 analog switches are primarily intended for operation in current mode switch applications; i.e., the drains of the FET switch are held at or near ground by operating into the summing junction of an operational amplifier. Limiting the drain voltage to under a few hundred millivolts eliminates the need for a special gate driver, allowing the switches to be driven directly by standard TTL.
If only one of the two switches in each package is used to apply an input signal to the input of an op amp, the other switch FET can be placed in the feedback path in order to compensate for the "ON" resistance of the switch FET as shown in Figure 1.
The closed-loop gain of Figure 1 is:
$A_{V C L}=-\frac{R 2+r_{D S(O N) Q 2}}{R 1+r_{D S(O N) Q 1}}$
For R1 = R2, gain accuracy is determined by the rDS(ON) match between Q1 and Q2. Typical match between Q1 and Q2 is 2Ω resulting in a gain accuracy of 0.02% (for R1 $=$ R2 $=10 \mathrm{k} \Omega$).

NOISE IMMUNITY

The switches with the source diodes grounded exhibit improved noise immunity for positive analog signals in the "OFF" state. With $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$ and the $\mathrm{V}_{\mathrm{A}}=10 \mathrm{~V}$, the source of Q1 is clamped to about 0.7 V by the diode ($\mathrm{V}_{\mathrm{GS}}=$ 14.3 V) ensuring that ac signals imposed on the 10 V input will not gate the FET "ON".

SELECTION OF GAIN SETTING RESISTORS

Since the AH5020 analog switches are operated in current mode, it is generally advisable to make the signal current as large as possible. However, current through the FET switch tends to forward bias the source to gate junction and the signal shunting diode resulting in leakage through these junctions. As shown in Figure 2, $\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$ represents a finite error in the current reaching the summing junction of the op amp.
Secondly, the rDS(ON) of the FET begins to "round" as IS approaches IDSS. A practical rule of thumb is to maintain Is at less than $1 / 10$ of ldss.
Combining the criteria from the above discussion yields:
$R 1_{(M I N)} \geq \frac{V_{A(M A X)} A_{D}}{I_{G(O N)}}$
or:

$$
\begin{equation*}
\geq \frac{V_{\mathrm{A}(\mathrm{MAX})}}{\mathrm{IDSS}_{\mathrm{DS}} / 10} \tag{2b}
\end{equation*}
$$

whichever is larger.

FIGURE 1. Use of Compensation FET

TL/H/5166-15
FIGURE 2. On Leakage Current, IG(ON)

Applications Information (Continued)

Where $\mathrm{V}_{\mathrm{A}(\mathrm{MAX})}=$ Peak amplitude of the analog input signal
$A_{D} \quad=$ Desired accuracy
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})} \quad=$ Leakage at a given I_{S}
loss
$=$ Saturation current of the FET switch
$=20 \mathrm{~mA}$
In a typical application, V_{A} might $= \pm 10 \mathrm{~V}, \mathrm{~A}_{\mathrm{D}}=0.1 \%, 0^{\circ} \mathrm{C}$ $\leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$. The criterion of equation (2b) predicts:
$R_{(\text {MIN })} \geq \frac{10 \mathrm{~V}}{\frac{20 \mathrm{~mA}}{10}}=5 \mathrm{k} \Omega$
For R1 $=5 \mathrm{k}, \mathrm{I}_{\mathrm{S}} \cong 10 \mathrm{~V} / 5 \mathrm{k}$ or 2 mA . The electrical characteristics guarantee an $\mathrm{I}_{\mathrm{G}(\mathrm{ON})} \leq 1 \mu \mathrm{~A}$ at $85^{\circ} \mathrm{C}$ for the AH5020. Per the criterion of equation (2a):
$\mathrm{R}_{(\text {MIN })} \geq \frac{(10 \mathrm{~V})\left(10^{-3}\right)}{1 \times 10^{-6}} \geq 10 \mathrm{k} \Omega$
Since equation (2a) predicts a higher value, the 10k resistor should be used.
The "OFF" condition of the FET also affects gain accuracy. As shown in Figure 3, the leakage across Q2, ID(OFF) represents a finite error in the current arriving at the summing junction of the op amp.

Accordingly:
$R_{1}{ }_{\text {MAX })} \leq \frac{V_{A(M I N)} A_{D}}{(N) I_{D(O F F)}}$.
Where $\mathrm{V}_{\mathrm{A}(\mathrm{MIN})}$ = Minimum value for the analog input signal
AD = Desired accuracy
$\mathrm{N} \quad=$ Number of channels
$I_{D(O F F)}=$ "OFF" leakage of a given FET switch
As an example, if $N=10, A_{D}=0.1 \%$, and $I_{D(O F F)} \leq 10 n A$ at $85^{\circ} \mathrm{C}$ for the AH5020. R1 (MAX) is:
$R 1_{(\text {MAX }} \leq \frac{(1 \mathrm{~V})\left(10^{-3}\right)}{(10)\left(10 \times 10^{-9}\right)}=10 \mathrm{k}$
Selection of R2, of course, depends on the gain desired and for unity gain R1 = R2.
Lastly, the foregoing discussion has ignored resistor tolerances, input bias current and offset voltage of the op amp - all of which should be considered in setting the overall gain accuracy of the circuit.

TL/H/5166-16
FIGURE 3. Off Leakage Current, ID(OFF)

Applications Information (Continued)

tTL COMPATIBILITY

Standard TTL gates pull-up to about 3.5V (no load). In order to ensure turn-off of the AH5020, a pull-up resistor, REXT of at least $10 \mathrm{k} \Omega$ should be placed between the $5 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}$ and the gate output as shown in Figure 4.

DEFINITION OF TERMS

The terms referred to in the electrical characteristics tables are as defined in Figure 5.

FIGURE 4. Interfacing with +5 V TTL

FIGURE 5. Definition of Terms

Typical Applications

TL/H/5166-19

Gain Programmable Amplifier

Quad SPST JFET Analog Switches

LF11331, LF13331 4 Normally Open Switches with Disable
LF11332, LF13332 4 Normally Closed Switches with Disable
LF11333, LF13333 2 Normally Closed Switches and 2 Normally Open Switches with Disable
LF11201, LF13201 4 Normally Closed Switches
LF11202, LF13202 4 Normally Open Switches

General Description

These devices are a monolithic combination of bipolar and JFET technology producing the industry's first one chip quad JFET switch. A unique circuit technique is employed to maintain a constant resistance over the analog voltage range of $\pm 10 \mathrm{~V}$. The input is designed to operate from minimum TTL levels, and switch operation also ensures a break-before-make action.
These devices operate from $\pm 15 \mathrm{~V}$ supplies and swing a $\pm 10 \mathrm{~V}$ analog signal. The JFET switches are designed for applications where a dc to medium frequency analog signal needs to be controlled.

Features

- Analog signals are not loaded
- Constant "ON" resistance for signals up to $\pm 10 \mathrm{~V}$ and 100 kHz
- Pin compatible with CMOS switches with the advantage of blow out free handling
- Small signal analog signals to 50 MHz
- Break-before-make action
- High open switch isolation at 1.0 MHz
$t_{\text {OFF }}<\mathrm{t}_{\mathrm{ON}}$
$-50 \mathrm{~dB}$
■ Low leakage in "OFF" state
<1.0 nA
- TTL, DTL, RTL compatibility
- Single disable pin opens all switches in package on LF11331, LF11332, LF11333
- LF11201 is pin compatible with DG201

Test Circuit and Schematic Diagram

FIGURE 1. Typical Circuit for One Switch

FIGURE 2. Schematic Diagram (Normally Open)
Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 1)
Supply Voltage $\left(V_{C C}-V_{E E}\right)$
Reference Voltage
Logic Input Voltage
Analog Voltage

Analog Current

Power Dissipation (Note 2)	
Molded DIP (N Suffix)	500 mW
Cavity DIP (D Suffix)	900 mW
Operating Temperature Range	
LF11201, 2 and LF11331, 2, 3	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LF13201, 2 and LF13331, 2, 3	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information	
N and D Package (10 sec.)	$300^{\circ} \mathrm{C}$
SO Package	
Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	$\begin{gathered} \text { LF11331/2/3 } \\ \text { LF11201/2 } \end{gathered}$			$\begin{gathered} \text { LF13331/2/3 } \\ \text { LF13201/2 } \\ \hline \end{gathered}$			Units
			Min	Typ	Max	Min	Typ	Max	
Ron	"ON" Resistance "ON" Resistance Matching Analog Range Leakage Current in "ON"' Condition	$V_{A}=0, I_{D}=1 \mathrm{~mA}$ $T_{A}=25^{\circ} \mathrm{C}$ Switch "ON," $V_{S}=V_{D}= \pm 10 \mathrm{~V}$ $T_{A}=25^{\circ} \mathrm{C}$ 	± 10	150 200	200 300		150	250 350	Ω Ω
Ron Match				5	20		10	50	Ω
				± 11		± 10	± 11		\checkmark
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})+}$				0.3	5		0.3	10	nA
ID(ON)				3	100		3	30	nA
$I_{\text {S }}(\mathrm{OFF})$	Source Current in "OFF" Condition Drain Current in "OFF" Condition	Switch "OFF," $V_{S}=+10 \mathrm{~V}$, $T_{A}=25^{\circ} \mathrm{C}$ $V_{D}=-10 \mathrm{~V}$ Switch "OFF," $V_{S}=+10 \mathrm{~V}$, $V_{D}=-10 \mathrm{~V}$ $T_{A}=25^{\circ} \mathrm{C}$		0.4	5		0.4	10	nA
				3	100		3	30	nA
$\mathrm{I}_{\mathrm{D} \text { (OFF) }}$				0.1	5		0.1	10	nA
				3	100		3	30	nA
VINH	Logical "1" Input Voltage Logical "0" Input Voltage Logical "1" Input Current Logical "0" Input Current	$\left\|\begin{array}{ll} \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{IN}}=0.8 & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{array}\right\|$	2.0	3.6	0.8 10 25 0.1 1	2.0	3.6		V
$\mathrm{V}_{\text {INL }}$								0.8	V
İNH								40	$\mu \mathrm{A}$
								100	$\mu \mathrm{A}$
IINL								0.1	$\mu \mathrm{A}$
								1	$\mu \mathrm{A}$
ton	Delay Time "ON" Delay Time "OFF" Break-Before-Make Source Capacitance Drain Capacitance Active Source and Drain Capacitance	 $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$, (Figure 3) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$, (Figure 3) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$, (Figure 3) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Switch "'OFF," $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Switch "OFF," $\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$ $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Switch "ON," $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$ $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{array}{\|c\|} \hline 500 \\ 90 \\ 80 \\ 4.0 \\ 3.0 \\ 5.0 \\ \hline \end{array}$			500 90 80 4.0 3.0 5.0		ns
toff									ns
ton-toff									ns
$\mathrm{C}_{\text {S (OFF) }}$.									pF
CD(OFF)									pF
$\mathrm{CSON}_{\text {S(ON }}+$									pF
$\mathrm{C}_{\mathrm{D}(\mathrm{ON})}$									
Iso(OFF)	"OFF" Isolation Crosstalk Analog Slew Rate Disable Current	(Figure 4), (Note 4) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Figure 4), (Note 4) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Figure 5), (Note 6) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-50 -65 50 0.4 0.6	$\begin{array}{\|l\|} \\ \\ 1.0 \\ 1.5 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline-50 \\ -65 \\ 50 \\ 0.6 \\ 0.9 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 2.3 \\ & \hline \end{aligned}$	dB
CT									dB
SR									$\mathrm{V} / \mu \mathrm{s}$
IDIS									mA
									mA
lee	Negative Supply Current	All Switches "OFF," $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0	5.0		4.3	7.0	mA
				4.2	7.5		6.0	10.5	mA
I_{R}	Reference Supply Current	All Switches "OFF," $V_{S}= \pm 10 \mathrm{~V}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	4.0		2.7	5.0	mA
				2.8	6.0		3.8	7.5	mA
ICC	Positive Supply Current	All Switches "OFF," $V_{S}= \pm 10 \mathrm{~V} T_{A}=25^{\circ} \mathrm{C}$		4.5	6.0		7.0	9.0	mA
				6.3	9.0		9.8	13.5	mA

Note 1: Refer to RETSF11201X, RETSF11331X, RETSF11332X and RETSF11333X for military specifications.
Note 2: For operating at high temperature the molded DIP products must be derated based on a $+100^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, devices in the cavity DIP are based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and are derated at $\pm 100^{\circ} \mathrm{C} / \mathrm{W}$.
Note 3: Unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}$, and limits apply for $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ for the LF11331/2/3 and the LF11201/2, $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ for the LF13331/2/3 and the LF13201/2.
Note 4: These parameters are limited by the pin to pin capacitance of the package.
Note 5: This is the analog signal slew rate above which the signal is distorted as a result of finite internal slew rates.
Note 6: All switches in the device are turned "OFF" by saturating a transistor at the disable node as shown in Figure 5. The delay time will be approximately equal to the toN or toff plus the delay introduced by the external transistor.
Note 7: This graph indicates the analog current at which 1% of the analog current is lost when the drain is positive with respect to the source.
Note 8: θ_{JA} (Typical) Thermal Resistance
$\begin{array}{lr}\text { Molded DIP (N) } & 85^{\circ} \mathrm{C} / \mathrm{W} \\ \text { Cavity DIP (D) } & 100^{\circ} \mathrm{C} / \mathrm{W}\end{array}$
Small Outline (M) $105^{\circ} \mathrm{C} / \mathrm{W}$

Connection Diagrams (Top View for SO and Dual-ln-Line Packages) (All Switches Shown are For Logical "0")

LF11331/LF13331

LF11333/LF13333

TL/H/5667-14
LF11202/LF13202

TL/H/5667-16

LF11332/LF13332

TL/H/5667-13
LF11201/LF13201

TL/H/5667-15

Order Number LF13201D, LF11201D, LF11201D/883, LF13202D, LF11202D, LF11202D/883, LF13331D, LF11331D, LF11331D/883, LF13332D, LF11332D, LF11332D/883, LF13333D, LF11333D or LH11333D/883 See NS Package Number D16C

Order Number LF13201M, LF13202M, LF13331M, LF13332M or LF13333M See NS Package Number M16A

Order Number LF13201N, LF13202N, LF13331N, LF13332N or LF13333N See NS Package Number N16A

Test Circuit and Typical Performance Curves

Delay Time, Rise Time, Settling Time, and Switching Transients

Additional Test Circuits

Typical Performance Characteristics

Switching Times

Logical "1" Input Blas Current

TL/H/5667-5

Application Hints

GENERAL INFORMATION

These devices are monolithic quad JFET analog switches with "ON" resistances which are essentially independent of analog voltage or analog current. The leakage currents are typically less than 1 nA at $25^{\circ} \mathrm{C}$ in both the "OFF" and "ON" switch states and introduce negligible errors in most applications. Each switch is controlled by minimum TTL logic levels at its input and is designed to turn "OFF" faster than it will turn "ON." This prevents two analog sources from being transiently connected together during switching. The switches were designed for applications which require break-before-make action, no analog current loss, medium speed switching times and moderate analog currents.
Because these analog switches are JFET rather than CMOS, they do not require special handling.

LOGIC INPUTS

The logic input (IN), of each switch, is referenced to two forward diode drops (1.4 V at $25^{\circ} \mathrm{C}$) from the reference supply (V_{R}) which makes it compatible with DTL, RTL, and TTL logic families. For normal operation, the logic " 0 " voltage can range from 0.8 V to -4.0 V with respect to V_{R} and the logic " 1 " voltage can range from 2.0 V to 6.0 V with respect to V_{R}, provided V_{IN} is not greater than ($\mathrm{V}_{\mathrm{CC}}-2.5 \mathrm{~V}$). If the input voltage is greater than ($\mathrm{V}_{\mathrm{CC}}-2.5 \mathrm{~V}$), the input current will increase. If the input voltage exceeds 6.0 V or -4.0 V with respect to V_{R}, a resistor in series with the input should be used to limit the input current to less than $100 \mu \mathrm{~A}$.

ANALOG VOLTAGE AND CURRENT

Analog Voltage

Each switch has a constant "ON" resistance (RON) for ana\log voltages from ($\mathrm{V}_{E E}+5 \mathrm{~V}$) to ($\mathrm{V}_{\mathrm{CC}}-5 \mathrm{~V}$). For analog voltages greater than ($\mathrm{V}_{\mathrm{CC}}-5 \mathrm{~V}$), the switch will remain ON independent of the logic input voltage. For analog voltages less than ($\mathrm{V}_{\mathrm{EE}}+5 \mathrm{~V}$), the ON resistance of the switch will increase. Although the switch will not operate normally when the analog voltage is out of the previously mentioned range, the source voltage can go to either ($\mathrm{V}_{\mathrm{EE}}+36 \mathrm{~V}$) or $\left(V_{C C}+6 \mathrm{~V}\right)$, whichever is more positive, and can go as negative as V_{EE} without destruction. The drain (D) voltage can also go to either ($\mathrm{V}_{\mathrm{EE}}+36 \mathrm{~V}$) or ($\mathrm{V}_{\mathrm{CC}}+6 \mathrm{~V}$), whichever is more positive, and can go as negative as ($\mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}$) without destruction.

Analog Current

With the source (S) positive with respect to the drain (D), the RON is constant for low analog currents, but will increase at higher currents ($>5 \mathrm{~mA}$) when the FET enters the saturation region. However, if the drain is positive with respect to the source and a small analog current loss at high analog currents (Note 6) is tolerable, a low R_{ON} can be maintained for analog currents greater than 5 mA at $25^{\circ} \mathrm{C}$.

LEAKAGE CURRENTS

The drain and source leakage currents, in both the ON and the OFF states of each switch, are typically less than 1 nA at $25^{\circ} \mathrm{C}$ and less than 100 nA at $125^{\circ} \mathrm{C}$. As shown in the typical curves, these leakage currents are Dependent on power supply voltages, analog voltage, analog current and the source to drain voltage.

DELAY TIMES

The delay time OFF (toff) is essentially independent of both the analog voltage and temperature. The delay time ON ($t_{0 N}$) will decrease as either $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{A}}\right)$ decreases or the temperature decreases.

POWER SUPPLIES

The voltage between the positive supply (V_{CC}) and either the negative supply (V_{EE}) or the reference supply $\left(\mathrm{V}_{\mathrm{R}}\right)$ can be as much as 36 V . To accommodate variations in input logic reference voltages, V_{R} can range from V_{EE} to ($\mathrm{V}_{\mathrm{CC}}-4.5 \mathrm{~V}$). Care should be taken to ensure that the power supply leads for the device never become reversed in polarity or that the device is never inadvertantly installed backwards in a test socket. If one of these conditions occurs, the supplies would zener an internal diode to an unlimited current; and result in a destroyed device.

SWITCHING TRANSIENTS

When a switch is turned OFF or ON, transients will appear at the load due to the internal transient voltage at the gate of the switch JFET being coupled to the drain and source by the junction capacitances of the JFET. The magnitude of these transients is dependent on the load. A lower value R_{L} produces a lower transient voltage. A negative transient occurs during the delay time ON, while a positive transient occurs during the delay time OFF. These transients are relatively small when compared to faster switch families.

DISABLE NODE

This node can be used, as shown in Figure 5, to turn all the switches in the unit off independent of logic inputs. Normally , the node floats freely at an internal diode drop ($\approx 0.7 \mathrm{~V}$) above V_{R}. When the external transistor in Figure 5 is saturated, the node is pulled very close to V_{R} and the unit is disabled. Typically, the current from the node will be less than 1 mA . This feature is not available on the LF11201 or LF11202 series.

FIGURE 5. Disable Function

Programmable Inverting Non-Inverting Operational Amplifier

Programmable Gain Operational Amplifier

Typical Applications (Continued)

Multiplexer/Mixer

Self-Zeroing Operational Amplifier

Typical Applications (Continued)

Typical Applications (Continued)

LF13508 8-Channel Analog Multiplexer LF13509 4-Channel Differential Analog Multiplexer

General Description

The LF13508 is an 8-channel analog multiplexer which connects the output to 1 of the 8 analog inputs depending on the state of a 3-bit binary address. An enable control allows disconnecting the output, thereby providing a package select function.
This device is fabricated with National's BI-FET technology which provides ion-implanted JFETs for the analog switch on the same chip as the bipolar decode and switch drive circuitry. This technology makes possible low constant "ON" resistance with analog input voltage variations. This device does not suffer from latch-up problems or static charge blow-out problems associated with similar CMOS parts. The digital inputs are designed to operate from both TTL and CMOS levels while always providing a definite break-before-make action.
The LF13509 is a 4-channel differential analog multiplexer. A 2-bit binary address will connect a pair of independent
analog inputs to one of any 4 pairs of independent analog outputs. The device has all the features of the LF13508 series and should be used whenever differential analog inputs are required.

Features

- JFET switches rather than CMOS
- No static discharge blow-out problem
- No SCR latch-up problems
- Analog signal range 11V, -15 V
- Constant "ON" resistance for analog signals between -11V and 11V
■ "ON" resistance 380Ω typ
- Digital inputs compatible with TTL and CMOS
- Output enable control
- Break-before-make action: t $_{\text {OFF }}=0.2 \mu \mathrm{~s} ; \mathrm{t}_{\mathrm{ON}}=2 \mu \mathrm{~s}$ typ
- Lower leakage devices available

Functional Diagrams and Truth Tables

LF13508

EN	A2	A1	AO	SWITCH ON
H	L	L	L	S1
H	L	L	H	S2
H	L	H	L	S3
H	L	H	H	S4
H	H	L	L	S5
H	H	L	H	S6
H	H	H	L	S7
H	H	H	H	S8
L	X	X	X	NONE

LF13509

EN	A1	A0	SWITCH PAIR ON
L	X	X	None
H	L	L	S1
H	L	H	S2
H	H	L	S3
H	H	H	S4

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Positive Supply - Negative Supply ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$)
Positive Analog Input Voltage (Note 1)
Negative Analog Input Voltage (Note 1)
Positive Digital Input Voltage
Negative Digital Input Voltage
Analog Switch Current

Power Dissipation (P_{D} at $25^{\circ} \mathrm{C}$)
(Notes 2 \& 7)
Molded DIP (N) PD 500 mW
Cavity DIP (D) $P_{D} \quad 900 \mathrm{~mW}$
Small Outline (SO) PD 500 mW
Maximum Junction Temperature ($T_{j M A X}$) $100^{\circ} \mathrm{C}$
Operating Temperature Range $\quad 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature
D Package (Soldering, 10 seconds) . $300^{\circ} \mathrm{C}$
N Package (Soldering, 10 seconds) $260^{\circ} \mathrm{C}$
Surface Mount Package (SO)
Vapor Phase (60 seconds) $215^{\circ} \mathrm{C}$
Infrared (15 seconds) $220^{\circ} \mathrm{C}$

Electrical Characteristics
 (Note 3)

Symbol	Parameter	Conditions		$\begin{aligned} & \text { LF13508 } \\ & \text { LF13509 } \end{aligned}$			Units
				Min	Typ	Max	
RON	"ON" Resistance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{I}_{\text {S }}=100 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		380	650	Ω
					500	850	Ω
$\Delta \mathrm{R}_{\text {ON }}$	$\Delta R_{\text {ON }}$ with Analog Voltage Swing	$-10 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+10 \mathrm{~V}, \mathrm{I}_{\text {S }}=100 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.01	1	\%
RON Match	RON Match Between Switches	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{I}_{\text {S }}=100 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20	150	Ω
IS(OFF)	Source Current in "OFF" Condition	Switch "OFF", $\mathrm{V}_{\mathrm{S}}=11, \mathrm{~V}_{\mathrm{D}}=-11$, (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			5	nA
					0.09	50	nA
ID(OFF)	Drain Current in "OFF" Condition	Switch "OFF", $\mathrm{V}_{\mathrm{S}}=11, \mathrm{~V}_{\mathrm{D}}=-11$, (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			20	nA
					0.6	500	nA
$I_{\text {d(ON }}$	Leakage Current in "ON" Condition	Switch "ON" $\mathrm{V}_{\mathrm{D}}=11 \mathrm{~V}$, (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			20	nA
					1	500	nA
$\mathrm{V}_{\text {INH }}$	Digital "1" Input Voltage			2.0			V
$\mathrm{V}_{\text {INL }}$	Digital "0" Input Voltage					0.7	V
$\mathrm{I}_{\text {INL }}$	Digital " 0 " Input Current	$\mathrm{V}_{\mathrm{IN}}=0.7 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	30	$\mu \mathrm{A}$
						40	$\mu \mathrm{A}$
IINL(EN)	Digital "0" Enable Current	$\mathrm{VEN}=0.7 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.2	30	$\mu \mathrm{A}$
						40	$\mu \mathrm{A}$
$\mathrm{t}_{\text {TRAN }}$	Switching Time of Multiplexer	(Figure 1), (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.8		$\mu \mathrm{s}$
topen	Break-Before-Make	(Figure 3)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.6		$\mu \mathrm{s}$
ton(EN)	Enable Delay "ON"	(Figure 2)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {OFF (EN) }}$	Enable Delay "OFF"	(Figure 2)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.2		$\mu \mathrm{s}$
ISO(OFF)	"OFF" Isolation	(Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-66		dB
CT	Crosstalk	LF13509 Series, (Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-66		dB
$\mathrm{C}_{\text {S(OFF }}$	Source Capacitance ("OFF')	$\begin{aligned} & \text { Switch "OFF", } \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.2		pF
$\mathrm{C}_{\text {D(OFF) }}$	Drain Capacitance ("OFF')	$\begin{aligned} & \text { Switch "OFF", } \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		11.4		pF
ICC	Positive Supply Current	All Digital Inputs Grounded	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.4	12	mA
					7.9	15	mA
${ }^{\text {IEE }}$	Negative Supply Current	All Digital Inputs Grounded	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.7	5	mA
					2.8	6	mA

Electrical Characteristics (Continued)

Note 1: If the analog input voltage exceeds this limit, the input current should be limited to less than 10 mA .
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\mathrm{j} M A X}, \theta_{\mathrm{j} A}$, and the ambient temperature, T_{A}. The maximum available power dissipation at any temperature is $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{\mathrm{jMAX}}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{jA}}$ or the $25^{\circ} \mathrm{C} \mathrm{P}_{\mathrm{DMAX}}$, whichever is less.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and over the absolute maximum operating temperature range ($T_{L} \leq T_{A} \leq T_{H}$) unless otherwise noted.
Note 4: Conditions applied to leakage tests insure worse case leakages. Exceeding 11V on the analog input may cause an "OFF" channel to turn "ON".
Note 5: Lots are sample tested to this parameter. The measurement conditions of Figure 1 insure worse case transition time.
Note 6: "OFF" isolation is measured with all switches "OFF" and driving a source. Crosstalk is measured with a pair of switches "ON", driving channel A and measuring channel B. $R_{L}=200, C_{L}=7 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{Vrms}, \mathrm{f}=500 \mathrm{kHz}$.
Note 7: Thermal Resistance θ_{jA} (Junction to Ambient)

$$
\begin{array}{ll}
\text { Molded DIP (N) } & 150^{\circ} \mathrm{C} / \mathrm{W} \\
\text { Cavity DIP (D) } & 100^{\circ} \mathrm{C} / \mathrm{W}
\end{array}
$$

Connection Diagrams

LF13508
Dual-In-Line (N or D) or Small Outline (SO) Packages

Order Number LF13508D
See NS Package Number D16C
Order Number LF13508M
See NS Package Number M16A
Order Number LF13508N
See NS Package Number N16A

LF13509
Dual-In-Line (N or D) or Small Outline (SO) Packages

TL/H/5668-2
Order Number LF13509D
See NS Package Number D16C
Order Number LF13509M
See NS Package Number M16A
Order Number LF13509N
See NS Package Number N16A

AC Test Circuits and Switching Time Waveforms

FIGURE 1. Transition Time

AC Test Circuit and Switching Time Waveforms (Continued)

FIGURE 2. Enable Times

TL/H/5668-4
FIGURE 3. Break-Before-Make

Transition Times and Transients

Typical Performance Characteristics

Switching Times (Figures 1 and 3)

Enable Delay Times
(Figure 2)

Application Hints

The LF11508 series is an 8 -channel analog multiplexer which allows the connection of a single load to 1 of 8 different analog inputs. These multiplexers incorporate JFETs in a switch configuration which insures a constant "ON" resistance over the analog voltage range of the device. Four TTL compatible inputs are provided; a 3-bit binary decode to select a particular channel and an enable input used as a package select. The switches operate with a break-beforemake action preventing the temporary connection of 2 analog inputs during switching. Because these multiplexers are fabricated with the BI-FET process rather than CMOS, they do not require special handling.
The LF11509 series is a 4-channel differential multiplexer which allows two loads to be connected to 1 of 4 different pairs of analog inputs. The LF11509 series also has all the features of the LF11508.

