N.
(2)

COP8 ${ }^{\text {™ }}$ MICROCONTROLLER DATABOOK

1994 Edition

COP8 Family

COP8 Applications
MICROWIRE/PLUSTM Peripherals COP8 Development Support Appendices/Physical Dimensions

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

ABiCTm	ELSTARTM	MICROWIRE/PLUSTM	SCENICTM
AbuseabletM	Embedded System	MOLETM	SCXTM
AirShareTM	ProcessorTM	MPATM	SERIES/800 ${ }^{\text {TM }}$
Anadig ${ }^{\text {M }}$ M	EPTM	MSTTM	Series 32000 ${ }^{\text {® }}$
APPSTM	E-Z-LINKTM	Naked-8TM	SIMPLE SWITCHER*
ARilim	FACTTM	National ${ }^{\text {® }}$	SNITM
ASPECTTM	FACT Quiet Series ${ }^{\text {TM }}$	National Semiconductor®	SNICTM
AT/LANTICTM	FAIRCADTM	National Semiconductor	SofChekTM
Auto-Chem DeflasherTM	Fairtech ${ }^{\text {TM }}$	Corp. ${ }^{\text {c }}$	SONICTM
ВСРтм	FAST®	NAX 800 ${ }^{\text {TM }}$	SPiKetm
BI-FETTM	FASTrTM	NeuFuz ${ }^{\text {TM }}$	SPIRETM
BI-FET IITM	GENIXTM	Nitride Plus ${ }^{\text {TM }}$	Staggered Refresh ${ }^{\text {TM }}$
BI-LINETM	GNXTM	Nitride Plus OxideTM	STARTM
BIPLANTM	GTOTM	NMLTM	Starlink ${ }^{\text {TM }}$
BLCTM	HEX 3000'm	NOBUSTM	STARPLEXTM
BLXTM	НРС'М.	NSC800'm	ST-NICTM
BMACTM	HyBaltm	NSCISETM	SuperATTM
Brite-Litetm	${ }^{3} \mathrm{~L}$ - ${ }^{\text {d }}$	NSX-16TM	Super-Block ${ }^{\text {TM }}$
BSITM	ICM ${ }^{\text {TM }}$	NS-XC-16TM	SuperChipTM
BSI-2TM	Integral ISETM	NTERCOM ${ }^{\text {TM }}$	Superl/OTM
CDDTM	IntelisplayTM	NURAM ${ }^{\text {TM }}$	SuperScript ${ }^{\text {m }}$
CDLTM	Inter-LERICTM	OPALTM	SYS32TM
CGSTM	Inter-RICTM	OvertureTM	TapePak ${ }^{\text {® }}$
CIM ${ }^{\text {TM }}$	ISETM	OXISSTM	TDSTM
CIMBUSTM	ISE/06TM	$\mathrm{P}^{2} \mathrm{CMOSTM}$	TeleGateTM
CLASICTM	ISE/08TM	Perfect Watch ${ }^{\text {TM }}$	The National Anthem ${ }^{(1)}$
COMBO ${ }^{\text {® }}$	ISE/16TM	PLANTM	TLCTM
COMBO ${ }^{\text {TM }}$	ISE32TM	PLANARTM	Trapezoidal ${ }^{\text {M }}$ M
COMBO IITM	ISOPLANARTM	PLAYERTM	TRI-CODETM
COPSTM microcontrollers	ISOPLANAR-ZTM	PLAYER + TM	TRI-POLYTM
COP8TM	LERICTM	Plus-2TM	TRI-SAFETM
CRDTM	LMCMOSTM	Polycraftim	TRI-STATE®
CROSSVOLTTM	M ${ }^{2} \mathrm{CMOS}$ TM	POPTM	TROPICTM
CSNITM	Macrobus ${ }^{\text {TM }}$ M	Power + ControlTM	Tropic Pele'tm
CTITM	Macrocomponent ${ }^{\text {TM }}$	POWERplanarTM	Tropic ReefTM
CYCLONETM	MACSITM	QSTM	TURBOTRANSCEIVERTM
DA4TM	MAPLTM	QUAD3000TM	VIPTM
DENSPAKTM	MAXI-ROM ${ }^{\text {® }}$	Quiet SeriestM	VR32'm
DIBTM	MicrobustM data bus	QUIKLOOKTM	WATCHDOGTM
DISCERNTM	MICRO-DACTM	RATTM	XMOSTM
DISTILLTM	μ Pot'M	RICTM	XPUTM
DNR ${ }^{\text {® }}$	μ talker ${ }^{\text {TM }}$	RICKITTM	Z STARTM
DPVM ${ }^{\text {TM }}$	MicrotalkerTM	RTX16TM	883B/RETSTM
$\mathrm{E}^{2} \mathrm{CMOSTM}$	MICROWIRETM	SCANTM	883S/RETSTM

IBM ${ }^{\circledR}, ~ P C ®, ~ P C-A T ® ~ a n d ~ P C-X T ® ~ a r e ~ r e g i s t e r e d ~ t r a d e m a r k s ~ o f ~ I n t e r n a t i o n a l ~ B u s i n e s s ~ M a c h i n e s ~ C o r p o r a t i o n . ~$
iceMASTERTM is a trademark of MetaLink Corporation.
Sun ${ }^{(1)}$ is a registered trademark of Sun Microsystems.
SunOSTM is a trademark of Sun Microsystems.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR

 SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

NationalSemiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 1-800-272-9959 TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specifications.

Product Status Definitions

Definition of Terms

Data Sheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This data sheet contains preliminary data, and supplementary data will be published at a later date. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
No Identification Noted	Full Production	This data sheet contains final specifications. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
	Not In Production	This data sheet contains specifications on a product that has been discontinued by National Semiconductor Corporation. The data sheet is printed for reference information only.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to improve reliability, function or design. National does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

Table of Contents

Alphanumeric Index vi
Section 1 COP8 FamilyCOP8 Family1-3
COP912C/COP912CH Single-Chip microCMOS Microcontrollers 1-10
COP620C/COP622C/COP640C/COP642C/COP820C/COP822C/COP840C/ COP842C/COP920C/COP922C/COP940C/COP942C Single-Chip microCMOS Microcontrollers 1-28
COP820CJ/COP822CJ/COP823CJ Single-Chip microCMOS Microcontrollers 1-50
COP8640C/COP8642C/COP8620C/COP8622C/COP86L20C/COP86L22C/ COP86L40C/COP86L42C Single-Chip microCMOS Microcontrollers $1-76$
COP680C/COP681C/COP880C/COP881C/COP980C/COP981C Microcontrollers 1-98
COP884BC/COP684BC Single-Chip microCMOS Microcontrollers 1-121
COP688CL/COP684CL/COP888CL/COP884CL/COP988CL/COP984CL Single-Chip microCMOS Microcontrollers 1-166
COP888CF/COP884CF/COP988CF/COP984CF Single-Chip microCMOS Microcontrollers 1-201
COP688CS/COP684CS/COP888CS/COP884CS/COP988CS/COP984CS
Single-Chip microCMOS Microcontrollers 1-235
COP888CG/COP884CG Single-Chip microCMOS Microcontrollers 1-275
COP888EK/COP884EK Single-Chip microCMOS Microcontrollers 1-311
COP688EG/COP684EG/COP888EG/COP884EG/COP988EG/COP984EG
Single-Chip microCMOS Microcontrollers 1-342
COP888GW Single-Chip microCMOS Microcontroller 1-383
COP8780C/COP8781C/COP8782C Single-Chip EPROM/OTP Microcontrollers 1-423
COP8640CMH/COP8642CMH Microcontroller Emulators 1-440
COP8788CL/COP8784CL microCMOS One-Time Programmable (OTP)
Microcontrollers 1-449
COP8788CF/COP8784CF microCMOS One-Time Programmable (OTP) Microcontrollers 1-477
COP8788EG/COP8784EG microCMOS One-Time Programmable (OTP)
Microcontrollers 1-509
Section 2 COP8 Applications
AN-521 Dual Tone Multiple Frequency (DTMF) 2-3
AN-579 MICROWIRE/PLUS Serial Interface for COP800 Family 2-12
AN-596 COP800 MathPak 2-24
AN-607 Pulse Width Modulation A/D Conversion Techniques with COP800 Family Microcontrollers 2-60
AN-662 COP800 Based Automated Security/Monitoring System 2-67
AN-663 Sound Effects for the COP800 Family 2-75
AN-666 DTMF Generation with a 3.58 MHz Crystal 2-98
AN-673 2-Way Multiplexed LCD Drive and Low Cost A/D Converter Using V/F
Techniques with COP8 Microcontrollers 2-126
AN-681 PC MOUSE Implementation Using COP800 2-145
AN-714 Using COP800 Devices to Control DC Stepper Motors 2-170
AN-734 MF2 Compatible Keyboard with COP8 Microcontrollers 2-180
AN-739 RS-232C Interface with COP800 2-200
AN-952 Low Cost A/D Conversion Using COP800 2-212
AN-953 LCD Triplex Drive with COP820CJ 2-221
Section 3 MICROWIRE/PLUS Peripherals
MICROWIRE and MICROWIRE/PLUS: 3-Wire Serial Interface 3-3
COP472-3 Liquid Crystal Display Controller 3-7

Table of Contents (coninines)

Section 4 COP8 Development Support
Development Support 4-3
COP8 Development System 4-6
Section 5 Appendices/Physical Dimensions
Surface Mount 5-3
PLCC Packaging 5-23
Physical Dimensions 5-27
Bookshelf
Distributors

Alpha-Numeric Index

AN-521 Dual Tone Multiple Frequency (DTMF) 2-3
AN-579 MICROWIRE/PLUS Serial Interface for COP800 Family 2-12
AN-596 COP800 MathPak 2-24
AN-607 Pulse Width Modulation A/D Conversion Techniques with COP800 Family Microcontrollers 2-60
AN-662 COP800 Based Automated Security/Monitoring System 2-67
AN-663 Sound Effects for the COP800 Family 2-75
AN-666 DTMF Generation with a 3.58 MHz Crystal 2-98
AN-673 2-Way Multiplexed LCD Drive and Low Cost A/D Converter Using V/F Techniques with COP8 Microcontrollers 2-126
AN-681 PC MOUSE Implementation Using COP800 2-145
AN-714 Using COP800 Devices to Control DC Stepper Motors 2-170
AN-734 MF2 Compatible Keyboard with COP8 Microcontrollers 2-180
AN-739 RS-232C Interface with COP800 2-200
AN-952 Low Cost A/D Conversion Using COP800 2-212
AN-953 LCD Triplex Drive with COP820CJ 2-221
COP8 Development System 4-6
COP8 Family 1-3
COP86L20C Single-Chip microCMOS Microcontroller 1-76
COP86L22C Single-Chip microCMOS Microcontroller 1-76
COP86L40C Single-Chip microCMOS Microcontroller 1-76
COP86L42C Single-Chip microCMOS Microcontroller 1-76
COP472-3 Liquid Crystal Display Controller 3-7
COP620C Single-Chip microCMOS Microcontroller 1-28
COP622C Single-Chip microCMOS Microcontroller 1-28
COP640C Single-Chip microCMOS Microcontroller 1-28
COP642C Single-Chip microCMOS Microcontroller 1-28
COP680C Microcontroller 1-98
COP681C Microcontroller 1-98
COP684BC Single-Chip microCMOS Microcontroller 1-121
COP684CL Single-Chip microCMOS Microcontroller 1-166
COP684CS Single-Chip microCMOS Microcontroller 1-235
COP684EG Single-Chip microCMOS Microcontroller 1-342
COP688CL Single-Chip microCMOS Microcontroller 1-166
COP688CS Single-Chip microCMOS Microcontroller 1-235
COP688EG Single-Chip microCMOS Microcontroller 1-342
COP820C Single-Chip microCMOS Microcontroller 1-28
COP820CJ Single-Chip microCMOS Microcontroller 1-50
COP822C Single-Chip microCMOS Microcontroller 1-28
COP822CJ Single-Chip microCMOS Microcontroller 1-50
COP823CJ Single-Chip microCMOS Microcontroller 1-50
COP840C Single-Chip microCMOS Microcontroller 1-28
COP842C Single-Chip microCMOS Microcontroller 1-28
COP880C Microcontroller 1-98
COP881C Microcontroller 1-98
COP884BC Single-Chip microCMOS Microcontroller 1-121
COP884CF Single-Chip microCMOS Microcontroller 1-201
COP884CG Single-Chip microCMOS Microcontroller 1-275
COP884CL Single-Chip microCMOS Microcontroller 1-166
COP884CS Single-Chip microCMOS Microcontroller 1-235
COP884EG Single-Chip microCMOS Microcontroller 1-342

Alpha-Numeric Index ${ }_{\text {(Coniniuee })}$

COP884EK Single-Chip microCMOS Microcontroller 1-311
COP888CF Single-Chip microCMOS Microcontroller 1-201
COP888CG Single-Chip microCMOS Microcontroller 1-275
COP888CL Single-Chip microCMOS Microcontroller 1-166
COP888CS Single-Chip microCMOS Microcontroller 1-235
COP888EG Single-Chip microCMOS Microcontroller 1-342
COP888EK Single-Chip microCMOS Microcontroller 1-311
COP888GW Single-Chip microCMOS Microcontroller 1-383
COP912C Single-Chip microCMOS Microcontroller 1-10
COP912CH Single-Chip microCMOS Microcontroller 1-10
COP920C Single-Chip microCMOS Microcontroller 1-28
COP922C Single-Chip microCMOS Microcontroller 1-28
COP940C Single-Chip microCMOS Microcontroller 1-28
COP942C Single-Chip microCMOS Microcontroller 1-28
COP980C Microcontroller 1-98
COP981C Microcontroller 1-98
COP984CF Single-Chip microCMOS Microcontroller 1-201
COP984CL Single-Chip microCMOS Microcontroller 1-166
COP984CS Single-Chip microCMOS Microcontroller 1-235
COP984EG Single-Chip microCMOS Microcontroller 1-342
COP988CF Single-Chip microCMOS Microcontroller 1-201
COP988CL Single-Chip microCMOS Microcontroller 1-166
COP988CS Single-Chip microCMOS Microcontroller 1-235
COP988EG Single-Chip microCMOS Microcontroller 1-342
COP8620C Single-Chip microCMOS Microcontroller 1-76
COP8622C Single-Chip microCMOS Microcontroller 1-76
COP8640C Single-Chip microCMOS Microcontroller 1-76
COP8640CMH Microcontroller Emulator 1-440
COP8642C Single-Chip microCMOS Microcontroller 1-76
COP86!2CM4 Microcontro!!er Emulator 1-440
COP8780C Single-Chip EPROM/OTP Microcontroller 1-423
COP8781C Single-Chip EPROM/OTP Microcontroller 1-423
COP8782C Single-Chip EPROM/OTP Microcontroller 1-423
COP8784CF microCMOS One-Time Programmable (OTP) Microcontroller 1-477
COP8784CL microCMOS One-Time Programmable (OTP) Microcontroller 1-449
COP8784EG microCMOS One-Time Programmable (OTP) Microcontroller 1-509
COP8788CF microCMOS One-Time Programmable (OTP) Microcontroller 1-477
COP8788CL microCMOS One-Time Programmable (OTP) Microcontroller 1-449
COP8788EG microCMOS One-Time Programmable (OTP) Microcontroller 1-509
Development Support 4-3

Section 1
COP8 Family
Section 1 Contents
COP8 Family 1-3
COP912C/COP912CH Single-Chip microCMOS Microcontrollers 1-10
COP620C/COP622C/COP640C/COP642C/COP820C/COP822C/COP840C/COP842C/ COP920C/COP922C/COP940C/COP942C Single-Chip microCMOS Microcontrollers 1-28
COP820CJ/COP822CJ/COP823CJ Single-Chip microCMOS Microcontrollers 1-50
COP8640C/COP8642C/COP8620C/COP8622C/COP86L20C/COP86L22C/COP86L40C/ COP86L42C Single-Chip microCMOS Microcontrollers $1-76$
COP680C/COP681C/COP880C/COP881C/COP980C/COP981C Microcontrollers 1-98
COP884BC/COP684BC Single-Chip microCMOS Microcontrollers 1-121
COP688CL/COP684CL/COP888CL/COP884CL/COP988CL/COP984CL Single-Chip microCMOS Microcontrollers 1-166
COP888CF/COP884CF/COP988CF/COP984CF Single-Chip microCMOS Microcontrollers 1-201
COP688CS/COP684CS/COP888CS/COP884CS/COP988CS/COP984CS Single-Chip microCMOS Microcontrollers 1-235
COP888CG/COP884CG Single-Chip microCMOS Microcontrollers 1-275
COP888EK/COP884EK Single-Chip microCMOS Microcontrollers 1-311
COP688EG/COP684EG/COP888EG/COP884EG/COP988EG/COP984EG Single-Chip microCMOS Microcontrollers 1-342
COP888GW Single-Chip microCMOS Microcontroller 1-383
COP8780C/COP8781C/COP8782C Single-Chip EPROM/OTP Microcontrollers $1-423$
COP8640CMH/COP8642CMH Microcontroller Emulators 1-440
COP8788CL/COP8784CL microCMOS One-Time Programmable (OTP) Microcontrollers $1-449$
COP8788CF/COP8784CF microCMOS One-Time Programmable (OTP) Microcontrollers 1-477
COP8788EG/COP8784EG microCMOS One-Time Programmable (OTP) Microcontrollers 1-509

National Semiconductor

The 8-Bit COP8 ${ }^{\text {TM }}$ Family: Optimized for Value

Key Features

- High-performance 8-bit microcontroller
- Full 8-bit architecture and implementation
- $1 \mu \mathrm{~s}$ instruction-cycle time
- High code efficiency with single-byte, multiple-function instructions
- UART
- A/D converter
- WATCHDOGTM/clock monitor
- Brown Out Detect
- On-chip ROM from 768 bytes to 16 k bytes
- On-chip RAM to 256 bytes
- EEPROM
- M²CMOSTm fabrication
- MICROWIRE/PLUSTM serial interface
- Wide operating voltage range: +2.3 V to +6 V
- Military temp range available: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- MIL-STD-883C versions available
- 16- to 44-pin packages

The COP8 combines a powerful single-byte, multiple-function instruction set with a memory-mapped core architecture.

Key Applications

- Automotive systems
- Process control
- Robotics
- Telecommunications
- AC-motor control
- DC-motor control
- Keyboard controllers
- Modems
- RS232C controllers
- Toys and games
- Industrial control
- Small appliances

The COP8 family offers high performance in a low-cost, easy-to-design-in package.

An Example of COP888 Block Diagram (COP888CF)

Embedded Control: Practical Solutions to Real Problems

Microcontrollers have played an important role in the semiconductor industry for quite some time. Unlike microprocessors, which typically address a range of more compute intensive, general purpose applications, microcontrollers are based on a central processing unit, data memory and input/ output circuitry that are designed primarily for specific, single function applications.
During the 1970s, microcontrollers were initially used in simple applications such as calculators and digital watches. But the combination of decreasing costs and increasing integration and performance has created many new application opportunities over the years. Even as the bulk of application growth occurs in the 8 -bit arena, the same issues that system designers were concerned with in the 4 -bit world continue in force today. These include cost/performance tradeoffs, low power and low voltage capabilities, time to market, space/pin efficiency and ease of design.

- Cost/Performance. A price difference of just a few pennies can be the gating factor in today's 8 -bit design decisions. Manufacturers must offer a wide range of cost/ performance options in order to meet customer demands.
- Low Power and Low Voltage. The increasing range of mobile and/or battery-powered applications is placing a premium on low-power, low-voltage, CMOS and BiCMOS embedded control solutions.
- Time to Market. All 8-bit microcontroller's architecture, functionality and feature set have a major influence on product design cycles in today's competitive market, with its shrinking windows of opportunity.
- Space/Pin Efficiency. Real estate and board configuration considerations demand maximum space and I/O pin efficiency, particularly given today's high integration and small product form factors.
- Ease of Design. A familiar and easy to use application design environment-including complete development tool support-is one of the driving factors affecting today's 8 -bit microcontroller design decisions.

All of these issues must be considered when searching for the appropriate 8 -bit microcontroller to meet specific application needs. And that's why National Semiconductor's COP8 family of 8-bit microcontrollers is enjoying widespread success in today's global embedded control marketplace.
One of the leaders in the design, manufacture and sale of 8bit microcontrollers is National Semiconductor. Long a prominent player in the worldwide microcontroller market, National and its COP8 family of products spans today's range of applications, providing customers with a wealth of options at every price/performance point in the 8-bit microcontroller market.
National's 8-bit COP8 microcontrollers enable the company to meet a wide range of embedded control application requirements. COP8 microcontrollers offer users cost-effective solutions at virtually every price/performance point in today's market for 8 bit applications.
Designers can select from a variety of building blocks centered around a common memory-mapped core and modified Harvard architecture. These building blocks include ROM, RAM, user programmable memory, UART, comparator, A / D and I/O functions.
The COP8 family incorporates $1 \mu \mathrm{~s}$ instruction cycle times, watchdog and clock monitors, multi-input wake up
circuitry and National's MICROWIRE/PLUSTM interface. In addition, National's COP8 microcontrollers are available in a wide variety of temperature range configurations from $-55^{\circ} \mathrm{C}$ on up through $+125^{\circ} \mathrm{C}$-optimizing them for rugged industrial and military applications.

COP8 Benefits

The COP8 family provides designers with a number of features that result in substantial benefits. These include a code-efficient instruction set, low power/voltage features, efficient I/O, a flexible and configurable design methodology, robust design tools and electromagnetic interference (EMI) control.
The COP8 family's compact, efficient and easy-to-program instruction set enables designers to reduce time to market for their products. Thanks to the instruction set, efficient ROM utilization lowers costs while providing the opportunity to integrate additional functionality on-chip. Low voltage operation, low current drain, multi-input wakeup and several power saving modes reduce power consumption for today's increasing range of handheld, battery-driven applications. And an array of user-friendly development tools-including hardware from MetaLink, and state of the industry assemblers, C compilers, and a "fuzzy logic" design environment help design engineers save valuable development time.
National's Configurable Controller Methodology (CCM) for the COP8 family creates "whole products" that are bugfree, fully tested and characterized, and supported by a range of documentation and hardware/software tools. National developed CCM because the majority of customer requests for new products have typically called for reconfigurations of existing proven blocks-such as RAM, ROM, timers, comparators, UARTs, and I/O.
In addition, COP8 products incorporate circuitry that guards against electromagnetic interference-an increasing problem in todays microcontroller board designs. Nationals patented EMI reduction technology offers low EMI clock circuitry, EMI-optimized pinouts gradual turn-on outputs (GTO) an on-chip choke device and to help customers circumvent many of the EMI issues influencing embedded control designs.

A Growing Family

National's wide-ranging COP8 family is well-positioned to meet the expanding variety of consumer 8 -bit microcontroller applications. Available in a wealth of different ROM (768 bytes to 16 k bytes) and RAM ($64 \times 8,128 \times 8$, and 512×8) configurations, COP8 microcontrollers provide designers with cost-effective solutions at every price/performance point in todays market. And the recent introduction of the new COP912C-National's first 8 bit microcontroller priced below 50% per unit when purchased in volume quantitiescontinues to drive prices down in the highly competitive 8-bit market.
A code-efficient instruction set. Low power operation. I/O pin efficiency. A "whole product" philosophy that includes superior development tools, documentation and support. These are the reasons that National's COP8 family is a key player in the worldwide 8 -bit microcontroller market. As that market continues to expand. National continues its microcontroller technology research and development effortsan ongoing commitment that began during the infancy of embedded control and continues in full force today.

COP8 Features/Benefits Analysis

	Key Features	Benefits
Instruction Set	- Efficient Instruction Set (77\% Single Byte/Single Cycle) - Easy To Program - Compact Instruction Set - Multi Function Instructions - Ten Addressing Modes	- Efficient ROM Utilization (compact code) - Low Cost Microcontroller (small ROM size) - Fast Time To Market
Low Power	- Low Voltage Operation - Lower Current Drain - Multi-Input Wakeup - Power Savings Modes (HALT/IDLE)	- Lower Power Consumption for Hand Held Battery Driven Applications
Efficient 1/O	- Software Programmable I/O - Efficient Pin Utilization - Breadth of Available Packages - Package Types Including Variety of Low Pin Count Devices - High Current Outputs - Schmitt Trigger Inputs	- Multiple Use of I/O Pins - Economical Use of External Components (lower system cost) - Cleaner Hardware Design - Choice of Optimum Package Type (price/ outline/pinout)
Flexible/Powerful On-Board Features	- Smart 16-Bit Timers (processor independent PWM) - Comparators - UART - Multi-Input Wakeup - Multi-Source Hardware Interrupts - MICROWIRE/PLUS Serial Interface - Application Specific Features (CAN, Motor Control Timers, etc.)	- Timers Allow Less Software/Process Overhead for Frequency - Measurement (capture) and PWM - Cleaner Hardware (eliminating the need for external components) - Overall Cost Reduction
Safety/SoftwareRunaway Protection	- WATCHDOG - Software Interrupt - Clock Monitor - Brown Out Detection	- No Need for External Protection Circuitry - Brown Out Detection Allows the Use of Low Cost Power Supply
Development Tools	Hardware: - New, User Friendly, Development Tool Hardware from MetaLink - Low Cost Version of the Development Tool (Debug Module) - Various Third Party Programmers for Programming OTPs Softivar: - New, User Friendly Assembler, a C Compiler and a "Fuzzy" Logic Design Environment	- Saves Engineering Development Time-Fast Time to Market

COP8 Features/Applications Matrix

Market Segment		Applications	Applications Features/Functions	Microcontroller Features Required	Appropriate COP8 Devices
Consumer	Children Toys and Games	Basketball/Baseball Games Children Electronic Toys Darts Throws Juke Box Pinball Laser Gun	Battery Driven Replacing Discrete with Low Cost Driving Piezo/Speaker/LEDs Directly Very Cost Sensitive	Very Low Price Low Power Consumption Wide Voltage Range High Current Outputs Small Packages	$\begin{aligned} & \text { COP912C } \\ & \text { COP920C/COP922C } \end{aligned}$
	Electronic Audio Items	Audio Greeting Cards Electronic Musical Equipment	Battery Driven Tone Generation Low Power	Wide Voltage Range Low Power Consumption Efficient Table Lookup Flexible Timer	$\begin{aligned} & \text { COP912C } \\ & \text { COP820C/840C/880C } \end{aligned}$
	Electronic Appliances/ Tools	Small Appliances: Irons Coffee Makers Digital Scales Microwave Ovens Cookers Food Processors Blenders	Low Cost Power Supply Temp Measurement Safety Features Noise Immunity Driving LEDs/Relays/Heating Elements	Brown Out Detection On-Board Comparator High Current Outputs Watchdog/Software Interrupt Schmtt Trigger Inputs 16-Bit PWM Timer	COP820/840 COP820CJ Family
		Household Appliances: Oven Control Dishwasher Washing Machine/Dryer Vacuum Cleaner Electronic Heater Electronic Home Control (Doorbell, Light Dimmer, Climate) Sewing Machine	Rely on Hard-Wire Relay Circuits, Timers, Counters, Mechanical Sequence Controllers Temp Control Noise Immunity Safety Features Timing Control Main Driven	Brown Out Detection On-Board Comparator On-Board A/D Watchdog/Soft Interrupt Schmitt Trigger Inputs Flexible Timers PWM Outputs High Current Outputs Safety Features	$\begin{aligned} & \text { COP820CJ (on-board } \\ & \text { comparator) } \\ & \text { COP888CF (on-board A/D) } \end{aligned}$
	Portable/ Handheld/ Battery Powered	Scales Multimeters (portable) Electronic Key Laptop/Notebook Keyboard Mouse Garage Door Opener TV/Electronic Remote Control Portable PRP or Retail Pos Device Jogging Monitor Smart Cards	Battery Driven Minimal Power Consumption Low Voltage Sensing Measurement Standby Mode Flexible Package Offerings Small Physical Size	Low Voltage Operation Low Power Consumption Wide Voltage Range Power Saving Modes Multi-Input Wakeup On-Board Comparator Small Packages	COP820CJ COP840/COP880 COP888CL (Keyboards) COP8646 (Smart Cards)
Personal Communications		Cordless Phone (base/handset) Phone Dialer Answering Machine Feature Phone PBX Card CB Radios/Digital Tuners Cable Converter	Low Power Timing Serial Interfaces Low Voltage Tone Dialing Battery Saving Functions Small Physical Size	Low Current Drain Low Voltage Operation Standby Mode UART Serial Synchronous Interface 16-Bit Timers Schmitt Trigger Inputs LED Direct Drive Sufficient I/O in Small Packages	Cordless Phone: COP840/COP880 Feature Phone PBX Card: COP888CG/COP888EG Others: Generic COP8 Devices

COP8 Features/Applications Matrix (Continued)

Market Segment		Applications	Applications Features/Functions	Microcontroller Features Required	Appropriate COP8 Devices
Medical	Monitors	Thermometer Pressure Monitors Various Portable Monitors	Battery Driven Sensing/Measurement Data Transmission Low Power Low Voltage	On-Board Comparator (low cost A/D) 16-Bit Timer Low Power Consumption Low Voltage Operation	COP820CJ (on-board) comparator) COP840/COP880 COP888CL
	Medical Equipment	Bed-Side Pump/Timers Ultrasonic Imaging System Analyzers (chemical, data) Electronic Microscopes	Monitoring Data Data Transmission Timing	Serial Interface A/D 16-Bit Timers	COP8B8CS COP888CF COP888CG/COP888EG
Industrial	Motion Control	Motor Control Power Tools	Motor Speed Control Noisy Environment Timing Control	Flexible PWM Timers Schmitt Trigger Inputs High Current Outputs	COP820/COP840 COP888CL
	Security/ Monitoring System	Security Systems Burglar Alarms Remote Data Monitoring Systems Emergency Control Systems Security Switches	Data Transmission Monitoring (scan inputs from sensors) Keypad Scan Timing Diagnostic Data Monitoring Drive Alarm Sounders Interface to Phone System Standby Mode	UART Flexible 16-Bit PWM Timers Flexible I/O Single Slop A/D Capability Power Saving Modes (HALT, Multi-Input wakeup) Serial Synchronous Interface	Basic Systems: COP840/COP880, COP888CL (Multi-Input wakeup) More Involved Systems: COP888CS/COP888CG COP888EK (muxed analog inputs, constant current source)
	Misc.	Switch Controls (elevator, traffic, power switches) Sensing Control Systems/Displays Pressure Control (scales) Metering (utility, monetary, industrial) Lawn Sprinkler/Lawn Mowers Taxi Meter Coin Controls Industrial Timers Temperature Meters Gas Pump Gas/Smoke Detectors	Timing/Counting Sensing Measurement	Generic Microcontroller	Generic COP8 Microcontroller: COP820/COP840/COP880
Automotive		Radio/Tape Deck Controls Window/Seat/Mirror/Door/ Controls Heat/Climate/Controls Headight/Antenna Power Steering Anti Theft Slave Controllers	Timing Motion Control Display Control Soft Runaway/Trap Recovery (safety considerations) EMI/Noise Immunity Serial Interfaces Standby Modes Wide Temp Range	Flexible PWM Timers Power Saving Modes Multi-Input Wakeup WATCHDOG Software Trap UART CAN Interface Special Features for Dashboard Control (counters, capture modules, MUL/DIV) Reduced EMI Wide Temp Range	Radio/Climate Control: COP888CG/888EG/888EK Seat/Motional Control, Slave Controller: COP884BC Dashboard Control: COP888GW Mirror Control, etc.: COP8 Basic Family Climate Control: COP888CF

COP8 Family Selection Guide

COP8 Family Selection Guide (Continued)

	Common Features:			- Multi-Source Interrupt - Pinout - Instruction Set					- MICROWIRE Serial Communication - 1μ s Instruction Cycle Time - Wide Power Supply-2.3V to 6.0V						- CMOS Process Technology - Halt Mode - Software Selectable I/O			- Wide Temperature Range - Development Tools		
	Comm	Ind	Mil	Memory		1/0	Packages			Features								Single Chip Emulators		
	Temp $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Temp } \\ & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Temp } \\ & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\left\lvert\, \begin{gathered} \text { ROM } \\ \text { (Bytes) } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { RAM } \\ \text { (Bytes) } \end{gathered}\right.$	Pins	$\begin{aligned} & \# \text { of } \\ & \text { Pins } \end{aligned}$	N	Wm V	$\mathrm{v} \left\lvert\, \begin{aligned} & \text { Interrupt } \\ & \text { Sources } \end{aligned}\right.$	Timers PWM/ Capture	Comparators	UART	WATCH- DOG	$-\begin{gathered} \text { Multi- } \\ \text { Input } \\ \text { Wakeup } \end{gathered}$	$\begin{gathered} \text { Idle } \\ \text { Timer } \end{gathered}$	Additional Features	DIP	PLCC	SO
	COP984CS COP988CS	COP884CS COP888CS COP884CG COP888CG	COP684CS COP688CS	$\begin{aligned} & 4.0 \mathrm{k} \\ & 4.0 \mathrm{k} \\ & 4.0 \mathrm{k} \\ & 4.0 \mathrm{k} \\ & \hline \end{aligned}$	$\begin{aligned} & 192 \\ & 192 \\ & 192 \\ & 192 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 23 \\ 35 / 39 \\ 23 \\ 35 / 39 \\ \hline \end{array}$	28 $40 / 44$ 28 $40 / 44$	$\left.4 \begin{array}{\|c} x \\ x \\ x \\ x \\ x \\ x \end{array} \right\rvert\,$	$\mathrm{x}^{\mathrm{x}} \mathrm{x}^{\mathrm{x}}$	12 \times 12 14 \times 14	$\begin{array}{r}1 \\ 1 \\ 3 \\ 3 \\ \hline\end{array}$	1 1 2 2	x x x x x	x x x x x	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	x	Reduced EMI Reduced EMI	COP8784EGN COP8788EGN COP8784EGN COP8788EGN	COP8788EGV COP8788EGV	COP8784EGWM COP8784EGWM
		COP884EK COP888EK		$\begin{aligned} & 8.0 \mathrm{k} \\ & 8.0 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 256 \\ & 256 \end{aligned}$	$\left\|\begin{array}{c} 23 \\ 35 / 39 \end{array}\right\|$	28		\times	+ $\begin{aligned} & 12 \\ & 12\end{aligned}$	3 $+\quad 3$	1	.	x	x	x	6 Analog inputs, Constant Current Source, Reduced EMI			
	COP984EG COP988EG	COP884EG COP888EG	COP684EG COP688EG	$\begin{aligned} & 8.0 \mathrm{k} \\ & 8.0 \mathrm{k} \end{aligned}$	$\begin{aligned} & 256 \\ & 256 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 23 \\ 35 / 39 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 28 \\ 40 / 44 \\ \hline \end{array}$	$4\left\|\begin{array}{c} x \\ 4 \\ x \end{array}\right\|$		$\begin{array}{\|l\|l} \hline & 14 \\ \times & 14 \\ \hline \end{array}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$	x	$\begin{aligned} & x \\ & x \end{aligned}$	x		COP8784EGN COP8788EGN	COP8788EGV	COP884EGWM
		COP884BC		2.0k	64	18	28		x	12	1	2			x	x	CAN Interface, Motor Control Timer			
		COP888GW		16.0k	512	56	68			14	2		x		x	x	Hardware Multiply/ Divide Function, $4 \times$ Counter Block, Reduced EMI			
	Note 1: MIL-STD-883 in JPkg Note 2: Contact sales office for availability.				$\begin{aligned} & N=\text { Plastic DIP } \\ & V=\text { Plastic Leaded Chip Carrier (PLCC) } \\ & \text { WM = Small Outline Package-Wide Body } \end{aligned}$						MHD $=$ Ceramic DIP MHEA $=28$ Small-Outine Footprint EL = Lead Chip Carrier									

COP912C/COP912CH Single-Chip microCMOS Microcontrollers

General Description

The COP912C/COP912CH are members of the COPSTM 8 -bit MicroController family. They are fully static Microcontrollers, fabricated using double-metal silicon gate microCMOS technology. These low cost MicroControllers are complete microcomputers containing all system timing, interrupt logic, ROM, RAM, and I/O necessary to implement dedicated control functions in a variety of applications. Features include an 8 -bit memory mapped architecture, MICROWIRETM serial I/O, a 16-bit timer/counter with capture register and a multi-sourced interrupt. Each I/O pin has software selectable options to adapt the device to the specific application. The device operates over voltage ranges from 2.3 V to 4.0 V (COP912C) and from 4.0 V to 5.5 V (COP912CH). High throughput is achieved with an efficient, regular instruction set operating at a minimum of $2 \mu \mathrm{~s}$ per instruction rate.

Features

- Low cost 8-bit MicroController
- Fully static CMOS
- Instruction Time
$-2 \mu \mathrm{~s}$ COP912CH
- $2.5 \mu \mathrm{~s}$ COP912C
- Low current drain

Low current static HALT mode

- Single supply operation
- 768×8 on-chip ROM
- 64 Bytes on-chip RAM
- MICROWIRE/PLUSTM serial I/O
- 16-bit read/write timer operates in a variety of modes
- Timer with 16 -bit auto reload register
- 16-bit external event counter
- Timer with 16-bit capture register (selectable edge)

■ Multi-source interrupt

- External interrupt with selectable edge
- Timer interrupt or capture interrupt
- Software interrupt
- 8-bit stack pointer (stack in RAM)
- Powerful instruction set, most instructions single byte
- BCD arithmetic instructions
- 20-pin DIP/SO packages

■ Software selectable I/O options (TRI-STATE®, pushpull, weak pull-up)

- Schmitt trigger inputs on Port G-Port
- Temperature range: $\mathrm{COP} 912 \mathrm{C} / \mathrm{COP} 912 \mathrm{CH}$ from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Form Factor Emulator

Applications

- Electronic keys and switches
- Remote Control
- Timers
- Alarms
- Small industrial control units

■ Low cost slave controllers

- Temperature meters
- Small domestic appliances
- Toys and games

Block Diagram

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (V_{CC})
6.0 V

Voltage at Any Pin
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$

Total Current into $V_{C C}$ Pin (Source)	80 mA
Total Current out of GND Pin (Sink)	80 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical speciflcations are not ensured when operating the device at absolute maximum ratings.	

DC Electrical Characteristics copg $12 \mathrm{C} / \mathrm{COP912CH;0}^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless other specified

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage 912C 912CH Power Supply Ripple 1 (Note 1)	Peak to Peak	$\begin{aligned} & 2.3 \\ & 4.0 \end{aligned}$		$\begin{gathered} 4.0 \\ 5.5 \\ 0.1 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Supply Current (Note 2) $\mathrm{CKI}=4 \mathrm{MHz}$ $\mathrm{CKI}=4 \mathrm{MHz}$ HALT Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{tc}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{tc}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		<1	$\begin{gathered} 6.0 \\ 2.5 \\ 8 \end{gathered}$	mA mA $\mu \mathrm{A}$
INPUT LEVELS $\left(\mathrm{V}_{1 \mathrm{H}}, \mathrm{V}_{\mathrm{IL}}\right)$ Reset, CKI: Logic High Logic Low All Other Inputs Logic High Logic Low	.	$\begin{aligned} & 0.9 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$0.1 \mathrm{~V}_{\mathrm{CC}}$ $0.2 \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
Hi-Z Input Leakage/TRI-STATE Leakage	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
Input Pullup Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			250	$\mu \mathrm{A}$
G-Port Hysteresis			$0.05 \mathrm{~V}_{\mathrm{CC}}$	$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels Source (Push-Pull Mode) Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.2 \\ & 4.0 \\ & 0.7 \end{aligned}$			mA mA mA mA
Allowable Sink/Source Current Per Pin				3	mA
Input Capacitance (Note 3)				7	pF
Load Capacitance on D2 (Note 3)				1000	pF

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: Characterized, not tested.

AC Electrical Characteristics COP912C/COP912CH; $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
INSTRUCTION CYCLE TIME (tc) Crystal/Resonator R/C Oscillator	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4.0 \mathrm{~V} \\ & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq 4.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 2 \\ 2.5 \\ 3 \\ 7.5 \end{gathered}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{gathered} \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \hline \end{gathered}$
Inputs $t_{\text {Setup }}$ $t_{\text {Hold }}$	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4.0 \mathrm{~V} \\ & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			ns ns ns ns
Output Propagation Delay tpD1 $^{\text {t }}$ tPDO SO, SK All Others	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4.0 \mathrm{~V} \\ & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4.0 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & 1 \text { tc } \\ & 1 \text { tc } \\ & 1 \text { tc } \\ & 1 \text { tc } \end{aligned}$			
MICROWIRE Setup Time ($\mathrm{t}_{\mu} \mathrm{Ws}$) MICROWIRE Hold Time ($\mathrm{t}_{\mu} \mathrm{WH}$) MICROWIRE Output Propagation Delay ($\mathrm{t}_{\mu \mathrm{PD}}$)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Reset Pulse Width		1.0			$\mu \mathrm{s}$

COP912C/COP912CH Pinout

Top View

TL/DD/12060-3
Order Number COP912C-XXX/N, COP912CH-XXX/N

TL/DD/12060-4
Order Number COP912C-XXX/WM, COP912CH-XXX/WM

FIGURE 2. COP912C/COP912CH Pinout

Pin Description

V_{CC} and GND are the power supply pins.
CKI is the clock input. This can come from an external source, a R/C generated oscillator or a crystal (in conjunction with CKO). See Oscillator description.
RESET is the master reset input. See Reset description.
PORT L is an 8 -bit I/O port.
There are two registers associated to configure the L port: a data register and a configuration register Therefore, each L I/O bit can be individually configured under software control as shown below:

Port L Config.	Port L Data	PORT L Setup
0	0	Hi-Z Input (TRI-STATE)
0	1	Input with Weak Pull-Up
$\mathbf{1}$	0	Push-Pull Zero Output
$\mathbf{1}$	$\mathbf{1}$	Push-Pull One Output

Three data memory address locations are allocated for this port, one each for data register [00D0], configuration register [00D1] and the input pins [00D2].
PORT G is an 8 -bit port with $61 / O$ pins (G0-G5) and 2 input pins (G6, G7).
All eight G-pins have Schmitt Triggers on the inputs.
There are two registers associated to configure the G port: a data register and a configuration register. Therefore each G port bit can be individually configured under software control as shown below:

Port G Config.	Port G Data	PORT G Setup
0	0	Hi-Z Input (TRI-STATE)
0	1	Input with Weak Pull-Up
1	0	rusn-rull Lero Output
1	1	Push-Pull One Output

Three data memory address locations are allocated for this port, one for data register [00D4], one for configuration register [00D5] and one for the input pins [00D6]. Since G6 and G7 are Hi-Z input only pins, any attempt by the user to configure them as outputs by writing a one to the configuration register will be disregarded. Reading the G6 and G7 configuration bits will return zeroes. Note that the chip will be placed in the Halt mode by writing a " 1 " to the G7 data bit.
Six pins of Port G have alternate features:
GO INTR (an external interrupt)
G3 TIO (timer/counter input/output)
G4 SO (MICROWIRE serial data output)
G5 SK (MICROWIRE clock I/O)
G6 SI (MICROWIRE serial data input)
G7 CKO crystal oscillator output (selected by mask option) or HALT restart input/general purpose input (if clock option is R/C- or external clock)
Pins G1 and G2 currently do not have any alternate functions.

The selection of alternate Port G functions are done through registers PSW [OOEF] to enable external interrupt and CNTRL [OOEE] to select TIO and MICROWIRE operations.

Functional Description

The internal architecture is shown in the block diagram. Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device.

ALU AND CPU REGISTERS

The ALU can do an 8 -bit addition, subtraction, logical or shift operations in one cycle time. There are five CPU registers:
A is the 8 -bit Accumulator register
PC is the 15 -bit Program Counter register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
B is the 8 -bit address register and can be auto incremented or decremented
$X \quad$ is the 8 -bit alternate address register and can be auto incremented or decremented.
SP is the 8-bit stack pointer which points to the subroutine stack (in RAM).
B, X and $S P$ registers are mapped into the on chip RAM. The B and X registers are used to address the on chip RAM. The SP register is used to address the stack in RAM during subroutine calls and returns. The SP must be preset by software upon initialization.

MEMORY

The memory is separated into two memory spaces: program and data.

PROGRAM MEMORY

Program memory consists of 768×8 ROM. These bytes of FOivi may de insiruciions or constant data. Tine memory is addressed by the 15 -bit program counter (PC). There are no "pages" of ROM, the PC counts all 15 bits. ROM can be indirectly read by the LAID instruction for table lookup.

DATA MEMORY

The data memory address space includes on chip RAM, I/O and registers. Data memory is addressed directly by the instruction or indirectly through B, X and SP registers. The device has 64 bytes of RAM. Sixteen bytes of RAM are mapped as "registers", these can be loaded immediately, decremented and tested. Three specific registers: X, B, and SP are mapped into this space, the other registers are available for general usage.
Any bit of data memory can be directly set, reset or tested. I/O and registers (except A and PC) are memory mapped; therefore, I/O bits and register bits can be directly and individually set, reset and tested.

RESET

The RESET input pin when pulled low initializes the microcontroller. Upon initialization, the ports L and G are placed in the TRI-STATE mode. The PC, PSW and CNTRL registers are cleared. The data and configuration registers for ports L and G are cleared. The external $R C$ network shown in Figure 3 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.

Functional Description (Continued)

RC > $5 \times$ POWER SUPPLY RISE TIME
FIGURE 3. Recommended Reset Circuit

OSCILLATOR CIRCUITS

The device can be driven by a clock input which can be between DC and 5 MHz .

CRYSTAL OSCILLATOR

By selecting CKO as a clock output, CKI and CKO can be connected to create a crystal controlled oscillator. Table I shows the component values required for various standard crystal values.

R/C OSCILLATOR

By selecting CKI as a single pin oscillator, CKI can make an R/C oscillator. CKO is available as a general purpose input and/or HALT control. Table II shows variation in the oscillator frequencies as functions of the component (R and C) value.

TL/DD/12060-6
FIGURE 4. Clock Oscillator Configurations
TABLE I. Crystal Oscillator Configuration

$\mathbf{R 1}$ $\mathbf{(k \Omega)}$	$\mathbf{R 2}$ $\mathbf{(m \Omega} \mathbf{)}$	$\mathbf{C 1}$ $\mathbf{(p F)}$	$\mathbf{C 2}$ $\mathbf{(p F})$	CKI Freq. $\mathbf{(M H z)}$
0	1	30	$30-36$	5
0	1	30	$30-36$	4
5.6	1	200	$100-150$	0.455

TABLE II. RC Oscillator Configuration (Part-to-Part Variation, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

\mathbf{R} $(\mathbf{k} \Omega)$	\mathbf{C} $\mathbf{(p F)}$	CKI Freq. $(\mathbf{M H z})$	Intr. Cycle $\mathbf{(} \boldsymbol{\mu \mathbf { s })}$
3.3	82	2.2 to 2.7	3.7 to 4.6
5.6	100	1.1 to 1.3	7.4 to 9
6.8	100	0.9 to 1.1	8.8 to 10.8

Note: $3 \mathrm{k} \leq \mathrm{R} \leq 200 \mathrm{k} \Omega, 50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}$.

CURRENT DRAIN

The total current drain of the chip depends on:

1. Oscillator operating mode - It
2. Internal switching current - 12
3. Internal leakage current - 13
4. Output source current - 14
5. DC current caused by external input not at $V_{C C}$ or GND. Thus the total current drain is given as

$$
\mathrm{It}=11+12+13+14+15
$$

To reduce the total current drain, each of the above components must be minimum. Operating with a crystal network will draw more current than an external square-wave. The R/C mode will draw the most. Switching current, governed by the equation below, can be reduced by lowering voltage and frequency. Leakage current can be reduced by lowering voltage and temperature. The other two items can be reduced by carefully designing the end-user's system.
The following formula may be used to compute total current drain when operating the controller in different modes.

$$
\mathrm{I} 2=\mathrm{CxVxf}
$$

where $C=$ equivalent capacitance of the chip
$\mathrm{V}=$ operating voltage
$f=$ CKI frequency.

HALT MODE

The device is a fully static device. The device enters the HALT mode by writing a one to the G7 bit of the G data register. Once in the HALT mode, the internal circuitry does not receive any clock signal and is therefore frozen in the exact state it was in when halted. In this mode the chip will only draw leakage current.
The device supports two different ways of exiting the HALT mode. The first method is with a low to high transition on the CKO (G7) pin. This method precludes the use of the crystal clock configuration (since CKO is a dedicated output), and so may be used either with an RC clock configuration (or an external clock configuration). The second method of exiting the HALT mode is to pull the RESET low.
Note: To allow clock resynchronization, it is necessary to program two NOP's immediately after the device comes out of the HALT mode. The user must program two NOP's following the "enter HALT mode" (set G7 data bit) instruction.

Functional Description
 (Continued)

MICROWIRE/PLUS

MICROWIRE/PLUS is a serial synchronous communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e., A/D converters, display drivers, EEPROMS etc.) and with other microcontrollers which support the MICROWIRE interface. It consists of an 8 -bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 5 shows a block diagram of the MICROWIRE logic.
The shift clock can be derived from either the internal source or from an external source. Operating the MICROWIRE arrangement with the internal clock source is called the Master mode of operation. Similarly, operating the MICROWIRE arrangement with an external shift clock is called the Slave mode of operation.
The CNTRL register is used to configure and control the MICROWIRE mode. To use the MICROWIRE, the MSEL bit in the CNTRL register is set to one. The SK clock rate is selected by the two bits, SLO and SL1, in the CNTRL register.

The following table details the different clock rates that may be selected.

SK Divide Clock Rates

SL1	SLO	SK
0	0	$2 \times$ tc
0	1	$4 \times$ tc
1	x	$8 \times$ tc
Where tc is the instruction cycle clock.		

MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. The device may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 5 shows how two microcontrollers and several peripherals may be interconnected using the MICROWIRE/PLUS arrangement.

FIGURE 5. MICROWIRE/PLUS Application

Functional Description (Continued)

WARNING: The SIO register should only be loaded when the SK clock is low. Loading the SIO register while the SK clock is high will result in undefined data in the SIO register. Setting the BUSY flag when the input SK clock is high in the MICROWIRE/PLUS slave mode may cause the current SK clock for the SIO shift register to be narrow. For safety, the BUSY flag should only be set when the input SK clock is low.
Table III summarizes the settings required to enter the Master/Slave modes of operations.
The table assumes that the control flag MSEL is set.
TABLE III. MICROWIRE/PLUS G Port Configuration

G4 (SO) Config. Bit	G5 (SK) Config. Bit	G4 Pin	G5 Pin	G6 Pin	Operation
1	1	SO	Int. SK	SI	MICROWIRE Master
0	1	TRI-STATE	Int. SK	SI	MICROWIRE Master
1	0	SO	Ext. SK	SI	MICROWIRE Slave
0	0	TRI-STATE	Ext. SK	SI	MICROWIRE Slave

MICROWIRE/PLUS MASTER MODE OPERATION

In MICROWIRE/PLUS Master mode operation, the SK shift clock is generated internally. The MSEL bit in the CNTRL register must be set to allow the SK and SO functions onto the G5 and G4 pins. The G5 and G4 pins must also be selected as outputs by setting the appropriate bits in the Port G configuration register. The MICROWIRE Master mode always initiates all data exchanges. The MSEL bit in the CNTRL register is set to enable MICROWIRE/PLUS. G4 and G5 are selected as output.

TL/DD/12060-8
FIGURE 6. MICROWIRE/PLUS Block Diagram

MICROWIRE/PLUS SLAVE MODE

In MICROWIRE/PLUS Slave mode operation, the SK shift clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G port. The SK pin must be selected as an input and the SO pin as an output by resetting and setting their respective bits in the G port configuration register.

The user must set the BUSY flag immediately upon entering the slave mode. This will ensure that all data bits sent by the master will be shifted in properly. After eight clock pulses, the BUSY flag will be cleared and the sequence may be repeated.
Note: In the Slave mode the SIO register does not stop shifting even after the busy flag goes low. Since SK is an external output, the SIO register stops shifting only when SK is turned off by the master.
Note: Setting the BUSY flag when the input SK clock is high in the MICROWIRE/PLUS slave mode may cause the current SK clock for the SiO register to be narrow. When the BUSY flag is set, the MICROWIRE logic becomes active with the internal SIO shift clock enabled. If SK is high in slave mode, this will cause the internal shift clock to go from low in standby mode to high in active mode. This generates a rising edge, and causes one bit to be shifted into the SIO register from the SI input. For safety, the BUSY flag should only be set when the input SK clock is low.
Note: The SIO register must be loaded only when the SK shift clock is low. Loading the SIO register while the SK clock is high will result in undefined data in the SIO register.

Timer/Counter

The device has an on board 16 -bit timer/counter (organized as two 8 -bit registers) with an associated 16 -bit autoreload/ capture register (also organized as two 8-bit registers). Both are read/write registers.
The timer has three modes of operation:

PWM (PULSE WIDTH MODULATION) MODE

The timer counts down at the instruction cycle rate ($2 \mu \mathrm{~s}$ max). When the timer count underflows, the value in the autoreload register is copied into the timer. Consequently, the timer is programmable to divide by any value from 1 to 65536. Bit 5 of the timer CNTRL register selects the timer underflow to toggle the G3 output. This allows the user to generate a square wave output or a pulse-width-modulated output. The timer underflow can also be enabled to interrupt the processor. The timer PWM mode is shown in Figure 7.

TL/DD/12060-10
FIGURE 7. Timer in PWM Mode

Functional Description (Continued)

external event counter mode

In this mode, the timer becomes a 16 -bit external event counter, clocked from an input signal applied to the G3 input. The maximum frequency for this G3 input clock is 250 kHz (half of the 0.5 MHz instruction cycle clock). When the external event counter underflows, the value in the autoreload register is copied into the timer. This timer underflow may also be used to generate an interrupt. Bit 5 of the CNTRL register is used to select whether the external event counter clocks on positive or negative edges from the G3 input. Consequently, half cycles of an external input signal could be counted. The External Event counter mode is shown in Figure 8.

FIGURE 8. Timer in External Event Mode

INPUT CAPTURE MODE

In this mode, the timer counts down at the instruction clock rate. When an external edge occurs on pin G3, the value in the timer is copied into the capture register. Consequently,
the time of an external edge on the G3 pin is "captured". Bit 5 of the CNTRL register is used to select the polarity of the external edge. This external edge capture can also be programmed to generate an interrupt. The duration of an input signal can be computed by capturing the time of the leading edge, saving this captured value, changing the capture edge, capturing the time of the trailing edge, and then subtracting this trailing edge time from the earlier leading edge time. The Input Capture mode is shown in Figure 9.

FIGURE 9. Timer in Input Capture Mode
Table IV below details the TIMER modes of operation and their associated interrupts. Bit 4 of CNTRL is used to start and stop the timer/counter. Bits 5, 6 and 7 of the CNTRL register select the timer modes. The ENTI (Enable Timer Interrupt) and TPND (Timer Interrupt Pending) bits in the PSW register are used to control the timer interrupts.
Care must be taken when reading from and writing to the timer and its associated autoreload/capture register. The timer and autoreload/capture register are both 16 -bit, but they are read from and written to one byte at a time. It is recommended that the timer be stopped before writing a new value into it. The timer may be read "on the fly" without stopping it if suitable precautions are taken. One method of reading the timer "on the fly" is to read the upper byte of the timer first, and then read the lower byte. If the most significant bit of the lower byte is then tested and found to be high, then the upper byte of the timer should be read again and this new value used.

Functional Description (Continued)

TIMER APPLICATION EXAMPLE

The timer has an autoreload register that allows any frequency to be programmed in the timer PWM mode. The timer underflow can be programmed to toggle output bit G3, and may also be programmed to generate a timer interrupt. Consequently, a fully programmable PWM output may be easily generated.
The timer counts down and when it underflows, the value from the autoreload register is copied into the timer. The CNTRL register is programmed to both toggle the G3 output and generate a timer interrupt when the timer underflows. Following each timer interrupt, the user's program alternately loads the values of the "on" time and the "off" time into the timer autoreload register. Consequently, a pulse-widthmodulated (PWM) output waveform is generated to a resolution of one instruction cycle time. This PWM application example is shown in Figure 10.

TL/DD/12060-13
FIGURE 10. Timer Based PWM Application

Interrupts

There are three interrupt sources:

1. A maskable interrupt on external G0 input positive or negative edge sensitive under software control
2. A maskable interrupt on timer underflow or timer capture
3. A non-maskable software/error interrupt on opcode zero. The GIE (global interrupt enable) bit enables the interrupt function. This is used in conjunction with ENI and ENTI to select one or both of the interrupt sources. This bit is reset when interrupt is acknowledged.
ENI and ENTI bits select external and timer interrupt respectively. Thus the user can select either or both sources
to interrupt the microcontroller when GIE is enabled. IEDG selects the external interrupt edge ($1=$ rising edge, $0=$ falling edge). The user can get an interrupt on both rising and falling edges by toggling the state of IEDG bit after each interrupt.
IPND and TPND bits signal which interrupt is pending. After interrupt is acknowledged, the user can check these two bits to determine which interrupt is pending. The user can prioritize the interrupt and clear the pending bit that corresponds to the interrupt being serviced. The user can also enable GIE at this point for nesting interrupts. Two things have to be kept in mind when using the software interrupt. The first is that executing a simple RET instruction will take the program control back to the software interrupt instruction itself. In other words, the program will be stuck in an infinite loop. To avoid the infinite loop, the software interrupt service routine should end with a RETSK instruction or with a JMP instruction. The second thing to keep in mind is that unlike the other interrupt sources, the software interrupt does not reset the GIE bit. This means that the device can be interrupted by other interrupt sources while servicing the software interrupt.
Interrupts push the PC to the stack, reset the GIE bit to disable further interrupts and branch to address 00FF. The RETI instruction will pop the stack to PC and set the GIE bit to enable further interrupts. The user should use the RETI or the RET instruction when returning from a hardware (maskable) interrupt subroutine. The user should use the RETSK instruction when returning from a software interrupt subroutine to avoid an infinite loop situation.
The software interrupt is a special kind of non-maskable interrupt which occurs when the INTR instruction (opcode 00 used to acknowledge interrupts) is fetched from ROM and placed inside the instruction register. This may happen when the PC is pointing beyond the available ROM address space or when the stack is over-popped. When the software interrupt occurs, the user can re-initialize the stack pointer and do a recovery procedure (similar to reset, but not necessarily containing all of the same initialization procedures) before restarting.
Hardware and Software interrupts are treated differently. The software interrupt is not gated by the GIE bit. However, it has the lowest arbitration ranking. Also the fact that all interrupts vector to the same address 00FF Hex means that a software interrupt happening at the same time as a hardware interrupt will be missed.

FIGURE 11. Interrupt Block Diagram

Interrupts (Continued)

DETECTION OF ILLEGAL CONDITIONS

Reading of undefined ROM gets zeroes. The opcode for software interrupt is zero. If the program fetches instructions from undefined ROM, this will force a software interrupt, thus signalling that an illegal condition has occurred.
Note: A software interrupt is acted upon only when a timer or external interrupt is not pending as hardware interrupts have priority over software interrupt. In addition, the Global Interrupt bit is not set when a software interrupt is being serviced thereby opening the door for the hardware interrupts to occur. The subroutine stack grows down for each call and grows up for each return. If the stack pointer is initialized to 2F Hex, then if there are more returns than calls, the stack pointer will point to addresses 30 and 31 (which are undefined RAM). Undefined RAM is read as all 1 's, thus, the program will return to address FFFF. This is a undefined ROM location and the instruction fetched will generate a software interrupt signalling an illegal condition. The device can detect the following illegal conditions:

1. Executing from undefined ROM
2. Over "POP"ing the stack by having more returns than calls.

Illegal conditions may occur from coding errors, "brown out" voltage drops, static, supply noise, etc. When the software interrupt occurs, the user can re-initialize the stack pointer and do a recovery procedure before restarting (this recovery program is probably similar to RESET but might not clear the RAM). Examination of the stack can help in identifying the source of the error. For example, upon a software interrupt, if the $\mathrm{SP}=30,31$ it implies that the stack was over "POP" contains a legal value (less than or equal to the initialized SP value), then the value in the PC gives a clue as to where in the user program an attempt to access an illegal (an address over 300 Hex) was made. The opcode returned in this case is 00 which is a software interrupt.
The detection of illegal conditions is illustrated with an example:

0043	CLRA
0044	RC
0045	JMP 04FF
Ố4ô	ivEF

When the device is executing this program, it seemingly "locks-up" having executed a software interrupt. To debug this condition, the user takes a look at the SP and the contents of the stack. The SP has a legal value and the contents of the stack are 04FF. The perceptive user immediately realizes that an illegal ROM location (04FF) was accessed and the opcode returned (00) was a software interrupt. Another way to decode this is to run a trace and follow the sequence of steps that ended in a software interrupt. The damaging jump statement is changed.

Control Registers

CNTRL REGISTER (ADDRESS X'OOEE)

The Timer and MICROWIRE control register contains the following bits:
SL1 and SLO Select the MICROWIRE clock divide-by $(00=2,01=4,1 x=8)$
IEDG External interrupt edge polarity select
MSEL Selects G5 and G4 as MICROWIRE signals SK and SO respectively
TRUN Used to start and stop the timer/counter ($1=$ run, $0=$ stop)
TC1 Timer Mode Control Bit
TC2 Timer Mode Control Bit
TC3 Timer Mode Control Bit

7							
TC1	TC2	TC3	TRUN	MSEL	IEDG	SL1	SLO

PSW REGISTER (ADDRESS X'OOEF)
The PSW register contains the following select bits:
GIE Global interrupt enable (enables interrupts)
ENI External interrupt enable
BUSY MICROWIRE busy shifting flag
IPND External interrupt pending
ENTI Timer interrupt enable
TPND Timer interrupt pending (timer underflow or capture edge)
C Carry Flip/flop
HC Half carry Flip/flop

7	O						
HC	C	TPND	ENTI	IPND	BUSY	ENI	GIE

The Half-Carry bit is also effected by all the instructions that effect the Carry flag. The flag values depend upon the instruction. For example, after evecuting the $A D C$ instruction the values of the Carry and the Half-Carry flag depend upon the operands involved. However, instructions like SET C and RESET C will set and clear both the carry flags. Table V lists out the instructions that effect the HC and the C flags.

TABLE V. Instructions Effecting HC and C Flags

Instr.	HC Flag	C Flag
ADC	Depends on Operands	Depends on Operands
SUBC	Depends on Operands	Depends on Operands
SETC	Set	Set
RESET C	Set	Set
RRC	Depends on Operands	Depends on Operands

MEMORY MAP

All RAM, ports and registers (except A and PC) are mapped into data memory address space.

Control Registers (Continued)

TABLE VI. Memory Map

Address	Contents
00 to 2F	On-chip RAM Bytes (48 Bytes)
30 to 7F	Unused RAM Address Space (Reads as all ones)
80 to BF	Expansion Space for On-Chip EERAM (Reads Undefined Data)
CO to CF	Expansion Space for 1/O and Registers
Do	Port L Data Register
D1	Port L Configuration Register
D2	Port L Input Pins (read only)
D3	Reserved for Port L
D4	Port G Data Register
D5	Port G Configuration Register
D6	Port G Input Pins (read only)
D7	Reserved
D8 to DB	Reserved
DC to DF	Reserved
E0 to EF	On-Chip Functions and Registers
E0 to E7	Reserved for Future Parts
E8	Reserved
E9	MICROWIRE Shift Register
EA	Timer Lower Byte
EB	Timer Upper Byte
EC	Timer Autoreload Register Lower Byte
ED	Timer Auto reload Register Upper Byte
EE	CNTRL Control Register
EF	PSW Register
F0 to FF	On-Chip RAM Mapped as Registers (16 Bytes)
FC	X Register
FD	SP Register
FE	B Register

Reading other unused memory locations will return undefined data.

Addressing Modes

The device has ten addressing modes, six for operand addressing and four for transfer of control.

OPERAND ADDRESSING MODES

Register Indirect

This is the "normal" addressing mode for the chip. The operand is the data memory addressed by the \mathbf{B} or \mathbf{X} pointer.

Register Indirect With Auto Post Increment Or

 DecrementThis addressing mode is used with the LD and X instructions. The operand is the data memory addressed by the \mathbf{B} or \mathbf{X} pointer. This is a register indirect mode that automatically post increments or post decrements the \mathbf{B} or \mathbf{X} pointer after executing the instruction.

Direct

The instruction contains an 8-bit address field that directly points to the data memory for the operand.

Immediate

The instruction contains an 8-bit immediate field as the operand.

Short Immediate

This addressing mode issued with the LD B,\# instruction, where the immediate \# is less than 16. The instruction contains a 4-bit immediate field as the operand.

Indirect

This addressing mode is used with the LAID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC) for accessing a data operand from the program memory.

TRANSFER OF CONTROL ADDRESSING MODES

Relative
This mode is used for the JP instruction with the instruction field being added to the program counter to produce the next instruction address. JP has a range from -31 to +32 to allow a one byte relative jump ($\mathrm{JP}+1$ is implemented by a NOP instruction). There are no "blocks" or "pages" when using JP since all 15 bits of the PC are used.

Absolute

This mode is used with the JMP and JSR instructions with the instruction field of 12 bits replacing the lower 12 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory segment.

Absolute Long

This mode is used with the JMPL and JSRL instructions with the instruction field of 15 bits replacing the entire 15 bits of the program counter (PC). This allows jumping to any location in the entire 32 k program memory space.

Indirect

This mode is used with the JID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC) for accessing a location in the program memory. The contents of this program memory location serves as a partial address (lower 8 bits of PC) for the jump to the next instruction.

Instruction Set

REGISTER AND SYMBOL DEFINITIONS

Registers
A 8-Bit Accumulator Register
B 8-Bit Address Register
X 8-Bit Address Register
SP 8-Bit Stack Pointer Register
S 8-Bit Data Segment Address Register
PC 15-Bit Program Counter Register
PU Upper 7 Bits of PC
PL Lower 8 Bits of PC
C 1-Bit of PSW Register for Carry
HC 1-Bit of PSW Register for Half Carry
GIE \quad 1-Bit of PSW Register for Global Interrupt Enable

Symbols
[B] Memory Indirectly Addressed by B Register
[X] Memory Indirectly Addressed by X Register
MD Direct Addressed Memory
Mem Direct Addressed Memory, or B
Meml Direct Addressed Memory, B, or Immediate Data
Imm 8-Bit Immediate Data
Reg Register Memory: Addresses F0 to FF (Includes B, X, and SP)
Bit \quad Bit Number (0 to 7)
$\leftarrow \quad$ Loaded with
$\longleftrightarrow \quad$ Exchanged with

Instruction Set (Continued)			
TABLE VII. Instruction Set			
Instr		Function	Register Operation
ADD	A, Meml	Add	A $\leftarrow \mathrm{A}+\mathrm{Meml}$
ADC	A, Meml	Add with Carry	$\mathrm{A} \leftarrow \mathrm{A}+\mathrm{Meml}+\mathrm{C}, \mathrm{C} \leftarrow$ Carry
SUBC	A, Meml	Subtract with Carry	$A \leftarrow A-M e m l+C, C \leftarrow$ Carry
AND	A, Meml	Logical AND	$A \leftarrow A$ and Meml
OR	A, Meml	Logical OR	$A \leftarrow A$ or Meml
XOR	A, Meml	Logical Exclusive-OR	A \leftarrow A xor Meml
IFEQ	A, Meml	IF Equal	Compare A and Meml, Do Next if $A=$ Meml
IFGT	A, MemI	IF Greater than	Compare A and Meml, Do Next if A > Meml
IFBNE	\#	IF B not Equal	Do Next If Lower 4 Bits of B not $=1 \mathrm{~mm}$
DRSZ	Reg	Decrement Reg, Skip if Zero	Reg \leftarrow Reg - 1, Skip if Reg Goes to Zero
SBIT	\#, Mem	Set Bit	1 to Mem. Bit (Bit $=0$ to 7 Immediate)
RBIT	\#. Mem	Reset Bit	0 to Mem. Bit (Bit $=0$ to 7 Immediate)
IFBIT	\#, Mem	If Bit	If Mem. Bit is True, Do Next Instruction
X	A, Mem	Exchange A with Memory	$\mathrm{A} \longleftrightarrow \mathrm{Mem}$
LD	A, Meml	Load A with Memory	A \leftarrow Meml
LD	Mem, Imm	Load Direct Memory Immed.	Mem $\leftarrow 1 \mathrm{~mm}$
LD	Reg, Imm	Load Register Memory Immed.	$\mathrm{Reg} \leftarrow \mathrm{lmm}$
X	A, [$\mathrm{B} \pm$]	Exchange A with Memory [B]	$A \longleftrightarrow[B](B \leftarrow B \pm 1)$
X	A, $[\mathrm{X} \pm]$	Exchange A with Memory [X]	$A \longleftrightarrow[X](X \leftarrow X \pm 1)$
LD	A, [B土]	Load A with Memory [B]	$A \leftarrow[B](B \leftarrow B \pm 1)$
LD	A, $\mathrm{X} \times \pm]$	Load A with Memory [X]	$A \leftarrow[X](X \leftarrow X \pm 1)$
LD	[$\mathrm{B} \pm$], Imm	Load Memory Immediate	$[B] \leftarrow \operatorname{lmm}(B \leftarrow B \pm 1)$
CLRA		Clear A	$A \leftarrow 0$
INC		Increment A	$A \leftarrow A+1$
DEC		Decrement A	$A \leftarrow A-1$
LAID	A	Load A Indirect from ROM	A \leftarrow ROM(PU, A)
DCOR	A	Decimal Correct A	$A \leftarrow B C D$ Correction (follows ADC, SUBC)
RRC		Rotate Right Through Carry	$C \rightarrow A 7 \rightarrow \ldots \rightarrow A 0 \rightarrow C$
SWAP	A	Swap Nibbles of A	A7 \ldots A4 \longleftrightarrow A3 \ldots AO
SC	A	Set C	$C \leftarrow 1$
RC	A	Reset C	$C \leftarrow 0$
IFC		If C	If C is True, do Next Instruction
IFNC		If Not C	If C is not True, do Next Instruction
JMPL		Jump Absolute Long	$\mathrm{PC} \leftarrow \mathrm{i}$ ((ii = $\mathbf{1 5}$ Bits, 0k to 32k)
JMP		Jump Absolute	$\text { PC11 } \ldots \text { PC0 } \leftarrow i(i=12 \text { Bits })$
			PC15 ... PC12 Remain Unchanged
JP		Jump Relative Short	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{r}(\mathrm{r}$ is -31 to +32 , not 1)
JSRL	Addr.	Jump Subroutine Long	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow \mathrm{ij}$
JSR	Addr.	Jump Subroutine	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} 11 . . \mathrm{PCO} \leftarrow \mathrm{ii}$
JID	Disp.	Jump Indirect	$\mathrm{PL} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
RET	Addr.	Return from Subroutine	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETSK	Addr.	Return and Skip	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$,
			Skip next Instr.
RETI		Return from Interrupt	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1], \mathrm{GIE} \leftarrow 1$
INTR		Generate an Interrupt	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow 0 \mathrm{FF}$
NOP		No Operation	$\mathrm{PC} \leftarrow \mathrm{PC}+1$

Instruction Set (Continued)

- Most instructions are single byte (with immediate addressing mode instructions requiring two bytes).
- Most single byte instructions take one cycle time to execute.
The following tables show the number of bytes and cycles for each instruction in the format byte/cycle.

Arithmetic and Logic Instructions (Bytes/Cycles)

Instr	[B]	Direct	Immediate
ADD	$1 / 1$	$3 / 4$	
ADC	$1 / 1$	$3 / 4$	$2 / 2$
SUBC	$1 / 1$	$3 / 4$	$2 / 2$
AND	$1 / 1$	$3 / 4$	$2 / 2$
OR	$1 / 1$	$3 / 4$	$2 / 2$
XOR	$1 / 1$	$3 / 4$	$2 / 2$
IFEQ	$1 / 1$	$3 / 4$	$2 / 2$
IFNE	$1 / 1$	$3 / 4$	$2 / 2$
IFGT	$1 / 1$	$3 / 4$	$2 / 2$
IFBNE	$1 / 1$		$2 / 2$
DRSZ	$1 / 1$	$1 / 3$	
SBIT	$1 / 1$	$3 / 4$	
RBIT	$1 / 1$	$3 / 4$	
IFBIT	$1 / 1$	$3 / 4$	

Instructions Using A and C (Bytes/Cycles)

Instr	Bytes/Cycles
CLRA	$1 / 1$
INCA	$1 / 1$
DECA	$1 / 1$
LAID	$1 / 3$
DCOR	$1 / 1$
RRCA	$1 / 1$
SWAPA	$1 / 1$
SC	$1 / 1$
RC	$1 / 1$
IFC	$1 / 1$
IFNC	$1 / 1$

Transfer of Control Instructions (Bytes/Cycles)

Instr	Bytes/Cycles
JMPL	$3 / 4$
JMP	$2 / 3$
JP	$1 / 3$
JSRL	$3 / 5$
JSR	$2 / 5$
JID	$1 / 3$
RET	$1 / 5$
RETSK	$1 / 5$
RETI	$1 / 5$
INTR	$1 / 7$
NOP	$1 / 1$

Memory Transfer Instructions (Bytes/Cycles)

Instr	Register Indirect		Direct	Immed.	Register Indirect Auto Incr and Decr	
	$[B]$	$[X]$			$[B+, B-]$	$[X+, X-]$
$X A, a$		$2 / 3$		$1 / 2$		
LD A,*	$1 / 1$		$2 / 3$		$1 / 2$	$1 / 3$
LD B,Imm	$1 / 1$	$1 / 3$		$2 / 2$		$1 / 3$
LD B,Imm		$1 / 3$		$3 / 3$	$2 / 3^{c}$	
LD Mem,Imm	$2 / 2$		$2 / 3$		$2 / 2$	
LD Reg,Imm						

a. Memory location addressed by B or X directly
b. IF B < 16
c. $\mathrm{IF} \mathrm{B}>15$

COP912C/COP912CH

Option List

The mask programmable options are listed out below. The options are programmed at the same time as the ROM pattern to provide the user with hardware flexibility to use a variety of oscillator configuration.

OPTION 1: CKI INPUT

= 1 Crystal (CKI/10) CKO for crystal configuration
$=2 \quad N A$
$=3$ R/C (CKI/10) CKO available as G7 input
OPTION 2: BONDING
$=1 \mathrm{NA}$
$=2$ NA
= 320 pin DIP package
$=420$ pin SO package
$=5 \mathrm{NA}$
The following option information is to be sent to National along with the EPROM.

Option Data
Option 1 Value_is: CKI Input
Option 2 Value_is: COP Bonding

How to Order

To order a complete development package, select the section for the microcontroller to be developed and order the parts listed. Contact the sales office for more details.

Development Support

IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 In-Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface for maximum productivity. Interchangeable probe cards, which connect to the standard common bacc, support tho various configuiationis and packages of the COP8 family.
The iceMASTER provides real time, full speed emulation up to $10 \mathrm{MHz}, 32 \mathrm{kBytes}$ of emulation memory and 4 k frames
of trace buffer memory. The user may define as many as 32k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code or address ranges or complex triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.
During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bargraph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy to use windowed interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefineable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PC via the standard CoMMn! port and itc 115.2 ! program download time to under 3 seconds.
The following tables list the emulator and probe cards ordering information:

Development Support (Continued)

Probe Card Ordering Information

Probe Card Ordering information			
MHW-880C20D5PC	Package	Voltage Range	Emulates
MHW-880C20DWPC	20 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP912C, COP12CH
MHW-SOIC20 (20-pin SO Adapter)	20 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP912C, COP912CH

MACRO CROSS ASSEMBLER

National Semiconductor offers a COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink iceMASTER emulators.

SINGLE CHIP EMULATOR DEVICE

The COP8 family is fully supported by single chip form, fit, and function emulators. For more detailed information refer to the emulation device specific data sheets and the emulator selection table below.

Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8 Assembler/ Linker/Librarian for IBM®, PC-XT®, AT or compatible	$424410632-001$

Single Chip Emulator Selection Table

Device Number	Package	Description	Emulates
COP8782CN	20 DIP	OTP	COP912C, COP912CH
COP8782CJ	20 DIP	UV Erasable	COP912C, COP912CH
COP8782CWM	20 SO	OTP	COP912C,
			COP912CH

Development Support
 (Continued)

PROGRAMMING SUPPORT
Programming of the single chip emulator devices is supported by different sources. The following programmers are certified for programming the One Time Programmable (OTP) devices:

EPROM Programmer Information

Manufacturer and Product	U.S. Phone Number	Europe Phone Number	Asla Phone Number
MetaLink -Debug Module	(602) 926-0797	Germany: $(49-81-41) 1030$	Hong Kong: (852) 737-1800
Xeltek -Superpro	(408) $745-7974$	Germany: $(49-20-41) 684758$	Singapore: (65) 276-6433
BP Microsystems $-E P-1140$	(800) 225-2102	Germany: $(49-89-85) 76667$	Hong Kong: (852) 388-0629
Data 1/O-Unisite; -System 29, -System 39	(800) 322-8246	Europe: (31-20) 622866 Germany: (49-89-85) 8020	Japan: (33) 432-6991
Abcom-COP8 Programmer		Europe: $\text { (89-80) } 8707$	
System General Turpro-1-FX; -APRO	(408) 263-6667	Switzerland: $\text { (31) } 921-7844$	Taiwan, Taipei: (2) 917-3005

INFORMATION SYSTEM

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application
 ment for accessing the Dial-A-Helper is a Hayes compatible modem.
If the user has a PC with a communications package then files from the FILE SECTION can be down-loaded to disk for later use.

ORDER P/N: MOLE-DIAL-A-HLP

Information System Package contains:
Dial-A-Helper Users Manual
Public Domain Communications Software
FACTORY APPLICATIONS SUPPORT
Dial-A-Helper also provides immediate factory applications
 our electronic bulletin board, which we will respond to.
Voice: (800) 272-9959
Modem: CANADA/U.S.: (800) NSC-MICRO
(800) 672-6427

Baud: $\quad 14.4 \mathrm{k}$
Setup: Length: 8-Bit Parity: None
Stop Bit: 1
24 Hrs. 7 Days

COP620C/COP622C/COP640C/COP642C/ COP820C/COP822C/COP840C/COP842C/ COP920C/COP922C/COP940C/COP942C Single-Chip microCMOS Microcontrollers

General Description

The COP820C and COP840C are members of the COPSTM microcontroller family. They are fully static parts, fabricated using double-metal silicon gate microCMOS technology. This low cost microcontroller is a complete microcomputer containing all system timing, interrupt logic, ROM, RAM, and I/O necessary to implement dedicated control functions in a variety of applications. Features include an 8 -bit memory mapped architecture, MICROWIRE/PLUSTM serial I/O, a 16-bit timer/counter with capture register and a multisourced interrupt. Each I/O pin has software selectable options to adapt the device to the specific application. The part operates over a voltage range of 2.5 to 6.0 V . High throughput is achieved with an efficient, regular instruction set operating at a 1 microsecond per instruction rate.

Features

- Low Cost 8 -bit microcontroller
- Fully static CMOS
- $1 \mu \mathrm{~s}$ instruction time (10 MHz clock)
- Low current drain (2.2 mA at $3 \mu \mathrm{~s}$ instruction rate) Low current static HALT mode (Typically $<1 \mu \mathrm{~A}$)
- Single supply operation: 2.5 to 6.0 V
- 1024 bytes ROM/64 Bytes RAM-COP820C family
- 2048 bytes ROM/128 Bytes RAM-COP840C family
- 16-bit read/write timer operates in a variety of modes
- Timer with 16 -bit auto reload register
- 16-bit external event counter
- Timer with 16-bit capture register (selectable edge)
- Multi-source interrupt
- Reset master clear
- External interrupt with selectable edge
- Timer interrupt or capture interrupt
- Software interrupt
- 8-bit stack pointer (stack in RAM)
- Powerful instruction set, most instructions single byte
- BCD arithmetic instructions
- MICROWIRE/PLUS serial I/O
- 28 pin package (optionally 20 pin package)

■ 24 input/output pins (28-pin package)

- Software selectable I/O options (TRI-STATE®, pushpull, weak pull-up)
- Schmitt trigger inputs on Port G
- Temperature ranges: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Form Factor emulation devices
- Fully supported by MetaLink's development systems

Block Diagram

FIGURE 1

Absolute Maximum Ratings

If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and speclfications.
Supply Voltage (VCC)
$7 V$
Voltage at any Pin
Total Current into V_{CC} Pin (Source)

Total Current out of GND Pin (Sink)
60 mA Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics COP92xC, COP94xC; $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified

COP920C/COP922C/COP940C/COP942C

DC Electrical Characteristics (Continued)

Note 1: Rate of voltage change must be less than $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to V_{CC}, L and GO-G5 configured as outputs and set high. The D port set to zero.
Note 4: Except pin G7: + $100 \mathrm{~mA},-25 \mathrm{~mA}$ (COP920C only). Sampled and not 100% tested. Pins G 6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to $V_{C c}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below V_{CC}). The effective resistance to V_{CC} is 750Ω (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .

AC Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Instruction Cycle Time (tc) Ext., Crystal/Resonator (Div-by 10) R/C Oscillator Mode (Div-by 10)	$\begin{aligned} & V_{C C} \geq 4.0 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq V_{C C} \leq 4.0 \mathrm{~V} \\ & V_{C C} \geq 4.0 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq V_{C C} \leq 4.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \end{gathered}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
CKI Clock Duty Cycle (Note 5) Rise Time (Note 5) Fall Time (Note 5)	$\begin{aligned} & \mathrm{fr}=\mathrm{Max} \\ & \mathrm{fr}=10 \mathrm{MHz} \text { Ext Clock } \\ & \mathrm{fr}=10 \mathrm{MHz} \text { Ext Clock } \end{aligned}$	40		$\begin{gathered} 60 \\ 12 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & \% \\ & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$
Inputs tsetup $t_{\text {HOLD }}$	$\begin{aligned} & V_{C C} \geq 4.0 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 4.0 \mathrm{~V} \\ & V_{C C} \geq 4.0 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \end{gathered}$		-	ns ns ns ns
Output Propagation Delay tpD1, tpDO SO, SK All Others	$\begin{aligned} & C_{L}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.0 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.0 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.0 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 2.5 \end{gathered}$	$\mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tupd)	!	$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time	$\begin{array}{cc} & \ddots \\ \vdots & \ddots\end{array}$	$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{C}} \end{aligned}$.	
Reset Pulse Width		1.0			$\mu \mathrm{S}$

Note 5: Parameter sampled (not 100\% tested).

COP820C/COP822C/COP840C/COP842C Absolute Maximum Ratings

If Military/Aerospace specifled devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallablity and specifications.
Supply Voltage (VCC)
Voltage at any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into VCC Pin (Source) 50 mA

Total Current out of GND Pin (Sink)
60 mA Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$ Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics COP82xC, COP84xC: $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ unless othewwise specified

Parameter	Condition	Min	Typ	Max	Units
Operating Voltage Power Supply Ripple (Note 1)	Peak to Peak	2.5		$\begin{gathered} 6.0 \\ 0.1 V_{C C} \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Supply Current (Note 2) $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$ HALT Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{tc}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{tc}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{tc}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{tc}=10 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{Mz} \end{aligned}$		<1	$\begin{aligned} & 6.0 \\ & 4.0 \\ & 2.0 \\ & 1.2 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$
Input Levels RESET, CKI Logic High Logic Low All Other Inputs Logic High Logic Low		$\begin{aligned} & 0.9 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.1 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	$\begin{aligned} & V \\ & V \\ & v \\ & v \end{aligned}$
Hi-Z Input Leakage Input Pullup Current	$\begin{aligned} & V_{C C}=6.0 \mathrm{~V} \\ & V_{C C}=6.0 \mathrm{~V}, V_{i N}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} -2 \\ -40 \end{gathered}$		$\begin{gathered} +2 \\ -250 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
G Port Input Hysteresis				0.35 V CC	V
Output Current Levels D Outputs Source Sink aii Others Source (Weak Pull-Up) Source (Push-Pull Mode) Sink (Push-Pull Mode) TRI-STATE Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ -0.2 \\ 10 \\ 2 \\ -10 \\ -2.5 \\ -0.4 \\ -0.2 \\ 1.6 \\ 0.7 \\ -2.0 \end{gathered}$		$\begin{array}{r} -110 \\ -33 \\ \\ +2.0 \\ \hline \end{array}$	mA mA mA mA $\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA $\mu \mathrm{A}$
Allowable Sink/Source Current Per Pin D Outputs (Sink) All Others				$\begin{gathered} 15 \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current (Note 4) Without Latchup (Room Temp)	Room Temp			± 100	mA
RAM Retention Voltage, Vr	500 ns Rise and Fall Time (Min)	2.0			V
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

Note 1: Rate of voltage change must be less than $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to Vcc, L and G0-G5 configured as outputs and set high. The D port set to zero.
Note 4: Except pin G7: $+100 \mathrm{~mA},-25 \mathrm{~mA}$ (COP820C only). Sampled and not 100% tested. Pins G 6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than V_{CC} and the pins will have sink current to V_{CC} when biased at voltages greater than V_{CC} (the pins do not have source current when biased at a voltage below $\mathrm{V}_{C C}$). The effective resistance to V_{Cc} is 750Ω (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .

COP820C/COP822C/COP840C/COP842C

AC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Instruction Cycle Time (tc) Ext. or Crystal/Resonator (Div-by 10) R/C Oscillator Mode (Div-by 10)	$\begin{aligned} & V_{C C} \geq 4.5 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq V_{C C}<4.5 \mathrm{~V} \\ & V_{C C} \geq 4.5 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq V_{C C}<4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \end{gathered}$		$\begin{aligned} & D C \\ & D C \\ & D C \\ & D C \end{aligned}$	$\mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$
CKI Clock Duty Cycle (Note 5) Rise Time (Note 5) Fall Time (Note 5)	$\begin{aligned} & \mathrm{fr}=\mathrm{Max} \\ & \mathrm{fr}=10 \mathrm{MHz} \text { Ext Clock } \\ & \mathrm{fr}=10 \mathrm{MHz} \text { Ext Clock } \end{aligned}$	40		$\begin{gathered} 60 \\ 12 \\ 8 \end{gathered}$	$\begin{aligned} & \% \\ & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$
Inputs tsetup $t_{\text {HOLD }}$	$\begin{aligned} & V_{C C} \geq 4.5 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{C C}<4.5 \mathrm{~V} \\ & V_{C C} \geq 4.5 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{C C}<4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			ns ns ns ns
Output Propagation Delay tpD1, tPD0 SO, SK All Others	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 2.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
MICROWIRE Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tupd)	\cdots -	$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time	;	$\begin{aligned} & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{C}} \end{aligned}$			
Reset Pulse Width		1.0			$\mu \mathrm{s}$

Note 5: Parameter sampled (not 100\% tested).
Timing Diagram

COP620C/COP622C/COP640C/COP642C

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage (V_{CC})
Voltage at any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into V_{CC} Pin (Source) 40 mA

Total Current out of GND Pin (Sink)
48 mA Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$ Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics COP62XC, COP64XC: $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Operating Voltage Power Supply Ripple (Note 1)	Peak to Peak	4.5		$\begin{gathered} 5.5 \\ 0.1 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Supply Current (Note 2) $\mathrm{CKI}=10 \mathrm{MHz}$ $\mathrm{CKI}=4 \mathrm{MHz}$ HALT Current (Note 3)	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{tc}=1 \mu \mathrm{~s} \\ & V_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{tc}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		<10	$\begin{gathered} 6.0 \\ 4 \\ 30 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$
Input Levels RESET, CKI Logic High Logic Low All Other Inputs Logic High Logic Low		$\begin{aligned} & 0.9 V_{C C} \\ & 0.7 V_{C C} \end{aligned}$		$\begin{aligned} & 0.1 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & V \\ & v \\ & v \\ & v \end{aligned}$
Hi-Z Input Leakage Input Pullup Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} -5 \\ -35 \end{gathered}$		$\begin{gathered} +5 \\ -300 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
G Port Input Hysteresis				0.35 V CC	V
Output Current Levels D Outputs Source Sink All Others Source (Weak Pull-Up) Source (Push-Pu!! Modo) Sink (Push-Pull Mode) TRI-STATE Leakage	$\begin{aligned} & V_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V} \\ & V_{\mathrm{CC}}=4 . \mathrm{VV}^{\prime}, \mathrm{VOH}^{2}-3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.35 \\ 9 \\ \\ -9 \\ -0.35 \\ 1.4 \\ -5.0 \\ \hline \end{gathered}$		$\begin{aligned} & -120 \\ & +5.0 \end{aligned}$	mA mA $\mu \mathrm{A}$ mA mA $\mu \mathrm{A}$
Allowable Sink/Source Current Per Pin D Outputs (Sink) All Others				$\begin{array}{r} 12 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current (Room Temp) Without Latchup (Note 5)	Room Temp			± 100	mA
RAM Retention Voltage, Vr	500 ns Rise and Fall Time (Min)	2.5			V
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

Note 1: Rate of voltage change must be less than $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to V_{CC}, L and $\mathrm{GO}-\mathrm{G} 5$ configured as outputs and set high. The D port set to zero.
Note 4: Except pin G7: $+100 \mathrm{~mA},-25 \mathrm{~mA}$ (COP620C only). Sampled and not 100% tested. Pins G6 and RESETT are designed with a high voltage input network for factory testing. These pins allow input voltages greater than V_{CC} and the pins will have sink current to V_{CC} when biased at voltages greater than V_{CC} (the pins do not have source current when biased at a voltage below $V_{C C}$). The effective resistance to $V_{C C}$ is 750Ω (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .

COP620C/COP622C/COP640C/COP642C

AC Electrical Characteristics $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise speciified

Parameter	Condition	Min	Typ	Max	Units
Instruction Cycle Time (tc) Ext. or Crystal/Resonant (Div-by 10)	$V_{C C} \geq 4.5 \mathrm{~V}$	1		DC	$\mu \mathrm{S}$
CKI Clock Duty Cycle (Note 5) Rise Time (Note 5) Fall Time (Note 5)	$\begin{aligned} \mathrm{fr} & =\mathrm{Max} \\ \mathrm{fr} & =10 \mathrm{MHz} \text { Ext Clock } \\ \mathrm{fr} & =10 \mathrm{MHz} \text { Ext Clock } \end{aligned}$	40		$\begin{gathered} 60 \\ 12 \\ 8 \end{gathered}$	\% ns ns
Inputs tsetup thold	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 220 \\ 66 \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Output Propagation Delay $t_{\text {PD }}, t_{\text {PDO }}$ SO, SK All Others	$\begin{aligned} & R_{L}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.8 \\ & 1.1 \end{aligned}$	$\begin{gathered} \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \hline \end{gathered}$
MICROWIRE Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Valid Time (tupd)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{C}} \end{aligned}$			
Reset Pulse Width		1			$\mu \mathrm{S}$

Note 5: Parameter sampled (not 100\% tested).

Typical Performance Characteristics $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)$

Connection Diagrams

DUAL-IN-LINE PACKAGE

Order Number COP622C-XXX/N, COP642C-XXX/N, COP822C-XXX/N, COP842C-XXX/N, COP922C-XXX/N or COP942C-XXX/N
See NS Package Number N20A

Order Number COP820C-XXX/WM, COP840C-XXX/WM, COP920C-XXX/WM or COP940C-XXX/WM
See NS Package Number M28A

SURFACE MOUNT

Order Number COP822C-XXX/WM, COP842C-XXX/WM, COP922C-XXX/WM or COP942C-XXX/WM See NS Package Number M20B

TL/DD/9103-8

FIGURE 3. Connection Dlagrams

Pin Descriptions

$V_{C C}$ and GND are the power supply pins.
CKI is the clock input. This can come from an external source, a R/C generated oscillator or a crystal (in conjunction with CKO). See Oscillator description.
$\overline{\text { RESET }}$ is the master reset input. See Reset description.
PORT I is a four bit Hi Z input port.
PORT L is an 8 -bit I/O port.
There are two registers associated with each LI/O port: a data register and a configuration register. Therefore, each L I/O bit can be individually configured under software control as shown below:

Port L Config.	Port L Data	Port L Setup
0	0	Hi-Z Input (TRI-STATE)
0	1	Input With Weak Pull-Up
1	0	Push-Pull "0" Output
1	1	Push-Pull "1" Output

Three data memory address locations are allocated for these ports, one for data register, one for configuration register and one for the input pins.
PORT G is an 8 -bit port with $61 / O$ pins (G0-G5) and 2 input pins (G6, G7). All eight G-pins have Schmitt Triggers on the inputs. The G7 pin functions as an input pin under normal operation and as the continue pin to exit the HALT mode. There are two registers with each I/O port: a data register and a configuration register. Therefore, each I/O bit can be individually configured under software control as shown below.

Port G Config.	Port G Data	Port G Setup
0	0	Hi-Z Input (TRI-STATE)
0	1	Input With Weak Pull-Up
\mathbf{i}	0	Fush-Fuil "0" Output
1	1	Push-Pull "1" Output

Three data memory address locations are allocated for these ports, one for data register, one for configuration register and one for the input pins. Since G6 and G7 are input only pins, any attempt by the user to set them up as outputs by writing a one to the configuration register will be disregarded. Reading the G6 and G7 configuration bits will return zeros. Note that the chip will be placed in the HALT mode by setting the G7 data bit.
Six bits of Port G have alternate features:
GO INTR (an external interrupt)
G3 TIO (timer/counter input/output)
G4 SO (MICROWIRE serial data output)
G5 SK (MICROWIRE clock I/O)
G6 SI (MICROWIRE serial data input)
G7 CKO crystal oscillator output (selected by mask option) or HALT restart input (general purpose input)
Pins G1 and G2 currently do not have any alternate functions.

PORT D is a four bit output port that is set high when RESET goes low. Care must be exercised with the D2 pin operation. At RESET, the external load on this pin must ensure that the output voltage stays above $0.9 \mathrm{~V}_{\mathrm{CC}}$ to prevent the device from entering special modes. Also, keep the external loading on the D2 pin to less than 1000 pf.

Functional Description

Figure 1 shows the block diagram of the internal architecture. Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device.

ALU AND CPU REGISTERS

The ALU can do an 8-bit addition, subtraction, logical or shift operation in one cycle time.
There are five CPU registers:
A is the 8-bit Accumulator register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
B is the 8 -bit address register, can be auto incremented or decremented.
X is the 8 -bit alternate address register, can be incremented or decremented.
SP is the 8 -bit stack pointer, points to subroutine stack (in RAM).
B, X and SP registers are mapped into the on chip RAM. The B and X registers are used to address the on chip RAM. The SP register is used to address the stack in RAM during subroutine calls and returns.

PROGRAM MEMORY

Program memory for the COP820C family consists of 1024 bytes of ROM (2048 bytes of ROM for the COP840C family). These bytes may hold program instructions or constant data. The program memory is addressed by the 15 -bit program counter (PC). ROM can be indirectly read by the LAID instruction for table lookup.

DATA MEMORY

The data memory address space includes on chip RAM, I/O and registers. Data memory is addressed directly by the instruction or indirectly by the B, X and SP registers.
The COP820C family has 64 bytes of RAM and the COP840C family has 128 bytes of RAM. Sixteen bytes of RAM are mapped as "registers" that can be loaded immediately, decremented or tested. Three specific registers: B, X and SP are mapped into this space, the other bytes are available for general usage.
The instruction set permits any bit in memory to be set, reset or tested. All I/O and registers (except the A \& PC) are memory mapped; therefore, I/O bits and register bits can be directly and individually set, reset and tested.
Note: RAM contents are undefined upon power-up.

RESET

The RESET input when pulled low initializes the microcontroller. Initialization will occur whenever the RESET input is pulled low. Upon initialization, the ports L and G are placed in the TRI-STATE mode and the Port D is set high. The PC, PSW and CNTRL registers are cleared. The data and configuration registers for Ports L \& G are cleared.
The external RC network shown in Figure 4 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.

Functional Description (Continued)

TL/DD/9103-9
RC $\geq 5 \times$ Power Supply Rise Time

FIGURE 4. Recommended Reset Circuit

OSCILLATOR CIRCUITS

Figure 5 shows the three clock oscillator configurations.

A. CRYSTAL OSCILLATOR

The device can be driven by a crystal clock. The crystal network is connected between the pins CKI and CKO.
Table I shows the component values required for various standard crystal values.

B. EXTERNAL OSCILLATOR

CKI can be driven by an external clock signal. CKO is available as a general purpose input and/or HALT restart control.

C. R/C OSCILLATOR

CKI is configured as a single pin RC controlled Schmitt trigger oscillator. CKO is available as a general purpose input and/or HALT restart control.
Table II shows the variation in the oscillator frequencies as functions of the component (R and C) values.

TL/DD/9103-10
FIGURE 5. Crystal and R-C Connection Diagrams OSCILLATOR MASK OPTIONS
The device can be driven by clock inputs between DC and 10 MHz .

TABLE I. Crystal Oscillator Configuration, $\mathrm{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

R1 $(\mathbf{k} \Omega)$	$\mathbf{R 2}$ $(\mathbf{M} \Omega)$	$\mathbf{C 1}$ $\mathbf{(p F)}$	$\mathbf{C 2}$ $(\mathbf{p F})$	CKI Freq $\mathbf{(M H z)}$	Conditions
0	1	30	$30-36$	10	$V_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	30	$30-36$	4	$V_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	200	$100-150$	0.455	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

TABLE II. RC Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

\mathbf{R} $(\mathbf{k} \Omega)$	\mathbf{C} $(\mathbf{p F})$	CKI Freq. $(\mathbf{M H z})$	Instr. Cycle $(\mu \mathbf{s})$	Conditions
3.3	82	2.2 to 2.7	3.7 to 4.6	7.4 to 9.0
5.6	100	1.1 to 1.3	$V_{\mathrm{CC}}=5 \mathrm{~V}$	
6.8	100	0.9 to 1.1	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	

Note: $3 \mathrm{k} \leq \mathrm{R} \leq 200 \mathrm{k}, 50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}$

Functional Description (Continued)

The device has three mask options for configuring the clock input. The CKI and CKO pins are automatically configured upon selecting a particular option.

- Crystal (CKI/10) CKO for crystal configuration
- External (CKI/10) CKO available as G7 input
- R/C (CKI/10) CKO available as G7 input

G7 can be used either as a general purpose input or as a control input to continue from the HALT mode.

CURRENT DRAIN

The total current drain of the chip depends on:

1) Oscillator operating mode-l1
2) Internal switching current-12
3) Internal leakage current-13
4) Output source current-14
5) DC current caused by external input not at V_{CC} or GND 15
Thus the total current drain, It is given as

$$
\mathrm{It}=11+12+13+14+15
$$

To reduce the total current drain, each of the above components must be minimum.
Operating with a crystal network will draw more current than an external square-wave. The R/C mode will draw the most. Switching current, governed by the equation below, can be reduced by lowering voltage and frequency. Leakage current can be reduced by lowering voltage and temperature. The other two items can be reduced by carefully designing the end-user's system.

$$
\mathrm{I} 2=\mathrm{CxV} \times \mathrm{f}
$$

Where
$C=$ equivalent capacitance of the chip.
$\mathrm{V}=$ operating voltage
$f=$ CKI frequency
YAㄴT: :.ROEE
The device supports a power saving mode of operation: HALT. The controller is placed in the HALT mode by setting the G7 data bit, alternatively the user can stop the clock input. In the HALT mode all internal processor activities including the clock oscillator are stopped. The fully static architecture freezes the state of the controller and retains all information until continuing. In the HALT mode, power requirements are minimal as it draws only leakage currents and output current. The applied voltage (V_{CC}) may be decreased down to Vr (minimum RAM retention voltage) without altering the state of the machine.
There are two ways to exit the HALT mode: via the $\overline{\text { RESET }}$ or by the CKO pin. A low on the RESET line reinitializes the microcontroller and starts executing from the address

0000 H . A low to high transition on the CKO pin (only if the external or the R/C clock option is selected) causes the microcontroller to continue with no reinitialization from the address following the HALT instruction. This also resets the G7 data bit.

INTERRUPTS

There are three interrupt sources, as shown below.
A maskable interrupt on external G0 input (positive or negative edge sensitive under software control)
A maskable interrupt on timer underflow or timer capture
A non-maskable software/error interrupt on opcode zero

INTERRUPT CONTROL

The GIE (global interrupt enable) bit enables the interrupt function. This is used in conjunction with ENI and ENTI to select one or both of the interrupt sources. This bit is reset when interrupt is acknowledged.
ENI and ENTI bits select external and timer interrupt respectively. Thus the user can select either or both sources to interrupt the microcontroller when GIE is enabled.
IEDG selects the external interrupt edge ($0=$ rising edge, $1=$ falling edge). The user can get an interrupt on both rising and falling edges by toggling the state of IEDG bit after each interrupt.
IPND and TPND bits signal which interrupt is pending. After interrupt is acknowledged, the user can check these two bits to determine which interrupt is pending. This permits the interrupts to be prioritized under software. The pending flags have to be cleared by the user. Setting the GIE bit high inside the interrupt subroutine allows nested interrupts.
The software interrupt does not reset the GIE bit. This means that the controller can be interrupted by other interrupt sources while servicing the software interrupt.

INTERRUPT PROCESSING

The interrupt, once acknowledged, pushes the program counter (PC) onto the stack and the stack pointer (SP) is decremented twice. The Global Interrupt Enable (GIE) bit is reset to disable further interrupts. The microcontroller then vectors to the address 00FFH and resumes execution from that address. This process takes 7 cycles to complete. At the end of the interrupt subroutine, any of the following three instructions return the processor back to the main program: RET, RETSK or RETI. Either one of the three instructions will pop the stack into the program counter (PC). The stack pointer is then incremented twice. The RETI instruction additionally sets the GIE bit to re-enable further interrupts.
Any of the three instructions can be used to return from a hardware interrupt subroutine. The RETSK instruction should be used when returning from a software interrupt subroutine to avoid entering an infinite loop.

Functional Description (Continued)

FIGURE 6. Interrupt Block Diagram

DETECTION OF ILLEGAL CONDITIONS

The device contains a hardware mechanism that allows it to detect illegal conditions which may occur from coding errors, noise and 'brown out' voltage drop situations. Specifically it detects cases of executing out of undefined ROM area and unbalanced stack situations.
Reading an undefined ROM location returns 00 (hexadecimal) as its contents. The opcode for a software interrupt is also ' 00 '. Thus a program accessing undefined ROM will cause a software interrupt.
Reading an undefined RAM location returns an FF (hexadecimal). The subroutine stack grows down for each subroutine call. By initializing the stack pointer to the top of RAM, the first unbalanced return instruction will cause the stack pointer to address undefined RAM. As a result the program will attempt to execute from FFFF (hexadecimal), which is an undefined ROM location and will trigger a software interrupt.

MICROWIRE/PLUSTM

MICROWIRE/PLUS is a serial synchronous bidirectional communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e. A/D converters, display drivers, EEPROMS, etc.) and with other microcontrollers which support the MICROWIRE/PLUS interface. It consists of an 8-bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 7 shows the block diagram of the MICROWIRE/PLUS interface.
The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS interface with the internal clock source is called the Master mode of operation. Similarly, operating the MICROWIRE/PLUS interface with an external shift clock is called the Slave mode of operation.
The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. The SK clock rate is selected by the two bits, SLO and SL1, in the CNTRL register. Table III details the different clock rates that may be selected.

TABLE III

SL1	SLO	SK Cycle Time
0	0	$2 \mathrm{t}_{\mathrm{C}}$
0	1	$4 \mathrm{t}_{\mathrm{C}}$
1	x	$8 \mathrm{t}_{\mathrm{C}}$

where,
t_{C} is the instruction cycle clock.

MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS arrangement to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. The device may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 8 shows how two microcontrollers and several peripherals may be interconnected using the MICROWIRE/PLUS arrangement.

Master MICROWIRE/PLUS Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally. The MICROWIRE/ PLUS Master always initiates all data exchanges. (See Figure 8). The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register. Table IV summarizes the bit settings required for Master mode of operation.

SLAVE MICROWIRE/PLUS OPERATION

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must be selected as an input and the SO pin is selected as an output pin by appropriately setting up the Port G configuration register. Table IV summarizes the settings required to enter the Slave mode of operation.
The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated. (See Figure 8.)

TABLE IV

G4 Config. Bit	G5 Config. Bit	G4 Fun.	G5 Fun.	G6 Fun.	Operation
1	1	SO	Int. SK	SI	MICROWIRE Master
0	1	TRI-STATE	Int. SK	SI	MICROWIRE Master
1	0	SO	Ext. SK	SI	MICROWIRE Slave
0	0	TRI-STATE	Ext. SK	SI	MICROWIRE Slave

TIMER/COUNTER

The device has a powerful 16 -bit timer with an associated 16-bit register enabling them to perform extensive timer functions. The timer T1 and its register R1 are each organized as two 8 -bit read/write registers. Control bits in the register CNTRL allow the timer to be started and stopped under software control. The timer-register pair can be operated in one of three possible modes. Table V details various timer operating modes and their requisite control settings.

TL/DD/9103-12
FIGURE 7. MICROWIRE/PLUS Block Diagram

FIGURE 8. MICROWIRE/PLUS Application

Functional Description (Continued)
TABLE V. Timer Operating Modes

CNTRL Blts 765	Operation Mode	T Interrupt	Timer Counts On
000	External Counter W/Auto-Load Reg.	Timer Underflow	TIO Pos. Edge
001	External Counter W/Auto-Load Reg.	Timer Underflow	TIO Neg. Edge
010	Not Allowed	Not Allowed	Not Allowed
011	Not Allowed	Not Allowed	Not Allowed
100	Timer W/Auto-Load Reg.	Timer Underflow	${ }^{t} \mathrm{C}$
101	Timer W/Auto-Load Reg./Toggle TIO Out	Timer Underflow	t_{C}
110	Timer W/Capture Register	TIO Pos. Edge	t_{c}
111	Timer W/Capture Register	TIO Neg. Edge	t_{C}

TL/DD/9103-15
FIGURE 9. Timer/Counter Auto Reload Mode Block Diagram

TIO INPUT

TL/DD/9103-14
FIGURE 10. Timer Capture Mode Block Diagram

TIMER PWM APPLICATION

Figure 11 shows how a minimal component D/A converter can be built out of the Timer-Register pair in the Auto-Reload mode. The timer is placed in the "Timer with auto reload" mode and the TIO pin is selected as the timer output. At the outset the TIO pin is set high, the timer T1 holds the on time and the register R1 holds the signal off time. Setting TRUN bit starts the timer which counts down at the instruction cycle rate. The underflow toggles the TIO output and copies the off time into the timer, which continues to run. By alternately loading in the on time and the off time at each successive interrupt a PWM frequency can be easily generated.

FIGURE 11. Timer Application

Control Registers

CNTRL REGISTER (ADDRESS X'00EE)

The Timer and MICROWIRE/PLUS control register contains the following bits:
SL1 \& SLO Select the MICROWIRE/PLUS clock divide-by IEDG External interrupt edge polarity select

$$
(0=\text { rising edge, } 1=\text { falling edge })
$$

MSEL Enable MICROWIRE/PLUS functions SO and SK
TRUN Start/Stop the Timer/Counter (1 = run, $0=$ stop)
TC3 Timer input edge polarity select ($0=$ rising edge, $1=$ falling edge)
TC2 Selects the capture mode
TC1 Selects the timer mode

TC1	TC2	TC3	TRUN	MSEL	IEDG	SL1	SL0
BIT 7	BIT0						

PSW REGISTER (ADDRESS X'O0EF)

The PSW register contains the following select bits:
GIE Global interrupt enable
ENI External interrupt enable
BUSY MICROWIRE/PLUS busy shifting
IPND External interrupt pending
ENTI Timer interrupt enable
TPND Timer interrupt pending
C Carry Flag
HC Half carry Flag

HC	C	TPND	ENTI	IPND	BUSY	ENI	GIE	
Bit 7	Bit 0							

Addressing Modes

REGISTER INDIRECT

This is the "normal" mode of addressing. The operand is the memory addressed by the B register or X register.

DIRECT

The instruction contains an 8-bit address field that directly points to the data memory for the operand.

IMMEDIATE

The instruction contains an 8-bit immediate field as the operand.

REGISTER INDIRECT

(AUTO INCREMENT AND DECREMENT)

This is a register indirect mode that automatically increments or decrements the B or X register after executing the instruction.

RELATIVE

This mode is used for the JP instruction, the instruction field is added to the program counter to get the new program location. JP has a range of from -31 to +32 to allow a one byte relative jump (JP +1 is implemented by a NOP instruction). There are no 'pages' when using JP, all 15 bits of PC are used.

Memory Map

All RAM, ports and registers (except A and $P C$) are mapped into data memory address space.

Address	Contents
COP820C Family	
00 to 2F	On Chip Ram Bytes
30 to 7F	Unused RAM Address Space (Reads as all Ones)
COP840C Family	
$\begin{aligned} & 00 \text { to } 6 \mathrm{~F} \\ & 70 \text { to } 7 \mathrm{~F} \end{aligned}$	On Chip RAM Bytes Unused RAM Address Space (Reads as all Ones)
COP820C and COP840C Families	
80 to BF	Expansion Space for on Chip EERAM
C0 to CF	Expansion Space for I/O and Registers
Do to DF	On Chip I/O and Registers
D0	Port L Data Register
D1	Port L Configuration Register
D2	Port L Input Pins (Read Only)
D3	Reserved for Port L
D4	Port G Data Register
D5	Port G Configuration Register
D6	Port G Input Pins (Read Only)
D7	Port I Input Pins (Read Only)
D8-DB	Reserved for Port C
DC	Port D Data Register
DD-DF	Reserved for Port D
E0 to EF	On Chip Functions and Registers
E0-E7	Reserved for Future Parts
E8	Reserved
E9	MICROWIRE/PLUS Shift Register
EA	Timer Lower Byte
EB	Timer Upper Byto
EC	Timer Autoload Register Lower Byte
ED	Timer Autoload Register Upper Byte
EE	CNTRL Control Register
EF	PSW Register
FO to FF	On Chip RAM Mapped as Registers
FC	X Register
FD	SP Register
FE	B Register

Reading unused memory locations below 7FH will return all ones. Reading other unused memory locations will return undefined data.

Instruction Set

REGISTER AND SYMBOL DEFINITIONS

Registers

A 8-bit Accumulator register
B $\quad 8$-bit Address register
X 8-bit Address register
SP 8-bit Stack pointer register
PC 15-bit Program counter register
PU upper 7 bits of PC
PL lower 8 bits of PC
C 1-bit of PSW register for carry
HC Half Carry
GIE 1-bit of PSW register for global interrupt enable

Symbols

[B] Memory indirectly addressed by B register
[X] Memory indirectly addressed by X register
Mem Direct address memory or [B]
Meml Direct address memory or [B] or Immediate data
Imm 8-bit Immediate data
Reg Register memory: addresses F0 to FF (Includes B, X and SP)
Bit Bit number (0 to 7)
$\leftarrow \quad$ Loaded with
$\longleftrightarrow \quad$ Exchanged with
\qquad

ADD ADC SUBC AND OR XOR IFEQ IFGT IFBNE DRSZ SBIT RBIT IFBIT	add add with carry subtract with carry Logical AND Logical OR Logical Exclusive-OR IF equal IF greater than IF B not equal Decrement Reg., skip if zero Set bit Reset bit If bit	$A \leftarrow A+M e m i$ $A \leftarrow A+$ Meml $+C, C \leftarrow$ Carry $\mathrm{HC} \leftarrow$ Half Carry $A \leftarrow A+\overline{M e m l}+C, C \leftarrow$ Carry $\mathrm{HC} \leftarrow$ Half Carry $A \leftarrow A$ and $M e m l$ $A \leftarrow A$ or Meml $A \leftarrow A$ xor Meml Compare A and Meml, Do next if $A=$ Meml Compare A and Meml, Do next if A>Meml Do next if lower 4 bits of $B \neq 1 \mathrm{~mm}$ Reg \leftarrow Reg - 1, skip if Reg goes to 0 1 to bit, Mem (bit $=0$ to 7 immediate) 0 to bit, Mem If bit, Mem is true, do next instr.
X LDA LD mem LD Reg	Exchange A with memory Load A with memory Load Direct memory Immed. Load Register memory Immed.	$A \longleftrightarrow$ Mem $A \leftarrow$ Meml Mem $\leftarrow \mathrm{Imm}$ Reg $\leftarrow 1 \mathrm{~mm}$
$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \text { LDA } \\ & \text { LDA } \\ & \text { LD } \\ & \hline \end{aligned}$	Exchange A with memory [B] Exchange A with memory [X] Load A with memory [B] Load A with memory [X] Load Memory Immediate	$A \leftrightarrows[B] \quad(B \leftarrow B \pm 1)$ $A \longleftrightarrow[X] \quad(X \leftarrow X \pm 1)$ $A \leftarrow[B] \quad(B \leftarrow B \pm 1)$ $A \leftarrow[X] \quad(X \leftarrow X \pm 1)$ $[B] \leftarrow \operatorname{lmm}(B \leftarrow B \pm 1)$
CLRA INCA DECA LAID DCORA RRCA SWAPA SC RC IFC IFNG	Clear A Increment A Decrement A Load A indirect from ROM DECIMAL CORRECT A ROTATE A RIGHT THRU C Swap nibbles of A Set C Reset C If C If not C	$\begin{aligned} & A \leftarrow 0 \\ & A \leftarrow A+1 \\ & A \leftarrow A-1 \\ & A \leftarrow R O M(P U, A) \\ & A \leftarrow B C D \text { correction (follows ADC, SUBC) } \\ & C \rightarrow A 7 \rightarrow \ldots \rightarrow A O \rightarrow C \\ & A 7 \ldots A 4 \leftrightarrows A 3 \ldots A O \\ & C \leftarrow 1, H C \leftarrow 1 \\ & C \leftarrow 0, H C \leftarrow 0 \end{aligned}$ If C is true, do next instruction If C is not true, do next instruction
JMPL JMP JP JSRL JSR JID RET RETSK RETI INTR NOP	Jump absolute long Jump absolute Jump relative short Jump subroutine long Jump subroutine Jump indirect Return from subroutine Return and Skip Return from Interrupt Generate an interrupt No operation	

Bits 7-4

F	E	D	C	B	A	9	8	7	6	5	4	3	2	1	0	
JP -15	JP -31	LD OFO, \#i	DRSZ 0F0	RRCA	RC	$\begin{gathered} \text { ADC } A, \\ \# i \end{gathered}$	ADC A, [B]	$\begin{gathered} \text { IFBIT } \\ 0,[B] \end{gathered}$	*	LD B, 0F	IFBNE 0	$\begin{gathered} \text { JSR } \\ 0000-00 \mathrm{FF} \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0000-00 \mathrm{FF} \end{gathered}$	$J P+17$	INTR	0
JP -14	JP -30	LD 0F1, \#i	DRSZ 0F1	*	SC	$\underset{\# i}{\operatorname{sUBC} A,}$	$\begin{aligned} & \text { SUBC } \\ & \mathrm{A},[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & \text { 1,[B] } \end{aligned}$	*	LD B, OE	IFBNE 1	$\begin{gathered} \text { JSR } \\ 0100-01 \mathrm{FF} \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0100-01 F F \end{gathered}$	$\mathrm{JP}+18$	$\mathrm{JP}+2$	1
JP -13	JP -29	LD OF2, \#i	DRSZ 0F2	$\begin{gathered} \mathrm{XA}, \\ {[\mathrm{X}+]} \end{gathered}$	$\begin{gathered} \mathrm{XA}, \\ {[B+]} \end{gathered}$	$\begin{gathered} \text { IFEQ A, } \\ \# \mathrm{\#} \end{gathered}$	$\begin{aligned} & \text { IFEQ } \\ & \mathrm{A},[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & 2,[B] \end{aligned}$	*	LD B, OD	IFBNE 2	$\begin{gathered} \text { JSR } \\ 0200-02 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0200-02 \mathrm{FF} \end{gathered}$	$\mathrm{JP}+19$	$J P+3$	2
JP -12	JP -28	LD 0F3,\#i	DRSZ 0F3	$\begin{gathered} X A, \\ {[X-]} \end{gathered}$	$\begin{aligned} & \mathrm{XA}, \\ & {[B-]} \end{aligned}$	IFGT A, \#i	$\begin{aligned} & \text { IFGT } \\ & \text { A,[B] } \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & \text { 3,[B] } \end{aligned}$	*	LD B, OC	IFBNE 3	$\begin{gathered} \text { JSR } \\ 0300-03 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0300-03 F F \end{gathered}$	$\mathrm{JP}+20$	$J P+4$	3
JP -11	JP -27	LD 0F4, \#i	DRSZ OF4	*	LAID	$\begin{gathered} \text { ADD A, } \\ \# i \end{gathered}$	$\begin{aligned} & \mathrm{ADD} \\ & \mathrm{~A},[\mathrm{~B}] \end{aligned}$	$\begin{gathered} \text { IFBIT } \\ 4,[B] \end{gathered}$	CLRA	LD B, OB	IFBNE 4	$\begin{gathered} \text { JSR } \\ 0400-04 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0400-04 \mathrm{FF} \end{gathered}$	$\mathrm{JP}+21$	$\mathrm{JP}+5$	4
JP -10	JP -26	LD 0F5, \#i	DRSZ 0F5	*	JID	AND A, \#i	$\begin{aligned} & \text { AND } \\ & \text { A,[B] } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & 5,[\mathrm{~B}] \\ & \hline \end{aligned}$	SWAPA	LD B, OA	IFBNE 5	$\begin{gathered} \hline \text { JSR } \\ 0500-05 F F \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0500-05 \mathrm{FF} \\ \hline \end{gathered}$	$\mathrm{JP}+22$	$J P+6$	5
JP -9	JP -25	LD 0F6, \#i	DRSZ 0F6	$\begin{gathered} \mathrm{XA}, \\ {[\mathrm{X}]} \\ \hline \end{gathered}$	$\begin{gathered} \text { X A, } \\ \text { [B] } \end{gathered}$	$\begin{gathered} \text { XOR A, } \\ \# \mathbf{i} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A},[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	DCORA	LD B, 9	IFBNE 6	$\begin{gathered} \text { JSR } \\ 0600-06 \mathrm{FF} \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0600-06 \mathrm{FF} \end{gathered}$	$J P+23$	JP + 7	6
JP -8	JP -24	LD 0F7, \#i	DRSZ 0F7	*	*	$\begin{gathered} \text { ORA } A, \\ \# i \end{gathered}$	$\begin{gathered} \mathrm{OR} \\ \mathrm{~A},[\mathrm{~B}] \end{gathered}$	$\begin{aligned} & \text { IFBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	*	LD B, 8	IFBNE 7	$\begin{gathered} \text { JSR } \\ 0700-07 \mathrm{FF} \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0700-07 \mathrm{FF} \end{gathered}$	$J P+24$	$\mathrm{JP}+8$	7
JP -7	JP -23	LD 0F8, \#i	DRSZ 0F8	NOP	*	$\begin{gathered} \text { LD A, } \\ \quad \begin{array}{c} \text { i } \end{array}, \end{gathered}$	IFC	$\begin{aligned} & \hline \text { SBIT } \\ & 0,[\mathrm{~B}] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 0,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, 7	IFBNE 8	$\begin{gathered} \hline \text { JSR } \\ 0800-08 \mathrm{FF} \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0800-08 F F \end{gathered}$	$\mathrm{JP}+25$	$\mathrm{JP}+9$	8
JP -6	JP -22	LD 0F9, \#i	DRSZ 0F9	*	*	*	IFNC	$\begin{aligned} & \text { SBIT } \\ & 1,[B] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 1,[\mathrm{~B}] \\ & \hline \end{aligned}$	LDB, 6	IFBNE 9	$\begin{gathered} \hline \text { JSR } \\ 0900-09 \mathrm{FF} \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0900-09 \mathrm{FF} \\ \hline \end{gathered}$	$J P+26$	$\mathrm{JP}+10$	9
JP -5	JP -21	LD OFA, \#i	DRSZ OFA	$\begin{aligned} & \text { LD }, \\ & {[\mathrm{X}+]} \end{aligned}$	$\begin{aligned} & \text { LD A, } \\ & {[B+]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { LD } \\ {[\mathrm{B}+], \# \mathrm{i}} \end{gathered}$	INCA	$\begin{aligned} & \text { SBIT } \\ & 2,[\mathrm{~B}] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 2,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, 5	IFBNE OA	$\begin{gathered} \text { JSR } \\ \text { OAOO-OAFF } \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ \text { OAOO-OAFF } \end{gathered}$	$\mathrm{JP}+27$	$J P+11$	A
JP -4	JP -20	LD 0FB, \#i	DRSZ OFB	$\begin{aligned} & \text { LD A, } \\ & {[\mathrm{X}-]} \end{aligned}$	$\begin{aligned} & \mathrm{LD} \mathrm{~A}, \\ & {[\mathrm{~B}-]} \end{aligned}$	$\begin{gathered} \mathrm{LD} \\ {[\mathrm{~B}-\mathrm{]}, \# \mathrm{i}} \end{gathered}$	DECA	$\begin{aligned} & \text { SBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	LD B, 4	IFBNE 0B	$\begin{gathered} \text { JSR } \\ \text { OBOO-OBFF } \end{gathered}$	$\begin{gathered} \text { JMP } \\ \text { OBOO-0BFF } \end{gathered}$	$J P+28$	$\mathrm{JP}+12$	B
JP -3	JP -19	LD OFC, \#i	DRSZ OFC		JMPL	X A,Md	*	$\begin{aligned} & \text { SBIT } \\ & 4,[\mathrm{~B}] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 4,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, 3	IFBNE 0C	$\begin{gathered} \text { JSR } \\ 0 \text { COO-OCFF } \end{gathered}$	$\begin{gathered} \mathrm{JMP} \\ 0 \mathrm{COO}-0 \mathrm{CFF} \end{gathered}$	$\mathrm{JP}+29$	$\mathrm{JP}+13$	c
JP -2	JP -18	LD OFD, \#i	DRSZ OFD	DIR	JSRL	$\begin{gathered} \mathrm{LD} \mathrm{~A}, \\ \mathrm{Md} \end{gathered}$	RETSK	$\begin{aligned} & \text { SBIT } \\ & 5,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 5,[B] \end{aligned}$	LD B, 2	IFBNE OD	$\begin{gathered} \text { JSR } \\ \text { ODOO-ODFF } \end{gathered}$	$\begin{gathered} \text { JMP } \\ \text { ODOO-ODFF } \end{gathered}$	$\mathrm{JP}+30$	$\mathrm{JP}+14$	D
JP -1	JP-17	LD OFE, \#i	DRSZ OFE	$\begin{gathered} \text { LD A, } \\ {[\mathrm{X}]} \end{gathered}$	LD A, [B]	$\begin{aligned} & \text { LD } \\ & \text { [B], \#i } \end{aligned}$	RET	$\begin{aligned} & \text { SBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	LD B, 1	IFBNE OE	$\begin{gathered} \text { JSR } \\ 0 E 00-0 E F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \text { OEOO-0EFF } \end{gathered}$	$\mathrm{JP}+31$	$\mathrm{JP}+15$	E
JP -0	JP -16	LD OFF, \# 1	DRSZ OFF	*	*	*	RETI	$\begin{aligned} & \text { SBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 7,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, 0	IFBNE OF	$\begin{gathered} \text { JSR } \\ \text { OFOO-OFFF } \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0 \text { OOO-0FFF } \end{gathered}$	$\mathrm{JP}+32$	$\mathrm{JP}+16$	F

where,
i is the immediate data
Md is a directly addressed memory locatio.

* is an unused opcode (see following table)

Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instruction taking two bytes).
Most single instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details.

BYTES and CYCLES per INSTRUCTION

The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle.

Arithmetic and Logic Instructions

	[B]	Direct	Immed.
ADD	$1 / 1$	$3 / 4$	$2 / 2$
ADC	$1 / 1$	$3 / 4$	$2 / 2$
SUBC	$1 / 1$	$3 / 4$	$2 / 2$
AND	$1 / 1$	$3 / 4$	$2 / 2$
OR	$1 / 1$	$3 / 4$	$2 / 2$
XOR	$1 / 1$	$3 / 4$	$2 / 2$
IFEQ	$1 / 1$	$3 / 4$	$2 / 2$
IFGT	$1 / 1$	$3 / 4$	$2 / 2$
IFBNE	$1 / 1$		
DRSZ		$1 / 3$	
SBIT	$1 / 1$	$3 / 4$	
RBIT	$1 / 1$	$3 / 4$	
IFBIT	$1 / 1$	$3 / 4$	

The following table shows the instructions assigned to unused opcodes. This table is for information only. The operations performed are subject to change without notice. Do not use these opcodes.

Unused Opcode	Instruction	Unused Opcode	Instruction
60	NOP	A9	NOP
61	NOP	AF	LD A, [B]
62	NOP	B1	C \rightarrow HC
63	NOP	B4	NOP
$67, \cdots$	NOP	B5	NOP
8 C	RET	B7	XA, [X]
99	NOP	B9	NOP
$9 F$	LD [B], \#i	BF	LD A, [X]
A7	XA, [B]		
A8	NOP		

	Memory Transfer Instructions				
	Register Indirect [B] [X]	Direct	Immed.		direct Decr $x+, x-1$
X A.*	1/1 $1 / 3$	2/3		1/2	1/3
LD A,*	1/1 1/3	2/3	2/2	1/2	1/3
LD B,Imm			1/1		
LD B,Imm			$2 / 3$		
LD Mem, Imm	2/2	$3 / 3$		$2 / 2$	
LD Reg, Imm			$2 / 3$		

* $\Rightarrow>$ Memory tocation addressed by B or X or directly.

Instructions Using A \& C		Transfer of Control Instructions	
CLRA $1 / 1$ JMPL $3 / 4$ INCA $1 / 1$ JMP $2 / 3$ DECA $1 / 1$ JP $1 / 3$ LAID $1 / 3$ JSRL $3 / 5$ DCORA $1 / 1$ JSR $2 / 5$ RRCA $1 / 1$ JID $1 / 3$ SWAPA $1 / 1$ RET $1 / 5$ SC $1 / 1$ RETSK $1 / 5$ RC $1 / 1$ RETI $1 / 5$ IFC $1 / 1$ INTR $1 / 7$ IFNC $1 / 1$ NOP $1 / 1$			

Option List

The mask programmable options are listed out below. The options are programmed at the same time as the ROM pattern to provide the user with hardware flexibility to use a variety of oscillator configuration.

OPTION 1: CKI INPUT

$=1$ Crystal (CKI/10) CKO for crystal configuration
$=2$ External (CKI/10) CKO available as G7 input
$=3$ R/C (CKI/10) CKO available as G7 input

OPTION 2: BONDING

$=128$ pin package
$=2 \mathrm{~N} . \mathrm{A}$.
$=320$ pin package
= 420 SO package
$=528$ SO package
The following option information is to be sent to National along with the EPROM.

Option Data

Option 1 Value__is: CKI Input
Option 2 Value__is: COP Bonding

How to Order

To order a complete development package, select the section for the microcontroller to be developed and order the parts listed. Contact the sales office for more detail.

Development Support

IN-CIRCUIT EMUL.ATOR

The MetaLink iceMASTERTM-COP8 Model 400 In-Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface for maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real time, full speed emulation up to $10 \mathrm{MHz}, 32 \mathrm{kBytes}$ of emulation memory and 4 k frames of trace buffer memory. The user may define as many as

32k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code or address ranges or complex triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit valdes can be displayed in binary, hex or digital waveform formats.
During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bargraph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy to use windowed interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefineable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PC via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time to under 3 seconds.
The following tables list the emulator and probe cards ordering information:

Development Support (Continued)

Probe Card Ordering Information

Part Number	Package	Voltage Range	Emulates
MHW-880C20D5PC	20 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP822C, 842C, 8782C
MHW-880C20DWPC	20 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP822C, 842C, 8782C
MHW-880C28D5PC	28 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP820C $, 840 \mathrm{C}, 881 \mathrm{C}, 8781 \mathrm{C}$
MHW-880C28DWPC	28 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP820C, 840C, 881C, 8781C

MACRO CROSS ASSEMBLER

National Semiconductor offers a COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink iceMASTER emulators.

Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8 Assembler/ Linker/Librarian for IBM, PC-XT ${ }^{\text {A AT }}$ © or compatible	$424410632-001$

SINGLE CHIP EMULATOR DEVICE

The COP8 family is fully supported by single chip form, fit, and function emulators. For more detailed information refer to the emulation device specific data sheets and the emulator selection table below.

Single Chip Emulator Selection Table

Device Number	Clock Option	Package	Description	Emulates
COP8781CN	Programmable	28 DIP	One Time Programmable (OTP)	COP840C, COP820C
COP8781CJ	Programmable	28 DIP	UV Erasable	COP840C, COP820C
COP8781CWM	Programmable	28 SO	OTP	COP840C, COP820C
COP8782CN	Programmable	20 DIP	OTP	COP842C, COP822C
COP8782CJ	Programmable	20 DIP	UV Erasable	COP842C,
COP8782CWM	Programmable	20 SO	OTP	COP822C

Development Support (Continued)

PROGRAMMING SUPPORT
Programming of the single chip emulator devices is supported by different sources. The following programmers are certified for programming the One Time Programmable (OTP) devices:

EPROM Programmer Information

Manufacturer and Product	U.S. Phone Number	Europe Phone Number	Asia Phone Number
MetaLink-Debug Module	(602) 926-0797	Germany: +49-81-41-1030	Hong Kong: + 852-737-1800
Xeltek-Superpro	(408) 745-7974	Germany: +49-20-41 684758	Singapore: +652766433
BP Microsystems- EP-1140	(800) 225-2102	Germany: +49-89-857 6667	Hong Kong: +852 3880629
Data I/O- Unisite; -System 29, -System 39	(800) 322-8246	Europe: +31-20-622866 Germany: +49-89-85-8020	Japan: + 33-432-6991
Abcom- COP8 Programmer		Europe: + 89808707	
System General Turpro-1-FX; -APRO	(408) 263-6667	Switzerland: + 31-921-7844	Taiwan Taipei: + 2-9173005

INFORMATION SYSTEM

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.

If the user has a PC with a communications package then files from the FILE SECTION can be down-loaded to disk for later use.

ORDER P/N: MOLE-DIAL-A-HLP

Information System Package contains:
Dial-A-Helper Users Manual
Public Domain Communications Software

FACTORY APPLICATIONS SUPPORT

Dial-A-Helper also provides immediate factory applications support. If a user has questions, he can leave messages on our electronic bulletin board, which we will respond to.

Modem: CANADA/U.S.: (800) NSC-MICRO (800) 672-6427

Baud: $\quad 14.4 \mathrm{k}$
Setup: Length: 8-Bit
Parity: None
Stop Bit: 1
Operation: 24 Hrs. 7 Days

National Semiconductor

COP820CJ/COP822CJ/COP823CJ Single-Chip microCMOS Microcontroller

General Description

The COP820CJ is a member of the COPSTM 8 -bit Microcontroller family. It is a fully static Microcontroller, fabricated using double-metal silicon gate microCMOS technology. This low cost Microcontroller is a complete microcomputer containing all system timing, interrupt logic, ROM, RAM, and I/O necessary to implement dedicated control functions in a variety of applications. Features include an 8 -bit memory mapped architecture, MICROWIRETM serial I/O, a 16 -bit timer/counter with capture register, a multi-sourced interrupt, Comparator, WATCHDOGTM Timer, Modulator/Timer, Brown out protection and Multi-Input Wakeup. Each I/O pin has software selectable options to adapt the device to the specific application. The device operates over a voltage range of 2.5 V to 6.0 V . High throughput is achieved with an efficient, regular instruction set operating at a $1 \mu \mathrm{~s}$ per instruction rate.

Features

- Low cost 8-bit Microcontroller
- Fully static CMOS
- $1 \mu \mathrm{~s}$ instruction time
- Low current drain
- Low current static HALT mode
- Single supply operation: 2.5 V to 6.0 V
- 1024×8 on-chip ROM
- 64 bytes on-chip RAM
- WATCHDOG Timer
- Comparator
- Modulator/Timer (High speed PWM Timer for IR Transmission)
m Multi-Input Wakeup (on the 8-bit Port L)
- Brown Out Protection
- 4 high current I/O pins with 15 mA sink capability
- MICROWIRE/PLUSTM serial I/O
- 16-bit read/write timer operates in a variety of modes
- Timer with 16 -bit auto reload register
- 16-bit external event counter
- Timer with 16 -bit capture register (selectable edge)

■ Multi-source interrupt

- External interrupt with selectable edge
- Timer interrupt or capture interrupt
- Software interrupt

■ 8-bit stack pointer (stack in RAM)

- Powerful instruction set, most instructions single byte
- BCD arithmetic instructions
- 28- and 20-pin DIP/SO package or 16-pin SO package
- Software selectable I/O options (TRI-STATE®, pushpull, weak pull-up)
- Schmitt trigger inputs on Port G and Port L
- Fully supported by MetaLink's development systems
- One-Time Programmable (OTP) emulator devices

Block Diagram

TL/DD/11208-1
FIGURE 1. Block Diagram

COP820CJ/COP822CJ/COP823CJ

Absolute Maximum Ratings

If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

Supply Voltage (VCC)
7.0 V

Voltage at any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$
Total Current into V_{CC} pin (Source)
80 mA

Total Current out of GND pin (sink)
80 mA Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur.
$D C$ and $A C$ electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage Power Supply Ripple 1 (Note 1)	Brown Out Disabled Peak to Peak	2.5		$\begin{gathered} 6.0 \\ 0.1 V_{C C} \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Supply Current (Note 2) $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$ HALT Current with Brown Out Disbled (Note 3) HALT Current with Brown Out Enabled	$\begin{aligned} & V_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{tc}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{tc}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{tc}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{tc}=10 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & <1 \\ & <50 \end{aligned}$	6.0 3.5 2.0 1.5 10 110	mA mA mA mA $\mu \mathrm{A}$ $\mu \mathrm{A}$
Brown Out Trip Level (Brown Out Enabled)		1.8	3.1	4.2	V
INPUT LEVELS $\left(V_{I H}, V_{I L}\right)$ Reset, CKI: Logic High Logic Low All Other Inputs Logic High Logic Low		$\begin{aligned} & 0.8 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.2 V_{C C} \\ & 0.2 V_{C C} \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
Hi-Z Input Leakage	$\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
Input Pullup Current	$Y_{C O}=6.0 \backslash, Y_{i i j}=0 Y$	-40		-250	$\ddot{\sim} \cdot$
L-and G-Port Hysteresis (Note 5)				$0.35 \mathrm{~V}_{\text {c }}$	V
Output Current Levels D Outputs: Source Sink L4-L7 Output Sink All Others Source (Weak Pull-up Mode) Source (Push-pull Mode) Sink (Push-pull Mode) TRI-STATE Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{VOL}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ -0.2 \\ 10 \\ 2 \\ 15 \\ \\ -10 \\ -2.5 \\ -0.4 \\ -0.2 \\ 1.6 \\ 0.7 \\ -2.0 \end{gathered}$		$\begin{array}{r} -110 \\ -33 \\ \\ \\ +2.0 \end{array}$	mA mA mA mA mA $\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA mA mA $\mu \mathrm{A}$
Allowable Sink/Source Current Per Pin D Outputs L4-L7 (Sink) All Others				$\begin{gathered} 15 \\ 20 \\ 3 \end{gathered}$	mA mA mA

DC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Parameter	Conditions	Min	Typ	Max	Units
Maximum Input Current without Latchup (Note 4)	Room Temperature			± 100	mA
RAM Retention Voltage, V_{r}	500 ns Rise and Fall Time (Min)	2.0			V
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

Note 1: Rate of voltage change must be less than $10 \mathrm{~V} / \mathrm{mS}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and crystal configurations. HALT test conditions: L, and GO..G5 ports configured as outputs and set high. The D port set to zero. All inputs tied to $V_{C C}$. The comparator and the Brown Out circuits are disabled.
Note 4: Pins G6 and RESET are designed with a high voltage input network. These pins allow input voltages greater than VCC and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$). The effective resistance to $V_{C C}$ is 750Ω (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .

AC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise speciified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time (tc) Crystal/Resonator R/C Oscillator	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6.0 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6.0 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \end{gathered}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
$V_{C C}$ Rise Time when Using Brown Out Frequency at Brown Out Reset CKI Frequency For Modular Output	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 6 V	50		$\begin{aligned} & 4 \\ & 4 \end{aligned}$	
CKI Clock Duty Cycle (Note 5) Rise Time (Note 5) Fall Time (Note 5)	$\begin{aligned} & \mathrm{fr}=\mathrm{Max} \\ & \mathrm{fr}=10 \mathrm{MHz} \text { ext. Clock } \\ & \mathrm{fr}=10 \mathrm{MHz} \text { ext. Clock } \end{aligned}$	40		$\begin{gathered} 60 \\ 12 \\ 8 \end{gathered}$	$\begin{aligned} & \% \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Inputs tsetup $t_{\text {Hold }}$	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6.0 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6.0 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$	-	\%	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Output Propagation Delay tPD1, tpD0 SO, SK All Others	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{CL}=100 \mathrm{pF} \\ & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6.0 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6.0 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.5 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 5 \\ \hline \end{gathered}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{s}$
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time	.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$			tc tc tc tc
MICROWIRE Setup Time ($\mathrm{t}_{\mu} \mathrm{WS}$) MICROWIRE Hold Time ($t_{\mu} \mathrm{WH}$) MICROWIRE Output Propagation Delay ($\mathrm{t}_{\mu \mathrm{PD}}$)	-	$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Reset Pulse Width		1.0			$\mu \mathrm{S}$

[^0]
AC Electrical Characteristics (Continued)

FIGURE 2. MICROWIRE/PLUS Timing
Comparator DC and AC Characteristics $4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (Note 1)

Parameters	Conditions	Min	Type	Max	Units
Input Offset Voltage	$0.4 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$		± 10	± 25	mV
Input Common Mode Voltage Range		0.4		$\mathrm{~V}_{\mathrm{CC}}-1.5$	V
Voltage Gain			300 k		V / V
DC Supply Current (when enabled)	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$			250	$\mu \mathrm{~A}$
Response Time	TBD mV Step, TBD mV Overdrive, 100 pF Load			1	$\mu \mathrm{~s}$

Note 1: For comparator output current characteristics see L-Port specs.

Connection Diagrams

Top View
Order Number COPCJ820-XXX/N or COPCJ820-XXX/WM

Order Number COPCJ822-XXX/N or COPCJ822-XXX/WM

FIGURE 3. Connection Diagrams

Ports L4-L. 7
Sink Current

$v_{O L}(v)$

Halt-IDD vs Vcc
(Brown Out Disabled)

Ports L/G Push-Pull Source Current

Halt-ldo vs Vcc (Brown Out Enabled)

Ports L/G Push-Pull Sink Current

$v_{O L}(v)$

COP820CJ Pin Assignment

$\begin{aligned} & \text { Port } \\ & \text { Pin } \end{aligned}$	Typ	ALT Funct．	$\begin{gathered} 16 \\ \text { Pin } \end{gathered}$	$\begin{gathered} 20 \\ \text { Pin } \end{gathered}$	$\begin{aligned} & 28 \\ & \text { Pin } \end{aligned}$
LO	1／0	MIWU／CMPOUT	5	7	11
L1	1／0	MIWU／CMPIN－	6	8	12
L2	1／0	MIWU／CMPIN＋	7	9	13
L3	1／0	MIWU	8	10	14
L4	1／0	MIWU	9	11	15
L5	1／0	MIWU	10	12	16
L6	1／0	MIWU	11	13	17
L7	1／0	MIWU／MODOUT	12	14	18
G0	1／0	INTR		17	25
G1	1／0			18	26
G2	$1 / 0$			19	27
G3	1／0	TIO	15	20	28
G4	1／0	SO		1	1
G5	1／0	SK	16	2	2
G6	1	SI	1	3	3
G7	1	CKO	2	4	4
10	1				7
11	1				8
12	1				9
13	1				10
DO	0				19
D1	0				20
D2	0				21
D3	O				22
$\mathrm{V}_{\text {CC }}$			4	6	6
GND			13	15	23
CKI			3	5	5
$\overline{\text { RESET }}$			14	16	24

Pin Description

$V_{C C}$ and GND are the power supply pins．
CKI is the clock input．This can come from an external source，a R／C generated oscillator or a crystal（in conjunc－ tion with CKO）．See Oscillator description．
RESET is the master reset input．See Reset description．
PORT I is a 4－bit Hi－Z input port．
PORT L is an 8 －bit I／O port．
There are two registers associated with the L port：a data register and a configuration register．Therefore，each L

I／O bit can be individually configured under software control as shown below：

Port L Config．	Port L Data	Port L Setup
0	0	Hi－Z Input（TRI－STATE）
0	1	Input with Weak Pull－up
1	0	Push－pull Zero Output
1	1	Push－pull One Output

Three data memory address locations are allocated for this port，one each for data register［00D0］，configuration regis－ ter［00D1］and the input pins［00D2］．
Port L has the following alternate features：
LO MIWU or CMPOUT
L1 MIWU or CMPIN－
L2 MIWU or CMPIN＋
L3 MIWU
L4 MIWU（high sink current capability）
L5 MIWU（high sink current capability）
L6 MIWU（high sink current capability）
L7 MIWU or MODOUT（high sink current capability）
The selection of alternate Port L functions is done through registers WKEN［00C9］to enable MIWU and CNTRL2 ［ 00 CC ］to enable comparator and modulator．
All eight L－pins have Schmitt Triggers on their inputs．
PORT G is an 8 －bit port with 6 I／O pins（G0－G5）and 2 input pins（G6，G7）．
All eight G－pins have Schmitt Triggers on the inputs．
There are two registers associated with the G port：a data register and a configuration register．Therefore each G port bit can be individually configured under software control as shown below：

Port G Config．	Port G Data	Port G Setup
0	0	U：$~$ Inpuit（TP！－STATE）
0	1	Input with Weak Pull－up
1	0	Push－pull Zero Output
1	1	Push－pull One Output

Three data memory address locations are allocated for this port，one for data register［00D3］，one for configuration reg－ ister［00D5］and one for the input pins［00D6］．Since G6 and G7 are $\mathrm{Hi}-\mathrm{Z}$ input only pins，any attempt by the user to configure them as outputs by writing a one to the configura－ tion register will be disregarded．Reading the G6 and G7 configuration bits will return zeros．Note that the device will be placed in the Halt mode by writing a＂ 1 ＂to the G7 data bit．
Six pins of Port G have alternate features：
GO INTR（an external interrupt）
G3 TIO（timer／counter input／output）
G4 SO（MICROWIRE serial data output）
G5 SK（MICROWIRE clock I／O）
G6 SI（MICROWIRE serial data input）
G7 CKO crystal oscillator output（selected by mask option） or HALT restart input／general purpose input（if clock option is R／C or external clock）

Pin Description (Continued)

Pins G1 and G2 currently do not have any alternate functions.

The selection of alternate Port G functions are done through registers PSW [00EF] to enable external interrupt and CNTRL1 [OOEE] to select TIO and MICROWIRE operations.
PORT D is a four bit output port that is preset when RESET goes low. One data memory address location is allocated for the data register [00DC].
Note: Care must be exercised with the D2 pin operation. At RESET, the external loads on this pin must ensure that the output voltages stay above $0.8 \mathrm{~V}_{\mathrm{CC}}$ to prevent the chip from entering special modes. Also keep the external loading on D2 to less than 1000 pF .

Functional Description

The internal architecture is shown in the block diagram. Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device.

ALU and CPU Registers

The ALU can do an 8-bit addition, subtraction, logical or shift operations in one cycle time. There are five CPU registers:
A is the 8 -bit Accumulator register
PC is the 15 -bit Program Counter register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
B is the 8 -bit address register and can be auto incremented or decremented.
$X \quad$ is the 8 -bit alternate address register and can be auto incremented or decremented.
SP is the 8-bit stack pointer which points to the subroutine stack (in RAM).
B, X and SP registers are mapped into the on chip RAM. The B and X registers are used to address the on chip RAM. The SP register is used to address the stack in RAM during subroutine calls and returns. The SP must be preset by software upon initialization.

Memory

The memory is separated into two memory spaces: program and data.

PROGRAM MEMORY

Program memory consists of 1024×8 ROM. These bytes of ROM may be instructions or constant data. The memory is addressed by the 15 -bit program counter (PC). ROM can be indirectly read by the LAID instruction for table lookup.

DATA MEMORY

The data memory address space includes on chip RAM, I/O and registers. Data memory is addressed directly by the instruction or indirectly through B, X and SP registers. The device has 64 bytes of RAM. Sixteen bytes of RAM are mapped as "registers", these can be loaded immediately, decremented and tested. Three specific registers: X, B, and SP are mapped into this space, the other registers are available for general usage.

Any bit of data memory can be directly set, reset or tested. All I/O and registers (except A and PC) are memory mapped; therefore, I/O bits and register bits can be directly and individually set, reset and tested, except the write once only bit (WDREN, WATCHDOG Reset Enable), and the unused and read only bits in CNTRL2 and WDREG registers. Note: RAM contents are undefined upon power-up.