ANALOG VOLTAGE AND CURRENT

The "ON" resistance, RON, of the analog switches is constant over a wide input range from positive (V_{CC}) supply to negative ($-\mathrm{V}_{\mathrm{EE}}$) supply.
The analog input should not exceed either positive or negative supply without limiting the current to less than 10 mA ; otherwise the multiplexer may get damaged. For proper operation, however, the positive analog voltage should be kept equal to or less than $\mathrm{V}_{\mathrm{CC}}-4 \mathrm{~V}$ as this will increase the switch leakage in both "ON" and "OFF" state and it may also cause a false turn "ON" of a normally "OFF" switch. This limit applies over the full temperature range.
The maximum allowable switch "ON" voltage (the drop across the switch in the "ON" condition) is $\pm 0.4 \mathrm{~V}$ over temperature. If this number is to exceed the input current should be limited to 10 mA .
The "ON" resistance of the multiplexing switches varies slightly with analog current because they are JFETs running at OV gate to source. The JFET characteristics shown in Figure 4 indicates how RON tends to vary with current. A lower $R_{\text {ON }}$ is possible when the source voltage is negative with respect to the drain voltage because the JFET becomes enhanced. Caution should be used when operating in this mode as this may forward-bias an internal transistor and cause high currents to flow in the switches. Thus, the drain voltage should never be greater than 0.4 V positive with respect to the source voltage without limiting the drain current to less than 10 mA .

LEAKAGE CURRENTS

Leakage currents will remain within the specified value as long as the drain and source remain within the specified analog voltage range. As the switch terminals exceed the positive analog voltage range "ON" and "OFF" leakage currents increase. The "ON" leakage increases due to an internal clamp required by the switch structure. The "OFF" leakage increases because the gate to source reverse bias has been decreased to the point where the switch becomes active. Leakage currents vary slightly with analog voltage and will approximately double for every $10^{\circ} \mathrm{C}$ rise in temperature.

SWITCHING TIMES AND TRANSIENTS

These multiplexers operate with a break-before-make switch action. The turn off time is much faster than the turn on time to guarantee this feature over the full range of analog input voltage and temperature. Switching transients are introduced when a switch is turned "OFF". The amplitude of these transients may be reduced by increasing the load capacitance or decreasing the load resistance. The actual charge transfer in the transient may be reduced by operating on reduced power supplies. Examples of switching times and transients are shown in the typical characteristic curves. The enable function switching times are specified separately from switch-to-switch transition times and may be thought of as package-to-package transition times.

LOGIC INPUTS AND ENABLE INPUT

Switch selection in the LF11508 series is accomplished by using a 3-bit binary decode while the LF11509 series uses a 2-bit decode. These binary logic inputs are compatible with both TTL and CMOS logic voltage levels. The maximum positive voltage applied to these inputs may exceed V_{CC} but should not exceed $-\mathrm{V}_{\mathrm{EE}}+36 \mathrm{~V}$. The maximum negative voltage should not be less than 4 V below ground as this will cause an internal device to zener and all the switches will turn "ON".
As shown in the schematic diagram, the logic low bias current will flow until the PNP input is raised above the 3 diode reference ($\approx 2.1 \mathrm{~V}$). Above this voltage the input device becomes reverse biased and the input current drops to the leakage of the reverse biased junction $(<0.1 \mu \mathrm{~A})$.

FIGURE 4. JFET Characteristics

Typical Applications

DATA ACQUISITION SYSTEM

A SIMPLIFIED SYSTEM DISCUSSION

Analog multiplexers (MUX) are usually used for multi-channel Data Acquisition Units (DAU). Figure 5 shows a system in which 8 different analog inputs are sampled and converted into digital words for further processing. The sample and hold circuit is optional, depending on input speed requirements and on A/D converter speed.
Parameters characterizing the system are:
System Channels: The number of multiplexer channels.
Accuracy: The conversion accuracy of each individual sample with the system operating at the throughput rate.
Speed or Throughput Rate: Number of samples/second/ channel the system can handle.
For a discussion on system structure, addressing mode and processor interfacing, see application note AN-159.

A. ACCURACY CONSIDERATIONS

1. Multiplexer's Influence on System Accuracy (Figure 6).
a. The error, (E), caused by the finite " ON " resistance, R_{ON}, of the multiplexing switches is given by:
$E(\%)=\frac{100}{1+R_{I N} /\left(R_{O N}+R_{S}+\Delta R_{O N}\right)}$ where:
$R_{\text {IN }}=$ following stage input impedance $\Delta R_{O N}=$ "ON" resistance modulation which is negligible for JFET switches like the LF11508
Example: Let $R_{O N}=450 \Omega, \Delta R_{O N}=0, R_{S}=0, T_{A}$ $=25^{\circ} \mathrm{C}$ and allowable $\mathrm{E}=0.01 \%$ which is equivalent to $1 / 2$ LSB in a 12-bit system:
$\left.R_{I N}\right|_{\min }=\frac{R_{\mathrm{ON}}(100-E)}{E}=4.5 \mathrm{M} \Omega$
Note that if temperature effects are included, some gain (or full scale) drift will occur; but effects on linearity are small.
b. Multiplexer settling time $\left(\mathrm{t}_{\mathrm{s}}\right)$:
$t_{s(O N)}$: is the time required for the MUX output to settle within a predetermined accuracy, as shown in Table I.
$\mathrm{C}_{\text {S }}$ (Figure 6): MUX output capacitance + following stage input capacitance + any stray capacitance at this node.

TABLE I .

ERROR \%	BITS	$\mathbf{t}_{\mathbf{s}}(\mathbf{O N})$ TO $\mathbf{1 / 2}$ LSB
0.2	8	6.2 t
0.05	10	7.6 t
0.01	12	9 t
0.0008	16	11.8 t

$$
t=C_{S}\left(R_{O N}+R_{S}\right) \| R_{I N}
$$

$\mathrm{t}_{\mathrm{s} \text { (OFF) }}$: is the time it takes to discharge C_{S} within a tolerable error. The "OFF" settling time should be taken into account for bipolar inputs where its effects will appear as a worse case of doubling of the $\mathrm{t}_{\mathrm{s}}(\mathrm{ON})$.
2. Sample and Hold Influence on System Accuracy

The sample and hold, if used, also introduces errors into the system accuracy due to:

- Offset voltage of sample and hold
- Droop rate in the Hold mode
- T_{A} : Aperture time or time delay between the time of a digital Hold command and the actual Hold occurance
- Taq: Acquisition time or time it takes to acquire an analog input and settle within a predetermined error band
- Hold step: Error created during the Sample to Hold mode caused by an undesirable charge injected into the Hold capacitor C_{h}.
For more details on sample and hold errors, see the LF198/LF298/LF398 data sheet.

3. A/D Converter Influence on System Accuracy

The "accuracy" of the A/D converter is the best possible system accuracy. In most data acquisition systems, the A/D converter is the most expensive single component, so its error will often dominate system error. Care should be taken that MUX, S/H and input source errors do not exceed system error requirements when added to A/D errors. For instance, if an 8-bit accuracy system is desired and an 8 -bit A/D converter is used, the accuracy of the MUX and S/H should be far better than 8 bits.

For details on A/D converter specifications, see AN-156.

FIGURE 5. Random-Addressed, Multiplexed DAU
FIGURE 6. 8-Channel MUX

Typical Applications (Continued)

B. SPEED CONSIDERATIONS

In the system of Figure 5 with the S/H omitted, if n-bit accuracy is desired, the change of the analog input voltage should be less than $\pm 1 / 2$ LSB over the A/D conversion time T_{C}. In other words, the analog input slew rate, (rate of change of input voltage), will cause a slew-induced error and its magnitude, with respect to the total system error, will depend on the particular application.

$$
\left.\frac{\Delta V_{I N}}{\Delta t}\right|_{\max }<\frac{ \pm 1 / 2 \mathrm{LSB}}{T_{C}}=\frac{V_{F S}}{2^{n} \times T_{C}}
$$

where V_{FS} is the full scale voltage of the A/D. Note that slew induced errors are not affected by the MUX switch time since we can let the unit settle before starting conversion.

Example: Let $T_{C}=40 \mu \mathrm{~s}$ (MM4357), $\mathrm{V}_{\mathrm{FS}}=10 \mathrm{~V}$ and n $=8$.

$$
\left.\frac{\Delta V_{\mathrm{IN}}}{\Delta t}\right|_{\max }<\frac{1 \mathrm{mV}}{\mu \mathrm{~S}}
$$

which is a very small number. A $10 \mathrm{Vp}-\mathrm{p}$ sine wave of a frequency greater than 32 Hz will have higher slew rate than this. The maximum throughput rate of the above 8channel system would be calculated using both the A/D conversion time and the sum of MUX switch "ON" time and settling time, i.e.:

$$
\begin{aligned}
& T h .\left.R\right|_{\max }=\frac{1}{8\left(T_{C}+T_{M U X}\right)}=\begin{array}{c}
3 k \text { samples } / \mathrm{sec} / \\
\text { channel }
\end{array} \\
& T_{M U X}=T_{O N}+T_{S(O N)}
\end{aligned}
$$

Also notice that Nyquist sampling criteria would allow each channel to have a signal bandwidth of 1.5 kHz max, while the slew limit dictates a maximum frequency of 32 Hz . If the input signal has a peak-to-peak voltage less than 10V, the allowable maximum input frequency can be calculated by:

$$
\mathrm{f}_{\mathrm{MAX}}=\frac{\text { (Slew Rate) max }}{\pi \text { Vp-p }}
$$

On the other hand, if the input voltage is not band-limited a low pass filter with an attenuation of 30 dB or better at 1.5 kHz , should be connected in front of the MUX.

1. Improving System Speed with a Sample and Hold The system speed can be improved by using the S/H shown in Figure 5. This allows a much greater rate of change of V_{IN}.

$$
\left.\frac{\Delta V_{I N}}{\Delta t}\right|_{\max }<\frac{V_{F S}}{2^{n} \times T_{A}}
$$

where T_{A} is the aperture time of the S / H. This represents an input slew rate improvement by a factor: $T_{C} /$ T_{A}. Here again, the slew rate error is not affected by the acquisition time of the Sample and Hold since conversion will start after the S/H has settled. An important thing to notice is that the sample and hold errors will add to the total system error budget; therefore, the inequality of the $\Delta V_{\mathbb{N}} / \Delta t$ expression should become more stringent.
Example: $T_{C}=40 \mu \mathrm{~s}, T_{A}=0.5 \mu \mathrm{~s}, \mathrm{n}=8: \mathrm{T}_{\mathrm{C}} / \mathrm{T}_{\mathrm{A}}=80$ So the use of a S / H allows a speed improvement by nearly two orders of magnitude.
The maximum throughput rate can be calculated by:
Th. $\left.R\right|_{\text {max }}=\frac{1}{8\left(T_{A}+T_{a q}+T_{C}\right)}$
Notice that $\mathrm{T}_{\text {MUX }}$ does not affect the $\Delta \mathrm{V}_{\mathrm{IN}} / \Delta \mathrm{t}$ expression nor the throughput rate of the system since it may be switched and settled while the Sample and Hold is in the Hold mode. This is true, provided that: $T_{M U X}<T_{A}+T_{C}$.

C. SYSTEM EXAMPLE (Flgure 7)

The LF398 S/H with a 1000 pF hold capacitor, has an acquisition time of $4 \mu \mathrm{~s}$ to 0.1% ($1 / 4$ LSB error for 8 bits) and an aperture time of less than $200 \mu \mathrm{~s}$. On the other hand, after the hold command, the output will settle to $\pm 0.05 \mathrm{mV}$ in $1 \mu \mathrm{~s}$. This, together with the acquisition time, introduces approximately a $\pm 1 / 4$ LSB error. Allowing another $1 / 4$ LSB error for hold step and gain non-linearity, the maximum slew error $\left(\Delta \mathrm{V}_{\mathrm{IN}} / \Delta \mathrm{t}\right)$ should not exceed $1 / 4$ LSB or:

$$
\frac{\Delta V_{\mathbb{N}}}{\Delta t} \leq \frac{1}{4} \times \frac{1}{256} \times \frac{1}{T_{A}} \approx 5 \mathrm{mV} / \mu \mathrm{s}
$$

(which is the maximum slew rate of a 5 V peak sine wave. Also notice that, due to the above input slew restrictions, the analog delay caused by the finite BW of the S/H and the digital delay caused by the response time of the controller will be negligible. The maximum throughput rate of the system is:

$$
\text { Th. }\left.R\right|_{\max }=\frac{1}{8(5+40) 10^{-6}}=2800 \text { samples } / \mathrm{sec} / \mathrm{ch} .
$$

If the system speed requirements are relaxed, but the A/D converter is still too slow, then an inexpensive S/H can be built by using just a capacitor and a low cost FET input op amp as shown in Figure 8.

Typical Applications (Coninued)

Typical Applications (Continued)

D. DOUBLING THE SYSTEM CHANNEL CAPABILITY

This is done in two different ways. First, we can use second level multiplexing with speed benefits, as shown in Figure 9. A fast 2-channel multiplexer, made by the dual analog switch AM182, accepts the outputs of each 8-channel MUX, LF13508, and then feeds them sequentially into an 8 -bit successive approximation A/D converter. With this technique, the throughput rate of the system can again be made independent of the LF13508 speed. Looking at the timing diagram, when the A/D converter converts the analog value of an upper multiplexer channel, we switch channels in the lower multiplexer for the next conversion. This can be done provided that:
$T_{\text {MUX }} \leq T_{C}+1 \mathrm{CP}$
The LF356 connected as unity gain buffers are used because of the low input impedance of the A/D; they are connected between multiplexers for speed optimization. With a maximum clock frequency of 4.5 MHz :

An alternate way to increase the system channel is shown in Figure 10, where the enable pins are used to disable one MUX while the other is sampling. With this method, many 8channel multiplexers can be connected, but the parasitic capacitance at the common output node will keep increasing and will eventually degrade the settling time, $\mathrm{t}_{\mathrm{s}(\mathrm{ON})}$. Also, the MUX speed will now affect the system throughput. If, for instance, this method was used instead of second level multiplexing, the system of Figure 9 will lose half of its speed. If, however, speed is not the prime system requirement, the approach of Figure 10 is more cost effective.

E. DIFFERENTIAL INPUT SYSTEMS

Systems operating in industrial environments may require an instrumentation amplifier to separate the desired analog signal from any common-mode signal present. The LF11509 was designed to provide 4 pairs of differential input signals to the input of an instrumentation amplifier for further process.

Th. $R=\frac{10^{6}}{16 \times 2}=31.25 \mathrm{k}$ samples $/ \mathrm{sec} /$ channel
and

$$
\left.\frac{\Delta V_{\mathrm{IN}}}{\Delta \mathrm{t}}\right|_{\max }<\frac{10}{256} \times \frac{1}{2 \mu \mathrm{~S}}=19.5 \mathrm{mV} / \mu \mathrm{s} \text { for } 10 \mathrm{~V}_{\mathrm{FS}}
$$

TL/H/5668-15

- The acquisition time, T_{A}, of the Sample and Hold depends upon: $R_{O N}$, IDSS of switches, $Z_{O U T}$ of switches
- $\mathrm{I}_{\mathrm{DSS}} \cong 1.5 \mathrm{~mA}, \mathrm{Z}_{\text {OUT }}=40 \mathrm{k} \Omega$
- $\mathrm{V}_{\mathbb{I N}}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{h}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=20 \mu \mathrm{~s}$ to 0.1%
- Error created by charge injection during Hold mode: $\Delta \mathrm{V}_{\mathrm{E}} \cong 10 \mathrm{pF}\left(14.5 \mathrm{~V}-\mathrm{V}_{\mathrm{IN}}\right) / \mathrm{C}_{\mathrm{h}}$

FIGURE 8. Inexpensive Sample and Hold

Typical Applications (Continued)

FIGURE 9a. A Fast 16-Channel DAU with Second Level Multiplexing

TL/H/5668-16
FIGURE 9b. Timing Diagram

Typical Applications (Continued)

FIGURE 10. A 16-Channel Multiplexer with Sequential Multiplexing
Schematic Diagrams
LF13508

Schematic Diagrams (Continued)

Section 9

Surface Mount

Section 9 Contents

Packing Considerations (Methods, Materials and Recycling) 9-3
Board Mount of Surface Mount Components . 9-19
Recommended Soldering Profiles-Surface Mount . 9-23
AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect
on Product Reliability . 9 . 24.
Land Pattern Recommendations . 9-35

CNational Semiconductor

Packing Considerations (Methods, Materials and Reocyling)

Transport Media

All NSC devices are prepared, inspected and packed to insure proper physical support and to protect during transport and shipment. All assembled devices are packed in one or more of the following container forms-immediate containers, intermediate containers and outer/shipping containers. An example of each container form is illustrated below.

IMMEDIATE CONTAINER

INTERMEDIATE CONTAINER

TL/P/11809-4

TL/P/11809-5

TL/P/11809-6

OUTER/SHIPPING CONTAINER

TL/P/11809-7

Methods of immediate carrier packing include insertion of components into molded trays and rails/tubes, mounting of components onto tape and reel or placement in corrugated cartons. The immediate containers are then packed into intermediate containers (bags or boxes) which specify quantities of trays, rails/tubes or tape and reels. Outer/shipping containers are then filled or partially filled with intermediate containers to meet order quantity requirements and to further insure protection from transportation hazards. Additional dunnage filler material is required to fill voids within the intermediate and outer/shipping containers.

General Packing Requirements

NSC packing methods and materials are designed based on the following considerations:

- Optimum protection to the products-it must provide adequate protection from handling (electrostatic discharge) and transportation hazards;
- Ease of handling-it should be easy to assemble, load and unload products in and from it; and
- Impacts to the environment-it shall be reusable and recyclable.

Levels of Product Packing

IMMEDIATE CONTAINER

The first level of product packing is the immediate container. The immediate container type varies with the product or package being packed. In addition, the materials used in the immediate container depend on the fragility, size and profile of the product. The four types of immediate containers used by NSC are rails/tubes, trays, tape and reel, and corrugated and chipboard containers.
Rails/tubes are generally made of acrylic or polyvinyl chloride (PVC) plastics. The electrical characteristics of the material are altered by either intrinsically adding carbon fillers, and/or topically coating it with antistatic solution. Refer to Table I for rail/tube material and recyclabillty information.

TABLE I. Plastic Rail/Tube and Stopper Requirements

Package Type	Rail		Type	Stopper Material	Code/Symbol (Note 1)	Recyclability
	Material	Code/Symbol (Note 1)				
DIP's						
Plastic	Polyvinylchloride	03/PVC	Pin	Polyamide	07/PA	Yes
Ceramic	Polyvinylchloride	03/PVC	Pin	Polyamide	07/PA	Yes
Sidebraze	Polyvinylchloride	03/PVC	Pin	Polyamide	07/PA	Yes
PLCC	Polyvinylchloride	03/PVC	Plug	Rubber	07/SBR	Yes
TapePak	Polyvinylchloride	03/PVC	Plug	Rubber	07/SBR	Yes
Flatpack	Polyvinylchloride	03/PVC	Pin	Polymide	07/PA	Yes
Cerpack	Polyvinylchloride	03/PVC	Pin	Polymide	07/PA	Yes
TO-220/202	Polyvinylchloride	03/PVC	Pin	Polymide	07/PA	Yes
$\begin{aligned} & \text { TO-5/8 } \\ & \text { (in Carrier) } \\ & \hline \end{aligned}$	Polyvinylchloride	03/PVC	Pin	Polymide	07/PA	Yes
SOP	Polyvinylchloride	03/PVC	Plug	Rubber	07/SBR	Yes
$\begin{aligned} & \text { LCC } \\ & \quad 18 \mathrm{~L}-44 \mathrm{~L} \end{aligned}$	Polyvinylchloride	03/PVC	Plug	Rubber	07/SBR	Yes

Note 1: ISO 1043-1 International Standards-Plastic Symbols.
SAE J1344 Marking of Plastic Parts.
ASTM D 1972-91 Standard Practice for Generic Marking of Plastic Products.
DIN 6120, German Recycling Systems, RESY for paperbased and VGK for plastic packing materials.

Molded injection and vacuum formed trays can be either conductive or static dissipative. Molded injection trays are classified as either low-temperature or high-temperature
depending on the material type. Vacuum formed trays are only used in ambient room temperature conditions. Refer to Table II for tray material and recyclability information.

TABLE II. Tray Requirements

Package Type	Class	Material	Tray		Binding Type
			Recyclability (Note 1)	Code/Symbol (Note 1)	
PQFP (All)	High Temperature	Polyethersulfone	Yes	07/PES	Wire Tie or Nylon Strap
	Low Temperature	Acrylonitrilebutadiene Styrene	Yes	07/ABS	Wire Tie or Nylon Strap
PGA, LDCC CERQUADs and LCC (48 leads-125 leads)	Low Temperature Only	ABS/PVC	Yes	07/ABS-PVC	Wire Tie
PPGA	Low Temperature Only	Polyarylsulfone	Yes	07/PAS	Wire Tie

is made of polyester (PET) and polyethylene (PE) materials. Refer to Table III for tape and reel material and recyclability Information.

Tape and reel is a multi-part immediate container system. The reel is made of either polystyrene (PS) material coated with antistatic solution or chipboard. The embossed or cavity tape is made of either PVC or PS material. The cover tape

TABLE III. Tape and Reel Requirements

Package Type	Reel		Cover Type		Carrier Tape		Recyclability (Note 1)
	Material	Code/ Symbol (Note 1)	Material	Code/ Symbol (Note 1)	Material	Code/ Symbol (Note 1)	
TO-92	Chipboard	Resy	N/A		Paper Tape		Yes
SOP-23	Polystyrene Chipboard	06/PS Resy	Polystyrene	06/PS	PVC	03/PVC	Yes
SOP, SSOP and PLCC	Polystyrene Polyethylene	06/PS	Polyester	07/PET-PE	PVC	03/PVC	Yes

Note 1: 150 1043-1 International Standards-Plastic Symbols. SAE J1344 Marking of Plastic Parts.
ASTM D 1972-91 Standard Practice for Generic Marking of Plastic Products.
DIN 6120, German Recycling Systems, RESY for paperbased and VGK for plastic packing materials.

Corrugated containers are generally constructed with fibreboard facings and a fluted corrugated medium in between the facings. Chipboard containers are comprised of just one
fibreboard facing. Facings and corrugated medium are kraft (brown) fibreboard, and generally single wall construction. Refer to Table IV for material and recyclability information.

TABLE IV. Fibreboard Container Requirements

Package Type	Pack Method		Container Type		Recyclability
	Material	Code/ Symbol (Note 1)	Imme Interm Outer or	(IMM) ate (INT) pping (SHP)	
$\begin{aligned} & \text { TO-92/18, } \\ & \text { TO-46/5, } \\ & \text { TO-39, 220, } \\ & \text { TO-202/126, } \\ & \text { TO-237 } \end{aligned}$	Corrugated (E070 BOX)	Resy	IMM		Yes
All Products	Corrguated	Resy	INT and SHIP		Yes
All Products	3-Ply Paper (Padpak)	Resy	Dunnage		Yes
All Products PLCC	Plastic Bubble Sheet	04/PE	Dunnage		Yes

Note 1: ISO 1043-1 International Standards-Plastic Symbols.
SAE J1344 Marking of Plastic Parts.
ASTM D1972-91 Standard Practice for Generic Marking of Plastic Products.
DIN 6120, German Recycling Systems, RESY for paperbased and VGK for plastic packing materials.:

INTERMEDIATE CONTAINERS

The second level of product packing is the intermediate container. Three types on intermediate containers are used by NSC. They are plastic bags, moisture barrier bags and corrugated cartons/boxes.
Two types of plastic bags are used and usage of each type depends on the product or package being packed. Conductive bags are made of polyvinylchloride plastic material. The electrical characteristics of the bag are altered by adding
carbon fillers which make the bag black (opaque) in color. Conductive bags are used on products or packages that are packed in static dissipative (SD) rails/tubes. Static shielding bags are made of two layers of SD polyethylene sheets with a metallized film separating the sheets. Refer to Table V for material and recyclability information.
Moisture barrier bags are used on rail/tube, tape and reel, and tray packs for moisture sensitive products. NSC uses National Metallizing's StratoguardTM 4.6.

TABLE V. Conductive and Static Shielding Bag Requirements

Package Type	Container Type	Material Type	Mat'I and Symbol (Note 1)	Mat'I Recyclability
All Prod. in Rails	Conductive Bag	Polyethlene	04/PE	Yes
TO-92/81, TO-46/5, TO-39/220, TO-202/126, TO-3/237	Static Shielding Bag	Polyethlene Alum. Laminant	N/A	No

TABLE VI. Drypack Bag Requirements

Package Type	Container Type	Material Type	Mat'I and Symbol (Note 1)	Mat'I Recyclability
TapePak PLCC (52-84L) PQFP	Drypack Bag	StratoguardTM 4.6	N/A	No

Note 1: ISO 1043-1 International Standards-Plastic Symbols. SAE J1344 Marking of Plastic Parts.
ASTM D1972-91 Standard Practice for Generic Marking of Plastic Products.
DIN 6120, German Recycling Systems, RESY for paperbased and VGK for plastic packing materials

Corrugated cartons/boxes are generally constructed with fibreboard facings and a fluted corrugated medium in between the facings. Facings and corrugated medium are kraft (brown) fibreboards, and are generally of single wall construction. Carton style varies with the product that it will contain. For example, packing of a rail/tube will require the use of a carton with a roll end from lock (REFL) design. Other products generally use the regular slotted container (RSC) box. Refer to Table IV for material and recyclability information.

OUTER/SHIPPING CONTAINERS

The third level of product packing is the outer/shipping container. The outer/shipping containers use by NSC are similar to the corrugated containers used for immediate and intermediate packaging, but are heavier in facing thickness. The style generally used is the regular slotted container (RSC) box and can be single, double or triple wall, depending on the total weight of products being transported or shipped. Refer to Table IV for material and recyclability information.

OTHER PACKING MATERIALS

Additional dunnage and void filler materials are required to fill voids within the intermediate and outer/shipping containers. Two types of dunnage/filler material are Padpack and bubble pack. Padpak is a machine processed, 3-ply kraft paper sheet dunnage system. Refer to Table IV for material and recyclability information.
Bubble pack is made of polyethylene plastic sheets with air pockets trapped in between the plastic layers and can be either static dissipative or conductive. Refer to Table IV for material and recyclability information.

Immediate Container Pack Methods

The following table identifies the primary immediate container pack method for all hermetic and plastic packages offered by National Semiconductor. A secondary immediate container pack method is identified where applicable.

Immediate Packing Method for Ceramic Packages

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
		Method	Quantity	Method	Quantity
Ceramic Sidebrazed Dual-In-Line Package (SB)	D08C	Rail/Tube	35		
	D14D	Rail/Tube	25		
	D16C	Rail/Tube	20		
	D18A	Rail/Tube	20		
	D20A	Rail/Tube	18		
	D20B	Rail/Tube	18		
	D24C	Rail/Tube	15		
	D24H	Rail/Tube	15		
	D24K	Rail/Tube	15		
	D28D	Rail/Tube	13		
	D28G	Rail/Tube	13		
	D28H	Rail/Tube	13		
	D40C	Rail/Tube	9		
	D40J	Rail/Tube	9		
	D48A	Rail/Tube	7		
	D52A	Rail/Tube	7		
Ceramic Leadless Chip Carrier (LCC)	E20A	Rail/Tube	50		
	EA20B	Rail/Tube	50		
	E24B	Tray	25		
	E28A	Tray	28		
	EA028C	Tray	100		
	E32A	Rail/Tube	35		
	E32B	Rail/Tube	35		
	E32C	Rail/Tube	35		
	E40A	Rail/Tube	35		
	E44A	Rail/Tube	25		
	E48A	Tray	25		
	E68B	Tray	48		
	E68C	Tray	48		
	E84A	Tray	42		
	E84B	Tray	42		

Immediate Packing Method for Ceramic Packages (Continued)

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
		Method	Quantity	Method	Quantity
Ceramic Quad J-Bend (CQJB)	EL28A	Tray	96		
	EL44A	Tray	80		
	EL44B	Tray	80		
	EL44C	Tray	80		
	EL52A	Tray	50		
	EL68A	Tray	44		
	EL68B	Tray	44		
	EL68C	Tray	44		
	EL84A	Tray	42		
Ceramic Quad Flatpack (CQFP)	EL28B	Rail	15		
	EL64A	Box	36		
	EL100A	Tray	12		
	EL116A	Tray	12		
	EL132B	Tray	20		
	EL132C	Tray	20		
	EL132D	Tray	20		
	EL164A	Tray	12		
	EL172B	Tray	12		
	EL172C	Tray	12		
Ceramic Flatpack	F10B	Carrier/Rail	19	Carrier/Box	200
	F14C	Carrier/Rail	19	Carrier/Box	200
	F16B	Carrier/Rail	19	Carrier/Box	200

Immediate Packing Method for Ceramic Packages (Continued)

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
		Method	Quantity	Method	Quantity
Ceramic Dual-InLine Package (Cerdip)	J08A	Rail/Tube	40		
	J14A	Rail/Tube	25		
	J16A	Rail/Tube	25		
	J18A	Rail/Tube	20		
	J20A	Rail/Tube	20		
	J22A	Rail/Tube	17		
	J24A	Rail/Tube	15		
	J24AQ	Rail/Tube	15		
	J24B-Q	Rail/Tube	15		
	J24CQ	Rail/Tube	15		
	J24E	Rail/Tube	16		
	J24F	Rail/Tube	15		
	J28A	Rail/Tube	12		
	J28AQ	Rail/Tube	12		
	J28B	Rail/Tube	12		
	J28BQ	Rail/Tube	12		
	J28CQ	Rail/Tube	13		
	J32B	Rail/Tube	11		
	$J 32 A Q$	Rail/Tube	11		
	J40A	Rail/Tube	9		
	$J 40 A Q$	Rail/Tube	9		
	J40BQ	Rail/Tube	9		
Ceramic Small Outline Package, Wide	MC16A	Rail/Tube	45		
	MC20A	Rail/Tube	36		
	MC20B	Rail/Tube	36		
	MC24A	Rail/Tube	30		
	MC28A	Rail/Tube	26		
	MC28B	Rail/Tube	26		

	Immediate Packing Method for Ceramic Packages (Continued)					
	Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
			Method	Quantity	Method	Quantity
	Ceramic Pin Grid Array (CPGA)	U44A	Tray	80		
		U68B	Tray	42		
		U68C	Tray	42		
		U68D	Tray	42		
		U68E	'Tray	42		
		U75A	Tray	35		
		U84A	Tray	42		
		U84B	Tray	42		
		U84C	Tray	42		
		U99A	Tray	25		
		U100A	Tray	30		
		U109A	Tray	25		
		U120A	Tray	30		
		U120C	Tray	30		
		U124A	Tray	30		
		U132A	Tray	30		
		U132B	Tray	30		
		U144A	Tray	20		
		U156A	Tray	20		
		U156B	Tray	20		
		U169A	Tray	20		
		U173A	Tray	20		
		U175A	Tray	20		
		U180A	Tray	20		
		U223A	Tray	20		
		U224A	Tray	20		
		U257A	Tray	12		
		U259A	Tray	12		
		U299A	Tray	12		
		U301A	Tray	12		
		U303A	Tray	12		
		U323A	Tray	12		

Immediate Packing Method for Ceramic Packages (Continued)

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
		Method	Quantity	Method	Quantity
Cerpack	W10A	Carrier/Rail	19	Carrier/Box	200
	W14B	Carrier/Rail	19	Carrier/Box	200
	W14C	Carrier/Rail	19	Carrier/Box	200
	W16A	Carrier/Rail	19	Carrier/Box	200
	W20A	Carrier/Rail	19	Carrier/Box	200
	W24C	Carrier/Rail	15	Carrier/Box	80
	W28A	Carrier/Rail	15	Carrier/Box	80
	WA28D	Carrier/Rail	15	Carrier/Box	80
Cerquad	W24B	Rail/Tube	15		
	W56B	Tray	20		
	W64A	Tray	20		
	W68A	Tray	12		
	W84A	Tray	12		
Cerquad, EIAJ	WA80A	Tray	84		
	WA80AQ	Tray	84		
	W120A	Tray	12		
	W144A	Tray	12		
	W144B	Tray	12		
	W160A	Tray	12		
	W208A	Tray	12		

Immediate Packing Method for Metal Cans

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
		Method	Quantity	Method	Quantity
TO-5	H06C	Tray	100	Carrier/Rail	18
	H08A	Tray	100	Carrier/Rail	18
	H08C	Tray	100	Carrier/Rail	18
	H10C	Tray	100	Cerrier/Rail	18
TO-18	H03C	Box	1800	Tray	100
TO-39	H03A	Tray	100	Carrier/Rail	18
	H03B	Tray	100	Carrier/Rail	18
	HA04E	Tray	100	Carrier/Rail	18
TO-46	H02A	Box	1800	Tray	100
	H03H	Box	1800	Tray	100
	H04A	Box	1800	Tray	100
	H04D	Box	1800	Tray	100
TO-52	H03J	Box	1800	Tray	100
TO-72	H04C	Box	1800	Tray	100

Immediate Packing Method for Plastic Packages

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
		Method	Quantity	Method	Quantity
Small Outline Transistor (SOT-23)	M03A	Tape and Reel	$\begin{aligned} & 3000 / \\ & 10000 \end{aligned}$	Bulk/Bag	500
	M03B	Tape and Reel	$\begin{aligned} & 3000 / \\ & 10000 \end{aligned}$	Bulk/Bag	500
Small Outline Package, JEDEC (SOP)	M08A	Rail/Tube	95	Tape and Reel	2500
	M14A	Rail/Tube	55	Tape and Reel	2500
	M14B	Rail/Tube	50	Tape and Reel	1000
	M16A	Rail/Tube	48	Tape and Reel	2500
	M16B	Rail/Tube	45	Tape and Reel	1000
	M20B	Rail/Tube	36	Tape and Reel	1000
	M24B	Rail/Tube	30	Tape and Reel	1000
	M28B	Rail/Tube	26	Tape and Reel	1000
Small Outline Package, EIAJ (SOP)	M14D	Rail/Tube	47	Tape and Reel	1000
	M16D	Rail/Tube	47	Tape and Reel	1000
	M20D	Rail/Tube	37	Tape and Reel	1000
Shrink Small Outline Package, JEDEC (SSOP)	MQA20	Rail/Tube	54	Tape and Reel	2500
	MQA24	Rail/Tube	54	Tape and Reel	2500
	MS48A	Rail/Tube	29	Tape and Reel	1000
	MS56A	Rail/Tube	25	Tape and Reel	1000
Shrink Small Outline Package, EIAJ (SSOP)	MSA20	Rail/Tube	65	Tape and Reel	1000
	MSA24	Rail/Tube	58	Tape and Reel	1000
	MS40A	Rail/Tube	34	Tape and Reel	1000
Very Small Outline Package (VSOP)	M40A	Rail/Tube	34	Tape and Reel	1000
Thin Small Outline Package, EIAJ (TSOP)	MBH32A	Tray	156		
Thin Shrink Small Outline Package, EIAJ (TSSOP)	MTA20	Tape and Reel	2500		

Immediate Packing Method for Plastic Packages (Continued)

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
		Method	Quantity	Method	Quantity
Molded Dual-In-Line Package (MDIP)	N08E	Rail/Tube	40		
	N14A	Rail/Tube	25		
	N16A	Rail/Tube	20		
	N16E	Rail/Tube	25		
	N16G	Rail/Tube	20		
	N18A	Rail/Tube	20		
	N20A	Rail/Tube	18		
	N22A	Rail/Tube	15		
	N22B	Rail/Tube	15		
	N24A	Rail/Tube	15		
	N24C	Rail/Tube	15		
	N24D	Rail/Tube	15		
	N24E	Rail/Tube	15		
	N28B	Rail/Tube	13		
	N40A	Rail/Tube	9		
	N48A	Rail/Tube	7		
TO-202	P03A	Rail/Tube	45	Box	300
	P03B	Rail/Tube	45	Box	300
	P03C	Rail/Tube	45	Box	300
	P03D	Rail/Tube	45	Box	300
	P03E	Rail/Tube	45	Box	300
	P03F	Rail/Tube	45	Box	300
	P03G	Rail/Tube	45	Box	300
	P03H	Rail/Tube	45	Box	300
	P03J	Rail/Tube	45	Box	300
	P04A	Rail/Tube	45	Box	300
	P11A	Rail/Tube	15		
TO-237	R03A	Box	1500	Tape and Reel	2000
	R03B	Box	1500	Tape and Reel	2000
	R03C	Box	1500	Tape and Reel	2000
	R03D	Box	1500	Tape and Reel	2000
TO-226	RC03A	Box	1500	Tape and Reel	2000
	RC03B	Box	1500	Tape and Reel	2000
	RC03C	Box	1500	Tape and Reel	2000
	RC03D	Box	1500	Tape and Reel	2000

Immediate Packing Method for Plastic Packages (Continued)

Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
		Method	Quantity	Method	Quantity
TO-220	TA02A	Rail/Tube	45	Box	300
	T02D	Rail/Tube	45	Box	300
	TA03A	Rail/Tube	45	Box	300
	TA03B	Rail/Tube	45	Box	300
	TA03D	Rail/Tube	45	Box	300
	T03A	Rail/Tube	45	Box	300
	т03в	Rail/Tube	45	Box	300
	T03D	Rail/Tube	45	Box	300
	т03F	Rail/Tube	45	Box	300
	T05A	Rail/Tube	45	Box	300
	T05B	Rail/Tube	45	Box	300
	T05C	Rail/Tube	45	Box	300
	T05D	Rail/Tube	45	Box	300
	T05E	Rail/Tube	45	Box	300
	T05F	Rail/Tube	45	Box	300
	TA05A	Rail/Tube	45	Box	300
	TA05B	Rail/Tube	45	Box	300
	TA11A	Rail/Tube	20	Box	300
	TA11B	Rail/Tube	20	Box	300
	TA11C	Rail/Tube	20	Box	300
	TA11D	Rail/Tube	20	Box	300
	TA11E	Rail/Tube	20	Box	300
	TA12A	Rail/Tube	20	Box	300
	TA15A	Rail/Tube	20	Box	300
	TA23A	Rail/Tube	15	Box	300
TapePak ${ }^{\text {® }}$	TP40A	Coinstack Tube	100	Flat Rail	25
Plastic Pin Grid Array (PPGA)	UP124A	Tray	30		
	UP159A	Tray	20		
	UP175A	Tray	20		
Plastic Leaded Chip Carrier (PLCC)	V20A	Rail/Tube	40	Tape and Reel	1000
	V28A	Rail/Tube	35	Tape and Reel	750
	V32A	Rail/Tube	30		
	V44A	Rail/Tube	25	Tape and Reel	500
	V52A	Rail/Tube	22	Tape and Reel	500
	V68A	Rail/Tube	18	Tape and Reel	250
	V84A	Rail/Tube	15	Tape and Reel	250

Immediate Packing Method for Plastic Packages (Continued)					
Package Type (Code)	Package Marketing Drawing	Primary Immediate Container		Secondary Immediate Container	
		Method	Quantity	Method	Quantity
Plastic Quad Flatpack (PQFP)	VEF44A	Tray	96		
	VBG48A	Tray	60		
	VHG80A	Tray	60		
	VJE80A	Tray	84		
	VCC80A	Tray	50/66		
	VCE100A	Tray	84		
	VLJ100A	Tray	50		
	VJG100A	Tray	60		
	VNG144A	Tray	60		
	VUL160A	Tray	24		
	VQL160A	Tray	24		
	VUW208A	Tray	24		
	VF132A	Tray	36		
	VF196A	Tray	21		
TO-92	Z03A	Box	1800	Tape and Reel	2000
	Z03B	Box	1800	Tape and Reel	2000
	Z03C	Box	1800	Tape and Reel	2000
	Z03D	Box	1800	Tape and Reel	2000
	Z03E	Box	1800	Tape and Reel	2000
	Z03G	Box	1800	Tape and Reel	2000
	Z03H	Box	1800	Tape and Reel	2000
	Z03J	Box	1800	Tape and Reel	2000

Labeling

National Semiconductor offers 3 standard bar code labels; reel and intermediate container labels for Tape and Reel; intermediate container label other than for Tape and Reel;
and outer/shipping container labels. The tape and reel, and intermediate container labels are National's own format while the outer/shipping container label is based on the EIA-556-A label standard.

NSC Standard Tape and Reel Label

TL/P/11809-8
This label is placed on the reel (immediate container) as well as on the intermediate box.

(A) P.O. PO 123456789012

TL/P/11809-9

NSC Standard Outer/Shipping Container Label

Board Mount of Surface Mount Components

Abstract

In facing the challenges of "Surface Mount Technology", many manufacturers of printed circuit boards have taken steps to convert some portions of their boards to this process. However, as the availability of all products as surface mount components is still limited, many have had to mix lead-inserted components with surface mount devices (SMD's). Furthermore, to take advantage of using both sides of the board, some surface mounted components are adhered to the bottom side of the board while the top side is reserved for the conventional lead-insert packages and fine pitch surface mount packages. There are three surface mount processes in hi-volume use today:

1. WAVE SOLDER; the surface mounted components are adhered to the bottom side of the board while the top side is reserved for the lead-inserted packages. The surface mount components are subjected to severe thermal stress when they are immersed into the molten solder.
2. INFRA-RED mass reflow; the surface mount components are placed on the solder paste which has been applied to the board, the solder joints are formed when the board is passed thru the reflow media. The surface mount devices are subjected to a controlled thermal environment.
3. VAPOR PHASE mass reflow; the surface mount components are placed on the solder paste which has been applied to the board, tbe solder joints are formed when the board is passed thru the reflow media. The surface mount devices are subjected to a controlled thermal environment, more severe than Infra-red but much less than wavesolder.
A discussion of the effect of these processes on the reliability of plastic semiconductor packages follows.

Role of Wave Soldering in Application of SMDs

The generally acceptable methods of soldering SMDs are vapor phase reflow soldering and IR reflow soldering, both requiring application of solder paste on PW boards prior to placement of the components. However, sentiment still exists for retaining the use of the old wave soldering machine. The reasons being:
Most PC Board Assembly houses already possess wave soldering equipment. Switching to another technology such as vapor phase soldering requires substantial investment in equipment and people.

Due to the limited number of devices that are surface mount components, it is necessary to mix both lead inserted components and surface mount components on the same board.
Some components such as relays and switches are made of materials which would not be able to survive the temperature exposure in a vapor phase or IR furnace.

PW Board Assembly Procedures

There are two considerations in which through-hole ICs may be combined with surface mount components on the PW Board:
a) Whether to mount ICs on one or both sides of the board.
b) The sequence of soldering using Vapor Phase, IR or Wave Soldering singly or a combination of two or more methods.
The various processes that may be employed are:

A) WAVE SOLDER BEFORE VAPOR/IR REFLOW SOLDER

1. Components on the same side of PW Board. Lead insert standard DIPS onto PW Board Wave solder (conventional). Wash and lead trim. Dispense solder paste on SEM pads. Pick and place SMDs onto PW Board. Bake Vapor phase/IR reflow. Clean.
2. Components on opposite side of PW Board. Lead insert standard DIPs onto PW Board Wave Solder (conventional). Clean and lead trim: Invert PW-Board. Dispense drop of adhesive on SMD sites (optional for smaller components). Pick and place SMDs onto board. Bake/Cure. Invert board to rest on raised fixture. Vapor/IR reflow soldering. Clean.
B) VAPOR/IR REFLOW SOLDER THEN WAVE SOLDER
3. Components on the same side of PW Board. Solder paste screened on SMD side of Printed Wire Board. Pick and place SMDs. Bake Vapor/IR reflow. Lead insert on same side as SMD's. Wave solder. Clean and trim underside of PCB.

C) VAPOR/IR REFLOW ONLY

1. Components on the same side of PW Board Trim and form 'standard DIPs in "gull wing" configuration. Solder paste screened on PW Board. Pick and place SMDs and DIPs. Bake Vapor/IR reflow. Clean.
2. Components on opposite sides of PW Board. Solder paste screened on SMD-side of Printed Wire Board. Adhesive dispensed at central location of each component. Pick and place SMDs. Bake. Solder paste screened on all pads on DIP-side or alternatively apply solder rings (performs) on leads. Lead insert DIPs. Vapor/IR reflow. Clean and lead trim.

PW Board Assembly Procedures

(Continued)

D) WAVE SOLDERING ONLY

1. Components on opposite sides of PW board. Adhesive dispense on SMD side of PW Board. Pick and place SMDs. Cure adhesive. Lead insert top side with DIPs. Wave solder with SMDs down and into solder bath. Clean and lead trim.
All of the above assembly procedures can be divided into three categories for IC. Reliability considerations:
1) Components are subjected to both a vapor phase/IR heat cycle then followed by a wave-solder heat cycle or vice versa.
2) Components are subjected to only a vapor phase/IR heat cycle.
3) Components are subjected to wave-soldering only and SMDs are subjected to heat by immersion into a solder pot.
Of these three categories, the last is the most severe regarding heat treatment to a semiconductor device. However, note that semiconductor molded packages generally possess a coating of solder on their leads as a final finish for solderability and protection of base leadframe material. Most semiconductor manufacturers solder-plate the component leads, while others perform hot solder dip. In the latter case the packages may be subjected to total immersion into a hot solder bath under controlled conditions (manual operation) or be partially immersed while in a "pallet" where automatic wave or DIP soldering processes are used. It is, therefore, possible to subject SMDs to solder heat under certain conditions and not cause catastrophic failures.

Thermal Characteristics of Molded Integrated Circuits

Since Plastic DIPs and SMDs are encapsulated with a thermoset epoxy, the thermal characteristics of the material generally correspond to a TMA (Thermo-Mechanical Analysis) graph. The critical parameters are (a) its Linear thermal expansion characteristics and (b) its glass transition temperature after the epoxy has been fully cured. A typical TMA graph is illustrated in Figure 1. Note that the epoxy changes to a higher thermal expansion once it is subjected to temperatures exceeding its glass transition temperature. Metals (as used on leadframes, for example) do not have this characteristic and generally will have a consistent Linear thermal expansion over the same temperature range.
In any good reliable plastic package, the choice of leadframe material should be such to match its thermal expansion properties to that of the encapsulating epoxy. In the event that there is a mismatch between the two, stresses can build up at the interface of the epoxy and metal. There now exists a tendency for the epoxy to separate from the metal leadframe in a manner similar to that observed on bimetallic thermal range.
In most cases when the packages are kept at temperatures below their glass transition, there is a small possibility of separation at the epoxy-metal interface. However, If the package is subjected to temperature above its glass-transition temperature, the epoxy will expand much faster than the metal and the probability of separation is greatly increased.

FIGURE 1. Thermal Expansion and Glass

Conventional Wave Soldering

Most wave soldering operations occur at temperatures between $240^{\circ} \mathrm{C}-260^{\circ} \mathrm{C}$. Conventional epoxies for encapsulation have glass-transition temperatures between $140^{\circ} \mathrm{C}$ $170^{\circ} \mathrm{C}$. An I.C. directly exposed to these temperatures risks its long term functionality due to epoxy/metal separation.
Fortunately, there are factors that can reduce that element of risk:

1. The PW board has a certain amount of heat-sink effort and tends to shield the components from the temperature of the solder (if they were placed on the top side of the board). In actual measurements, DIPs achieve a temperature between $120^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}$ in a 5 -second pass over the solder. This accounts for the fact that DIPs mounted in the conventional manner are reliable.
2) In conventional soldering, only the tip of each lead in DIP would experience the solder temperature because the epoxy and die are standing above the PW board and out of the solder bath.

Effect on Package Performance by Epoxy-Metal Separation

In wave soldering, it is necessary to use fluxes to assist the solderability of the components and PW boards. Some facilities may even process the boards and components through some form of acid cleaning prior to the soldering temperature. If separation occurs, the flux residues and acid residues (which may be present owing to inadequate cleaning) will be forced into the package mainly by capillary action as the residues move away from the so!der heat source. Once the package is cooled, these contaminants are now trapped within the package and are available to diffuse with moisture from the epoxy over time. It should be noted that electrical tests performed immediately after soldering generally will give no indication of this potential problem. In any case, the end result will, be corrosion of the chip metalization over time and premature failure of the device in the field.

Vapor Phase/IR Reflow Soldering

In both vapor phase and IR reflow soldering, the risk of separation between epoxy/metal can also be high. Maximum operating temperatures are $219^{\circ} \mathrm{C}$ (vapor phase) or $240^{\circ} \mathrm{C}$ (IR) and duration may also be longer ($30 \mathrm{sec}-60$ $\mathrm{sec})$. On the same theoretical basis, there should also be separation. However, in both these methods, solder paste is applied to the pads of the boards; no fluxes are used. Also, the devices are not immersed into the hot solder. This reduces the possibility of solder forcing itself into the epoxyleadframe interface. Furthermore, in the vapor phase system, the soldering environment is "oxygen-free" and considered "contaminant free". Being so, it could be visualized that as far as reliability with respect to corrosion, both of these methods are advantageous over wave soldering,

Bias Moisture Test

A bias moisture test was designed to determine the effect on package performance. In this test, the packages are pressured in a steam chamber to accelerate penetration of moisture into the package. An electrical bias is applied on the device. Should there be any contaminants trapped within the package, the moisture will quickly form an electrolyte and cause the electrodes (which are the lead fingers), the gold wire and the aluminum bond-pads of the silicon device to corrode. The aluminum bond-pads, being the weakest link of the system, will generally be the first to fail
This proprietary accelerated bias/moisture pressure-test is significant in relation to the life test condition at $85^{\circ} \mathrm{C}$ and 85% relative humidity. One cycle of approximately 100 hours has been shown to be equivalent to 2,000 hours in the 85/85 condition. Should the packages start to fail within the first cycle in the test, it is anticipated that the boards with these components in the harsh operating environment ($85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$) will experience corrosion and eventual electrical failures within its first 2,000 hours of operation.
Whether this is significant to a circuit board manufacturer will obviously be dependent on the products being manufactured and the workmanship or reliability standards. Generally in systems with a long warranty and containing many components, it is advisable both on a reputation and cost basis to have the most reliable parts available.