Reset

EXTERNAL RESET

The RESET input pin when pulled low initializes the microcontroller. The user must insure that the RESET pin is held low until $V_{C C}$ is within the specified voltage range and the clock is stabilized. An R/C circuit with a delay 5 x greater than the power supply rise time is recommended (Figure 4). The device immediately goes into reset state when the RESET input goes low. When the RESET pin goes high the device comes out of reset state synchronously. The device will be running within two instruction cycles of the RESET pin going high. The following actions occur upon reset:

Port L	TRI-STATE
Port G	TRI-STATE
Port D	HIGH
PC	CLEARED
RAM Contents	RANDOM with Power-On- Reset UNAFFECTED with external Reset (power already applied)
B, X, SP	Same as RAM
PSW, CNTRL1, CNTRL2 and WDREG Reg.	CLEARED
Multi-Input Wakeup Reg. WKEDG, WKEN WKPND	CLEARED UNKNOWN
Data and Configuration Registers for L \& G	CLEARED
WATCHDOG Timer	Prescaler/Counter each loaded with FF

The device comes out of the HALT mode when the RESET pin is pulled low. In this case, the user has to ensure that the RESET signal is low long enough to allow the oscillator to restart. An internal $256 \mathrm{t}_{\mathrm{c}}$ delay is normally used in conjunction with the two pin crystal oscillator. When the device comes out of the HALT mode through Multi-Input Wakeup, this delay allows the oscillator to stabilize.
The following additional actions occur after the device comes out of the HALT mode through the RESET pin.
If a two pin crystal/resonator oscillator is being used:

RAM Contents	UNCHANGED
Timer T1 and A Contents	UNKNOWN
WATCHDOG Timer Prescaler/Counter	ALTERED

Functional Description (Continued)
If the external or RC Clock option is being used:

RAM Contents	UNCHANGED
Timer T1 and A Contents	UNCHANGED
WATCHDOG Timer Prescaler/Counter	ALTERED

The external RESET takes priority over the Brown Out Reset.

Note: If the RESET pin is pulled low while Brown Out occurs (Brown Out circuit has detected Brown Out condition), the external reset will not occur until the Brown Out condition is removed. External reset has priority only if V_{CC} is greater than the Brown Out voltage.

RC $>5 \times$ Power Supply Rise Time TL/DD/11208-6
FIGURE 4. Recommended Reset Clircuit

WATCHDOG RESET

With WATCHDOG enabled, the WATCHDOG logic resets the device if the user program does not service the WATCHDOG timer within the selected service window. The WATCHDOG reset does not disable the WATCHDOG. Upon WATCHDOG reset, the WATCHDOG Prescaler/ Counter are each initialized with FF Hex.
The following actions occur upon WATCHDOG reset that are different from external reset.
WDREN WATCHDOG Reset Enable bit UNCHANGED WDUDF WATCHDOG Underflow bit UNCHANGED
Additional initialization actions that occur as a result of WATCHDOG reset are as follows:

Port L	TRI-STATE
Port G	TRI-STATE
Port D	HIGH
PC	CLEARED
Ram Contents	UNCHANGED
B, X, SP	UNCHANGED
PSW, CNTRL1 and CNTRL2 (except WDUDF Bit) Registers	CLEARED
Multi-Input Wakeup Registers WKEDG, WKEN WKPND	CLEARED UNKNOWN
Data and Configuration Registers for L \& G	CLEARED
WATCHDOG Timer	Prescalar/Counter each loaded with FF

BROWN OUT RESET

The on-board Brown Out protection circuit resets the device when the operating voltage (V_{CC}) is lower than the Brown Out voltage. The device is held in reset when VCC stays below the Brown Out Voltage. The device will remain in

RESET as long as V_{Cc} is below the Brown Out Voltage. The Device will resume execution if V_{Cc} rises above the Brown Out Voltage. If a two pin crystal/resonator clock option is selected, the Brown Out reset will trigger a 256tc delay. This delay allows the oscillator to stabilize before the device exits the reset state. The delay is not used if the clock option is either R/C or external clock. The contents of data registers and RAM are unknown following a Brown Out reset. The external reset takes priority over Brown Out Reset and will deactivate the 256 tc cycles delay if in progress. The Brown Out reset takes priority over the WATCHDOG reset.
The following actions occur as a result of Brown Out reset:

Port L	TRI-STATE
Port G	TRI-STATE
Port D	HIGH
PC	CLEARED
RAM Contents	RANDOM
B, X, SP	UNKNOWN
PSW, CNTRL1, CNTRL2 and WDREG Registers	CLEARED
Multi-Input Wakeup Registers WKEDG, WKEN WKPND	CLEARED UNKNOWN
Data and Configuration Registers for L \& G	CLEARED
WATCHDOG Timer	Prescalar/Counter each loaded with FF
Timer T1 and Accumulator	Unknown data after coming out of the HALT (through Brown Out
Reset) with any Clock option	

Note: The development system will detect the BROWN OUT RESET externally and will force the RESET pin low. The Development System does not emulate the 256tc delay.

Brown Out Protection

An on-board protection circuit monitors the operating voltage $\left(V_{C C}\right)$ and compares it with the minimum operating voltage specified. The Brown Out circuit is designed to reset the device if the operating voltage is below the Brown Out voltage (between 1.8 V to 4.2 V at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$). The Minimum operating voltage for the device is 2.5 V with Brown Out disabled, but with BROWN OUT enabled the device is guaranteed to operate properly down to minimum Brown Out voltage (Max frequency 4 MHz), For temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ the Brown Out voltage is expected to be between 1.9 V to 3.9 V . The circuit can be enabled or disabled by Brown Out mask option. If the device is intended to operate at lower $V_{C C}$ (lower than Brown Out voltage VBO max), the Brown Out circuit should be disabled by the mask option.
The Brown Out circuit may be used as a power-up reset provided the power supply rise time is slower than $50 \mu \mathrm{~s}$ (0 V to 6.0 V).
Note: Brown Out Circuit is active in HALT mode (with the Brown Out mask option selected).

Functional Description (Continued)

Oscillator Circults

EXTERNAL OSCILLATOR

CKI can be driven by an external clock signal provided it meets the specified duty cycle, rise and fall times, and input levels. CKO is available as a general purpose input G7 and/or Halt control.

CRYSTAL OSCILLATOR

By selecting CKO as a clock output, CKI and CKO can be connected to create a crystal controlled oscillator. Table I shows the component values required for various standard crystal values.

R/C OSCILLATOR
By selecting CKI as a single pin oscillator, CKI can make a R/C oscillator. CKO is available as a general purpose input and/or HALT control. Table II shows variation in the oscillator frequencies as functions of the component (R and C) values.

FIGURE 5. Clock Oscillator Configurations

TABLE I. Crystal Oscillator Configuration

$\mathbf{R 1}$ $\mathbf{(k \Omega)}$	$\mathbf{R 2}$ $\mathbf{(M \Omega)}$	$\mathbf{C 1}$ $\mathbf{(p F})$	$\mathbf{C 2}$ $\mathbf{(p F)}$	CKI Freq. $\mathbf{(M H z)}$	Conditions
0	1	30	$30-36$	10	$\mathrm{~V}_{C C}=5 \mathrm{~V}$
0	1	30	$30-36$	4	$\mathrm{~V}_{C C}=5 \mathrm{~V}$
5.6	1	100	$100-156$	0.455	$\mathrm{~V}_{C C}=5 \mathrm{~V}$

TABLE II. RC Oscillator Conflguration (Part-To-Part Variation)

\mathbf{R} $\mathbf{(k \Omega} \boldsymbol{\Omega})$	\mathbf{C} (pF)	CK1 Freq. (MHz)	Instr. Cycle $(\mu \mathbf{s})$	Conditions
3.3	82	2.2 to 2.7	3.7 to 4.6	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
5.6	100	1.1 to 1.3	7.4 to 9.0	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
6.8	100	0.9 to 1.1	8.8 to 10.8	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

Functional Description (Continued)

Current Drain

The total current drain of the chip depends on:

1. Oscillator operating mode - I1
2. Internal switching current - 12
3. Internal leakage current - I3
4. Output source current - 14
5. DC current caused by external input not at V_{CC} or GND - 15
6. DC current caused by the comparator (if comparator is enabled) - 16
7. DC current caused by the Brown Out - 17

Thus the total current drain is given as

$$
1 t=11+12+13+14+15+16+17
$$

To reduce the total current drain, each of the above components must be minimum. Operating with a crystal network will draw more current than an external square-wave. The R/C-mode will draw the most. Switching current, governed by the equation below, can be reduced by lowering voltage and frequency. Leakage current can be reduced by lowering voltage and temperature. The other two items can be reduced by carefully designing the end-user's system.
The following formula may be used to compute total current drain when operating the controller in different modes.

$$
\mathrm{I} 2=\mathrm{C} \times \mathrm{V} \times f
$$

where: $C=$ equivalent capacitance of the chip

$$
\begin{aligned}
& V=\text { operating voltage } \\
& f=C K I \text { frequency }
\end{aligned}
$$

Halt Mode

The device is a fully static device. The device enters the HALT mode by writing a one to the G7 bit of the G data register. Once in the HALT mode, the internal circuitry does not receive any clock signal and is therefore frozen in the exact state it was in when halted. In this mode the chip will only draw leakage current (output current and DC current due to the Brown Out circuit if Brown Out is enabled).
The device supports four different methods of exiting the HALT mode. The first method is with a low to high transition on the CKO (G7) pin. This method precludes the use of the crystal clock configuration (since CKO is a dedicated output). It may be used either with an RC clock configuration or an external clock configuration. The second method of exiting the HALT mode is with the multi-Input Wakeup feature on the L port. The third method of exiting the HALT mode is by pulling the RESET input low. The fourth method is with the operating voltage going below Brown Out voltage (if Brown Out is enabled by mask option).

If the two pin crystal/resonator oscillator is being used and Multi-Input Wakeup or Brown Out causes the device to exit the HALT mode, the WAKEUP signal does not allow the chip to start running immediately since crystal oscillators have a delayed start up time to reach full amplitude and freuqency stability. The WATCHDOG timer (consisting of an 8 -bit prescaler followed by an 8 -bit counter) is used to generate a fixed delay of 256 tc to ensure that the oscillator has indeed stabilized before allowing instruction execution. In this case, upon detecting a valid WAKEUP signal only the oscillator circuitry is enabled. The WATCHDOG Counter and Prescaler are each loaded with a value of FF Hex. The WATCHDOG prescaler is clocked with the tc instruction cycle. (The tc clock is derived by dividing the oscillator clock down by a factor of 10). The Schmitt trigger following the CKI inverter on the chip ensures that the WATCHDOG timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specs. This Schmitt trigger is not part of the oscillator closed loop. The start-up timeout from the WATCHDOG timer enables the clock signals to be routed to the rest of the chip. The delay is not activated when the device comes out of HALT mode through RESET pin. Also, if the clock option is either RC or External clock, the delay is not used, but the WATCHDOG Prescaler/-Counter contents are changed. The Development System will not emulate the 256tc delay.
The RESET pin or Brown Out will cause the device to reset and start executing from address X'0000. A low to high transition on the G7 pin (if single pin oscillator is used) or MultiInput Wakeup will cause the device to start executing from the address following the HALT instruction.
When RESET pin is used to exit the device from the HALT mode and the two pin crystal/resonator (CKI/CKO) clock option is selected, the contents of the Accumulator and the Timer T1 are undetermined following the reset. All other information except the WATCHDOG Prescaler/Counter contents is retained until continuing. If the device comes out of the HALT mode through Brown Out reset, the contents of data registers and RAM are unknown following the reset. All information except the WATCHDOG Prescaler/Counter contents is retained if the device exits the HALT mode through G7 pin or Multi-Input Wakeup.
G7 is the HALT-restart pin, but it can still be used as an input. If the device is not halted, G7 can be used as a general purpose input.
If the Brown Out Enable mask option is selected, the Brown Out circuit remains active during the HALT mode causing additional current to be drawn.
Note: To allow clock resynchronization, it is necessary to program two NOP's immediately after the device comes out of the HALT mode. The user must program two NOP's following the "enter HALT mode" (set G7 data bit) instruction.

Functional Description (Continued)

MICROWIRE/PLUS

MICROWIRE/PLUS is a serial synchronous bidirectional communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e. A/D converters, display drivers, EEPROMS, etc.) and with other microcontrollers which support the MICROWIRE/PLUS interface. It consists of an 8 -bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 6 shows the block diagram of the MICROWIRE/PLUS interface.

TL/DD/11208-8
FIGURE 6. MICROWIRE/PLUS Block Diagram
The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS interface with the internal clock source is called the Master mode of operation. Operating the MICROWIRE/ PLUS interface with an external shift clock is called the Slave mode of operation.
The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS , the MSEL bit in the CNTRL register is set to one. The SK clock rate is selected by the two bits, SL0 and SL1, in the CNTRL register. Table III details the different clock rates that may be selected.

TABLE III

SL1	SLO	SK Cycle Time
0	0	$2 t_{\mathrm{c}}$
0	1	$4 t_{\mathrm{c}}$
1	x	$8 \mathrm{t}_{\mathrm{c}}$

where,
t_{c} is the instruction cycle time.

MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS arrangement to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. The device may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 7 shows how two device microcontrollers and several peripherals may be interconnected using the MICROWIRE/PLUS arrangement.

Master MICROWIRE/PLUS Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally by the device. The MICROWIRE/PLUS Master always initiates all data exchanges (Figure 7). The MSEL bit in the CNTRL register must be set to enable the SO and SK functions on the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register. Table IV summarizes the bit settings required for Master mode of operation.

SLAVE MICROWIRE/PLUS OPERATION

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions on the G Port. The SK pin must be selected as an input and the SO pin selected as an output pin by appropriately setting up the Port G configuration register. Table IV summarizes the settings required to enter the Slave mode of operation.

FIGURE 7. MICROWIRE/PLUS Application

Functional Description (Continued)

The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated.

TABLE IV

G4 Config. Bit	G5 Conflg. Bit	G4 Fun.	G5 Fun.	G6 Fun.	Operation
1	1	SO	Int. SK	SI	MICROWIRE Master
0	1	TRI-STATE	Int. SK	SI	MICROWIRE Master
1	0	SO	Ext. SK	SI	MICROWIRE Slave
0	0	TRI-STATE	Ext. SK	SI	MICROWIRE Slave

Timer/Counter

The device has a powerful 16 -bit timer with an associated 16 -bit register enabling it to perform extensive timer functions. The timer T1 and its register R1 are each organized as two 8 -bit read/write registers. Control bits in the register CNTRL allow the timer to be started and stopped under software control. The timer-register pair can be operated in one of three possible modes. Table V details various timer operating modes and their requisite control settings.

MODE 1. TIMER WITH AUTO-LOAD REGISTER

In this mode of operation, the timer T1 counts down at the instruction cycle rate. Upon underflow the value in the register R1 gets automatically reloaded into the timer which continues to count down. The timer underflow can be programmed to interrupt the microcontroller. A bit in the control register CNTRL enables the TIO (G3) pin to toggle upon timer underflows. This allows the generation of square-wave outputs or pulse width modulated outputs under software control (Figure 8).

MODE 2. EXTERNAL COUNTER

In this mode, the timer T1 becomes a 16-bit external event counter. The counter counts down upon an edge on the TIO pin. Control bits in the register CNTRL program the counter to decrement either on a positive edge or on a negative edge. Upon underflow the contents of the register R1 are automatically copied into the counter. The underflow can also be programmed to generate an interrupt (Figure 9).

TL/DD/11208-24
FIGURE 8. Timer/Counter Auto Reload Mode Block Dlagram

TABLE V. Timer Operating Modes

CNTRL Bits 765	Operation Mode	T Interrupt	Timer Counts On
000	External Counter w/Auto-Load Reg.	Timer Underilow	TIO Pos. Edge
001	External Counter w/Auto-Load Reg.	Timer Underflow	TIO Neg. Edge
010	Not Allowed	Not Allowed	Not Allowed
011	Not Allowed	Not Allowed	Not Allowed
100	Timer w/Auto-Load Reg.	Timer Underflow	t_{c}
101	Timer w/Auto-Load Reg./Toggle TIO Out	Timer Underflow	t_{c}
110	Timer w/Capture Register	TIO Pos. Edge	t_{c}
111	Timer w/Capture Register	TIO Neg. Edge	t_{c}

Timer/Counter (Continued)

MODE 3. TIMER WITH CAPTURE REGISTER

Timer T1 can be used to precisely measure external frequencies or events in this mode of operation. The timer T1 counts down at the instruction cycle rate. Upon the occurrence of a specified edge on the TIO pin the contents of the timer T1 are copied into the register R1. Bits in the control register CNTRL allow the trigger edge to be specified either as a positive edge or as a negative edge. In this mode the user can elect to be interrupted on the specified trigger edge (Figure 10).

FIGURE 10. Timer Capture Mode Block Diagram

TIMER PWM APPLICATION

Figure 11 shows how a minimal component D/A converter can be built out of the Timer-Register pair in the Auto-Reload mode. The timer is placed in the "Timer with auto reload" mode and the TIO pin is selected as the timer output. At the outset the TIO pin is set high, the timer T1 holds the on time and the register R1 holds the signal off time. Setting TRUN bit starts the timer which counts down at the instruction cycle rate. The underflow toggles the TIO output and copies the off time into the timer, which continues to run. By alternately loading in the on time and the off time at each successive interrupt a PWM frequency can be easily generated.

Watchdog

The device has an on-board 8-bit WATCHDOG timer. The timer contains an 8-bit READ/WRITE down counter clocked by an 8 -bit prescaler. Under software control the timer can be dedicated for the WATCHDOG or used as a general purpose counter. Figure 12 shows the WATCHDOG timer block diagram.

MODE 1: WATCHDOG TIMER

The WATCHDOG is designed to detect user programs getting stuck in infinite loops resulting in loss of program control or "runaway" programs. The WATCHDOG can be enabled or disabled (only once) after the device is reset as a result of brown out reset or external reset. On power-up the WATCHDOG is disabled. The WATCHDOG is enabled by writing a " 1 " to WDREN bit (resides in WDREG register). Once enabled, the user program should write periodically into the 8 -bit counter before the counter underflows. The 8 -bit counter (WDCNT) is memory mapped at address OCE Hex. The counter is loaded with $\mathrm{n}-1$ to get n counts. The counter underflow resets the device, but does not disable the WATCHDOG. Loading the 8 -bit counter initializes the prescaler with FF Hex and starts the prescaler/counter. Prescaler and counter are stopped upon counter underflow. Prescaler and counter are each loaded with FF Hex when the device goes into the HALT mode. The prescaler is used for crystal/resonator start-up when the device exits the HALT mode through Multi-Input Wakeup. In this case, the prescaler/counter contents are changed.

MODE 2: TIMER

In this mode, the prescaler/counter is used as a timer by keeping the WDREN (WATCHDOG reset enable) bit at 0. The counter underflow sets the WDUDF (underflow) bit and the underflow does not reset the device. Loading the 8 -bit counter (load $n-1$ for n counts) sets the WDTEN bit (WATCHDOG Timer Enable) to " 1 ", loads the prescaler with FF, and starts the timer. The counter underflow stops the timer. The WDTEN bit serves as a start bit for the WATCHDOG timer. This bit is set when the 8 -bit counter is loaded by the user program. The load could be as a result of WATCHDOG service (WATCHDOG timer dedicated for WATCHDOG function) or write to the counter (WATCHDOG timer used as a general purpose counter). The bit is cleared upon Brown Out reset, WATCHDOG reset or external reset. The bit is not memory mapped and is transparent to the user program.

FIGURE 11. Timer Application
TABLE VI. WATCHDOG Control/Status

Parameter	HALT Mode	WD Reset	EXT/BOR Reset (Note 1)	Counter Load
8-Bit Prescaler	FF	FF	FF	FF
8-Bit WD Counter	FF	FF	FF	User Value
WDREN Bit	Unchanged	Unchanged	0	No Effect
WDUDF Bit	0	Unchanged	0	0
WDTEN Signal	Unchanged	0	0	1

Note 1: BOR is Brown Out Reset.

Functional Description (Continued)

CONTROL/STATUS BITS

WDUDF: WATCHDOG Timer Underflow Bit
This bit resides in the CNTRL2 Register. The bit is set when the WATCHDOG timer underflows. The underflow resets the device if the WATCHDOG reset enable bit is set (WDREN = 1). Otherwise, WDUDF can be used as the timer underflow flag. The bit is cleared upon Brown-Out reset, external reset, load to the 8 -bit counter, or going into the HALT mode. It is a read only bit.

WDREN: WD Reset Enable

WDREN bit resides in a separate register (bit 0 of WDREG). This bit enables the WATCHDOG timer to generate a reset. The bit is cleared upon Brown Out reset, or external reset. The bit under software control can be written to only once (once written to, the hardware does not allow the bit to be changed during program execution).
WDREN $=1$ WATCHDOG reset is enabled.
WDREN = 0 WATCHDOG reset is disabled.
Table VI shows the impact of Brown Out Reset, WATCHDOG Reset, and External Reset on the Control/Status bits.

TL/DD/11208-15
FIGURE 12. WATCHDOG Timer Block Diagram

Modulator/Timer

The Modulator/Timer contains an 8-bit counter and an 8-bit autoreload register (MODRL address OCF Hex). The Modulator/Timer has two modes of operation, selected by the control bit MC3. The Modulator/Timer Control bits MC1, MC2 and MC3 reside in CNTRL2 Register.

MODE 1: MODULATOR

The Modulator is used to generate high frequency pulses on the modulator output pin (L7). The L7 pin should be configured as an output. The number of pulses is determined by the 8 -bit down counter. Under software control the modulator input clock can be either CKI or tC. The tC clock is derived by dividing down the oscillator clock by a factor of 10. Three control bits (MC1, MC2, and MC3) are used for the Modulator/Timer output control. When MC2 $=1$ and MC3 $=1$, CKI is used as the modulator input clock. When MC2 $=0$, and MC3 $=1$, tC is used as the modulator input clock. The user loads the counter with the desired number of counts (256 max) and sets MC1 to start the counter. The modulator autoreload register is loaded with $n-1$ to get n pulses. CKI or tc pulses are routed to the modulator output (L7) until the counter underflows (Figure 13). Upon underflow the hardware resets MC1 and stops the counter. The L7 pin goes low and stays low until the counter is restarted by the user program. The user program has the responsibility to timeout the low time. Unless the number of counts is changed, the user program does not have to load the counter each time the counter is started. The counter can simply be started by setting the MC1 bit. Setting MC1 by software will load the counter with the value of the autoreload register. The software can reset MC1 to stop the counter.

MODE 2: PWM TIMER

The counter can also be used as a PWM Timer. In this mode, an 8 -bit register is used to serve as an autoreload register (MODRL).

a. 50\% Duty Cycle:

When MC1 is 1 and MC2, MC3 are 0 , a 50% duty cycle free running signal is generated on the L7 output pin (Figure 14). The L7 pin must be configured as an output pin. In this mode the 8 -bit counter is clocked by tC. Setting the MC1
control bit by software loads the counter with the value of the autoreload register and starts the counter. The counter underflow toggles the (L7) output pin. The 50\% duty cycle signal will be continuously generated until MC1 is reset by the user program.

b. Variable Duty Cycle:

When MC3 $=0$ and MC2 $=1$, a variable duty cycle PWM signal is generated on the L7 output pin. The counter is clocked by tC. In this mode the 16-bit timer T1 along with the 8 -bit down counter are used to generate a variable duty cycle PWM signal. The timer T1 underflow sets MC1 which starts the down counter and it also sets L7 high (L7 should be configured as an output). When the counter underflows the MC1 control bit is reset and the L7 output will go low until the next timer T1 underflow. Therefore, the width of the output pulse is controlled by the 8 -bit counter and the pulse duration is controlled by the 16 -bit timer T1 (Figure 15). Timer T1 must be configured in "PWM Mode/Toggle TIO Out" (CNTRL1 Bits 7,6,5 = 101).
Table VII shows the different operation modes for the Modulator/Timer.

TABLE VII. Modulator/Timer Modes

| Control Bits In
 CNTRL2(00CC) | | Operation Mode
 L7 Function | |
| :---: | :---: | :---: | :--- | :--- |
| MC3 | MC2 | MC1 | |
| 0 | 0 | 0 | Normal I/O |
| 0 | 0 | 1 | 50% Duty Cycle Mode (Clocked
 by tc) |
| 0 | 1 | X | Variable Duty Cycle Mode
 (Clocked by tc) Using Timer 1
 Underflow |
| 1 | 0 | X | Modulator Mode (Clocked by tc) |
| 1 | 1 | X | Modulator Mode (Clocked by
 CKI) |

Note: MC1, MC2 and MC3 control bits are cleared upon reset.

FIGURE 13. Mode 1: Modulator Block Dlagram/Output Waveform

FIGURE 14. Mode 2a: 50\% Duty Cycle Output

TL/DD/11208-20
FIGURE 15. Mode 2b: Variable Duty Cycle Output

Comparator

The device has one differential comparator. Ports LO-L2 are used for the comparator. The output of the comparator is brought out to a pin. Port L has the following assignments:
L0 Comparator output
L1 Comparator negative input
L2 Comparator positive input

THE COMPARATOR STATUS/CONTROL BITS

These bits reside in the CNTRL2 Register (Address OCC)
CMPEN Enables comparator (" 1 " = enable)
CMPRD Reads comparator output internally
(CMPEN $=1$, CMPOE $=X$)
CMPOE Enables comparator output to pin LO
(" 1 " = enable), CMPEN bit must be set to enable this function. If CMPEN $=0$, LO will be 0 .
The Comparator Select/Control bits are cleared on RESET (the comparator is disabled). To save power the program should also disable the comparator before the device enters the HALT mode.
The user program must set up L0, L1 and L2 ports correctly for comparator Inputs/Output: L1 and L2 need to be configured as inputs and LO as output.

Multi-Input Wake Up

The Multi-Input Wakeup feature is used to return (wakeup) the device from the HALT mode. Figure 16 shows the MultiInput Wakeup logic.
This feature utilizes the L Port. The user selects which particular L port bit or combination of L Port bits will cause the device to exit the HALT mode. Three 8-bit memory mapped registers, Reg:WKEN, Reg:WKEDG, and Reg:WKPND are used in conjunction with the L port to implement the MultiInput Wakeup feature.
All three registers Reg:WKEN, Reg:WKPND, and Reg:WKEDG are read/write registers, and are cleared at reset, except WKPND. WKPND is unknown on reset.
The user can select whether the trigger condition on the selected L Port pin is going to be either a positive edge (low to high transition) or a negative edge (high to low transition). This selection is made via the Reg:WKEDG, which is an 8bit control register with a bit assigned to each L Port pin. Setting the control bit will select the trigger condition to be a negative edge on that particular L Port pin. Resetting the bit selects the trigger condition to be a positive edge. Changing an edge select entails several steps in order to avoid a pseudo Wakeup condition as a result of the edge change. First, the associated WKEN bit should be reset, followed by
the edge select change in WKEDG. Next, the associated WKPND bit should be cleared, followed by the associated WKEN bit being re-enabled.
An example may serve to clarify this procedure. Suppose we wish to change the edge select from positive (low going high) to negative (high going low) for L port bit 5 , where bit 5 has previously been enabled for an input. The program would be as follows:
RBIT 5,WKEN
SBIT 5,WKEDG
RBIT 5,WKPND
SBIT 5,WKEN
If: the L port bits have been used as outputs and then changed to inputs with Multi-Input Wakeup, a safety procedure should also be followed to avoid inherited pseudo wakeup conditions. After the selected L port bits have been changed from output to input but before the associated WKEN bits are enabled, the associated edge select bits in WKEDG should be set or reset for the desired edge selects, followed by the associated WKPND bits being cleared. This same procedure should be used following RESET, since the L port inputs are left floating as a result of RESET.
The occurrence of the selected trigger condition for Multi-Input Wakeup is latched into a pending register called Reg:WKPND. The respective bits of the WKPND register will be set on the occurrence of the selected trigger edge on the corresponding Port L pin. The user has the responsibility of clearing these pending flags. Since the Reg:WKPND is a pending register for the occurrence of selected wakeup conditions, the device will not enter the HALT mode if any Wakeup bit is both enabled and pending. Setting the G7 data bit under this condition will not allow the device to enter the HALT mode. Consequently, the user has the responsibility of clearing the pending flags before attempting to enter the HALT mode.
If a crystal oscillator is being used, the Wakeup signal will not start the chip running immediately since crystal oscillators have a finite start up time. The WATCHDOG timer prescaler generates a fixed delay to ensure that the oscillator has indeed stabilized before allowing the device to execute instructions. In this case, upon detecting a valid Wakeup signal only the oscillator circuitry and the WATCHDOG timer are enabled. The WATCHDOG timer prescaler is loaded with a value of FF Hex (256 counts) and is clocked from the tc instruction cycle clock. The tc clock is derived by dividing down the oscillator clock by a factor of 10. A Schmitt trigger following the CKI on chip inverter ensures that the WATCHDOG timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specs. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the WATCHDOG timer enables the clock signals to be routed to the rest of the chip.

Multi－Input Wakeup（Continued）

TL／DD／11208－21
FIGURE 16．Multi－Input Wakeup Logic

INTERRUPTS

The device has a sophisticated interrupt structure to allow easy interface to the real world．There are three possible interrupt sources，as shown below．
A maskable interrupt on external GO input（positive or nega－ tive edge sensitive under software control）
A maskable interrupt on timer carry or timer capture
A non－maskable software／error interrupt on opcode zero

INTERRUPT CONTROL

The GIE（global interrupt enable）bit enables the interrupt function．This is used in conjunction with ENI and ENTI to select one or both of the interrupt sources．This bit is reset when interrupt is acknowledged．
ENI and ENTI bits select external and timer interrunts re－ spectively．Thus the user can select either or both sources to interrupt the microcontroller when GIE is enabled．
IEDG selects the external interrupt edge（ $0=$ rising edge， $1=$ falling edge）．The user can get an interrupt on both rising and falling edges by toggling the state of IEDG bit after each interrupt．

IPND and TPND bits signal which interrupt is pending．After an interrupt is acknowledged，the user can check these two bits to determine which interrupt is pending．This permits the interrupts to be prioritized under software．The pending flags have to be cleared by the user．Setting the GIE bit high inside the interrupt subroutine allows nested interrupts．
The software interrupt does not reset the GIE bit．This means that the controller can be interrupted by other inter－ rupt sources while servicing the software interrupt．

INTERRUPT PROCESSING

The interrupt，once acknowledged，pushes the program counter（PC）onto the stack and the stack pointer（SP）is decremented twice．The Global Interrupt Enable（GIE）bit is reset to disable further interrupts．The microcontroller then vectors to the address 00FFH and resumes execution from that address．This process takes 7 cycles to complete．At the end of the interrupt subroutine，any of the following three instructions return the processor back to the main pro－ gram：RET，RETSK or RETI．Either one of the three instruc－ tions will pop the stack into the program counter（PC）．The stack pointer is then incremented twice．The RETI instruc－ tion additionally sets the GIE bit to re－enable further inter－ rupts．
Any of the three instructions can be used to return from a hardware interrupt subroutine．The RETSK instruction should be used when returning from a software interrupt subroutine to avoid entering an infinite loop．

DETECTION OF ILLEGAL CONDITIONS

The device incorporates a hardware mechanism that allows it to detect illegal conditions which may occur from coding errors，noise，and＂brown out＂voltage drop situations．Spe－ cifically，it detects cases of executing out of undefined ROM area and unbalanced tack situations．
Reading an undefined ROM location returns 00 （hexadeci－ mal）as its contents．The opcode for a software interrupt is
 cause a software interrupt．
Reading an undefined RAM location returns an FF（hexade－ cimal）．The subroutine stack on the device grows down for each subroutine call．By initializing the stack pointer to the top of RAM，the first unbalanced return instruction will cause the stack pointer to address undefined RAM．As a result the program will attempt to execute from FFFF（hexadecimal）， which is an undefined ROM location and will trigger a soft－ ware interrupt．

Control Registers

CNTRL1 REGISTER (ADDRESS O0EE)

The Timer and MICROWIRE control register contains the following bits:
SL1 and SLO Select the MICROWIRE clock divide-by

$$
(00=2,01=4,1 x=8)
$$

IEDG External interrupt edge polarity select
MSEL Selects G5 and G4 as MICROWIRE signals SK and SO respectively
TRUN Used to start and stop the timer/counter ($1=$ run, $0=$ stop)
TC1 Timer T1 Mode Control Bit
TC2 Timer T1 Mode Control Bit
TC3 Timer T1 Mode Control Bit

PSW REGISTER (ADDRESS O0EF)
The PSW register contains the following select bits:
GIE Global interrupt enable (enables interrupts)
ENI External interrupt enable
BUSY MICROWIRE busy shifting flag
PND External interrupt pending
ENTI Timer T1 interrupt enable
TPND Timer T1 interrupt pending (timer Underflow or capture edge)
C Carry Flip/Flop
HC Half-Carry Flip/Flop

The Half-Carry bit is also effected by all the instructions that effect the Carry flag. The flag values depend upon the instruction. For example, after executing the ADC instruction the values of the Carry and the Half-Carry flag depend upon the operands involved. However, instructions like SET C and RESET C will set and clear both the carry flags. Table XIII lists the instructions that effect the HC and the C flags.

TABLE XIII. Instructions Effecting HC and C Flags

Instr.	HC Flag	C Flag
ADC	Depends on Operands	Depends on Operands
SUBC	Depends on Operands	Depends on Operands
SET C	Set	Set
RESET C	Set	Set
RRC	Depends on Operands	Depends on Operands

CNTRL2 REGISTER (ADDRESS 00CC)
Blt 7

MC3	MC2	MC1	CMPEN	CMPRD	CMPOE	WDUDF	
Unused							
R/W	R/W	R/W	R/W	R/O	R/W	R/O	

MC3 Modulator/Timer Control Bit
MC2 Modulator/Timer Control Bit
MC1 Modulator/Timer Control Bit
CMPEN Comparator Enable Bit
CMPRD Comparator Read Bit
CMPOE Comparator Output Enable Bit
WDUDF WATCHDOG Timer Underflow Bit (Read Only)
WDREG REGISTER (ADDRESS OOCD)
WDREN WATCHDOG Reset Enable Bit (Write Once Only)
Blit 7
Blit 0

UNUSED	WDREN

Memory Map
All RAM, ports and registers (except A and $P C$) are mapped into data memory address space.

TABLE IX. Memory Map

Address	Contents
00 to 2F	On-chip RAM bytes (48 bytes)
30 to 7F	Unused RAM Address Space (Reads as All Ones)
80 to BF	Expansion Space for On-Chip EERAM (Reads Undefined Data)
C0 to C7	Reserved
C8	MIWU Edge Select Register (Reg:WKEDG)
C9	MIWU Enable Register (Reg:WKEN)
CA	MIWU Pending Register (Reg:WKPND)
CB	Reserved
CC	Control2 Register (CNTRL2)
CD	WATCHDOG Register (WDREG)
CE	WATCHDOG Counter (WDCNT)
CF	Modulator Reload (MODRL)
D0	Port L Data Register
D1	Port L Configuration Register
D2	Port L Input Pins (Read Only)
D3	Reserved for Port L
D4	Port G Data Register
D5	Port G Configuration Register
D6	Port G Input Pins (Read Only)
D7	Port I Input Pins (Read Only)
D8 to DB	Reserved for Port C
DC	Port D Data Register
DD to DF	Reserved for Port D
E0 to EF	On-Chip Functions and Registers
E0 to E7	Reserved for Future Parts
F8	Reseneed
E9	MICROWIRE Shift Register
EA	Timer Lower Byte
EB	Timer Upper Byte
EC	Timer1 Autoreload Register Lower Byte
ED	Timert Autoreload Register Upper Byte
EE	CNTRL1 Control Register
EF	PSW Register
F0 to FF	On-Chip RAM Mapped as Registers
FC	X Register
FD	SP Register
FE	B Register

Reading other unused memory locations will return undefined data.

Addressing Modes

There are ten addressing modes, six for operand addressing and four for transfer of control.

OPERAND ADDRESSING MODES
 REGISTER INDIRECT

This is the "normal" addressing mode for the chip. The operand is the data memory addressed by the \mathbf{B} or \mathbf{X} pointer. REGISTER INDIRECT WITH AUTO POST INCREMENT OR DECREMENT

This addressing mode is used with the LD and X instructions. The operand is the data memory addressed by the \mathbf{B} or \mathbf{X} pointer. This is a register indirect mode that automatically post increments or post decrements the \mathbf{B} or \mathbf{X} pointer after executing the instruction.

DIRECT

The instruction contains an 8-bit address field that directly points to the data memory for the operand.
IMMEDIATE
The instruction contains an 8 -bit immediate field as the operand.

SHORT IMMEDIATE

This addressing mode issued with the LD B,\# instruction, where the immediate \# is less than 16. The instruction contains a 4-bit immediate field as the operand.
INDIRECT
This addressing mode is used with the LAID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC) for accessing a data operand from the program memory.

TRANSFER OF CONTROL ADDRESSING MODES

RELATIVE
This mode is used for the JP instruction with the instruction field being added to the program counter to produce the next instruction address. JP has a range from -31 to +32 to a!lo:! a ono bijto iclativo jump (ur : its impiementeú 'iy a NOP instruction). There are no "blocks" or "pages" when using JP since all 15 bits of the PC are used.

ABSOLUTE

This mode is used with the JMP and JSR instructions with the instruction field of 12 bits replacing the lower 12 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory segment.

ABSOLUTE LONG

This mode is used with the JMPL and JSRL instructions with the instruction field of 15 bits replacing the entire 15 bits of the program counter (PC). This allows jumping to any location in the entire 32k program memory space.

INDIRECT

This mode is used with the JID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC) for accessing a location in the program memory. The contents of this program memory location serves as a partial address (lower 8 bits of PC) for the jump to the next instruction.

Instruction Set

REGISTER AND SYMBOL DEFINITIONS

Registers

A 8 -bit Accumulator register
B $\quad 8$-bit Address register
X 8-bit Address register
SP 8-bit Stack pointer register
PC 15-bit Program counter register
PU upper 7 bits of PC
PL lower 8 bits of PC
C 1-bit of PSW register for carry
HC Half Carry
Symbols
[B] Memory indirectly addressed by B register
[X] Memory indirectly addressed by X register
Mem Direct address memory or [B]
Meml Direct address memory or [B] or Immediate data
Imm 8-bit Immediate data
Reg Register memory: addresses F0 to FF (Includes B, X and SP)
Bit Bit number (0 to 7)
$\leftarrow \quad$ Loaded with
\longleftrightarrow Exchanged with
GIE 1-bit of PSW register for global interrupt enable
Instruction Set

ADD ADC SUBC AND OR XOR IFEQ IFGT IFBNE DRSZ SBIT RBIT IFBIT	add add with carry subtract with carry Logical AND Logical OR Logical Exclusive-OR IF equal IF greater than IF B not equal Decrement Reg., skip if zero Set bit Reset bit If bit	$A \leftarrow A+M e m l$ $A \leftarrow A+$ Meml $+C, C \leftarrow$ Carry $H C \leftarrow$ Half Carry $A \leftarrow A+\overline{M e m l}+C, C \leftarrow$ Carry $\mathrm{HC} \leftarrow$ Half Carry $A \leftarrow A$ and Meml $A \leftarrow A$ or Meml $A \leftarrow A$ xor Meml Compare A and Meml, Do next if $A=$ Meml Compare A and Meml, Do next if A>Meml Do next if lower 4 bits of $B \neq I \mathrm{~mm}$ Reg $\leftarrow \operatorname{Reg}-1$, skip if Reg goes to 0 1 to bit, Mem (bit $=0$ to 7 immediate) 0 to bit, Mem If bit, Mem is true, do next instr.
X LD A LD mem LD Reg	Exchange A with memory Load A with memory Load Direct memory Immed. Load Register memory Immed.	$\mathrm{A} \longleftrightarrow$ Mem $A \leftarrow$ Meml Mem \leftarrow Imm Reg \leftarrow Imm
X X LDA LD A LDM	Exchange A with memory [B] Exchange A with memory [X] Load A with memory [B] Load A with memory [X] Load Memory Immediate	$\begin{array}{lc} A \longleftrightarrow[B] & (B \leftarrow B \pm 1) \\ A \longleftrightarrow[X] & (X \leftarrow X \pm 1) \\ A \leftarrow[B] & (B \leftarrow B \pm 1) \\ A \leftarrow[X] & (X \leftarrow X \pm 1) \\ {[B] \leftarrow \operatorname{lmm}(B \leftarrow B \pm 1)} \\ \hline \end{array}$
CLRA INCA DECA LAID DCORA RRCA SWAPA SC RC IFC IFNC	Clear A Increment A Decrement A Load A indirect from ROM DECIMAL CORRECT A ROTATE A RIGHT THRU C Swap nibbles of A Set C Reset C If C If not C	$A \leftarrow 0$ $A \leftarrow A+1$ $A \leftarrow A-1$ $A \leftarrow R O M(P U, A)$ $A \leftarrow B C D$ correction (follows ADC, SUBC) $\mathrm{C} \rightarrow \mathrm{~A} 7 \rightarrow \ldots \rightarrow \mathrm{AO} \rightarrow \mathrm{C}$ $A 7 \ldots A 4 \longleftrightarrow A 3 \ldots A O$ $C \leftarrow 1, H C \leftarrow 1$ $\mathrm{C} \leftarrow 0, \mathrm{HC} \leftarrow 0$ If C is true, do next instruction If C is not true, do next instruction
JMPL JMP JP JSRL JSR JID RET RETSK RETI INTR NOP	Jump absolute long Jump absolute Jump relative short Jump subroutine long Jump subroutine Jump indirect Return from subroutine Return and Skip Return from Interrupt Generate an interrupt No operation	$\begin{aligned} & \mathrm{PC} \leftarrow \mathrm{ii}(\mathrm{ii}=15 \text { bits, } 0 \text { to } 32 \mathrm{k}) \\ & \mathrm{PC} 111.0 \leftarrow \mathrm{i}(\mathrm{i}=12 \text { bits }) \\ & \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{r}(\mathrm{ris}-31 \text { to }+32, \text { not } 1) \\ & {[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow \mathrm{ii}} \\ & {[S P] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} 11 . .0 \leftarrow \mathrm{i}} \\ & \mathrm{PL} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{~A}) \\ & \mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow \text { [SP-1] } \\ & \mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow \text { [SP-1],Skip next instruction } \\ & \mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow \text { [SP-1],GIE } \leftarrow 1 \\ & {[S P] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow 0 \mathrm{OF}} \\ & \mathrm{PC} \leftarrow \mathrm{PC}+1 \end{aligned}$

Bits 7-4																
F	E	D	C	B	A	9	8	7	6	5	4	3	2	1	0	
JP -15	JP -31	LD OFO, \#i	DRSZ OFO	RRCA	RC	ADC A, \#i	ADC A, [B]	$\begin{aligned} & \text { IFBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	*	LD B, OF	IFBNE 0	$\begin{gathered} \text { JSR } \\ 0000-00 \mathrm{FF} \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0000-00 \mathrm{FF} \end{gathered}$	$\mathrm{JP}+17$	INTR	0
JP -14	JP -30	LD 0F1, \#i	DRSZ 0F1	*	SC	$\begin{gathered} \text { SUBC A, } \\ \# i \end{gathered}$	$\begin{aligned} & \text { SUBC } \\ & \mathrm{A},[\mathrm{~B}] \end{aligned}$	$\begin{gathered} \text { IFBIT } \\ 1,[\mathrm{~B}] \end{gathered}$	*	LDB, OE	IFBNE 1	$\begin{gathered} \text { JSR } \\ 0100-01 \mathrm{FF} \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0100-01 \mathrm{FF} \end{gathered}$	$J P+18$	$J P+2$	1
JP -13	JP -29	LD OF2, \#i	DRSZ 0F2	$\begin{gathered} \mathrm{XA}, \\ {[\mathrm{X}+1} \\ \hline \end{gathered}$	$\begin{gathered} X A, \\ {[B+]} \end{gathered}$	IFEQ A, $\# i$	$\begin{aligned} & \text { IFEQ } \\ & \mathrm{A},[\mathrm{~B}] \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { IFBIT } \\ \text { 2,[B] } \\ \hline \end{array}$	*	LD B, 0D	IFBNE 2	$\begin{gathered} \text { JSR } \\ \text { 0200-02FF } \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0200-02 F F \end{gathered}$	$J P+19$	$\mathrm{JP}+3$	2
JP-12	JP -28	LD 0F3, \#i	DRSZ 0F3	$\begin{aligned} & X A \\ & {[X-]} \end{aligned}$	$\begin{aligned} & \mathrm{XA} \\ & {[\mathrm{~B}-1} \end{aligned}$	IFGT A, \#i	$\begin{aligned} & \text { IFGT } \\ & \text { A,[B] } \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & 3,[B] \\ & \hline \end{aligned}$	*	LD B, OC	IFBNE 3	$\begin{gathered} \text { JSR } \\ 0300-03 F F \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0300-03 F F \end{gathered}$	$\mathrm{JP}+20$	$J P+4$	3
JP -11	JP -27	LD 0F4, \#i	DRSZ 0F4	*	LAID	ADD A, \#i	$\begin{array}{r} \mathrm{ADD} \\ \mathrm{~A},[\mathrm{~B}] \\ \hline \end{array}$	$\begin{aligned} & \hline \text { IFBIT } \\ & 4,[B] \end{aligned}$	CLRA	LD B, 0B	IFBNE 4	$\begin{gathered} \text { JSR } \\ 0400-04 \mathrm{FF} \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0400-04 F F \\ \hline \end{gathered}$	$\mathrm{JP}+21$	$\mathrm{JP}+5$	4
JP -10	JP -26	LD 0F5, \#i	DRSZ 0F5	*	JID	AND A, \#i	$\begin{aligned} & \text { AND } \\ & \text { A, }[\mathrm{B}] \end{aligned}$	$\begin{gathered} \mathrm{IFBIT} \\ 5,[\mathrm{~B}] \\ \hline \end{gathered}$	SWAPA	LD B, OA	IFBNE 5	$\begin{gathered} \hline \text { JSR } \\ 0500-05 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0500-05 F F \end{gathered}$	$\mathrm{JP}+22$	JP + 6	5
JP -9	JP -25	LD 0F6,\#i	DRSZ 0F6	$\begin{gathered} X A, \\ {[\mathrm{X}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{XA}, \\ {[\mathrm{~B}]} \\ \hline \end{gathered}$	XOR A, $\# i$	$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A},[\mathrm{~B}] \end{aligned}$	$\begin{array}{\|c} \text { IFBIT } \\ 6,[\mathrm{~B}] \\ \hline \end{array}$	DCORA	LD B, 9	IFBNE 6	$\begin{gathered} \text { JSR } \\ 0600-06 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0600-06 F F \end{gathered}$	$J P+23$	$\mathrm{JP}+7$	6
JP - 8	JP -24	LD 0F7, \#i	DRSZ 0F7	*	*	$\begin{gathered} \text { OR A, } \\ \# \text { i } \end{gathered}$	$\begin{gathered} \hline \mathrm{OR} \\ \mathrm{~A},[\mathrm{~B}] \end{gathered}$	$\begin{aligned} & \text { IFBIT } \\ & 7,[\mathrm{~B}] \\ & \hline \end{aligned}$	*	LD B, 8	IFBNE 7	$\begin{gathered} \text { JSR } \\ \text { 0700-07FF } \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0700-07 \mathrm{FF} \end{gathered}$	$\mathrm{JP}+24$	$\mathrm{JP}+8$	7
JP -7	JP -23	LD 0F8,\#i	DRSZ 0F8	NOP	*	$\begin{gathered} \text { LD A, } \\ \# i \end{gathered}$	IFC	$\begin{aligned} & \text { SBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	LD B, 7	IFBNE 8	$\begin{gathered} \text { JSR } \\ \text { 0800-08FF } \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0800-08 F F \end{gathered}$	$\mathrm{JP}+25$	$J P+9$	8
JP -6	JP -22	LD OF9, \#i	DRSZ 0F9	*	*	*	IFNC	$\begin{array}{\|l\|} \text { SBIT } \\ 1,[\mathrm{~B}] \\ \hline \end{array}$	$\begin{aligned} & \text { RBIT } \\ & 1,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, 6	IFBNE 9	$\begin{gathered} \text { JSR } \\ 0900-09 F F \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { JMP } \\ 0900-09 \mathrm{FF} \\ \hline \end{gathered}$	$\mathrm{JP}+26$	$\mathrm{JP}+10$	9
JP -5	JP -21	LD OFA, \#i	DRSZ OFA	$\begin{aligned} & \text { LD A, } \\ & {[\mathrm{X}+]} \end{aligned}$	$\begin{aligned} & \text { LD A, } \\ & {[\mathrm{B}+\mathrm{]}} \end{aligned}$	$\begin{gathered} \hline \mathrm{LD} \\ {[\mathrm{~B}+\mathrm{]}, \# \mathrm{i}} \\ \hline \end{gathered}$	INCA	$\begin{array}{\|l\|} \hline \text { SBIT } \\ \text { 2,[B] } \\ \hline \end{array}$	$\begin{aligned} & \text { RBIT } \\ & 2,[\mathrm{~B}] \end{aligned}$	LD B, 5	IFBNE 0A	$\begin{gathered} \text { JSR } \\ \text { OAOO-OAFF } \end{gathered}$	$\begin{gathered} \text { JMP } \\ \text { OAOO-OAFF } \\ \hline \end{gathered}$	$\mathrm{JP}+27$	$\mathrm{JP}+11$	A
JP -4	JP -20	LD 0FB, \#i	DRSZ OFB	$\begin{aligned} & \text { LD A, } \\ & {[\mathrm{X}-]} \end{aligned}$	$\begin{aligned} & \text { LD A, } \\ & \text { [B-] } \end{aligned}$	$\begin{gathered} \mathrm{LD} \\ {[\mathrm{~B}-\mathrm{l}, \# \mathrm{i}} \end{gathered}$	DECA	$\begin{aligned} & \text { SBIT } \\ & 3,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	LD B, 4	IFBNE OB	$\begin{gathered} \text { JSR } \\ 0 B 00-0 B F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0 B 00-0 B F F \end{gathered}$	$\mathrm{JP}+28$	$J P+12$	B
JP-3	JP -19	LD OFC, \#i	DRSZ OFC	LD Md, $\# i$	JMPL	X A,Md	*	$\begin{aligned} & \text { SBIT } \\ & 4,[\mathrm{~B}] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 4,[\mathrm{~B}] \\ & \hline \end{aligned}$	LDB, 3	IFBNE OC	$\begin{gathered} \hline \text { JSR } \\ \text { 0C00-OCFF } \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0 \mathrm{COO}-0 \mathrm{CFF} \\ \hline \end{gathered}$	$\mathrm{JP}+29$	$\mathrm{JP}+13$	c
JP -2	JP -18	LD OFD,\#i	DRSZ OFD	DIR	JSRL	$\begin{aligned} & \text { LD A, } \\ & \mathrm{Md} \end{aligned}$	RETSK	$\begin{aligned} & \text { SBIT } \\ & 5,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 5,[\mathrm{~B}] \end{aligned}$	LD B, 2	IFBNE OD	$\begin{gathered} \text { JSR } \\ \text { ODOO-ODFF } \end{gathered}$	$\begin{gathered} \hline \text { JMP } \\ \text { OD00-ODFF } \end{gathered}$	$\mathrm{JP}+30$	JP + 14	D
JP-1	JP -17	LD OFE, \#i	DRSZ OFE	$\begin{gathered} \text { LD A, } \\ {[\mathrm{X}]} \\ \hline \end{gathered}$	LD A, $[\mathrm{B}]$	$\begin{gathered} \text { LD } \\ \text { [B], \#i } \\ \hline \end{gathered}$	RET	$\begin{array}{\|c\|} \hline \text { SBIT } \\ 6,[\mathrm{~B}] \\ \hline \end{array}$	$\begin{aligned} & \text { RBIT } \\ & \text { 6, [B] } \end{aligned}$	LD B, 1	IFBNE OE	$\begin{gathered} \hline \text { JSR } \\ \text { OEOO-OEFF } \\ \hline \end{gathered}$	JMP $0 E 00-0 E F F$	$\mathrm{JP}+31$	$\mathrm{JP}+15$	E
JP -0	JP -16	LD 0FF, \# 1	DRSZ OFF	*	*	*	RETI	$\begin{array}{\|l\|} \hline \text { SBIT } \\ \text { 7,[B] } \\ \hline \end{array}$	$\begin{aligned} & \text { RBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	LD B, 0	IFBNE OF	$\begin{gathered} \hline \text { JSR } \\ \text { OFOO-OFFF } \end{gathered}$	$\begin{gathered} \text { JMP } \\ \text { OFO0-OFFF } \end{gathered}$	$\mathrm{JP}+32$	$J P+16$	F

where, $\quad i$ is the immediate data
Md is a directly addressed memory locaticn

* is an unused opcode (see following table)

Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instruction taking two bytes).
Most single instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details.

Arithmetic Instructions (Bytes/Cycles)

	[B]	Dlrect	Immed.
ADD	$1 / 1$	$3 / 4$	$2 / 2$
ADC	$1 / 1$	$3 / 4$	$2 / 2$
SUBC	$1 / 1$	$3 / 4$	$2 / 2$
AND	$1 / 1$	$3 / 4$	$2 / 2$
OR	$1 / 1$	$3 / 4$	$2 / 2$
XOR	$1 / 1$	$3 / 4$	$2 / 2$
IFEQ	$1 / 1$	$3 / 4$	$2 / 2$
IFGT	$1 / 1$	$3 / 4$	$2 / 2$
IFBNE	$1 / 1$		
DRSZ		$1 / 3$	
SBIT	$1 / 1$	$3 / 4$	
RBIT	$1 / 1$	$3 / 4$	
IFBIT	$1 / 1$	$3 / 4$	

Memory Transfer Instructions (Bytes/Cycles)

* $=>$ Memory location addressed by B or X or directly.

Instructions Using A \& C

Instructions	Bytes/Cycles
CLRA	$1 / 1$
INCA	$1 / 1$
DECA	$1 / 1$
LAID	$1 / 3$
DCORA	$1 / 1$
RRCA	$1 / 1$
SWAPA	$1 / 1$
SC	$1 / 1$
RC	$1 / 1$
IFC	$1 / 1$
IFNC	$1 / 1$

Transfer of Control Instructions

Instructions	Bytes/Cycles
JMPL	$3 / 4$
JMP	$2 / 3$
JP	$1 / 3$
JSRL	$3 / 5$
JSR	$2 / 5$
JID	$1 / 3$
RET	$1 / 5$
RETSK	$1 / 5$
RETI	$1 / 5$
INTR	$1 / 7$
NOP	$1 / 1$

BYTES and CYCLES per INSTRUCTION (Continued)

The following table shows the instructions assigned to unused opcodes. This table is for information only. The operations performed are subject to change without notice. Do not use these opcodes.

Unused Opcode	Instruction	Unused Opcode	Instruction
60	NOP	A9	NOP
61	NOP	AF	LD A, [B]
62	NOP	B1	C HC HC
63	NOP	B4	NOP
67	NOP	B5	NOP
8 C	RET	B7	XA, [X]
99	NOP	B9	NOP
$9 F$	LD [B], \#i	BF	LD A, [X]
A7	XA, [B]		
A8	NOP		

Option List

The mask programmable options are listed below. The options are programmed at the same time as the ROM pattern to provide the user with hardware flexibility to a variety of oscillation and packaging configuration.

OPTION 1: CKI INPUT

$=1$ Crystal (CKI/IO) CKO for crystal configuration
$=2$ External (CKI/IO) CKO available as G7 input
$=3$ R/C (CKI/IO) CKO available as G7 input

OPTION 2: BROWN OUT

$=1$ Enable Brown Out Detection
$=2$ Disable Brown Out Detection

OPTION 3: BONDING

- i 2ô-pin DiF
$=2 \quad 20$-pin DIP/SO
$=3 \quad 16-\mathrm{pin} \mathrm{SO}$
$=4 \quad 28-\mathrm{pin} \mathrm{SO}$

Development Support

IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 ln -Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely
flexible user-interface for maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real time, full speed emulation up to $10 \mathrm{MHz}, 32 \mathrm{kBytes}$ of emulation memory and 4 k frames of trace buffer memory. The user may define as many as 32 k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code or address ranges or complex triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.
During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bargraph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy to use windowed interface. Each window can be sized, highlighted, color-con-
 accessed via pull-down-menus and/or redefinable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PC via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time to under 3 seconds.
The following tables list the emulator and probe cards ordering information.

Development Support (Continued)
Emulator Ordering Information

Part Number	Description	Current Version
IM-COP8/400/1 \ddagger	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger software and RS 232 serial interface cable, with 110V @ 60 Hz Power Supply.	HOST SOFTWARE:
IM-COP8/400/2 \ddagger	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger software and RS 232 serial interface cable, with 220V @ 50 Hz Power Supply.	
DM-COP8/820CJ \ddagger	MetaLink IceMaster Debug Module. This is the low cost version of MetaLinks IceMaster. Firmware: Ver. 6.07.	

\ddagger These parts include National's COPB Assembler/Linker/Librarian Package (COP8-DEV-IBMA).

Probe Card Ordering Information

Part Number	Package	Voltage Range	Emulates
MH-820CJ20D5PC	20 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP822CJ
MHW-820CJ20DWPC	20 DIP	$2.3 \mathrm{~V}-6.0 \mathrm{~V}$	COP822CJ
MHW-820CJ28D5PC	28 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP820CJ
MHW-820CJ28DWPC	28 DIP	$2.3 \mathrm{~V}-6.0 \mathrm{~V}$	COP820CJ

MACRO CROSS ASSEMBLER

National Semiconductor offers a COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink iceMASTER emulators.

Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8 Assembler/ Linker/Librarian for IBM ${ }^{\text {P PC-XT®, }}$, AT® or Compatible	$424410632-001$

SINGLE CHIP EMULATOR

The COP820CJ family is supported by One-Time Programmable (OTP) emulators. For more detailed information refer to the emulation device specific data sheets and the emulator selection table below.

PROGRAMMING SUPPORT

Programming of the single chip emulator devices is supported by different sources.

Development Support (Continued)

The following programmers are ceritfied for programming the One-Time Programmable (OTP) devices:
EPROM Programmer Information

Manufacturer and Product	U.S. Phone Number	Europe Phone Number	Asla Phone Number
MetaLink-Debug Module	(602) 926-0797	Germany: $+49-8141-1030$	Hong Kong: $+852-737-1800$
Xeltek- Superpro	(408) $745-7974$	$\begin{aligned} & \text { Germany: } \\ & +49-2041-684758 \end{aligned}$	Singapore: $+65-276-6433$
BP Microsystems-EP-1140	(800) 225-2102	Germany: +49-89-857-66-67	Hong Kong: +852-388-0629
Data I/O-Unisite; -System 29, -System 39	(800) 322-8246	Europe: $+31-20-622866$ Germany: $+49-89-858020$	Japan: $+33-432-6991$
Abcom-COP8 Programmer		Europe: $+89-808707$	
System General Turpro-1-FX; -APRO	(408) 263-6667	Switzerland: $+31-921-7844$	Taiwan Taipei: $+2-9173005$

One-Time Programmable (OTP) Selection Table

Device Number	Package	Emulates
COP8720CJN	28 DIP	COP820CJ
COP8720CJWM	28 SO	COP820CJ
COP8722CJWM	20 DIP	COP822CJ

DIAL-A-HELPER

Dial-A-Helper is a service provided by the Microcontroller Applications Group. The Dial-A-Helper is an Electronic Bulletin Board information system.

INFORMATION SYSTEM

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.

If the user has a PC with a communications package then files from the FILE SECTION can be down-loaded to disk for later use.

FACTORY APPLICATIONS SUPPORT

Dial-A-Helper also provides immediate factory applications support. If a user has questions, he can leave messages on our electronic bulletin board.

Voice: (800) 272-9959
Modem: Canada/
U.S.: (800) NSC-MICRO
(800) 672-6427

Baud: $\quad 14.4 \mathrm{k}$
Setup: Length: 8-Bit
Parity: None
Stop Bit: 1
Operation: 24 Hrs. 7 Days

a

COP8620C/COP8622C/COP8640C/COP8642C/ COP86L20C/COP86L22C/COP86L40C/COP86L42C Single-Chip microCMOS Microcontrollers

General Description

The COP8620C/COP8640C are members of the COPSTM microcontroller family. They are fully static parts, fabricated using double-metal silicon gate microCMOS technology. These low cost microcontrollers are complete microcomputers containing all system timing, interrupt logic, ROM, RAM, EEPROM, and I/O necessary to implement dedicated control functions in a variety of applications. Features include an 8-bit memory mapped architecture, MICROWIRE/ PLUSTM serial I/O, a 16-bit timer/counter with capture register and a multi-sourced interrupt. Each I/O pin has software selectable options to adapt the device to the specific application. The part operates over a voltage range of 4.5 V to 6.0 V . High throughput is achieved with an efficient, regular instruction set operating at a 1 microsecond per instruction rate.

Features

- Low Cost 8-bit microcontroller
- Fully static CMOS
- $1 \mu \mathrm{~s}$ instruction time
- Low current drain (2.2 mA at $3 \mu \mathrm{~s}$ instruction rate)

Low current static HALT mode (Typically $<1 \mu \mathrm{~A}$)
\square Single supply operation: 4.5 to 6.0 V

- 2048 Bytes ROM/64 Bytes RAM/64 Bytes EEPROM on COP8640C
- 1024 bytes ROM/ 64 bytes RAM/ 64 bytes EEPROM on COP8620C
- 16-bit read/write timer operates in a variety of modes
- Timer with 16-bit auto reload register
- 16-bit external event counter
- Timer with 16 -bit capture register (selectable edge)

■ Multi-source interrupt

- Reset master clear
- External interrupt with selectable edge
- Timer interrupt or capture interrupt
- Software interrupt
- 8-bit stack pointer (stack in RAM)
- Powerful instruction set, most instructions single byte
- BCD arithmetic instructions
- MICROWIRE PLUSTM serial I/O
- 28 pin package (optional 20 pin package)
- 24 input/output pins (28-pin package)
- Software selectable I/O options (TRI-STATE ${ }^{\oplus}$, pushpull, weak pull-up)
- Schmitt trigger inputs on Port G
- Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
m Hybrid emulator devices
- Fully supported by MetaLink's Development Systems

Block Diagram

TL/DD/10366-1
FIGURE 1

COP86L20C/COP86L22C/COP86L40C/COP86L42C

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
7 V
Voltage at any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into V_{CC} Pin (Source) 50 mA
$\begin{array}{lr}\text { Total Current out of GND Pin (Sink) } & 60 \mathrm{~mA} \\ \text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+140^{\circ} \mathrm{C}\end{array}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Operating Voltage Power Supply Ripple (Note 1)	Peak to Peak	2.5		$\begin{gathered} 6.0 \\ 0.1 V_{C C} \end{gathered}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Operating Voltage during EEPROM Write		4.5		6.0	V
Supply Current (Note 2) $\mathrm{CKI}=10 \mathrm{MHz}$ Supply Current during Write Operation (Note 2) CKI $=10 \mathrm{MHz}$ HALT Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{tc}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{tc}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		<1	$\begin{array}{r} 15 \\ 10 \\ \hline \end{array}$	mA mA $\mu \mathrm{A}$
Input Levels RESET, CKI Logic High Logic Low All Other Inputs Logic High Logic Low		0.9 VCC 0.7 VCC		0.1 Vcc $0.2 \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
Hi-Z Input Leakage Input Pullup Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{oV} \end{aligned}$	$\begin{gathered} -2 \\ -40 \end{gathered}$		$\begin{gathered} +2 \\ -250 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
G Port Input Hysteresis (Note 5)				0.35 V CC	V
Output Current Levels D Outputs Source Sink	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V}$ $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V}$ $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$ $V_{C O}=2.5 \mathrm{~V}, V_{C L}=0.4 \mathrm{~V}$	$\begin{gathered} -0.4 \\ -0.4 \\ 10 \\ 2 \end{gathered}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{ini} \end{aligned}$
All Others Source (Weak Pull-Up) Source (Push-Pull Mode) Sink (Push-Pull Mode) TRI-STATE Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{VV}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -10 \\ -2.5 \\ -0.4 \\ -0.2 \\ 1.6 \\ 0.7 \\ -2.0 \end{gathered}$		$\begin{aligned} & -110 \\ & -33 \end{aligned}$ $+2.0$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA mA mA $\mu \mathrm{A}$
Allowable Sink/Source Current Per Pin D Outputs (Sink) All Others				$\begin{array}{r} 15 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \text { Maximum Input Current (Note 4) } \\ & \text { Without Latchup (Room Temp) (Note 5) } \end{aligned}$	Room Temp			± 100	mA
RAM Retention Voltage, Vr	500 ns Rise and Fall Time (Min)	2.0			V
Input Capacitance (Note 5)				7	pF
$\begin{aligned} & \text { EEPROM Characteristics } \\ & \text { EEPROM Write Cyyle Time } \\ & \text { EEPROM Number of Write Cycles } \\ & \text { EEPROM Data Retention } \end{aligned}$		10		$\begin{gathered} 10 \\ 10,000 \end{gathered}$	ms Cycle Years

Note 1: Rate of voltage change must be less than $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to V_{Cc}, L and G ports are at TRI-STATE and tied to ground, all outputs low and tied to ground.
Note 4: Pins G6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$). The effective resistance to V_{CC} is 750Ω (typical). These two pins will not latch up. The voltage at G 6 and $\overline{\mathrm{RESET}}$ pins must be limited to less than 14 V .

COP86L20C/COP86L22C/COP86L40C/COP86L42C (Continued)
AC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Instruction Cycle Time (tc) Ext, Crystal/Resonator (Div-by 10) R/C Oscillator Mode (Div-by 10)	$\begin{gathered} V_{C C} \geq 4.5 \mathrm{~V} \\ 2.5 \mathrm{~V} \leq V_{C C} \leq 6.0 \mathrm{~V} \\ V_{C C} \geq 4.5 \mathrm{~V} \\ 2.5 \mathrm{~V} \leq V_{C C} \leq 6.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \\ \hline \end{gathered}$;	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \end{aligned}$
CKI Clock Duty Cycle (Note 5) Rise Time (Note 5) Fall Time (Note 5)	$\mathrm{fr}=10 \mathrm{MHz}$ Ext Clock $\mathrm{fr}=10 \mathrm{MHz}$ Ext Clock	40		$\begin{gathered} \hline 60 \\ 12 \\ 8 \end{gathered}$	$\begin{aligned} & \hline \% \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Inputs ${ }^{\text {t }}$ SETUP $t_{\text {HOLD }}$		$\begin{gathered} 200 \\ 60 \\ \hline \end{gathered}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Output Propagation Delay tPD1, tPD0 SO, SK All Others	$C_{L}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$			$\begin{gathered} 0.7 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \end{aligned}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuWH) MICROWIRE Output Propagation Delay Time (tupD)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{C}} \end{aligned}$			
Reset Pulse Width		1.0			$\mu \mathrm{s}$

Note 5: Parameter sampled (not 100\% tested).

Timing Diagram

TL/DD/10366-19
FIGURE 2. MICROWIRE/PLUS TIming

COP8620C/COP8622C/COP8640C/COP8642C

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
$7 V$
Voltage at any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into $V_{C C}$ Pin (Source) 50 mA

> Total Current out of GND Pin (Sink) $\quad 60 \mathrm{~mA}$ Storage Temperature Range Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electri'al specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Operating Voltage Power Supply Ripple (Note 1)	Peak to Peak	4.5		$\begin{gathered} 6.0 \\ 0.1 V_{C C} \end{gathered}$	$\begin{aligned} & V \\ & V \end{aligned}$
Supply Current (Note 2) $\mathrm{CKI}=10 \mathrm{MHz}$ Supply Current during Write Operation (Note 2) $\mathrm{CKI}=10 \mathrm{MHz}$ HALT Current (Note 3)	$\begin{aligned} & V_{C C}=6 \mathrm{~V}, \mathrm{tc}=1 \mu \mathrm{~s} \\ & V_{C C}=6.0 \mathrm{~V}, \mathrm{tc}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		<1	$\begin{gathered} 9 \\ \\ 15 \\ 10 \end{gathered}$	mA mA $\mu \mathrm{A}$
Input Levels RESET, CKI Logic High Logic Low All Other Inputs Logic High Logic Low		$\begin{aligned} & 0.9 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.1 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & V \\ & V \\ & v \\ & V \end{aligned}$
Hi-Z Input Leakage Input Pullup Current	$\begin{aligned} & V_{C C}=6.0 \mathrm{~V} \\ & V_{C C}=6.0 \mathrm{~V}, V_{I N}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline-2 \\ -40 \\ \hline \end{gathered}$		$\begin{array}{r} +2 \\ -250 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
G Port Input Hysteresis (Note 5)				$0.35 \mathrm{~V}_{\text {CC }}$	V
Output Current Levels D Outputs Source Sink All Others Source (Weak Pull-Up) Source (Push-Pull Mode) Sink (Push-Pull Mode) TRI-STATE Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, V_{\mathrm{Ci}}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ 10 \\ -10 \\ -0.4 \\ 1.6 \\ -2.0 \\ \hline \end{gathered}$		$\begin{array}{r} -110 \\ +2.0 \\ \hline \end{array}$	mA mA $\mu \mathrm{A}$ min mA $\mu \mathrm{A}$
Allowable Sink/Source Current Per Pin D Outputs (Sink) All Others				$\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current (Note 4) Without Latchup (Room Temp) (Note 5)	Room Temp			± 100	mA
RAM Retention Voltage, Vr	500 ns Rise and Fall Time (Min)	2.0			V
Input Capacitance (Note 5)				7	pF
EEPROM Characteristics EEPROM Write Cycle Time EEPROM Number of Write Cycles EEPROM Data Retention		10		$\begin{gathered} 10 \\ 10,000 \end{gathered}$	ms Cycle Years

Note 1: Rate of voltage change must be less than $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $V_{C C}$, L and G ports are at TRI-STATE and tied to ground, all outputs low and tied to ground.
Note 4: Pins G6 and $\overline{R E S E T}$ are designed with a high voltage input network for factory testing. These pins allow input voltages greater than V_{CC} and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$). The effective resistance to $V_{C C}$ is 750Ω (typical). These two pins will not latch up. The voltage at G 6 and $\overline{\text { RESET }}$ pins must be limited to less than 14 V .

COP8620C/COP8622C/COP8640C/COP8642C (Continued)

AC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Instruction Cycle Time (tc) Ext, Crystal/Resonator (Div-by 10) R/C Oscillator Mode (Div-by 10)		1 3		$\begin{aligned} & D C \\ & D C \end{aligned}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$
CKI Clock Duty Cycle (Note 5) Rise Time (Note 5) Fall Time (Note 5)	$\mathrm{fr}=10 \mathrm{MHz}$ Ext Clock $\mathrm{fr}=10 \mathrm{MHz}$ Ext Clock	40		$\begin{gathered} 60 \\ 12 \\ 8 \end{gathered}$	$\begin{aligned} & \hline \% \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Inputs tsetup thold		$\begin{gathered} 200 \\ 60 \end{gathered}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Output Propagation Delay tpD1, $^{\text {t }}$ PDO SO, SK All Others	$C_{L}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$			$\begin{gathered} 0.7 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \end{aligned}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay Time (tupD)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{C}} \end{aligned}$			
Reset Pulse Width		1.0			$\mu \mathrm{S}$

Note 5: Parameter sampled (not 100\% tested).

COP6620C/COP6622C/COP6640C/COP6642C

Absolute Maximum Ratings

If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for availabllity and specifications.
$\begin{array}{lr}\text { Supply Voltage (} V_{C C} \text {) } & 6 \mathrm{~V} \\ \text { Voltage at any Pin } & -0.3 \mathrm{~V} \text { to } \mathrm{V}_{C C}+0.3 \mathrm{~V} \\ \text { Total Current into } V_{C C} \text { Pin (Source) } & 40 \mathrm{~mA}\end{array}$

Total Current out of GND Pin (Sink)
48 mA Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$ Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Operating Voltage Power Supply Ripple (Note 1)	Peak to Peak	4.5		$\begin{gathered} 5.5 \\ 0.1 \mathrm{~V}_{\mathrm{CC}} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Supply Current (Note 2) $\mathrm{CKI}=10 \mathrm{MHz}$ Supply Current during Write Operation (Note 2) $\mathrm{CKI}=10 \mathrm{MHz}$ HALT Current (Note 3)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{tc}=1 \mu \mathrm{~s}$ $\begin{aligned} & V_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{tc}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		<10	15 21 40	mA mA $\mu \mathrm{A}$
Input Levels RESET, CKI Logic High Logic Low All Other Inputs Logic High Logic Low		$\begin{aligned} & 0.9 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.1 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$
Hi-Z Input Leakage Input Pullup Current	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & V_{C C}=4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -5 \\ -35 \\ \hline \end{gathered}$		$\begin{gathered} \hline+5 \\ -300 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
G Port Input Hysteresis (Note 5)				$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels D Outputs Source Sink All Others Source (Weak Pull-Up) Source (Push-Pull Mode) Sinik (Fusit-Fuil iviode) TRI-STATE Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.35 \\ 9 \\ -9 \\ -0.35 \\ 1.4 \\ -5.0 \end{gathered}$		$\begin{array}{r} -120 \\ +5.0 \\ \hline \end{array}$	mA mA $\mu \mathrm{A}$ mA mA $\mu \mathrm{A}$
Allowable Sink/Source Current Per Pin D Outputs (Sink) All Others				$\begin{aligned} & 12 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current (Note 4) Without Latchup (Room Temp) (Note 5)	Room Temp			± 100	mA
RAM Retention Voltage, Vr	500 ns Rise and Fall Time (Min)	2.5			V
Input Capacitance (Note 5)				7	pF
EEPROM Characteristics EEPROM Write Cycle Time EEPROM Number of Write Cycles EEPROM Data Retention		10		$\begin{gathered} 10 \\ 10,000 \end{gathered}$	ms Cycle Years

Note 1: Rate of voltage change must be less than $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to V_{CC}, L and G ports are at TRI-STATE and tied to ground, all outputs low and tied to ground.
Note 4: Pins G6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than V_{CC} and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$). The effective resistance to $V_{C C}$ is 750Ω (typical). These two pins will not latch up. The voltage at $G 6$ and $\overline{R E S E T}$ pins must be limited to less than 14 V .

COP6620C/COP6622C/COP6640C/COP6642C (Continued)

AC Electrical Characteristics $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Instruction Cycle Time (tc) Ext, Crystal/Resonator (Div-by 10)		1		DC	$\mu \mathrm{S}$
CKI Clock Duty Cycle (Note 5) Rise Time (Note 5) Fall Time (Note 5)	fr $=9 \mathrm{MHz}$ Ext Clock fr $=9 \mathrm{MHz}$ Ext Clock	40		$\begin{gathered} \hline 60 \\ 12 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \% \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Inputs ${ }^{\text {tseTUP }}$ $t_{\text {HOLD }}$		$\begin{gathered} 220 \\ 66 \\ \hline \end{gathered}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Output Propagation Delay tpD1 $^{\text {, }}$ tPD 0 SO, SK All Others	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$			$\begin{aligned} & 0.8 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay Time (tupD)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{2} \end{aligned}$			
Reset Pulse Width		1.0			$\mu \mathrm{S}$

Note 5: Parameter sampled (not 100\% tested).

Connection Diagrams

DUAL-IN-LINE PACKAGE

TL/DD/10366-3
Top View
Order Number
COP6622C-XXX/N, COP66L22C-XXX/N, COP6642C-XXX/N, COP66L42C-XXX/N, COP8622C-XXX/N, COP86L22C-XXX/N, COP8642C-XXX/N, COP86L42C-XXX/N See NS Package Number D20A or N20A
(D Package for Prototypes Only)

SURFACE MOUNT

TL/DD/10366-3
Top View
Order Number
COP6622C-XXX/WM, COP66L22C-XXX/WM, COP6642C-XXX/WM, COP66L42C-XXX/WM, COP8622C-XXX/WM, COP86L22C-XXX/WM, COP8642C-XXX/WM, COP86L42C-XXX/WM See NS Package Number M20B

TL/DD/10366-6

28 DIP

Order Number
COP6620C-XXX/N, COP66L20C-XXX/N, COP6640C-XXX/N, COP66L40C-XXX/N, COP8620C-XXX/N, COP86L20C-XXX/N, COP8640C-XXX/N, COP86L40C-XXX/N See NS Package Number D28C or N28B (D Package for Prototypes Only)

28 SO Wide	
64/50-1	28-c3/10
65/5k-2	$27-62$
66/si-3	$26-61$
67/CxO-4	$25-\mathrm{Go/int}$
CKI-5	24 - -REST
$\mathrm{vcc}-6$	23 -GND
$10-7$	$22-03$
$11-8$	$29-02$
12 -9	n-
$13-10$	$19-\infty$
L0-11	$18-17$
$11-12$	$17-16$
L2-13	$16-\mathrm{L5}$
L3-14	$15-$

Order Number
COP6620C-XXX/WM, COP66L20C-XXX/WM, COP6640C-XXX/WM, COP66L40C-XXX/WM, COP8620C-XXX/WM, COP86L20C-XXX/WM, COP8640C-XXX/WM, COP86L40C-XXX/WM See NS Package Number M28B

FIGURE 3. Connection Dlagrams

Pin Descriptions

$V_{C C}$ and GND are the power supply pins.
CKI is the clock input. This can come from an external source, a R/C generated oscillator or a crystal (in conjunction with CKO). See Oscillator description.
$\overline{\text { RESET }}$ is the master reset input. See Reset description.
PORT I is a four bit Hi Z input port.
PORT L is an 8-bit I/O port.
There are two registers associated with each LI/O port: a data register and a configuration register. Therefore, each L I/O bit can be individually configured under software control as shown below:

Port L Config.	Port L Data	Port L Setup
0	0	Hi-Z Input (TRI-STATE)
0	1	Input With Weak Pull-Up
1	0	Push-Pull "0" Output
1	1	Push-Pull "1' Output

Three data memory address locations are allocated for these ports, one for data register, one for configuration register and one for the input pins.
PORT G is an 8-bit port with $61 / O$ pins (G0-G5) and 2 input pins (G6, G7). All eight G-pins have Schmitt Triggers on the inputs. The G7 pin functions as an input pin under normal operation and as the continue pin to exit the HALT mode. There are two registers with each I/O port: a data register and a configuration register. Therefore, each I/O bit can be individually configured under software control as shown below.

Port G Config.	Port G Data	Port G Setup
0	0	Hi-Z Input (TRI-STATE)
0	1	Input With Weak Pull-Up
1	0	Push-Pull "0" Output
1	1	Push-Pull "1" Output

Three data memory address locations are allocated for these ports, one for data register, one for configuration register and one for the input pins. Since G6 and G7 are input only pins, any attempt by the user to set them up as outputs by writing a one to the configuration register will be disregarded. Reading the G6 and G7 configuration bits will return zeros. Note that the chip will be placed in the HALT mode by setting the G7 data bit.
Six bits of Port G have alternate features:
GO INTR (an external interrupt)
G3 TIO (timer/counter input/output)
G4 SO (MICROWIRE serial data output)
G5 SK (MICROWIRE clock I/O)
G6 SI (MICROWIRE serial data input)
G7 CKO crystal oscillator output (selected by mask option) or HALT restart input (general purpose input)
Pins G1 and G2 currently do not have any alternate functions.
PORT D is a four bit output port that is set high when RESET goes low.

Functional Description

Figure 1 shows the block diagram of the internal architecture. Data paths are illustrated in simplified form to depict
how the various logic elements communicate with each other in implementing the instruction set of the device.

ALU AND CPU REGISTERS

The ALU can do an 8 -bit addition, subtraction, logical or shift operation in one cycle time.
There are five CPU registers:
A is the 8 -bit Accumulator register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
B is the 8 -bit address register, can be auto incremented or decremented.
X is the 8 -bit alternate address register, can be incremented or decremented.
SP is the 8-bit stack pointer, points to subroutine stack (in RAM).
B, X and SP registers are mapped into the on chip RAM. The B and X registers are used to address the on chip RAM. The SP register is used to address the stack in RAM during subroutine calls and returns.

PROGRAM MEMORY

Program memory for the COP8620C/COP8622C consists of 1024 bytes of ROM and the COP8640C/COP8642C consists of 2048 bytes of ROM. These bytes may hold program instructions or constant data. The program memory is addressed by the 15 -bit program counter (PC). ROM can be indirectly read by the LAID instruction for table lookup.

DATA MEMORY

The data memory address space includes on chip RAM, EEPROM, I/O and registers. Data memory is addressed directly by the instruction or indirectly through B, X and SP registers.
The COP8620C/COP8640C has 64 bytes of RAM. Sixteen bytes of RAM are mapped as "registers", these can be loaded immediately and decremented and tested. Three specific registers: X, B, and SP are mapped into this space, the other registers are available for general usage.
Any bit of data memory can be directly set, reset or tested. I/O and registers (except A and PC) are memory mapped; therefore, I/O bits and register bits can be directly and individually set, reset and tested. RAM contents are undefined upon power-up.
The COP8620C/COP8640C provides 64 bytes of EEPROM for nonvolatile data memory. The data EEPROM can be read and written in exactly the same way as the RAM. All instructions that perform read and write operations on the RAM work similarly upon the data EEPROM. The data EEPROM contains all 00s when shipped by the factory.
A data EEPROM programming cycle is initiated by an instruction such as X, LD, SBIT and RBIT. The EE memory support circuitry sets the BsyERAM flag in the EECR register immediately upon beginning a data EEPROM write cycle. It will be automatically reset by the hardware at the end of the data EEPROM write cycle. The application program should test the BsyERAM flag before attempting a write operation to the data EEPROM. A second EEPROM write operation while a write operation is in progress will be ignored and the Werr flag in the EECR register will be set to indicate the error status. Once the write operation starts, nothing will stop the write operation, not by resetting the device, and not even turning off the V_{CC} will guarantee the write operation to stop.
Warning: The data memory pointer should not point to EEPROM unless the EEPROM is addressed. This will prevent inadvertent write to EEPROM.

Functional Description (Continued)

EECR AND EE SUPPORT CIRCUITRY

The EEPROM module contains EE support circuits to generate all necessary high voltage programming pulses. An EEPROM cell in the erase state is read out as a 0 and the written state as a 1 . The EECR register provides control, status and test mode functions for the EE module. The EECR register bit assignments are shown below.
Werr Write Error. Writing to EEPROM while a previous write cycle is still busy, that is BsyERAM is 1 , causes Werr to be set to 1 indicating error status. Werr is a Read/Write bit and is cleared by writing a 0 into it.
BsyERAM This bit is a read only bit and is set to 1 when EEPROM is being written. It is automatically reset by the hardware upon completion of the write operation. This bit is not cleared by reset. If the bit is set upon power up or reset, the application program should test the BsyERAM flag and wait for the flag to go low before attempting a write operation to the data EEPROM.
Bits 4 to 7 of the EECR register are used for encoding various EEPROM module test modes, most of which are for factory manufacturing tests. Except BsyERAM (bit 3) the EECR is cleared by reset. EECR is mapped into address location EO. Bit 2 can be used as flag. Bits 1 and 4 are always read as " 0 " and cannot be used as flags.

RESET

The RESET input when pulled low initializes the microcontroller. Initialization will occur whenever the RESET input is pulled low. Upon initialization, the ports L and G are placed in the TRI-STATE mode and the Port D is set high. The PC, PSW and CNTRL registers are cleared. The data and configuration registers for Ports L \& G are cleared. Except bit 3, the EECR register is cleared.
The external RC network shown in Figure 4 should be used to ensure that the $\overline{\text { RESET pin is held low until the power }}$ supply to the chip stabilizes.

TL/DD/10366-9
RC $\geq 5 \times$ Power Supply Rise Time
FIGURE 4. Recommended Reset Circuit

Functional Description (Continued)

TL/DD/10366-10
FIGURE 5. Crystal and R-C Connection Dlagrams

OSCILLATOR CIRCUITS

Figure 5 shows the three clock oscillator configurations.

A. CRYSTAL OSCILLATOR

The device can be driven by a crystal clock. The crystal network is connected between the pins CKI and CKO.
Table I shows the component values required for various standard crystal values.

B. EXTERNAL OSCILLATOR

CKI can be driven by an external clock signal. CKO is available as a general purpose input and/or HALT restart control.

C. R/C OSCILLATOR

CKI is configured as a single pin RC controlled Schmitt trigger oscillator. CKO is available as a general purpose input and/or HALT restart control.
Table Il shows the variation in the oscillator frequencies (due to the part) as functions of the R/C component values (R/C tolerances not included).

TABLE I. Crystal Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

R1 $\mathbf{(k \Omega)}$	R2 $(\mathbf{M} \Omega)$	$\mathbf{C 1}$ $(\mathbf{p F})$	$\mathbf{C 2}$ $(\mathbf{p F})$	CKI Freq $(\mathbf{M H z})$
0	1	30	$30-36$	10
0	1	30	$30-36$	4
5.5	1	100	100	0.455

TABLE II. RC Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

\mathbf{R} $(\mathbf{k} \Omega)$	\mathbf{C} $\mathbf{(p F})$	CKI Freq. $(\mathbf{M H z})$	Instr. Cycle $(\boldsymbol{\mu} \mathbf{~ s})$
3.3	82	2.2 to 2.7	3.7 to 4.6
5.6	100	1.1 to 1.3	7.4 to 9.0
6.8	100	0.9 to 1.1	8.8 to 10.8

Note: $3 \mathrm{k} \leq \mathrm{R} \leq 200 \mathrm{k}$
$50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}$

Functional Description (Continued)

The device has three mask options for configuring the clock input. The CKI and CKO pins are automatically configured upon selecting a particular option.

- Crystal/Resonator (CKI/10) CKO for crystal configuration
- External (CKI/10) CKO available as G7 input
- R/C (CKI/10) CKO available as G7 input

G7 can be used either as a general purpose input or as a control input to continue from the HALT mode.

CURRENT DRAIN

The total current drain of the chip depends on:

1) Oscillator operating mode-11
2) Internal switching current-12
3) Internal leakage current-13
4) Output source current-14
5) DC current caused by external input not at V_{CC} or GND— 15
6) EEPROM current during EE read operation. This current is active during 20% of the instruction cycle time-16
7) EEPROM current during write operation-17

Thus the total current drain, It is given as

$$
\mathrm{It}=11+12+13+14+15+16+17
$$

To reduce the total current drain, each of the above components must be minimum.
Operating with a crystal network will draw more current than an external square-wave. The R/C mode will draw the most. Switching current, governed by the equation below, can be reduced by lowering voltage and frequency. Leakage current can be reduced by lowering voltage and temperature. The other two items can be reduced by carefully designing the end-user's system.
$\mathrm{I} 2=\mathrm{C} \times \mathrm{V} \times \mathrm{f}$
Where
$C=$ equivalent capacitance of the chip.
$V=$ operating voltage
$f=$ CKI frequency

HALT MODE

The device supports a power saving mode of operation: HALT. The controller is placed in the HALT mode by setting the G7 data bit, alternatively the user can stop the clock input. In the HALT mode all internal processor activities including the clock oscillator are stopped. The fully static architecture freezes the state of the controller and retains all information until continuing. In the HALT mode, power requirements are minimal as it draws only leakage currents and output current. The applied voltage (V_{CC}) may be decreased down to Vr (minimum RAM retention voltage) without altering the state of the machine.

There are two ways to exit the HALT mode: via the $\overline{\operatorname{RESET}}$ or by the CKO pin. A low on the $\overline{\text { RESET }}$ line reinitializes the microcontroller and starts executing from the address 0000 H . A low to high transition on the CKO pin causes the microcontroller to continue with no reinitialization from the address following the HALT instruction. This also resets the G7 data bit.

INTERRUPTS

There are three interrupt sources, as shown below.
A maskable interrupt on external G0 input (positive or negative edge sensitive under software control)
A maskable interrupt on timer underflow or timer capture
A non-maskable software/error interrupt on opcode zero

INTERRUPT CONTROL

The GIE (global interrupt enable) bit enables the interrupt function. This is used in conjunction with ENI and ENTI to select one or both of the interrupt sources. This bit is reset when interrupt is acknowledged.
ENI and ENTI bits select external and timer interrupt respectively. Thus the user can select either or both sources to interrupt the microcontroller when GIE is enabled.
IEDG selects the external interrupt edge $(0=$ rising edge, $1=$ falling edge). The user can get an interrupt on both rising and falling edges by toggling the state of IEDG bit after each interrupt.
IPND and TPND bits signal which interrupt is pending. After interrupt is acknowledged, the user can check these two bits to determine which interrupt is pending. This permits the interrupts to be prioritized under software. The pending flags have to be cleared by the user. Setting the GIE bit high inside the interrupt subroutine allows nested interrupts.
The software interrupt does not reset the GIE bit. This means that the controller can be interrupted by other interrupt sources while servicing the software interrupt.

INTERRUPT PROCESSING

The interrupt, once acknowledged, pushes the program counter (PC) onto the stack and the stack pointer (SP) is decremented twice. The Global Interrupt Enable (GIE) bit is reset to disable further interrupts. The microcontroller then vectors to the address 00FFH and resumes execution from that address. This process takes 7 cycles to complete. At the end of the interrupt subroutine, any of the following three instructions return the processor back to the main program: RET, RETSK or RETI. Either one of the three instructions will pop the stack into the program counter (PC). The stack pointer is then incremented twice. The RETI instruction additionally sets the GIE bit to re-enable further interrupts.
Any of the three instructions can be used to return from a hardware interrupt subroutine. The RETSK instruction should be used when returning from a software interrupt subroutine to avoid entering an infinite loop.

TL/DD/10366-11
FIGURE 6. Interrupt Block Diagram

DETECTION OF ILLEGAL CONDITIONS

The device incorporates a hardware mechanism that allows it to detect illegal conditions which may occur from coding errors, noise and 'brown out' voltage drop situations. Specifically it detects cases of executing out of undefined ROM area and unbalanced stack situations.
Reading an undefined ROM location returns 00 (hexadecimal) as its contents. The opcode for a software interrupt is also ' 00 '. Thus a program accessing undefined ROM will cause a software interrupt.
Reading an undefined RAM location returns an FF (hexadecimal). The subroutine stack grows down for each subroutine call. By initializing the stack pointer to the top of RAM (02F), the first unbalanced return instruction will cause the stack pointer to address undefined RAM. As a result the program will attempt to execute from FFFF (hexadecimal), which is an undefined ROM location and will trigger a software interrupt.

MICROWIRE/PLUSTM

MICROWIRE/PLUS is a serial synchronous bidirectional communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e. A/D converters, display drivers, EEPROMS, etc.) and with other microcontrollers which support the MICROWIRE/PLUS interface. It consists of an 8 -bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 7 shows the block diagram of the MICROWIRE/PLUS interface.
The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS interface with the internal clock source is called the Master mode of operation. Similarly, operating the MICROWIRE/PLUS interface with an external shift clock is called the Slave mode of operation.
The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. The SK clock rate is selected by the two bits, SL0 and SL1, in the CNTRL register. Table III details the different clock rates that may be selected.

TABLE III

SL1	SLO	SK Cycle Time
0	0	$2 \mathrm{t}_{\mathrm{C}}$
0	1	$4 \mathrm{t}_{\mathrm{C}}$
1	x	$8 \mathrm{t}_{\mathrm{C}}$

where,
t_{C} is the instruction cycle clock.

MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS arrangement to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. The device may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 8 shows how two microcontrollers and several peripherals may be interconnected using the MICROWIRE/PLUS arrangement.

Master MICROWIRE/PLUS Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally. The MICROWIRE/ PLUS Master always initiates all data exchanges. (See Figure 8). The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register. Table IV summarizes the bit settings required for Master mode of operation.

SLAVE MICROWIRE/PLUS OPERATION

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must be selected as an input and the SO pin is selected as an output pin by appropriately setting up the Port G configuration register. Table IV summarizes the settings required to enter the Slave mode of operation.
The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated. (See Figure 8.)

Functional Description
(Continued)
TABLE IV

G4 Config. Bit	G5 Config. Bit	G4 Fun.	G5 Fun.	G6 Fun.	Operation
1	1	SO	Int. SK	SI	MICROWIRE Master
0	1	TRI-STATE	Int. SK	SI	MICROWIRE Master
1	0	SO	Ext. SK	SI	MICROWIRE Slave
0	0	TRI-STATE	Ext. SK	SI	MICROWIRE Slave

TIMER/COUNTER

The device has a powerful 16 -bit timer with an associated 16 -bit register enabling them to perform extensive timer functions. The timer T1 and its register R1 are each organized as two 8 -bit read/write registers. Control bits in the register CNTRL allow the timer to be started and stopped under software control. The timer-register pair can be operated in one of three possible modes. Table V details various timer operating modes and their requisite control settings.

TL/DD/10366-12
FIGURE 7. MICROWIRE/PLUS Block Dlagram

Functional Description (Continued)

TABLE V. Timer Operating Modes

FIGURE 9. Timer/Counter Auto Reload Mode Block Diagram

TIO INPUT

TL/DD/10366-14
FIGURE 10. Timer Capture Mode Block Diagram

TIMER PWM APPLICATION

Figure 11 shows how a minimal component D/A converter can be built out of the Timer-Register pair in the Auto-Reload mode. The timer is placed in the "Timer with auto reload" mode and the TIO pin is selected as the timer output. At the outset the TIO pin is set high, the timer T1 holds the on time and the register R1 holds the signal off time. Setting TRUN bit starts the timer which counts down at the instruction cycle rate. The underflow toggles the TIO output and copies the off time into the timer, which continues to run. By alternately loading in the on time and the off time at each successive interrupt a PWM frequency can be easily generated.

FIGURE 11. Timer Application

Control Registers

CNTRL REGISTER (ADDRESS X'00EE)
The Timer and MICROWIRE/PLUS control register contains the following bits:
SL1 \&
SLO Select the MICROWIRE/PLUS clock divide-by
IEDG External interrupt edge polarity select
($0=$ rising edge, $1=$ falling edge)
MSEL Enable MICROWIRE/PLUS functions SO and SK
TRUN Start/Stop the Timer/Counter $(1=$ run, $0=$ stop)
TC3 Timer input edge polarity select ($0=r$ rising edge, 1 = falling edge)
TC2 Selects the capture mode
TC1 Selects the timer mode

TC1	TC2	TC3	TRUN	MSEL	IEDG	SL1	SL0
BIT 7	BIT0						

PSW REGISTER (ADDRESS X'OOEF)
The PSW register contains the following select bits:
GIE Global interrupt enable
ENI External interrupt enable
BUSY MICROWIRE/PLUS busy shifting
IPND External interrupt pending
ENTI Timer interrupt enable
TPND Timer interrupt pending
C Carry Flag
HC Half carry Flag

HC	C	TPND	ENTI	IPND	BUSY	ENI	GIE
Bit 7						Bit 0	

Memory Map

All RAM, ports and registers (except A and PC) are mapped into data memory address space.

Address	Contents
COP8620C/COP8640C	
00 to 2F	On Chip RAM Bytes
30 to 7F	Unused RAM Address Space (Reads as all Ones)
80 to BF	On Chip EEPROM (64 bytes)
C0 to CF	Expansion Space for I/O and Registers
D0 to DF	On Chip I/O and Registers
D0	Port L Data Register
D1	Port L Configuration Register
D2	Port L Input Pins (Read Only)
D3	Reserved for Port L
D4	Port G Data Register
D5	Port G Configuration Register
D6	Port G Input Pins (Read Only)
D7	Port I Input Pins (Read Only)
D8-DB	Reserved for Port C
DC	Port D Data Register
DD-DF	Reserved for Port D
E0 to EF	On Chip Functions and Registers
E0	EECR
E1-E8	Reserved
E9	MICROWIRE/PLUS Shift Register
EA	Timer Lower Byte
EB	Timer Upper Byte
EC	Timer Autoload Register Lower Byte
ED	Timer Autoload Register Upper Byte
EE	CNTRL Control Register
EF	PSW Register
F0 to FF	On Chip RAM Mapped as Registers
FC	X Register
FU	SP Hegister
FE	B Register

Reading unused memory locations below 7FH will return all ones. Reading other unused memory locations will return undefined data.

Addressing Modes

REGISTER INDIRECT

This is the "normal" mode of addressing. The operand is the memory addressed by the B register or X register.

DIRECT

The instruction contains an 8-bit address field that directly points to the data memory for the operand.

IMMEDIATE

The instruction contains an 8 -bit immediate field as the operand.

REGISTER INDIRECT

(AUTO INCREMENT AND DECREMENT)

This is a register indirect mode that automatically increments or decrements the B or X register after executing the instruction.

RELATive

This mode is used for the JP instruction, the instruction field is added to the program counter to get the new program location. JP has a range of from -31 to +32 to allow a one byte relative jump (JP +1 is implemented by a NOP instruction). There are no 'pages' when using JP, all 15 bits of PC are used.

Instruction Set

REGISTER AND SYMBOL DEFINITIONS

Registers

A $\quad 8$-bit Accumulator register
B $\quad 8$-bit Address register
X 8-bit Address register
SP 8-bit Stack pointer register
PC 15-bit Program counter register
PU upper 7 bits of PC
PL lower 8 bits of PC
C 1-bit of PSW register for carry
HC Half Carry
GIE 1-bit of PSW register for global interrupt enable

Symbols

[B] Memory indirectly addressed by B register
[X] Memory indirectly addressed by X register
Mem Direct address memory or [B]
Meml Direct address memory or [B] or Immediate data
$1 \mathrm{~mm} \quad 8$-bit Immediate data
Reg Register memory: addresses F0 to FF (Includes B, X and SP)
Bit Bit number (0 to 7)
$\leftarrow \quad$ Loaded with
\longleftrightarrow Exchanged with

Instruction Set (Continued)		
Instruction Set		
ADD	add	$A \leftarrow A+$ Meml
ADC	add with carry	$\begin{aligned} & A \leftarrow A+\text { Meml }+C, C \leftarrow \text { Carry } \\ & H C \leftarrow \text { Half Carry } \end{aligned}$
SUBC	subtract with carry	$\begin{aligned} & A \leftarrow A+\overline{M e m l}+C, C \leftarrow \text { Carry } \\ & H C \leftarrow \text { Half Carry } \end{aligned}$
AND	Logical AND	$A \leftarrow A$ and Meml
OR	Logical OR	$A \leftarrow A$ or Meml
XOR	Logical Exclusive-OR	$\mathrm{A} \leftarrow \mathrm{A}$ xor Meml
IFEQ	IF equal	Compare A and Meml, Do next if A = Meml
IFGT	IF greater than	Compare A and Meml, Do next if A > Meml
IFBNE	IF B not equal	Do next if lower 4 bits of $\mathrm{B} \neq \mathrm{lmm}$
DRSZ	Decrement Reg., skip if zero	Reg \leftarrow Reg - 1 , skip if Reg goes to 0
SBIT	Set bit	1 to bit, Mem (bit $=0$ to 7 immediate)
RBIT	Reset bit	0 to bit, Mem
IFBIT	If bit	If bit, Mem is true, do next instr.
X	Exchange A with memory	$A \longleftrightarrow$ Mem
LD A	Load A with memory	A \leftarrow Meml
LD mem	Load Direct memory Immed.	Mem $\leftarrow 1 \mathrm{~mm}$
LD Reg	Load Register memory Immed.	$\mathrm{Reg} \leftarrow \mathrm{Imm}$
X	Exchange A with memory [B]	$A \longleftrightarrow[B] \quad(B \leftarrow B \pm 1)$
x	Exchange A with memory [X]	$A \longleftrightarrow[X] \quad(X \leftarrow X \pm 1)$
LDA	Load A with memory [B]	$A \leftarrow[B] \quad(B \leftarrow B \pm 1)$
LDA	Load A with memory [X]	$A \leftarrow[X] \quad(X \leftarrow X \pm 1)$
LDM	Load Memory Immediate	$[B] \leftarrow \operatorname{Imm}(\mathrm{B} \leftarrow \mathrm{B} \pm 1)$
CLRA	Clear A	$\mathrm{A} \leftarrow 0$
INCA	Increment A	$A \leftarrow A+1$
DECA	Decrement A	$A \leftarrow A-1$
LAID	Load A indirect from ROM	$\mathrm{A} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
dCORA	DECIMAL CORRECT A	$A \leftarrow B C D$ correction (foilows ADC, SUBC)
RRCA	ROTATE A RIGHT THRU C	$\mathrm{C} \rightarrow \mathrm{A} 7 \rightarrow \ldots \rightarrow \mathrm{AO} \rightarrow \mathrm{C}$
SWAPA	Swap nibbles of A	
SC	Set C	$C \leftarrow 1, \mathrm{HC} \leftarrow 1$
RC	Reset C	$\mathrm{C} \leftarrow 0, \mathrm{HC} \leftarrow 0$
IFC	If C	If C is true, do next instruction
IFNC	If not C	If C is not true, do next instruction
JMPL	Jump absolute long	$\mathrm{PC} \leftarrow \mathrm{ii}(\mathrm{ii}=15$ bits, 0 to 32 k)
JMP	Jump absolute	PC11..0 $\leftarrow \mathrm{i}(\mathrm{i}=12$ bits)
JP	Jump relative short	$P C \leftarrow P C+r(r$ is -31 to +32, not 1$)$
JSRL	Jump subroutine long	[SP] $\leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow \mathrm{ii}$
JSR	Jump subroutine	[SP] $\leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} 11 . .0 \leftarrow \mathrm{i}$
JID	Jump indirect	$\mathrm{PL} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
RET	Return from subroutine	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}]$, PU $\leftarrow[\mathrm{SP}-1]$
RETSK	Return and Skip	SP $+2, \mathrm{PL} \leftarrow[\mathrm{SP}]$, PU \leftarrow [SP-1],Skip next instruction
RETI	Return from Interrupt	SP+2,PL $\leftarrow[$ SP], PU $\leftarrow[$ SP-1],GIE $\leftarrow 1$
INTR	Generate an interrupt	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow 0 \mathrm{OFF}$
NOP	No operation	$P C \leftarrow P C+1$

where, $\quad i \quad$ is the immediate data
Md is a directly addressed memory locatic n

- is an unused opcode (see following table)

Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instruction taking two bytes).
Most single instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details:

Arithmetic and Logic İnstructions

	[B]	Dlrect	Immed.
ADD	$1 / 1$	$3 / 4$	$2 / 2$
ADC	$1 / 1$	$3 / 4$	$2 / 2$
SUBC	$1 / 1$	$3 / 4$	$2 / 2$
AND	$1 / 1$	$3 / 4$	$2 / 2$
OR	$1 / 1$	$3 / 4$	$2 / 2$
XOR	$1 / 1$	$3 / 4$	$2 / 2$
IFEQ	$1 / 1$	$3 / 4$	$2 / 2$
IFGT	$1 / 1$	$3 / 4$	$2 / 2$
IFBNE	$1 / 1$		
DRSZ		$1 / 3$	
SBIT	$1 / 1$	$3 / 4$	
RBIT	$1 / 1$	$3 / 4$	
IFBIT	$1 / 1$	$3 / 4$	

Memory Transfer Instructions

	Register Indirect [B] [X]	Direct	Immed.		Indirect \& Decr $[\mathrm{X}+, \mathrm{X}-]$,
X A,*	1/1 $1 / 3$	2/3		1/2	1/3	
LD A,*	$1 / 1 \quad 1 / 3$	$2 / 3$	2/2	1/2	1/3	
LD B,Imm			1/1			(If $B<16$)
LD B,Imm			2/3			(If $B>15$)
LD Mem, Imm	2/2	3/3		$2 / 2$! :
LD Reg, Imm			2/3			

* $=>$ Memory location addressed by B or X or directly.

BYTES and CYCLES per INSTRUCTION (Continued)

The following table shows the instructions assigned to unused opcodes. This table is for information only. The operations performed are subject to change without notice. Do not use these opcodes.

Unused Opcode	Instruction	Unused Opcode	Instruction
60	NOP	A9	NOP
61	NOP	AF	LD A, [B]
62	NOP	B1	C HC HC
63	NOP	B4	NOP
67	NOP	B5	NOP
8 BC	RET	B7	XA, [X]
99	NOP	B9	NOP
$9 F$	LD [B], \#i	BF	LD A, [X]
A7	XA, [B]		
A8	NOP		

Option List

The mask programmable options are listed out below. The options are programmed at the same time as the ROM pattern to provide the user with hardware flexibility to use a variety of oscillator configuration.
OPTION 1: CKI INPUT
$=1$ Crystal/Resonator (CKI/10) CKO for crystal configuration
$=2$ External
$=3 \mathrm{R} / \mathrm{C}$
(CKI/10) CKO available as G7 input
(CKI/10) CKO available as G7 input
OPTION 2: BONDING
$=128$ pin DIP
$=2 \mathrm{~N} / \mathrm{A}$
$=320 \mathrm{pin}$ DIP
= 420 SO
$=528 \mathrm{SO}$
The following option information is to be sent to National along with the EPROM.

Option Data

Option 1 Value is: _ CKI Input
Option 2 Value is: _ COP Bonding

Development Support

IN-CIRCUIT EMULATOR
The MetaLink iceMASTERTM-COP8 Model 400 In-Circuit Emulator for the COP8 family of microcontrollers features
high-performance operation, ease of use, and an extremely flexible user-interface for maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and pack ages of the COP8 family.
The iceMASTER provides real time, full speed emulation up to $10 \mathrm{MHz}, 32 \mathrm{k}$ bytes of emulation memory and 4 k frames of trace buffer memory. The user may define as many as 32 k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code or address ranges or complex triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed or ORed together. Trace information consists of address bus values, opcodes and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit val ues can be displayed in binary, hex or digital waveform formats.
During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined Analysis results can be viewed in bargraph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy to use windowed interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefinable hot keys. A context sensitive hypertext/hyperlinked on-line help sys tem explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PC via the standard COMM port and its 115.2 k baud serial link keeps typical program download time to under 3 seconds.
The following tables list the emulator and probe cards ordering information.

Part Number	Description	Current Version
IM-COP8/400/1 \ddagger	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger software and RS-232 serial interface cable, with 110V @ 60 Hz Power Supply.	Host Software: Ver. 3.3 Rev. 5,
IM-COP8/400/2 \ddagger	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger software and RS-232 serial interface cable, with 220V @ $50 \mathrm{~Hz} \mathrm{Power} \mathrm{Supply}$.	Model File Rev 3.050.

[^1]Development Support (Continued)
Probe Card Ordering Informaton

Part Number	Pkg.	Voltage Range	Emulates
MHW-8640C20D5PC	20 DIP	$4.5-5.5 \mathrm{~V}$	COP8642C, 8622C
MHW-8640C20DWPC	20 DIP	$2.5-6.0 \mathrm{~V}$	COP8642C, 8622C
MHW-8640C28D5PC	28 DIP	$4.5-5.5 \mathrm{~V}$	COP8640C, 8620C
MHW-8640C28DWPC	28 DIP	$2.5-6.0 \mathrm{~V}$	COP8640C, 8620C

MACRO CROSS ASSEMBLER

National Semiconductor offers a COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink iceMASTER emulators.

Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8 Assembler/ Linker/Librarian for IBM \oplus, PC/XT®, AT \otimes or compatible.	424410632 -001

SINGLE CHIP EMULATOR DEVICE

The COP8 family is fully supported by single chip hybrid emulators. For more detailed information refer to the emulation device specific data sheets and the emulator selection table below.

PROGRAMMING SUPPORT

Programming of the single chip emulator devices is supported by different sources. The table below shows the programmers certified for programming the hybrid emulator versions.

DIAL-A-HELPER

Dial-A-Helper is a service provided by the Microcontroller Applications Group. The Dial-A-Helper is an Electronic Bulletin Board information system.

INFORMATION SYSTEM

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.

EPROM Programmer Information

Manufacturer and Product	U.S. Phone Number	Europe Phone Number	Asla Phone Number
MetaLink-Debug Module	(602) 926-0797	$\begin{aligned} & \text { Germany: + 49- } \\ & 8141-1030 \end{aligned}$	Hong Kong: +852- $737-1800$
Xeltek-Superpro	(408) 745-7974	$\begin{aligned} & \text { Germany: +49 } \\ & 2041684758 \end{aligned}$	$\begin{aligned} & \text { Singapore: }+65276 \\ & 6433 \end{aligned}$
BP Microsystems-EP-1140	(800) 224-2102	$\begin{aligned} & \text { Germany }+4989 \\ & 8576667 \end{aligned}$	Hong Kong: +852 3880629
Data I/O - Unisite; - System 29, - System 39	(800) 322-8246	$\begin{aligned} & \text { Europe: +31-20- } \\ & 622866 \\ & \text { Germany: + 49-89- } \\ & 85-8020 \end{aligned}$	$\begin{aligned} & \text { Japan: + 33-432- } \\ & 6991 \end{aligned}$
Abcom- COP8 Programmer		Europe: +89808707	
System General Turpro-1-FX; -APRO	(408) 263-6667	$\begin{aligned} & \text { Switzerland: }+31 \text { - } \\ & 921-7844 \end{aligned}$	Taiwan: +2-9173005

Single Chip Emulator Selection Table

Device Number	Clock Optlon	Package	Description	Emulates
COP8640CMHD-X	X=1: Crystal $X=2:$ External $X=3:$ R/C	28 DIP	Hybrid, UV Erasable	COP8640C, 8620C
COP8640CMHEA-X	X=1: Crystal $X=2:$ External $X=3: R / C$	28 SO	Hybrid, UV Erasable	COP8640C, 8620C
COP8642CMHD-X	X=1: Crystal $X=2:$ External $X=3: R / C$	20 DIP	Hybrid, UV Erasable	COP8642C, 8622C

Development Support (Continued)

If the user has a PC with a communications package then files from the FILE SECTION can be down-loaded to disk for later use.

ORDER P/N: MOLE-DIAL-A-HLP
Information System Package contains:
Dial-A-Helper Users Manual
Public Domain Communications Software

FACTORY APPLICATIONS SUPPORT
Dial-A-Helper also provides immediate factory applications support. If a user has questions, he can leave messages on our electronic bulletin board, which we will respond to.
Voice: (800) 272-9959
Modem: Canada/U.S.: (800) NSC-MICRO
Baud: 14.4k
Setup: Length: 8-Bit
Parity: None
Stop Bit: 1
Operation: $\quad 24$ Hrs. 7 Days

National Semiconductor

COP680C/COP681C/COP880C/COP881C/ COP980C/COP981C Microcontrollers

General Description

The COP680C/COP681C/COP880C/COP881C/COP980C, and COP981C are members of the COPSTM microcontroller family. They are fully static parts, fabricated using doublemetal silicon gate microCMOS technology. This low cost microcontroller is a complete microcomputer containing all system timing, interrupt logic, ROM, RAM, and I/O necessary to implement dedicated control functions in a variety of applications. Features include an 8 -bit memory mapped architecture, MICROWIRE/PLUSTM serial I/O, a 16-bit timer/ counter with capture register and a multi-sourced interrupt. Each I/O pin has software selectable options to adapt the device to the specific application. The part operates over a voltage range of 2.5 to 6.0 V . High throughput is achieved with an efficient, regular instruction set operating at a 1 mi crosecond per instruction rate.

Features

- Low cost 8-bit microcontroller
- Fully static CMOS
- $1 \mu \mathrm{~s}$ instruction time
- Low current drain

Low current static HALT mode (Typically $<1 \mu \mathrm{~A}$)
m Single supply operation: 2.5 to 6.0 V

- 4096 bytes ROM/128 Bytes RAM
- 16-bit read/write timer operates in a variety of modes
- Timer with 16 -bit auto reload register
- 16-bit external event counter
- Timer with 16-bit capture register (selectable edge)
- Multi-source interrupt
- Reset master clear
- External interrupt with selectable edge
- Timer interrupt or capture interrupt
- Software interrupt
- 8-bit stack pointer (stack in RAM)
- Powerful instruction set, most instructions single byte
- BCD arithmetic instructions
- MICROWIRE PLUSTM serial I/O
- 44 PLCC, 36 //O pins
- $40 \mathrm{DIP}, 36 \mathrm{I} / \mathrm{O}$ pins
- 28 DIP and SO, 24 I/O pins
- Software selectable I/O options (TRI-STATE ${ }^{\otimes}$, pushpull, weak pull-up)
- Schmitt trigger inputs on Port G
- Temperature ranges: COP98XC/COP98XCH $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, COP88XC $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, COP68XC $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
- Form factor emulation devices

E Fully supported by Metalink's development systems

Block Diagram

FIGURE 1

COP980C/COP981C

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (V_{CC})
Voltage at any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$
Total Current into VCc Pin (Source)