Test Results

The comparison of vapor phase and wave-soldering upon the reliability of molded Small-Outline packages was performed using the bias moisture test (see Table IV). It is clearly seen that vapor phase reflow soldering gave more consistent results. Wave soldering results were based on manual operation giving variations in soldering parameters such as temperature and duration.

TABLE IV. Vapor Phase vs. Wave Solder

1. Vapor phase (60 sec . exposure @ $217^{\circ} \mathrm{C}$)
= 9 failures/1723 samples
$=0.5 \%$ (average over 32 sample lots)
2. Wave solder (2 sec total immersion @ $260^{\circ} \mathrm{C}$)
$=16$ failures $/ 1201$ samples
$=1.3 \%$ (average over 27 sample lots)
Package: SO-14 lead
Test: Bias moisture test 85% R.H.
$85^{\circ} \mathrm{C}$ for 2,000 hours
Device: LM324M

In Table V we examine the tolerance of the Small-Outlined (SOIC) package to varying immersion time in a hot solder pot. SO-14 lead molded packages were subjected to the bias moisture test after being treated to the various soldering conditions and repeated four (4) times. End point was an electrical test after an equivalent of 4,000 hours $85 / 85$ test. Results were compared for packages by themselves against packages which were surface-mounted onto a FR-4 printed wire board.

TABLE V. Summary of Wave Solder Results

	Unmounted	Mounted
Control/Vapor Phase $15 \mathrm{sec} @ 215^{\circ} \mathrm{C}$	0/114	0/84
$\begin{aligned} & \text { Solder Dip } \\ & 4 \text { Sec @ } 260^{\circ} \mathrm{C} \end{aligned}$	2/144 (1.4\%)	0/85
$\begin{aligned} & \text { Solder Dip } \\ & 4 \text { Sec @ } 260^{\circ} \mathrm{C} \end{aligned}$	-	0/83
$\begin{aligned} & \text { Solder Dip } \\ & 6 \text { Sec @ } 260^{\circ} \mathrm{C} \end{aligned}$	13/248 (5.2\%)	1/76 (1.3\%)
Solder Dip $10 \mathrm{Sec} @ 260^{\circ} \mathrm{C}$	14/127 (11.0\%)	3/79 (3.8\%)
Package: SO-14 lead Device: LM $324 M$		

Since the package is of very small mass and experiences a rather sharp thermal shock followed by stresses created by the mismatch in expansion, the results show the packages being susceptible to failures after being immersed in excess of 6 seconds in a solder pot. In the second case where the packages were mounted, the effect of severe temperature excursion was reduced. In any case, because of the repeated treatment, the package had failures when subjected in excess of 6 seconds immersion in hot solder. The safety margin is therefore recommended as maximum 4 seconds immersion. If packages were immersed longer than 4 seconds, there is a probable chance of finding some long term reliability failures even though the immediate electrical test data could $b \in$ acceptable.

Finally, Table VI examines the bias moisture test performed on surface mount (SOIC) components manufactured by various semiconductor houses. End point was an electrical test after an equivalent of 6,000 hours in an 85/85 test. Failures were analyzed and corrosion was checked for in each case to detect flaws in package integrity.

TABLE VI. U.S. Manufacturing Integrated Circuits Reliability in Various Solder Environments (\# Failure/Total Environment)

Package SO-8	Vapor Phase 30 sec	Wave Solder 2 sec	Wave Solder 4 sec	Wave Solder 6 sec	Wave Solder 10 sec
Manuf A	$8 / 30^{*}$	$1 / 30^{*}$	$0 / 30$	$12 / 30^{*}$	$16 / 30^{*}$
Manuf B	$2 / 30^{*}$	$8 / 30^{*}$	$2 / 30^{*}$	$22 / 30^{*}$	$20 / 30^{*}$
Manuf C	$0 / 30$	$0 / 29$	$0 / 29$	$0 / 30$	$0 / 30$
Manuf D	$1 / 30^{*}$	$12 / 30^{*}$	$14 / 30^{*}$	$2 / 30^{*}$	
Manuf E	$1 / 30^{* *}$	$0 / 30$	$0 / 30$	$0 / 30$	
Manuf F	$0 / 30$	$0 / 30$	$0 / 30$	$0 / 30$	
NSC	$0 / 30$	$0 / 30$	$0 / 30$	$0 / 30$	

*Corrosion failures
**No Visual Defects-Non-corrosion failues
Test Accelerated Bias Moisture Test: 85% R.H. $/ 85^{\circ} \mathrm{C} .6,000$ equivalent hours

Summary

Based on the results presented, it is noted that surfacemounted components are as reliable as standard molded DIP packages. Whereas DIPs were never processed by being totally immersed in hot solder wave during printed circuit board soldering, surface mounted components such as SOICs (Small Outline) are expected to survive a total immersion in the hot solder in order to capitalize on maximum population on boards. Being constructed from a thermoset plastic of relatively low T_{g} compared to the soldering temperature, the ability of the package to survive is dependent on the time of immersion and also the cleanliness of material. The results indicate that one should limit the immersion time of the package in the solder wave to a maximum of 4 seconds in order to truly duplicate the reliability of a DIP. As the package size is reduced, as in a SO-8 lead, the requirement becomes even more critical. This is shown by the various manufacturers' performance. Results indicate there is room for improvement since not all survived the hot solder immersion without compromise to lower reliability.

National Semiconductor Recommended Soldering Profiles-Surface Mount				
		Wave Solder	IR Profile	Vapor Phase
Ramp Up ${ }^{\circ} \mathrm{C} / \mathrm{sec}$	Maximum	$6^{\circ} \mathrm{C} / \mathrm{sec}$	$4^{\circ} \mathrm{C} / \mathrm{sec}$	$24^{\circ} \mathrm{C} / \mathrm{sec}$
	Recommended	$4^{\circ} \mathrm{C} / \mathrm{sec}^{*}$	2 ${ }^{\circ}$ / sec *	$2^{\circ} \mathrm{C} / \mathrm{sec}$
	Minimum	**	**	**
$\Delta \mathrm{T}$	Maximum	$135^{\circ} \mathrm{C}$	N/A	N/A
	Recommended	$120^{\circ} \mathrm{C}$	N/A	N/A
	Minimum	$110^{\circ} \mathrm{C}$	N/A	N/A
Dwell Time $\geq 183^{\circ} \mathrm{C}$	Maximum	N/A	85 seconds	85 seconds
	Recommended	N/A	75 seconds*	75 seconds*
	Minimum	N/A	30 seconds**	**
Solder Temperature	Maximum	$260^{\circ} \mathrm{C}$	$240^{\circ} \mathrm{C}^{* * *}$	$219^{\circ} \mathrm{C}$
	Recommended	$240^{\circ} \mathrm{C}$	$215^{\circ}{ }^{*}$	$215^{\circ}{ }^{*}$
	Minimum	**	**	**
Dwell Time @ Max.	Maximum	4 seconds	10 seconds	75
	Recommended	3 seconds	5 seconds	70 seconds
	Minimum	**	1 second	**
Ramp Down ${ }^{\circ} \mathrm{C} / \mathrm{sec}$	Maximum	No Information	$4^{\circ} \mathrm{C} / \mathrm{sec}$	$4^{\circ} \mathrm{C} / \mathrm{sec}$
	Recommended	$4^{\circ} \mathrm{C} / \mathbf{s e c}$	$2^{\circ} \mathrm{C} / \mathrm{sec}$	$2^{\circ} \mathrm{C} / \mathrm{sec}$
	Minimum	No Information	**	**

Note: Temperature in degrees celcius. N/A = Not Applicable.
$\Delta T=$ The temperature differential between the final preheat stage and the soldering stage. Temperature measured at the component lead area.
*Will vary depending on board density, geometry, and package type.
**Will vary depending on package types, and board density.
***For plastic packages; ceramic packages maximum may be $250^{\circ} \mathrm{C}$.

Small Outline (SO) Package Surface Mounting MethodsParameters and Their Effect on Product Reliability

The SO (small outline) package has been developed to meet customer demand for ever-increasing miniaturization and component density.

COMPONENT SIZE COMPARISON

S.O. Package

$\rightarrow \mid \leqslant$ TrPically $0.050^{" ~ L E A D S P A C I I G G ~}$
TL/F/8766-1

Because of its small size, reliability of the product assembled in SO packages needs to be carefully evaluated.
SO packages at National were internally qualified for production under the condition that they be of comparable reliability performance to a standard dual in line package under all accelerated environmental tests. Figure A is a summary of accelarated bias moisture test performance on 30 V bipolar and 15V CMOS product assembled in SO and DIP (control) packages.

TL/F/8766-3
FIGURE A

National Semiconductor
Application Note 450
Josip Huljev
W. K. Boey

In order to achieve reliability performance comparable to DIPs-SO packages are designed and built with materials and processes that effectively compensate for their small size.
All SO packages tested on 85% RA, $85^{\circ} \mathrm{C}$ were assembled on PC conversion boards using vapor-phase reflow soldering. With this approach we are able to measure the effect of surface mounting methods on reliability of the process. As illustrated in Figure A no significant difference was detected between the long term reliability performance of surface mounted S.O. packages and the DIP control product for up to 6000 hours of accelerated $85 \% / 85^{\circ} \mathrm{C}$ testing.

SURFACE-MOUNT PROCESS FLOW

The standard process flowcharts for basic surface-mount operation and mixed-lead insertion/surface-mount operations, are illustrated on the following pages.
Usual variations encountered by users of SO packages are:

- Single-sided boards, surface-mounted components only.
- Single-sided boards, mixed-lead inserted and surfacemounted components.
- Double-sided boards, surface-mounted components only.
- Double-sided boards, mixed-lead inserted and surfacemounted components.
In consideration of these variations, it became necessary for users to utilize techniques involving wave soldering and adhesive applications, along with the commonly-used vaporphase solder reflow soldering technique.

PRODUCTION FLOW

Basic Surface-Mount Production Flow

Mixed Surface-Mount and Axial-Leaded Insertion

 Components Production Flow

Thermal stress of the packages during surface-mounting processing is more severe than during standard DIP PC board mounting processes. Figure B illustrates package temperature versus wave soldering dwell time for surface mounted packages (components are immersed into the molten solder) and the standard DIP wave soldering process. (Only leads of the package are immersed into the molten solder).

TL/F/8766-6
FIGURE B
For an ideal package, the thermal expansion rate of the encapsulant should match that of the leadframe material in order for the package to maintain mechanical integrity during the soldering process. Unfortunately, a perfect matchup of thermal expansion rates with most presently used packaging materials is scarce. The problem lies primarily with the epoxy compound.
Normally, thermal expansion rates for epoxy encapsulant and metal lead frame materials are linear and remain fairly close at temperatures approaching $160^{\circ} \mathrm{C}$, Figure C . At lower temperatures the difference in expansion rate of the two materials is not great enough to cause interface separation. However, when the package reaches the glass-transition temperature (T_{g}) of epoxy (typically-160-165 ${ }^{\circ} \mathrm{C}$), the thermal expansion rate of the encapsulant increases sharply, and the material undergoes a transition into a plastic state. The epoxy begins to expand at a rate three times or more greater than the metal leadframe, causing a separation at the interface.

FIGURE C

When this happens during a conventional wave soldering process using flux and acid cleaners, process residues and even solder can enter the cavity created by the separation and become entrapped when the material cools. These contaminants can eventually diffuse into the interior of the package, especially in the presence of moisture. The result is die contamination, excessive leakage, and even catastrophic failure. Unfortunately, electrical tests performed immediately following soldering may not detect potential flaws.
Most soldering processes involve temperatures ranging up to $260^{\circ} \mathrm{C}$, which far exceeds the glass-transition temperature of epoxy. Clearly, circuit boards containing SMD packages require tighter process controls than those used for boards populated solely by DIPs.
Figure D is a summary of accelerated bias moisture test performance on the 30 V bipolar process.
Group 1-Standard DIP package
Group 2 - SO packages vapor-phase reflow soldered on PC boards
Group 3-6 SO packages wave soldered on PC boards
Group 3 - dwell time 2 seconds
4 - dwell time 4 seconds
5 - dwell time 6 seconds
6 - dwell time 10 seconds

TL/F/8766-7

FIGURE D

It is clear based on the data presented that SO packages soldered onto PC boards with the vapor phase reflow process have the best long term bias moisture performance and this is comparable to the performance of standard DIP packages. The key advantage of reflow soldering methods is the clean environment that minimized the potential for contamination of surface mounted packages, and is preferred for the surface-mount process.
When wave soldering is used to surface mount components on the board, the dwell time of the component under molten solder should be no more than 4 seconds, preferrably under 2 seconds in order to prevent damage to the component. Non-Halide, or (organic acid) fluxes are highly recommended.

PICK AND PLACE

The choice of automatic (all generally programmable) pick-and-place machines to handle surface mounting has grown considerably, and their selection is based on individual needs and degree of sophistication.

The basic component-placement systems available are classified as:
(a) In-line placement

- Fixed placement stations
- Boards indexed under head and respective components placed
(b) Sequential placement
- Either a $X-Y$ moving table system or a $\theta, X-Y$ moving pickup system used
-Individual components picked and placed onto boards
(c) Simultaneous placement
- Multiple pickup heads
- Whole array of components placed onto the PCB at the same time
(d) Sequential/simultaneous placement
- X-Y moving table, multiple pickup heads system
- Components placed on PCB by successive or simultaneous actuation of pickup heads
The SO package is treated almost the same as surfacemount, passive components requiring correct orientation in placement on the board.

Pick and Place Action

BAKE

This is recommended, despite claims made by some solder paste suppliers that this step be omitted.
The functions of this step are:

- Holds down the solder globules during subsequent reflow soldering process and prevents expulsion of small solder balls.
- Acts as an adhesive to hold the components in place during handling between placement to reflow soldering.
- Holds components in position when a double-sided sur-face-mounted board is held upside down going into a va-por-phase reflow soldering operation.
- Removes solvents which might otherwise contaminate other equipment.
- Initiates activator cleaning of surfaces to be soldered.
- Prevents moisture absorption.

The process is moreover very simple. The usual schedule is about 20 minutes in a $65^{\circ} \mathrm{C}-95^{\circ} \mathrm{C}$ (dependent on solvent system of solder paste) oven with adequate venting. Longer bake time is not recommended due to the following reasons:

- The flux will degrade and affect the characteristics of the paste.
- Solder globules will begin to oxidize and cause solderability problems.
- The paste will creep and after reflow, may leave behind residues between traces which are difficult to remove and vulnerable to electro-migration problems.

REFLOW SOLDERING

There are various methods for reflowing the solder paste, namely:

- Hot air reflow
- Infrared heating (furnaces)
- Convectional oven heating
- Vapor-phase reflow soldering
- Laser soldering

For SO applications, hot air reflow/infrared furnace may be used for low-volume production or prototype work, but va-por-phase soldering reflow is more efficient for consistency and speed. Oven heating is not recommended because of "hot spots" in the oven and uneven melting may result. Laser soldering is more for specialized applications and requires a great amount of investment.

HOT GAS REFLOW/INFRARED HEATING

A hand-held or table-mount air blower (with appropriate orifice mask) can be used.
The boards are preheated to about $100^{\circ} \mathrm{C}$ and then subjected to an air jet at about $260^{\circ} \mathrm{C}$. This is a slow process and results may be inconsistent due to various heat-sink properties of passive components.

INFRARED REFLOW SOLDERING

Use of an infrared furnace is currently the most popular method to automate mass reflow, the heating is promoted by use of IR lamps or panels. Early objections to this method were that certain materials may heat up at different rates under IR radiation and could result in damage to those components (usually sockets and connectors). This has been minimized by using far-infrared (non-focused) systems and convected air.

Infrared Profile

VAPOR-PHASE REFLOW SOLDERING

Currently the most popular and consistent method, vaporphase soldering utilizes a fluoroinert fluid with excellent heat-transfer properties to heat up components until the solder paste reflows. The maximum temperature is limited by the vapor temperature of the fluid.
The commonly used fluids (supplied by 3M Corp) are:

- FC-70, $215^{\circ} \mathrm{C}$ vapor (most applications) or FX-38
- FC-71, $253^{\circ} \mathrm{C}$ vapor (low-lead or tin-plate)

HTC, Concord, CA, manufactures equipment that utilizes this technique, with two options:

- Batch systems, where boards are lowered in a basket and subjected to the vapor from a tank of boiling fluid.
- In-line conveyorized systems, where boards are placed onto a continuous belt which transports them into a concealed tank where they are subjected to an environment of hot vapor.
Dwell time in the vapor is generally on the order of 15-30 seconds (depending on the mass of the boards and the loading density of boards on the belt).

TL/F/8766-28

The question of thermal shock is asked frequently because of the relatively sharp increase in component temperature from room temperature to $215^{\circ} \mathrm{C}$. SO packages mounted on representative boards have been tested and have shown little effect on the integrity of the packages. Various packages, such as cerdips, metal cans and TO-5 cans with glass seals, have also been tested.

Batch-Fed Production Vapor-Phase Soldering Unit SECONDARY

Solder Joints on a SO-14 Package on PCB

TL/F/8766-12

Solder Joints on a SO-14 Package on PCB

TL/F/8766-13

PRINTED CIRCUIT BOARD

The SO package is molded out of clean, thermoset plastic compound and has no particular compatibility problems with most printed circuit board substrates.
The package can be reliably mounted onto substrates such as:

- G10 or FR4 glass/resin
- FR5 glass/resin systems for high-temperature applications
- Polymide boards, also high-temperature applications
- Ceramic substrates

General requirements for printed circuit boards are:

- Mounting pads should be solder-plated whenever applicable.
- Solder masks are commonly used to prevent solder bridging of fine lines during soldering.
The mask also protects circuits from processing chemical contamination and corrosion.

If coated over pre-tinned traces, residues may accumulate at the mask/trace interface during subsequent reflow, leading to possible reliability failures.
Recommended application of solder resist on bare, clean traces prior to coating exposed areas with solder.
General requirements for solder mask:

- Good pattern resolution.
- Complete coverage of circuit lines and resistance to flaking during soldering.
- Adhesion should be excellent on substrate material to keep off moisture and chemicals.
- Compatible with soldering and cleaning requirements.

SOLDER PASTE SCREEN PRINTING

With the initial choice of printed circuit lithographic design and substrate material, the first step in surface mounting is the application of solder paste.
The typical lithographic "footprints" for SO packages are illustrated below. Note that the 0.050" lead center-center spacing is not easily managed by commercially-available air pressure, hand-held dispensers.
Using a stainless-steel, wire-mesh screen stencilled with an emulsion image of the substrate pads is by far the most
common and well-tried method. The paste is forced through the screen by a V-shaped plastic squeegee in a sweeping manner onto the board placed beneath the screen.
The setup for SO packages has no special requirement from that required by other surface-mounted, passive components. Recommended working specifications are:

- Use stainless-steel, wire-mesh screens, \#80 or \#120, wire diameter 2.6 mils. Rule of thumb: mesh opening should be approximately 2.5-5 times larger than the average particle size of paste material.
- Use squeegee of Durometer 70.
- Experimentation with squeegee travel speed is recommended, if available on machine used.
- Use solder paste of mesh 200-325.
- Emulsion thickness of $0.005^{\prime \prime}$ usually used to achieve a solder paste thickness (wet) of about 0.008" typical.
- Mesh pattern should be 90 degrees, square grid.
- Snap-off height of screen should not exceed $1 / 8^{\prime \prime}$, to avoid damage to screens and minimize distortion.

SOLDER PASTE

Selection of solder paste tends to be confusing, due to numerous formulations available from various manufacturers. In general, the following guidelines are sufficient to qualify a particular paste for production:

- Particle sizes (see following photographs). Mesh 325 (approximately 45 microns) should be used for general purposes, while larger (solder globules) particles are preferred for leadless components (LCC). The larger particles can easily be used for SO packages.
- Uniform particle distribution. Solder globules should be spherical in shape with uniform diameters and minimum amount of elongation (visual under 100/200 \times magnification). Uneven distribution causes uneven melting and subsequent expulsion of smaller solder balls away from their proper sites.
- Composition, generally $60 / 40$ or $63 / 37 \mathrm{Sn} / \mathrm{Pb}$. Use $62 / 36$ $\mathrm{Sn} / \mathrm{Pb}$ with $2 \% \mathrm{Ag}$ in the presence of Au on the soldering area. This formulation reduces problems of metal leaching from soldering pads.
- RMA flux system usually used.
- Use paste with aproximately 88-90\% solids.

Comparison of Particle Size/Shape of Various Solder Pastes

TL/F/8766-18

Solder Paste Screen on Pads

$200 \times$ Fry Metal $(63 / 37)$

TL/F/8766-20

200 ESL (63/37)

CLEANING

The most critical process in surface mounting SO packages is in the cleaning cycle. The package is mounted very close to the surface of the substrate and has a tendency to collect residue left behind after reflow soldering.
Important considerations in cleaning are:

- Time between soldering and cleaning to be as short as possible. Residue should not be allowed to solidify on the substrate for long periods of time, making it difficult to dislodge.
- A low surface tension solvent (high penetration) should be employed. CFC solvents are being phased out as they are hazardous to the environment. Other approaches to cleaning are commercially available and should be investigated on an individual basis considering local and government environmental rules.

Prelete or 1,1,1-Trichloroethane

Kester 5120/5121

- A defluxer system which allows the workpiece to be subjected to a solvent vapor, followed by a rinse in pure solvent and a high-pressure spray lance are the basic requirments for low-volume production.
- For volume production, a conveyorized, multiple hot solvent spray/jet system is recommended.
- Rosin, being a natural occurring material, is not readily soluble in solvents, and has long been a stumbling block to the cleaning process. In recent developments, synthetic flux (SA flux), which is readily soluble in Freon TMS solvent, has been developed. This should be explored where permissible.
The dangers of an inadequate cleaning cycle are:
- Ion contamination, where ionic residue left on boards would cause corrosion to metallic components, affecting the performance of the board.
- Electro-migration, where ionic residue and moisture present on electrically-biased boards would cause dentritic growth between close spacing traces on the substrate, resulting in failures (shorts).

REWORK

Should there be a need to replace a component or re-align a previously disturbed component, a hot air system with appropriate orifice masking to protect surrounding components may be used.
When rework is necessary in the field, specially-designed tweezers that thermally heat the component may be used to remove it from its site. The replacement can be fluxed at the

Hot-Air Solder Rework Station

lead tips or, if necessary, solder paste can be dispensed onto the pads using a varimeter. After being placed into position, the solder is reflowed by a hot-air jet or even a standard soldering iron.

WAVE SOLDERING

In a case where lead insertions are made on the same board as surface-mounted components, there is a need to include a wave-soldering operation in the process flow.
Two options are used:

- Surface mounted components are placed and vapor phase reflowed before auto-insertion of remaining components. The board is carried over a standard wave-solder system and the underside of the board (only lead-inserted leads) soldered.
- Surface-mounted components are placed in position, but no solder paste is used. Instead, a drop of adhesive about 5 mils maximum in height with diameter not exceeding 25% width of the package is used to hold down the package. The adhesive is cured and then proceeded to autoinsertion on the reverse side of the board (surface-mounted side facing down). The assembly is then passed over a "dual wave" soldering system. Note that the surfacemounted components are immersed into the molten solder.
Lead trimming will pose a problem after soldering in the latter case, unless the leads of the insertion components are pre-trimmed or the board specially designed to localize certain areas for easy access to the trim blade.
The controls required for wave soldering are:
- Solder temperature to be $240-260^{\circ} \mathrm{C}$. The dwell time of components under molten solder to be short (preferably kept under 2 seconds), to prevent damage to most components and semiconductor devices.
- RMA (Rosin Mildly Activated) flux or more aggressive OA (Organic Acid) flux are applied by either dipping or foam fluxing on boards prior to preheat and soldering. Cleaning procedures are also more difficult (aqueous, when OA flux is used), as the entire board has been treated by flux (unlike solder paste, which is more or less localized). Nonhalide OA fluxes are highly recommended.
- Preheating of boards is essential to reduce thermal shock on components. Board should reach a temperature of about $100^{\circ} \mathrm{C}$ just before entering the solder wave.
- Due to the closer lead spacings ($0.050^{\prime \prime}$ vs $0.100^{\prime \prime}$ for dual-in-line packages), bridging of traces by solder could occur. The reduced clearance between packages also causes "shadowing" of some areas, resulting in poor solder coverage. This is minimized by dual-wave solder systems.

TL/F/8766-24

A typical dual-wave system is illustrated below, showing the various stages employed. The first wave typically is in turbulence and given a transverse motion (across the motion of the board). This covers areas where "shadowing" occurs. A second wave (usually a broad wave) then proceeds to perform the standard soldering. The departing edge from the solder is such to reduce "icicles," and is still further reduced by an air knife placed close to the final soldering step. This air knife will blow off excess solder (still in the fluid stage) which would otherwise cause shorts (bridging) and solder bumps.

AQUEOUS CLEANING

- For volume production, a conveyorized system is often used with a heated recirculating spray wash (water temperature $130^{\circ} \mathrm{C}$), a final spray rinse (water temperature $45-55^{\circ} \mathrm{C}$), and a hot $\left(120^{\circ} \mathrm{C}\right)$ air/air-knife drying section.
- For low-volume production, the above cleaning can be done manually, using several water rinses/tanks. Fastdrying solvents, like alcohols that are miscible with water, are sometimes used to help the drying process.
- Neutralizing agents which will react with the corrosive materials in the flux and produce material readily soluble in water may be used; the choice depends on the type of flux used.
- Final rinse water should be free from chemicals which are introduced to maintain the biological purity of the water. These materials, mostly chlorides, are detrimental to the assemblies cleaned because they introduce a fresh amount of ionizable material.

CONFORMAL COATING

Conformal coating is recommended for high-reliability PCBs to provide insulation resistance, as well as protection against contamination and degradation by moisture.
Requirements:

- Complete coating over components and solder joints.
- Thixotropic material which will not flow under the packages or fill voids, otherwise will introduce stress on solder joints on expansion.
- Compatibility and possess excellent adhesion with PCB material/components.
- Silicones are recommended where permissible in application.

SMD Lab Support

FUNCTIONS

Demonstration-Introduce first-time users to surfacemounting processes.
Service-Investigate problems experienced by users on surface mounting.
Reliability Builds-Assemble surface-mounted units for reliability data acquisition.

Techniques-Develop techniques for handling different materials and processes in surface mounting.
Equipment-In conjunction with equipment manufacturers, develop customized equipments to handle high density, new technology packages developed by National.
In-House Expertise-Availability of in-house expertise on semiconductor research/development to assist users on packaging queries.

Land Pattern Recommendations

The following land pattern recommendations are provided as guidelines for board layout and assembly purposes.
These recommendations cover the following National Semiconductor packages: PLCC, PQFP, SOP, SSOP and TSOP. For SOT-23 (5-Lead) and TO-263 (3- or 5-Lead) packages, refer to land patterns shown in the Physical Dimensions for MA05A and TS3B or TS5B packages, respectively.

Plastic Leaded Chip Carriers (PLCC)

TL/P/11811-1

D Body Size (mm)	D' Body Size (mm)	Lead Count No.	L Lead Tip to Tip (mm)	```L' Lead Tip to Tip (mm)```	w Lead Width (mm)		A Inner Pad to Pad Edge (mm)	```A' Inner Pad to Pad Edge (mm)```	$\begin{array}{\|c} \text { B } \\ \text { Outer Pad } \\ \text { to Pad Edge } \\ (\mathrm{mm}) \\ \hline \end{array}$		
8.89	8.89	20	10.03	10.03	0.53	1.27	6.73	6.73	10.80	10.80	0.63
11.43	11.43	28	12.57	12.57	0.53	1.27	9.27	9.27	13.34	13.34	0.63
11.43	14.05	32	12.57	15.11	0.53	1.27	9.27	12.00	13.34	16.00	0.63
16.51	16.51	44	17.65	17.65	0.53	1.27	14.35	14.35	18.42	18.42	0.63
19.05	19.05	52	20.19	20.19	0.53	1.27	16.89	16.89	20.96	20.96	0.63
24.13	24.13	68	25.27	25.27	0.53	1.27	21.97	21.97	26.04	26.04	0.63
29.21	29.21	84	30.35	30.35	0.53	1.27	27.05	27.05	31.12	31.12	0.63

D Body Size (mm)	D' Body Size (mm)	Lead Count No.	L Lead Tip to Tip (mm)	L' Lead Tip to Tip (mm)	W Lead Width (mm)		A Inner Pad to Pad Edge (mm)	A^{\prime} Inner Pad to Pad Edge (mm)	B Outer Pad to Pad Edge (mm)	```B' Outer Pad to Pad Edge (mm)```	X Land Width (mm)
7	7	40	9.29	9.29	0.26	0.50	7.50	7.50	9.78	9.78	0.30
7	7	48	9.40	9.40	0.27	0.50	6.88	6.90	10.42	10.40	0.32
10	10	44	13.35	13.35	0.45	0.80	10.53	10.53	14.47	14.47	0.55
10	10	52	14.15	14.15	0.38	0.65	9.08	9.08	15.17	15.17	0.43
12	12	64	14.00	14.00	0.38	0.65	11.48	11.48	15.02	15.02	0.43
14	14	80	18.15	18.15	0.38	0.65	13.08	13.08	19.17	19.17	0.43
14	20	80	17.80	23.80	0.35	0.80	13.50	19.50	18.50	24.50	0.40
14.	14	100	17.45	17.45	0.30	0.50	13.08	13.08	18.47	18.47	0.35
14	20	100	17.80	23.80	0.30	0.65	13.50	19.50	18.50	24.50	0:35
20	20	100	24.30	18.30	0.40	0.65	21.28	15.28	25.32	19.32	0.45
24	24	132	24.21	24.21	0.30	0.64	21.67	21.67	25.23	25.23	0.40
28	28	120	32.15	32.15	0.45	0.80	27.88	27.88	33.17	33.17	0.55
28	28	128	31.45	31.45	0.45	0.80	28.03	28.03	32.47	32.47	0.55
28.	28.	144	32.15	32.15	0.38	0.65	28.03	28.03	33.17	33.17	0.43
28	28	160	32.40	32.40	0.38	0.65	29.48	29.48	33.42	33.42	0.43
28	28	208	30.60	30.60	0.30	0.50	28.08	28.08	31.62	31.62	0.35

D Body Size (in)	Lead Count No.	C Shoulder to Shoulder (in)	L Lead Tip to Tip (in)	W Lead Width (in)	P Lead/Pad Pitch (in)	A Inner Pad to Pad Edge (in)	B Outer Pad to Pad Edge (in)	X Pad Width (in)
SOP								
0.150	8	0.144	0.244	0.020	0.050	0.094	0.294	0.028
0.150	14	0.144	0.244	0.020	0.050	0.094	0.294	0.028
0.150	16	0.144	0.244	0.020	0.050	0.094	0.294	0.028
0.300	14	0.3300	0.4100	0.0190	0.0500	0.2800	0.4600	0.0270
0.300	16	0.3300	0.4100	0.0190	0.0500	0.2800	0.4600	0.0270
0.300	20	0.3300	0.4100	0.0190	0.0500	0.2800	0.4600	0.0270
0.300	24	0.3300	0.4100	0.0190	0.0500	0.2800	0.4600	0.0270
0.300	28	0.3300	0.4100	0.0190	0.0500	0.2800	0.4600	0.0270
SSOP								
0.150	20	0.185	0.241	0.010	0.025	0.145	0.281	0.014
0.150	24	0.185	0.241	0.010	0.025	0.145	0.281	0.014
0.300	48	0.340	0.420	0.012	0.025	0.300	0.460	0.016
0.300	56	0.340	0.420	0.012	0.025	0.300	0.460	0.016

D Body Size (mm)	Lead Count No.	C Shoulder to Shoulder (mm)	L Lead Tip to Tip (mm)	W Lead Width (mm)	P Lead/Pad Pitch (mm)	A Inner Pad to Pad Edge (mm)	B Outer Pad to Pad Edge (mm)	X Pad Width (mm)
SOP TYPE II								
5.300	14	6.280	8.000	0.400	1.270	5.010	9.270	0.600
5.300	16	6.280	8.000	0.400	1.270	5.010	9.270	0.600
5.300	20	6.280	8.000	0.400	1.270	5.010	9.270	0.600
SSOP TYPE II								
5.300	20	6.600	8.100	0.400	0.650	5.584	9.116	0.451
5.300	24	6.600	8.100	0.400	0.650	5.584	9.116	0.451
SSOP TYPE III								
7.500	40	8.900	10.500	0.350	0.650	7.884	11.516	0.452
TSOP TYPE I								
18.500	32	19.000	20.200	0.250	0.500	17.984	21.216	0.301

Section 10

Appendices/
 Physical Dimensions

Section 10 Contents

Appendix A General Product Marking and Code Explanation 10-3
Appendix B Device/Application Literature Cross-Reference 10-4
Appendix D Military Aerospace Programs from National Semiconductor 10-10
Appendix E Understanding Integrated Circuit Package Power Capabilities 10-20
Appendix F How to Get the Right Information from a Datasheet 10-25
Physical Dimensions 10-29
BookshelfDistributors

Appendix A
 General Product Miarking \& Code Explanation

Device Family

ADC	Data Conversion
AF	Active Filter
AH	Analog Switch (Hybrid)
DAC	Data Conversion
DM	Digital (Monolithic)
HS	Hybrid
LF	Linear (BI-FETTM)
LH	Linear (Hybrid)
LM	Linear (Monolithic)
LMC	Linear CMOS
LMD	Linear DMOS
LP	Linear (Low Power)
LPC	Linear CMOS (Low Power)
MF	Linear (Monolithic Filter)
LMF	Linear Monolithic Filter

Package Type

D	Glass/Metal DIP
E	Ceramic Leadless Chip Carrier (LCC)
F	Glass/Metal Flat Pak ($1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$)
G	12 Lead TO-8 Metal Can (M/C)
H	Multi-Lead Metal Can (M/C)
H-05	4 Lead M/C (TO-5) \} Shipped with
H-46	4 Lead M/C (TO-46) $\}$ Thermal Shield
J	Lo-Temp Ceramic DIP
J-8	8 Lead Ceramic DIP ("MiniDIP')
J-14	14 Lead Ceramic DIP (-14 used only when product is also available in -8 pkg).
K	TO-3 M/C in Steel, except LM309K which is shipped in Aluminum
KC	TO-3 M/C (Aluminum)
K Steel	TO-3 M/C (Steel)
M	Small Outline Package
M3	3-Lead Small Outline Package
M5	5-Lead Small Outline Package
N	Molded DIP (EPOXY B)
N-01	Molded DIP (Epoxy B) with Staggered Leads
$\mathrm{N}-8$	8 Lead Molded DIP (Epoxy B) ("Mini-DIP")
N-14	14 Lead Molded DIP (Epoxy B) (-14 used only when product is also available in -8 pkg).
P	3 Lead TO-202 Power Pkg
Q	Cerdip with UV Window
S	3,5,11, \& 15 Lead TO-263 Surf. Mt. Power Pkg
T	3,5,11,15 \& 23 Lead TO-220 PWR Pkg (Epoxy B)
V	Multi-lead Plastic Chip Carrier (PCC)
W	Lo-Temp Ceramic Flat Pak
WM	Wide Body Small Outline Package

Appendix B Device/Application Literature Cross-Reference

Device Number
 Application Literature

ADCXXXX

AN-156

ADC80
AN-360
ADC0801 . AN-233, AN-271, AN-274, AN-280, AN-281, AN-2944, LB-53
ADC0802
. AN-233, AN-274, AN-280, AN-281, LB-53
ADC0803 .AN-233, AN-274, AN-280, AN-281, LB-53
ADC08031
AN-460
ADC0804 . AN-233, AN-274, AN-276, AN-280, AN-281, AN-301, AN-460, LB-53
ADC0805 . AN-233, AN-274, AN-280, AN-281, LB-53
ADC0808. AN-A . 247, AN-280, AN-281
ADC0809 . AN 247, AN-280
ADC0816. AN-193, AN-247, AN-258, AN-280
ADC0817. AN-247, AN-258, AN-280
ADC0820 . AN 237
ADC0831 . AN AN-280, AN-281

ADC0834 . AN-280, AN-281
ADC0838 .AN-280, AN-281
ADC1001. AN-276, AN-280, AN-281
ADC1005 . A AN-280
ADC10461 . AN 769
ADC10462 . A AN-769
ADC10464 . 4 AN-769
ADC10662 . AN 769
ADC10664 . A.

ADC12032 . AN 9 . 929
ADC12034 . AN 9 .
ADC12038 . AN 9 . 929
ADC12H030 . AN
ADC12H032 . AN-929
ADC12H034. AN-929
ADC12H038 . AN-929
ADC12L030 . A AN-929
ADC12L032 . AN
ADC12L034 . AN
ADC12L038 . AN 929
ADC1210 . AN-245
ADC12441 . A AN-769
ADC12451 . AN-769
DACXXXX . AN-156
DAC0800 . AN 693
DAC0830 . AN 28.

Device/Application Literature Cross-Reference (Continued)

Device Number Application Literature
LH1605 AN-343
LH2424 AN-867LM10 . AN-211, AN-247, AN-258, AN-271, AN-288, AN-299, AN-300, AN-460, AN-693LM11. AN-241, AN-242, AN-260, AN-266, AN-271LM12 . AN-446, AN-693, AN-706
LM101 AN-4, AN-13, AN-20, AN-24, LB-42, Appendix ALM101A AN-29, AN-30, AN-31, AN-79, AN-241 AN-711, LB-1, LB-2, LB-4, LB-8, LB-14, LB-16, LB-19, LB-28LM102 . AN-4, AN-13, AN-30, LB-1, LB-5, LB-6, LB-11
LM103 AN-110, LB-41
LM105 AN-23, AN-110, LB-3
LM106 AN-41, LB-6, LB-12
LM107 AN-20, AN-31, LB-1, LB-12, LB-19, Appendix A
LM108 AN-29, AN-30, AN-31, AN-79, AN-211, AN-241, LB-14, LB-15, LB-21
LM108A AN-260, LB-15, LB-19
LM109 AN-42, LB-15
LM109A LB-15
LM110 LB-11, LB-42
LM111 AN-41, AN-103, LB-12, LB-16, LB-32; LB-39
LM112 LB-19
LM113. AN-56, AN-110, LB-21, LB-24, LB-28, LB-37
LM117 AN-178, AN-181, AN-182, LB-46, LB-47
LM117HV LB-46, LB-47
LM118 LB-17, LB-19, LB-21, LB-23, Appendix A
LM119 LB-23
LM120 AN-182
LM121 AN-79, AN-104, AN-184, AN-260, LB-22
LM121A LB-32
LM122 AN-97, LB-38
LM125 AN-82
LM126 AN-82
LM129 AN-173, AN-178, AN-262, AN-266
LM131 AN-210, AN-460, Appendix D
LM131A AN-210
LM134 LB-41, AN-460
LM135 AN-225, AN-262, AN-292, AN-298, AN-460
LM137 LB-46
LM137HV LB-46
LM138 LB-46
LM139 AN-74
LM143 AN-127, AN-271
LM148 AN-260
LM150 LB-46
LM158 AN-116
LM160 AN-87
LM161 AN-87, AN-266
LM163 AN-295
LM194 .AN-222, LB-21
LM195 AN-110
LM199 .AN-161, AN-260
LM199A AN-161
LM211 LB-39

Device/Application Literature Cross-Reference (Continued)

Device Number Application Literature
LM231 AN-210
LM231A AN-210
LM235 AN-225
LM239 AN-74
LM258 AN-116
LM260 AN-87
LM261 AN-87
LM34 AN-460
LM35 AN-460
LM301A AN-178, AN-181, AN-222
LM308 AN-88, AN-184, AN-272, LB-22, LB-28, Appendix D
LM308A .AN-225, LB-24
LM309 AN-178, AN-182LM311 . AN-41, AN-103, AN-260, AN-263, AN-288, AN-294, AN-295, AN-307, LB-12, LB-16, LB-18, LB-39LM313.. . . AN-263
LM317 AN-178, LB-35, LB-46
LM317H LB-47
LM318 AN-299, LB-21
LM319 AN-828, AN-271, AN-293
LM320 AN-288
LM321 LB-24
LM324 AN-88, AN-258, AN-274, AN-284, AN-301, LB-44, AB-25, Appendix CLM329AN-256, AN-263, AN-284, AN-295, AN-301
LM329B AN-225
LM330 AN-301
LM331 AN-210, AN-240, AN-265, AN-278, AN-285, AN-311, LB-45, Appendix C, Appendix DLM331A
AN-210, Appendix CAN-210, AN-240, AN-265, AN-278, AN-285, AN-311, LB-45LM334 . AN-242, AN-256, AN-284LM335 . AN-225, AN-263, AN-295LM336 . AN-202, AN-247, AN-258
LM338 LB-49, LB-51
LM339 AN-74, AN-245, AN-274
LM340 AN-103, AN-182
LM340L AN-256
LM342 AN-288
LM346 AN-202, LB-54
LM348 AN-202, LB-42
LM349 LB-42
LM358 AN-116, AN-247, AN-271, AN-274, AN-284, AN-298, Appendix C
LM358A .Appendix D
LM359 AN-278, AB-24
LM360 AN-87
LM361 AN-87, AN-294
LM363 AN-271LM380 . AN-69, AN-146LM385 . AN-242, AN-256, AN-301, AN-344, AN-460, AN-693, AN-777
LM386 LB-54
LM391 AN-272
LM392AN-274, AN-286

Device/Application Literature Cross-Reference (Continued)

Device/Application Literature Cross-Reference (Continued)
Device Number Application Literature
LM4250 AN-88, LB-34
LM6181 AN-813, AN-840
LM7800 AN-178
LM12454 AN-906, AN-947, AN-949
LM12458 AN-906, AN-947, AN-949
LM12H454 AN-906, AN-947, AN-949
LM12H458 AN-906, AN-947, AN-949
LM12L458 AN-906, AN-947, AN-949
LM18293 AN-706
LM78L12 AN-146
LM78S40 AN-711
LMC555 AN-460, AN-828
LMC660 AN-856
LMC835 AN-435
LMC6044 AN-856
LMC6062 AN-856
LMC6082 AN-856
LMC6484 AN-856
LMD18200 AN-694, AN-828
LMF40 AN-779
LMF60 AN-779
LMF90 AN-779
LMF100 AN-779
LMF380 AN-779
LMF390 AN-779
LP324 AN-284
LP395 AN-460
LPC660 AN-856
MF4 AN-779
MF5 AN-779
MF6 AN-779
MF8 AN-779
MF10 AN-307, AN-779
MM2716 LB-54
MM54104 AN-252, AN-287, LB-54
MM57110 AN-382
MM74C00 AN-88
MM74C02 AN-88
MM74C04 AN-88
MM74C948 AN-193
MM74HC86 AN-861, AN-867
MM74LS138 LB-54
MM53200 AN-290
2N4339 AN-32

Appendix D Military Aerospace Programs from National Semiconductor

This appendix is intended to provide a brief overview of military products available from National Semiconductor. The process flows and catagories shown below are for general reference only. For further information and availability, please contact the Customer Response Center at 1-800-272-9959, Military/Aerospace Marketing group or your local sales office.
National Semiconductor's Military/Aerospace Program is founded on dedication to excellence. National offers complete support across the broadest range of products with the widest selection of qualification levels and screening flows. These flows include:

Process Flows (Integrated Circuits)	Description
JAN S	QML products processed to MIL-I-38535 Level S or V for Space level applications.
JAN B	QML products processed to MIL-I-38535 Level B or Q for Military applications.
SMD	QML products processed to a Standard Microcircuit Drawing with Table I Electricals controlled by DESC.
883	QML products processed to MIL-STD-883 Level B for Military applications.
MLP	Products processed on the Monitored Line (Program) developed by the Air Force for Space level applications.
-MIL	Similar to MIL-STD-883 with exceptions noted on the Certificate of Conformance.
MSP	Military Screening Products for initial release of advanced products.
MCP	Commercial products processed in a military assembly. Electrical testing performed at $25^{\circ} \mathrm{C}$, plus minimum and maximum operating temperature to commercial limits.
MCR	Commercial products processed in a military assembly. Electrical testing performed at $25^{\circ} \mathrm{C}$ to commercial limits
MRP	Military Ruggedized Plastic products processed to avionics requirements.
MRR	Commercial Ruggedized plastic product processed in a commercial assembly with electrical testing at $25^{\circ} \mathrm{C}$.
MPC	Commercial plastic products processed in a commercial assembly with electrical testing at $25^{\circ} \mathrm{C}$.

- QML: The purpose of the QML program, which is administered by the Defense Electronics Supply Center (DESC), , is to provide the military community with standardized products that have been manufactured and screened to the highest quality and reliability standards in facilities that have been certified by the government. To achieve QML status, manufacturers must submit their facilities, quality procedures and design philosophies to a thorough audit aimed at confirming their ability to produce product to the highest design and quality standards. They must be listed on DESC's Qualified Manufacturer List (QML) before devices can be marked and shipped as QML product.
Two processing levels are specified within MIL-I-38535, the QML standard: Class S (typically specified for space and strategic applications) and Class B (used for tactical missile, airborne, naval and ground systems). The requirements for both classes are defined within MIL-STD-883. National is one of the industry's leading suppliers of both classes.
- Standard Microcircuit Drawings (SMD). SMDs are issued to provide standardized versions of devices offered under QML. MIL-STD-883 screening is coupled with tightly controlled electrical test specifications that allow a manufacturer to use his standard electrical tests. Table I explains the marking of JAN devices, and Table II outlines current marking requirements for QML/ SMD devices. Copies of MIL-I-38535 and the QML can be obtained from the Naval Publications and Forms Center (5801 Tabor Avenue, Philadelphia, PA 19120, 212/697-2179. A current listing of National's SMD offerings can be obtained from our authorized distributors, our sales offices, our Customer Response Center (Arlington, Texas, 817/468-6300), or from DESC.
■ MIL-STD-883. Originally intended to establish uniform test methods and procedures, MIL-STD-883 has also become the general specification for non-SMD military product. MIL-STD-883 defines the minimum requirements for a device to be marked and advertised as 883 -compliant.-Design and construction-criteria, documentation controls, electrical and mechanical screening requirements, and quality control procedures are outlined in paragraph 1.1.2 of MIL-STD-883.

National offers both 883 Class B and 883 Class S product. The screening requirements for both classes of product are outlined in Table III.
As with SMDs a manufacturer is allowed to use his standard electrical tests provided that all critical parameters are tested. Also, the electrical test parameters, test conditions, test limits and test temperatures must be clearly documented. At National Semiconductor, this information is available via our Table I (formerly RETS, Reliability Electrical Test Specification Program). The Table I document is a complete description of the electrical tests performed and is controlled by our QA department. Individual copies are available upon request.
Some of National's products are produced on a flow similar to MIL-STD-883. These devices are screened to the same stringent requirements as 883 product, but are marked as -MIL; specific reasons for prevention of compliancy are clearly defined in the Certificate of Conformance (C of C) shipped with the product.

- Monitored Line Program (MLP): is a non JAN Level S program developed by the Air Force. Monitored Line product usually provides the shortest cycle time, and is acceptable for application in several space level programs. Lockheed Missiles and Space Company in Sunnyvale, California, under an Air Force contract, provides "on-site" monitoring of product processing, and as appropriate, program management. Monitored Line orders generally do not allow "customizing", and most flows do not include quality conformance inspection. Drawing control is maintained by the Lockheed Company.
Military Screening Program (MSP): National's Military Screening Program was developed to make screened versions of advanced products such as gate arrays and microprocessors available more quickly. Through this program, screened product is made available for prototypes and breadboards prior to or during the QML activities. MSP products receive the 100% screening of Ta ble III, but are not subjected to Group C and D quality conformance testing. Other criteria such as electrical testing and temperature range will vary depending upon individual device status and capability.

TABLE I. JAN S or B Part Marking

TABLE I-A. JAN Package Codes

JAN Package Designation	Microcircuit Industry Description
A	14-pin $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ (Metal) Flatpak
B	14 -pin $3 / 16^{\prime \prime} \times 1 / 4^{\prime \prime}$ (Metal) Flatpak
C	14-pin $1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$ Dual-In-Line
D	14-pin $1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ (Ceramic) Flatpak
E	16-pin $1 / 4^{\prime \prime} \times 7 / 8^{\prime \prime}$ Dual-In-Line
F	16-pin $1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ (Metal or Ceramic) Flatpak
G	8 -pin TO-99 Can or Header
H	10-pin $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ (Metal) Flatpak
I	10-pin TO-100 Can or Header
J	$24-$ pin $1 / 2^{\prime \prime} \times 11 / 4^{\prime \prime}$ Dual-In-Line
K	24-pin $3 / 8^{\prime \prime} \times 5 / 8^{\prime \prime}$ Flatpak
L	$24-$ pin $1 / 4^{\prime \prime} \times 11 / 4^{\prime \prime}$ Dual-In-Line
M	12-pin TO-101 Can or Header
N	(Note 1)
P	8 -pin $1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ Dual-In-Line
Q	40 -pin $3 / 16^{\prime \prime} \times 21 / 16^{\prime \prime}$ Dual-In-Line
R	20-pin $1 / 4^{\prime \prime} \times 11 / 16^{\prime \prime}$ ' Dual-In-Line
S	$20-\mathrm{pin} 1 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$ Flatpak
T	(Note 1)
U	(Note 1)
V	18-pin $3 / 8^{\prime \prime} \times 15 / 16^{\prime \prime}$ Dual-In-Line
W	$22-\mathrm{pin} 3 / 8^{\prime \prime} \times 11 / 8^{\prime \prime}$ Dual-In-Line
X	(Note 1)
Y	(Note 1)
Z	(Note 1)
2	20-terminal 0.350" $\times 0.350$ " Chip Carrier
3	28-terminal 0.450" $\times 0.450$ " Chip Carrier

Note 1: These letters are assigned to packages by individual detail specifications and may be assigned to different packages in different specifications.

TABLE II. Standard Military Drawing
(SMD) Marking

TABLE II-A. SMD Package Codes

SMD Package Designation	Microcircuit Industry Description
C	14-pin Flatpak
D	14-pin C DIP
E	16-pin C DIP
F	16-pin Flatpak
G	8-pin TO-99 Can
H	10-pin (Metal) Flatpak
I	10-pin TO-100 Can
X	(Note 2)
Y	(Note 2)
P	8-pin C DIP
2	20-pin LCC
R	20-Pin DIP

Note 2: These letters are assigned to packages by individual detail specifications and may be assigned to different packages in different specifications.