Total Current out of GND Pin (Sink)
60 mA Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics copg80xc; $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
```Operating Voltage 98XC 98XCH Power Supply Ripple (Note 1)```	Peak to Peak	$\begin{aligned} & 2.3 \\ & 4.0 \end{aligned}$		$\begin{gathered} 4.0 \\ 6.0 \\ 0.1 V_{C C} \\ \hline \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \\ & \hline \end{aligned}$
Supply Current $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$   (Note 2)   HALT Current   (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{tc}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{tc}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{tc}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{tc}=10 \mu \mathrm{~s} \\ & \\ & V_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & <0.7 \\ & <0.4 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.4 \\ & 2.2 \\ & 1.4 \\ & 8 \\ & 8 \\ & 5 \end{aligned}$	mA   mA   mA   $m A$   $\mu \mathrm{A}$   $\mu \mathrm{A}$
Input Levels RESET, CKI Logic High Logic Low All Other Inputs Logic High Logic Low	\%	$\begin{aligned} & 0.9 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.1 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$
Hi-Z Input Leakage Input Pullup Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -1.0 \\ & -40 \end{aligned}$		$\begin{array}{r} +1.0 \\ -250 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
G Port Input Hysteresis				$0.35 \mathrm{~V}_{\text {CC }}$	V
Output Curront Lavole   D Outputs :   Source   Sink   All Others   Source (Weak Pull-Up)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)   TRI-STATE Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ -0.2 \\ 10 \\ 2 \\ -10 \\ -2.5 \\ -0.4 \\ -0.2 \\ 1.6 \\ 0.7 \\ -1.0 \end{gathered}$		$-110$ $-33$ $+1.0$	mA   mA   mA   mA   $\mu \mathrm{A}$   $\mu \mathrm{A}$   mA   $m A$   $\mu \mathrm{A}$
Allowable Sink/Source Current Per Pin D Outputs (Sink) All Others				$\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current (Note 4) Without Latchup (Room Temp)	Room Temp			$\pm 100$	mA
RAM Retention Voltage, Vr (Note 5)	500 ns Rise and Fall Time (Min)	2.0			V
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

## COP980C/COP981C

## DC Electrical Characteristics (Continued)

Note 1: Rate of voltage change must be less than $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $\mathrm{V}_{\mathrm{CC}}$, L , C and G ports TRI-STATE and tied to ground, all outputs low and tied to ground.
Note 4: Pins G6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $\mathrm{V}_{\mathrm{CC}}$ ). The effective resistance to $\mathrm{V}_{\mathrm{CC}}$ is $750 \Omega$ (typ). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .
Note 5: To maintain RAM integrity, the voltage must not be dropped or raised instantaneously.
AC Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise speciifed

Parameter	Condition	Min	Typ	Max	Units
Instruction Cycle Time (tc)   Crystal/Resonator or External   (Div-by 10)   R/C Oscillator Mode   (Div-by 10)	$\begin{aligned} & V_{C C} \geq 4.0 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq V_{C C} \leq 4.0 \mathrm{~V} \\ & V_{C C} \geq 4.0 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq V_{C C} \leq 4.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \end{gathered}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
CKI Clock Duty Cycle (Note 6) Rise Time (Note 6) Fall Time (Note 6)	$\begin{aligned} \mathrm{fr} & =M a x \\ \mathrm{fr} & =10 \mathrm{MHz} \text { Ext Clock } \\ \mathrm{fr} & =10 \mathrm{MHz} \text { Ext Clock } \end{aligned}$	40		$\begin{gathered} 60 \\ 12 \\ 8 \end{gathered}$	$\begin{aligned} & \% \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Inputs tsetup thold	$\begin{aligned} & V_{C C} \geq 4.0 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq V_{C C} \leq 4.0 \mathrm{~V} \\ & V_{C C} \geq 4.0 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq V_{C C} \leq 4.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Output Propagation Delay tpD1 $^{\text {t }}$ tPD 0 SO, SK   All Others	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.0 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.0 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.0 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 2.5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tupd)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Input Pulse Width Interrupt Input High Time Interrupt input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{C}} \end{aligned}$			
Reset Pulse Width		1.0			$\mu \mathrm{s}$

Note 6: Parameter characterized but not production tested.

## COP880C/COP881C

## Absolute Maximum Ratings

If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage (VCC)
$7 V$
Voltage at any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into VCC Pin (Source) $\quad 50 \mathrm{~mA}$

Total Current out of GND Pin (Sink)
60 mA
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics cop88xC; $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Operating Voltage   Power Supply Ripple (Note 1)	Peak to Peak	2.5		$\begin{gathered} 6.0 \\ 0.1 V_{C C} \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Supply Current $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$   (Note 2)   HALT Current   (Note 3)	$\begin{aligned} & V_{C C}=6 \mathrm{~V}, \mathrm{tc}=1 \mu \mathrm{~s} \\ & V_{C C}=6 \mathrm{~V}, \mathrm{tc}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{tc}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{tc}=10 \mu \mathrm{~s} \\ & V_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=3.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		$\begin{gathered} <1 \\ <0.5 \end{gathered}$	$\begin{gathered} 6.0 \\ 4.4 \\ 2.2 \\ 1.4 \\ 10 \\ 6 \end{gathered}$	mA   mA   mA   mA   $\mu \mathrm{A}$   $\mu A$
Input Levels RESET, CKI Logic High Logic Low All Other Inputs Logic High Logic Low		$\begin{aligned} & 0.9 V_{C C} \\ & 0.7 V_{C C} \end{aligned}$		$\begin{aligned} & 0.1 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$
Hi-Z Input Leakage Input Pullup Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} -2 \\ -40 \end{gathered}$		$\begin{gathered} +2 \\ -250 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
G Port Input Hysteresis				$0.35 \mathrm{~V}_{\text {CC }}$	V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)   TRI-STATE Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & V_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ -0.2 \\ 10 \\ 2 \\ -10 \\ -2.5 \\ -0.4 \\ -0.2 \\ 1.6 \\ 0.7 \\ -2.0 \end{gathered}$		$\begin{gathered} -110 \\ -33 \end{gathered}$ $+2.0$	$m \hat{n}$   mA   mA   mA   $\mu \mathrm{A}$   $\mu \mathrm{A}$   mA   mA   $\mu \mathrm{A}$
Allowable Sink/Source Current Per Pin D Outputs (Sink) All Others				$\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current (Note 4) Without Latchup (Room Temp)	Room Temp			$\pm 100$	mA
RAM Retention Voltage, Vr (Note 5)	500 ns Rise and Fall Time (Min)	2.0			V
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

## COP880C/COP881C

## DC Electrical Characteristics (Continued)

Note 1: Rate of voltage change must be less than $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $\mathrm{V}_{\mathrm{CC}}$. L, C and G ports TRI-STATE and tied to ground, all outputs low and tied to ground.

Note 4: Pins G6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $\mathrm{V}_{\mathrm{CC}}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$ ). The effective resistance to $\mathrm{V}_{\mathrm{CC}}$ is $750 \Omega$ (typ). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .
Note 5: To maintain RAM integrity, the voltage must not be dropped or raised instantaneously.
AC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Instruction Cycle Time (tc) Crystal/Resonator or External (Div-by 10) R/C Oscillator Mode (Div-by 10)	$\begin{aligned} & V_{C C} \geq 4.5 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq V_{C C}<4.5 \mathrm{~V} \\ & V_{C C} \geq 4.5 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq V_{C C}<4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \end{gathered}$		DC   DC   DC   DC	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
CKI Clock Duty Cycle (Note 6) Rise Time (Note 6) Fall Time (Note 6)	$\begin{aligned} & \mathrm{fr}=\mathrm{Max} \\ & \mathrm{fr}=10 \mathrm{MHz} \text { Ext Clock } \\ & \mathrm{fr}=10 \mathrm{MHz} \text { Ext Clock } \end{aligned}$	40		$\begin{gathered} 60 \\ 12 \\ 8 \end{gathered}$	\%
Inputs tsetup $t_{\text {HOLD }}$	$\begin{aligned} & V_{C C} \geq 4.5 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq V_{C C}<4.5 \mathrm{~V} \\ & V_{C C} \geq 4.5 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq V_{C C}<4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			ns   ns   ns   ns
Output Propagation Delay tPD1, tPDO SO, SK   All Others	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, R_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\ & V_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V} \\ & V_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V} \\ & \hline \end{aligned}$	,		$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 2.5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tupd)	-	$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time	,	$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{C}} \\ & \mathrm{t}_{\mathrm{C}} \end{aligned}$			
Reset Pulse Width		1.0			$\mu \mathrm{S}$

Note 6: Parameter characterized but not production tested.
Timing Diagram


FIGURE 2. MICROWIRE/PLUS Timing

## Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
6 V
Voltage at Any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into $\mathrm{V}_{\mathrm{CC}}$ Pin (Source)
40 mA

DC Electrical Characteristics COP68xC: $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ unless otherwise speciifed

Parameter	Condition	Min	Typ	Max	Units
Operating Voltage   Power Supply Ripple (Note 1)	Peak to Peak	4.5		$\begin{gathered} 5.5 \\ 0.1 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & V \\ & v \end{aligned}$
$\begin{gathered} \text { Supply Current (Note 2) } \\ \text { CKI }=10 \mathrm{MHz} \\ \text { CKI }=4 \mathrm{MHz} \\ \text { HALT Current (Note 3) } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{tc}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{tc}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		$<10$	$\begin{aligned} & 8.0 \\ & 4.4 \\ & 30 \\ & \hline \end{aligned}$	mA   mA   $\mu \mathrm{A}$
Input Levels   RESET, CKI   Logic High   Logic Low   All Other Inputs Logic High Logic Low	.	$\begin{aligned} & 0.9 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.1 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
Hi-Z Input Leakage Input Pullup Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} -5 \\ -35 \end{gathered}$		$\begin{gathered} +5 \\ -300 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
G Port Input Hysteresis				$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels   D Outputs   Source   Sink   All Otners   Source (Weak Pull-Up)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)   TRI-STATE Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.35 \\ 9 \\ -9 \\ -0.35 \\ 1.4 \\ -5.0 \\ \hline \end{gathered}$		$\begin{aligned} & -120 \\ & +5.0 \end{aligned}$	mA   mA   $\mu \mathrm{A}$   mA   mA   $\mu \mathrm{A}$
Allowable Sink/Source Current per Pin D Outputs (Sink) All Others		.		$\begin{aligned} & 12 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current (Room Temp) without Latchup (Note 4)	Room Temp			$\pm 100$	mA
RAM Retention Voltage, Vr ( Note 5)	500 ns Rise and Fall Time (Min)	2.5			V
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

Note 1: Rate of voltage change must be less than $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to VCc, L and G ports TRI-STATE and tied to ground, all outputs low and tied to ground.
Note 4: Pins G6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$ ). The effective resistance to $V_{C C}$ is $750 \Omega$ (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .
Note 5: To maintain RAM integrity, the voltage must not be dropped or raised instantaneously.


Note 6: Parameter characterized but not production tested.

## Typical Performance Characteristics $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)$





TL/DD/10802-19

Port D Source Current



## Connection Diagrams

## Plastic Chip Carrier



TL/DD/10802-3
Top View
Order Number COP680C-XXX/V, COP880C-XXX/V, COP980C-XXX/V or COP980CH-XXX/V


TL/DD/10802-5
Top View
Order Number COP881C-XXX/N, COP981C-XXX/N, COP881C-XXX/WM, COP981C-XXX/WM, COP981CH-XXX/N or COP981CH-XXX/WM

Top View
Order Number COP680C-XXX/N, COP880C-XXX/N, COP980C-XXX/N or COP980CH-XXX/N

FIGURE 3. Connection Diagrams

## Pin Descriptions

$V_{C C}$ and GND are the power supply pins.
CKI is the clock input. This can come from an external source, a R/C generated oscillator or a crystal (in conjunction with CKO). See Oscillator description.
RESET is the master reset input. See Reset description.
PORT $I$ is an 8 -bit $\mathrm{Hi}-\mathrm{Z}$ input port. The 28 -pin device does not have a full complement of Port I pins. The unavailable pins are not terminated i.e., they are floating. A read operation for these unterminated pins will return unpredictable values. The user must ensure that the software takes this into account by either masking or restricting the accesses to bit operations. The unterminated Port I pins will draw power only when addressed.
PORT L is an 8 -bit I/O port.
PORT C is a 4-bit I/O port.
Three memory locations are allocated for the $L, G$ and $C$ ports, one each for data register, configuration register and the input pins. Reading bits 4-7 of the C-Configuration register, data register, and input pins returns undefined data.
There are two registers associated with the $L$ and $C$ ports: a data register and a configuration register. Therefore, each $L$ and C I/O bit can be individually configured under software control as shown below:

Config.	Data	Ports L and C Setup
0	0	Hi-Z Input (TRI-STATE Output)
0	1	Input with Pull-Up (Weak One Output)
1	0	Push-Pull Zero Output
1	1	Push-Pull One Output

On the 28-pin part, it is recommended that all bits of Port C be configured as outputs.
PORT G is an 8-bit port with $61 / O$ pins (G0-G5) and 2 input pins (G6, G7). All eight G-pins have Schmitt Triggers on the inputs.
There are two registers associated with the $G$ port: a data register and a configuration register. Therefore, each $G$ port bit can be individually configured under software control as shown below:

Config.	Data	Port G Setup
0	0	Hi-Z Input (TRI-STATE Output)
0	1	Input with Pull-Up (Weak One Output)
1	0	Push-Pull Zero Output
1	1	Push-Pull One Output

Since G6 and G7 are input only pins, any attempt by the user to configure them as outputs by writing a one to the configuration register will be disregarded. Reading the G6 and G7 configuration bits will return zeros. The device will be placed in the HALT mode by writing to the G7 bit in the G-port data register.
Six pins of Port $G$ have alternate features:
GO INTR (an external interrupt)
G3 TIO (timer/counter input/output)
G4 SO (MICROWIRE serial data output)
G5 SK (MICROWIRE clock I/O)
G6 SI (MICROWIRE serial data input)
G7 CKO crystal oscillator output (selected by mask option) or HALT restart input (general purpose input)
Pins G1 and G2 currently do not have any alternate functions.

PORT D is an 8-bit output port that is preset high when RESET goes low. Care must be exercised with the D2 pin operation. At RESET, the external loads on this pin must ensure that the output voltages stay above $0.9 \mathrm{~V}_{\mathrm{CC}}$ to prevent the chip from entering special modes. Also, keep the external loading on D2 to less than 1000 pF .

## Functional Description

Figure 1 shows the block diagram of the internal architecture. Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device.

## ALU AND CPU REGISTERS

The ALU can do an 8 -bit addition, subtraction, logical or shift operation in one cycle time.
There are five CPU registers:
A is the 8 -bit Accumulator register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
$B$ is the 8 -bit address register, can be auto incremented or decremented.
X is the 8 -bit alternate address register, can be incremented or decremented.
SP is the 8 -bit stack pointer, points to subroutine stack (in RAM).
$B, X$ and $S P$ registers are mapped into the on chip RAM. The $B$ and $X$ registers are used to address the on chip RAM. The SP register is used to address the stack in RAM during subroutine calls and returns.

## PROGRAM MEMORY

Program memory consists of 4096 bytes of ROM. These bytes may hold program instructions or constant data. The program memory is addressed by the 15 -bit program counter (PC). ROM can be indirectly read by the LAID instruction for table lookup.

## DATA MEMORY

The data memory address space includes on chip RAM, I/O and registers. Data memory is addressed directly by the instruction or indirectly by the B, X and SP registers.
The device has 128 bytes of RAM. Sixteen bytes of RAM are mapped as "registers" that can be loaded immediately, decremented or tested. Three specific registers: $B, X$ and SP are mapped into this space, the other bytes are available for general usage.
The instruction set permits any bit in memory to be set, reset or tested. All I/O and registers (except the A \& PC) are memory mapped; therefore, I/O bits and register bits can be directly and individually set, reset and tested. A is not memory mapped, but bit operations can be still performed on it. Note: RAM contents are undefined upon power-up.

## RESET

The RESET input when pulled low initializes the microcontroller. Initialization will occur whenever the RESET input is pulled low. Upon initialization, the ports L, G and C are placed in the TRI-STATE mode and the Port $D$ is set high. The PC, PSW and CNTRL registers are cleared. The data and configuration registers for Ports $\mathrm{L}, \mathrm{G}$ and C are cleared. The external RC network shown in Figure 4 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.

Functional Description (Continued)


TL/DD/10802-6
RC $\geq 5 \times$ Power Supply Rise Time
FIGURE 4. Recommended Reset Circuit
OSCILLATOR CIRCUITS
Figure 5 shows the three clock oscillator configurations.

## A. CRYSTAL OSCILLATOR

The device can be driven by a crystal clock. The crystal network is connected between the pins CKI and CKO.
Table I shows the component values required for various standard crystal values.

## B. EXTERNAL OSCILLATOR

CKI can be driven by an external clock signal. CKO is available as a general purpose input and/or HALT restart control.

## C. R/C OSCILLATOR

CKI is configured as a single pin RC controlled Schmitt trigger oscillator. CKO is available as a general purpose input and/or HALT restart control.

Table II shows the variation in the oscillator frequencies as functions of the component ( R and C ) values.


TL/DD/10802-7
FIGURE 5. Crystal and R-C Connection Diagrams OSCILLATOR MASK OPTIONS
The device can be driven by clock inputs between DC and 10 MHz .

TABLE I. Crystal Oscillator Configuration, $\mathrm{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

$\mathbf{R 1}$   $\mathbf{( k \Omega})$	$\mathbf{R 2}$   $(\mathbf{M} \Omega)$	$\mathbf{C 1}$   $(\mathbf{p F})$	$\mathbf{C 2}$   $(\mathbf{p F})$	CKI Freq   $(\mathbf{M H z})$	Conditions
0	1	30	$30-36$	10	
0	1	30	$30-36$	4	$V_{C C}=5 \mathrm{~V}$
5.6	1	200	$100-150$	0.455	$V_{\mathrm{CC}}=2.5 \mathrm{~V}$

TABLE II. RC Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

$\mathbf{R}$   $\mathbf{( k \Omega} \Omega)$	$\mathbf{C}$   $(\mathbf{p F})$	CKI Freq.   $(\mathbf{M H z})$	Instr. Cycle   $(\mu \mathbf{s})$	Conditions
3.3	82	2.2 to 2.7	3.7 to 4.6	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
5.6	100	1.1 to 1.3	7.4 to 9.0	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
6.8	100	0.9 to 1.1	8.8 to 10.8	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

Note: (R/C Oscillator Configuration): $3 \mathrm{k} \leq \mathrm{R} \leq 200 \mathrm{k}, 50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}$.

## Functional Description (Continued)

The device has three mask options for configuring the clock input. The CKI and CKO pins are automatically configured upon selecting a particular option.

- Crystal (CKI/10); CKO for crystal configuration
- External (CKI/10); CKO available as G7 input
- R/C (CKI/10); CKO available as G7 input

G7 can be used either as a general purpose input or as a control input to continue from the HALT mode.

## CURRENT DRAIN

The total current drain of the chip depends on:

1) Oscillator operating mode-11
2) Internal switching current-12
3) Internal leakage current-13
4) Output source current-14
5) $D C$ current caused by external input not at $V_{C C}$ or $G N D$ 15
Thus the total current drain, It is given as

$$
\mathrm{It}=\mathrm{I} 1+\mathrm{I} 2+\mathrm{I} 3+14+15
$$

To reduce the total current drain, each of the above components must be minimum.
Operating with a crystal network will draw more current than an external square-wave. The R/C mode will draw the most. Switching current, governed by the equation below, can be reduced by lowering voltage and frequency. Leakage current can be reduced by lowering voltage and temperature. The other two items can be reduced by carefully designing the end-user's system.
$12=C \times V \times i$
Where
$C=$ equivalent capacitance of the chip.
$\mathrm{V}=$ operating voltage
$f=$ CKI frequency
: inili ivicee
The device supports a power saving mode of operation: HALT. The controller is placed in the HALT mode by setting the G7 data bit, alternatively the user can stop the clock input. In the HALT mode all internal processor activities including the clock oscillator are stopped. The fully static architecture freezes the state of the controller and retains all information until continuing. In the HALT mode, power requirements are minimal as it draws only leakage currents and output current. The applied voltage ( $\mathrm{V}_{\mathrm{CC}}$ ) may be decreased down to Vr (minimum RAM retention voltage) without altering the state of the machine.
There are two ways to exit the HALT mode: via the RESET or by the CKO pin. A low on the $\overline{\operatorname{RESET}}$ line reinitializes the microcontroller and starts executing from the address

0000 H . A low to high transition on the CKO pin (only if the external or R/C clock option selected) causes the microcontroller to continue with no reinitialization from the address following the HALT instruction. This also resets the G7 data bit.

## INTERRUPTS

There are three interrupt sources, as shown below.
A maskable interrupt on external G0 input (positive or negative edge sensitive under software control)
A maskable interrupt on timer underflow or timer capture
A non-maskable software/error interrupt on opcode zero

## INTERRUPT CONTROL

The GIE (global interrupt enable) bit enables the interrupt function. This is used in conjunction with ENI and ENTI to select one or both of the interrupt sources. This bit is reset when interrupt is acknowledged.
ENI and ENTI bits select external and timer interrupt respectively. Thus the user can select either or both sources to interrupt the microcontroller when GIE is enabled.
IEDG selects the external interrupt edge ( $0=$ rising edge, $1=$ falling edge). The user can get an interrupt on both rising and falling edges by toggling the state of IEDG bit after each interrupt.
IPND and TPND bits signal which interrupt is pending. After interrupt is acknowledged, the user can check these two bits to determine which interrupt is pending. This permits the interrupts to be prioritized under software. The pending flags have to be cleared by the user. Setting the GIE bit high inside the interrupt subroutine allows nested interrupts.
The software interrupt does not reset the GIE bit. This means that the controller can be interrupted by other interrupt sources while servicing the software interrupt.

## INTERRUPT PROCESSING

The interrupt, once acknow!edged, puches the progiam counter (PC) onto the stack and the stack pointer (SP) is decremented twice. The Global Interrupt Enable (GIE) bit is reset to disable further interrupts. The microcontroller then vectors to the address 00 FFH and resumes execution from that address. This process takes 7 cycles to complete. At the end of the interrupt subroutine, any of the following three instructions return the processor back to the main program: RET, RETSK or RETI. Either one of the three instructions will pop the stack into the program counter (PC). The stack pointer is then incremented twice. The RETI instruction additionally sets the GIE bit to re-enable further interrupts.
Any of the three instructions can be used to return from a hardware interrupt subroutine. The RETSK instruction should be used when returning from a software interrupt subroutine to avoid entering an infinite loop.


TL/DD/10802-8
FIGURE 6. Interrupt Block Diagram

## DETECTION OF ILLEGAL CONDITIONS

The device contains a hardware mechanism that allows it to detect illegal conditions which may occur from coding errors, noise and 'brown out' voltage drop situations. Specifically it detects cases of executing out of undefined ROM area and unbalanced stack situations.

Reading an undefined ROM location returns 00 (hexadecimal) as its contents. The opcode for a software interrupt is also ' 00 '. Thus a program accessing undefined ROM will cause a software interrupt.
Reading an undefined RAM location returns an FF (hexadecimal). The subroutine stack grows down for each subroutine call. By initializing the stack pointer to the top of RAM, the first unbalanced return instruction will cause the stack pointer to address undefined RAM. As a result the program will attempt to execute from FFFF (hexadecimal), which is an undefined ROM location and will trigger a software interrupt.

## MICROWIRE/PLUSTM

MICROWIRE/PLUS is a serial synchronous bidirectional communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e. A/D converters, display drivers, EEPROMS, etc.) and with other microcontrollers which support the MICROWIRE/PLUS interface. It consists of an 8-bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 7 shows the block diagram of the MICROWIRE/PLUS interface.
The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS interface with the internal clock source is called the Master mode of operation. Similarly, operating the MICROWIRE/PLUS interface with an external shift clock is called the Slave mode of operation.
The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. The SK clock rate is selected by the two bits, SLO and SL1, in the CNTRL register. Table III details the different clock rates that may be selected.

TABLE III

SL1	SL0	SK Cycle Time
0	0	$2 \mathrm{t}_{\mathrm{c}}$
0	1	$4 \mathrm{t}_{\mathrm{C}}$
1	x	$8 \mathrm{t}_{\mathrm{C}}$

where,
$t_{C}$ is the instruction cycle clock.

## MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS arrangement to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. The devoce may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 8 shows how two COP880C microcontrollers and several peripherals may be interconnected using the MICROWIRE/PLUS arrangement.

## Master MICROWIRE/PLUS Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally. The MICROWIRE/ PLUS Master always initiates all data exchanges. (See Figure 8). The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register. Table IV summarizes the bit settings required for Master mode of operation.

## SLAVE MICROWIRE/PLUS OPERATION

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must be selected as an input and the SO pin is selected as an output pin by appropriately setting up the Port $G$ configuration register. Table IV summarizes the settings required to enter the Slave mode of operation.
The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated. (See Figure 8.)

Functional Description (Continued)
TABLEIV

G4   Config.   Bit	G5   Config.   Bit	G4   Fun.	G5   Fun.	G6   Fun.	Operation
1	1	SO	Int. SK	SI	MICROWIRE Master
0	1	TRI-STATE	Int. SK	SI	MICROWIRE Master
1	0	SO	Ext. SK	SI	MICROWIRE Slave
0	0	TRI-STATE	Ext. SK	SI	MICROWIRE Slave

## TIMER/COUNTER

The device has a powerful 16 -bit timer with an associated 16 -bit register enabling them to perform extensive timer functions. The timer T1 and its register R1 are each organized as two 8 -bit read/write registers. Control bits in the register CNTRL allow the timer to be started and stopped under software control. The timer-register pair can be operated in one of three possible modes. Table $V$ details various timer operating modes and their requisite control settings.


## MODE 1. TIMER WITH AUTO-LOAD REGISTER

In this mode of operation, the timer T1 counts down at the instruction cycle rate. Upon underflow the value in the register R1 gets automatically reloaded into the timer which continues to count down. The timer underflow can be programmed to interrupt the microcontroller. A bit in the control register CNTRL enables the TIO (G3) pin to toggle upon timer underflows. This allow the generation of square-wave outputs or pulse width modulated outputs under software control. (See Figure 9.)

MODE 2. EXTERNAL COUNTER
In this mode, the timer T1 becomes a 16-bit external event counter. The counter counts down upon an edge on the TIO pin. Control bits in the register CNTRL program the counter to decrement either on a positive edge or on a negative edge. Upon underflow the contents of the register R1 are automatically copied into the counter. The underflow can also be programmed to generate an interrupt. (See Figure 9)

## MODE 3. TIMER WITH CAPTURE REGISTER

Timer T1 can be used to precisely measure external frequencies or events in this mode of operation. The timer T1 counts down at the instruction cycle rate. Upon the occurrence of a specified edge on the TIO pin the contents of the timer T1 are copied into the register R1. Bits in the control register CNTRL allow the trigger edge to be specified either as a positive edge or as a negative edge. In this mode the user can elect to be interrupted on the specified trigger edge. (See Figure 10.)

FIGURE 7. MICROWIRE/PLUS Block Diagram


FIGURE 8. MICROWIRE/PLUS Application

Functional Description (Continued)
TABLE V. Timer Operating Modes

CNTRL   Bits   765	Operation Mode	T Interrupt	Timer Counts On
000	External Counter W/Auto-Load Reg.	Timer Underflow	TIO Pos. Edge
001	External Counter W/Auto-Load Reg.	Timer Underflow	TIO Neg. Edge
010	Not Allowed	Not Allowed	Not Allowed
011	Not Allowed	Not Allowed	Not Allowed
100	Timer W/Auto-Load Reg.	Timer Underflow	$\mathrm{t}_{\mathrm{C}}$
101	Timer W/Auto-Load Reg./Toggle TIO Out	Timer Underflow	${ }_{\text {t }}$
110	Timer W/Capture Register	TIO Pos. Edge	$\mathrm{t}_{\mathrm{C}}$
111	Timer W/Capture Register	TIO Neg. Edge	$\mathrm{t}_{\mathrm{C}}$



TL/DD/10802-11
FIGURE 9. Timer/Counter Auto Reload Mode Block Diagram


TL/DD/10802-12
FIGURE 10. Timer Capture Mode Block Dlagram

## TIMER PWM APPLICATION

Figure 11 shows how a minimal component D/A converter can be built out of the Timer-Register pair in the Auto-Reload mode. The timer is placed in the "Timer with auto reload" mode and the TIO pin is selected as the timer output. At the outset the TIO pin is set high, the timer T1 holds the on time and the register R1 holds the signal off time. Setting TRUN bit starts the timer which counts down at the instruction cycle rate. The underflow toggles the TIO output and copies the off time into the timer, which continues to run. By alternately loading in the on time and the off time at each successive interrupt a PWM frequency can be easily generated.


TL/DD/10802-13
FIGURE 11. Timer Application

## Control Registers

## CNTRL REGISTER (ADDRESS X'00EE)

The Timer and MICROWIRE/PLUS control register contains the following bits:
SL1 \& SLO Select the MICROWIRE/PLUS clock divide-by
IEDG External interrupt edge polarity select ( $0=$ rising edge, 1 = falling edge)
MSEL Enable MICROWIRE/PLUS functions SO and SK
TRUN Start/Stop the Timer/Counter (1 = run, $0=$ stop)
TC3 Timer input edge polarity select ( $0=$ rising edge, 1 = falling edge)
TC2 Selects the capture mode
TC1 Selects the timer mode

TC1	TC2	TC3	TRUN	MSEL	IEDG	SL1	SL0
BIT 7							

## PSW REGISTER (ADDRESS X'OOEF)

The PSW register contains the following select bits:
GIE Global interrupt enable
ENI External interrupt enable
BUSY MICROWIRE/PLUS busy shifting
IPND External interrupt pending
ENTI Timer interrupt enable
TPND Timer interrupt pending
C Carry Flag
HC Half carry Flag

HC	C	TPND	ENTI	IPND	BUSY	ENI	GIE
Bit 7	Bit 0						

## Addressing Modes

## REGISTER INDIRECT

This is the "normal" mode of addressing. The operand is the memory addressed by the B register or X register.

## DIRECT

The instruction contains an 8-bit address field that directly points to the data memory for the operand.

## IMMEDIATE

The instruction contains an 8-bit immediate field as the operand.

## REGISTER INDIRECT

(AUTO INCREMENT AND DECREMENT)
This is a register indirect mode that automatically increments or decrements the B or X register after executing the instruction.

## RELATIVE

This mode is used for the JP instruction, the instruction field is added to the program counter to get the new program location. JP has a range of from -31 to +32 to allow a one byte relative jump (JP +1 is implemented by a NOP instruction). There are no 'pages' when using JP, all 15 bits of PC are used.

## Memory Map

All RAM, ports and registers (except A and PC) are mapped into data memory address space.

Address	Contents
00 to $6 F$	On Chip RAM Bytes
70 to 7F	Unused RAM Address Space (Reads as all Ones)
80 to BF	Expansion Space for future use
C0 to CF	Expansion Space for I/O and Registers
D0 to DF	On Chip I/O and Registers
D0	Port L Data Register
D1	Port L Configuration Register
D2	Port L Input Pins (Read Only)
D3	Reserved for Port L
D4	Port G Data Register
D5	Port G Configuration Register
D6	Port G Input Pins (Read Only)
D7	Port I Input Pins (Read Only)
D8	Port C Data Register
D9	Port C Configuration Register
DA	Port C Input Pins (Read Only)
DB	Reserved for Port C
DC	Port D Data Register
DD-DF	Reserved for Port D
E0 to EF	On Chip Functions and Registers
E0-E7	Reserved for Future Parts
E8	Reserved
E9	MICROWIRF/PIIUs Shift Renister
EA	Timer Lower Byte
EB	Timer Upper Byte
EC	Timer Autoload Register Lower Byte
ED	Timer Autoload Register Upper Byte
EE	CNTRL Control Register
EF	PSW Register
F0 to FF	On Chip RAM Mapped as Registers
FC	X Register
FD	SP Register
FE	B Register

Reading unused memory locations below 7FH will return all ones. Reading other unused memory locations will return undefined data.

## Instruction Set

## REGISTER AND SYMBOL DEFINITIONS

## Registers

A $\quad$-bit Accumulator register
B $\quad 8$-bit Address register
X 8-bit Address register
SP 8-bit Stack pointer register
PC 15-bit Program counter register
PU upper 7 bits of PC
PL. lower 8 bits of PC
C 1-bit of PSW register for carry
HC Half Carry
GIE 1-bit of PSW register for global interrupt enable

## Symbols

[B] Memory indirectly addressed by B register
[X] Memory indirectly addressed by X register
Mem Direct address memory or [B]
Meml Direct address memory or [B] or Immediate data
Imm 8-bit Immediate data
Reg Register memory: addresses FO to FF (Includes B, X and SP)
Bit Bit number (0 to 7)
$\leftarrow \quad$ Loaded with
$\longleftrightarrow$ Exchanged with

Instruction Set

ADD   ADC   SUBC   AND   OR   XOR   IFEQ   IFGT   IFBNE   DRSZ   SBIT   RBIT   IFBIT	add   add with carry   subtract with carry   Logical AND   Logical OR   Logical Exclusive-OR   IF equal   IF greater than   IF B not equal   Decrement Reg. ,skip if zero   Set bit   Reset bit   If bit	$A \leftarrow A+M e m l$   $A \leftarrow A+$ Meml $+C, C \leftarrow$ Carry   $H C \leftarrow$ Half Carry   $A \leftarrow A+\overline{M e m l}+C, C \leftarrow$ Carry   $H C \leftarrow$ Half Carry   $A \leftarrow A$ and $M e m l$   $A \leftarrow A$ or Meml   $A \leftarrow A$ xor Meml   Compare $A$ and Meml, Do next if $A=$ Meml   Compare $A$ and Meml, Do next if $A>M e m l$   Do next if lower 4 bits of $B \neq 1 \mathrm{~mm}$   Reg $\leftarrow$ Reg - 1, skip if Reg goes to 0   1 to bit,   Mem (bit $=0$ to 7 immediate)   0 to bit,   Mem   If bit,   Mem is true, do next instr.
X   LD A   LD mem   LD Reg	Exchange A with memory Load A with memory Load Direct memory Immed. Load Register memory Immed.	$A \longleftrightarrow$ Mem   $A \leftarrow$ Meml   Mem $\leftarrow$ Imm   Reg $\leftarrow \mathrm{Imm}$
X   X   LD A   LD A   LD M	Exchange A with memory [B]   Exchange $A$ with memory [ X ]   Load A with memory [B]   Load A with memory [X]   Load Memory Immediate	$A \longleftrightarrow[B]$ $(B \leftarrow B \pm 1)$   $A \longleftrightarrow[X]$ $(X \leftarrow X \pm 1)$   $A \leftarrow[B]$ $(B \leftarrow B \pm 1)$   $A \leftarrow[X]$ $(X \leftarrow X \pm 1)$   $[B] \leftarrow$ Imm $(B \leftarrow B \pm 1)$
CLRA   INCA   DECA   LAID   DCORA   RRCA   SWAPA   SC   RC   IFC   IFNC	Clear A   Increment A   Decrement A   Load A indirect from ROM   DECIMAL CORRECT A   ROTATE A RIGHT THRU C   Swap nibbles of $A$   Set C   Reset C   If C   If not C	$A \leftarrow 0$   $A \leftarrow A+1$   $A \leftarrow A-1$   $A \leftarrow \operatorname{ROM}(P U, A)$   $A \leftarrow$ BCD correction (follows ADC, SUBC)   $C \rightarrow A 7 \rightarrow \ldots \rightarrow A O \rightarrow C$   $A 7 \ldots A 4 \longleftrightarrow A 3 \ldots A O$   $C \leftarrow 1, \mathrm{HC} \leftarrow 1$   $\mathrm{C} \leftarrow 0, \mathrm{HC} \leftarrow 0$   If C is true, do next instruction   If $C$ is not true, do next instruction
JMPL   JMP   JP   JSRL   JSR   JID   RET   RETSK   RETI   INTR   NOP	Jump absolute long Jump absolute Jump relative short Jump subroutine long Jump subroutine Jump indirect Return from subroutine Return and Skip Return from Interrupt Generate an interrupt No operation	$\begin{aligned} & P C \leftarrow i(i i=15 \text { bits, } 0 \text { to } 32 k) \\ & P C 11 . .0 \leftarrow i(i=12 \text { bits }) \\ & P C \leftarrow P C+r(r \text { is }-31 \text { to }+32, \text { not } 1) \\ & {[S P] \leftarrow P L,[S P-1] \leftarrow P U, S P-2, P C \leftarrow \mathrm{ii}} \\ & {[S P] \leftarrow P L,[S P-1] \leftarrow P U, S P-2, P C 11 . .0 \leftarrow \mathrm{i}} \\ & P L \leftarrow R O M(P U, A) \\ & S P+2, P L \leftarrow[S P], P U \leftarrow \text { [SP-1] } \\ & S P+2, P L \leftarrow[S P], P U \leftarrow \text { [SP-1],Skip next instruction } \\ & S P+2, P L \leftarrow[S P], P U \leftarrow \text { [SP-1],GIE } \leftarrow 1 \\ & {[S P] \leftarrow P L,[S P-1] \leftarrow P U, S P-2, P C \leftarrow 0 F F} \\ & P C \leftarrow P C+1 \end{aligned}$


Bits 7-4																
F	E	D	C	B	A	9	8	7	6	5	4	3	2	1	0	
JP -15	JP -31	LD OFO, \#i	DRSZ OFO	RRCA	RC	$\begin{gathered} \text { ADC A, } \\ \# i \\ \hline \end{gathered}$	ADC A, [B]	$\begin{gathered} \text { IFBIT } \\ 0,[\mathrm{~B}] \end{gathered}$	*	LD B, OF	IFBNE 0	$\begin{gathered} \text { JSR } \\ 0000-00 \mathrm{FF} \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0000-00 \mathrm{FF} \end{gathered}$	$\mathrm{JP}+17$	INTR	0
JP -14	JP -30	LD OF1, \#i	DRSZ OF1	*	SC	$\underset{\# i}{\operatorname{SUBC} A,}$	SUBC A,[B]	$\begin{aligned} & \text { IFBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	*	LD B, OE	IFBNE 1	$\begin{gathered} \text { JSR } \\ 0100-01 \mathrm{FF} \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0100-01 \mathrm{FF} \end{gathered}$	$J P+18$	$\mathrm{JP}+2$	1
JP -13	JP -29	LD 0F2, \#i	DRSZ 0F2	$\begin{gathered} \mathrm{XA}, \\ {[\mathrm{X}+1} \end{gathered}$	$\begin{gathered} X A, \\ {[B+]} \end{gathered}$	$\begin{gathered} \text { IFEQ A, } \\ \# i \end{gathered}$	$\begin{aligned} & \text { IFEQ } \\ & \mathrm{A},[\mathrm{~B}] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & 2,[\mathrm{~B}] \end{aligned}$	*	LD B, OD	IFBNE 2	$\begin{gathered} \text { JSR } \\ 0200-02 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0200-02 F F \end{gathered}$	$J P+19$	$\mathrm{JP}+3$	2
JP -12	JP -28	LD OF3, \#i	DRSZ OF3	$\begin{aligned} & \mathrm{XA}, \\ & {[\mathrm{X}-]} \end{aligned}$	$\begin{aligned} & \times \mathrm{A}, \\ & {[\mathrm{~B}-]} \end{aligned}$	$\begin{gathered} \text { IFGT A, } \\ \# i \\ \hline \end{gathered}$	$\begin{aligned} & \text { IFGT } \\ & \text { A,[B] } \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & 3,[\mathrm{~B}] \\ & \hline \end{aligned}$	*	LD B, OC	IFBNE 3	$\begin{gathered} \text { JSR } \\ 0300-03 F F \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0300-03 F F \\ \hline \end{gathered}$	$\mathrm{JP}+20$	$\mathrm{JP}+4$	3
JP -11	JP -27	LD 0F4, \#i	DRSZ 0F4	*	LAID	$\begin{gathered} \text { ADD A, } \\ \# \mathbf{i} \end{gathered}$	$\begin{aligned} & \text { ADD } \\ & \text { A,[B] } \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & 4,[\mathrm{~B}] \end{aligned}$	CLRA	LD B, OB	IFBNE 4	$\begin{gathered} \text { JSR } \\ 0400-04 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0400-04 \mathrm{FF} \end{gathered}$	$\mathrm{JP}+21$	$\mathrm{JP}+5$	4
JP -10	JP -26	LD 0F5, \#i	DRSZ 0F5	*	JID	AND A, \#i	AND   A,[B]	$\begin{gathered} \text { IFBIT } \\ 5,[\mathrm{~B}] \end{gathered}$	SWAPA	LD B, OA	IFBNE 5	$\begin{gathered} \text { JSR } \\ 0500-05 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0500-05 \mathrm{FF} \end{gathered}$	$\mathrm{JP}+22$	$J P+6$	5
JP -9	JP -25	LD 0F6, \#i	DRSZ 0F6	$\begin{gathered} \mathrm{XA}, \\ {[\mathrm{X}]} \\ \hline \end{gathered}$	$\overline{X A} \text {, }$ $[\mathrm{B}]$	$\begin{gathered} \text { XOR A, } \\ \# \mathbf{i} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A},[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	DCORA	LD B, 9	IFBNE 6	$\begin{gathered} \text { JSR } \\ 0600-06 \mathrm{FF} \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0600-06 \mathrm{FF} \end{gathered}$	$\mathrm{JP}+23$	$\mathrm{JP}+7$	6
JP -8	JP -24	LD 0F7,\#i	DRSZ 0F7	*	*	$\begin{gathered} \text { ORA, } \\ \# i \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{OR} \\ \mathrm{~A},[\mathrm{~B}] \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { IFBIT } \\ 7,[\mathrm{~B}] \\ \hline \end{array}$	*	LD B, 8	IFBNE 7	$\begin{gathered} \text { JSR } \\ 0700-07 F F \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0700-07 \mathrm{FF} \end{gathered}$	$\mathrm{JP}+24$	$\mathrm{JP}+8$	7
JP -7	JP-23	LD 0F8, \#i	DRSZ 0F8	NOP	*	$\begin{gathered} \text { LD A, } \\ \# \mathrm{i} \end{gathered}$	IFC	$\begin{aligned} & \text { SBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	LD B, 7	IFBNE 8	$\begin{gathered} \text { JSR } \\ 0800-08 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0800-08 F F \end{gathered}$	$\mathrm{JP}+25$	$J P+9$	8
JP -6	JP -22	LD OF9, \#i	DRSZ 0F9	*	*	*	IFNC	$\begin{aligned} & \text { SBIT } \\ & 1,[\mathrm{~B}] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 1,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, 6	IFBNE 9	$\begin{gathered} \text { JSR } \\ 0900-09 \mathrm{FF} \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0900-09 \mathrm{FF} \\ \hline \end{gathered}$	$\mathrm{JP}+26$	$\mathrm{JP}+10$	9
JP -5	JP -21	LD OFA, \#i	DRSZ OFA	$\begin{aligned} & \text { LD A, } \\ & {[\mathrm{X}+]} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LD A, } \\ & {[\mathrm{B}+]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { LD } \\ {[B+], \# i} \end{gathered}$	INCA	$\begin{aligned} & \text { SBIT } \\ & \text { 2,[B] } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & \text { 2,[B] } \end{aligned}$	LD B, 5	IFBNE OA	$\begin{gathered} \text { JSR } \\ \text { OAOO-OAFF } \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ \text { OAOO-OAFF } \\ \hline \end{gathered}$	$\mathrm{JP}+27$	$\mathrm{JP}+11$	A
JP -4	JP -20	LD OFB, \#i	DRSZ OFB	$\begin{aligned} & \text { LD A, } \\ & {[\mathrm{X}-]} \end{aligned}$	$\begin{aligned} & \text { LD A, } \\ & \text { [B-] } \end{aligned}$	$\begin{gathered} \text { LD } \\ {[B-], \# i} \end{gathered}$	DECA	$\begin{aligned} & \text { SBIT } \\ & 3,[B] \end{aligned}$	RBIT   3,[B]	LD B, 4	IFBNE OB	$\begin{gathered} \text { JSR } \\ \text { OB00-OBFF } \end{gathered}$	$\begin{gathered} \text { JMP } \\ \text { OBOO-OBFF } \end{gathered}$	$\mathrm{JP}+28$	$\mathrm{JP}+12$	B
JP -3	JP -19	LD OFC, \#i	DRSZ OFC	LD Md, $\# i$	JMPL	X A,Md	*	$\begin{aligned} & \mathrm{SBIT} \\ & 4,[\mathrm{~B}] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 4,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, 3	IFBNE OC	$\begin{gathered} \text { JSR } \\ 0 \mathrm{COO-OCFF} \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0 \mathrm{COO}-0 \mathrm{CFF} \end{gathered}$	$\mathrm{JP}+29$	JP + 13	C
JP -2	JP-18	LD OFD, \#i	DRSZ OFD	DIR	JSRL	$\begin{gathered} \text { LD A, } \\ \mathrm{Md} \end{gathered}$	RIETSK	$\begin{aligned} & \text { SBIT } \\ & 5,[\mathrm{~B}] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 5,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, 2	IFBNE OD	$\begin{gathered} \text { JSR } \\ \text { ODOO-ODFF } \end{gathered}$	$\begin{gathered} \text { JMP } \\ \text { ODOO-ODFF } \end{gathered}$	$\mathrm{JP}+30$	$\mathrm{JP}+14$	D
JP -1	JP -17	LD OFE, \#i	DRSZ OFE	$\begin{gathered} \text { LD A, } \\ {[\mathrm{X}]} \\ \hline \end{gathered}$	$\begin{gathered} \text { LD A, } \\ \text { [B] } \\ \hline \end{gathered}$	$\begin{gathered} \text { LD } \\ \text { [B], \#i } \end{gathered}$	RET	$\begin{array}{\|c\|} \hline \text { SBIT } \\ 6,[B] \\ \hline \end{array}$	$\begin{aligned} & \text { RBIT } \\ & 6,[B] \end{aligned}$	LD B, 1	IFBNE OE	$\begin{gathered} \text { JSR } \\ 0 \text { E00-0EFF } \end{gathered}$	$\begin{gathered} \text { JMP } \\ \text { OEOO-OEFF } \end{gathered}$	$\mathrm{JP}+31$	$\mathrm{JP}+15$	E
JP -0	JP -16	LD 0FF, \# 1	DRSZ OFF	*	*	*	RETI	$\begin{aligned} & \text { SBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	LD B, 0	IFBNE OF	JSR 0F00-0FFF	$\begin{gathered} \text { JMP } \\ \text { OFO0-0FFF } \end{gathered}$	$\mathrm{JP}+32$	$J P+16$	F

where, $\quad i$ is the immediate data $\quad$ Md is a directly addressed memory location is an unused opcode (see following table)

## Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instruction taking two bytes).
Most single instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details.

## BYTES and CYCLES per INSTRUCTION

The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle.

Arithmetic and Logic Instructions			
	[B]	Direct	Immed.
ADD	1/1	3/4	2/2
ADC	1/1	3/4	2/2
SUBC	1/1	3/4	2/2
AND	1/1	3/4	2/2
OR	1/1	3/4	$2 / 2$
XOR	1/1	3/4	2/2
IFEQ	1/1	3/4	2/2
IFGT	1/1	3/4	2/2
IFBNE	1/1		
DRSZ		1/3	
SBIT	1/1	3/4	
RBIT	1/1	3/4	
IFBIT	1/1	3/4	



- => Memory location addressed by B or X or directly.

Instructions Using A \& C Transfer of Control Instructions

CLRA	$1 / 1$	JMPL	$3 / 4$
INCA	$1 / 1$	JMP	$2 / 3$
DECA	$1 / 1$	JP	$1 / 3$
LAID	$1 / 3$	JSRL	$3 / 5$
DCORA	$1 / 1$	JSR	$2 / 5$
RRCA	$1 / 1$	JID	$1 / 3$
SWAPA	$1 / 1$	RET	$1 / 5$
SC	$1 / 1$	RETSK	$1 / 5$
RC	$1 / 1$	RETI	$1 / 5$
IFC	$1 / 1$	INTR	$1 / 7$
IFNC	$1 / 1$	NOP	$1 / 1$

## BYTES and CYCLES per INSTRUCTION (Continued)

The following table shows the instructions assigned to unused opcodes. This table is for information only. The operations performed are subject to change without notice. Do not use these opcodes.

Unused   Opcode	Instruction	Unused   Opcode	Instruction
60	NOP	A9	NOP
61	NOP	AF	LD A, [B]
62	NOP	B1	C H HC
63	NOP	B4	NOP
67	NOP	B5	NOP
8 C	RET	B7	XA, [X]
99	NOP	B9	NOP
$9 F$	LD [B], \#i	BF	LD A, [X]
A7	XA, [B]		
A8	NOP		

## Option List

The mask programmable options are listed out below. The options are programmed at the same time as the ROM pattern to provide the user with hardware flexibility to use a variety of oscillator configuration.
OPTION 1: CKI INPUT
= 1 Crystal (CKI/10) CKO for crystal configuration
$=2$ External (CKI/10) CKO available as G7 input
$=3$ R/C $\quad(\mathrm{CKI} / 10)$ CKO available as G7
input

## OPTION 2: BONDING

$=144$-Pin PLCC
$=240-\mathrm{Pin}$ DIP
$=328-\mathrm{Pin} \mathrm{SO}$
$=428$-Pin DIP
The following option information is to be sent to National along with the EPROM.
Option Data
Option 1 Value_is: CKI Input
Option 2 Value_is: COP Bonding

## Development Support

## IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 In-Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface for maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real-time, full-speed emulation up to $10 \mathrm{MHz}, 32$ kbytes of emulation memory and 4 k frames of trace buffer memory. The user may define as many as 32 k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code or address ranges or complex triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.

During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bargraph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to iiie, examine and modiify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy-to-use windowed interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down menus and/or redefinable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PC via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time to under 3 seconds.

The following tables list the emulator and probe cards ordering information.
Emulator Ordering Information

Part Number	Description	Current Version
IM-COP8/400/1 $\ddagger$	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic   debugger software and RS232 serial interface cable, with 110V @ 60   Hz Power Supply	
IM-COP8/400/2 $\ddagger$	Metalink base unit in-current emulator for all COP8 devices, symbolic   debugger software and RS232 serial interface cable, with 220V @ 50   Hz Power Supply.	HOST SOFTWARE: VER. 3.3 REV. 5,   Model File Rev 3.050.
DM-COP8/880C $\ddagger$	Metalink IceMASTER Debug Module. This is the low cost version of   Metalink's IceMASTER. Firmware: Ver. 6.07.	

$\ddagger$ These parts include National's COP8 Assembler/Linker/Librarian Package (COP8/DEV-IBMA)

## MACRO CROSS ASSEMBLER

National Semiconductor offers a COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink iceMASTER emulators.

Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8 Assembler/   Linker/Librarian for IBM ${ }^{\bullet}, \mathrm{PC} / \mathrm{XT}$ • AT® or compatible.	424410632-001

Probe Card Ordering Information

Part   Number	Package	Voltage   Range	Emulates
MHW-880C28D5PC	28 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP820C,   840 C,   881 C,   8781 C
MHW-880C28DWPC	28 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP820C,   840 C,
MHW-880C40D5PC	40 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP880C,   8780 C
MHW-880C40DWPC	40 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP880C,   8780 C
MHW-880C44D5PC	44 PLCC	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP880C,   8780 C
MHW-880C44DWPC	44 PLCC	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP880C,   8780 C

## Development Support (Continued)

SINGLE-CHIP EMULATOR DEVICE
The COP8 family is fully supported by single chip form, fit and function emulators. The emulators are available as UV erasable or one Time Programmable (OTP).

For more detailed information, refer to the emulation device specific data sheets and the emulator selection table below.

Single-Chip Emulator Selection Table

Device Number	Clock Option	Package	Description	Emulates
COP8780CV	Programmable	44 PLCC	One-Time Programmable (OTP)	COP880C
COP8780CEL	Programmable	44 LDCC	UV Erasable	COP880C
COP8780CN	Programmable	40 DIP	OTP	COP880C
COP8780CJ	Programmable	40 DIP	UV Erasable	COP880C
COP8781CN	Programmable	28 DIP	OTP	COP881C
COP8781CJ	Programmable	28 DIP	UV Erasable	COP881C
COP8781CWM	Programmable	28 SO	OTP	COP881C

## PROGRAMMING SUPPORT

Programming of the single-chip emulator devices is supported by different sources. The following programmers are certified for programming the One Time Programmable (OTP) devices:

EPROM Programmer Information

Manufacturer and Product	U.S. Phone Number	Europe Phone Number	Asla Phone Number
Metalink-Debug Module	(602) 926-0797	Germany: + 49-8141-1030	Hong Kong: $+852.737-1800$
Xeltek-Superpro	(408) 745-7974	Germany: +492041684758	Singaporo: 1652766433
BP Microsystems-EP-1140	(800) 225-2102	Germany: +49898576667	Hong Kong: +8523080629
Data I/O-Unisite; -System 29, -System 39	(800) 322-8246	Europe: +31-20-622866   Germany: +49-89-85-8020	Japan: +33-432-6391
Abcom-COP8   Programmer		Eurone: +830008707	
System General Turpro-1-FX; -APRO	(408) 263-6667	Switzerland: $+31-921-7844$	Taiwan Taipei: $+2-9173005$



## Development Support (Continued)

## DIAL-A-HELPER

Dial-A-Helper is a service provided by the Microcontroller Applications Group. The Dial-A-Helper is an Electronic Bulletin Board information system.

## INFORMATION SYSTEM

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities can be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.

If the user has a PC with a communications package then files from the FILE SECTION can be down-loaded to disk for later use.

## FACTORY APPLICATIONS SUPPORT

Dial-A-Helper also provides immediate factory applications support. If a user has questions, he can leave messages on our electronic bulletin board, which we will respond to.

Voice: (800) 272-9959
Modem: CANADA/U.S.: (800) NSC-MICRO (800) 672-6427

Baud: $\quad 14.4 \mathrm{k}$
Setup: Length: 8-Bit
Parity: None
Stop Bit: 1
Operation: 24 Hrs., 7 Days

## COP684BC/COP884BC

## Single-Chip microCMOS Microcontroller

## General Description

The COP684BC and COP884BC are members of the COP888BC family of microcontrollers which uses an 8 -bit single chip core architecture fabricated with National Semiconductor's M²CMOSTM process technology. Each device is a member of this expandable 8-bit core processor family of microcontrollers.
(Continued)

## Features

- Low cost 8-bit microcontroller
- Fully static CMOS, with low current drain
- Two power saving modes: HALT and IDLE
- $1 \mu \mathrm{~s}$ instruction cycle time
- 2048 bytes on-board ROM
- 64 bytes on-board RAM
- Single supply operation: $4.5 \mathrm{~V}-5.5 \mathrm{~V}$
- MICROWIRE/PLUSTM serial I/O
- Idle Timer
- Multi-Input Wake Up (MIWU) with optional interrupts (7)
- On chip reset
- CAN Interface
- 2 comparators
- High speed, constant resolution 8-bit PWM/frequency monitor timer with 2 output pins
- One 16 -bit timer, with two 16 -bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- Two 8-bit Register Indirect Data Memory Pointers ( B and X )
- Versatile instruction set
- True bit manipulation
- Memory mapped I/O
- BCD arithmetic instructions
- Package:
-28 SO with 18 general I/O pins
- Software selectable I/O options
- TRI-STATE ${ }^{\circledR}$ Output
— Push-Pull Output
- Weak Pull Up Input
- High Impedance Input
- Schmitt trigger inputs on ports $G$ and $L$
- Temperature ranges:
- COP88xBC $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$,
- COP68xBC $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Single chip hybrid emulation device-COP884BCMH
- Real time emulation and full program debug offered by MetaLink's Development Systems
- Eleven multi-source vectored interrupts servicing
- External Interrupt
- Idle Timer TO
- Timer T1 (with 2 Interrupts)
- MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
- PWM Timer
- CAN Interface (with 3 interrupts)
- 8-bit Stack Pointer SP (stack in RAM)


## Block Diagram



## General Description (Continued)

It is a fully static part, fabricated using double-metal silicon gate microCMOS technology. Features include an 8 -bit memory mapped architecture, MICROWIRE/PLUS serial 1/O, a 16-bit timer/counter supporting three modes (Processor Independent PWM generation, External Event counter, and Input Capture mode capabilities), a CAN interface, two comparators, 8 -bit, high speed, constant resolution PWM/ frequency monitor timer, and two power savings modes (HALT and IDLE), both with a multi-sourced wake up/ interrupt capability. This multi-sourced interrupt capability may also be used independent of the HALT or IDLE modes. Each I/O pin has software selectable configurations. The device operates over a voltage range of 4.5 V to 5.5 V . High throughput is achieved with an efficient, regular instruction set operating at a maximum of $1 \mu \mathrm{~s}$ per instruction rate. The device has low EMI emissions. Low radiated emissions are achieved by gradual turn-on output drivers and internal ICC filters on the chip logic and crystal oscillator.

## Connection Diagram

Pinouts for 28-Pin SO Package

Port Pin	Type	Alt. Function	$\begin{aligned} & \text { 28-Pin } \\ & \text { SO } \end{aligned}$
GO	1/0	INTR	25
G1	$1 / 0$		26
G2	1/O	T1B	27
G3	1/0	T1A	28
G4	1/O	SO	1
G5	1/0	SK	2
G6	1	SI	3
G7	1	CKO	4
LO	1/0	CMP1IN+/MIWU	7
L1	1/0	CMP1IN-/MIWU	8
L2	1/0	CMP10UT/MIWU	9
L3	1/0	CMP2IN-/MIWU	10
L4	1/0	CMP2IN+/MIWU	11
L5	$1 / 0$	CMP2IN-/PWM1/MIWU	12
L6	1/0	CMP2OUT/PWMO/ CAPTIN/MIWU	13
D0	0		19
D1	0		20
D2	0		21
D3	0		22
CAN VREF			18
CAN Tx0	0		15
CAN Tx1	0		14
CAN Rx0	1	MIWU (Note A)	17
CAN Rx1	1	MIWU	16
$\mathrm{V}_{\mathrm{CC}}$			6
GND			23
CKI	1		5
RESET	1		24

Note A: The MIWU function for the CAN interface is internal (see CAN interface block diagram)


TL/DD/12067-2
Top Vlew
28-Lead ( $0.300^{\prime \prime}$ Wide) Molded Small Outline Package, JEDEC Order Number COP884BC-xxx/WM or COP684BC-xxx/WM See NS Package Number M28B

FIGURE 2

Absolute Maximum Ratings (Note)
If Milltary/Aerospace specifled devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
6 V
Voltage at Any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into $\mathrm{V}_{\mathrm{CC}}$ Pin (Source) 90 mA

Total Current out of GND Pin (Sink)
100 mA Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics COP88xBC: $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage   Power Supply Ripple (Note 1)	Peak-to-Peak	4.5		$\begin{gathered} 5.5 \\ 0.1 \mathrm{~V}_{\mathrm{CC}} \\ \hline \end{gathered}$	$\begin{aligned} & V \\ & v \end{aligned}$
Supply Current CKI = 10 MHz (Note 2)	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s}$			15	mA
HALT Current (Notes 3, 4)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz}$   Power-On Reset Enabled Power-On Reset Disabled		$\begin{aligned} & <300 \\ & <250 \end{aligned}$	$\begin{aligned} & 480 \\ & 380 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
IDLE Current (Note 4) $\mathrm{CKI}=10 \mathrm{MHz}$	$V_{C C}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s}$			5.5	mA
Input Levels ( $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$ )   Reset, CKI   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low		$\begin{aligned} & 0.8 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.2 V_{C C} \\ & 0.2 V_{C C} \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
Hi-Z Input Leakage Input Pull-up Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$	-40		$\begin{array}{r}  \pm 2 \\ -250 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
G and L Port Input Hysteresis	(Note 6)		$0.05 \mathrm{~V}_{\mathrm{CC}}$		V
Output Current Levels D Outputs   Source   Sink   Comparator Output (L2, L6)   Source (Push-Pull)   Sink (Push-Pull)   All Others   Source (Weak Pull-Up)   Source (Push-Pull)   Sink (Push-Pull)   TRI-STATE Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{VCC}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ i 0 \\ 1.6 \\ -1.6 \\ -10 \\ -0.4 \\ 1.6 \end{gathered}$	$\square$	$\begin{array}{r} 110 \\ \pm 2.0 \end{array}$	mA mi mA mA   $\mu \mathrm{A}$ mA mA $\mu \mathrm{A}$
Allowable Sink/Source Current per Pin D Outputs (Sink)   All Other				$\begin{gathered} 15 \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current without Latchup (Notes 5, 7)	Room Temp			$\pm 100$	$\mathrm{mA}$
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$ (Note 6)	500 ns Rise and Fall Time	2.0			V
Input Capacitance	(Note 7)			7	pF
Load Capacitance on D2				1000	pF

Note 1: Maximum rate of voltage change must be less than $0.5 \mathrm{~V} / \mathrm{ms}$
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at VCC or GND, and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the Crystal configurations. Halt test conditions: All inputs tied to $V_{C C}$ : $L$, and $G$ port $1 / O s$ configured as outputs and programmed low; D outputs programmed low. Parameter refers to HALT mode entered via setting bit 7 of the G Port data register. Part will pull up CKI during HALT in crystal clock mode.
Note 4: HALT and IDLE current specifications assume CAN block and comparators are disabled.

Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

Supply Voltage (VCC)
Voltage at Any Pin Total Current into VCC Pin (Source) Total Current out of GND Pin (Sink)
Storage Temperature Range
DC Electrical Characteristics COP68xBC: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage   Power Supply Ripple (Note 1)	Peak-to-Peak	4.5		$\begin{gathered} 5.5 \\ 0.1 V_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & v \\ & v \end{aligned}$
Supply Current $\mathrm{CKI}=10 \mathrm{MHz} \text { (Note 2) }$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s}$			15	mA
HALT Current (Notes 3, 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \\ & \text { Power-On Reset Enabled } \\ & \text { Power-On Reset Disabled } \end{aligned}$		$\begin{aligned} & <300 \\ & <250 \end{aligned}$	$\begin{aligned} & 480 \\ & 380 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
IDLE Current (Note 4) $\mathrm{CKI}=10 \mathrm{MHz}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s}$			5.5	mA
Input Levels ( $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$ )   Reset, CKI   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low		$\begin{aligned} & 0.8 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.2 V_{C C} \\ & 0.2 V_{C C} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Hi-Z Input Leakage Input Pull-up Current	$\begin{aligned} & V_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$	-35		$\begin{gathered} \pm 5 \\ -250 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
G and L Port Input Hysteresis	(Note 6)		$0.05 \mathrm{~V}_{\mathrm{CC}}$		V
Output Current Levels D Outputs   Source   Sink   Comparator Output (L2, L6)   Source (Push-Pull)   Sink (Push-Pull)   All Others   Source (Weak Pull-Up)   Source (Push-Pull)   Sink (Push-Pull)   TRI-STATE Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ 9.0 \\ -1.6 \\ 1.6 \\ -9.0 \\ -0.4 \\ 1.4 \end{gathered}$		$\begin{aligned} & -100 \\ & \pm 5.0 \end{aligned}$	mA   mA   mA   mA   $\mu \mathrm{A}$   mA   mA   $\mu \mathrm{A}$
Allowable Sink/Source Current per Pin D Outputs (Sink) All Other				$\begin{aligned} & 12 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current without Latchup (Notes 5, 7)	Room Temp			$\pm 100$	mA
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$ ( Note 6)	500 ns Rise and Fall Time	2.0			V
Input Capacitance	(Note 7)			7	pF
Load Capacitance on D2	$\cdots$			1000	pF

Note 5: Pins G6 and $\overline{\text { RESET }}$ are designed with a high voltage input network. These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to
$V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$ ). The effective resistance to $V_{C C}$ is $750 \Omega$ (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .
Note 6: Condition and parameter valid only for part in HALT mode.
Note 7: Parameter characterized but not tested.

AC Electrical Characteristics: $\mathrm{COP}^{2} 8 \times \mathrm{BC}$ and $\mathrm{COPB8xBC:}-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crytal/Resonator	$\mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$	1.0		DC	$\mu \mathrm{S}$
Inputs   ${ }^{\text {tsetup }}$   thold PWM Capture Input tsetup thold	$\begin{aligned} & V_{C C} \geq 4.5 \mathrm{~V} \\ & V_{C C} \geq 4.5 \mathrm{~V} \\ & V_{C C} \geq 4.5 \mathrm{~V} \\ & V_{C C} \geq 4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 60 \\ \\ 30 \\ 70 \end{gathered}$			ns   ns ns
Output Propagation Delay ( $\mathrm{tPD}_{\mathrm{PD}}, \mathrm{t}_{\text {PDO }}$ ) (Note 8) SK, SO PWM Outputs All Others	$\begin{aligned} & C_{L}=100 \mathrm{pF}, R_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & V_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.7 \\ 75 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \\ & \mu \mathrm{~s} \end{aligned}$
MICROWIRE   Setup Time (tuws) (Note 9) Hold Time (tuwh) (Note 9) Output Prop Delay (tupd)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Input Pulse Width (Note 10) Interrupt High Time Interrupt Low Time Timer 1,2 High Time Timer 1,2 Low Time		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \hline \end{aligned}$
Reset Pulse Width (Note 9)		1.0			$\mu \mathrm{s}$
Power Supply Rise Time for Proper Operation of On-Chip RESET		$50 \mu \mathrm{~s}$		$256{ }^{*} t_{c}$	

Note: For device testing purposes of all AC parameters, $V_{O H}$ will be tested at $0.5^{*} V_{C C}$.
Note 8: The output propagation is referenced to the end of the instruction cycle where the output change occurs.
Note 9: Parameter not tested.
Note 10: $\mathrm{t}_{\mathrm{C}}=$ Instruction Cycle Time.
On-Chip Voltage Reference: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Max	Units
Reference Voltage $V_{\text {REF }}$	$\begin{aligned} & \text { lout }<80 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	$0.5 \mathrm{~V}_{\mathrm{CC}}-0.12$	$0.5 \mathrm{~V}_{\mathrm{CC}}+0.12$	V
Reference Supply Current, IDD	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=0 \mathrm{~A},(\text { No Load }) \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}(\text { Note } \mathrm{A}) \end{aligned}$		120	$\mu \mathrm{A}$

Note A: Reference supply loD is supplied for information purposes only, it is not tested.

## Comparator DC/AC Characteristics: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Unlts
Input Offset Voltage	$0.4 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$		$\pm 10$	$\pm 25$	mV
Input Common Mode Voltage Range		0.4		$V_{\mathrm{CC}}-1.5$	V
Voltage Gain			300 k		$\mathrm{V} / \mathrm{V}$
Outputs Sink/Source	See I/O-Port DC Specifications				
DC Supply Current (when enabled)	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$			250	$\mu \mathrm{~A}$
Response Time	TBD mV Step, TBD mV Overdrive,   100 pF Load		1		$\mu \mathrm{~s}$

## AC Electrical Characteristics (Continued)

FIGURE 3. MICROWIRE/PLUS Timing Diagram


FIGURE 4. PWM/CAPTURE Timer
Input/Output Timing Diagram

## Pin Descriptions

$V_{C C}$ and GND are the power supply pins.
CKI is the clock input. The clock can come from a crystal oscillator (in conjunction with CKO). See Oscillator Description section.
$\overline{\text { RESET }}$ is the master reset input. See Reset Description section.
The device contains one bidirectional 8-bit I/O port (G), and one 7 -bit bidirectional I/O port ( L ) where each individual bit may be independently configured as an input (Schmitt trigger inputs on ports $G$ and L ), output or TRI-STATE under program control. Three data memory address locations are allocated for each of these I/O ports. Each I/O port has two associated 8 -bit memory mapped registers, the CONFIGURATION register and the output DATA register. A memory mapped address is also reserved for the input pins of each I/O port. (See the memory map for the various addresses associated with the I/O ports.) Figure 5 shows the I/O port configurations for the device. The DATA and CONFIGURATION registers allow for each port bit to be individually configured under software control as shown below:

Configuration   Register	Data   Register	Port Set-Up
0	0	Hi-Z Input   (TRI-STATE Output)   $\ddots$
0	1	Input with Weak Pull-Up
1	0	Push-Pull Zero Output
1	1	Push-Pull One Output

PORT L is a 7 -bit I/O port. All L-pins have Schmitt triggers on the inputs.
Port L supports Multi-Input Wake Up (MIWU) on all seven pins.

Port $L$ has the following alternate features:
LO MIWU or CMP1IN+
L1 MIWU or CMP1IN-
L2 MIWU or CMP1OUT
L3 MIWU or CMP2IN-
L4 MIWU or CMP2IN+
L5 MIWU or CMP2IN - or PWM1
L6 MIWU or CMP2OUT or PWM0 or CAPTIN
Port G is an 8 -bit port with $5 \mathrm{I} / \mathrm{O}$ pins (G0-G5), an input pin (G6), and one dedicated output pin (G7). Pins G0-G6 all have Schmitt Triggers on their inputs. G7 serves as the dedicated output pin for the CKO clock output. There are two registers associated with the G Port, a data register and a configuration register. Therefore, each of the 6 I/O bits (G0-G5) can be individually configured under software control.
Since G6 is an input only pin and G7 is the dedicated CKO clock output pin the associated bits in the data and configuration registers for G6 and G7 are used for special purpose functions as outlined below. Reading the G6 and G7 data bits will return zeroes.
Note that the chip will be placed in the HALT mode by writing a " 1 " to bit 7 of the Port G Data Register. Similarly the chip will be placed in the IDLE mode by writing a " 1 " to bit 6 of the Port G Data Register.
Writing a " 1 " to bit 6 of the Port G Configuration Register enables the MICROWIRE/PLUS to operate with the alternate phase of the SK clock.

	Config. Register	Data Register
G7		HALT
G6	Alternate SK	IDLE

CAN pins: For the on-chip CAN interface this device has five dedicated pins with the following features:
$\mathrm{V}_{\mathrm{REF}}$. On-chip reference voltage with the value of $\mathrm{V}_{\mathrm{CC}} / 2$
Rx0 CAN receive data input pin.
Rx1 CAN receive data input pin.
Tx0 CAN transmit data output pin. This pin may be put in the TRI-STATE mode with the TXENO bit in the CAN Bus control register.
Tx1 CAN transmit data output pin. This pin may be put in the TRI-STATE mode with the TXEN1 bit in the CAN Bus control register.
Port $G$ has the following alternate features:
G0 INTR (External Interrupt Input)
G2 T1B (Timer T1 Capture Input)
G3 T1A (Timer T1 I/O)
G4 SO (MICROWIRE Serial Data Output)
G5 SK (MICROWIRE Serial Clock)
G6 SI (MICROWIRE Serial Data Input)
Port $G$ has the following dedicated function:
G7 CKO Oscillator dedicated output
Port $D$ is a 4-bit output port that is preset high when RESET goes low. The user can tie two or more D port outputs (except D2) together in order to get a higher drive.
Note: Care must be exercised with the D2 pin operation. At RESET, the external loads on this pin must ensure that the output voltages stay above $0.8 \mathrm{~V}_{\mathrm{CC}}$ to prevent the chip from entering special modes. Also keep the external loading on D2 to less than 1000 pF .

Pin Descriptions（Continued）


TL／DD／12067－5
FIGURE 5．I／O Port Configurations

## Functional Description

The architecture of the device utilizes a modified Harvard architecture．With the Harvard architecture，the control store program memory（ROM）is separated from the data store memory（RAM）．Both ROM and RAM have their own sepa－ rate addressing space with separate address buses．The architecture，though based on Harvard architecture，permits transfer of data from ROM to RAM．

## CPU REGISTERS

The CPU can do an 8－bit addition，subtraction，logical or shift operation in one instruction（ $\mathrm{t}_{\mathrm{c}}$ ）cycle time．
There are five CPU registers：
A is the 8－bit Accumulator Register
PC is the 15 －bit Program Counter Register
PU is the upper 7 bits of the program counter（PC）
PL is the lower 8 bits of the program counter（PC）
$B$ is an 8 －bit RAM address pointer，which can be optionally post auto incremented or decremented．
$X$ is an 8 －bit alternate RAM address pointer，which can be optionally post auto incremented or decremented．
SP is the 8－bit stack pointer，which points to the subroutine／ interrupt stack（in RAM）．The SP is initialized to RAM ad－ dress 02F with reset．
All the CPU registers are memory mapped with the excep－ tion of the Accumulator（A）and the Program Counter（PC）．

## PROGRAM MEMORY

Program memory for the device consists of 2048 bytes of ROM．These bytes may hold program instructions or con－ stant data（data tables tor the LAID instruction，jump vectors for the JID instruction，and interrupt vectors for the VIS in－ struction）．The program memory is addressed by the 15 －bit program counter（PC）．All interrupts in the device vector to program memory location OFF Hex．

## DATA MEMORY

The data memory address space includes the on－chip RAM and data registers，the I／O registers（Configuration，Data and Pin），the control registers，the MICROWIRE／PLUS SIO shift register，and the various registers，and counters asso－ ciated with the timers（with the exception of the IDLE timer）． Data memory is addressed directly by the instruction or indi－ rectly by the $\mathrm{B}, \mathrm{X}$ and SP pointers．

The device has 64 bytes of RAM．Sixteen bytes of RAM are mapped as＂registers＂at addresses OFO to OFF Hex．These registers can be loaded immediately，and also decremented and tested with the DRSZ（decrement register and skip if zero）instruction．The memory pointer registers $X, S P$ ，and $B$ are memory mapped into this space at address locations OFC to OFE Hex respectively，with the other registers（other than reserved register OFF）being available for general us－ age．
The instruction set permits any bit in memory to be set， reset or tested．All I／O and registers（except A and PC）are memory mapped；therefore，I／O bits and register bits can be directly and individually set，reset and tested．The accumu－ lator（A）bits can also be directly and individually tested．
Note：RAM contents are undefined upon power－up．

## RESET

The RESET input when pulled low initializes the microcon－ troller．Initialization will occur whenever the RESET input is pulled low．Upon initialization，the data and configuration registers for Ports L and G，are cleared，resulting in these Ports being initialized to the TRI－STATE mode．Port $D$ is initialized high with RESET．The PC，PSW，CNTRL，and ICNTRL control registers are cleared．The Multi－Input Wake Up registers WKEN，WKEDG，and WKPND are cleared．The Stack Pointer，SP，is initialized to 02F Hex．
The following initializations occur with $\overline{\text { RESET：}}$
Port L：TRI－STATE
Port G：TRI－STATE
Port D：HIGH
PC：CLEARED
PSW，CNTRL and ICNTRL registers：CLEARED
Accumulator and Timer 1 ：
RANDOM after RESET with power already applied
RANDOM after RESET at power－on
SP（Stack Pointer）：Loaded with 2F Hex
CMPSL（Comparator control register）：CLEARED
PWMCON（PWM control register）：CLEARED
$B$ and $X$ Pointers：
UNAFFECTED after RESET with power already applied
RANDOM after RESET at power－up
RAM：
UNAFFECTED after RESET with power already applied RANDOM after RESET at power－up

## CAN：

The CAN Interface comes out of external reset in the ＂error－active＂state and waits until the user＇s software sets either one or both of the TXENO，TXEN1 bits to ＂ 1 ＂．After that，the device will not start transmission or reception of a frame until eleven consecutive＂reces－ sive＂（undriven）bits have been received．This is done to ensure that the output drivers are not enabled during an active message on the bus．
CSCAL，CTIM，TCNTL，TEC，REC：CLEARED
RTSTAT：CLEARED with the exception of the TBE bit which is set to 1
RID，RIDL，TID，TDLC：RANDOM

## Functional Description (Continued)

## ON-CHIP POWER-ON RESET

The device is designed with an on-chip power-on reset circuit which will trigger a $256 \mathrm{t}_{\mathrm{c}}$ delay as $\mathrm{V}_{\mathrm{Cc}}$ rises above the minimum RAM retention voltage $\left(V_{r}\right)$. This delay allows the oscillator to stabilize before the device exits the reset state. The contents of data registers and RAM are unknown following an on-chip power-on reset. The external reset takes priority over the on-chip reset and will deactivate the $256 t_{c}$ delay if in progress.
When using external reset, the external RC network shown in Figure 6 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.
Under no circumstances should the RESET pin be allowed to float. If the on-chip power-on reset feature is being used, $\overline{\text { RESET }}$ should be connected directly to $\mathrm{V}_{\mathrm{CC}}$. Be aware of the Power Supply Rise Time requirements specified in the DC Specifications Table. These requirements must be met for the on-chip power-on reset to function properly.
The on-chip power-on reset circuit may reset the device if the operating voltage ( $\mathrm{V}_{\mathrm{CC}}$ ) goes below $\mathrm{V}_{\mathrm{r}}$.


TL/DD/12067-6
RC $>5 \times$ Power Supply Rise Time
FIGURE 6. Recommended Reset Circuit

## Oscillator Circuits

The chip can be driven by a clock input on the CKI input pin which can be between DC and 10 MHz . The CKO output clock is on pin G7. The CKI input frequency is divided by 10 to produce the instruction cycle clock $\left(1 / t_{c}\right)$.
Figure 7 shows the Crystal diagram.


TL/DD/12067-7
FIGURE 7. Crystal Oscillator Diagram

## CRYSTAL OSCILLATOR

CKI and CKO can be connected to make a closed loop crystal (or resonator) controlled oscillator.
Table I shows the component values required for various standard crystal values.

TABLE I. Crystal Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5} \mathbf{5}^{\circ} \mathrm{C}$

R1   $(\mathbf{k} \Omega)$	R2   $\mathbf{( M \Omega )}$	$\mathbf{C 1}$   $\mathbf{( p F})$	$\mathbf{C 2}$   $\mathbf{( p F )}$	$\mathbf{C K I}$ Freq.   $(\mathbf{M H z})$	Conditions
0	1	30	$30-36$	10	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	30	$30-36$	4	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	200	$100-150$	0.455	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

## Current Drain

The total current drain of the chip depends on:

1. Oscillator operation mode-I1
2. Internal switching current-12
3. Internal leakage current-I3
4. Output source current-14
5. DC current caused by external input not at $\mathrm{V}_{\mathrm{CC}}$ or GND-I5
6. Comparator DC supply current when enabled-I6
7. $V_{\text {REF }}$ of CAN-I7
8. Comparator of CAN block-I8
9. On-chip Reset-19

Thus the total current drain, It , is given as

$$
1 t=11+12+13+14+15+16+17+18+19
$$

To reduce the total current drain, each of the above components must be minimum.
The chip will draw more current as the CKI input frequency increases up to the maximum 10 MHz value. Switching current, governed by the equation, can be reduced by lowering voltage and frequency. Leakage current can be reduced by lowering voltage and temperature. The other items can be reduced by carefully designing the end-user's system.

$$
\mathrm{I} 2=\mathrm{C}^{*} \mathrm{~V}^{*} \mathrm{f}
$$

where $C=$ equivalent capacitance of the chip
$\mathrm{V}=$ operating voltage
$f=$ CKI frequency

## Control Registers

## CNTRL Register (Address X'00EE)

The Timer1 (T1) and MICROWIRE/PLUS control register contains the following bits:
SL1 \& SLO Select the MICROWIRE/PLUS clock divide by ( $00=2,01=4,1 x=8$ )
IEDG External interrupt edge polarity select ( $0=$ Rising edge, $1=$ Falling edge)
MSEL Selects G5 and G4 as MICROWIRE/PLUS signals SK and SO respectively
T1C0 Timer T1 Start/Stop control in timer Timer T1 Underflow Interrupt Pending Flag in timer mode 3
T1C1 Timer T1 mode control bit
T1C2 Timer T1 mode control bit
T1C3 Timer T1 mode control bit

T1C3	T1C2	T1C1	T1C0	MSEL	IEDG	SL. 1	SL0
Bit 7						Bit 0	

## Control Registers (Continued)

PSW Register (Address X'OOEF)
The PSW register contains the following select bits:
GIE Global interrupt enable (enables interrupts)
EXEN Enable external interrupt
BUSY MICROWIRE/PLUS busy shifting flag
EXPND External interrupt pending
T1ENA Timer T1 Interrupt Enable for Timer Underflow or T1A Input capture edge
T1PNDA Timer T1 Interrupt Pending Flag (Autoreload RA in mode 1, T1 Underflow in Mode 2, T1A capture edge in mode 3)
C Carry Flag
HC Half Carry Flag

HC	C	T1PNDA	T1ENA	EXPND	BUSY	EXEN	GIE

Bit 7
Bit 0
The Half-Carry bit is also affected by all the instructions that affect the Carry flag. The SC (Set Carry) and RC (Reset Carry) instructions will respectively set or clear both the carry flags. In addition to the SC and RC instructions, ADC, SUBC, RRC and RLC instructions affect the carry and Half Carry flags.

## ICNTRL Register (Address X'00E8)

The ICNTRL register contains the following bits:
T1ENB Timer T1 Interrupt Enable for T1B Input capture edge
T1PNDB Timer T1 Interrupt Pending Flag for T1B capture edge
WEN Enable MICROWIRE/PLUS interrupt
WPND MICROWIRE/PLUS interrupt pending
TOEN Timer TO Interrupt Enable (Bit 12 toggle)
TOPND Timer TO Interrupt pending
LPEN L Port Interrupt Enable (Multi-Input Wake Up/ Interrupt)
Bit 7 could be used as a flag

Unused	LPEN	TOPND	TOEN	WPND	WEN	T1PNDB	T1ENB

Bit 7
Bit 0

## Timers

The device contains a very versatile set of timers (TO, T1, and an 8 -bit PWM timer). All timers and associated autoreload/capture registers power up containing random data.
Figure 8 shows a block diagram for timers T 1 and T 0 on the device.

## TIMER TO (IDLE TIMER)

The device supports applications that require maintaining real time and low power with the IDLE mode. This IDLE mode support is furnished by the IDLE timer T0, which is a 16 -bit timer. The Timer TO runs continuously at the fixed rate of the instruction cycle clock, $\mathrm{t}_{\mathrm{c}}$. The user cannot read or write to the IDLE Timer T0, which is a count down timer.

The Timer T0 supports the following functions:
Exit out of the Idle Mode (See Idle Mode description)
Start up delay out of the HALT mode
The IDLE Timer T0 can generate an interrupt when the thirteenth bit toggles. This toggle is latched into the TOPND pending flag, and will occur every 4.096 ms at the maximum clock frequency ( $\mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ). A control flag TOEN allows the interrupt from the thirteenth bit of Timer T0 to be enabled or disabled. Setting TOEN will enable the interrupt, while resetting it will disable the interrupt.

## TIMER T1

The device has a powerful timer/counter block, T 1 .
The timer block consists of a 16 -bit timer, T 1 , and two supporting 16 -bit autoreload/capture registers, R1A and R1B. The timer block has two pins associated with it, T1A and T1B. The pin T1A supports I/O required by the timer block, while the pin T1B is an input to the timer block. The powerful and flexible timer block allows the device to easily perform all timer functions with minimal software overhead. The timer block has three operating modes: Processor Independent PWM mode, External Event Counter mode, and Input Capture mode.
The control bits T1C3, T1C2, and T1C1 allow selection of the different modes of operation.

## Mode 1. Processor Independent PWM Mode

As the name suggests, this mode allows the device to generate a PWM signal with very minimal user intervention.
The user only has to define the parameters of the PWM signal (ON time and OFF time). Once begun, the timer block will continuously generate the PWM signal completely independent of the microcontroller. The user software services the timer block only when the PWM parameters require updating.
In this mode the timer T1 counts down at a fixed rate of $t_{c}$. Upon every underflow the timer is alternately reloaded with the contents of supporting registers, R1A and R1B. The very tirst undertiow of the timer causes the timer to reload from the register R1A. Subsequent underflows cause the timer to be reloaded from the registers alternately beginning with the register R1B.
The T1 Timer control bits, T1C3, T1C2 and T1C1 set up the timer for PWM mode operation.
Figure 9 shows a block diagram of the timer in PWM mode. The underflows can be programmed to toggle the T1A output pin. The underflows can also be programmed to generate interrupts.
Underflows from the timer are alternately latched into two pending flags, T1PNDA and T1PNDB. The user must reset these pending flags under software control. Two control enable flags, T1ENA and T1ENB, allow the interrupts from the timer underflow to be enabled or disabled. Setting the timer enable flag T1ENA will cause an interrupt when a timer underflow causes the R1A register to be reloaded into the timer. Setting the timer enable flag T1ENB will cause an interrupt when a timer underflow causes the R1B register to be reloaded into the timer. Resetting the timer enable flags will disable the associated interrupts.
Either or both of the timer underflow interrupts may be enabled. This gives the user the flexibility of interrupting once per PWM period on either the rising or falling edge of the PWM output. Alternatively, the user may choose to interrupt on both edges of the PWM output.

Timers (Continued)


FIGURE 8. Timers T1 and TO


TL/DD/12067-9
FIGURE 9. Timer 1 in PWM MODE

## Mode 2. External Event Counter Mode

This mode is quite similar to the processor independent PWM mode described above. The main difference is that the timer, $T 1$, is clocked by the input signal from the T1A pin. The T1 timer control bits, T1C3, T1C2 and T1C1 allow the timer to be clocked either on a positive or negative edge from the T1A pin. Underflows from the timer are latched into the T1PNDA pending flag. Setting the T1ENA control flag will cause an interrupt when the timer underflows.
In this mode the input pin T1B can be used as an independent positive edge sensitive interrupt input if the T1ENB control flag is set. The occurrence of a positive edge on the T1B input pin is latched into the T1PNDB flag.
Figure 10 shows a block diagram of the timer in External Event Counter mode.
Note: The PWM output is not available in this mode since the T1A pin is being used as the counter input clock.

## Mode 3. Input Capture Mode

The device can precisely measure external frequencies or time external events by placing the timer block, T1, in the input capture mode.
In this mode, the timer T1 is constantly running at the fixed $t_{c}$ rate. The two registers, R1A and R1B, act as capture registers. Each register acts in conjunction with a pin. The register R1A acts in conjunction with the T1A pin and the register R1B acts in conjunction with the T1B pin.
The timer value gets copied over into the register when a trigger event occurs on its corresponding pin. Control bits, T1C3, T1C2 and T1C1, allow the trigger events to be specified either as a positive or a negative edge. The trigger condition for each input pin can be specified independently.

## Timers (Continued)

The trigger conditions can also be programmed to generate interrupts. The occurrence of the specified trigger condition on the T1A and T1B pins will be respectively latched into the pending flags, T1PNDA and T1PNDB. The control flag T1ENA allows the interrupt on T1A to be either enabled or disabled. Setting the T1ENA flag enables interrupts to be generated when the selected trigger condition occurs on the T1A pin. Similarly, the flag T1ENB controls the interrupts from the T1B pin.

Underflows from the timer can also be programmed to generate interrupts. Underflows are latched into the timer T1CO pending flag (the T1C0 control bit serves as the timer underflow interrupt pending flag in the Input Capture mode). Consequently, the T1C0 control bit should be reset when entering the Input Capture mode. The timer underflow interrupt is enabled with the T1ENA control flag. When a T1A interrupt occurs in the Input Capture mode, the user must check both the T1PNDA and T1C0 pending flags in order to determine whether a T1A input capture or a timer underflow (or both) caused the interrupt.
Figure 11 shows a block diagram of the timer in Input Capture mode.


FIGURE 10. Timer 1 in External Event Counter Mode


TL/DD/12067-11
FIGURE 11. Timer 1 in Input Capture Mode

## Timers (Continued)

## TIMER CONTROL FLAGS

The control bits and their functions are summarized below.
T1C0 Timer Start/Stop control in Modes 1 and 2 (Processor Independent PWM and External Event Counter), where $1=$ Start, $0=$ Stop
Timer Underflow Interrupt Pending Flag in Mode 3 (Input Capture)
T1PNDA Timer Interrupt Pending Flag
TIPNDB Timer Interrupt Pending Flag

T1ENA Timer Interrupt Enable Flag
T1ENB Timer Interrupt Enable Flag
$1=$ Timer Interrupt Enabled $0=$ Timer Interrupt Disabled
T1C3 Timer mode control
T1C2 Timer mode control
T1C1 Timer mode control
The timer mode control bits (T1C3, T1C2 and T1C1) are detailed below:

T1C3	T1C2	T1C1	Timer Mode	Interrupt A   Source	Interrupt B   Source	Timer   Counts On
0	0	0	MODE 2 (External   Event Counter)	Timer   Underflow	Positive T1B   Edge	T1A   Positive Edge
0	0	1	MODE 2 (External   Event Counter)	Timer   Underflow	Positive T1B   Edge	T1A   Negative Edge
1	0	1	MODE 1 (PWM)   T1A Toggle	Autoreload   RA	Autoreload   RB	$\mathrm{t}_{\mathrm{c}}$

## HIGH SPEED, CONSTANT RESOLUTION PWM TIMER

The device has one processor independent PWM timer. The PWM timer operates in two modes: PWM mode and capture mode. In PWM mode the timer outputs can be programmed to two pins PWM0 and PWM1. In capture mode, pin PWMO functions as the capture input. Figure 12 shows a block diagram for this timer in capture mode and Figure 13 shows a block diagram for the timer in PWM mode.

## PWM Timer Registers

The PWM Timer has three registers: PWMCON, the PWM control register, RLON, the PWM on-time register and PSCAL, the prescaler register.

## PWM Prescaler Register (PSCAL) (Address X'00AO)

The prescaler is the clock source for the counter in both PWM mode and in frequency monitor mode.
PSCAL is a read/write register that can be used to program the prescaler. The clock source to the timer in both PWM and capture modes can be programmed to $\mathrm{CKI} / \mathrm{N}$ where
$\mathrm{N}=$ PSCAL +1 , so the maximum PWM clock frequency $=$ CKI and the minimum PWM clock frequency $=$ CKI/256. The processor is able to modify the PSCAL register regardless of whether the counter is running or not and the change in frequency occurs with the next underflow of the prescaler (CK-PWM).

## PWM On-time Register (RLON) (Address X'00A1)

RLON is a read/write register. In PWM mode the timer output will be a " 1 " for RLON counts out of a total cycle of 255 PWM clocks. In capture mode it is used to program the threshold frequency.
The PWM timer is specially designed to have a resolution of 255 PWM clocks. This allows the duty cycle of the PWM output to be selected between $1 / 255$ and $254 / 255$. A value of 0 in the RLON register will result in the PWM output being continuously low and a value of 255 will result in the PWM output being continuously high.
Note: The effect of changing the RLON register during active PWM mode operation is delayed until the boundary of a PWM cycle. In capture mode the effect takes place immediately.

Timers (Continued)


FIGURE 12. PWM Timer Capture Mode Block Diagram


FIGURE 13. PWM Timer PWM Mode Block Diagram

Timers
(Continued)
PWM Control Register (PWMCON) (Address X'00A2)
The PWMCON Register Bits are:
PWENO Enable PWMO output/input function on I/O port.
PWEN1 Enable PWM1 output function on I/O port.
Note: The associated bits in the configuration and data register of the l/O-port have to be setup as outputs and/or inputs in addition to setting the PWEN bits.

PWON PWM start Bit, "1" to start timer, " 0 " to stop timer.
PWMD PWM Mode bit, " 1 " for PWM mode, " 0 " frequency monitor mode.
PWIE PWM interrupt enable bit.
PWPND PWM interrupt pending bit.
ESEL Edge select bit, " 1 " for falling edge, " 0 " for rising edge.

unused	ESEL	PWPND	PWIE	PWMD	PWON	PWEN1	PWENO

Bit 7
Bit 0

## PWM Mode

The PWM timer can generate PWM signals at frequencies up to 39 kHz (@ $\mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ) with a resolution of 255 parts. Lower PWM frequencies can be programmed via the prescaler.
If the PWM mode bit (PWMD) in the PWM configuration register (PWMCON) is set to " 1 " the timer operates in PWM mode. In this mode, the timer generates a PWM signal with a fixed, non-programmable repetition rate of 255 PWM clock cycles. The timer is clocked by the output of an 8 -bit, programmable prescaler, which is clocked with the chip's CKI frequency. Thus the PWM signal frequency can be calculated with the formula:

$$
\mathrm{fpwm}=\frac{\text { CKI }}{(1+(\text { PSCAL-contents })) \times 255}
$$

Selecting the PWM mode by setting PWMD to " 1 ", but not yet starting the timer (PWON is " 0 "), will set the timer output to "1".
The contents of an 8 -bit register, RLON, multiplied by the clock cycle of the prescaler output defines the time between overflow (or starting) and the falling edge of the PWM output.

Once the timer is started, the timer output goes low after RLON cycles and high after a total of 255 cycles. The procedure is continually repeated. In PWM mode the timer is available at pins PWM0 and/or PWM1, provided the port configuration bits for those pins are defined as outputs and the PWEN0 and/or PWEN1 bits in the PWMCON register are set.
The PWM timer is started by the software setting the PWON bit to " 1 ". Starting the timer initializes the timer register. From this point, the timer will continually generate the PWM signal, independent of any processor activity, until the timer is stopped by software setting the PWON bit to " 0 ". The processor is able to modify the RLON register regardless of whether the timer is running. If RLON is changed while the timer is running, the previous value of RLON is used for comparison until the next overflow occurs, when the new value of RLON is latched into the comparator inputs.
When the timer overflows, the PWM pending flag (PWPND) is set to " 1 ". If the PWM interrupt enable bit (PWIE) is also set to " 1 ", timer overflow will generate an interrupt. The PWPND bit remains set until the user's software writes a " 0 " to it. If the software writes a " 1 " to the PWPND bit, this has no effect. If the software writes a " 0 " to the PWPND bit at the same time as the hardware writes to the bit, the hardware has precedence.
Note: The software controlling the duty cycle is able to change the PWM duty cycle without having to wait for the timer overflow.
Figure 14 shows how the PWM output is implemented. The PWM Timer output is set to " 1 " on an overflow of the timer and set to " 0 " when the timer is greater than RLON. The output can be multiplexed to two pins.

## Capture Mode

If the PWM mode bit (PWMD) is set to "0" the PWM Timer operates in capture mode. Capture mode allows the programmer to test whether the frequency of an external source exceeds a certain threshold.
If PWMD is " 0 " and PWON is " 0 ", the timer output is set to " 0 ". In capture mode the timer output is available at pin PWM1, provided the port configuration register bit for that pin is set up as an output and the PWEN1 bit in the PWMCON register is set. Setting PWON to " 1 " will initialize the timer register and start the counter. A rising edge, or if selected, a falling edge, on the FMONIN input pin will initialize the timer register and clear the timer output. The counter continues to count up after being initialized. The ESEL bit determines whether the active edge is a rising or a falling edge.

Timers (Continued)


FIGURE 14. PWM Mode Operation

If, in capture mode PWMO is configured incorrectly as an output and is enabled via the PWENO bit, the timer output will feedback into the PWM block as the timer input.
The contents of the counter are continually compared with the RLON register. If the frequency of the input edges is sufficiently high, the contents of the counter will always be less than the value in RLON. However, if the frequency of the input edges is too low, the free-running counter value will count up beyond the value in RLON.
When the counter is greater than RLON, the PWM timer output is set to " 1 ". It is set to " 0 " by a detected edge on the timer input or when the counter overflows. When the counter becomes greater than RLON, the PWPND bit in the
 to " 1 ", the PWPND bit is enabled to request an interrupt.

It should be noted that two other conditions could also set the PWPND bit:

1. If the mode of operation is changed on the fly the timer output will toggle. If frequency monitor mode is entered on the fly such that the timer output changes from 0 to 1 , PWPND will be set.
2. If the timer is operating in frequency monitor mode and the RLON value is changed on the fly so that RLON becomes less than the current timer value, PWPND will be set.
The PWPND bit remains set until the user's software writes a " 0 " to it. If the software writes a " 1 " to the PWPND bit, this has no effect: If the software writes a " 0 " to the
 bit, the hardware has precedence. (See Figure 15 for Frequency Monitor Mode Operation.)


## Power Save Modes

The device offers the user two power save modes of operation: HALT and IDLE. In the HALT mode, all microcontroller activities are stopped. In the IDLE mode, the on-board oscillator circuitry and timer TO are active but all other microcontroller activities are stopped. In either mode, all on-board RAM, registers, I/O states, and timers (with the exception of TO) are unaltered.

## HALT MODE

The contents of all PWM Timer registers are frozen during HALT mode and are left unchanged when exiting HALT mode. The PWM timer resumes its previous mode of operation when exiting HALT mode.
The device is placed in the HALT mode by writing a " 1 " to the HALT flag (G7 data bit). All microcontroller activities, including the clock, and timers, are stopped. In the HALT mode, the power requirements of the device are minimal and the applied voltage ( $\mathrm{V}_{\mathrm{CC}}$ ) may be decreased to $\mathrm{V}_{\mathrm{r}}\left(\mathrm{V}_{\mathrm{r}}=\right.$ 2.0 V ) without altering the state of the machine.

The device supports two different ways of exiting the HALT mode. The first method of exiting the HALT mode is with the Multi-Input Wake Up feature on the L port. The second method of exiting the HALT mode is by pulling the RESET pin low.
Since a crystal or ceramic resonator may be selected as the oscillator, the Wake Up signal is not allowed to start the chip running immediately since crystal oscillators and ceramic resonators have a delayed start up time to reach full amplitude and frequency stability. The IDLE timer is used to generate a fixed delay to ensure that the oscillator has indeed stabilized before allowing instruction execution. In this case, upon detecting a valid Wake Up signal, only the oscillator circuitry is enabled. The IDLE timer is loaded with a value of 256 and is clocked with the $\mathrm{t}_{\mathrm{c}}$ instruction cycle clock. The $\mathrm{t}_{\mathrm{c}}$ clock is derived by dividing the oscillator clock down by a factor of 10. The Schmitt trigger following the CKI inverter on the chip ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The start-up time-out from the IDLE timer enables the clock signals to be routed to the rest of the chip.
The device has two mask options associated with the HALT mode. The first mask option enables the HALT mode feature, while the second mask option disables the HALT mode. With the HALT mode enable mask option, the device will enter and exit the HALT mode as described above. With the HALT disable mask option, the device cannot be placed in the HALT mode (writing a " $i$ " to the HALT flag will have no effect).

## IDLE MODE

The device is placed in the IDLE mode by writing a " 1 " to the IDLE flag (G6 data bit). In this mode, all activities, except the associated on-board oscillator circuitry, and the IDLE Timer TO, are stopped. The power supply requirements of the microcontroller in this mode of operation are typically around $30 \%$ of normal power requirement of the microcontroller.

As with the HALT mode, the device can be returned to normal operation with a reset, or with a Multi-Input Wake Up from the L Port or CAN Interface. Alternately, the microcontroller resumes normal operation from the IDLE mode when the thirteenth bit (representing 4.096 ms at internal clock frequency of $1 \mathrm{MHz}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ) of the IDLE Timer toggles. This toggle condition of the thirteenth bit of the IDLE Timer TO is latched into the TOPND pending flag.
The user has the option of being interrupted with a transition on the thirteenth bit of the IDLE Timer T0. The interrupt can be enabled or disabled via the TOEN control bit. Setting the TOEN flag enables the interrupt and vice versa.
The user can enter the IDLE mode with the Timer T0 interrupt enabled. In this case, when the TOPND bit gets set, the device will first execute the Timer TO interrupt service routine and then return to the instruction following the "Enter Idle Mode" instruction.
Alternatively, the user can enter the IDLE mode with the IDLE Timer T0 interrupt disabled. In this case, the device will resume normal operation with the instruction immediately following the "Enter IDLE Mode" instruction.
Note: It is necessary to program two NOP instructions following both the set HALT mode and set IDLE mode instructions. These NOP instructions are necessary to allow clock resynchronization following the HALT or IDLE modes.

## Multi-Input Wake Up

The Multi-Input Wake Up feature is used to return (wake up) the device from either the HALT or IDLE modes. Alternately, the Multi-Input Wake Up/Interrupt feature may also be used to generate up to 7 edge selectable external interrupts.
Figure 16 shows the Multi-Input Wake Up logic for the microcontroller. The Multi-Input Wake Up feature utilizes the L Port. The user selects which particular L port bit (or combination of L Port bits) will cause the device to exit the HALT or IDLE modes. The selection is done through the Reg: WKEN. The Reg: WKEN is an 8 -bit read/write register, which contains a control bit for every L port bit. Setting a particular WKEN bit enables a Wake Up from the associated port pin.
The user can select whether the trigger condition on the selected L Port pin is going to be either a positive edge (low to high transition) or a negative edge (high to low transition). This selection is made via the Reg: WKEDG, which is an 8-bit control register with a bit assigned to each L Port pin. Setting the control bit will select the trigger condition to be a negative edge on that particular L Port pin. Resetting the bit selects the trigger condition to be a positive edge. Changing an edge select entails several steps in order to avoid a pseudo Wake Up condition as a result of the edge change. First, the associated WKEN bit should be reset, followed by the edge select change in WKEDG. Next, the associated WKPND bit should be cleared, followed by the associated WKEN bit being re-enabled.
An example may serve to clarify this procedure. Suppose we wish to change the edge select from positive (low going high) to negative (high going low) for $L$ Port bit 5, where bit 5 has previously been enabled for an input interrupt. The program would be as follows:

```
RBIT 5, WKEN
SBIT 5, WKEDG
RBIT 5, WKPND
SBIT 5, WKEN
```


## Multi-Input Wake Up (Continued)

If the $L$ port bits have been used as outputs and then changed to inputs with Multi-Input Wake Up/Interrupt, a safety procedure should also be followed to avoid inherited pseudo wake up conditions. After the selected L port bits have been changed from output to input but before the associated WKEN bits are enabled, the associated edge select bits in WKEDG should be set or reset for the desired edge selects, followed by the associated WKPND bits being cleared.
This same procedure should be used following reset, since the L port inputs are left floating as a result of reset. The occurrence of the selected trigger condition for Multi-Input

Wake Up is latched into a pending register called WKPND. The respective bits of the WKPND register will be set on the occurrence of the selected trigger edge on the corresponding Port L pin. The user has the responsibility of clearing these pending flags. Since WKPND is a pending register for the occurrence of selected wake up conditions, the device 'will not enter the HALT mode if any Wake Up bit is both snabled and pending. Consequently, the user has the responsibility of clearing the pending flags before attempting to enter the HALT mode.
The WKEN, WKPND and WKEDG are all read/write registers, and are cleared at reset.


FIGURE 16. Multi-Input Wake Up Logic

## Multi-Input Wake Up (Continued)

## CAN RECEIVE WAKE UP

The CAN Receive Wake Up source is always enabled and is always active on a falling edge of the CAN comparator output. There is no specific enable bit for the CAN Wake Up feature. Although the wake up feature on pins LO..L6 can be programmed to generate an interrupt (L-port interrupt), no interrupt is generated upon a CAN receive wake up condition. The CAN block has its own, dedicated receiver interrupt upon receive buffer full.

## PORT LINTERRUPTS

Port $L$ provides the user with an additional seven fully selectable, edge sensitive interrupts which are all vectored into the same service subroutine.
The interrupt from Port $L$ shares logic with the wake up circuitry. The register WKEN allows interrupts from Port $L$ to be individually enabled or disabled. The register WKEDG specifies the trigger condition to be either a positive or a negative edge. Finally, the register WKPND latches in the pending trigger conditions.
The GIE (global interrupt enable) bit enables the interrupt function. A control flag, LPEN, functions as a global interrupt enable for Port $L$ interrupts. Setting the LPEN flag will enable interrupts and vice versa. A separate global pending flag is not needed since the register WKPND is adequate.
Since Port $L$ is also used for waking the device out of the HALT or IDLE modes, the user can elect to exit the HALT or IDLE modes either with or without the interrupt enabled. If he elects to disable the interrupt, then the device will restart execution from the instruction immediately following the instruction that placed the microcontroller in the HALT or IDLE modes. In the other case, the device will first execute the interrupt service routine and then revert to normal operation.
The Wake Up signal will not start the chip running immediately since crystal oscillators or ceramic resonators have a finite start up time. The IDLE Timer (TO) generates a fixed delay to ensure that the oscillator has indeed stabilized before allowing the device to execute instructions. In this case, upon detecting a valid Wake Up signal, only the oscillator circuitry and the IDLE Timer TO are enabled. The IDLE Tim$e r$ is loaded with a value of 256 and is clocked from the $t_{c}$ instruction cycle clock. The $\mathrm{t}_{\mathrm{c}}$ clock is derived by dividing down the oscillator clock by a factor of 10. A Schmitt trigger following the CKI on-chip inverter ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The start-up time-out from the IDLE timer enables the clock signals to be routed to the rest of the chip.

## Interrupts

The device supports a vectored interrupt scheme. It supports a total of eleven interrupt sources. The following table lists all the possible device interrupt sources, their arbitration ranking and the memory locations reserved for the interrupt vector for each source.

Two bytes of program memory space are reserved for each interrupt source. All interrupt sources except the software interrupt are maskable. Each of the maskable interrupts have an Enable bit and a Pending bit. A maskable interrupt is active if its associated enable and pending bits are set. If $\mathrm{GIE}=1$ and an interrupt is active, then the processor will be interrupted as soon as it is ready to start executing an instruction except if the above conditions happen during the Software Trap service routine. This exception is described in the Software Trap sub-section.
The interruption process is accomplished with the INTR instruction (opcode 00), which is jammed inside the Instruction Register and replaces the opcode about to be executed. The following steps are performed for every interrupt:

1. The GIE (Global Interrupt Enable) bit is reset.
2. The address of the instruction about to be executed is pushed into the stack.
3. The PC (Program Counter) branches to address 00FF. This procedure takes $7 \mathrm{t}_{\mathrm{c}}$ cycles to execute.

At this time, since $\mathrm{GIE}=0$, other maskable interrupts are disabled. The user is now free to do whatever context switching is required by saving the context of the machine in the stack with PUSH instructions. The user would then program a VIS (Vector Interrupt Select) instruction in order to branch to the interrupt service routine of the highest priority interrupt enabled and pending at the time of the VIS. Note that this is not necessarily the interrupt that caused the branch to address location 00FF Hex prior to the context switching.
Thus, if an interrupt with a higher rank than the one which caused the interruption becomes active before the decision of which interrupt to service is made by the VIS, then the interrupt with the higher rank will override any lower ones and will be acknowledged. The lower priority interrupt(s) are still pending, however, and will cause another interrupt immediately following the completion of the interrupt service routine associated with the higher priority interrupt just serviced. This lower priority interrupt will occur immediately following the RETI (Return from Interrupt) instruction at the end of the interrupt service routine just completed.
Inside the interrupt service routine, the associated pending bit has to be cleared by software. The RETI (Return from Interrupt) instruction at the end of the interrupt service routine will set the GIE (Global Interrupt Enable) bit, allowing the processor to be interrupted again ff another interrupt is active and pending.
The VIS instruction looks at all the active interrupts at the time it is executed and performs an indirect jump to the beginning of the service routine of the one with the highest rank.
The addresses of the different interrupt service routines, called vectors, are chosen by the user and stored in ROM in a table starting at 01E0 (assuming that VIS is located between 00FF and 01DF). The vectors are 15-bit wide and therefore occupy 2 ROM locations.
VIS and the vector table must be located in the same 256 -byte block ( $0 y 00$ to OyFF) except if VIS is located at the last address of a block. In this case, the table must be in the next block. The vector table cannot be inserted in the first 256-byte block.

## Interrupts (Continued)

The vector of the maskable interrupt with the lowest rank is located at 0yE0 (Hi-Order byte) and OyE1 (Lo-Order byte) and so forth in increasing rank number. The vector of the maskable interrupt with the highest rank is located at 0yFA (Hi-Order byte) and OyFB (Lo-Order byte).
The Software Trap has the highest rank and its vector is located at $0 y F E$ and $0 y F F$.

Arbitration   Ranking	Source	Vector   Address   Hi-Low   Byte
1	Software Trap	OyFE-OyFF
2	Reserved	OyFC-0yFD
3	CAN Receive	OyFA-0yFB
4	CAN Error   (transmit/receive)	OyF9-0yF9
5	CAN Transmit	OyF6-0yF7
6	Pin G0 Edge	OyF4-0yF5
7	IDLE Timer Underilow	OyF2-0yF3
8	Timer T1A/Underflow	OyF0-0yF1
9	Timer T1B	OyEE-0yEF
10	MICROWIRE/PLUS	OyEC-0yED
11	PWM timer	OYEA-0yEB
12	Reserved	OyE8-0yE9
13	Reserved	OyE6-0yE7
14	Reserved	OyE4-0yE5
15	Port L/Wake Up	OyE2-0yE3
10	Deiauii ViS inierupi	OyE0-0yEi

$y$ is VIS page, $y \neq 0$

If, by accident, a VIS gets executed and no interrupt is active, then the PC (Program Counter) will branch to a vector located at $0 \mathrm{yE} 0-0 \mathrm{yE}$. This vector can point to the Software Trap (ST) interrupt service routine, or to another special service routine as desired.
Figure 17 shows the Interrupt Block diagram.

## SOFTWARE TRAP

The Software Trap (ST) is a special kind of non-maskable interrupt which occurs when the INTR instruction (used to acknowledge interrupts) is fetched from ROM and placed inside the instruction register. This may happen when the PC is pointing beyond the available ROM address space or when the stack is over-popped.
When an ST occurs, the user can re-initialize the stack pointer and do a recovery procedure (similar to RESET, but not necessarily containing all of the same initialization procedures) before restarting.
The occurrence of an ST is latched into the ST pending bit. The GIE bit is not affected and the ST pending bit (not accessible by the user) is used to inhibit other interrupts and to direct the program to the ST service routine with the VIS instruction. The RPND instruction is used to clear the software interrupt pending bit. This bit is also cleared on reset.
The ST has the highest rank among all interrupts.
Nothing (except another ST) can interrupt an ST being serviced.

## CAN Block Description *

This device contains a CAN serial bus interface as described in the CAN Specification Rev. 2.0 part B.

- Patents Pending.


FIGURE 17. Interrupt Block Dlagram

## CAN Interface Block

This device supports applications which require a low speed CAN interface. It is designed to be programmed with two transmit and two receive registers. The user's program may check the status bytes in order to get information of the bus state and the received or transmitted messages. The device has the capability to generate an interrupt as soon as one byte has been transmitted or received. Care must be taken if more than two bytes in a message frame are to be transmitted/received. In this case the user's program must poll the transmit buffer empty (TBE)/receive buffer full (RBF) bits or enable their respective interrupts and perform a data exchange between the user data and the Tx/Rx registers.

Fully automatic retransmission is supported for messages not longer than 2 bytes. Messages which are longer than two byte have to be processed by software.
The interface is compatible with CAN Specification 2.0 part B, without the capability to receive/transmit extended frames. However, extended frames on the bus are checked and acknowledged according to the CAN specification.
The maximum bus speed achievable with the CAN interface is a function of crystal frequency, message length and software overhead. The device can support a bus speed of up to $1 \mathrm{Mbit} / \mathrm{s}$ with a 10 MHz oscillator and 2 byte messages.


TL/DD/12067-18
FIGURE 18. CAN Interface Block Diagram

## Functional Block Description Of The CAN Interface

## INTERFACE MANAGEMENT LOGIC (IML)

The IML executes the CPU's transmission and reception commands and controlling the data transfer between CPU, $R x / T x$, and CAN registers. It provides the CAN Interface with $\mathrm{Rx} / \mathrm{Tx}$ data from the memory mapped Register Block. It also sets and resets the CAN status information and generates interrupts to the CPU.

## BIT STREAM PROCESSOR (BSP)

The BSP is a sequencer controlling the data stream between Interface Management Logic (parallel data) and the bus line (serial data). It controls the transceive logic with regard to reception, arbitration, and creates error signals according to the bus specification.

## TRANSCEIVE LOGIC (TCL)

The TCL is a state machine which incorporates the bit stuff logic and controls the output drivers, CRC logic, and the Rx/ Tx shift registers. It also controls the synchronization to the bus with the CAN clock signal generated by the BTL.

## ERROR MANAGEMENT LOGIC (EML)

The EML is responsible for the fault confinement of the CAN protocol. It is also responsible for changing the error counters, setting the appropriate error flag bits and interrupts and changing the error status (passive, active and bus off).

## CYCLIC REDUNDANCY CHECK (CRC) GENERATOR AND REGISTER

The CRC Generator consists of a 15 -bit shift register and the logic required to generate the checksum of the destuffed bit-stream. It informs the EML about the result of a receiver checksum.
The checksum is generated by the polynomial:

$$
x^{15}+x^{14}+x^{10}+x^{8}+x^{7}+x^{4}+x^{3}+1
$$

## RECEIVE/TRANSMIT (RX/TX) REGISTERS

The Rx/Tx registers are 8-bit shift registers controlled by the TCL and the BSR. They are loaded or read by the Interface Management Logic, which holds the data to be transmitted or the data that was received.

## BIT TIME LOGIC (BTL)

The bit time logic divider divides the CKI input clock by the value defined in the CAN prescaler (CSCAL) and bus timing register (CTIM). The resulting bus clock (tCAN) can be computed by the formula:

$$
t_{C A N}=\frac{C K I}{(1+\text { divider }) \times(1+2 \times P S+P P S)}
$$

Where divider is the value of the clock prescaler, $P S$ is the programmable value of phase segment 1 and 2 (1..8) and PPS the programmed value of the propagation segment (1.8) (located in CTIM).

Note: The synchronization jump width (SJ) (see CAN BUS TIMING REGISTER (CTIM)) should be less then the programmed value of PS1. If a soft resynchronization is done during phase segment 1 or the propagation segment, then SJ will always be equal to the programmed value. If soft resynchronization is done during phase segment 2 and the programmed value of SJ is greater than or equal to the programmed PS1 value, PS2 will never be smaller than 1.

## OUTPUT DRIVERS/INPUT COMPARATORS

The output drivers/input comparators are the physical interface to the bus. Control bits are provided to TRI-STATE the output drivers.

TABLE II. Bus Level Definition

Bus Level	Pin Tx0	Pin Tx1
"dominant"	drive low (GND)	drive high (VCC)
"recessive"	TRI-STATE	TRI-STATE



TL/DD/12067-19

## FIGURE 19. Bit Rate Generation

## REGISTER BLOCK

The register block consists of fifteen 8 -bit registers which are described in more detail in the following paragraphs.
Note: The contents of the receiver related registers RxD1, RxD2, RDLC, RIDH and RTSTAT are only changed if a received frame passes the acceptance filter or the Receive Identifier Acceptance Filter bit (RIAF) is set to accept all received messages.

TRANSMIT DATA REGISTER 1 (TXD1) (Address X'00B0)
The Transmit Data Register 1 contains always the first data byte to be transmitted within a frame and then the successive odd byte numbers (i.e., bytes number 1,3,..,7).

TRANSMIT DATA REGISTER 2 (TXD2) (Address X'00B1) The Transmit Data Register 2 contains always the second data byte to be transmitted within a frame and then the successive even byte numbers (i.e., bytes number $2,4, \ldots, 8$ ).

TRANSMIT DATA LENGTH CODE AND IDENTIFIER LOW REGISTER (TDLC) (Address X'OOB2)

TID3	TID2	TID1	TIDO	TDLC3	TDLC2	TCLC1	TDLC0

Bit 7
Bit 0
This register is read/write.
TID3..TID0 Transmit Identifier Bits 3... 0 (lower 4 bits) The transmit identifier is composed of eleven bits in total, bits 3 to 0 of the TID are stored in bits 7 to 4 of this register. DLC3..TDLC0 Transmit Data Length Code
These bits determine the number of data bytes to be transmitted within a frame.

TRANSMIT IDENTIFIER HIGH (TID) (Address X’00B3)

| TRTR | TID10 | TID9 | TID8 | TID7 | TID6 | TID5 | TID4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Bit 7

This register is read/write.
TRTR Transmit Remote Frame
This bit is set if the frame to be transmitted is a remote frame.
TID10..TID4 Transmit Identifier Bits 10.4 (higher 7 bits) Bits TID10..TID4 are the upper 7 bits of the 11-bit transmit identifier.

## Functional Block Description Of The CAN Interface (Continued)

RECEIVE DATA REGISTER 1 (RXD1) (Address X'00B4)
The Receive Data Register 1 (RXD1) contains always the first data byte received in a frame and then successive odd byte numbers (i.e., bytes $1,3, . .7$ ). This register is read-only.
RECEIVE DATA REGISTER 2 (RXD2) (Address X'00B5)
The Receive Data Register 2 (RXD2) contains always the second data byte received in a frame and then successive even byte numbers (i.e., bytes $2,4, \ldots, 8$ ). This register is readonly.

RECEIVE DATA LENGTH CODE AND IDENTIFIER LOW REGISTER (RIDL) (Address X'00B6)

RID3	RID2	RID1	RID0	RDLC3	RDLC2	TCLC1	RDLC0

Bit 7
Bit 0
This register is read only.
RID3..RID0 Receive Identifier bits (lower four bits)
The RID3..RID0 bits are the lower four bits of the eleven bit long Receive Identifier. Any received message that matches the upper 7 bits of the Receive Identifier (RID10..RID4) is accepted if the Receive Identifier Acceptance Filter (RIAF) bit is set to zero (see also RECEIVE IDENTIFIER HIGH (RID) (Address X'00B7).
RDLC3..RDLCO Receive Data Length Code bits
The RDLC3..RDLC0 bits determine the number of data bytes within a received frame.
RECEIVE IDENTIFIER HIGH (RID) (Address X'00B7)

unused	RID10	RID9	RID8	RID7	RID6	RID5	RID4

Bit 7
This register is read/write.
RID10..RID4 Receive Identifier bits (upper bits)
The RID10..RID4 bits are the upper 7 bits of the eleven bit long Receive Identifier. If the Receive Identifier Acceptance Filter (RIAF) bit (see CBUS registers) is set to zero, bits 4 to 10 of the received identifier are compared with the mask bits of RID4..RID10 and if the corresponding bits match, the message is accepted. If the RIAF bit is set to a one, the filter function is disabled and all messages independent of the identifier will be accepted.

## CAN PRESCALER REGISTER (CSCAL) (Address X'00B8)

CKS7	CKS6	CKS5	CKS4	CKS3	CKS2	CKS1	CKS0

Bit 7
Bit 0
This register is read/write.
CKS7.. 0 Prescaler divider select.
The resulting clock value is the CAN Prescaler clock.
CAN BUS TIMING REGISTER (CTIM) (00B9)

PPS2	PPS1	PPS0	PS2	PS1	PS0	SJ1	SJ0

Bit 7
Bit 0
This register is read/write.
PPS2..PPS0 Propagation Segment, bits $2 . .0$

The PPS2..PPSO bits determine the length of the propagation delay in Prescaler clock cycles (PSC) per bit time. (For a more detailed discussion of propagation delay and phase segments, see SYNCHRONIZATION).
PS2..PSO Phase Segment 1, bits $2 . .0$
The PS2..PS0 bits fix the number of Prescaler clock cycles per bit time for phase segment 2.
SJ1, SJO Synchronization Jump Width 0 and 1
The Synchronization Jump Width defines the maximum number of Prescaler clock cycles by which a bit may be shortened, or lengthened, to achieve re-synchronization on "recessive" to "dominant" data transitions on the bus.

TABLE III. Synchronization Jump Width

SJ1	SJ0	Synchronization Jump   Width
0	0	1 PSC
0	1	2 PSC
1	0	3 PSC
1	1	4 PSC

## LENGTH OF TIME SEGMENTS

- The Synchronization Segment is 1 CAN Prescaler clock (PSC)
- The Propagation Segment can be programmed (PPS) to be $1,2, \ldots, 8$ PSC in length.
- Phase Segment 1 and Phase Segment 2 are programmable (PS) to be $1,2, \ldots, 8$ PSC long

CAN BUS CONTROL REGISTER (CBUS) (00BA)


Bit 7
Bit 0
Reserved This bit is reserved and should be zero.
RIAF Receive identifier acceptance filter bit
If the RIAF bit is set to zero, bits 4 to 10 of the received identifier are compared with the mask bits of RID4..RID10 and if the corresponding bits match, the message is accepted. If the RIAF bit is set to a one, the filter function is disabled and all messages independent of the identifier will be accepted.
TXENO,
TXEN1 TXD Output Driver Enable
TABLE IV. Output Drivers

TXEN1	TXEN0	Output
0	0	Tx0, Tx1 TRI-STATED, CAN   input comparator disabled
0	1	Tx0 enabled
1	0	Tx1 enabled
1	1	Tx0 and Tx1 enabled

## Functional Block Description Of The CAN Interface (Continued)

Bus synchronization of the device is done in the following way:
If the output was disabled (TXEN1, TXENO = " 0 ") and either TXEN1 or TXENO, or both are set to 1, the device will not start transmission or reception of a frame until eleven consecutive "recessive" bits have been received. Resetting the TXEN1 and TXENO bits will disable the output drivers and the CAN input comparator. All other CAN related registers and flags will be unaffected. It is recommended that the user resets the TXEN1 and TXEN0 bits before switching the device into the HALT mode (the CAN receive wake up will still work) in order to reduce current consumption and to assure a proper resynchronization to the bus after exiting the HALT mode.
Note: A "bus off" condition will also cause Tx0 and Tx1 to be at TRI-STATE (independent of the values of the TXEN1 and TXENO bits).
RXREF1 Reference voltage applied to Rx1 if bit is set
RXREFO Reference voltage applied to Rx0 if bit is set

## FMOD Fault Confinement Mode select

Setting the FMOD bit to " 0 " (default after power on reset) will select the Standard Fault Confinement mode. In this mode the device goes from "bus off" to "error active" after monitoring 128*11 recessive bits (including bus idle) on the bus.

TRANSMIT CONTROL/STATUS (TCNTL) (OOBB)

NS1	NSO	TERR	RERR	CEIE	TIE	RIE	TXSS

Bit 7
Bit 0
NS1..NS0 Node Status, i.e., Error Status.
TABLE V. Node Status

NS1	NS0	Output
0	0	Error $\dot{\text { Aciive }}$
0	1	Error Passive
1	0	Bus Off
1	1	Bus Off

The Node Status bits are read only.
TERR Transmit Error
This bit is automatically set when an error occurred during the transmission of a frame. TERR can be programmed to generate an interrupt by setting the Can Error Interrupt Enable bit (CEIE). This bit has to be cleared by the user's software.
Note: This is used for messages of more than two bytes. If an error occurs during the transmission of a frame with more than 2 data bytes, the user's software has to handle the correct reloading of the data bytes to the TXD registers for retransmission of the frame. For frames with 2 or less data bytes the interface logic of this chip does an automatic retransmission. Nevertheless, regardless of the number of data bytes: The user's software has to reset this bit if CEIE is enabled. Otherwise a new interrupt will be generated immediately after return from the interrupt service routine.

RERR
Receive Error
This bit is automatically set when an error occurred during the reception of a frame. RERR can be programmed to generate an interrupt by setting the Can Error Interrupt Enable bit (CEIE). This bit has to be cleared by the user's software. CEIE CAN Error Interrupt Enable
If set by the user's software, this bit enables the transmit and receive error interrupts. The interrupt pending flags are TERR and RERR. Resetting this bit with a pending error interrupt will inhibit the interrupt, but will not clear the cause of the interrupt. If the bit is then set without clearing the cause of the interrupt, the interrupt will reoccur.
TIE Transmit Interrupt Enable
If set by the user's software, this bit enables the transmit interrupt. (See TBE and TXPND.) Resetting this bit with a pending transmit interrupt will inhibit the interrupt, but will not clear the cause of the interrupt. If the bit is then set without clearing the cause of the interrupt, the interrupt will reoccur.
RIE

## Receive Interrupt Enable

If set by the user's software, this bit enables the receive interrupt or a remote transmission request interrupt. (See RBF, RFV and RRTR.) Resetting this bit with a pending receive interrupt will inhibit the interrupt, but will not clear the cause of the interrupt. If the bit is then set without clearing the cause of the interrupt, the interrupt will reoccur.

## TXSS Transmission Start/Stop

This bit is set by the user's software to initiate the transmission of a frame. Once this bit is set, a transmission is pending, as indicated by the TXPND flag being set. It can be reset by software to cancel a pending transmission. Resetting the TXSS bit will only cancel a transmission, if the transmission of a frame hasn't been started yet (bus idle), if arbitration has been lost (receiving) or if an error occurs during transmission. If the device has already started transmission (won arbitration) the IXPND and TXSS flags will stay set until the transmission is completed, even if the user's software has written zero to the TXSS bit. If one or more data bytes are to be transmitted, care must be taken by the user, that the Transmit Data Register(s) have been loaded before the TXSS bit is set.
TXSS will be cleared on three conditions only: Successful completion of a transmitted message; successful cancellation of a pending transmission; Transition of the CAN interface to the bus-off state.
Writing a zero to the TXSS bit will request cancellation of a pending transmission but TXSS will not be cleared until completion of the operation. If an error occurs during transmission of a frame, the logic will check for cancellation requests prior to restarting transmission. If zero has been written to TXSS, retransmission will be cancelled.

## Functional Block Description Of The CAN Interface (Continued)

RECEIVE/TRANSMIT STATUS (RTSTAT) (Address X'00BC)

TBE	TXPND	RRTR	ROLB	RORN	RFV	RCV	RBF
1	0	0	0	0	0	0	0

Bit 7
Bit 0
This register is read only.
TBE Transmit Buffer Empty
This bit is set as soon as the TxD2 register is copied into the Rx/Tx shift register, i.e., the 1 st data byte of each pair has been transmitted. The TBE bit is automatically reset if the TxD2 register is written (the user should write a dummy byte to the TxD2 register when transmitting an odd number of bytes or zero bytes). TBE can be programmed to generate an interrupt by setting the Transmit Interrupt Enable bit (TIE). When servicing the interrupt the user has to make sure that TBE gets cleared by executing a WRITE instruction on the TxD2 register, otherwise a new interrupt will be generated immediately after return from the interrupt service routine. The TBE bit is read only. It is set to 1 upon reset. TBE is also set upon completion of transmission of a valid message.


TL/DD/12067-20

## FIGURE 20. Acceptance Filter Block-Diagram

TXPND Transmission Pending
This bit is set as soon as the Transmit Start/Stop (TXSS) bit is set by the user. It will stay set until the frame was successfully transmitted, until the transmission was successfully cancelled by writing zero to the Transmission Start/Stop bit (TXSS), or the device enters the bus-off state. Resetting the TXSS bit will only cancel a transmission, if the transmission of a frame hasn't been started yet (bus idle), or if arbitration has been lost (receiving). If the device has already started transmission (won arbitration) the TXPND flag will stay set until the transmission is completed, even if the user's software has requested cancellation of the message. If an error occurs during transmission, a requested cancellation may occur prior to the beginning of retransmission.
RRTR Received Remote Transmission Request
This bit is set when the remote transmission request (RTR) bit in a received frame was set. It is automatically reset through a read of the RXD1 register.

To detect RRTR the user can either poll this flag or enable the receive interrupt (the reception of a remote transmission request will also cause an interrupt if the receive interrupt is enabled). If the receive interrupt is enabled, the user should check the RRTR flag in the service routine in order to distinguish between a RRTR interrupt and a RBF interrupt. It is the responsibility of the user to clear this bit by reading the RXD1 register, before the next frame is received.

## ROLD Received Overload Frame

This bit is automatically set when an Overload Frame was received on the bus. It is automatically reset through a read of the Receive/Transmit Status register. It is the responsibility of the user to clear this bit by reading the Receive/Transmit Status register, before the next frame is received.

## RORN Receiver Overrun

This bit is automatically set on an overrun of the receive data register, i.e., if the user's program did not maintain the RxDn registers when receiving a frame. It is automatically reset through a read of the Receive/Transmit Status register. It is the responsibility of the user to clear this bit by reading the Receive/Transmit Status register before the next frame is received.

## RFV Received Frame Valid

This bit is set if the received frame is valid, i.e., after the penultimate bit of the End of Frame was received. It is automatically reset through a read of the Receive/Transmit Status register. It is the responsibility of the user to clear this bit by reading the receive/transmit status register (RTSTAT), before the next frame is received. RFV will cause a Receive Interrupt if enabled by RIE. The user should be careful to read the last data byte (RxD1) of odd length messages ( $1,3,5$ or 7 data bytes) on receipt of RFV. RFV is the only indication that the last byte of the message has been received.

## RCV Receive Mode

This bit is set after the data length code of a message that passes the device's acceptance filter has been received. It is automatically reset after the CRC-delimiter of the same frame has been received. It indicates to the user's software that arbitration is lost and that data is coming in for that node.

## RBF Receive Buffer Full

This bit is set if the second Rx data byte was received. It is reset automatically, after the RxD1-Register has been read by the software. RBF can be programmed to generate an interrupt by setting the Receive Interrupt Enable bit (RIE). When servicing the interrupt the user has to make sure that RBF gets cleared by executing a LD instruction from the RxD1 register, otherwise a new interrupt will be generated immediately after return from the interrupt service routine. The RBF bit is read only.

TRANSMIT ERROR COUNTER (TEC) (Address X'00BD)

TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TCLC1	TEC0

Bit 7
This register is read/write.
For test purposes and to identify the node status, the transmit error counter, an 8 -bit error counter, is mapped into the data memory. If the lower seven bits of the counter overflow, i.e., TEC7 is set, the device is error passive.

## Functional Block Description Of The CAN Interface (Continued)

## CAUTION:

To prevent interference with the CAN fault confinement, the user must not write to the REC/TEC registers. Both counters are automatically updated following the CAN specification.

## RECEIVE ERROR COUNTER (REC) (OOBE)

REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0

Bit 7
Bit 0
This register is read/write.

## MESSAGE IDENTIFICATION

## a) Transmitted Messages

The user can select all 11 Transmit Identifier Bits to transmit any message which fulfills the CAN2.0, part B spec without an extended identifier (see note below). Fully automatic retransmission is supported for messages no longer than 2 bytes.

## b) Received Messages

The lower four bits of the Receive Identifier are don't care, i.e., the controller will receive all messages that fit in that window ( 16 messages). The upper 7 bits can be defined by the user in the Receive Identifier High Register to mask out groups of messages. If the RIAF bit is set, all messages will be received.
Note: The CAN interface tolerates the extended CAN frame format of 29 identifier bits and gives an acknowledgment. If an error occurs the receive error counter will be increased, and decreased if the frame is valid.

## BUS SYNCHRONIZATION DURING OPERATION

Resetting the TXEN1 and TXENO bits in Bus Control Register will disable the output drivers and do a resynchronization to the bus. All other CAN related registers and flags will be unaffected.
Bus synchronization of the device in this case is done in the following way:
If the output was disabled (TXEN1, TXENO = " 0 ") and either TXEN1 or TXEN0, or both are set to 1 , the device will not start transmission or reception of a frame until eleven consecutive "recessive" bits have been received.
A "bus-off" condition will also cause the output drivers Tx1 and TxO to be tristated (independent of the status of TXEN1 and TXENO). The device will switch from "bus off" to "error active" mode as described under the FMOD-bit description. (See Can Bus Control register.) This will ensure that the device is synchronized to the bus, before starting to transmit or receive.
For information on bus synchronization and status of the CAN related registers after external reset refer to the RESET section.

## ON-CHIP VOLTAGE REFERENCE

The on-chip voltage reference is a ratiometric reference. For electrical characteristics of the voltage reference refer to the electrical specifications section.

## ANALOG SWITCHES

Analog switches are used for selecting between Rx0 and $V_{\text {REF }}$ and between Rx1 and $V_{\text {REF }}$.

## Basic CAN Concepts

The following paragraphs provide a generic overview over the basic concepts of the Controller Area Network (CAN) as described in Chapter 4 of ISO/DIS11519-1. Implementation related issues of the National Semiconductor device will be discussed as well.
This device will process standard frame format only. Extended frame formats will be acknowledged, however the data will be discarded. For this reason the description of frame formats in the following chapters will cover only the standard frame format.
The following section provides some more detail on how the device will handle received extended frames:
If the device's remote identifier acceptance filter bit (RIAF) is set to " 1 ", extended frame messages will be acknowledged. However, the data will be discarded and the device will not reply to a remote transmission request received in extended frame format. If the device's RIAF bit is set to " 0 " the upper 7 received ID bits of an extended frame that match the device's receive identifier (RID) acceptance filter bits, are stored in the device's RID register. However, the device does not reply to an RTR and any data is discarded. The device will only acknowledge the message.

## MULTI-MASTER PRIORITY BASED BUS ACCESS

The CAN protocol is a message based protocol that allows a total of $2032\left(=2^{11}-16\right)$ different messages in the standard format and 512 million ( $=2^{29}-16$ ) different messages in the extended frame format.

## MULTICAST FRAME TRANSFER BY ACCEPTANCE FILTERING

Every CAN Frame is put on the common bus. Each module receives every frame and filters out the frames which are not required for the module's task.

## REMOTE DATA REQUEST

A CAN master module has the ability to set a specific bit cal!ed the "romote trancmiccion requect bit" (RTP) in a frame. This causes another module, either another master or a slave, to transmit a data frame after the current frame has been completed.

## SYSTEM FLEXIBILITY

Additional modules can be added to an existing network without a configuration change. These modules can either perform completely new functions requiring new data or process existing data to perform a new function.

## SYSTEM WIDE DATA CONSISTENCY

As the CAN network is message oriented, a message can be used like a variable which is automatically updated by the controlling processor. If any module cannot process information it can send an overload frame. This device is incapable of initiating an overload frame, but will join an overload frame initiated by another device as required by CAN specifications.

## NON-DESTRUCTIVE CONTENTION-BASED ARBITRATION

The CAN protocol allows several transmitting modules to start a transmission at the same time as soon as they monitor the bus to be idle. During the start of transmission every node monitors the bus line to detect whether its message is overwritten by a message with a higher priority. As soon as a transmitting module detects another module with a higher priority accessing the bus, it stops transmitting its own frame and switches to receive mode. For illustration see Figure 21.

## Basic CAN Concepts (Continued)

## AUTOMATIC RETRANSMISSION OF FRAMES

If a data or remote frame was overwritten by either a higherprioritized data frame, remote frame, or an error frame, the transmitting module will automatically retransmit it. This device will handle the automatic retransmission of up to two data bytes automatically. Messages with more than 2 data bytes require the user's software to update the transmit registers.

## ERROR DETECTION AND ERROR SIGNALING

All messages on the bus are checked by each CAN node and acknowledged if they are correct. If any node detects an error it starts the transmission of an error frame.

## Switching Off Defective Nodes

There are two error counters, one for transmitted data and one for received data, which are incremented, depending on the error type, as soon as an error occurs. If either counter goes beyond a specific value the node goes to an error state. A valid frame causes the error counters to decrease. The device can be in one of three states with respect to error handling:

- Error active

An error active unit can participate in bus communication and sends an active ("dominant") error flag.

- Error passive

An error passive unit can participate in bus communication. However, if the unit detects an error it is not allowed to send an active error flag. The unit sends only a passive ('recessive') error flag.

- Bus off

A unit that is "bus off" has the output drivers disabled, i.e., it does not participate in any bus activity.
(See ERROR MANAGEMENT AND DETECTION for more detailed information.)

## Frame Formats

## INTRODUCTION

There are basically two different types of frames used in the CAN protocol.
The data transmission frames are: data/remote frame
The control frames are: error/overload frame
Note: This device can not send an overload frame as a result of not being able to process all information. However, the device is able to recognize an overload condition and join overload frames initiated by other devices.

If no message is being transmitted, i.e., the bus is idle, the bus is kept at the "recessive" level. Figure 22 and Figure 23 give an overview of the various CAN frame formats.

## DATA AND REMOTE FRAME

Data frames consist of seven bit fields and remote frames consist of six different bit fields:

1. Start of Frame (SOF)
2. Arbitration field
3. Control field (IDE bit, R0 bit, and DLC field)
4. Data field (not in remote frame)
5. CRC field
6. ACK field
7. End of Frame (EOF)

A remote frame has no data field and is used for requesting data from other (remote) CAN nodes. Figure 24 shows the format of a CAN data frame.

## FRAME CODING

Remote and Data Frames are NRZ coded with bit-stuffing in every bit field which holds computable information for the interface, i.e., Start of Frame arbitration field, control field, data field (if present) and CRC field.
Error and overload frames are NRZ coded without bit stuffing.


MODULE A SUSPENDS TRANSMISSION
FIGURE 21. CAN Message Arbitration

## Frame Formats (Continued)

BIT STUFFING
After five consecutive bits of the same value, a stuff bit of the inverted value is inserted by the transmitter and deleted by the receiver.

Destuffed Bit Stream	100000 x	011111 x
Unstuffed Bit Stream	1000001 x	0111110 x
		$\mathrm{x}=\{0,1\}$



TL/DD/12067-22


TL/DD/12067-23
A remote frame is identical to a data frame, except that the RTR bit is "recessive", and there is no data field.
IDE = Identifier Extension Bit
The IDE bit in the standard format is transmitted "dominant", whereas in the extended format the IDE bit is "recessive" and the id is expanded to 29 bits.
$r=r e c e s s i v e$
$\mathrm{d}=$ dominant
FIGURE 22. CAN Data Transmission Frames

Frame Formats (Continued)


TL/DD/12067-24
An error frame can start anywhere in the middle of a frame.


TL/DD/12067-25

$$
\text { INT }=\text { Intermission }
$$

Suspend Transmission is only for error passive nodes.


TL/DD/12067-26
An overload frame can only start at the end of a frame.
FIGURE 23. CAN Control Frames

SOF	Arbitration Field   Identifier + RTR	Control   Field	Data Field   (If Present)	CRC   Field	ACK   Field	EOF
1 -Bit	12 -Bit	6 -Bit	$\mathrm{n}^{*}$ Bit	16 -Bit	2 -Bit	7 -Bit

$n \in(0,8)$
FIGURE 24. CAN Frame Format

## Frame Formats (Continued)

## START OF FRAME (SOF)

The Start of Frame indicates the beginning of data and remote frames. It consists of a single "dominant" bit. A node is only allowed to start transmission when the bus is idle. All nodes have to synchronize to the leading edge (first edge after the bus was idle) caused by SOF of the node which starts transmission first.

## ARBITRATION FIELD

The arbitration field is composed of the identifier field and the RTR (Remote Transmission Request) bit. The value of the RTR bit is "dominant" in a data frame and "recessive" in remote frame.

## CONTROL FIELD

The control field consists of six bits. It starts with two bits reserved for future expansion followed by the four-bit Data Length Code. Receivers must accept all possible combinations of the two reserved bits. Until the function of these reserved bits is defined, the transmitter only sends " 0 " bits. The first reserved bit (IDE) is actually defined to indicate an extended frame with 29 Identifier bits if set to "1". CAN chips must tolerate extended frames, even if they can only understand standard frames, to prevent the destruction of an extended frame on an existing network.
The Data Length Code indicates the number of bytes in the data field. This Data Length Code consists of four bits. The data field can be of length zero. The admissible number of data bytes for a data frame ranges from 0 to 8 .

## DATA FIELD

The Data field consists of the data to be transferred within a data frame. It can contain 0 to 8 bytes and each byte contains 8 bits. A remote frame has no data field.

## CRC FIELD

The CRC field consists of the CRC sequence followed by the CRC delimiter. The CRC sequence is derived by the transmitter from the modulo 2 division of the preceding bit fields, starting with the SOF up to the end of the data field, excluding stuff-bits, by the generator polynomial

$$
x^{15}+x^{14}+x^{10}+x^{8}+x^{7}+x^{4}+x^{3}+1
$$

The remainder of this division is the CRC sequence transmitted over the bus. On the receiver side the module divides all bit fields up to the CRC delimiter, excluding stuff-bits, and checks if the result is zero. This will then be interpreted as a valid CRC. After the CRC sequence a single "recessive" bit is transmitted as the CRC delimiter.

## ACK FIELD

The ACK field is two bits long and contains the ACK slot and the ACK delimiter. The ACK slot is filled with a "recessive" bit by the transmitter. This bit is overwritten with a "dominant" bit by every receiver that has received a correct CRC sequence. The second bit of the ACK field is a "recessive" bit called the acknowledge delimiter. As a consequence the acknowledge flag of a valid frame is surrounded by two "recessive" bits, the CRC-delimiter and the ACK delimiter.

## EOF FIELD

The End of Frame field closes a data and a remote frame. It consists of seven "recessive" bits.

## INTERFRAME SPACE

Data and remote frames are separated from every preceding frame (data, remote, error and overload frames) by the interframe space see Figure 25 and Figure 26 for details. Error and overload frames are not preceded by an interframe space. They can be transmitted as soon as the condjtion occurs. The interframe space consists of a minimum of three bit fields depending on the error state of the node.
These bit fields are coded as follows.
The intermission has the fixed form of three "recessive" bits. While this bit field is active, no node is allowed to start a transmission of a data or a remote frame. The only e.ction to be taken is signalling an overload condition. This means that also an error in this bit field would be interpreted as an overload condition. Suspend transmission has to be inserted by error-passive nodes that were transmitter for the last message. This bit field has the form of eight "recessive" bits. However, it may be overwritten by a "dominant" startbit from another non error passive node which starts transmission. The bus idle field consists of "recessive" bits. Its length is not specified and depends on the bus load.

## ERROR FRAME.

The Error Frame consists of two bit fields: the error flag and the error delimiter. The error flag field is built up from the various error flags of the different nodes. Therefore, its length may vary from a minimum of six bits up to a maximum of twelve bits depending on when a module is detecting the error. Whenever a bit error, stuff error, form error, or acknowledgment error is detected by a node, this node starts transmission of the error flag at the next bit. If a CRC error is detected, transmission of the error flag starts at the bit following the acknowledge delimiter, unless an error flag for a previous error condition has already been started. Figure 27 shows how a local fault at one module (module 2) leads to a 12-bit error frame on the bus.
The bus level may either he "dominant" for an crror-active node or "recessive" for an error-passive node. An error active node detecting an error, starts transmitting an active error flag consisting of six "dominant" bits. This causes the destruction of the actual frame on the bus. The other nodes detect the error flag as either the rule of bit-stuffing or the value of a fixed bit field is destroyed. As a consequence all other nodes start transmission of their own error flag. This means, that the error sequence which can be monitored on the bus has a maximum length of twelve bits. If an error passive node detects an error it transmits six "recessive" bits on the bus. This sequence does not destroy a message sent by another node and is not detected by other nodes. However, if the node detecting an error was the transmitter of the frame the other modules will get an error condition by a violation of the fixed bit or stuff rule. Figure 28 shows how an error passive transmitter transmits a passive error frame and when it is detected by the receivers.
After any module has transmitted its active or passive error flag it waits for the error delimiter which consists of eight "recessive" bits before continuing.

## Frame Formats (Continued)

## OVERLOAD FRAME

Like an error frame, an overload frame consists of two bit fields: the overload flag and the overload delimiter. The bit fields have the same length as the error frame field: six bits for the overload flag and eight bits for the delimiter. The
overload frame can only be sent after the end of frame (EOF) field and in this way destroys the fixed form of the intermission field.

## ORDER OF BIT TRANSMISSION

A frame is transmitted starting with the Start of Frame, sequentially followed by the remaining bit fields. In every bit field the MSB is transmitted first.


TL/DD/12067-27
t1 is the first possible start bit of a new frame
FIGURE 25. Interframe Space for Nodes Which Are Not Error Passive or Have Been Recelver for The Last Frame


TL/DD/12067-28
t1 - any module can start transmission except the error passive module which has transmitted the last frame.
FIGURE 26. Interframe Space for Nodes Which Are Error Passive and Have Been Transmitter for The Last Frame


TL/DD/12067-29
module $1=$ error active transmitter detects bit error at t2
module $2=$ error active receiver with a local fault at 11
module $3=$ error active receiver detects stuff error at t2
FIGURE 27. Error Frame-Error Active Transmitter

## Frame Formats (Continued)

## FRAME VALIDATION

Frames have a different validation point for transmitter and receivers. A frame is valid for the transmitter of a message, if there is no error until the end of the last bit of End of Frame field. A frame is valid for a receiver, if there is no error until and including the end of the penultimate bit of the End of Frame.

## FRAME ARBITRATION AND PRIORITY

Except for an error passive node which transmitted the last frame, all nodes are allowed to start transmission of a frame after the intermission, which can lead to two or more nodes starting transmission at the same time. To prevent a node from destroying another node's frame it monitors the bus during transmission of the identifier field and the RTR-bit. As soon as it detects a "dominant" bit while transmitting a "recessive" bit it releases the bus, immediately stops transmission and starts receiving the frame. This causes no data or remote frame to be destroyed by another. Therefore the highest priority message with the identifier $0 \times 000$ out of $0 \times 7 E F$ (including the remote data request (RTR) bit) always gets the bus. This is only valid for standard CAN frame for-
mat. Note that while the CAN specification allows valid standard identifiers only in the range $0 \times 000$ to $0 \times 7$ EF the device will allow identifiers to $0 \times 7 \mathrm{FF}$.
There are three more items that should be taken into consideration to avoid unrecoverable collision on the bus:

- Within one system each message must be assigned to a unique identifier. This is to prevent bit errors, as one module may transmit a "dominant" data bit while the other is transmitting a "recessive" data bit. Which could happen if two or more modules may start transmission of a frame at the same time and all win arbitration.
- Data frames with a given identifier and a non-zero data length code may be initiated by one node only. Otherwise, in worst case, two nodes would count up to the bus-off state, due to bit errors, if they would always start transmitting the same ID with different data.
- Every remote frame should have a system-wide data length code (DLC). Otherwise two modules starting transmission of a remote frame at the same time will overwrite each other's DLC which results in bit errors.


TL/DD/12067-30
module $1=$ error passive transmitter detects bit error at $\mathbf{t 2}$
module $2=$ error active receiver with a local fault at 11
module $3=$ error passive receiver detects stuff error at t2
FIGURE 28. Error Frame-Error Passive Transmitter


TL/DD/12067-31
FIGURE 29. Order of Bit Transmission within a CAN Frame

## Frame Formats (Continued)

## ACCEPTANCE FILTERING

Every node performs acceptance filtering on the identifier of a data or a remote frame to filter out the messages which are not required by the node. In this way only the data of frames which match the acceptance filter is stored in the corresponding data buffers. However, every node which is not in the bus-off state and has received a correct CRC-sequence acknowledges the frame.

## ERROR MANAGEMENT AND DETECTION

There are multiple mechanisms in the CAN protocol, to detect errors and to inhibit erroneous modules from disabling all bus activities.
The following errors can be detected:

- Bit Error

A CAN device that is sending also monitors the bus. If the monitored bit value is different from the bit value that is sent, a bit error is detected. The reception of a "dominant" bit instead of a "recessive" bit during the transmission of a passive error flag, during the stuffed bit stream of the arbitration field or during the acknowledge slot, is not interpreted as a bit error.

- Stuff Error

A stuff error is detected, if the bit level after 6 consecutive bit times has not changed in a message field that has to be coded according to the bit stuffing method.

- Form Error

A form error is detected, if a fixed frame bit (e.g., CRC delimiter, ACK delimiter) does not have the specified value. For a receiver a "dominant" bit during the last bit of End of Frame does NOT constitute a frame error.

- Bit CRC Error

A CRC error is detected if the remainder of the CRC calculation of a received CRC polynomial is non-zero.

- Acknowledgment Error

An acknowledgment error is detected whenever a transmitting node does not get an acknowledgment from any other node (i.e., when the transmitter does not receive a
"'dominant" bit during the ACK frame).
The device can be in one of three states with respect to error handling:

- Error active

An error active unit can participate in bus communication and sends an active ("dominant") error flag.

- Error passive

An error passive unit can participate in bus communication. However, if the unit detects an error it is not allowed to send an active error flag. The unit sends only a passive ("recessive") error flag. A device is error passive when the transmit error counter is greater than 127 or when the receive error counter is greater than 127. A device becoming error passive sends an active error flag. An error passive device becomes error active again when both transmit and receive error counter are less than 128.

- Bus Off

A unit that is "bus off" has the output drivers disabled, i.e., it does not participate in any bus activity. A device is bus off when the transmit error counter is greater than 255. A bus off device will become error active again in one of two ways depending on which mode is selected by the user through the Fault Confinement Mode select bit (FMOD) in the CAN Bus Control Register (CBUS). Setting the FMOD bit to " 0 " (default after power on reset) will select the Standard Fault Confinement mode. In this mode the device goes from "bus off" to "error active" after monitoring $128 * 11$ recessive bits (including bus idle) on the bus. This mode has been implemented for compatibility reasons with existing solutions. Setting the FMOD bit to " 1 " will select the Enhanced Fault Confinement mode. In this mode the device goes from "bus off" to "error active" after monitoring 128 "good" messages, as indicated by the reception of 11 consecutive "recessive" bits including the End of Frame. The enhanced mode offers the advantage that a "bus off" device (i.e., a device with a serious fault) is not allowed to destroy any messages on the bus until other devices could at least transmit 128 messages. This is not guaranteed in the standard mode, where a defective device could seriously impact bus communication. When the device goes from "bus off" to "error active", both error counters will have the value " 0 ".
In each CAN module there are two error counters to perform a sophisticated error management. The receive error counter (REC) is 7 -bit wide and switches the device to the error passive state if it overflows. The transmit error counter (TEC) is 8 bits wide. If it is greater than 127 the device is also switched to the error passive state. As soon as the TEC overflows the device is switched bus-off, i.e., it does not participate in any bus activity.
The counters are modified by the device's hardware according to the following rules:

TABLE VI. Receive Error Counter Handling

Condition	Recelve   Error Counter
A receiver detects a Bit Error   during sending an active error   flag.	Increment by 8
A receiver detects a "dominant"   bit as the first bit after sending an   error flag.	Increment by 8
After detecting the 14th   consecutive "dominant" bit   following an active error flag or   overload flag or after detecting   the 8th consecutive "dominant"   bit following a passive error flag.   After each sequence of additional   8 consecutive "dominant" bits.	
Any other error condition (stuff,   frame, CRC, ACK).	Increment by 8
A valid reception or transmission.	Decrement by 1 if   Counter is not 0 0

Frame Formats (Continued)
TABLE VII. Transmit Error Counter Handling

Condition	Transmit Error   Counter
A transmitter detects a Bit Error   during sending an active error   flag.	Increment by 8
After detecting the 14th   consecutive "dominant" bit   following an active error flag or   overload flag or after detecting   the 8th consecutive "dominant"   bit following a passive error flag.   After each sequence of additional   8 consecutive "dominant" bits.	
Any other error condition (stuff,   frame, CRC, ACK)	Increment by 8
A valid reception or transmission.	Decrement by 1 if   Counter is not 0

Special error handling for the TEC counter is performed in the following situations:

- A stuff error occurs during arbitration, when a transmitted "recessive" stuff bit is received as a "dominant" bit. This does not lead to an incrementation of the TEC.
- An ACK-error occurs in an error passive device and no "dominant" bits are detected while sending the passive error flag. This does not lead to an incrementation of the TEC.
- If only one device is on the bus and this device transmits a message, it will get no acknowledgment. This will be detected as an error and the message will be repeated. When the device goes "error passive" and detects an acknowledge error, the TEC counter is not incremented. Therefore the device will not go from "error passive" to the "buis cff" state diue to such a condulition.

Figure 30 shows the connection of different bus states according to the error counters.


FIGURE 30. CAN Bus States

## SYNCHRONIZATION

Every receiver starts with a "hard synchronization" on the falling edge of the SOF bit. One bit time consists of four bit segments: Synchronization segment, propagation segment, phase segment 1 and phase segment 2.
A falling edge of the data signal should be in the synchronization segment. This segment has the fixed length of one time quanta. To compensate the various delays within a network the propagation segment is used. Its length is programmable from 1 to 8 time quanta. Phase segment 1 and phase segment 2 are used to resynchronize during an active frame. The length of these segments is from 1 to 8 time quanta long.
Two types of synchronization are supported:
Hard synchronization is done with the falling edge on the bus while the bus is idle, which is then interpreted as the SOF. It restarts the internal logic.
Soft synchronization is used to lengthen or shorten the bit time while a data or remnte frame is received. Whenever a falling edge is detected in the propagation segment or in phase segment 1 , the segment is lengthened by a specific value, the resynchronization jump width (see Figure 31).


TRANSMISSION POINT
TL/DD/12067-33
A) synchronization segment
B) propagation segment

FIGURE 31. Bit Timing


TL/DD/12067-34
FIGURE 32. Resynchronization 1


TL/DD/12067-35
FIGURE 33. Resynchronization 2

A falling edge lies in the phase segment 2 (as shown in Figure 33) it is shortened by the resynchronization jump width. Only one resynchronization is allowed during one bit time. The sample point lies between the two phase segments and is the point where the received data is supposed to be valid. The transmission point lies at the end of phase segment 2 to start a new bit time with the synchronization segment.

## Comparators

The device has two differential comparators. Port $L$ is used for the comparators. The output of the comparators is multiplexed out to two pins. The following are the Port $L$ assignments:
LO Comparator 1 positive input
L1 Comparator 1 negative input
L2 Comparator 1 output
L3 Comparator 2 negative input
L4 Comparator 2 positive input
L5 Comparator 2 negative input
L6 Comparator 2 output

Additionally the comparator output can be connected internally to the L-Port pin of the respective positive input and thereby generate an interrupt using the L-Port interrupt structure (neg/pos. edge, enable/disable).
Note that in Figure 34, pin L6 has a second alternate function of supporting the PWMO output. The comparator 2 output MUST be disabled in order to use PWMO output on L6. Figure 34 shows the Comparator Block Diagram.
COMPARATOR CONTROL REGISTER (CMPLS) (OOD3)
These bits reside in the Comparator Register

CMP2	CMP2	CMP2	CMP2	CMP1	CMP1	CMP1	un-
SEL	OE	RD	EN	OE	RD	EN	used

Bit 7
Bit 0
The register contains the following bits:
CMP1EN Enables comparator 1 (" 1 "= enable). If comparator 1 is disabled the associated L-pins can be used as standard I/O.
CMP1RD Reads comparator 1 output internally (CMP1EN = 1) Read-only, reads as a " 0 " if comparator not enabled.

## Comparators (Continued)

CMP1OE Enables comparator 1 output (" 1 "= enable), CMP1EN bit must be set to enable this function.
CMP2EN Enables comparator 2 ("1" = enable). If comparator 2 is disabled the associated L-pins can be used as standard 1/0.
CMP2RD Reads comparator 2 output internally (CMP2EN = 1) Read-only, reads as a " 0 " if comparator not enabled.
CMP2OE Enables comparator 2 output (" 1 "=enable), CMP2EN bit must be set to enable this function.

CMP2SEL Selects which L port pin to use for comparator2 negative input. (CMP2SEL $=0$ selects L5; CMP2SEL $=1$ selects pin L3).
The Comparator Select/Control bits are cleared on RESET (the comparator is disabled). To save power, the program should also disable the comparator before the device enters the HALT mode.
The Comparator rise and fall times are symmetrical. The user program must set up the Configuration and Data registers of the L port correctly for comparator Inputs/Output.


TL/DD/12067-36
Note: the SHADED area shows logic from PWM Timer. Comparator 2 output (CMP2OE) must be disabled in order to use PWM0 output.
FIGURE 34. Comparator Block

## Detection of Illegal Conditions

The device can detect various illegal conditions resulting from coding errors, transient noise, power supply voltage drops, runaway programs, etc.
Reading of undefined ROM gets zeroes. The opcode for software interrupt is zero. If the program fetches instructions from undefined ROM, this will force a software interrupt, thus signaling that an illegal condition has occurred.
The subroutine stack grows down for each call (jump to subroutine), interrupt, or PUSH, and grows up for each return or POP. The stack pointer is initialized to RAM location 02F Hex during reset. Consequently, if there are more returns than calls, the stack pointer will point to addresses 030 and 031 Hex (which are undefined RAM). Undefined RAM from addresses 030 to 03 F Hex is read as all 1's, which in turn will cause the program to return to address 7FFF Hex. This is an undefined ROM location and the instruction fetched (all 0's) from this location will generate a software interrupt signaling an illegal condition.
Thus, the chip can detect the following illegal conditions:

1. Executing from undefined ROM.
2. Over "POP"ing the stack by having more returns than calls.
When the software interrupt occurs, the user can re-initialize the stack pointer and do a recovery procedure before restarting (this recovery program is probably similar to that following reset, but might not contain the same program initialization procedures).

## MICROWIRE/PLUS

MICROWIRE/PLUS is a serial synchronous communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e., A/D converters, display drivers, E2PROMs etc.) and with other microcontrollers which support the MICROWIRE interface. It consists of an 8-bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 34 shows a block diagram of the MICROWIRE/PLUS logic.
The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/

PLUS arrangement with the internal clock source is called the Master mode of operation. Similarly, operating the MICROWIRE arrangement with an external shift clock is called the Slave mode of operation.
The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. In the master mode the SK clock rate is selected by the two bits, SLO and SL1, in the CNTRL register. Table VIII details the different clock rates that may be selected.

## MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. If enabled, an interrupt is generated when eight data bits have been shifted. The device may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 35 shows how two COP888 family microcontrollers and several peripherals may be interconnected using the MICROWIRE/ PLUS arrangements.

## Warning:

The SIO register should only be loaded when the SK clock is low. Loading the SIO register while the SK clock is high will result in undefined data in the SIO register. SK clock is normally low when not shifting.
Setting the BUSY flag when the input SK clock is high in the MICROWIRE/PLUS slave mode may cause the current SK clock for the SIO shift register to be narrow. For safety, the BUSY flag should only be set when the input SK clock is low.

## MICROWIRE/PLUS Master Mode Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally. The MICROWIRE Master always initiates all data exchanges. The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port $G$ configuration register: Table IX summarizes the bit settings required for Master or Slave mode of operation.


FIGURE 35. MICROWIRE/PLUS Block Diagram


FIGURE 36. MICROWIRE/PLUS Application

## MICROWIRE/PLUS (Continued)

TABLE VIII. MICROWIRE/PLUS Master Mode Clock Selection

SL1	SLO	SK
0	0	$2 \times \mathrm{t}_{\mathrm{c}}$
0	1	$4 \times \mathrm{t}_{\mathrm{c}}$
1	x	$8 \times \mathrm{t}_{\mathrm{c}}$

Where $t_{C}$ is the instruction cycle clock

## MICROWIRE/PLUS Slave Mode Operation

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must be selected as an input and the SO pin is selected as an output pin by setting and resetting the appropriate bit in the Port G configuration register. Table V summarizes the settings required to enter the Slave mode of operation.
The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated.

## Alternate SK Phase Operation

The device allows either the normal SK clock or an alternate phase SK clock to shift data in and out of the SIO register. In both the modes the SK is normally low. In the normal mode data is shifted in on the rising edge of the SK clock and the data is shifted out on the falling edge of the SK clock. The SIO register is shifted on each falling edge of the SK clock in the normal mode. In the alternate SK phase mode the SIO register is shifted on the rising edge of the SK clock.

A control flag, SKSEL, allows either the normal SK clock or the alternate SK clock to be selected. Resetting SKSEL causes the MICROWIRE/PLUS logic to be clocked from the normal SK signal. Setting the SKSEL flag selects the alternate SK clock. The SKSEL is mapped into the G6 configuration bit. The SKSEL flag will power up in the reset condition, selecting the normal SK signal.

TABLE IX. MICROWIRE/PLUS Mode Selection

G4 (SO)   Config.   Bit	G5 (SK)   Config.   Bit	G4   Fun.	G5   Fun.	Operation
1	1	SO	Int.   SK	MICROWIRE/PLUS   Master
0	1	TRI-   STATE	Int.   SK	MICROWIRE/PLUS   Master
1	0	SO	Ext.   SK	MICROWIRE/PLUS   Slave
0	0	TRI-   STATE	Ext.   SK	MICROWIRE/PLUS   Slave

This table assumes that the control flag MSEL is set.

## Memory Map

All RAM, ports and registers (except A and PC) are mapped into data memory address space.

Address	Contents
00 to 2F	On-Chip RAM bytes (48 bytes)
30 to 7F	Unused RAM Address Space (Reads As All   Ones)   On to 9F   Unused RAM Address Space (Reads   Undefined Data)
A0	PSCAL, PWM timer Prescaler Register
A1	RLON, PWM timer On-Time Register
A2	PWMCON, PWM Control Register
B0	TXD1, Transmit Data
B1.	TXD2, Transmit 2 Data
B2	TDLC, Transmit Data Length Code and
B3	Identifier Low
B4	TID, Transmit Identifier High
B5	RXD1, Receive Data 1
B6	RXD2, Receive Data 2
B7	RID, Receive Data Length Code
B8	CSCAL, CAN Prescaler
B9	CTIM, Bus Timing Register
BA	CBUS, Bus Control Register
BB	TCNTL, Transmit/Receive Control Register
BC	RTSTAT Receive/Transmit Status Register
BD	TEC, Transmit Error Count Register
BE	REC, Receive Error Count Register
BF	Reserved
C0 to C7	Reserved
C8	WKEDG, MIWU Edge Select Register
C9	WKEN, MIWU Enable Register
CA	WKPND, MIWU Pending Register
CB	Reserved
CC	Reserved
CD to CF	Reserved

Memory Map（Continued）

Address	Contents
D0	PORTLD，Port L Data Register
D1	PORTLC，Port L Configuration Register
D2	PORTLP，Port L Input Pins（Read Only）
D3	CMPSL，Comparator control register
D4	PORTGD，Port G Data Register
D5	PORTGC，Port G Configuration Register
D6	PORTGP，Port G Input Pins（Read Only）
D7 to DB	Reserved
DC	PORTD，Port D output register
DD to DF	Reserved for Port D
E0－E5	Reserved
E6	T1RBLO，Timer T1 Autoload Register Lower
E7	Byte
	T1RBHI，Timer T1 Autoload Register Upper
E8	Byte
E9	ICNTRL，Interrupt Control Register
EA	SIOR，MICROWIRE／PLUS Shift Register
EB	TMR1LO，Timer T1 Lower Byte
EC	TMR1HI，Timer T1 Upper Byte
	T1RALO，Timer T1 Autoload Register Lower
ED	Byte
T1RAHI，Timer T1 Autoload Register T1RA	
EE	Upper Byte
EF	CNTRL，Control Register
F0 to FB	PSW，Processor Status Word Register
FC	On－Chip RAM Mapped as Registers
FD	SPegister
FE	BRegister
FF	Reserved（Note A）

Note：Reading memory locations $30-7 \mathrm{~F}$ Hex will return all ones．Reading other unused memory locations will return undefined data．
Note A：In devices with more than 128 bytes of RAM，location OFF is used as the Segment register to switch between different Segments of RAM memory．In this device location OFF can be used as a general purpose，on－ chip RAM mapped register．However，the user is advised that caution should be taken in porting software utilizing this memory location to a chip with more than 128 bytes of RAM．

## Addressing Modes

There are ten addressing modes，six for operand address－ ing and four for transfer of control．

## OPERAND ADDRESSING MODES

## Register Indirect

This is the＂normal＂addressing mode．The operand is the data memory addressed by the B pointer or X pointer．

## Register Indirect（with auto post Increment or decre－

 ment of pointer）This addressing mode is used with the LD and X instruc－ tions．The operand is the data memory addressed by the B pointer or $X$ pointer．This is a register indirect mode that automatically post increments or decrements the B or X reg－ ister after executing the instruction．

## Direct

The instruction contains an 8－bit address field that directly points to the data memory for the operand．

Immedlate
The instruction contains an 8－bit immediate field as the op－ erand．

## Short Immediate

This addressing mode is used with the Load B Immediate instruction．The instruction contains a 4－bit immediate field as the operand．

## Indirect

This addressing mode is used with the LAID instruction，The contents of the accumuiator are used as a partial address （lower 8 bits of PC ）for accessing a data operand from the program memory．

## TRANSFER OF CONTROL ADDRESSING MODES

## Relative

This mode is used for the JP instruction，with the instruction field being added to the program counter to get the new program location．JP has a range from -31 to +32 to allow a 1 －byte relative jump（ $\mathrm{JP}+1$ is implemented by a NOP instruction）．There are no＂pages＂when using JP，since all 15 bits of PC are used．

## Absolute

This mode is used with the JMP and JSR instructions，with the instruction field of 12 bits replacing the lower 12 bits of the program counter（PC）．This allows jumping to any loca－ tion in the current 4 k program memory segment．

## Absolute Long

This mode is used with the JMPL and JSRL instructions， with the instruction field of 15 bits replacing the entire 15 bits of the program counter（PC）．This allows jumping to any location in the current 4k program memory space．

## Indirect

This mode is used with the JID instruction．The contents of the accumulator are used as a partial address（lower 8 bits of PC ）for accessing a location in the program memory．The contientis of tilis program memory iocation serve as a parliai address（lower 8 bits of PC ）for the jump to the next instruc－ tion．
Note：The VIS is a special case of the Indirect Transfer of Control address－ ing mode，where the double byte vector associated with the interrupt is transferred from adjacent addresses in the program memory into the program counter（ PC ）in order to jump to the associated interrupt service routine．

## Instruction Set

Register and Symbol Definition

Registers	
A	8-Bit Accumulator Register
B	8-Bit Address Register
$X$	8-Bit Address Register
SP	8-Bit Stack Pointer Register
PC	15-Bit Program Counter Register
PU	Upper 7 Bits of PC
PL	Lower 8 Bits of PC
C	1-Bit of PSW Register for Carry
HC	1-Bit of PSW Register for Half Carry
GIE	1-Bit of PSW Register for Global   Interrupt Enable
VU	Interrupt Vector Upper Byte
VL	Interrupt Vector Lower Byte


Symbols	
[B]	Memory Indirectly Addressed by B   Register
[X]	Memory Indirectly Addressed by X   Register
MD	Direct Addressed Memory
Mem	Direct Addressed Memory or [B]
Meml	Direct Addressed Memory or [B] or   Immediate Data
Imm	8-Bit Immediate Data   Reg   Rit   $\leftarrow$   Register Memory: Addresses F0 to FF   (Includes B, X and SP)
$\rightarrow$	Bit Number (0 to 7)
	Loaded with

Instruction Set（Continued）

## INSTRUCTION SET

ADD	A，Meml	ADD	$A \leftarrow A+M e m l$
ADC	A，Meml	ADD with Carry	$A \leftarrow A+\text { Meml }+C, C \leftarrow \text { Carry }$ $\text { HC } \leftarrow \text { Half Carry }$
SUBC	A，Meml	Subtract with Carry	$\begin{aligned} & \mathrm{A} \leftarrow \mathrm{~A}-\text { Meml }+\mathrm{C}, \mathrm{C} \leftarrow \text { Carry } \\ & \mathrm{HC} \leftarrow \text { Half Carry } \end{aligned}$
AND	A，Meml	Logical AND	$A \leftarrow A$ and $\overline{M e m l}$
ANDSZ	A，Imm	Logical AND Immed．，Skip if Zero	Skip next if（ $A$ and Imm$)=0$
OR	A，Meml	Logical OR	A $\leftarrow$ A or Meml
XOR	A，Meml	Logical EXclusive OR	$A \leftarrow A \operatorname{xor~Meml}$
IFEQ	MD，Imm	IF EQual	Compare MD and Imm，Do next if MD＝Imm
IFEQ	A，Meml	IF EQual	Compare $A$ and Meml，Do next if $A=$ Meml
IFNE	A，Meml	IF Not Equal	Compare $A$ and Meml，Do next if $A \neq$ Meml
IFGT	A，Meml	IF Greater Than	Compare A and Meml，Do next if A＞Meml
IFBNE	\＃	If $B$ Not Equal	Do next if lower 4 bits of $B \neq 1 \mathrm{~mm}$
DRSZ	Reg	Decrement Reg．，Skip if Zero	Reg $\leftarrow$ Reg－1，Skip if Reg $=0$
SBIT	\＃，Mem	Set BIT	1 to bit，Mem（bit＝ 0 to 7 immediate）
RBIT	\＃，Mem	Reset BIT	0 to bit，Mem
IFBIT	\＃，Mem	IF BIT	If bit in A or Mem is true do next instruction
RPND		Reset PeNDing Flag	Reset Software Interrupt Pending Flag
X	A，Mem	EXchange A with Memory	$A \longleftrightarrow$ Mem
X	A，$[\mathrm{X}]$	EXchange A with Memory［X］	$A \longleftrightarrow[X]$
LD	A，Meml	LoaD A with Memory	$A \leftarrow M e m l$
LD	A，$[\mathrm{X}]$	LoaD A with Memory［ X ］	$A \leftarrow[X]$
LD	B， 1 mm	LoaD B with Immed．	$B \leftarrow \mathrm{Imm}$
LD	Mem，Imm	LoaD Memory Immed．	Mem $\leftarrow$ Imm
LD	Reg，Imm	LoaD Register Memory Immed．	Reg $\leftarrow \mathrm{Imm}$
X	A，［ $\mathrm{B} \pm$ ］	EXchange A with Memory［B］	$A \longleftrightarrow[B],(B \leftarrow B \pm 1)$
X	A，$[\mathrm{X} \pm$ ］	EXchange A with Memory［ X ］	$A \longleftrightarrow[\mathrm{X}],(\mathrm{X} \leftarrow \pm 1)$
LD	A，$[B \pm]$	LoaD A with Memory［B］	$A \leftarrow[B],(B \leftarrow B \pm 1)$
LD	A，$[\mathrm{X} \pm$ ］	LoaD A with Memory［ X ］	$A \leftarrow[X],(X \leftarrow X \pm 1)$
LD	［ $\mathrm{B} \pm$ ］， Imm	LoaD Memory［B］Immed．	［B］$\leftarrow \mathrm{Imm},(B \leftarrow B \pm 1)$
CLR	A	CLeaR A	$A \leftarrow 0$
INC	A	INCrement A	$A \leftarrow A+1$
DEC	A	DECrementA	$A \leftarrow A-1$
LAID		Load A lncirect ficmincivi	$\dot{A} \leftarrow \overline{\text { Fiolivi }}(\underline{F} U, \dot{A})$
DCOR	A	Decimal CORrect A	$A \leftarrow B C D$ correction of $A$（follows ADC，SUBC）
RRC	A	Rotate A Right thru C	$C \rightarrow A 7 \rightarrow \ldots \rightarrow A O \rightarrow C$
RLC	A	Rotate A Left thru C	$C \leftarrow A 7 \leftarrow \ldots \leftarrow A 0 \leftarrow C$
SWAP	A	SWAP nibbles of $A$	A7 ．．．A4 $\longleftrightarrow$ A3 ．．．A0
SC		Set C	$C \leftarrow 1, H C \leftarrow 1$
RC		Reset C	$\mathrm{C} \leftarrow 0, \mathrm{HC} \leftarrow 0$
IFC		IF C	IF C is true，do next instruction
IFNC		IF Not C	If C is not true，do next instruction
POP	A	POP the stack into $A$	$\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{~A} \leftarrow[\mathrm{SP}]$
PUSH	A	PUSH A onto the stack	［SP］$\leftarrow \mathrm{A}, \mathrm{SP} \leftarrow \mathrm{SP}-1$
VIS		Vector to Interrupt Service Routine	$\mathrm{PU} \leftarrow[\mathrm{VU}], \mathrm{PL} \leftarrow[\mathrm{VL}]$
JMPL	Addr．	Jump absolute Long	$\mathrm{PC} \leftarrow \mathrm{i}$ i（ $\mathrm{ij}=15$ bits， 0 k to 32k）
JMP	Addr．	Jump absolute	PC9 $\ldots .0 \leftarrow i(i=12$ bits $)$
JP	Disp．	Jump relative short	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{r}(\mathrm{r}$ is -31 to +32 ，except 1 ）
JSRL	Addr．	Jump SubRoutine Long	［SP］$\leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow \mathrm{ii}$
JSR	Addr．	Jump SubRoutine	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} 9 \ldots 0 \leftarrow \mathrm{i}$
JID		Jump InDirect	$\mathrm{PL} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
RET		RETurn from subroutine	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETSK		RETurn and SKip	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETI		RETurn from Interrupt	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1], \mathrm{GIE} \leftarrow 1$
INTR		Generate an Interrupt	［SP］$\leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow 0 \mathrm{FF}$
NOP		No OPeration	$P C \leftarrow P C+1$

## Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instructions taking two bytes).
Most single byte instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details.
Bytes and Cycles per Instruction
The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle.

Arithmetic and Logic Instructions			
	[B]	Direct	Immed.
ADD	1/1	3/4	2/2
ADC	1/1	3/4	2/2
SUBC	1/1	3/4	2/2
AND	1/1	3/4	2/2
OR	1/1	3/4	$2 / 2$
XOR	1/1	3/4	2/2
IFEQ	1/1	3/4	2/2
IFGT	1/1	3/4	2/2
IFBNE	- ${ }^{\text {c/ }} 1 / 1$		
DRSZ		1/3	
SBIT	1/1	3/4	
RBIT	1/1	3/4	
IFBIT	1/1	3/4	

Instructions Using A and C

CLRA	$1 / 1$
INCA	$1 / 1$
DECA	$1 / 1$
LAID	$1 / 3$
DCORA	$1 / 1$
RRCA	$1 / 1$
RLCA	$1 / 1$
SWAPA	$1 / 1$
SC	$1 / 1$
RC	$1 / 1$
IFC	$1 / 1$
IFNC	$1 / 1$
PUSHA	$1 / 3$
POPA	$1 / 3$
ANDSZ	$2 / 2$

Transfer of Control Instructions

JMPL	$3 / 4$
JMP	$2 / 3$
JP	$1 / 3$
JSRL	$3 / 5$
JSR	$2 / 5$
JID	$1 / 3$
VIS	$1 / 5$
RET	$1 / 5$
RETSK	$1 / 5$
RETI	$1 / 5$
INTR	$1 / 7$
NOP	$1 / 1$

RPND $1 / 1$

## Memory Transfer Instructions

	Register Indirect		Direct	Immed.	Register Indirect Auto Incr. and Decr.	
	[B]	[ X ]			[B+, B-]	[ $\mathrm{X}+, \mathrm{X}-\mathrm{]}$
X A, *	1/1	1/3	2/3		1/2	1/3
LD A,*	1/1	1/3	2/3	$2 / 2$	1/2	1/3
LD B, Imm				1/1		
LD B, Imm				2/3		
LD Mem, Imm	2/2		3/3		$2 / 2$	
LD Reg, Imm			$2 / 3$			
IFEQ MD, Imm			3/3			

(IF B <16)
(IFB>15)

* $=>$ Memory location addressed by B or X or directly.



## Mask Options

The COP684BC and COP884BC mask programmable options are shown below. The options are programmed at the same time as the ROM pattern submission.
OPTION 1: CLOCK CONFIGURATION
$=1$ Crystal Oscillator (CKI/10)
G7 (CKO) is clock generator output to
crystal/resonator
CKI is the clock input
OPTION 2: HALT
= 1 Enable HALT mode
$=2$ Disable HALT mode
OPTION 3: BOND OUT
$=128-\mathrm{Pin} \mathrm{SO}$
OPTION 4: ON-CHIP RESET
$=1$ Enable ON-CHIP RESET
$=2$ Disable ON-CHIP RESET
The chip can be driven by a clock input on the CKI input pin which can be between DC and 10 MHz . The CKO output clock is on pin G7. The CKI input frequency is divided down by 10 to produce the instruction cycle clock $\left(1 / \mathrm{t}_{\mathrm{c}}\right)$.

## Development Support

## IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 In-Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface or maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real time, full speed emulation up to $10 \mathrm{MHz}, 32$ kbytes of emulation memory and 4 k frames of trace buffer memory. The user may define as many as 32k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.
During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bar graph format or as actual frequency count.

Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy to use window interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefinable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a personal computer via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time shorter.
The following tables list the emulator and probe cards ordering information.

Emulator Ordering Information

Part   Number	Description	Current Version
IM-COP8 /400/1 $\ddagger$	MetaLink base unit incircuit emulator for all COP8 devices, symbolic debugger software and RS232 serial interface cable, with 110 V @ 60 Hz Power Supply.	Host Software: Ver. 3.3 Rev. 5, Model File
$\begin{aligned} & \text { IM-COP8/ } \\ & 400 / 2 \ddagger \end{aligned}$	MetaLink base unit incircuit emulator for all COP8 devices, symbolic debugger software and RS232 serial interface cable, with 220V @ 50 Hz Power Supply.	

$\ddagger$ These parts include National's COPB Assembler/Linker/Librarian Package (COPB-DEV-IBMA).

## Probe Card Ordering Information

Part Number	Package	Voltage   Range	Emulates
MHW-884BC28D5PC	28 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP884BC
MHW-SOIC28	28 SO	28 -Pin SOIC	Adaptor Kit

## MACRO CROSS ASSEMBLER

National Semiconductor offers a relocatable COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink iceMASTER emulators.

Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8   Assembler/   Linker/Librarian   for IBM $\oplus$   PC/XT®, AT® or   compatible.	$424410632-001$

## Development Support (Continued)

## SINGLE CHIP EMULATOR DEVICE

The COP8 family is fully supported by single chip form, fit and function emulators. For more detailed information refer to the emulation deviced specific datasheets and the form, fit, function emulator selection table below.

COP684BC/COP884BC Ordering Information

Device Number	Clock   Option	Package	Emulates
COP884BCMHEA-X*	Crystal   R/C	28 LCC	COP884BC

*Check with the local sales office about the availability.

## DIAL-A-HELPER

Dial-A-Helper is a service provided by the Microcontroller Applications group. The Dial-A-Helper is an Electronic Bulletin Board Information system.

## PROGRAMMING SUPPORT

Programming of the single chip emulator devices is supported by different sources.
The following programmers are certified for programming EPROM versions of COP8:

## INFORMATION SYSTEM

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.
If the user has a PC with a communications package then files from the FILE SECTION can be down loaded to disk for later use.

## ORDER P/N: MOLE-DIAL-A-HLP

Information System Package contains:
Dial-A-Helper Users Manual
Public Domain Communications Software

## FACTORY APPLICATIONS SUPPORT

Dial-A-Helper also provides immediate factor applications support. If a user has questions, he can leave messages on our electronic bulletin board, which we will respond to.

Voice:	(800) 272-9959	
Modem:	CANADA/U.S.:	(800) NSC-MICRO
	$(800) 672-6427$	
	Baud:	14.4 k
Set-Up:	Length: 8 -Bit	
	Parity: None	
	Stop Bit: 1	
	Operation:	24 Hrs., 7 Days

EPROM Programmable Information

Manufacturer and Product	U.S. Phone Number	Europe Phone Number	Asia Phone Number
MetaLinkDebug Module	(602) 926-0797	Germany: $+49-8141-1030$	$\begin{aligned} & \text { Hong Kng: } \\ & +852-737- \\ & 1800 \end{aligned}$
XeltekSuperpro	(408) 745-7974	$\begin{aligned} & \text { Germany: }+49 \\ & 2041-684758 \end{aligned}$	Singapore: $+65-276-6433$
BP MicrosystemsTurpro	(800) 225-2102	Germany: +49	Hong Kong: + 852-388- $0629$
Data I/O-Unisite System 29 -System 39	(800) 322-8246	Europe: $+31-20-622866$   Germany: $+49-89-858020$	$\begin{aligned} & \text { Japan: } \\ & +81-33-432- \\ & 6991 \end{aligned}$
Abcom-COP8   Programmer		$\begin{aligned} & \text { Europe: }+49-89 \\ & 808707 \end{aligned}$	
System General-Turpro-1-FX -APRO	(408) 263-6667	Switzerland: $+41-31$ $921-7844$	$\begin{aligned} & \text { Taiwan: } \\ & +886-2-917- \\ & 3005 \end{aligned}$

## COP688CL/COP684CL, COP888CL/COP884CL, COP988CL/COP984CL Single-Chip microCMOS Microcontroller

## General Description

The COP888 family of microcontrollers uses an 8 -bit single chip core architecture fabricated with National Semiconductor's $\mathrm{M}^{2}$ CMOSTM process technology. The COP888CL is a member of this expandable 8-bit core processor family of microcontrollers.
(Continued)

## Features

■ Low cost 8-bit microcontroller

- Fully static CMOS, with low current drain
- Two power saving modes: HALT and IDLE
- $1 \mu$ s instruction cycle time
- 4096 bytes on-board ROM
- 128 bytes on-board RAM

■ Single supply operation: $2.5 \mathrm{~V}-6 \mathrm{~V}$

- MICROWIRE/PLUSTM serial I/O
- WATCHDOGTM and Clock Monitor logic
- Idle Timer
- Multi-Input Wakeup (MIWU) with optional interrupts (8)
-     - Ten multi-source vectored interrupts servicing
- External Interrupt
- Idle Timer TO
- Timers TA, TB (Each with 2 Interrupts)
- MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
— Default VIS
- Two 16 -bit timers, each with two 16 -bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- 8-bit Stack Pointer SP (stack in RAM)
- Two 8-bit Register Indirect Data Memory Pointers ( B and X )
- Versatile instruction set
- True bit manipulation
- Memory mapped I/O
- BCD arithmetic instructions
- Package:
- 44 PLCC with 39 I/O pins
-40 N with $33 \mathrm{I} / \mathrm{O}$ pins
-28 SO or 28 N , each with $23 \mathrm{I} / \mathrm{O}$ pins
- Software selectable I/O options
- TRI-STATE ${ }^{\text {® }}$ Output
- Push-Pull Output
- Weak Pull Up Input
- High Impedance Input
m Schmitt trigger inputs on ports $G$ and $L$
- Temperature ranges: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$,

$$
\begin{aligned}
& -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
$$

One-Time Programmable (OTP) emulation device
Fully supported by Metalink's Development Systems

## Block Diagram



TL/DD/9766-1
FIGURE 1. Block Dlagram

## General Description (Continued)

It is a fully static part, fabricated using double-metal silicon gate microCMOS technology. Features include an 8-bit memory mapped architecture, MICROWIRE/PLUS serial I/O, two 16 -bit timer/counters supporting three modes (Processor Independent PWM generation, External Event counter, and Input Capture mode capabilities), and two power savings modes (HALT and IDLE), both with a multi-

## Connection Diagrams

Plastic Chip Carrier


TL/DD/9766-2
Top View
Order Number COP688CL-XXX/V, COP888CL-XXX/V or COP988CL-XXX/V
See NS Plastic Chip Package Number V44A
sourced wakeup/interrupt capability. This multi-sourced interrupt capability may also be used independent of the HALT or IDLE modes. Each I/O pin has software selectable configurations. The device operates over a voltage range of 2.5 V to 6 V . High throughput is achieved with an efficient, regular instruction set operating at a maximum of $1 \mu \mathrm{~s}$ per instruction rate.

Order Number COP688CL-XXX/N, COP888CL-XXX/N or COP988CL-XXX/N



Order Number COP688CL-XXX/N, COP884CL-XXX/N or COP984CL-XXX/N See NS Molded Package Number N28B Order Number COP684CL-XXX/WM, COP884CL-XXX/WM or COP984CL-XXX/WM See NS Surface Mount Package Number M28B
COP688CL/COP684CL/COP888CL/COP884CL/COP988CL/COP984CL

Connection Diagrams (Continued)
Pinouts for 28-, 40- and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-Pin Pack.	40-Pin Pack.	44-Pin Pack.
LO	1/O	MIWU		11	17	17
L1	1/0	MIWU		12	18	18
L2	1/0	MIWU		13	19	19
L3	1/0	MIWU		14	20	20
L4	1/O	MIWU	T2A	15	21	25
L5	1/0	MIWU	T2B	16	22	26
L6	1/0	MIWU		17	23	27
L7	1/0	MIWU		18	24	28
G0	1/O	INT		25	35	39
G1	WDOUT			26	36	40
G2	1/O	T1B		27	37	41
G3	1/O	T1A		28	38	42
G4	1/0	SO		1	3	3
G5	1/0	SK		2	4	4
G6	1	SI		3	5	5
G7	I/CKO	HALT RESTART		4	6	6
D0	0			19	25	29
D1	0			20	26	30
D2	0			21	27	31
D3	0			22	28	32
10	1			7	9	9
11	1			8	10	10
12	1				11	11
13	1	.			12	12
14	1			9	13	13
15	I			10	14	14
16	1					15
17	1					16
D4	0				29	33
D5	0				30	34
D6	0				31	35
D7	0				32	36
C0	1/0				39	43
C1	1/0				40	44
C2	1/0				1	1
C3	1/0				2	2
C4	1/O					21
C5	1/0					22
C6	1/0					23
C7	1/0					24
Unused*					16	
Unused*					15	
$V_{C C}$				6	8	8
GND				23	33	37
CKI				5	7	7
RESET				24	34	38

[^2]
## Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
$7 V$
Voltage at Any Pin
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
100 mA

Total Current out of GND Pin (Sink)
110 mA Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$ Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics copgexcl: $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage COP98XCL COP98XCLH		$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Power Supply Ripple (Note 1)	Peak-to-Peak			$0.1 \mathrm{~V}_{\mathrm{CC}}$	V
$\begin{aligned} & \text { Supply Current (Note 2) } \\ & \text { CKI }=10 \mathrm{MHz} \\ & \text { CKI }=4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=2.5 \mu \mathrm{~s} \end{aligned}$			$\begin{gathered} 12.5 \\ 2.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
HALT Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & <0.7 \\ & <0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 5 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
IDLE Current $\mathrm{CKI}=10 \mathrm{MHz}$	$V_{C C}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$			3.5	mA
Input Levels   RESET   Logic High   Logic Low   CKI (External and Crystal Osc. Modes)   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low		$\begin{aligned} & 0.8 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Hi-Z Input Leakage	$V_{C C}=6 \mathrm{~V}$	-1		+1	$\ldots$
Input Pullup Current	$V_{C C}=6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-40		-250	$\mu \mathrm{A}$
G and L Port Input Hysteresis				$0.35 \mathrm{~V}_{\text {CC }}$	V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up Mode)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ -0.2 \\ 10 \\ 2.0 \\ -10 \\ -2.5 \\ -0.4 \\ -0.2 \\ 1.6 \\ 0.7 \end{gathered}$		$\begin{gathered} -100 \\ -33 \end{gathered}$	mA   mA   mA   mA   $\mu \mathrm{A}$   $\mu \mathrm{A}$   mA   mA   mA   mA

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $V_{C C}$, L and GO-G5 configured as outputs and set high. The D port set to zero. The clock monitor is disabled.

DC Electrical Characteristics $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Parameter	Conditions	Min	Typ	Max	Units
TRI-STATE Leakage	$V_{C C}=6.0 \mathrm{~V}$	-1		+1	$\mu \mathrm{A}$
Allowable Sink/Source   Current per Pin D Outputs (Sink) All others	-	.		$\begin{gathered} 15 \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current without Latchup (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\pm 100$	mA
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$	500 ns Rise and Fall Time (Min)	2			V
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

AC Electrical Characteristics $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crystal or Resonator R/C Oscillator	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
Inputs tsetup thold	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			ns   ns   ns ns
Output Propagation Delay (Note 5) $t_{P D 1}, t_{P D O}$ SO, SK   All Others	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 2.5 \\ \hline \end{gathered}$	$\mu \mathrm{S}$   $\mu \mathrm{s}$   $\mu \mathrm{S}$   $\mu \mathrm{S}$
MICROWIRETM Setup Time (tuws)   MICROWIRE Hold Time (tuwh)   MICROWIRE Output Propagation Delay (tupd)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$	-	$220$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ $\mathrm{ns}$
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time	,	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \hline \end{aligned}$
Reset Pulse Width		1			$\mu \mathrm{S}$

Note 4: Pins G6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $\mathrm{V}_{\mathrm{CC}}$ (the pins do not have source current when biased at a voltage below $\mathrm{V}_{\mathrm{CC}}$ ). The effective resistance to $V_{C C}$ is $750 \Omega$ (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .
Note 5: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.

## Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
$7 V$
Voltage at Any Pin
Total Current into $\mathrm{V}_{\mathrm{Cc}} \operatorname{Pin}$ (Source)
$-0.3 V$ to $V_{C C}+0.3 V$ 100 mA

Total Current out of GND Pin (Sink)
110 mA Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

## DC Electrical Characteristics COP88XCL: $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage		2.5		6	V
Power Supply Ripple (Note 1)	Peak-to-Peak			$0.1 \mathrm{~V}_{\mathrm{CC}}$	V
Supply Current (Note 2) $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \end{aligned}$			$\begin{gathered} 12.5 \\ 2.5 \\ \hline \end{gathered}$	mA   mA
HALT Current (Note 3)	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz}$		$<1$	10	$\mu \mathrm{A}$
IDLE Current $\mathrm{CKI}=10 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$			3.5	mA
Input Levels   RESET   Logic High   Logic Low   CKI (External and Crystal Osc. Modes)   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low		$\begin{aligned} & 0.8 V_{C C} \\ & 0.7 V_{C C} \\ & 0.7 V_{C C} \end{aligned}$		$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & V \\ & \hline \end{aligned}$
Hi-Z Input Leakage	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	-1		+1	$\mu \mathrm{A}$
Input Pullup Current	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-40		-250	$\mu \mathrm{A}$
G and L Port Input Hysteresis				$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up Mode)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ -0.2 \\ 10 \\ 2.0 \\ -10 \\ -2.5 \\ -0.4 \\ -0.2 \\ 1.6 \\ 0.7 \\ \hline \end{gathered}$		$\begin{aligned} & -100 \\ & -33 \end{aligned}$	mA   mA   mA   mA   $\mu A$   $\mu \mathrm{A}$   mA   mA   mA   mA
TRI-STATE Leakage	$V_{C C}=6.0 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $V_{C C}$, L and G0-G5 configured as outputs and set high. The D port set to zero. The clock monitor is disabled.

Parameter	Conditions	Min	Typ	Max	Units
Allowable Sink/Source   Current per Pin   D Outputs (Sink)   All others					
Maximum Input Current   without Latchup (Note 4)	$T_{\mathrm{A}}=25^{\circ} \mathrm{C}$			15	mA
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$	500 ns Rise   and Fall Time (Min)	2		$\pm 100$	mA
Input Capacitance					mA
Load Capacitance on D2				7	pF

AC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crystal or Resonator R/C Oscillator	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\mu \mathrm{S}$   $\mu \mathrm{S}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$
Inputs tsetup $t_{\text {hold }}$	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			ns   ns   ns   ns
Output Propagation Delay (Note 5) tpD1, tpD0 SO, SK   All Others	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 2.5 \\ \hline \end{gathered}$	$\mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{s}$
MICROWIRE Setup Time (tuws)   MICROWIRE Hold Time (tuwh)   MICROWIRE Output Propagation Delay (tupd)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$			$\begin{array}{r} \mathrm{t}_{\mathrm{c}} \\ \mathrm{t}_{\mathrm{c}} \\ \mathrm{t}_{\mathrm{c}} \\ \mathrm{t}_{\mathrm{c}} \\ \hline \end{array}$
Reset Pulse Width		1			$\mu \mathrm{S}$

Note 4: Pins G6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $\mathrm{V}_{\mathrm{CC}}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$ ). The effective resistance to $V_{C C}$ is $750 \Omega$ (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .
Note 5: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.

## Electrical Specifications

DC ELECTRICAL SPECIFICATIONS
COP688CL Absolute Specifications

Supply Voltage (VCC)	7 V
Voltage at Any Pin	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into VCC Pin (Source)	90 mA
Total Current out of GND Pin (Sink)	100 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics COP68XCL: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage		4.5		5.5	V
Power Supply Ripple (Note 1)	Peak-to-Peak			$0.1 \mathrm{~V}_{\mathrm{CC}}$	V
$\begin{aligned} & \text { Supply Current (Note 2) } \\ & \text { CKI }=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \end{aligned}$			$\begin{gathered} 12.5 \\ 5.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
HALT Current (Note 3)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz}$		<10	30	$\mu \mathrm{A}$
IDLE Current $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \end{aligned}$			$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Input Levels   RESET   Logic High   Logic Low   CKI (External and Crystal Osc. Modes)   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low		$\begin{aligned} & 0.8 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & V \\ & v \end{aligned}$
Hi-Z Input Leakage	$Y_{C C}=5.5 \mathrm{y}$	-5		+ 5	$\mu \dot{\sim}$
Input Pullup Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-35		-400	$\mu \mathrm{A}$
G and L Port Input Hysteresis				0.35 V CC	V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up Mode)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)   TRI-STATE Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ 9 \\ -9.0 \\ -0.4 \\ 1.4 \\ -5.0 \\ \hline \end{gathered}$		$\begin{aligned} & -140 \\ & +5.0 \end{aligned}$	mA   mA   $\mu \mathrm{A}$   mA   mA   $\mu \mathrm{A}$

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CK1 from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $V_{C C}$, L and G0-G5 configured as outputs and set high. The D port set to zero. The clock monitor is disabled.

DC Electrical Characteristics $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Parameter	Conditions	Min	Typ	Max	Units
Allowable Sink/Source   Current per Pin   D Outputs (Sink)   All others				$\begin{aligned} & 12 \\ & 2.5 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$
Maximum Input Current without Latchup (Note 4)				150	mA
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$	500 ns Rise and Fall Time (Min)	2.0			V
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $V_{C C}$, $L$ and $G$ ports in the TRISTATE mode and tied to ground, all outputs low and tied to ground. The Clock Monitor and the comparators are disabled.

## AC Specifications for COP688CL

AC Electrical Characteristics $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crystal, Resonator, or External Oscillator R/C Oscillator (div-by 10)	$\begin{aligned} & V_{C C} \geq 4.5 \mathrm{~V} \\ & V_{C C} \geq 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
Inputs tsetup thold	$\begin{aligned} & V_{C C} \geq 4.5 \mathrm{~V} \\ & V_{C C} \geq 4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 60 \end{gathered}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Output Propagation Delay (Note 5) tpDt , $\mathrm{tPD}_{\mathrm{PD}}$ SO, SK All Others	$\begin{aligned} & R_{L}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & V_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.7 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
MICROWIRE Setup Time (tuws) MICROWIRE Hold Time(tuwH)   MICROWIRE Output Propagation Delay (tupD)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time	$\because$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$
Reset Pulse Width		1			$\mu \mathrm{S}$

Note 4: Pins G6 and $\overline{\text { RESET }}$ are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $\mathrm{V}_{\mathrm{CC}}$ and the pins will have sink current to $\mathrm{V}_{\mathrm{CC}}$ when biased at voltages greater than $\mathrm{V}_{\mathrm{CC}}$ (the pins do not have source current when biased at a voltage below $\mathrm{V}_{\mathrm{CC}}$ ). The effective resistance to $\mathrm{V}_{\mathrm{CC}}$ is $750 \Omega$ (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .
Note 5: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.

Typical Performance Characteristics $\left(-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}\right)$


TL/DD/9766-27



TL/DD/9766-33


TL/DD/9766-28


TL/DD/9766-30

Port L/C/G Push-Pull Sink Current


TL/DD/9766-32


TL/DD/9766-34


## AC Electrical Characteristics (Continued)



FIGURE 2. MICROWIRE/PLUS Timing

## Pin Descriptions

$V_{C C}$ and GND are the power supply pins.
CKI is the clock input. This can come from an R/C generated oscillator, or a crystal oscillator (in conjunction with CKO). See Oscillator Description section.
$\overline{\text { RESET }}$ is the master reset input. See Reset Description section.
The device contains three bidirectional 8-bit I/O ports (C, G and L ), where each individual bit may be independently configured as an input (Schmitt trigger inputs on ports G and L ), output or TRI-STATE under program control. Three data memory address locations are allocated for each of these I/ O ports. Each 1/O port has two associated 8-bit memory mapped registers, the CONFIGURATION register and the output DATA register. A memory mapped address is also reserved for the input pins of each I/O port. (See the memory map for the various addresses associated with the I/O ports.) Figure 3 shows the I/O port configurations. The DATA and CONFIGURATION registers allow for each port bit to be individually configured under software control as shown below:

CONFIGURATION   Register	DATA   Register	Port Set-Up
0	0	Hi-Z Input   (TRI-STATE Output)   0
1	1	Input with Weak Pull-Up
1	0	Push-Pull Zero Output
1	Push-Pull One Output	



FIGURE 3. I/O Port Configurations

PORT L is an 8-bit I/O port. All L-pins have Schmitt triggers on the inputs.
Port L. supports Multi-Input Wakeup (MIWU) on all eight pins. L4 and L5 are used for the timer input functions T2A and T2B.
Port $L$ has the following alternate features:

L0	MIWU
L1	MIWU
L2	MIWU
L3	MIWU
L4	MIWU or T2A
L5	MIWU or T2B
L6	MIWU
L7	MIWU

Port G is an 8-bit port with $5 \mathrm{I} / \mathrm{O}$ pins (G0, G2-G5), an input pin (G6), and two dedicated output pins (G1 and G7). Pins G0 and G2-G6 all have Schmitt Triggers on their inputs. Pin G1 serves as the dedicated WDOUT WATCHDOG output, while pin G7 is either input or output depending on the oscillator mask option selected. With the crystal oscillator option selected, G7 serves as the dedicated output pin for the CKO clock output. With the single-pin R/C oscillator mask option selected, G7 serves as a general purpose input pin, but is also used to bring the device out of HALT mode with a low to high transition. There are two registers associated with the G Port, a data register and a configuration register. Therefore, each of the 5 I/O bits (G0, G2-G5) can be individually configured under software control.
Since G6 is an input only pin and G7 is the dedicated CKO clock output pin or general purpose input (R/C clock configuration), the associated bits in the data and configuration registers for G6 and G7 are used for special purpose functions as outlined below. Reading the G6 and G7 data bits will return zeros.
Note that the chip will be placed in the HALT mode by writing a "1" to bit 7 of the Port G Data Register. Similarly the chip will be placed in the IDLE mode by writing a " 1 " to bit 6 of the Port G Data Register.
Writing a " 1 " to bit 6 of the Port G Configuration Register enables the MICROWIRE/PLUS to operate with the alternate phase of the SK clock. The G7 configuration bit, if set high, enables the clock start up delay after HALT when the R/C clock configuration is used.

	Config Reg.	Data Reg.
G7	CLKDLY	HALT
G6	Alternate SK	IDLE

Port $G$ has the following alternate features:
GO INTR (External Interrupt Input)
G2 T1B (Timer T1 Capture Input)
G3 T1A (Timer T1 I/O)
G4 SO (MICROWIRETM Serial Data Output)
G5 SK (MICROWIRE Serial Clock)
G6 SI (MICROWIRE Serial Data Input)

## Pin Descriptions (Continued)

Port $G$ has the following dedicated functions:

## G1 WDOUT WATCHDOG and/or Clock Monitor dedicated output <br> G7 CKO Oscillator dedicated output or general purpose input

Port C is an 8-bit I/O port. The 40-pin device does not have a full complement of Port $C$ pins. The unavailable pins are not terminated. A read operation for these unterminated pins will return unpredictable values.
Port I is an 8 -bit Hi-Z input port. The 40 -pin device does not have a full complement of Port I pins. Pins 15 and 16 on this package must be connected to GND.
The 28 -pin device has four I pins ( $10,11,14,15$ ). The user should pay attention when reading port I to the fact that 14 and 15 are in bit positions 4 and 5 rather than 2 and 3.
The unavailable pins (14-17) are not terminated i.e., they are floating. A read operation for these unterminated pins will return unpredictable values. The user must ensure that the software takes into account by either masking or restricting the accesses to bit operations. The unterminated port I pins will draw power only when addressed.
Port D is an 8 -bit output port that is preset high when RESET goes low. The user can tie two or more D port outputs (except D2) together in order to get a higher drive.
Note: Care must be exercised with the D2 pin operation. At RESET, the external loads on this pin must ensure that the output voltages stay above $0.8 \mathrm{~V}_{\mathrm{CC}}$ to prevent the chip from entering special modes. Also keep the external loading on D2 to less than 1000 pF .

## Functional Description

The architecture of the device is modified Harvard architecture. With the Harvard architecture, the control store program memory ( ROM ) is separated from the data store memory (RAM). Both ROM and RAM have their own separate addressing space with separate address buses. The architecture, though based on Harvard architecture, permits trancfer of data from ROM to RAMivi.

## CPU REGISTERS

The CPU can do an 8-bit addition, subtraction, logical or shift operation in one instruction ( $\mathrm{t}_{\mathrm{c}}$ ) cycle time.
There are five CPU registers:
A is the 8 -bit Accumulator Register
PC is the 15 -bit Program Counter Register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter ( PC )
$B$ is an 8-bit RAM address pointer, which can be optionally post auto incremented or decremented.
X is an 8-bit alternate RAM address pointer, which can be optionally post auto incremented or decremented.
SP is the 8 -bit stack pointer, which points to the subroutine/ interrupt stack (in RAM). The SP is initialized to RAM address 06F with reset.
All the CPU registers are memory mapped with the exception of the Accumulator (A) and the Program Counter (PC).

## PROGRAM MEMORY

Program memory consists of 4096 bytes of ROM. These bytes may hold program instructions or constant data (data
tables for the LAID instruction, jump vectors for the JID instruction, and interrupt vectors for the VIS instruction). The program memory is addressed by the 15 -bit program counter (PC). All interrupts vector to program memory location OFF Hex.

## DATA MEMORY

The data memory address space includes the on-chip RAM and data registers, the I/O registers (Configuration, Data and Pin), the control registers, the MICROWIRE/PLUS SIO shift register, and the various registers, and counters associated with the timers (with the exception of the IDLE timer). Data memory is addressed directly by the instruction or indirectly by the $B, X$ and $S P$ pointers.
The device has 128 bytes of RAM. Sixteen bytes of RAM are mapped as "registers" at addresses 0FO to OFF Hex. These registers can be loaded immediately, and also decremented and tested with the DRSZ (decrement register and skip if zero) instruction. The memory pointer registers $X$, SP, and $B$ are memory mapped into this space at address locations OFC to OFE Hex respectively, with the other registers (other than reserved register OFF) being available for general usage.
The instruction set permits any bit in memory to be set, reset or tested. All I/O and registers (except A and PC) are memory mapped; therefore, I/O bits and register bits can be directly and individually set, reset and tested. The accumulator (A) bits can also be directly and individually tested.
Note: RAM contents are undefined upon power-up.

## Reset

The RESET input when pulled low initializes the microcontroller. Initialization will occur whenever the $\overline{\operatorname{RESET}}$ input is pulled low. Upon initialization, the data and configuration registers for Ports L, G, and C are cleared, resulting in these Ports being initialized to the TRI-STATE mode. Pin G1 of the G Port is an exception (as noted below) since pin G1 is dedicated as the WATCHDOG and/or Clock Monitor error output pin. Port D is initialized high with RESET. The PC, PSW, CNTRL, ICNTRL, and T2CNTRL control registers are cleared. The Multi-Input Wakeup registers WKEN, WKEDG, and WKPND are cleared. The Stack Pointer, SP, is initialized to 06F Hex.
The device comes out of reset with both the WATCHDOG logic and the Clock Monitor detector armed, and with both the WATCHDOG service window bits set and the Clock Monitor bit set. The WATCHDOG and Clock Monitor detector circuits are inhibited during reset. The WATCHDOG service window bits are initialized to the maximum WATCHDOG service window of $64 \mathrm{k} \mathrm{t}_{\mathrm{c}}$ clock cycles. The Clock Monitor bit is initialized high, and will cause a Clock Monitor error following reset if the clock has not reached the minimum specified frequency at the termination of reset. A Clock Monitor error will cause an active low error output on pin G1. This error output will continue until $16-32 t_{c}$ clock cycles following the clock frequency reaching the minimum specified value, at which time the G1 output will enter the TRI-STATE mode.
The external RC network shown in Figure 4 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.

Reset (Continued)


RC $>5 \times$ Power Supply Rise Time
FIGURE 4. Recommended Reset CIrcuit

## Oscillator Circuits

The chip can be driven by a clock input on the CKI input pin which can be between DC and 10 MHz . The CKO output clock is on pin G7 (crystal configuration). The CKI input frequency is divided down by 10 to produce the instruction cycle clock ( $1 / \mathrm{t}_{\mathrm{c}}$ ).
Figure 5 shows the Crystal and R/C diagrams.

## CRYSTAL OSCILLATOR

CKI and CKO can be connected to make a closed loop crystal (or resonator) controlled oscillator.
Table A shows the component values required for various standard crystal values.

## R/C OSCILLATOR

By selecting CKI as a single pin oscillator input, a single pin R/C oscillator circuit can be connected to it. CKO is available as a general purpose input, and/or HALT restart pin.
Table B shows the variation in the oscillator frequencies as functions of the component ( R and C ) values.


TL/DD/9766-9

TL/DD/9766-8
FIGURE 5. Crystal and R/C Oscillator Diagrams
TABLE A. Crystal Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

R1   $(\mathbf{k} \Omega)$	R2   $(\mathbf{M} \Omega)$	$\mathbf{C 1}$   $(\mathbf{p F})$	$\mathbf{C 2}$   $\mathbf{( p F})$	CKI Freq   $(\mathbf{M H z})$	Conditions
0	1	30	$30-36$	10	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	30	$30-36$	4	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
0	1	200	$100-150$	0.455	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

TABLE B. RC Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$\mathbf{R}$   $(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{C}$   $(\mathbf{p F})$	CKI Freq   $(\mathbf{M H z})$	Instr. Cycle   $(\mu \mathbf{s})$	Conditions
3.3	82	2.2 to 2.7	3.7 to 4.6	$\mathrm{~V}_{C C}=5 \mathrm{~V}$
5.6	100	1.1 to 1.3	7.4 to 9.0	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
6.8	100	0.9 to 1.1	8.8 to 10.8	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

Note: $3 \mathrm{k} \leq \mathrm{R} \leq 200 \mathrm{k}, 50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}$

## Current Drain

The total current drain of the chip depends on:

1. Oscillator operation mode-11
2. Internal switching current-12
3. Internal leakage current-13
4. Output source current-14
5. DC current caused by external input not at $\mathrm{V}_{\mathrm{CC}}$ or GND-15
6. Clock Monitor current when enabled-l6

Thus the total current drain, It, is given as

$$
\mathrm{It}=11+12+13+14+15+16
$$

To reduce the total current drain, each of the above components must be minimum.
The chip will draw more current as the CKI input frequency increases up to the maximum 10 MHz value. Operating with a crystal network will draw more current than an external square-wave. Switching current, governed by the equation below, can be reduced by lowering voltage and frequency. Leakage current can be reduced by lowering voltage and temperature. The other two items can be reduced by carefully designing the end-user's system.

$$
\mathrm{I} 2=\mathrm{C} \times \mathrm{V} \times f
$$

where $C=$ equivalent capacitance of the chip
$V=$ operating voltage
$f=$ CKI frequency

## Control Registers

CNTRL Register (Address X'00EE)
The Timer1 (T1) and MICROWIRE/PLUS control register contains the following bits:

SL1 \& SLO Select the MICROWIRE/PLUS clock divide by ( $00=2,01=4,1 x=8$ )
IEDG External interrupt edge polarity select ( $0=$ Rising edge, $1=$ Falling edge)
MSEL Selects G5 and G4 as MICROWIRE/PLUS signals SK and SO respectively

Control Registers (Continued)
T1C0 Timer T1 Start/Stop control in timer modes 1 and 2

Timer T1 Underflow Interrupt Pending Flag in timer mode 3
T1C1 Timer T1 mode control bit
T1C2 Timer T1 mode control bit
T1C3 Timer T1 mode control bit

T1C3	T1C2	T1C1	T1C0	MSEL	IEDG	SL1	SL0
Bit 7	Bit 0						

PSW Register (Address X'00EF)
The PSW register contains the following select bits:
GIE Global interrupt enable (enables interrupts)
EXEN Enable external interrupt
BUSY MICROWIRE/PLUS busy shifting flag
EXPND External interrupt pending
T1ENA Timer T1 Interrupt Enable for Timer Underflow or T1A Input capture edge
T1PNDA Timer T1 Interrupt Pending Flag (Autoreload RA in mode 1, T1 Underflow in Mode 2, T1A capture edge in mode 3)
C Carry Flag
HC Half Carry Flag

HC	C	T1PNDA	T1ENA	EXPND	BUSY	EXEN	GIE
Bit 7	Bit 0						

The Half-Carry bit is also affected by all the instructions that affect the Carry flag. The SC (Set Carry) and RC (Reset Carry) instructions will respectively set or clear both the carry flags. In addition to the SC and RC instructions, ADC, SUBC, RRC and RLC instructions affect the carry and Half Carry flags.

## ICNTRL Register (Address X'00E8)

The ICNTRL register contains the following bits:
T1ENB Timer T1 Interrupt Enable for T1B Input capture edge
T1PNDB Timer T1 Interrupt Pending Flag for T1B capture edge
$\mu$ WEN Enable MICROWIRE/PLUS interrupt $\mu$ WPND MICROWIRE/PLUS interrupt pending TOEN Timer TO Interrupt Enable (Bit 12 toggle)
TOPND Timer TO Interrupt pending
LPEN L Port Interrupt Enable (Multi-Input Wakeup/Interrupt)
Bit 7 could be used as a flag

Unused	LPEN	TOPND	TOEN	$\mu$ WPND	$\mu$ WEN	T1PNDB	T1ENB
Bit 7			Bit 0				

T2CNTRL Register (Address X'00C6)
The T2CNTRL register contains the following bits:
T2ENB Timer T2 Interrupt Enable for T2B Input capture edge
T2PNDB Timer T2 Interrupt Pending Flag for T2B capture edge
T2ENA Timer T2 Interrupt Enable for Timer Underflow or T2A Input capture edge
T2PNDA Timer T2 Interrupt Pending Flag (Autoreload RA in mode 1, T2 Underflow in mode 2, T2A capture edge in mode 3)
T2C0 Timer T2 Start/Stop control in timer modes 1 and 2 Timer T2 Underflow Interrupt Pending Flag in timer mode 3
T2C1 Timer T2 mode control bit
T2C2 Timer T2 mode control bit
T2C3 Timer T2 mode control bit

T2C3	T2C2	T2C1	T2C0	T2PNDA	T2ENA	T2PNDB	T2ENB

Bit 7
Bit 0

## Timers

The device contains a very versatile set of timers (TO, T1, T2). All timers and associated autoreload/capture registers power up containing random data.
Figure 6 shows a block diagram for the timers.

Timers (Continued)


TL/DD/9766-11
FIGURE 6. Timers

## TIMER TO (IDLE TIMER)

The device supports applications that require maintaining real time and low power with the IDLE mode. This IDLE mode support is furnished by the IDLE timer T0, which is a 16 -bit timer. The Timer TO runs continuously at the fixed rate of the instruction cycle clock, $\mathrm{t}_{\mathrm{c}}$. The user cannot read or write to the IDLE Timer TO, which is a count down timer. The Timer TO supports the following functions:
Exit out of the Idle Mode (See Idle Mode description) WATCHDOG logic (See WATCHDOG description)
Start up delay out of the HALT mode
The IDLE Timer TO can generate an interrupt when the thirteenth bit toggles. This toggle is latched into the TOPND pending flag, and will occur every 4 ms at the maximum clock frequency ( $\mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ). A control flag TOEN allows the interrupt from the thirteenth bit of Timer TO to be enabled or disabled. Setting TOEN will enable the interrupt, while resetting it will disable the interrupt.

## TIMER T1 AND TIMER T2

The device has a set of two powerful timer/counter blocks, T1 and T2. The associated features and functioning of a timer block are described by referring to the timer block $T x$. Since the two timer blocks, T1 and T2, are identical, all comments are equally applicable to either timer block.
Each timer block consists of a 16 -bit timer, Tx, and two supporting 16-bit autoreload/capture registers, RxA and RxB. Each timer block has two pins associated with it, TxA and TxB. The pin TxA supports I/O required by the timer
block, while the pin TxB is an input to the timer block. The powerful and flexible timer block allows the device to easily perform all timer functions with minimal software overhead. The timer block has three operating modes: Processor Independent PWM mode, External Event Counter mode, and Input Capture mode.
The control bits TxC3, TxC2, and TxC1 allow selection of the different modes of operation.

## Mode 1. Processor Independent PWM Mode

As the name suggests, this mode allows the device to generate a PWM signal with very minimal user intervention. The user only has to define the parameters of the PWM signal (ON time and OFF time). Once begun, the timer block will continuously generate the PWM signal completely independent of the microcontroller. The user software services the timer block only when the PWM parameters require updating.
In this mode the timer Tx counts down at a fixed rate of $\mathrm{t}_{\mathrm{c}}$. Upon every underflow the timer is alternately reloaded with the contents of supporting registers, RxA and RxB. The very first underflow of the timer causes the timer to reload from the register RxA. Subsequent underflows cause the timer to be reloaded from the registers alternately beginning with the register RxB.
The Tx Timer control bits, TxC3, TxC2 and TxC1 set up the timer for PWM mode operation.
Figure 7 shows a block diagram of the timer in PWM mode.

## Timers (Continued)



TL/DD/9766-13
FIGURE 7. Timer in PWM Mode

The underflows can be programmed to toggle the TxA output pin. The underflows can also be programmed to generate interrupts.
Underflows from the timer are alternately latched into two pending flags, TxPNDA and TxPNDB. The user must reset these pending flags under software control. Two control enable flags, TXENA and TXENB, allow the interrupts from the timer underflow to be enabled or disabled. Setting the timer enable flag TxENA will cause an interrupt when a timer underflow causes the RXA register to be reloaded into the timer. Setting the timer enable flag TxENB will cause an interrupt when a timer underflow causes the RxB register to be reloaded into the timer. Resetting the timer enable flags will disable the associated interrupts.
Either or both of the timer underflow interrupts may be enabled. This gives the user the flexibility of interrupting once per PWM period on either the rising or falling edge of the PWM output. Alternatively, the ucer maj chacec to intcriupt on both edges of the PWM output.

## Mode 2. External Event Counter Mode

This mode is quite similar to the processor independent PWM mode described above. The main difference is that the timer, $T x$, is clocked by the input signal from the TxA pin. The Tx timer control bits, TxC3, TxC2 and TxC1 allow the timer to be clocked either on a positive or negative edge from the TXA pin. Underflows from the timer are latched into the TxPNDA pending flag. Setting the TxENA control flag will cause an interrupt when the timer underflows.
In this mode the input pin TxB can be used as an independent positive edge sensitive interrupt input if the TXENB control flag is set. The occurrence of a positive edge on the TxB input pin is latched into the TxPNDB flag.
Figure 8 shows a block diagram of the timer in External Event Counter mode.
Note: The PWM output is not available in this mode since the TXA pin is being used as the counter input clock.


TL/DD/9766-14
FIGURE 8. Timer in External Event Counter Mode

## Timers (Continued)

## Mode 3. Input Capture Mode

The device can precisely measure external frequencies or time external events by placing the timer block, $T x$, in the input capture mode.
In this mode, the timer Tx is constantly running at the fixed $\mathrm{t}_{\mathrm{c}}$ rate. The two registers, RxA and RxB, act as capture registers. Each register acts in conjunction with a pin. The register RxA acts in conjunction with the TxA pin and the register RxB acts in conjunction with the TxB pin.
The timer value gets copied over into the register when a trigger event occurs on its corresponding pin. Control bits, TxC3, TxC2 and TxC1, allow the trigger events to be specified either as a positive or a negative edge. The trigger condition for each input pin can be specified independently.
The trigger conditions can also be programmed to generate interrupts. The occurrence of the specified trigger condition on the TXA and TxB pins will be respectively latched into the pending flags, TxPNDA and TxPNDB. The control flag TxENA allows the interrupt on TxA to be either enabled or disabled. Setting the TxENA flag enables interrupts to be generated when the selected trigger condition occurs on the TXA pin. Similarly, the flag TxENB controls the interrupts from the TxB pin.
Underflows from the timer can also be programmed to generate interrupts. Underflows are latched into the timer TxC0 pending flag (the TxCO control bit serves as the timer under-
flow interrupt pending flag in the Input Capture mode). Consequently, the TXCO control bit should be reset when entering the Input Capture mode. The timer underflow interrupt is enabled with the TxENA control flag. When a TxA interrupt occurs in the Input Capture mode, the user must check both the TxPNDA and TxCO pending flags in order to determine whether a TxA input capture or a timer underflow (or both) caused the interrupt.
Figure 9 shows a block diagram of the timer in Input Capture mode.

## TIMER CONTROL FLAGS

The timers T1 and T2 have indentical control structures. The control bits and their functions are summarized below.
TxC0 Timer Start/Stop control in Modes 1 and 2 (Processor Independent PWM and External Event Counter), where $1=$ Start, $0=$ Stop Timer Underflow Interrupt Pending Flag in Mode 3 (Input Capture)
TxPNDA Timer Interrupt Pending Flag
TxPNDB Timer Interrupt Pending Flag
TxENA Timer Interrupt Enable Flag
TxENB Timer Interrupt Enable Flag
1 = Timer Interrupt Enabled
$0=$ Timer Interrupt Disabled
TxC3 Timer mode control
TxC2 Timer mode control
TxC1. Timer mode control


TL/DD/9766-15
FIGURE 9. Timer in Input Capture Mode

Timers (Continued)
The timer mode control bits ( $\mathrm{T} \times \mathrm{C} 3, \mathrm{~T} \times \mathrm{C} 2$ and $\mathrm{TXC1}$ ) are detailed below:

TxC3	TxC2	TxC1	Timer Mode	Interrupt A Source	Interrupt B Source	Timer Counts On
0	0	0	MODE 2 (External Event Counter)	Timer Underflow	Pos. TxB Edge	TXA   Pos. Edge
0	0	1	MODE 2 (External Event Counter)	Timer Underflow	Pos. TxB Edge	T×A Neg. Edge
1	0	1	MODE 1 (PWM) TxA Toggle	Autoreload RA	Autoreload RB	$t_{c}$
1	0	0	MODE 1 (PWM) No TxA Toggle	Autoreload RA	Autoreload RB	$\mathrm{t}_{\mathrm{c}}$
0	1	0	MODE 3 (Capture)   Captures:   TxA Pos. Edge   TxB Pos. Edge	Pos. TxA.   Edge or   Timer   Underflow	Pos. TxB Edge	$t_{c}$
1	1	0	MODE 3 (Capture)   Captures:   TxA Pos. Edge   TxB Neg. Edge	Pos. TxA   Edge or   Timer   Underflow	Neg. TxB Edge	$\mathrm{t}_{\mathrm{c}}$
0	1	1	MODE 3 (Capture)   Captures:   TxA Neg. Edge   TxB Pos. Edge	Neg. TxB   Edge or   Timer   Underflow	Pos. TxB Edge	$t_{c}$
1	1	1	MODE 3 (Capture)   Captures:   TxA Neg. Edge   TxB Neg. Edge	Neg. TxA   Edge or   Timer   Underflow	Neg. TxB Edge	$\mathrm{t}_{\mathrm{c}}$

## Power Save Modes

The device offers the user two power save modes of operation: HA! activities are stopped. In the IDLE mode, the on-board oscillator circuitry and timer T0 are active but all other microcontroller activities are stopped. In either mode, all on-board RAM, registers, I/O states, and timers (with the exception of TO) are unaltered.

## HALT MODE

The device is placed in the HALT mode by writing a " 1 " to the HALT flag (G7 data bit). All microcontroller activities, including the clock, timers, are stopped. The WATCHDOG logic is disabled during the HALT mode. However, the clock monitor circuitry, if enabled, remains active and will cause the WATCHDOG output pin (WDOUT) to go low. If the HALT mode is used and the user does not want to activate the WDOUT pin, the Clock Monitor should be disabled after the device comes out of reset (resetting the Clock Monitor control bit with the first write to the WDSVR register). In the HALT mode, the power requirements of the device are minimal and the applied voltage ( $\mathrm{V}_{\mathrm{Cc}}$ ) may be decreased to $\mathrm{V}_{\mathrm{r}}$ $\left(\mathrm{V}_{\mathrm{r}}=2.0 \mathrm{~V}\right)$ without altering the state of the machine.
The device supports three different ways of exiting the HALT mode. The first method of exiting the HALT mode is
with the Multi-Input Wakeup feature on the L port. The second meliodis witi a low to hign transition on the CKO (G) pin. This method precludes the use of the crystal clock configuration (since CKO becomes a dedicated output), and so may be used with an RC clock configuration. The third method of exiting the HALT mode is by pulling the RESET pin low.
Since a crystal or ceramic resonator may be selected as the oscillator, the Wakeup signal is not allowed to start the chip running immediately since crystal oscillators and ceramic resonators have a delayed start up time to reach full amplitude and frequency stability. The IDLE timer is used to generate a fixed delay to ensure that the oscillator has indeed stabilized before allowing instruction execution. In this case, upon detecting a valid Wakeup signal, only the oscillator circuitry is enabled. The IDLE timer is loaded with a value of 256 and is clocked with the $t_{c}$ instruction cycle clock. The $t_{c}$ clock is derived by dividing the oscillator clock down by a factor of 10. The Schmitt trigger following the CKI inverter on the chip ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.

## Power Save Modes (Continued)

If an RC clock option is being used, the fixed delay is introduced optionally. A control bit, CLKDLY, mapped as configuration bit G7, controls whether the delay is to be introduced or not. The delay is included if CLKDLY is set, and excluded if CLKDLY is reset. The CLKDLY bit is cleared on reset.
The device has two mask options associated with the HALT mode. The first mask option enables the HALT mode feature, while the second mask option disables the HALT mode. With the HALT mode enable mask option, the device will enter and exit the HALT mode as described above. With the HALT disable mask option, the device cannot be placed in the HALT mode (writing a " 1 " to the HALT flag will have no effect).
The WATCHDOG detector circuit is inhibited during the HALT mode. However, the clock monitor circuit, if enabled, remains active during HALT mode in order to ensure a clock monitor error if the device inadvertently enters the HALT mode as a result of a runaway program or power glitch.

## IDLE MODE

The device is placed in the IDLE mode by writing a " 1 " to the IDLE flag (G6 data bit). In this mode, all activity, except the associated on-board oscillator circuitry, the WATCH. DOG logic, the clock monitor and the IDLE Timer TO, is stopped.

As with the HALT mode, the device can be returned to normal operation with a reset, or with a Multi-Input Wake-up from the L Port. Alternately, the microcontroller resumes normal operation from the IDLE mode when the thirteenth bit (representing 4.096 ms at internal clock frequency of $1 \mathrm{MHz}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ) of the IDLE Timer toggles.
This toggle condition of the thirteenth bit of the IDLE Timer TO is latched into the TOPND pending flag.
The user has the option of being interrupted with a transition on the thirteenth bit of the IDLE Timer TO. The interrupt can be enabled or disabled via the TOEN control bit. Setting the TOEN flag enables the interrupt and vice versa.
The user can enter the IDLE mode with the Timer TO interrupt enabled. In this case, when the TOPND bit gets set, the device will first execute the Timer TO interrupt service routine and then return to the instruction following the "Enter Idle Mode" instruction.
Alternatively, the user can enter the IDLE mode with the IDLE Timer TO interrupt disabled. In this case, the device will resume normal operation with the instruction immediately following the "Enter IDLE Mode" instruction.
Note: It is necessary to program two NOP instructions following both the set HALT mode and set IDLE mode instructions. These NOP instructions are necessary to allow clock resynchronization following the HALT or IDLE modes.

## Multi－Input Wakeup

The Multi－Input Wakeup feature is used to return（wakeup） the device from either the HALT or IDLE modes．Alternately Multi－Input Wakeup／Interrupt feature may also be used to generate up to 8 edge selectable external interrupts．
Figure 10 shows the Multi－Input Wakeup logic．
The Multi－Input Wakeup feature utilizes the L Port．The user selects which particular L port bit（or combination of L Port bits）will cause the device to exit the HALT or IDLE modes． The selection is done through the Reg：WKEN．The Reg： WKEN is an 8－bit read／write register，which contains a con－ trol bit for every L port bit．Setting a particular WKEN bit enables a Wakeup from the associated $L$ port pin．
The user can select whether the trigger condition on the selected L Port pin is going to be either a positive edge（low to high transition）or a negative edge（high to low transition）． This selection is made via the Reg：WKEDG，which is an 8－ bit control register with a bit assigned to each L Port pin． Setting the control bit will select the trigger condition to be a negative edge on that particular L Port pin．Resetting the bit selects the trigger condition to be a positive edge．Changing an edge select entails several steps in order to avoid a pseudo Wakeup condition as a result of the edge change． First，the associated WKEN bit should be reset，followed by the edge select change in WKEDG．Next，the associated WKPND bit should be cleared，followed by the associated WKEN bit being re－enabled．
An example may serve to clarify this procedure．Suppose we wish to change the edge select from positive（low going high）to negative（high going low）for L Port bit 5，where bit 5 has previously been enabled for an input interrupt．The pro－ gram would be as follows：

| RBIT | 5，WKEN |
| :--- | :--- | :--- |
| SBIT | 5，WKEDG |
| RBIT | 5 ，WKPND |
| SBIT | 5，WKEN |

If the $L$ port bits have been used as outputs and then changed to inputs with Multi－Input Wakeup／Interrupt，a safe－ ty procedure should also be followed to avoid inherited pseudo wakeup conditions．After the selected L port bits have been changed from output to input but before the as－ sociated WKEN bits are enabled，the associated edge se－ lect bits in WKEDG should be set or reset for the desired edge selects，followed by the associated WKPND bits being cleared．
This same procedure should be used following reset，since the L port inputs are left floating as a result of reset．
The occurrence of the selected trigger condition for Multi－In－ put Wakeup is latched into a pending register called WKPND．The respective bits of the WKPND register will be set on the occurrence of the selected trigger edge on the corresponding Port L pin．The user has the responsibility of clearing these pending flags．Since WKPND is a pending register for the occurrence of selected wakeup conditions， the device will not enter the HALT mode if any Wakeup bit is both enabled and pending．Consequently，the user has the responsibility of clearing the pending flags before attempt－ ing to enter the HALT mode．
The WKEN，WKPND and WKEDG are all read／write regis－ ters，and are cleared at reset．

## PORT L INTERRUPTS

Port L provides the user with an additional eight fully select－ able，edge sensitive interrupts which are all vectored into the same service subroutine．
The interrupt from Port $L$ shares logic with the wake up cir－ cuitry．The register WKEN allows interrupts from Port $L$ to

## Multi-Input Wakeup (Continued)

be individually enabled or disabled. The register WKEDG specifies the trigger condition to be either a positive or a negative edge. Finally, the register WKPND latches in the pending trigger conditions.
The GIE (Global Interrupt Enable) bit enables the interrupt function.
A control flag, LPEN, functions as a global interrupt enable for Port $L$ interrupts. Setting the LPEN flag will enable interrupts and vice versa. A separate global pending flag is not needed since the register WKPND is adequate.
Since Port $L$ is also used for waking the device out of the HALT or IDLE modes, the user can elect to exit the HALT or IDLE modes either with or without the interrupt enabled. If he elects to disable the interrupt, then the device will restart execution from the instruction immediately following the instruction that placed the microcontroller in the HALT or IDLE modes. In the other case, the device will first execute the interrupt service routine and then revert to normal operation.
The Wakeup signal will not start the chip running immediately since crystal oscillators or ceramic resonators have a fi nite start up time. The IDLE Timer (TO) generates a fixed delay to ensure that the oscillator has indeed stabilized before allowing the device to execute instructions. In this
case, upon detecting a valid Wakeup signal, only the oscillator circuitry and the IDLE Timer T0 are enabled. The IDLE Timer is loaded with a value of 256 and is clocked from the $t_{c}$ instruction cycle clock. The $t_{c}$ clock is derived by dividing down the oscillator clock by a factor of 10. A Schmitt trigger following the CKI on-chip inverter ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.
If the RC clock option is used, the fixed delay is under software control. A control flag, CLKDLY, in the G7 configuration bit allows the clock start up delay to be optionally inserted. Setting CLKDLY flag high will cause clock start up delay to be inserted and resetting it will exclude the clock start up delay. The CLKDLY flag is cleared during reset, so the clock start up delay is not present following reset with the RC clock options.

## Interrupts

The device supports a vectored interrupt scheme. It supports a total of ten interrupt sources. The following table lists all the possible interrupt sources, their arbitration ranking and the memory locations reserved for the interrupt vector for each source.

Arbitration Ranking	Source	Description	Vector Address Hi-Low Byte
(1) Highest	Software	INTR Instruction	OyFE-0yFF
	Reserved	for Future Use	OyFC-0yFD
(2)	External	Pin G0 Edge	OyFA-0yFB
(3)	Timer T0	Underflow	OyF8-0yF9
(4)	Timer T1	T1A/Underflow	OyF6-0yF7
(5)	Timer T1	T1B	OyF4-0yF5
(6)	MICROWIRE/PLUS	BUSY Goes Low	0yF2-0yF3
	Reserved	for Future Use	0yF0-0yF1
	Reserved	for UART	OyEE-OyEF
	Reserved	for UART	OyEC-0yED
(7)	'Timer 72	T2A/Underflow	OyEA-0yEB
(8)	Timer 72	T2B	OyE8-0yE9
.	Reserved	for Future Use	OyE6-0yE7
	Reserved	for Future Use	OyE4-0yE5
(9)	Port L/Wakeup	Port L Edge	OyE2-0yE3
(10) Lowest	Default	VIS Instr. Execution without Any Interrupts	OyE0-0yE1

y is VIS page, $\mathrm{y} \neq 0$.

## Interrupts (Continued)

Two bytes of program memory space are reserved for each interrupt source. All interrupt sources except the software interrupt are maskable. Each of the maskable interrupts have an Enable bit and a Pending bit. A maskable interrupt is active if its associated enable and pending bits are set. If GIE $=1$ and an interrupt is active, then the processor will be interrupted as soon as it is ready to start executing an instruction except if the above conditions happen during the Software Trap service routine. This exception is described in the Software Trap sub-section.
The interruption process is accomplished with the INTR instruction (opcode 00), which is jammed inside the Instruction Register and replaces the opcode about to be executed. The following steps are performed for every interrupt:

1. The GIE (Global Interrupt Enable) bit is reset.
2. The address of the instruction about to be executed is pushed into the stack.
3. The PC (Program Counter) branches to address 00FF. This procedure takes $7 \mathrm{t}_{\mathrm{c}}$ cycles to execute.
At this time, since $\mathrm{GIE}=0$, other maskable interrupts are disabled. The user is' now free to do whatever context switching is required by saving the context of the machine in the stack with PUSH instructions. The user would then program a VIS (Vector Interrupt Select) instruction in order to branch to the interrupt service routine of the highest priority interrupt enabled and pending at the time of the VIS. Note that this is not necessarily the interrupt that caused the branch to address location OOFF Hex prior to the context switching.
Thus, if an interrupt with a higher rank than the one which caused the interruption becomes active before the decision of which interrupt to service is made by the VIS, then the interrupt with the higher rank will override any lower ones and will be acknowledged. The lower priority interrupt(s) are still pending, however, and will cause another interrupt immediately following the completion of the interrupt service
routine associated with the higher priority interrupt just serviced. This lower priority interrupt will occur immediately following the RETI (Return from Interrupt) instruction at the end of the interrupt service routine just completed.
Inside the interrupt service routine, the associated pending bit has to be cleared by software. The RETI (Return from Interrupt) instruction at the end of the interrupt service routine will set the GIE (Global Interrupt Enable) bit, allowing the processor to be interrupted again if another interrupt is active and pending.
The VIS instruction looks at all the active interrupts at the time it is executed and performs an indirect jump to the beginning of the service routine of the one with the highest rank.
The addresses of the different interrupt service routines, called vectors, are chosen by the user and stored in ROM in a table starting at 01E0 (assuming that VIS is located between 00FF and 01DF). The vectors are 15 -bit wide and therefore occupy 2 ROM locations.
VIS and the vector table must be located in the same 256byte block ( OyOO to OyFF ) except if VIS is located at the last address of a block. In this case, the table must be in the next block. The vector table cannot be inserted in the first 256-byte block.
The vector of the maskable interrupt with the lowest rank is located at OyE0 (Hi-Order byte) and OyE1 (Lo-Order byte) and so forth in increasing rank number. The vector of the maskable interrupt with the highest rank is located at 0 yFA (Hi-Order byte) and OyFB (Lo-Order byte).
The Software Trap has the highest rank and its vector is located at 0yFE and 0yFF.
If, by accident, a VIS gets executed and no interrupt is active, then the PC (Program Counter) will branch to a vector located at $0 y E 0-0 y E 1$. This vector can point to the Software Trap (ST) interrupt service routine, or to another special service routine as desired.
Figure 11 shows the Interrupt block diagram.


FIGURE 11. Interrupt Block Diagram

## Interrupts (Continued)

## SOFTWARE TRAP

The Software Trap (ST) is a special kind of non-maskable interrupt which occurs when the INTR instruction (used to acknowledge interrupts) is fetched from ROM and placed inside the instruction register. This may happen when the PC is pointing beyond the available ROM address space or when the stack is over-popped.
When an ST occurs, the user can re-initialize the stack pointer and do a recovery procedure (similar to reset, but not necessarily containing all of the same initialization procedures) before restarting.
The occurrence of an ST is latched into the ST pending bit. The GIE bit is not affected and the ST pending bit (not accessible by the user) is used to inhibit other interrupts and to direct the program to the ST service routine with the VIS instruction. The RPND instruction is used to clear the software interrupt pending bit. This pending bit is also cleared on reset.
The ST has the highest rank among all interrupts.
Nothing (except another ST) can interrupt an ST being serviced.

## WATCHDOG

The device contains a WATCHDOG and clock monitor. The WATCHDOG is designed to detect the user program getting stuck in infinite loops resulting in loss of program control or "runaway" programs. The Clock Monitor is used to detect the absence of a clock or a very slow clock below a specified rate on the CKI pin.
The WATCHDOG consists of two independent logic blocks: WD UPPER and WD LOWER. WD UPPER establishes the upper limit on the service window and WD LOWER defines the lower limit of the service window.
Servicing the WATCHDOG consists of writing a specific value to a WATCHDOG Service Register named WDSVR which is memory mapped in the RAM. This value is composed of three fields, consisting of a 2-bit Window Select, a 5-bit Key Data field, and the 1-bit Clock Monitor Select field. Table I shows the WDSVR register.
The lower limit of the service window is fixed at 2048 instruction cycles. Bits 7 and 6 of the WDSVR register allow the user to pick an upper limit of the service window.
Table Il shows the four possible combinations of lower and upper limits for the WATCHDOG service window. This flexibility in choosing the WATCHDOG service window prevents any undue burden on the user software.
Bits 5, 4, 3, 2 and 1 of the WDSVR register represent the 5 -bit Key Data field. The key data is fixed at 01100. Bit 0 of the WDSVR Register is the Clock Monitor Select bit.

TABLE I. WATCHDOG Service Register (WDSVR)

Window   Select		Key Data					
Clock   Monitor							
X	X	0	1	1	0	0	Y
7	6	5	4	3	2	1	0

TABLE II. WATCHDOG Service Window Select

WDSVR   Bit 7	WDSVR   Bit 6	Service Window   (Lower-Upper Limits)
0	0	$2 k-8 k \mathrm{t}_{c}$ Cycles
0	1	$2 k-16 k \mathrm{t}_{\mathrm{c}}$ Cycles
1	0	$2 k-32 k \mathrm{t}_{\mathrm{c}}$ Cycles
1	1	$2 k-64 \mathrm{k} \mathrm{t}_{\mathrm{c}}$ Cycles

## Clock Monitor

The Clock Monitor aboard the device can be selected or deselected under program control. The Clock Monitor is guaranteed not to reject the clock if the instruction cycle clock $\left(1 / \mathrm{t}_{\mathrm{c}}\right)$ is greater or equal to 10 kHz . This equates to a clock input rate on CKI of greater or equal to 100 kHz .

## WATCHDOG Operation

The WATCHDOG and Clock Monitor are disabled during reset. The device comes out of reset with the WATCHDOG armed, the WATCHDOG Window Select bits (bits 6, 7 of the WDSVR Register) set, and the Clock Monitor bit (bit 0 of the WDSVR Register) enabled. Thus, a Clock Monitor error will occur after coming out of reset, if the instruction cycle clock frequency has not reached a minimum specified value, including the case where the oscillator fails to start.
The WDSVR register can be written to only once after reset and the key data (bits 5 through 1 of the WDSVR Register) must match to be a valid write. This write to the WDSVR register involves two irrevocable choices: (i) the selection of the WATCHDOG service window (ii) enabling or disabling of the Clock Monitor. Hence, the first write to WDSVR Register involves selecting or deselecting the Clock Monitor, select the WATCHDOG service window and match the WATCHDOG key data. Subsequent writes to the WDSVR register will compare the value being written by the user to the WATCHDOG service window value and the key data (bits 7 through 1) in the WDSVR Register. Table III shows the sequence of events that can occur.
The user must service the WATCHDOG at least once before the upper limit of the serivce window expires. The WATCHDOG may not be serviced more than once in every lower limit of the service window. The user may service the WATCHDOG as many times as wished in the time period between the lower and upper limits of the service window. The first write to the WDSVR Register is also counted as a WATCHDOG service.
The WATCHDOG has an output pin associated with it. This is the WDOUT pin, on pin 1 of the port G. WDOUT is active low. The WDOUT pin is in the high impedance state in the inactive state. Upon triggering the WATCHDOG, the logic will pull the WDOUT (G1) pin low for an additional $16 t_{c}-32 t_{c}$ cycles after the signal level on WDOUT pin goes below the lower Schmitt trigger threshold. After this delay, the device will stop forcing the WDOUT output low.
The WATCHDOG service window will restart when the WDOUT pin goes high it is recommended that the user tie the WDOUT pin back to $\mathrm{V}_{\mathrm{CC}}$ through a resistor in order to pull WDOUT high.
A WATCHDOG service while the WDOUT signal is active will be ignored. The state of the WDOUT pin is not guaranteed on reset, but if it powers up low then the WATCHDOG will time out and WDOUT will enter high impedance state.

## WATCHDOG Operation (Continued)

TABLE III. WATCHDOG Service Actions

Key   Data	Window   Data	Clock   Monitor	Action
Match	Match	Match	Valid Service: Restart Service Window
Don't Care	Mismatch	Don't Care	Error: Generate WATCHDOG Output
Mismatch	Don't Care	Don't Care	Error: Generate WATCHDOG Output
Don't Care	Don't Care	Mismatch	Error: Generate WATCHDOG Output

TABLEIV. MICROWIRE/PLUS
Master Mode Clock Select

SL1	SLO	SK
0	0	$2 \times \mathrm{t}_{\mathrm{c}}$
0	1	$4 \times \mathrm{t}_{\mathrm{c}}$
1	x	$8 \times \mathrm{t}_{\mathrm{c}}$

Where $t_{c}$ is the instruction cycle clock

The Clock Monitor forces the G1 pin low upon detecting a clock frequency error. The Clock Monitor error will continue until the clock frequency has reached the minimum specified value, after which the G1 output will enter the high impedance TRI-STATE mode following $16 t_{c}-32 t_{c}$ clock cycles. The Clock Monitor generates a continual Clock Monitor error if the oscillator fails to start, or fails to reach the minimum specified frequency. The specification for the Clock Monitor is as follows:
$1 / \mathrm{t}_{\mathrm{c}}>10 \mathrm{kHz}$-No clock rejection.
$1 / \mathrm{t}_{\mathrm{c}}<10 \mathrm{~Hz}$-Guaranteed clock rejection.

## WATCHDOG AND CLOCK MONITOR SUMMARY

The following salient points regarding the WATCHDOG and Clock Monitor should be noted:

- Both WATCHDOG and Clock Monitor detector circuits are inhibited during reset.
- Following reset, the WATCHDOG and Clock Monitor are both enabled, with the WATCHDOG having the maximum service window selected.
- The WATCHDOG service window and Clock Monitor enable/disable option can only be changed once, during the initial WATCHDOG service following reset.
- The initial WATCHDOG service must match the key data value in the WATCHDOG Service register WDSVR in order to avoid a WATCHDOG error.
- Subsequent WATCHDOG services must match all three data fields in WDSVR in order to avoid WATCHDOG errors.
- The correct key data value cannot be read from the WATCHDOG Service register WDSVR. Any attempt to read this key data value of 01100 from WDSVR will read as key data value of all 0 's.
- The WATCHDOG detector circuit is inhibited during both the HALT and IDLE modes.
- The Clock Monitor detector circuit is active during both the HALT and IDLE modes. Consequently, the device inadvertently entering the HALT mode will be detected as a Clock Monitor error (provided that the Clock Monitor enable option has been selected by the program).
- With the single-pin R/C oscillator mask option selected and the CLKDLY bit reset, the WATCHDOG service window will resume following HALT mode from where it left off before entering the HALT mode.
- With the crystal oscillator mask option selected, or with the single-pin R/C oscillator mask option selected and the CLKDLY bit set, the WATCHDOG service window will be set to its selected value from WDSVR following HALT. Consequently, the WATCHDOG should not be serviced for at least 2048 instruction cycles following HALT, but must be serviced within the selected window to avoid a WATCHDOG error.
- The IDLE timer TO is not initialized with reset.
- The user can sync in to the IDLE counter cycle with an IDLE counter (TO) interrupt or by monitoring the TOPND flay. The TOPND flay is sat whiciovior tho thinténith tit of the IDLE counter toggles (every 4096 instruction cycles). The user is responsible for resetting the TOPND flag.
- A hardware WATCHDOG service occurs just as the device exits the IDLE mode. Consequently, the Watchdog should not be serviced for at least 2048 instruction cycles following IDLE, but must be serviced within the selected window to avoid a WATCHDOG error.
- Following reset, the initial WATCHDOG service (where the service window and the Clock Monitor enable/disable must be selected) may be programmed anywhere within the maximum service window ( 65,536 instruction cycles) initialized by RESET. Note that this initial WATCHDOG service may be programmed within the initial 2048 instruction cycles without causing a WATCHDOG error.


## Detection of Illegal Conditions

The device can detect various illegal conditions resulting from coding errors, transient noise, power supply voltage drops, runaway programs, etc.
Reading of undefined ROM gets zeros. The opcode for software interrupt is zero. If the program fetches instructions from undefined ROM, this will force a software interrupt, thus signaling that an illegal condition has occurred.

## Detection of Illegal Conditions (Continued)

The subroutine stack grows down for each call (jump to subroutine), interrupt, or PUSH, and grows up for each return or POP. The stack pointer is initialized to RAM location 06F Hex during reset. Consequently, if there are more returns than calls, the stack pointer will point to addresses 070 and 071 Hex (which are undefined RAM). Undefined RAM from addresses 070 to 07 F Hex is read as all 1's, which in turn will cause the program to return to address 7FFF Hex. This is an undefined ROM location and the instruction fetched (all 0's) from this location will generate a software interrupt signaling an illegal condition.
Thus, the chip can detect the following illegal conditions:
a. Executing from undefined ROM
b. Over "POP''ing the stack by having more returns than calls.
When the software interrupt occurs, the user can re-initialize the stack pointer and do a recovery procedure before restarting (this recovery program is probably similar to that following reset, but might not contain the same program initialization procedures). The recovery program should reset the software interrupt pending bit using the RPND instruction.

## MICROWIRE/PLUS

MICROWIRE/PLUS is a serial synchronous communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e. A/D converters, display drivers, E2PROMs etc.) and with other microcontrollers which support the MICROWIRE interface. It consists of an 8-bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 12 shows a block diagram of the MICROWIRE logic.
The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS arrangement with the internal clock source is called the Master mode of operation. Similarly, operating the MICROWIRE arrangement with an external shift clock is called the Slave mode of operation.


TL/DD/9766-20
FIGURE 12. MICROWIRE/PLUS Block Diagram
The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. In the
master mode, the SK clock rate is selected by the two bits, SLO and SL1, in the CNTRL register. Table IV details the different clock rates that may be selected.

## MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. If enabled; an interrupt is generated when eight data bits have been shifted. The device may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 13 shows how two COP888CL microcontrollers and several peripherals may be interconnected using the MICROWIRE/PLUS arrangements.

## Warning:

The SIO register should only be loaded when the SK clock is low. Loading the SIO register while the SK clock is high will result in undefined data in the SIO register. The SK clock is normally low when not shifting.
Setting the BUSY flag when the input SK clock is high in the MICROWIRE/PLUS slave mode may cause the current SK clock for the SIO shift register to be narrow. For safety, the BUSY flag should only be set when the input SK clock is low.

## MICROWIRE/PLUS Master Mode Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally. The MICROWIRE Master always initiates all data exchanges. The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register. Table $\vee$ summarizes the bit settings required for Master mode of operation.

## MICROWIRE/PLUS Slave Mode Operation

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must be selected as an input and the SO pin is selected as an output pin by setting and resetting the appropriate bit in the Port $G$ configuration register. Table $V$ summarizes the settings required to enter the Slave mode of operation.
The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated.

## Alternate SK Phase Operation

The device allows either the normal SK clock or an alternate phase SK clock to shift data in and out of the SIO register. in both the modes the SK is normally low. In the normal mode data is shifted in on the rising edge of the SK clock and the data is shifted out on the falling edge of the SK clock. The SIO register is shifted on each falling edge of the SK clock. In the alternate SK phase operation, data is shifted in on the falling edge of the SK clock and shifted out on the rising edge of the SK clock.

## MICROWIRE/PLUS (Continued)



TL/DD/9766-21
FIGURE 13. MICROWIRE/PLUS Application

A control flag, SKSEL, allows either the normal SK clock or the alternate SK clock to be selected. Resetting SKSEL causes the MICROWIRE/PLUS logic to be clocked from the normal SK signal. Setting the SKSEL flag selects the alternate SK clock. The SKSEL is mapped into the G6 configuration bit. The SKSEL flag will power up in the reset condition, selecting the normal SK signal.

TABLE V
This table assumes that the control flag MSEL is set.

G4   (SO)   Config.   Bit	G5   (SK)   Config.   Bit	G4   Fun.	G5   Fun.	Operation
1	1	SO	Int.   SK	MICROWIRE/PLUS   Master
0	1	TRI-   STATE	Int.   SK	MICROWIRE/PLUS   Master
1	0	SO	Ext.   SK	MICROWIRE/PLUS   Slave
0	0	TRi-   STATE	Ent.   SK	ivicROwnE/RLUS   Slave

## Memory Map

All RAM, ports and registers (except A and PC) are mapped into data memory address space

Address	Contents
O0 to 6F	On-Chip RAM bytes
70 to BF	Unused RAM Address Space
C0	Timer T2 Lower Byte
C1	Timer T2 Upper Byte
C2	Timer T2 Autoload Register T2RA Lower Byte
C3	Timer T2 Autoload Register T2RA Upper Byte
C4	Timer T2 Autoload Register T2RB Lower Byte
C5	Timer T2 Autoload Register T2RB Upper Byte
C6	Timer T2 Control Register
C7	WATCHDOG Service Register (Reg:WDSVR)
C8	MIWU Edge Select Register (Reg:WKEDG)
C9	MiWU Enable Register (Reg:WKEN)
CA	MIWU Pending Register (Reg:WKPND)
CB	Reserved
CC	Reserved
CD to CF	Reserved
D0	Port L Data Register
D1	Port L Configuration Register
D2	Port L Input Pins (Read Only)
D3	Reserved for Port L
D4	Port G Data Register
D5	Port G Configuration Register
D6	Port G Input Pins (Read Only)
D7	Port I Input Pins (Read Only)
D8	Port C Data Register
D9	Port C Configuration Register
DA	Port C Input Pins (Read Only)
DB	Reserved for Port C
FE	FD
FE	Reserved
FF to FB	On-Chip RAM Mapped as Registers
DD Register	
DE to DF	Reserved for Port D
E0 to E5	Reserved
E6	Timer T1 Autoload Register T1RB Lower Byte
E7	Timer T1 Autoload Register T1RB Upper Byte
E8	ICNTRL Register
E9	MICROWIRE Shift Register
EA	Timer T1 Lower Byte
EB	Timer T1 Upper Byte
EC	Timer T1 Autoload Register T1RA Lower Byte
Timer T1 Autoload Register T1RA Upper Byte	
CNTRL Control Register	
FS Register	

Reading memory locations 70-7F Hex will return all ones. Reading other unused memory locations will return undefined data.

## Addressing Modes

The device has ten addressing modes, six for operand addressing and four for transfer of control.

## OPERAND ADDRESSING MODES

## Register Indirect

This is the "normal" addressing mode. The operand is the data memory addressed by the B pointer or X pointer.
Register Indirect (with auto post increment or decrement of pointer)
This addressing mode is used with the LD and $X$ instructions. The operand is the data memory addressed by the B pointer or $X$ pointer. This is a register indirect mode that automatically post increments or decrements the B or X register after executing the instruction.

## Direct

The instruction contains an 8-bit address field that directly points to the data memory for the operand.

## Immediate

The instruction contains an 8-bit immediate field as the operand.

## Short Immediate

This addressing mode is used with the Load B Immediate instruction. The instruction contains a 4-bit immediate field as the operand.

## Indirect

This addressing mode is used with the LAID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC) for accessing a data operand from the program memory.

## TRANSFER OF CONTROL ADDRESSING MODES

## Relative

This mode is used for the JP instruction, with the instruction field being added to the program counter to get the new program location. JP has a range from -31 to +32 to allow a 1-byte relative jump (JP +1 is implemented by a NOP instruction). There are no "pages" when using JP, since all 15 bits of PC are used.

## Absolute

This mode is used with the JMP and JSR instructions, with the instruction field of 12 bits replacing the lower 12 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory segment.

## Absolute Long

This mode is used with the JMPL and JSRL instructions, with the instruction field of 15 bits replacing the entire 15 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory space.

## Indirect

This mode is used with the JID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC) for accessing a location in the program memory. The contents of this program memory location serve as a partial address (lower 8 bits of PC) for the jump to the next instruction.
Note: The VIS is a special case of the Indirect Transfer of Control addressing mode, where the double byte vector associated with the interrupt is transferred from adjacent addresses in the program memory into the program counter (PC) in order to jump to the associated interrupt senvice routine.

## Instruction Set

Register and Symbol Definition

Registers	
A	8-Bit Accumulator Register
B	8-Bit Address Register
X	8-Bit Address Register
SP	8-Bit Stack Pointer Register
PC	15-Bit Program Counter Register
PU	Upper 7 Bits of PC
PL	Lower 8 Bits of PC
C	1 Bit of PSW Register for Carry
HC	1 Bit of PSW Register for Half Carry
GIE	1 Bit of PSW Register for Global
	Interrupt Enable
VU	Interrupt Vector Upper Byte
VL	Interrupt Vector Lower Byte


Symbols	
[B]	Memory Indirectly Addressed by B Register
[ X ]	Memory Indirectly Addressed by X Register
MD	Direct Addressed Memory
Mem	Direct Addressed Memory or [B]
Meml	Direct Addressed Memory or [B] or Immediate Data
Imm	8-Bit Immediate Data
Reg	Register Memory: Addresses F0 to FF (Includes B, X and SP)
Bit	Bit Number (0 to 7)
$\leftarrow$	Loaded with
$\longleftrightarrow$	Exchanged with

Instruction Set (Continued)
INSTRUCTION SET

ADD	A, Meml	ADD	$A \leftarrow A+$ Meml
ADC	A,Meml	ADD with Carry	$A \leftarrow A+\text { Meml }+C, C \leftarrow \text { Carry }$ $\text { HC } \leftarrow \text { Half Carry }$
SUBC	A,Meml	Subtract with Carry	$A \leftarrow A-\overline{\text { MemI }}+C, C \leftarrow \text { Carry }$ $\mathrm{HC} \leftarrow \text { Half Carry }$
AND	A, Meml	Logical AND	$A \leftarrow A$ and Meml
ANDSZ	A, Imm	Logical AND Immed., Skip if Zero	Skip next if ( A and Imm ) $=0$
OR	A,Meml	Logical OR	$A \leftarrow A$ or Meml
XOR	A,Meml	Logical EXclusive OR	$A \leftarrow A$ xor Meml
IFEQ	MD, Imm	IF EQual	Compare MD and Imm, Do next if MD = Imm
IFEQ	A,Meml	IF EQual	Compare $A$ and Meml, Do next if $A=$ Meml
IFNE	A,Meml	. IF Not Equal	Compare A and Meml, Do next if A $\neq$ Meml
IFGT	A,Meml	IF Greater Than	Compare A and Meml, Do next if A > Meml
IFBNE	\#	If B Not Equal	Do next if lower 4 bits of $B \neq \mathrm{Imm}$
DRSZ	Reg	Decrement Reg., Skip if Zero	Reg $\leftarrow$ Reg - 1, Skip if Reg $=0$
SBIT	\#,Mem	Set BIT	1 to bit, Mem (bit $=0$ to 7 immediate)
RBIT	\#,Mem	Reset BIT	0 to bit, Mem
IFBIT	\#,Mem	IF BIT	If bit in A or Mem is true do next instruction
RPND		Reset PeNDing Flag	Reset Software Interrupt Pending Flag
X	A,Mem	EXchange A with Memory	$A \longleftrightarrow$ Mem
X	A, [ X ]	EXchange A with Memory [ X ]	$A \longleftrightarrow[X]$
LD	A, Meml	LoaD A with Memory	$A \leftarrow M e m l$
LD	A, $[\mathrm{X}]$	LoaD A with Memory [ X ]	$\mathrm{A} \leftarrow[\mathrm{X}]$
LD	B,Imm	LoaD B with Immed.	$B \leftarrow 1 m m$
LD	Mem,Imm	LoaD Memory Immed	Mem $\leftarrow$ Imm
LD	Reg, 1 mm	LoaD Register Memory Immed.	Reg $\leftarrow 1 \mathrm{~mm}$
X	A, [ $\mathrm{B} \pm$ ]	EXchange A with Memory [B]	$A \longleftrightarrow[B],(B \leftarrow B \pm 1)$
X	A, $[\mathrm{X} \pm$ ]	EXchange A with Memory [ X ]	$A \longleftrightarrow[\mathrm{X}],(\mathrm{X} \leftarrow \pm 1)$
LD	A, $[\mathrm{B} \pm$ ]	LoaD A with Memory [B]	$A \leftarrow[B],(B \leftarrow B \pm 1)$
LD	A, [ $\mathrm{X} \pm$ ]	LoaD A with Memory [ X ]	$A \leftarrow[\mathrm{X}],(\mathrm{X} \leftarrow \mathrm{X} \pm 1)$
LD	$[B \pm$ ], 1 mm	LoaD Memory [B] Immed.	$[B] \leftarrow$ Imm, $(B \leftarrow \pm 1)$
CLR	A	CLeaR A	$A \leftarrow 0$
INC	A	INCrement A	$A \leftarrow A+1$
DEC	A	DECrementA	$A \leftarrow A-1$
LAID		Load A InDirect from ROM	$A \leftarrow R O M(P U, A)$
DCOR	A	Decimal CORrect A	$A \leftarrow B C D$ correction of A (follows ADC, SUBC)
RRC	A	Rotate A Right thru C	$C \longleftrightarrow A 7 \longleftrightarrow \ldots$ AO
RLC	A	Rotate A Left thru C	$C \leftarrow A 7 \leftarrow \ldots \leftarrow A O \leftarrow C$
SWAP	A	SWAP nibbles of A	A7 $\ldots$ A $4 \longleftrightarrow A 3 \ldots A 0$
SC		Set C	$C \leftarrow 1, H C \leftarrow 1$
RC		Reset C	$\mathrm{C} \leftarrow 0, \mathrm{HC} \leftarrow 0$
IFC		IF C	IF C is true, do next instruction
IFNC		IF Not C	If $C$ is not true, do next instruction
POP	A	POP the stack into A	$\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{~A} \leftarrow$ [SP]
PUSH	A	PUSH A onto the stack	$[\mathrm{SP}] \leftarrow \mathrm{A}, \mathrm{SP} \leftarrow \mathrm{SP}-1$
VIS		Vector to Interrupt Service Routine	$\mathrm{PU} \leftarrow[\mathrm{VU}], \mathrm{PL} \leftarrow[\mathrm{VL}]$
JMPL	Addr.	Jump absolute Long	$\mathrm{PC} \leftarrow \mathrm{ii}$ ( $\mathrm{ij}=15$ bits, 0 to 32k)
JMP	Addr.	Jump absolute	PC9 ... $0 \leftarrow i(i=12$ bits)
JP	Disp.	Jump relative short	$P C \leftarrow P C+r(r$ is -31 to +32 , except 1 )
JSRL	Addr.	Jump SubRoutine Long	[SP] $\leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow \mathrm{ii}$
JSR	Addr	Jump SubRoutine	$[S P] \leftarrow P L$, $[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} 9 \ldots 0 \leftarrow \mathrm{i}$
JID		Jump InDirect	$\mathrm{PL} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
RET		RETurn from subroutine	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETSK		RETurn and SKip	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETI		RETurn from Interrupt	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1], \mathrm{GlE} \leftarrow 1$
INTR		Generate an Interrupt	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow 0 \mathrm{FF}$
NOP		No OPeration	$\mathrm{PC} \leftarrow \mathrm{PC}+1$

## Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instructions taking two bytes).
Most single byte instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details.

## Bytes and Cycles per Instruction

The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle.

Arithmetic and Logic Instructions

	[B]	Direct	Immed.
ADD	$1 / 1$	$3 / 4$	$2 / 2$
ADC	$1 / 1$	$3 / 4$	$2 / 2$
SUBC	$1 / 1$	$3 / 4$	$2 / 2$
AND	$1 / 1$	$3 / 4$	$2 / 2$
OR	$1 / 1$	$3 / 4$	$2 / 2$
XOR	$1 / 1$	$3 / 4$	$2 / 2$
IFEQ	$1 / 1$	$3 / 4$	$2 / 2$
IFNE	$1 / 1$	$3 / 4$	$2 / 2$
IFGT	$1 / 1$	$3 / 4$	$2 / 2$
IFBNE	$1 / 1$		
DRSZ		$1 / 3$	
SBIT	$1 / 1$	$3 / 4$	
RBIT	$1 / 1$	$3 / 4$	
IFBIT	$1 / 1$	$3 / 4$	

Instructions Using A \& C

CLRA	$1 / 1$
INCA	$1 / 1$
DECA	$1 / 1$
LAID	$1 / 3$
DCOR	$1 / 1$
RRCA	$1 / 1$
RLCA	$1 / 1$
SWAPA	$1 / 1$
SC	$1 / 1$
RC	$1 / 1$
IFC	$1 / 1$
IFNC	$1 / 1$
PUSHA	$1 / 3$
POPA	$1 / 3$
ANDSZ	$2 / 2$


	Memory Transfer Instructions						
	Register Indirect		Direct	Immed.	Register Indirect Auto Incr. \& Decr.		
	[ L ]	[ $n$ ]			[ $\mathrm{B}+$, $\mathrm{D}-\mathrm{]}$	$[\ddot{i}+, \ddot{n}-]$	
X A,*	1/1	1/3	2/3		1/2	1/3	
LD A,*	1/1	1/3	$2 / 3$	$2 / 2$	1/2	1/3	
LD B, Imm				1/1			(IF B < 16)
LD B, Imm				2/2			(IF B > 15)
LD Mem, Imm	2/2		3/3		2/2		
LD Reg, Imm			2/3				
IFEQ MD, Imm			3/3				

* $=>$ Memory location addressed by B or X or directly.

Opcode Table
Upper Nibble Along X-Axis
Lower Nibble Along $Y$-Axis

F	E	D	C	B	A	9	8	
JP - 15	JP - 31	LD OFO, \# i	DRSZ OFO	RRCA	RC	ADC A, \#i	ADC A, [B]	0
JP - 14	JP -30	LD OF1, \# i	DRSZ OF1	*	SC	SUBC A, \#i	SUB $A,[B]$	1
JP - 13	JP -29	LD OF2, \# i	DRSZ OF2	X $A,[\mathrm{X}+$ ]	X $\mathrm{A},[\mathrm{B}+]$	IFEQ A, \#i	IFEQ A, [B]	2
JP - 12	JP -28	LD OF3, \# i	DRSZ 0F3	X A, [ $\mathrm{X}-\mathrm{]}$	X A,[B-]	IFGT A, \#i	IFGT A, [B]	3
JP -11	JP -27	LD OF4, \# i	DRSZ 0F4	VIS	LAID	ADD A, \#i	ADD A, [B]	4
JP - 10	JP -26	LD OF5, \# i	DRSZ OF5	RPND	JID	AND A,\#i	AND A, [B]	5
JP -9	JP -25	LD OF6, \# i	DRSZ 0F6	X A, [X]	X A, [B]	XOR A, \#i	XOR A,[B]	6
JP -8	JP -24	LD OF7, \# i	DRSZ 0F7	*	*	OR A, \#i	OR A, [B]	7
JP -7	JP -23	LD 0F8, \# i	DRSZ 0F8	NOP	RLCA	LD A, \#i	IFC	8
JP -6	JP -22	LD 0F9, \# i	DRSZ 0F9	$\begin{aligned} & \text { IFNE } \\ & \mathrm{A},[\mathrm{~B}] \end{aligned}$	IFEQ   Md, \#i	$\begin{aligned} & \text { IFNE } \\ & \text { A, \#i } \end{aligned}$	IFNC	9
JP -5	JP -21	LD OFA, \# i	DRSZ OFA	LD A, [X+]	LD A, [B+]	LD [B+],\#i	INCA	A
JP - 4	JP -20	LD OFB, \# i	DRSZ OFB	LD A,[X-]	LD A,[B-]	LD [B-],\#i	DECA	B
JP -3	JP -19	LD OFC, \# i	DRSZ OFC	LD Md, \#i	JMPL	X A, Md	POPA	C
JP -2	JP -18	LD OFD, \# i	DRSZ OFD	DIR	JSRL	LD A,Md	RETSK	D
JP - 1	JP -17	LD OFE, \# i	DRSZ OFE	LD A, [X]	LD A, [B]	LD [B],\#i	RET	E
JP -0	JP -16	LD OFF, \# i	DRSZ OFF	*	*	LDB, \#i	RETI	F

Opcode Table (Continued)
Upper Nibble Along X-Axis
Lower Nibble Along $Y$-Axis

7	6	5	4	3	2	1	0	
$\begin{aligned} & \text { IFBIT } \\ & 0,[B] \end{aligned}$	ANDSZ   A, \#i	LD B, \# OF	IFBNE 0	$\begin{aligned} & \text { JSR } \\ & \text { x000-x0FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \mathrm{x} 000-\mathrm{x} 0 \mathrm{FF} \end{aligned}$	$\mathrm{JP}+17$	INTR	0
$\begin{aligned} & \text { IFBIT } \\ & \text { 1,[B] } \end{aligned}$	*	LD B, \# OE	IFBNE 1	$\begin{aligned} & \text { JSR } \\ & \text { x } 100-\times 1 \text { FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 100-\times 1 F F \end{aligned}$	$\mathrm{JP}+18$	$J P+2$	1
$\begin{aligned} & \text { IFBIT } \\ & \text { 2,[B] } \end{aligned}$	*	LD B, \#0D	IFBNE 2	$\begin{aligned} & \text { JSR } \\ & \text { x200-x2FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 200-\times 2 F F \end{aligned}$	$J P+19$	$J P+3$	2
$\begin{aligned} & \text { IFBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	*	LD B, \#0C	IFBNE 3	$\begin{aligned} & \text { JSR } \\ & \times 300-\times 3 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 300-\times 3 F F \end{aligned}$	JP + 20	$J P+4$	3
$\begin{aligned} & \text { IFBIT } \\ & \text { 4,[B] } \end{aligned}$	CLRA	LD B, \# OB	IFBNE 4	$\begin{aligned} & \text { JSR } \\ & \times 400-\times 4 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \mathrm{x} 400-\mathrm{x} 4 \mathrm{FF} \end{aligned}$	$J P+21$	$J P+5$	4
$\begin{aligned} & \text { IFBIT } \\ & 5,[B] \end{aligned}$	SWAPA	LD B, \#0A	IFBNE 5	$\begin{aligned} & \text { JSR } \\ & \times 500-\times 5 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 500-\times 5 F F \end{aligned}$	$\mathrm{JP}+22$	$J P+6$	5
$\begin{aligned} & \text { IFBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	DCORA	LD B, \#09	IFBNE 6	$\begin{aligned} & \text { JSR } \\ & \text { x600-x6FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 600-\times 6 F F \end{aligned}$	$J P+23$	$J P+7$	6
$\begin{aligned} & \text { IFBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	PUSHA	LD B, \#08	IFBNE 7	$\begin{aligned} & \text { JSR } \\ & \text { x700-x7FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 700-x 7 F F \end{aligned}$	$J P+24$	$J P+8$	7
$\begin{aligned} & \text { SBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	LD B, \#07	IFBNE 8	$\begin{aligned} & \text { JSR } \\ & \text { x } 800-\times 8 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x } 800-x 8 F F \end{aligned}$	JP + 25	$J P+9$	8
$\begin{aligned} & \text { SBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & \text { 1,[B] } \end{aligned}$	LD B, \#06	IFBNE 9	$\begin{aligned} & \text { JSR } \\ & \text { x900-x9FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x } 900-\mathrm{x} 9 \mathrm{FF} \end{aligned}$	$\mathrm{JP}+26$	$\mathrm{JP}+10$	9
$\begin{aligned} & \text { SBIT } \\ & \text { 2,[B] } \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & \text { 2,[B] } \end{aligned}$	LD B, \#05	IFBNE OA	$\begin{aligned} & \text { JSR } \\ & \text { XAOO-xAFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xAOO-XAFF } \end{aligned}$	$J P+27$	JP + 11	A
$\begin{aligned} & \text { SBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	LD B, \#04	IFBNE OB	$\begin{aligned} & \text { JSR } \\ & \text { xBOO-xBFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xBOO-xBFF } \end{aligned}$	$J P+28$	$\mathrm{JP}+12$	B
$\begin{aligned} & \text { SBIT } \\ & 4,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 4,[B] \end{aligned}$	LD B, \#03	IFBNE OC	$\begin{aligned} & \text { JSR } \\ & \times \text { C00-xCFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & x C 00-x C F F \end{aligned}$	JP + 29	$\mathrm{JP}+13$	C
$\begin{aligned} & \text { SBIT } \\ & 5,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 5,[B] \end{aligned}$	LD B, \#02	IFBNE OD	$\begin{aligned} & \text { JSR } \\ & \text { xD00-xDFF } \end{aligned}$	JMP xD00-xDFF	$\mathrm{JP}+30$	$\mathrm{JP}+14$	D
$\begin{aligned} & \text { SBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	LD B, \#01	IFBNE OE	$\begin{aligned} & \text { JSR } \\ & \text { xEOO-xEFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xEOO-xEFF } \end{aligned}$	JP + 31	$\mathrm{JP}+15$	E
$\begin{aligned} & \text { SBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	LD B, \#00	IFBNE OF	$\begin{aligned} & \text { JSR } \\ & \text { xFOO-xFFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xFOO-xFFF } \end{aligned}$	JP + 32	$\mathrm{JP}+16$	F

Where,
$i$ is the immediate data
Md is a directly addressed memory location

* is an unused opcode

Note: The opcode 60 Hex is also the opcode for IFBIT \#i,A

## Mask Options

The mask programmable options are shown below. The options are programmed at the same time as the ROM pattern submission.

```
OPTION 1: CLOCK CONFIGURATION
 = 1 Crystal Oscillator (CKI/lO)
 G7 (CK0) is clock generator
 output to crystal/resonator
 CKI is the clock input
 =2 Single-pin RC controlled
 oscillator (CKI/l0)
 G7 is available as a HALT
 restart and/or general purpose
 input
```

'OPTION 2: HALT
$=1$ Enable HALT mode
$=2$ Disable HAIT mode
OPTION 3: BONDING
$=1$ 44-Pin PCC
$=2$ 40-Pin DIP
$=3$ N.A.
$=4 \quad 28$-Pin DIP
$=5 \quad 28-\mathrm{Pin} \mathrm{S} 0$

## Development Support

## IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 ln -Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface for maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real-time, full-speed emulation, up to $10 \mathrm{MHz}, 32 \mathrm{kBy}$ tes of emulation memory and 4 k frames of trace buffer memory. The user may define as
many as 32k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code or address ranges or complex triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user-selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.
During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bar graph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy to use windowed interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefinable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PC® via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time to under 3 seconds.
The following tables list the emulator and probe cards ordering information.

Emulator Ordering Information

Part Number	Description	Current Version
IM-COP8/400/1 $\ddagger$	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger software and RS-232 serial interface cable, with 110 V @ 60 Hz Power Supply.	HOST SOFTWARE: VER. 3.3 REV.5, Model File Rev 3.050.
IM-COP8/400/2 $\ddagger$	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger software and RS-232 serial interface cable, with 220 V @ 50 Hz Power Supply.	
DM-COP8/888CF $\ddagger$	MetaLink iceMASTER Debug Module. This is the low cost version of the MetaLink's iceMASTER. Firmware: Ver. 6.07.	

$\ddagger$ These parts include National's COP8 Assembler/Linker/Librarian Package (COP8-DEV-IBMA).

Development Support (Continued)
Probe Card Ordering Information

Part Number	Package	Voltage   Range	Emulates
MHW-884CL28D5PC	28 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP884CL
MHW-884CL28DWPC	28 DIP	$2.3 \mathrm{~V}-6.0 \mathrm{~V}$	COP 884 CL
MHW-888CL40D5PC	40 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888CL
MHW-888CL40DWPC	40 DIP	$2.3 \mathrm{~V}-6.0 \mathrm{~V}$	COP888CL
MHW-888CL44D5PC	44 PLCC	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888CL
MHW-888CL44DWPC	44 PLCC	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP888CL

## MACRO CROSS ASSEMBLER

National Semiconductor offers a COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink iceMASTER emulators.

Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8   Assembler/   Linker/Librarian   for IBM $\Theta$   PC/XT®, AT® or   compatible	$424410632-001$

## PROGRAM SUPPORT

Programming of the single-chip emulator devices is supported by different sources. The table below shows the programmers certified for programming the One-Time Programmable (OTP) devices.

## EMULATOR DEVICE

The COP8 family is fully supported by One-Time Programmable (OTP) emulators. For more detailed information refer to the emulation device specific data sheets and the emulator selection table below.

OTP Ordering Information

Device Number	Clock   Option	Package	Emulates
COP8788CLV-X   COP8788CLV-R*	Crystal   R/C	44 PLCC	COP888CL
COP8788CLN-X   COP8788CLN-R*	Crystal   R/C	40 DIP	COP888CL
COP8784CLN-X   COP8784CLN-R*	Crystal   R/C	28 DIP	COP884CL
COP8784CLWM-X*   COP8784CLWM-R*	Crystal   R/C	28 SO	COP884CL

*Check with the local sales office about the availability.

EPROM Programmer Information

Manufacturer and Product	U.S. Phone Number	Europe Phone Number	Asia Phone Number
MetaLinkDebug Module	(602) 926-0797	Germany: $+49-8141-1030$	Hong Kong: $+852-737-1800$
Xeltek-   Superpro	(408) 745-7974	Germany: $+49-2041-684758$	Singapore: $+65-276-6433$
BP Microsystems- EP-1140	(800) 225-2102	Germany: $+49-89-857-66-67$	Hong Kong: +852-388-0629
Data I/O-Unisite;   -System 29,   -System 39	(800) 322-8246	Europe: $+31-20-622866$   Germany: $+49-89-85-8020$	$\begin{aligned} & \text { Japan: } \\ & +33-432-6991 \end{aligned}$
Abcom-COP8   Programmer		Europe: $+89-808707$	
System General Turpro-1-FX; -APRO	(408) 263-6667	Switzerland: $+31-921-7844$	Taiwan Taipei: $+2-9173005$

## Development Support (Continued)

DIAL-A-HELPER

Dial-A-Helper is a service provided by the Microcontroller Applications group. The Dial-A-Helper is an Electronic Bulletin Board Information System.

## Information System

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.
If the user has a PC with a communications package then files from the FILE SECTION can be down loaded to disk for later use.

## Order P/N: MOLE-DIAL-A-HLP

Information System Package Contents
Dial-A-Helper User Manual P/N
Public Domain Communications Software

## Factory Applications Support

Dial-A-Helper also provides immediate factor applications support. If a user has questions, he can leave messages on our electronic bulletin board, which we will respond to.

Voice: (800) 272-9959
Modem: CANADA/U.S.: (800) NSC-MICRO (800) 672-6427

Baud:
Set-up:
Length: 8-Bit
Parity: None
Stop Bit: 1
Operation: 24 Hrs., 7 Days

## COP988CF/COP984CF/COP888CF/COP884CF Single-Chip microCMOS Microcontroller

## General Description

The COP888 family of microcontrollers uses an 8-bit single chip core architecture fabricated with National Semiconductor's $\mathrm{M}^{2}$ CMOSTM process technology. The COP888CF is a member of this expandable 8 -bit core processor family of microcontrollers.
(Continued)

## Features

■ Low cost 8-bit microcontroller

- Fully static CMOS, with low current drain
- Two power saving modes: HALT and IDLE
- $1 \mu \mathrm{~s}$ instruction cycle time
- 4096 bytes on-board ROM
- 128 bytes on-board RAM
- Single supply operation: $2.5 \mathrm{~V}-6 \mathrm{~V}$
- 8-channel A/D converter with prescaler and both differential and single ended modes
- MICROWIRE/PLUSTM serial I/O

■ WATCHDOGTM and Clock Monitor logic

- Ten multi-source vectored interrupts servicing
- External Interrupt
- Idle Timer TO
- Two Timers (Each with 2 Interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
— Default VIS
- Idle Timer
m Multi-Input Wakeup (MIWU) with optional interrupts (8)
$\square$ Two 16 -bit timers, each with two 16 -bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- 8-bit Stack Pointer SP (stack in RAM)
- Two 8-bit Register Indirect Data Memory Pointers ( B and X )
- Versatile instruction set
- True bit manipulation
- Memory mapped I/O
- BCD arithmetic instructions
- Package:
- 44 PLCC with 37 I/O pins
-40 N with 33 I/O pins
-28 SO or 28 N , each with $23 \mathrm{I} / \mathrm{O}$ pins
- Software selectable I/O options
- TRI-STATE ${ }^{\oplus}$ Output
- Push-Pull Output
- Weak Pull Up Input
- High Impedance Input
- Schmitt trigger inputs on ports $G$ and $L$
- Temperature ranges: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$$
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

- One-Time Programmable (OTP) emulation devices
- Real time emulation and full program debug offered by Metalink's Development Systems

Block Diagram


FIGURE 1. Block Diagram

General Description (Continued)
It is a fully static part, fabricated using double-metal silicon gate microCMOS technology. Features include an 8 -bit memory mapped architecture, MICROWIRE/PLUS serial I/O, two 16 -bit timer/counters supporting three modes (Processor Independent PWM generation, External Event counter, and Input Capture mode capabilities), an 8 -channel, 8-bit A/D converter with both differential and single ended modes, and two power savings modes (HALT and

## Connection Diagrams



Dual-In-Line Package


## Top View

Order Number COP884CF-XXX/N or COP884CF-XXX/WM
See NS Package Number D28G or M28B

IDLE), both with a multi-sourced wakeup/interrupt capability. This multi-sourced interrupt capability may also be used independent of the HALT or IDLE modes. Each I/O pin has software selectable configurations. The device operates over a voltage range of 2.5 V to 6 V . High throughput is achieved with an efficient, regular instruction set operating at a maximum of $1 \mu \mathrm{~s}$ per instruction rate.

## Connection Diagrams (Continued)

Plnouts for 28-, 40- and 44-PIn Packages

Port	Type	Alt. Fun	Alt. Fun	$\begin{aligned} & \text { 28-Pin } \\ & \text { Pack. } \end{aligned}$	$\begin{aligned} & \text { 40-Pin } \\ & \text { Pack. } \end{aligned}$	44-Pin Pack.
L0	1/0	MIWU		11	17	-
L1	1/0	MIWU		12	18	-
L2	1/0	MiWU		13	19	19
L3	1/0	MIWU		14	20	20
L4	1/0	MIWU	T2A	15	21	25
L5	1/0	MIWU	T2B	16	22	26
L6	1/0	MIWU		17	23	27
L7	1/0	MiWU		18	24	28
G0	1/0	INT		25	35	39
G1	WDOUT			26	36	40
G2	1/O	T1B		27	37	41
G3	1/0	T1A		28	38	42
G4	1/0	SO		1	3	3
G5	1/0	SK		2	4	4
G6	1	SI		3	5	5
G7	1/CKO	HALT Restart		4	6	6
D0	0			19	25	29
D1	0			20	26	30
D2	0			21	27	31
D3	0			22	28	32
10	,	ACHO		7	9	9
11	1	ACH1		8	10	10
12	1	ACH2			11	11
13	1	ACH3			12	12
14	,	ACH4			13	13
15	1	ACH5			14	14
16	1	ACH6				15
17	1	ACH7				16
D4	0				29	33
D5	0				30	34
D6	0				31	35
D7	0				32	36
C0	1/0				39	43
C1	1/0				40	44
C2	1/0				1	1
C3	1/O				2	2
C4	1/0					21
C5	1/0					22
C6	1/0					23
C7	1/0					24
$V_{\text {REF }}$				10	16	18
AGND	AGND			9	15	17
$\mathrm{V}_{\mathrm{CC}}$				6	8	8
GND				23	33	37
CKI				5	7	7
RESET				24	34	38

## Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
Voltage at Any Pin
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
100 mA

Total Current out of GND Pin (Sink)
110 mA Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$ Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

## DC Electrical Characteristics 988CF: $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ unless otherwise speciifed

Parameter	Conditions	Min	Typ	Max	Units
$\begin{aligned} & \text { Operating Voltage } \\ & \text { 988CF } \\ & \text { 998CFH } \end{aligned}$		$\begin{aligned} & 2.5 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Power Supply Ripple (Note 1)	Peak-to-Peak			$0.1 \mathrm{~V}_{\mathrm{CC}}$	V
Supply Current (Note 2) $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=10 \mu \mathrm{~s} \end{aligned}$			$\begin{gathered} 12.5 \\ 5.5 \\ 2.5 \\ 1.4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
HALT Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & <0.7 \\ & <0.3 \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
IDLE Current $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=10 \mu \mathrm{~s} \end{aligned}$			$\begin{aligned} & 3.5 \\ & 2.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Input Levels   RESET   Logic High   Logic Low   CKI (External and Crystal Osc. Modes)   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low		$\begin{aligned} & 0.8 V_{C C} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Hi-Z Input Leakage	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	-1		+1	$\mu \mathrm{A}$
Input Pullup Current	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-40		-250	$\mu \mathrm{A}$
G and L Port Input Hysteresis				$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up Mode)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ -0.2 \\ 10 \\ 2.0 \\ -10 \\ -2.5 \\ -0.4 \\ -0.2 \\ 1.6 \\ 0.7 \end{gathered}$		$\begin{gathered} -100 \\ -33 \end{gathered}$	mA   mA   mA   mA   $\mu \mathrm{A}$   $\mu \mathrm{A}$   mA   mA   mA   mA

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $\mathrm{V}_{\mathrm{CC}}$, L and G0-G5 configured as outputs and set high. The D port set to zero. The A/D is disabled. $V_{\text {REF }}$ is tied to AGND (effectively shorting the Reference resistor). The clock monitor is disabled.

DC Electrical Characteristics $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Parameter	Conditions	Min	Typ	Max	Units
TRI-STATE Leakage	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-1		+1	$\mu \mathrm{A}$
Allowable Sink/Source   Current per Pin D Outputs (Sink) All others				$\begin{gathered} 15 \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current without Latchup (Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\pm 100$	mA
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$	500 ns Rise and Fall Time (Min)	2			V
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

A/D Converter Specifications $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\left(\mathrm{~V}_{\mathrm{SS}}-0.050 \mathrm{~V}\right) \leq$ Any Input $\leq\left(\mathrm{V}_{\mathrm{CC}}+0.050 \mathrm{~V}\right)$

Parameter	Conditions	Min	Typ	Max	Units
Resolution				8	Bits
Reference Voltage Input	$A G N D=0 V$	3		$\mathrm{V}_{\mathrm{CC}}$	V
Absolute Accuracy	$V_{\text {REF }}=V_{\text {CC }}$			$\pm 1$	LSB
Non-Linearity	$V_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}$   Deviation from the Best Straight Line			$\pm 1 / 2$	LSB
Differential Non-Linearity	$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {CC }}$			$\pm 1 / 2$	LSB
Input Reference Resistance		1.6		4.8	$\mathrm{k} \Omega$
Common Mode Input Range (Note 7)		AGND		$\mathrm{V}_{\text {REF }}$	V
DC Common Mode Error				$\pm 1 / 4$	LSB
Off Channel Leakage Current			1		$\mu \mathrm{A}$
On Channel Leakage Current			4		$\mu \hat{A}$
A/D Clock Frequency (Note 5)		0.1		1.67	MHz
Conversion Time ( Note 4 )			12		A/D Clock Cycles

Note 4: Conversion Time includes sample and hold time.
Note 5: See Prescaler description.
Note 6: Pins G6 and $\overline{\text { RESET }}$ are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$ ). The effective resistance to $V_{C C}$ is $750 \Omega$ (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .
Note 7: For $V_{I N}(-) \geq V_{I N}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input. The diodes will forward conduct for analog input voltages below ground or above the $\mathrm{V}_{\mathrm{CC}}$ supply. Be careful, during testing at low $\mathrm{V}_{\mathrm{CC}}$ levels ( 4.5 V ), as high level analog inputs ( 5 V ) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $V_{I N}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 V_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading. The voltage at any analog input should be -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$.

AC Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crystal, Resonator R/C Oscillator	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{VCC} \mathrm{4V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$ $\mu \mathrm{s}$
Inputs tseTUP thold	$\begin{aligned} & 4 V \leq V_{C C} \leq 6 V \\ & 2.5 V \leq V_{C C}<4 V \\ & 4 V \leq V_{C C} \leq 6 V \\ & 2.5 V \leq V_{C C}<4 V \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Output Propagation Delay (Note 8) tPD1 $\mathrm{t}_{\mathrm{PD}} 0$ SO, SK   All Others	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} . \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 2.5 \end{gathered}$	$\mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tupD)	.	$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns   ns   ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \hline \end{aligned}$
Reset Pulse Width		1	,		$\mu \mathrm{S}$

Note 8: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.


TL/DD/9425-26
FIGURE 3. MICROWIRE/PLUS Timing

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
7 V
Voltage at Any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into VCC Pin (Source)

$$
\begin{array}{r}
-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V} \\
100 \mathrm{~mA}
\end{array}
$$

Total Current out of GND Pin (Sink)
110 mA
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics 888CF: $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise speciifed

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage		2.5		6	V
Power Supply Ripple (Note 1)	Peak-to-Peak			$0.1 \mathrm{~V}_{C C}$	V
$\begin{aligned} & \text { Supply Current (Note 2) } \\ & \text { CKI }=10 \mathrm{MHz} \\ & \text { CKI }=4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \end{aligned}$			$\begin{gathered} 12.5 \\ 2.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
HALT Current (Note 3)	$V_{C C}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz}$		<1	10	$\mu \mathrm{A}$
IDLE Current $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=10 \mu \mathrm{~s} \end{aligned}$			$\begin{aligned} & 3.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Input Levels   RESET   Logic High   Logic Low   CKI (External and Crystal Osc. Modes)   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low		$\begin{aligned} & 0.8 V_{C C} \\ & 0.7 V_{C C} \\ & 0.7 V_{C C} \end{aligned}$		$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Hi-Z Input Leakage	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
Input Pullup Current	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-40		-250	$\mu \mathrm{A}$
G and L Port Input Hysteresis				$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up Mode)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ -0.2 \\ 10 \\ 2.0 \\ -10 \\ -2.5 \\ -0.4 \\ -0.2 \\ 1.6 \\ 0.7 \\ \hline \end{gathered}$		$\begin{gathered} -100 \\ -33 \end{gathered}$	mA   mA   mA   mA   $\mu \mathrm{A}$   $\mu \mathrm{A}$   mA   mA   mA   mA
TRI-STATE Leakage	$V_{C C}=6.0 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}$ and GO - G 5 configured as outputs and set high. The D port set to zero. The A/D is disabled. VREF is tied to AGND (effectively shorting the Reference resistor). The clock monitor is disabled.

DC Electrical Characteristics 888CF: $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Parameter	Conditions	Min	Typ	Max	Units
Allowable Sink/Source   Current per Pin   D Outputs (Sink)   All others					
Maximum Input Current   without Latchup (Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			15	
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$	500 ns Rise   and Fall Time (Min)	2		mA	
Input Capacitance				mA	
Load Capacitance on D2				mA	

## A/D Converter Specifications 888CF:

$V_{C C}=5 \mathrm{~V} \pm 10 \%\left(V_{S S}-0.050 \mathrm{~V}\right) \leq$ Any Input $\leq\left(V_{C C}+0.050 \mathrm{~V}\right)$

Parameter	Conditions	Min	Typ	Max	Units
Resolution				8	Bits
Reference Voltage Input	AGND $=0 \mathrm{~V}$	3		$V_{\text {cc }}$	V
Absolute Accuracy	$V_{\text {REF }}=V_{\text {CC }}$			$\pm 1$	LSB
Non-Linearity	$V_{\text {REF }}=V_{C C}$ Deviation from the Best Straight Line			$\pm 1 / 2$	LSB
Differential Non-Linearity	$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\mathrm{CC}}$			$\pm 1 / 2$	LSB
Input Reference Resistance		1.6		4.8	k $\Omega$
Common Mode Input Range (Note 7)		AGND		$V_{\text {REF }}$	V
DC Common Mode Error				$\pm 1 / 4$	LSB
Off Channel Leakage Current			1		$\mu \mathrm{A}$
On Channel Leakage Current			1		$\mu \mathrm{A}$
A/D Clock Frequency (Note 5)		0.1		1.67	MHz
Conversion Time (Note 4)			12		A/D Clock Cycles

Note 4: Conversion Time includes sample and hold time.
Note 5: See Prescaler description.
Note 6: Pins G6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $\mathrm{V}_{\mathrm{CC}}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $\mathrm{V}_{\mathrm{CC}}$ ). The effective resistance to $V_{C C}$ is $750 \Omega$ (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .
Note 7: For $V_{I N}(-) \geq V_{I N}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input. The diodes will forward conduct for analog input voltages below ground or above the $\mathrm{V}_{\mathrm{CC}}$ supply. Be careful, during testing at low $\mathrm{V}_{\mathrm{CC}}$ levels ( 4.5 V ), as high level analog inputs ( 5 V ) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $V_{I N}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 V_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading. The voltage on any analog input should be -0.3 V to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$.

AC Electrical Characteristics 888CF: $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crystal, Resonator R/C Oscillator	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \\ \hline \end{gathered}$		$\begin{aligned} & D C \\ & D C \\ & D C \\ & D C \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
Inputs tsetup $t_{\text {HOLD }}$	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Output Propagation Delay (Note 8) $\begin{aligned} & \text { tPD1, tpDo } \\ & \text { SO, SK } \end{aligned}$   All Others	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 2.5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tupD)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \hline \end{aligned}$
Reset Pulse Width		1			$\mu \mathrm{s}$

Note 8: The output propagation delay is referenced to end of the instruction cycle where the output change occurs.


FIGURE 3. MICROWIRE/PLUS Timing

Typical Performance Characteristics $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$


Dynamic-IDD
(Crystal Clock Option)


TL/DD/9425-31



Port L/C/G Weak Pull-Up Source Current


TL/DD/9425-32



TL/DD/9425-36

## Pin Descriptions

$V_{C C}$ and GND are the power supply pins.
$V_{\text {REF }}$ and AGND are the reference voltage pins for the onboard A/D converter.
CKI is the clock input. This can come from an R/C generated oscillator, or a crystal oscillator (in conjunction with CKO). See Oscillator Description section.
RESET is the master reset input. See Reset Description section.
The device contains three bidirectional 8 -bit I/O ports (C, G and L ), where each individual bit may be independently configured as an input (Schmitt trigger inputs on ports $G$ and $L$ ), output or TRI-STATE under program control. Three data memory address locations are allocated for each of these I/O ports. Each I/O port has two associated 8-bit memory mapped registers, the CONFIGURATION register and the output DATA register. A memory mapped address is also reserved for the input pins of each I/O port. (See the memory map for the various addresses associated with the I/O ports.) Figure 4 shows the I/O port configurations. The DATA and CONFIGURATION registers allow for each port bit to be individually configured under software control as shown below:

CONFIGURATION   Register	DATA   Register	Port Set-Up
0	0	Hi-Z Input   (TRI-STATE Output)   0
1	1	Input with Weak Pull-Up
1	0	Push-Pull Zero Output



FIGURE 4. I/O Port Configurations
PORT $L$ is an 8 -bit I/O port. All L-pins have Schmitt triggers on the inputs.
Port L supports Multi-Input Wakeup (MIWU) on all eight pins. L4 and L5 are used for the timer input functions T2A and T2B. LO and L1 are not available on the 44-pin version of the device, since they are replaced by $V_{\text {REF }}$ and AGND. L0 and L1 are not terminated on the 44-pin version. Consequently, reading LO or L1 as inputs will return unreliable data with the 44-pin package, so this data should be masked out with user software when the $L$ port is read for input data. It is recommended that the pins be configured as outputs.

Port $L$ has the following alternate features:
LO MIWU
L1 MIWU

L2 MIWU
L3 MIWU
L4 MIWU or T2A
L5 MIWU or T2B
L6 MIWU
L7 MIWU
Port G is an 8 -bit port with 5 I/O pins (G0, G2-G5), an input pin (G6), and two dedicated output pins (G1 and G7). Pins G0 and G2-G6 all have Schmitt Triggers on their inputs. Pin G1 serves as the dedicated WDOUT WatchDog output, while pin G7 is either input or output depending on the oscillator mask option selected. With the crystal oscillator option selected, G7 serves as the dedicated output pin for the CKO clock output. With the single-pin R/C oscillator mask option selected, G7 serves as a general purpose input pin, but is also used to bring the device out of HALT mode with a low to high transition on G7. There are two registers associated with the G Port, a data register and a configuration register. Therefore, each of the 5 I/O bits (G0, G2-G5) can be individually configured under software control.
Since G6 is an input only pin and G7 is the dedicated CKO clock output pin or general purpose input (R/C clock configuration), the associated bits in the data and configuration registers for G6 and G7 are used for special purpose functions as outlined below. Reading the G6 and G7 data bits will return zeros.
Note that the chip will be placed in the HALT mode by writing a " 1 " to bit 7 of the Port G Data Register. Similarly the chip will be placed in the IDLE mode by writing a " 1 " to bit 6 of the Port G Data Register.
Writing a " 1 " to bit 6 of the Port G Configuration Register enables the MICROWIRE/PLUS to nperate with the alternate phase of the SK clock. The G7 configuration bit, if set high, enables the clock start up delay after HALT when the R/C clock configuration is used.

	Config Reg.	Data Reg.
G7	CLKDLY	HALT
G6	Alternate SK	IDLE

Port $G$ has the following alternate features:
G0 INTR (External Interrupt Input)
G2 T1B (Timer T1 Capture Input)
G3 T1A (Timer T1 I/O)
G4 SO (MICROWIRE Serial Data Output)
G5 SK (MICROWIRE Serial Clock)
G6 SI (MICROWIRE Serial Data Input)
Port G has the following dedicated functions:
G1 WDOUT WatchDog and/or Clock Monitor dedicated output
G7 CKO Oscillator dedicated output or general purpose input
Port C is an 8-bit I/O port. The 40-pin device does not have a full complement of Port C pins. The unavailable pins are not terminated. A read operation for these unterminated pins will return unpredictable values.

## Pin Descriptions (Continued)

Port I is an 8 -bit Hi -Z input port, and also provides the ana$\log$ inputs to the A/D converter. The 28 -pin device does not have a full complement of Port I pins. The unavailable pins are not terminated (i.e. they are floating). A read operation from these unterminated pins will return unpredictable values. The user should ensure that the software takes this into account by either masking out these inputs, or else restricting the accesses to bit operations only. If unterminated, Port I pins will draw power only when addressed.
Port $D$ is an 8 -bit output port that is preset high when RESET goes low. The user can tie two or more D port outputs (except D2) together in order to get a higher drive.
Note: Care must be exercised with the D2 pin operation. At RESET, the external loads on this pin must ensure that the output voltages stay above $0.8 \mathrm{~V}_{\mathrm{CC}}$ to prevent the chip from entering special modes. Also keep the external loading on D2 to less than 1000 pF .

## Functional Description

The architecture of the device is modified Harvard architecture. With the Harvard architecture, the control store program memory (ROM) is separated from the data store memory (RAM). Both ROM and RAM have their own separate addressing space with separate address buses. The architecture, though based on Harvard architecture, permits transfer of data from ROM to RAM.

## CPU REGISTERS

The CPU can do an 8-bit addition, subtraction, logical or shift operation in one instruction ( $\mathrm{t}_{\mathrm{c}}$ ) cycle time.
There are five CPU registers:
A is the 8 -bit Accumulator Register
PC is the 15 -bit Program Counter Register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
$B$ is an 8 -bit RAM address pointer, which can be optionally post auto incremented or decremented.
X is an 8-bit alternate RAM address pointer, which can be optionally post auto incremented or decremented.
SP is the 8 -bit stack pointer, which points to the subroutine/ interrupt stack (in RAM). The SP is initialized to RAM address 06F with reset.
All the CPU registers are memory mapped with the exception of the Accumulator (A) and the Program Counter (PC).

## PROGRAM MEMORY

Program memory consists of 4096 bytes of ROM. These bytes may hold program instructions or constant data (data tables for the LAID instruction, jump vectors for the JID instruction, and interrupt vectors for the VIS instruction). The program memory is addressed by the 15 -bit program counter (PC). All interrupts vector to program memory location OFF Hex.

## DATA MEMORY

The data memory address space includes the on-chip RAM and data registers, the I/O registers (Configuration, Data and Pin), the control registers, the MICROWIRE/PLUS SIO shift register, and the various registers, and counters associated with the timers (with the exception of the IDLE timer). Data memory is addressed directly by the instruction or indirectly by the $\mathrm{B}, \mathrm{X}$ and SP pointers.

The device has 128 bytes of RAM. Sixteen bytes of RAM are mapped as "registers" at addresses OFO to OFF Hex. These registers can be loaded immediately, and also decremented and tested with the DRSZ (decrement register and skip if zero) instruction. The memory pointer registers $X, S P$, and $B$ are memory mapped into this space at address locations OFC to OFE Hex respectively, with the other registers (other than reserved register OFF) being available for general usage.
The instruction set permits any bit in memory to be set, reset or tested. All I/O and registers (except A and PC) are memory mapped; therefore, 1/O bits and register bits can be directly and individually set, reset and tested. The accumulator (A) bits can also be directly and individually tested.
Note: RAM contents are undefined upon power-up.

## Reset

The RESET input when pulled low initializes the microcontroller. Initialization will occur whenever the RESET input is pulled low. Upon initialization, the data and configuration registers for Ports L, G, and C are cleared, resulting in these Ports being initialized to the TRI-STATE mode. Pin G1 of the G Port is an exception (as noted below) since pin G1 is dedicated as the WatchDog and/or Clock Monitor error output pin. Port D is initialized high with RESET. The PC, PSW, CNTRL, ICNTRL, and T2CNTRL control registers are cleared. The Multi-Input Wakeup registers WKEN, WKEDG, and WKPND are cleared. The A/D control register ENAD is cleared, resulting in the ADC being powered down initially. The Stack Pointer, SP, is initialized to 06F Hex.
The device comes out of reset with both the WatchDog logic and the Clock Monitor detector armed, and with both the WatchDog service window bits set and the Clock Monitor bit set. The WatchDog and Clock Monitor detector circuits are inhibited during reset. The WatchDog service window bits are initialized to the maximum WatchDog service window of $64 \mathrm{k} \mathrm{t}_{\mathrm{c}}$ clock cycles. The Clock Monitor bit is initialized high, and will cause a Clock Monitor error following reset if the clock has not reached the minimum specified frequency at the termination of reset. A Clock Monitor error will cause an active low error output on pin G1. This error output will continue until 16-32 $t_{c}$ clock cycles following the clock frequency reaching the minimum specified value, at which time the G1 output will enter the TRI-STATE mode.
The external RC network shown in Figure 5 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.


TL/DD/9425-7
RC $>5 \times$ Power Supply Rise Time
FIGURE 5. Recommended Reset Circuit

## Oscillator Circuits

The chip can be driven by a clock input on the CKI input pin which can be between DC and 10 MHz . The CKO output clock is on pin G7 (crystal configuration). The CKI input frequency is divided down by 10 to produce the instruction cycle clock ( $1 / \mathrm{t}_{\mathrm{c}}$ ).
Figure 6 shows the Crystal and R/C diagrams.

## CRYSTAL OSCILLATOR

CKI and CKO can be connected to make a closed loop crystal (or resonator) controlled oscillator.
Table A shows the component values required for various standard crystal values.

## R/C OSCILLATOR

By selecting CKI as a single pin oscillator input, a single pin R/C oscillator circuit can be connected to it. CKO is available as a general purpose input, and/or HALT restart pin. Table $B$ shows the variation in the oscillator frequencies as functions of the component ( $R$ and $C$ ) values.


FIGURE 6. Crystal and R/C Oscillator Diagrams
TABLE A. Crystal Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=2 \mathbf{5 1}^{\circ} \mathrm{C}$

R1   $(k \Omega)$	R2   $(M \Omega)$	C1   $(\mathbf{D F})$	C2   $(\mathrm{nF})$	CKI Freq   $(M H)$	Conditions
0	1	30	$30-36$	10	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	30	$30-36$	4	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	200	$100-150$	0.455	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

TABLE B. R/C Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$\mathbf{R}$   $\mathbf{( k} \Omega)$	$\mathbf{C}$   $(\mathbf{p F})$	CKI Freq   (MHz)	Instr. Cycle   $(\mu \mathbf{s})$	Conditions
3.3	82	2.2 to 2.7	3.7 to 4.6	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
5.6	100	1.1 to 1.3	7.4 to 9.0	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
6.8	100	0.9 to 1.1	8.8 to 10.8	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

Note: 3k $\leq \mathrm{R} \leq 200 \mathrm{k}$
$50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}$

## Current Drain

The total current drain of the chip depends on:

1. Oscillator operation mode-11
2. Internal switching current-12
3. Internal leakage current-13
4. Output source current-14
5. DC current caused by external input not at $\mathrm{V}_{\mathrm{CC}}$ or GND-15
6. DC reference current contribution from the A/D converter-16
7. Clock Monitor current when enabled-17

Thus the total current drain, It , is given as

$$
\mathrm{It}=11+12+13+14+15+16+17
$$

To reduce the total current drain, each of the above components must be minimum.
The chip will draw more current as the CKI input frequency increases up to the maximum 10 MHz value. Operating with a crystal network will draw more current than an external square-wave. Switching current, governed by the equation, can be reduced by lowering voltage and frequency. Leakage current can be reduced by lowering voltage and temperature. The other two items can be reduced by carefully designing the end-user's system.

$$
12=\mathrm{C} \times \mathrm{V} \times \mathrm{f}
$$

where $C=$ equivalent capacitance of the chip
$V=$ operating voltage
$f=C K I$ frequency

## Control Registers

CNTRL Register (Address X'00EE)
The Timer1 (T1) and MICROWIRE/PLUS control register contains the following bits:

SL1 \& SLO Select the MICROWIRE/PLUS clock divide by ( $00=2,01=4,1 x=8$ )
IEDG External interrupt edge polarity select ( $0=$ Rising edge, $1=$ Falling edge)
Selects G5 and G4 as MICROWIRE/PLUS signals SK and SO respectively
T1C0 Timer T1 Start/Stop control in timer modes 1 and 2
Timer T1 Underflow Interrupt Pending Flag in timer mode 3
T1C1 Timer T1 mode control bit
Ticz Timer Ti mode control bit
T1C3 Timer T1 mode control bit

T1C3	T1C2	T1C1	T1C0	MSEL	IEDG	SL1	SL0
Bit 7						Bit 0	

PSW Register (Address X'00EF)
The PSW register contains the following select bits:
GIE Global interrupt enable (enables interrupts)
EXEN Enable external interrupt
BUSY MICROWIRE/PLUS busy shifting flag
EXPND External interrupt pending
T1ENA Timer T1 Interrupt Enable for Timer Underflow or T1A Input capture edge
T1PNDA Timer T1 Interrupt Pending Flag (Autoreload RA in mode 1, T1 Underflow in Mode 2, T1A capture edge in mode 3)
C Carry Flag
HC Half Carry Flag


## Control Registers (Continued)

The Half-Carry bit is also affected by all the instructions that affect the Carry flag. The SC (Set Carry) and RC (Reset Carry) instructions will respectively set or clear both the carry flags. In addition to the SC and RC instructions, ADC, SUBC, RRC and RLC instructions affect the carry and Half Carry flags.

## ICNTRL Register (Address X'00E8)

The ICNTRL register contains the following bits:
T1ENB Timer T1 Interrupt Enable for T1B Input capture edge
T1PNDB Timer T1 Interrupt Pending Flag for T1B capture edge
$\mu$ WEN Enable MICROWIRE/PLUS interrupt
$\mu$ WPND MICROWIRE/PLUS interrupt pending
TOEN Timer TO Interrupt Enable (Bit 12 toggle)
TOPND Timer TO Interrupt pending
LPEN L Port Interrupt Enable (Multi-Input Wakeup/Interrupt)
Bit 7 could be used as a flag

Unused	LPEN	TOPND	TOEN	$\mu$ WPND	$\mu$ WEN	T1PNDB	T1ENB
Bit 7		$B i t 0$					

T2CNTRL Register (Address X'00C6)
The T2CNTRL register contains the following bits:
T2ENB Timer T2 Interrupt Enable for T2B Input capture edge
T2PNDB Timer T2 Interrupt Pending Flag for T2B capture edge
T2ENA Timer T2 Interrupt Enable for Timer Underflow or T2A input capture edge
T2PNDA Timer T2 Interrupt Pending Flag (Autoreload RA in mode 1, T2 Underflow in mode 2, T2A capture edge in mode 3)
T2C0 Timer T2 Start/Stop control in timer modes 1 and 2 Timer T2 Underflow Interrupt Pending Flag in timer mode 3
T2C1 Timer T2 mode control bit
T2C2 Timer T2 mode control bit
T2C3 Timer T2 mode control bit


Bit 7

## Timers

The device contains a very versatile set of timers (TO, T1, T2). All timers and associated autoreload/capture registers power up containing random data.
Figure 7 shows a block diagram for the timers.

## TIMER TO (IDLE TIMER)

The device supports applications that require maintaining real time and low power with the IDLE mode. This IDLE mode support is furnished by the IDLE timer TO, which is a 16 -bit timer. The Timer TO runs continuously at the fixed rate of the instruction cycle clock, $\mathrm{t}_{\mathrm{c}}$. The user cannot read or write to the IDLE Timer T0, which is a count down timer.

The Timer TO supports the following functions:
Exit out of the Idle Mode (See Idle Mode description) WatchDog logic (See WatchDog description) Start up delay out of the HALT mode
The IDLE Timer TO can generate an interrupt when the thirteenth bit toggles. This toggle is latched into the TOPND pending flag, and will occur every 4 ms at the maximum clock frequency ( $\mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ). A control flag TOEN allows the interrupt from the thirteenth bit of Timer T0 to be enabled or disabled. Setting TOEN will enable the interrupt, while resetting it will disable the interrupt.

## TIMER T1 AND TIMER T2

The device has a set of two powerful timer/counter blocks, T1 and T2. The associated features and functioning of a timer block are described by referring to the timer block Tx. Since the two timer blocks, T1 and T2, are identical, all comments are equally applicable to either timer block.
Each timer block consists of a 16 -bit timer, Tx , and two supporting 16 -bit autoreload/capture registers, RxA and RxB. Each timer block has two pins associated with it, TxA and TxB. The pin TXA supports I/O required by the timer block, while the pin TxB is an input to the timer block. The powerful and flexible timer block allows the device to


FIGURE 7. Timers
easily perform all timer functions with minimal software overhead. The timer block has three operating modes: Processor Independent PWM mode, External Event Counter mode, and Input Capture mode.
The control bits TxC3, TxC2, and TxC1 allow selection of the different modes of operation.

## Timers (Continued)

## Mode 1. Processor Independent PWM Mode

As the name suggests, this mode allows the COP888CF to generate a PWM signal with very minimal user intervention. The user only has to define the parameters of the PWM signal (ON time and OFF time). Once begun, the timer block will continuously generate the PWM signal completely independent of the microcontroller. The user software services the timer block only when the PWM parameters require updating.
In this mode the timer Tx counts down at a fixed rate of $\mathrm{t}_{\mathrm{c}}$. Upon every underflow the timer is alternately reloaded with the contents of supporting registers, $\mathrm{R} \times \mathrm{A}$ and RxB . The very first underflow of the timer causes the timer to reload from the register RxA. Subsequent underflows cause the timer to be reloaded from the registers alternately beginning with the register RxB.
The Tx Timer control bits, TxC3, TxC2 and TxC1 set up the timer for PWM mode operation.
Figure 8 shows a block diagram of the timer in PWM mode.
The underflows can be programmed to toggle the TXA output pin. The underflows can also be programmed to generate interrupts.
Underflows from the timer are alternately latched into two pending flags, TxPNDA and TxPNDB. The user must reset these pending flags under software control. Two control enable flags, TxENA and TxENB, allow the interrupts from the timer underflow to be enabled or disabled. Setting the timer enable flag TxENA will cause an interrupt when a timer underflow causes the RxA register to be reloaded into the timer. Setting the timer enable flag TxENB will cause an interrupt when a timer underflow causes the RxB register to be reloaded into the timer. Resetting the timer enable flags will disable the associated interrupts.
Either or both of the timer underflow interrupts may be enabled. This gives the user the flexibility of interrupting once per PWM period on either the rising or falling edge of the PWM output. Alternatively, the user may choose to interrupt on both edges of the PWM output.


FIGURE 8. Timer in PWM Mode

## Mode 2. External Event Counter Mode

This mode is quite similar to the processor independent PWM mode described above. The main difference is that the timer, Tx, is clocked by the input signal from the TxA pin. The Tx timer control bits, TxC3, TxC2 and TxC1 allow the
timer to be clocked either on a positive or negative edge from the TxA pin. Underflows from the timer are latched into the TxPNDA pending flag. Setting the TxENA control flag will cause an interrupt when the timer underflows.
In this mode the input pin TxB can be used as an independent positive edge sensitive interrupt input if the TXENB control flag is set. The occurrence of a positive edge on the TxB input pin is latched into the TxPNDB flag.
Figure 9 shows a block diagram of the timer in External Event Counter mode.
Note: The PWM output is not available in this mode since the TXA pin is being used as the counter input clock.


FIGURE 9. Timer in External Event Counter Mode

## Mode 3. Input Capture Mode

The device can precisely measure external frequencies or time external events by placing the timer block, Tx, in the input capture mode.
In this mode, the timer Tx is constantly running at the fixed $t_{c}$ rate. The two registers, RxA and RxB, act as capture regicterc. Each resicter acts in conjunction with a pin. The register RXA acts in conjunction with the TXA pin and the register RxB acts in conjunction with the TxB pin.
The timer value gets copied over into the register when a trigger event occurs on its corresponding pin. Control bits, $\mathrm{TxC3}, \mathrm{TxC2}$ and $\mathrm{TxC1}$, allow the trigger events to be specified either as a positive or a negative edge. The trigger condition for each input pin can be specified independently.
The trigger conditions can also be programmed to generate interrupts. The occurrence of the specified trigger condition on the TXA and TxB pins will be respectively latched into the pending flags, TxPNDA and TxPNDB. The control flag TxENA allows the interrupt on TXA to be either enabled or disabled. Setting the TxENA flag enables interrupts to be generated when the selected trigger condition occurs on the TxA pin. Similarly, the flag TxENB controls the interrupts from the TxB pin.
Underflows from the timer can also be programmed to generate interrupts. Underflows are latched into the timer TxCO pending flag (the TXCO control bit serves as the timer underflow interrupt pending flag in the Input Capture mode). Consequently, the TXCO control bit should be reset when entering the Input Capture mode. The timer underflow interrupt is enabled with the TxENA control flag. When a TxA interrupt occurs in the Input Capture mode, the user must check both

Timers (Continued)
whether a TxA input capture or a timer underflow (or both) caused the interrupt.
Figure 10 shows a block diagram of the timer in Input Capture mode.


FIGURE 10. Timer in Input Capture Mode

## TIMER CONTROL FLAGS

The timers T1 and T2 have indentical control structures. The control bits and their functions are summarized below.

TXCO Timer Start/Stop control in Modes 1 and 2 (Processor Independent PWM and External Event Counter), where $1=$ Start, $0=$ Stop Timer Underflow Interrupt Pending Flag in Mode 3 (Input Capture)
TxPNDA Timer Interrupt Pending Flag
TxPNDB Timer Interrupt Pending Flag
TxENA Timer Interrupt Enable Flag
TxENB Timer Interrupt Enable Flag
1 = Timer Interrupt Enabled $0=$ Timer Interrupt Disabled
TxC3 Timer mode control
TxC2 Timer mode control
TxC1 Timer mode control

The timer mode control bits (TxC3, TxC2 and TxC1) are detailed below:

TxC3	TxC2	TxC1	Timer Mode	Interrupt A Source	Interrupt B Source	Timer Counts On
0	0	0	MODE 2 (External Event Counter)	Timer Underflow	Pos. TxB Edge	TXA Pos. Edge
0	0	1	MODE 2 (External Event Counter)	Timer Underilow	Pos. TxB Edge	TXA Neg. Edge
1	0	1	MODE 1 (PWM) TxA Toggle	Autoreload RA	Autoreload RB	$t_{c}$
1	0	0	MODE 1 (PWM) No TxA Toggle	Autoreload RA	Autoreload RB	$\mathrm{t}_{\mathrm{c}}$
0	1	0	MODE 3 (Capture)   Captures:   TxA Pos. Edge   TxB Pos. Edge	Pos. TxA   Edge or   Timer   Underflow	Pos. TxB Edge	$t_{c}$
1	1	0	MODE 3 (Capture)   Captures:   TxA Pos. Edge   TxB Neg. Edge	Pos. TxA   Edge or   Timer Underfiow	Neg. TxB Edge	$\mathrm{t}_{\mathrm{c}}$
0	1	1	MODE 3 (Capture)   Captures:   TxA Neg. Edge   TxB Pos. Edge	Neg. TxB Edge or Timer Underflow	Pos. TxB Edge	${ }_{\text {t }}$
1	1	1	MODE 3 (Capture)   Captures:   TxA Neg. Edge   TxB Neg. Edge	Neg. TxA   Edge or   Timer   Underflow	Neg. TxB Edge	$t_{c}$

## Power Save Modes

The device offers the user two power save modes of operation: HALT and IDLE. In the HALT mode, all microcontroller activities are stopped. In the IDLE mode, the on-board oscillator circuitry and timer T0 are active but all other microcontroller activities are stopped. In either mode, all on-board RAM, registers, I/O states, and timers (with the exception of TO) are unaltered.

## HALT MODE

The device is placed in the HALT mode by writing a " 1 " to the HALT flag (G7 data bit). All microcontroller activities, including the clock, timers, and A/D converter, are stopped. The WatchDog logic is disabled during the HALT mode. However, the clock monitor circuitry if enabled remains active and will cause the WatchDog output pin (WDOUT) to go low. If the HALT mode is used and the user does not want to activate the WDOUT pin, the Clock Monitor should be disabled after the device comes out of reset (resetting the Clock Monitor control bit with the first write to the WDSVR register). In the HALT mode, the power requirements of the device are minimal and the applied voltage ( $\mathrm{V}_{\mathrm{CC}}$ ) may be decreased to $\mathrm{V}_{\mathrm{r}}\left(\mathrm{V}_{\mathrm{r}}=2.0 \mathrm{~V}\right)$ without altering the state of the machine.
The device supports three different ways of exiting the HALT mode. The first method of exiting the HALT mode is with the Multi-Input Wakeup feature on the L port. The second method is with a low to high transition on the CKO (G7) pin. This method precludes the use of the crystal clock configuration (since CKO becomes a dedicated output), and so may be used with an RC clock configuration. The third method of exiting the HALT mode is by pulling the RESET pin low.
Since a crystal or ceramic resonator may be selected as the oscillator, the Wakeup signal is not allowed to start the chip running immediately since crystal oscillators and ceramic resonators have a delayed start up time to reach full amplitude and frequency stability. The IDLE timer is used to gen-
 stabilized before allowing instruction execution. In this case, upon detecting a valid Wakeup signal, only the oscillator circuitry is enabled. The IDLE timer is loaded with a value of 256 and is clocked with the $t_{c}$ instruction cycle clock. The $t_{c}$ clock is derived by dividing the oscillator clock down by a factor of 10. The Schmitt trigger following the CKI inverter on the chip ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.

If an RC clock option is being used, the fixed delay is introduced optionally. A control bit, CLKDLY, mapped as configuration bit G7, controls whether the delay is to be introduced or not. The delay is included if CLKDLY is set, and excluded if CLKDLY is reset. The CLKDLY bit is cleared on reset.
The device has two mask options associated with the HALT mode. The first mask option enables the HALT mode feature, while the second mask option disables the HALT mode. With the HALT mode enable mask option, the device will enter and exit the HALT mode as described above. With the HALT disable mask option, the device cannot be placed in the HALT mode (writing a " 1 " to the HALT flag will have no effect).
The WatchDog detector circuit is inhibited during the HALT mode. However, the clock monitor circuit if enabled remains active during HALT mode in order to ensure a clock monitor error if the device inadvertently enters the HALT mode as a result of a runaway program or power glitch.

## IDLE MODE

The device is placed in the IDLE mode by writing a " 1 " to the IDLE flag (G6 data bit). In this mode, all activity, except the associated on-board oscillator circuitry, the WatchDog logic, the clock monitor and the IDLE Timer T0, is stopped. As with the HALT mode, the device can be returned to normal operation with a reset, or with a Multi-Input Wakeup from the L Port. Alternately, the microcontroller resumes normal operation from the IDLE mode when the thirteenth bit (representing 4.096 ms at internal clock frequency of $1 \mathrm{MHz}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ) of the IDLE Timer toggles.
This toggle condition of the thirteenth bit of the IDLE Timer TO is latched into the TOPND pending flag.
The user has the option of being interrupted with a transition on the thirteenth bit of the IDLE Timer TO. The interrupt can be enabled or disabled via the TOEN control bit. Setting the TOEN flag enables the interrupt and yice yersa.
The user can enter the IDLE mode with the Timer T0 interrupt enabled. In this case, when the TOPND bit gets set, the device will first execute the Timer T0 interrupt service routine and then return to the instruction following the "Enter Idle Mode" instruction.
Alternatively, the user can enter the IDLE mode with the IDLE Timer T0 interrupt disabled. In this case, the device will resume normal operation with the instruction immediately following the "Enter IDLE Mode" instruction.
Note: it is necessary to program two NOP instructions following both the set HALT mode and set IDLE mode instructions. These NOP instructions are necessary to allow clock resynchronization following the HALT or IDLE modes.

## Multi-Input Wakeup

The Multi-Input Wakeup feature is used to return (wakeup) the device from either the HALT or IDLE modes. Alternately Multi-Input Wakeup/Interrupt feature may also be used to generate up to 8 edge selectable external interrupts.
Figure 11 shows the Multi-Input Wakeup logic.
The Multi-Input Wakeup feature utilizes the L Port. The user selects which particular L port bit (or combination of L Port bits) will cause the device to exit the HALT or IDLE modes. The selection is done through the Reg: WKEN. The Reg: WKEN is an 8 -bit read/write register, which contains a control bit for every $L$ port bit. Setting a particular WKEN bit enables a Wakeup from the associated $L$ port pin.
The user can select whether the trigger condition on the selected LPort pin is going to be either a positive edge (low to high transition) or a negative edge (high to low transition). This selection is made via the Reg: WKEDG, which is an 8bit control register with a bit assigned to each L Port pin. Setting the control bit will select the trigger condition to be a negative edge on that particular L Port pin. Resetting the bit selects the trigger condition to be a positive edge. Changing an edge select entails several steps in order to avoid a pseudo Wakeup condition as a result of the edge change. First, the associated WKEN bit should be reset, followed by the edge select change in WKEDG. Next, the associated WKPND bit should be cleared, followed by the associated WKEN bit being re-enabled.
An example may serve to clarify this procedure. Suppose we wish to change the edge select from positive (low going high) to negative (high going low) for L Port bit 5, where bit 5 has previously been enabled for an input interrupt. The program would be as follows:

RBIT	5, WKEN
SBIT	5, WKEDG
RBIT	5, WKPND
SBIT	5, WKEN

If the $L$ port bits have been used as outputs and then changed to inputs with Multi-Input Wakeup/Interrupt, a safety procedure should also be followed to avoid inherited pseudo wakeup conditions. After the selected L port bits have been changed from output to input but before the associated WKEN bits are enabled, the associated edge select bits in WKEDG should be set or reset for the desired edge selects, followed by the associated WKPND bits being cleared.
This same procedure should be used following reset, since the $L$ port inputs are left floating as a result of reset.
The occurrence of the selected trigger condition for Multi-Input Wakeup is latched into a pending register called WKPND. The respective bits of the WKPND register will be set on the occurrence of the selected trigger edge on the corresponding Port L pin. The user has the responsibility of clearing these pending flags. Since WKPND is a pending register for the occurrence of selected wakeup conditions, the device will not enter the HALT mode if any Wakeup bit is both enabled and pending. Consequently, the user has the responsibility of clearing the pending flags before attempting to enter the HALT mode.
The WKEN, WKPND and WKEDG are all read/write registers, and are cleared at reset.

## PORT L INTERRUPTS

Port L provides the user with an additional eight fully selectable, edge sensitive interrupts which are all vectored into the same service subroutine.
The interrupt from Port $L$ shares logic with the wake up circuitry. The register WKEN allows interrupts from Port L to be individually enabled or disabled. The register WKEDG specifies the trigger condition to be either a positive or a negative edge. Finally, the register WKPND latches in the pending trigger conditions.


TL/DD/9425-16
FIGURE 11. Multi-Input Wake Up Logic

## Multi-Input Wakeup (Continued)

The GIE (global interrupt enable) bit enables the interrupt function. A control flag, LPEN, functions as a global interrupt enable for Port L interrupts. Setting the LPEN flag will enable interrupts and vice versa. A separate global pending flag is not needed since the register WKPND is adequate.
Since Port L is also used for waking the device out of the HALT or IDLE modes, the user can elect to exit the HALT or IDLE modes either with or without the interrupt enabled. If he elects to disable the interrupt, then the device will restart execution from the instruction immediately following the instruction that placed the microcontroller in the HALT or IDLE modes. In the other case, the device will first execute the interrupt service routine and then revert to normal operation.
The Wakeup signal will not start the chip running immediately since crystal oscillators or ceramic resonators have a finite start up time. The IDLE Timer (TO) generates a fixed delay to ensure that the oscillator has indeed stabilized before allowing the device to execute instructions. In this case, upon detecting a valid Wakeup signal, only the oscillator circuitry and the IDLE Timer T0 are enabled. The IDLE Timer is loaded with a value of 256 and is clocked from the $t_{c}$ instruction cycle clock. The $t_{c}$ clock is derived by dividing down the oscillator clock by a factor of 10. A Schmitt trigger following the CKI on-chip inverter ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.
If the RC clock option is used, the fixed delay is under software control. A control flag, CLKDLY, in the G7 configuration bit allows the clock start up delay to be optionally inserted. Setting CLKDLY flag high will cause clock start up delay to be inserted and resetting it will exclude the clock start up delay. The CLKDLY flag is cleared during reset, so the clock start in delay is not present following reset with the R.C clock options.

## A/D Converter

The device contains an 8-channel, multiplexed input, successive approximation, A/D converter. Two dedicated pins, $V_{\text {REF }}$ and AGND are provided for voltage reference.

## OPERATING MODES

The A/D converter supports ratiometric measurements. It supports both Single Ended and Differential modes of operation.
Four specific analog channel selection modes are supported. These are as follows:

Allow any specific channel to be selected at one time. The A/D converter performs the specific conversion requested and stops.
Allow any specific channel to be scanned continuously. In other words, the user will specify the channel and the A/D converter will keep on scanning it continuously. The user can come in at any arbitrary time and immediately read the result of the last conversion. The user does not have to wait for the current conversion to be completed. Allow any differential channel pair to be selected at one time. The A/D converter performs the specific differential conversion requested and stops.

Allow any differential channel pair to be scanned continuously. In other words, the user will specify the differential channel pair and the A/D converter will keep on scanning it continuously. The user can come in at any arbitrary time and immediately read the result of the last differential conversion. The user does not have to wait for the current conversion to be completed.
The A/D converter is supported by two memory mapped registers, the result register and the mode control register. When the device is reset, the control register is cleared and the A/D is powered down. The A/D result register has unknown data following reset.

## A/D Control Register

A control register, Reg: ENAD, contains 3 bits for channel selection, 3 bits for prescaler selection, and 2 bits for mode selection. An A/D conversion is initiated by writing to the ENAD control register. The result of the conversion is available to the user from the A/D result register, Reg: ADRSLT.

Reg: ENAD

\section*{| CHANNEL SELECT | MODE SELECT | PRESCALER SELECT |
| :---: | :--- | :--- | Bits 7, 6, 5 <br> Bits 4,3 <br> Bits 2, 1, 0 <br> CHANNEL SELECT}

This 3-bit field selects one of eight channels to be the $\mathrm{V}_{\mathrm{IN}}+$. The mode selection determines the $\mathrm{V}_{\mathrm{IN}}$ - input.
Single Ended mode:

Bit 7	Bit $\mathbf{6}$	Bit $\mathbf{5}$	Channel No.
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Differential mode:

Bit 7	Bit 6	Bit $\mathbf{5}$	Channel Pairs (+. -)
0	0	0	0,1
0	0	1	1,0
0	1	0	2,3
0	1	1	3,2
1	0	0	4,5
1	0	1	5,4
1	1	0	6,7
1	1	1	7,6

## MODE SELECT

This 2-bit field is used to select the mode of operation (single conversion, continuous conversions, differential, single ended) as shown in the following table.

Bit 4	Bit 3	Mode
0	0	Single Ended mode, single conversion   Single Ended mode, continuous scan   of a single channel into the result   register
1	1	Differential mode, single conversion
1	1	Differential mode, continuous scan of   a channel pair into the result register

## A/D Converter (Continued)

## PRESCALER SELECT

This 3-bit field is used to select one of the seven prescaler clocks for the A/D converter. The prescaler also allows the A/D clock inhibit power saving mode to be selected. The following table shows the various prescaler options.

Bit 2	Bit $\mathbf{1}$	Bit $\mathbf{0}$	Clock Select
0	0	0	Inhibit A/D clock
0	0	1	Divide by 1
0	1	0	Divide by 2
0	1	1	Divide by 4
1	0	0	Divide by 6
1	0	1	Divide by 12
1	1	0	Divide by 8
1	1	1	Divide by 16

## ADC Operation

The A/D converter interface works as follows. Writing to the A/D control register ENAD initiates an A/D conversion unless the prescaler value is set to 0 , in which case the ADC clock is stopped and the ADC is powered down. The conversion sequence starts at the beginning of the write to ENAD operation powering up the ADC. At the first falling edge of the converter clock following the write operation (not counting the falling edge if it occurs at the same time as the write operation ends), the sample signal turns on for two clock cycles. The ADC is selected in the middle of the sample period. If the ADC is in single conversion mode, the conversion complete signal from the ADC will generate a power down for the A/D converter. If the ADC is in continuous mode, the conversion complete signal will restart the conversion sequence by deselecting the ADC for one converter clock cycle before starting the next sample. The ADC 8 -bit result is loaded into the A/D result register (ADRSLT) except during LOAD clock high, which prevents transient data (resulting from the ADC writing a new result over an old one) being read from ADRSLT.

## PRESCALER

The A/D Converter (ADC) contains a prescaler option which allows seven different clock selections. The A/D clock frequency is equal to CKI divided by the prescaler value. Note that the prescaler value must be chosen such that the A/D clock falls within the specified range. The maximum A/D frequency is 1.67 MHz . This equates to a 600 ns ADC clock cycle.

The A/D converter takes 12 ADC clock cycles to complete a conversion. Thus the minimum ADC conversion time for the device is $7.2 \mu \mathrm{~s}$ when a prescaler of 6 has been selected. These 12 ADC clock cycles necessary for a conversion consist of 1 cycle at the beginning for reset, 2 cycles for sampling, 8 cycles for converting, and 1 cycle for loading the result into the A/D result register (ADRSLT). This A/D result register is a read-only register. The device cannot write into ADRSLT.
The prescaler also allows an A/D clock inhibit option, which saves power by powering down the A/D when it is not in use.
Note: The A/D converter is also powered down when the device is in either the HALT or IDLE modes. If the ADC is running when the device enters the HALT or IDLE modes, the ADC will power down during the HALT or IDLE, and then will reinitialize the conversion when the device comes out of the HALT or IDLE modes.

## Analog Input and Source Resistance Considerations

Figure 12 shows the A/D pin model in single ended mode. The differential mode has similiar A/D pin model. The leads to the analog inputs should be kept as short as possible. Both noise and digital clock coupling to an A/D input can cause conversion errors. The clock lead should be kept away from the analog input line to reduce coupling. The A/D channel input pins do not have any internal output driver circuitry connected to them because this circuitry would load the analog input signals due to output buffer leakage current.
Source impedances greater than $1 \mathrm{k} \Omega$ on the analog input lines will adversely affect internal RC charging time during input sampling. As shown in Figure 12, the analog switch to the DAC array is closed only during the 2 A/D cycle sample time. Large source impedances on the analog inputs may result in the DAC array not being charged to the correct voltage levels, causing scale errors.
If large source resistance is necessary, the recommended solution is to slow down the A/D clock speed in proportion to the source resistance. The A/D converter may be operated at the maximum speed for $R_{S}$ less than $1 \mathrm{k} \Omega$. For $R_{S}$ greater than $1 \mathrm{k} \Omega, A / D$ clock speed needs to be reduced. For example, with $R_{S}=2 \mathrm{k} \Omega$, the A/D converter may be operated at half the maximum speed. A/D converter clock speed may be slowed down by either increasing the A/D prescaler divide-by or decreasing the CKI clock frequency. The A/D clock speed may be reduced to its minimum frequency of 100 kHz .


TL/DD/9425-28
*The analog switch is closed only during the sample time.
FIGURE 12. A/D Pin Model (Single Ended Mode)

## Interrupts

The device supports a vectored interrupt scheme. It supports a total of ten interrupt sources. The following table lists all the possible interrupt sources, their arbitration ranking and the memory locations reserved for the interrupt vector for each source.
Two bytes of program memory space are reserved for each interrupt source. All interrupt sources except the software interrupt are maskable. Each of the maskable interrupts have an Enable bit and a Pending bit. A maskable interrupt is active if its associated enable and pending bits are set. If GIE $=1$ and an interrupt is active, then the processor will be interrupted as soon as it is ready to start executing an instruction except if the above conditions happen during the Software Trap service routine. This exception is described in the Software Trap sub-section.
The interruption process is accomplished with the INTR instruction (opcode 00), which is jammed inside the Instruction Register and replaces the opcode about to be executed. The following steps are performed for every interrupt:

1. The GIE (Global Interrupt Enable) bit is reset.
2. The address of the instruction about to be executed is pushed into the stack.
3. The PC (Program Counter) branches to address 00FF. This procedure takes $7 t_{c}$ cycles to execute.
At this time, since GIE $=0$, other maskable interrupts are disabled. The user is now free to do whatever context switching is required by saving the context of the machine in the stack with PUSH instructions. The user would then program a VIS (Vector Interrupt Select) instruction in order to branch to the interrupt service routine of the highest priority interrupt enabled and pending at the time of the VIS. Note that this is not necessarily the interrupt that caused the branch to address location OOFF Hex prior to the context switching.

Thus, if an interrupt with a higher rank than the one which caused the interruption becomes active before the decision of which interrupt to service is made by the VIS, then the interrupt with the higher rank will override any lower ones and will be acknowledged. The lower priority interrupt(s) are still pending, however, and will cause another interrupt immediately following the completion of the interrupt service routine associated with the higher priority interrupt just serviced. This lower priority interrupt will occur immediately following the RETI (Return from Interrupt) instruction at the end of the interrupt service routine just completed.
Inside the interrupt service routine, the associated pending bit has to be cleared by software. The RETI (Return from Interrupt) instruction at the end of the interrupt service routine will set the GIE (Global Interrupt Enable) bit, allowing the processor to be interrupted again if another interrupt is active and pending.
The VIS instruction looks at all the active interrupts at the time it is executed and performs an indirect jump to the beginning of the service routine of the one with the highest rank.
The addresses of the different interrupt service routines, called vectors, are chosen by the user and stored in ROM in a table starting at 01E0 (assuming that VIS is located between 00FF and 01DF). The vectors are 15 -bit wide and therefore occupy 2 ROM locations.
VIS and the vector table must be located in the same 256byte block ( $0 y 00$ to OyFF) except if VIS is located at the last address of a block. In this case, the table must be in the next block. The vector table cannot be inserted in the first 256-byte block.
The vector of the maskable interrupt with the lowest rank is located at $0 y E 0$ (Hi-Order byte) and OyE1 (Lo-Order byte) and so forth in increasing rank number. The vector of the

Interrupts (Continued)


TL/DD/9425-18
FIGURE 13. Interrupt Block Diagram
maskable interrupt with the highest rank is located at 0yFA (Hi-Order byte) and OyFB (Lo-Order byte).
The Software Trap has the highest rank and its vector is located at $0 y F E$ and $0 y F F$.
If, by accident, a VIS gets executed and no interrupt is active, then the PC (Program Counter) will branch to a vector located at $0 \mathrm{yE} 0-\mathrm{OyE1}$. This vector can point to the Software Trap (ST) interrupt service routine, or to another special service routine as desired.
Figure 13 shows the Interrupt block diagram.

## SOFTWARE TRAP

The Software Trap (ST) is a special kind of non-maskable interrupt which occurs when the INTR instruction (used to acknowledge interrupts) is fetched from ROM and placed inside the instruction register. This may happen when the PC is pointing beyond the available ROM address space or when the stack is over-popped.
When an ST occurs, the user can re-initialize the stack pointer and do a recovery procedure (similar to RESET, but not necessarily containing all of the same initialization procedures) before restarting.
The occurrence of an ST is latched into the ST pending bit. The GIE bit is not affected and the ST pending bit (not accessible by the user) is used to inhibit other interrupts and to direct the program to the ST service routine with the VIS instruction. The RPND instruction is used to clear the software interrupt pending bit. This bit is also cleared on reset.
The ST has the highest rank among all interrupts.
Nothing (except another ST) can interrupt an ST being serviced.

## WATCHDOG

The device contains a WATCHDOG and clock monitor. The WATCHDOG is designed to detect the user program getting stuck in infinite loops resulting in loss of program control or "runaway" programs. The Clock Monitor is used to detect
the absence of a clock or a very slow clock below a specified rate on the CKI pin.
The WATCHDOG consists of two independent logic blocks: WD UPPER and WD LOWER. WD UPPER establishes the upper limit on the service window and WD LOWER defines the lower limit of the service window.
Servicing the WATCHDOG consists of writing a specific value to a WATCHDOG Service Register named WDSVR which is memory mapped in the RAM. This value is composed of three fields, consisting of a 2-bit Window Select, a 5-bit Key Data field, and the 1-bit Clock Monitor Select field. Table I shows the WDSVR register.
The lower limit of the service window is fixed at 2048 instruction cycles. Bits 7 and 6 of the WDSVR register allow the user to pick an upper limit of the service window.
Table Il shows the four possible combinations of lower and upper limits for the WATCHDOG service window. This flexibility in choosing the WATCHDOG service window prevents any undue burden on the user software.
Bits 5, 4, 3, 2 and 1 of the WDSVR register represent the 5bit Key Data field. The key data is fixed at 01100. Bit 0 of the WDSVR Register is the Clock Monitor Select bit.

TABLE I. WATCHDOG Service Register

Window   Select		Key Data								
X	X	0	1	1	0	0	Clock			
Monitor								$	$	Y
:---:										
7										

TABLE II. WATCHDOG Service Window Select

WDSVR   Bit 7	WDSVR   Bit 6	Service Window   (Lower-Upper Limits)
0	0	$2 k-8 k t_{c}$ Cycles
0	1	$2 k-16 k t_{c}$ Cycles
1	0	$2 k-32 k t_{c}$ Cycles
1	1	$2 k-64 k t_{c}$ Cycles

## Clock Monitor

The Clock Monitor aboard the device can be selected or deselected under program control. The Clock Monitor is guaranteed not to reject the clock if the instruction cycle clock $\left(1 / t_{c}\right)$ is greater or equal to 10 kHz . This equates to a clock input rate on CKI of greater or equal to 100 kHz .

## WATCHDOG Operation

The WATCHDOG and Clock Monitor are disabled during reset. The device comes out of reset with the WATCHDOG armed, the WATCHDOG Window Select (bits 6, 7 of the WDSVR Register) set, and the Clock Monitor bit (bit 0 of the WDSVR Register) enabled. Thus, a Clock Monitor error will occur after coming out of reset, if the instruction cycle clock frequency has not reached a minimum specified value, including the case where the oscillator fails to start.
The WDSVR register can be written to only once after reset and the key data (bits 5 through 1 of the WDSVR Register) must match to be a valid write. This write to the WDSVR register involves two irrevocable choices: (i) the selection of the WATCHDOG service window (ii) enabling or disabling of the Clock Monitor. Hence, the first write to WDSVR Register involves selecting or deselecting the Clock Monitor, select the WATCHDOG service window and match the WATCHDOG key data. Subsequent writes to the WDSVR register will compare the value being written by the user to the WATCHDOG service window value and the key data (bits 7 through 1) in the WDSVR Register. Table III shows the sequence of events that can occur.
The user must service the WATCHDOG at least once before the upper limit of the service window expires. The WATCHDOG may not be serviced more than once in every lower limit of the service window. The user may service the WATCHDOG as many times as wished in the time period between the lower and upper limits of the service window. The first write to the WDSVR Register is also counted as a WATCHDOG service.
The WATCHDOG has an output pin associated with it. This is the WDOUT pin, on pin 1 of the port G. WDOUT is active low. The WDOUT pin is in the high impedance state in the inactive state. Upon triggering the WATCHDOG, the logic will pull the WDOUT (G1) pin low for an additional $16 t_{c}-32 t_{c}$ cycles after the signal level on WDOUT pin goes below the lower Schmitt trigger threshold. After this delay, the device will stop forcing the WDOUT output low.
The WATCHDOG service window will restart when the WDOUT pin goes high. It is recommended that the user tie the WDOUT pin back to $\mathrm{V}_{\mathrm{CC}}$ through a resistor in order to pull WDOUT high.

A WATCHDOG service while the WDOUT signal is active will be ignored. The state of the WDOUT pin is not guaranteed on reset, but if it powers up low then the WATCHDOG will time out and WDOUT will enter high impedance state.
The Clock Monitor forces the G1 pin low upon detecting a clock frequency error. The Clock Monitor error will continue until the clock frequency has reached the minimum specified value, after which the G1 output will enter the high impedance TRI-STATE mode following $16 \mathrm{t}_{\mathrm{c}}-32 \mathrm{t}_{\mathrm{c}}$ clock cycles. The Clock Monitor generates a continual Clock Monitor error if the oscillator fails to start, or fails to reach the minimum specified frequency. The specification for the Clock Monitor is as follows:
$1 / \mathrm{t}_{\mathrm{c}}>10 \mathrm{kHz}$-No clock rejection.
$1 / \mathrm{t}_{\mathrm{c}}<10 \mathrm{~Hz}$-Guaranteed clock rejection.

## WATCHDOG AND CLOCK MONITOR SUMMARY

The following salient points regarding the WATCHDOG and CLOCK MONITOR should be noted:

- Both the WATCHDOG and Clock Monitor detector circuits are inhibited during RESET.
- Following RESET, the WATCHDOG and CLOCK MONITOR are both enabled, with the WATCHDOG having the maximum service window selected.
- The WATCHDOG service window and Clock Monitor enable/disable option can only be changed once, during the initial WATCHDOG service following RESET.
- The initial WATCHDOG service must match the key data value in the WATCHDOG Service register WDSVR in order to avoid a WATCHDOG error.
- Subsequent WATCHDOG services must match all three data fields in WDSVR in order to avoid WATCHDOG errors.
- The correct key data value cannot be read from the WATCHDOG Service register WDSVR. Any attempt to read this key data value of 01100 from WDSVR will read as key data value of all 0's.
- Tine Víaíćriés delecior circuit is inniiniled curing botin the HALT and IDLE modes.
- The Clock Monitor detector circuit is active during both the HALT and IDLE modes. Consequently, the device inadvertently entering the HALT mode will be detected as a Clock Monitor error (provided that the Clock Monitor enable option has been selected by the program).
- With the single-pin R/C oscillator mask option selected and the CLKDLY bit reset, the WATCHDOG service window will resume following HALT mode from where it left off before entering the HALT mode.


## WATCHDOG Operation (Continued)

- With the crystal oscillator mask option selected, or with the single-pin R/C oscillator mask option selected and the CLKDLY bit set, the WATCHDOG service window will be set to its selected value from WDSVR following HALT. Consequently, the WATCHDOG should not be serviced for at least 2048 instruction cycles following HALT, but must be serviced within the selected window to avoid a WATCHDOG error.
- The IDLE timer TO is not initialized with RESET.
- The user can sync in to the IDLE counter cycle with an IDLE counter (TO) interrupt or by monitoring the TOPND flag. The TOPND flag is set whenever the thirteenth bit of the IDLE counter toggles (every 4096 instruction cycles). The user is responsible for resetting the TOPND flag.
- A hardware WATCHDOG service occurs just as the device exits the IDLE mode. Consequently, the WATCHDOG should not be serviced for at least 2048 instruction cycles following IDLE, but must be serviced within the selected window to avoid a WATCHDOG error.
- Following RESET, the initial WATCHDOG service (where the service window and the CLOCK MONITOR enable/ disable must be selected) may be programmed anywhere within the maximum service window ( 65,536 instruction cycles) initialized by RESET. Note that this initial WATCHDOG service may be programmed within the initial 2048 instruction cycles without causing a WATCHDOG error.


## Detection of Illegal Conditions

The device can detect various illegal conditions resulting from coding errors, transient noise, power supply voltage drops, runaway programs, etc.
Reading of undefined ROM gets zeros. The opcode for software interrupt is zero. If the program fetches instructions from undefined ROM, this will force a software interrupt, thus signaling that an illegal condition has occurred.
The subroutine stack grows down for each call (jump to subroutine), interrupt, or PUSH, and grows up for each return or POP. The stack pointer is initialized to RAM location 06F Hex during reset. Consequently, if there are more returns than calls, the stack pointer will point to addresses 070 and 071 Hex (which are undefined RAM). Undefined RAM from addresses 070 to 07F Hex is read as all 1's, which in turn will cause the program to return to address 7FFF Hex. This is an undefined ROM location and the instruction fetched (all 0's) from this location will generate a software interrupt signaling an illegal condition.
Thus, the chip can detect the following illegal conditions:
a. Executing from undefined ROM
b. Over "POP"'ing the stack by having more returns than calls.
When the software interrupt occurs, the user can re-initialize the stack pointer and do a recovery procedure before restarting (this recovery program is probably similar to that following reset, but might not contain the same program initialization procedures).

## MICROWIRE／PLUS

MICROWIRE／PLUS is a serial synchronous communica－ tions interface．The MICROWIRE／PLUS capability enables the device to interface with any of National Semiconductor＇s MICROWIRE peripherals（i．e．A／D converters，display driv－ ers，E2PROMs etc．）and with other microcontrollers which support the MICROWIRE interface．It consists of an 8 －bit serial shift register（SIO）with serial data input（SI），serial data output（SO）and serial shift clock（SK）．Figure 14 shows a block diagram of the MICROWIRE／PLUS logic．


FIGURE 14．MICROWIRE／PLUS Block Dlagram
The shift clock can be selected from either an internal source or an external source．Operating the MICROWIRE／ PLUS arrangement with the internal clock source is called the Master mode of operation．Similarly，operating the MI－ CROWIRE／PLUS arrangement with an external shift clock is called the Slave mode of operation．
The CNTRL register is used to configure and control the MICROWIRE／PLUS mode．To use the MICROWIRE／PLUS， the MSEL bit in the CNTRL register is set to one．In the master mode the SK clock rate is selected by the two bits， SLO and SL1，in the CNTRL register．TABLE IV details the different clock rates that may be selected．

TABLE IV．MICROWIRE／PLUS Master Mode Clock Selection

SL1	SLO	SK
0	0	$2 \times \mathrm{t}_{\mathrm{c}}$
0	1	$4 \times \mathrm{t}_{\mathrm{c}}$
1	x	$8 \times \mathrm{t}_{\mathrm{c}}$

Where $t_{c}$ is the instruction cycle clock
MICROWIRE／PLUS OPERATION
Setting the BUSY bit in the PSW register causes the MI－ CROWIRE／PLUS to start shifting the data．It gets reset when eight data bits have been shifted．The user may reset the BUSY bit by software to allow less than 8 bits to shift．If enabled，an interrupt is generated when eight data bits have been shifted．The device may enter the MICROWIRE／PLUS mode either as a Master or as a Slave．Figure 15 shows how two COP888CF microcontrollers and several peripher－ als may be interconnected using the MICROWIRE／PLUS arrangements．

## Warning：

The SIO register should only be loaded when the SK clock is low．Loading the SIO register while the SK clock is high will result in undefined data in the SIO register．SK clock is normally low when not shifting．
Setting the BUSY flag when the input SK clock is high in the MICROWIRE／PLUS slave mode may cause the current SK clock for the SIO shift register to be narrow．For safety，the BUSY flag should only be set when the input SK clock is low．

## MICROWIRE／PLUS Master Mode Operation

In the MICROWIRE／PLUS Master mode of operation the shift clock（SK）is generated internally．The MICROWIRE Master always initiates all data exchanges．The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port．The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register．Table V summarizes the bit settings required for Master mode of operation．

## MICROWIRE/PLUS (Continued)

## MICROWIRE/PLUS Slave Mode Operation

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must be selected as an input and the SO pin is selected as an output pin by setting and resetting the appropriate bit in the Port G configuration register. Table V summarizes the settings required to enter the Slave mode of operation.
The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated.

## Alternate SK Phase Operation

The device allows either the normal SK clock or an alternate phase SK clock to shift data in and out of the SIO register. In both the modes the SK is normally low. In the normal mode data is shifted in on the rising edge of the SK clock and the data is shifted out on the falling edge of the SK clock. The SIO register is shifted on each falling edge of the SK clock in the normal mode. In the alternate SK phase mode the SIO register is shifted on the rising edge of the SK clock.
A control flag, SKSEL, allows either the normal SK clock or the alternate SK clock to be selected. Resetting SKSEL causes the MICROWIRE/PLUS logic to be clocked from the normal SK signal. Setting the SKSEL flag selects the alternate SK clock. The SKSEL is mapped into the G6 configuration bit. The SKSEL flag will power up in the reset condition, selecting the normal SK signal.

TABLE V
This table assumes that the control flag MSEL is set.

G4 (SO)   Config. Bit	G5 (SK)   Config. Bit	G4   Fun.	G5   Fun.	Operation
1	1	SO	Int.   SK	MICROWIRE/PLUS   Master
0	1	TRI-   STATE	Int.   SK	MICROWIRE/PLUS   Master
1	0	SO	Ext.   SK	MICROWIRE/PLUS   Slave
0	0	TRI-   STATE	Ext.   SK	MICROWIRE/PLUS   Slave

## Memory Map

All RAM, ports and registers (except A and PC) are mapped into data memory address space

Address	Contents
O0 to 6F	On-Chip RAM bytes
70 to BF	Unused RAM Address Space
C0	Timer T2 Lower Byte
C1	Timer T2 Upper Byte
C2	Timer T2 Autoload Register T2RA Lower Byte
C3	Timer T2 Autoload Register T2RA Upper Byte
C4	Timer T2 Autoload Register T2RB Lower Byte
C5	Timer T2 Autoload Register T2RB Upper Byte
C6	Timer T2 Control Register
C7	WATCHDOG Service Register (Reg:WDSVR)
C8	MIWU Edge Select Register (Reg:WKEDG)
C9	MIWU Enable Register (Reg:WKEN)
CA	MIWU Pending Register (Reg:WKPND)
CB	A/D Converter Control Register (Reg:ENAD)
CC	A/D Converter Result Register (Reg: ADRSLT)
CD to CF	Reserved
D0	Port L Data Register
D1	Port L Configuration Register
D2	Port L Input Pins (Read Only)
D3	Reserved for Port L
D4	Port G Data Register
D5	Port G Configuration Register
D6	Port G Input Pins (Read Only)
D7	Port I Input Pins (Read Only)
D8	Port C Data Register
D9	Port C Configuration Register
DA	Port C Input Pins (Read Only)
FF	Reserved for Port C
FB	Reserved
FF	Port D Data Register
F0 to FB	On-Chip RAM Mapped as Registers
DD to DF	Reserved for Port D
E0 to E5	Reserved
E6	Timer T1 Autoload Register T1RB Lower Byte
E7	Timer T1 Autoload Register T1RB Upper Byte
E8	ICNTRL Register
E9	MICROWIRE Shift Register
EA	Timer T1 Lower Byte
EB	Timer T1 Upper Byte
EC	Timer T1 Autoload Register T1RA Lower Byte
Timer T1 Autoload Register T1RA Upper Byte	
CNTRL Control Register	

Reading memory locations 70-7F Hex will return all ones. Reading other unused memory locations will return undefined data.

## Addressing Modes

The device has ten addressing modes, six for operand addressing and four for transfer of control.

## OPERAND ADDRESSING MODES

## Register Indirect

This is the "normal" addressing mode. The operand is the data memory addressed by the B pointer or X pointer.

## Register Indirect (with auto post increment or decrement of pointer)

This addressing mode is used with the LD and X instructions. The operand is the data memory addressed by the B pointer or $X$ pointer. This is a register indirect mode that automatically post increments or decrements the B or X register after executing the instruction.

## Direct

The instruction contains an 8-bit address field that directly points to the data memory for the operand.

## Immediate

The instruction contains an 8-bit immediate field as the operand.
Short Immediate
This addressing mode is used with the Load B Immediate instruction. The instruction contains a 4-bit immediate field as the operand.

## Indirect

This addressing mode is used with the LAID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC) for accessing a data operand from the program memory.

## TRANSFER OF CONTROL ADDRESSING MODES

## Relative

This mode is used for the JP instruction, with the instruction field being added to the program counter to get the new program location. JP has a range from -31 to +32 to allow a $i$-ibyie telalive jump ( $\mathrm{JF}+i$ is implemented by a NOP instruction). There are no "pages" when using JP, since all 15 bits of PC are used.

## Absolute

This mode is used with the JMP and JSR instructions, with the instruction field of 12 bits replacing the lower 12 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory segment.

## Absolute Long

This mode is used with the JMPL and JSRL instructions, with the instruction field of 15 bits replacing the entire 15 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory space.

## Indirect

This mode is used with the JID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of $P C$ ) for accessing a location in the program memory. The contents of this program memory location serve as a partial address (lower 8 bits of PC) for the jump to the next instruction.
Note: The VIS is a special case of the Indirect Transfer of Control addressing mode, where the double byte vector associated with the interrupt is transferred from adjacent addresses in the program memory into the program counter (PC) in order to jump to the associated interrupt service routine.

## Instruction Set

Register and Symbol Definition

Registers	
A	8-Bit Accumulator Register
B	8-Bit Address Register
X	8-Bit Address Register
SP	8-Bit Stack Pointer Register
PC	15-Bit Program Counter Register
PU	Upper 7 Bits of PC
PL	Lower 8 Bits of PC
C	1 Bit of PSW Register for Carry
HC	1 Bit of PSW Register for Half Carry
GIE	1 Bit of PSW Register for Global
	Interrupt Enable
VU	Interrupt Vector Upper Byte
VL	Interrupt Vector Lower Byte


Symbols	
[B]	Memory Indirectly Addressed by B Register
ix]	ivemory Indirectly Addressed by $X$ Register
MD	Direct Addressed Memory
Mem	Direct Addressed Memory or [B]
Meml	Direct Addressed Memory or [ B ] or Immediate Data
Imm	8-Bit Immediate Data
Reg	Register Memory: Addresses F0 to FF (Includes B, X and SP)
Bit	Bit Number ( 0 to 7)
$\leftarrow$	Loaded with
$\longleftarrow$	Exchanged with

COP988CF/COP984CF/COP888CF/COP884CF

## Instruction Set (Continued)

INSTRUCTION SET

ADD	A, Meml	ADD	$A \leftarrow A+M e m l$
ADC	A,Meml	ADD with Carry	$\begin{aligned} & A \leftarrow A+\text { Meml }+C, C \leftarrow \text { Carry } \\ & H C \leftarrow \text { Half Carry } \end{aligned}$
SUBC	A,Meml	Subtract with Carry	$\begin{aligned} & A \leftarrow A \overline{M e m l}+C, C \leftarrow \text { Carry } \\ & H C \leftarrow \text { Half Carry } \end{aligned}$
AND	A,Meml	Logical AND	$A \leftarrow A$ and Meml
ANDSZ	A, 1 mm	Logical AND Immed., Skip if Zero	Skip next if ( A and Imm ) $=0$
OR	A, Meml	Logical OR	$A \leftarrow A$ or Meml
XOR	A, Meml	Logical EXclusive OR	$A \leftarrow A$ xor Meml
IFEQ	MD,Imm	IF EQual	Compare MD and Imm, Do next if MD = Imm
IFEQ	A,Meml	IF EQual	Compare $A$ and Meml, Do next if $A=$ Meml
IFNE	A, Meml	IF Not Equal	Compare $A$ and Meml, Do next if $A \neq M e m l$
IFGT	A,Meml	IF Greater Than	Compare A and Meml, Do next if A > Meml
IFBNE	\#	If $B$ Not Equal	Do next if lower 4 bits of $B \neq 1 \mathrm{~mm}$
DRSZ	Reg	Decrement Reg., Skip if Zero	Reg $\leftarrow$ Reg - 1, Skip if Reg $=0$
SBIT	\#, Mem	Set BIT	1 to bit, Mem (bit $=0$ to 7 immediate)
RBIT	\#,Mem	Reset BIT	0 to bit, Mem
IFBIT	\#,Mem	IF BIT	If bit in A or Mem is true do next instruction
RPND		Reset PeNDing Flag	Reset Software Interrupt Pending Flag
X	A,Mem	EXchange A with Memory	$A \longleftrightarrow$ Mem
X	A, $[\mathrm{X}]$	EXchange A with Memory [ X ]	$A \longleftrightarrow[X]$
LD	A, Meml	LoaD A with Memory	$A \leftarrow$ Meml
LD	A, $[\mathrm{X}]$	LoaD A with Memory [ X ]	$A \leftarrow[X]$
LD	B,Imm	LoaD B with Immed.	$B \leftarrow 1 \mathrm{~mm}$
LD	Mem, Imm	LoaD Memory Immed	Mem $\leftarrow \mathrm{Imm}$
LD	Reg, Imm	LoaD Register Memory Immed.	Reg $\leftarrow 1 \mathrm{Imm}$
X	A, [ $B \pm$ ]	EXchange A with Memory [B]	$A \longleftrightarrow[B],(B \leftarrow B \pm 1)$
X	A, [ $\mathrm{X} \pm$ ]	EXchange A with Memory [ X ]	$A \longleftrightarrow[X],(X \leftarrow \pm 1)$
LD	A, $[\mathrm{B} \pm]$	LoaD A with Memory [B]	$A \leftarrow[B],(B \leftarrow B \pm 1)$
LD	A, $[\mathrm{X} \pm$ ]	LoaD A with Memory [ X ]	$A \leftarrow[X],(X \leftarrow X \pm 1)$
LD	[ $\mathrm{B} \pm$ ], Imm	LoaD Memory [B] Immed.	$[B] \leftarrow \mathrm{lmm},(\mathrm{B} \leftarrow \mathrm{B} \pm 1)$
CLR	A	CLeaR A	$A \leftarrow 0$
INC	A	INCrement A	$A \leftarrow A+1$
DEC	A	DECrementA	$A \leftarrow A-1$
LAID		Load A InDirect from ROM	$A \leftarrow R O M(P U, A)$
DCOR	A	Decimal CORrect A	$A \leftarrow B C D$ correction of A (follows ADC, SUBC)
RRC	A	Rotate A Right thru C	$\mathrm{C} \rightarrow \mathrm{A} 7 \rightarrow \ldots \rightarrow \mathrm{AO} \rightarrow \mathrm{C}$
RLC	A	Rotate A Left thru C	$C \leftarrow A 7 \leftarrow \ldots \leftarrow A O \leftarrow C$
SWAP	A	SWAP nibbles of A	A7 $\ldots$ A $4 \longleftrightarrow$ A3 ... A0
SC		Set C	$C \leftarrow 1, \mathrm{HC} \leftarrow 1$
RC		Reset C	$\mathrm{C} \leftarrow 0, \mathrm{HC} \leftarrow 0$
IFC		IF C	IF C is true, do next instruction
IFNC		IF Not C	If $C$ is not true, do next instruction
POP	A	POP the stack into $A$	$\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{~A} \leftarrow[\mathrm{SP}]$
PUSH	A	PUSH A onto the stack	[SP] $\leftarrow \mathrm{A}, \mathrm{SP} \leftarrow \mathrm{SP}-1$
VIS		Vector to Interrupt Service Routine	$\mathrm{PU} \leftarrow[\mathrm{VU}], \mathrm{PL} \leftarrow[\mathrm{VL}]$
JMPL	Addr.	Jump absolute Long	$\mathrm{PC} \leftarrow \mathrm{ii}(\mathrm{ii}=15$ bits, 0 to 32k)
JMP	Addr.	Jump absolute	PC9 ... $0 \leftarrow \mathrm{i}(\mathrm{i}=12$ bits)
JP	Disp.	Jump relative short	$P C \leftarrow P C+r(r$ is -31 to +32 , except 1$)$
JSRL	Addr.	Jump SubRoutine Long	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow \mathrm{ii}$
JSR	Addr	Jump SubRoutine	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} 9 . .0$ ( 0 i
JID		Jump InDirect	$\mathrm{PL} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
RET		RETurn from subroutine	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETSK		RETurn and SKip	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETI		RETurn from Interrupt	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1], \mathrm{GIE} \leftarrow 1$
INTR		Generate an Interrupt	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow 0 \mathrm{FF}$
NOP		No OPeration	$\mathrm{PC} \leftarrow \mathrm{PC}+1$

## Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instructions taking two bytes).
Most single byte instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details.
Bytes and Cycles per Instruction
The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle.

Arithmetic and Logic Instructions			
	[B]	Direct	Immed.
ADD	1/1	3/4	2/2
ADC	1/1	3/4	$2 / 2$
SUBC	1/1	3/4	2/2
AND	1/1	3/4	2/2
OR	1/1	3/4	2/2
XOR	1/1	3/4	$2 / 2$
IFEQ	1/1	3/4	2/2
IFNE	1/1	3/4	$2 / 2$
IFGT	1/1	3/4	2/2
IFBNE	1/1		
DRSZ		1/3	
SBIT	1/1	3/4	
RBIT	1/1	3/4	
IFBIT	1/1	3/4	

Instructions Using A \& C

CLRA	$1 / 1$
INCA	$1 / 1$
DECA	$1 / 1$
LAID	$1 / 3$
DCOR	$1 / 1$
RRCA	$1 / 1$
RLCA	$1 / 1$
SWAPA	$1 / 1$
SC	$1 / 1$
RC	$1 / 1$
IFC	$1 / 1$
IFNC	$1 / 1$
PUSHA	$1 / 3$
POPA	$1 / 3$
ANDSZ	$2 / 2$


	Memory Transfer Instructions					
	Register Indirect		Direct	Immed.	Register Indirect Auto Incr. \& Decr.	
		[ X ]			$[B+, B-]$	[ $\mathrm{X}+, \mathrm{X}-\mathrm{]}$
X A,*	1/1	1/3	$2 / 3$		1/2	1/3
LD A,*	1/1	1/3	$2 / 3$	2/2	1/2	1/3
LD B, Imm				1/1		
LD B, Imm				2/2		
LD Mem, Imm	2/2		3/3		2/2	
LD Reg, Imm			$2 / 3$			
IFEQ MD, Imm			3/3			

(IF B < 16)

- = > Memory location addressed by B or X or directly.


## Opcode Table

Upper Nibble Along X-Axis
Lower Nibble Along $Y$-Axis

F	E	D	C	B	A	9	8	
JP - 15	JP -31	LD OFO, \# i	DRSZ OFO	RRCA	RC	ADC A, \#i	ADC A, [B]	0
JP - 14	JP - 30	LD OF1, \# i	DRSZ 0F1	*	SC	SUBC A, \#i	SUB A, [B]	1
JP - 13	JP -29	LD OF2, \#. i	DRSZ OF2	X A, [ $\mathrm{X}+\mathrm{]}$	X $A,[B+]$	IFEQ A, \#i	IFEQ A, [B]	2
JP-12	JP -28	LD 0F3, \# i	DRSZ OF3	X A, [ $\mathrm{X}-\mathrm{]}$	X $A,[B-]$	IFGT A, \#i	IFGT A, [B]	3
JP -11	JP -27	LD OF4, \# i	DRSZ 0 F4	VIS	LAID	ADD A, \#i	ADD A,[B]	4
JP - 10	JP -26	LD OF5, \# i	DRSZ OF5	RPND	JID	AND A, \#i	AND A,[B]	5
JP -9	JP -25	LD 0F6, \# i	DRSZ 0 F6	X A, $[\mathrm{X}]$.	X A,[B]	XOR A, \#i	XOR A,[B]	6
JP -8	JP -24	LD 0F7, \# i	DRSZ 0F7	*	*	OR A, \#i	OR A, [B]	7
JP -7	JP -23	LD 0F8, \# i	DRSZ 0F8	NOP	RLCA	LD A, \#i	IFC	8
JP -6	JP -22	LD 0F9, \# i	DRSZ 0F9	IFNE   $\mathrm{A},[\mathrm{B}]$	IFEQ   Md, \#i	IFNE   A, \#i	IFNC	9
JP -5	JP -21	LD OFA, \# i	DRSZ OFA	LD A, $[\mathrm{X}+\mathrm{]}$	LD A, [B+]	LD [B+], \#i	INCA	A
JP -4	JP -20	LD OFB, \# i	DRSZ OFB	LD A, [X-]	LD A, [B-]	LD [B-], \#i	DECA	B
JP -3	JP -19	LD OFC, \# i	DRSZ OFC	LD Md, \#i	JMPL	X A, Md	POPA	C
JP -2	JP -18	LD OFD, \# i	DRSZ OFD	DIR	JSRL	LD A,Md	RETSK	D
JP -1	JP - 17	LD OFE, \# i	DRSZ OFE	LD A, [X]	LD A, [B]	LD [B], \#	RET	E
JP -0	JP -16	LD OFF, \# i	DRSZ OFF	*	*	LD B, \#i	RETI	F

Opcode Table (Continued)
Upper Nibble Along X-Axis
Lower Nibble Along Y-Axis

7	6	5	4	3	2	1	0	
$\begin{aligned} & \text { IFBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	ANDSZ   A, \#i	LD B, \# OF	IFBNE 0	$\begin{aligned} & \text { JSR } \\ & \times 000-\times 0 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 000-\times 0 F F \end{aligned}$	$J P+17$	INTR	0
$\begin{aligned} & \text { IFBIT } \\ & 1,[B] \end{aligned}$	*	LD B, \# 0E	IFBNE 1	$\begin{aligned} & \text { JSR } \\ & \times 100-x 1 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 100-\times 1 F F \end{aligned}$	$J P+18$	$J P+2$	1
$\begin{aligned} & \text { IFBIT } \\ & 2,[B] \end{aligned}$	*	LD B, \#0D	IFBNE 2	$\begin{aligned} & \text { JSR } \\ & \times 200-\times 2 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 200-\times 2 F F \end{aligned}$	$\mathrm{JP}+19$	$J P+3$	2
$\begin{aligned} & \text { IFBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	*	LD B, \#OC	IFBNE 3	$\begin{aligned} & \text { JSR } \\ & \times 300-x 3 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 300-\times 3 F F \end{aligned}$	$J P+20$	$J P+4$	3
$\begin{aligned} & \text { IFBIT } \\ & 4,[B] \end{aligned}$	CLRA	LD B, \#0B	IFBNE 4	$\begin{aligned} & \text { JSR } \\ & \times 400-\times 4 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 400-\times 4 F F \end{aligned}$	$J P+21$	$J P+5$	4
$\begin{aligned} & \text { IFBIT } \\ & 5,[B] \end{aligned}$	SWAPA	LD B, \#0A	IFBNE 5	$\begin{aligned} & \text { JSR } \\ & \times 500-\times 5 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 500-\times 5 F F \end{aligned}$	JP + 22	$J P+6$	5
$\begin{aligned} & \text { IFBIT } \\ & 6,[B] \end{aligned}$	DCORA	LD B, \#09	IFBNE 6	$\begin{aligned} & \text { JSR } \\ & \text { x } 600-\mathrm{x} 6 \mathrm{FF} \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 600-\times 6 F F \end{aligned}$	$J P+23$	$J P+7$	6
$\begin{aligned} & \text { IFBIT } \\ & 7,[B] \end{aligned}$	PUSHA	LD B, \#08	IFBNE 7	$\begin{aligned} & \text { JSR } \\ & \text { x700-x7FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x700-x7FF } \end{aligned}$	$J P+24$	$J P+8$	7
$\begin{aligned} & \text { SBIT } \\ & 0,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	LD B, \#07	IFBNE 8	$\begin{aligned} & \text { JSR } \\ & \text { x800-x8FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 800-\times 8 F F \end{aligned}$	$\mathrm{JP}+25$	$J P+9$	8
$\begin{aligned} & \text { SBIT } \\ & 1,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & \text { 1,[B] } \end{aligned}$	LD B, \#06	IFBNE 9	$\begin{aligned} & \text { JSR } \\ & \text { x900-x9FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 900-\times 9 \text { FF } \end{aligned}$	JP + 26	$J P+10$	9
$\begin{aligned} & \text { SBIT } \\ & 2,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 2,[\mathrm{~B}] \end{aligned}$	LD B, \#05	IFBNE OA	$\begin{aligned} & \text { JSR } \\ & \times A 00-x A F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xAOO-xAFF } \end{aligned}$	$J P+27$	$\mathrm{JP}+11$	A
$\begin{aligned} & \text { SBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	LD B, \#04	IFBNE OB	$\begin{aligned} & \text { JSR } \\ & \text { xB00-xBFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xBOO-xBFF } \end{aligned}$	JP + 28	$J P+12$	B
$\begin{aligned} & \text { SBIT } \\ & 4,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 4,[\mathrm{~B}] \end{aligned}$	LD B, \#03	IFBNE OC	$\begin{aligned} & \text { JSR } \\ & \text { xCOO-xCFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & x C 00-x C F F \end{aligned}$	JP + 29	$J P+13$	C
$\begin{aligned} & \text { SBIT } \\ & 5,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 5,[\mathrm{~B}] \end{aligned}$	LD B, \#02	IFBNE OD	$\begin{aligned} & \text { JSR } \\ & \text { xD00-xDFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xDOO-xDFF } \end{aligned}$	$\mathrm{JP}+30$	$J P+14$	D
$\begin{aligned} & \text { SBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 6,[B] \end{aligned}$	LD B, \#01	IFBNE OE	$\begin{aligned} & \text { JSR } \\ & \text { xEOO-xEFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xEOO-xEFF } \end{aligned}$	JP + 31	$J P+15$	E
$\begin{aligned} & \text { SBIT } \\ & 7,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	LD B, \#00	IFBNE OF	$\begin{aligned} & \text { JSR } \\ & \text { xFOO-xFFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xF00-xFFF } \end{aligned}$	$\mathrm{JP}+32$	$J P+16$	F

Where,
$i$ is the immediate data
Md is a directly addressed memory location

* is an unused opcode

Note: The opcode 60 Hex is also the opcode for IFBIT \# $\mathrm{i}, \mathrm{A}$

## Mask Options

The mask programmable options are shown below. The options are programmed at the same time as the ROM pattern submission.

```
OPTION 1: CLOCK CONFIGURATION
 = 1 Crystal Oscillator (CKI/l0)
 G7 (CKO) is clock generator
 output to crystal/resonator
 CKI is the clock input
 =2 Single-pin RC controlled
 oscillator (CKI/l0)
 G7 is available as a HALT
 restart and/or general purpose
 input
```

OPTION 2: HALT
$=1$ Enable HALT mode
$=2$ Disable HALT mode
OPTION 3: BONDING
$=1 \quad 44-$ Pin PLCC
$=2$ 40-Pin DIP
$=3$ N/A
$=4 \quad$ 28-Pin DIP
$=5 \quad 28-\mathrm{Pin} \mathrm{SO}$

## Development Support

## IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 In -Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface or maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real time, full speed emulation up to $10 \mathrm{MHz}, 32 \mathrm{kBytes}$ of emulation memory and 4 k frames of trace buffer memory. The user may define as many as

32 k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.
During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bar graph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy to use window interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefinable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a $\mathrm{PC}{ }^{\oplus}$ via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time to under 3 seconds.
The following tables list the emulator and probe cards ordering information.

Emulator Ordering Information

Part Number	Description	Current Version
IM-COP8/400/1 $\ddagger$	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger   software and RS-232 serial interface cable, with 110V @ 60 Hz Power Supply.	HOST SOFTWARE:
IM-COP8/400/2 $\ddagger$	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger   software and RS-232 serial interface cable, with 220V @ 50 Hz Power Supply.	
DM-COP8/888CF $\ddagger$	MetaLink iceMASTER Debug Module. This is the low cost version of MetaLink's   iceMASTER. Firmware: Ver. 6.07.	

[^3]Probe Card Ordering Information

Part Number	Package	Voltage   Range	Emulates
MHW-884CF28D5PC	28 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP884CF
MHW-884CF28DWPC	28 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP884CF
MHW-888CF40D5PC	40 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888CF
MHW-888CF40DWPC	40 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP888CF
MWH-888CF44D5PC	44 PLCC	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888CF
MHW-888CF44DWPC	44 PLCC	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP888CF

## MACRO CROSS ASSEMBLER

National Semiconductor offers a COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink iceMASTER emulators.

Assembler Ordering Information

Part Number	Description	Manual
COPB-DEV-IBMA	COP8 Assembler/ Linker/Librarian for IBM ${ }^{\oplus}, \mathrm{PC} / \mathrm{XT}{ }^{\oplus}$, AT® or compatible.	424410632-001

## SINGLE CHIP EMULATOR DEVICE

The COP8 family is fully supported by One-Time Programmable (OTP) emulators. For more detailed information refer to the emulation device specific datasheets and the emulator selection table below.

## PROGRAMMING SUPPORT

Programming of the single chip emulator devices is supported by different sources. The following programmers are certified for programming the One-Time Programmable (OTP) devices.

Manufacturer and Product	U.S. Phone Number	Europe Phone Number	Asia Phone Number
MetaLink-Debug Module	(602) 926-0797	Germany: +49-8141-1030	Hong Kong: + 852-737-1800
Zeltek-Superpro	(408) 745-7974	Germany: + 49-20-41684758	Singapore: +65 2766433
BP Microsystems-EP-1140	(800) 225-2102	Germany: + 49-89 8576667	Hong Kong: +852 3880629
Data I/O-Unisite; -System 29, -System 39	(800) 322-8246	Europe: +31-20-622866   Germany: +49-89-85-8020	Japan: + 33-432-6991
Abcom-COP8   Programmer		Europe: $+89-808707$	
System General Turpro-1-FX; -APRO	(408) 263-6667	Switzerland: + 31-921-7844	Taiwan Taipoi: +2-91730n5

OTP Emulator Ordering Information

Device Number	Clock Option	Package	Emulates
COP8788CFV-X	Crystal	44 LDCC	COP888CF
COP8788CFV-R	R/C	40 DIP	COP888CF
COP8788CFN-X	Crystal		
COP8788CFN-R*	R/C	28 DIP	COP884CF
COP8784CFN-X	Crystal		
COP8784CFN-R*	R/C	28 SO	COP884CF
COP8784CFWM-X*	Crystal		
COP8784CFWM-R	R/C		

*Check with the local sales office about the availability.

## Development Support (Continued)

DIAL-A-HELPER
Dial-A-Helper is a service provided by the Microcontroller Applications group. The Dial-A-Helper is an Electronic Bulletin Board Information system.

## INFORMATION SYSTEM

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.
If the user has a PC with a communications package then files from the FILE SECTION can be down loaded to disk for later use.

## ORDER P/N: MOLE-DIAL-A-HLP

Information System Package Contents:
Dial-A-Helper Users Manual
Public Domain Communications Software

## FACTORY APPLICATIONS SUPPORT

Dial-A-Helper also provides immediate factor applications support. If a user has questions, he can leave messages on our electronic bulletin board, which we will respond to.

Voice:   Modem:	(800) 272-9959		
	Canada/		
	U.S.:	(800) NS	C-MICRO
		(800) 67	2-6427
	Baud:	14.4k	
	Set-Up:	Length:	8-Bit
		Parity:	None
		Stop Bit:	
	Operatio	24 Hours	, 7 Days

## COP688CS/COP684CS/COP888CS/COP884CS/ COP988CS/COP984CS Single-Chip microCMOS Microcontroller

## General Description

The COP888 family of microcontrollers uses an 8-bit single chip core architecture fabricated with National Semiconductor's $\mathrm{M}^{2}$ CMOSTM process technology. The COP888CS is a member of this expandable 8 -bit core processor family of microcontrollers.
(Continued)

## Features

- Low cost 8-bit microcontroller
m Fully static CMOS, with low current drain
- Two power saving modes: HALT and IDLE
- $1 \mu \mathrm{~s}$ instruction cycle time
- 4096 bytes on-board ROM
- 192 bytes on-board RAM
- Single supply operation: $2.5 \mathrm{~V}-6 \mathrm{~V}$
- Full duplex UART
- One analog comparator
- MICROWIRE/PLUSTM serial I/O
- WATCHDOGTM and Clock Monitor logic
- Idle Timer
- Multi-Input Wakeup (MIWU) with optional interrupts (8)
- One 16-bit timer, with two 16 -bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode

8-bit Stack Pointer SP (stack in RAM)
= Tivo ó-iui Regisler indirect Data iviemory rointers ( B and X )

- Ten multi-source vectored interrupts servicing
- External Interrupt
- Idle Timer TO
- Timer (2)
- MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
- UART (2)
— Default VIS
- Versatile instruction set
- True bit manipulation
- Memory mapped I/O
- BCD arithmetic instructions
- Package:
- 44 PLCC with 39 I/O pins
-40 N with $35 \mathrm{I} / \mathrm{O}$ pins
-28 SO or 28 N , each with 23 I/O pins
- Software selectable I/O options
-- TRI-STATE ${ }^{\circledR}$ Output
- Push-Pull Output
- Weak Pull Up Input
- High Impedance Input
- Schmitt trigger inputs on ports $G$ and $L$
- One-Time Programmable (OTP) emulation devices
- Real time emulation and full program debug offered by MetaLink's Development Systems

Block Diagram


TL/DD/10830-1
FIGURE 1. Block Dlagram

## General Description (Continued)

It is a fully static part, fabricated using double-metal silicon gate microCMOS technology. Features include an 8 -bit memory mapped architecture, MICROWIRE/PLUS serial I/O, one 16 -bit timer/counter supporting three modes (Processor Independent PWM generation, External Event counter, and Input Capture mode capabilities), full duplex UART, one comparator, and two power savings modes (HALT and

IDLE), both with a multi-sourced wakeup/interrupt capability. This multi-sourced interrupt capability may also be used independent of the HALT or IDLE modes. Each I/O pin has software selectable configurations. The device operates over a voltage range of 2.5 V to 6 V . High throughput is achieved with an efficient, regular instruction set operating at a maximum of $1 \mu \mathrm{~s}$ per instruction rate.

## Connection Diagrams

Dual-In-Line Package

TL/DD/10830-3

Order Number COP888S-XXX/N See NS Package Number N40A


TL/DD/10830-5

Top View
Order Number COP884CS-XXX/N See NS Package Number N28B

Order Number COP884CS-XXX/WM
See NS Package Number M28B
FIGURE 2. Connection Diagrams

Connection Diagrams (Continued)
Pinouts for 28-, 40- and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-Pin   Pack.	40-Pin   Pack.	44-Pin   Pack.
LO	1/O	MIWU		11	17	17
L1	1/0	MIWU	CKX	12	18	18
L2	1/0	MIWU	TDX	13	19	19
L3	1/0	MIWU	RDX	14	20	20
L4	1/0	MIWU		15	21	25
L5	$1 / 0$	MIWU		16	22	26
L6	1/0	MIWU		17	23	27
L7	1/0	MIWU		18	24	28
G0	1/0	INT		25	35	39
G1	WDOUT			26	36	40
G2	1/O	T1B		27	37	41
G3	1/0	T1A		28	38	42
G4	$1 / 0$	SO		1	3	3
G5	$1 / 0$	SK		2	4	4
G6	1	SI		3	5	5
G7	I/CKO	HALT Restart		4	6	6
D0	0			19	25	29
D1	0			20	26	30
D2	0			21	27	31
D3	0			22	28	32
10	1			7	9	9
11	1	COMP1IN-		8	10	10
12	1	COMP1IN+		9	11	11
13	1	COMP10UT		10	12	12
14	1				13	13
15	1				14	14
16	1				15	15
17	1				10	10
D4	0				29	33
D5	0				30	34
D6	0				31	35
D7	0				32	36
C0	$1 / 0$				39	43
C1	$1 / 0$				40	44
C2	1/0				1	1
C3	$1 / 0$				2	2
C4	1/0					21
C5	1/0					22
C6	1/0					23
C7	$1 / 0$					24
$\mathrm{V}_{\text {CC }}$				6	8	8
GND				23	33	37
CKI				5	7	7
RESET				24	34	38

## Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
7 V
Voltage at Any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into $\mathrm{V}_{\mathrm{CC}}$ Pin (Source) 100 mA

Total Current out of GND Pin (Sink)
110 mA Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$ Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

## DC Electrical Characteristics $98 \times C S$ : $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage COP98XCS   COP98XCSH		$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Power Supply Ripple (Note 1)	Peak-to-Peak			$0.1 \mathrm{~V}_{\mathrm{CC}}$	V
Supply Current (Note 2) $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=10 \mu \mathrm{~s} \end{aligned}$			$\begin{gathered} 12.5 \\ 5.5 \\ 2.5 \\ 1.4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
HALT Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & <0.7 \\ & <0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$
IDLE Current $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=10 \mu \mathrm{~s} \end{aligned}$			$\begin{aligned} & 3.5 \\ & 2.5 \\ & 0.7 \end{aligned}$	mA   mA   mA
Input Levels   RESET   Logic High   Logic Low   CKI (External and Crystal Osc. Modes)   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low		$0.8 V_{C C}$   $0.7 \mathrm{~V}_{\mathrm{CC}}$   $0.7 V_{C C}$		$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & V \\ & v \end{aligned}$
Hi-Z Input Leakage	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	-1		+1	$\mu \mathrm{A}$
Input Pullup Current	$V_{C C}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-40		-250	$\mu \mathrm{A}$
G and L Port Input Hysteresis				$0.35 \mathrm{~V}_{\text {CC }}$	V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up Mode)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ -0.2 \\ 10 \\ 2.0 \\ -10 \\ -2.5 \\ -0.4 \\ -0.2 \\ 1.6 \\ 0.7 \\ \hline \end{gathered}$		-100 -33	mA   mA   mA   mA   $\mu \mathrm{A}$   $\mu \mathrm{A}$   mA   mA   mA   mA
TRI-STATE Leakage	$V_{C C}=6.0 \mathrm{~V}$	-1		+1	$\mu \mathrm{A}$

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to VCC, L, C and GO-G5 configured as outputs and set high. The D port set to zero. The clock monitor and the comparators are disabled.

## DC Electrical Characteristics $98 \times 6$ : $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Parameter	Conditions	Min	Typ	Max	Units
Allowable Sink/Source   Current per Pin   D Outputs (Sink)   All others					
Maximum Input Current   without Latchup (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			15   3	mA   mA
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$	500 ns Rise   and Fall Time (Min)	2			mA
Input Capacitance				7100	V
Load Capacitance on D2				1000	pF

AC Electrical Characteristics $98 \times \mathrm{Cs}: 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crystal, Resonator, R/C Oscillator	$\begin{aligned} & 4 V \leq V_{C C} \leq 6 V \\ & 2.5 \mathrm{~V} \leq V_{C C}<4 V \\ & 4 V \leq V_{C C} \leq 6 V \\ & 2.5 V \leq V_{C C}<4 V \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \end{gathered}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \end{aligned}$
Inputs tsetup $t_{\text {HOLD }}$	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
```Output Propagation Delay (Note 6) tPD1, tpD0 So, SK All Others```	$\begin{aligned} & R_{L}=2.2 k, C_{L}=100 \mathrm{pF} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{C C}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{C C}<4 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 2.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~S} \\ & \hline \end{aligned}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tupD)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$			$\begin{aligned} & t_{c} \\ & t_{c} \\ & t_{c} \\ & t_{c} \\ & \hline \end{aligned}$
Reset Pulse Width		1			$\mu \mathrm{s}$

Note 5: Pins G6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$). The effective
resistance to V_{CC} is 750Ω (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .
Notye 6: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
Voltage at Any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into V_{CC} Pin (Source)
$\begin{array}{lr}\text { Total Current out of GND Pin (Sink) } & 110 \mathrm{~mA} \\ \text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+140^{\circ} \mathrm{C}\end{array}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics $88 x \mathrm{Cs}:-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage		2.5		6	V
Power Supply Ripple (Note 1)	Peak-to-Peak			$0.1 \mathrm{~V}_{\mathrm{CC}}$	V
Supply Current (Note 2) $\begin{aligned} \mathrm{CKI} & =10 \mathrm{MHz} \\ \mathrm{CKI} & =4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=2.5 \mu \mathrm{~s} \end{aligned}$			$\begin{gathered} 12.5 \\ 5.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
HALT Current (Note 3)	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz}$		<1	10	$\mu \mathrm{A}$
IDLE Current $\begin{aligned} \mathrm{CKI} & =10 \mathrm{MHz} \\ \mathrm{CKI} & =4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \end{aligned}$			$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
```Input Levels RESET Logic High Logic Low CKI (External and Crystal Osc. Modes) Logic High Logic Low All Other Inputs Logic High Logic Low```		$\begin{aligned} & 0.8 V_{C C} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{~V} \end{aligned}$
Hi-Z Input Leakage	$V_{C C}=6 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
Input Pullup Current	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-40		-250	$\mu \mathrm{A}$
G and L Port Input Hysteresis				$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up Mode)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	-0.4 -0.2 10 2.0 -10 -2.5 -0.4 -0.2 1.6 0.7		$\begin{gathered} -100 \\ -33 \end{gathered}$	mA   mA   mA   mA   $\mu \mathrm{A}$   $\mu \mathrm{A}$   mA   mA   mA   mA
TRI-STATE Leakage		-2		+2	$\mu \mathrm{A}$

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to VCC, L, C and G0-G5 configured as outputs and set high. The D port set to zero. The clock monitor and the comparators are disabled.

DC Electrical Characteristics $88 \times C S$ : $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Parameter	Conditions	Min	Typ	Max	Units
Allowable Sink/Source   Current per Pin   D Outputs (Sink)   All others					
Maximum Input Current   without Latchup (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$	500 ns Rise   and Fall Time (Min)	2		mA	
Input Capacitance				mA	
Load Capacitance on D2				mA	

AC Electrical Characteristics $88 \times c \mathrm{Cs}:-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crystal, Resonator, R/C Oscillator	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{VCC} \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \end{gathered}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\mu \mathrm{s}$   $\mu \mathrm{S}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$
Inputs ${ }^{\text {t SETUP }}$ $t_{\text {HOLD }}$	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Output Propagation Delay (Note 6) $\mathrm{t}_{\mathrm{PD} 1}, \mathrm{t}_{\mathrm{PDO}}$ SO, SK   All Others	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 2.5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
MICROWIRE Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tupd)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$			$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \hline \end{aligned}$
Reset Pulse Width		1			$\mu \mathrm{s}$

Note 5: Pins G6 and RESET are designed with a high voitage input network for factory testing. These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$ ). The effective resistance to $V_{C C}$ is $750 \Omega$ (typical). These two pins will not latch $u$. The voltage at the pins must be limited to less than 14 V .
Note 6: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.

Absolute Maximum Ratings
If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
7 V
Voltage at Any Pin
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into $\mathrm{V}_{\mathrm{CC}}$ Pin (Source)
100 mA

Total Current out of GND Pin (Sink)
110 mA Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics $68 \times C S$ : $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage		4.5		5.5	V
Power Supply Ripple (Note 1)	Peak-to-Peak			$0.1 \mathrm{~V}_{\text {CC }}$	V
$\begin{aligned} & \text { Supply Current (Note 2) } \\ & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \end{aligned}$			$\begin{gathered} 12.5 \\ 5.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
HALT Current (Note 3)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz}$		<10	30	$\mu \mathrm{A}$
IDLE Current $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \end{aligned}$			$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$
Input Levels   RESET   Logic High   Logic Low   CKI (External and Crystal Osc. Modes)   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low		$\begin{aligned} & 0.8 V_{C C} \\ & 0.7 V_{C C} \\ & 0.7 V_{C C} \end{aligned}$		$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Hi-Z Input Leakage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-5		+5	$\mu \mathrm{A}$
Input Pullup Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-35		-400	$\mu \mathrm{A}$
G and L Port Input Hysteresis				$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up Mode)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ 9 \\ -9 \\ -0.4 \\ 1.4 \\ \hline \end{gathered}$		140	mA   mA   $\mu \mathrm{A}$   mA   mA
TRI-STATE Leakage	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	-5		$+5$	$\mu \mathrm{A}$

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}, \mathrm{C}$ and $\mathrm{GO} 0-\mathrm{G} 5$ configured as outputs and set high. The D port set to zero. The clock monitor and the comparators are disabled.

DC Electrical Characteristics 68xCS: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Parameter	Conditions	Min	Typ	Max	Units
Allowable Sink/Source					
Current per Pin   D Outputs (Sink)   All others				12	mA
Maximum Input Current   without Latchup (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			mA	
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$	500 ns Rise				
and Fall Time (Min)				$\pm 100$	mA
Input Capacitance					V
Load Capacitance on D2				7	pF

AC Electrical Characteristics $68 \times \mathrm{XCS}:-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crystal, Resonator, R/C Oscillator	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{gathered} \mu \mathrm{S} \\ \mu \mathrm{~S} \end{gathered}$
Inputs tsetup $t_{\text {HOLD }}$	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 60 \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
Output Propagation Delay (Note 6) $t_{\text {PD1 }}, t_{\text {PDO }}$ SO, SK   All Others	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.7 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
MICROWIRE Setup Time (tuws)   MICROWIRE Hold Time (tuwh)   MICROWIRE Output Propagation Delay (turD)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
Input Pulse Width interrupt input High Iime Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$			$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \hline \end{aligned}$
Reset Pulse Width		1			$\mu \mathrm{s}$

Note 5: Pins G6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$ ). The effective resistance to $V_{C C}$ is $750 \Omega$ (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .
Note 6: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.

## Comparator AC and DC Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage	$0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$		$\pm 10$	$\pm 25$	mV
Input Common Mode Voltage Range		0.4		$\mathrm{~V}_{\mathrm{CC}}-1.5$	V
Low Level Output Current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.6			mA
High Level Output Current	$\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{~V}$	1.6			mA
DC Supply Current   (When Enabled)				250	$\mu \mathrm{~A}$
Response Time	TBD mV Step, TBD mV   Overdrive, 100 pF Load		1		$\mu \mathrm{~s}$



FIGURE 3. MICROWIRE/PLUS TIming

Typical Performance Characteristics $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$



Port L/C/G Push-Pull Source Current


TL/DD/10830-28


Port L/C/G Weak Pull-Up Source Current


Port L/C/G/ Push-Pull Sink Current


## Pin Descriptions

$V_{C C}$ and GND are the power supply pins.
CKI is the clock input. This can come from an R/C generated oscillator, or a crystal oscillator (in conjunction with CKO). See Oscillator Description section.
$\overline{\text { RESET }}$ is the master reset input. See Reset Description section.
The device contains three bidirectional 8-bit I/O ports (C, G and $L$ ), where each individual bit may be independently configured as an input (Schmitt trigger inputs on ports $L$ and $G$ ), output or TRI-STATE under program control. Three data memory address locations are allocated for each of these I/ O ports. Each I/O port has two associated 8-bit memory mapped registers, the CONFIGURATION register and the output DATA register. A memory mapped address is also reserved for the input pins of each I/O port. (See the memory map for the various addresses associated with the I/O ports.) Figure 4 shows the I/O port configurations. The DATA and CONFIGURATION registers allow for each port bit to be individually configured under software control as shown below:

CONFIGURATION   Register	DATA   Register	Port Set-Up
0	0	Hi-Z Input   (TRI-STATE Output)   0
1	1	Input with Weak Pull-Up
1	0	Push-Pull Zero Output



FIGURE 4. I/O Port Configurations
Port L is an 8 -bit I/O port. All L-pins have Schmitt triggers on the inputs.
The Port L supports Multi-Input Wake Up on all eight pins. L1 is used for the UART external clock. L2 and L3 are used for the UART transmit and receive.
The Port L has the following alternate features:

L0	MIWU
L1	MIWU or CKX
L2	MIWU or TDX
L3	MIWU or RDX

L4 MIWU
L5 MIWU
L6 MIWU
L7 MIWU
Port G is an 8-bit port with 5 I/O pins (G0, G2-G5), an input pin (G6), and two dedicated output pins (G1 and G7). Pins G0 and G2-G6 all have Schmitt Triggers on their inputs. Pin G1 serves as the dedicated WDOUT WATCHDOG output, while pin G7 is either input or output depending on the oscillator mask option selected. With the crystal oscillator option selected, G7 serves as the dedicated output pin for the CKO clock output. With the single-pin R/C oscillator mask option selected, G7 serves as a general purpose input pin but is also used to bring the device out of HALT mode with a low to high transition on G7. There are two registers associated with the $G$ Port, a data register and a configuration register. Therefore, each of the $5 \mathrm{I} / \mathrm{O}$ bits (G0, G2-G5) can be individually configured under software control.
Since G6 is an input only pin and G7 is the dedicated CKO clock output pin (crystal clock option) or general purpose input ( $\mathrm{R} / \mathrm{C}$ clock option), the associated bits in the data and configuration registers for G6 and G7 are used for special purpose functions as outlined below. Reading the G6 and G7 data bits will return zeros.

Note that the chip will be placed in the HALT mode by writing a " 1 " to bit 7 of the Port G Data Register. Similarly the chip will be placed in the IDLE mode by writing a " 1 " to bit 6 of the Port G Data Register.

Writing a " 1 " to bit 6 of the Port G Configuration Register enables the MICROWIRE/PLUS to operate with the alternate phase of the SK clock. The G7 configuration bit, if set high, enables the clock start up delay after HALT when the R/C clock configuration is used.

	Config Reg.	Data Reg.
G7	CLKDLY	HALT
G6	Alternate SK	IDLE

Port $G$ has the following alternate features:
Go INTR (External Interrupt Input)
G2 T1B (Timer T1 Capture Input)
G3 T1A (Timer T1 I/O)
G4 SO (MICROWIRE Serial Data Output)
G5 SK (MICROWIRE Serial Clock)
G6 SI (MICROWIRE Serial Data Input)
Port G has the following dedicated functions:
G1 WDOUT WATCHDOG and/or Clock Monitor dedicated output
G7 CKO Oscillator dedicated output or general purpose input
Port C is an 8 -bit $\mathrm{I} / \mathrm{O}$ port. The 40 -pin device does not have a full complement of Port C pins. The unavailable pins are not terminated. A read operation for these unterminated pins will return unpredictable values.
Port I is an eight-bit $\mathrm{Hi}-\mathrm{Z}$ input port. The 28 -pin device does not have a full complement of Port I pins. The unavailable

## Pin Descriptions (Continued)

pins are not terminated i.e., they are floating. A read operation for these unterminated pins will return unpredictable values. The user must ensure that the software takes this into account by either masking or restricting the accesses to bit operations. The unterminated Port I pins will draw power only when addressed.
Ports 11-13 are used for Comparator 1.
Ports $11-13$ have the following alternate features.
I1 COMP1 - IN (Comparator 1 Negative Input)
I2 COMP1 + IN (Comparator 1 Positive Input)
I3 COMP1OUT (Comparator 1 Output)
Port $D$ is an 8-bit output port that is preset high when RESET goes low. The user can tie two or more D port outputs (except D2) together in order to get a higher drive.
Note: Care must be exercised with the D2 pin operation. At RESET, the external loads on this pin must ensure that the output voltages stay above $0.8 \mathrm{~V}_{\mathrm{CC}}$ to prevent the chip from entering special modes. Also keep the external loading on D2 to less than 1000 pF .

## Functional Description

The architecture of the device is modified Harvard architecture. With the Harvard architecture, the control store program memory (ROM) is separated from the data store memory (RAM). Both ROM and RAM have their own separate addressing space with separate address buses. The architecture, though based on Harvard architecture, permits transfer of data from ROM to RAM.

## CPU REGISTERS

The CPU can do an 8-bit addition, subtraction, logical or shift operation in one instruction $\left(\mathrm{t}_{\mathrm{c}}\right)$ cycle time.
There are six CPU registers:
A is the 8-bit Accumulator Register
PC is the 15 -bit Program Counter Register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 hits of the program counter (PC)
B is an 8-bit RAM address pointer, which can be optionally post auto incremented or decremented.
$X$ is an 8-bit alternate RAM address pointer, which can be optionally post auto incremented or decremented.
SP is the 8-bit stack pointer, which points to the subroutine/ interrupt stack (in RAM). The SP is initialized to RAM address 06F with reset.
$S$ is the 8-bit Data Segment Address Register used to extend the lower half of the address range ( 00 to 7 F ) into 256 data segments of 128 bytes each.
All the CPU registers are memory mapped with the exception of the Accumulator (A) and the Program Counter (PC).

## PROGRAM MEMORY

Program memory consists of 4096 bytes of ROM. These bytes may hold program instructions or constant data (data tables for the LAID instruction, jump vectors for the JID instruction, and interrupt vectors for the VIS instruction). The program memory is addressed by the 15-bit program counter (PC). All interrupts vector to program memory location OFF Hex.

## DATA MEMORY

The data memory address space includes the on-chip RAM and data registers, the I/O registers (Configuration, Data
and Pin), the control registers, the MICROWIRE/PLUS SIO shift register, and the various registers, and counters associated with the timers (with the exception of the IDLE timer). Data memory is addressed directly by the instruction or indirectly by the $\mathrm{B}, \mathrm{X}, \mathrm{SP}$ pointers and S register.
The device has 192 bytes of RAM. Sixteen bytes of RAM are mapped as "registers" at addresses OFO to OFF Hex. These registers can be loaded immediately, and also decremented and tested with the DRSZ (decrement register and skip if zero) instruction. The memory pointer registers $X, S P$, $B$ and $S$ are memory mapped into this space at address locations OFC to OFF Hex respectively, with the other registers being available for general usage.
The instruction set permits any bit in memory to be set, reset or tested. All I/O and registers (except A and PC) are memory mapped; therefore, I/O bits and register bits can be directly and individually set, reset and tested. The accumulator (A) bits can also be directly and individually tested.
Note: RAM contents are undefined upon power-up.

## Data Memory Segment RAM Extension

Data memory address OFF is used as a memory mapped location for the Data Segment Address Register (S).
The data store memory is either addressed directly by a single byte address within the instruction, or indirectly relative to the reference of the $\mathrm{B}, \mathrm{X}$, or SP pointers (each contains a single-byte address). This single-byte address allows an addressing range of 256 locations from 00 to FF hex. The upper bit of this single-byte address divides the data store memory into two separate sections as outlined previously. With the exception of the RAM register memory from address locations $00 F 0$ to 00 FF , all RAM memory is memory mapped with the upper bit of the single-byte address being equal to zero. This allows the upper bit of the single-byte address to determine whether or not the base address range (from 0000 to 00FF) is extended. If this upper bit equals one (ropreconting address iango coco to 06FF), then address extension does not take place. Alternatively, if this upper bit equals zero, then the data segment extension register $S$ is used to extend the base address range (from 0000 to 007 F ) from XX00 to XX7F, where XX represents the 8 bits from the S register. Thus the 128 -byte data segment extensions are located from addresses 0100 to 017 F for data segment 1,0200 to 027 F for data segment 2 , etc., up to FF00 to FF7F for data segment 255 . The base address range from 0000 to 007 F represents data segment 0 .
Figure 5 illustrates how the S register data memory extension is used in extending the lower half of the base address range ( 00 to 7 F hex) into 256 data segments of 128 bytes each, with a total addressing range of 32 kbytes from XX00 to XX7F. This organization allows a total of 256 data segments of 128 bytes each with an additional upper base segment of 128 bytes. Furthermore, all addressing modes are available for all data segments. The S register must be changed under program control to move from one data segment ( 128 bytes) to another. However, the upper base segment (containing the 16 memory registers, l/O registers, control registers, etc.) is always available regardless of the

## Data Memory Segment <br> RAM Extension (Continued)

contents of the $S$ register, since the upper base segment (address range 0080 to 00FF) is independent of data segment extension.
The instructions that utilize the stack pointer (SP) always reference the stack as part of the base segment (Segment 0 ), regardless of the contents of the $S$ register. The $S$ register is not changed by these instructions. Consequently, the stack (used with subroutine linkage and interrupts) is always located in the base segment. The stack pointer will be intitialized to point at data memory location 006F as a result of reset.
The 128 bytes of RAM contained in the base segment are split between the lower and upper base segments. The first 112 bytes of RAM are resident from address 0000 to 006F in the lower base segment, while the remaining 16 bytes of RAM represent the 16 data memory registers located at addresses 00FO to 00FF of the upper base segment. No RAM is located at the upper sixteen addresses ( 0070 to 007F) of the lower base segment.
Additional RAM beyond these initial 128 bytes, however, will always be memory mapped in groups of 128 bytes (or less) at the data segment address extensions (XX00 to XX7F) of the lower base segment. The additional 64 bytes of RAM (beyond the initial 128 bytes) are memory mapped at address locations 0100 to 013F hex.


*Reads as all ones.
FIGURE 5. RAM Organization

## Reset

The RESET input when pulled low initializes the microcontroller. Initialization will occur whenever the RESET input is pulled low. Upon initialization, the data and configuration registers for ports L, G and C are cleared, resulting in these Ports being initialized to the TRI-STATE mode. Pin G1 of the G Port is an exception (as noted below) since pin G1 is dedicated as the WATCHDOG and/or Clock Monitor error output pin. Port D is set high. The PC, PSW, ICNTRL, CNTRL, are cleared. The UART registers PSR, ENU (except that TBMT bit is set), ENUR and ENUI are cleared. The Comparator Select Register is cleared. The $S$ register is initialized to zero. The Multi-Input Wakeup registers WKEN,

WKEDG and WKPND are cleared. The stack pointer, SP, is initialized to 6F Hex.
The device comes out of reset with both the WATCHDOG logic and the Clock Monitor detector armed, with the WATCHDOG service window bits set and the Clock Monitor bit set. The WATCHDOG and Clock Monitor circuits are inhibited during reset. The WATCHDOG service window bits being initialized high default to the maximum WATCHDOG service window of 64 k tc clock cycles. The Clock Monitor bit being initialized high will cause a Clock Monitor error following reset if the clock has not reached the minimum specified frequency at the termination of reset. A Clock Monitor error will cause an active low error output on pin G1. This error output will continue until $16 \mathrm{t}_{\mathrm{c}}-32 \mathrm{t}_{\mathrm{c}}$ clock cycles following the clock frequency reaching the minimum specified value, at which time the G1 output will enter the TRI-STATE mode.
The external RC network shown in Figure 6 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.


TL/DD/10830-9
RC $>5 \times$ Power Supply Rise Time
FIGURE 6. Recommended Reset Circuit

## Oscillator Circuits

The chip can be driven by a clock input on the CKI input pin which can be between DC and 10 MHz . The CKO output clock is on pin G7 (crystal configuration). The CKI input frequency is divided down by 10 to produce the instruction cycle clock ( $1 / \mathrm{t}_{\mathrm{c}}$ ).
Figure 7 shows the Crystal and R/C diagrams.

## CRYSTAL OSCILLATOR

CKI and CKO can be connected to make a closed loop crystal (or resonator) controlled oscillator.
Table A shows the component values required for various standard crystal values.

## R/C OSCILLATOR

By selecting CKI as a single pin oscillator input, a single pin R/C oscillator circuit can be connected to it. CKO is available as a general purpose input, and/or HALT restart input.
Table $B$ shows the variation in the oscillator frequencies as functions of the component ( $R$ and $C$ ) values.


TL/DD/10830-11

FIGURE 7. Crystal and R/C Oscillator Dlagrams

## Oscillator Circuits (Continued)

TABLE A. Crystal Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

R1   $(\mathbf{k} \Omega)$	R2   $(\mathbf{M} \Omega)$	$\mathbf{C} 1$   $(\mathbf{p F})$	$\mathbf{C 2}$   $(\mathbf{p F})$	CKI Freq   $(\mathbf{M H z})$	Conditions
0	1	30	$30-36$	10	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	30	$30-36$	4	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
0	1	200	$100-150$	0.455	$\mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

TABLE B. RC Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$\mathbf{R}$   $(\mathbf{k} \Omega)$	$\mathbf{C}$   (pF)	CKI Freq   (MHz)	Instr. Cycle   ( $\mu \mathbf{s}$ )	Conditions
3.3	82	2.2 to 2.7	3.7 to 4.6	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
5.6	100	1.1 to 1.3	7.4 to 9.0	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
6.8	100	0.9 to 1.1	8.8 to 10.8	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

Note: $3 \mathrm{k} \leq \mathrm{R} \leq 200 \mathrm{k}$

$$
50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}
$$

## Current Drain

The total current drain of the chip depends on:

1. Oscillator operation mode-l1
2. Internal switching current-12
3. Internal leakage current-13
4. Output source current-14
5. DC current caused by external input not at $V_{C C}$ or GND-15
6. Comparator DC supply current when enabled-16
7. Clock Monitor current when enabled-l7

Thus the total current drain, It, is given as

$$
\mathrm{It}=11+12+13+14+15+16+17
$$

To reduce the total current drain, each of the above components must be minimum.
The chip will draw more current as the CKI input frequency increases up to the maximum 10 MHz value. Operating with a crystal network will draw more current than an external square-wave. Switching current, governed by the equation below, can be reduced by lowering voltage and frequency. Leakage current can be reduced by lowering voltage and temperature. The other two items can be reduced by carefully designing the end-user's system.

$$
\mathrm{I}=\mathrm{C} \times \mathrm{V} \times \mathrm{f}
$$

where $C=$ equivalent capacitance of the chip
$\mathrm{V}=$ operating voltage
$\mathrm{f}=\mathrm{CKI}$ frequency

## Control Registers

CNTRL Register (Address X'00EE)
The Timer1 (T1) and MICROWIRE/PLUS control register contains the following bits:

SL1 \& SLO Select the MICROWIRE/PLUS clock divide by ( $00=2,01=4,1 x=8$ )
IEDG External interrupt edge polarity select ( $0=$ Rising edge, $1=$ Falling edge)
MSEL Selects G5 and G4 as MICROWIRE/PLUS signals SK and SO respectively
T1C0 Timer T1 Start/Stop control in timer modes 1 and 2
Timer T1 Underflow Interrupt Pending Flag in timer mode 3
T1C1 Timer T1 mode control bit
T1C2 Timer T1 mode control bit
T1C3 Timer T1 mode control bit

T1C3	T1C2	T1C1	T1C0	MSEL	IEDG	SL1	SL0

Bit 7
Bit 0

## PSW Register (Address X'00EF)

The PSW register contains the following select bits:

GI		Global interrupt enable (enables interrupts)					
		Enable external interrupt					
		MICROWIRE/PLUS busy shifting flag					
	ND	External interrupt pending					
	NA	Timer T1 Interrupt Enable for Timer Underflow or T1A Input capture edge					
	ND	Timer T1 Interrupt Pending Flag (Autoreload RA in mode 1, T1 Underflow in Mode 2, T1A capture edge in mode 3)					
C		Carry Flag					
HC		Half Carry Flaq					
HC	C	T1PNDA	T1ENA	EXPND	BUSY	EXEN	GIE

Bit 7
The Half-Carry bit is also affected by all the instructions that affect the Carry flag. The SC (Set Carry) and RC (Reset Carry) instructions will respectively set or clear both the carry flags. In addition to the SC and RC instructions, ADC, SUBC, RRC and RLC instructions affect the carry and Half Carry flags.

## Control Registers (Continued)

## ICNTRL Register (Address X'00E8)

The ICNTRL register contains the following bits:
T1ENB Timer T1 Interrupt Enable for T1B Input capture edge
T1PNDB Timer T1 Interrupt Pending Flag for T1B capture edge
$\mu$ WEN Enable MICROWIRE/PLUS interrupt
$\mu$ WPND MICROWIRE/PLUS interrupt pending
TOEN Timer TO Interrupt Enable (Bit 12 toggle)
TOPND Timer TO Interrupt pending
LPEN L Port Interrupt Enable (Multi-Input Wakeup/Interrupt)
Bit 7 could be used as a flag

\section*{| Unused | LPEN | TOPND | TOEN | $\mu$ WPND | $\mu$ WEN | T1PNDB | T1ENB |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Bit 7
Bit 0

## Timers

The device contains a very versatile set of timers (T0, T1). All timers and associated autoreload/capture registers power up containing random data.

## TIMER TO (IDLE TIMER)

The device supports applications that require maintaining real time and low power with the IDLE mode. This IDLE mode support is furnished by the IDLE timer T0, which is a 16 -bit timer. The Timer T0 runs continuously at the fixed rate of the instruction cycle clock, $\mathrm{t}_{\mathrm{c}}$. The user cannot read or write to the IDLE Timer TO, which is a count down timer. The Timer T0 supports the following functions:
Exit out of the Idle Mode (See Idle Mode description) WATCHDOG logic (See WATCHDOG description) Start up delay out of the HALT mode
The IDLE Timer TO can generate an interrupt when the thirteenth bit toggles. This toggle is latched into the TOPND pending flag, and will occur every 4 ms at the maximum clock frequency ( $\mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ). A control flag TOEN allows the
interrupt from the thirteenth bit of Timer TO to be enabled or disabled. Setting TOEN will enable the interrupt, while resetting it will disable the interrupt.

## TIMER T1

The device has a powerful timer/counter block.
The timer block consists of a 16 -bit timer, T 1 , and two supporting 16-bit autoreload/capture registers, R1A and R1B. It has two pins associated with it, T1A and T1B. The pin T1A supports I/O required by the timer block, while the pin T1B is an input to the timer block. The powerful and flexible timer block allows the device to easily perform all timer functions with minimal software overhead. The timer block has three operating modes: Processor Independent PWM mode, External Event Counter mode, and Input Capture mode.
The control bits T1C3, T1C2, and T1C1 allow selection of the different modes of operation.

## Mode 1. Processor Independent PWM Mode

As the name suggests, this mode allows the device to generate a PWM signal with very minimal user intervention. The user only has to define the parameters of the PWM signal (ON time and OFF time). Once begun, the timer block will continuously generate the PWM signal completely independent of the microcontroller. The user software services the timer block only when the PWM parameters require updating.
In this mode the timer T1 counts down at a fixed rate of $\mathrm{t}_{\mathrm{c}}$. Upon every underflow the timer is alternately reloaded with the contents of supporting registers, R1A and R1B. The very first underflow of the timer causes the timer to reload from the register R1A. Subsequent underflows cause the timer to be reloaded from the registers alternately beginning with the register R1B.
The T1 Timer control bits, T1C3, T1C2 and T1C1 set up the timer for PWM mode operation.
Figure 8 shows a block diagram of the timer in PWM mode. The underflows can be programmed to toggle the T1A output pin. The underflows can also be programmed to generate interrupts.


TL/DD/10830-12
FIGURE 8. Timer in PWM Mode

Timers (Continued)
Underflows from the timer are alternately latched into two pending flags, T1PNDA and T1PNDB. The user must reset these pending flags under software control. Two control enable flags, T1ENA and T1ENB, allow the interrupts from the timer underflow to be enabled or disabled. Setting the timer enable flag T1ENA will cause an interrupt when a timer underflow causes the R1A register to be reloaded into the timer. Setting the timer enable flag T1ENB will cause an interrupt when a timer underflow causes the R1B register to be reloaded into the timer. Resetting the timer enable flags will disable the associated interrupts.
Either or both of the timer underflow interrupts may be enabled. This gives the user the flexibility of interrupting once per PWM period on either the rising or falling edge of the PWM output. Alternatively, the user may choose to interrupt on both edges of the PWM output.

## Mode 2. External Event Counter Mode

This mode is quite similar to the processor independent PWM mode described above. The main difference is that the timer, T 1 , is clocked by the input signal from the T1A pin. The Tx timer control bits, T1C3, T1C2 and T1C1 allow the timer to be clocked either on a positive or negative edge from the T1A pin. Underflows from the timer are latched into the T1PNDA pending flag. Setting the T1ENA control flag will cause an interrupt when the timer underflows.
In this mode the input pin T1B can be used as an independent positive edge sensitive interrupt input if the T1ENB control flag is set. The occurrence of a positive edge on the T1B input pin is latched into the T1PNDB flag.
Figure 9 shows a block diagram of the timer in External Event Counter mode.
Note: The PWM output is not available in this mode since the T1A pin is being used as the counter input clock.

## Mode 3. Input Capture Mode

The device can precisely measure external frequencies or time external events by placing the timer block, $T 1$, in the input capture mode.
In this mode, the timer T1 is constantly running at the fixed $\mathrm{t}_{\mathrm{c}}$ rate. The two registers, R1A and R1B, act as capture registers. Each register acts in conjunction with a pin. The register R1A acts in conjunction with the T1A pin and the register R1B acts in conjunction with the T1B pin.


TL/DD/10830-13
FIGURE 9. Timer in External Event Counter Mode

The timer value gets copied over into the register when a trigger event occurs on its corresponding pin. Control bits, T1C3, T1C2 and T1C1, allow the trigger events to be specified either as a positive or a negative edge. The trigger condition for each input pin can be specified independently.
The trigger conditions can also be programmed to generate interrupts. The occurrence of the specified trigger condition on the T1A and T1B pins will be respectively latched into the pending flags, T1PNDA and T1PNDB. The control flag T1ENA allows the interrupt on T1A to be either enabled or disabled. Setting the T1ENA flag enables interrupts to be generated when the selected trigger condition occurs on the T1A pin. Similarly, the flag T1ENB controls the interrupts from the T1B pin.
Underflows from the timer can also be programmed to generate interrupts. Underflows are latched into the timer T1C0 pending flag (the T1C0 control bit serves as the timer underflow interrupt pending flag in the Input Capture mode). Consequently, the T1C0 control bit should be reset when entering the Input Capture mode. The timer underflow interrupt is enabled with the T1ENA control flag. When a T1A interrupt occurs in the input Capture mode, the user must check both the T1PNDA and T1C0 pending flags in order to determine whether a T1A input capture or a timer underflow (or both) caused the interrupt.
Figure 10 shows a block diagram of the timer in Input Capture mode.

## TIMER CONTROL FLAGS

The control bits and their functions are summarized below.
T1C0 Timer Start/Stop control in Modes 1 and 2 (Processor Independent PWM and External Event Counter), where $1=$ Start, $0=$ Stop Timer Underflow Interrupt Pending Flag in Mode 3 (Input Capture)
T1PNDA Timer Interrupt Pending Flag
T1PN!D Timer !nterrupt Pending Fleg
T1ENA Timer Interrupt Enable Flag
T1ENB Timer Interrupt Enable Flag
1 = Timer Interrupt Enabled
$0=$ Timer Interrupt Disabled
T1C3 Timer mode control
T1C2 Timer mode control
T1C1 Timer mode control


FIGURE 10. Timer in Input Capture Mode

Timers (Continued)
The timer mode control bits (T1C3, T1C2 and T1C1) are detailed below:

T1C3	T1C2	T1C1	Timer Mode	Interrupt A Source	Interrupt B Source	Timer Counts On
0	0	0	MODE 2 (External Event Counter)	Timer Underflow	Pos. T1B   Edge	T1A   Pos. Edge
0	0	1	MODE 2 (External Event Counter)	Timer Underflow	Pos. T1B   Edge	T1A Neg. Edge
1	0	1	MODE 1 (PWM)   T1A Toggle	Autoreload RA	Autoreload RB	$\mathrm{t}_{\mathrm{c}}$
1	0	0	MODE 1 (PWM) No T1A Toggle	Autoreload RA	Autoreload RB	$t_{c}$
0	1	0	MODE 3 (Capture)   Captures:   T1A Pos. Edge   T1B Pos. Edge	Pos. T1A   Edge or   Timer   Underflow	Pos. T1B Edge	$\mathrm{t}_{\mathrm{c}}$
1	1	0	MODE 3 (Capture)   Captures:   T1A Pos. Edge T1B Neg. Edge	Pos. T1A   Edge or   Timer Underflow	Neg. T1B Edge	$\mathrm{t}_{\mathrm{c}}$
0	1	1	MODE 3 (Capture)   Captures:   T1A Neg. Edge   T1B Pos. Edge	Neg. T1B   Edge or   Timer   Underflow	Pos. T1B Edge	$\mathrm{t}_{\mathrm{c}}$
1	1	1	MODE 3 (Capture)   Captures:   T1A Neg. Edge   T1B Neg. Edge	Neg. T1A   Edge or   Timer   Underfiow	Neg. T1B Edge	$\mathrm{t}_{\mathrm{c}}$

## Power Save Modes

The device offers the user two power save modes of operation: HALT and IDLE. In the HALT mode, all microcontroller activities are stopped. In the IDLE mode, the on-board oscillator circuitry the WATCHDOG logic, the Clock Monitor and timer TO are active but all other microcontroller activities are stopped. In either mode, all on-board RAM, registers, I/O states, and timers (with the exception of TO ) are unaltered.

## HALT MODE

The device is placed in the HALT mode by writing a " 1 " to the HALT flag (G7 data bit). All microcontroller activities, including the clock and timers, are stopped. The WATCHDOG logic is disabled during the HALT mode. However, the clock monitor circuitry if enabled remains active and will cause the WATCHDOG output pin (WDOUT) to go low. If the HALT mode is used and the user does not want to activate the WDOUT pin, the Clock Monitor should be disabled after the device comes out of reset (resetting the Clock Monitor control bit with the first write to the WDSVR register). In the HALT mode, the power requirements of the device are minimal and the applied voltage ( $\mathrm{V}_{\mathrm{CC}}$ ) may be decreased to $\mathrm{V}_{\mathrm{r}}\left(\mathrm{V}_{\mathrm{r}}=2.0 \mathrm{~V}\right)$ without altering the state of the machine.
The device supports three different ways of exiting the HALT mode. The first method of exiting the HALT mode is
with the Multi-Input Wakeup feature on the $L$ port. The second method is with a low to high transition on the CKO (G7) pin. This method precludes the use of the crystal clock configuration (since CKO becomes a dedicated output), and so may be used with an RC clock configuration. The third method of exiting the HALT mode is by pulling the RESET pin low.
Since a crystal or ceramic resonator may be selected as the oscillator, the Wakeup signal is not allowed to start the chip running immediately since crystal oscillators and ceramic resonators have a delayed start up time to reach full amplitude and frequency stability. The IDLE timer is used to generate a fixed delay to ensure that the oscillator has indeed stabilized before allowing instruction execution. In this case, upon detecting a valid Wakeup signal, only the oscillator circuitry is enabled. The IDLE timer is loaded with a value of 256 and is clocked with the $t_{c}$ instruction cycle clock. The $t_{c}$ clock is derived by dividing the oscillator clock down by a factor of 10. The Schmitt trigger following the CKI inverter on the chip ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.

## Power Save Modes (Continued)

If an RC clock option is being used, the fixed delay is introduced optionally. A control bit, CLKDLY, mapped as configuration bit G7, controls whether the delay is to be introduced or not. The delay is included if CLKDLY is set, and excluded if CLKDLY is reset. The CLKDLY bit is cleared on reset.
The device has two mask options associated with the HALT mode. The first mask option enables the HALT mode feature, while the second mask option disables the HALT mode. With the HALT mode enable mask option, the device will enter and exit the HALT mode as described above. With the HALT disable mask option, the device cannot be placed in the HALT mode (writing a " 1 " to the HALT flag will have no effect).
The WATCHDOG detector circuit is inhibited during the HALT mode. However, the clock monitor circuit if enabled remains active during HALT mode in order to ensure a clock monitor error if the device inadvertently enters the HALT mode as a result of a runaway program or power glitch.

## IDLE MODE

The device is placed in the IDLE mode by writing a " 1 " to the IDLE flag (G6 data bit). In this mode, all activities, except the associated on-board oscillator circuitry, the WATCHDOG logic, the clock monitor and the IDLE Timer TO, are stopped.
As with the HALT mode, the device can be returned to normal operation with a reset, or with a Multi-Input Wakeup from the L Port. Alternately, the microcontrolier resumes
normal operation from the IDLE mode when the thirteenth bit (representing 4.096 ms at internal clock frequency of $1 \mathrm{MHz}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ) of the IDLE Timer toggles.
This toggle condition of the thirteenth bit of the IDLE Timer TO is latched into the TOPND pending flag.
The user has the option of being interrupted with a transition on the thirteenth bit of the IDLE Timer TO. The interrupt can be enabled or disabled via the TOEN control bit. Setting the TOEN flag enables the interrupt and vice versa.
The user can enter the IDLE mode with the Timer TO interrupt enabled. In this case, when the TOPND bit gets set, the device will first execute the Timer TO interrupt service routine and then return to the instruction following the "Enter Idle Mode" instruction.
Alternatively, the user can enter the IDLE mode with the IDLE Timer T0 interrupt disabled. In this case, the device will resume normal operation with the instruction immediately following the "Enter IDLE Mode" instruction.
Note: It is necessary to program two NOP instructions following both the set HALT mode and set IDLE mode instructions. These NOP instructions are necessary to allow clock resynchronization following the HALT or IDLE modes.

## Multi-Input Wakeup

The Multi-Input Wakeup feature is ued to return (wakeup) the device from either the HALT or IDLE modes. Alternately Multi-Input Wakeup/Interrupt feature may also be used to generate up to 8 edge selectable external interrupts.
Figure 11 shows the Multi-Input Wakeup logic.


TL/DD/10830-15
FIGURE 11. Multi-Input Wake Up Logic

## Multi-Input Wakeup (Continued)

The Multi-Input Wakeup feature utilizes the L Port. The user selects which particular L port bit (or combination of L Port bits) will cause the device to exit the HALT or IDLE modes. The selection is done through the Reg: WKEN. The Reg: WKEN is an 8 -bit read/write register, which contains a control bit for every L port bit. Setting a particular WKEN bit enables a Wakeup from the associated $L$ port pin.
The user can select whether the trigger condition on the selected L Port pin is going to be either a positive edge (low to high transition) or a negative edge (high to low transition). This selection is made via the Reg: WKEDG, which is an 8bit control register with a bit assigned to each L Port pin. Setting the control bit will select the trigger condition to be a negative edge on that particular L. Port pin. Resetting the bit selects the trigger condition to be a positive edge. Changing an edge select entails several steps in order to avoid a pseudo Wakeup condition as a result of the edge change. First, the associated WKEN bit should be reset, followed by the edge select change in WKEDG. Next, the associated WKPND bit should be cleared, followed by the associated WKEN bit being re-enabled.
An example may serve to clarify this procedure. Suppose we wish to change the edge select from positive (low going high) to negative (high going low) for L Port bit 5 , where bit 5 has previously been enabled for an input interrupt. The program would be as follows:

RBIT	5, WKEN
SBIT	5, WKEDG
RBIT	5, WKPND
SBIT	5, WKEN

If the $L$ port bits have been used as outputs and then changed to inputs with Multi-Input Wakeup/Interrupt, a safety procedure should also be followed to avoid inherited pseudo wakeup conditions. After the selected L port bits have been changed from output to input but before the associated WKEN bits are enabled, the associated edge select bits in WKEDG should be set or reset for the desired edge selects, followed by the associated WKPND bits being cleared.

This same procedure should be used following reset, since the L port inputs are left floating as a result of reset.
The occurrence of the selected trigger condition for Multi-Input Wakeup is latched into a pending register called WKPND. The respective bits of the WKPND register will be set on the occurrence of the selected trigger edge on the corresponding Port L pin. The user has the responsibility of clearing these pending flags. Since WKPND is a pending register for the occurrence of selected wakeup conditions, the device will not enter the HALT mode if any Wakeup bit is both enabled and pending. Consequently, the user has the responsibility of clearing the pending flags before attempting to enter the HALT mode.
WKEN, WKPND and WKEDG are all read/write registers, and are cleared at reset.

## PORT LINTERRUPTS

Port L provides the user with an additional eight fully selectable, edge sensitive interrupts which are all vectored into the same service subroutine.
The interrupt from Port L shares logic with the wake up circuitry. The register WKEN allows interrupts from Port L' to be individually enabled or disabled. The register WKEDG specifies the trigger condition to be either a positive or a negative edge. Finally, the register WKPND latches in the pending trigger conditions.
The GIE (Global Interrupt Enable) bit enables the interrupt function.
A control flag, LPEN, functions as a global interrupt enable for Port $L$ interrupts. Setting the LPEN flag will enable interrupts and vice versa. A separate global pending flag is not needed since the register WKPND is adequate.
Since Port $L$ is also used for waking the device out of the HALT or IDLE modes, the user can elect to exit the HALT or IDLE modes either with or without the interrupt enabled. If he elects to disable the interrupt, then the device will restart execution from the instruction immediately following the instruction that placed the microcontroller in the HALT or IDLE modes. In the other case, the device will first execute the interrupt service routine and then revert to normal operation.
The Wakeup signal will not start the chip running immediately since crystal oscillators or ceramic resonators have a finite start up time. The IDLE Timer (TO) generates a fixed delay to ensure that the oscillator has indeed stabilized before allowing the device to execute instructions. In this case, upon detecting a valid Wakeup signal, only the oscillator circuitry and the IDLE Timer TO are enabled. The IDLE Timer is loaded with a value of 256 and is clocked from the $t_{c}$ instruction cycle clock. The $t_{c}$ clock is derived by dividing down the oscillator clock by a factor of 10. A Schmitt trigger following the CKI on-chip inverter ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.
If the RC clock option is used, the fixed delay is under software control. A control flag, CLKDLY, in the G7 configuration bit allows the clock start up delay to be optionally inserted. Setting CLKDLY flag high will cause clock start up delay to be inserted and resetting it will exclude the clock start up delay. The CLKDLY flag is cleared during reset, so the clock start up delay is not present following reset with the RC clock options.

## UART

The device contains a full-duplex software programmable UART. The UART (Figure 12) consists of a transmit shift register, a receiver shift register and seven addressable registers, as follows: a transmit buffer register (TBUF), a receiver buffer register (RBUF), a UART control and status register (ENU), a UART receive control and status register (ENUR), a UART interrupt and clock source register (ENUI), a prescaler select register (PSR) and baud (BAUD) register. The ENU register contains flags for transmit and receive functions; this register also determines the length of the data frame ( 7,8 or 9 bits), the value of the ninth bit in transmission, and parity selection bits. The ENUR register flags framming, data overrun and parity errors while the UART is receiving.
Other functions of the ENUR register include saving the ninth bit received in the data frame, enabling or disabling the UART's attention mode of operation and providing additional receiver/transmitter status information via RCVG and XMTG bits. The determination of an internal or external clock source is done by the ENUI register, as well as selecting the number of stop bits and enabling or disabling transmit and receive interrupts. A control flag in this register can also select the UART mode of operation: asynchronous or synchronous.

## UART CONTROL AND STATUS REGISTERS

The operation of the UART is programmed through three registers: ENU, ENUR and ENUI. The function of the individual bits in these registers is as follows:
ENU-UART Control and Status Register (Address at OBA)

PEN	PSEL1	XBIT9/   OSELO   OSE	CHL1	CHLO	ERR	RBFL	TBMT
ORW	ORW	ORW					

Bit 7
Bit 0
ENUR-UART Receive Control and Status Register (Address at OBB)

DOE	FE	PE	SPARE	RBIT9	ATTN   ORM	XMTG   ORD	RCVG   ORD

Bit7
Bit0
ENUI-UART Interrupt and Clock Source Register (Address at OBC)

STP2	STP78	ETDX	SSEL	XRCLK	XTCLK	ERI	ETI
ORW	ORW	ORW	ORW	ORW	ORW	ORW	ORW

Bit7
*Bit is not used.
0 Bit is cleared on reset.
1 Bit is set to one on reset.
R Bit is read-only; it cannot be written by software.
RW Bit is read/write.
D Bit is cleared on read; when read by software as a one, it is cleared automatically. Writing to the bit does not affect its state.


TL/DD/10830-16
FIGURE 12. UART Block Diagram

UART (Continued)

## DESCRIPTION OF UART REGISTER BITS

## ENU—UART CONTROL AND STATUS REGISTER

TBMT: This bit is set when the UART transfers a byte of data from the TBUF register into the TSFT register for transmission. It is automatically reset when software writes into the TBUF register.
RBFL: This bit is set when the UART has received a complete character and has copied it into the RBUF register. It is automatically reset when software reads the character from RBUF.
ERR: This bit is a global UART error flag which gets set if any or a combination of the errors (DOE, FE, PE) occur.
CHL1, CHLO: These bits select the character frame format. Parity is not included and is generated/verified by hardware. $\mathrm{CHL} 1=0, \mathrm{CHLO}=0 \quad$ The frame contains eight data bits. $\mathrm{CHL} 1=0, \mathrm{CHLO}=1$ The frame contains seven data bits.
$\mathrm{CHL} 1=1, \mathrm{CHLO}=0 \quad$ The frame contains nine data bits. CHL1 $=1$, CHLO $=1 \quad$ Loopback Mode selected. Transmitter output internally looped back to receiver input. Nine bit framing format is used.
XBIT9/PSELO: Programs the ninth bit for transmission when the UART is operating with nine data bits per frame. For seven or eight data bits per frame, this bit in conjunction with PSEL1 selects parity.
PSEL1, PSELO: Parity select bits.
PSEL1 $=0$, PSELO $=0 \quad$ Odd Parity (if Parity enabled)
PSEL1 $=0$, PSELO $=1 \quad$ Even Parity (if Parity enabled)
PSEL1 $=1$, PSELO $=0 \quad$ Mark(1) (if Parity enabled)
PSEL1 $=1$, PSELO $=1 \quad$ Space(0) (if Parity enabled)
PEN: This bit enables/disables Parity ( 7 - and 8 -bit modes only).
$\mathrm{PEN}=0 \quad$ Parity disabled.
PEN = 1 Parity enabled.

## ENUR-UART RECEIVE CONTROL AND STATUS REGISTER

RCVG: This bit is set high whenever a framing error occurs and goes low when RDX goes high.
XMTG: This bit is set to indicate that the UART is transmitting. It gets reset at the end of the last frame (end of last Stop bit).
ATTN: ATTENTION Mode is enabled while this bit is set. This bit is cleared automatically on receiving a character with data bit nine set.
RBIT9: Contains the ninth data bit received when the UART is operating with nine data bits per frame.

SPARE: Reserved for future use.
PE: Flags a Parity Error.
$\mathrm{PE}=0 \quad$ Indicates no Parity Error has been detected since the last time the ENUR register was read.
PE = 1 Indicates the occurence of a Parity Error.
FE: Flags a Framing Error.
FE $=0$ Indicates no Framing Error has been detected since the last time the ENUR register was read.
$\mathrm{FE}=1$ Indicates the occurence of a Framing Error.
DOE: Flags a Data Overrun Error.
DOE $=0$ Indicates no Data Overrun Error has been detected since the last time the ENUR register was read.
$D O E=1$ Indicates the occurence of a Data Overrun Error.

## ENUI-UART INTERRUPT AND CLOCK SOURCE REGISTER

ETI: This bit enables/disables interrupt from the transmitter section.
ETI $=0$ Interrupt from the transmitter is disabled.
$\mathrm{ETI}=1$ Interrupt from the transmitter is enabled.
ERI: This bit enables/disables interrupt from the receiver section.
$E R I=0 \quad$ Interrupt from the receiver is disabled.
ERI = 1 Interrupt from the receiver is enabled.
XTCLK: This bit selects the clock source for the transmittersection.
XTCLK $=0$ The clock source is selected through the PSR and BAUD registers.
XTCLK $=1 \quad$ Signal on CKX (L1) pin is used as the clock.
XRCLK: This bit selects the clock source for the receiver section.
XRCLK $=0 \quad$ The clock source is selected through the PSR and BAUD registers.
XRCLK = 1 Signal on CKX (L1) pin is used as the clock.
SSEL: UART mode select.
SSEL $=0 \quad$ Asynchronous Mode.
SSEL = 1 Synchronous Mode.
ETDX: TDX (UART Transmit Pin) is the alternate function assigned to Port L pin L2; it is selected by setting ETDX bit. To simulate line break generation, software should reset ETDX bit and output logic zero to TDX pin through Port L data and configuration registers.
STP78: This bit is set to program the last Stop bit to be 7/8th of a bit in length.
STP2: This bit programs the number of Stop bits to be transmitted.
STP2 $=0 \quad$ One Stop bit transmitted.
STP2 $=1$ Two Stop bits transmitted.

## Associated I/O Pins

Data is transmitted on the TDX pin and received on the RDX pin. TDX is the alternate function assigned to Port L pin L2; it is selected by setting ETDX (in the ENUI register) to one. RDX is an inherent function of Port L pin L3, requiring no setup.
The baud rate clock for the UART can be generated onchip, or can be taken from an external source. Port $L$ pin $L 1$ (CKX) is the external clock I/O pin. The CKX pin can be either an input or an output, as determined by Port L Configuration and Data registers (Bit 1). As an input, it accepts a clock signal which may be selected to drive the transmitter and/or receiver. As an output, it presents the internal Baud Rate Generator output.

## UART Operation

The UART has two modes of operation: asynchronous mode and synchronous mode.

## ASYNCHRONOUS MODE

This mode is selected by resetting the SSEL (in the ENUI register) bit to zero. The input frequency to the UART is 16 times the baud rate.
The TSFT and TBUF registers double-buffer data for transmission. While TSFT is shifting out the current character on the TDX pin, the TBUF register may be loaded by software with the next byte to be transmitted. When TSFT finishes transmitting the current character the contents of TBUF are transferred to the TSFT register and the Transmit Buffer Empty Flag (TBMT in the ENU register) is set. The TBMT flag is automatically reset by the UART when software loads a new character into the TBUF register. There is also the XMTG bit which is set to indicate that the UART is transmitting. This bit gets reset at the end of the last frame (end of last Stop bit). TBUF is a read/write register.
The RSFT and RBUF registers double-buffer data being received. The UART receiver continually monitors the signal on the RDX pin for a low level to detect the beginning of a Start bit. Upon sensing this low level, it waits for half a bit time and samples again. If the RDX pin is still low, the receiver considers this to be a valid Start bit, and the remaining bits in the character frame are each sampled a single time, at the mid-bit position. Serial data input on the RDX pin is shifted into the RSFT register. Upon receiving the complete character, the contents of the RSFT register are copied into the RBUF register and the Received Buffer Full Flag (RBFL) is set. RBFL is automatically reset when software reads the character from the RBUF register. RBUF is a read only register. There is also the RCVG bit which is set high when a framing error occurs and goes low once RDX goes high. TBMT, XMTG, RBFL and RCVG are read only bits.

## SYNCHRONOUS MODE

In this mode data is transferred synchronously with the clock. Data is transmitted on the rising edge and received on the falling edge of the synchronous clock.

This mode is selected by setting SSEL bit in the ENUI register. The input frequency to the UART is the same as the baud rate.
When an external clock input is selected at the CKX pin, data transmit and receive are performed synchronously with this clock through TDX/RDX pins.
If data transmit and receive are selected with the CKX pin as clock output, the $\mu \mathrm{C}$ generates the synchronous clock output at the CKX pin. The internal baud rate generator is used to produce the synchronous clock. Data transmit and receive are performed synchronously with this clock.

## FRAMING FORMATS

The UART supports several serial framing formats (Figure 13). The format is selected using control bits in the ENU, ENUR and ENUI registers.
The first format (1, 1a, 1b, 1c) for data transmission (CHLO $=1, \mathrm{CHL} 1=0$ ) consists of Start bit, seven Data bits (excluding parity) and 7/8, one or two Stop bits. In applications using parity, the parity bit is generated and verified by hardware.
The second format ( $\mathrm{CHLO}=0, \mathrm{CHL1}=0$ ) consists of one Start bit, eight Data bits (excluding parity) and $7 / 8$, one or two Stop bits. Parity bit is generated and verified by hardware.
The third format for transmission (CHLO $=0, \mathrm{CHL} 1=1$ ) consists of one Start bit, nine Data bits and 7/8, one or two Stop bits. This format also supports the UART "ATTENTION" feature. When operating in this format, all eight bits of TBUF and RBUF are used for data. The ninth data bit is transmitted and received using two bits in the ENU and ENUR registers, called XBIT9 and RBIT9. RBIT9 is a read only bit. Parity is not generated or verified in this mode.
For any of the above framing formats, the last Stop bit can be programmed to be $7 / 8$ th of a bit in length. If two Stop bits are selected and the $7 / 8$ th bit is set (selected), the second Stop bit will be $7 / 8$ th of a bit in length.
The parity is enabled/disabled by PEN bit located in the ENU register. Parity is selected for 7 - and 8 -bit modes only. If parity is enabled (PEN = 1), the parity selection is then performed by PSELO and PSEL1 bits located in the ENU register.
Note that the XBIT9/PSELO bit located in the ENU register serves two mutually exclusive functions. This bit programs the ninth bit for transmission when the UART is operating with nine data bits per frame. There is no parity selection in this framing format. For other framing formats XBIT9 is not needed and the bit is PSELO used in conjunction with PSEL1 to select parity.
The frame formats for the receiver differ from the transmitter in the number of Stop bits required. The receiver only requires one Stop bit in a frame, regardless of the setting of the Stop bit selection bits in the control register. Note that an implicit assumption is made for full duplex UART operation that the framing formats are the same for the transmitter and receiver.

UART Operation (Continued)


FIGURE 13. Framing Formats

## UART INTERRUPTS

The UART is capable of generating interrupts. Interrupts are generated on Receive Buffer Full and Transmit Buffer Empty. Both interrupts have individual interrupt vectors. Two bytes of program memory space are reserved for each interrupt vector. The two vectors are located at addresses 0xEC to OXEF Hex in the program memory space. The interrupts can be individually enabled or disabled using Enable Transmit Interrupt (ETI) and Enable Receive Interrupt (ERI) bits in the ENUI register.
The interrupt from the Transmitter is set pending, and remains pending, as long as both the TBMT and ETI bits are set. To remove this interrupt, software must either clear the ETI bit or write to the TBUF register (thus clearing the TBMT bit).
The interrupt from the receiver is set pending, and remains pending, as long as both the RBFL and ERI bits are set. To remove this interrupt, software must either clear the ERI bit or read from the RBUF register (thus clearing the RBFL bit).

## Baud Clock Generation

The clock inputs to the transmitter and receiver sections of the UART can be individually selected to come either from an external source at the CKX pin (port L, pin L1) or from a
source selected in the PSR and BAUD registers. Internally, the basic baud clock is created from the oscillator frequency through a two-stage divider chain consisting of a 1-16 (increments of 0.5 ) prescaler and an 11-bit binary counter. (Figure 14) The divide factors are specified through two read/write registers shown in Figure 15. Note that the 11-bit Baud Rate Divisor spills over into the Prescaler Select Register (PSR). PSR is cleared upon reset.
As shown in Table I, a Prescaler Factor of 0 corresponds to NO CLOCK. NO CLOCK condition is the UART power down mode where the UART clock is turned off for power saving purpose. The user must also turn the UART clock off when a different baud rate is chosen.
The correspondences between the 5-bit Prescaler Select and Prescaler factors are shown in Table I. Therer are many ways to calculate the two divisor factors, but one particularly effective method would be to achieve a 1.8432 MHz frequency coming out of the first stage. The 1.8432 MHz prescaler output is then used to drive the software programmable baud rate counter to create a $\times 16$ clock for the following baud rates: $110,134.5,150,300,600,1200,1800,2400$, $3600,4800,7200,9600,19200$ and 38400 (Table II). Other baud rates may be created by using appropriate divisors. The $x 16$ clock is then divided by 16 to provide the rate for the serial shift registers of the transmitter and receiver.


TL/DD/10830-18
FIGURE 14. UART BAUD Clock Generation


TL/DD/10830-19
FIGURE 15. UART BAUD Clock Divisor Registers

TABLE I. Prescaler Factors

Prescaler   Select	Prescaler   Factor
00000	NO CLOCK
00001	1
00010	1.5
00011	2
00100	2.5
00101	3
00110	3.5
00111	4
01000	4.5
01001	5
01010	5.5
01011	6
01100	6.5
01101	7
01110	7.5
01111	8
10000	8.5
10001	9
10010	9.5
10011	10
10100	10.5
10101	11
10110	11.5
10111	12
11000	12.5
11001	13
11010	13.5
11011	14
11100	14.5
11101	15
11110	15.5
11111	16

TABLE II. Baud Rate Divisors (1.8432 MHz Prescaler Output)

Baud   Rate	Baud Rate   Divisor $-\mathbf{1}(\mathrm{N}-1)$
$110(110.03)$	1046
$134.5(134.58)$	855
150	767
300	383
600	191
1200	95
1800	63
2400	47
3600	31
4800	23
7200	15
9600	11
19200	5
38400	2

The entries in Table II assume a prescaler output of 1.8432 MHz . In the asynchronous mode the baud rate could be as high as 625 k .
As an example, considering the Asynchronous Mode and a CKI clock of 4.608 MHz , the prescaler factor selected is:

$$
4.608 / 1.8432=2.5
$$

The 2.5 entry is available in Table I. The 1.8432 MHz prescaler output is then used with proper Baud Rate Divisor (Table II) to obtain different baud rates. For a baud rate of 19200 e.g., the entry in Table I! is 5 .

$$
\begin{aligned}
& N-1=5(N-1 \text { is the value from Table II }) \\
& N=6(N \text { is the Baud Rate Divisor }) \\
& \text { Baud Rate }=1.8432 \mathrm{MHz} /(16 \times 6)=19200
\end{aligned}
$$

The divide by 16 is performed because in the asynchronous mode, the input frequency to the UART is 16 times the baud rate. The equation to calculate baud rates is given below. The actual Baud Rate may be found from:

$$
\mathrm{BR}=\mathrm{Fc} /(16 \times N \times P)
$$

## Baud Clock Generation (Continued)

Where:
BR is the Baud Rate
Fc is the CKI frequency
N is the Baud Rate Divisor (Table II).
$P$ is the Prescaler Divide Factor selected by the value in the Prescaler Select Register (Table I)
Note: In the Synchronous Mode, the divisor 16 is replaced by two if internal Baud Rate generator is used. Replaced by one if external clock is used.
Example:
Asynchronous Mode:

$$
\begin{gathered}
\text { Crystal Frequency }=5 \mathrm{MHz} \\
\text { Desired baud rate }=9600
\end{gathered}
$$

Using the above equation $N \times P$ can be calculated first.

$$
N \times P=\left(5 \times 10^{6}\right) /(16 \times 9600)=32.552
$$

Now 32.552 is divided by each Prescaler Factor (Table II) to obtain a value closest to an integer. This factor happens to be 6.5 ( $P=6.5$ ).

$$
N=32.552 / 6.5=5.008(N=5)
$$

The programmed value (from Table II) should be $4(N-1)$. Using the above values calculated for $N$ and $P$ :

$$
\begin{gathered}
\mathrm{BR}=(5 \times 106) /(16 \times 5 \times 6.5)=9615.384 \\
\% \text { error }=(9615.385-9600) / 9600=0.16
\end{gathered}
$$

## Effect of HALT/IDLE

The UART logic is reinitialized when either the HALT or IDLE modes are entered. This reinitialization sets the TBMT flag and resets all read only bits in the UART control and status registers. Read/Write bits remain unchanged. The Transmit Buffer (TBUF) is not affected, but the Transmit Shift register (TSFT) bits are set to one. The receiver registers RBUF and RSFT are not affected.
The $\mu \mathrm{C}$ will exit from the HALT/IDLE modes when the Start bit of a character is detected at the RDX (L3) pin. This feature is obtained by using the Multi-Input Wakeup scheme provided on the $\mu \mathrm{C}$.
Before entering the HALT or IDLE modes the user program must select the Wakeup source to be on the RDX pin. This selection is done by setting bit 3 of WKEN (Wakeup Enable) register. The Wakeup trigger condition is then selected to be high to low transition. This is done via the WKEDG register (Bit 3 is zero.)
If the microcontroller is halted and crystal oscillator is used, the Wakeup signal will not start the chip running immediately because of the finite start up time requirement of the crystal oscillator. The idle timer (TO) generates a fixed delay to ensure that the oscillator has indeed stabilized before allowing the $\mu \mathrm{C}$ to execute code. The user has to consider this delay when data transfer is expected immediately after exiting the HALT mode.

## Diagnostic

Bits CHARLO and CHARL1 in the ENU register provide a loopback feature for diagnostic testing of the UART. When these bits are set to one, the following occur: The receiver input pin (RDX) is internally connected to the transmitter output pin (TDX); the output of the Transmitter Shift Regis-
ter is "looped back" into the Receive Shift Register input. In this mode, data that is transmitted is immediately received. This feature allows the processor to verify the transmit and receive data paths of the UART.
Note that the framing format for this mode is the nine bit format; one Start bit, nine data bits, and $7 / 8$, one or two Stop bits. Parity is not generated or verified in this mode.

## Attention Mode

The UART Receiver section supports an alternate mode of operation, referred to as ATTENTION Mode. This mode of operation is selected by the ATTN bit in the ENUR register. The data format for transmission must also be selected as having nine Data bits and either 7/8, one or two Stop bits.
The ATTENTION mode of operation is intended for use in networking the COP888CS with other processors. Typically in such environments the messages consists of device addresses, indicating which of several destinations should receive them, and the actual data. This Mode supports a scheme in which addresses are flagged by having the ninth bit of the data field set to a 1 . If the ninth bit is reset to a zero the byte is a Data byte.
While in ATTENTION mode, the UART monitors the communication flow, but ignores all characters until an address character is received. Upon receiving an address character, the UART signals that the character is ready by setting the RBFL flag, which in turn interrupts the processor if UART Receiver interrupts are enabled. The ATTN bit is also cleared automatically at this point, so that data characters as well as address characters are recognized. Software examines the contents of the RBUF and responds by deciding either to accept the subsequent data stream (by leaving the ATTN bit reset) or to wait until the next address character is seen (by setting the ATTN bit again).
Operation of the UART Transmitter is not affected by selection of this Mode. The value of the ninth bit to be transmitted is programmed by setting XBIT9 appropriately. The value of the ninth bit received is obtained by reading RBIT9. Since this bit is located in ENUR register where the error flags reside, a bit operation on it will reset the error flags.

## Comparator

The device contains one differential comparator, with a pair of inputs (positive and negative) and an output. Ports $11-13$ are used for the comparator. The following is the Port I assignment:
11 Comparator1 negative input
12 Comparator1 positive input
I3 Comparator1 output
A Comparator Select Register (CMPSL) is used to enable the comparators, read the outputs of the comparator internally, and enable the output of the comparator to the pins. Two control bits (enable and output enable) and one result bit are associated with the comparator. The comparator result bit (CMP1RD) is read only bit which will read as zero if the comparator is not enabled. The Comparator Select Register is cleared with reset, resulting in the comparator being disabled. The comparator should also be disabled before entering either the HALT or IDLE modes in order to save power. The configuration of the CMPSL register is as follows:

## Comparator (Continued)

## CMPSL REGISTER (ADDRESS X'00B7)

The CMPSL register contains the following bits:
CMP1EN Enable comparator 1
CMP1RD Comparator 1 result (this is a read only bit, which will read as 0 if the comparator is not enabled)
CMP10E Selects pin I3 as comparator 1 output provided that CMPIEN is set to enable the comparator

Unused	Unused	Unused	Unused	CMP10E	CMP1RD	CMP1EN	Unused
Bit7				Bit 0			

Comparator outputs have the same spec as Ports L and G except that the rise and fall times are symmetrical.

## Interrupts

The device supports a vectored interrupt scheme. It supports a total of fourteen interrupt sources. The following table lists all the possible interrupt sources, their arbitration ranking and the memory locations reserved for the interrupt vector for each source.
Two bytes of program memory space are reserved for each interrupt source. All interrupt sources except the software interrupt are maskable. Each of the maskable interrupts have an Enable bit and a Pending bit. A maskable interrupt is active if its associated enable and pending bits are set. If $\mathrm{GIE}=1$ and an interrupt is active, then the processor will be interrupted as soon as it is ready to start executing an instruction except if the above conditions happen during the Software Trap service routine. This exception is described in the Software Trap sub-section.

The interruption process is accomplished with the INTR instruction (opcode 00), which is jammed inside the Instruction Register and replaces the opcode about to be executed. The following steps are performed for every interrupt:

1. The GIE (Global Interrupt Enable) bit is reset.
2. The address of the instruction about to be executed is pushed into the stack.
3. The PC (Program Counter) branches to address 00FF. This procedure takes $7 t_{c}$ cycles to execute.
At this time, since $\mathrm{GIE}=0$, other maskable interrupts are disabled. The user is now free to do whatever context switching is required by saving the context of the machine in the stack with PUSH instructions. The user would then program a VIS (Vector Interrupt Select) instruction in order to branch to the interrupt service routine of the highest priority interrupt enabled and pending at the time of the VIS. Note that this is not necessarily the interrupt that caused the branch to address location 00FF Hex prior to the context switching.
Thus, if an interrupt with a higher rank than the one which caused the interruption becomes active before the decision of which interrupt to service is made by the VIS, then the interrupt with the higher rank will override any lower ones and will be acknowledged. The lower priority interrupt(s) are still pending, however, and will cause another interrupt immediately following the completion of the interrupt service routine associated with the higher priority interrupt just serviced. This lower priority interrupt will occur immediately following the RETI (Return from Interrupt) instruction at the end of the interrupt service routine just completed.
Inside the interrupt service routine, the associated pending bit has to be cleared by software. The RETI (Return from Interrupt) instruction at the end of the interrupt service rou-

## Interrupts (Continued)

tine will set the GIE (Global Interrupt Enable) bit, allowing the processor to be interrupted again if another interrupt is active and pending.
The VIS instruction looks at all the active interrupts at the time it is executed and performs an indirect jump to the beginning of the service routine of the one with the highest rank.
The addresses of the different interrupt service routines, called vectors, are chosen by the user and stored in ROM in a table starting at 01E0 (assuming that VIS is located between 00FF and 01DF). The vectors are 15-bit wide and therefore occupy 2 ROM locations.
VIS and the vector table must be located in the same 256byte block ( $0 y 00$ to OyFF ) except if VIS is located at the last address of a block. In this case, the table must be in the next block. The vector table cannot be inserted in the first 256 -byte block $(y \neq 0)$.
The vector of the maskable interrupt with the lowest rank is located at 0yE0 (Hi-Order byte) and OyE1 (Lo-Order byte) and so forth in increasing rank number. The vector of the maskable interrupt with the highest rank is located at $0 y F A$ (Hi-Order byte) and OyFB (Lo-Order byte).
The Software Trap has the highest rank and its vector is located at OyFE and 0yFF.
If, by accident, a VIS gets executed and no interrupt is active, then the PC (Program Counter) will branch to a vector located at OyEO-OyE1. This vector can point to the Software Trap (ST) interrupt service routine, or to another special service routine as desired.
Figure 16 shows the Interrupt block diagram.

## SOFTWARE TRAP

The Software Trap (ST) is a special kind of non-maskable interrupt which occurs when the INTR instruction (used to acknowledge interrupts) is fetched from ROM and placed inside the instruction register. This may happen when the PC is pointing beyond the available ROM address space or when the stack is over-popped.

When an ST occurs, the user can re-initialize the stack pointer and do a recovery procedure (similar to reset, but not necessarily containing all of the same initialization procedures) before restarting.
The occurrence of an ST is latched into the ST pending bit. The GIE bit is not affected and the ST pending bit (not accessible by the user) is used to inhibit other interrupts and to direct the program to the ST service routine with the VIS instruction. The RPND instruction is used to clear the software interrupt pending bit. This pending bit is also cleared on reset.
The ST has the highest rank among all interrupts.
Nothing (except another ST) can interrupt an ST being serviced.

## WATCHDOG

The device contains a WATCHDOG and clock monitor. The WATCHDOG is designed to detect the user program getting stuck in infinite loops resulting in loss of program control or "runaway" programs. The Clock Monitor is used to detect the absence of a clock or a very slow clock below a specified rate on the CKI pin.
The WATCHDOG consists of two independent logic blocks: WD UPPER and WD LOWER. WD UPPER establishes the upper limit on the service window and WD LOWER defines the lower limit of the service window.
Servicing the WATCHDOG consists of writing a specific value to a WATCHDOG Service Register named WDSVR which is memory mapped in the RAM. This value is composed of three fields, consisting of a 2-bit Window Select, a 5-bit Key Data field, and the 1-bit Clock Monitor Select field. Table III shows the WDSVR register.
The lower limit of the service window is fixed at 2048 instruction cycles. Bits 7 and 6 of the WDSVR register allow the user to pick an upper limit of the service window.


FIGURE 16. Interrupt Block Diagram

## WATCHDOG (Continued)

Table IV shows the four possible combinations of lower and upper limits for the WATCHDOG service window. This flexibility in choosing the WATCHDOG service window prevents any undue burden on the user software.
Bits 5, 4, 3, 2 and 1 of the WDSVR register represent the 5bit Key Data field. The key data is fixed at 01100 . Bit 0 of the WDSVR Register is the Clock Monitor Select bit.

TABLE III. WATCHDOG Service Register (WDSVR)

Window   Select		Key Data					
X	Clock   Monitor						
X	X	0	1	1	0	0	$Y$
7	6	5	4	3	2	1	0

TABLE IV. WATCHDOG Service Window Select

WDSVR   Bit 7	WDSVR   Bit 6	Service Window   (Lower-Upper Limits)
0	0	$2 k-8 k t_{c}$ Cycles
0	1	$2 k-16 k t_{c}$ Cycles
1	0	$2 k-32 k t_{c}$ Cycles
1	1	$2 k-64 k t_{\mathrm{t}}$ Cycles

## Clock Monitor

The Clock Monitor aboard the device can be selected or deselected under program control. The Clock Monitor is guaranteed not to reject the clock if the instruction cycle clock $\left(1 / t_{c}\right)$ is greater or equal to 10 kHz . This equates to a clock input rate on CKI of greater or equal to 100 kHz .

## WATCHDOG Operation

The WATCHDOG and Clock Monitor are disabled during reset. The device comes out of reset with the WATCHDOG armed, the WATCHDOG Window Select bits (bits 6, 7 of the WDSVR Register) set, and the Clock Monitor bit (bit 0 of the WDSVR Register) enabled. Thus, a Clock Monitor error will occur after coming out of reset, if the instruction cycle clock frequency has not reached a minimum specified value, including the case where the oscillator fails to start.
The WDSVR register can be written to only once after reset and the key data (bits 5 through 1 of the WDSVR Register) must match to be a valid write. This write to the WDSVR register involves two irrevocable choices: (i) the selection of the WATCHDOG service window (ii) enabling or disabling of the Clock Monitor. Hence, the first write to WDSVR Register involves selecting or deselecting the Clock Monitor, select the WATCHDOG service window and match the WATCHDOG key data. Subsequent writes to the WDSVR register will compare the value being written by the user to the WATCHDOG service window value and the key data (bits 7 through 1) in the WDSVR Register. Table $V$ shows the sequence of events that can occur.
The user must service the WATCHDOG at least once before the upper limit of the service window expires. The WATCHDOG may not be serviced more than once in every lower limit of the service window. The user may service the WATCHDOG as many times as wished in the time period between the lower and upper limits of the service window. The first write to the WDSVR Register is also counted as a WATCHDOG service.

The WATCHDOG has an output pin associated with it. This is the WDOUT pin, on pin 1 of the port G. WDOUT is active low. The WDOUT pin is in the high impedance state in the inactive state. Upon triggering the WATCHDOG, the logic will pull the WDOUT (G1) pin low for an additional $16 t_{c}-32 t_{c}$ cycles after the signal level on WDOUT pin goes below the lower Schmitt trigger threshold. After this delay, the device will stop forcing the WDOUT output low.
The WATCHDOG service window will restart when the WDOUT pin goes high. It is recommended that the user tie the WDOUT pin back to $\mathrm{V}_{\mathrm{CC}}$ through a resistor in order to pull WDOUT high.
A WATCHDOG service while the WDOUT signal is active will be ignored. The state of the WDOUT pin is not guaranteed on reset, but if it powers up low then the WATCHDOG will time out and WDOUT will enter high impedance state.
The Clock Monitor forces the G1 pin low upon detecting a clock frequency error. The Clock Monitor error will continue until the clock frequency has reached the minimum specified value, after which the G1 output will enter the high impedance TRI-STATE mode following $16 \mathrm{t}_{\mathrm{c}}-32 \mathrm{t}_{\mathrm{c}}$ clock cycles. The Clock Monitor generates a continual Clock Monitor error if the oscillator fails to start, or fails to reach the minimum specified frequency. The specification for the Clock Monitor is as follows:
$1 / \mathrm{t}_{\mathrm{c}}>10 \mathrm{kHz}$-No clock rejection.
$1 / \mathrm{t}_{\mathrm{c}}<10 \mathrm{~Hz}$-Guaranteed clock rejection.

## WATCHDOG AND CLOCK MONITOR SUMMARY

The following salient points regarding the device WATCHDOG and CLOCK MONITOR should be noted:

- Both the WATCHDOG and Clock Monitor detector circuits are inhibited during RESET.
- Following RESET, the WATCHDOG and CLOCK MONITOR are both enabled, with the WATCHDOG having the maximum service window selected.
- The WATCHDOG service window and Clock Monitor enable/disable option can only be changed once, during

- The initial WATCHDOG service must match the key data value in the WATCHDOG Service register WDSVR in order to avoid a WATCHDOG error.
- Subsequent WATCHDOG services must match all three data fields in WDSVR in order to avoid WATCHDOG errors.
- The correct key data value cannot be read from the WATCHDOG Service register WDSVR. Any attempt to read this key data value of 01100 from WDSVR will read as key data value of all 0 's.
- The WATCHDOG detector circuit is inhibited during both the HALT and IDLE modes.
- The Clock Monitor detector circuit is active during both the HALT and IDLE modes. Consequently, the device inadvertently entering the HALT mode wil be detected as a Clock Monitor error (provided that the Clock Monitor enable option has been selected by the program).
- With the single-pin R/C oscillator mask option selected and the CLKDLY bit reset, the WATCHDOG service window will resume following HALT mode from where it left off before entering the HALT mode.
- With the crystal oscillator mask option selected, or with the single-pin R/C oscillator mask option selected and the CLKDLY bit set, the WATCHDOG service window will


## WATCHDOG Operation (Continued)

be set to its selected value from WDSVR following HALT. Consequently, the WATCHDOG should not be serviced for at least 2048 instruction cycles following HALT, but must be serviced within the selected window to avoid a WATCHDOG error.

- The IDLE timer TO is not initialized with RESET.
- The user can sync in to the IDLE counter cycle with an IDLE counter (TO) interrupt or by monitoring the TOPND flag. The TOPND flag is set whenever the thirteenth bit of the IDLE counter toggles (every 4096 instruction cycles). The user is responsible for resetting the TOPND flag.
- A hardware WATCHDOG service occurs just as the device exits the IDLE mode. Consequently, the WATCHDOG should not be serviced for at least 2048 instruction cycles following IDLE, but must be serviced within the selected window to avoid a WATCHDOG error.
- Following RESET, the initial WATCHDOG service (where the service window and the CLOCK MONITOR enable/disable must be selected) may be programmed anywhere within the maximum service window ( 65,536 instruction cycles) initialized by RESET. Note that this initial WATCHDOG service may be programmed within the initial 2048 instruction cycles without causing a WATCHDOG error.


## Detection of Illegal Conditions

The device can detect various illegal conditions resulting from coding errors, transient noise, power supply voltage drops, runaway programs, etc.
Reading of undefined ROM gets zeros. The opcode for software interrupt is zero. If the program fetches instructions from undefined ROM, this will force a software interrupt, thus signaling that an illegal condition has occurred.
The subroutine stack grows down for each call (jump to subroutine), interrupt, or PUSH, and grows up for each return or POP. The stack pointer is initialized to RAM location 06F Hex during reset. Consequently, if there are more returns than calls, the stack pointer will point to addresses 070 and 071 Hex (which are undefined RAM). Undefined RAM from addresses 070 to 07F (Segment 0), 140 to 17F (Segment 1), and all other segments (i.e., Segments $3 \ldots$ etc.) is read as all 1 's, which in turn will cause the program to return to address 7FFF Hex. This is an undefined ROM location and the instruction fetched (all 0's) from this location will generate a software interrupt signaling an illegal condition.

Thus, the chip can detect the following illegal conditions:
a. Executing from undefined ROM
b. Over "POP"'ing the stack by having more returns than calls.
When the software interrupt occurs, the user can re-initialize the stack pointer and do a recovery procedure before restarting (this recovery program is probably similar to that following reset, but might not contain the same program initialization procedures). The recovery program should reset the software interrupt pending bit using the RPND instruction.

## MICROWIRE/PLUS

MICROWIRE/PLUS is a serial synchronous communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e. A/D converters, display drivers, E2PROMs etc.) and with other microcontrollers which support the MICROWIPE interface. It consists of an 8-bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 17 shows a block diagram of the MICROWIRE/PLUS logic.


TL/DD/10830-21
FIGURE 17. MICROWIRE/PLUS Block Diagram
The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS arrangement with the internal clock source is called the Master mode of operation. Similarly, operating the MICROWIRE/PLUS arrangement with an external shift clock is called the Slave mode of operation.
The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. In the master mode, the SK clock rate is selected by the two bits, SLO and SL1, in the CNTRL register. Table VI details the different clock rates that may be selected.

TABLE V. WATCHDOG Service Actions

Key   Data	Window   Data	Clock   Monitor	Action
Match	Match	Match	Valid Service: Restart Service Window
Don't Care	Mismatch	Don't Care	Error: Generate WATCHDOG Output
Mismatch	Don't Care	Don't Care	Error: Generate WATCHDOG Output
Don't Care	Don't Care	Mismatch	Error: Generate WATCHDOG Output

TABLE VI. MICROWIRE/PLUS Master Mode Clock Select

SL1	SL0	SK
0	0	$2 \times \mathbf{t}_{\mathbf{c}}$
0	1	$4 \times \mathrm{t}_{\mathrm{c}}$
1	x	$8 \times \mathrm{t}_{\mathrm{c}}$

Where $t_{c}$ is the instruction cycle clock

## MICROWIRE/PLUS (Continued)

## MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. If enabled, an interrupt is generated when eight data bits have been shifted. The device may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 14 shows how two COP888CS microcontrollers and several peripherals may be interconnected using the MICROWIRE/PLUS arrangements.

## Warning:

The SIO register should only be loaded when the SK clock is low. Loading the SIO register while the SK clock is high will result in undefined data in the SIO register. SK clock is normally low when not shifting.
Setting the BUSY flag when the input SK clock is high in the MICROWIRE/PLUS slave mode may cause the current SK clock for the SIO shift register to be narrow. For safety, the BUSY flag should only be set when the input SK clock is low.

## MICROWIRE/PLUS Master Mode Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally. The MICROWIRE Master always initiates all data exchanges. The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register. Table VII summarizes the bit settings required for Master mode of operation.

## MICROWIRE/PLUS Slave Mode Operation

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must be selected as an input and the SO pin is selected as an output pin iny seiiing and resetting the appropriate bits in the Port G configuration register. Table VII summarizes the settings required to enter the Slave mode of operation.

The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated.

## Alternate SK Phase Operation

The device allows either the normal SK clock or an alternate phase SK clock to shift data in and out of the SIO register. In both the modes the SK is normally low. In the normal mode data is shifted in on the rising edge of the SK clock and the data is shifted out on the falling edge of the SK clock. The SIO register is shifted on each falling edge of the SK clock in the normal mode. In the alternate SK phase operation, data is shifted in on the falling edge of the SK clock and shifted out on the rising edge of the SK clock.
A control flag, SKSEL, allows either the normal SK clock or the alternate SK clock to be selected. Resetting SKSEL causes the MICROWIRE/PLUS logic to be clocked from the normal SK signal. Setting the SKSEL flag selects the alternate SK clock. The SKSEL is mapped into the G6 configuration bit. The SKSEL flag will power up in the reset condition, selecting the normal SK signal.

TABLE VII
This table assumes that the control flag MSEL is set.

G4 (SO)   Config. Bit	G5 (SK)   Config. Bit	G4   Fun.	G5   Fun.	Operation
1	1	SO	Int.   SK	MICROWIRE/PLUS   Master
0	1	TRI-   STATE	Int.   SK	MICROWIRE/PLUS   Master
1	0	SO	Ext.   SK	MICROWIRE/PLUS   Slave
0	0	TRI-   STATE	Ext.   SK	MICROW!RE/PIUS   Slave

Memory Map
All RAM, ports and registers (except A and PC) are mapped into data memory address space.

Address S/ADD REG	Contents
0000 to 006F	On-Chip RAM bytes (112 bytes)
0070 to 007F xx80 to xxAF	Unused RAM Address Space (Reads As All Ones)   Unused RAM Address Space (Reads Undefined Data)
xxB0 to $\times x$ B6	Reserved
xxB7	Comparator Select Register (CMPSL)
x $\times$ B8	UART Transmit Buffer (TBUF)
xxB9	UART Receive Buffer (RBUF)
xxBA	UART Control and Status Register (ENU)
xxBB	UART Receive Control and Status Register (ENUR)
xxBC	UART Interrupt and Clock Source Register (ENUI)
xxBD	UART Baud Register (BAUD)
xxBE	UART Prescale Select Register (PSR)
xxBF	Reserved for UART
xxC0 to $\mathrm{xxC6}$	Reserved
xxC7	WATCHDOG Service Register (Reg:WDSVR)
xxC8	MIWU Edge Select Register (Reg:WKEDG)
xxC9	MIWU Enable Register (Reg:WKEN)
xxCA	MIWU Pending Register (Reg:WKPND)
xxCB	Reserved
xxCC	Reserved
xxCD to xxCF	Reserved


Address S/ADD REG	Contents
xxD0	Port L Data Register
xxD1	Port L Configuration Register
xxD2	Port L Input Pins (Read Only)
xxD3	Reserved for Port L
xxD4	Port G Data Register
xxD5	Port G Configuration Register
xxD6	Port G Input Pins (Read Only)
xxD7	Port I Input Pins (Read Only)
xxD8	Port C Data Register
xxD9	Port C Configuration Register
xxDA	Port C Input Pins (Read Only)
xxDB	Reserved for Port C
xxDC	Port D
xxDD to DF	Reserved for Port D
xxE0 to $\mathrm{xxE5}$	Reserved for EE Control Registers
xxE6	Timer T1 Autoload Register T1RB Lower Byte
xxE7	Timer T1 Autoload Register T1RB Upper Byte
xxE8	ICNTRL Register
xxE9	MICROWIRE/PLUS Shift Register
xxEA	Timer T1 Lower Byte
xxEB	Timer T1 Upper Byte
xxEC	Timer T1 Autoload Register T1RA Lower Byte
xxED	Timer T1 Autoload Register T1RA Upper Byte
$\begin{aligned} & \text { xxEE } \\ & \text { xxEF } \end{aligned}$	CNTRL Control Register PSW Register
$\mathrm{xxF0}$ to FB	On-Chip RAM Mapped as Registers
xxFC	X Register
xxFD	SP Register
XXFE	B Register
xxFF	S Register
0100-013F	On-Chip RAM Bytes (64 bytes)

Reading memory locations $0070 \mathrm{H}-007 \mathrm{FH}$ (Segment 0 ) will return all ones. Reading unused memory locations $0080 \mathrm{H}-00 \mathrm{AFH}$ (Segment 0) will return undefined data. Reading unused memory locations 0140-017F (Segment 1) will return all ones. Reading memory locations from other Segments (i.e., Segment 2, Segment 3, ... etc.) will return all ones.
All reserved location reads undefined data.

## Addressing Modes

The device has ten addressing modes, six for operand addressing and four for transfer of control.

## OPERAND ADDRESSING MODES

## Register Indirect

This is the "normal" addressing mode. The operand is the data memory addressed by the B pointer or X pointer.

## Register Indirect (with auto post increment or

 decrement of pointer)This addressing mode is used with the LD and $X$ instructions. The operand is the data memory addressed by the $B$ pointer or X pointer. This is a register indirect mode that automatically post increments or decrements the B or X register after executing the instruction.

## Direct

The instruction contains an 8-bit address field that directly points to the data memory for the operand.

## Immediate

The instruction contains an 8-bit immediate field as the operand.

## Short Immedlate

This addressing mode is used with the Load B Immediate instruction. The instruction contains a 4-bit immediate field as the operand.

## Indirect

This addressing mode is used with the LAID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC ) for accessing a data operand from the program memory.

## TRANSFER OF CONTROL ADDRESSING MODES

## Relative

This mode is used for the JP instruction, with the instruction field being added to the program counter to get the new program location. JP has a range from -31 to +32 to allow a 1-byte relativo jump (JP + 1 is impicmentoud by a ivor instruction). There are no "pages" when using JP, since all 15 bits of PC are used.

## Absolute

This mode is used with the JMP and JSR instructions, with the instruction field of 12 bits replacing the lower 12 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory segment.

## Absolute Long

This mode is used with the JMPL and JSRL instructions, with the instruction field of 15 bits replacing the entire 15 bits of the program counter ( PC ). This allows jumping to any location in the current 4 k program memory space.

Indirect
This mode is used with the JID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC ) for accessing a location in the program memory. The contents of this program memory location serve as a partial address (lower 8 bits of PC) for the jump to the next instruction.
Note: The VIS is a special case of the Indirect Transfer of Control addressing mode, where the double byte vector associated with the interrupt is transferred from adjacent addresses in the program memory into the program counter (PC) in order to jump to the associated interrupt service routine.

## Instruction Set

Register and Symbol Definition

Registers	
A	8-Bit Accumulator Register
B	8-Bit Address Register
X	8-Bit Address Register
SP	8-Bit Stack Pointer Register
PC	15-Bit Program Counter Register
PU	Upper 7 Bits of PC
PL	Lower 8 Bits of PC
C	1 Bit of PSW Register for Carry
HC	1 Bit of PSW Register for Half Carry
GIE	1 Bit of PSW Register for Global
	Interrupt Enable
VU	Interrupt Vector Upper Byte
VL	Interrupt Vector Lower Byte


Symbols	
[B]	Memory Indirectly Addressed by B Register
[ X ]	Memory Indirectly Addressed by $X$ Register
MD	Direct Addressed Memory
Mem	Direct Addressed Memory or [B]
Meml	Direct Addressed Memory or [B] or Immediate Data
Imm	8-Bit Immediate Data
Reg	Register Memory: Addresses F0 to FF (Includes B, X and SP)
Bit	Bit Number (0 to 7)
$\leftarrow$	Loaded with
$\longleftrightarrow$	Exchanged with

## Instruction Set (Continued)

## INSTRUCTION SET

ADD	A, Meml	ADD	$A \leftarrow A+M e m l$
ADC	A, Meml	ADD with Carry	$A \leftarrow A+\text { Meml }+C, C \leftarrow \text { Carry }$ $\mathrm{HC} \leftarrow \text { Half Carry }$
SUBC	A, Meml	Subtract with Carry	$\begin{aligned} & A \leftarrow A-\overline{\text { Meml }}+C, C \leftarrow \text { Carry } \\ & H C \leftarrow \text { Half Carry } \end{aligned}$
AND	A, Meml	Logical AND	$\mathrm{A} \leftarrow \mathrm{A}$ and Meml
ANDSZ	A, Imm	Logical AND Immed., Skip if Zero	Skip next if ( $A$ and 1 mm ) $=0$
OR	A, Meml	Logical OR	$A \leftarrow A$ or Meml
XOR	A,Meml	Logical EXclusive OR	$A \leftarrow A$ xor Meml
IFEQ	MD, Imm	IF EQual	Compare MD and 1 mm , Do next if MD $=1 \mathrm{~mm}$
IFEQ	A, Meml	IF EQual	Compare $A$ and Meml, Do next if $A=$ Meml
IFNE	A,Meml	IF Not Equal	Compare $A$ and Meml, Do next if $A \neq M e m l$
IFGT	A, Meml	IF Greater Than	Compare A and Meml, Do next if $\mathrm{A}>\mathrm{Meml}$
IFBNE	\#	If $B$ Not Equal	Do next if lower 4 bits of $B \neq \mathrm{Imm}$
DRSZ	Reg	Decrement Reg., Skip if Zero	Reg $\leftarrow$ Reg - 1, Skip if Reg $=0$
SBIT	\#,Mem	Set BIT	1 to bit, Mem (bit $=0$ to 7 immediate)
RBIT	\#,Mem	Reset BIT	0 to bit, Mem
IFBIT	\#,Mem	IF BIT	If bit in A or Mem is true do next instruction
RPND		Reset PeNDing Flag	Reset Software Interrupt Pending Flag
X	A,Mem	EXchange A with Memory	$A \longleftrightarrow$ Mem
LD	A,Meml	LoaD A with Memory	$\mathrm{A} \leftarrow \mathrm{Meml}$
LD	B,imm	LoaD B with Immed.	$B \leftarrow 1 m m$
LD	Mem,Imm	. LoaD Memory Immed	Mem $\leftarrow$ Imm
LD	Reg, Imm	LoaD Register Memory Immed.	Reg $\leftarrow$ Imm
X	A, $[B \pm]$	EXchange A with Memory [B]	$A \longleftrightarrow[B],(B \leftarrow B \pm 1)$
X	A, $[\mathrm{X} \pm$ ]	EXchange A with Memory [X]	$A \longleftrightarrow[X],(X \leftarrow \pm 1)$
LD	A, $[B \pm]$	LoaD A with Memory [B]	$A \leftarrow[B],(B \leftarrow B \pm 1)$
LD	A, $[\mathrm{X} \pm]$	LoaD A with Memory [X]	$A \leftarrow[X],(X \leftarrow X \pm 1)$
LD	[ $\mathrm{B} \pm$ ],1mm	LoaD Memory [B] Immed.	$[B] \leftarrow \operatorname{lmm},(B \leftarrow B \pm 1)$
CLR	A	CLeaR A	$A \leftarrow 0$
INC	A	INCrement A	$A \leftarrow A+1$
DEC	A	DECrementA	$A \leftarrow A-1$
LAID		Load A InDirect from ROM	$A \leftarrow R O M(P U, A)$
DCOR	A	Decimal CORrect A	$A \leftarrow B C D$ correction of A (follows ADC, SUBC)
RRC	A	Rotate A Right thru C	$\mathrm{C} \rightarrow \mathrm{A} 7 \rightarrow \ldots \rightarrow \mathrm{AO} \rightarrow \mathrm{C}$
RLC	A	Rotate A Left thru C	$\mathrm{C} \leftarrow \mathrm{A} 7 \leftarrow \ldots \leftarrow \mathrm{~A} 0 \leftarrow \mathrm{C}$
SWAP	A	SWAP nibbles of A	A7 ... A4 $\longleftrightarrow$ A3 $\ldots$ A0
SC		Set C	$C \leftarrow 1, H C \leftarrow 1$
RC		Reset C	$\mathrm{C} \leftarrow 0, \mathrm{HC} \leftarrow 0$
IFC		IF C	IF C is true, do next instruction
IFNC		IF Not C	If C is not true, do next instruction
POP	A	POP the stack into $A$	$\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{~A} \leftarrow$ [SP]
PUSH	A	PUSH A onto the stack	[SP] $\leftarrow \mathrm{A}, \mathrm{SP} \leftarrow \mathrm{SP}-1$
VIS		Vector to Interrupt Service Routine	$\mathrm{PU} \leftarrow[\mathrm{VU}], \mathrm{PL} \leftarrow[\mathrm{VL}]$
JMPL	Addr.	Jump absolute Long	$\mathrm{PC} \leftarrow \mathrm{ii}$ (ii $=15$ bits, 0 to 32k)
JMP	Addr.	Jump absolute	PC9 ... $0 \leftarrow \mathrm{i}(\mathrm{i}=12$ bits)
JP	Disp.	Jump relative short	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{r}(\mathrm{r}$ is -31 to +32 , except 1 )
JSRL	Addr.	Jump SubRoutine Long	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow \mathrm{ii}$
JSR	Addr	Jump SubRoutine	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC9} \ldots 0 \leftarrow \mathrm{i}$
JID		Jump InDirect	$\mathrm{PL} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
RET		RETurn from subroutine	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETSK		RETurn and SKip	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETI		RETurn from Interrupt	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1], \mathrm{GIE} \leftarrow 1$
INTR		Generate an Interrupt	[SP] $\leftarrow \mathrm{PL}, \mathrm{lSP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow 0 \mathrm{FF}$
NOP		No OPeration	$\mathrm{PC} \leftarrow \mathrm{PC}+1$

## Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instructions taking two bytes).
Most single byte instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details.
Bytes and Cycles per Instruction
The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle.

Arithmetic and Logic Instructions			
	[B]	Direct	Immed.
ADD	1/1	3/4	2/2
ADC	1/1	3/4	2/2
SUBC	1/1	3/4	2/2
AND	1/1	3/4	$2 / 2$
OR	1/1	3/4	2/2
XOR	1/1	3/4	$2 / 2$
IFEQ	1/1	3/4	2/2
IFNE	1/1	3/4	2/2
JFGT	1/1	3/4	$2 / 2$
IFBNE	1/1		
DRSZ		1/3	
SBIT	1/1	3/4	
RBIT	1/1	$3 / 4$	
IFBIT	1/1	3/4	


Instructions Using A \& C	
CLRA $1 / 1$   INCA $1 / 1$   DECA $1 / 1$   LAID $1 / 3$   DCOR $1 / 1$   RRCA $1 / 1$   RLCA $1 / 1$   SWAPA $1 / 1$   SC $1 / 1$   RC $1 / 1$   IFC $1 / 1$   IFNC $1 / 1$   PUSHA $1 / 3$   POPA $1 / 3$   ANDSZ $2 / 2$	


Transfer of Control
Instructions


JMPL	$3 / 4$
JMP	$2 / 3$
JP	$1 / 3$
JSRL	$3 / 5$
JSR	$2 / 5$
JID	$1 / 3$
VIS	$1 / 5$
RET	$1 / 5$
RETSK	$1 / 5$
RETI	$1 / 5$
INTR	$1 / 7$
NOP	$1 / 1$


RPND	$1 / 1$

Memory Transfer Instructions

	Register   Indirect		Direct	Immed.	Register Indirect   Auto Incr. \& Decr.	
$[\mathrm{B}]$	$[\mathrm{X}]$			$[\mathrm{B}+, \mathrm{B}-]$		$[\mathrm{X}+, \mathrm{X}-]$
X A,*	$1 / 1$	$1 / 3$	$2 / 3$		$1 / 2$	$1 / 3$
I.D A,*	$1 / 1$	$1 / 3$	$2 / 3$	$2 / 2$	$1 / 2$	$1 / 3$
LD B, Imm				$1 / 1$		
LD B, Imm			$3 / 3$	$2 / 2$		
LD Mem, Imm	$2 / 2$		$2 / 3$		$2 / 2$	
LD Reg, Imm			$3 / 3$			
IFEQ MD, Imm						

(IF $B<16$ )
(IFB>15)

[^4]COP688CS/COP684CS/COP888CS/COP884CS/COP988CS/COP984CS

## Opcode Table

Upper Nibble Along X-Axis
Lower Nibble Along Y-Axis

F	E	D	C	B	A	9	8	
JP -15	JP-31	LD OFO, \# i	DRSZ OFO	RRCA	RC	ADC A, \#i	ADC A, [B]	0
JP -14	JP -30	LD 0F1, \# i	DRSZ 0F1	*	SC	SUBC A, \#i	SUB A, [B]	1
JP -13	JP -29	LD OF2, \# i	DRSZ 0F2	X $A,[X+]$	X $\mathrm{A},[\mathrm{B}+]$	IFEQ A, \#i	IFEQ A, [B]	2
$J P-12$	JP -28	LD 0F3, \# i	DRSZ 0F3	X $A,[\mathrm{X}-\mathrm{]}$	X $\mathrm{A},[\mathrm{B}-\mathrm{]}$	IFGT A, \#i	IFGT A, [B]	3
JP -11	JP -27	LD OF4, \# i	DRSZ 0F4	VIS	LAID	ADD A, \#i	ADD A, [B]	4
JP - 10	JP -26	LD OF5, \# i	DRSZ 0F5	RPND	JID	AND A,\#i	AND A,[B]	5
JP -9	JP -25	LD 0F6, \# i	DRSZ 0F6	X A, [X]	X A, [B]	XOR A, \#i	XOR A, [B]	6
JP -8	JP -24	LD 0F7, \# i	DRSZ 0F7	*	*	OR A,\#i	OR A, [B]	7
JP -7	JP -23	LD OF8, \# i	DRSZ 0F8	NOP	RLCA	LD A, \#i	IFC	8
JP -6	JP -22	LD 0F9, \# i	DRSZ 0F9	$\begin{aligned} & \text { IFNE } \\ & \mathrm{A} ;[\mathrm{B}] \end{aligned}$	IFEQ   Md,\#i	IFNE $A, \# i$	IFNC	9
JP -5	JP -21	LD OFA, \# i	DRSZ OFA	LD A, [X+]	LD A, [B+]	LD [B+],\#i	INCA	A
JP - 4	JP -20	LD OFB, \# i	DRSZ OFB	LD A, $[\mathrm{X}-\mathrm{]}$	LD A, [B-]	LD [B-],\#i	DECA	B
JP - 3	JP - 19	LD OFC, \# i	DRSZ OFC	LD Md, \#i	JMPL	X A, Md	POPA	C
JP -2	JP -18	LD OFD, \# i	DRSZ OFD	DIR	JSRL	LD A,Md	RETSK	D
JP -1	JP -17	LD OFE, \# i	DRSZ OFE	LD A, [X]	LD A,[B]	LD [B], \#i	RET	E
JP -0	JP - 16	LD OFF, \# i	DRSZ OFF	* .	$\because *$	LD B, \#i	RETI	F

## Opcode Table (Continued)

Upper Nibble Along X-Axis
Lower Nibble Along Y-Axis

7	6	5	4	3	2	1	0	
$\begin{aligned} & \text { IFBIT } \\ & 0,[B] \end{aligned}$	ANDSZ   A, \#i	LD B, \# 0F	IFBNE 0	$\begin{aligned} & \text { JSR } \\ & \text { x000-x0FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 000-\times 0 F F \end{aligned}$	$\mathrm{JP}+17$	INTR	0
$\begin{aligned} & \text { IFBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	*	LD B, \# OE	IFBNE 1	$\begin{aligned} & \text { JSR } \\ & \text { x } 100-\times 1 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 100-\times 1 F F \end{aligned}$	$J P+18$	$J P+2$	1
$\begin{aligned} & \text { IFBIT } \\ & 2,[B] \end{aligned}$	*	LD B, \# OD	IFBNE 2	$\begin{aligned} & \text { JSR } \\ & \text { x200-x2FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 200-\times 2 F F \end{aligned}$	JP + 19	$J P+3$	2
$\begin{aligned} & \text { IFBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	*	LD B, \#0C	IFBNE 3	$\begin{aligned} & \text { JSR } \\ & \text { x } 300-x 3 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 300-\times 3 F F \end{aligned}$	JP + 20	$J P+4$	3
$\begin{aligned} & \text { IFBIT } \\ & 4,[\mathrm{~B}] \\ & \hline \end{aligned}$	CLRA	LD B, \#0B	IFBNE 4	$\begin{aligned} & \text { JSR } \\ & \times 400-\times 4 F F \\ & \hline \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 400-\times 4 F F \end{aligned}$	JP + 21	$J P+5$	4
$\begin{aligned} & \text { IFBIT } \\ & 5,[\mathrm{~B}] \end{aligned}$	SWAPA	LD B, \#OA	IFBNE 5	$\begin{aligned} & \text { JSR } \\ & \times 500-\times 5 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 500-\times 5 F F \end{aligned}$	JP + 22	$J P+6$	5
$\begin{aligned} & \text { IFBIT } \\ & \text { 6,[B] } \\ & \hline \end{aligned}$	DCORA	LD B, \#09	IFBNE 6	$\begin{aligned} & \text { JSR } \\ & \text { x600-x6FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x600-x6FF } \end{aligned}$	JP + 23	$J P+7$	6
$\begin{aligned} & \text { IFBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	PUSHA	LD B, \#08	IFBNE 7	$\begin{aligned} & \text { JSR } \\ & \text { x700-x7FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x } 700-x 7 F F \end{aligned}$	JP + 24	JP + 8	7
$\begin{aligned} & \text { SBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	LD B, \#07	IFBNE 8	$\begin{aligned} & \text { JSR } \\ & \text { x } 800-x 8 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x } 800-\times 8 \mathrm{FF} \end{aligned}$	JP + 25	JP + 9	8
$\begin{aligned} & \text { SBIT } \\ & 1,[\mathrm{~B}] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	LD B,\#06	IFBNE 9	$\begin{aligned} & \text { JSR } \\ & \text { x } 900-\text { x9FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 900-x 9 F F \end{aligned}$	$J P+26$	$J P+10$	9
$\begin{aligned} & \text { SBIT } \\ & \text { 2,[B] } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & \text { 2,[B] } \\ & \hline \end{aligned}$	LD B, \#05	IFBNE OA	$\begin{aligned} & \text { JSR } \\ & \text { XA00-xAFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { XAOO-XAFF } \end{aligned}$	JP + 27	$J P+11$	A
$\begin{aligned} & \text { SBIT } \\ & 3,[B] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 3,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B,\#04	IFBNE OB	$\begin{aligned} & \text { JSR } \\ & \text { xBOO-xBFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xB00-xBFF } \end{aligned}$	$J P+28$	$\mathrm{JP}+12$	B
$\begin{aligned} & \text { SBIT } \\ & 4,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 4,[\mathrm{~B}] \end{aligned}$	LD B, \#03	IFBNE OC	$\begin{aligned} & \text { JSR } \\ & \therefore C 00-\therefore C E F \end{aligned}$		$J P+29$	$J P+13$	C
$\begin{aligned} & \text { SBIT } \\ & 5,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 5,[B] \end{aligned}$	LD B, \#02	IFBNE OD	$\begin{aligned} & \text { JSR } \\ & \text { xD00-xDFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xD00-xDFF } \end{aligned}$	$\mathrm{JP}+30$	$J P+14$	D
$\begin{aligned} & \text { SBIT } \\ & 6,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & \text { 6,[B] } \end{aligned}$	LD B, \#01	IFBNE OE	$\begin{aligned} & \text { JSR } \\ & \text { xE00-xEFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xEOO-xEFF } \end{aligned}$	JP + 31	$\mathrm{JP}+15$	E
$\begin{aligned} & \text { SBIT } \\ & 7,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 7,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, \#00	IFBNE OF	$\begin{aligned} & \text { JSR } \\ & \text { xF00-xFFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xFO0-xFFF } \end{aligned}$	JP + 32	$\mathrm{JP}+16$	F

Where,
$i$ is the immediate data
Md is a directly addressed memory location

* is an unused opcode

Note: The opcode 60 Hex is also the opcode for IFBIT \# $\mathrm{i}, \mathrm{A}$

## Mask Options

The device mask programmable options are shown below. The options are programmed at the same time as the ROM pattern submission.

```
OPTION 1: CLOCK CONFIGURATION
 =1 Crystal Oscillator (CKI/l0)
 G7 (CKO) is clock generator
 output to crystal/resonator
 CKI is the clock input
 =2
 Single-pin RC controlled
 oscillator (CKI/l0)
 G7 is available as a HALT
 restart and/or general purpose
 input
```

OPTION 2: HALT
$=1$ Enable HALT mode
$=2$ Disable HALT mode
OPTION 3: BONDING OPTIONS
$=1$ 44-Pin PLCC
$=2$ 40-Pin DIP
$=3$ NA
$=4$ 28-Pin DIP
$=5 \quad 28-\operatorname{Pin} S 0$

## Development Support

## in-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 In-Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface for maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real time, full speed emulation up to $10 \mathrm{MHz}, 32 \mathrm{kBytes}$ of emulation memory and 4 k frames
of trace buffer memory. The user may define as many as 32k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code or address ranges or complex triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as diassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.
During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bar graph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy to use windowed interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefineable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PC® via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time to under 3 seconds.
The following tables list the emulator and probe cards ordering information.

Emulator Ordering Information

Part Number	Description	Current Version
IM-COP8/400/1 $\ddagger$	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger   software and RS-232 serial interface cable, with 110V @ 60 Hz Power Supply.	Host Software:   Ver. 3.3 Rev. 5,   Model File
IM-COP8/400/2 $\ddagger$	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger   software and RS-232 serial interface cable, with 220V @ 50 Hz Power Supply.	Rev. 3.050.
DM-COP8/888EG $\ddagger$	MetaLink iceMASTER Debug Module. This is the low cost version of MetaLink's   iceMASTER. Firmware: Ver. 6.07.	

$\ddagger$ These parts include National's COP8 Assembler/Linker/Librarian Package (COP8-DEV-IBMA).

## Development Support (Continued)

## macro cross assembler

National Semiconductor offers a COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink iceMASTER emulators.

## SINGLE CHIP EMULATOR DEVICE

The COP8 family is fully supported by One-Time Programmable (OTP) emulators. For more detailed information refer to the emulation device specific data sheets and emulator selection table below. (The COP8788EG/COP8784EG can be used to emulate the COP888CS/COP884CS.)
PROGRAMMING SUPPORT
Programming of the single chip emulator devices is supported by different sources.

Probe Card Ordering Information

Part   Number	Package	Voltage   Range	Emulates
MHW-884CG28D5PC	28 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP884CS
MHW-884CG28DWPC	28 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP884CS
MHW-888CG40D5PC	40 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888CS
MHW-888CG40DWPC	40 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP888CS
MHW-888CG44D5PC	44 PLCC	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888CS
MHW-888CG44DWPC	44 PLCC	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP888CS

EPROM Programmer Information

Manufacturer   and Product	U.S. Phone   Number	Europe Phone   Number	Asia Phone   Number
MetaLink-Debug Module	$(602) 926-0797$	Germany: +49-8141-1030	Hong Kong: +852-737-1800
Xeltek-Superpro	$(408) 745-7974$	Germany: $+49-2041684758$	Singapore: +652766433
BP Microsystems-EP-1140	$(800) 225-2102$	Germany: +49898576667	Hong Kong: +8523880629
Data I/O-Unisite;   -System 29,   -System 39	$(800) 322-8246$	Europe: $+31-20-622866$   Germany: $+49-89-85-8020$	Japan: $+33-432-6991$
Abcom-COP8 Programmer		Europe: +89808707	
System General Turpro-1-FX;   -APRO	(408) 263-6667	Switzerland: $+31-921-7844$	Taiwan Taipei: $+2-9173005$

Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8 Assembler/Linker/Librarian for IBM ${ }^{\circledR}$ PC/XT®, ${ }^{\text {AT }}{ }^{\circledR}$ or compatible	424410632-001

Single Chip Emulator Selection Table

Device Number	Clock Option	Package	Emulates
COP87898EGV-X	Crystal	44 PLCC	COP888CS
COP8788EGV-R*	R/C		
COP8788EGN-X	Crystal   R/C	40 DIP	COP888CS
COP8788EGN-R*	Crystal   R/C	28 DIP	COP884CS
COP8784EGN-X	Crystal	28 SO	COP884CS
COP8784EGWM-X*   COP8784EGWM-R	R/C		

[^5]
## Development Support (Continued)

## DIAL-A-HELPER

Dial-A-Helper is a service provided by the Microcontroller Applications group. The Dial-A-Helper is an Electronic Bulletin Board Information system.

INFORMATION SYSTEM
The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.
If the user has a PC with a communications package then files from the FILE SECTION can be down loaded to disk for later use.

## ORDER P/N: MOLE-DIAL-A-HLP

Information System Package contains:
Dial-A-Helper Users Manual
Public Domain Communications Software

## FACTORY APPLICATIONS SUPPORT

Dial-A-Helper also provides immediate factor applications support. If a user has questions, he can leave messages on our electronic bulletin board, which we will respond to.

Voice: (800) 272-9959
Modem: Canada/U.S.
(800) NSC-Micro:
(800) 672-6427

Baud: $\quad 14.4 \mathrm{k}$
Set-up: Length: 8-Bit
Parity: None
Stop Bit: 1
Operation: 24 Hrs., 7 Days

National Semiconductor

## COP884CG/COP888CG

## Single-Chip microCMOS Microcontrollers

## General Description

The COP888 family of microcontrollers uses an 8 -bit single chip core architecture fabricated with National Semiconductor's M²CMOSTM process technology. The COP888CG is a member of this expandable 8 -bit core processor family of microcontrollers.
(Continued)

## Features

- Low cost 8-bit microcontroller
- Fully static CMOS, with low current drain
- Two power saving modes: HALT and IDLE
- $1 \mu \mathrm{~s}$ instruction cycle time
- 4096 bytes on-board ROM
- 192 bytes on-board RAM

■ Single supply operation: $2.5 \mathrm{~V}-6 \mathrm{~V}$

- Full duplex UART
- Two analog comparators
- MICROWIRE/PLUSTM serial I/O
- WATCHDOGTM and Clock Monitor logic
- Idle Timer
- Multi-Input Wakeup (MIWU) with optional interrupts (8)
- Three 16 -bit timers, each with two 16 -bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- 8-bit Stack Pointer SP (stack in RAM)
- Two 8-hit Register Indirect Data Momonj Pointers ( B and X )

■ Fourteen multi-source vectored interrupts servicing

- External Interrupt
- Idle Timer TO
- Three Timers (Each with 2 Interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
- UART (2)
— Default VIS
- Versatile instruction set
- True bit manipulation
- Memory mapped I/O
- BCD arithmetic instructions
- Package:
- 44 PLCC with 39 I/O pins
-40 N with $35 \mathrm{I} / \mathrm{O}$ pins
-28 N with $23 \mathrm{I} / \mathrm{O}$ pins
-28 SO with 23 I/O pins
- Software selectable I/O options
- TRI-STATE ${ }^{\text {® }}$ Output
- Push-Pull Output
- Weak Pull Up Input
- High Impedance Input
m Schmitt trigger inputs on ports $G$ and $L$
- Temperature ranges: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- One-Time Programmable emulation devices
- Real time emulation and full program debug offered by ivietaLinin's Déveiopment Systeriòs


## Block Diagram



TL/DD/9765-1
FIGURE 1. Block Dlagram

## General Description (Continued)

They are fully static parts, fabricated using double-metal silicon gate microCMOS technology. Features include an 8-bit memory mapped architecture, MICROWIRE/PLUS serial I/O, three 16 -bit timer/counters supporting three modes (Processor Independent PWM generation, External Event counter, and Input Capture mode capabilities), full duplex UART, two comparators, and two power savings modes (HALT and IDLE), both with a multi-sourced wakeup/interrupt capability. This multi-sourced interrupt capability may

## Connection Diagrams

Plastic Chip Carrier

Order Number COP888CG-XXX/V See NS Plastic Chip Package Number V44A
also be used independent of the HALT or IDLE modes. Each 1/O pin has software selectable configurations. The device operates over a voltage range of 2.5 V to 6 V . High throughput is achieved with an efficient, regular instruction set operating at a maximum of $1 \mu \mathrm{~s}$ per instruction rate.
The device has reduced EMI emissions. Low radiated emissions are achieved by gradual turn-on output drivers and internal Icc filters on the chip logic and crystal oscillator.

Dual-In-Line Package


Top View
Order Number COP888CG-XXX/N See NS Molded Package Number N40A

Dual-In-Line Package


TL/DD/9765-5
Top View
Order Number COP884CG-XXX/N or COP884CG-XXX/WM See NS Molded Package Number N28A OR M28B

FIGURE 2a. Connection Diagrams

## Connection Diagrams (Continued)

Pinouts for 28-, 40- and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-PIn   Pack.	40-Pin   Pack.	44-Pin   Pack.
L0	1/O	MIWU		11	17	17
L1	1/0	MIWU	CKX	12	18	18
L2	1/0	MIWU	TDX	13	19	19
L3	1/0	MIWU	RDX	14	20	20
L4	1/0	MIWU	T2A	15	21	25
L5	1/O	MIWU	T2B	16	22	26
L6	1/0	MIWU	T3A	17	23	27
L7	1/0	MIWU	Т3В	18	24	28
G0	1/0	INT		25	35	39
G1	WDOUT			26	36	40
G2	1/O	T1B		27	37	41
G3	1/0	T1A		28	38	42
G4	1/0	SO		1	3	3
G5	1/0	SK		2	4	4
G6	1	SI		3	5	5
G7	I/CKO	HALT Restart		4	6	6
D0	0			19	25	29
D1	0			20	26	30
D2	0			21	27	31
D3	0			22	28	32
10	1			7	9	9
11	,	COMP1IN-		8	10	10
12	1	COMP1IN+		9	11	11
13	1	COMP10UT		10	12	12
14	1	COMP2IN-			13	13
15	1	COMP2IN+			14	14
16	1	COMP2OUT			15	15
17	1				16	16
D4	0				29	33
D5	0				30	34
D6	0				31	35
D7	0				32	36
C0	1/0				39	43
C1	$1 / \mathrm{O}$				40	44
C2	1/0				1	1
C3	1/0				2	2
C4	1/0					21
C5	1/0					22
C6	1/0					23
C7	$1 / 0$					24
$V_{C C}$				6	8	8
GND				23	33	37
CKI				5	7	7
RESET				24	34	38

## Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage (VCC)
Voltage at Any Pin
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into VCC Pin (Source) . 100 mA
DC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage		2.5		6	V
Power Supply Ripple (Note 1)	Peak-to-Peak			$0.1 \mathrm{~V}_{C C}$	V
$\begin{aligned} & \text { Supply Current (Note 2) } \\ & \begin{array}{l} \text { CKI } \end{array}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=10 \mu \mathrm{~s} \end{aligned}$		.	$\begin{aligned} & 8.0 \\ & 4.5 \\ & 2.5 \\ & 1.4 \\ & \hline \end{aligned}$	mA   mA   mA   mA
HALT Current (Note 3)	$\begin{aligned} & V_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		$\begin{gathered} <1 \\ <0.5 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 6 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
IDLE Current $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=10 \mu \mathrm{~s} \end{aligned}$			$\begin{aligned} & 3.5 \\ & 2.5 \\ & 0.7 \end{aligned}$	mA   mA   mA
Input Levels   RESET   Logic High   Logic Low   CKI (External and Crystal Osc. Modes)   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low	!	$\begin{aligned} & 0.8 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & V \\ & v \end{aligned}$
Hi-Z Input Leakage	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
Input Pullup Current	$V_{C C}=6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-40		-250	$\mu \mathrm{A}$
G and L Port Input Hysteresis				$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up Mode)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ -0.2 \\ 10 \\ 2.0 \\ -10 \\ -2.5 \\ -0.4 \\ -0.2 \\ 1.6 \\ 0.7 \\ \hline \end{gathered}$	.	$\begin{gathered} -100 \\ -33 \end{gathered}$	mA   mA   mA   mA   $\mu \mathrm{A}$   $\mu \mathrm{A}$   mA   mA   mA   mA
TRI-STATE Leakage	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a crystal/resonator oscillator, inputs at rails and outputs open.
Note 3: The HALT mode will stop CK1 from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $\mathrm{V}_{\mathrm{CC}}$, $\mathrm{L}, \mathrm{C}$, and $\mathrm{G} 0-\mathrm{G} 5$ configured as outputs and set high. The D port set to zero. The clock monitor and the comparators are disabled.

## DC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Parameter	Conditlons	Min	Typ	Max	Units
Allowable Sink/Source   Current per Pin   D Outputs (Sink)   All others					
Maximum Input Current   without Latchup	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			15	mA
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$	500 ns Rise				
and Fall Time (Min)		2		$\pm 100$	mA
Input Capacitance				mA	
Load Capacitance on D2				7	V

AC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crystal, Resonator, R/C Oscillator	$\begin{aligned} & 4 V \leq V_{C C} \leq 6 V \\ & 2.5 V \leq V_{C C}<4 V \\ & 4 V \leq V_{C C} \leq 6 V \\ & 2.5 V \leq V_{C C}<4 V \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \end{gathered}$		$\begin{aligned} & D C \\ & D C \\ & D C \\ & D C \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
Inputs tseTup $t_{\text {HOLD }}$	$\begin{aligned} & 4 V \leq V_{C C} \leq 6 V \\ & 2.5 V \leq V_{C C}<4 V \\ & 4 V \leq V_{C C} \leq 6 V \\ & 2.5 V \leq V_{C C}<4 V \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			ns   ns   ns   ns
Output Propagation Delay (Note 4)   tPD1, tpD0   SO, SK   All Others	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 2.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tupd)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \hline \end{aligned}$
Reset Pulse Width		1			$\mu \mathrm{s}$

Note 4: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.

Comparators AC and DC Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage	$0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$		$\pm 10$	$\pm 25$	mV
Input Common Mcde Voltage Range		0.4		$\mathrm{~V}_{\mathrm{CC}}-1.5$	V
Low Level Output Current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.6			mA
High Level Output Current	$\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{~V}$	1.6			mA
DC Supply Current Per Comparator   (When Enabled)				250	$\mu \mathrm{~A}$
Response Time	TBD mV Step, TBD mV   Overdrive, 100 pF Load		1		$\mu \mathrm{~S}$



TL/DD/9765-7
FIGURE 2. MICROWIRE/PLUS Timing

## Pin Descriptions

$\mathrm{V}_{\mathrm{CC}}$ and GND are the power supply pins.
CKI is the clock input. This can come from an R/C generated oscillator, or a crystal oscillator (in conjunction with CKO). See Oscillator Description section.
$\overline{\text { RESET }}$ is the master reset input. See Reset Description section.
The device contains three bidirectional 8 -bit I/O ports (C, G and L ), where each individual bit may be independently configured as an input (Schmitt trigger inputs on ports $L$ and $G$ ), output or TRI-STATE under program control. Three data memory address locations are allocated for each of these I/O ports. Each I/O port has two associated 8 -bit memory mapped registers, the CONFIGURATION register and the output DATA register. A memory mapped address is also reserved for the input pins of each I/O port. (See the memory map for the various addresses associated with the I/O ports.) Figure 3 shows the I/O port configurations. The DATA and CONFIGURATION registers allow for each port bit to be individually configured under software control as shown below:

CONFIGURATION   Register	DATA   Register	Port Set-Up
0	0	Hi-Z Input   (TRI-STATE Output)   0
1	1	Input with Weak Pull-Up
1	0	Push-Pull Zero Output
1	Push-Pull One Output	



FIGURE 3. I/O Port Configurations
PORT L is an 8-bit I/O port. All L-pins have Schmitt triggers on the inputs.
The Port L supports Multi-Input Wake Up on all eight pins. L1 is used for the UART external clock. L2 and L3 are used for the UART transmit and receive. L4 and L5 are used for the timer input functions T2A and T2B. L6 and L7 are used for the timer input functions T3A and T3B.
The Port $L$ has the following alternate features:

L0	MIWU
L1	MIWU or CKX
L2	MIWU or TDX
L3	MIWU or RDX
L4	MIWU or T2A
L5	MIWU or T2B
L6	MIWU or T3A
L7.	MIWU or T3B

Port G is an 8-bit port with 5 I/O pins (G0, G2-G5), an input pin (G6), and two dedicated output pins (G1 and G7). Pins G0 and G2-G6 all have Schmitt Triggers on their inputs. Pin G1 serves as the dedicated WDOUT WATCHDOG output, while pin G7 is either input or output depending on the oscillator mask option selected. With the crystal oscillator option selected, G7 serves as the dedicated output pin for the CKO clock output. With the single-pin R/C oscillator mask option selected, G7 serves as a general purpose input pin but is also used to bring the device out of HALT mode with a low to high transition on G7. There are two registers associated with the G Port, a data register and a configuration register. Therefore, each of the 5 I/O bits (G0, G2-G5) can be individually configured under software control.

## Pin Descriptions（Continued）

Since G6 is an input only pin and G7 is the dedicated CKO clock output pin（crystal clock option）or general purpose input（R／C clock option），the associated bits in the data and configuration registers for G6 and G7 are used for special purpose functions as outlined below．Reading the G6 and G7 data bits will return zeros．
Note that the chip will be placed in the HALT mode by writ－ ing a＂ 1 ＂to bit 7 of the Port G Data Register．Similarly the chip will be placed in the IDLE mode by writing a＂1＂to bit 6 of the Port G Data Register．
Writing a＂ 1 ＂to bit 6 of the Port G Configuration Register enables the MICROWIRE／PLUS to operate with the alter－ nate phase of the SK clock．The G7 configuration bit，if set high，enables the clock start up delay after HALT when the R／C clock configuration is used．

	Config Reg．	Data Reg．
G7	CLKDLY	HALT
G6	Alternate SK	IDLE

Port $G$ has the following alternate features：
GO INTR（External Interrupt Input）
G2 T1B（Timer T1 Capture Input）
G3 T1A（Timer T1 I／O）
G4 SO（MICROWIRETM Serial Data Output）
G5 SK（MICROWIRE Serial Clock）
G6 SI（MICROWIRE Serial Data Input）
Port $G$ has the following dedicated functions：
G1 WDOUT WATCHDOG and／or Clock Monitor dedicat－ ed output
G7 CKO Oscillator dedicated output or general purpose input
Port C is an 8－bit I／O port．The 40－pin device does not have a full complement of Port C pins．The unavailable pins are not terminated．A read operation for these unterminated pins will return unpredicatable values．
PORT I is an eight－bit Hi－Z input port．The 28 －pin device does not have a full complement of Port I pins．The unavail－ able pins are not terminated i．e．，they are floating．A read operation for these unterminated pins will return unpredict－ able values．The user must ensure that the software takes this into account by either masking or restricting the access－ es to bit operations．The unterminated Port I pins will draw power only when addressed．
Port 11－13 are used for Comparator 1．Port 14－16 are used for Comparator 2.
The Port I has the following alternate features．
I1 COMP1－IN（Comparator 1 Negative Input）
I2 COMP1＋IN（Comparator 1 Positive Input）
13 COMP1OUT（Comparator 1 Output）
14 COMP2－IN（Comparator 2 Negative Input）
$15 \mathrm{COMP} 2+\mathrm{IN}$（Comparator 2 Positive Input）
16 COMP2OUT（Comparator 2 Output）
Port D is an 8－bit output port that is preset high when RESET goes low．The user can tie two or more D port out－ puts together in order to get a higher drive．

## Functional Description

The architecture of the device is modified Harvard architec－ ture．With the Harvard architecture，the control store pro－ gram memory（ROM）is separated from the data store mem－ ory（RAM）．Both ROM and RAM have their own separate addressing space with separate address buses．The archi－ tecture，though based on Harvard architecture，permits transfer of data from ROM to RAM．

## CPU REGISTERS

The CPU can do an 8 －bit addition，subtraction，logical or shift operation in one instruction（ $\mathrm{t}_{\mathrm{c}}$ ）cycle time．
There are six CPU registers：
A is the 8－bit Accumulator Register
PC is the 15 －bit Program Counter Register
PU is the upper 7 bits of the program counter（PC）
PL is the lower 8 bits of the program counter（PC）
$B$ is an 8－bit RAM address pointer，which can be optionally post auto incremented or decremented．
$X$ is an 8 －bit alternate RAM address pointer，which can be optionally post auto incremented or decremented．
SP is the 8－bit stack pointer，which points to the subroutine／ interrupt stack（in RAM）．The SP is initialized to RAM ad－ dress 06 F with reset．
S is the 8－bit Data Segment Address Register used to ex－ tend the lower half of the address range（ 00 to 7 F ）into 256 data segments of 128 bytes each．
All the CPU registers are memory mapped with the excep－ tion of the Accumulator（A）and the Program Counter（PC）．

## PROGRAM MEMORY

The program memory consists of 4096 bytes of ROM． These bytes may hold program instructions or constant data （data tables for the LAID instruction，jump vectors for the JID instruction，and interrupt vectors for the VIS instruction）． The program memory is addressed by the 15 －bit program counter（PC）．All interrupts in the devices vector to program memory location OFF Hex．

## DATA MEMORY

The data memory address space includes the on－chip RAM and data registers，the I／O registers（Configuration，Data and Pin），the control registers，the MICROWIRE／PLUS SIO shift register，and the various registers，and counters asso－ ciated with the timers（with the exception of the IDLE timer）． Data memory is addressed directly by the instruction or indi－ rectly by the $B, X, S P$ pointers and $S$ register．
The device has 192 bytes of RAM．Sixteen bytes of RAM are mapped as＂registers＂at addresses OFO to OFF Hex． These registers can be loaded immediately，and also decre－ mented and tested with the DRSZ（decrement register and skip if zero）instruction．The memory pointer registers X，SP， $B$ and $S$ are memory mapped into this space at address locations OFC to OFF Hex respectively，with the other regis－ ters being available for general usage．
The instruction set permits any bit in memory to be set， reset or tested．All I／O and registers（except A and PC）are memory mapped；therefore，I／O bits and register bits can be directly and individually set，reset and tested．The accumu－ lator（A）bits can also be directly and individually tested．
Note：RAM contents are undefined upon power－up．

## Data Memory Segment RAM Extension

Data memory address 0FF is used as a memory mapped location for the Data Segment Address Register (S).
The data store memory is either addressed directly by a single byte address within the instruction, or indirectly relative to the reference of the $B, X$, or SP pointers (each contains a single-byte address). This single-byte address allows an addressing range of 256 locations from 00 to FF hex. The upper bit of this single-byte address divides the data store memory into two separate sections as outlined previously. With the exception of the RAM register memory from address locations 00F0 to 00FF, all RAM memory is memory mapped with the upper bit of the single-byte address being equal to zero. This allows the upper bit of the single-byte address to determine whether or not the base address range (from 0000 to 00 FF ) is extended. If this upper bit equals one (representing address range 0080 to 00FF), then address extension does not take place. Alternatively, if this upper bit equals zero, then the data segment extension register $S$ is used to extend the base address range (from 0000 to 007F) from XX00 to XX7F, where XX represents the 8 bits from the S register. Thus the 128 -byte data segment extensions are located from addresses 0100 to 017F for data segment 1, 0200 to 027F for data segment 2, etc., up to FF00 to FF7F for data segment 255 . The base address range from 0000 to 007 F represents data segment 0 .
Figure 4 illustrates how the S register data memory extension is used in extending the lower half of the base address range ( 00 to 7 F hex) into 256 data segments of 128 bytes each, with a total addressing range of 32 kbytes from XX00 to XX7F. This organization allows a total of 256 data segments of 128 bytes each with an additional upper base segment of 128 bytes. Furthermore, all addressing modes are available for all data segments. The $S$ register must be changed under program control to move from one data segment ( 128 bytes) to another. However, the upper base segment (containing the 16 memory registers, I/O registers, control registers, etc.) is always available regardless of the contents of the $S$ register, since the upper base segment (address range 0080 to 00 FF ) is independent of data segment extension.
The instructions that utilize the stack pointer (SP) always reference the stack as part of the base segment (Segment 0 ), regardless of the contents of the $S$ register. The $S$ register is not changed by these instructions. Consequently, the stack (used with subroutine linkage and interrupts) is always located in the base segment. The stack pointer will be intitialized to point at data memory location 006F as a result of reset.

The 128 bytes of RAM contained in the base segment are split between the lower and upper base segments. The first 116 bytes of RAM are resident from address 0000 to 006F in the lower base segment, while the remaining 16 bytes of RAM represent the 16 data memory registers located at addresses 00F0 to 00FF of the upper base segment. No RAM is located at the upper sixteen addresses ( 0070 to 007F) of the lower base segment.
Additional RAM beyond these initial 128 bytes, however, will always be memory mapped in groups of 128 bytes (or less) at the data segment address extensions (XX00 to XX7F) of the lower base segment. The additional 64 bytes of RAM
(beyond the initial 128 bytes) are memory mapped at address locations 0100 to 013F hex.


*Reads as all ones.

## FIGURE 4. RAM Organization

## Reset

The RESET input when pulled low initializes the microcontroller. Initialization will occur whenever the RESET input is pulled low. Upon initialization, the data and configuration registers for ports $\mathrm{L}, \mathrm{G}$ and C are cleared, resulting in these Ports being initialized to the TRI-STATE mode. Pin G1 of the G Port is an exception (as noted below) since pin G1 is dedicated as the WATCHDOG and/or Clock Monitor error output pin. Port D is set high. The PC, PSW, ICNTRL, CNTRL, T2CNTRL and T3CNTRL control registers are cleared. The UART registers PSR, ENU (except that TBMT bit is set), ENUR and ENUI are cleared. The Comparator Select Register is cleared. The S register is initialized to zero. The Multi-Input Wakeup registers WKEN, WKEDG and WKPND are cleared. The stack pointer, SP, is initialized to 6F Hex.
The device comes out of reset with both the WATCHDOG logic and the Clock Monitor detector armed, with the WATCHDOG service window bits set and the Clock Monitor bit set. The WATCHDOG and Clock Monitor circuits are inhibited during reset. The WATCHDOG service window bits being initialized high default to the maximum WATCHDOG service window of 64k tc clock cycles. The Clock Monitor bit being initialized high will cause a Clock Monitor error following reset if the clock has not reached the minimum specified frequency at the termination of reset. A Clock Monitor error will cause an active low error output on pin G1. This error output will continue until $16 \mathrm{t}_{\mathrm{C}}-32 \mathrm{t}_{\mathrm{C}}$ clock cycles following the clock frequency reaching the minimum specified value, at which time the G1 output will enter the TRI-STATE mode. The external RC network shown in Figure 5 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.

Reset（Continued）


TL／DD／9765－10
RC $>5 \times$ Power Supply Rise Time
FIGURE 5．Recommended Reset Circuit

## Oscillator Circuits

The chip can be driven by a clock input on the CKI input pin which can be between DC and 10 MHz ．The CKO output clock is on pin G7（crystal configuration）．The CKI input fre－ quency is divided down by 10 to produce the instruction cycle clock（ $1 / \mathrm{t}_{\mathrm{c}}$ ）．
Figure 6 shows the Crystal and R／C diagrams．

## CRYSTAL OSCILLATOR

CKI and CKO can be connected to make a closed loop crystal（or resonator）controlled oscillator．
Table A shows the component values required for various standard crystal values．

## R／C OSCILLATOR

By selecting CKI as a single pin oscillator input，a single pin R／C oscillator circuit can be connected to it．CKO is avail－ able as a general purpose input，and／or HALT restart input． Table B shows the variation in the oscillator frequencies as functions of the component（ R and C ）values．


TL／DD／9765－12

TL／DD／9765－11
FIGURE 6．Crystal and R／C Oscillator Diagrams
TABLE A．Crystal Oscillator Configuration， $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

R1   $(\mathbf{k} \Omega)$	R2   $\mathbf{( M \Omega )}$	$\mathbf{C 1}$   $(\mathbf{p F})$	$\mathbf{C 2}$   $\mathbf{( p F )}$	CKI Freq   $(\mathbf{M H z})$	Conditions
0	$\mathbf{1}$	30	$30-36$	10	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	30	$30-36$	4	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
0	1	200	$100-150$	0.455	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

TABLE B．RC Oscillator Configuration， $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

$\mathbf{R}$   $(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{C}$   $\mathbf{( p F})$	CKI Freq   $(\mathbf{M H z})$	Instr．Cycle   $(\boldsymbol{\mu s})$	Conditions
3.3	82	2.2 to 2.7	3.7 to 4.6	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
5.6	100	1.1 to 1.3	7.4 to 9.0	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
6.8	100	0.9 to 1.1	8.8 to 10.8	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

Note： $3 \mathrm{k} \leq \mathrm{R} \leq 200 \mathrm{k}$
$50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}$

## Current Drain

The total current drain of the chip depends on：
1．Oscillator operation mode－11
2．Internal switching current－12
3．Internal leakage current－13
4．Output source current－－14
5．DC current caused by external input not at $V_{C C}$ or GND－15
6．Comparator DC supply current when enabled－16
7．Clock Monitor current when enabled－17
Thus the total current drain，It，is given as

$$
I t=11+12+13+14+15+16+17
$$

To reduce the total current drain，each of the above compo－ nents must be minimum．
The chip will draw more current as the CKI input frequency increases up to the maximum 10 MHz value．Operating with a crystal network will draw more current than an external square－wave．Switching current，governed by the equation below，can be reduced by lowering voltage and frequency． Leakage current can be reduced by lowering voltage and temperature．The other two items can be reduced by care－ fully designing the end－user＇s system．

$$
\mathrm{I}=\mathrm{C} \times \mathrm{V} \times \mathrm{f}
$$

where $C=$ equivalent capacitance of the chip
$V=$ operating voltage
$f=$ CKI frequency

## Control Registers

## CNTRL Register（Address X＇00EE）

The Timer1（T1）and MICROWIRE／PLUS control register contains the following bits：

SL1 \＆SLO Select the MICROWIRE／PLUS clock divide by（ $00=2,01=4,1 x=8$ ）
IEDG External interrupt edge polarity select （ $0=$ Rising edge， $1=$ Falling edge）
MSEL Selects G5 and G4 as MICROWIRE／PLUS signals SK and SO respectively
T1C0 Timer T1 Start／Stop control in timer modes 1 and 2
Timer T1 Underflow Interrupt Pending Flag in timer mode 3
T1C1
Timer T1 mode control bit
T1C2 Timer T1 mode control bit
T1C3 Timer T1 mode control bit

T1C3	T1C2	T1C1	T1C0	MSEL	IEDG	SL1	SL0
Bit 7	Bit 0						

Control Registers (Continued)
PSW Register (Address X'00EF)
The PSW register contains the following select bits:

GIE	Global interrupt enable (enables interrupts)
EXEN	Enable external interrupt
BUSY   EXPND	MICROWIRE/PLUS busy shifting flag   T1ENA
External interrupt pending   Timer T1 Interrupt Enable for Timer Underflow	
or T1A Input capture edge	

T1PNDA Timer T1 Interrupt Pending Flag (Autoreload RA
in mode 1, T1 Underflow in Mode 2, T1A cap-
ture edge in mode 3)

The Half-Carry bit is also affected by all the instructions that affect the Carry flag. The SC (Set Carry) and RC (Reset Carry) instructions will respectively set or clear both the carry flags. In addition to the SC and RC instructions, ADC, SUBC, RRC and RLC instructions affect the carry and Half Carry flags.

## ICNTRL Register (Address X'ODE8)

The ICNTRL register contains the following bits:
T1ENB Timer T1 Interrupt Enable for T1B Input capture edge
T1PNDB Timer T1 Interrupt Pending Flag for T1B capture edge
$\mu$ WEN Enable MICROWIRE/PLUS interrupt
$\mu$ WPND MICROWIRE/PLUS interrupt pending
TOEN Timer TO Interrupt Enable (Bit 12 toggle)
TOPND Timer TO Interrupt pending
LPEN . L Port Interrupt Enable (Multi-Input Wakeup/Interrupt)
Bit 7 could be used as a flag

| Unused | LPEN | TOPND | TOEN | $\mu$ WPND | $\mu$ WEN | T1PNDB | T1ENB |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Bit 7

Bit 0
T2CNTRL Register (Address X'00C6)
The T2CNTRL register contains the following bits:
T2ENB Timer T2 Interrupt Enable for T2B Input capture edge
T2PNDB Timer T2 Interrupt Pending Flag for T2B capture edge
T2ENA Timer T2 Interrupt Enable for Timer Underflow or T2A Input capture edge
T2PNDA Timer T2 Interrupt Pending Flag (Autoreload RA in mode 1, T2 Underflow in mode 2, T2A capture edge in mode 3)
T2C0 Timer T2 Start/Stop control in timer modes 1 and 2 Timer T2 Underflow Interrupt Pending Flag in timer mode 3

Timer T2 mode control bit
Timer T2 mode control bit
T2C3 Timer T2 mode control bit

T2C3	T2C2	T2C1	T2C0	T2PNDA	T2ENA	T2PNDB	T2ENB

Bit 7
Bit 0
T3CNTRL Register (Address $X^{\prime} 00 B 6$ )
The T3CNTRL register contains the following bits:
T3ENB Timer T3 Interrupt Enable for T3B
T3PNDB Timer T3 Interrupt Pending Flag for T3B pin (T3B capture edge)
T3ENA Timer T3 Interrupt Enable for Timer Underflow or T3A pin
T3PNDA Timer T3 Interrupt Pending Flag (Autoload RA in mode 1, T3 Underflow in mode 2, T3a capture edge in mode 3)
T3C0 Timer T3 Start/Stop control in timer modes 1 and 2
Timer T3 Underflow Interrupt Pending Flag in timer mode 3
T3C1 Timer T3 mode control bit
T3C2 Timer T3 mode control bit
T3C3 Timer T3 mode control bit


Bit 7
Bit 0

## Timers

The device contains a very versatile set of timers (TO, T1, T2, T3). All timers and associated autoreload/capture registers power up containing random data.

## TIMER TO (IDLE TIMER)

The device supports applications that require maintaining real time and low power with the IDLE mode. This IDLE mode support is furnished by the IDLE timer T0, which is a 16 -bit timer. The Timer TO runs continuously at the fixed rate of the instruction cycle clock, $\mathrm{t}_{\mathrm{c}}$. The user cannot read or write to the IDLE Timer TO, which is a count down timer. The Timer TO supports the following functions:
Exit out of the Idle Mode (See Idle Mode description) WATCHDOG logic (See WATCHDOG description) Start up delay out of the HALT mode
The IDLE Timer TO can generate an interrupt when the thirteenth bit toggles. This toggle is latched into the TOPND pending flag, and will occur every 4 ms at the maximum clock frequency ( $\mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ). A control flag TOEN allows the interrupt from the thirteenth bit of Timer TO to be enabled or disabled. Setting TOEN will enable the interrupt, while resetting it will disable the interrupt.

## Timers (Continued)

## TIMER T1, TIMER T2 AND TIMER T3

The device has a set of three powerful timer/counter blocks, T1, T2 and T3. The associated features and functioning of a timer block are described by referring to the timer block Tx. Since the three timer blocks, T1, T2 and T3 are identical, all comments are equally applicable to any of the three timer blocks.
Each timer block consists of a 16-bit timer, Tx, and two supporting 16-bit autoreload/capture registers, RxA and RxB. Each timer block has two pins associated with it, TxA and TxB. The pin TxA supports I/O required by the timer block, while the pin TxB is an input to the timer block. The powerful and flexible timer block allows the device to easily perform all timer functions with minimal software overhead. The timer block has three operating modes: Processor Independent PWM mode, External Event Counter mode, and Input Capture mode.
The control bits TxC3, TxC2, and TxC1 allow selection of the different modes of operation.

## Mode 1. Processor Independent PWM Mode

As the name suggests, this mode allows the device to generate a PWM signal with very minimal user intervention. The user only has to define the parameters of the PWM signal (ON time and OFF time). Once begun, the timer block will continuously generate the PWM signal completely independent of the microcontroller. The user software services the timer block only when the PWM parameters require updating.
In this mode the timer Tx counts down at a fixed rate of $\mathrm{t}_{\mathrm{c}}$. Upon every underflow the timer is alternately reloaded with the contents of supporting registers, RxA and RxB. The very first underflow of the timer causes the timer to reload from the register RxA. Subsequent underflows cause the timer to be reloaded from the registers alternately beginning with the register RxB.
The Tx Timer control bits, TxC3, TxC2 and TxC1 set up the timer for rivivi mode operation.
Figure 7 shows a block diagram of the timer in PWM mode. The underflows can be programmed to toggle the TxA output pin. The underflows can also be programmed to generate interrupts.
Underflows from the timer are alternately latched into two pending flags, TxPNDA and TxPNDB. The user must reset these pending flags under software control. Two control enable flags, TxENA and TxENB, allow the interrupts from the timer underflow to be enabled or disabled. Setting the timer enable flag TxENA will cause an interrupt when a timer underflow causes the RxA register to be reloaded into the timer. Setting the timer enable flag TxENB will cause an interrupt when a timer underflow causes the RxB register to be reloaded into the timer. Resetting the timer enable flags will disable the associated interrupts.
Either or both of the timer underflow interrupts may be enabled. This gives the user the flexibility of interrupting once per PWM period on either the rising or falling edge of the PWM output. Alternatively, the user may choose to interrupt on both edges of the PWM output.


FIGURE 7. Timer in PWM Mode

## Mode 2. External Event Counter Mode

This mode is quite similar to the processor independent PWM mode described above. The main difference is that the timer, $T x$, is clocked by the input signal from the TxA pin. The Tx timer control bits, TxC3, TxC2 and TxC1 allow the timer to be clocked either on a positive or negative edge from the TxA pin. Underflows from the timer are latched into the TxPNDA pending flag. Setting the TxENA control flag will cause an interrupt when the timer underflows.
In this mode the input pin TxB can be used as an independent positive edge sensitive interrupt input if the TXENB control flag is set. The occurrence of a positive edge on the TxB input pin is latched into the TxPNDB flag.
Figure 8 shows a block diagram of the timer in External Event Counter mode.
Note: The PWM output is not available in this mode since the TXA pin is being used as the counter input clock.


FIGURE 8. Timer in External Event Counter Mode

## Mode 3. Input Capture Mode

The device can precisely measure external frequencies or time external events by placing the timer block, Tx, in the input capture mode.
In this mode, the timer Tx is constantly running at the fixed $t_{c}$ rate. The two registers, RxA and RxB, act as capture registers. Each register acts in conjunction with a pin. The register RxA acts in conjunction with the TxA pin and the register RxB acts in conjunction with the TxB pin.

## Timers (Continued)

The timer value gets copied over into the register when a trigger event occurs on its corresponding pin. Control bits, TxC3, TxC2 and TxC1, allow the trigger events to be specified either as a positive or a negative edge. The trigger condition for each input pin can be specified independently.
The trigger conditions can also be programmed to generate interrupts. The occurrence of the specified trigger condition on the TxA and TxB pins will be respectively latched into the pending flags, TxPNDA and TxPNDB. The control flag TxENA allows the interrupt on TxA to be either enabled or disabled. Setting the TxENA flag enables interrupts to be generated when the selected trigger condition occurs on the TxA pin. Similarly, the flag TxENB controls the interrupts from the TxB pin.
Underilows from the timer can also be programmed to generate interrupts. Underflows are latched into the timer TxCO pending flag (the TxCO control bit serves as the timer underflow interrupt pending flag in the Input Capture mode). Consequently, the TxC0 control bit should be reset when entering the Input Capture mode. The timer underflow interrupt is enabled with the TxENA control flag. When a TXA interrupt occurs in the Input Capture mode, the user must check both the TxPNDA and TxCO pending flags in order to determine whether a TXA input capture or a timer underflow (or both) caused the interrupt.
Figure 9 shows a block diagram of the timer in Input Capture mode.


FIGURE 9. Timer in Input Capture Mode

## TIMER CONTROL FLAGS

The timers T1, T2 and T3 have indentical control structures. The control bits and their functions are summarized below.
TxC0 Timer Start/Stop control in Modes 1 and 2 (Processor Independent PWM and External Event Counter), where $1=$ Start, $0=$ Stop Timer Underflow Interrupt Pending Flag in Mode 3 (Input Capture)
TxPNDA Timer Interrupt Pending Flag
TxPNDB Timer Interrupt Pending Flag
TxENA Timer Interrupt Enable Flag
TxENB . Timer Interrupt Enable Flag $1=$ Timer Interrupt Enabled $0=$ Timer Interrupt Disabled
TxC3 Timer mode control
TxC2 Timer mode control
TxC1 Timer mode control

Timers (Continued)
The timer mode control bits (TxC3, TxC2 and TxC1) are detailed below:

TxC3	TxC2	TxC1	Timer Mode	Interrupt A Source	Interrupt B Source	Timer Counts On
0	0	0	MODE 2 (External Event Counter)	Timer Underflow	Pos. TxB   Edge	TXA   Pos. Edge
0	0	1	MODE 2 (External Event Counter)	Timer Underflow	Pos. TxB Edge	TxA   Neg. Edge
1	0	1	MODE 1 (PWM) TxA Toggle	Autoreload RA	Autoreload RB	$\mathrm{t}_{\mathrm{c}}$
1	0	0	MODE 1 (PWM) No TxA Toggle	Autoreload   RA	Autoreload RB	$\mathrm{t}_{\mathrm{c}}$
0	1	0	MODE 3 (Capture)   Captures:   TxA Pos. Edge   TxB Pos. Edge	Pos. TxA Edge or Timer Underflow	Pos. TxB Edge	$\mathrm{t}_{\mathrm{c}}$
1	1	0	MODE 3 (Capture)   Captures:   TxA Pos. Edge   TxB Neg. Edge	Pos. TXA   Edge or   Timer   Underflow	Neg. TxB   Edge	$\mathrm{t}_{\mathrm{c}}$
0	1	1	MODE 3 (Capture) Captures:   TxA Neg. Edge   TxB Pos. Edge	Neg. TxB   Edge or   Timer   Underflow	Pos. TxB Edge	$\mathrm{t}_{\mathrm{c}}$
1	1	1	MODE 3 (Capture) Captures:   TxA Neg. Edge   TxB Neg. Edge	Neg. TxA   Edge or   Timer   Underflow	Neg. TxB Edge	$\mathrm{t}_{\mathrm{c}}$

## Power Save Modes

The device offers the user two power save modes of operation: HALT and IDLE. In the HALT mode, all microcontroller activities are stopped. In the IDLE mode, the on-board oscillator circuitry the WATCHDOG logic, the Clock Monitor and timer T0 are active but all other microcontroller activities are stopped. In either mode, all on-board RAM, registers, I/O states, and timers (with the exception of TO) are unaltered.

## HALT MODE

The device can be placed in the HALT mode by writing a " 1 " to the HALT flag (G7 data bit). All microcontroller activities, including the clock and timers, are stopped. The WATCHDOG logic is disabled during the HALT mode. However, the clock monitor circuitry if enabled remains active and will cause the WATCHDOG output pin (WDOUT) to go low. If the HALT mode is used and the user does not want to activate the WDOUT pin, the Clock Monitor should be disabled after the device comes out of reset (resetting the Clock Monitor control bit with the first write to the WDSVR register). In the HALT mode, the power requirements of the device are minimal and the applied voltage ( $\mathrm{V}_{\mathrm{CC}}$ ) may be decreased to $\mathrm{V}_{\mathrm{r}}\left(\mathrm{V}_{\mathrm{r}}=2.0 \mathrm{~V}\right)$ without altering the state of the machine.
The device supports three different ways of exiting the HALT mode. The first method of exiting the HALT mode is with the Multi-Input Wakeup feature on the L port. The second method is with a low to high transition on the CKO (G7) pin. This method precludes the use of the crystal clock con-
figuration (since CKO becomes a dedicated output), and so may be used with an RC clock configuration. The third method of exiting the HALT mode is by pulling the RESET pin low.
Since a crystal or ceramic resonator may be selected as the oscillator, the Wakeup signal is not allowed to start the chip running immediately since crystal oscillators and ceramic resonators have a delayed start up time to reach full amplitude and frequency stability. The IDLE timer is used to generate a fixed delay to ensure that the oscillator has indeed stabilized before allowing instruction execution. In this case, upon detecting a valid Wakeup signal, only the oscillator circuitry is enabled. The IDLE timer is loaded with a value of 256 and is clocked with the $t_{c}$ instruction cycle clock. The $t_{c}$ clock is derived by dividing the oscillator clock down by a factor of 10. The Schmitt trigger following the CKI inverter on the chip ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.
If an RC clock option is being used, the fixed delay is introduced optionally. A control bit, CLKDLY, mapped as configuration bit G7, controls whether the delay is to be introduced or not. The delay is included if CLKDLY is set, and excluded if CLKDLY is reset. The CLKDLY bit is cleared on reset.

Power Save Modes (Continued)
The device has two mask options associated with the HALT mode. The first mask option enables the HALT mode feature, while the second mask option disables the HALT mode. With the HALT mode enable mask option, the device will enter and exit the HALT mode as described above. With the HALT disable mask option, the device cannot be placed in the HALT mode (writing a " 1 " to the HALT flag will have no effect).
The WATCHDOG detector circuit is inhibited during the HALT mode. However, the clock monitor circuit if enabled remains active during HALT mode in order to ensure a clock monitor error if the device inadvertently enters the HALT mode as a result of a runaway program or power glitch.

## IDLE MODE

The device is placed in the IDLE mode by writing a " 1 " to the IDLE flag (G6 data bit). In this mode, all activities, except the associated on-board oscillator circuitry, the WATCHDOG logic, the clock monitor and the IDLE Timer T0, are stopped.
As with the HALT mode, the device can be returned to normal operation with a reset, or with a Multi-Input Wakeup from the L Port. Alternately, the microcontroller resumes normal operation from the IDLE mode when the thirteenth bit (representing 4.096 ms at internal clock frequency of $1 \mathrm{MHz}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ) of the IDLE Timer toggles.

This toggle condition of the thiteenth bit of the IDLE Timer TO is latched into the TOPND pending flag.
The user has the option of being interrupted with a transition on the thirteenth bit of the IDLE Timer TO. The interrupt can be enabled or disabled via the TOEN control bit. Setting the TOEN flag enables the interrupt and vice versa.
The user can enter the IDLE mode with the Timer TO interrupt enabled. In this case, when the TOPND bit gets set, the device will first execute the Timer TO interrupt service routine and then return to the instruction following the "Enter Idle Mode" instruction.
Alternatively, the user can enter the IDLE mode with the IDLE Timer TO interrupt disabled. In this case, the device will resume normal operation with the instruction immediately following the "Enter IDLE Mode" instruction.
Note: It is necessary to program two NOP instructions following both the set HALT mode and set IDLE mode instructions. These NOP instructions are necessary to allow clock resynchronization following the HALT or IDLE modes.

## Multi-Input Wakeup

The Multi-Input Wakeup feature is ued to return (wakeup) the device from either the HALT or IDLE modes. Alternately Multi-Input Wakeup/Interrupt feature may also be used to generate up to 8 edge selectable external interrupts.
Figure 10 shows the Multi-Input Wakeup logic.


FIGURE 10. Multi-Input Wake Up Logic

## Multi－Input Wakeup（Continued）

The Multi－Input Wakeup feature utilizes the L Port．The user selects which particular L port bit（or combination of L Port bits）will cause the device to exit the HALT or IDLE modes． The selection is done through the Reg：WKEN．The Reg： WKEN is an 8 －bit read／write register，which contains a con－ trol bit for every L port bit．Setting a particular WKEN bit enables a Wakeup from the associated $L$ port pin．
The user can select whether the trigger condition on the selected L Port pin is going to be either a positive edge（low to high transition）or a negative edge（high to low transition）． This selection is made via the Reg：WKEDG，which is an 8 － bit control register with a bit assigned to each L Port pin． Setting the control bit will select the trigger condition to be a negative edge on that particular L．Port pin．Resetting the bit selects the trigger condition to be a positive edge．Changing an edge select entails several steps in order to avoid a pseudo Wakeup condition as a result of the edge change． First，the associated WKEN bit should be reset，followed by the edge select change in WKEDG．Next，the associated WKPND bit should be cleared，followed by the associated WKEN bit being re－enabled．
An example may serve to clarify this procedure．Suppose we wish to change the edge select from positive（low going high）to negative（high going low）for L Port bit 5 ，where bit 5 has previously been enabled for an input interrupt．The pro－ gram would be as follows：

RBIT	5，WKEN
SBIT	5，WKEDG
RBIT	5，WKPND
SBIT	5，WKEN

If the $L$ port bits have been used as outputs and then changed to inputs with Multi－Input Wakeup／Interrupt，a safe－ ty procedure should also be followed to avoid inherited pseudo wakeup conditions．After the selected L port bits have been changed from output to input but before the as－ sociated WKEN bits are enabled，the associated edge se－ lect bits in WKEDG should be set or reset for the desired edge selects，followed by the associated WKPND bits being cleared．

This same procedure should be used following reset，since the $L$ port inputs are left floating as a result of reset．
The occurrence of the selected trigger condition for Multi－ln－ put Wakeup is latched into a pending register called WKPND．The respective bits of the WKPND register will be set on the occurrence of the selected trigger edge on the corresponding Port L pin．The user has the responsibility of clearing these pending flags．Since WKPND is a pending register for the occurrence of selected wakeup conditions， the device will not enter the HALT mode if any Wakeup bit is both enabled and pending．Consequently，the user has the responsibility of clearing the pending flags before attempt－ ing to enter the HALT mode．

WKEN，WKPND and WKEDG are all read／write registers， and are cleared at reset．

## PORT LINTERRUPTS

Port L provides the user with an additional eight fully select－ able，edge sensitive interrupts which are all vectored into the same service subroutine．
The interrupt from Port L shares logic with the wake up cir－ cuitry．The register WKEN allows interrupts from Port $L$ to be individually enabled or disabled．The register WKEDG specifies the trigger condition to be either a positive or a negative edge．Finally，the register WKPND latches in the pending trigger conditions．
The GIE（Global Interrupt Enable）bit enables the interrupt function．
A control flag，LPEN，functions as a global interrupt enable for Port $L$ interrupts．Setting the LPEN flag will enable inter－ rupts and vice versa．A separate global pending flag is not needed since the register WKPND is adequate．
Since Port L is also used for waking the device out of the HALT or IDLE modes，the user can elect to exit the HALT or IDLE modes either with or without the interrupt enabled．If he elects to disable the interrupt，then the device will restart execution from the instruction immediately following the in－ struction that placed the microcontroller in the HALT or IDLE modes．In the other case，the device will first execute the interrupt service routine and then revert to normal oper－ ation．
The Wakeup signal will not start the chip running immediate－ ly since crystal oscillators or ceramic resonators have a fi－ nite start up time．The IDLE Timer（TO）generates a fixed delay to ensure that the oscillator has indeed stabilized be－ fore allowing the device to execute instructions．In this case， upon detecting a valid Wakeup signal，only the oscillator circuitry and the IDLE Timer TO are enabled．The IDLE Tim－ er is loaded with a value of 256 and is clocked from the $t_{c}$ instruction cycle clock．The $t_{c}$ clock is derived by dividing down the oscillator clock by a factor of 10．A Schmitt trigger following the CKI on－chip inverter ensures that the IDLE tim－ er is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications．This Schmitt trigger is not part of the oscillator closed loop．The startup timeout from the IDLE timer enables the clock sig－ nals to be routed to the rest of the chip．
If the RC clock option is used，the fixed delay is under soft－ ware control．A control flag，CLKDLY，in the G7 configura－ tion bit allows the clock start up delay to be optionally insert－ ed．Setting CLKDLY flag high will cause clock start up delay to be inserted and resetting it will exclude the clock start up delay．The CLKDLY flag is cleared during reset，so the clock start up delay is not present following reset with the RC clock options．

UART
The COP888CG contains a full-duplex software programmable UART. The UART (Figure 11) consists of a transmit shift register, a receiver shift register and seven addressable registers, as follows: a transmit buffer register (TBUF), a receiver buffer register (RBUF), a UART control and status register (ENU), a UART receive control and status register (ENUR), a UART interrupt and clock source register (ENUI), a prescaler select register (PSR) and baud (BAUD) register. The ENU register contains flags for transmit and receive functions; this register also determines the length of the data frame ( 7,8 or 9 bits), the value of the ninth bit in transmission, and parity selection bits. The ENUR register flags framming, data overrun and parity errors while the UART is receiving.

Other functions of the ENUR register include saving the ninth bit received in the data frame, enabling or disabling the UART's attention mode of operation and providing additional receiver/transmitter status information via RCVG and XMTG bits. The determination of an internal or external clock source is done by the ENUI register, as well as selecting the number of stop bits and enabling or disabling transmit and receive interrupts. A control flag in this register can also select the UART mode of operation: asynchronous or synchronous.


FIGURE 11. UART Block Diagram

## UART（Continued）

## UART CONTROL AND STATUS REGISTERS

The operation of the UART is programmed through three registers：ENU，ENUR and ENUI．The function of the individ－ ual bits in these registers is as follows：
ENU－UART Control and Status Register（Address at OBA）

ORW	PSEL 1   ORW	XBIT9／   PSELO   ORW	$\begin{aligned} & \mathrm{CHL} 1 \\ & \mathrm{ORW} \end{aligned}$		$\begin{aligned} & \text { ERR } \\ & \text { OR } \end{aligned}$	$\begin{aligned} & \text { RBFL } \\ & \text { OR } \end{aligned}$	\|1R

Bit 7
ENUR－UART Receive Control and Status Register （Address at OBB）

DOE	FE	PE	SPARE	RBIT9	ATTN	XMTG	RCVG
ORD	ORD	ORD	ORW＊	OR	ORW	OR	OR

Bit7
ENUI－UART Interrupt and Clock Source Register （Address at OBC）

STP2	STP78	ETDX	SSEL	XRCLK	XTCLK	ERI	ETI
ORW	ORW	ORW	ORW	ORW	ORW	ORW	ORW

Bit7
Bito
－Bit is not used．
0 Bit is cleared on reset．
1 Bit is set to one on reset．
R Bit is read－only；it cannot be written by software．
RW Bit is read／write．
D Bit is cleared on read；when read by software as a one，it is cleared automatically．Writing to the bit does not affect its state．

## DESCRIPTION OF UART REGISTER BITS

## ENU－UART CONTROL AND STATUS REGISTER

TBMT：This bit is set when the UART transfers a byte of data from the TBUF register into the TSFT register for trans－ mission．It is automatically reset when software writes into the TBUF register．
RBFL：This bit is set when the UART has received a com－ plete character and has copied it into the RBUF register．It is automatically reset when software reads the character from RBUF．
ERR：This bit is a global UART error flag which gets set if any or a combination of the errors（DOE，FE，PE）occur．
CHL1，CHLO：These bits select the character frame format． Parity is not included and is generated／verified by hardware． $\mathrm{CHL1}=0, \mathrm{CHLO}=0 \quad$ The frame contains eight data bits． CHL1 $=0$, CHLO $=1$ The frame contains seven data bits．
CHL1 $=1$, CHLO $=0 \quad$ The frame contains nine data bits．
CHL1 $=1$, CHLO $=1$ Loopback Mode selected．Trans－ mitter output internally looped back to receiver input．Nine bit framing format is used．
XBIT9／PSELO：Programs the ninth bit for transmission when the UART is operating with nine data bits per frame． For seven or eight data bits per frame，this bit in conjunction with PSEL1 selects parity．
PSEL1，PSELO：Parity select bits．
PSEL $1=0$, PSELO $=0 \quad$ Odd Parity（if Parity enabled）
PSEL1 $=0$, PSELO $=1 \quad$ Even Parity（if Parity enabled）

PSEL1 $=1$, PSEL0 $=0 \quad$ Mark（1）（if Parity enabled）
PSEL1 $=1$, PSELO $=1 \quad$ Space（0）（if Parity enabled）
PEN：This bit enables／disables Parity（ 7 －and 8 －bit modes only）．
PEN $=0 \quad$ Parity disabled．
PEN＝ 1 Parity enabled．
ENUR－UART RECEIVE CONTROL AND STATUS REGISTER
RCVG：This bit is set high whenever a framing error occurs and goes low when RDX goes high．
XMTG：This bit is set to indicate that the UART is transmit－ ting．It gets reset at the end of the last frame（end of last Stop bit）．
ATTN：ATTENTION Mode is enabled while this bit is set． This bit is cleared automatically on receiving a character with data bit nine set．
RBIT9：Contains the ninth data bit received when the UART is operating with nine data bits per frame．
SPARE：Reserved for future use．
PE：Flags a Parity Error．
$P E=0 \quad$ Indicates no Parity Error has been detected since the last time the ENUR register was read．
$\mathrm{PE}=1$ Indicates the occurrence of a Parity Error．
FE：Flags a Framing Error．
$\mathrm{FE}=0$ Indicates no Framing Error has been detected since the last time the ENUR register was read．
$\mathrm{FE}=1$ Indicates the occurrence of a Framing Error．
DOE：Flags a Data Overrun Error．
DOE $=0$ Indicates no Data Overrun Error has been de－ tected since the last time the ENUR register was read．
DOE $=1$ Indicates the occurrence of a Data Overrun Er－ ror．

## ENUI－UART INTERRUPT AND

## こLŨべK SOUUHCE HEGISTER

ETI：This bit enables／disables interrupt from the transmitter section．
$E T I=0 \quad$ Interrupt from the transmitter is disabled．
$E T I=1$ Interrupt from the transmitter is enabled．
ERI：This bit enables／disables interrupt from the receiver section．
$E R I=0$ Interrupt from the receiver is disabled．
$E R I=1$ Interrupt from the receiver is enabled．
XTCLK：This bit selects the clock source for the transmitter－ section．
XTCLK $=0$ The clock source is selected through the PSR and BAUD registers．
XTCLK $=1 \quad$ Signal on CKX（L1）pin is used as the clock．
XRCLK：This bit selects the clock source for the receiver section．
XRCLK $=0 \quad$ The clock source is selected through the PSR and BAUD registers．
XRCLK $=1 \quad$ Signal on CKX（L1）pin is used as the clock．
SSEL：UART mode select．
SSEL＝ 0 Asynchronous Mode．
SSEL＝ 1 Synchronous Mode．

## UART (Continued)

ETDX: TDX (UART Transmit Pin) is the alternate function assigned to Port L pin L2; it is selected by setting ETDX bit. To simulate line break generation, software should reset ETDX bit and output logic zero to TDX pin through Port L data and configuration registers.
STP78: This bit is set to program the last Stop bit to be 7/8th of a bit in length.
STP2: This bit programs the number of Stop bits to be transmitted.
STP2 $=0 \quad$ One Stop bit transmitted.
STP2 $=1 \quad$ Two Stop bits transmitted.

## Associated I/O Pins

Data is transmitted on the TDX pin and received on the RDX pin. TDX is the alternate function assigned to Port L pin L2; it is selected by setting ETDX (in the ENUI register) to one. RDX is an inherent function of Port L pin L3, requiring no setup.
The baud rate clock for the UART can be generated onchip, or can be taken from an external source. Port L pin L1 (CKX) is the external clock I/O pin. The CKX pin can be either an input or an output, as determined by Port L Configuration and Data registers (Bit 1). As an input, it accepts a clock signal which may be selected to drive the transmitter and/or receiver. As an output, it presents the internal Baud Rate Generator output.

## UART Operation

The UART has two modes of operation: asynchronous mode and synchronous mode.

## ASYNCHRONOUS MODE

This mode is selected by resetting the SSEL (in the ENUI register) bit to zero. The input frequency to the UART is 16 times the baud rate.
The TSFT and TBUF registers double-buffer data for transmission. While TSFT is shifting out the current character on the TDX pin, the TBUF register may be loaded by software with the next byte to be transmitted. When TSFT finishes transmitting the current character the contents of TBUF are transferred to the TSFT register and the Transmit Buffer Empty Flag (TBMT in the ENU register) is set. The TBMT flag is automatically reset by the UART when software loads a new character into the TBUF register. There is also the XMTG bit which is set to indicate that the UART is transmitting. This bit gets reset at the end of the last frame (end of last Stop bit). TBUF is a read/write register.
The RSFT and RBUF registers double-buffer data being received. The UART receiver continually monitors the signal on the RDX pin for a low level to detect the beginning of a Start bit. Upon sensing this low level, it waits for half a bit time and samples again. If the RDX pin is still low, the receiver considers this to be a valid Start bit, and the remaining bits in the character frame are each sampled a single time, at the mid-bit position. Serial data input on the RDX pin is shifted into the RSFT register. Upon receiving the complete character, the contents of the RSFT register are copied into the RBUF register and the Received Buffer Full Flag (RBFL) is set. RBFL is automatically reset when software reads the character from the RBUF register. RBUF is a read only register. There is also the RCVG bit which is set high
when a framing error occurs and goes low once RDX goes high. TBMT, XMTG, RBFL and RCVG are read only bits.

## SYNCHRONOUS MODE

In this mode data is transferred synchronously with the clock. Data is transmitted on the rising edge and received on the falling edge of the synchronous clock.
This mode is selected by setting SSEL bit in the ENUI register. The input frequency to the UART is the same as the baud rate.
When an external clock input is selected at the CKX pin, data transmit and receive are performed synchronously with this clock through TDX/RDX pins.
If data transmit and receive are selected with the CKX pin as clock output, the device generates the synchronous clock output at the CKX pin. The internal baud rate generator is used to produce the synchronous clock. Data transmit and receive are performed synchronously with this clock.

## FRAMING FORMATS

The UART supports several serial framing formats (Figure 12). The format is selected using control bits in the ENU, ENUR and ENUI registers.
The first format (1, 1a, 1b, 1c) for data transmission (CHLO $=1$, CHL1 $=0$ ) consists of Start bit, seven Data bits (excluding parity) and 7/8, one or two Stop bits. In applications using parity, the parity bit is generated and verified by hardware.
The second format ( $\mathrm{CHLO}=0, \mathrm{CHL} 1=0$ ) consists of one Start bit, eight Data bits (excluding parity) and $7 / 8$, one or two Stop bits. Parity bit is generated and verified by hardware.
The third format for transmission (CHLO $=0, \mathrm{CHL} 1=1$ ) consists of one Start bit, nine Data bits and 7/8, one or two Stop bits. This format also supports the UART "ATTENTION" feature. When operating in this format, all eight bits of TBUF and RBUF are used for data. The ninth data bit is transmitted and received using two bits in the ENU and ENUR registers, called XBIT9 and RBIT9. RBIT9 is a read only bit. Parity is not generated or verified in this mode.
For any of the above framing formats, the last Stop bit can be programmed to be $7 / 8$ th of a bit in length. If two Stop bits are selected and the $7 / 8$ th bit is set (selected), the second Stop bit will be 7/8th of a bit in length.
The parity is enabled/disabled by PEN bit located in the ENU register. Parity is selected for 7 - and 8 -bit modes only. If parity is enabled (PEN $=1$ ), the parity selection is then performed by PSELO and PSEL1 bits located in the ENU register.
Note that the XBIT9/PSELO bit located in the ENU register serves two mutually exclusive functions. This bit programs the ninth bit for transmission when the UART is operating with nine data bits per frame. There is no parity selection in this framing format. For other framing formats XBIT9 is not needed and the bit is PSELO used in conjunction with PSEL1 to select parity.
The frame formats for the receiver differ from the transmitter in the number of Stop bits required. The receiver only requires one Stop bit in a frame, regardless of the setting of the Stop bit selection bits in the control register. Note that an implicit assumption is made for full duplex UART operation that the framing formats are the same for the transmitter and receiver.

UART Operation (Continued)


## UART INTERRUPTS

The UART is capable of generating interrupts. Interrupts are generated on Receive Buffer Full and Transmit Buffer Empty. Both interrupts have individual interrupt vectors. Two bytes of program memory space are reserved for each interrupt vector. The two vectors are located at addresses 0xEC to OxEF Hex in the program memory space. The interrupts can be individually enabled or disabled using Enable Transmit Interrupt (ETI) and Enable Receive Interrupt (ERI) bits in the ENUI register.
The interrupt from the Transmitter is set pending, and remains pending, as long as both the TBMT and ETI bits are set. To remove this interrupt, software must either clear the ETI bit or write to the TBUF register (thus clearing the TBMT bit).
The interrupt from the receiver is set pending, and remains pending, as long as both the RBFL and ERI bits are set. To remove this interrupt, software must either clear the ERI bit or read from the RBUF register (thus clearing the RBFL bit).

## Baud Clock Generation

The clock inputs to the transmitter and receiver sections of the UART can be individually selected to come either from an external source at the CKX pin (port L, pin L1) or from a
source selected in the PSR and BAUD registers. Internally, the basic baud clock is created from the oscillator frequency through a two-stage divider chain consisting of a 1-16 (increments of 0.5 ) prescaler and an 11-bit binary counter. (Figure 13) The divide factors are specified through two read/write registers shown in Figure 14. Note that the 11-bit Baud Rate Divisor spills over into the Prescaler Select Register (PSR). PSR is cleared upon reset.
As shown in Table I, a Prescaler Factor of 0 corresponds to NO CLOCK. NO CLOCK condition is the UART power down mode where the UART clock is turned off for power saving purpose. The user must also turn the UART clock off when a different baud rate is chosen.
The correspondences between the 5-bit Prescaler Select and Prescaler factors are shown in Table I. Therer are many ways to calculate the two divisor factors, but one particularly effective method would be to achieve a 1.8432 MHz frequency coming out of the first stage. The 1.8432 MHz prescaler output is then used to drive the software programmable baud rate counter to create a $\times 16$ clock for the following baud rates: 110, 134.5, 150, 300, 600, 1200, 1800, 2400, $3600,4800,7200,9600,19200$ and 38400 (Table II). Other baud rates may be created by using appropriate divisors. The $\times 16$ clock is then divided by 16 to provide the rate for the serial shift registers of the transmitter and receiver.

FIGURE 12. Framing Formats

Baud Clock Generation (Continued)


TL/DD/9765-20
FIGURE 13. UART BAUD Clock Generation


TL/DD/9765-21
FIGURE 14. UART BAUD Clock Divisor Registers

TABLE I. Prescaler Factors

Prescaler   Select	Prescaler   Factor
00000	NO CLOCK
00001	1
00010	1.5
00011	2
00100	2.5
00101	3
00110	3.5
00111	4
01000	4.5
01001	5
01010	5.5
01011	6
01100	6.5
01101	7
01110	7.5
01111	8
10000	8.5
10001	9
10010	9.5
10011	10
10100	10.5
10101	11
10110	11.5
10111	12
11000	12.5
11001	13
11010	13.5
11011	14
11100	14.5
11101	15
11110	15.5
11111	16

TABLE II. Baud Rate Divisors (1.8432 MHz Prescaler Output)

Baud   Rate	Baud Rate   Dlvisor $-\mathbf{1}(\mathbf{N}-1)$
$110(110.03)$	1046
$134.5(134.58)$	855
150	767
300	383
600	191
1200	95
1800	63
2400	47
3600	31
4800	23
7200	15
9600	11
19200	5
38400	2

The entries in Table II assume a prescaler output of 1.8432 MHz . In the asynchronous mode the baud rate could be as high as 625 k .
As an example, considering the Asynchronous Mode and a CKi clock of 4.608 MHz , the prescaler factor selected is:

$$
4.608 / 1.8432=2.5
$$

The 2.5 entry is available in Table I. The 1.8432 MHz prescaler output is then used with proper Baud Rate Divisor (Table II) to obtain different baud rates. For a baud rate of 19200 e.g., the entry in Table II is 5.

$$
\begin{aligned}
& \mathrm{N}-1=5(\mathrm{~N}-1 \text { is the value from Table II) } \\
& \mathrm{N}=6(\mathrm{~N} \text { is the Baud Rate Divisor) } \\
& \text { Baud Rate }=1.8432 \mathrm{MHz} /(16 \times 6)=19200
\end{aligned}
$$

The divide by 16 is performed because in the asynchronous mode, the input frequency to the UART is 16 times the baud rate. The equation to calculate baud rates is given below. The actual Baud Rate may be found from:

$$
\mathrm{BR}=\mathrm{Fc} /(16 \times \mathrm{N} \times \mathrm{P})
$$

## Baud Clock Generation (continued)

Where:
BR is the Baud Rate
Fc is the CKI frequency
$N$ is the Baud Rate Divisor (Table II).
$P$ is the Prescaler Divide Factor selected by the value in the Prescaler Select Register (Table I)
Note: In the Synchronous Mode, the divisor 16 is replaced by two.
Example:
Asynchronous Mode:

$$
\begin{gathered}
\text { Crystal Frequency }=5 \mathrm{MHz} \\
\text { Desired baud rate }=9600
\end{gathered}
$$

Using the above equation $\mathrm{N} \times \mathrm{P}$ can be calculated first.

$$
N \times P=(5 \times 106) /(16 \times 9600)=32.552
$$

Now 32.552 is divided by each Prescaler Factor (Table II) to obtain a value closest to an integer. This factor happens to be $6.5(\mathrm{P}=6.5)$.

$$
N=32.552 / 6.5=5.008(N=5)
$$

The programmed value (from Table II) should be 4 ( $\mathrm{N}-1$ ). Using the above values calculated for N and P :

$$
\begin{gathered}
\mathrm{BR}=\left(5 \times 10^{6}\right) /(16 \times 5 \times 6.5)=9615.384 \\
\% \text { error }=(9615.385-9600) / 9600=0.16
\end{gathered}
$$

## Effect of HALT/IDLE

The UART logic is reinitialized when either the HALT or IDLE modes are entered. This reinitialization sets the TBMT flag and resets all read only bits in the UART control and status registers. Read/Write bits remain unchanged. The Transmit Buffer (TBUF) is not affected, but the Transmit Shift register (TSFT) bits are set to one. The receiver registers RBUF and RSFT are not affected.
The device will exit from the HALT/IDLE modes when the Start bit of a character is detected at the RDX (L3) pin. This feature is obtained by using the Multi-Input Wakeup scheme provided on the device.
Before entering the HALT or IDLE modes the user program must select the Wakeup source to be on the RDX pin. This selection is done by setting bit 3 of WKEN (Wakeup Enable) register. The Wakeup trigger condition is then selected to be high to low transition. This is done via the WKEDG register (Bit 3 is zero.)
If the device is halted and crystal oscillator is used, the Wakeup signal will not start the chip running immediately because of the finite start up time requirement of the crystal oscillator. The idle timer (TO) generates a fixed delay to ensure that the oscillator has indeed stabilized before allowing the device to execute code. The user has to consider this delay when data transfer is expected immediately after exiting the HALT mode.

## Diagnostic

Bits CHARLO and CHARL1 in the ENU register provide a loopback feature for diagnostic testing of the UART. When these bits are set to one, the following occur: The receiver input pin (RDX) is internally connected to the transmitter output pin (TDX); the output of the Transmitter Shift Register is "looped back" into the Receive Shift Register input. In this mode, data that is transmitted is immediately received. This feature allows the processor to verify the transmit and receive data paths of the UART.

Note that the framing format for this mode is the nine bit format; one Start bit, nine data bits, and 7/8, one or two Stop bits. Parity is not generated or verified in this mode.

## Attention Mode

The UART Receiver section supports an alternate mode of operation, referred to as ATTENTION Mode. This mode of operation is selected by the ATTN bit in the ENUR register. The data format for transmission must also be selected as having nine Data bits and either 7/8, one or two Stop bits.
The ATTENTION mode of operation is intended for use in networking the device with other processors. Typically in such environments the messages consists of device addresses, indicating which of several destinations should receive them, and the actual data. This Mode supports a scheme in which addresses are flagged by having the ninth bit of the data field set to a 1 . If the ninth bit is reset to a zero the byte is a Data byte.
While in ATTENTION mode, the UART monitors the communication flow, but ignores all characters until an address character is received. Upon receiving an address character, the UART signals that the character is ready by setting the RBFL flag, which in turn interrupts the processor if UART Receiver interrupts are enabled. The ATTN bit is also cleared automatically at this point, so that data characters as well as address characters are recognized. Software examines the contents of the RBUF and responds by deciding either to accept the subsequent data stream (by leaving the ATTN bit reset) or to wait until the next address character is seen (by setting the ATTN bit again).
Operation of the UART Transmitter is not affected by selection of this Mode. The value of the ninth bit to be transmitted is programmed by setting XBIT9 appropriately. The value of the ninth bit received is obtained by reading RBIT9. Since this bit is located in ENUR register where the error flags reside, a bit operation on it will reset the error flags.

## Comparators

Tho devico contitainis two differential comparaiors, eacir wiit a pair of inputs (positive and negative) and an output. Ports $11-13$ and $14-16$ are used for the comparators. The following is the Port I assignment:

I1 Comparator1 negative input
12 Comparator1 positive input
I3 Comparator1 output
14 Comparator2 negative input
15 Comparator2 positive input
I6 Comparator2 output
A Comparator Select Register (CMPSL) is used to enable the comparators, read the outputs of the comparators internally, and enable the outputs of the comparators to the pins. Two control bits (enable and output enable) and one result bit are associated with each comparator. The comparator result bits (CMP1RD and CMP2RD) are read only bits which will read as zero if the associated comparator is not enabled. The Comparator Select Register is cleared with reset, resulting in the comparators being disabled. The comparators should also be disabled before entering either the HALT or IDLE modes in order to save power. The configuration of the CMPSL register is as follows:

## Comparators (Continued)

## CMPSL REGISTER (ADDRESS X'00B7)

The CMPSL register contains the following bits:
CMP1EN Enable comparator 1
CMP1RD Comparator 1 result (this is a read only bit, which will read as 0 if the comparator is not enabled)
CMP10E Selects pin I3 as comparator 1 output provided that CMPIEN is set to enable the comparator
CMP2EN Enable comparator 2
CMP2RD. Comparator 2 result (this is a read only bit, which will read as 0 if the comparator is not enabled)
CMP20E Selects pin I6 as comparator 2 output provided that CMP2EN is set to enable the comparator

Unused	CMP20E	CMP2RD	CMP2EN	CMP10E	CMP1RD	CMP1EN	Unused
Bit 7							

Note that the two unused bits of CMPSL may be used as software flags.
Comparator outputs have the same spec as Ports L and G except that the rise and fall times are symmetrical.

## Interrupts

The device supports a vectored interrupt scheme. It supports a total of fourteen interrupt sources. The following table lists all the possible device interrupt sources, their arbitration ranking and the memory locations reserved for the interrupt vector for each source.

Two bytes of program memory space are reserved for each interrupt source. All interrupt sources except the software interrupt are maskable. Each of the maskable interrupts have an Enable bit and a Pending bit. A maskable interrupt is active if its associated enable and pending bits are set. If GIE $=1$ and an interrupt is active, then the processor will be interrupted as soon as it is ready to start executing an instruction except if the above conditions happen during the Software Trap service routine. This exception is described in the Software Trap sub-section.
The interruption process is accomplished with the INTR instruction (opcode 00), which is jammed inside the Instruction Register and replaces the opcode about to be executed. The following steps are performed for every interrupt:

1. The GIE (Global Interrupt Enable) bit is reset.
2. The address of the instruction about to be executed is pushed into the stack.
3. The PC (Program Counter) branches to address 00FF. This procedure takes $7 \mathrm{t}_{\mathrm{c}}$ cycles to execute.


FIGURE 15. Interrupt Block Diagram

Interrupts（Continued）

Arbitration   Ranking	Source	Description	Vector   Address   HI－Low Byte
（1）Highest	Software	INTR Instruction	0yFE－0yFF
	Reserved	for Future Use	0yFC－0yFD
$(2)$	External	Pin G0 Edge	0yFA－0yFB
$(3)$	Timer T0	Underflow	0yF8－0yF9
$(4)$	Timer T1	T1A／Underflow	0yF6－0yF7
$(5)$	Timer T1	T1B	0yF4－0yF5
$(6)$	MICROWIRE／PLUS	BUSY Goes Low	0yF2－0yF3
	Reserved	for Future Use	0yF0－0yF1
$(7)$	UART	Receive	0yEE－0yEF
$(8)$	UART	Transmit	0yEC－0yED
$(9)$	Timer T2	T2A／Underflow	0yEA－0yEB
$(10)$	Timer T2	T2B	0yE8－0yE9
$(11)$	Timer T3	T3A／Underflow	0yE6－0yE7
$(12)$	Timer T3	T3B	0yE4－0yE5
$(13)$	Port L／Wakeup	Port L Edge	0yE2－0yE3
$(14)$ Lowest	Default	VIS Instr．Execution   without Any Interrupts	0yE0－0yE1

$y$ is VIS page，$y \neq 0$ ．

At this time，since $\mathrm{GIE}=0$ ，other maskable interrupts are disabled．The user is now free to do whatever context switching is required by saving the context of the machine in the stack with PUSH instructions．The user would then pro－ gram a VIS（Vector Interrupt Select）instruction in order to branch to the interrupt service routine of the highest priority interrupt enabled and pending at the time of the VIS．Note that this is not necessarily the interrupt that caused the branch to address location 00FF Hex prior to the context switching．
Thus，if an interrupt with a higher rank than the one which caused the interruption becomes active before the decision of which interrupt to service is made by the VIS，then the interrupt with the higher rank will override any lower ones and will be acknowledged．The lower priority interrupt（s）are still pending，however，and will cause another interrupt im－ mediately following the completion of the interrupt service routine associated with the higher priority interrupt just serv－ iced．This lower priority interrupt will occur immediately fol－ lowing the RETI（Return from Interrupt）instruction at the end of the interrupt service routine just completed．
Inside the interrupt service routine，the associated pending bit has to be cleared by software．The RETI（Return from Interrupt）instruction at the end of the interrupt service rou－ tine will set the GIE（Global Interrupt Enable）bit，allowing the processor to be interrupted again if another interrupt is active and pending．
The VIS instruction looks at all the active interrupts at the time it is executed and performs an indirect jump to the beginning of the service routine of the one with the highest rank．

The addresses of the different interrupt service routines， called vectors，are chosen by the user and stored in ROM in a table starting at 01E0（assuming that VIS is located be－ tween 00FF and 01DF）．The vectors are 15 －bit wide and therefore occupy 2 ROM locations．
VIS and the vector table must be located in the same 256－ bjato bluck（ 0 yoc to oyrfr）excepi ii vis is located at the last address of a block．In this case，the table must be in the next block．The vector table cannot be inserted in the first 256－byte block（ $\mathrm{y} \neq 0$ ）．
The vector of the maskable interrupt with the lowest rank is located at OyEO（Hi－Order byte）and OyE1（Lo－Order byte） and so forth in increasing rank number．The vector of the maskable interrupt with the highest rank is located at OyFA （Hi－Order byte）and OyFB（Lo－Order byte）．
The Software Trap has the highest rank and its vector is located at $0 y F E$ and $0 y F F$ ．
If，by accident，a VIS gets executed and no interrupt is ac－ tive，then the PC（Program Counter）will branch to a vector located at OyEO－OyE1．This vector can point to the Soft－ ware Trap（ST）interrupt service routine，or to another spe－ cial service routine as desired．

Figure 15 shows the Interrupt block diagram．

## SOFTWARE TRAP

The Software Trap（ST）is a special kind of non－maskable interrupt which occurs when the INTR instruction（used to acknowledge interrupts）is fetched from ROM and placed inside the instruction register．This may happen when the $P C$ is pointing beyond the available ROM address space or when the stack is over－popped．

## Interrupts (Continued)

When an ST occurs, the user can re-initialize the stack pointer and do a recovery procedure (similar to reset, but not necessarily containing all of the same initialization procedures) before restarting.
The occurrence of an ST is latched into the ST pending bit. The GIE bit is not affected and the ST pending bit (not accessible by the user) is used to inhibit other interrupts and to direct the program to the ST service routine with the VIS instruction. The RPND instruction is used to clear the software interrupt pending bit. This pending bit is also cleared on reset.
The ST has the highest rank among all interrupts.
Nothing (except another ST) can interrupt an ST being serviced.

## WATCHDOG

The device contains a WATCHDOG and clock monitor. The WATCHDOG is designed to detect the user program getting stuck in infinite loops resulting in loss of program control or "runaway" programs. The Clock Monitor is used to detect the absence of a clock or a very slow clock below a specified rate on the CKI pin.
The WATCHDOG consists of two independent logic blocks: WD UPPER and WD LOWER. WD UPPER establishes the upper limit on the service window and WD LOWER defines the lower limit of the service window.
Servicing the WATCHDOG consists of writing a specific value to a WATCHDOG Service Register named WDSVR which is memory mapped in the RAM. This value is composed of three fields, consisting of a 2-bit Window Select, a 5-bit Key Data field, and the 1-bit Clock Monitor Select field. Table III shows the WDSVR register.
The lower limit of the service window is fixed at 2048 instruction cycles. Bits 7 and 6 of the WDSVR register allow the user to pick an upper limit of the service window.
Table IV shows the four possible combinations of lower and upper limits for the WATCHDOG service window. This flexibility in choosing the WATCHDOG service window prevents any undue burden on the user software.
Bits 5, 4, 3, 2 and 1 of the WDSVR register represent the 5bit Key Data field. The key data is fixed at 01100. Bit 0 of the WDSVR Register is the Clock Monitor Select bit.

TABLE III. WATCHDOG Service Register (WDSVR)

Window   Select		Key Data					Clock   Monitor
X	X	0	1	1	0	0	Y
7	6	5	4	3	2	1	0

TABLE IV. WATCHDOG Service Window Select

WDSVR   Bit 7	WDSVR   Bit 6	Service Window   (Lower-Upper Limits)
0	0	$2 k-8 k t_{c}$ Cycles
0	1	$2 k-16 k t_{c}$ Cycles
1	0	$2 k-32 k t_{c}$ Cycles
1	1	$2 k-64 k t_{c}$ Cycles

## Clock Monitor

The Clock Monitor aboard the device can be selected or deselected under program control. The Clock Monitor is guaranteed not to reject the clock if the instruction cycle clock $\left(1 / \mathrm{t}_{\mathrm{c}}\right)$ is greater or equal to 10 kHz . This equates to a clock input rate on CKI of greater or equal to 100 kHz .

## WATCHDOG Operation

The WATCHDOG and Clock Monitor are disabled during reset. The device comes out of reset with the WATCHDOG armed, the WATCHDOG Window Select bits (bits 6, 7 of the WDSVR Register) set, and the Clock Monitor bit (bit 0 of the WDSVR Register) enabled. Thus, a Clock Monitor error will occur after coming out of reset, if the instruction cycle clock frequency has not reached a minimum specified value, including the case where the oscillator fails to start.
The WDSVR register can be written to only once after reset and the key data (bits 5 through 1 of the WDSVR Register) must match to be a valid write. This write to the WDSVR register involves two irrevocable choices: (i) the selection of the WATCHDOG service window (ii) enabling or disabling of the Clock Monitor. Hence, the first write to WDSVR Register involves selecting or deselecting the Clock Monitor, select the WATCHDOG service window and match the WATCHDOG key data. Subsequent writes to the WDSVR register will compare the value being written by the user to the WATCHDOG service window value and the key data (bits 7 through 1) in the WDSVR Register. Table $V$ shows the sequence of events that can occur.
The user must service the WATCHDOG at least once before the upper limit of the service window expires. The WATCHDOG may not be serviced more than once in every lower limit of the service window. The user may service the WATCHDOG as many times as wished in the time period between the lower and upper limits of the service window. The first write to the WDSVR Register is also counted as a WATCHDOG service.
The WATCHDOG has an output pin associated with it. This is the WDOUT pin, on pin 1 of the port G. WDOUT is active low. The WDOUT pin is in the high impedance state in the inactive state. Upon triggering the WATCHDOG, the logic will pull the WDOUT (G1) pin low for an additional $16 \mathrm{t}_{\mathrm{c}}$ $32 t_{c}$ cycles after the signal level on WDOUT pin goes below the lower Schmitt trigger threshold. After this delay, the device will stop forcing the WDOUT output low.
The WATCHDOG service window will restart when the WDOUT pin goes high. It is recommended that the user tie the WDOUT pin back to $V_{C C}$ through a resistor in order to pull WDOUT high.
A WATCHDOG service while the WDOUT signal is active will be ignored. The state of the WDOUT pin is not guaranteed on reset, but if it powers up low then the WATCHDOG will time out and WDOUT will enter high impedance state.
The Clock Monitor forces the G1 pin low upon detecting a clock frequency error. The Clock Monitor error will continue until the clock frequency has reached the minimum specified value, after which the G1 output will enter the high impedance TRI-STATE mode following $16 \mathrm{t}_{\mathrm{c}}-32 \mathrm{t}_{\mathrm{c}}$ clock cycles. The Clock Monitor generates a continual Clock Monitor error if the oscillator fails to start, or fails to reach the minimum specified frequency. The specification for the Clock Monitor is as follows:
$1 / \mathrm{t}_{\mathrm{c}}>10 \mathrm{kHz}$-No clock rejection.
$1 / \mathrm{t}_{\mathrm{c}}<10 \mathrm{~Hz}$-Guaranteed clock rejection.

## Watchdog and Clock Monitor Summary

The following salient points regarding the WATCHDOG and CLOCK MONITOR should be noted：
－Both the WATCHDOG and CLOCK MONITOR detector circuits are inhibited during RESET．
－Following RESET，the WATCHDOG and CLOCK MONI－ TOR are both enabled，with the WATCHDOG having he maximum service window selected．
－The WATCHDOG service window and CLOCK MONI－ TOR enable／disable option can only be changed once， during the initial WATCHDOG service following RESET．
－The initial WATCHDOG service must match the key data value in the WATCHDOG Service register WDSVR in or－ der to avoid a WATCHDOG error．
－Subsequent WATCHDOG services must match all three data fields in WDSVR in order to avoid WATCHDOG er－ rors．
－The correct key data value cannot be read from the WATCHDOG Service register WDSVR．Any attempt to read this key data value of 01100 from WDSVR will read as key data value of all 0＇s．
－The WATCHDOG detector circuit is inhibited during both the HALT and IDLE modes．
－The CLOCK MONITOR detector circuit is active during both the HALT and IDLE modes．Consequently，the de－ vice inadvertently entering the HALT mode will be detect－ ed as a CLOCK MONITOR error（provided that the CLOCK MONITOR enable option has been selected by the program）．
－With the single－pin R／C oscillator mask option selected and the CLKDLY bit reset，the WATCHDOG service win－ dow will resume following HALT mode from where it left off before entering the HALT mode．
－With the crystal oscillator mask option selected，or with the single－pin R／C oscillator mask option selected and the CLKDLY bit set，the WATCHDOG service window will be set to its selected value from WDSVR following HALT． Consequently，the WATCHDOG should not be serviced for at least 2048 instruction cycles following HALT，but must be serviced within the selected window to avoid a WATCHDOG error．
－The IDLE timer T0 is not initialized with RESET．
－The user can sync in to the IDLE counter cycle with an IDLE counter（TO）interrupt or by monitoring the TOPND flag．The TOPND flag is set whenever the thirteenth bit of the IDLE counter toggles（every 4096 instruction cycles）． The user is responsible for resetting the TOPND flag．
－A hardware WATCHDOG service occurs just as the de－ vice exits the IDLE mode．Consequently，the WATCH－ DOG should not be serviced for at least 2048 instruction cycles following IDLE，but must be serviced within the selected window to avoid a WATCHDOG error．
－Following RESET，the initial WATCHDOG service（where the service window and the CLOCK MONITOR enable／ disable must be selected）may be programmed any－ where within the maximum service window（ 65,536 in－ struction cycles）initialized by RESET．Note that this ini－ tial WATCHDOG service may be programmed within the initial 2048 instruction cycles without causing a WATCH－ DOG error．

## Detection of Illegal Conditions

The device can detect various illegal conditions resulting from coding errors, transient noise, power supply voltage drops, runaway programs, etc.
Reading of undefined ROM gets zeros. The opcode for software interrupt is zero. If the program fetches instructions from undefined ROM, this will force a software interrupt, thus signaling that an illegal condition has occurred.
The subroutine stack grows down for each call (jump to subroutine), interrupt, or PUSH, and grows up for each return or POP. The stack pointer is initialized to RAM location 06F Hex during reset. Consequently, if there are more returns than calls, the stack pointer will point to addresses 070 and 071 Hex (which are undefined RAM). Undefined RAM from addresses 070 to 07F (Segment 0), 140 to 17F (Segment 1), and all other segments (i.e., Segments $3 \ldots$ etc.) is read as all 1 's, which in turn will cause the program to return to address 7FFF Hex. This is an undefined ROM location and the instruction fetched (all 0's) from this location will generate a software interrupt signaling an illegal condition.
Thus, the chip can detect the following illegal conditions:
a. Executing from undefined ROM
b. Over "POP"ing the stack by having more returns than calls.
When the software interrupt occurs, the user can re-initialize the stack pointer and do a recovery procedure before restarting (this recovery program is probably similar to that following reset, but might not contain the same program initialization procedures). The recovery program should reset the software interrupt pending bit using the RPND instruction.

## MICROWIRE/PLUS

MICROWIRE/PLUS is a serial synchronous communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e. A/D converters, display drivers, E2PROMs etc.) and with other microcontrollers which support the MICROWIRE interface. It consists of an 8-bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure ' 12 shows a block diagram of the MICROWIRE/PLUS logic.


TL/DD/9765-23
FIGURE 16. MICROWIRE/PLUS Block Diagram
The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS arrangement with the internal clock source is called the Master mode of operation. Similarly, operating the MICROWIRE/PLUS arrangement with an external shift clock is called the Slave mode of operation.
The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. In the master mode, the SK clock rate is selected by the two bits, SLO and SL1, in the CNTRL register. Table VI details the different clock rates that may be selected.

TABLE V. WATCHDOG Service Actions

Key   Data	Window   Data	Clock   Monitor	Action
Match	Match	Match	Valid Service: Restart Service Window
Don't Care	Mismatch	Don't Care	Error: Generate WATCHDOG Output
Mismatch	Don't Care	Don't Care	Error: Generate WATCHDOG Output
Don't Care	Don't Care	Mismatch	Error: Generate WATCHDOG Output

TABLE VI. MICROWIRE/PLUS Master Mode Clock Select

SL1	SLO	SK
0	0	$2 \times \mathrm{t}_{\mathrm{c}}$
0	1	$4 \times \mathrm{t}_{\mathrm{c}}$
1	x	$8 \times \mathrm{t}_{\mathrm{c}}$

Where $t_{c}$ is the instruction cycle clock

## MICROWIRE/PLUS (Continued)

## MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. If enabled, an interrupt is generated when eight data bits have been shifted. The device may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 13 shows how two devices, microcontrollers and several peripherals may be interconnected using the MICROWIRE/PLUS arrangements.

## Warning:

The SIO register should only be loaded when the SK clock is low. Loading the SIO register while the SK clock is high will result in undefined data in the SIO register. SK clock is normally low when not shifting.
Setting the BUSY flag when the input SK clock is high in the MICROWIRE/PLUS slave mode may cause the current SK clock for the SIO shift register to be narrow. For safety, the BUSY flag should only be set when the input SK clock is low.

## MICROWIRE/PLUS Master Mode Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally. The MICROWIRE Master always initiates all data exchanges. The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register. Table VII summarizes the bit settings required for Master mode of operation.

## MICROWIRE/PLUS Slave Mode Operation

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must he selected as an input and the SO pin is selected as an output pin by setting and resetting the appropriate bit in the Port $G$ configuration register. Table VII summarizes the settings required to enter the Slave mode of operation.

The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated.

## Alternate SK Phase Operation

The device allows either the normal SK clock or an alternate phase SK clock to shift data in and out of the SIO register. In both the modes the SK is normally low. In the normal mode data is shifted in on the rising edge of the SK clock and the data is shifted out on the falling edge of the SK clock. The SIO register is shifted on each falling edge of the SK clock. In the alternate SK phase operation, data is shifted in on the falling edge of the SK clock and shifted out on the rising edge of the SK clock.
A control flag, SKSEL, allows either the normal SK clock or the alternate SK clock to be selected. Resetting SKSEL causes the MICROWIRE/PLUS logic to be clocked from the normal SK signal. Setting the SKSEL flag selects the alternate SK clock. The SKSEL is mapped into the G6 configuration bit. The SKSEL flag will power up in the reset condition, selecting the normal SK signal.

TABLE VII
This table assumes that the control flag MSEL is set.

G4 (SO)   Config. Bit	G5 (SK)   Config. Bit	G4   Fun.	G5   Fun.	Operation
1	1	SO	Int.   SK	MICROWIRE/PLUS   Master
0	1	TRI-   STATE	Int.   SK	MICROWIRE/PLUS   Master
1	0	SO	Ext.   SK	MICROWIRE/PLUS   Slave
0	0	TRI-   STATE	Ext.   SK	MICROWIRE/PLUS   Slave



FIGURE 17. MICROWIRE/PLUS Application

## Memory Map

All RAM, ports and registers (except A and PC) are mapped into data memory address space.

| Address |
| :--- | :--- |
| S/ADD REG |$\quad$| Contents |
| :--- |
| 0000 to 006F | On-Chip RAM bytes (112 bytes)


Address S/ADD REG	Contents
xxD0	Port L Data Register
xxD1	Port L Configuration Register
xxD2	Port L Input Pins (Read Only)
xxD3	Reserved for Port L
xxD4	Port G Data Register
xxD5	Port G Configuration Register
xxD6	Port G Input Pins (Read Only)
xxD7	Port I Input Pins (Read Only)
xxD8	Port C Data Register
xxD9	Port C Configuration Register
xxDA	Port C Input Pins (Read Only)
xxDB	Reserved for Port C
xxDC	Port D
xxDD to DF	Reserved for Port D
xxE0 to xxE5	Reserved for EE Control Registers
xxE6	Timer T1 Autoload Register T1RB Lower Byte
xxE7	Timer T1 Autoload Register T1RB Upper Byte
xxE8	ICNTRL Register
xxE9	MICROWIRE/PLUS Shift Register
xxEA	Timer T1 Lower Byte
xxEB	Timer T1 Upper Byte
xxEC	Timer T1 Autoload Register T1RA
	Lower Byte .
xxED	Timer T1 Autoload Register T1RA Upper Byte
xxEE	CNTRL Control Register
xxEF	PSW Register
$\mathrm{xxFO} \text { to } \mathrm{FB}$	On-Chip RAM Mapped as Registers
xxFC	X Register SP Register
xxFE	B Register
xxFF	S Register
0100-013F	On-Chip 64 RAM Bytes

Reading memory locations $0070 \mathrm{H}-007 \mathrm{FH}$ (Segment 0 ) will return all ones. Reading unused memory locations 0080H-00AFH (Segment 0) will return undefined data. Reading unused memory locations 0140-017F (Segment 1) will return all ones. Reading memory locations from other Segments (i.e., Segment 2, Segment 3, ... etc.) will return all ones.

## Addressing Modes

There are ten addressing modes，six for operand address－ ing and four for transfer of control．

## OPERAND ADDRESSING MODES

## Register Indirect

This is the＂normal＂addressing mode．The operand is the data memory addressed by the B pointer or X pointer．

## Register Indirect（with auto post Increment or decrement of pointer）

This addressing mode is used with the LD and X instruc－ tions．The operand is the data memory addressed by the B pointer or $X$ pointer．This is a register indirect mode that automatically post increments or decrements the B or X reg－ ister after executing the instruction．

## Direct

The instruction contains an 8－bit address field that directly points to the data memory for the operand．

## Immediate

The instruction contains an 8 －bit immediate field as the op－ erand．

## Short Immediate

This addressing mode is used with the Load B Immediate instruction．The instruction contains a 4－bit immediate field as the operand．

## Indirect

This addressing mode is used with the LAID instruction．The contents of the accumulator are used as a partial address （lower 8 bits of PC）for accessing a data operand from the program memory．

## TRANSFER OF CONTROL ADDRESSING MODES

## Relative

This mode is used for the JP instruction，with the instruction field being added to the program counter to get the new program location．JP has a range from -31 to +32 to allow a i－byte reiative jump（ $\mathrm{JP}+1$ is implemented by a NOP instruction）．There are no＂pages＂when using JP，since all 15 bits of PC are used．

## Absolute

This mode is used with the JMP and JSR instructions，with the instruction field of 12 bits replacing the lower 12 bits of the program counter（PC）．This allows jumping to any loca－ tion in the current 4 k program memory segment．

## Absolute Long

This mode is used with the JMPL and JSRL instructions， with the instruction field of 15 bits replacing the entire 15 bits of the program counter（PC）．This allows jumping to any location in the current 4 k program memory space．

## Indirect

This mode is used with the JID instruction．The contents of the accumulator are used as a partial address（lower 8 bits of PC ）for accessing a location in the program memory．The contents of this program memory location serve as a partial address（lower 8 bits of PC ）for the jump to the next instruc－ tion．
Note：The VIS is a special case of the Indirect Transfer of Control address－ ing mode，where the double byte vector associated with the interrupt is transferred from adjacent addresses in the program memory into the program counter（PC）in order to jump to the associated interrupt service routine．

## Instruction Set

Register and Symbol Definition

Registers	
A	8－Bit Accumulator Register
B	8－Bit Address Register
X	8－Bit Address Register
SP	8－Bit Stack Pointer Register
PC	15－Bit Program Counter Register
PU	Upper 7 Bits of PC
PL	Lower 8 Bits of PC
C	1 Bit of PSW Register for Carry
HC	1 Bit of PSW Register for Half Carry
GIE	1 Bit of PSW Register for Global
	Interrupt Enable
VU	Interrupt Vector Upper Byte
VL	Interrupt Vector Lower Byte


Symbols	
［B］	Memory Indirectly Addressed by B Reaister
［ X ］	Memory Indirectly Addressed by $X$ Register
MD	Direct Addressed Memory
Mem	Direct Addressed Memory or［B］
Meml	Direct Addressed Memory or［B］or Immediate Data
Imm	8－Bit Immediate Data
Reg	Register Memory：Addresses FO to FF （Includes B，X and SP）
Bit	Bit Number（0 to 7）
$\leftarrow$	Loaded with
$\longleftrightarrow$	Exchanged with

## Instruction Set (Continued)

## INSTRUCTION SET

ADD	A, Meml	ADD	$A \leftarrow A+$ Meml
ADC	A,Meml	ADD with Carry	$A \leftarrow A+\text { Meml }+C, C \leftarrow \text { Carry }$ $\mathrm{HC} \leftarrow \text { Half Carry }$
SUBC	A,Meml	Subtract with Carry	$A \leftarrow A-\overline{\text { Meml }}+C, C \leftarrow \text { Carry }$ $H C \leftarrow \text { Half Carry }$
AND	A, Meml	Logical AND	$A \leftarrow A$ and Meml
ANDSZ	A, Imm	Logical AND Immed., Skip if Zero	Skip next if ( $A$ and 1 mm ) $=0$
OR	A, Meml	Logical OR	$A \leftarrow A$ or Meml
XOR	A,Meml	Logical EXclusive OR	$A \leftarrow A$ xor Meml
IFEQ	MD, Imm	IF EQual	Compare MD and Imm, Do next if MD $=1 \mathrm{~mm}$
IFEQ	A, Meml	IF EQual	Compare A and Meml, Do next if $A=$ Meml
IFNE	A,Meml	IF Not Equal	Compare A and Meml, Do next if $A \neq$ Meml
IFGT	A,Meml	IF Greater Than	Compare $A$ and Meml, Do next if $A>M e m l$
IFBNE	\#	If B Not Equal	Do next if lower 4 bits of $B \neq 1 \mathrm{~mm}$
DRSZ	Reg	Decrement Reg., Skip if Zero	Reg $\leftarrow$ Reg - 1, Skip if Reg $=0$
SBIT	\#,Mem	Set BIT	1 to bit, Mem (bit = 0 to 7 immediate)
RBIT	\#, Mem	Reset BIT	0 to bit, Mem
IFBIT	\#,Mem	IF BIT	If bit in A or Mem is true do next instruction
RPND		Reset PeNDing Flag	Reset Software Interrupt Pending Flag
X	A, Mem	EXchange A with Memory	$A \longleftrightarrow$ Mem
X	A, $[\mathrm{X}]$	EXchange A with Memory [ X ]	$A \longleftrightarrow[X]$
LD	A, Meml	LoaD A with Memory	$A \leftarrow M e m l$
LD	A, $[\mathrm{X}]$	LoaD A with Memory [ X ]	$A \leftarrow[X]$
LD	B,Imm	LoaD B with Immed.	$B \leftarrow 1 m m$
LD	Mem, Imm	LoaD Memory Immed	Mem $\leftarrow \mathrm{Imm}$
LD	Reg, Imm	LoaD Register Memory Immed.	Reg $\leftarrow \mathrm{Imm}$
X	A, [ $\mathrm{B} \pm$ ]	EXchange A with Memory [B]	$A \longleftrightarrow[B],(B \leftarrow B \pm 1)$
X	A, $[\mathrm{X} \pm$ ]	EXchange A with Memory [ X ]	$A \longleftrightarrow[X],(X \leftarrow \pm 1)$
LD	A, [ $\mathrm{B} \pm$ ]	LoaD A with Memory [B]	$A \leftarrow[B],(B \leftarrow B \pm 1)$
LD	A, $[\mathrm{X} \pm$ ]	LoaD A with Memory [ X ]	$A \leftarrow[X],(X \leftarrow X \pm 1)$
LD	[ $B \pm$ ], 1 mm	LoaD Memory [B] Immed.	$[\mathrm{B}] \leftarrow \mathrm{lmm},(\mathrm{B} \leftarrow \mathrm{B} \pm 1)$
CLR	A	CLeaR A	$\mathrm{A} \leftarrow 0$
INC	A	INCrement A	$A \leftarrow A+1$
DEC	A	DECrementA	$A \leftarrow A-1$
LAID		Load A InDirect from ROM	$\mathrm{A} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
DCOR	A	Decimal CORrect A	$A \leftarrow B C D$ correction of A (follows ADC, SUBC)
RRC	A	Rotate A Right thru C	$\mathrm{C} \rightarrow \mathrm{A} 7 \rightarrow \ldots \rightarrow \mathrm{AO} \rightarrow \mathrm{C}$
RLC	A	Rotate A Left thru C	$C \leftarrow A 7 \leftarrow \ldots \leftarrow A O \leftarrow C$
SWAP	A	SWAP nibbles of A	A7 $\ldots$ A $4 \longleftrightarrow A 3 \ldots A 0$
SC		Set C	$C \leftarrow 1, H C \leftarrow 1$
RC		Reset C	$\mathrm{C} \leftarrow 0, \mathrm{HC} \leftarrow 0$
IFC		IFC	IF C is true, do next instruction
IFNC		IF Not C	If C is not true, do next instruction
POP	A	POP the stack into $A$	$\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{~A} \leftarrow[\mathrm{SP}]$
PUSH	A	PUSH A onto the stack	[SP] $\leftarrow A, S P \leftarrow$ SP - 1
VIS		Vector to Interrupt Service Routine	$\mathrm{PU} \leftarrow[\mathrm{VU}], \mathrm{PL} \leftarrow[\mathrm{VL}]$
JMPL	Addr.	Jump absolute Long	$\mathrm{PC} \leftarrow \mathrm{ii}(\mathrm{ii}=15$ bits, 0 to 32k)
JMP	Addr.	Jump absolute	PC9 $\ldots .0 \leftarrow i(i=12$ bits $)$
JP	Disp.	Jump relative short	$P C \leftarrow P C+r(r$ is -31 to +32 , except 1 )
JSRL	Addr.	Jump SubRoutine Long	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow \mathrm{ii}$
JSR	Addr	Jump SubRoutine	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} 9 \ldots 0 \leftarrow \mathrm{i}$
JID		Jump InDirect	PL $\leftarrow$ ROM (PU,A)
RET		RETurn from subroutine	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETSK		RETurn and SKip	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETI		RETurn from Interrupt	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1], \mathrm{GIE} \leftarrow 1$
INTR		Generate an Interrupt	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow 0 \mathrm{FF}$
NOP		No OPeration	$\mathrm{PC} \leftarrow \mathrm{PC}+1$

## Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instructions taking two bytes).
Most single byte instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details.

## Bytes and Cycles per Instruction

The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle.

Arithmetic and Logic Instructions			
	[B]	Direct	Immed.
ADD	1/1	3/4	2/2
ADC	1/1	3/4	$2 / 2$
SUBC	1/1	$3 / 4$	2/2
AND	1/1	3/4	2/2
OR	1/1	3/4	2/2
XOR	1/1	3/4	2/2
IFEQ	1/1	3/4	$2 / 2$
IFNE	1/1	3/4	$2 / 2$
IFGT	1/1	3/4	2/2
IFBNE	1/1		
DRSZ		1/3	
SBIT	1/1	3/4	
RBIT	1/1	3/4	
IFBIT	1/1	3/4	

Instructlons Using A \& C

CLRA	$1 / 1$
INCA	$1 / 1$
DECA	$1 / 1$
LAID	$1 / 3$
DCOR	$1 / 1$
RRCA	$1 / 1$
RLCA	$1 / 1$
SWAPA	$1 / 1$
SC	$1 / 1$
RC	$1 / 1$
IFC	$1 / 1$
IFNC	$1 / 1$
PUSHA	$1 / 3$
POPA	$1 / 3$
ANDSZ	$2 / 2$


	Memory Transfer Instructions						
	Register Indirect		Direct	Immed.	Register Indirect Auto Incr. \& Decr.		
		[ X ]			[B+, B-]	[ $\mathrm{X}+, \mathrm{X}-\mathrm{]}$	
$\cdots{ }^{\prime}$,*	1/14	1/3	2/3		i/2	1/3	
LD A,*	1/1	1/3	2/3	$2 / 2$	1/2	1/3	
LD B, Imm				1/1			( $\mathrm{F} \mathrm{FB}<16$ )
LD B, Imm				$2 / 2$			( $\mathrm{F} \mathrm{FB}>15$ )
LD Mem, Imm	$2 / 2$		3/3		$2 / 2$		
LD Reg, Imm			$2 / 3$				
IFEQ MD, Imm			3/3				

* $=>$ Memory location addressed by B or X or directly.


## Opcode Table

Upper Nibble Along X-Axis
Lower Nibble Along Y-Axis

F	E	D	C	B	A	9	8	
JP-15	JP -31	LD OFO, \# i	DRSZ OFO	RRCA	RC	ADC A, \#i	ADC A, [B]	0
JP - 14	JP -30	LD OF1, \# i	DRSZ OF1	*	SC	SUBC A, \#i	SUB A, [B]	1
JP - 13	JP -29	LD OF2, \# i	DRSZ 0F2	X $A,[X+]$	X $A,[B+]$	IFEQ A,\#i	IFEQ A, [B]	2
JP - 12	JP -28	LD OF3, \# i	DRSZ 0F3	X $A,[\mathrm{X}-\mathrm{]}$	X $\mathrm{A},[\mathrm{B}-\mathrm{]}$	IFGT A, \#i	IFGT A, [B]	3
JP -11	JP -27	LD 0F4, \# i	DRSZ 0F4	VIS	LAID	ADD A, \#i	ADD A,[B]	4
JP - 10	JP -26	LD 0F5, \# i	DRSZ 0F5	RPND	JID	AND A, \#i	AND A,[B]	5
JP -9	JP - 25	LD 0F6, \# i	DRSZ OF6	X A, [X]	X A, [B]	XOR A, \#i	XOR A,[B]	6
JP -8	JP -24	LD OF7, \# i	DRSZ OF7	*	*	OR A, \#i	OR A, [B]	7
JP -7	JP-23	LD OF8, \# ${ }_{\text {, }}$	DRSZ OF8	NOP	RLCA	LDA, \#i	IFC	8
JP -6	JP -22	LDOF9, \# i	DRSZ OF9	IFNE   A,[B]	IFEQ Md, \#i	$\begin{aligned} & \text { IFNE } \\ & \text { A, \#i } \end{aligned}$	IFNC	9
JP -5	JP -21	LD OFA, \# i	DRSZ OFA	LD A, [X+]	LD A, [B+]	LD [B+], \#i ${ }^{\text {' }}$	INCA	A
JP -4	JP -20	LD 0FB, \# i	DRSZ OFB	LD A, [X-]	LD A, [B-]	LD [B-],\#i	DECA	B
JP -3	JP - 19	LD OFC, \#i	DRSZ OFC	LD Md, \#i	JMPL	X A,Md	POPA	C
JP -2	JP - 18	LD OFD, \# i	DRSZ OFD	DIR	JSRL	LD A,Md	RETSK	D
JP - 1	JP -17	LD OFE, \# i	DRSZ OFE	LD A, [X]	LD A, [B]	LD [B], \#i	RET	E
JP -0	JP - 16	LDOFF, \# i	DRSZ OFF	*	*	LDB, \#i	RETI	F

## Opcode Table（Continued）

Upper Nibble Along X－Axis
Lower Nibble Along Y－Axis

7	6	5	4	3	2	1	0	
$\begin{aligned} & \text { IFBIT } \\ & 0,[B] \end{aligned}$	ANDSZ   A，\＃i	LD B，\＃OF	IFBNE 0	$\begin{aligned} & \text { JSR } \\ & \mathrm{x} 000-\mathrm{xOFF} \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 000-\times 0 \mathrm{FF} \end{aligned}$	$J P+17$	INTR	0
$\begin{aligned} & \hline \text { IFBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	＊	LD B，\＃0E	IFBNE 1	$\begin{aligned} & \text { JSR } \\ & \text { x100-x1FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 100-x 1 F F \end{aligned}$	$J P+18$	$J P+2$	1
$\begin{aligned} & \text { IFBIT } \\ & 2,[\mathrm{~B}] \end{aligned}$	＊	LD B，\＃0D	IFBNE 2	$\begin{aligned} & \text { JSR } \\ & \times 200-x 2 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 200-\times 2 F F \end{aligned}$	$\mathrm{JP}+19$	JP＋ 3	2
$\begin{aligned} & \text { IFBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	＊	LD B，\＃OC	IFBNE 3	$\begin{aligned} & \text { JSR } \\ & \times 300-\times 3 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 300-x 3 F F \end{aligned}$	JP＋ 20	JP＋ 4	3
$\begin{aligned} & \hline \text { IFBIT } \\ & 4,[\mathrm{~B}] \end{aligned}$	CLRA	LD B，\＃OB	IFBNE 4	$\begin{aligned} & \text { JSR } \\ & \times 400-\times 4 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 400-\times 4 \mathrm{FF} \end{aligned}$	$\mathrm{JP}+21$	JP＋ 5	4
$\begin{aligned} & \text { IFBIT } \\ & 5,[\mathrm{~B}] \end{aligned}$	SWAPA	LD B，\＃OA	IFBNE 5	$\begin{aligned} & \text { JSR } \\ & \times 500-\times 5 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 500-\times 5 \mathrm{FF} \end{aligned}$	$\mathrm{JP}+22$	JP＋ 6	5
$\begin{aligned} & \text { IFBIT } \\ & 6,[\mathrm{~B}] \\ & \hline \end{aligned}$	DCORA	LD B，\＃09	IFBNE 6	$\begin{aligned} & \text { JSR } \\ & \text { x600-x6FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 600-\times 6 \mathrm{FF} \end{aligned}$	JP＋ 23	JP＋ 7	6
$\begin{aligned} & \hline \text { IFBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	PUSHA	LD B，\＃08	IFBNE 7	$\begin{aligned} & \text { JSR } \\ & \text { x } 700-x 7 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 700-\times 7 \mathrm{FF} \end{aligned}$	$\mathrm{JP}+24$	JP＋ 8	7
$\begin{aligned} & \text { SBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	LD B，\＃ 07	IFBNE 8	$\begin{aligned} & \text { JSR } \\ & \times 800-\times 8 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 800-\times 8 \text { FF } \end{aligned}$	$\mathrm{JP}+25$	$J P+9$	8
$\begin{aligned} & \text { SBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	LD B，\＃06	IFBNE 9	$\begin{aligned} & \text { JSR } \\ & \text { x900-x9FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 900-x 9 F F \end{aligned}$	$\mathrm{JP}+26$	$J P+10$	9
$\begin{aligned} & \hline \text { SBIT } \\ & 2,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & \text { 2,[B] } \end{aligned}$	LD B，\＃05	IFBNE OA	$\begin{aligned} & \text { JSR } \\ & \text { xAOO-xAFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xAOO-XAFF } \end{aligned}$	JP＋ 27	JP＋ 11	A
$\begin{aligned} & \text { SBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	LD B，\＃04	IFBNE OB	$\begin{aligned} & \text { JSR } \\ & \text { xB00-xBFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \mathrm{xBOO}-\mathrm{xBFF} \end{aligned}$	$J P+28$	$\mathrm{JP}+12$	B
$\begin{aligned} & \hline \text { SBIT } \\ & 4,[B] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & 4,[\mathrm{~B}] \end{aligned}$	LD B，\＃03	IFBNE OC	$\begin{aligned} & \text { JSR } \\ & \text { xC00-xCFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \mathrm{xCOO}-\mathrm{xCFF} \end{aligned}$	JP＋ 29	$\mathrm{JP}+13$	C
$\begin{aligned} & \text { SBIT } \\ & 5,[B] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & 5,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B，\＃02	IFBNE OD	$\begin{aligned} & \text { JSR } \\ & \text { xD00-xDFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xD00-xDFF } \end{aligned}$	JP＋ 30	JP＋ 14	D
$\begin{aligned} & \text { SBIT } \\ & \varepsilon,[\mathrm{B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & \in,[\mathrm{B}] \end{aligned}$	LD B，\＃01	IFBNE 0E	$\begin{aligned} & \text { JSR } \\ & x E=O O-x E F F \end{aligned}$	$\begin{aligned} & \mathrm{JMP} \\ & \mathrm{X} \overline{0} 00-\mathrm{x} \overline{\mathrm{~F}} \overline{\mathrm{~F}} \end{aligned}$	$\mathrm{JP}+31$	$\mathrm{JP}+15$	E
$\begin{aligned} & \hline \text { SBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	LD B，\＃00	IFBNE OF	$\begin{aligned} & \text { JSR } \\ & \text { xFO0-xFFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \mathrm{xFOO}-\mathrm{xFFF} \end{aligned}$	JP＋ 32	$J P+16$	F

Where，
i is the immediate data
Md is a directly addressed memory location
－is an unused opcode
Note：The opcode 60 Hex is also the opcode for IFBIT \＃i，A

## Mask Options

The mask programmable options are shown below．The op－ tions are programmed at the same time as the ROM pattern submission．
OPTION 1：CLOCK CONFIGURATION
$=1$ Crystal Oscillator（CKI／l0）
G7（CKO）is clock generator output to crystal／resonator CKI is the clock input
$=2$

Single－pin RC controlled
oscillator（CKI／10）
G7 is available as a HALT
restart and／or general purpose input

OPTION 2：HALT
＝ 1 Enable HALT mode
$=2$ Disable HALT mode
OPTION 3：BONDING OPTIONS
$=1 \quad 44-$ Pin PLCC
$=2$ 40－Pin DIP
$=3 \quad \mathrm{~N} / \mathrm{A}$
$=4$ 28－Pin DIP
$=5 \quad 28-$ Pin S 0

## Development Support

## IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 ln -Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface or maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real time, full speed emulation up to $10 \mathrm{MHz}, 32 \mathrm{kBytes}$ of emulation memory and 4 k frames of trace buffer memory. The user may define as many as 32 k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code or address ranges or complex triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.
During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bar graph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.

The iceMASTER comes with an easy to use window interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefinable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PC® via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time to under 3 seconds.
The following tables list the emulator and probe cards ordering information.

Probe Card Ordering Information

Part Number	Package	Voltage   Range	Emulates
MHW-884CG28D5PC	28 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP884CG
MHW-884CG28DWPC	28 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP884CG
MHW-888CG40D5PC	40 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888CG
MHW-888CG40DWPC	40 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP888CG
MWH-888CG44D5PC	44 PLCC	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888CG
MHW-888CG44DWPC	44 PLCC	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP888CG

## MACRO CROSS ASSEMBLER

National Semiconductor offers a COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink iceMASTER emulators.

Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8 Assembler/   Linker/Librarian for   IBM $®, ~ P C-/ X T \Theta, ~ A T ~$      or compatible.	$424410632-001$

Emulator Ordering Information

Part Number	Description	Current Version
IM-COP8/400/1 $\ddagger$	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger   software and RS232 serial interface cable, with 110V @ 60 Hz Power Supply.	
IM-COP8/400/2 $\ddagger$	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger   software and RS32 serial interface cable, with 220V @ 50 Hz Power Supply.	HOST SOFTWARE:   VER. 3.3 REV.5,   Model File Rev 3.050.
DM-COP8/888EG $\ddagger$	MetaLink iceMASTER Debug Module. This is the low cost version of the MetaLink   iceMASTER. Firmware Ver. 6.07.	

[^6]
## Development Support (Continued)

SINGLE CHIP EMULATOR DEVICE
The COP8 family is fully supported by One-Time Programmable (OTP) emulators. For more detailed information refer to the emulation device specific datasheets and the single chip emulator selection table below.

## PROGRAMMING SUPPORT

Programming of the single chip emulator devices is supported by different sources. The following programmers are certified for programming the One-Time Programmable (OTP) devices:

EPROM Programmer Information

Manufacturer and Product	U.S. Phone Number	Europe Phone Number	Asla Phone Number
MetaLinkDebug Module	(602) 926-0797	$\begin{aligned} & \text { Germany: } \\ & +49-8141-1030 \end{aligned}$	Hong Kong: +852-737-   1800
Xeltek-   Superpro	(408) 745-7974	$\begin{aligned} & \text { Germany: + 49 } \\ & \text { 2041-684758 } \end{aligned}$	Singapore: $+65-276-6433$
BP MicrosystemsTurpro	(800) 225-2102	$\begin{aligned} & \text { Germany: + 49 } \\ & 2041-684758 \end{aligned}$	Hong Kong: +852-388-   0629
Data I/O-Unisite -System 29 -System 39	(800) 322-8246	Europe: $+31-20-622866$   Germany: $+49-89-858020$	$\begin{aligned} & \text { Japan: } \\ & +81-33-432- \\ & 6991 \end{aligned}$
Abcom-COP8   Programmer		$\begin{aligned} & \text { Europe: }+49-89 \\ & 808707 \end{aligned}$	
System General-Turpro-1-FX -APRO	(408) 263-6667	Switzerland: $+41-31$   921-7844	$\begin{aligned} & \text { Taiwan: } \\ & +886-2-917- \\ & 3005 \end{aligned}$

The COP8788EG/COP8784EG can be used to emulate the COP8788CG/COP8784CG.
Single Chip Emulator Ordering Information

Device Number	Clock Option	Packange	Fmulates
COP8788EGV-X	Crystal	44 PLCC	COP888EG
COP8788EGV-R	R/C		
COP8788EGN-X	Crystal	40 DIP	COP888EG
COP8788EGN-R	R/C		
COP8784EGN-X	Crystal	28 DIP	COP884EG
COP8784EGN-R*	R/C		
COP8784EGWM-X*	Crystal	28 SO	COP884EG
COP8784EGWM-R*	R/C		

*Check with the local sales office about the availability.

## Development Support (Continued)

## DIAL-A-HELPER

Dial-A-Helper is a service provided by the Microcontroller Applications group. The Dial-A-Helper is an Electronic Bulletin Board Information system.

## INFORMATION SYSTEM

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.

If the user has a PC with a communications package then files from the FILE SECTION can be down loaded to disk for later use.

## ORDER P/N: MOLE-DIAL-A-HLP

Information System Package contains:
Dial-A-Helper Users Manual
Public Domain Communications Software

## FACTORY APPLICATIONS SUPPORT

Dial-A-Helper also provides immediate factor applications support. If a user has questions, he can leave messages on our electronic bulletin board, which we will respond to.

Voice: (800) 272-9959
Modem: Canada/U.S.: (800) NSC-MICRO
(800) 672-6427

Baud: $\quad 14.4$ k
Set-up: Length: 8-Bit
Parity: None
Stop Bit: 1
Operation: 24 Hrs., 7 Days

## COP888EK/COP884EK

Single-Chip microCMOS Microcontrollers

## General Description

The COP888 family of microcontrollers uses an 8-bit single chip core architecture fabricated with National Semiconductor's $\mathrm{M}^{2} \mathrm{CMOSTM}$ process technology. The COP888EK/ COP884EK is a member of this expandable 8-bit core processor family of microcontrollers.
(Continued)

## Features

- Low cost 8 -bit microcontroller
- Fully static CMOS, with low current drain
- Two power saving modes: HALT and IDLE
- $1 \mu \mathrm{~s}$ instruction cycle time
- 8k bytes on-board ROM
- 256 bytes on-board RAM
- Single supply operation: $2.5 \mathrm{~V}-6 \mathrm{~V}$
- Analog function block with
- Analog comparator with seven input multiplexor
- Constant current source and $\mathrm{V}_{\mathrm{CC} / 2}$ reference
- MICROWIRE/PLUSTM serial I/O
- WATCHDOGTM and Clock Monitor logic
- Idle Timer
- Multi-Input Wakeup (MIWU) with optional interrupts (8)
- Three 16 -bit timers, each with two 16 -bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- 8 -bit Stack Pointer SP (stack in RAM)
- Two 8-bit Register Indirect Data Memory Pointers ( B and X )
- Twelve multi-source vectored interrupts servicing
- External Interrupt
- Idle Timer TO
- Three Timers (Each with 2 Interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
— Default VIS
- Versatile instruction set
- True bit manipulation
- Memory mapped I/O
- BCD arithmetic instructions
- Package:
- 44 PLCC with 39 I/O pins
-40 N with $35 \mathrm{I} / \mathrm{O}$ pins
-28 SO or 28 N , each with $23 \mathrm{I} / \mathrm{O}$ pins
- Software selectable I/O options
- TRI-STATE ${ }^{\circledR}$ Output
— Push-Pull Output
— Weak Pull Up Input
- High Impedance Input
- Schmitt trigger inputs on ports $G$ and $L$
- Quiet design (low radiated emissions)
- Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Single chip emulation devices
m Feal time emulation and full program debug offered by MetaLink's Development Systems

Block Diagram


General Description (Continued)
They are fully static parts, fabricated using double-metal silicon gate microCMOS technology. Features include an 8 -bit memory mapped architecture, MICROWIRE/PLUS serial I/O, three 16-bit timer/counters supporting three modes (Processor Independent PWM generation, External Event counter, and Input Capture mode capabilities), one analog comparator with seven input multiplexor, and two power saving modes (HALT and IDLE), both with a multi-sourced wakeup/interrupt capability. This multi-sourced interrupt ca-
pability may also be used independent of the HALT or IDLE modes. Each I/O pin has software selectable configurations. The devices operate over a voltage range of 2.5 V to 6 V . High throughput is achieved with an efficient, regular instruction set operating at a maximum of $1 \mu$ s per instruction rate.
Low radiated emissions are achieved by gradual turn-on output drivers and internal ICC filters on the chip logic and crystal oscillator.

## Connection Diagrams



Dual-In-Line Package


Top View
Order Number COP888EK-XXX/N See NS Molded Package Number N40A

Dual-In-Line Package


Top View
Order Number COP884EK-XXX/WM or COP884EK-XXX/N See NS Molded Package Number M28B or N28A

FIGURE 2. Connection Diagrams

Connection Diagrams (Continued)

Port	Type	Alt. Fun	Alt. Fun	28-Pin   Pack.	40-Pin   Pack.	44-Pin   Pack.
LO	1/0	MIWU		11	17	17
L1	1/0	MIWU		12	18	18
L2	1/0	MIWU		13	19	19
L3	1/0	MIWU		14	20	20
L4	1/0	MIWU	T2A	15	21	25
L5	1/O	MIWU	T2B	16	22	26
L6	1/0	MIWU	T3A	17	23	27
L7	1/0	MIWU	T3B	18	24	28
G0	1/0	INT		25	35	39
G1	WDOUT			26	36	40
G2	1/O	T1B		27	37	41
G3	1/0	T1A		28	38	42
G4	1/0	SO		1	3	3
G5	1/0	SK		2	4	4
G6	1	SI		3	5	5
G7	1/CKO	HALT Restart		4	6	6
D0	0			19	25	29
D1	0			20	26	30
D2	0			21	27	31
D3	0			22	28	32
10	1	COMPIN1+		7	9	9
11	1	COMPIN-/Current Source Out		8	10	10
12	1	COMPINO+		9	11	11
13	1	COMPOUT/COMPIN2+		10	12	12
14	1	COMPIN3+			13	13
15	1	COMPIN4+			14	14
16	1	COMPIN5+			15	15
17	1	COMPOUT			16	16
D4	0				29	33
D5	0				30	34
D6	0				31	35
D7	0				32	36
C0	1/O				39	43
C1	1/0				40	44
C2	1/0				1	1
C3	1/0				2	2
C4	1/0					21
C5	1/0					22
C6	1/0					23
C7	1/0					24
$V_{C C}$				6	8	8
GND				23	33	37
CKI				5	7	7
RESET					34	38

## Absolute Maximum Ratings

If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage (VCC)
Voltage at Any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into VCC Pin (Source)
100 mA
DC Electrical Characteristics $888 E \mathrm{EK}-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage		2.5		6	V
Power Supply Ripple (Note 1)	Peak-to-Peak			$0.1 \mathrm{~V}_{C C}$	V
$\begin{aligned} & \text { Supply Current (Note 2) } \\ & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=10 \mu \mathrm{~s} \end{aligned}$			$\begin{gathered} 12.5 \\ 5.5 \\ 2.5 \\ 1.4 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
HALT Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & <5 \\ & <3 \end{aligned}$	$\begin{gathered} 10 \\ 6 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
IDLE Current $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=10 \mu \mathrm{~s} \end{aligned}$			$\begin{aligned} & 3.5 \\ & 2.5 \\ & 0.7 \\ & \hline \end{aligned}$	mA   mA   mA
Input Levels   RESET   Logic High   Logic Low   CKI (External and Crystal Osc. Modes)   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low	-	$\begin{aligned} & 0.8 V_{C C} \\ & 0.7 V_{C C} \\ & 0.7 V_{C C} \end{aligned}$		$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Hi-Z Input Leakage	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
Input Pullup Current	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-40		-250	$\mu \mathrm{A}$
G and L Port Input Hysteresis				$0.35 \mathrm{~V}_{\text {CC }}$	V
Output Current Levels   D Outputs Source   Sink   All Others   Source (Weak Pull-Up Mode)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	-0.4 -0.2 10 2.0 -10 -2.5 -0.4 -0.2 1.6 0.7		$\begin{gathered} -100 \\ -33 \end{gathered}$	mA   mA   mA   mA   $\mu \mathrm{A}$   $\mu \mathrm{A}$   mA   mA   mA   mA
TRI-STATE Leakage	$\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave oscillator, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Measurement of IDD HALT is done with device neither sourcing or sinking current; with $\mathrm{L}, \mathrm{C}$, and G0-G5 programmed as low outputs and not driving a load; all outputs programmed low and not driving a load; all inputs tied to $V_{C C}$; clock monitor and comparator disabled. Parameter refers to HALT mode entered via setting bit 7 of the $G$ Port data register. Part will pull up CKI during HALT in crystal clock mode.

DC Electrical Characteristics $888 \mathrm{EK}:-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified（Continued）

Parameter	Conditions	Min	Typ	Max	Units
Allowable Sink／Source   Current per Pin   D Outputs（Sink）   All others					
Maximum Input Current   without Latchup（Note 4）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			15	
RAM Retention Voltage， $\mathrm{V}_{\mathrm{r}}$	500 ns Rise   and Fall Time（Min）	2		$\pm 100$	mA
Input Capacitance				mA	
Load Capacitance on D2				7	V

AC Electrical Characteristics $888 \mathrm{EK}:-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time（ $\mathrm{t}_{\mathrm{c}}$ ） Crystal，Resonator， R／C Oscillator	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \end{gathered}$		$\begin{aligned} & \text { DC } \\ & \text { DC } \\ & \text { DC } \\ & \text { DC } \end{aligned}$	$\begin{gathered} \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \hline \end{gathered}$
Inputs tsetup $t_{\text {thold }}$	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			
Output Propagation Delay（Note 5） $t_{P D 1}, t_{\text {PDO }}$ SO, SK   All Others	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 2.5 \end{gathered}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{s}$
MICROWIRETM Setup Time（tuws）（Note 5） MICROWIRE Hold Time（tuwh）（Note 5） MICROWIRE Output Propagation Delay（tupD）		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Input Pulse Width（Note 6） Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$			$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \hline \end{aligned}$
Reset Pulse Width		1			$\mu \mathrm{s}$

$\mathbf{t}_{\mathrm{c}}=$ Instruction cycle time
Note 4：Pins G6 and RESET are designed with a high voltage input network．These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$（the pins do not have source current when biased at a voltage below $V_{C C}$ ）．The effective resistance to $V_{C C}$ is $750 \Omega$ （typical）．These two pins will not latch up．The voltage at the pins must be limited to less than 14V．WARNING：Voltages in excess of 14 V will cause damage to the plns．Thls warning excludes ESD transients．
Note 5：The output propagation delay is referenced to the end of the instruction cycle where the output change occurs．
Note 6：Parameter characterized but not tested．

Parameter	Conditions	$\therefore \quad \mathrm{Min}$	Typ	Max	Units
Input Offset Voltage	$0.4 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$		10	25	mV
Input Common Mode Voltage Range (Note 7)		0.4		$V_{C C}-1.5$	V
Voltage Gain			300k		$\mathrm{V} / \mathrm{V}$
$\mathrm{V}_{C C}$ /2 Reference	$4.0 \mathrm{~V}<\mathrm{V}_{C C}<6.0 \mathrm{~V}$	$0.5 V_{C C}-0.04$	0.5 V CC	$0.5 \mathrm{~V}_{\mathrm{CC}}+0.04$	V
DC Supply Current for Comparator (When Enabled)	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$			250	$\mu \mathrm{A}$
DC Supply Current for $\mathrm{V}_{\mathrm{CC}}$ /2 Reference (When Enabled)	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		50	80	$\mu \mathrm{A}$
DC Supply Current for Constant Current Source (When Enabled)	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$			200	$\mu \mathrm{A}$
Constant Current Source	$4.0 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<6.0 \mathrm{~V}$	10	20	40	$\mu \mathrm{A}$
Current Source Variation	$\begin{aligned} & 4.0 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<6.0 \mathrm{~V} \\ & \text { Temp }=\text { Constant } \end{aligned}$			2	$\mu \mathrm{A}$
Current Source Enable Time			1.5	2	$\mu \mathrm{S}$
Comparator Response Time	100 mV Overdrive, 100 pF Load			1	$\mu \mathrm{S}$

Note 7: The device is capable of operating over a common mode voltage range of 0 to $V_{C C}-1.5 \mathrm{~V}$, however increased offset voltage will be observed between 0 V and 0.4 V .

## Pin Descriptions

$\mathrm{V}_{\mathrm{CC}}$ and GND are the power supply pins. All $\mathrm{V}_{\mathrm{CC}}$ and GND pins must be connected.
CKI is the clock input. This can come from an R/C generated oscillator, or a crystal oscillator (in conjunction with CKO). See Oscillator Description section.
$\overline{\text { RESET }}$ is the master reset input. See Reset Description section.
The device contains three bidirectional 8 -bit I/O ports ( $C, G$ and L ), where each individual bit may be independently configured as an input (Schmitt trigger inputs on ports $L$ and $G$ ), output or TRI-STATE under program control. Three data memory address locations are allocated for each of these I/O ports. Each I/O port has two associated 8-bit memory mapped registers, the CONFIGURATION register and the output DATA register. A memory mapped address is also reserved for the input pins of each I/O port. (See the memory map for the various addresses associated with the I/O ports.) Figure 3 shows the I/O port configurations. The DATA and CONFIGURATION registers allow for each port bit to be individually configured under software control as shown below:

CONFIGURATION   Register	DATA   Register	Port Set-Up
0	0	Hi-Z Input   (TRI-STATE Output)   $:$
0	1	Input with Weak Pull-Up
1	0	Push-Pull Zero Output
1	1	Push-Pull One Output

PORT $L$ is an 8 -bit I/O port. All L-pins have Schmitt triggers on the inputs.
The Port L supports Multi-Input Wake Up on all eight pins. L4 and L5 are used for the timer input functions T2A and

T2B. L6 and L7 are used for the timer input functions T3A and T3B.
The Port L has the following alternate features:

L0	MIWU
L1	MIWU
L2	MIWU
L3	MIWU
L4	MIWU or T2A
L5	MIWU or T2B
L6	MIWU or T3A
L7	MIWU or T3B

Port G is an 8-bit port with 5 I/O pins (G0, G2-G5), an input pin (G6), and two dedicated output pins (G1 and G7). Pins G0 and G2-G6 all have Schmitt Triggers on their inputs. Pin G1 serves as the dedicated WDOUT WATCHDOG output, while pin G7 is either input or output depending on the oscillator mask option selected. With the crystal oscillator option selected, G7 serves as the dedicated output pin for the CKO clock output. With the single-pin R/C oscillator mask option selected, G7 serves as a general purpose input pin but is also used to bring the device out of HALT mode with a low to high transition on G7. There are two registers associated with the G Port, a data register and a configuration register. Therefore, each of the 5 I/O bits (G0, G2-G5) can be individually configured under software control.
Since G6 is an input only pin and G7 is the dedicated CKO clock output pin (crystal clock option) or general purpose input (R/C clock option), the associated bits in the data and configuration registers for G6 and G7 are used for special purpose functions as outlined on the next page. Reading the G6 and G7 data bits will return zeros.


FIGURE 3. I/O Port Configurations

## Pin Descriptions (Continued)

Note that the chip will be placed in the HALT mode by writing a " 1 " to bit 7 of the Port G Data Register. Similarly the chip will be placed in the IDLE mode by writing a " 1 " to bit 6 of the Port G Data Register.
Writing a " 1 " to bit 6 of the Port G Configuration Register enables the MICROWIRE/PLUS to operate with the alternate phase of the SK clock. The G7 configuration bit, if set high, enables the clock start up delay after HALT when the $R / C$ clock configuration is used.

	Config Reg.	Data Reg.
G7	CLKDLY	HALT
G6	Alternate SK	IDLE

Port $G$ has the following alternate features:
GO INTR (External Interrupt Input)
G2 T1B (Timer T1 Capture Input)
G3 T1A (Timer T1 I/O)
G4 SO (MICROWIRETM Serial Data Output)
G5 SK (MICROWIRE Serial Clock)
G6 SI (MICROWIRE Serial Data Input)
Port $G$ has the following dedicated functions:
G1 WDOUT WATCHDOG and/or Clock Monitor dedicated output
G7 CKO Oscillator dedicated output or general purpose input
Port C is an 8 -bit I/O port. The 40-pin device does not have a full complement of Port $C$ pins. The unavailable pins are not terminated. A read operation for these unterminated pins will return unpredicatable values.
PORT I is an eight-bit Hi-Z input port. The 28 -pin device does not have a full complement of Port I pins. The unavailable pins are not terminated i.e., they are floating. A read operation for these unterminated pins will return unpredictable values. The user must ensure that the software takes this into account by either masking or restricting the accesses to bit operations. The unterminated Port I pins will draw power only when addressed.
Port I is an eight-bit $\mathrm{Hi}-\mathrm{Z}$ input port.
Port 10-17 are used for the analog function block.
The Port I has the following alternate features:
10 COMPIN1 + (Comparator Positive Input 1)
I1 COMPIN- (Comparator Negative Input/Current Source Out)
12 COMPINO + (Comparator Positive Input 0)
13 COMPOUT/COMPIN2+ (Comparator Output/ Comparator Positive Input 2))
14 COMPIN3 + (Comparator Positive Input 3)
15 COMPIN4 + (Comparator Positive Input 4)
16 COMPIN5+ (Comparator Positive Input 5)
17 COMPOUT (Comparator Output)
Port $D$ is an 8 -bit output port that is preset high when $\overline{\text { RESET }}$ goes low. The user can tie two or more $D$ port outputs (except D2) together in order to get a higher drive.
Note: Care must be exercised with the D2 pin operation. At RESET, the external loads on this pin must ensure that the output voltages stay above $0.8 \mathrm{~V}_{\mathrm{CC}}$ to prevent the chip from entering special modes. Also keep the external loading on D2 to less than 1000 pF .

## Functional Description

The architecture of the device is modified Harvard architecture. With the Harvard architecture, the control store program memory (ROM) is separated from the data store memory (RAM). Both ROM and RAM have their own separate addressing space with separate address buses. The architecture, though based on Harvard architecture, permits transfer of data from ROM to RAM.

## CPU REGISTERS

The CPU can do an 8 -bit addition, subtraction, logical or shift operation in one instruction ( $\mathrm{t}_{\mathrm{c}}$ ) cycle time.
There are six CPU registers:
A is the 8-bit Accumulator Register
PC is the 15 -bit Program Counter Register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
$B$ is an 8 -bit RAM address pointer, which can be optionally post auto incremented or decremented.
X is an 8 -bit alternate RAM address pointer, which can be optionally post auto incremented or decremented.
SP is the 8-bit stack pointer, which points to the subroutine/ interrupt stack (in RAM). The SP is initialized to RAM address 06F with reset.
S is the 8 -bit Data Segment Address Register used to extend the lower half of the address range ( 00 to 7 F ) into 256 data segments of 128 bytes each.
All the CPU registers are memory mapped with the exception of the Accumulator (A) and the Program Counter (PC).

## PROGRAM MEMORY

The program memory consists of 8192 bytes of ROM. These bytes may hold program instructions or constant data (data tables for the LAID instruction, jump vectors for the JID instruction, and interrupt vectors for the VIS instruction). The program memory is addressed by the 15-bit program counter (PC). All interrupts in the devices vector to program memory location OFF Hex.

## DATA MEMORY

The data memory address space includes the on-chip RAM and data registers, the I/O registers (Configuration, Data and Pin), the control registers, the MICROWIRE/PLUS SIO shift register, and the various registers, and counters associated with the timers (with the exception of the IDLE timer). Data memory is addressed directly by the instruction or indirectly by the $\mathrm{B}, \mathrm{X}, \mathrm{SP}$ pointers and S register.
The data memory consists of 256 bytes of RAM. Sixteen bytes of RAM are mapped as "registers" at addresses 0FO to OFF Hex. These registers can be loaded immediately, and also decremented and tested with the DRSZ (decrement register and skip if zero) instruction. The memory pointer registers $X, S P, B$ and $S$ are memory mapped into this space at address locations OFC to OFF Hex respectively , with the other registers being available for general usage. The instruction set permits any bit in memory to be set, reset or tested. All I/O and registers (except A and PC) are memory mapped; therefore, I/O bits and register bits can be directly and individually set, reset and tested. The accumulator (A) bits can also be directly and individually tested.
Note: RAM contents are undefined upon power-up.

## Data Memory Segment RAM Extension

Data memory address OFF is used as a memory mapped location for the Data Segment Address Register (S).
The data store memory is either addressed directly by a single byte address within the instruction, or indirectly relative to the reference of the B, X, or SP pointers (each contains a single-byte address). This single-byte address allows an addressing range of 256 locations from 00 to FF hex. The upper bit of this single-byte address divides the data store memory into two separate sections as outlined previously. With the exception of the RAM register memory from address locations 00FO to 00FF, all RAM memory is memory mapped with the upper bit of the single-byte address being equal to zero. This allows the upper bit of the single-byte address to determine whether or not the base address range (from 0000 to 00 FF ) is extended. If this upper bit equals one (representing address range 0080 to 00FF), then address extension does not take place. Alternatively, if this upper bit equals zero, then the data segment extension register $S$ is used to extend the base address range (from 0000 to 007 F ) from XX00 to XX7F, where XX represents the 8 bits from the $S$ register. Thus the 128 -byte data segment extensions are located from addresses 0100 to 017F for data segment 1,0200 to 027F for data segment 2 , etc., up to FF00 to FF7F for data segment 255 . The base address range from 0000 to 007F represents data segment 0 .
Figure 4 illustrates how the S register data memory extension is used in extending the lower half of the base address range ( 00 to 7 F hex) into 256 data segments of 128 bytes each, with a total addressing range of 32 kbytes from XX00 to XX7F. This organization allows a total of 256 data segments of 128 bytes each with an additional upper base segment of 128 bytes. Furthermore, all addressing modes are available for all data segments. The $S$ register must be changed under program control to move from one data segment ( 128 bytes) to another. However, the upper base segment (containing the 16 memory registers, I/O registers, control registers, etc.) is always available regardless of the contents of the S register, since the upper base segment (address range 0080 to 00FF) is independent of data segment extension.
The instructions that utilize the stack pointer (SP) always reference the stack as part of the base segment (Segment 0 ), regardless of the contents of the $S$ register. The $S$ register is not changed by these instructions. Consequently, the stack (used with subroutine linkage and interrupts) is always located in the base segment. The stack pointer will be intitialized to point at data memory location 006F as a result of reset.
The 128 bytes of RAM contained in the base segment are split between the lower and upper base segments. The first 112 bytes of RAM are resident from address 0000 to 006 F in the lower base segment, while the remaining 16 bytes of RAM represent the 16 data memory registers located at addresses 00F0 to 00FF of the upper base segment. No RAM is located at the upper sixteen addresses ( 0070 to 007F) of the lower base segment.
Additional RAM beyond these initial 128 bytes, however, will always be memory mapped in groups of 128 bytes (or less) at the data segment address extensions (XX00 to XX7F) of the lower base segment. The additional 128 bytes of RAM are memory mapped at address locations 0100 to 017 F hex.

*Reads as all ones.
FIGURE 4. RAM Organization

## Reset

The RESET input when pulled low initializes the microcontroller. Initialization will occur whenever the RESET input is pulled low. Upon initialization, the data and configuration registers for ports L, G and C are cleared, resulting in these Ports being initialized to the TRI-STATE mode. Pin G1 of the G Port is an exception (as noted below) since pin G1 is dedicated as the WATCHDOG and/or Clock Monitor error output pin. Port D is set high. The PC, PSW, ICNTRL, CNTRL, T2CNTRL and T3CNTRL control registers are cleared. The Comparator Select Register is cleared. The S register is initialized to zero. The Multi-Input Wakeup registers WKEN and WKEDG are cleared. Wakeup register WKPND is unknown. The stack pointer, $S P$, is initialized to 6F Hex.
The device comes out of reset with both the WATCHDOG logic and the Clock Monitor detector armed, with the WATCHDOG service window bits set and the Clock Monitor bit set. The WATCHDOG and Clock Monitor circuits are inhibited during reset. The WATCHDOG service window bits being initialized high default to the maximum WATCHDOG service window of $64 \mathrm{k} \mathrm{t}_{\mathrm{C}}$ clock cycles. The Clock Monitor bit being initialized high will cause a Clock Monitor error following reset if the clock has not reached the minimum specified frequency at the termination of reset. A Clock Monitor error will cause an active low error output on pin G1. This error output will continue until $16 \mathrm{t}_{\mathrm{C}}-32 \mathrm{t}_{\mathrm{C}}$ clock cycles following the clock frequency reaching the minimum specified value, at which time the G1 output will enter the TRI-STATE mode. The external RC network shown in Figure 5 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.

Reset (Continued)


TL/DD/12094-7
RC $>5 \times$ Power Supply Rise Time
FIGURE 5. Recommended Reset Circuit

## Oscillator Circuits

The chip can be driven by a clock input on the CKI input pin which can be between DC and 10 MHz . The CKO output clock is on pin G7 (crystal configuration). The CKI input frequency is divided down by 10 to produce the instruction cycle clock ( $1 / t_{c}$ ).
Figure 6 shows the Crystal and R/C oscillator diagrams.

## CRYSTAL OSCILLATOR

CKI and CKO can be connected to make a closed loop crystal (or resonator) controlled oscillator.
Table A shows the component values required for various standard crystal values.

## R/C OSCILLATOR

By selecting CKI as a single pin oscillator input, a single pin R/C oscillator circuit can be connected to it. CKO is available as a general purpose input, and/or HALT restart input. Note: Use of the R/C oscillator option will result in higher electromagnetic emissions.
Table B shows the variation in the oscillator frequencies as functions of the component ( R and C ) values.


FIGURE 6. Crystal and R/C Oscillator Diagrams
TABLE A. Crystal Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

R1   $(\mathbf{k} \Omega)$	R2   $(\mathbf{M} \Omega)$	$\mathbf{C 1}$   $(\mathbf{p F})$	$\mathbf{C 2}$   $\mathbf{( p F )}$	CK1 Freq   $(\mathbf{M H z})$	Conditions
0	1	30	$30-36$	10	$V_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	30	$30-36$	4	$V_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	200	$100-150$	0.455	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

TABLE B. RC Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

$\mathbf{R}$   $(\mathbf{k} \Omega)$	$\mathbf{C}$   $(\mathbf{p F})$	CKI Freq   $(\mathbf{M H z})$	Instr. Cycle   ( $\boldsymbol{\mu} \mathbf{s})$	Conditions
3.3	82	2.2 to 2.7	3.7 to 4.6	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
5.6	100	1.1 to 1.3	7.4 to 9.0	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
6.8	100	0.9 to 1.1	8.8 to 10.8	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

Note: $3 \mathrm{k} \leq \mathrm{R} \leq 200 \mathrm{k}$

$$
50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}
$$

## Current Drain

The total current drain of the chip depends on:

1. Oscillator operation mode-11
2. Internal switching current-12
3. Internal leakage current-13
4. Output source current-14
5. DC current caused by external input not at $\mathrm{V}_{\mathrm{CC}}$ or GND-15
6. Comparator DC supply current when enabled-I6
7. Clock Monitor current when enabled-17

Thus the total current drain, It , is given as

$$
\mathrm{It}=11+12+13+14+15+16+17
$$

To reduce the total current drain, each of the above components must be minimum.
The chip will draw more current as the CKI input frequency increases up to the maximum 10 MHz value. Operating with a crystal network will draw more current than an external square-wave. Switching current, governed by the equation below, can be reduced by lowering voltage and frequency. Leakage current can be reduced by lowering voltage and temperature. The other two items can be reduced by carefully designing the end-user's system.

$$
\mathrm{I} 2=\mathrm{C} \times \mathrm{V} \times f
$$

where $C=$ equivalent capacitance of the chip

$$
\begin{aligned}
V & =\text { operating voltage } \\
f & =\text { CKI frequency }
\end{aligned}
$$

## Control Registers

## CNTRL Register (Address X'00EE)

The Timer1 (T1) and MICROWIRE/PLUS control register contains the following bits:

SL1 \& SLO Select the MICROWIRE/PLUS clock divide by ( $00=2,01=4,1 x=8$ )
IEDG External interrupt edge polarity select ( $0=$ Rising edge, $1=$ Falling edge)
MSEL Selects G5 and G4 as MICROWIRE/PLUS signals SK and SO respectively
T1C0 Timer T1 Start/Stop control in timer modes 1 and 2
Timer T1 Underflow Interrupt Pending Flag in timer mode 3
T1C1 Timer T1 mode control bit
T1C2 Timer T1 mode control bit
T1C3 Timer T1 mode control bit

T1C3	T1C2	T1C1	T1C0	MSEL	IEDG	SL1	SL0

Bit 7
Bit 0

## Control Registers (Continued)

## PSW Register (Address X'00EF)

The PSW register contains the following select bits:
GIE Global interrupt enable (enables interrupts)
EXEN Enable external interrupt
BUSY MICROWIRE/PLUS busy shifting flag
EXPND External interrupt pending
T1ENA Timer T1 Interrupt Enable for Timer Underflow or T1A Input capture edge
T1PNDA Timer T1 Interrupt Pending Flag (Autoreload RA in mode 1, T1 Underflow in Mode 2, T1A capture edge in mode 3)
C Carry Flag
HC Half Carry Flag

\section*{| HC | C | T1PNDA | T1ENA | EXPND | BUSY | EXEN | GIE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | <br> Bit 7}

The Half-Carry bit is also affected by all the instructions that affect the Carry flag. The SC (Set Carry) and RC (Reset Carry) instructions will respectively set or clear both the carry flags. In addition to the SC and RC instructions, ADC, SUBC, RRC and RLC instructions affect the carry and Half Carry flags.

## ICNTRL Register (Address X'00E8)

The ICNTRL register contains the following bits:
T1ENB Timer T1 Interrupt Enable for T1B Input capture edge
T1PNDB Timer T1 Interrupt Pending Flag for T1B capture edge
$\mu$ WEN Enable MICROWIRE/PLUS interrupt
$\mu$ WPND MICROWIRE/PLUS interrupt pending
TOEN Timer TO Interrupt Enable (Bit 12 toggle)
TOPND Timer TO Interrupt pending
LPEN L Port Interrupt Enable (Multi-Input Wakeup/Interrupt)
Bit 7 could be used as a flag

Unused	LPEN	TOPND	TOEN	$\mu$ WPND	$\mu$ WEN	T1PNDB	T1ENB

Bit 7
Bit 0
T2CNTRL Register (Address X'00C6)
The T2CNTRL register contains the following bits:
T2ENB Timer T2 Interrupt Enable for T2B Input capture edge
T2PNDB Timer T2 Interrupt Pending Flag for T2B capture edge
T2ENA Timer T2 Interrupt Enable for Timer Underfiow or T2A Input capture edge
T2PNDA Timer T2 Interrupt Pending Flag (Autoreload RA in mode 1, T2 Underflow in mode 2, T2A capture edge in mode 3)
T2C0 Timer T2 Start/Stop control in timer modes 1 and 2 Timer T2 Underflow Interrupt Pending Flag in timer mode 3

T2C1
T2C2
T2C3

Timer T2 mode control bit
Timer T2 mode control bit
Timer T2 mode control bit

T2C3	T2C2	T2C1	T2C0	T2PNDA	T2ENA	T2PNDB	T2ENB

Bit 7
Bit 0

## T3CNTRL Register (Address X'00B6)

The T3CNTRL register contains the following bits:
T3ENB Timer T3 Interrupt Enable for T3B
T3PNDB Timer T3 Interrupt Pending Flag for T3B pin (T3B capture edge)
T3ENA Timer T3 Interrupt Enable for Timer Underflow or T3A pin
T3PNDA Timer T3 Interrupt Pending Flag (Autoload RA in mode 1, TЗ Underflow in mode 2, TЗa capture edge in mode 3)
T3C0 Timer T3 Start/Stop control in timer modes 1 and 2
Timer ТЗ Underflow Interrupt Pending Flag in timer mode 3
T3C1 Timer T3 mode control bit
T3C2 Timer T3 mode control bit
T3C3 Timer T3 mode control bit

T3C3	T3C2	T3C1	T3C0	T3PNDA	T3ENA	T3PNDB	T3ENB

Bit 7
Bit 0

## Timers

The device contains a very versatile set of timers ( $\mathrm{TO}, \mathrm{T} 1$, T2, T3). All timers and associated autoreload/capture registers power up containing random data.

## TIMER TO (IDLE TIMER)

The device supports applications that require maintaining real time and low power with the IDLE mode. This IDLE mode support is furnished by the IDLE timer TO, which is a 16 -bit timer. The Timer TO runs continuously at the fixed rate of the instruction cycle clock, $\mathrm{t}_{\mathrm{c}}$. The user cannot read or write to the IDLE Timer TO, which is a count down timer. The Timer TO supports the following functions:
Exit out of the Idle Mode (See Idle Mode description) WATCHDOG logic (See WATCHDOG description)
Start up delay out of the HALT mode
The IDLE Timer TO can generate an interrupt when the thirteenth bit toggles. This toggle is latched into the TOPND pending flag, and will occur every 4 ms at the maximum clock frequency ( $\mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ). A control flag TOEN allows the interrupt from the thirteenth bit of Timer TO to be enabled or disabled. Setting TOEN will enable the interrupt, while resetting it will disable the interrupt.

## Timers (Continued)

## TIMER T1, TIMER T2 AND TIMER T3

The device has a set of three powerful timer/counter blocks, T1, T2 and T3. The associated features and functioning of a timer block are described by referring to the timer block Tx. Since the three timer blocks, T1, T2 and T3 are identical, all comments are equally applicable to any of the three timer blocks.
Each timer block consists of a 16-bit timer, Tx, and two supporting 16 -bit autoreload/capture registers, RxA and RxB. Each timer block has two pins associated with it, TxA and TxB. The pin TxA supports I/O required by the timer block, while the pin TxB is an input to the timer block. The powerful and flexible timer block allows the device to easily perform all timer functions with minimal software overhead. The timer block has three operating modes: Processor Independent PWM mode, External Event Counter mode, and Input Capture mode.
The control bits TxC3, TxC2, and TxC1 allow selection of the different modes of operation.

## Mode 1. Processor Independent PWM Mode

As the name suggests, this mode allows the device to generate a PWM signal with very minimal user intervention. The user only has to define the parameters of the PWM signal (ON time and OFF time). Once begun, the timer block will continuously generate the PWM signal completely independent of the microcontroller. The user software services the timer block only when the PWM parameters require updating.
In this mode the timer Tx counts down at a fixed rate of $\mathrm{t}_{\mathrm{c}}$. Upon every underflow the timer is alternately reloaded with the contents of supporting registers, $\mathrm{R} \times \mathrm{A}$ and RxB . The very first underflow of the timer causes the timer to reload from the register RxA. Subsequent underflows cause the timer to be reloaded from the registers alternately beginning with the register RxB.
The Tx Timer control bits, TxC3, TxC2 and TxC1 set up the timer for PWM mode operation.
Figure 7 shows a block diagram of the timer in PWM mode. The underflows can be programmed to toggle the TxA output pin. The underflows can also be programmed to generate interrupts.
Underflows from the timer are alternately latched into two pending flags, TxPNDA and TxPNDB. The user must reset these pending flags under software control. Two control enable flags, TxENA and TxENB, allow the interrupts from the timer underflow to be enabled or disabled. Setting the timer enable flag TXENA will cause an interrupt when a timer underflow causes the RxA register to be reloaded into the timer. Setting the timer enable flag TxENB will cause an interrupt when a timer underflow causes the RxB register to be reloaded into the timer. Resetting the timer enable flags will disable the associated interrupts.
Either or both of the timer underflow interrupts may be enabled. This gives the user the flexibility of interrupting once per PWM period on either the rising or falling edge of the PWM output. Alternatively, the user may choose to interrupt on both edges of the PWM output.


FIGURE 7. Timer in PWM Mode

## Mode 2. External Event Counter Mode

This mode is quite similar to the processor independent PWM mode described above. The main difference is that the timer, $T x$, is clocked by the input signal from the TxA pin. The Tx timer control bits, TxC3, TxC2 and TxC1 allow the timer to be clocked either on a positive or negative edge from the TXA pin. Underflows from the timer are latched into the TxPNDA pending flag. Setting the TxENA control flag will cause an interrupt when the timer underflows.
In this mode the input pin TxB can be used as an independent positive edge sensitive interrupt input if the TxENB control flag is set. The occurrence of a positive edge on the TxB input pin is latched into the TxPNDB flag.
Figure 8 shows a block diagram of the timer in External Event Counter mode.
Note: The PWM output is not available in this mode since the TXA pin is being used as the counter input clock.


FIGURE 8. Timer in External Event Counter Mode

## Mode 3. Input Capture Mode

The device can precisely measure external frequencies or time external events by placing the timer block, $T x$, in the input capture mode.
In this mode, the timer Tx is constantly running at the fixed $t_{c}$ rate. The two registers, RxA and RxB, act as capture registers. Each register acts in conjunction with a pin. The register RxA acts in conjunction with the TxA pin and the register RxB acts in conjunction with the TxB pin.

## Timers (Continued)

The timer value gets copied over into the register when a trigger event occurs on its corresponding pin. Control bits, TxC3, TxC2 and TxC1, allow the trigger events to be specified either as a positive or a negative edge. The trigger condition for each input pin can be specified independently.
The trigger conditions can also be programmed to generate interrupts. The occurrence of the specified trigger condition on the TxA and TxB pins will be respectively latched into the pending flags, TxPNDA and TxPNDB. The control flag TxENA allows the interrupt on TxA to be either enabled or disabled. Setting the TxENA flag enables interrupts to be generated when the selected trigger condition occurs on the TXA pin. Similarly, the flag TxENB controls the interrupts from the TXB pin.
Underflows from the timer can also be programmed to generate interrupts. Underflows are latched into the timer TxC0 pending flag (the TxCO control bit serves as the timer underflow interrupt pending flag in the Input Capture mode). Consequently, the TxCO control bit should be reset when entering the Input Capture mode. The timer underflow interrupt is enabled with the TxENA control flag. When a TxA interrupt occurs in the Input Capture mode, the user must check both the TxPNDA and TxCO pending flags in order to determine whether a TXA input capture or a timer underflow (or both) caused the interrupt.
Figure 9 shows a block diagram of the timer in Input Capture mode.


FIGURE 9. Timer in Input Capture Mode

## TIMER CONTROL FLAGS

The timers T1, T2 and T3 have indentical control structures. The control bits and their functions are summarized below.

TxC0 Timer Start/Stop control in Modes 1 and 2 (Processor Independent PWM and External Event Counter), where $1=$ Start, $0=$ Stop Timer Underflow Interrupt Pending Flag in Mode 3 (Input Capture)
TxPNDA Timer Interrupt Pending Flag
TxPNDB Timer Interrupt Pending Flag
TxENA Timer Interrupt Enable Flag
TxENB Timer Interrupt Enable Flag $1=$ Timer Interrupt Enabled $0=$ Timer Interrupt Disabled
TxC3 Timer mode control
TxC2 Timer mode control
TxC1 Timer mode control

## Timers (Continued)

The timer mode control bits ( $\mathrm{TxC3}, \mathrm{TxC2}$ and $\mathrm{TxC1}$ ) are detailed below:

TxC3	TxC2	TxC1	Timer Mode	Interrupt A   Source.	Interrupt B   Source	Timer   Counts On
0	0	0	MODE 2 (External   Event Counter)	Timer   Underflow	Pos. TxB   Edge	TxA   Pos. Edge
0	0	1	MODE 2 (External   Event Counter)	Timer   Underflow	Pos. TxB   Edge	TxA   Neg. Edge
1	0	1	MODE 1 (PWM)   TxA Toggle	Autoreload   RA	Autoreload   RB	$\mathrm{t}_{\mathrm{c}}$

## Power Save Modes

The device offers the user two power save modes of operation: HALT and IDLE. In the HALT mode, all microcontroller activities are stopped. In the IDLE mode, the on-board oscillator circuitry the WATCHDOG logic, the Clock Monitor and timer TO are active but all other microcontroller activities are stopped. In either mode, all on-board RAM, registers, I/O states, and timers (with the exception of TO) are unaltered.

## HALT MODE

The device can be placed in the HALT mode by writing a "1" to the HALT flag (G7 data bit). All microcontroller activities, including the clock and timers, are stopped. The WATCHDOG logic is disabled during the HALT mode. However, the clock monitor circuitry if enabled remains active and will cause the WATCHDOG output pin (WDOUT) to go low. If the HALT mode is used and the user does not want to activate the WDOUT pin, the Clock Monitor should be disabled after the device comes out of reset (resetting the Clock Monitor control bit with the first write to the WDSVR register). In the HALT mode, the power requirements of the device are minimal and the applied voltage ( $\mathrm{V}_{\mathrm{CC}}$ ) may be decreased to $V_{r}\left(V_{r}=2.0 \mathrm{~V}\right)$ without altering the state of the machine.
The device supports three different ways of exiting the HALT mode. The first method of exiting the HALT mode is with the Multi-Input Wakeup feature on the L port. The second method is with a low to high transition on the CKO (G7) pin. This method precludes the use of the crystal clock con-
figuration (since CKO becomes a dedicated output), and so may be used with an RC clock configuration. The third method of exiting the HALT mode is by pulling the RESET pin low.
Since a crystal or ceramic resonator may be selected as the oscillator, the Wakeup signal is not allowed to start the chip running immediately since crystal oscillators and ceramic resonators have a delayed start up time to reach full amplitude and frequency stability. The IDLE timer is used to generate a fixed delay to ensure that the oscillator has indeed stabilized before allowing instruction execution. In this case, upon detecting a valid Wakeup signal, only the oscillator circuitry is enabled. The IDLE timer is loaded with a value of 256 and is clocked with the $t_{c}$ instruction cycle clock. The $t_{c}$ clock is derived by dividing the oscillator clock down by a factor of 10. The Schmitt trigger following the CKI inverter on the chip ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.
If an RC clock option is being used, the fixed delay is introduced optionally. A control bit, CLKDLY, mapped as configuration bit G7, controls whether the delay is to be introduced or not. The delay is included if CLKDLY is set, and excluded if CLKDLY is reset. The CLKDLY bit is cleared on reset.

## Power Save Modes (Continued)

The device has two mask options associated with the HALT mode. The first mask option enables the HALT mode feature, while the second mask option disables the HALT mode. With the HALT mode enable mask option, the device will enter and exit the HALT mode as described above. With the HALT disable mask option, the device cannot be placed in the HALT mode (writing a " 1 " to the HALT flag will have no effect, the HALT flag will remain " 0 ").
The WATCHDOG detector circuit is inhibited during the HALT mode. However, the clock monitor circuit if enabled remains active during HALT mode in order to ensure a clock monitor error if the device inadvertently enters the HALT mode as a result of a runaway program or power glitch.

## IDLE MODE

The device is placed in the IDLE mode by writing a " 1 " to the IDLE flag (G6 data bit). In this mode, all activities, except the associated on-board oscillator circuitry, the WATCHDOG logic, the clock monitor and the IDLE Timer T0, are stopped.
As with the HALT mode, the device can be returned to normal operation with a reset, or with a Multi-Input Wakeup from the L Port. Alternately, the microcontroller resumes normal operation from the IDLE mode when the thirteenth bit (representing 4.096 ms at internal clock frequency of $1 \mathrm{MHz}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ) of the IDLE Timer toggles.

This toggle condition of the thirteenth bit of the IDLE Timer T0 is latched into the TOPND pending flag.
The user has the option of being interrupted with a transition on the thirteenth bit of the IDLE Timer TO. The interrupt can be enabled or disabled via the TOEN control bit. Setting the TOEN flag enables the interrupt and vice versa.
The user can enter the IDLE mode with the Timer TO interrupt enabled. In this case, when the TOPND bit gets set, the device will first execute the Timer TO interrupt service routine and then return to the instruction following the "Enter Idle Mode" instruction.
Alternatively, the user can enter the IDLE mode with the IDLE Timer TO interrupt disabled. In this case, the device will resume normal operation with the instruction immediately following the "Enter IDLE Mode" instruction.
Note: It is necessary to program two NOP instructions following both the set HALT mode and set IDLE mode instructions. These NOP instructions are necessary to allow clock resynchronization following the HALT or IDLE modes.

## Multi-Input Wakeup

The Multi-Input Wakeup feature is ued to return (wakeup) the device from either the HALT or IDLE modes. Alternately Multi-Input Wakeup/Interrupt feature may also be used to generate up to 8 edge selectable external interrupts.
Figure 10 shows the Multi-Input Wakeup logic.


## Multi-Input Wakeup (Continued)

The Multi-Input Wakeup feature utilizes the L Port. The user selects which particular L port bit (or combination of L Port bits) will cause the device to exit the HALT or IDLE modes. The selection is done through the Reg: WKEN. The Reg: WKEN is an 8-bit read/write register, which contains a control bit for every L port bit. Setting a particular WKEN bit enables a Wakeup from the associated L port pin.
The user can select whether the trigger condition on the selected L Port pin is going to be either a positive edge (low to high transition) or a negative edge (high to low transition). This selection is made via the Reg: WKEDG, which is an 8bit control register with a bit assigned to each L Port pin. Setting the control bit will select the trigger condition to be a negative edge on that particular L Port pin. Resetting the bit selects the trigger condition to be a positive edge. Changing an edge select entails several steps in order to avoid a pseudo Wakeup condition as a result of the edge change. First, the associated WKEN bit should be reset, followed by the edge select change in WKEDG. Next, the associated WKPND bit should be cleared, followed by the associated WKEN bit being re-enabled.
An example may serve to clarify this procedure. Suppose we wish to change the edge select from positive (low going high) to negative (high going low) for L Port bit 5, where bit 5 has previously been enabled for an input interrupt. The program would be as follows:

RBIT	5, WKEN
SBIT	5, WKEDG
RBIT	5, WKPND
SBIT	5, WKEN

If the $L$ port bits have been used as outputs and then changed to inputs with Multi-Input Wakeup/Interrupt, a safety procedure should also be followed to avoid inherited pseudo wakeup conditions. After the selected L port bits have been changed from output to input but before the associated WKEN bits are enabled, the associated edge select bits in WKEDG should be set or reset for the desired edge selects, followed by the associated WKPND bits being cleared.
This same procedure should be used following reset, since the $L$ port inputs are left floating as a result of reset.
The occurrence of the selected trigger condition for Multi-Input Wakeup is latched into a pending register called WKPND. The respective bits of the WKPND register will be set on the occurrence of the selected trigger edge on the corresponding Port $L$ pin. The user has the responsibility of clearing these pending flags. Since WKPND is a pending register for the occurrence of selected wakeup conditions, the device will not enter the HALT mode if any Wakeup bit is both enabled and pending. Consequently, the user has the responsibility of clearing the pending flags before attempting to enter the HALT mode.

WKEN, WKPND and WKEDG are all read/write registers, and are cleared at reset.

## PORT L INTERRUPTS

Port $L$ provides the user with an additional eight fully selectable, edge sensitive interrupts which are all vectored into the same service subroutine.
The interrupt from Port L shares logic with the wake up circuitry. The register WKEN allows interrupts from Port $L$ to be individually enabled or disabled. The register WKEDG specifies the trigger condition to be either a positive or a negative edge. Finally, the register WKPND latches in the pending trigger conditions.
The GIE (Global Interrupt Enable) bit enables the interrupt function.
A control flag, LPEN, functions as a global interrupt enable for Port L interrupts. Setting the LPEN flag will enable interrupts and vice versa. A separate global pending flag is not needed since the register WKPND is adequate.
Since Port $L$ is also used for waking the device out of the HALT or IDLE modes, the user can elect to exit the HALT or IDLE modes either with or without the interrupt enabled. If he elects to disable the interrupt, then the device will restart execution from the instruction immediately following the instruction that placed the microcontroller in the HALT or IDLE modes. In the other case, the device will first execute the interrupt service routine and then revert to normal operation.
The Wakeup signal will not start the chip running immediately since crystal oscillators or ceramic resonators have a finite start up time. The IDLE Timer (T0) generates a fixed delay to ensure that the oscillator has indeed stabilized before allowing the device to execute instructions. In this case, upon detecting a valid Wakeup signal, only the oscillator circuitry and the IDLE Timer T0 are enabled. The IDLE Timer is loaded with a value of 256 and is clocked from the $t_{c}$ instruction cycle clock. The $t_{c}$ clock is derived by dividing down the oscillator clock by a factor of 10. A Schmitt trigger following the CKI on-chip inverter ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.
If the RC clock option is used, the fixed delay is under software control. A control flag, CLKDLY, in the G7 configuration bit allows the clock start up delay to be optionally inserted. Setting CLKDLY flag high will cause clock start up delay to be inserted and resetting it will exclude the clock start up delay. The CLKDLY flag is cleared during reset, so the clock start up delay is not present following reset with the RC clock options.

## Analog Function Block



TL／DD／12094－14
FIGURE 11．COP888EK Analog Function Block

This device contains an analog function block with the in－ tent to provide a function which allows for single slope，low cost，A／D conversion of up to 6 channels．

## CMPSL REGISTER（ADDRESS X’00B7）

The CMPSL register contains the following bits：
CMPNEG Will drive 11 to a low level．This bit can be used to discharge an external capacitor． This bit is disabled if the comparator is not enabled（CMAPEN－0）．
CMPEN Enable the comparator（＂1＂＝enable）．
CSEN Enables the internal constant current source．This current source provides a nominal $20 \mu \mathrm{~A}$ constant current at the 11 pin．This current can be used to ensure a linear charging rate on an external capaci－ tor．This bit has no affect and the current source is disabled if the comparator is not enabled（CMPEN $=0$ ）．
CMPOE Enables the comparator output to either pin 13 or pin 17 （＂ 1 ＂＝enable）depending on the value of CMPISEL0／1／2．
CMPISEL0／1／2 Will select one of seven possible sources （I0／I2／I3／I4／15／I6／internal reference）as a positive input to the comparator（see Ta－ ble I for more information．）

CMPT2B
Selects the timer T2B input to be driven directly by the comparator output．If the comparator is disabled（CMPEN $=0$ ），this function is disabled，i．e．，the T2B input is connected to Port L5．

CMPT2B	CMPISEL2	CMPISEL1	CMPISELO	CMPOE	CSEN	CMPEN	CMPNEG
Bit 7		Bit 0					

The Comparator Select Register is cleared on RESET（the comparator is disabled）．To save power the program should also disable the comparator before the $\mu \mathrm{C}$ enters the HALT／IDLE modes．Disabling the comparator will turn off the constant current source and the $\mathrm{V}_{\mathrm{CC}} / 2$ reference，dis－ connect the comparator output from the T2B input and pin 13 or 17 and remove the low on 11 caused by CMPNEG．
It is often useful for the user＇s program to read the result of a comparator operation．Since 11 is always selected to be COMPIN－when the comparator is enabled（CMPEN＝1）， the comparator output can be read internally by reading bit 1 （CMPRD）of register PORTI（RAM address $0 \times$ D7）．
The following table lists the comparator inputs and outputs vs．the value of the CMPISELO／1／2 bits．The output will only be driven if the CMPOE bit is set to 1 ．

## Analog Function Block (Continued)

TABLE I. Comparator Input Selection

Control Blt			Comparator Input Source		Comparator Output
CMPISEL2	CMPISEL1	CMPISELO	Neg. Input	Pos. Input	
0	0	0	11	12	13
0	0	1	11	12	17
0	1	0	11	13	17
0	1	1	11	10	17
1	0	0	11	14	17
1	0	1	11	15	17
1	1	0	11	16	17
1	1	1	11	$\mathrm{V}_{\mathrm{CC}} / 2$ Ref.	17

## Reset

The state of the Comparator Block immediately after RESET is as follows:

1. The CMPSL Register is set to all zeros
2. The Comparator is disabled
3. The Constant Current Source is disabled
4. CMPNEG is turned off
5. The Port I inputs are electrically isolated from the comparator
6. The T2B input is as normally selected by the T2CNTRL Register
7. CMPISELO-CMPISEL2 are set to zero
8. All Port I inputs are selected to the default digital input mode
The comparator outputs have the same specification as Ports L and G except that the rise and fall times are symmetrical.

## Interrupts

The device supports a vectored interrupt scheme. It supports a total of fourteen interrupt sources. The following table lists all the possible interrupt sources, their arbitration
ranking and the memory locations reserved for the interrupt vector for each source.
Two bytes of program memory space are reserved for each interrupt source. All interrupt sources except the software interrupt are maskable. Each of the maskable interrupts have an Enable bit and a Pending bit. A maskable interrupt is active if its associated enable and pending bits are set. If GIE $=1$ and an interrupt is active, then the processor will be interrupted as soon as it is ready to start executing an instruction except if the above conditions happen during the Software Trap service routine. This exception is described in the Software Trap sub-section.
The interruption process is accomplished with the INTR instruction (opcode 00), which is jammed inside the Instruction Register and replaces the opcode about to be executed. The following steps are performed for every interrupt:

1. The GIE (Global Interrupt Enable) bit is reset.
2. The address of the instruction about to be executed is pushed into the stack.
3. The PC (Program Counter) branches to address 00FF. This procedure takes $7 \mathrm{t}_{\mathrm{c}}$ cycles to execute.


FIGURE 12. Interrupt Block Dlagram

Arbitration Ranking	Source	Description	Vector   Address Hi-Low Byte
(1) Highest	Software	INTR Instruction	OyFE-OyFF
	Reserved	for Future Use	OyFC-0yFD
(2)	External	Pin Go Edge	OyFA-OyFB
(3)	Timer T0	Underflow	OyF8-0yF9
(4)	Timer T1	T1A/Underilow	0yF6-0yF7
(5)	Timer T1	T1B	OyF4-0yF5
(6)	MICROWIRE/PLUS	BUSY Goes Low	OyF2-0yF3
	Reserved	for Future Use	OyFO-0yF1
(7)	Reserved		OyEE-OyEF
(8)	Reserved		OyEC-OyED
(9)	Timer T2	T2A/Underflow	OyEA-OyEB
(10)	Timer T2	T2B	OyE8-0yE9
(11)	Timer T3	T3A/Underflow	OyE6-0yE7
(12)	Timer T3	T3B	OyE4-0yE5
(13)	Port L/Wakeup	Port LEdge	OyE2-0yE3
(14) Lowest	Default	VIS Instr. Execution without Any Interrupts	OyE0-0yE1

y is VIS page, $\mathrm{y} \neq 0$.

At this time, since GIE $=0$, other maskable interrupts are disabled. The user is now free to do whatever context switching is required by saving the context of the machine in the stack with PUSH instructions. The user would then program a VIS (Vector Interrupt Select) instruction in order to branch to the interrupt service routine of the highest priority interrupt enabled and pending at the time of the VIS. Note that this is not necessarily the interrupt that caused the branch to address location OOFF Hex prior to the context switching.
Thus, if an interrupt with a higher rank than the one which caused the interruption becomes active before the decision of which interrupt to service is made by the VIS, then the interrupt with the higher rank will override any lower ones and will be acknowledged. The lower priority interrupt(s) are still pending, however, and will cause another interrupt immediately following the completion of the interrupt service routine associated with the higher priority interrupt just serviced. This lower priority interrupt will occur immediately following the RETI (Return from Interrupt) instruction at the end of the interrupt service routine just completed.
Inside the interrupt service routine, the associated pending bit has to be cleared by software. The RETI (Return from Interrupt) instruction at the end of the interrupt service routine will set the GIE (Global Interrupt Enable) bit, allowing the processor to be interrupted again if another interrupt is active and pending.
The VIS instruction looks at all the active interrupts at the time it is executed and performs an indirect jump to the beginning of the service routine of the one with the highest rank.

The addresses of the different interrupt service routines, called vectors, are chosen by the user and stored in ROM in a table starting at 01E0 (assuming that VIS is located between 00FF and 01DF). The vectors are 15 -bit wide and therefore occupy 2 ROM locations.
VIS and the vector table must be located in the same 256-
 address of a block. In this case, the table must be in the next block. The vector table cannot be inserted in the first 256-byte block ( $y \neq 0$ ).
The vector of the maskable interrupt with the lowest rank is located at OyE0 (Hi-Order byte) and OyE1 (Lo-Order byte) and so forth in increasing rank number. The vector of the maskable interrupt with the highest rank is located at OyFA (Hi-Order byte) and OyFB (Lo-Order byte).
The Software Trap has the highest rank and its vector is located at OyFE and OyFF.
If, by accident, a VIS gets executed and no interrupt is active, then the PC (Program Counter) will branch to a vector located at $0 y E 0-0 y E 1$. This vector can point to the Software Trap (ST) interrupt service routine, or to another special service routine as desired.
Figure 12 shows the Interrupt block diagram.

## SOFTWARE TRAP

The Software Trap (ST) is a special kind of non-maskable interrupt which occurs when the INTR instruction (used to acknowledge interrupts) is fetched from ROM and placed inside the instruction register. This may happen when the PC is pointing beyond the available ROM address space or when the stack is over-popped.

## Interrupts (Continued)

When an ST occurs, the user can re-initialize the stack pointer and do a recovery procedure (similar to reset, but not necessarily containing all of the same initialization procedures) before restarting.
The occurrence of an ST is latched into the ST pending bit. The GIE bit is not affected and the ST pending bit (not accessible by the user) is used to inhibit other interrupts and to direct the program to the ST service routine with the VIS instruction. The RPND instruction is used to clear the software interrupt pending bit. This pending bit is also cleared on reset.
The ST has the highest rank among all interrupts.
Nothing (except another ST) can interrupt an ST being serviced.

## WATCHDOG

The device contains a WATCHDOG and clock monitor. The WATCHDOG is designed to detect the user program getting stuck in infinite loops resulting in loss of program control or "runaway" programs. The Clock Monitor is used to detect the absence of a clock or a very slow clock below a specified rate on the CKI pin.
The WATCHDOG consists of two independent logic blocks: WD UPPER and WD LOWER. WD UPPER establishes the upper limit on the service window and WD LOWER defines the lower limit of the service window.
Servicing the WATCHDOG consists of writing a specific value to a WATCHDOG Service Register named WDSVR which is memory mapped in the RAM. This value is composed of three fields, consisting of a 2 -bit Window Select, a 5-bit Key Data field, and the 1-bit Clock Monitor Select field. Table II shows the WDSVR register.
The lower limit of the service window is fixed at 2048 instruction cycles. Bits 7 and 6 of the WDSVR register allow the user to pick an upper limit of the service window.
Table III shows the four possible combinations of lower and upper limits for the WATCHDOG service window. This flexibility in choosing the WATCHDOG service window prevents any undue burden on the user software.
Bits 5, 4, 3, 2 and 1 of the WDSVR register represent the 5bit Key Data field. The key data is fixed at 01100. Bit 0 of the WDSVR Register is the Clock Monitor Select bit.

TABLE II. WATCHDOG Service Register (WDSVR)

Window   Select		Key Data					
Clock   Monitor							
$X$	$X$	0	1	1	0	0	$Y$
7	6	5	4	3	2	1	0

TABLE III. WATCHDOG Service Window Select

WDSVR   Bit 7	WDSVR   Bit 6	Service Window   (Lower-Upper Limits)
0	0	$2 k-8 k t_{c}$ Cycles
0	1	$2 k-16 k \mathrm{t}_{\mathrm{c}}$ Cycles
1	0	$2 k-32 k \mathrm{t}_{c}$ Cycles
1	1	$2 \mathrm{k}-64 \mathrm{k} \mathrm{t}_{\mathrm{c}}$ Cycles

## Clock Monitor

The Clock Monitor aboard the device can be selected or deselected under program control. The Clock Monitor is guaranteed not to reject the clock if the instruction cycle clock $\left(1 / \mathrm{t}_{\mathrm{c}}\right)$ is greater or equal to 10 kHz . This equates to a clock input rate on CKI of greater or equal to 100 kHz .

## WATCHDOG Operation

The WATCHDOG and Clock Monitor are disabled during reset. The device comes out of reset with the WATCHDOG armed, the WATCHDOG Window Select bits (bits 6, 7 of the WDSVR Register) set, and the Clock Monitor bit (bit 0 of the WDSVR Register) enabled. Thus, a Clock Monitor error will occur after coming out of reset, if the instruction cycle clock frequency has not reached a minimum specified value, including the case where the oscillator fails to start.
The WDSVR register can be written to only once after reset and the key data (bits 5 through 1 of the WDSVR Register) must match to be a valid write. This write to the WDSVR register involves two irrevocable choices: (i) the selection of the WATCHDOG service window (ii) enabling or disabling of the Clock Monitor. Hence, the first write to WDSVR Register involves selecting or deselecting the Clock Monitor, select the WATCHDOG service window and match the WATCHDOG key data. Subsequent writes to the WDSVR register will compare the value being written by the user to the WATCHDOG service window value and the key data (bits 7 through 1) in the WDSVR Register. Table IV shows the sequence of events that can occur.
The user must service the WATCHDOG at least once before the upper limit of the service window expires. The WATCHDOG may not be serviced more than once in every lower limit of the service window. The user may service the WATCHDOG as many times as wished in the time period between the lower and upper limits of the service window. The first write to the WDSVR Register is also counted as a WATCHDOG service.
The WATCHDOG has an output pin associated with it. This is the WDOUT pin, on pin 1 of the port G. WDOUT is active low. The WDOUT pin is in the high impedance state in the inactive state. Upon triggering the WATCHDOG, the logic will pull the WDOUT (G1) pin low for an additional $16 t_{c}-32 t_{c}$ cycles after the signal level on WDOUT pin goes below the lower Schmitt trigger threshold. After this delay, the device will stop forcing the WDOUT output low.
The WATCHDOG service window will restart when the WDOUT pin goes high. It is recommended that the user tie the WDOUT pin back to $\mathrm{V}_{\mathrm{CC}}$ through a resistor in order to pull WDOUT high.
A WATCHDOG service while the WDOUT signal is active will be ignored. The state of the WDOUT pin is not guaranteed on reset, but if it powers up low then the WATCHDOG will time out and WDOUT will enter high impedance state.
The Clock Monitor forces the G1 pin low upon detecting a clock frequency error. The Clock Monitor error will continue until the clock frequency has reached the minimum specified value, after which the G1 output will enter the high impedance TRI-STATE mode following $16 t_{c}-32 t_{c}$ clock cycles. The Clock Monitor generates a continual Clock Monitor error if the oscillator fails to start, or fails to reach the minimum specified frequency. The specification for the Clock Monitor is as follows:

```
\(1 / \mathrm{t}_{\mathrm{c}}>10 \mathrm{kHz}\)-No clock rejection.
\(1 / \mathrm{t}_{\mathrm{c}}<10 \mathrm{~Hz}\)-Guaranteed clock rejection.
```


## WATCHDOG Operation（Continued）

## WATCHDOG AND CLOCK MONITOR SUMMARY

The following salient points regarding the WATCHDOG and CLOCK MONITOR should be noted：
－Both the WATCHDOG and CLOCK MONITOR detector circuits are inhibited during RESET．
－Following RESET，the WATCHDOG and CLOCK MONI－ TOR are both enabled，with the WATCHDOG having he maximum service window selected．
－The WATCHDOG service window and CLOCK MONI－ TOR enable／disable option can only be changed once， during the initial WATCHDOG service following RESET．
－The initial WATCHDOG service must match the key data value in the WATCHDOG Service register WDSVR in or－ der to avoid a WATCHDOG error．
－Subsequent WATCHDOG services must match all three data fields in WDSVR in order to avoid WATCHDOG er－ rors．
－The correct key data value cannot be read from the WATCHDOG Service register WDSVR．Any attempt to read this key data value of 01100 from WDSVR will read as key data value of all O＇s．
－The WATCHDOG detector circuit is inhibited during both the HALT and IDLE modes．
－The CLOCK MONITOR detector circuit is active during both the HALT and IDLE modes．Consequently，the de－ vice inadvertently entering the HALT mode will be detect－ ed as a CLOCK MONITOR error（provided that the CLOCK MONITOR enable option has been selected by the program）．
－With the single－pin R／C oscillator mask option selected and the CLKDLY bit reset，the WATCHDOG service win－ dow will resume following HALT mode from where it left off before entering the HALT mode．
－With the crystal oscillator mask option selected，or with the single－pin R／C oscillator mask option selected and the CLKDLY bit set，the WATCHDOG service window will be set to its selected value from WDSVR following HALT． Consequently，the WATCHDOG should not be serviced for at least 2048 instruction cycles following HALT，but must be serviced within the selected window to avoid a WATCHDOG error．
－The IDLE timer TO is not initialized with RESET．
－The user can sync in to the IDLE counter cycle with an IDLE counter（TO）interrupt or by monitoring the TOPND flag．The TOPND flag is set whenever the thirteenth bit of the IDLE counter toggles（every 4096 instruction cycles）． The user is responsible for resetting the TOPND flag．
－A hardware WATCHDOG service occurs just as the de－ vice exits the IDLE mode．Consequently，the WATCH－ DOG should not be serviced for at least 2048 instruction cycles following IDLE，but must be serviced within the selected window to avoid a WATCHDOG error．
－Following RESET，the initial WATCHDOG service（where the service window and the CLOCK MONITOR enable／ disable must be selected）may be programmed any－ where within the maximum service window（ 65,536 in－ struction cycles）initialized by RESET．Note that this ini－ tial WATCHDOG service may be programmed within the initial 2048 instruction cycles without causing a WATCH－ DOG error．

## Detection of Illegal Conditions

The device can detect various illegal conditions resulting from coding errors, transient noise, power supply voltage drops, runaway programs, etc.
Reading of undefined ROM gets zeros. The opcode for software interrupt is zero. If the program fetches instructions from undefined ROM, this will force a software interrupt, thus signaling that an illegal condition has occurred.
The subroutine stack grows down for each call (jump to subroutine), interrupt, or PUSH, and grows up for each return or POP. The stack pointer is initialized to RAM location 06F Hex during reset. Consequently, if there are more returns than calls, the stack pointer will point to addresses 070 and 071 Hex (which are undefined RAM). Undefined RAM from addresses 070 to 07F (Segment 0), 140 to 17F (Segment 1), and all other segments (i.e., Segments $2 \ldots$ etc.) is read as all 1 's, which in turn will cause the program to return to address 7FFF Hex. This is an undefined ROM location and the instruction fetched (all 0's) from this location will generate a software interrupt signaling an illegal condition.
Thus, the chip can detect the following illegal conditions:
a. Executing from undefined ROM
b. Over "POP' ing the stack by having more returns than calls.
When the software interrupt occurs, the user can re-initialize the stack pointer and do a recovery procedure before restarting (this recovery program is probably similar to that following reset, but might not contain the same program initialization procedures). The recovery program should reset the software interrupt pending bit using the RPND instruction.

## MICROWIRE/PLUS

MICROWIRE/PLUS is a serial synchronous communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e. A/D converters, display drivers, E2PROMs etc.) and with other microcontrollers which support the MICROWIRE interface. It consists of an 8-bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 13 shows a block diagram of the MICROWIRE/PLUS logic.


TL/DD/12094-16
FIGURE 13. MICROWIRE/PLUS Block Dlagram
The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS arrangement with the internal clock source is called the Master mode of operation. Similarly, operating the MICROWIRE/PLUS arrangement with an external shift clock is called the Slave mode of operation.
The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. In the master mode, the SK clock rate is selected by the two bits, SLO and SL1, in the CNTRL register. Table V details the different clock rates that may be selected.

TABLE IV. WATCHDOG Service Actions

Key   Data	Window   Data	Clock   Monitor	Action
Match	Match	Match	Valid Service: Restart Service Window
Don't Care	Mismatch	Don't Care	Error: Generate WATCHDOG Output
Mismatch	Don't Care	Don't Care	Error: Generate WATCHDOG Output
Don't Care	Don't Care	Mismatch	Error: Generate WATCHDOG Output

TABLE V. MICROWIRE/PLUS
Master Mode Clock Select

SL1	SLO	SK
0	0	$2 \times \mathrm{t}_{\mathrm{c}}$
0	1	$4 \times \mathrm{t}_{\mathrm{c}}$
1	x	$8 \times \mathrm{t}_{\mathrm{c}}$

Where $t_{c}$ is the instruction cycle clock

## MICROWIRE／PLUS（Continued）

## MICROWIRE／PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MI－ CROWIRE／PLUS to start shifting the data．It gets reset when eight data bits have been shifted．The user may reset the BUSY bit by software to allow less than 8 bits to shift．If enabled，an interrupt is generated when eight data bits have been shifted．The device may enter the MICROWIRE／PLUS mode either as a Master or as a Slave．Figure 14 shows how two devices，microcontrollers and several peripherals may be interconnected using the MICROWIRE／PLUS ar－ rangements．

## Warning：

The SIO register should only be loaded when the SK clock is low．Loading the SIO register while the SK clock is high will result in undefined data in the SIO register．SK clock is normally low when not shifting．
Setting the BUSY flag when the input SK clock is high in the MICROWIRE／PLUS slave mode may cause the current SK clock for the SIO shift register to be narrow．For safety，the BUSY flag should only be set when the input SK clock is low．

## MICROWIRE／PLUS Master Mode Operation

In the MICROWIRE／PLUS Master mode of operation the shift clock（SK）is generated internally by the device．The MICROWIRE Master always initiates all data exchanges． The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port．The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register．Table VI summarizes the bit settings required for Master mode of operation．

## MICROWIRE／PLUS Slave Mode Operation

In the MICROWIRE／PLUS Slave mode of operation the SK clock is generated by an external source．Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port．The SK pin must be selected as an input and the SO pin is selected as an output pin by setting and resetting the appropriate bits in the Port G configuration reg－ ister．Table VI summarizes the settings required to enter the Slave mode of operation．

The user must set the BUSY flag immediately upon entering the Slave mode．This will ensure that all data bits sent by the Master will be shifted properly．After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated．

## Alternate SK Phase Operation

The device allows either the normal SK clock or an alternate phase SK clock to shift data in and out of the SIO register． In both the modes the SK is normally low．In the normal mode data is shifted in on the rising edge of the SK clock and the data is shifted out on the falling edge of the SK clock．The SIO register is shifted on each falling edge of the SK clock．In the alternate SK phase operation，data is shift－ ed in on the falling edge of the SK clock and shifted out on the rising edge of the SK clock．
A control flag，SKSEL，allows either the normal SK clock or the alternate SK clock to be selected．Resetting SKSEL causes the MICROWIRE／PLUS logic to be clocked from the normal SK signal．Setting the SKSEL flag selects the alter－ nate SK clock．The SKSEL is mapped into the G6 configura－ tion bit．The SKSEL flag will power up in the reset condition， selecting the normal SK signal．

TABLE VI
This table assumes that the control flag MSEL is set．

G4（SO）   Config．Bit	G5（SK）   Config．Bit	G4   Fun．	G5   Fun．	Operation
1	1	SO	Int．   SK	MICROWIRE／PLUS   Master
0	1	TRI－   STATE	Int．   SK	MICROWIRE／PLUS   Master
1	0	SO	Ext．   SK	MICROWIRE／PLUS   Slave
0	0	TRI－   STATE	Ext．   SK	MICROWIRE／PLUS   Slave



TL／DD／12094－17
FIGURE 14．MICROWIRE／PLUS Application

## Memory Map

All RAM, ports and registers (except A and PC) are mapped into data memory address space.

Address S/ADD REG	Contents
0000 to 006F	On-Chip RAM bytes (112 bytes)
0070 to 007F	Unused RAM Address Space (Reads As All Ones)
xx80 to xxAF	Unused RAM Address Space (Reads Undefined Data)
xxB0	Timer T3 Lower Byte
XXB1	Timer T3 Upper Byte
xxB2	Timer T3 Autoload Register T3RA Lower Byte
xxB3	Timer T3 Autoload Register T3RA Upper Byte
xxB4	Timer T3 Autoload Register T3RB Lower Byte
xxB5	Timer T3 Autoload Register T3RB Upper Byte
xxB6	Timer T3 Control Register
xxB7	Comparator Select Register (CMPSL)
xxB8-xxBF	Reserved
xxC0	Timer T2 Lower Byte
xxC1	Timer T2 Upper Byte
xxC2	Timer T2 Autoload Register T2RA Lower Byte
xxC3	Timer T2 Autoload Register T2RA Upper Byte
xxC4	Timer T2 Autoload Register T2RB Lower Byte
xxC5	Timer T2 Autoload Register T2RB Upper Byte
xxC6	Timer T2 Control Register
xxC7	WATCHDOG Service Register (Reg:WDSVR)
xxC8	MIWU Edge Select Register (Reg:WKEDG)
xxC9	MIWU Enable Register (Reg:WKEN)
xxCA	MIWU Pending Register (Reg:WKPND)
xxCB	Reserved
xxCC	Reserved
xxCD to $\times x C F$	Reserved


Address S/ADD REG	Contents
xxD0	Port L Data Register
xxD1	Port L Configuration Register
xxD2	Port L Input Pins (Read Only)
xxD3	Reserved for Port L
xxD4	Port G Data Register
xxD5	Port G Configuration Register
xxD6	Port G Input Pins (Read Only)
xxD7	Port I Input Pins (Read Only)
xxD8	Port C Data Register
xxD9	Port C Configuration Register
xxDA	Port C Input Pins (Read Only)
xxDB	Reserved for Port C
xxDC	Port D
xxDD to DF	Reserved
xxE0 to xxE5	Reserved
xxE6	Timer T1 Autoload Register T1RB Lower Byte
xxE7	Timer T1 Autoload Register T1RB Upper Byte
xxE8	ICNTRL Register
xxE9	MICROWIRE/PLUS Shift Register
xxEA	Timer T1 Lower Byte
xxEB	Timer T1 Upper Byte
xxEC	Timer T1 Autoload Register T1RA Lower Byte
xxED	Timer T1 Autoload Register T1RA Upper Byte
xxEE	CNTRL Control Register
$\mathrm{xxF0}$ to FB	On-Chip RAM Mapped as Registers
xxFC	X Register
xxFD	SP Register
xxFE	B Register
xxFF	S Register
0100-017F	On-Chip 128 RAM Bytes

Reading memory locations $0070 \mathrm{H}-007 \mathrm{FH}$ (Segment 0 ) will return all ones. Reading unused memory locations $0080 \mathrm{H}-00 \mathrm{AFH}$ (Segment 0 ) will return undefined data. Reading memory locations from other unused Segments (i.e., Segment 2, Segment $3, \ldots$ etc.) will return all ones.

## Addressing Modes

There are ten addressing modes, six for operand addressing and four for transfer of control.

## OPERAND ADDRESSING MODES

## Register Indirect

This is the "normal" addressing mode. The operand is the data memory addressed by the B pointer or X pointer.
Register Indirect (with auto post Increment or decrement of pointer)
This addressing mode is used with the LD and X instructions. The operand is the data memory addressed by the B pointer or $X$ pointer. This is a register indirect mode that automatically post increments or decrements the B or X register after executing the instruction.

## Direct

The instruction contains an 8-bit address field that directly points to the data memory for the operand.

## Immediate

The instruction contains an 8-bit immediate field as the operand.

## Short Immediate

This addressing mode is used with the Load B Immediate instruction. The instruction contains a 4-bit immediate field as the operand.

## Indirect

This addressing mode is used with the LAID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC) for accessing a data operand from the program memory.

## TRANSFER OF CONTROL ADDRESSING MODES

## Relative

This mode is used for the JP instruction, with the instruction field being added to the program counter to get the new program location. JP has a range from -31 to +32 to allow a 1 -byte relative jump (JP +1 is implemented by a NOP instruction). There are no "pages" when using JP, since all 15 bits of PC are used.

## Absolute

This mode is used with the JMP and JSR instructions, with the instruction field of 12 bits replacing the lower 12 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory segment.

## Absolute Long

This mode is used with the JMPL and JSRL instructions, with the instruction field of 15 bits replacing the entire 15 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory space.

## Indirect

This mode is used with the JID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC ) for accessing a location in the program memory. The contents of this program memory location serve as a partial address (lower 8 bits of PC ) for the jump to the next instruction.
Note: The VIS is a special case of the Indirect Transfer of Control addressing mode, where the double byte vector associated with the interrupt is transferred from adjacent addresses in the program memory into the program counter (PC) in order to jump to the associated interrupt service routine.

## Instruction Set

Reglster and Symbol Definition

Registers	
A	8-Bit Accumulator Register
B	8-Bit Address Register
X	8-Bit Address Register
SP	8-Bit Stack Pointer Register
PC	15-Bit Program Counter Register
PU	Upper 7 Bits of PC
PL	Lower 8 Bits of PC
C	1 Bit of PSW Register for Carry
HC	1 Bit of PSW Register for Half Carry
GIE	1 Bit of PSW Register for Global
	Interrupt Enable
VU	Interrupt Vector Upper Byte
VL	Interrupt Vector Lower Byte


Symbols	
[B]	Memory Indirectly Addressed by B Register
[ X ]	Memory Indirectly Addressed by X Register
MD	Direct Addressed Memory
Mem	Direct Addressed Memory or [B]
Meml	Direct Addressed Memory or [B] or Immediate Data
Imm	8-Bit Immediate Data
Reg	Register Memory: Addresses F0 to FF (Includes B, X and SP)
Bit	Bit Number (0 to 7)
$\leftarrow$	Loaded with
$\longleftrightarrow$	Exchanged with

## Instruction Set (Continued)

## INSTRUCTION SET

ADD	A, Meml	ADD	$A \leftarrow A+$ Meml
ADC	A, Meml	ADD with Carry	$A \leftarrow A+\text { Meml }+C, C \leftarrow \text { Carry }$ $H C \leftarrow \text { Half Carry }$
SUBC	A,Meml	Subtract with Carry	$\begin{aligned} & A \leftarrow A-\overline{\text { Meml }}+C, C \leftarrow \text { Carry } \\ & H C \leftarrow \text { Half Carry } \end{aligned}$
AND	A, Meml	Logical AND	$\mathrm{A} \leftarrow \mathrm{A}$ and Meml
ANDSZ	A, 1 mm	Logical AND Immed., Skip if Zero	Skip next if ( A and Imm ) $=0$
OR	A, Meml	Logical OR	$A \leftarrow A$ or Meml
XOR	A, Meml	Logical EXclusive OR	$A \leftarrow A$ xor Meml
IFEQ	MD, Imm	IF EQual	Compare MD and Imm, Do next if MD = Imm
IFEQ	A, Meml	IF EQual	Compare $A$ and Meml, Do next if $A=$ Meml
IFNE	A, Meml	IF Not Equal	Compare $A$ and Meml, Do next if $A \neq$ Meml
IFGT	A, Memi	IF Greater Than	Compare A and Meml, Do next if $\mathrm{A}>\mathrm{Meml}$
IFBNE	\#	If $B$ Not Equal	Do next if lower 4 bits of $B \neq \mathrm{Imm}$
DRSZ	Reg	Decrement Reg., Skip if Zero	Reg $\leftarrow$ Reg - 1, Skip if Reg $=0$
SBIT	\#,Mem	Set BIT	1 to bit, Mem (bit $=0$ to 7 immediate)
RBIT	\#,Mem	Reset BIT	0 to bit, Mem
IFBIT	\#,Mem	IF BIT	If bit in A or Mem is true do next instruction
RPND		Reset PeNDing Flag	Reset Software Interrupt Pending Flag
X	A,Mem	EXchange A with Memory	$A \longleftrightarrow$ Mem
X	A, $[\mathrm{X}]$	EXchange A with Memory [ X ]	$A \longleftrightarrow[X]$
LD	A, Meml	LoaD A with Memory	$A \leftarrow$ Meml
LD	A, [X]	LoaD A with Memory [ X ]	$A \leftarrow[X]$
LD	B,Imm	LoaD B with Immed.	$B \leftarrow 1 \mathrm{~mm}$
LD	Mem, Imm	LoaD Memory Immed	Mem $\leftarrow$ Imm
LD	Reg, Imm	LoaD Register Memory Immed.	Reg $\leftarrow \mathrm{Imm}$
X	A, [ $\mathrm{B} \pm$ ]	EXchange A with Memory [B]	$A \longleftrightarrow[B],(B \leftarrow B \pm 1)$
X	A, $[\mathrm{X} \pm$ ]	EXchange A with Memory [ X ]	$A \longleftrightarrow[X],(X \leftarrow \pm 1)$
LD	$\mathrm{A},[\mathrm{B} \pm]$	LoaD A with Memory [B]	$A \leftarrow[B],(B \leftarrow B \pm 1)$
LD	A, $[\mathrm{X} \pm]$	LoaD A with Memory [ X ]	$A \leftarrow[X],(X \leftarrow X \pm 1)$
LD	$[B \pm$ ], 1 mm	LoaD Memory [B] Immed.	$[B] \leftarrow \operatorname{lmm},(B \leftarrow B \pm 1)$
CLR	A	CLeaR A	$A \leftarrow 0$
INC	A	INCrement A	$A \leftarrow A+1$
DEC	A	DECrement A	$A \leftarrow A-1$
LAID		Load A InDirect from ROM	$A \leftarrow R O M(P U, A)$
DCOR	A	Decimal CORrect A	$A \leftarrow B C D$ correction of $A$ (follows ADC, SUBC)
RRC	A	Rotate A Right thru C	$\mathrm{C} \rightarrow \mathrm{A} 7 \rightarrow \ldots \rightarrow \mathrm{AO} \rightarrow \mathrm{C}$
RLC	A	Rotate A Left thru C	$\mathrm{C} \leftarrow \mathrm{A} 7 \leftarrow \ldots \leftarrow \mathrm{~A} 0 \leftarrow \mathrm{C}$
SWAP	A	SWAP nibbles of A	A7 . . A $4 \longleftrightarrow A 3 \ldots$ A0
SC		Set C	$C \leftarrow 1, H C \leftarrow 1$
RC		Reset C	$C \leftarrow 0, H C \leftarrow 0$
IFC		IFC	IF C is true, do next instruction
IFNC		IF Not C	If C is not true, do next instruction
POP	A	POP the stack into $A$	$\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{~A} \leftarrow[\mathrm{SP}]$
PUSH	A	PUSH A onto the stack	[SP] $\leftarrow \mathrm{A}, \mathrm{SP} \leftarrow \mathrm{SP}-1$
VIS		Vector to Interrupt Service Routine	$\mathrm{PU} \leftarrow[\mathrm{VU}], \mathrm{PL} \leftarrow[\mathrm{VL}]$
JMPL	Addr.	Jump absolute Long	$\mathrm{PC} \leftarrow \mathrm{ii}(\mathrm{ii}=15$ bits, 0 to 32k)
JMP	Addr.	Jump absolute	PC9 ... $0 \leftarrow i(i=12$ bits)
JP	Disp.	Jump relative short	$P C \leftarrow P C+r(r$ is -31 to +32 , except 1 )
JSRL	Addr.	Jump SubRoutine Long	[SP] $\leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow \mathrm{ii}$
JSR	Addr	Jump SubRoutine	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} 9 \ldots 0 \leftarrow \mathrm{i}$
JID		Jump InDirect	$\mathrm{PL} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
RET		RETurn from subroutine	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETSK		RETurn and SKip	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETI		RETurn from Interrupt	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1], \mathrm{GIE} \leftarrow 1$
INTR		Generate an Interrupt	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow 0 \mathrm{FF}$
NOP		No OPeration	$P C \leftarrow P C+1$

## Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instructions taking two bytes).
Most single byte instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details.
Bytes and Cycles per Instruction
The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle.

Arithmetic and Logic Instructions			
	[B]	Direct	Immed.
ADD	1/1	3/4	2/2
ADC	1/1	3/4	2/2
SUBC	1/1	3/4	2/2
AND	1/1	3/4	2/2
OR	1/1	3/4	2/2
XOR	1/1	3/4	2/2
IFEQ	1/1	3/4	2/2
IFNE	1/1	3/4	2/2
IFGT	1/1	3/4	2/2
IFBNE	1/1		
DRSZ		1/3	
SBIT	1/1	3/4	
RBIT	1/1	3/4	
IFBIT	1/1	3/4	

Instructions Using A \& C

CLRA	$1 / 1$
INCA	$1 / 1$
DECA	$1 / 1$
LAID	$1 / 3$
DCOR	$1 / 1$
RRCA	$1 / 1$
RLCA	$1 / 1$
SWAPA	$1 / 1$
SC	$1 / 1$
RC	$1 / 1$
IFC	$1 / 1$
IFNC	$1 / 1$
PUSHA	$1 / 3$
POPA	$1 / 3$
ANDSZ	$2 / 2$


Transfer of Control
Instructions


JMPL	$3 / 4$
JMP	$2 / 3$
JP	$1 / 3$
JSRL	$3 / 5$
JSR	$2 / 5$
JID	$1 / 3$
VIS	$1 / 5$
RET	$1 / 5$
RETSK	$1 / 5$
RETI	$1 / 5$
INTR	$1 / 7$
NOP	$1 / 1$


RPND	$1 / 1$

Memory Transfer Instructions


* $=>$ Memory location addressed by B or X or directly.

Opcode Table   Upper Nibble Along X-Axis Lower Nibble Along $Y$-Axis								
F	E	D	C	B	A	9	8	
JP -15	JP -31	LD OFO, \#i	DRSZ OFO	RRCA	RC	ADC A, \#i	ADC A, [B]	0
JP -14	JP - 30	LD OF1, \# i	DRSZ 0F1	*	SC	SUBC A, \#i	SUB $A,[B]$	1
JP -13	JP -29	LD 0F2, \# i .	DRSZ 0F2	X A, [ $\mathrm{X}+\mathrm{]}$	X $\mathrm{A},[\mathrm{B}+]$	IFEQ A, \# i	IFEQ A, [B]	2
JP - 12	JP -28	LD OF3, \#i	DRSZ OF3	X $A,[\mathrm{X}-\mathrm{]}$	X $A,[B-]$	IFGT A, \#i	IFGT A, [B]	3
JP -11	JP -27	LD OF4, \# i	DRSZ 0F4	VIS	LAID	ADD A; \#i	ADD A, [B]	4
JP -10	JP -26	LD 0F5, \#i	DRSZ 0F5	RPND	JID	AND A, \#i	AND A,[B]	5
JP -9	JP -25.	LD 0F6, \# i	DRSZ 0F6	X A, [X]	X A,[B]	XOR A, \#i	XOR A,[B]	6
JP -8	JP -24	LD 0F7, \# i	DRSZ 0F7.	*	*	OR A, \#i	OR A, [B]	7
JP -7	JP - 23	LD OF8, \# i	DRSZ OF8	NOP	RLCA	LD A, \#i	IFC	8
JP -6	JP -22	LD 0F9, \# i	DRSZ 0F9	IFNE A,[B]	$\begin{aligned} & \text { IFEQ } \\ & \text { Md,\#i } \end{aligned}$	$\begin{aligned} & \text { IFNE } \\ & \text { A,\#i } \end{aligned}$	IFNC	9
JP -5	JP - 21	LD OFA, \# i	DRSZ OFA	LD A, $[\mathrm{X}+\mathrm{]}$	LD A, [B+]	LD [B+],\#i	INCA	A
JP -4	JP -20	LD OFB, \# i	DRSZ OFB	LD A, $\mathrm{X}-\mathrm{l}$ ]	LD A,[B-]	LD [B-],\#i	DECA	B
JP - 3	JP - 19	LD OFC, \# i	DRSZ OFC	LD Md, \#i	JMPL	X A,Md	POPA	C
JP -2	JP - 18	LD OFD, \# i	DRSZ OFD	DIR	JSRL	LD A,Md	RETSK	D
JP -1	JP -17	LDOFE, \# i	DRSZ OFE	LD A, [X]	LD A,[B]	LD [B], \#i	RET	E
JP - 0	JP - 16	LD OFF, \# i	DRSZ OFF	* $\times$	*	LD B, \#i	RETI	F

Opcode Table (Continued)
Upper Nibble Along X-Axis
Lower Nibble Along Y-Axis

7	6	5	4	3	2	1	0	
$\begin{aligned} & \text { IFBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	ANDSZ   A, \#i	LD B, \# OF	IFBNE 0	$\begin{aligned} & \text { JSR } \\ & \text { x000-x0FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x000-x0FF } \end{aligned}$	$\mathrm{JP}+17$	INTR	0
$\begin{aligned} & \hline \text { IFBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	*	LD B, \# OE	IFBNE 1	$\begin{aligned} & \text { JSR } \\ & \text { x100-x1FF } \end{aligned}$	$\begin{aligned} & \mathrm{JMP} \\ & \times 100-\times 1 \text { FF } \end{aligned}$	JP + 18	JP + 2	1
$\begin{aligned} & \hline \text { IFBIT } \\ & 2,[\mathrm{~B}] \end{aligned}$	*	LD B, \# OD	IFBNE 2	$\begin{aligned} & \hline \text { JSR } \\ & \text { x200-x2FF } \end{aligned}$	$\begin{aligned} & \mathrm{JMP} \\ & \times 200-\times 2 F F \end{aligned}$	$\mathrm{JP}+19$	$J P+3$	2
$\begin{aligned} & \hline \text { IFBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	*	LD B, \# OC	IFBNE 3	$\begin{aligned} & \text { JSR } \\ & \times 300-\times 3 F F \end{aligned}$	$\begin{aligned} & \mathrm{JMP} \\ & \times 300-\times 3 F F \end{aligned}$	JP + 20	$J P+4$	3
$\begin{aligned} & \text { IFBIT } \\ & 4,[B] \end{aligned}$	CLRA	LD B, \# OB	IFBNE 4	$\begin{aligned} & \text { JSR } \\ & \text { x400-x4FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x400-x4FF } \end{aligned}$	$\mathrm{JP}+21$	$J P+5$	4
$\begin{aligned} & \text { IFBIT } \\ & 5,[B] \end{aligned}$	SWAPA	LD B, \# OA	IFBNE 5	$\begin{aligned} & \text { JSR } \\ & \times 500-\times 5 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 500-\times 5 F F \end{aligned}$	JP + 22	$J P+6$	5
$\begin{aligned} & \hline \text { IFBIT } \\ & 6,[B] \end{aligned}$	DCORA	LD B, \#09	IFBNE 6	$\begin{aligned} & \hline \text { JSR } \\ & \text { x600-x6FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 600-\times 6 F F \end{aligned}$	JP + 23	JP + 7	6
$\begin{aligned} & \text { IFBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	PUSHA	LD B, \#08	IFBNE 7	$\begin{aligned} & \text { JSR } \\ & \text { x700-x7FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & x 700-x 7 F F \end{aligned}$	JP + 24	JP + 8	7
$\begin{aligned} & \text { SBIT } \\ & 0,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	LD B, \#07	IFBNE 8	$\begin{aligned} & \hline \text { JSR } \\ & \text { x } 800-\times 8 F F \end{aligned}$	$\begin{aligned} & \hline \text { JMP } \\ & \times 800-\times 8 F F \end{aligned}$	$\mathrm{JP}+25$	JP + 9	8
$\begin{aligned} & \hline \text { SBIT } \\ & 1,[B] \end{aligned}$	$\begin{aligned} & \hline \mathrm{RBIT} \\ & 1,[\mathrm{~B}] \end{aligned}$	LD B, \#06	IFBNE 9	$\begin{aligned} & \hline \text { JSR } \\ & \text { x900-x9FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x } 900-x 9 F F \end{aligned}$	JP + 26	JP + 10	9
$\begin{aligned} & \text { SBIT } \\ & \text { 2,[B] } \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & 2,[\mathrm{~B}] \end{aligned}$	LD B, \#05	IFBNE 0A	$\begin{aligned} & \text { JSR } \\ & \text { XAOO-XAFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & x A 00-x A F F \end{aligned}$	JP + 27	$\mathrm{JP}+11$	A
$\begin{aligned} & \hline \text { SBIT } \\ & 3,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 3,[B] \end{aligned}$	LD B, \#04	IFBNE OB	$\begin{aligned} & \hline \text { JSR } \\ & \text { xBOO-xBFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xBOO-xBFF } \end{aligned}$	JP + 28	$\mathrm{JP}+12$	B
$\begin{aligned} & \text { SBIT } \\ & 4,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 4,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, \#03	IFBNE OC	$\begin{aligned} & \text { JSR } \\ & \times C 00-x \text { CFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \mathrm{xC00}-\mathrm{xCFF} \end{aligned}$	JP + 29	JP + 13	C
$\begin{aligned} & \hline \text { SBIT } \\ & 5,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 5,[B] \end{aligned}$	LD B, \#02	IFBNE OD	$\begin{aligned} & \text { JSR } \\ & \text { xD00-xDFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xD00-xDFF } \end{aligned}$	$\mathrm{JP}+30$	$\mathrm{JP}+14$	D
$\begin{aligned} & \hline \text { SBIT } \\ & \mathrm{G},[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 0,[B] \end{aligned}$	LD B, \#01	IFBNE OE	$\begin{aligned} & \text { JSR } \\ & x E O O-x E F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xEOO-xEFF } \end{aligned}$	JP + 31	JP + 15	E
$\begin{aligned} & \hline \text { SBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	LD B, \#00	IFBNE OF	$\begin{aligned} & \text { JSR } \\ & \text { xFO0-xFFF } \end{aligned}$	$\begin{aligned} & \mathrm{JMP} \\ & \mathrm{xFO0-xFFF} \end{aligned}$	JP + 32	JP + 16	F

Where,

## $i$ is the immediate data

Md is a directly addressed memory location

* is an unused opcode

Note: The opcode 60 Hex is also the opcode for IFBIT \#

## Mask Options

The mask programmable options are shown below. The options are programmed at the same time as the ROM pattern submission.
OPTION 1: CLOCK CONFIGURATION
$=1$ Crystal Oscillator (CKI/10)
G7 (CKO) is clock generator output to crystal/resonator CKI is the clock input
$=2$ Single-pin RC controlled
oscillator (CKI/10)
G7 is available as a HALT
restart and/or general purpose input

$$
\begin{aligned}
& \text { OPTION 2: HALT } \\
& =1 \text { Enable HALT mode } \\
& =2 \text { Disable HALT mode } \\
& \text { OPTION 3: BONDING OPTIONS } \\
& =1 \quad 44-\text { Pin PLCC } \\
& =240-\text { Pin DIP } \\
& =3 \text { N/A } \\
& =4 \quad 28-\mathrm{Pin} \text { DIP } \\
& =5 \quad 28-\mathrm{Pin} \mathrm{~S} 0
\end{aligned}
$$

## Development Support

## IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 In-Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface for maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real time, full speed emulation up to $10 \mathrm{MHz}, 32 \mathrm{kBytes}$ of emulation memory and 4 k frames of trace buffer memory. The user may define as many as 32k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code or address ranges or complex triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as diassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats. During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.

The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bar graph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy to use windowed interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefineable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PC ${ }^{8}$ via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time shorter.
The following tables list the emulator and probe cards ordering information.

Emulator Ordering Information

Part Number	Description	Current Version
IM-COP8/400/1 $\ddagger$	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger software   and RS 232 serial interface cable, with 110V @ 60 Hz Power Supply.	Host Software:   Ver. 3.3 Rev. 5,
IM-COP8/400/2 $\ddagger$	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger software   and RS 232 serial interface cable, with 220V @ 50 Hz Power Supply.	Model File   Rev 3.050.

$\ddagger$ These parts include National's COP8 Assembler/Linker/Librarian Package (COP8-DEV-IBMA).

Probe Card Ordering Information

Part Number	Package	Voltage   Range	Emulates
MHW-888EK44DWPC	44 PLCC	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888EK
MHW-888EK40DWPC	40 DIP	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888EK
MHW-884EK28DWPC	28 DIP	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP884EK
MHW-SOIC28	28 SO	28 -pin SOIC   Adaptor Kit	

## MACRO CROSS ASSEMBLER

National Semiconductor offers a relocatable COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink IceMASTER emulators.

Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8	424410632-001
	Assembler/	
	Linker/Librarian	
	for IBM ${ }^{\oplus}$,	
	PC/XT®, AT® or compatible.	

## SINGLE CHIP EMULATOR DEVICE

The COP8 family is fully supported by single chip form, fit and function emulators. For more detailed information refer to the emulation device specific datasheets.

## Development Support（Continued）

PROGRAMMING SUPPORT
Programming of the single chip emulator devices is supported by different sources．
The following programmers are certified for programming EPROM versions of COP8．
EPROM Programmer Information

Manufacturer and Product	U．S．Phone Number	Europe Phone Number	Asla Phone Number
MetaLink－ Debug Module	（602）926－0797	Germany： $(49-81-41) 1030$	Hong Kong： 852－737－1800
Xeltek－   Superpro	（408）745－7974	Germany： $(49-20-41) 684758$	Singapore： (65) 276-6433
BP Microsystems－ EP－1140	（800）225－2102	Germany： （49－89－85） 76667	Hong Kong： (852) 388-0629
Data 1／O－Unisite； －System 29 －System 39	（800）322－8246	Europe：   （31－20） 622866   Germany：   （49－89－85） 8020	Japan：   （33）432－6991
Abcom－COP8   Programmer		Europe： $\text { (89-80) } 8707$	
Systern General－ Turpro－1—FX； －APRO	（408）263－6667	Switzerland：   （31）921－7844	Taiwan：   （2）917－3005

## DIAL－A－HELPER

Dial－A－Helper is a service provided by the Microcontroller Applications group．The Dial－A－Helper is an Electronic Bulle－ tin Board Information system．

## INFORMATION SYSTEM

The Dial－A－Helper system provides access to an automated information storage and retrieval system that may be ac－ cessed uver slandard dial－up telephone lines 24 hours a day．The system capabilities include a MESSAGE SECTION （electronic mail）for communications to and from the Micro－ controller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found．The minimum require－ ment for accessing the Dial－A－Helper is a Hayes compatible modem．

If the user has a PC with a communications package then files from the FILE SECTION can be down loaded to disk for later use．

## ORDER P／N：MOLE－DIAL－A－HLP

Information System Package contains：
Dial－A－Helper Users Manual
Publia Domain Communicationis Sófivare

## FACTORY APPLICATIONS SUPPORT

Dial－A－Helper also provides immediate factor applications support．If a user has questions，he can leave messages on our electronic bulletin board，which we will respond to．

Voice：	（800）272－9959	
Modem：	CANADA／U．S．：	（800）NSC－MICRO
	Baud：	14.4 k
	Set－up：	Length： 8 －Bit
		Parity：None
	Stop Bit： 1	

# COP688EG/COP684EG/COP888EG/COP884EG/ COP988EG/COP984EG <br> <br> Single-Chip microCMOS Microcontrollers 

 <br> <br> Single-Chip microCMOS Microcontrollers}

## General Description

The COP888 family of microcontrollers uses an 8-bit single chip core architecture fabricated with National Semiconductor's M²CMOSTM process technology. The COP888EG/ COP884EG is a member of this expandable 8-bit core processor family of microcontrollers.
(Continued)

## Features

- Low cost 8-bit microcontroller
- Fully static CMOS, with low current drain
- Two power saving modes: HALT and IDLE
- $1 \mu \mathrm{~s}$ instruction cycle time
- 8k bytes on-board ROM
- 256 bytes on-board RAM
- Single supply operation: $2.5 \mathrm{~V}-6 \mathrm{~V}$
- Full duplex UART
- Two analog comparators
- MICROWIRE/PLUSTM serial I/O
- WATCHDOGTM and Clock Monitor logic
- Idle Timer
- Multi-Input Wakeup (MIWU) with optional interrupts (8)
- Three 16 -bit timers, each with two 16 -bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- 8-bit Stack Pointer SP (stack in RAM)
- Two 8-bit Register Indirect Data Memory Pointers ( B and X )
- Fourteen multi-source vectored interrupts servicing
- External Interrupt
- Idle Timer TO
- Three Timers (Each with 2 Interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
- UART (2)
- Default VIS
- Versatile instruction set
- True bit manipulation
- Memory mapped I/O
- BCD arithmetic instructions
- Package:
- 44 PLCC with 39 I/O pins
-40 N with $35 \mathrm{I} / \mathrm{O}$ pins
-28 SO or 28 N , each with $23 \mathrm{I} / \mathrm{O}$ pins
- Software selectable I/O options
- TRI-STATE ${ }^{\oplus}$ Output
- Push-Pull Output
— Weak Pull Up Input
- High Impedance Input
- Schmitt trigger inputs on ports $G$ and $L$
- Temperature ranges: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$,

$$
\begin{aligned}
& -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
$$

- One-Time Programmable emulation devices
- Real time emulation and full program debug offered by MetaLink's Development Systems


## Block Diagram



TL/DD/11214-1
FIGURE 1. Block Diagram

## General Description (Continued)

They are fully static parts, fabricated using double-metal silicon gate microCMOS technology. Features include an 8 -bit memory mapped architecture, MICROWIRE/PLUS serial I/O, three 16 -bit timer/counters supporting three modes (Processor Independent PWM generation, External Event counter, and Input Capture mode capabilities), full duplex UART, two comparators, and two power savings modes
(HALT and IDLE), both with a multi-sourced wakeup/interrupt capability. This multi-sourced interrupt capability may also be used independent of the HALT or IDLE modes. Each I/O pin has software selectable configurations. The device operates over a voltage range of 2.5 V to 6 V . High throughput is achieved with an efficient, regular instruction set operating at a maximum of $1 \mu \mathrm{~s}$ per instruction rate.

## Connection Diagrams



Dual-In-LIne Package


TL/DD/11214-3
Top View
Order Number COP888EG-XXX/N See NS Molded Package Number N40A


Top View
Order Number COP884EG-XXX/WM or COP884EG-XXX/N See NS Molded Package Number M28B or N28A

FIGURE 2a. Connection Diagrams

Connection Diagrams (Continued)
Pinouts for 28-, 40- and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-Pin   Pack.	40-Pin   Pack.	44-Pin   Pack.
LO	$1 / 0$	MIWU		11	17	17
L1	-1/0	MIWU	CKX	12	18	18
L2	1/0	MIWU	TDX	13	19	19
L3	$1 / 0$	MIWU	RDX	14	20	20
L4	$1 / 0$	MIWU	T2A	15	21	25
L5	$1 / 0$	MIWU	T2B	16	22	26
L6	$1 / 0$	MIWU	T3A	17	23	27
L7	$1 / 0$	MIWU	T3B	18	24	28
G0	I/O	INT		25	35	39
G1	WDOUT			26	36	40
G2	I/O	T1B		27	37	41
G3	1/0	T1A		28	38	42
G4	$1 / 0$	So		1	3	3
G5	1/0	SK		2	4	4
G6	1	SI		3	5	5
G7	1/CKO	HALT Restart		4	6	6
D0	0			19	25	29
D1	0			20	26	30
D2	0			21	27	31
D3	0			22	28	32
10	1			7	9	9
11	1	COMP1IN -		8	10	10
12	1	COMP1IN+		9	11	11
13	1	COMP10UT		10	12	12
14	1	COMP2IN-			13	13
15	1	COMP2IN+			14	14
16	1	COMP2OUT			15	15
17	1				16	16
D4	0				29	33
D5	0				30	34
D6	0				31	35
D7	0				32	36
C0	1/0				39	43
C1	$1 / 0$				40	44
C2	1/0				1	1
C3	$1 / 0$				2	2
C4	1/0					21
C5	1/0					22
C6	$1 / 0$					23
C7	1/0					24
$V_{C C}$				6	8	8
GND				23	33	37
CKI				5	7	7
RESET				24	34	38

Absolute Maximum Ratings
If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
7 V
Voltage at Any Pin . $\quad 0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into V VCC Pin (Source) 100 mA

Total Current out of GND Pin (Sink)
110 mA
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics $98 \times E G$ : $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
$\begin{array}{ll}\text { Operating Voltage } & \text { COP98XCS } \\ & \text { COP98XCSH }\end{array}$		$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Power Supply Ripple (Note 1)	Peak-to-Peak			0.1 V CC	V
Supply Current (Note 2) $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=10 \mu \mathrm{~s} \end{aligned}$			$\begin{gathered} 12.5 \\ 5.5 \\ 2.5 \\ 1.4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
HALT Current (Note 3)	$\begin{aligned} & V_{C C}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & <0.7 \\ & <0.3 \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$
IDLE Current $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=10 \mu \mathrm{~s} \end{aligned}$			$\begin{aligned} & 3.5 \\ & 2.5 \\ & 0.7 \\ & \hline \end{aligned}$	mA   mA   mA
Input Levels   RESET   Logic High   Logic Low   CKI (External and Crystal Osc. Modes)   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low		0.8 V CC   $0.7 \mathrm{~V}_{\mathrm{CC}}$   0.7 V CC		$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Hi-Z Input Leakage	$V_{C C}=6 \mathrm{~V}$	-1		+1	$\mu \mathrm{A}$
Input Pullup Current	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-40		-250	$\mu \mathrm{A}$
G and L Port Input Hysteresis				$0.35 \mathrm{~V}_{\text {CC }}$	V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up Mode)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ -0.2 \\ 10 \\ 2.0 \\ -10 \\ -2.5 \\ -0.4 \\ -0.2 \\ 1.6 \\ 0.7 \\ \hline \end{gathered}$		$\begin{gathered} -100 \\ -33 \end{gathered}$	mA   mA   mA   mA   $\mu \mathrm{A}$   $\mu \mathrm{A}$   mA   mA   mA   mA
TRI-STATE Leakage	$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-1		+1	$\mu \mathrm{A}$

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $\mathrm{V}_{\mathrm{CC}}$, L and $\mathrm{G}_{0}-\mathrm{G}_{5}$ configured as outputs and set high. The D port set to zero. The clock monitor and the comparators are disabled.

DC Electrical Characteristics 98XEG: $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Parameter	Conditions	Min	Typ	Max	Units
Allowable Sink/Source   Current per Pin   D Outputs (Sink)   All others					
Maximum Input Current   without Latchup (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			15	
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$	500 ns Rise   and Fall Time (Min)	2		mA	
Input Capacitance				mA	
Load Capacitance on D2				mA	

AC Electrical Characteristics 98XEG: $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crystal, Resonator, R/C Oscillator	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \end{gathered}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\mu \mathrm{S}$   $\mu \mathrm{S}$   $\mu \mathrm{S}$   $\mu \mathrm{S}$
Inputs tsetup thold	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			ns ns ns ns
Output Propagation Delay (Note 6) $t_{\text {tpD1 }}, t_{\text {PDO }}$ SO, SK   All Others	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 2.5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tupd)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time	,	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \hline \end{aligned}$
Reset Pulse Width		1			$\mu \mathrm{s}$

Note 5: Pins G6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$ ). The effective resistance to $V_{C C}$ is $750 \Omega$ (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .
Note 6: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.

## Absolute Maximum Ratings

If Milltary/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ )
Voltage at Any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into $\mathrm{V}_{\mathrm{CC}}$ Pin (Source)

Total Current out of GND Pin (Sink)
110 mA Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics $888 \mathrm{EG}:-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage		2.5		6	V
Power Supply Ripple (Note 1)	Peak-to-Peak			$0.1 \mathrm{~V}_{C C}$	V
$\begin{aligned} & \text { Supply Current (Note 2) } \\ & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=10 \mu \mathrm{~s} \end{aligned}$			$\begin{gathered} 12.5 \\ 5.5 \\ 2.5 \\ 1.4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
HALT Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		$\begin{gathered} <1 \\ <0.5 \end{gathered}$	$\begin{gathered} 10 \\ 6 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
IDLE Current $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \\ & \mathrm{CKI}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=10 \mu \mathrm{~s} \end{aligned}$			$\begin{aligned} & 3.5 \\ & 2.5 \\ & 0.7 \end{aligned}$	mA   mA   mA
Input Levels   RESET   Logic High   Logic Low   CKI (External and Crystal Osc. Modes)   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low		$\begin{aligned} & 0.8 V_{C C} \\ & 0.7 V_{C C} \\ & 0.7 V_{C C} \end{aligned}$		$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Hi-Z Input Leakage	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
Input Pullup Current	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-40		-250	$\mu \mathrm{A}$
G and LPort Input Hysteresis				$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up Mode)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \hline \end{aligned}$	-0.4 -0.2 10 2.0 -10 -2.5 -0.4 -0.2 1.6 0.7		$\begin{gathered} -100 \\ -33 \end{gathered}$	mA   mA   mA   mA   $\mu \mathrm{A}$   $\mu \mathrm{A}$   mA   mA   mA   mA
TRI-STATE Leakage	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a crystal/resonator oscillator, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $V_{C C}, L_{,} C_{1}$ and $G_{0}-G_{5}$ configured as outputs and set high. The D port set to zero. The clock monitor and the comparators are disabled.

DC Electrical Characteristics $888 \mathrm{EG}:-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Parameter	Conditions	Min	Typ	Max	Units
Allowable Sink/Source   Current per Pin   D Outputs (Sink)   All others					
Maximum Input Current   without Latchup	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			15	mA
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$	500 ns Rise   and Fall Time (Min)	2		mA	
Input Capacitance				mA	
Load Capacitance on D2				700	V

AC Electrical Characteristics $888 \mathrm{EG}:-40^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crystal, Resonator, R/C Oscillator	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3 \\ 7.5 \end{gathered}$		DC   DC   DC   DC	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
Inputs tsetup thold	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Output Propagation Delay (Note 4) $\begin{aligned} & \text { tpD1, }_{\text {tpDO }} \\ & \text { SO,SK } \end{aligned}$   All Others	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 0.7 \\ 1.75 \\ 1 \\ 2.5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tupD)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$			$\begin{array}{r} \mathrm{t}_{\mathrm{c}} \\ \mathrm{t}_{\mathrm{c}} \\ \mathrm{t}_{\mathrm{c}} \\ \mathrm{t}_{\mathrm{c}} \\ \hline \end{array}$
Reset Pulse Width		1			$\mu \mathrm{S}$

$\mathrm{t}_{\mathrm{c}}=$ Instruction cycle time.
Note 4: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.

## Absolute Maximum Ratings

If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
7 V
Voltage at Any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into V CC Pin (Source) 100 mA
$\begin{array}{lr}\text { Total Current out of GND Pin (Sink) } & 110 \mathrm{~mA} \\ \text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+140^{\circ} \mathrm{C}\end{array}$ Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. $D C$ and $A C$ electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics $688 \mathrm{EG}:-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage		4.5		5.5	V
Power Supply Ripple (Note 1)	Peak-to-Peak			$0.1 \mathrm{~V}_{\mathrm{CC}}$	V
Supply Current (Note 2) $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \end{aligned}$			$\begin{gathered} 12.5 \\ 5.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
HALT Current (Note 3)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz}$		<10	30	$\mu \mathrm{A}$
IDLE Current $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=2.5 \mu \mathrm{~s} \end{aligned}$			$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Input Levels   RESET   Logic High   Logic Low   CKI (External and Crystal Osc. Modes)   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low		$\begin{aligned} & 0.8 V_{C C} \\ & 0.7 V_{C C} \\ & 0.7 V_{C C} \end{aligned}$		$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Hi-Z Input Leakage	$V_{C C}=5.5 \mathrm{~V}$	-5		+5	$\mu \mathrm{A}$
Input Pullup Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-35		-400	$\mu \mathrm{A}$
G and L Port Input Hysteresis				$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up Mode)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ 9 \\ -9 \\ -0.4 \\ 1.4 \end{gathered}$		-140	mA   mA   $\mu \mathrm{A}$   mA   mA
TRI-STATE Leakage	$V_{C C}=5.5 \mathrm{~V}$	-5		+5	$\mu \mathrm{A}$

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a crystal/resonator oscillator, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}_{1} \mathrm{C}_{\text {, and }} \mathrm{G}_{0}-\mathrm{G}_{5}$ configured as outputs and set high. The D port set to zero. The clock monitor and the comparators are disabled.

DC Electrical Characteristics $688 E \mathrm{G}:-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Parameter	Conditions	Min	Typ	Max	Units
Allowable Sink/Source   Current per Pin   D Outputs (Sink)   All others	$\because$			$\begin{aligned} & 12 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current without Latchup	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\pm 100$	mA
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$	500 ns Rise and Fall Time (Min)	2			V
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

AC Electrical Characteristics $688 \mathrm{EG}:-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}{ }^{\circ} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crystal, Resonator, R/C Oscillator	$\begin{aligned} & V_{C C} \geq 4.5 \mathrm{~V} \\ & V_{C C} \geq 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
$\qquad$	$\begin{aligned} & V_{C C} \geq 4.5 \mathrm{~V} \\ & V_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 60 \end{gathered}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
```Output Propagation Delay (Note 4) tPD1, tPDO SO, SK All Others```	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.7 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
MICROWIRE Setup Timé (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tuPD)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time	.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	'		$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \hline \end{aligned}$
Reset Pulse Width		1			$\mu \mathrm{s}$

Note 4: The output propagation delay is referenced to the end of instruction cycle where the output change occurs.

Comparators AC and DC Characteristics $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Conditlons	Min	Typ	Max	Units
Input Offset Voltage	$0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$		± 10	± 25	mV
Input Common Mode Voltage Range		0.4		$\mathrm{~V}_{\mathrm{CC}}-1.5$	V
Low Level Output Current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.6			mA
High Level Output Current	$\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{~V}$	1.6			mA
DC Supply Current Per Comparator (When Enabled)				250	$\mu \mathrm{~A}$
Response Time	TBD mV Step, TBD mV Overdrive, 100 pF Load		1		$\mu \mathrm{~s}$

FIGURE 2. MICROWIRE/PLUS Timing

Typical Performance Characteristics $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)$

Port L/C/G Push-Pull Source Current

TL/DD/11214-8

TL/DD/11214-10

Pin Descriptions

$V_{C C}$ and GND are the power supply pins.
CKI is the clock input. This can come from an R/C generated oscillator, or a crystal oscillator (in conjunction with CKO). See Oscillator Description section.
RESET is the master reset input. See Reset Description section.
The device contains three bidirectional 8-bit I/O ports (C, G and L), where each individual bit may be independently configured as an input (Schmitt trigger inputs on ports L and G), output or TRI-STATE under program control. Three data memory address locations are allocated for each of these I/O ports. Each I/O port has two associated 8-bit memory mapped registers, the CONFIGURATION register and the output DATA register. A memory mapped address is also reserved for the input pins of each I/O port. (See the memory map for the various addresses associated with the I/O ports.) Figure 3 shows the I/O port configurations. The DATA and CONFIGURATION registers allow for each port bit to be individually configured under software control as shown below:

CONFIGURATION Register	DATA Register	Port Set-Up
0	0	Hi-Z Input (TRI-STATE Output) 0
1	1	Input with Weak Pull-Up
1	0	Push-Pull Zero Output

PORT L is an 8-bit I/O port. All L-pins have Schmitt triggers on the inputs.
The Port L supports Multi-Input Wake Up on all eight pins. L1 is used for the UART external clock. L2 and L3 are used for the UART transmit and receive. L4 and L5 are used for the timer input functions T2A and T2B. L6 and L7 are used for the timer input functions T3A and T3B.
The Port L has the following alternate features:

L0	MIWU
L1	MIWU or CKX
L2	MIWU or TDX
L3	MIWU or RDX
L4	MIWU or T2A
L5	MIWU or T2B
L6	MIWU or T3A
L7	MIWU or T3B

Port G is an 8-bit port with 5 I/O pins (G0, G2-G5), an input pin (G6), and two dedicated output pins (G1 and G7). Pins G0 and G2-G6 all have Schmitt Triggers on their inputs. Pin G1 serves as the dedicated WDOUT WATCHDOG output, while pin G7 is either input or output depending on the oscillator mask option selected. With the crystal oscillator option selected, G7 serves as the dedicated output pin for the CKO clock output. With the single-pin R/C oscillator mask option selected, G7 serves as a general purpose input pin but is also used to bring the device out of HALT mode with a low to high transition on G7. There are two registers associated with the G Port, a data register and a configuration register. Therefore, each of the 5 I/O bits (G0, G2-G5) can be individually configured under software control.

FIGURE 3. I/O Port Configurations

Pin Descriptions (Continued)

Since G6 is an input only pin and G7 is the dedicated CKO clock output pin (crystal clock option) or general purpose input (R/C clock option), the associated bits in the data and configuration registers for G6 and G7 are used for special purpose functions as outlined below. Reading the G6 and G7 data bits will return zeros.
Note that the chip will be placed in the HALT mode by writing a " 1 " to bit 7 of the Port G Data Register. Similarly the chip will be placed in the IDLE mode by writing a " 1 " to bit 6 of the Port G Data Register.
Writing a " 1 " to bit 6 of the Port G Configuration Register enables the MICROWIRE/PLUS to operate with the alternate phase of the SK clock. The G7 configuration bit, if set high, enables the clock start up delay after HALT when the R/C clock configuration is used.

	Config Reg.	Data Reg.
G7	CLKDLY	HALT
G6	Alternate SK	IDLE

Port G has the following alternate features:
G0 INTR (External Interrupt Input)
G2 T1B (Timer T1 Capture Input)
G3 T1A (Timer T1 I/O)
G4 SO (MICROWIRETM Serial Data Output)
G5 SK (MICROWIRE Serial Clock)
G6 SI (MICROWIRE Serial Data Input)
Port G has the following dedicated functions:
G1 WDOUT WATCHDOG and/or Clock Monitor dedicated output
G7 CKO Oscillator dedicated output or general purpose input
Port C is an 8 -bit I/O port. The 40-pin device does not have a full complement of Port C pins. The unavailable pins are not terminated. A read operation for these unterminated pins will return unpredicatable values.
PORT I is an eight-bit Hi-Z input port. The 28-pin device does not have a full complement of Port I pins. The unavailable pins are not terminated i.e., they are floating. A read operation for these unterminated pins will return unpredictable values. The user must ensure that the software takes this into account by either masking or restricting the accesses to bit operations. The unterminated Port I pins will draw power only when addressed.
Port 11-13 are used for Comparator 1. Port 14-16 are used for Comparator 2.
The Port I has the following alternate features.

$$
\begin{array}{ll}
11 & \text { COMP1-IN (Comparator } 1 \text { Negative Input) } \\
\text { I2 } & \text { COMP1 + IN (Comparator } 1 \text { Positive Input) } \\
\text { I3 } & \text { COMP1OUT (Comparator } 1 \text { Output) } \\
14 & \text { COMP2-IN (Comparator } 2 \text { Negative Input) } \\
15 & \text { COMP2 + IN (Comparator } 2 \text { Positive Input) } \\
\text { I6 } & \text { COMP2OUT (Comparator } 2 \text { Output) }
\end{array}
$$

Port D is an 8 -bit output port that is preset high when RESET goes low. The user can tie two or more D port outputs (except D2) together in order to get a higher drive.
Note: Care must be exercised with the D2 pin operation. At RESET, the external loads on this pin must ensure that the output voltages stay above $0.8 \mathrm{~V}_{\mathrm{CC}}$ to prevent the chip from entering special modes. Also keep the external loading on D2 to less than 1000 pF .

Functional Description

The architecture of the device is modified Harvard architecture. With the Harvard architecture, the control store program memory (ROM) is separated from the data store mem. ory (RAM). Both ROM and RAM have their own separate addressing space with separate address buses. The architecture, though based on Harvard architecture, permits transfer of data from ROM to RAM.

CPU REGISTERS

The CPU can do an 8-bit addition, subtraction, logical or shift operation in one instruction (t_{c}) cycle time.
There are six CPU registers:
A is the 8-bit Accumulator Register
PC is the 15 -bit Program Counter Register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
B is an 8 -bit RAM address pointer, which can be optionally post auto incremented or decremented.
X is an 8 -bit alternate RAM address pointer, which can be optionally post auto incremented or decremented.
SP is the 8-bit stack pointer, which points to the subroutine/ interrupt stack (in RAM). The SP is initialized to RAM address 06F with reset.
S is the 8-bit Data Segment Address Register used to extend the lower half of the address range (00 to 7F) into 256 data segments of 128 bytes each.
All the CPU registers are memory mapped with the exception of the Accumulator (A) and the Program Counter (PC).

PROGRAM MEMORY

The program memory consists of 8192 bytes of ROM. These bytes may hold program instructions or constant data (data tables for the LAID instruction, jump vectors for the JID instruction, and interrupt vectors for the VIS instruction). The program memory is addressed by the 15 -bit program counter (PC). All interrupts in the devices vector to program memory location OFF Hex.

DATA MEMORY

The data memory address space includes the on-chip RAM and data registers, the I/O registers (Configuration, Data and Pin), the control registers, the MICROWIRE/PLUS SIO shift register, and the various registers, and counters associated with the timers (with the exception of the IDLE timer). Data memory is addressed directly by the instruction or indirectly by the $\mathrm{B}, \mathrm{X}, \mathrm{SP}$ pointers and S register.
The data memory consists of 256 bytes of RAM. Sixteen bytes of RAM are mapped as "registers" at addresses 0F0 to OFF Hex. These registers can be loaded immediately, and also decremented and tested with the DRSZ (decrement register and skip if zero) instruction. The memory pointer registers $X, S P, B$ and S are memory mapped into this space at address locations OFC to OFF Hex respectively , with the other registers being available for general usage. The instruction set permits any bit in memory to be set, reset or tested. All I/O and registers (except A and PC) are memory mapped; therefore, I/O bits and register bits can be directly and individually set, reset and tested. The accumulator (A) bits can also be directly and individually tested.
Note: RAM contents are undefined upon power-up.

Data Memory Segment RAM Extension

Data memory address OFF is used as a memory mapped location for the Data Segment Address Register (S).
The data store memory is either addressed directly by a single byte address within the instruction, or indirectly relative to the reference of the B, X, or SP pointers (each contains a single-byte address). This single-byte address allows an addressing range of 256 locations from 00 to FF hex. The upper bit of this single-byte address divides the data store memory into two separate sections as outlined previously. With the exception of the RAM register memory from address locations 00F0 to 00FF, all RAM memory is memory mapped with the upper bit of the single-byte address being equal to zero. This allows the upper bit of the single-byte address to determine whether or not the base address range (from 0000 to 00 FF) is extended. If this upper bit equals one (representing address range 0080 to 00FF), then address extension does not take place. Alternatively, if this upper bit equals zero, then the data segment extension register S is used to extend the base address range (from 0000 to 007F) from XX00 to XX7F, where XX represents the 8 bits from the S register. Thus the 128 -byte data segment extensions are located from addresses 0100 to 017F for data segment 1,0200 to 027 F for data segment 2 , etc., up to FF00 to FF7F for data segment 255. The base address range from 0000 to 007F represents data segment 0.
Figure 4 illustrates how the S register data memory extension is used in extending the lower half of the base address range (00 to 7F hex) into 256 data segments of 128 bytes each, with a total addressing range of 32 kbytes from XX00 to XX7F. This organization allows a total of 256 data segments of 128 bytes each with an additional upper base segment of 128 bytes. Furthermore, all addressing modes are available for all data segments. The S register must be changed under program control to move from one data segment (128 bytes) to another. However, the upper base segment (containing the 16 memory registers, I/O registers, control registers, etc.) is always available regardless of the contente of the S icgioter, sinco the upper Luse segment (address range 0080 to 00FF) is independent of data segment extension.

The instructions that utilize the stack pointer (SP) always reference the stack as part of the base segment (Segment 0), regardless of the contents of the S register. The S register is not changed by these instructions. Consequently, the stack (used with subroutine linkage and interrupts) is always located in the base segment. The stack pointer will be intitialized to point at data memory location 006F as a result of reset.
The 128 bytes of RAM contained in the base segment are split between the lower and upper base segments. The first 112 bytes of RAM are resident from address 0000 to 006F in the lower base segment, while the remaining 16 bytes of RAM represent the 16 data memory registers located at addresses 00F0 to 00FF of the upper base segment. No RAM is located at the upper sixteen addresses (0070 to 007F) of the lower base segment.
Additional RAM beyond these initial 128 bytes, however, will always be memory mapped in groups of 128 bytes (or less) at the data segment address extensions (XX00 to XX7F) of the lower base segment. The additional 128 bytes of RAM are memory mapped at address locations 0100 to 017 F hex.

*Reads as all ones.
FIGURE 4. RAM Organization

Reset

The $\overline{\text { RESET }}$ input when pulled low initializes the microcontroller. Initialization will occur whenever the RESET input is pulled low. Upon initialization, the data and configuration registers for ports L, G and C are cleared, resulting in these Ports being initialized to the TRI-STATE mode. Pin G1 of the G Port is an exception (as noted below) since pin G1 is dedicated as the WATCHDOG and/or Clock Monitor error output pin. Port D is set high. The PC, PSW, ICNTRL, CNTRL, T2CNTRL and T3CNTRL control registers are cleared. The UART registers PSR, ENU (except that TBMT bit is set), ENUR and ENUI are cleared. The Comparator Select Register is cleared. The S register is initialized to zero. The Multi-Input Wakeup registers WKEN, WKEDG and WKPND are cleared. The stack pointer, SP, is initialized to 6F Hex.
The device comes out of reset with both the WATCHDOG logic and the Clock Monitor detector armed, with the WATCHDOG service window bits set and the Clock Monitor bit set. The WATCHDOG and Clock Monitor circuits are inhibited during reset. The WATCHDOG service window bits being initialized high default to the maximum WATCHDOG service window of $64 \mathrm{kt} \mathrm{t}_{\mathrm{C}}$ clock cycles. The Clock Monitor bit being initialized high will cause a Clock Monitor error following reset if the clock has not reached the minimum specified frequency at the termination of reset. A Clock Monitor error will cause an active low error output on pin G1. This error output will continue until $16 \mathrm{t}_{\mathrm{C}}-32 \mathrm{t}_{\mathrm{C}}$ clock cycles following the clock frequency reaching the minimum specified value, at which time the G1 output will enter the TRI-STATE mode.
The external RC network shown in Figure 5 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.

Reset (Continued)

TL/DD/11214-16
RC $>5 \times$ Power Supply Rise Time
FIGURE 5. Recommended Reset Circuit

Oscillator Circuits

The chip can be driven by a clock input on the CKI input pin which can be between DC and 10 MHz . The CKO output clock is on pin G7 (crystal configuration). The CKI input frequency is divided down by 10 to produce the instruction cycle clock ($1 / t_{c}$).
Figure 6 shows the Crystal and R/C oscillator diagrams.

CRYSTAL OSCILLATOR

CKI and CKO can be connected to make a closed loop crystal (or resonator) controlled oscillator.
Table A shows the component values required for various standard crystal values.

R/C OSCILLATOR

By selecting CKI as a single pin oscillator input, a single pin R/C oscillator circuit can be connected to it. CKO is available as a general purpose input, and/or HALT restart input. Table B shows the variation in the oscillator frequencies as functions of the component (R and C) values.

TL/DD/11214-18

FIGURE 6. Crystal and R/C Oscillator Diagrams
TABLE A. Crystal Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

R1 $\mathbf{(k} \Omega)$	R2 $(\mathbf{M} \Omega)$	C1 (pF)	C2 (pF)	CKI Freq $(\mathbf{M H z})$	Conditions
0	1	30	$30-36$	10	$V_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	30	$30-36$	4	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	200	$100-150$	0.455	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

TABLE B. RC Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$

\mathbf{R} $\mathbf{(k} \Omega)$	\mathbf{C} $(\mathbf{p F})$	CKI Freq (MHz)	Instr. Cycle ($\mu \mathbf{s}$)	Conditions
3.3	82	2.2 to 2.7	3.7 to 4.6	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
5.6	100	1.1 to 1.3	7.4 to 9.0	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
6.8	100	0.9 to 1.1	8.8 to 10.8	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

Note: $3 \mathrm{k} \leq \mathrm{R} \leq 200 \mathrm{k}$

$$
50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}
$$

Current Drain

The total current drain of the chip depends on:

1. Oscillator operation mode-l1
2. Internal switching current-12
3. Internal leakage current-13
4. Output source current-14
5. DC current caused by external input not at $V_{C C}$ or GND-15
6. Comparator DC supply current when enabled-16
7. Clock Monitor current when enabled-17

Thus the total current drain, It , is given as

$$
\mathrm{It}=11+12+13+14+15+16+17
$$

To reduce the total current drain, each of the above components must be minimum.
The chip will draw more current as the CKI input frequency increases up to the maximum 10 MHz value. Operating with a crystal network will draw more current than an external square-wave. Switching current, governed by the equation below, can be reduced by lowering voltage and frequency. Leakage current can be reduced by lowering voltage and temperature. The other two items can be reduced by carefully designing the end-user's system.

$$
\mathrm{I}=\mathrm{C} \times \mathrm{V} \times \mathrm{f}
$$

where $C=$ equivalent capacitance of the chip

$$
\begin{aligned}
V & =\text { operating voltage } \\
f & =\text { CKI frequency }
\end{aligned}
$$

Control Registers

CNTRL Register (Address X'00EE)
The Timer1 (T1) and MICROWIRE/PLUS control register contains the following bits:

SL1 \& SLO Select the MICROWIRE/PLUS clock divide by ($00=2,01=4,1 x=8$)
IEDG External interrupt edge polarity select ($0=$ Rising edge, $1=$ Falling edge)
MSEL Selects G5 and G4 as MICROWIRE/PLUS signals SK and SO respectively
T1C0 Timer T1 Start/Stop control in timer modes 1 and 2
Timer T1 Underflow Interrupt Pending Flag in timer mode 3
T1C1 Timer T1 mode control bit
T1C2 Timer T1 mode control bit
T1C3 Timer T1 mode control bit

| T1C3 | T1C2 | T1C1 | T1C0 | MSEL | IEDG | SL1 | SL0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Bit 7

Control Registers (Continued)

PSW Register (Address X'00EF)

The PSW register contains the following select bits:
GIE Global interrupt enable (enables interrupts)
EXEN Enable external interrupt
BUSY MICROWIRE/PLUS busy shifting flag
EXPND External interrupt pending
T1ENA Timer T1 Interrupt Enable for Timer Underflow or T1A Input capture edge
T1PNDA Timer T 1 Interrupt Pending Flag (Autoreload RA in mode 1, T1 Underflow in Mode 2, T1A capture edge in mode 3)
C Carry Flag
HC Half Carry Flag

HC	C	T1PNDA	T1ENA	EXPND	BUSY	EXEN	GIE	
Bit 7	Bit 0							

The Half-Carry bit is also affected by all the instructions that affect the Carry flag. The SC (Set Carry) and RC (Reset Carry) instructions will respectively set or clear both the carry flags. In addition to the SC and RC instructions, ADC, SUBC, RRC and RLC instructions affect the carry and Half Carry flags.
ICNTRL Register (Address X'00E8)
The ICNTRL register contains the following bits:
T1ENB Timer T1 Interrupt Enable for T1B Input capture edge
T1PNDB Timer T1 Interrupt Pending Flag for T1B capture edge
μ WEN Enable MICROWIRE/PLUS interrupt
μ WPND MICROWIRE/PLUS interrupt pending
TOEN Timer TO Interrupt Enable (Bit 12 toggle)
TOPND Timer TO Interrupt pending
LPEN L Port Interrupt Enable (Multi-Incut Wakpup/Interrupt)
Bit 7 could be used as a flag

| Unused | LPEN | TOPND | TOEN | μ WPND | μ WEN | TIPNDB | T1ENB |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Bit 7

Bit 0

T2CNTRL Register (Address X'00C6)

The T2CNTRL register contains the following bits:
T2ENB Timer T2 Interrupt Enable for T2B Input capture edge
T2PNDB Timer T2 Interrupt Pending Flag for T2B capture edge
T2ENA Timer T2 Interrupt Enable for Timer Underflow or T2A Input capture edge
T2PNDA Timer T2 Interrupt Pending Flag (Autoreload RA in mode 1, T2 Underflow in mode 2, T2A capture edge in mode 3)
T2C0 Timer T2 Start/Stop control in timer modes 1 and 2 Timer T2 Underflow Interrupt Pending Flag in timer mode 3

T2C1 Timer T2 mode control bit
T2C2 Timer T2 mode control bit
T2C3 Timer T2 mode control bit

T2C3	T2C2	T2C1	T2C0	T2PNDA	T2ENA	T2PNDB	T2ENB

Bit 7
Bit 0

T3CNTRL Register (Address X'00B6)

The T3CNTRL register contains the following bits:
T3ENB Timer T3 Interrupt Enable for T3B
T3PNDB Timer T3 Interrupt Pending Flag for T3B pin (T3B capture edge)
T3ENA Timer T3 Interrupt Enable for Timer Underflow or T3A pin
T3PNDA Timer T3 Interrupt Pending Flag (Autoload RA in mode 1, T3 Underflow in mode 2, T3a capture edge in mode 3)
T3C0 Timer T3 Start/Stop control in timer modes 1 and 2
Timer T3 Underflow Interrupt Pending Flag in timer mode 3
T3C1 Timer T3 mode control bit
T3C2 Timer T3 mode control bit
T3C3 Timer T3 mode control bit

T3C3	T3C2	T3C1	T3C0	T3PNDA	T3ENA	T3PNDB	T3ENB

Bit 7
Bit 0

Timers

The device contains a very versatile set of timers (T0, T1, T2, T3). All timers and associated autoreload/capture registers power up containing random data.

TIMER TO (IDLE TIMER)

The device supports applications that require maintaining real time and low power with the IDLE mode. This IDLE mode support is furnished by the IDLE timer TO, which is a 16 -bit timer. The Timer TO runs continuously at the fixed rate of the instruction cycle clock, t_{c}. The user cannot read or write to the IDLE Timer T0, which is a count down timer. The Timer TO supports the following functions:
Exit out of the Idle Mode (See Idle Mode description) WATCHDOG logic (See WATCHDOG description) Start up delay out of the HALT mode
The IDLE Timer TO can generate an interrupt when the thirteenth bit toggles. This toggle is latched into the TOPND pending flag, and will occur every 4 ms at the maximum clock frequency ($\mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$). A control flag TOEN allows the interrupt from the thirteenth bit of Timer TO to be enabled or disabled. Setting TOEN will enable the interrupt, while resetting it will disable the interrupt.

Timers (Continued)

TIMER T1, TIMER T2 AND TIMER T3

The device has a set of three powerful timer/counter blocks, T1, T2 and T3. The associated features and functioning of a timer block are described by referring to the timer block Tx. Since the three timer blocks, T1, T2 and T3 are identical, all comments are equally applicable to any of the three timer blocks.
Each timer block consists of a 16-bit timer, Tx, and two supporting 16 -bit autoreload/capture registers, RxA and RxB. Each timer block has two pins associated with it, TxA and TxB. The pin TxA supports I/O required by the timer block, while the pin TxB is an input to the timer block. The powerful and flexible timer block allows the device to easily perform all timer functions with minimal software overhead. The timer block has three operating modes: Processor Independent PWM mode, External Event Counter mode, and Input Capture mode.
The control bits TxC3, TXC2, and TxC1 allow selection of the different modes of operation.

Mode 1. Processor Independent PWM Mode

As the name suggests, this mode allows the device to generate a PWM signal with very minimal user intervention. The user only has to define the parameters of the PWM signal (ON time and OFF time). Once begun, the timer block will continuously generate the PWM signal completely independent of the microcontroller. The user software services the timer block only when the PWM parameters require updating.
In this mode the timer Tx counts down at a fixed rate of t_{c}. Upon every underflow the timer is alternately reloaded with the contents of supporting registers, RxA and RxB. The very first underflow of the timer causes the timer to reload from the register RxA. Subsequent underflows cause the timer to be reloaded from the registers alternately beginning with the register RxB.
The Tx Timer control bits, TxC3, TxC2 and TxC1 set up the timer for PWM mode operation.
Figure 7 shows a block diagram of the timer in PWM mode. The underflows can be programmed to toggle the TXA output pin. The underflows can also be programmed to generate interrupts.
Underflows from the timer are alternately latched into two pending flags, TxPNDA and TxPNDB. The user must reset these pending flags under software control. Two control enable flags, TxENA and TxENB, allow the interrupts from the timer underflow to be enabled or disabled. Setting the timer enable flag TxENA will cause an interrupt when a timer underflow causes the RxA register to be reloaded into the timer. Setting the timer enable flag TxENB will cause an interrupt when a timer underflow causes the RxB register to be reloaded into the timer. Resetting the timer enable flags will disable the associated interrupts.
Either or both of the timer underflow interrupts may be enabled. This gives the user the flexibility of interrupting once per PWM period on either the rising or falling edge of the PWM output. Alternatively, the user may choose to interrupt on both edges of the PWM output.

FIGURE 7. Timer in PWM Mode

Mode 2. External Event Counter Mode

This mode is quite similar to the processor independent PWM mode described above. The main difference is that the timer, Tx_{x}, is clocked by the input signal from the TxA pin. The Tx timer control bits, TxC3, TxC2 and TxC1 allow the timer to be clocked either on a positive or negative edge from the TXA pin. Underflows from the timer are latched into the TxPNDA pending flag. Setting the TxENA control flag will cause an interrupt when the timer underflows.
In this mode the input pin TxB can be used as an independent positive edge sensitive interrupt input if the TxENB control flag is set. The occurrence of a positive edge on the TxB input pin is latched into the TxPNDB flag.
Figure 8 shows a block diagram of the timer in External Event Counter mode.
Note: The PWM output is not available in this mode since the TXA pin is being used as the counter input clock.

FIGURE 8. Timer in External Event Counter Mode

Mode 3. Input Capture Mode

The device can precisely measure external frequencies or time external events by placing the timer block, Tx, in the input capture mode.
In this mode, the timer Tx is constantly running at the fixed t_{c} rate. The two registers, RxA and RxB, act as capture registers. Each register acts in conjunction with a pin. The register RxA acts in conjunction with the TxA pin and the register RxB acts in conjunction with the TxB pin.

Timers (Continued)

The timer value gets copied over into the register when a trigger event occurs on its corresponding pin. Control bits, TxC3, TxC2 and TxC1, allow the trigger events to be specified either as a positive or a negative edge. The trigger condition for each input pin can be specified independently.
The trigger conditions can also be programmed to generate interrupts. The occurrence of the specified trigger condition on the TXA and TxB pins will be respectively latched into the pending flags, TxPNDA and TxPNDB. The control flag TxENA allows the interrupt on TxA to be either enabled or disabled. Setting the TxENA flag enables interrupts to be generated when the selected trigger condition occurs on the TXA pin. Similarly, the flag TxENB controls the interrupts from the TxB pin.
Underflows from the timer can also be programmed to generate interrupts. Underflows are latched into the timer TxCO pending flag (the TxC0 control bit serves as the timer underflow interrupt pending flag in the Input Capture mode). Consequently, the TxCO control bit should be reset when entering the Input Capture mode. The timer underflow interrupt is enabled with the TXENA control flag. When a TXA interrupt occurs in the Input Capture mode, the user must check both the TxPNDA and TxCO pending flags in order to determine whether a TXA input capture or a timer underflow (or both) caused the interrupt.
Figure 9 shows a block diagram of the timer in Input Capture mode.

FIGURE 9. Timer in Input Capture Mode

TIMER CONTROL FLAGS

The timers T1, T2 and T3 have indentical control structures. The control bits and their functions are summarized below.

TxC0 Timer Start/Stop control in Modes 1 and 2 (Processor Independent PWM and External Event Counter), where $1=$ Start, $0=$ Stop Timer Underflow Interrupt Pending Flag in Mode 3 (Input Capture)
TxPNDA Timer Interrupt Pending Flag
TxPNDB Timer Interrupt Pending Flag
TxENA Timer Interrupt Enable Flag
TxENB Timer Interrupt Enable Flag 1 = Timer Interrupt Enabled $0=$ Timer Interrupt Disabled
TxC3 Timer mode control
TxC2 Timer mode control
TxC1 Timer mode control

Timers (Continued)
The timer mode control bits ($\mathrm{TxC3}, \mathrm{TxC2}$ and $\mathrm{TXC1}$) are detailed below:

TxC3	TxC2	TxC1	TImer Mode	Interrupt A Source	Interrupt B Source	Timer Counts On
0	0	0	MODE 2 (External Event Counter)	Timer Underflow	Pos. TxB Edge	TXA Pos. Edge
0	0	1	MODE 2 (External Event Counter)	Timer Underflow	Pos. TxB Edge	TXA Neg. Edge
1	0	1	MODE 1 (PWM) TxA Toggle	Autoreload RA	Autoreload RB	t_{c}
1	0	0	MODE 1 (PWM) No TxA Toggle	Autoreload RA	Autoreload RB	t_{c}
0	1	0	MODE 3 (Capture) Captures: TxA Pos. Edge TxB Pos. Edge	Pos. TxA Edge or Timer Underflow	Pos. TxB Edge	t_{c}
1	1	0	MODE 3 (Capture) Captures: TxA Pos. Edge TxB Neg. Edge	Pos. TxA Edge or Timer Underflow	Neg. TxB Edge	t_{c}
0	1	1	MODE 3 (Capture) Captures: TxA Neg. Edge TxB Pos. Edge	Neg. TxA Edge or Timer Underflow	Pos. TxB Edge	t_{c}
1	1	1	MODE 3 (Capture) Captures: TxA Neg. Edge TxB Neg. Edge	Neg. TxA Edge or Timer Underflow	Neg. TxB Edge	t_{c}

Power Save Modes

The device offers the user two power save modes of operation: HALT and IDLE. In the HALT mode, all microcontroller activities are stopped. In the IDLE mode, the on-board oscillator circuitry the WATCHDOG logic, the Clock Monitor and timer TO are active but all other microcontroller activities are stopped. In either mode, all on-board RAM, registers, I/O states, and timers (with the exception of TO) are unaltered.

HALT MODE

The device can be placed in the HALT mode by writing a " 1 " to the HALT flag (G7 data bit). All microcontroller activities, including the clock and timers, are stopped. The WATCHDOG logic is disabled during the HALT mode. However, the clock monitor circuitry if enabled remains active and will cause the WATCHDOG output pin (WDOUT) to go low. If the HALT mode is used and the user does not want to activate the WDOUT pin, the Clock Monitor should be disabled after the device comes out of reset (resetting the Clock Monitor control bit with the first write to the WDSVR register). In the HALT mode, the power requirements of the device are minimal and the applied voltage ($V_{C C}$) may be decreased to $\mathrm{V}_{\mathrm{r}}\left(\mathrm{V}_{\mathrm{r}}=2.0 \mathrm{~V}\right)$ without altering the state of the machine.
The device supports three different ways of exiting the HALT mode. The first method of exiting the HALT mode is with the Multi-Input Wakeup feature on the L port. The second method is with a low to high transition on the CKO (G7) pin. This method precludes the use of the crystal clock con-
figuration (since CKO becomes a dedicated output), and so may be used with an RC clock configuration. The third method of exiting the HALT mode is by pulling the RESET pin low.
Since a crystal or ceramic resonator may be selected as the oscillator, the Wakeup signal is not allowed to start the chip running immediately since crystal oscillators and ceramic resonators have a delayed start up time to reach full amplitude and frequency stability. The IDLE timer is used to generate a fixed delay to ensure that the oscillator has indeed stabilized before allowing instruction execution. In this case, upon detecting a valid Wakeup signal, only the oscillator circuitry is enabled. The IDLE timer is loaded with a value of 256 and is clocked with the t_{c} instruction cycle clock. The t_{c} clock is derived by dividing the oscillator clock down by a factor of 10. The Schmitt trigger following the CKI inverter on the chip ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.
If an RC clock option is being used, the fixed delay is introduced optionally. A control bit, CLKDLY, mapped as configuration bit G7, controls whether the delay is to be introduced or not. The delay is included if CLKDLY is set, and excluded if CLKDLY is reset. The CLKDLY bit is cleared on reset.

Power Save Modes (Continued)

The device has two mask options associated with the HALT mode. The first mask option enables the HALT mode feature, while the second mask option disables the HALT mode. With the HALT mode enable mask option, the device will enter and exit the HALT mode as described above. With the HALT disable mask option, the device cannot be placed in the HALT mode (writing a " 1 " to the HALT flag will have no effect).
The WATCHDOG detector circuit is inhibited during the HALT mode. However, the clock monitor circuit if enabled remains active during HALT mode in order to ensure a clock monitor error if the device inadvertently enters the HALT mode as a result of a runaway program or power glitch.

IDLE MODE

The device is placed in the IDLE mode by writing a " 1 " to the IDLE flag (G6 data bit). In this mode, all activities, except the associated on-board oscillator circuitry, the WATCHDOG logic, the clock monitor and the IDLE Timer TO, are stopped.
As with the HALT mode, the device can be returned to normal operation with a reset, or with a Multi-Input Wakeup from the L Port. Alternately, the microcontroller resumes normal operation from the IDLE mode when the thirteenth bit (representing 4.096 ms at internal clock frequency of $1 \mathrm{MHz}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$) of the IDLE Timer toggles.

This toggle condition of the thirteenth bit of the IDLE Timer TO is latched into the TOPND pending flag.
The user has the option of being interrupted with a transition on the thirteenth bit of the IDLE Timer TO. The interrupt can be enabled or disabled via the TOEN control bit. Setting the TOEN flag enables the interrupt and vice versa.
The user can enter the IDLE mode with the Timer T0 interrupt enabled. In this case, when the TOPND bit gets set, the device will first execute the Timer TO interrupt service routine and then return to the instruction following the "Enter Idle Mode" instruction.
Alternatively, the user can enter the IDLE mode with the IDLE Timer T0 interrupt disabled. In this case, the device will resume normal operation with the instruction immediately following the "Enter IDLE Mode" instruction.
Note: It is necessary to program two NOP instructions following both the set HALT mode and set IDLE mode instructions. These NOP instructions are necessary to allow clock resynchronization following the HALT or IDLE modes.

Multi-Input Wakeup

The Multi-Input Wakeup feature is ued to return (wakeup) the device from either the HALT or IDLE modes. Alternately Multi-Input Wakeup/Interrupt feature may also be used to generate up to 8 edge selectable external interrupts.
Figure 10 shows the Multi-Input Wakeup logic.

FIGURE 10. Multi-Input Wake Up Logic

Multi-Input Wakeup (Continued)

The Multi-Input Wakeup feature utilizes the L Port. The user selects which particular L port bit (or combination of L Port bits) will cause the device to exit the HALT or IDLE modes. The selection is done through the Reg: WKEN. The Reg: WKEN is an 8-bit read/write register, which contains a control bit for every L port bit. Setting a particular WKEN bit enables a Wakeup from the associated L port pin.
The user can select whether the trigger condition on the selected L Port pin is going to be either a positive edge (low to high transition) or a negative edge (high to low transition). This selection is made via the Reg: WKEDG, which is an 8bit control register with a bit assigned to each L Port pin. Setting the control bit will select the trigger condition to be a negative edge on that particular L Port pin. Resetting the bit selects the trigger condition to be a positive edge. Changing an edge select entails several steps in order to avoid a pseudo Wakeup condition as a result of the edge change. First, the associated WKEN bit should be reset, followed by the edge select change in WKEDG. Next, the associated WKPND bit should be cleared, followed by the associated WKEN bit being re-enabled.
An example may serve to clarify this procedure. Suppose we wish to change the edge select from positive (low going high) to negative (high going low) for L Port bit 5, where bit 5 has previously been enabled for an input interrupt. The program would be as follows:

$$
\begin{array}{ll}
\text { RBIT } & \text { 5, WKEN } \\
\text { SBIT } & \text { 5, WKEDG } \\
\text { RBIT } & \text { 5, WKPND } \\
\text { SBIT } & \text { 5, WKEN }
\end{array}
$$

If the L port bits have been used as outputs and then changed to inputs with Multi-Input Wakeup/Interrupt, a safety procedure should also be followed to avoid inherited pseudo wakeup conditions. After the selected L port bits have been changed from output to input but before the associated WKEN bits are enabled, the associated edge select bits in WKEDG should be set or reset for the desired edge selects, followed by the associated WKPND bits being cleared.
This same procedure should be used following reset, since the L port inputs are left floating as a result of reset.
The occurrence of the selected trigger condition for Multi-Input Wakeup is latched into a pending register called WKPND. The respective bits of the WKPND register will be set on the occurrence of the selected trigger edge on the corresponding Port L pin. The user has the responsibility of clearing these pending flags. Since WKPND is a pending register for the occurrence of selected wakeup conditions, the device will not enter the HALT mode if any Wakeup bit is both enabled and pending. Consequently, the user has the responsibility of clearing the pending flags before attempting to enter the HALT mode.

WKEN, WKPND and WKEDG are all read/write registers, and are cleared at reset.

PORT LINTERRUPTS

Port L provides the user with an additional eight fully selectable, edge sensitive interrupts which are all vectored into the same service subroutine.
The interrupt from Port L shares logic with the wake up circuitry. The register WKEN allows interrupts from Port L to be individually enabled or disabled. The register WKEDG specifies the trigger condition to be either a positive or a negative edge. Finally, the register WKPND latches in the pending trigger conditions.
The GIE (Global Interrupt Enable) bit enables the interrupt function.
A control flag, LPEN, functions as a global interrupt enable for Port L interrupts. Setting the LPEN flag will enable interrupts and vice versa. A separate global pending flag is not needed since the register WKPND is adequate.
Since Port L is also used for waking the device out of the HALT or IDLE modes, the user can elect to exit the HALT or IDLE modes either with or without the interrupt enabled. If he elects to disable the interrupt, then the device will restart execution from the instruction immediately following the instruction that placed the microcontroller in the HALT or IDLE modes. In the other case, the device will first execute the interrupt service routine and then revert to normal operation.
The Wakeup signal will not start the chip running immediately since crystal oscillators or ceramic resonators have a finite start up time. The IDLE Timer (TO) generates a fixed delay to ensure that the oscillator has indeed stabilized before allowing the device to execute instructions. In this case, upon detecting a valid Wakeup signal, only the oscillator circuitry and the IDLE Timer TO are enabled. The IDLE Timer is loaded with a value of 256 and is clocked from the t_{c} instruction cycle clock. The t_{c} clock is derived by dividing down the oscillator clock by a factor of 10. A Schmitt trigger following the CKI on-chip inverter ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.
If the RC clock option is used, the fixed delay is under software control. A control flag, CLKDLY, in the G7 configuration bit allows the clock start up delay to be optionally inserted. Setting CLKDLY flag high will cause clock start up delay to be inserted and resetting it will exclude the clock start up delay. The CLKDLY flag is cleared during reset, so the clock start up delay is not present following reset with the RC clock options.

UART

The device contains a full-duplex software programmable UART. The UART (Figure 11) consists of a transmit shift register, a receiver shift register and seven addressable registers, as follows: a transmit buffer register (TBUF), a receiver buffer register (RBUF), a UART control and status register (ENU), a UART receive control and status register (ENUR), a UART interrupt and clock source register (ENUI), a prescaler select register (PSR) and baud (BAUD) register. The ENU register contains flags for transmit and receive functions; this register also determines the length of the data frame (7,8 or 9 bits), the value of the ninth bit in transmission, and parity selection bits. The ENUR register flags framming, data overrun and parity errors while the UART is receiving.

Other functions of the ENUR register include saving the ninth bit received in the data frame, enabling or disabling the UART's attention mode of operation and providing additional receiver/transmitter status information via RCVG and XMTG bits. The determination of an internal or external clock source is done by the ENUI register, as well as selecting the number of stop bits and enabling or disabling transmit and receive interrupts. A control flag in this register can also select the UART mode of operation: asynchronous or synchronous.

TL/DD/11214-23
FIGURE 11. UART Block Diagram

UART (Continued)

UART CONTROL AND STATUS REGISTERS

The operation of the UART is programmed through three registers: ENU, ENUR and ENUI. The function of the individual bits in these registers is as follows:
ENU-UART Control and Status Register (Address at OBA)
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { PEN } & \text { PSEL1 } 1 & \text { XBIT9/ } & \text { CHL1 } & \text { CHLO } & \text { ERR } & \text { RBFL } & \text { TBMT } \\ \text { PSELO }\end{array}\right)$

Bit 7
Bit 0
ENUR-UART Receive Control and Status Register (Address at OBB)

DOE	FE	PE	SPARE	RBIT9	ATTN	XMTG	RCVG
ORD	ORD	ORD	ORW*	OR	ORW	OR	OR

Bit7
Bit0
ENUI-UART Interrupt and Clock Source Register (Address at OBC)

STP2	STP78	ETDX	SSEL	XRCLK	XTCLK	ERI	ETI
ORW	ORW	ORW	ORW	ORW	ORW	ORW	ORW

Bit7
-Bit is not used.
0 Bit is cleared on reset.
1 Bit is set to one on reset.
R Bit is read-only; it cannot be written by software.
RW Bit is read/write.
D Bit is cleared on read; when read by software as a one, it is cleared automatically. Writing to the bit does not affect its state.

DESCRIPTION OF UART REGISTER BITS

ENU—UART CONTROL AND STATUS REGISTER

TBMT: This bit is set when the UART transfers a byte of data from the TBUF register into the TSFT register for transmission. It is automatically reset when software writes into the TBUF register.
RBFL: This bit is set when the UART has received a complete character and has copied it into the RBUF register. It is automatically reset when software reads the character from RBUF.
ERR: This bit is a global UART error flag which gets set if any or a combination of the errors (DOE, FE, PE) occur.
CHL1, CHLO: These bits select the character frame format. Parity is not included and is generated/verified by hardware. $\mathrm{CHL1}=0, \mathrm{CHLO}=0 \quad$ The frame contains eight data bits. $\mathrm{CHL} 1=0, \mathrm{CHLO}=1$ The frame contains seven data bits.
$\mathrm{CHL} 1=1, \mathrm{CHLO}=0 \quad$ The frame contains nine data bits. CHL1 $=1$, CHLO $=1 \quad$ Loopback Mode selected. Transmitter output internally looped back to receiver input. Nine bit framing format is used.
XBIT9/PSELO: Programs the ninth bit for transmission when the UART is operating with nine data bits per frame. For seven or eight data bits per frame, this bit in conjunction with PSEL1 selects parity.
PSEL1, PSELO: Parity select bits.
PSEL1 $=0$, PSELO $=0 \quad$ Odd Parity (if Parity enabled)
PSEL1 $=0$, PSELO $=1 \quad$ Even Parity (if Parity enabled)

PSEL1 $=1$, PSEL0 $=0 \quad$ Mark(1) (if Parity enabled) PSEL1 $=1$, PSELO $=1 \quad$ Space(0) (if Parity enabled)
PEN: This bit enables/disables Parity (7 - and 8 -bit modes only).
$\mathrm{PEN}=0 \quad$ Parity disabled.
PEN $=1$ Parity enabled.

ENUR—UART RECEIVE CONTROL AND STATUS REGISTER

RCVG: This bit is set high whenever a framing error occurs and goes low when RDX goes high.
XMTG: This bit is set to indicate that the UART is transmitting. It gets reset at the end of the last frame (end of last Stop bit).
ATTN: ATTENTION Mode is enabled while this bit is set. This bit is cleared automatically on receiving a character with data bit nine set.
RBIT9: Contains the ninth data bit received when the UART is operating with nine data bits per frame.
SPARE: Reserved for future use.
PE: Flags a Parity Error.
$P E=0 \quad$ Indicates no Parity Error has been detected since the last time the ENUR register was read.
$P E=1$ Indicates the occurrence of a Parity Error.
FE: Flags a Framing Error.
$\mathrm{FE}=0$ Indicates no Framing Error has been detected since the last time the ENUR register was read.
$\mathrm{FE}=1$ Indicates the occurrence of a Framing Error.
DOE: Flags a Data Overrun Error.
DOE $=0$ Indicates no Data Overrun Error has been detected since the last time the ENUR register was read.
DOE = 1 Indicates the occurrence of a Data Overrun Error.

ENUI-UART INTERRUPT AND CLOCK SOURCE REGISTER

ETI: This bit enables/disables interrupt from the transmitter section.
$E T I=0 \quad$ Interrupt from the transmitter is disabled.
$E T I=1$ Interrupt from the transmitter is enabled.
ERI: This bit enables/disables interrupt from the receiver section.
$E R I=0 \quad$ Interrupt from the receiver is disabled.
$E R I=1$ Interrupt from the receiver is enabled.
XTCLK: This bit selects the clock source for the transmittersection.
XTCLK $=0$ The clock source is selected through the PSR and BAUD registers.
XTCLK $=1 \quad$ Signal on CKX (L1) pin is used as the clock.
XRCLK: This bit selects the clock source for the receiver section.
XRCLK $=0$ The clock source is selected through the PSR and BAUD registers.
XRCLK $=1 \quad$ Signal on CKX (L1) pin is used as the clock.
SSEL: UART mode select.
SSEL $=0 \quad$ Asynchronous Mode.
SSEL =1 Synchronous Mode.

UART (Continued)

ETDX: TDX (UART Transmit Pin) is the alternate function assigned to Port L pin L2; it is selected by setting ETDX bit. To simulate line break generation, software should reset ETDX bit and output logic zero to TDX pin through Port L data and configuration registers.
STP78: This bit is set to program the last Stop bit to be 7/8th of a bit in length.
STP2: This bit programs the number of Stop bits to be transmitted.
STP2 $=0 \quad$ One Stop bit transmitted.
STP2 $=1 \quad$ Two Stop bits transmitted.

Associated I/O Pins

Data is transmitted on the TDX pin and received on the RDX pin. TDX is the alternate function assigned to Port L pin L2; it is selected by setting ETDX (in the ENUI register) to one. RDX is an inherent function of Port L pin L3, requiring no setup.
The baud rate clock for the UART can be generated onchip, or can be taken from an external source. Port L pin L1 (CKX) is the external clock I/O pin. The CKX pin can be either an input or an output, as determined by Port L Configuration and Data registers (Bit 1). As an input, it accepts a clock signal which may be selected to drive the transmitter and/or receiver. As an output, it presents the internal Baud Rate Generator output.

UART Operation

The UART has two modes of operation: asynchronous mode and synchronous mode.

ASYNCHRONOUS MODE

This mode is selected by resetting the SSEL (in the ENUI register) bit to zero. The input frequency to the UART is 16 times the baud rate.
The TSFT and TBUF registers double-buffer data for transmiscion. Whhi! TSFT is shifting cut the current cilaracier on the TDX pin, the TBUF register may be loaded by software with the next byte to be transmitted. When TSFT finishes transmitting the current character the contents of TBUF are transferred to the TSFT register and the Transmit Buffer Empty Flag (TBMT in the ENU register) is set. The TBMT flag is automatically reset by the UART when software loads a new character into the TBUF register. There is also the XMTG bit which is set to indicate that the UART is transmitting. This bit gets reset at the end of the last frame (end of last Stop bit). TBUF is a read/write register.
The RSFT and RBUF registers double-buffer data being received. The UART receiver continually monitors the signal on the RDX pin for a low level to detect the beginning of a Start bit. Upon sensing this low level, it waits for half a bit time and samples again. If the RDX pin is still low, the receiver considers this to be a valid Start bit, and the remaining bits in the character frame are each sampled a single time, at the mid-bit position. Serial data input on the RDX pin is shifted into the RSFT register. Upon receiving the complete character, the contents of the RSFT register are copied into the RBUF register and the Received Buffer Full Flag (RBFL) is set. RBFL is automatically reset when software reads the character from the RBUF register. RBUF is a read only register. There is also the RCVG bit which is set high
when a framing error occurs and goes low once RDX goes high. TBMT, XMTG, RBFL and RCVG are read only bits.

SYNCHRONOUS MODE

In this mode data is transferred synchronously with the clock. Data is transmitted on the rising edge and received on the falling edge of the synchronous clock.
This mode is selected by setting SSEL bit in the ENUI register. The input frequency to the UART is the same as the baud rate.
When an external clock input is selected at the CKX pin, data transmit and receive are performed synchronously with this clock through TDX/RDX pins.
If data transmit and receive are selected with the CKX pin as clock output, the device generates the synchronous clock output at the CKX pin. The internal baud rate generator is used to produce the synchronous clock. Data transmit and receive are performed synchronously with this clock.

FRAMING FORMATS

The UART supports several serial framing formats (Figure 12). The format is selected using control bits in the ENU, ENUR and ENUI registers.
The first format ($1,1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c}$) for data transmission (CHLO $=1$, CHL1 $=0$) consists of Start bit, seven Data bits (excluding parity) and 7/8, one or two Stop bits. In applications using parity, the parity bit is generated and verified by hardware.
The second format ($\mathrm{CHLO}=0, \mathrm{CHL1}=0$) consists of one Start bit, eight Data bits (excluding parity) and $7 / 8$, one or two Stop bits. Parity bit is generated and verified by hardware.
The third format for transmission (CHLO $=0, \mathrm{CHL} 1=1$) consists of one Start bit, nine Data bits and 7/8, one or two Stop bits. This format also supports the UART "ATTENTION" feature. When operating in this format, all eight bits of TBUF and RBUF are used for data. The ninth data bit is transmitted and received using two bits in the ENU and ENUR rogisters, called 久obits and foits. FBity is a read only bit. Parity is not generated or verified in this mode.
For any of the above framing formats, the last Stop bit can be programmed to be 7/8th of a bit in length. If two Stop bits are selected and the 7/8th bit is set (selected), the second Stop bit will be 7/8th of a bit in length.
The parity is enabled/disabled by PEN bit located in the ENU register. Parity is selected for 7 - and 8 -bit modes only. If parity is enabled (PEN =1), the parity selection is then performed by PSELO and PSEL1 bits located in the ENU register.
Note that the XBIT9/PSEL0 bit located in the ENU register serves two mutually exclusive functions. This bit programs the ninth bit for transmission when the UART is operating with nine data bits per frame. There is no parity selection in this framing format. For other framing formats XBIT9 is not needed and the bit is PSELO used in conjunction with PSEL1 to select parity.
The frame formats for the receiver differ from the transmitter in the number of Stop bits required. The receiver only requires one Stop bit in a frame, regardless of the setting of the Stop bit selection bits in the control register. Note that an implicit assumption is made for full duplex UART operation that the framing formats are the same for the transmitter and receiver.

UART Operation (Continued)

FIGURE 12. Framing Formats

UART INTERRUPTS

The UART is capable of generating interrupts. Interrupts are generated on Receive Buffer Full and Transmit Buffer Empty. Both interrupts have individual interrupt vectors. Two bytes of program memory space are reserved for each interrupt vector. The two vectors are located at addresses 0xEC to OxEF Hex in the program memory space. The interrupts can be individually enabled or disabled using Enable Transmit Interrupt (ETI) and Enable Receive Interrupt (ERI) bits in the ENUI register.
The interrupt from the Transmitter is set pending, and remains pending, as long as both the TBMT and ETI bits are set. To remove this interrupt, software must either clear the ETI bit or write to the TBUF register (thus clearing the TBMT bit).
The interrupt from the receiver is set pending, and remains pending, as long as both the RBFL and ERI bits are set. To remove this interrupt, software must either clear the ERI bit or read from the RBUF register (thus clearing the RBFL bit).

Baud Clock Generation

The clock inputs to the transmitter and receiver sections of the UART can be individually selected to come either from an external source at the CKX pin (port L, pin L1) or from a
source selected in the PSR and BAUD registers. Internally, the basic baud clock is created from the oscillator frequency through a two-stage divider chain consisting of a 1-16 (increments of 0.5) prescaler and an 11-bit binary counter. (Figure 13) The divide factors are specified through two read/write registers shown in Figure 14. Note that the 11-bit Baud Rate Divisor spills over into the Prescaler Select Register (PSR). PSR is cleared upon reset.
As shown in Table I, a Prescaler Factor of 0 corresponds to NO CLOCK. NO CLOCK condition is the UART power down mode where the UART clock is turned off for power saving purpose. The user must also turn the UART clock off when a different baud rate is chosen.
The correspondences between the 5 -bit Prescaler Select and Prescaler factors are shown in Table I. Therer are many ways to calculate the two divisor factors, but one particularly effective method would be to achieve a 1.8432 MHz frequency coming out of the first stage. The 1.8432 MHz prescaler output is then used to drive the software programmable baud rate counter to create a $\times 16$ clock for the following baud rates: 110, 134.5, 150, 300, 600, 1200, 1800, 2400, $3600,4800,7200,9600,19200$ and 38400 (Table II). Other baud rates may be created by using appropriate divisors. The $\times 16$ clock is then divided by 16 to provide the rate for the serial shift registers of the transmitter and receiver.

Baud Clock Generation (Continued)
UART TRANSMIT

TL/DD/11214-25
FIGURE 13. UART BAUD Clock Generation

TL/DD/11214-26
FIGURE 14. UART BAUD Clock Divisor Registers

TABLE I. Prescaler Factors

Prescaler Select	Prescaler Factor
00000	NO CLOCK
00001	1
00010	1.5
00011	2
00100	2.5
00101	3
00110	3.5
00111	4
01000	4.5
01001	5
01010	5.5
01011	6
01100	6.5
01101	7
01110	7.5
01111	8
10000	8.5
10001	9
10010	9.5
10011	10
10100	10.5
10101	11
10110	11.5
10111	12
11000	12.5
11001	13
11010	13.5
11011	14
11100	14.5
11101	15
11110	15.5
11111	16

TABLE II. Baud Rate Divisors (1.8432 MHz Prescaler Output)

Baud Rate	Baud Rate Divisor $-\mathbf{1}(\mathrm{N}-1)$
$110(110.03)$	1046
$134.5(134.58)$	855
150	767
300	383
600	191
1200	95
1800	63
2400	47
3600	31
4800	23
7200	15
9600	11
19200	5
38400	2

The entries in Table II assume a prescaler output of 1.8432 MHz . In the asynchronous mode the baud rate could be as high as 625 k .
As an example, considering the Asynchronous Mode and a CKI clock of 4.608 MHz , the prescaler factor selected is:

$$
4.608 / 1.8432=2.5
$$

The 2.5 entry is available in Table I. The 1.8432 MHz prescaler output is then used with proper Baud Rate Divisor (Table II) to obtain different baud rates. For a baud rate of 19200 e.g., the entry in Table II is 5.
$N-1=5(N-1$ is the value from Table II)
$\mathrm{N}=6$ (N is the Baud Rate Divisor)

$$
\text { Baud Rate }=1.8432 \mathrm{MHz} /(16 \times 6)=19200
$$

The divide by 16 is performed because in the asynchronous mode, the input frequency to the UART is 16 times the baud rate. The equation to calculate baud rates is given below.
The actual Baud Rate may be found from:

$$
\mathrm{BR}=\mathrm{Fc} /(16 \times \mathrm{N} \times \mathrm{P})
$$

Baud Clock Generation (Continued)

Where:
$B R$ is the Baud Rate
Fc is the CKI frequency
N is the Baud Rate Divisor (Table II).
P is the Prescaler Divide Factor selected by the value in the Prescaler Select Register (Table I)
Note: In the Synchronous Mode, the divisor 16 is replaced by two.
Example:
Asynchronous Mode:

$$
\begin{gathered}
\text { Crystal Frequency }=5 \mathrm{MHz} \\
\text { Desired baud rate }=9600
\end{gathered}
$$

Using the above equation $N \times P$ can be calculated first.

$$
N \times P=(5 \times 106) /(16 \times 9600)=32.552
$$

Now 32.552 is divided by each Prescaler Factor (Table II) to obtain a value closest to an integer. This factor happens to be $6.5(\mathrm{P}=6.5)$.

$$
N=32.552 / 6.5=5.008(N=5)
$$

The programmed value (from Table II) should be 4 ($\mathrm{N}-1$). Using the above values calculated for N and P :

$$
\begin{aligned}
& \mathrm{BR}=(5 \times 106) /(16 \times 5 \times 6.5)=9615.384 \\
& \% \text { error }=(9615.385-9600) / 9600=0.16
\end{aligned}
$$

Effect of HALT/IDLE

The UART logic is reinitialized when either the HALT or IDLE modes are entered. This reinitialization sets the TBMT flag and resets all read only bits in the UART control and status registers. Read/Write bits remain unchanged. The Transmit Buffer (TBUF) is not affected, but the Transmit Shift register (TSFT) bits are set to one. The receiver registers RBUF and RSFT are not affected.
The device will exit from the HALT/IDLE modes when the Start bit of a character is detected at the RDX (L3) pin. This feature is obtained by using the Multi-Input Wakeup scheme provided on the device.
Before entering the HALT or IDLE modes the user program must select the Wakeup source to be on the RDX pin. This selection is done by setting bit 3 of WKEN (Wakeup Enable) register. The Wakeup trigger condition is then selected to be high to low transition. This is done via the WKEDG register (Bit 3 is zero.)
If the device is halted and crystal oscillator is used, the Wakeup signal will not start the chip running immediately because of the finite start up time requirement of the crystal oscillator. The idle timer (TO) generates a fixed delay to ensure that the oscillator has indeed stabilized before allowing the device to execute code. The user has to consider this delay when data transfer is expected immediately after exiting the HALT mode.

Diagnostic

Bits CHARLO and CHARL1 in the ENU register provide a loopback feature for diagnostic testing of the UART. When these bits are set to one, the following occur: The receiver input pin (RDX) is internally connected to the transmitter output pin (TDX); the output of the Transmitter Shift Register is "looped back" into the Receive Shift Register input. In this mode, data that is transmitted is immediately received. This feature allows the processor to verify the transmit and receive data paths of the UART.

Note that the framing format for this mode is the nine bit format; one Start bit, nine data bits, and 7/8, one or two Stop bits. Parity is not generated or verified in this mode.

Attention Mode

The UART Receiver section supports an alternate mode of operation, referred to as ATTENTION Mode. This mode of operation is selected by the ATTN bit in the ENUR register. The data format for transmission must also be selected as having nine Data bits and either 7/8, one or two Stop bits.
The ATTENTION mode of operation is intended for use in networking the device with other processors. Typically in such environments the messages consists of device addresses, indicating which of several destinations should receive them, and the actual data. This Mode supports a scheme in which addresses are flagged by having the ninth bit of the data field set to a 1 . If the ninth bit is reset to a zero the byte is a Data byte.
While in ATTENTION mode, the UART monitors the communication flow, but ignores all characters until an address character is received. Upon receiving an address character, the UART signals that the character is ready by setting the RBFL flag, which in turn interrupts the processor if UART Receiver interrupts are enabled. The ATTN bit is also cleared automatically at this point, so that data characters as well as address characters are recognized. Software examines the contents of the RBUF and responds by deciding either to accept the subsequent data stream (by leaving the ATTN bit reset) or to wait until the next address character is seen (by setting the ATTN bit again).
Operation of the UART Transmitter is not affected by selection of this Mode. The value of the ninth bit to be transmitted is programmed by setting XBIT9 appropriately. The value of the ninth bit received is obtained by reading RBIT9. Since this bit is located in ENUR register where the error flags reside, a bit operation on it will reset the error flags.

Comparators

The device contains two differential comparators, each with a pair of inputs (positive and negative) and an output. Ports 11-13 and I4-16 are used for the comparators. The following is the Port I assignment:
I1 Comparator1 negative input
12 Comparator1 positive input
13 Comparator1 output
14 Comparator2 negative input
15 Comparator2 positive input
I6 Comparator2 output
A Comparator Select Register (CMPSL) is used to enable the comparators, read the outputs of the comparators internally, and enable the outputs of the comparators to the pins. Two control bits (enable and output enable) and one result bit are associated with each comparator. The comparator result bits (CMP1RD and CMP2RD) are read only bits which will read as zero if the associated comparator is not enabled. The Comparator Select Register is cleared with reset, resulting in the comparators being disabled. The comparators should also be disabled before entering either the HALT or IDLE modes in order to save power. The configuration of the CMPSL register is as follows:

Comparators (Continued)

CMPSL REGISTER (ADDRESS X'00B7)

The CMPSL register contains the following bits:
CMP1EN Enable comparator 1
CMP1RD Comparator 1 result (this is a read only bit, which will read as 0 if the comparator is not enabled)
CMP10E Selects pin I3 as comparator 1 output provided that CMPIEN is set to enable the comparator
CMP2EN Enable comparator 2
CMP2RD Comparator 2 result (this is a read only bit, which will read as 0 if the comparator is not enabled)
CMP20E Selects pin I6 as comparator 2 output provided that CMP2EN is set to enable the comparator

Unused	CMP20E	CMP2RD	CMP2EN	CMP10E	CMP1RD	CMP1EN	Unused
Bit 7							Bit 0

Note that the two unused bits of CMPSL may be used as software flags.
Comparator outputs have the same spec as Ports L and G except that the rise and fall times are symmetrical.

Interrupts

The device supports a vectored interrupt scheme. It supports a total of fourteen interrupt sources. The following table lists all the possible interrupt sources, their arbitration ranking and the memory locations reserved for the interrupt vector for each source.
Two bytes of program memory space are reserved for each interrupt source. All interrupt sources except the software interrupt are maskable. Each of the maskable interrupts have an Enable bit and a Pending bit. A maskable interrupt is active if its associated enable and pending bits are set. If GIE $=1$ and an interrupt is active, then the processor will be interrupted as soon as it is ready to start executing an instruction except if the above conditions happen during the Software Trap service routine. This exception is described in the Software Trap sub-section.
The interruption process is accomplished with the INTR instruction (opcode 00), which is jammed inside the Instruction Register and replaces the opcode about to be executed. The following steps are performed for every interrupt:

1. The GIE (Global Interrupt Enable) bit is reset.
2. The address of the instruction about to be executed is pushed into the stack.
3. The PC (Program Counter) branches to address 00FF. This procedure takes $7 \mathrm{t}_{\mathrm{c}}$ cycles to execute.

FIGURE 15. Interrupt Block Diagram

Interrupts (Continued)

Arbitration Ranking	Source	Description	Vector Address Hi-Low Byte
(1) Highest	Software	INTR Instruction	OyFE-OyFF
	Reserved	for Future Use	OyFC-OyFD
(2)	External	Pin G0 Edge	OyFA-0yFB
(3)	Timer T0	Underflow	OyF8-0yF9
(4)	Timer T1	T1A/Underflow	OyF6-0yF7
(5)	Timer T1	T1B	OyF4-0yF5
(6)	MICROWIRE/PLUS	BUSY Goes Low	OyF2-0yF3
	Reserved	for Future Use	OyF0-0yF1
(7)	UART	Receive	OyEE-0yEF
(8)	UART	Transmit	OyEC-0yED
(9)	Timer T2	T2A/Underflow	OyEA-0yEB
(10)	Timer T2	T2B	OyE8-0yE9
(11)	Timer T3	T3A/Underflow	0yE6-0yE7
(12)	Timer T3	T3B	OyE4-0yE5
(13)	Port L/Wakeup	Port L Edge	OyE2-0yE3
(14) Lowest	Default	VIS Instr. Execution without Any Interrupts	OyE0-0yE1

y is VIS page, $y \neq 0$.

At this time, since GIE $=0$, other maskable interrupts are disabled. The user is now free to do whatever context switching is required by saving the context of the machine in the stack with PUSH instructions. The user would then program a VIS (Vector Interrupt Select) instruction in order to branch to the interrupt service routine of the highest priority interrupt enabled and pending at the time of the VIS. Note that this is not necessarily the interrupt that caused the branch to address location 00FF Hex prior to the context switching.
Thus, if an interrupt with a higher rank than the one which caused the interruption becomes active before the decision of which interrupt to service is made by the VIS, then the interrupt with the higher rank will override any lower ones and will be acknowledged. The lower priority interrupt(s) are still pending, however, and will cause another interrupt immediately following the completion of the interrupt service routine associated with the higher priority interrupt just serviced. This lower priority interrupt will occur immediately following the RETI (Return from Interrupt) instruction at the end of the interrupt service routine just completed.
Inside the interrupt service routine, the associated pending bit has to be cleared by software. The RETI (Return from Interrupt) instruction at the end of the interrupt service routine will set the GIE (Global Interrupt Enable) bit, allowing the processor to be interrupted again if another interrupt is active and pending.
The VIS instruction looks at all the active interrupts at the time it is executed and performs an indirect jump to the beginning of the service routine of the one with the highest rank.

The addresses of the different interrupt service routines, called vectors, are chosen by the user and stored in ROM in a table starting at 01E0 (assuming that VIS is located between 00FF and 01DF). The vectors are 15 -bit wide and therefore occupy 2 ROM locations.
VIS and the vector table must be located in the same 256byte block ($0 y 00$ to $0 y F F$) except if VIS is located at the last address of a block. In this case, the table must be in the next block. The vector table cannot be inserted in the first 256 -byte block ($y \neq 0$).
The vector of the maskable interrupt with the lowest rank is located at 0yE0 (Hi-Order byte) and 0yE1 (Lo-Order byte) and so forth in increasing rank number. The vector of the maskable interrupt with the highest rank is located at OyFA (Hi-Order byte) and OyFB (Lo-Order byte).
The Software Trap has the highest rank and its vector is located at 0 yFE and 0 yFF .
If, by accident, a VIS gets executed and no interrupt is active, then the PC (Program Counter) will branch to a vector located at $0 y E 0-0 y E 1$. This vector can point to the Software Trap (ST) interrupt service routine, or to another special service routine as desired.
Figure 15 shows the Interrupt block diagram.

SOFTWARE TRAP

The Software Trap (ST) is a special kind of non-maskable interrupt which occurs when the INTR instruction (used to acknowledge interrupts) is fetched from ROM and placed inside the instruction register. This may happen when the PC is pointing beyond the available ROM address space or when the stack is over-popped.

Interrupts (Continued)

When an ST occurs, the user can re-initialize the stack pointer and do a recovery procedure (similar to reset, but not necessarily containing all of the same initialization procedures) before restarting.
The occurrence of an ST is latched into the ST pending bit. The GIE bit is not affected and the ST pending bit (not accessible by the user) is used to inhibit other interrupts and to direct the program to the ST service routine with the VIS instruction. The RPND instruction is used to clear the software interrupt pending bit. This pending bit is also cleared on reset.
The ST has the highest rank among all interrupts.
Nothing (except another ST) can interrupt an ST being serviced.

WATCHDOG

The device contains a WATCHDOG and clock monitor. The WATCHDOG is designed to detect the user program getting stuck in infinite loops resulting in loss of program control or "runaway" programs. The Clock Monitor is used to detect the absence of a clock or a very slow clock below a specified rate on the CKI pin.
The WATCHDOG consists of two independent logic blocks: WD UPPER and WD LOWER. WD UPPER establishes the upper limit on the service window and WD LOWER defines the lower limit of the service window.
Servicing the WATCHDOG consists of writing a specific value to a WATCHDOG Service Register named WDSVR which is memory mapped in the RAM. This value is composed of three fields, consisting of a 2-bit Window Select, a 5-bit Key Data field, and the 1-bit Clock Monitor Select field. Table III shows the WDSVR register.
The lower limit of the service window is fixed at 2048 instruction cycles. Bits 7 and 6 of the WDSVR register allow the user to pick an upper limit of the service window.
Table IV shows the four possible combinations of lower and upper limits for the WATCHDOG service window. This flexibility in choosing the WATCHDOG service window prevents any undue burden on the user software.
Bits 5, 4, 3, 2 and 1 of the WDSVR register represent the 5bit Key Data field. The key data is fixed at 01100. Bit 0 of the WDSVR Register is the Clock Monitor Select bit.

TABLE III. WATCHDOG Service Register (WDSVR)

Window Select		Key Data								
Clock										
Monitor								$	$	X
:---:	X									

TABLE IV. WATCHDOG Service Window Select

WDSVR Bit 7	WDSVR Bit 6	Service Window (Lower-Upper Limits)
0	0	$2 k-8 k t_{c}$ Cycles
0	1	$2 k-16 k t_{c}$ Cycles
1	0	$2 k-32 k t_{c}$ Cycles
1	1	$2 k-64 k t_{c}$ Cycles

Clock Monitor

The Clock Monitor aboard the device can be selected or deselected under program control. The Clock Monitor is guaranteed not to reject the clock if the instruction cycle clock $\left(1 / t_{c}\right)$ is greater or equal to 10 kHz . This equates to a clock input rate on CKI of greater or equal to 100 kHz .

WATCHDOG Operation

The WATCHDOG and Clock Monitor are disabled during reset. The device comes out of reset with the WATCHDOG armed, the WATCHDOG Window Select bits (bits 6, 7 of the WDSVR Register) set, and the Clock Monitor bit (bit 0 of the WDSVR Register) enabled. Thus, a Clock Monitor error will occur after coming out of reset, if the instruction cycle clock frequency has not reached a minimum specified value, including the case where the oscillator fails to start.
The WDSVR register can be written to only once after reset and the key data (bits 5 through 1 of the WDSVR Register) must match to be a valid write. This write to the WDSVR register involves two irrevocable choices: (i) the selection of the WATCHDOG service window (ii) enabling or disabling of the Clock Monitor. Hence, the first write to WDSVR Register involves selecting or deselecting the Clock Monitor, select the WATCHDOG service window and match the WATCHDOG key data. Subsequent writes to the WDSVR register will compare the value being written by the user to the WATCHDOG service window value and the key data (bits 7 through 1) in the WDSVR Register. Table V shows the sequence of events that can occur.
The user must service the WATCHDOG at least once before the upper limit of the service window expires. The WATCHDOG may not be serviced more than once in every lower limit of the service window. The user may service the WATCHDOG as many times as wished in the time period between the lower and upper limits of the service window. The first write to the WDSVR Register is also counted as a WATCHDOG service.
The WATCHDOG has an output pin accociatod with it. This is the WDOUT pin, on pin 1 of the port G. WDOUT is active low. The WDOUT pin is in the high impedance state in the inactive state. Upon triggering the WATCHDOG, the logic will pull the WDOUT (G1) pin low for an additional $16 \mathrm{t}_{\mathrm{c}}$ $32 t_{c}$ cycles after the signal level on WDOUT pin goes below the lower Schmitt trigger threshold. After this delay, the device will stop forcing the WDOUT output low.
The WATCHDOG service window will restart when the WDOUT pin goes high. It is recommended that the user tie the WDOUT pin back to $V_{C C}$ through a resistor in order to pull WDOUT high.
A WATCHDOG service while the WDOUT signal is active will be ignored. The state of the WDOUT pin is not guaranteed on reset, but if it powers up low then the WATCHDOG will time out and WDOUT will enter high impedance state.
The Clock Monitor forces the G1 pin low upon detecting a clock frequency error. The Clock Monitor error will continue until the clock frequency has reached the minimum specified value, after which the G1 output will enter the high impedance TRI-STATE mode following $16 t_{c}-32 t_{c}$ clock cycles. The Clock Monitor generates a continual Clock Monitor error if the oscillator fails to start, or fails to reach the minimum specified frequency. The specification for the Clock Monitor is as follows:
$1 / \mathrm{t}_{\mathrm{c}}>10 \mathrm{kHz}$-No clock rejection.
$1 / \mathrm{t}_{\mathrm{c}}<10 \mathrm{~Hz}$-Guaranteed clock rejection.

WATCHDOG Operation (Continued)

WATCHDOG AND CLOCK MONITOR SUMMARY

The following salient points regarding the WATCHDOG and CLOCK MONITOR should be noted:

- Both the WATCHDOG and CLOCK MONITOR detector circuits are inhibited during RESET.
- Following RESET, the WATCHDOG and CLOCK MONITOR are both enabled, with the WATCHDOG having he maximum service window selected.
- The WATCHDOG service window and CLOCK MONITOR enable/disable option can only be changed once, during the initial WATCHDOG service following RESET.
- The initial WATCHDOG service must match the key data value in the WATCHDOG Service register WDSVR in order to avoid a WATCHDOG error.
- Subsequent WATCHDOG services must match all three data fields in WDSVR in order to avoid WATCHDOG errors.
- The correct key data value cannot be read from the WATCHDOG Service register WDSVR. Any attempt to read this key data value of 01100 from WDSVR will read as key data value of all 0's.
- The WATCHDOG detector circuit is inhibited during both the HALT and IDLE modes.
- The CLOCK MONITOR detector circuit is active during both the HALT and IDLE modes. Consequently, the device inadvertently entering the HALT mode will be detected as a CLOCK MONITOR error (provided that the CLOCK MONITOR enable option has been selected by the program).
- With the single-pin R/C oscillator mask option selected and the CLKDLY bit reset, the WATCHDOG service window will resume following HALT mode from where it left off before entering the HALT mode.
- With the crystal oscillator mask option selected, or with the single-pin R/C oscillator mask option selected and the CLKDLY bit set, the WATCHDOG service window will be set to its selected value from WDSVR following HALT. Consequently, the WATCHDOG should not be serviced for at least 2048 instruction cycles following HALT, but must be serviced within the selected window to avoid a WATCHDOG error.
- The IDLE timer T0 is not initialized with RESET.
- The user can sync in to the IDLE counter cycle with an IDLE counter (TO) interrupt or by monitoring the TOPND flag. The TOPND flag is set whenever the thirteenth bit of the IDLE counter toggles (every 4096 instruction cycles). The user is responsible for resetting the TOPND flag.
- A hardware WATCHDOG service occurs just as the device exits the IDLE mode. Consequently, the WATCHDOG should not be serviced for at least 2048 instruction cycles following IDLE, but must be serviced within the selected window to avoid a WATCHDOG error.
- Following RESET, the initial WATCHDOG service (where the service window and the CLOCK MONITOR enable/ disable must be selected) may be programmed anywhere within the maximum service window $(65,536$ instruction cycles) initialized by RESET. Note that this initial WATCHDOG service may be programmed within the initial 2048 instruction cycles without causing a WATCHDOG error.

Detection of Illegal Conditions

The device can detect various illegal conditions resulting from coding errors, transient noise, power supply voltage drops, runaway programs, etc.
Reading of undefined ROM gets zeros. The opcode for software interrupt is zero. If the program fetches instructions from undefined ROM, this will force a software interrupt, thus signaling that an illegal condition has occurred.
The subroutine stack grows down for each call (jump to subroutine), interrupt, or PUSH, and grows up for each return or POP. The stack pointer is initialized to RAM location 06F Hex during reset. Consequently, if there are more returns than calls, the stack pointer will point to addresses 070 and 071 Hex (which are undefined RAM). Undefined RAM from addresses 070 to 07F (Segment 0), 140 to 17F (Segment 1), and all other segments (i.e., Segments $2 \ldots$ etc.) is read as all 1 's, which in turn will cause the program to return to address 7FFF Hex. This is an undefined ROM location and the instruction fetched (all 0 's) from this location will generate a software interrupt signaling an illegal condition.
Thus, the chip can detect the following illegal conditions:
a. Executing from undefined ROM
b. Over "POP''ing the stack by having more returns than calls.
When the software interrupt occurs, the user can re-initialize the stack pointer and do a recovery procedure before restarting (this recovery program is probably similar to that following reset, but might not contain the same program initialization procedures). The recovery program should reset the software interrupt pending bit using the RPND instruction.

MICROWIRE/PLUS

MICROWIRE/PLUS is a serial synchronous communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e. A/D converters, display drivers, E2PROMs etc.) and with other microcontrollers which support the MICROWIRE interface. It consists of an 8-bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 12 shows a block diagram of the MICROWIRE/PLUS logic.

TL/DD/11214-28
FIGURE 16. MICROWIRE/PLUS Block Diagram
The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS arrangement with the internal clock source is called the Master mode of operation. Similarly, operating the MICROWIRE/PLUS arrangement with an external shift clock is called the Slave mode of operation.
The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. In the master mode, the SK clock rate is selected by the two bits, SLO and SL1, in the CNTRL register. Table VI details the different clock rates that may be selected.

MICROWIRE/PLUS (Continued)

MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. If enabled, an interrupt is generated when eight data bits have been shifted. The device may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 13 shows how two devices, microcontrollers and several peripherals may be interconnected using the MICROWIRE/PLUS arrangements.

Warning:

The SIO register should only be loaded when the SK clock is low. Loading the SIO register while the SK clock is high will result in undefined data in the SIO register. SK clock is normally low when not shifting.
Setting the BUSY flag when the input SK clock is high in the MICROWIRE/PLUS slave mode may cause the current SK clock for the SIO shift register to be narrow. For safety, the BUSY flag should only be set when the input SK clock is low.

MICROWIRE/PLUS Master Mode Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally by the device. The MICROWIRE Master always initiates all data exchanges. The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register. Table VII summarizes the bit settings required for Master mode of operation.

MICROWIRE/PLUS Slave Mode Operation

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must be selected as an input and the SO pin is selected as an output pin by setting and resetting the appropriate bits in the Port G configuration register. Table VII summarizes the settings required to enter the Slave mode of operation.

The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated.

Alternate SK Phase Operation

The device allows either the normal SK clock or an alternate phase SK clock to shift data in and out of the SIO register. In both the modes the SK is normally low. In the normal mode data is shifted in on the rising edge of the SK clock and the data is shifted out on the falling edge of the SK clock. The SIO register is shifted on each falling edge of the SK clock. In the alternate SK phase operation, data is shifted in on the falling edge of the SK clock and shifted out on the rising edge of the SK clock.
A control flag, SKSEL, allows either the normal SK clock or the alternate SK clock to be selected. Resetting SKSEL causes the MICROWIRE/PLUS logic to be clocked from the normal SK signal. Setting the SKSEL flag selects the alternate SK clock. The SKSEL is mapped into the G6 configuration bit. The SKSEL flag will power up in the reset condition, selecting the normal SK signal.

TABLE VII
This table assumes that the control flag MSEL is set.

G4 (SO) Config. Bit	G5 (SK) Config. Bit	G4 Fun.	G5 Fun.	Operation
1	1	SO	Int. SK	MICROWIRE/PLUS Master
0	1	TRI- STATE	Int. SK	MICROWIRE/PLUS Master
1	0	SO	Ext. SK	MICROWIRE/PLUS Slave
0	0	TRI- STATE	Ext. SK	MICROWIRE/PLUS Slave

TL/DD/11214-29
FIGURE 17. MICROWIRE/PLUS Application

Memory Map

All RAM, ports and registers (except A and PC) are mapped into data memory address space.

| Address |
| :--- | :--- |
| S/ADD REG |\quad| Contents |
| :--- |
| 0000 to 006F | On-Chip RAM bytes (112 bytes)

Address S/ADD REG	Contents
xxD0	Port L Data Register
xxD1	Port L Configuration Register
xxD2	Port L Input Pins (Read Only)
xxD3	Reserved for Port L
xxD4	Port G Data Register
xxD5	Port G Configuration Register
xxD6	Port G Input Pins (Read Only)
xxD7	Port I Input Pins (Read Only)
xxD8	Port C Data Register
xxD9	Port C Configuration Register
xxDA	Port C Input Pins (Read Only)
xxDB	Reserved for Port C
xxDC	Port D
xxDD to DF	Reserved for Port D
xxE0 to xxE5	Reserved for EE Control Registers
xxE6	Timer T1 Autoload Register T1RB Lower Byte
xxE7	Timer T1 Autoload Register T1RB Upper Byte
xxE8	ICNTRL Register
xxE9	MICROWIRE/PLUS Shift Register
x \times EA	Timer T1 Lower Byte
xxEB	Timer T1 Upper Byte
xxEC	Timer T1 Autoload Register T1RA Lower Byte
xxED	Timer T1 Autoload Register T1RA Upper Byte
xxEE xxEF	CNTRL Control Register PSW Register
xaro io 「o	On-Chip $\begin{gathered}\text { Fiacivi Mapped as Registers }\end{gathered}$
xxFC	X Register
x XFD	SP Register
xxFE	B Register
xxFF	S Register
0100-017F	On-Chip 128 RAM Bytes

Reading memory locations $0070 \mathrm{H}-007 \mathrm{FH}$ (Segment 0) will return all ones. Reading unused memory locations $0080 \mathrm{H}-00 \mathrm{AFH}$ (Segment 0) will return undefined data. Reading memory locations from other unused Segments (i.e., Segment 2, Segment 3, ... etc.) will return all ones.

Addressing Modes

There are ten addressing modes, six for operand addressing and four for transfer of control.

OPERAND ADDRESSING MODES

Register Indirect

This is the "normal" addressing mode. The operand is the data memory addressed by the B pointer or X pointer.

Register Indirect (with auto post increment or decrement of pointer)

This addressing mode is used with the LD and X instructions. The operand is the data memory addressed by the B pointer or X pointer. This is a register indirect mode that automatically post increments or decrements the B or X register after executing the instruction.

Direct

The instruction contains an 8-bit address field that directly points to the data memory for the operand.

Immediate

The instruction contains an 8 -bit immediate field as the operand.

Short Immediate

This addressing mode is used with the Load B Immediate instruction. The instruction contains a 4-bit immediate field as the operand.

Indirect

This addressing mode is used with the LAID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC) for accessing a data operand from the program memory.

TRANSFER OF CONTROL ADDRESSING MODES

Relative

This mode is used for the JP instruction, with the instruction field being added to the program counter to get the new program location. JP has a range from -31 to +32 to allow a 1 -byte relative jump (JP +1 is implemented by a NOP instruction). There are no "pages" when using JP, since all 15 bits of PC are used.

Absolute

This mode is used with the JMP and JSR instructions, with the instruction field of 12 bits replacing the lower 12 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory segment.

Absolute Long

This mode is used with the JMPL and JSRL instructions, with the instruction field of 15 bits replacing the entire 15 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory space.

Indirect

This mode is used with the JID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC) for accessing a location in the program memory. The contents of this program memory location serve as a partial address (lower 8 bits of PC) for the jump to the next instruction.
Note: The VIS is a special case of the Indirect Transfer of Control addressing mode, where the double byte vector associated with the interrupt is transferred from adjacent addresses in the program memory into the program counter (PC) in order to jump to the associated interrupt service routine.

Instruction Set

Register and Symbol Definition

Registers	
A	8-Bit Accumulator Register
B	8-Bit Address Register
X	8-Bit Address Register
SP	8-Bit Stack Pointer Register
PC	15-Bit Program Counter Register
PU	Upper 7 Bits of PC
PL	Lower 8 Bits of PC
C	1 Bit of PSW Register for Carry
HC	1 Bit of PSW Register for Half Carry
GIE	1 Bit of PSW Register for Global
	Interrupt Enable
VU	Interrupt Vector Upper Byte
VL	Interrupt Vector Lower Byte

Symbols	
[B]	Memory Indirectly Addressed by B Register
[X]	Memory Indirectly Addressed by X Register
MD	Direct Addressed Memory
Mem	Direct Addressed Memory or [B]
Meml	Direct Addressed Memory or [B] or Immediate Data
Imm	8-Bit Immediate Data
Reg	Register Memory: Addresses F0 to FF (Includes B, X and SP)
Bit	Bit Number (0 to 7)
\leftarrow	Loaded with
\longleftrightarrow	Exchanged with

Instruction Set (Continued)

INSTRUCTION SET

ADD	A, Meml	ADD	$A \leftarrow A+$ Meml
ADC	A, Meml	ADD with Carry	$A \leftarrow A+\text { Meml }+C, C \leftarrow \text { Carry }$ $\text { HC } \leftarrow \text { Half Carry }$
SUBC	A,Meml	Subtract with Carry	$A \leftarrow A-\overline{M e m l}+C, C \leftarrow$ Carry HC \leftarrow Half Carry
AND	A, Meml	Logical AND	$\mathrm{A} \leftarrow \mathrm{A}$ and Meml
ANDSZ	A, Imm	Logical AND Immed., Skip if Zero	Skip next if (A and 1 mm$)=0$
OR	A, Meml	Logical OR	$\mathrm{A} \leftarrow \mathrm{A}$ or Meml
XOR	A, Meml	Logical EXclusive OR	A \leftarrow A xor Meml
IFEQ	MD,Imm	IF EQual	Compare MD and Imm, Do next if MD = Imm
IFEQ	A,Meml	IF EQual	Compare A and Meml, Do next if $A=$ Meml
IFNE	A,Meml	IF Not Equal	Compare A and Meml, Do next if $A \neq \mathrm{Meml}$
IFGT	A,Meml	IF Greater Than	Compare A and Meml, Do next if A > Meml
IFBNE	\#	If B Not Equal	Do next if lower 4 bits of $B \neq 1 \mathrm{~mm}$
DRSZ	Reg	Decrement Reg., Skip if Zero	Reg \leftarrow Reg - 1, Skip if Reg $=0$
SBIT	\#,Mem	Set BIT	1 to bit, Mem (bit $=0$ to 7 immediate)
RBIT	\#,Mem	Reset BIT	0 to bit, Mem
IFBIT	\#,Mem	IF BIT	If bit in A or Mem is true do next instruction
RPND		Reset PeNDing Flag	Reset Software Interrupt Pending Flag
X	A,Mem	EXchange A with Memory	$A \longleftrightarrow$ Mem
X	A, $[\mathrm{X}]$	EXchange A with Memory [X]	$A \longleftrightarrow[X]$
LD	A, Meml	LoaD A with Memory	$A \leftarrow M e m l$
LD	A, $[\mathrm{X}]$	LoaD A with Memory [X]	$A \leftarrow[X]$
LD	B,Imm	LoaD B with Immed.	$\mathrm{B} \leftarrow \mathrm{Imm}$
LD	Mem, Imm	LoaD Memory Immed	Mem \leftarrow Imm
LD	Reg, 1 mm	LoaD Register Memory Immed.	Reg $\leftarrow \mathrm{Imm}$
X	A, $[B \pm]$	EXchange A with Memory [B]	$A \longleftrightarrow[B],(B \longleftrightarrow B \pm 1)$
X	A, $[\mathrm{X} \pm$]	EXchange A with Memory [X]	$A \longleftrightarrow[X],(X \leftarrow \pm 1)$
LD	A, $[\mathrm{B} \pm$]	LoaD A with Memory [B]	$A \leftarrow[B],(B \leftarrow B \pm 1)$
LD	A, $\mathrm{X} \pm$]	LoaD A with Memory [X]	$A \leftarrow[X],(X \leftarrow X \pm 1)$
LD	[$\mathrm{B} \pm$], Imm	LoaD Memory [B] Immed.	$[\mathrm{B}] \leftarrow \mathrm{Imm},(\mathrm{B} \leftarrow \mathrm{B} \pm 1)$
CLR	A	CLeaR A	$\mathrm{A} \leftarrow 0$
INC	A	INCrement A	$A \leftarrow A+1$
DEC	A	DECrementA	$A \leftarrow A-1$
LAiD		Luaúá in	$\dot{A} \leftarrow \mathrm{FiOivi}(\mathrm{FU}, \dot{\mathrm{M}})$
DCOR	A	Decimal CORrect A	$A \leftarrow B C D$ correction of A (follows ADC, SUBC)
RRC	A	Rotate A Right thru C	$C \rightarrow A 7 \rightarrow \ldots \rightarrow A 0 \rightarrow C$
RLC	A	Rotate A Left thru C	$C \leftarrow A 7 \leftarrow \ldots \leftarrow A 0 \leftarrow C$
SWAP	A	SWAP nibbles of A	$A 7 \ldots A 4 \longleftrightarrow A 3 \ldots A 0$
SC		Set C	$\mathrm{C} \leftarrow 1, \mathrm{HC} \leftarrow 1$
RC		Reset C	$\mathrm{C} \leftarrow 0, \mathrm{HC} \leftarrow 0$
IFC		IFC	IF C is true, do next instruction
IFNC		IF Not C	If C is not true, do next instruction
POP	A	POP the stack into A	$\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{~A} \leftarrow[\mathrm{SP}]$
PUSH	A	PUSH A onto the stack	[SP] $\leftarrow \mathrm{A}, \mathrm{SP} \leftarrow \mathrm{SP}-1$
VIS		Vector to Interrupt Service Routine	$\mathrm{PU} \leftarrow[\mathrm{VU}], \mathrm{PL} \leftarrow[\mathrm{VL}]$
JMPL	Addr.	Jump absolute Long	$\mathrm{PC} \leftarrow \mathrm{ii}(\mathrm{ii}=15$ bits, 0 to 32 k)
JMP	Addr.	Jump absolute	PC9 ... $0 \leftarrow i(i=12$ bits $)$
JP	Disp.	Jump relative short	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{r}(\mathrm{r}$ is -31 to +32 , except 1$)$
JSRL	Addr.	Jump SubRoutine Long	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow \mathrm{ii}$
JSR	Addr	Jump SubRoutine	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} 9 \ldots 0 \leftarrow \mathrm{i}$
JID		Jump InDirect	$\mathrm{PL} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
RET		RETurn from subroutine	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETSK		RETurn and SKip	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETI		RETurn from Interrupt	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1], \mathrm{GIE} \leftarrow 1$
INTR		Generate an Interrupt	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow 0 \mathrm{FF}$
NOP		No OPeration	$P C \leftarrow P C+1$

Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instructions taking two bytes).
Most single byte instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details.
Bytes and Cycles per Instruction
The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle.

Arithmetic and Logic Instructions			
	[B]	Direct	Immed.
ADD	1/1	3/4	2/2
ADC	1/1	3/4	2/2
SUBC	1/1	3/4	2/2
AND	1/1	3/4	2/2
OR	1/1	3/4	$2 / 2$
XOR	1/1	3/4	$2 / 2$
IFEQ	1/1	3/4	$2 / 2$
IFNE	1/1	3/4	2/2
IFGT	1/1	3/4	2/2
IFBNE	1/1		
DRSZ		1/3	
SBIT	1/1	3/4	
RBIT	1/1	3/4	
IFBIT	1/1	3/4	

Instructions Using A \& C

CLRA	$1 / 1$
INCA	$1 / 1$
DECA	$1 / 1$
LAID	$1 / 3$
DCOR	$1 / 1$
RRCA	$1 / 1$
RLCA	$1 / 1$
SWAPA	$1 / 1$
SC	$1 / 1$
RC	$1 / 1$
IFC	$1 / 1$
IFNC	$1 / 1$
PUSHA	$1 / 3$
POPA	$1 / 3$
ANDSZ	$2 / 2$

Transfer of Control Instructions

JMPL	$3 / 4$
JMP	$2 / 3$
JP	$1 / 3$
JSRL	$3 / 5$
JSR	$2 / 5$
JID	$1 / 3$
VIS	$1 / 5$
RET	$1 / 5$
RETSK	$1 / 5$
RETI	$1 / 5$
INTR	$1 / 7$
NOP	$1 / 1$

```
RPND
1/1
```

	Memory Transfer Instructions					
	Register Indirect		Direct	Immed.	Register Indirect Auto Incr. \& Decr.	
	[B]	[X]			[$B+, B-]$	$[\mathrm{X}+, \mathrm{X}-\mathrm{]}$
X A,*	1/1	1/3	2/3		1/2	1/3
LD A,*	1/1	1/3	$2 / 3$	2/2	1/2	1/3
LD B, Imm				1/1		
LD B, Imm				2/2		
LD Mem, Imm	2/2		3/3		2/2	
LD Reg, Imm			2/3			
IFEQ MD, Imm			3/3			

(IF B < 16)
(IFB>15)

* = > Memory location addressed by B or X or directly.

Opcode Table

Upper Nibble Along X-Axis
Lower Nibble Along Y-Axis

F	E	D	C	B	A	9	8	
JP - 15	JP -31	LD OFO, \# i	DRSZ OFO	RRCA	RC	ADC A, \#i	ADC A, [B]	0
JP - 14	JP -30	LD OF1, \# i	DRSZ 0F1	*	SC	SUBC A, \#i	SUB A, [B]	1
JP - 13	JP -29	LD OF2, \# i	DRSZ OF2	X $A_{1},[X+]$	X $\mathrm{A},[\mathrm{B}+]$	IFEQ A, \# i	IFEQ A, [B]	2
JP - 12	JP -28	LD 0F3, \# i	DRSZ 0F3	X $A,[\mathrm{X}-\mathrm{]}$	X $A,[B-]$	IFGT A, \#i	IFGT A, [B]	3
JP -11	JP -27	LD 0F4, \# i	DRSZ 0F4	VIS	LAID	ADD A, \#i	ADD A,[B]	4
JP - 10	JP -26	LD OF5, \# i	DRSZ 0F5	RPND	JID	AND A, \#i	AND A,[B]	5
JP -9	JP -25	LD OF6, \# i	DRSZ OF6	X A, [X]	X A,[B]	XORA, \#i	XOR A,[B]	6
JP -8	JP -24	LD 0F7, \# i	DRSZ 0F7	*	*	OR A, \#i	OR A, [B]	7
JP-7	JP -23	LD 0F8, \# i	DRSZ OF8	NOP	RLCA	LD A, \#i	IFC	8
JP -6	JP -22	LD 0F9, \# i	DRSZ 0F9	$\begin{aligned} & \text { IFNE } \\ & \mathrm{A},[\mathrm{~B}] \end{aligned}$	IFEQ Md, \#i	$\begin{aligned} & \text { IFNE } \\ & \text { A,\#i } \end{aligned}$	IFNC	9
JP -5	JP -21	LD OFA, \# i	DRSZ OFA	LD A, [$\mathrm{X}+$]	LD A, [B+]	LD [B+],\#i	INCA	A
JP - 4	JP -20	LD OFB, \# i	DRSZ OFB	LD A, [X-]	LD A,[B-]	LD [B-],\#i	DECA	B
JP -3	JP -19	LD OFC, \# i	DRSZ OFC	LD Md, \#i	JMPL	X A,Md	POPA	C
JP -2	JP - 18	LD OFD, \# i	DRSZ OFD	DIR	JSRL	LD A,Md	RETSK	D
JP - 1	JP -17	LD OFE, \# i	DRSZ OFE	LD A, [X]	LD A,[B]	LD [B], \#i	RET	E
JP -0	JP -16	LD OFF, \# i	DRSZ OFF	*	*	LD B, \#i	RETI	F

Opcode Table (Continued)

Upper Nibble Along X-Axis
Lower Nibble Along Y-Axis

7	6	5	4	3	2	1	0	
$\begin{aligned} & \hline \text { IFBIT } \\ & 0,[B] \end{aligned}$	ANDSZ A, \#i	LD B, \# 0F	IFBNE 0	$\begin{aligned} & \text { JSR } \\ & \times 000-x 0 F F \end{aligned}$	$\begin{aligned} & \hline \text { JMP } \\ & \times 000-\times 0 \mathrm{FF} \end{aligned}$	$\mathrm{JP}+17$	INTR	0
$\begin{aligned} & \hline \text { IFBIT } \\ & 1,[B] \end{aligned}$	*	LDB, \# OE	IFBNE 1	$\begin{aligned} & \hline \text { JSR } \\ & \times 100-x 1 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 100-\times 1 F F \end{aligned}$	$\mathrm{JP}+18$	JP + 2	1
$\begin{aligned} & \hline \text { IFBIT } \\ & 2,[B] \end{aligned}$	*	LD B,\#0D	IFBNE 2	$\begin{aligned} & \hline \text { JSR } \\ & \text { x200-x2FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 200-\times 2 F F \end{aligned}$	JP + 19	$J P+3$	2
$\begin{aligned} & \text { IFBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	*	LD B, \#0C	IFBNE 3	$\begin{aligned} & \text { JSR } \\ & \times 300-x 3 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 300-x 3 F F \end{aligned}$	JP + 20	JP + 4	3
$\begin{aligned} & \hline \text { IFBIT } \\ & 4,[B] \end{aligned}$	CLRA	LD B, \# OB	IFBNE 4	$\begin{aligned} & \text { JSR } \\ & \times 400-\times 4 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 400-\times 4 F F \end{aligned}$	JP + 21	$\mathrm{JP}+5$	4
$\begin{aligned} & \hline \text { IFBIT } \\ & 5,[B] \end{aligned}$	SWAPA	LD B, \# OA	IFBNE 5	$\begin{aligned} & \text { JSR } \\ & \times 500-\times 5 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 500-\times 5 F F \end{aligned}$	$J P+22$	$J P+6$	5
$\begin{aligned} & \text { IFBIT } \\ & \text { 6,[B] } \end{aligned}$	DCORA	LD B, \#09	IFBNE 6	$\begin{aligned} & \hline \text { JSR } \\ & \times 600-\times 6 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 600-\times 6 F F \end{aligned}$	$J P+23$	$J P+7$	6
$\begin{aligned} & \hline \text { IFBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	PUSHA	LD B, \#08	IFBNE 7	$\begin{aligned} & \hline \text { JSR } \\ & \text { x700-x7FF } \end{aligned}$	$\begin{aligned} & \hline \text { JMP } \\ & \times 700-x 7 F F \end{aligned}$	JP + 24	JP + 8	7
$\begin{aligned} & \hline \text { SBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	LD B, \#07	IFBNE 8	$\begin{aligned} & \hline \text { JSR } \\ & \times 800-\times 8 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 800-\mathrm{x} 8 \mathrm{FF} \end{aligned}$	$\mathrm{JP}+25$	$J P+9$	8
$\begin{aligned} & \hline \text { SBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	LD B, \#06	IFBNE 9	$\begin{aligned} & \text { JSR } \\ & \text { x900-x9FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x900-x9FF } \end{aligned}$	JP + 26	$\mathrm{JP}+10$	9
$\begin{aligned} & \text { SBIT } \\ & 2,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & \text { 2,[B] } \\ & \hline \end{aligned}$	LD B, \# 05	IFBNE OA	$\begin{aligned} & \text { JSR } \\ & \text { xAOO-xAFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xAOO-xAFF } \end{aligned}$	$\mathrm{JP}+27$	$\mathrm{JP}+11$	A
$\begin{aligned} & \text { SBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	LD B, \#04	IFBNE 0B	$\begin{aligned} & \hline \text { JSR } \\ & \text { xBO0-xBFF } \end{aligned}$	$\begin{aligned} & \hline \text { JMP } \\ & \text { xB00-xBFF } \end{aligned}$	$\mathrm{JP}+28$	$\mathrm{JP}+12$	B
$\begin{aligned} & \text { SBIT } \\ & 4,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & 4,[\mathrm{~B}] \end{aligned}$	LD B, \# 03	IFBNE 0C	$\begin{aligned} & \text { JSR } \\ & \text { xCOO-xCFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \mathrm{xC00}-\mathrm{xCFF} \end{aligned}$	JP + 29	$J P+13$	C
$\begin{aligned} & \hline \text { SBIT } \\ & 5,[B] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & 5,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, \#02	IFBNE OD	$\begin{aligned} & \text { JSR } \\ & \text { xD00-xDFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xD00-xDFF } \end{aligned}$	$\mathrm{JP}+30$	JP + 14	D
$\begin{aligned} & \hline \text { SBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	LD B, \#01	IFBNE 0E	$\begin{aligned} & \hline \text { JSR } \\ & \text { xE00-xEFF } \end{aligned}$	$\begin{aligned} & \hline \text { JMP } \\ & \text { xE00-xEFF } \end{aligned}$	JP + 31	JP + 15	E
$\begin{aligned} & \hline \text { SBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	LD B, \#00	IFBNE OF	$\begin{aligned} & \hline \text { JSR } \\ & \text { xFO0-xFFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xF00-xFFF } \end{aligned}$	$J P+32$	$J P+16$	F

Where,
i is the immediate data
Md is a directly addressed memory location

* is an unused opcode

Note: The opcode 60 Hex is also the opcode for IFBIT \#i,A

Mask Options

The mask programmable options are shown below. The options are programmed at the same time as the ROM pattern submission.
OPTION 1: CLOCK CONFIGURATION
$=1 \quad$ Crystal Oscillator (CKI/l0) G7 (CKO) is clock generator output to crystal/resonator CKI is the clock input
$=2$ Single-pin RC controlled
oscillator (CKI/10)

$$
\begin{array}{rlr}
\text { OPTION 2: } & & \text { HALT } \\
=1 & & \text { Enable HALT mode } \\
=2 & & \text { Disable HALT mode } \\
\text { OPTION } 3 & & \text { BONDING OPTIONS } \\
=1 & & 44 \text {-Pin PLCC } \\
=2 & & 40-\text {-Pin DIP } \\
=3 & & \text { N/A } \\
=4 & & 28-\text {-Pin DIP } \\
=5 & & 28 \text {-Pin SO }
\end{array}
$$

restart and/or general purpose input

Development Support

IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 In-Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface for maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real time, full speed emulation up to $10 \mathrm{MHz}, 32 \mathrm{kBytes}$ of emulation memory and 4 k frames of trace buffer memory. The user may define as many as $32 k$ trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code or address ranges or complex triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as diassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats. During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.

The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bar graph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy to use windowed interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefineable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PC® via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time to under 3 seconds.
The following tables list the emulator and probe cards ordering information.

Emulator Ordering Information

Part Number	Description	Current Version
IM-COP8/400/1 \ddagger	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger software and RS 232 serial interface cable, with 110 V @ 60 Hz Power Supply.	Host Software: Ver. 3.3 Rev. 5, Model File Rev 3.050.
IM-COP8/400/2 \ddagger	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger software and RS 232 serial interface cable, with 220V @ 50 Hz Power Supply.	
DM-COP8/888EG \ddagger	MetaLink iceMASTER Debug Module. This is the low cost version of the MetaLink iceMASTER. Firmware: Ver. 6.07.	

\ddagger These parts include National's COP8 Assembler/Linker/Librarian Package (COP8-DEV-IBMA).
Probe Card Ordering Information

Part Number	Package	Voltage Range	Emulates
MHW-888EG44DWPC	44 PLCC	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888EG
MHW-888EG40DWPC	40 DIP	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888EG
MHW-884EG28DWPC	28 DIP	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP884EG
MHW-SOIC28	28 SO	$28-$ Pin SOIC Adaptor Kit	

Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8	424410632-001
	Assembler/	
	Linker/Librarian	
	for IBM ${ }^{\text {® }}$	
	PC/XT®, AT^{\circledR} or compatible.	

SINGLE CHIP EMULATOR DEVICE

The COP8 family is fully supported by One-Time Programmable (OTP) emulators. For more detailed information refer to the emulation device specific datasheets and the emulator selection table below.

Single Chip Emulator Ordering Information

Device Number	Clock Option	Package	Emulates
COP8788EGV-X COP8788EGV-R*	Crystal R/C	44 PLCC	COP888EG
COP8788EGN-X COP8788EGN-R*	Crystal R/C	40 DIP	COP888EG
COP8784EGN-X COP8784EGN-R*	Crystal R/C	28 DIP	COP884EG
COP8784EGWM-X COP8784EGWM-R*	Crystal R/C	28 SO	COP884EG

*Check with the local sales office about the availability.

Development Support (Continued)

PROGRAMMING SUPPORT

Programming of the single chip emulator devices is supported by different sources. The following programmers are certified for programming these One-Time Programmable emulator devices:

EPROM Programmer Information

Manufacturer and Product	U.S. Phone Number	Europe Phone Number	Asia Phone Number
MetaLinkDebug Module	(602) 926-0797	Germany: $+49-8141-1030$	Hong Kong: 852-737-1800
Xeltek- Superpro	(408) 745-7974	Germany: $+49-2041684758$	Singapore: $+65276-6433$
BP MicrosystemsTurpro	(800) 225-2102	Germany: $\text { +49 } 898576667$	Hong Kong: $+852388-0629$
Data I/O-Unisite -System 29 -System 39	(800) 322-8246	Europe: $+31-20-622866$ Germany: $+49-89-85-8020$	$\begin{aligned} & \text { Japan: } \\ & +33-432-6991 \end{aligned}$
Abcom-COP8 Programmer	- :	Europe: +89808707	
System General-Turpro-1-FX -APRO	(408) 263-6667	Switzerland: $+31-921-7844$	Taiwan: $+2-917-3005$

DIAL-A-HELPER

Dial-A-Helper is a service provided by the Microcontroller Applications group. The Dial-A-Helper is an Electronic Bulle-tin Board Information system.

INFORMATION SYSTEM

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.

If the user has a PC with a communications package then files from the FILE SECTION can be down loaded to disk for later use.

```
ORDER P/N: MOLE-DIAL-A-HLP
Information System Package contains:
    Dial-A-Helper Users Manual
    Public Domain Communications Software
```


FACTORY APPLICATIONS SUPPORT

Dial-A-Helper also provides immediate factor applications support. If a user has questions, he can leave messages on our electronic bulletin board, which we will respond to.

Voice: (800) 272-9959
Modem: CANADA/U.S.: (800) NSC-MICRO
Baud: $\quad 14.4 \mathrm{k}$
Set-up: Length: 8-Bit
Parity: None
Stop Bit: 1
Operation: 24 Hrs., 7 Days

COP888GW

Single-Chip microCMOS Microcontroller

General Description

The COP888 family of microcontrollers uses an 8-bit single chip core architecture fabricated with National Semiconductor's M^{2} CMOSTM process technology. The COP888GW is a member of this expandable 8-bit core processor family of microcontrollers.
(Continued)

Features

- Low cost 8 -bit microcontroller
- Fully static CMOS, with low current drain
- Two power saving modes: HALT and IDLE
- $1 \mu \mathrm{~S}$ instruction cycle time
- 16 kbytes on-board ROM
- 512 bytes on-board RAM
- Single supply operation: $2.5 \mathrm{~V}-6 \mathrm{~V}$
- Full duplex UART
- MICROWIRE/PLUSTM serial I/O
- Idle Timer
- Two 16-bit timers, each with two 16-bit registers supporting:
- Processor independent PWM mode
- External event counter mode
- Input capture mode
- Four pulse train generators with 16-bit prescalers
- Two 16-bit input capture modules with 8-bit prescalers
a Multi-Input Wake Up (MIWU) with optional interrupts (8)
- 8-bit Stack Pointer SP (stack in RAM)
- Two 8-bit register indirect data memory pointers (B and X)
- Fourteen multi-source vectored interrupts servicing
- External Interrupt
- Idle Timer TO
- Two Timers (Each with 2 Interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake Up
- Software Trap
— UART (2)
— Default VIS
- Capture Timers
- Counters (one vector for all four counters)
- Versatile instruction set
- True bit manipulation
- Memory mapped I/O
- BCD arithmetic instructions
- Multiply/Divide Functions
- Software selectable I/O options
- TRI-STATE ${ }^{\text {® }}$ Output
- Push-Pull Output
- Weak Pull-Up Input
- High Impedance Input
- Schmift trigger inputs on ports G and L
- Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Real time emulation and full program debug offered by MetaLink Development System

Block Diagram

General Description (Continued)

It is a fully static part, fabricated using double-metal silicon gate microCMOS technology. Features include an 8 -bit memory mapped architecture, MICROWIRE/PLUS serial I/O, two 16-bit timer/counters supporting three modes (Processor Independent PWM generation, External Event counter and Input Capture mode capabilities), four independent 16 -bit pulse train generators with 16 -bit prescalers, two independent 16 -bit input capture modules with 8 -bit prescalers, multiply and divide functions, full duplex UART, and two power savings modes (HALT and IDLE), both with a multi-
sourced wake up/interrupt capability. This multi-sourced interrupt capability may also be used independent of the HALT or IDLE modes. Each I/O pin has software selectable configurations. The devices operate over a voltage range of $2.5 \mathrm{~V}-6 \mathrm{~V}$. High throughput is achieved with an efficient, regular instruction set operating at a maximum of $1 \mu \mathrm{~s}$ per instruction rate. The device has low EMI emissions. Low radiated emissions are achieved by gradual turn-on output drivers and internal $I_{C C}$ filters on the chip logic and crystal oscillator. The device is available in 68 -pin PLCC package.

Connection Diagram

Top View

Supply Voltage (VCC) Voltage at Any Pin
Total Current into V_{CC} Pin (Source)
Total Current out of GND Pin (Sink)
Storage Temperature Range

7 V
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
100 mA
110 mA
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics COP888GW: $-40^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditlons	Min	Typ	Max	Units
Operating Voltage Power Supply Ripple (Note 1)	Peak-to-Peak	2.5		$\begin{gathered} 6.0 \\ 0.1 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & V \\ & v \end{aligned}$
Supply Current (Note 2) $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \end{aligned}$ HALT Current (Note 3) IDLE Current $\begin{aligned} & \mathrm{CKI}=10 \mathrm{MHz} \\ & \mathrm{CKI}=4 \mathrm{MHz} \end{aligned}$ Input Levels ($\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{ID}}$) RESET, CKI Logic High Logic Low All Other Inputs Logic High Logic Low	$\begin{aligned} & V_{C C}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s} \\ & V_{C C}=2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=2.5 \mu \mathrm{~s} \\ & V_{C C}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \\ & V_{C C}=6 \mathrm{~V} \\ & V_{C C}=2.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	<1	$\begin{array}{r} 10 \\ 1.7 \\ 10 \\ \\ 1.7 \\ 0.4 \end{array}$ $0.2 \mathrm{~V}_{\mathrm{CC}}$ $0.2 \mathrm{~V}_{\mathrm{CC}}$	mA mA $\mu \mathrm{A}$ mA mA V V V V
Hi-Z Input Leakage	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
Input Pullup Current	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-40		-250	$\mu \mathrm{A}$
G Port Input Hysteresis	(Note 6)		$0.05 \mathrm{~V}_{\mathrm{CC}}$	$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels D Outputs Source Sink All Others Source (Weak Pull-Up Mode) Source (Push-Pull Mode) Sink (Push-Pull Mode)	$\begin{aligned} & V_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & V_{\mathrm{CC}}-2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}-1.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \\ & V_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	-0.4 -0.2 10 2.0 -10 -2.5 -0.4 -0.2 1.6 0.7		$\begin{gathered} -100 \\ -33 \end{gathered}$	mA mi mA mA $\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA mA mA
TRI-STATE Leakage	$V_{C C}=6.0 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
Allowable Sink/Source Current per Pin D Outputs (Sink) All others				$\begin{gathered} 15 \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current without Latchup (Note 4, 6)	Room Temp			± 200	mA
RAM Retention Voltage, V_{R} (Note 5)	500 ns Rise and Fall Time (min)	2			V
Input Capacitance	(Note 6)			7	pF
Load Capacitance on D2	(Note 6)			1000	pF

AC Electrical Characteristics COP888GW: $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time (t_{c}) Crystal, Resonator Ceramic	$\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	\cdots	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \end{aligned}$
CKI Clock Duty Cycle (Note 5) Rise Time (Note 5) Fall Time (Note 5)	$\begin{aligned} & f=M a x \\ & f=10 \mathrm{MHz} \text { Ext Clock } \\ & f=10 \mathrm{MHz} \text { Ext Clock } \end{aligned}$	40		$\begin{gathered} 60 \\ 5 \\ 5 \end{gathered}$	\% $\mu \mathrm{s}$ $\mu \mathrm{S}$
Inputs tsetup $t_{\text {HOLD }}$	$\begin{aligned} & V_{C C} \geq 4 V \\ & 2.5 \mathrm{~V} \leq V_{C C}<4 \mathrm{~V} \\ & V_{C C} \geq 4 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq V_{C C}<4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ 60 \\ 150 \\ \hline \end{gathered}$			ns
Output Propagation Delay (Note 8) tpD1 t $_{\text {PDD }}$ SO, SK All Others	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4 \mathrm{~V} \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.7 \\ 1.8 \\ 1 \\ 2.5 \end{gathered}$	$\mu \mathrm{S}$
MICROWIRETM Setup Time (tuws) (Note 6) MICROWIRE Hold Time (tuwh) (Note 6) MICROWIRE Output Propagation Delay (tupd)	$\begin{aligned} & V_{C C} \geq 4 V \\ & V_{C C} \geq 4 V \\ & V_{C C} \geq 4 V \end{aligned}$	$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns
Input Pulse Width (Note 7) Interrupt Input High Time Interrupt Input Low Time Timer 1, 2 Input High Time Timer 1, 2 Input Low Time		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$			${ }^{\text {t }}$
Capture Timer High Time		1			CKI
Capture Timer Low Time		1			CKI
Reset Pause Width		1			t_{c}

Note 1: Maximum rate of voltage change to be defined.
Note 2: Supply current is measured after running 2000 cydes with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillatng. Test conditions: All inputs tied to $V_{C C}, L, C, E, F$, and G port I/O's configured as outputs and programmed low and not driving a load; D outputs programmed low and not driving a load. Parameter refers to HALT mode entered via setting bit 7 of the G Port data register. Part will pull up CKI during HALT in crystal clock mode.
Note 4: Pins G6 and RESET are designed with a high voltage input network. These pins allow input voltages greater than V_{CC} and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$.) The effective resistance to $V_{C C}$ is 750Ω (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 volts. WARNING: Voltages in excess of 14 volts will cause damage to the pins. This warning excludes ESD transients.
Note 5: Condition and parameter valid only for part in HALT mode.
Note 6: Parameter characterized but not tested.
Note 7: $\mathrm{t}_{\mathrm{c}}=$ Instruction Cycle Time
Note 8: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.

Pin Descriptions

$V_{C C}$ and GND are the power supply pins. All $V_{C C}$ and GND pins must be connected.
CKI is the clock input. This comes from a crystal oscillator (in conjunction with CKO). See Oscillator Description section.
RESET is the master reset input. See Reset description section.
The device contains five bidirectional 8 -bit I/O ports (C, E , F, G and L), where each individual bit may be independently configured as an input (Schmitt trigger inputs on ports L and G), output or TRI-STATE under program control. Three data memory address locations are allocated for each of these I/O ports. Each I/O port has two associated 8-bit memory mapped registers, the CONFIGURATION register and the output DATA register. A memory mapped address is also reserved for the input pins of each I/O port. (See the memory map for the various addresses associated with the I/O ports.) Figure 3 shows the I/O port configurations. The DATA and CONFIGURATION registers allow for each port bit to be individually configured under software control as shown below:

Configuration Register	Data Register	Port Set-Up
0	0	Hi-Z Input (TRI-STATE Output)
0	1	Input with Weak Pull-Up
1	0	Push-Pull Zero Output
1	1	Push-Pull One Output

PORT L is an 8 -bit I/O port. All L-pins have Schmitt triggers on the inputs.
The Port L supports Multi-Input Wake Up on all eight pins. L1 is used for the UART external clock. L2 and L3 are used for the UART transmit and receive. L4 and L5 are used for the timer input functions T2A and T2B. L6 and L7 are used for the capture timer input functions CAP1 and CAP2.
The Port L has the following alternate features:

L0	MIWU
L1	MIWU or CKX
L2	MIWU or TDX
L3	MIWU or RDX
L4	MIWU or T2A
L5	MIWU or T2B
L6	MIWU or CAP1
L7	MIWU or CAP2

Port G is an 8 -bit port with $6 \mathrm{I} / \mathrm{O}$ pins (G0-G5), an input pin (G6), and a dedicated output pin (G7). Pins G0-G6 all have Schmitt Triggers on their inputs. Pin G7 serves as the dedicated output pin for the CKO clock output. There are two registers associated with the G Port, a data register and a configuration register. Therefore, each of the 6 I/O bits (G0-G5) can be individually configured under software control.

TL/DD12065-4
FIGURE 3. I/O Port Configurations

Pin Descriptions (Continued)

Since G6 is an input only pin and G7 is dedicated CKO clock output pin, the associated bits in the data and configuration registers for G6 and G7 are used for special purpose functions as outlined below. Reading the G6 and G7 data bits will return zeros.

Note that the chip will be placed in the HALT mode by writing a " 1 " to bit 7 of the Port G Data Register. Similarly the chip will be placed in the IDLE mode by writing a " 1 " to bit 6 of the Port G Data Register.

Writing a " 1 " to bit 6 of the Port G Configuration Register enables the MICROWIRE/PLUS to operate with the alternate phase of the SK clock.

	Config Reg.	Data Reg.
G7	Not Used	HALT
G6	Alternate SK	IDLE

Port G has the following alternate features:
G0 INTR (External Interrupt Input)
G2 T1B (Timer T1 Capture Input)
G3 T1A (Timer T1 I/O)
G4 SO (MICROWIRE Serial Data Output)
G5 SK (MICROWIRE Serial Clock)
G6 SI (MICROWIRE Serial Data Input)
Port G has the following dedicated functions:
G7 CKO Oscillator dedicated output
Ports C and F are 8 -bit I / O ports.
Port E is an 8 -bit I/O port. It has the following alternate features:

E0 CT1 (Output for counter1, Pulse Train Generator)
E1 CT2 (Output for counter2, Pulse Train Generator)
E2 CT3 (Output for counter3, Pulse Train Generator)
E3 CT4 (Output for counter4, Pulse Train Generator)
Port 1 is an eight-bit $\mathrm{Hi}-\mathrm{Z}$ input port.
Port D is an 8 -bit output port that is preset high when RESET goes low. The user can tie two or more D port outputs (except D2) together in order to get a higher drive.

Functional Description

The architecture of the device is modified Harvard architecture. With the Harvard architecture, the control store program memory (ROM) is separated from the data store memory (RAM). Both ROM and RAM have their own separate addressing space with separate address buses. The architecture, though based on Harvard architecture, permits transfer of data from ROM to RAM.

CPU REGISTERS

The CPU can do an 8-bit addition, subtraction, logical or shift operation in one instruction $\left(\mathrm{t}_{\mathrm{c}}\right)$ cycle time.
There are six CPU registers:
A is the 8-bit Aocumulator Register
PC is the 15 -bit Program Counter Register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
B is an 8-bit RAM address pointer, which can be optionally post auto incremented or decremented.

X is an 8-bit alternate RAM address pointer, which can be optionally post auto incremented or decremented.
SP is the 8-bit stack pointer, which points to the subroutine/ interrupt stack (in RAM). The SP is initialized to RAM address 06F with reset.
S is the 8 -bit Data Segment Address Register used to extend the lower half of the address range (00 to 7 F) into 256 data segments of 128 bytes each.
All the CPU registers are memory mapped with the exception of the Accumulator (A) and the Program Counter (PC).

PROGRAM MEMORY

The program memory consists of 16384 bytes of ROM. These bytes may hold program instructions or constant data (data tables for the LAID instruction, jump vectors for the JID instruction, and interrupt vectors for the VIS instruction). The program memory is addressed by the 15 -bit program counter (PC). All interrupts in the devices Vector to program memory location OFF Hex.

DATA MEMORY

The data memory address space includes the on-chip RAM and data registers, the I/O registers (Configuration, Data and Pin), the control registers, the MICROWIRE/PLUS SIO shift register, and the various registers, and counters associated with the timers (with the exception of the IDLE timer). Data memory is addressed directly by the instruction or indirectly by the $B, X, S P$ pointers and S register.
The data memory consists of 512 bytes of RAM. Sixteen bytes of RAM are mapped as "registers" at addresses 0F0 to OFF Hex. These registers can be loaded immediately, and also decremented and tested with the DRSZ (decrement register and skip if zero) instruction. The memory pointer registers $X, S P, B$ and S are memory mapped into this space at address locations OFC to OFF Hex respectively , with the other registers being available for general usage. The instruction set permits any bit in memory to be set, reset or tested. All I/O and registers (except A and PC) are memory mapped; therefore, I/O bits and register bits can be directly and individually set, reset and tested. The accumulator (A) bits can also be directly and individually tested.
Note: RAM contents are undefined upon power-up.

Data Memory Segment RAM Extension

Data memory address OFF is used as a memory mapped location for the Data Segment Address Register (S).
The data store memory is either addressed directly by a single-byte address within the instruction, or indirectly relative to the reference of the B, X, or SP pointers (each contains a single-byte address). This single-byte address allows an addressing range of 256 locations from 00 to FF hex. The upper bit of this single-byte address divides the data store memory into two separate sections as outlined previously. With the exception of the RAM register memory from address locations 00 FO to 00FF, all RAM memory is memory mapped with the upper bit of the single-byte address being equal to zero. This allows the upper bit of the single-byte address to determine whether or not the base address range (from 0000 to 00 FF) is extended. If this upper bit equals one (representing address range 0080 to 00FF), then address extension does not take place. Alternatively, if this upper bit equals zero, then the data segment extension

Data Memory Segment RAM Extension (Continued)

register S is used to extend the base address range (from 0000 to 007F) from XX00 to XX7F, where XX represents the 8 bits from the S register. Thus the 128 -byte data segment extensions are located from addresses 0100 to 017F for data segment 1,0200 to 027F for data segment 2 , etc., up to FF00 to FF7F for data segment 255. The base address range from 0000 to 007F represents data segment 0.
Figure 4 illustrates how the S register data memory extension is used in extending the lower half of the base address range (00 to 7 F hex) into 256 data segments of 128 bytes each, with a total addressing range of 32 kbytes from XX00 to XX7F. This organization allows a total of 256 data segments of 128 -bytes each with an additional upper base segment of 128 bytes. Furthermore, all addressing modes are available for all data segments. The S register must be changed under program control to move from one data segment (128 bytes) to another. However, the upper base segment (containing the 16 memory registers, I/O registers; control registers, etc.) is always available regardless of the contents of the S register, since the upper base segment (address range 0080 to 00FF) is independent of data segment extension.

The instructions that utilize the stack pointer (SP) always reference the stack as part of the base segment (Segment 0), regardless of the contents of the S register. The S register is not changed by these instructions. Consequently, the stack (used with subroutine linkage and interrupts) is always located in the base segment. The stack pointer will be initialized to point at data memory location 006F as a result of reset.
The 128 bytes of RAM contained in the base segment are split between the lower and upper base segments. The first 112 bytes of RAM are resident from address 0000 to 006F in the lower base segment, while the remaining 16 bytes of RAM represent the 16 data memory registers located at addresses 00F0 to 00FF of the upper base segment. No RAM is located at the upper sixteen addresses (0070 to 007 F) of the lower base segment.
Additional RAM beyond these initial 128 bytes, however, will always be memory mapped in groups of 128 bytes (or less) at the data segment address extensions (XX00 to XX7F) of the lower base segment. The additional 384 bytes of RAM in this device are memory mapped at address locations 0100 to $017 \mathrm{~F}^{\circ} 0200$ to 027 F , and 0300 to 037 F hex.

017F		027F	
	SEGMENT 1		SEGMENT 2
	ON-CHIP RAM (128 BYTES)		ON-CHIP RAM (128 BYTES)
0100		0200	

TL/DD/12065-5
*Reads as all ones.

[^7]
Reset

This device enters a reset state immediately upon detecting a logic low on the $\overline{\text { RESET }}$ pin. The $\overline{\text { RESET }}$ pin must be held low for a minimum of one instruction cycle to guarantee a valid reset. During power-up initialization, the user must insure that the RESET pin is held low until this device is within the specified $V_{C C}$ voltage. An R/C circuit on the RESET pin with a delay 5 times (5 x) greater than the power supply rise time is recommended.
When the $\overline{R E S E T}$ input goes low, the I/O ports are initialized immediately, with any observed delay being only propagation delay. When the RESET pin goes high, this device comes out of the reset state synchronously. This device will be running within two instruction cycles of the RESET pin going high.
RESET may also be used to exit this device from the HALT mode.
Some registers are reset to a known state, whereas other registers and RAM are "unchanged". by reset. When the controller goes into reset state while it is performing a write operation to one of these registers or RAM that are "unchanged" by reset, the register or RAM value will become unknown (i.e. not unchanged). This is because the write operation is terminated prematurely by reset and the results become uncertain. These registers and RAM locations are unchanged by reset only if they are not written to when the controller resets.
The following initializations occur with RESET:
Port L: TRI-STATE
Port C: TRI-STATE
Port G: TRI-STATE
Port E: TRI-STATE
Port F: TRI-STATE
Port D: HIGH
PC: CLEARED
PSW, CNTRL and ICNTRL registers: CLEARED
SIOR:
UNAFFECTED after RESET with power aiready applied
RANDOM after RESET at power-on
T1CNTRL: CLEARED
T2CNTRL: CLEARED
TxRA, TxRB: RANDOM
CCMR1, CCMR2: CLEARED
CM1PSC, CM1CRL, CM1CRH, CM2PSC, CM2CRL, and CM2CRH:
UNAFFECTED after RESET with power already applied
RANDOM after RESET at power-on
CCR 1 and CCR2: CLEARED
CXPRH, CXPRL, CXCTH, and CXCTL:
RANDOM after RESET at power-on
PSR, ENUR and ENUI: CLEARED
ENU: CLEARED except Bit 1 (TBMT) $=1$
Accumulator, Timer 1 and Timer 2:
RANDOM after RESET with crystal clock option (power already applied)

UNAFFECTED after RESET with RC clock option (power already applied)
RANDOM after RESET at power-on
MDCR: CLEARED
MDR1, MDR2, MDR3, MDR4, MDR5: RANDOM
WKEN, WKEDG: CLEARED
WKPND: RANDOM
S Register: CLEARED
SP (Stack Pointer): Loaded with 6F Hex
B and X Pointers:
UNAFFECTED after RESET with power already applied RANDOM after RESET at power-on
RAM:
UNAFFECTED after RESET with power already applied RANDOM after RESET at power-on
The external RC network shown in Figure 5 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.

TL/DD12065-6
RC $>5 \times$ POWER SUPPLY RISE TIME
FIGURE 5. Recommended Reset Circuit

Oscillator Circuits

The chip can be driven by a clock input on the CKI input pin which can be between DC and 10 MHz . The CKO output clock is on pin G7 (crystal configuration), The CKI input frequency is divided down by 10 to produce the instruction cycle clock (t_{c}).
Figure 6 shows the Crystal diagram

TL/DD12065-7
FIGURE 6. Crystal Dlagram

CRYSTAL OSCILLATOR

CKI and CKO can be connected to make a closed loop crystal (or resonator) controlled oscillator.

Oscillator Circuits (Continued)

Table I shows the component values required for various standard crystal values.

TABLE I. Crystal Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

R1 $(\mathbf{k} \Omega)$	R2 $(\mathbf{M} \Omega)$	C1 $(\mathbf{p F})$	$\mathbf{C 2}$ $(\mathbf{p F})$	CKI Freq $(\mathbf{M H z})$	Conditions
0	1	30	$30-36$	10	$V_{C C}=5 \mathrm{~V}$
0	1	30	$30-36$	4	$V_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	200	$100-150$	0.455	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

Current Drain

The total current drain of the chip depends on:

1. Oscillator operation mode- 11
2. Internal switching current-l2
3. Internal leakage current-13
4. Output source current-14
5. DC current caused by external input not at $V_{C C}$ or GND-I5

Thus the total current drain, It , is given as

$$
I t=11+12+13+14+15
$$

To reduce the total current drain, each of the above components must be minimum.
The chip will draw more current as the CKI input frequency increases up to the maximum 10 MHz value. Operating with a crystal network will draw more current than an external Square-wave. Switching current, governed by the equation below, can be reduced by lowering voltage and frequency. Leakage current can be reduced by lowering voltage and temperature. The other two items can be reduced by carefully designing the end-user's system.

$$
\mathrm{I} 2=\mathrm{C} \times \mathrm{V} \times \mathrm{f}
$$

where $\mathrm{C}=$ equivalent capacitance of the chip
\checkmark - operaáting vóitago
$f=$ CKI frequency

Control Registers

CNTRL Register (Address X'OOEE)
The Timer1 (T1) and MICROWIRE/PLUS control register contains the following bits:
SL1 \& Select the MICROWIRE/PLUS clock divide by $(00=$
SLO $2,01=4,1 x=8$)
IEDG External interrupt edge polarity select ($0=$ Rising edge, $1=$ Falling edge)
MSEL Selects G5 and G4 as MICROWIRE/PLUS signals SK and SO respectively
T1C0 Timer T1 Start/Stop control in timer modes 1 and 2 T1 Underflow Interrupt Pending Flag in timer mode 3
T1C1 Timer T1 mode control bit
T1C2 Timer T1 mode control bit
T1C3 Timer T1 mode control bit

T1C3	T1C2	T1C1	T1C0	MSEL	IEDG	SL1	SL0
Bit 7							

PSW Register (Address X'OOEF)
The PSW register contains the following select bits:
GIE Global interrupt enable (enables interrupts)
EXEN Enable external interrupt
BUSY MICROWIRE/PLUS busy shifting flag
EXPND External interrupt pending
T1ENA Timer T1 Interrupt Enable for Timer Underflow or T1A Input capture edge
T1PNDA Timer T1 Interrupt Pending Flag (Autoreload RA in mode 1; T1 Underflow in Mode 2, T1A capture edge in mode 3)
C Carry.Flag
HC Half Carry Flag

The Half-Carry flag is also affected by all the instructions that affect the Carry flag. The SC (Set Carry) and RC (Reset Carry) instructions will respectively set or clear both the carry flags. In addition to the SC and RC instructions, ADC, SUBC, RRC and RLC instructions affect the Carry and Half Carry flags.

ICNTRL Register (Address X'00E8)

The ICNTRL register contains the following bits:
T1ENB Timer T1 Interrupt Enable for T1B Input capture edge
T1PNDB Timer T1 Interrupt Pending Flag for T1B capture edge
μ WEN Enable MICROWIRE/PLUS interrupt
μ WPND MICROWIRE/PLUS interrupt pending
TOEN Timer TO Interrupt Enable (Bit 12 toggle)
TOPND Timer TO Interrupt pending
LPEN L Port Interrupt Enable (Multi-Input Wake up/Interrupt)
Bit 7 could be used as a flag

Unused	LPEN	TOPND	TOEN	WPND	WEN	T1PNDB	TIENB
Bit 7				Bit 0			

T2CNTRL Register (Address X'00C6)
The T2CNTRL register contains the following bits:
T2ENB Timer T2 Interrupt Enable for T2B Input capture edge
T2PNDB Timer T2 Interrupt Pending Flag for T2B capture edge
T2ENA Timer T2 Interrupt Enable for Timer Underflow or T2A Input capture edge
T2PNDA Timer T2 Interrupt Pending Flag (Auto reload RA in mode 1, T2 Underflow in mode 2, T2A capture edge in mode 3)
T2C0 Timer T2 Start/Stop control in timer modes 1 and 2 Timer T2 Underflow Interrupt Pending Flag in timer mode 3
T2C1 Timer T2 mode control bit
T2C2 Timer T2 mode control bit
T2C3 Timer T2 mode control bit

T2C3	T2C2	T2C1	T2C0	T2PNDA	T2ENA	T2PNDB	T2ENB
Bit 7							

Timers

The device contains a very versatile set of timers ($T 0, \mathrm{~T} 1$, T2). All timers and associated autoreload/capture registers power up containing random data.

TIMER TO (IDLE TIMER)

The device supports applications that require maintaining real time and low power with the IDLE mode. This IDLE mode support is furnished by the IDLE timer TO, which is a 16 -bit timer. The Timer TO runs continuously at the fixed rate of the instruction cycle clock, t_{c}. The user cannot read or write to the IDLE Timer TO, which is a count down timer. The Timer T0 supports the following functions:

- Exit out of the Idle Mode (See Idle Mode description)
- Start up delay out of the HALT mode

The IDLE Timer TO can generate an interrupt when the thirteenth bit toggles. This toggle is latched into the TOPND pending flag, and will occur every 4 ms at the maximum clock frequency ($\mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$). A control flag TOEN allows the interrupt from the thirteenth bit of Timer TO to be enabled or disabled. Setting TOEN will enable the interrupt, while resetting it will disable the interrupt.

TIMER T1 AND TIMER T2

The device has a set of two powerful timer/counter blocks, T1 and T2. The associated features and functioning of a timer block are described by referring to the timer block Tx. Since the two timer blocks, T1 and T2 are identical, all comments are equally applicable to either of the two timer blocks.
Each timer block consists of a 16 -bit timer, Tx, and two supporting 16-bit autoreload/capture registers, RxA and RxB. Each timer block has two pins associated with it, TxA and TxB. The pin TxA supports I/O required by the timer block, while the pin TxB is an input to the timer block. The powerful and flexible timer block allows the device to easily perform all timer functions with minimal software overhead. The timer block has three operating modes: Processor Independent PWM mode, External Event Counter mode, and Input Capture mode.
The control bits TxC3, TxC2, and TxC1 allow selection of the different modes of operation.

Mode 1. Processor Independent PWM Mode

As the name suggests, this mode allows the device to generate a PWM signal with very minimal user intervention. The
user only has to define the parameters of the PWM signal (ON time and OFF time). Once begun, the timer block will continuously generate the PWM signal completely independent of the microcontroller. The user software services the timer block only when the PWM parameters require updating.
In this mode the timer Tx counts down at a fixed rate of tc. Upon every underflow the timer is alternately reloaded with the contents of supporting registers, $\mathrm{R} \times \mathrm{A}$ and $\mathrm{R} \times \mathrm{B}$. The very first underflow of the timer causes the timer to reload from the register RxA. Subsequent underflows cause the timer to be reloaded from the registers alternately beginning with the register RxB.
The Tx Timer control bits, TxC3, TxC2 and TxC1 set up the timer for PWM mode operation.
Figure 7 shows a block diagram of the timer in PWM mode. The underflows can be programmed to toggle the TXA output pin. The underflows can also be programmed to generate interrupts.
Underflows from the timer are alternately latched into two pending flags, TxPNDA and TxPNDB. The user must reset these pending flags under software control. Two control enable flags, TXENA and TXENB, allow the interrupts from the timer underflow to be enabled or disabled. Setting the timer enable flag TxENA will cause an interrupt when a timer underflow causes the RxA register to be reloaded into the timer. Setting the timer enable flag TxENB will cause an interrupt when a timer underflow causes the RxB register to be reloaded into the timer. Resetting the timer enable flags will disable the associated interrupts.
Either or both of the timer underflow interrupts may be enabled. This gives the user the flexibility of interrupting once per PWM period on either the rising or falling edge of the PWM output. Alternatively, the user may choose to interrupt on both edges of the PWM output.

Mode 2. External Event Counter Mode

This mode is quite similar to the processor independent PWM mode described above. The main difference is that the timer, $T x$, is clocked by the input signal from the TxA pin. The Tx timer control bits, TxC3, TxC2 and TxC1 allow the timer to be clocked either on a positive or negative edge from the TXA pin. Underflows from the timer are latched into the TxPNDA pending flag. Setting the TxENA control flag will cause an interrupt when the timer underflows.

TL/DD12065-8
FIGURE 7. Timer in PWM Mode

Timers (Continued)

In this mode the input pin TxB can be used as an independent positive edge sensitive interrupt input if the TXENB control flag is set. The occurrence of a positive edge on the TxB input pin is latched into the TxPNDB flag.
Figure 8 shows a block diagram of the timer in External Event Counter mode.
Note: The PWM output is not available in this mode since the TXA pin is being used as the counter input clock.

Mode 3. Input Capture Mode

The device can precisely measure external frequencies or time external events by placing the timer block, Tx, in the input capture mode.
In this mode, the timer Tx is constantly running at the fixed t_{c} rate. The two registers, $\mathrm{R} \times \mathrm{A}$ and RxB , act as capture registers. Each register acts in conjunction with a pin. The register RxA acts in conjunction with the TxA pin and the register RxB acts in conjunction with the TxB pin.
The timer value gets copied over into the register when a trigger event occurs on its corresponding pin. Control bits, TxC3, TxC2 and TxC1, allow the trigger events to be specified either as a positive or a negative edge. The trigger condition for each input pin can be specified independently.

The trigger conditions can also be programmed to generate interrupts. The occurrence of the specified trigger condition on the TXA and TxB pins will be respectively latched into the pending flags, TxPNDA and TxPNDB. The control flag TxENA allows the interrupt on TXA to be either enabled or disabled. Setting the TxENA flag enables interrupts to be generated when the selected trigger condition occurs on the TxA pin. Similarly, the flag TxENB controls the interrupts from the TxB pin.
Underflows from the timer can also be programmed to generate interrupts. Underflows are latched into the timer TxCO pending flag (the TxCO control bit serves as the timer underflow interrupt pending flag in the Input Capture mode). Consequently, the TXCO control bit should be reset when entering the Input Capture mode. The timer underflow interrupt is enabled with the TxENA control flag. When a TxA interrupt occurs in the Input Capture mode, the user must check both the TxPNDA and TxC0 pending flags in order to determine whether a TxA input capture or a timer underflow (or both) caused the interrupt.
Figure 9 shows a block diagram of the timer in Input Capture mode.

Timers (Continued)

TIMER CONTROL FLAGS

The timers T1 and T2 have identical control structures. The control bits and their functions are summarized below.

Timer Start/Stop control in Modes 1 and 2 (Processor Independent PWM and External Event Counter), where $1=$ Start, $0=$ Stop Timer Underflow Interrupt Pending Flag in Mode 3 (Input Capture)
TxPNDA Timer Interrupt Pending Flag
TxPNDB Timer Interrupt Pending Flag
TxENA Timer Interrupt Enable Flag
TxENB Timer Interrupt Enable Flag
1 = Timer Interrupt Enabled
$0=$ Timer Interrupt Disabled
TxC3 Timer mode control
TxC2 Timer mode control
TxC1 Timer mode control

The timer mode control bits ($\mathrm{T} x \mathrm{C} 3, \mathrm{TxC2}$ and $\mathrm{TxC1}$) are detailed below:

Capture Timer

This device contains two independent capture timers, Capture Timer 1 and Capture Timer 2. Each capture timer contains an 8 -bit programmable prescaler register, a 16 -bit down counter, a 16 -bit input capture register, and capture edge select logic. The 16 -bit down counter is clocked at a specific frequency determined by the value loaded into the prnscaler register. A selected positive or negative edge transition on the capture input causes the contents of the down counter to be latched into the capture register. The values captured in the registers reflect the elapsed time between two positive or two negative transitions on the capture input. The time between a positive and negative edge (a pulse width) may be measured if the selected capture edge is switched after the first edge is captured. Each capture timer may be stopped/started under software control, and each capture timer may be configured to interrupt the microcontroller on an underflow or input capture.
Figure 10 shows the capture timer 1 block diagram.

TABLE II. Timer Mode Control

TxC3	TxC2	TxC1	Timer Mode	Interrupt A Source	Interrupt B Source	Timer Counts On
0	0	0	MODE 2 (External Event Counter)	Timer Underflow	Positive TxB Edge	TxA Positive Edge
0	0	1	MODE 2 (External Event Counter)	Timer Underflow	Positive TxB Edge	TxA Negative Edge
1	0	1	MODE 1 (PWM) TXA Toggle	Autoreload RA	Autoreload RB	t_{c}
1	0	0	MODE 1 (PWM) No TXA Toggle	Autoreload RA	Autoreload RB	t_{c}
0	1	0	MODE 3 (Capture) Captures: TxA Positive Edge TxB Positive Edge	Positive TxA Edge or Timer Underflow	Positive TxB Edge	t_{c}
1	1	0	MODE 3 (Capture) Captures: TxA Positive Edge TxB Negative Edge	Positive TxA Edge or Timer Underflow	Negative TxB Edge	$\mathrm{t}_{\mathrm{c}}{ }^{\prime}$
0	1	1.	MODE 3 (Capture) Captures: TxA Negative Edge TxB Positive Edge	Negative TxB Edge or Timer Underflow	Positive TxB Edge	t_{c}
1	1	1	MODE 3 (Capture) Captures: TxA Negative Edge TxB Negative Edge	Negative TxA Edge or Timer Underflow	Negative TxB Edge	t_{c}

TL./DD12065-11
FIGURE 10. Capture Timer 1 Block Diagram

The registers shown in the block diagram include those for Capture Timer 1 (CM1), as well as, the capture timer 1 control register. These registers are read/writable (with the exception of the capture registers, which are read-only) and may tó accessed through the úála mieniory auduress/dala bus. The registers are designated as:
CM1PSC Capture Timer 1 Prescaler (8-bit)
CM1CRL Capture Timer 1 Capture Register (Low-byte), read-only
CM1CRH Capture Timer 1 Capture Register (High-byte), read-only
CM2PSC Capture Timer 2 Prescaler (8-bit)
CM2CRL Capture Timer 2 Capture Register (Low-byte), read-only
CM2CRH Capture Timer 2 Capture Register (High-byte), read-only
CCMR1 Control Register for Capture Timer 1
CCMR2 Control Register for Capture Timer 2

CONTROL REGISTER BITS

The control bits for Capture Timer 1 (CM1) and Capture Timer 2 (CM2) are contained in CCMR1 and CCMR2.
The CCMR1 Register Bits are:
CM1RUN CM1 start/stop control bit ($1=$ start; $0=$ stop)
CM1IEN CM1 interrupt enable control bit ($1=$ enable IRQ)
CM1IP1 CM1 interrupt pending bit 1 ($1=$ CM1 underflowed)
CM1IP2 CM1 interrupt pending bit 2 ($1=\mathrm{CM} 1$ captured)
CM1EC Select the active edge for capture on CM1 $(0=$ rising, $1=$ falling)
CM1TM CM1 test mode control bit ($1=$ special test path in test mode. This bit is reserved during normal operation, and must never be set to one.)

CM1	un-	un-	CM1	CM1	CM1	CM1	CM1												
TM	used	used	EC	IP2	IP1	IEN	RUN												
Bit 0																			

All interrupt pending bits must be reset by software.

Timers (Continued)
The CCMR2 Register Bits are:
CM2RUN CM2 start/stop control bit (1 start; $0=$ stop)
CM2IEN CM2 interrupt enable control bit ($1=$ enable IRQ)
CM2IP1 CM2 interrupt pending bit 1 ($1=$ CM2 underflowed)
CM2IP2 CM2 interrupt pending bit $2(1=\mathrm{CM} 2$ captured)
CM2EC Select the active edge for capture on CM2 $(0=$ rising, $1=$ falling)
CM2TM CM2 test mode control bit ($1=$ special test path in test mode. This bit is reserved during normal operation, and must never be set to one.)

CM2 TM	un- used	un- used	CM2 EC	CM2 IP2	CM2 IP1	CM2 IEN	CM RUN
Bit 7							

All interrupt pending bits must be reset by software.

FUNCTIONAL DESCRIPTION

The capture timer is used to determine the time between events, where an event is simply a selected edge transition on the capture input. The resolution of the time measurement is dependent on the frequency at which the down counter is clocked. The value loaded into the prescaler controls this frequency.
The prescaler is clocked by CKI, while the down counter is clocked on every underflow of the prescaler. This means the prescaler simply divides the CKI clock before it is fed into the down counter. The prescaler register must be loaded with a value corresponding to the CKI divisor needed to produce the desired down counter clock. The appropriate prescaler value can be determined using the following equation:
Down Counter Clock Frequency = CKI/(CMxPSC + 1)

The capture input signal is set up by configuring the port pin associated with the capture timer as an input. The edge select bit for the capture input is then set or reset according to the desired transition. If the pin is configured as an input, the appropriate external transition will cause a capture. If the pin is configured as an output, toggling the data register bit will cause a capture. If interrupts are used, the capture timer interrupt pending bits are cleared and the capture timer interrupt enable bit is set. Both interrupt sources, down counter underflow and input capture edge, are enabled/disabled with the same CMxIEN bit. The GIE bit must also be set to enable interrupts. The interrupt signals from the two capture timers are gated to a single 16 -bit interrupt vector located at addresses 0xE6 and 0xE7.
The capture timer is started by writing a " 1 " to the capture timer start/stop bit. Setting this bit also enables the port pin to be the capture input to the capture timer. The internal prescaler is loaded with the contents of the prescaler register, and begins counting down. Setting the start/stop bit also loads the down counter with OFFFF Hex. The prescaler is clocked by CKI. An underflow of the prescaler decrements the 16-bit down counter, and reloads the value from the prescaler register into the prescaler. Each additional underflow of the prescaler decrements the down counter, and reloads the prescaler from the prescaler register.

If a selected edge transition on the input capture pin occurs, the contents of the down counter are immediately latched into the capture register, the down counter is re-initialized to OFFFF Hex, and the capture input pending flag is set. The prescaler counter is not loaded. (In order for an input transition to be guaranteed recognized, the signal on the capture input pin must have a low pulse width and a high pulse width of at least one CKI period.) If interrupts are enabled, the capture timer generates an interrupt. The prescaler and down counter continue to operate until a reset condition occurs or the capture timer start/stop bit is reset. The user must process capture interrupts faster than the capture input frequency, otherwise input captures may be lost or erroneous values may be read.
If the down counter underflows (changes state from 0000 to FFFF) before a capture input is detected, the underflow interrupt pending flag is set. If interrupts are enabled, the capture timer generates an interrupt.
The capture timer may be stopped at any time under software control by resetting the capture timer start/stop bit. A capture may occur before the start/stop bit is physically cleared, due to the fully asynchronous nature of the input capture signal. The user must ensure that the software handles this situation correctly. If the user wishes to process this capture and interrupts are being used, the capture timer interrupts should not be disabled prior to stopping the timer. If interrupts are not being used, the user should poll the capture timer pending bits after stopping the timer. If the user wishes to ignore this capture and interrupts are being used, the capture timer interrupt service routine should check that the timer is still running prior to processing capture interrupts. If the user is polling the pending flags, these flags should be cleared after the timer is stopped. The contents of the prescaler and down counter remain unchanged while the capture timer is stopped. The capture edge detect logic is disabled, and no capture takes place even if an external capture signal occurs. The capture timer may be restarted under software control by writing a " 1 " to the start/stop bit. This causes the prescaler and down counter to be re-initialized. The prescaler is loaded from the prescaler register, and the down counter is loaded with OFFFF Hex.

RESET STATE

A reset signal applied to the counter block during normal operation has the following effects:

- Clear CCMR1 register
- Clear CCMR2 register
- CM1PSC, CMICRL, CM1CRH, CM2PSC, CM2CRL and CM2CRH are unaffected. (At power-on, the contents of these registers are undefined.)
The bi-directional port pins are initialized during reset as HI-Z inputs. Setting the start/stop bits connects the pins to the capture timers.

Timers (Continued)

INITIALIZATION

The user should perform the following initialization prior to starting the capture timer:

1. Reset the CMxRUN bit
2. Configure the corresponding Port bits as inputs
3. Set the edge control bits CMxEC
4. Reset CMxIP1 (CMxIP1 = 0)
5. Reset CMxIP2 $(C M x I P 2=0)$
6. Load the 8 -bit prescaler register CMxPSC with the desired value (from 0 to 255)
7. Set CMxIEN (if interrupts are to be used)
8. Set the Global Interrupt Enable (GIE) bit (if interrupts are to be used)
9. Set CMxRUN bit to start the capture timer

WARNING

In order to avoid erroneous interrupts, the capture timer interrupts must be disabled prior to setting/resetting the capture edge control bits (CMxEC). In addition, after selecting the interrupt edge, the pending flags must be reset before the capture interrupts are enabled or re-enabled. If the initialization sequence outlined above is followed each time the user alters the edge control bits, the user is guaranteed to avoid erroneous interrupts.

Pulse Train Generators

This device contains four independent pulse train generators. Each individual generator is controlled by a corresponding 16 -bit counter. Each counter has a 16 -bit prescaler and a 16-bit count register. Each counter may be configured to output a selected number of 50% duty cycle pulses. The contents of the prescaler determine the width of the output pulses, and the value of the count register determines the number of pulses. Each counter may be stopped/ started under software control, and each counter may be configured to interrupt the microcontroller on an underflow. Figure 11 shows the pulse train generator 1 block diagram.

TL/DD12065-12
FIGURE 11. Pulse Train Generator 1 Block Diagram

Pulse Train Generators (Continued)

The four 8 -bit registers shown in each individual counter in the block diagram constitute a 16 -bit prescaler and a 16 -bit count register. These registers are all read/writable and may be accessed through the data memory address/data bus. The registers are designated as:
CxPRL Low-byte of the Prescaler
CxPRH High-byte of the Prescaler
CxCTL Low-byte of the Count Register
CxCTH High-byte of the Count Register

CONTROL REGISTER BITS

The control bits for Counter 1 and Counter 2 are contained in the CCR1 register. The CCR1 Register bits are:
C1RUN COUNTER1 start/stop control bit (1 = start; $0=$ stop)
CIIEN COUNTER1 interrupt enable control bit (1 = enable IRQ)
C1IPND COUNTER1 interrupt pending bit (1 counter 1 underflowed)
C1TM COUNTER1 test mode control bit ($1=$ special test path in test mode. This bit is reserved during normal operation, and must never be set to one.)
C2RUN COUNTER2 start/stop control bit (1 = start; $0=$ stop)
C2IEN COUNTER2 interrupt enable control bit (1 = enable IRQ)
C2IPND COUNTER2 interrupt pending bit ($1=$ counter 2 underflowed)
C2TM COUNTER2 test mode control bit ($1=$ special test path. This bit is reserved during normal operation, and must never be set to one.)
All interrupt pending bits must be reset by software.

C2TM	C2 IPND	C2 IEN	C2 RUN	C1TM	C1	C1	C1		
IPND									IEN
:---:	RUN	Bit 0							
:---:									

The control bits for Counter 3 and Counter 4 are contained in the CCR2 register. The CCR2 Register bits are:
C3RUN COUNTER3 start stop control bit (1 = start; $0=$ stop)
C3IEN COUNTER3 interrupt enable control bit ($1=$ enable IRQ)
C3IPND COUNTER3 interrupt pending Bit (1=counter 3 underflowed)
C3TM COUNTER3 test mode control bit ($1=$ special test path. This bit is reserved during normal operation, and must never be set to one.)
C4RUN COUNTER4 start/stop control bit (1 = start; $0=$ stop)

C4IEN COUNTER4 interrupt enable control bit (1 = enable IRQ)
C4IPND COUNTER4 interrupt pending bit ($1=$ counter 4 underflowed
C4TM COUNTER4 test mode control bit ($1=$ special test path. This bit is reserved during normal operation, and must never be set to one.)

C4TM	C4	C4	C4	C3TM	C3	C3	C3
	IPND	IEN	RUN				

All interrupt pending bits must be reset by software.

FUNCTIONAL DESCRIPTION

The pulse train generator may be used to produce a series of output pulses of a given width. The high/low time of a pulse is determined by the contents of the prescaler. The number of pulses in a series is determined by the contents of the count register.
The prescaler is loaded with a value corresponding to the desired width of the output pulse (t_{w}). The high time and low time of the output signal are each equal to t_{w}, therefore the output signal produced has a 50% duty cycle and a period equal to 2 * t_{w}. The appropriate prescaler value can be determined using the following equation:

$$
t_{w}=\left[\left(P R H^{*} 256\right)+P R L+1\right] * t_{c}
$$

Since PRH and PRL are both 8 -bit registers, this equation allows a maximum t_{w} of $65536 t_{c}$ and a minimum t_{w} of one t_{c}. The internal prescaler is automatically loaded from PRH and PRL when the counter start/stop bit is set.
The count register is loaded with a value corresponding to the desired number of output pulses. The appropriate count value is calculated with the following equation:

$$
\text { Number of Pulses }=\mathrm{CTH} * 256+\mathrm{CTL}+1
$$

The port pin associated with the counter OUT signal is configured in software as an output, and preset to the desired start logic level. If interrupts are to be used, the counter interrupt pending bit is cleared and the interrupt enable bit is set. The GIE bit must also be set to enable interrupts. The interrupt signals from the four counters are gated to a single interrupt vector located at addresses 0xF0-0xF1.
The counter is started by writing a " 1 " to the counter start/ stop bit. This resets the divide-by-2 counter which produces the clock signal for the counter register from the prescaler underflow (See Figure 11). It also reloads the internal prescaler and starts the prescaler counting down on the next rising edge of t_{c}. The prescaler is clocked on the rising edge of t_{c} to ensure synchronization. Each subsequent rising edge of t_{c} causes the prescaler to be decremented. When the prescaler underflows, UFL1 is generated (see Figure 12). This signal causes the port pin to toggle. In addition, the internal prescaler is reloaded with the value from the PRH and PRL registers. Each additional underflow of the prescaler causes the port pin to toggle and reloads the internal prescaler.
Every second underflow of the prescaler generates the signal UFL2. (UFL2 occurs at half the frequency of UFL1, or once per output pulse.) This signal, UFL2, decrements the count register. Therefore, the count registers are decremented once per output pulse.

Pulse Train Generators (Continued)

The underflow of the counter register produces the signal UFL3. This signal stops the counter by resetting the counter start/stop bit, and sets the counter interrupt pending flag. If the counter interrupt is enabled, an interrupt occurs.
The counter may be stopped at any time under software control by resetting the counter start/stop bit. The contents of the count register and the output on the associated port pin are frozen. The counter may be restarted under software control by setting the start/stop bit. The internal prescaler is automatically reloaded from PRH and PRL when the counter start/stop bit is set, therefore a full width pulse will be generated before the output is toggled. The user may also choose to alter the logic level on the port pin before restarting. This is done by initializing the associated port pin data register bit. A counter underflow may occur before the start/ stop bit is physically cleared by software. The user must ensure that the software handles this situation correctly. If the user wishes to process this underflow and interrupts are being used, the counter interrupts should not be disabled prior to stopping the timer. If interrupts are not being used, the user should poll the counter pending bits after stopping the timer. If the user wishes to ignore this underflow and interrupts are being used, the counter interrupt should be disabled prior to stopping the timer. If the user is polling the pending flags, these flags should be cleared after the timer is stopped.
If the default level of the output pin is high (associated port data register bit is set to " 1 ") and the counter is stopped during a low level, the low level becomes the default level. The software must reinitialize the port pin to a high level before restarting if necessary. The programmer may also have to adjust the counter value (See Figure 12).

RESET STATE

A reset signal applied to the pulse train generator block during normal operation has the following effects:

- Counting stops immediately
- interrupt enable bit is reset to zero
- Counter start/stop bit is reset to zero
- Interrupt pending bit is reset to zero
- Test mode control bit is reset to zero
- PRL, PRH, CTL and CTH are unaffected (At power-on reset, the contents of the prescaler and count register are undefined.)
- Divide-by-2 counter is reset
- The bi-directional port pins are initialized during reset as $\mathrm{HI}-\mathrm{Z}$ inputs. The appropriate bits must be initialized as outputs, in order to route the Counter OUT signals to the port pins.

INITIALIZATION

The user should perform the following initialization prior to starting the counter:

1. Load PRL register
2. Load PRH register
3. Load CTL register
4. Load CTH register
5. Reset CxIPND bit
6. Set CxIEN (if interrupt is to be used)
7. Configure the associated port bit as an output (if OUT is to be used)
8. Set the Global Interrupt Enable (GIE) bit (if interrupt is to be used)
9. Set CxRUN bit to start counter

Multiply/Divide

This device contains a multiply/divide block. This block supports a 1 byte $\times 2$ bytes (3 bytes result) multiply or a 3 bytes/ 2 bytes (2 bytes result) divide operation. The multiply or divide operation is executed by setting control bits located in the multiply/divide control register. The multiply or divide operands must be placed into the appropriate memory mapped locations before the operation is initiated.
Figure 13 contains the block diagram of the multiply/divide blocin. it shiowis the regisiers conlained within the muitiply/ divide block.
The registers shown in the block diagram are assigned according to Table III.

TL/DD12065-13
FIGURE 12. Timing Diagram for $P R L=1, P R H=0, C T L=3, C T H=0$

Multiply/Divide (Continued)

TL/DD12065-14
FIGURE 13. Multiply/Divide Block Diagram
TABLE III. Multiply/Divide Registers

Register Name (Address)	Multiplication Assignment		Division Assignment	
	Before Operation	After Operation	Before Operation	After Operation
MDR1 (xx98)	Unused	Unchanged	Low byte of dividend	Low byte of result
MDR2 (xx99)	Multiplier	Low byte of result	Middle byte of dividend	High byte of result
MDR3 (xx9A)		Middle byte of result	High byte of dividend	Undefined
MDR4 (xx9B)	Low byte of multiplicand	High byte of result	Low byte of divisor	Low byte of divisor
MDR5 (x99C)	High byte of multiplicand	Unchanged	High byte of divisor	High byte of divisor

Multiply/Divide (Continued)

CONTROL REGISTER BITS

The Multiply/Divide control register (MDCR) is located at address xx9D. It has the following bit assignments:
MULT Start Multiplication Operation ($1=$ start)
DIV Start Division Operation (1 = start)
DIVOVF Division Overflow (if the result of a division is greater than 16 bits or the user attempted to divide by zero; 1 = error)

Rsvd	Rsvd	Rsvd	Rsvd	Rsvd	DIV OVF	DIV	MULT
Bit 7							

After the appropriate MDR registers are loaded, the MULT and DIV start bits are set by the user to start a multiply or divide operation. The division operation has priority, if both bits are set simultaneously. The MULT and DIV bits are BOTH automatically cleared by hardware at the end of a divide or multiply operation. Each division operation causes the DIVOVF flag to be set/reset as appropriate. The DIVOVF flag is cleared following a multiplication operation. DIVOVF is a read-only bit. The MULT and DIV bits are read/ writable. Bits 3-7 in MDCR should not be used, as the MULT and DIV operations will change their values.

MULTIPLY/DIVIDE OPERATION

For the multiply operation, the multiplicand is placed at addresses xx 9 B and xx 9 C . The multiplier is placed at address xx99. For the divide operation, the dividend is placed at addresses $x \times 98$ to $\mathrm{xx9A}$ and the divisor is placed at addresses xx9B to xx9C. In both operations, all operands are interpreted as unsigned values. The divide or multiply operation is started by setting the appropriate MDCR bit. If both the MULT and DIV bits are set, the microcontroller performs a divide operation. (The user is not required to read or clear the DIVOVF error bit prior to beginning a new multiply/divide operation. This bit is ignored during subsequent operations. However, tio nexl cuivide operation wiil overwrite the error flag as appropriate, and the next multiply operation will clear it.)
The multiply operation requires 1 instruction cycle to complete. The divide operation requires 2 instruction cycles to complete. A divide by zero or a division which produces an overflow requires only 1 instruction cycle to execute. The MDR1 through MDR5 registers and the MDCR register can not be read from or written to during a multiply or divide operation. Any attempt to write into these registers will be ignored. Any attempt to read these registers will return undefined data.
The result of a multiply is placed in addresses $x x 99-x x 9 B$. The result of a divide is placed in addresses $x \times 98-x \times 99$. If a division by zero is attempted or if the resulting quotient of a divide operation is more than 16 bits long, then the DIVOVF bit is set in the multiply/divide control register. The dividend and the divisor are left unchanged. The divide operation always causes the DIVOVF flag to be set or reset as appropriate. The DIVOVF flag is cleared following a multiply operation.

RESET STATE

A reset signal applied to the device during normal operation has the following affects:
MDCR is cleared, and any operation in progress is stopped. MDR1 through MDR5 are undefined.

Power Save Modes

The device offers the user two power save modes of operation: HALT and IDLE. In the HALT mode, all microcontroller activities are stopped. In the IDLE mode, the on-board oscillator circuitry and timer TO are active but all other microcontroller activities are stopped. In either mode, all on-board RAM, registers, I/O states, and timers (with the exception of TO) are unaltered.

HALT MODE

The device can be placed in the HALT mode by writing a "1" to the HALT flag (G7 data bit). All microcontroller activities, including the clock and timers, are stopped. In the HALT mode, the power requirements of the device are minimal and the applied voltage (V_{CC}) may be decreased to V_{r} $\left(V_{r}=2.0 \mathrm{~V}\right)$ without altering the state of the machine.
The device supports two different ways of exiting the HALT mode. The first method of exiting the HALT mode is with the Multi-Input Wakeup feature on the L port. The second method of exiting the HALT mode is by pulling the RESET pin low.
Since a crystal or ceramic resonator may be selected as the oscillator, the Wakeup signal is not allowed to start the chip running immediately since crystal oscillators and ceramic resonators have a delayed start up time to reach full amplitude and frequency stability. The IDLE timer is used to generate a fixed delay to ensure that the oscillator has indeed stabilized before allowing instruction execution. In this case, upon detecting a valid Wakeup signal, only the oscillator circuitry is enabled. The IDLE timer is loaded with a value of 256 and is clocked with the t_{c} instruction cycle clock. The t_{c} clock is derived by dividing the oscillator clock down by a factor of 10. The Schmitt trigger following the CKI inverter on the chip ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.
The devices have two mask options associated with the HALT mode. The first mask option enables the HALT mode feature, while the second mask option disables the HALT mode. With the HALT mode enable mask option, the device will enter and exit the HALT mode as described above. With the HALT disable mask option, the device cannot be placed in the HALT mode (writing a " 1 " to the HALT flag will have no effect, the HALT flag will remain " 0 ").

IDLE MODE

The device is placed in the IDLE mode by writing a " 1 " to the IDLE flag (G6 data bit). In this mode, all activities, except the associated on-board oscillator circuitry and the IDLE Timer TO, are stopped.

Power Save Modes (Continued)

As with the HALT mode, the device can be returned to normal operation with a reset, or with a Multi-Input Wake up from the L Port. Alternately, the microcontroller resumes normal operation from the IDLE mode when the thirteenth bit (representing 4.096 ms at internal clock frequency of $10 \mathrm{MHz}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$) of the IDLE Timer toggles.
This toggle condition of the thirteenth bit of the IDLE Timer TO is latched into the TOPND pending flag.
The user has the option of being interrupted with a transition on the thirteenth bit of the IDLE Timer TO. The interrupt can be enabled or disabled via the TOEN control bit. Setting the TOEN flag enables the interrupt and vice versa.
The user can enter the IDLE mode with the Timer TO interrupt enabled. In this case, when the TOPND bit gets set, the device will first execute the Timer TO interrupt service routine and then return to the instruction following the "Enter Idle Mode" instruction.

Alternatively, the user can enter the IDLE mode with the IDLE Timer TO interrupt disabled. In this case, the device will resume normal operation with the instruction immediately following the "Enter IDLE Mode" instruction.
Note: It is necessary to program two NOP instructions following both the set HALT mode and set IDLE mode instructions. These NOP instructions are necessary to allow clock resynchronization following the HALT or IDLE modes.

Multi-Input Wakeup

The Multi-Input Wake Up feature is used to return (wake up) the device from either the HALT or IDLE modes. Alternately Multi-Input Wake Up/Interrupt feature may also be used to generate up to 8 edge selectable external interrupts.
Figure 14 shows the Multi-Input Wake Up logic.

INTERNAL DATA BUS

FIGURE 14. Muiti-Input Wake Up Logic

Multi-Input Wakeup (Continued)

The Multi-Input Wake Up feature utilizes the L Port. The user selects which particular L port bit (or combination of L Port bits) will cause the device to exit the HALT or IDLE modes. The selection is done through the register WKEN. The register WKEN is an 8 -bit read/write register, which contains a control bit for every L port bit. Setting a particular WKEN bit enables a Wake Up from the associated L port pin.
The user can select whether the trigger condition on the selected L Port pin is going to be either a positive edge (low to high transition) or a negative edge (high to low transition). This selection is made via the register WKEDG, which is an 8 -bit control register with a bit assigned to each L Port pin. Setting the control bit will select the trigger condition to be a negative edge on that particular L Port pin. Resetting the bit selects the trigger condition to be a positive edge. Changing an edge select entails several steps in order to avoid a Wake Up condition as a result of the edge change. First, the associated WKEN bit should be reset, followed by the edge select change in WKEDG. Next, the associated WKPND bit should be cleared, followed by the associated WKEN bit being reenabled.
An example may serve to clarify this procedure. Suppose we wish to change the edge select from positive (low going high) to negative (high going low) for L Port bit 5, where bit 5 has previously been enabled for an input interrupt. The program would be as follows:

RBIT	5,	WKEN
SBIT	5,	WKEDG
RBIT	5,	WKPND
SB1T	5,	WKEN

If the L port bits have been used as outputs and then changed to inputs with Multi-Input Wake Up/Interrupt, a safety procedure should also be followed to avoid wakeup conditions. After the selected L port bits have been chaniged from ouiput to inpul iul beiore the associated WKEN bits are enabled, the associated edge select bits in WKEDG should be set or reset for the desired edge selects, followed by the associated WKPND bits being cleared,
This same procedure should be used following reset, since the L port inputs are left floating as a result of reset.

The occurrence of the selected trigger condition for Multi-Input Wake Up is latched into a pending register called WKPND. The respective bits of the WKPND register will be set on the occurrence of the selected trigger edge on the corresponding Port L pin. The user has the responsibility of clearing these pending flags. Since WKPND is a pending register for the occurrence of selected wake up conditions, the device will not enter the HALT mode if any Wake Up bit is both enabled and pending. Consequently, the user must clear the pending flags before attempting to enter the HALT mode.
WKEN, WKPND and WKEDG are all read/write registers, and are cleared at reset.

PORT L INTERRUPTS

Port L provides the user with an additional eight fully selectable, edge sensitive interrupts which are all vectored into the same service subroutine.
The interrupt from Port L shares logic with the wake up circuitry. The register WKEN allows interrupts from Port L to be individually enabled or disabled. The register WKEDG specifies the trigger condition to be either a positive or a negative edge. Finally, the register WKPND latches in the pending trigger conditions.
The GIE (Global Interrupt Enable) bit enables the interrupt function.
A control flag, LPEN, functions as a global interrupt enable for Port L interrupts. Setting the LPEN flag will enable interrupts and vice versa. A separate global pending flag is not needed since the register WKPND is adequate.
Since Port L is also used for waking the device out of the HALT or IDLE modes, the user can elect to exit the HALT or IDLE modes either with or without the interrupt enabled. If he elects to disable the interrupt, then the device will restart execution from the instruction immediately following the instruction that placed the microcontroller in the HALT or IDLE modes. In the other case, the device will first evecute the interrupt service routine and then revert to normal operation. (See HALT MODE for clock option wake up information.)

UART

The device contains a full-duplex software programmable UART. The UART (Figure 15) consists of a transmit shift register, a receive shift register and seven addressable registers, as follows: a transmit buffer register (TBUF), a receiver buffer register (RBUF), a UART control and status register (ENU), a UART receive control and status register (ENUR), a UART interrupt and clock source register (ENUI), a prescaler select register (PSR) and baud (BAUD) register. The ENU register contains flags for transmit and receive functions; this register also determines the length of the data frame (7,8 or 9 bits), the value of the ninth bit in transmission, and parity selection bits. The ENUR register flags
framing, data overrun and parity errors while the UART is receiving.
Other functions of the ENUR register include saving the ninth bit received in the data frame, enabling or disabling the UART's attention mode of operation and providing additional receiver/transmitter status information via RCVG and XMTG bits. The determination of an internal or external clock source is done by the ENUI register, as well as selecting the number of stop bits and enabling or disabling transmit and receive interrupts. A control flag in this register can also select the UART mode of operation: asynchronous or synchronous.

FIGURE 15. UART Block Diagram

UART (Continued)

UART CONTROL AND STATUS REGISTERS

The operation of the UART is programmed through three registers: ENU, ENUR and ENUI. The function of the individual bits in these registers is as follows:
ENU-UART Control and Status Register (Address at OBA)

PEN	PSEL1	XBIT9/	CHL1	CHLO	ERR	RBFL	TBMT
OSELO							
ORW	ORW	ORW	ORW	ORW	OR	OR	IR
Bit 7							

ENUR-UART Receive Control and Status Register (Address at $O B B$)

DOE	FE	PE	SPARE	RBIT9	ATTN	XMTG	RCVG
ORD	ORD	ORD	ORW**	OR	ORW	OR	OR
Bit 7							

ENUI-UART Interrupt and Clock Source Register (Address at OBC)

STP2	STP78	ETDX	SSEL	XRCLK	XTCLK	ERI	ETI
ORW	ORW	ORW	ORW	ORW	ORW	ORW	ORW
Bit 7 7							

* Bit is not used.
$0 \quad$ Bit is cleared on reset.
1 Bit is set to one on reset.
R Bit is read-only; it cannot be written by software.
RW Bit is read/write.
D Bit is cleared on read; when read by software as a one, it is cleared automatically. Writing to the bit does not affect its state.

DESCRIPTION OF UART REGISTER BITS

ENU—UART CONTROL AND STATUS REGISTER

TBMT: This bit is set when the UART transfers a byte of data from the TBUF register into the TSFT register for transmission. It is automatically reset when software writes into the TBUF register.
RBFL: This bit is set when the UART has received a complete character and has copied it into the RBUF register. It is automatically reset when software reads the character from RBUF.
ERR: This bit is a global UART error flag which gets set if any or a combination of the errors (DOE, FE, PE) occur.
CHL1, CHLO: These bits select the character frame format. Parity is not included and is generated/verified by hardware.
$\mathrm{CHL} 1=0, \mathrm{CHLO}=0$ The frame contains eight data bits.
CHL1 $=0$, CHLO $=1$ The frame continues seven data bits.
$\mathrm{CHL} 1=1, \mathrm{CHLO}=0$ The frame continues nine data bits.
CHL1 $=1$, CHLO $=1$ Loopback Mode selected. Transmitter output internally looped back to receiver input. Nine bit framing format is used.

XBIT9/PSELO: Programs the ninth bit for transmission when the UART is operating with nine data bits per frame. For seven or eight data bits per frame, this bit in conjunction with PSEL1 selects parity.
PSEL1, PSELO: Parity select bits.
PSEL1 $=0$, PSELO $=0$ Odd Parity (if Parity enabled)
PSEL1 $=0$, PSEL1 $=1$ Odd Parity (if Parity enabled)
PSEL1 $=1$, PSEL0 $=0 \operatorname{Mark}(1)$ (if Parity enabled)
PSEL1 $=1$, PSEL1 $=1$ Space(0) (if Parity enabled)
PEN: This bit enables/disables Parity (7 - and 8 -bit modes only).
PEN $=0$ Parity disabled.
PEN $=1$ Parity enabled.

ENUR—UART RECEIVE CONTROL AND STATUS REGISTER

RCVG: This bit is set high whenever a framing error occurs and goes low when RDX goes high.
XMTG: This bit is set to indicate that the UART is transmitting. It gets reset at the end of the last frame (end of last Stop bit).
ATTN: ATTENTION Mode is enabled while this bit is set. This bit is cleared automatically on receiving a character with data bit nine set.
RBIT9: Contains the ninth data bit received when the UART is operating with nine data bits per frame.
SPARE: Reserved for future use.
PE: Flags a Parity Error.
$P E=0$ Indicates no Parity Error has been detected since the last time the ENUR register was read.
PE = 1 Indicates the occurrence of a Parity Error.
FE: Flags a Framing Error.
FE $=0$ Indicates no Framing Error has been detected since the last time the ENUR register was read.
$\mathrm{FE}=1$ Indicates the occurrence of a Framing Error.
DOE: Flags a Data Overrun Error.
DOE $=0$ Indicates no Data Overrun Error has been detected since the last time the ENUR register was read.
DOE $=1$ Indicates the occurrence of a Data Overrun Error.

ENUI-UART INTERRUPT AND CLOCK SOURCE REGISTER

ETI: This bit enables/disables interrupt from the transmitter section.
ETI $=0$ Interrupt from the transmitter is disabled.
ETI = 1 Interrupt from the transmitter is enabled.
ERI: This bit enables/disables interrupt from the receiver section.

UART (Continued)

ERI $=0$ Interrupt from the receiver is disabled.
$E R I=1$ Interrupt from the receiver is enabled.
XTCLK: This bit selects the clock source for the transmitter section.
XTCLK $=0$ The clock source is selected through the PSR and BAUD registers.
XTCLK $=1$ Signal on CKX (L1) pin is used as the clock.
XRCLK: This bit selects the clock source for the receiver section.
XRCLK $=0$ The clock source is selected through the PSR and BAUD registers.
XRCLK $=1$ Signal on CKX (L1) pin is used as the clock.
SSEL: UART mode select.
SSEL = 0 Asynchronous Mode.
SSEL = 1 Synchronous Mode.
ETDX: TDX (UART Transmit Pin) is the alternate function assigned to Port L pin L2; it is selected by setting ETDX bit. To simulate line break generation, software should reset ETDX bit and output logic zero to TDX pin through Port L data and configuration registers.
STP78: This bit is set to program the last Stop bit to be 7/8th of a bit in length.
STP2: This bit programs the number of Stop bits to be transmitted.
STP2 $=0$ One Stop bit transmitted.
STP2 $=1$ Two Stop bits transmitted.

Associated I/O Pins

Data is transmitted on the TDX pin and received on the RDX pin. TDX is the alternate function assigned to Port L pin L2; it is selected by setting ETDX (in the ENUI register) to one. RDX is an inherent function of Port L pin L3, requiring no setup.
The baud rate clock for the UART can be generated onchip, or can be taken from an external source. Port L pin L1 (CKX) is the external clock I/O pin. The CKX pin can be either an input or an output, as determined by Port L Configuration and Data registers (Bit 1). As an input, it accepts a clock signal which may be selected to drive the transmitter and/or receiver. As an output, it presents the internal Baud Rate Generator output.

UART Operation

The UART has two modes of operation: asynchronous mode and synchronous mode.

ASYNCHRONOUS MODE

This mode is selected by resetting the SSEL (in the ENUI register) bit to zero. The input frequency to the UART is 16 times the baud rate.
The TSFT and TBUF registers double-buffer data for transmission. While TSFT is shifting out the current character on the TDX pin, the TBUF register may be loaded by software with the next byte to be transmitted. When TSFT finishes transmitting the current character the contents of TBUF are transferred to the TSFT register and the Transmit Buffer Empty Flag (TBMT in the ENU register) is set. The TBMT
flag is automatically reset by the UART when software loads a new character into the TBUF register. There is also the XMTG bit which is set to indicate that the UART is transmitting. This bit gets reset at the end of the last frame (end of last Stop bit). TBUF is a read/write register.
The RSFT and RBUF registers double-buffer data being received. The UART receiver continually monitors the signal on the RDX pin for a low level to detect the beginning of a Start bit. Upon sensing this low level, it waits for half a bit time and samples again. If the RDX pin is still low, the receiver considers this to be a valid Start bit, and the remaining bits in the character frame are each sampled a single time, at the mid-bit position. Serial data input on the RDX pin is shifted into the RSFT register. Upon receiving the complete character, the contents of the RSFT register are copied into the RBUF register and the Received Buffer Full Flag (RBFL) is set. RBFL is automatically reset when software reads the character from the RBUF register. RBUF is a read only register. There is also the RCVG bit which is set high when a framing error occurs and goes low once RDX goes high. TBMT, XMTG, RBFL and RCVG are read only bits.

SYNCHRONOUS MODE

In this mode data is transferred synchronously with the clock. Data is transmitted on the rising edge and received on the falling edge of the synchronous clock.
This mode is selected by setting SSEL bit in the ENUI register. The input frequency to the UART is the same as the baud rate.
When an external clock input is selected at the CKX pin, data transmit and receive are performed synchronously with this clock through TDX/RDX pins.
If data transmit and receive are selected with the CKX pin as clock output, the device generates the synchronous clock output at the CKX pin. The internal baud rate generator is used to produce the synchronous clock. Data transmit and receive are performed synchronously with this clock.

FRAMING FORMATS

The UART supports several serial framing formats (Figure 16). The format is selected using control bits in the ENU, ENUR and ENUI registers.
The first format ($1,1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c}$) for data transmission (CHLO $=1$, CHL1 $=0$) consists of Start bit, seven Data bits (excluding parity) and $7 / 8$, one or two Stop bits. In applications using parity, the parity bit is generated and verified by hardware.
The second format ($\mathrm{CHLO}=0, \mathrm{CHL1}=0$) consists of one Start bit, eight Data bits (excluding parity) and 7/8, one or two Stop bits. Parity bit is generated and verified by hardware.
The third format for transmission (CHLO $=0$, CHL1 $=1$) consists of one Start bit, nine Data bits and 7/8, one or two Stop bits. This format also supports the UART "ATTENTION" feature. When operating in this format, all eight bits of TBUF and RBUF are used for data. The ninth data bit is transmitted and received using two bits in the ENU and ENUR registers, called XBIT9 and RBIT9. RBIT9 is a read only bit. Parity is not generated or verified in this mode.

UART Operation (Continued)

FIGURE 16. Framing Formats

For any of the above framing formats, the last Stop bit can be programmed to be 7/8th of a bit in length. If two Stop bits are selected and the $7 / 8$ th bit is set (selected), the second Stop bit will be 7/8th of a bit in length.
The parity is enabled/disabled by PEN bit located in the ENU register. Parity is selected for 7 - and 8 -bit modes only. If parity is enabled (PEN = 1), the parity selection is then performed by PSELO and PSEL1 bits located in the ENU register.
Note that the XBIT9/PSELO bit located in the ENU register serves two mutualiy exclusive functions. This bit programs the ninth bit for transmission when the UART is operating with nine data bits per frame. There is no parity selection in this framing format. For other framing formats XBIT9 is not needed and the bit is PSELO used in conjunction with PSEL1 to select parity.
The frame formats for the receiver differ from the transmitter in the number of Stop bits required. The receiver only requires one Stop bit in a frame, regardless of the setting of the Stop bit selection bits in the control register. Note that an implicit assumption is made for full duplex UART operation that the framing formats are the same for the transmitter and receiver.

UART INTERRUPTS

The UART is capable of generating interrupts. Interrupts are generated on Receive Buffer Full and Transmit Buffer Empty. Both interrupts have individual interrupt vectors. Two
bytes of program memory space are reserved for each interrupt vector. The two vectors are located at addresses 0xEC to OXEF Hex in the program memory space. The interrupts can be individually enabled or disabled using Enable Transmit Interrupt (ETI) and Enable Receive Interrupt (ERI) bits in the ENUI register.
The interrupt from the Transmitter is set pending, and remains pending, as long as both the TBMT and ETI bits are set. To remove this interrupt, software must either clear the ETI bit or write to the TBUF register (thus clearing the TBMT bit).
The interrupt from the receiver is set pending, and remains pending, as long as both the RBFL and ERI bits are set. To remove this interrupt, software must either clear the ERI bit or read from the RBUF register (thus clearing the RBFL bit).

Baud Clock Generation

The clock inputs to the transmitter and receiver sections of the UART can be individually selected to come either from an external source at the CKX pin (port L, pin L1) or from a source selected in the PSR and BAUD registers. Internally, the basic baud clock is created from the oscillator frequency through a two-stage divider chain consisting of a 1-16 (increments of 0.5) prescaler and an 11 -bit binary counter (Figure 17). The divide factors are specified through two read/ write registers shown in Figure 18. Note that the 11-bit Baud Rate Divisor spills over into the Prescaler Select Register (PSR). PSR is cleared upon reset.

FIGURE 17. UART BAUD Clock Generation

TL/DD12065-19
FIGURE 18. UART BAUD Clock Divisor Registers

Baud Clock Generation (Continued)

As shown in Table V, a Prescaler Factor of 0 corresponds to NO CLOCK. This condition is the UART power down mode where the UART clock is turned off for power saving purpose. The user must also turn the UART clock off when a different baud rate is chosen.
The correspondences between the 5 -bit Prescaler Select and Prescaler factors are shown in Table V. There are many ways to calculate the two divisor factors, but one particularly effective method would be to achieve a 1.8432 MHz frequency coming out of the first stage. The 1.8432 MHz prescaler output is then used to drive the software programmable baud rate counter to create a $16 x$ clock for the following baud rates: 110, 134.5, 150, 300, 600, 1200, 1800, 2400, $3600,4800,7200,9600,19200$ and 38400 (Table IV). Other baud rates may be created by using appropriate divisors. The $16 x$ clock is then divided by 16 to provide the rate for the serial shift registers of the transmitter and receivers.

TABLE IV. Baud Rate Dlvisors (1.8432 MHz Prescaler Output)

Baud Rate	Baud Rate Divisor - 1 (N-1)
$110(110.03)$	1046
$134.5(134.58)$	855
150	767
300	383
600	191
1200	95
1800	63
2400	47
3600	31
1800	23
7200	15
9600	11
19200	5
38400	2

Note: The entries in Table IV assume a prescaler output of 1.8432 MHz . In asynchronous mode the baud rate could be as high as 625 k .

TABLE V. Prescaler Factors

Prescaler Select	Prescaler Factor
00000	NO CLOCK
00001	1
00010	1.5
00011	2
00100	2.5
00101	3
00110	3.5
00111	4
01000	4.5
01001	5
01010	5.5
01011	6
01100	6.5
01101	7
01110	7.5
01111	8
10000	8.5
10001	9
10010	9.5
10011	10
10100	10.5
10101	11
10110	11.5
10111	12
11000	12.5
11001	13
11010	13.5
11011	14
11100	14.5
11101	15
11110	15.5
11111	16

Baud Clock Generation (Continued)

As an example, considering Asynchronous Mode and a CKI clock of 4.608 MHz , the prescaler factor selected is:

$$
4.608 / 1.8432=2.5
$$

The 2.5 entry is available in Table V. The 1.8432 MHz prescaler output is then used with proper Baud Rate Divisor (Table V) to obtain different baud rates. For a baud rate of 19200 e.g., the entry in Table IV is 5.

$$
\begin{gathered}
N-1=5(N-1 \text { is the value from Table IV }) \\
N=6(N \text { is the Baud Rate Divisor) } \\
\text { Baud Rate }=1.8432 \mathrm{MHz} /(16 \times 6)=19200
\end{gathered}
$$

The divide by 16 is performed because in the asynchronous mode, the input frequency to the UART is 16 times the baud rate. The equation to calculate baud rates is given below.
The actual Baud Rate may be found from:

$$
\mathrm{BR}=\mathrm{Fc} /(16 \times \mathrm{N} \times \mathrm{P})
$$

Where:
BR is the Baud Rate
Fc is the CKI frequency
N is the Baud Rate Divisor (Table IV).
P is the Prescaler Divide Factor selected by the value in the Prescaler Select Register (Table V)
Note: In the Synchronous Mode, the divisor 16 is replaced by two.
Example:
Asynchronous Mode:

$$
\text { Crystal Frequency }=5 \mathrm{MHz}
$$

Desired baud rate $=9600$
Using the above equation $\mathrm{N} \times \mathrm{P}$ can be calculated first.
$N \times P=(5 \times 106) /(16 \times 9600)=32.552$
Now 32.552 is divided by each Prescaler Factor (Table V) to obtain a value closest to an integer. This factor happens to be 6.5 ($\mathrm{P}=6.5$).

$$
N=32.552 / 6.5=5.008(N=5)
$$

The programmed value (from Table IV) should be $4(\mathrm{~N}-1)$. Using the above values calculated for N and P :

$$
\begin{aligned}
& \mathrm{BR}=(5 \times 106) /(16 \times 5 \times 6.5)=9615.384 \\
& \% \text { error }=(9615.385-9600) / 9600=0.16
\end{aligned}
$$

Effect of HALT/IDLE

The UART logic is reinitialized when either the HALT or IDLE modes are entered. This reinitialization sets the TBMT flag and resets all read only bits in the UART control and status registers. Read/Write bits remain unchanged. The Transmit Buffer (TBUF) is not affected, but the Transmit Shift register (TSFT) bits are set to one. The receiver registers RBUF and RSFT are not affected.
The device will exit from the HALT/IDLE modes when the Start bit of a character is detected at the RDX (L3) pin. This feature is obtained by using the Multi-Input Wakeup scheme provided on the device.
Before entering the HALT or IDLE modes the user program must select the Wakeup source to be on the RDX pin. This selection is done by setting bit 3 of WKEN (Wakeup Enable) register. The Wakeup trigger condition is then selected to be high to low transition. This is done via the WKEDG register (Bit 3 is " 0 ".)

If the device is halted and crystal oscillator is used, the Wake Up signal will not start the chip running immediately because of the finite start up time requirement of the crystal oscillator. The idle timer (TO) generates a fixed delay to ensure that the oscillator has indeed stabilized before allowing the device to execute code. The user has to consider this delay when data transfer is expected immediately after exiting the HALT mode.

Diagnostic

Bits CHARLO and CHARL1 in the ENU register provide a loopback feature for diagnostic testing of the UART. When these bits are set to one, the following occur: The receiver input pin (RDX) is internally connected to the transmitter output pin (TDX); the output of the Transmitter Shift Register is "looped back" into the Receive Shift Register input. In this mode, data that is transmitted is immediately received. This feature allows the processor to verify the transmit and receive data paths of the UART.
Note that the framing format for this mode is the nine bit format; one Start bit, nine data bits, and $7 / 8$, one or two Stop bits. Parity is not generated or verified in this mode.

Attention Mode

The UART Receiver section supports an alternate mode of operation, referred to as ATTENTION Mode. This mode of operation is selected by the ATTN bit in the ENUR register. The data format for transmission must also be selected as having nine Data bits and either 7/8, one or two Stop bits.
The ATTENTION mode of operation is intended for use in networking the device with other processors. Typically in such environments the messages consists of device addresses, indicating which of several destinations should receive them, and the actual data. This Mode supports a scheme in which addresses are flagged by having the ninth bit of the data field set to a 1 . If the ninth bit is reset to a zero the byte is a Data byte.
While in ATTENTION mode, the UART monitors the communication flow, but ignores all characters until an address character is received. Upon receiving an address character, the UART signals that the character is ready by setting the RBFL flag, which in turn interrupts the processor if UART Receiver interrupts are enabled. The ATTN bit is also cleared automatically at this point, so that data characters as well as address characters are recognized. Software examines the contents of the RBUF and responds by deciding either to accept the subsequent data stream (by leaving the ATTN bit reset) or to wait until the next address character is seen (by setting the ATTN bit again).
Operation of the UART Transmitter is not affected by selection of this Mode. The value of the ninth bit to be transmitted is programmed by setting XBIT9 appropriately. The value of the ninth bit received is obtained by reading RBIT9. Since this bit is located in ENUR register where the error flags reside, a bit operation on it will reset the error flags.

Interrupts

The devices supports a vectored interrupt scheme. It supports a total of fourteen interrupt sources. Table VI lists all the possible device interrupt sources, their arbitration rankings and the memory locations reserved for the interrupt vector for each source.
Two bytes of program memory space are reserved for each interrupt source. All interrupt sources except the software interrupt are maskable. Each of the maskable interrupts have an Enable bit and one or more Pending bits. A maskable interrupt is active it its associated enable and pending bits are set. If GIE = 1 and an interrupt is active, then the processor will be interrupted as soon as it is ready to start executing an instruction except if the above conditions happen during the Software Trap service routine. This exception is described in the Software Trap sub-section.
The interruption process is accomplished with the INTR instruction (opcode 00), which is jammed inside the Instruction Register and replaces the opcode about to be executed. The following steps are performed for every interrupt:

1. The GIE (Global Interrupt Enable) bit is reset.
2. The address of the instruction about to be executed is pushed into the stack.
3. The PC (Program Counter) branches to address 00FF. This procedure takes $7 \mathrm{t}_{\mathrm{c}}$ cycles to execute.
At this time, since GIE $=0$, other maskable interrupts are disabled. The user is now free to do whatever context switching is required by saving the context of the machine in the stack with PUSH instructions. The user would then program a VIS (Vector Interrupt Select) instruction in order to
branch to the interrupt service routine of the highest priority interrupt enabled and pending at the time of the VIS. Note that this is not necessarily the interrupt that caused the branch to address location 00FF Hex prior to the context switching.
Thus, if an interrupt with a higher rank than the one which caused the interruption becomes active before the decision of which interrupt to service is made by the VIS, then the interrupt with the higher rank will override any lower ones and will be acknowledged. The lower priority interrupt(s) are still pending, however, and will cause another interrupt immediately following the completion of the interrupt service routine associated with the higher priority interrupt just serviced. This lower priority interrupt will occur immediately following the RETI (Return from Interrupt) instruction at the end of the interrupt service routine just completed.
Inside the interrupt service routine, the associated pending bit has to be cleared by software. The RETI (Return from Interrupt) instruction at the end of the interrupt service routine will set the GIE (Global Interrupt Enable) bit, allowing the processor to be interrupted again if another interrupt is active and pending.
The VIS instruction looks at all the active interrupts at the time it is executed and performs an indirect jump to the beginning of the service routine of the one with the highest rank.
The addresses of the different interrupt service routines, called vectors, are chosen by the user and stored in ROM in a table starting at 01E0 (assuming that VIS is located between 00FF and 01DF). The vectors are 15-bit wide and therefore occupy 2 ROM locations.

TABLE VI. Interrupt Vector Table

ARBITRATION RANKING	SOURCE DESCRIPTION		VECTOR* ADDRESS (Hi-Low Byte)
(1) Highest	Software		OyFE-OyFF
(2)	Reserved		OyFC-0yFD
(3)	External	G0	OyFA-OyFB
(4)	Timer T0	Underflow	0yF8-0yF9
(5)	Timer T1	T1A/Underflow	OyF6-0yF7
(6)	Timer T1	T1B	0yF4-0yF5
(7)	Microwire/Plus	Busy Low	OyF2-0yF3
(8)	Counters		0yF0-0yF1
(9)	UART	Receive	OyEE-OyEF
(10)	UART	Transmit	OyEC-OyED
(11)	Timer T 2	T2A/Underflow	OyEA-OyEB
(12)	Timer T2	T2B	OyE8-0yE9
(13)	Capture Timer 1 and 2		OyE6-0yE7
(14)	Unused		OyE4-OyE5
(15)	Port L/Wakeup		OyE2-0yE3
(16) Lowest	Default VIS	Reserved	OyE0-0yE1

[^8]
Interrupts (Continued)

VIS and the vector table must be located in the same 256 -byte block ($0 y 00$ to $0 y F F$) except if VIS is located at the last address of a block. In this case, the table must be in the next block. The vector table cannot be inserted in the first 256-byte block ($\mathrm{y} \neq 0$).
The vector of the maskable interrupt with the lowest rank is located at 0 yEO (Hi-Order byte) and OyE1 (Lo-Order byte) and so forth in increasing rank number. The vector of the maskable interrupt with the highest rank is located at OyFA (Hi-Order byte) and OyFB (Lo-Order byte).
The Software Trap has the highest rank and its vector is located at OyFE and OyFF.
If, by accident, a VIS gets executed and no interrupt is active, then the PC (Program Counter) will branch to a vector located at OyEO-OyE1. This vector can point to the Software Trap (ST) interrupt service routine, or to another special service routine as desired.
Figure 19 shows the Interrupt block diagram.

SOFTWARE TRAP

The Software Trap (ST) is a special kind of non-maskable interrupt which occurs when the INTR instruction (used to acknowledge interrupts) is fetched from ROM and placed inside the instruction register. This may happen when the PC is pointing beyond the available ROM address space or when the stack is over-popped.
When an ST occurs, the user can re-initialize the stack pointer and do a recovery procedure (similar to reset, but not necessarily containing all of the same initialization procedures) before restarting.
The occurrence of an ST is latched into the ST pending bit. The GIE bit is not affected and the ST pending bit (not accessible by the user) is used to inhibit other interrupts and to direct the program to the ST service routine with the VIS instruction. The RPND instruction is used to clear the software interrupt pending bit. This pending bit is also cleared on reset.

TL/DD12065-20
FIGURE 19. Interrupt Block Diagram

Interrupts (Continued)

The ST has the highest rank among all interrupts.
Nothing (except another ST) can interrupt an ST being serviced.

Detection of Illegal Conditions

The device can detect various illegal conditions resulting from coding errors, transient noise, power supply voltage drops, runaway programs, etc.
Reading of undefined ROM gets zeroes. The opcode for software interrupt is 00 . If the program fetches instructions from undefined ROM, this will force a software interrupt, thus signaling that an illegal condition has occurred.
The subroutine stack grows down for each call (jump to subroutine), interrupt, or PUSH, and grows up for each return or POR The stack pointer is initialized to RAM location 06F Hex during reset. Consequently, if there are more returns than calls, the stack pointer will point to addresses 070 and 071 Hex (which are undefined RAM). Undefined RAM from addresses 070 to 07F (Segment 0), 140 to 17F (Segment 1), and all other segments (i.e., Segments 3 ... etc.) is read as all 1 's, which in turn will cause the program to return to address 7FFF Hex. This is an undefined ROM location and the instruction fetched (all 0's) from this location will generate a software interrupt signaling an illegal condition.
Thus, the chip can detect the following illegal conditions:

1. Executing from undefined ROM
2. Over "POP'ing the stack by having more returns than calls.
When the software interrupt occurs, the user can re-initialize the stack pointer and do a recovery procedure before restarting (this recovery program is probably similar to that following reset, but might not contain the same program initialization procedures). The recovery program should reset the software interrupt pending bit using the RPND instruction.

MICROWIRE/PLUS

MICROWIRE/PLUS is a serial synchronous communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e., A/D converters, display drivers, E2PROMs etc.) and with other microcontrollers which support the MICROWIRE interface. It consists of an 8 -bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 20 shows a block diagram of the MICROWIRE/PLUS logic.
The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS arrangement with the internal clock source is called the Master mode of operation. Similarly, operating the MICROWIRE/PLUS arrangement with an external shift clock is called the Slave mode of operation.
The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. In the master mode, the SK clock rate is selected by the two bits, SLO and SL1, in the CNTRL register. Table VII details the different clock rates that may be selected.

TABLE VII. MICROWIRE/PLUS Master Mode Clock Select

SL1	SLO	SK Period
0	0	$2 \times \mathrm{t}_{\mathrm{c}}$
0	i	$4 \times \mathrm{t}_{\mathrm{c}}$
1	x	$8 \times \mathrm{t}_{\mathrm{c}}$

Where t_{c} is the instruction cycle clock

FIGURE 20. MICROWIRE/PLUS Block Diagram

MICROWIRE/PLUS (Continued)

MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. If enabled, an interrupt is generated when eight data bits have been shifted. The device may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 21 shows how two devices, microcontrollers and several peripherals may be interconnected using the MICROWIRE/PLUS arrangements.

Warning:

The SIO register should only be loaded when the SK clock is low. Loading the SIO register while the SK clock is high will result in undefined data in the SIO register. SK clock is normally low when not shifting.
Setting the BUSY flag when the input SK clock is high in the MICROWIRE/PLUS slave mode may cause the current SK clock for the SIO shift register to be narrow. For safety, the BUSY flag should only be set when the input SK clock is low.

MICROWIRE/PLUS Master Mode Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally by the device. The MICROWIRE Master always initiates all data exchanges. The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register. Table VIII summarizes the bit settings required for Master mode of operation.

MICROWIRE/PLUS Slave Mode Operation

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source: Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must be selected as an input and the SO pin is selected as an output pin by setting and resetting the appropriate bits in the Port G configuration register. Table VIII summarizes the settings required to enter the Slave mode of operation.

TABLE VIII. MICROWIRE Mode Settings

G4 (SO) Config. Bit	G5 (SK) Config. Bit	G4 Fun.	G5 Fun.	Operation
1	1	SO	Int. SK	MICROWIRE/PLUS Master
0	1	TRI- STATE	Int. SK	MICROWIRE/PLUS Master
1	0	SO	Ext. SK	MICROWIRE/PLUS Slave
0	0	TRI- STATE	Ext. SK	MICROWIRE/PLUS Slave

This table assumes that the control flag MSEL is set.
The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated.

Alternate SK Phase Operation

The device allows either the normal SK clock or an alternate phase SK clock to shift data in and out of the SIO register. in both the modes the SK is normally low. In the normal mode data is shifted in on the rising edge of the SK clock and the data is shifted out on the falling edge of the SK clock. The SIO register is shifted on each falling edge of the SK clock. In the alternate SK phase operation, data is shifted in on the falling edge of the SK clock and shifted out on the rising edge of the SK clock.
A control flag, SKSEL, allows either the normal SK clock or the alternate SK clock to be selected. Resetting SKSEL causes the MICROWIRE/PLUS logic to be clocked from the normal SK signal. Setting the SKSEL flag selects the alternate SK clock. The SKSEL is mapped into the G6 configuration bit. The SKSEL flag will power up in the reset condition, selecting the normal SK signal.

TL/DD12065-22
FIGURE 21. MICROWIRE/PLUS Application

Memory Map

All RAM, ports and registers (except A and PC) are mapped into data memory address space.

ADDRESS S/ADD REG	CONTENTS
0000 to 006F	112 On-Chip RAM Bytes
0070 to 007F	Unused RAM Address Space (reads as all 1 's)
$x \times 80$ to $x \times 8 \mathrm{~F}$	Unused RAM Address Space (reads undefined data)
$\begin{aligned} & x x 90 \\ & x \times 91 \\ & x \times 92 \\ & x x 93 \\ & x \times 94 \\ & x \times 94 \\ & x \times 95 \\ & x \times 96 \\ & x \times 97 \\ & \text { xx98 } \\ & \text { xx99 } \\ & \text { xx9A } \\ & \text { xx9B } \\ & \text { xx9C } \\ & \text { xx9D } \\ & \text { xx9E } \\ & \text { xx9F } \end{aligned}$	Port E Data Register Port E Configuration Register Port E Input Pins (read only) Reserved Port F