TL/XX/0030-2

TABLE III. 100\% Screening Requirements

	Screen	Class S		Class B	
		Method	Reqmt	Method	Reqmt
1.	Wafer Lot Acceptance	5007	All Lots	:	
2.	Nondestructive Bond Pull (Note 14)	2023	100\%	.	
3.	Internal Visual (Note 1)	2020, Condition A	100\%	2010, Condition B	100\%
4.	Stabilization Bake (Note 16)	1008, Condition C, Min 24 Hrs . Min	100%	1008, Condition C, Min 24 Hrs . Min	100\%
5.	Temperature Cycling (Note 2)	1010, Condition C	100\%	1010, Condition C	100\%
6.	Constant Acceleration	2001, Condition E Min	100\%	2001, Condition E Min	100\%
		Y_{1} Orientation Only		Y_{1} Orientation Only	
7.	Visual Inspection (Note 3)		100\%		100\%
8.	Particle Impact Noise Detection (PIND)	2010, Condition A (Note 4)	100\%		
9.	Serialization	(Note 5)	100\%		
10.	Interim (Pre-Burn-In) Electrical Parameters	Per Applicable Device Specification (Note 13)	100\%	Per Applicable Device Specification (Note 6)	
11.	Burn-In Test	$\begin{aligned} & 1015 \\ & 240 \text { Hrs. @ } 125^{\circ} \mathrm{C} \text { Min } \\ & \text { (Cond. F Not Allowed) } \\ & \hline \end{aligned}$	100\%	$\begin{aligned} & 1015 \\ & 160 \text { Hrs. @ } 125^{\circ} \mathrm{C} \text { Min } \end{aligned}$	100%
12.	Interim (Post Burn-In) Electrical Parameters	Per Applicable Device Specification (Note 3)	100\%		

TABLE III. 100\% Screening Requirements (Continued)

	Screen	Class S		Class B	
		$\because \quad$ Method	Reqmt	Method	Reqmt
13.	Reverse Bias Burn-In (Note 7)	1015; Test Condition A, C, 72 Hrs . @ $150^{\circ} \mathrm{C}$ Min (Cond. F Not Allowed)	100\%		
14.	Interim (Post-Burn-In) Electrical Parameters	Per Applicable Device Specification (Note 13)	100\%	Per Applicable Device Specification	100\%
15.	PDA Calculation	5\% Parametric (Note 14), 3\% Functional	All Lots	5\% Parametric (Note 14)	All Lots
16.	Final Electrical Test (Note 15) a) Static Tests 1) $25^{\circ} \mathrm{C}$ (Subgroup 1, Table I, 5005) 2) Max \& Min Rated Operating Temp. (Subgroups 2, 3, Table I, 5005) b) Dynamic Tests or Functional Tests 1) $25^{\circ} \mathrm{C}$ (Subgroup 4 or 7) 2) Max and Min Rated Operating Temp. (Subgroups 5 and 6 or 8, Table I, 5005) c) Switching Tests $25^{\circ} \mathrm{C}$ (Subgroup 9, Table I, 5005)	Per Applicable Device Specification	$\begin{aligned} & 100 \% \\ & 100 \% \\ & \\ & 100 \% \\ & 100 \% \\ & \\ & 100 \% \end{aligned}$	Per Applicable Device Specification	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \end{aligned}$
17.	Seal Fine, Gross	1014	$\begin{gathered} 100 \% \\ \text { (Note 8) } \\ \hline \end{gathered}$	1014	$\begin{gathered} 100 \% \\ \text { (Note 9) } \end{gathered}$
18.	Radiographic (Note 10)	2012 Two Views	100\%		
19.	Qualification or Quality Conformance Inspection Test Sample Selection	(Note 11)	Samp.	(Note 11)	Samp.
20.	External Visual (Note 12)	2009	100\%		100\%

Note 1: Unless otherwise specified, at the manufacturer's option, test samples for Group B, bond strength (Method 5005) may be randomly selected prior to or following internal visual (Method 5004), prior to sealing provided all other specification requirements are satisfied (e.g., bond strength requirements shall apply to each inspection lot, bond failures shall be counted even if the bond would have failed internal visual).
Note 2: For Class B devices, this test may be replaced with thermal shock Method 1011, Test Condition A, minimum.
Note 3: At the manufacturer's option, visual inspection for catastrophic failures may be conducted after each of the thermal/mechanical screens, after the sequence or after seal test. Catastrophic failures are defined as missing leads, broken packages, or lids off.
Note 4: The PIND test may be performed in any sequence after step 6 and prior to step 16. See MIL-I-38585 paragraph 40.6.3.
Note 5: Class S devices shall be serialized prior to interim electrical parameter measurements.
Note 6: When specified, all devices shall be tested for those parameters requiring delta calculations.
Note 7: Reverse bias burn-in is a requirement only when specified in the applicable device specification. The order of performing burn-in and reverse bias burn-in may be inverted.
Note 8: For Class S devices, the seal test may be performed in any sequence between step 16 and step 19, but it shall be performed after all shearing and forming operations on the terminals.
Note 9: For Class B devices, the fine and gross seal tests shall be performed separately or together in any sequence and order between step 6 and step 20 except that they shall be performed after all shearing and forming operations on the terminals. When 100% seal screen cannot be performed after shearing and forming (e.g., flatpaks and chip carriers) the seal screen shall be done 100% prior to these operations and a sample test (LTPD $=5$) shall be performed on each inspection lot following these operations. If the sample fails, 100% rescreening shall be required.
Note 10: The radiographic screen may be performed in any sequence after step 9.
Note 11: Samples shall be selected for testing in accordance with the specific device class and lot requirements of Method 5005.
Note 12: External Visual shall be perifrmed on the lot any time after step 19 and prior to shipment.
Note 13: Read and record is required at steps 10 and 12 only for those parameters for which post-burn-in delta measurements are specified. All parameters shall be read and recorded at step 14.
Note 14: The PDA shall apply to all subgroup 1 parameters at $25^{\circ} \mathrm{C}$ and all delta parameters.
Note 15: Only one view is required for flat packages and leadless chip carriers with leads on all four sides.
Note 16: May be performed at any time prior to step 10.

Military Analog Products Available from National Semiconductor				
Device	Package Styles (Note 1)	Description	Process Flows (Note 2)	SMD/JAN (Note 3)
HIGH PERFORMANCE AMPLIFIERS AND BUFFERS				
LF147	D, J	Wide BW Quad JFET Op Amp	SMD/JAN	/11906
LF155A	H	JFET Input Op Amp	883	-
LF156	H	JFET Input Op Amp	883	-
LF156A	H	JFET Input Op Amp	883	-
LF157	H	JFET Input Op Amp	883	-
LF157A	H	JFET Input Op Amp	883	-
LF411M	H	Low Offset, Low Drift JFET Input	883/JAN	/11904
LF412M	H, J	Low Offset, Low Drift JFET Input-Dual	883/JAN	/11905
LF441M	H	Low Power JFET Input	883	-
LF442M	H	Low Power JFET Input-Dual	883	-
LF444M	D	Low Power JFET Input-Quad	883	-
LH0002	H	Buffer Amp	"-MIL"	-
LH0021	K	1.0 Amp Power Op Amp	"-MIL"	-
LH0024	H	High Slew Rate Op Amp	"-MIL"	-
LH0032	G	Ultra Fast FET-Input Op Amp	"-MIL"	-
LH0041	G	0.2 Amp Power Op Amp	"-MIL"	-
LH0101	K	Power Op Amp	"-MIL"	-
LM10	H	Super-BlockTM Micropower Op Amp/Ref	883/SMD	5962-87604
LM101A	J, H, W	General Purpose Op Amp	883/JAN	/10103
LM108A	J, H, W	Precision Op Amp	883/JAN	/10104
LM118	J, H	Fast Op Amp	883/JAN	/10107
LM124	J, E, W	Low Power Quad Op Amp	883/JAN	/11005
LM124A	J, E, W	Low Power Quad	883/JAN	/11006
LM146	J	Quad Programmable Op Amp	883	-
LM148	J, E	Quad 741 Op amp	883/JAN	/11001
LM158A	J, H	Low Power Dual Op Amp	883/SMD	5962-8771002
LM158	J, H	Low Power Dual Op Amp	883/SMD	5962-8771001
LM611AM	J	Super-Block Op Amp/Reference	883/SMD	-
LM613AM	J, E	Super-Block Dual Op Amp/Dual Comp/Ref	883/SMD	-
LM614AM	J	Super-Block Quad Op Amp/Ref	883/SMD	
LM709A	H, J, W	General Purpose Op Amp	883/SMD	7800701
LM741	J, H, W	General Purpose Op Amp	883/JAN	/10101
LM747	J, H	General Purpose Dual Op Amp	883/JAN	/10102
LM6118	J, E	VIP Dual Op Amp	883/SMD	5962-91565
LM6121	H, J	VIP Buffer	883/SMD	5962-90812
LM6125	H	VIP Buffer with Error Flag	883/SMD	5962-90815
LM6161	J, E, W	VIP Op Amp (Unity Gain)	883/SMD	5962-89621
LM6162	J, E, W	VIP Op Amp ($A_{V}>2,-1$)	883/SMD	5962-92165
LM6164	J, E, W	VIP Op Amp ($A_{V}>5$)	883/SMD	5962-89624
LM6165	J, E, W	VIP Op Amp ($A_{V}>25$)	883/SMD	5962-89625
LM6181AM	J	VIP Current Feedback Op Amp	883/SMD	5962-9081802
LM6182AM	J	VIP Current Feedback Dual Op Amp	883/SMD	5962-9460301
LMC660AM	J	Low Power CMOS Quad Op Amp	883/SMD	5962-9209301
LMC662AM	J	Low Power CMOS Dual Op Amp	883/SMD	5962-9209401
LPC660AM	J	Micropower CMOS Quad Op Amp	883/SMD	5962-9209302
LPC662AM	J	Micropower CMOS Dual Op Amp	883/SMD	5962-9209402
LMC6482AM	J	Rail to Rail CMOS Dual Op Amp	883/SMD	5962-9453401
LMC6484AM	J	Rail to Rail CMOS Quad Op Amp	883/SMD	5962-9453402
OP07	H	Precision Op Amp	883	-

Military Analog Products Available from National Semiconductor (Continued)

Device	Package Styles (Note 1)	Description	Process Flows (Note 2)	SMD/JAN (Note 3)
COMPARATORS				
LF111	H	Voltage Comparator	"-MIL"	-
LH2111	J, W	Dual Voltage Comparator	883/JAN	/10305
LM106	H, W	Voltage Comparator	883/SMD	8003701
LM111	J, H, E, W	Voltage Comparator	883/JAN	/10304
LM119	J, H, E, W	High Speed Dual Comparator	883/JAN	/10306
LM139	J, E, W	Quad Comparator	883/JAN	/11201
LM139A	J, E, W	Precision Quad Comparator	883/SMD	5962-87739
LM160	J, H	High Speed Differential Comparator	883/SMD	8767401
LM161	J, H, W	High Speed Differential Comparator	883/SMD	5962-87572
LM193	J, H	Dual Comparator	883	
LM193A	J, H	Dual Comparator	883/JAN	/11202
LM612AM	J	Dual-Channel Comparator/Reference	883/SMD	5962-93002
LM613AM	J, E	Super-Block Dual Comparator/ Dual Op Amp/Adj Reference	883/SMD	5962-93003
LM615AM	J	Quad Comparator/Adjustable Reference	883	-
LM710A*	J, H, W	Voltage Comparator	883/JAN	/10301
LM711A*	J, H, W	Dual LM710	883/JAN	/10302
LM760	J, H	High Speed Differential Comparator	883/SMD	5962-87545

*Formerly manufactured by Fairchild Semiconductor as part numbers $\mu \mathrm{A} 710$ and $\mu \mathrm{A} 711$.

LINEAR REGULATORS

Positive Voltage Regulators

LM105	H	Adjustable Voltage Regulator	883/SMD	5962-89588
LM109	H	5 V Regulator, $\mathrm{I}_{0}=20 \mathrm{~mA}$	883/JAN	/10701BXA
LM109	K	5 V Regulator, $\mathrm{I}_{0}=1 \mathrm{~A}$	883/JAN	/10701BYA
LM117	H, E, K	Adjustable Regulator	883/JAN	/11703, /11704
LM117HV	H	Adjustable Regulator, $\mathrm{I}_{0}=0.5 \mathrm{~A}$	883/SMD	7703402XA
LM117HV	K	Adjustable Regulator, $\mathrm{I}_{0}=1.5 \mathrm{~A}$	883/SMD	7703402YA
LM123	K	3A Voltage Regulator	883	-
LM138	K	5A Adjustable Regulator	"-MIL"	-
LM140-5.0	H	0.5A Fixed 5V Regulator	883/JAN	/10702
LM140-6.0	H	0.5A Fixed 6V Regulator	883	- .
LM140-8.0	H	0.5A Fixed 8 V Regulator	883	-
LM140-12	H	0.5A Fixed 12V Regulator	883/JAN	/10703
LM140-15	H	0.5A Fixed 15V Regulator	883/JAN	/10704
LM140-24	H	0.5A Fixed 24V Regulator	883	-
LM140A-5.0	K	1.0A Fixed 5V Regulator	883	-
LM140A-12	K	1.0A Fixed 12V Regulator	883	-
LM140A-15	K	1.0A Fixed 15V Regulator	883	-
LM140K-5.0	K	1.0A Fixed 5V Regulator	883/JAN	/10706
LM140K-12	K	1.0A Fixed 12V Regulator	883/JAN	/10707
LM140K-15	K	1.0A Fixed 15V Regulator	883/JAN	/10708
LM140LAH-5.0	H	100 mA Fixed 5V Regulator	883	-
LM140LAH-12	H	100 mA Fixed 12V Regulator	883	-
LM140LAH-15	H	100 mA Fixed 15V Regulator	883	-
LM150	K	3A Adjustable Power Regulator	883	-
LM2940-5.0	K	5V Low Dropout Regulator	883/SMD	5962-89587
LM2940-8.0	K	8V Low Dropout Regulator	883/SMD	5962-90883
LM2940-12	K	12V Low Dropout Regulator	883/SMD	5962-90884
LM2940-15	K	15V Low Dropout Regulator	883/SMD	5962-90885
LM2941	K	Adjustable Low Dropout Regulator	883/SMD	TBD
LM431	H, K	Adjustable Shunt Regulator	883	-
LM723	H, J, E	Precision Adjustable Regulator	883/JAN	/10201
LP2951	H, E, J	Adjustable Micropower LDO	883/SMD	5962-38705
LP2953AM	J	250 mA Adj . Micropower LDO	883/SMD	5962-9233601

Military Analog Products Available from National Semiconductor (Continued)				
Device	Package Styles (Note 1)	Description	Process Flows (Note 2)	SMD/JAN (Note 3)
LINEAR REGULATORS (Continued)				
Negative Voltage Regulators				
LM120-5.0	H	Fixed 0.5A Regulator, $\mathrm{V}_{\text {OUT }}=-5 \mathrm{~V}$	883/JAN	/11501
LM120-8.0	H	Fixed 0.5A Regulator, $\mathrm{V}_{\text {OUT }}=-8 \mathrm{~V}$	883	-
LM120-12	H	Fixed 0.5A Regulator, $\mathrm{V}_{\text {OUT }}=-12 \mathrm{~V}$	883/JAN	/11502
LM120-15	H	Fixed 0.5A Regulator, $\mathrm{V}_{\text {OUT }}=-15 \mathrm{~V}$	883/JAN	/11503
LM120-5.0	K	Fixed 1.0A Regulator, $\mathrm{V}_{\text {OUT }}=-5 \mathrm{~V}$	883/JAN	/11505
LM120-12	K	Fixed 1.0A Regulator, $\mathrm{V}_{\text {OUT }}=-12 \mathrm{~V}$	883/JAN	/11506
LM120-15	K	Fixed 1.0A Regulator, $\mathrm{V}_{\text {OUT }}=-15 \mathrm{~V}$	883/JAN	/11507
LM137A	H	Precision Adjustable Regulator	883/SMD	7703406XA
LM137A	K	Precision Adjustable Regulator	883/SMD	7703406YA
LM137	H, K	Adjustable Regulator	883/JAN	/11803, /11804
LM137HV	H	Adjustable (High Voltage) Regulator	883/SMD	7703404XA
LM137HV	K	Adjustable (High Voltage) Regulator	883/SMD	7703404YA
LM145-5.0	K	Negative 3 Amp Regulator	883/SMD	5962-90645
LM145-5.2	K	Negative 3 Amp Regulator	883	-
SWITCHING REGULATORS				
LM1575-5	$J, \mathrm{~K}$	Simple SwitcherTM Step-Down, $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	883/SMD	5962-9167201
LM1575-12	J, K	Simple Switcher Step-Down, $\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$	883/SMD	5962-9167301
LM1575-15	J, K	Simple Switcher Step-Down, $\mathrm{V}_{\text {OUT }}=15 \mathrm{~V}$	883/SMD	5962-9167401
LM1575-ADJ	J, K	Simple Switcher Step-Down, Adj V OUT $^{\text {d }}$	883/SMD	5962-9167101
LM1575HV-5	K	Simple Switcher Step-Down, $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	883	-
LM1575HV-12	K	Simple Switcher Step-Down, $\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$	883	-
LM1575HV-15	K	Simple Switcher Step-Down, $\mathrm{V}_{\text {OUT }}=15 \mathrm{~V}$	883	-
LM1575HV-ADJ	K	Simple Switcher Step-Down, Adj Vout	883	-
LM1577-12	K	Simple Switcher Step-Up, $\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$	883/SMD	5962-9216701
LM1577-15	K	Simple Switcher Step-Up, V OUT $=15 \mathrm{~V}$	883/SMD	5962-9216801
LM1577-ADJ	K	Simple Switcher Step-Up, Adj V Out	883/SMD	5962-9216601
LM1578	H	750 mA Switching Regulator	883/SMD	5962-89586
LM78S40*	J	Universal Switching Regulator Subsystem	883/SMD	5962-88761
*Formerly manufactured by Fairchild Semiconductor as the μ A78S40DMQB. VOLTAGE REFERENCES				
LM103-3.0	H	Reference Diode, $\mathrm{BV}=3.0 \mathrm{~V}$	883/SMD	7702806
LM103-3.3	H	Reference Diode, BV $=3.3 \mathrm{~V}$	883/SMD	7702807
LM103-3.6	H	Reference Diode, $\mathrm{BV}=3.6 \mathrm{~V}$	883/SMD	7702808
LM103-3.9	H	Reference Diode, BV $=3.9 \mathrm{~V}$	883/SMD	7702809
LM113	H	Reference Diode with 5\% Tolerance	883/SMD	5962-8671101
LM113-1	H	Reference Diode with 1\% Tolerance	883/SMD	5962-8671102
LM113-2	H	Reference Diode with 2\% Tolerance	883/SMD	5962-8671103
LM129A	H	Precision Reference, $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Drift	883/SMD	5962-8992101XA
LM129B	H	Precision Reference, $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Drift	883/SMD	5962-8992102XA
LM136A-2.5	H	2.5V Reference Diode, 1\% V OUT Tolerance	883	-
LM136A-5.0	H	5V Reference Diode, 1\% V ${ }_{\text {OUT }}$ Tolerance	883/SMD	8418001
LM136-2.5	H	2.5V Reference Diode, 2\% V OUT Tolerance	883	-
LM136-5.0	H	5V Reference Diode, 2\% V ${ }_{\text {OUT }}$ Tolerance	883	-

Military Analog Products Available from National Semiconductor (Continued)				
Device	Package Styles (Note 1)	Description	Process Flows (Note 2)	SMD/JAN (Note 3)
DATA ACQUISITION SUPPORT				
Switched Capacitor LMF60CMJ50 LMF60CMJ100 LMF90CM LMF100A	$\begin{aligned} & J \\ & J \\ & J \\ & J, E \end{aligned}$	6th Order Butterworth Lowpass 6th Order Butterworth Lowpass 4th Order Elliptic Notch Dual 2nd Order General Purpose	$\begin{aligned} & 883 / \text { SMD } \\ & 883 / \text { SMD } \\ & 883 / \text { SMD } \\ & 883 / \text { SMD } \end{aligned}$	$\begin{aligned} & 5962-90967 \\ & 5962-90967 \\ & 5962-90968 \\ & 5962-9153301 \end{aligned}$
Sample and Hold LF198	H	Monolithic Sample and Hold	SMD/JA	$\begin{aligned} & 5962-87608 \\ & / 12501 \end{aligned}$
Motion Control				5962-9232501
Note 1: D: Side-Brazed DIP E: Leadless Ceramic Chip Carrier G: Metal Can (TO-8) H: Metal Can (TO-39, TO-5, TO-99, TO-100) J: Ceramic DIP K: Metal Can (TO-3) Note 2: Process Flows J AN $=$ JM38510, Level B SMD = Standard Military Drawing 883 = MIL-STD-883 Rev C -MIL $=$ Exceptions to 883C noted on Certificate of Conformance W: Flatpak Note 3: Please call your local sales office to determine price and availability of space-level products. All "LM" prefix products in this guide are availble with space level processing.				

Appendix E Understanding Integrated Circuit Package Power Capabilities

INTRODUCTION

The short and long term reliability of National Semiconductor's interface circuits, like any integrated circuit, is very dependent on its environmental condition. Beyond the mechanical/environmental factors, nothing has a greater influence on this reliability than the electrical and thermal stress seen by the integrated circuit. Both of these stress issues are specifically addressed on every interface circuit data sheet, under the headings of Absolute Maximum Ratings and Recommended Operating Conditions.
However, through application calls, it has become clear that electrical stress conditions are generally more understood than the thermal stress conditions. Understanding the importance of electrical stress should never be reduced, but clearly, a higher focus and understanding must be placed on thermal stress. Thermal stress and its application to interface circuits from National Semiconductor is the subject of this application note.

FACTORS AFFECTING DEVICE RELIABILITY

Figure 1 shows the well known "bathtub" curve plotting failure rate versus time. Similar to all system hardware (mechanical or electrical) the reliability of interface integrated circuits conform to this curve. The key issues associated with this curve are infant mortality, failure rate, and useful life.

TL/H/9312-1
FIGURE 1. Failure Rate vs Time
Infant mortality, the high failure rate from time t0 to t1 (early life), is greatly influenced by system stress conditions other than temperature, and can vary widely from one application to another. The main stress factors that contribute to infant mortality are electrical transients and noise, mechanical maltreatment and excessive temperatures. Most of these failures are discovered in device test, burn-in, card assembly and handling, and initial system test and operation. Although important, much literature is available on the subject of infant mortality in integrated circuits and is beyond the scope of this application note.

Failure rate is the number of devices that will be expected to fail in a given period of time (such as, per million hours). The mean time between failure (MTBF) is the average time (in hours) that will be expected to elapse after a unit has failed before the next unit failure will occur. These two primary "units of measure" for device reliability are inversely related:

$$
\text { MTBF }=\frac{1}{\text { Failure Rate }}
$$

Although the "bathtub" curve plots the overall failure rate versus time, the useful failure rate can be defined as the percentage of devices that fail per-unit-time during the flat portion of the curve. This area, called the useful life, extends between t1 and t2 or from the end of infant mortality to the onset of wearout. The useful life may be as short as several years but usually extends for decades if adequate design margins are used in the development of a system.
Many factors influence useful life including: pressure, mechanical stress, thermal cycling, and electrical stress. However, die temperature during the device's useful life plays an equally important role in triggering the onset of wearout.

FAILURE RATES vs TIME AND TEMPERATURE

The relationship between integrated circuit failure rates and time and temperature is a well established fact. The occurrence of these failures is a function which can be represented by the Arrhenius Model. Well validated and predominantly used for accelerated life testing of integrated circuits, the Arrhenius Model assumes the degradation of a performance parameter is linear with time and that MTBF is a function of temperature stress. The temperature dependence is an exponential function that defines the probability of occurrence. This results in a formula for expressing the lifetime or MTBF at a given temperature stress in relation to another MTBF at a different temperature. The ratio of these two MTBFs is called the acceleration factor F and is defined by the following equation:

$$
F=\frac{X 1}{X 2}=\exp \left[\frac{E}{K}\left(\frac{1}{T 2}-\frac{1}{T 1}\right)\right]
$$

Where: $\mathrm{X} 1=$ Failure rate at junction temperature T 1
$\mathrm{X} 2=$ Failure rate at junction temperature T2
$\mathrm{T}=$ Junction temperature in degrees Kelvin
$\mathrm{E}=$ Thermal activation energy in electron volts (ev)
$\mathrm{K}=$ Boltzman's constant

However, the dramatic acceleration effect of junction temperature (chip temperature) on failure rate is illustrated in a plot of the above equation for three different activation energies in Figure 2. This graph clearly demonstrates the importance of the relationship of junction temperature to device failure rate. For example, using the 0.99 ev line, a 30° rise in junction temperature, say from $130^{\circ} \mathrm{C}$ to $160^{\circ} \mathrm{C}$, results in a 10 to 1 increase in failure rate.

TL/H/9312-2
FIGURE 2. Failure Rate as a Function of Junction Temperature

DEVICE THERMAL CAPABILITIES

There are many factors which affect the thermal capability of an integrated circuit. To understand these we need to understand the predominant paths for heat to transfer out of the integrated circuit package. This is illustrated by Figures 3 and 4.
Figure 3 shows a cross-sectional view of an assembled integrated circuit mounted into a printed circuit board.
Figure 4 is a flow chart showing how the heat generated at the power source, the junctions of the integrated circuit
flows from the chip to the ultimate heat sink, the ambient environment. There are two predominant paths. The first is from the die to the die attach pad to the surrounding package material to the package lead frame to the printed circuit board and then to the ambient. The second path is from the package directly to the ambient air.
Improving the thermal characteristics of any stage in the flow chart of Figure 4 will result in an improvement in device thermal characteristics. However, grouping all these characteristics into one equation determining the overall thermal capability of an integrated circuit/package/environmental condition is possible. The equation that expresses this relationship is:

$$
T_{J}=T_{A}+P_{D}\left(\theta_{J A}\right)
$$

Where: $T_{J}=$ Die junction temperature

$$
\mathrm{T}_{\mathrm{A}}=\text { Ambient temperature in the vicinity device }
$$

$P_{D}=$ Total power dissipation (in watts)
$\theta_{\mathrm{JA}}=$ Thermal resistance junction-to-ambient
θ_{JA}, the thermal resistance from device junction-to-ambient temperature, is measured and specified by the manufacturers of integrated circuits. National Semiconductor utilizes special vehicles and methods to measure and monitor this parameter. All circuit data sheets specify the thermal characteristics and capabilities of the packages available for a given device under specific conditions-these package power ratings directly relate to thermal resistance junction-to-ambient or θ_{JA}.
Although National provides these thermal ratings, it is critical that the end user understand how to use these numbers to improve thermal characteristics in the development of his system using IC components.

TL/H/9312-3
FIGURE 3. Integrated Circuit Soldered into a Printed Circuit Board (Cross-Sectional View)

TL/H/9312-4
FIGURE 4. Thermal Flow (Predominant Paths)

DETERMINING DEVICE OPERATING JUNCTION TEMPERATURE

From the above equation the method of determining actual worst-case device operating junction temperature becomes straightforward. Given a package thermal characteristic, $\theta_{J A}$, worst-case ambient operating temperature, $T_{A}(m a x)$, the only unknown parameter is device power dissipation, P_{D}. In calculating this parameter, the dissipation of the integrated circuit due to its own supply has to be considered, the dissipation within the package due to the external load must also be added. The power associated with the load in a dynamic (switching) situation must also be considered. For example, the power associated with an inductor or a capacitor in a static versus dynamic (say, 1 MHz) condition is significantly different.
The junction temperature of a device with a total package power of 600 mW at $70^{\circ} \mathrm{C}$ in a package with a thermal resistance of $63^{\circ} \mathrm{C} / \mathrm{W}$ is $108^{\circ} \mathrm{C}$.

$$
\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}+\left(63^{\circ} \mathrm{C} / \mathrm{W}\right) \times(0.6 \mathrm{~W})=108^{\circ} \mathrm{C}
$$

The next obvious question is, "how safe is $108^{\circ} \mathrm{C}$?"

MAXIMUM ALLOWABLE JUNCTION TEMPERATURES

What is an acceptable maximum operating junction temperature is in itself somewhat of a difficult question to answer. Many companies have established their own standards based on corporate policy. However, the semiconductor industry has developed some defacto standards based on the device package type. These have been well accepted as numbers that relate to reasonable (acceptable) device lifetimes, thus failure rates.
National Semiconductor has adopted these industry-wide standards. For devices fabricated in a molded package, the maximum allowable junction temperature is $150^{\circ} \mathrm{C}$. For these devices assembled in ceramic or cavity DIP packages, the maximum allowable junction temperature is $175^{\circ} \mathrm{C}$. The numbers are different because of the differences in package types. The thermal strain associated with the die package interface in a cavity package is much less than that exhibited in a molded package where the integrated circuit chip is in direct contact with the package material.
Let us use this new information and our thermal equation to construct a graph which displays the safe thermal (power) operating area for a given package type. Figure 5 is an example of such a graph. The end points of this graph are easily determined. For a 16 -pin molded package, the maximum allowable temperature is $150^{\circ} \mathrm{C}$; at this point no power dissipation is allowable. The power capability at $25^{\circ} \mathrm{C}$ is 1.98 W as given by the following calculation:

$$
\mathrm{P}_{\mathrm{D}} @ 25^{\circ} \mathrm{C}=\frac{\mathrm{T}_{\mathrm{J}}(\max)-\mathrm{T}_{\mathrm{A}}}{\theta_{\mathrm{JA}}}=\frac{150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{63^{\circ} \mathrm{C} / \mathrm{W}}=1.98 \mathrm{~W}
$$

The slope of the straight line between these two points is minus the inversion of the thermal resistance. This is referred to as the derating factor.

$$
\text { Derating Factor }=-\frac{1}{\theta_{\mathrm{JA}}}
$$

As mentioned, Figure 5 is a plot of the safe thermal operating area for a device in a 16 -pin molded DIP. As long as the intersection of a vertical line defining the maximum ambient temperature ($70^{\circ} \mathrm{C}$ in our previous example) and maximum device package power (600 mW) remains below the maximum package thermal capability line the junction temperature will remain below $150^{\circ} \mathrm{C}$-the limit for a molded package. If the intersection of ambient temperature and package power fails on this line, the maximum junction temperature will be $150^{\circ} \mathrm{C}$. Any intersection that occurs above this line will result in a junction temperature in excess of $150^{\circ} \mathrm{C}$ and is not an appropriate operating condition.

TL/H/9312-5

FIGURE 5. Package Power Capability vs Temperature

The thermal capabilities of all integrated circuits are expressed as a power capability at $25^{\circ} \mathrm{C}$ still air environment with a given derating factor. This simply states, for every degree of ambient temperature rise above $25^{\circ} \mathrm{C}$, reduce the package power capability stated by the derating factor which is expressed in $\mathrm{mW} /{ }^{\circ} \mathrm{C}$. For our example-a θ_{JA} of $63^{\circ} \mathrm{C} / \mathrm{W}$ relates to a derating factor of $15.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

FACTORS INFLUENCING PACKAGE THERMAL RESISTANCE

As discussed earlier, improving any portion of the two primary thermal flow paths will result in an improvement in overall thermal resistance junction-to-ambient. This section discusses those components of thermal resistance that can be influenced by the manufacturer of the integrated circuit. It also discusses those factors in the overall thermal resistance that can be impacted by the end user of the integrated circuit. Understanding these issues will go a long way in understanding chip power capabilities and what can be done to insure the best possible operating conditions and, thus, best overall reliability.

Die Size

Figure 6 shows a graph of our 16-pin DIP thermal resistance as a function of integrated circuit die size. Clearly, as the chip size increases the thermal resistance decreases-this relates directly to having a larger area with which to dissipate a given power.

TL/H/9312-6
FIGURE 6. Thermal Resistance vs Die Size

Lead Frame Material

Figure 7 shows the influence of lead frame material (both die attach and device pins) on thermal resistance. This graph compares our same 16-pin DIP with a copper lead frame, a Kovar lead frame, and finally an Alloy 42 type lead frame-these are lead frame materials commonly used in the industry. Obviously the thermal conductivity of the lead frame material has a significant impact in package power capability. Molded interface circuits from National Semiconductor use the copper lead frame exclusively.

TL/H/9312-7
FIGURE 7. Thermal Resistance vs Lead Frame Material

Board vs Socket Mount

One of the major paths of dissipating energy generated by the integrated circuit is through the device leads. As a result of this, the graph of Figure 8 comes as no surprise. This compares the thermal resistance of our 16-pin package soldered into a printed circuit board (board mount) compared to the same package placed in a socket (socket mount). Adding a socket in the path between the PC board and the device adds another stage in the thermal flow path, thus increasing the overall thermal resistance. The thermal capabilities of National Semiconductor's interface circuits are specified assuming board mount conditions. If the devices are placed in a socket the thermal capabilities should be reduced by approximately 5% to 10%.

TL/H/9312-8
FIGURE 8. Thermal Resistance vs Board or Socket Mount

Air Flow

When a high power situation exists and the ambient temperature cannot be reduced, the next best thing is to provide air flow in the vicinity of the package. The graph of Figure 9 illustrates the impact this has on thermal resistance. This graph plots the relative reduction in thermal resistance normalized to the still air condition for our 16 -pin molded DIP. The thermal ratings on National Semiconductor's interface circuits data sheets relate to the still air environment.

TL/H/9312-9
FIGURE 9. Thermal Resistance vs Air Flow

Other Factors

A number of other factors influence thermal resistance. The most important of these is using thermal epoxy in mounting ICs to the PC board and heat sinks. Generally these techniques are required only in the very highest of power applications.
Some confusion exists between the difference in thermal resistance junction-to-ambient (θ_{JA}) and thermal resistance junction-to-case (θ_{Jc}). The best measure of actual junction temperature is the junction-to-ambient number since nearly all systems operate in an open air environment. The only situation where thermal resistance junction-to-case is important is when the entire system is immersed in a thermal bath and the environmental temperature is indeed the case temperature. This is only used in extreme cases and is the exception to the rule and, for this reason, is not addressed in this application note.

NATIONAL SEMICONDUCTOR PACKAGE CAPABILITIES

Figures 10 and 11 show composite plots of the thermal characteristics of the most common package types in the National Semiconductor Linear Circuits product family. Figure 10 is a composite of the copper lead frame molded
package. Figure 11 is a composite of the ceramic (cavity) DIP using poly die attach. These graphs represent board mount still air thermal capabilities. Another, and final, thermal resistance trend will be noticed in these graphs. As the number of device pins increase in a DIP the thermal resistance decreases. Referring back to the thermal flow chart, this trend should, by now, be obvious.

RATINGS ON INTEGRATED CIRCUITS DATA SHEETS

In conclusion, all National Semiconductor Linear Products define power dissipation (thermal) capability. This information can be found in the Absolute Maximum Ratings section of the data sheet. The thermal information shown in this application note represents average data for characterization of the indicated package. Actual thermal resistance can vary from $\pm 10 \%$ to $\pm 15 \%$ due to fluctuations in assembly quality, die shape, die thickness, distribution of heat sources on the die, etc. The numbers quoted in the linear data sheets reflect a 15% safety margin from the average numbers found in this application note. Insuring that total package power remains under a specified level will guarantee that the maximum junction temperature will not exceed the package maximum.

*Packages from 8- to 20-pin 0.3 mil width TL/H/9312-10 22-pin 0.4 mil width 24- to 40 -pin 0.6 mil width
FIGURE 10. Thermal Resistance vs Die Size vs Package Type (Molded Package)

FIGURE 12. Thermal Resistance for "SO" Packages (Board Mount)

The package power ratings are specified as a maximum power at $25^{\circ} \mathrm{C}$ ambient with an associated derating factor for ambient temperatures above $25^{\circ} \mathrm{C}$. It is easy to determine the power capability at an elevated temperature. The power specified at $25^{\circ} \mathrm{C}$ should be reduced by the derating factor for every degree of ambient temperature above $25^{\circ} \mathrm{C}$. For example, in a given product data sheet the following will be found:

Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$ Cavity Package 1509 mW Molded Package 1476 mW

* Derate cavity package at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package at $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
If the molded package is used at a maximum ambient temperature of $70^{\circ} \mathrm{C}$, the package power capability is 945 mW .

$$
P_{D} @ 70^{\circ} \mathrm{C}=1476 \mathrm{~mW}-\left(11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right) \times\left(70^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)
$$

$$
=945 \mathrm{~mW}
$$

FIGURE 11. Thermal Resistance vs Die Size vs Package Type (Cavity Package)

*For products with high current ratings (>3A), thermal resistance may be lower. Consult product datasheet for more information.

FIGURE 13. Thermal Resistance (typ.*) for 3-, 5-, and 7-L TO-263 packages mounted on 1 oz . (0.036 mm) PC board foil

APPENDIX F How to Get the Right Information From a Data Sheet

Not All Data Sheets Are Created Alike, and False Assumptions Could Cost an Engineer Time and Money

By Robert A. Pease

When a new product arrives in the marketplace, it hopefully will have a good, clear data sheet with it.
The data sheet can show the prospective user how to apply the device, what performance specifications are guaranteed and various typical applications and characteristics. If the data-sheet writer has done a good job, the user can decide if the product will be valuable to him, exactly how well it will be of use to him and what precautions to take to avoid problems.

SPECIFICATIONS

The most important area of a data sheet specifies the characteristics that are guaranteed-and the test conditions that apply when the tests are done. Ideally, all specifications that the users will need will be spelled out clearly. If the product is similar to existing products, one can expect the data sheet to have a format similar to other devices.
But, if there are significant changes and improvements that nobody has seen before, then the writer must clarify what is meant by each specification. Definitions of new phrases or characteristics may even have to be added as an appendix.
For example, when fast-settling operational amplifiers were first introduced, some manufacturers defined settling time as the time after slewing before the output finally enters and stays within the error-band; but other manufacturers included the slewing time in-their-definition. Because both groups made their definitions clear, the user was unlikely to be confused or misled.
However, the reader ought to be on the alert. In a few cases, the data-sheet writer is playing a specsmanship game, and is trying to show an inferior (to some users) aspect of a product in a light that makes it look superior (which it may be, to a couple of users).

GUARANTEES

When a data sheet specifies a guaranteed minimum value, what does it mean? An assumption might be made that the manufacturer has actually tested that specification and has great confidence that no part could fail that test and still be shipped. Yet that is not always the case.
For instance, in the early days of op amps (20 years ago), the differential-input impedance might have been guaranteed at $1 \mathrm{M} \Omega$-but the manufacturer obviously did not measure the impedance. When a customer insisted, "I have to know how you measure this impedance," it had to be explained that the impedance was not measured, but that the base current was. The correlation between I_{b} and Z_{in} permitted the substitution of this simple dc test for a rather messy, noisy, hard-to-interpret test.

Every year, for the last 20 years, manufacturers have been trying to explain, with varying success, why they do not measure the $Z_{\text {in }}$ per se, even though they do guarantee it.
In other cases, the manufacturer may specify a test that can be made only on the die as it is probed on the wafer, but cannot be tested after the die is packaged because that signal is not accessible any longer. To avoid frustrating and confusing the customer, some manufacturers are establishing two classes of guaranteed specifications:

- The tested limit represents a test that cannot be doubted, one that is actually performed directly on 100 percent of the devices, 100 percent of the time.
- The design limit covers other tests that may be indirect, implicit or simply guaranteed by the inherent design of the device, and is unlikely to cause a failure rate (on that test), even as high as one part per thousand.
Why was this distinction made? Not just because customers wanted to know which specifications were guaranteed by testing, but because the quality-assurance group insisted that it was essential to separate the tested guarantees from the design limits so that the AQL (assurance-quality level) could be improved from 0.1 percent to down below 100 ppm .
Some data sheets guarantee characteristics that are quite expensive and difficult to test (even harder than noise) such as long-term drift (20 ppm or 50 ppm over 1,000 hours).
The data sheet may not tell the reader if it is measured, tested or estimated. One manufacturer may perform a 100percent test, while another states, "Guaranteed by sample testing." This is not a very comforting assurance that a part is good, especially in a critical case where only a long-term test can prove if the device did meet the manufacturer's specification. If in doubt, question the manufacturer.

TYPICALS

Next to a guaranteed specification, there is likely to be another in a column labeled "typical".
It might mean that the manufacturer once actually saw one part as good as that. It could indicate that half the parts are better than that specification, and half will be worse. But it is equally likely to mean that, five years ago, half the parts were better and half worse. It could easily signify that a few parts might be slightly better, and a few parts a lot worse; after all, if the noise of an amplifier is extremely close to the theoretical limit, one cannot expect to find anything much better than that, but there will always be a few noisy ones. If the specification of interest happens to be the bias current (l_{b}) of an op amp, a user can expect broad variations. For example, if the specification is 200 nA maximum, there might be many parts where I_{b} is 40 nA on one batch (where the beta is high), and a month later, many parts where the I_{b} is 140 nA when the beta is low.

Absolute Maximum Ratings (Note 11)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
Output Voltage
Output Current
+35 V to -0.2 V
+6 V to -1.0 V
10 mA
Storage Temperature,
TO-46 Package
$-76^{\circ} \mathrm{F}$ to $+356^{\circ} \mathrm{F}$
$-76^{\circ} \mathrm{F}$ to $+300^{\circ} \mathrm{F}$

Lead Temp. (Soldering, 4 seconds) *

TO-46 Package	$+300^{\circ} \mathrm{C}$
TO-92 Package	$+260^{\circ} \mathrm{C}$

TO-92 Package
$+260^{\circ} \mathrm{C}$
Specified Operating Temp. Range (Note 2)

LM34, LM34A
$T_{\text {min }}$ to $T_{\text {MAX }}$
$-50^{\circ} \mathrm{F}$ to $+300^{\circ} \mathrm{F}$
LM34C, LM34CA $-40^{\circ} \mathrm{F}$ to $+230^{\circ} \mathrm{F}$
LM34D $\quad+32^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$

DC Electrical Characteristics (Note 1, Note 6)

Parameter	Conditions	LM34A			LM34CA			Units (Max)
		Typical	Tested Limit (Note 4)	Design Limit (Note 5)	Typical	Tested Limit (Note 4)	Design Limit (Note 5)	
Accuracy (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \end{aligned}$	$\begin{aligned} & \pm 0.4 \\ & \pm 0.6 \\ & \pm 0.8 \\ & \pm 0.8 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 2.0 \\ & \pm 2.0 \end{aligned}$		$\begin{aligned} & \pm 0.4 \\ & \pm 0.6 \\ & \pm 0.8 \\ & \pm 0.8 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & \pm 2.0 \\ & \pm 3.0 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \end{aligned}$
Nonlinearity (Note 8)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	± 0.35		± 0.7	± 0.30		± 0.6	${ }^{\circ} \mathrm{F}$
Sensor Gain (Average Slope)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	+10.0	$\begin{array}{r} +9.9 \\ +10.1 \\ \hline \end{array}$		+10.0		$\begin{array}{r} +9.9 \\ +10.1 \end{array}$	$\mathrm{mV} /{ }^{\circ} \mathrm{F}, \min$ $m V /{ }^{\circ} F, \max$
Load Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \\ & 0 \leq \mathrm{I}_{\mathrm{L}} \leq 1 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{gathered} \pm 0.4 \\ \pm 0.5 \end{gathered}$	± 1.0	± 3.0	$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \end{aligned}$	± 1.0	± 3.0	$\mathrm{mV} / \mathrm{mA}$ $\mathrm{mV} / \mathrm{mA}$
Line Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \end{gathered}$	± 0.05	± 0.1	$\begin{aligned} & \pm 0.01 \\ & \pm 0.02 \end{aligned}$	± 0.05	± 0.1	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Quiescent Current (Note 9)	$\begin{aligned} & V_{S}=+5 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 75 \\ 131 \\ 76 \\ 132 \\ \hline \end{gathered}$	$\begin{aligned} & 90 \\ & 92 \end{aligned}$	$\begin{aligned} & 160 \\ & 163 \\ & \hline \end{aligned}$	$\begin{gathered} 75 \\ 116 \\ 76 \\ 117 \\ \hline \end{gathered}$	$\begin{aligned} & 90 \\ & 92 \end{aligned}$	$\begin{aligned} & 139 \\ & 142 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ μA $\mu \mathrm{A}$
Change of Quiescent Current (Note 3)	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{array}{r} +0.5 \\ +\mathbf{1 . 0} \\ \hline \end{array}$	2.0	3.0	$\begin{aligned} & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$	2.0	3.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Temperature Coefficient of Quiescent Current		+0.30		+0.5	+0.30		+0.5	$\mu \mathrm{A} /{ }^{\circ} \mathrm{F}$
Minimum Temperature for Rated Accuracy	In circuit of Figure 1, $I_{L}=0$	+3.0		+ 5.0	+3.0		+5.0	${ }^{\circ} \mathrm{F}$
Long-Term Stability	$\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\text {MAX }}$ for 1000 hours	± 0.16			± 0.16			${ }^{\circ} \mathrm{F}$

Note 1: Unless otherwise noted, these specifications apply: $-50^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq+300^{\circ} \mathrm{F}$ for the LM34 and LM34A; $-40^{\circ} \mathrm{F} \leq \mathrm{T}_{j} \leq+230^{\circ} \mathrm{F}$ for the LM34C and LM34CA; and $+32^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq+212^{\circ} \mathrm{F}$ for the LM34D. $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{Vdc}$ and $\mathrm{L}_{\text {LOAD }}=50 \mu \mathrm{~A}$ in the circuit of Figure $2 ;+6 \mathrm{Vdc}$ for LM34 and LM34A for $230^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq$ $300^{\circ} \mathrm{F}$. These specifications also apply from $+5^{\circ} \mathrm{F}$ to $\mathrm{T}_{\mathrm{MAX}}$ in the circuit of Figure 1.
Note 2: Thermal resistance of the TO-46 package is $292^{\circ} \mathrm{F} / \mathrm{W}$ junction to ambient and $43^{\circ} \mathrm{F} / \mathrm{W}$ junction to case. Thermal resistance of the TO-92 package is $324^{\circ} \mathrm{F} / \mathrm{W}$ junction to ambient.
Note 3: Regulation is measured at constant junction temperature using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.
Note 4: Tested limits are guaranteed and 100% tested in production.
Note 5: Design limits are guaranteed (but not 100\% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 6: Specification in BOLDFACE TYPE apply over the full rated temperature range.
Note 7: Accuracy is defined as the error between the output voltage and $10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$ times the device's case temperature at specified conditions of voltage, current, and temperature (expressed in ${ }^{\circ} \mathrm{F}$).
Note 8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line over the device's rated temperature range.
Note 9: Quiescent current is defined in the circuit of Figure 1.
Note 10: Contact factory for availability of LM34CAZ.

* * operating the device beyond its rated operating conditions (see Note 1).

A Point-By-Point Look

Let's look a little more closely at the data sheet of the Na tional Semiconductor LM34, which happens to be a temperature sensor.
Note 1 lists the nominal test conditions and test circuits in which all the characteristics are defined. Some additional test conditions are listed in the column "Conditions", but Note 1 helps minimize the clutter.
Note 2 gives the thermal impedance, (which may also be shown in a chart or table).
Note 3 warns that an output impedance test, if done with a long pulse, could cause significant self-heating and thus, error.
Note 6 is intended to show which specs apply at all rated temperatures.
Note 7 is the definition of the "Accuracy" spec, and Note 8 the definition for non-linearity. Note 9 states in what test circuit the quiescent current is defined. Note 10 indicates that one model of the family may not be available at the time of printing (but happens to be available now), and Note 11 is the definition of Absolute Max Ratings.

* Note-the " 4 seconds" soldering time is a new standard for plastic packages.
** Note-the wording of Note 11 has been revised-this is the best wording we can devise, and we will use it on all future datasheets.

APPLICATIONS

Another important part of the data sheet is the applications section. It indicates the novel and conventional ways to use a device. Sometimes these applications are just little ideas to tweak a reader's mind. After looking at a couple of applications, one can invent other ideas that are useful. Some applications may be of no real interest or use.
In other cases, an application circuit may be the complete definition of the system's performance; it can be the test circuit in which the specification limits are defined, tested and guaranteed. But, in all other instances, the performance of a typical application circuit is not guaranteed, it is only typical. In many circumstances, the performance may depend on external components and their precision and matching. Some manufacturers have added a phrase to their data sheets:
"Applications for any circuits contained in this document are for illustration purposes only and the manufacturer makes no representation or warranty that such applications will be suitable for the use indicated without further testing or modification."
In the future, manufacturers may find it necessary to add disclaimers of this kind to avoid disappointing users with circuits that work well, much of the time, but cannot be easily guaranteed.
The applications section is also a good place to look for advice on quirks-potential drawbacks or little details that may not be so little when a user wants to know if a device will actually deliver the expected performance.
For example, if a buffer can drive heavy loads and can handle fast signals cleanly (at no load), the maker isn't doing anybody any favors if there is no mention that the distortion goes sky-high if the rated load is applied.

Another example is the application hint for the LF156 family: "Exceeding the negative common-mode limit on either input will cause a reversal of the phase to output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur, since raising the input back within the common-mode range again puts the input stage and, thus the amplifier, in a normal operating mode."
That's the kind of information a manufacturer should really give to a data-sheet reader because no one could ever guess it.
Sometimes, a writer slips a quirk into a characteristic curve, but it's wiser to draw attention to it with a line of text. This is because it's better to make the user sad before one gets started, rather than when one goes into production. Conversely, if a user is going to spend more than 10 minutes using a new product, one ought to spend a full five minutes reading the entire data sheet.

FINE PRINT

What other fine print can be found on a data sheet? Sometimes the front page may be marked "advance" or "preliminary." Then on the back page, the fine print may say something such as:
"This data sheet contains preliminary limits and design specifications. Supplemental information will be published at a later date. The manufacturer reserves the right to make changes in the products contained in this document in order to improve design or performance and to supply the best possible products. We also assume no responsibility for the use of any circuits described herein, convey no license under any patent or other right and make no representation that the circuits are free from patent infringement."
In fact, after a device is released to the marketplace in a preliminary status, the engineers love to make small improvements and upgrades in specifications and characteristics, and hate to degrade a specification from its first published value-but occasionally that is necessary.
Another item in the fine print is the manufacturer's telephone number. Usually it is best to refer questions to the local sales representative or field-applications engineer, because they may know the answer or they may be best able to put a questioner in touch with the right person at the factory.
Occasionally, the factory's applications engineers have all the information. Other times, they have to bring in product engineers, test engineers or marketing people. And sometimes the answer can't be generated quickly-data have to be gathered, opinions solidified or policies formulated before the manufacturer can answer the question. Still, the telephone number is the key to getting the factory to help.

ORIGINS OF DATA SHEETS

Of course, historically, most data sheets for a class of products have been closely modeled on the data sheet of the forerunner of that class. The first data sheet was copied to make new versions.
That's the way it happened with the UA709 (the first monolithic op amp) and all its copies, as well as many other similar families of circuits.

Even today, an attempt is made to build on the good things learned from the past and add a few improvements when necessary. But, it's important to have real improvements, not just change for the sake of change.
So, while it's not easy to get the format and everything in it exactly right to please everybody, new data sheets are continually surfacing with new features, applications ideas, specifications and aids for the user. And, if the users complain loudly enough about misleading or inadequate data sheets, they can help lead the way to change data sheets. That's how many of today's improvements came aboutthrough customer demand.
Who writes data sheets? In some cases, a marketing person does the actual writing and engineers do the checking. In other companies, the engineer writes, while marketing people and other engineers check. Sometimes, a committee seems to be doing the writing. None of these ways is necessarily wrong.
For example, one approach might be: The original designer of the product writes the data sheet (inside his head) at the same time the product is designed. The concept here is, if one can't find the proper ingredients for a data sheet-good applications, convenient features for the user and nicely tested specifications as the part is being designed-then maybe it's not a very good product until all those ingredients are completed. Thus, the collection of raw materials for a good data sheet is an integral part of the design of a product. The actual assembly of these materials is an art which can take place later.

WHEN TO WRITE DATA SHEETS

A new product becomes available. The applications engineers start evaluating their application circuits and the test engineers examine their production test equipment.
But how can the users evaluate the new device? They have to have a data sheet-which is still in the process of being written. Every week, as the data sheet writer tries to polish and refine the incipient data sheet, other engineers are reporting, "These spec limits and conditions have to be revised," and, "Those application circuits don't work like we thought they would; we'll have one running in a couple of days." The marketing people insist that the data sheet must be finalized and frozen right away so that they can start printing copies to go out with evaluation samples.
These trying conditions may explain why data sheets always seem to have been thrown together under panic conditions and why they have so many rough spots. Users should be aware of the conflicting requirements: Getting a data sheet "as completely as possible" and "as accurately as possible" is compromised if one wants to get the data sheet "as quickly as possible."
The reader should always question the manufacturer. What are the alternatives? By not asking the right question, a misunderstanding could arise; getting angry with the manufacturer is not to anyone's advantage.
Robert Pease has been staff scientist at National Semiconductor Corp., Santa Clara, Calif., for eleven years. He has designed numerous op amps, data converters, voltage regulators and analog-circuit functions.

14 Lead Ceramic Sidebrazed Dual-in-Line Package NS Package Number D14D

All dimensions are in inches (millimeters)

16 Lead Ceramic Sidebrazed Dual-in-Line Package NS Package Number D16C

All dimensions are in inches (millimeters)

18 Lead Ceramic Sidebrazed Dual-in-Line Package NS Package Number D18A

All dimensions are in inches

28 Lead Ceramic Sidebrazed Dual-in-Line Package NS Package Number D28D

All dimensions are in inches

20 Lead Ceramic Leadless Chip Carrier, Type C NS Package Number E20A

All dimensions are in inches (millimeters)

Top View

Bottom View

Detail A

44 Lead Ceramic Quad J-Bend NS Package Number EL44A

All dimensions are in inches [millimeters]

EL44A (REV. D)

2 Lead (0.100" Diameter P.C.) TO-46 Metal Can Package NS Package Number H02A

3 Lead (0.200" Diameter P.C.) TO-39 Metal Can Package, High Profile NS Package Number H03B

All dimensions are in inches (millimeters)

3 Lead (0.100" Diameter P.C.) TO-46 Metal Can Package NS Package Number H03H

All dimensions are in inches (millimeters)

4 Lead (0.100" Diameter P.C.) Shielded TO-46 Metal Can Package NS Package Number H04D

All dimensions are in inches (millimeters)

8 Lead (0.200" Diameter P.C.) TO-5 Metal Can Package NS Package Number H08C

8 Lead Ceramic Dual-in-Line Package NS Package Number J08A

All dimensions are in inches

14 Lead Ceramic Dual-in-Line Package NS Package Number J14A

All dimensions are in inches (millimeters)

16 Lead Ceramic Dual-in-Line Package NS Package Number J16A

All dimensions are in inches [millimeters]

18 Lead Ceramic Dual-in-Line Package NS Package Number J18A

All dimensions are in inches (millimeters)

J18A (REV L)

20 Lead Ceramic Dual-in-Line Package NS Package Number J20A

All dimensions are in inches (millimeters)

24 Lead Ceramic Dual-in-Line Package NS Package Number J24A

All dimensions are in inches (millimeters)

24 Lead ($0.300^{\prime \prime}$ Wide) Ceramic Dual-in-Line Package NS Package Number J24F

All dimensions are in inches (millimeters)

J24f(REV G)

40 Lead Ceramic Dual-in-Line Package NS Package Number J40A

3 Lead Molded SOT-23, Low Profile NS Package Number M03B

8 Lead (0.150" Wide) Molded Small Outline Package, JEDEC NS Package Number M08A

14 Lead ($0.150^{\prime \prime}$ Wide) Molded Small Outline Package, JEDEC

 NS Package Number M14A
14 Lead ($0.300^{\prime \prime}$ Wide) Molded Small Outline Package, JEDEC NS Package Number M14B

16 Lead ($0.150^{\prime \prime}$ Wide) Molded Small Outline Package, JEDEC NS Package Number M16A

16 Lead (0.300 " Wide) Molded Small Outline Package, JEDEC NS Package Number M16B

20 Lead ($0.300^{\prime \prime}$ Wide) Molded Small Outline Package, JEDEC NS Package Number M20B

24 Lead (0.300 " Wide) Molded Small Outline Package, JEDEC NS Package Number M24B

28 Lead ($0.300^{\prime \prime}$ Wide) Molded Small Outline Package, JEDEC NS Package Number M28B

All dimensions are in inches (millimeters)

20 Lead Molded Shrink Small Outline Package, EIAJ, Type II NS Package Number MSA20

All dimensions are in millimeters

24 Lead Molded Thin Shrink Small Outline Package NS Package Number MTB24

All dimensions are in millimeters

8 Lead (0.300" Wide) Molded Dual-in-Line Package NS Package Number N08E

All dimensions are in inches (millimeters)

14 Lead (0.300" Wide) Molded Dual-in-Line Package NS Package Number N14A

All dimensions are in inches (millimeters)

OPTION 1

16 Lead ($0.300^{\prime \prime}$ Wide) Molded Dual-in-Line Package NS Package Number N16A

All dimensions are in inches (millimeters)

16 Lead (0.300" Wide) Molded Dual-in-Line Package NS Package Number N16E

All dimensions are in inches (millimeters)

18 Lead ($0.300^{\prime \prime}$ Wide) Molded Dual-in-Line Package NS Package Number N18A

All dimensions are in inches [millimeters]

20 Lead (0.300" Wide) Molded Dual-in-Line Package NS Package Number N20A

All dimensions are in inches (millimeters)

N20A (REV G)

24 Lead ($0.300^{\prime \prime}$ Wide) Molded Dual-in-Line Package NS Package Number N24C

28 Lead ($0.600^{\prime \prime}$ Wide) Molded Dual-in-Line Package NS Package Number N28B

All dimensions are in inches (millimeters)

40 Lead ($0.600^{\prime \prime}$ Wide) Molded Dual-in-Line Package NS Package Number N40A

All dimensions are in inches (millimeters)

NaOA (REV E)

3 Lead Molded TO-226
 NS Package Number RC03A

20 Lead Molded Plastic Leaded Chip Carrier NS Package Number V20A

All dimensions are in inches [millimeters]

28 Lead Molded Plastic Leaded Chip Carrier

 NS Package Number V28AAll dimensions are in inches [millimeters]

44 Lead Molded Plastic Leaded Chip Carrier

 NS Package Number V44A
suolsuew!a |eכ!sKud

44 Lead (10mm x 10mm) Molded Plastic Quad Flat Package NS Package Number VGZ44A

All dimensions are in millimeters

44 Lead Cerquad, Straight NS Package Number WA44A

All dimensions are in inches

3 Lead Molded TO-92
 NS Package Number Z03A

National Semiconductor

Bookshelf of Technical Support Information
National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature.
This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book.
For datasheets on new products and devices still in production but not found in a databook, please contact the National Semiconductor Customer Support Center at 1-800-272-9959.
We are interested in your comments on our technical literature and your suggestions for improvement.
Please send them to:
Technical Communications Dept. M/S 16-300
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052-8090

ADVANCED BiCMOS LOGIC (ABTC, IBF, BiCMOS SCAN, LOW VOLTAGE BiCMOS, EXTENDED TTL TECHNOLOGY) DATABOOK—1994
 ABTC/BCT Description and Family Characteristics • ABTC/BCT Ratings, Specifications and Waveforms ABTC Applications and Design Considerations • Quality and Reliability • Integrated Bus Function (IBF) Introduction 54/74ABT3283 Synchronous Datapath Multiplexer • 74FR900/25900 9-Bit 3-Port Latchable Datapath Multiplexer 54/74ACTQ3283 32-Bit Latchable Transceiver with Parity Generator/Checker and Byte Multiplexing SCAN18xxxA BiCMOS 5V Logic with Boundary Scan • 74LVT Low Voltage BiCMOS Logic VME Extended TTL Technology for Backplanes

ALS/AS LOGIC DATABOOK—1990
Introduction to Advanced Bipolar Logic • Advanced Low Power Schottky • Advanced Schottky

APPLICATION SPECIFIC ANALOG PRODUCTS DATABOOK—1995

Audio Circuits • Video Circuits \bullet Automotive • Special Functions • Surface Mount

ASIC DESIGN MANUAL/GATE ARRAYS \& STANDARD CELLS-1987

SSI/MSI Functions • Peripheral Functions • LSI/VLSI Functions • Design Guidelines • Packaging

CMOS LOGIC DATABOOK—1988

CMOS AC Switching Test Circuits and Timing Waveforms • CMOS Application Notes • MM54HC/MM74HC MM54HCT/MM74HCT • CD4XXX • MM54CXXX/MM74CXXX • Surface Mount

CLOCK GENERATION AND SUPPORT (CGS) DESIGN DATABOOK—1994
Low Skew Clock Buffers/Drivers • Video Clock Generators • Low Skew PLL Clock Generators
Crystal Clock Generators
COP8 ${ }^{\text {TM }}$ DATABOOK—1994
COP8 Family • COP8 Applications • MICROWIRE/PLUS Peripherals • COP8 Development Support
CROSSVOLTTM ${ }^{\text {TM }}$ LOW VOLTAGE LOGIC SERIES DATABOOK—1994
LCX Family •LVX Translator Family •LVX Bus Switch Family • LVX Family •LVQ Family •LVT Family

DATA ACQUISITION DATABOOK—1995

Data Acquisition Systems • Analog-to-Digital Converters • Digital-to-Analog Converters • Voltage References Temperature Sensors • Active Filters • Analog Switches/Multiplexers • Surface Mount

DATA ACQUISITION DATABOOK SUPPLEMENT-1992
New devices released since the printing of the 1989 Data Acquisition Linear Devices Databook.

DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK—1989
 Selection Guide and Cross Reference Guides • Diodes • Bipolar NPN Transistors Bipolar PNP Transistors • JFET Transistors • Surface Mount Products • Pro-Electron Series
 Consumer Series • Power Components • Transistor Datasheets • Process Characteristics

DRAM MANAGEMENT HANDBOOK-1993
Dynamic Memory Control • CPU Specific System Solutions • Error Detection and Correction Microprocessor Applications

EMBEDDED CONTROLLERS DATABOOK—1992
COP400 Family • COP800 Family • COPS Applications • HPC Family • HPC Applications MICROWIRE and MICROWIRE/PLUS Peripherals • Microcontroller Development Tools

FDDI DATABOOK—1994
Datasheets • Application Notes

F100K ECL LOGIC DATABOOK \& DESIGN GUIDE-1992
Family Overview • 300 Series (Low-Power) Datasheets • 100 Series Datasheets • 11C Datasheets Design Guide • Circuit Basics • Logic Design • Transmission Line Concepts • System Considerations Power Distribution and Thermal Considerations • Testing Techniques • 300 Series Package Qualification Quality Assurance and Reliability • Application Notes

FACTTM ADVANCED CMOS LOGIC DATABOOK—1993
Description and Family Characteristics • Ratings, Specifications and Waveforms
Design Considerations • 54AC/74ACXXX - 54ACT/74ACTXXX • Quiet Series: 54ACQ/74ACQXXX
Quiet Series: 54ACTQ/74ACTQXXX • 54FCT/74FCTXXX • FCTA: 54FCTXXXA/74FCTXXXA/B

FAST® ADVANCED SCHOTTKY TTL LOGIC DATABOOK—1990
Circuit Characteristics • Ratings, Specifications and Waveforms • Design Considerations•54F/74FXXX

FAST ${ }^{\circledR}$ APPLICATIONS HANDBOOK—1990

Reprint of 1987 Fairchild FAST Applications Handbook
Contains application information on the FAST family: Introduction • Multiplexers • Decoders • Encoders Operators • FIFOs • Counters • TTL Small Scale Integration • Line Driving and System Design
FAST Characteristics and Testing • Packaging Characteristics

HIGH-PERFORMANCE BUS INTERFACE DATABOOK—1994

QuickRing • Futurebus + /BTL Devices • BTL Transceiver Application Notes • Futurebus + Application Notes High Performance TTL Bus Drivers • PI-Bus • Futurebus + /BTL Reference

IBM DATA COMMUNICATIONS HANDBOOK—1992
IBM Data Communications • Application Notes

INTERFACE: DATA TRANSMISSION DATABOOK—1994

TIA/EIA-232 (RS-232) • TIA/EIA-422/423 • TIA/EIA-485 • Line Drivers • Receivers • Repeaters
Transceivers • Low Voltage Differential Signaling • Special Interface • Application Notes

LINEAR APPLICATIONS HANDBOOK-1994

The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit applications using both monolithic and hybrid circuits from National Semiconductor.
Individual application notes are normally written to explain the operation and use of one particular device or to detail various methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

LOCAL AREA NETWORKS DATABOOK—1993 SECOND EDITION

Integrated Ethernet Network Interface Controller Products • Ethernet Physical Layer Transceivers
Ethernet Repeater Interface Controller Products • Token-Ring Interface Controller (TROPIC)
Hardware and Software Support Products • FDDI Products • Glossary and Acronyms

LOW VOLTAGE DATABOOK—1992

This databook contains information on National's expanding portfolio of low and extended voltage products. Product datasheets included for: Low Voltage Logic (LVQ), Linear, EPROM, EEPROM, SRAM, Interface, ASIC, Embedded Controllers, Real Time Clocks, and Clock Generation and Support (CGS).

MASS STORAGE HANDBOOK—1989

Rigid Disk Pulse Detectors • Rigid Disk Data Separators/Synchronizers and ENDECs
Rigid Disk Data Controller • SCSI Bus Interface Circuits • Floppy Disk Controllers • Disk Drive Interface Circuits
Rigid Disk Preamplifiers and Servo Control Circuits • Rigid Disk Microcontroller Circuits • Disk Interface Design Guide
MEMORY DATABOOK—1994
FLASH•CMOS EPROMs • CMOS EEPROMs • PROMs • Application Notes

MEMORY APPLICATIONS HANDBOOK—1994
FLASH•EEPROMs•EPROMs•Application Notes

OPERATIONAL AMPLIFIERS DATABOOK—1995

Operational Amplifiers • Buffers • Voltage Comparators • Active Matrix/LCD Display Drivers
Special Functions • Surface Mount

PACKAGING DATABOOK—1993

Introduction to Packaging ॰ Hermetic Packages \circ Plastic Packages \circ Advanced Packaging Technology Package Reliability Considerations • Packing Considerations • Surface Mount Considerations

POWER IC's DATABOOK—1995

Linear Voltage Regulators • Low Dropout Voltage Regulators • Switching Voltage Regulators
Motion Control • Surface Mount

PROGRAMMMABLE LOGIC DEVICE DATABOOK AND DESIGN GUIDE-1993
 Product Line Overview • Datasheets • Design Guide: Designing with PLDs • PLD Design Methodology PLD Design Development Tools • Fabrication of Programmable Logic • Application Examples

REAL TIME CLOCK HANDBOOK—1993
3-Volt Low Voltage Real Time Clocks • Real Time Clocks and Timer Clock Peripherals•Application Notes

RELIABILITY HANDBOOK-1987

Reliability and the Die • Internal Construction • Finished Package • MIL-STD-883 • MIL-M-38510
The Specification Development Process • Reliability and the Hybrid Device • VLSI/VHSIC Devices
Radiation Environment • Electrostatic Discharge • Discrete Device • Standardization
Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device European Reliability Programs • Reliability and the Cost of Semiconductor Ownership
Reliability Testing at National Semiconductor 0 The Total Military/Aerospace Standardization Program 883B/RETSTM Products • MILS/RETSTM Products • 883/RETSTM Hybrids • MIL-M-38510 Class B Products Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging
Semiconductor Packages • Glossary of Terms • Key Government Agencies • AN/ Numbers and Acronyms
Bibliography • MIL-M-38510 and DESC Drawing Cross Listing

SCAN ${ }^{\text {TM }}$ DATABOOK—1994

Evolution of IEEE 1149.1 Standard • SCAN BiCMOS Products • SCAN ACMOS Products • System Test Products Other IEEE 1149.1 Devices

TELECOMMUNICATIONS—1994

COMBO and SLIC Devices • ISDN • Digital Loop Devices • Analog Telephone Components • Software • Application Notes

VHC/VHCT ADVANCED CMOS LOGIC DATABOOK—1993

This databook introduces National's Very High Speed CMOS (VHC) and Very High Speed TTL Compatible CMOS (VHCT) designs. The databook includes Description and Family Characteristics • Ratings, Specifications and Waveforms Design Considerations and Product Datasheets. The topics discussed are the advantages of VHC/VHCT AC Performance, Low Noise Characteristics and Improved Interface Capabilities.

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS

ALABAMA
Huntsville
Anthem Electronics
(205) 890-0302 Future Electronics Corp. (205) 830-2322 Hamilton/Hallmark (205) 837-8700 Pioneer Technology (205) 837-9300 Time Electronics (205) 721-1134

ARIZONA
Phoenix
Future Electronics Corp. (602) 968-7140 Hamilton/Hallmark (602) 437-1200

Scottsdale Alliance Electronics Inc. (602) 483-9400

Tempe Anthem Electronics (602) 966-6600 Bell Industries (602) 966-3600 Pioneer Standard (602) 350-9335

Time Electronics (602) 967-2000

CALIFORNIA

Agoura Hills Bell Industries (818) 865-7900 Future Electronics Corp. (818) 865-0040 Pioneer Standard (818) 865-5800 Time Electronics (818) 707-2890

Calabasas
F/X Electronics (818) 591-9220

Chatsworth
Anthem Electronics (818) 775-1333

Costa Mesa Hamilton/Hallmark (714) 641-4100

Ivine Anthem Electronics (714) 768-4444 Bell Industries (714) 727-4500 Future Electronics Corp. (714) 453-1515 Pioneer Standard (714) 753-5090 Zeus Elect. an Arrow Co. (714) 581-4622

Rocklin
Anthem Electronics (916) 624-9744 Bell Industries (916) 652-0418

Roseville Future Electronics Corp. (916) 783-7877 Hamilton/Hallmark (916) 624-9781

San Diego Anthem Electronics (619) 453-9005 Bell Industries (619) 576-3294

Future Electronics Corp. (619) 625-2800 Hamilton/Hallmark (619) 571-7540 Pioneer Standard (619) 514-7700 Time Electronics (619) 674-2800

San Jose
Anthem Electronics
(408) 453-1200

Future Electronics Corp.
(408) 434-1122

Hamilton/Hallmark
(408) 435-3500

Pioneer Technology
(408) 954-9100

Zeus Elect. an Arrow Co.
(408) 629-4789

Sunnyvale
Bell Industries
(408) 734-8570

Time Electronics
(408) 734-9890

Tustin
Time Electronics
(714) 669-0216

Woodland Hills Hamilton/Hallmark (818) 594-0404 Time Electronics (818) 593-8400

COLORADO
Denver
Bell Industries
(303) 691-9270

Englewood Anthem Electronics (303) 790-4500 Hamilton/Hallmark (303) 790-1662 Pioneer Technology (303) 773-8090 Time Electronics (303) 799-5400

Lakewood
Future Electronics Corp. (303) 232-2008

CONNECTICUT
Cheshire
Future Electronics Corp. (203) 250-0083 Hamilton/Hallmark (203) 271-2844

Meriden Bell Industries (203) 639-6000

Shelton
Pioneer Standard
(203) 929-5600

Wallingford Advent Electronics (800) 982-0014

Waterbury Anthem Electronics (203) 575-1575

FLORIDA

Altamonte Springs Anthem Electronics (407) 831-0007 Bell Industries (407) 339-0078 Future Electronics Corp. (407) 865-7900 Pioneer Technology (407) 834-9090

Deerfield Beach Future Electronics Corp. (305) 426-4043 Pioneer Technology (305) 428-8877

Fort Lauderdale Hamilton/Hallmark (305) 484-5482 Time Electronics (305) 484-1864

Indialantic
Advent Electronics (800) 975-8669

Lake Mary
Zeus Elect. an Arrow Co. (407) 333-9300

Largo
Future Electronics Corp. (813) 530-1222 Hamilton/Hallmark (813) 541-7440

Orlando
Chip Supply
"Die Distributor"
(407) 298-7100

Time Electronics
(407) 841-6566

Winter Park Hamilton/Hallmark (407) 657-3300

GEORGIA
Duluth
Anthem Electronics (404) 931-9300 Hamilton/Hallmark (404) 623-4400 Pioneer Technology (404) 623-1003 Time Electronics (404) 623-5455

Norcross

Future Electronics Corp. (404) 441-7676

ILLINOIS

Addison Pioneer Standard (708) 495-9680

Bensenville Hamilton/Hallmark (708) 860-7780

Des Plaines Advent Electronics (800) 323-1270

Elk Grove Village Bell Industries (708) 640-1910

Hoffman Estates Future Electronics Corp. (708) 882-1255

Itasca
Zeus Elect. an Arrow Co. (708) 595-9730

Schaumburg Anthem Electronics (708) 884-0200 Time Electronics (708) 303-3000

INDIANA
Fort Wayne Bell Industries (219) 422-4300

Indianapolis Advent Electronics Inc. (800) 732-1453 Bell Industries (317) 875-8200 Future Electronics Corp. (317) 469-0447 Hamilton/Hallmark (317) 872-8875 Pioneer Standard (317) 573-0880

IOWA
Cedar Rapids Advent Electronics (800) 397-8407 Hamilton/Hallmark (319) 393-0033

KANSAS

Lenexa Hamilton/Hallmark (913) 888-4747

Overland Park Future Electronics Corp. (913) 649-1531

KENTUCKY

Lexington Hamilton/Hallmark (606) 288-4911

MARYLAND
Columbia
Anthem Electronics
(410) 995-6640

Bell Industries
(410) 290-5100

Future Electronics Corp. (410) 290-0600 Hamilton/Hallmark (410) 988-9800

- Seymour Electronics (410) 992-7474 Time Electronics (410) 720-3600

Gaithersburg
Pioneer Technology
(301) 921-0660

MASSACHUSETTS
Andover
Bell Industries
(508) 474-8880

Bolton
Future Electronics Corp.
(508) 779-3000

Lexington Pioneer Standard
(617) 861-9200

Newburyport Rochester Electronics "Obsolete Products" (508) 462-9332

Norwood
Gerber Electronics (617) 769-6000

Peabody
Hamilton/Hallmark
(508) 532-3701

Time Electronics
(508) 532-9777

Tyngsboro
Port Electronics
(508) 649-4880

Wilmington Anthem Electronics (508) 657-5170

Zeus Elect. an Arrow Co. (508) 658-0900

MICHIGAN
Farmington Hills Advent Electronics (800) 572-9329

Grand Rapids
Future Electronics Corp. (616) 698-6800 Pioneer Standard (616) 698-1800

Livonia
Future Electronics Corp.
(313) 261-5270

O'Fallon
Advent Electronics (800) 888-9588

Plymouth
Hamilton/Hallmark
(313) 416-5800 Pioneer Standard (313) 416-2157

Wyoming
R. M. Electronics, Inc. (616) 531-9300

MINNESOTA
Bloomington Hamilton/Hallmark (612) 881-2600

Eden Prairie Anthem Electronics (612) 944-5454 Future Electronics Corp. (612) 944-2200 Pioneer Standard (612) 944-3355

Minnetonka Time Electronics (612) 931-2131

National Semiconductor supplies a comprebensive set of service and support capabilities. Complete product information and design support is available from National's customer support centers.

To receive sales literature and technical assistance, contact the National support center in your area.

See us on the Worldwide Web at: http://www.nsc.com

For support in the following countries, please contact the offices listed below:

Australia

Tel: (39) 558-9999
Fax: (39) 558-9998
China
Tel: 10-849-133 1
Fax: 10-849-133 2

Hong Kong

Tel: (852) 2737-1600
Fax: (852) 2736-9960

India
Tel: 80-226-7272
Fax: 80-225-1133
Korea
Tel: (02) 784-8051/3
(02) 785-0696/8

Fax: (02) 784-8054

Malaysia
Tel: 4-644-9061
Fax: 4-644-9073

Singapore

Tel: (65) 225-2226
Fax: (65) 225-7080
Taiwan
Tel: (02) 521-3288
Fax: (02) 561-3054

For a complete listing of worldwide sales offices, see inside back page.

[^0]: TL/H/11879-56

[^1]: LM12(H)454 (Refer to Table II).
 tLM12(H)458 only. Must be set to " 0 " for the LM12(H)454.

[^2]: *A/D output data is updated 1 CLK period

[^3]: *Display Output = VMS Group + VLS Group

[^4]: * Analog channel inputs CH 0 thru CH 3 are logic outputs

[^5]: - Uses one more wire than load cell itself
 - Two mini-DIPs could be mounted inside load cell for digital output transducer
 - Electronic offset and gain trims relax mechanical specs for gauge factor and offset
 - Low level cell output is converted immediately for high noise immunity

[^6]: - Differential Input elliminates need for instrumentation amplifier
 - A total of 4 load cells can be monitored by ADC0854

[^7]: *Use stable components with. low temperature coefficients. See Typical Applications section.
 ** $0.1 \mu \mathrm{~F}$ or $1 \mu \mathrm{~F}$, See "Principles of Operation."

[^8]: *Note. Devices may be ordered by using either order number.

[^9]: ${ }^{*} \mathrm{C}$ (Commercial) $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{I}$ (Industrial) $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LM 236 and $\mathrm{LM} 299, \mathrm{I}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for all others.
 M (Military) $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 **Available in SOT-23 Package.
 \dagger LM611 has on-board Op Amp.
 $\dagger \dagger$ LM613 has on-board Dual Op Amp and Dual Comparator.
 \ddagger LM614 has on-board Quad Op Amp.

[^10]: \cdot Set current changes linearly with temperature at a rate of $0.33 \% \% \mathrm{C}$.

[^11]: ${ }^{*} \mathrm{M}$ (Military) $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

[^12]: *Note: The output of the LH0070 and LH0071 may be adjusted to a precise voltage by using the above circuit since the supply current of the devices is relatively small and constant with temperature and input voltage. For the circuit shown, supply sensitivities are degraded slightly to $0.01 \% / \mathrm{V}$ change in $\mathrm{V}_{\text {OUT }}$ for changes in V_{IN} and V^{-}.

 An additional temperature drift of $0.0001 \% /{ }^{\circ} \mathrm{C}$ is added due to the variation of supply current with temperature of the LH0070 and LH0071. Sensitivity to the value of R1, R2 and R3 is less than $0.001 \% / \%$.

[^13]: ＊Select R3 $=V_{\text {REF }} / 583 \mu \mathrm{~A} . \mathrm{V}_{\text {REF }}$ may be any stable positive voltage $\geq 2 \mathrm{~V}$ Trim R3 to calibrate

[^14]: "Wakefield type 201 or $1^{\prime \prime}$ disc of $0.020^{\prime \prime}$ sheet brass, soldered to case, or similar.
 **TO-92 and SO-8 packages glued and leads soldered to $1^{\prime \prime}$ square of $1 / 18^{\prime \prime}$ printed circuit board with 2 oz copper foil, or similar.

[^15]: Note: All diode cathodes are internally connected to the substrate.

[^16]: Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
 Note 2: Test conditions $25^{\circ} \mathrm{C}$ unless otherwise noted.
 Note 3: "OFF" and "ON" notation refers to the conduction state of the FET switch.
 Note 4: Thermal Resistance:

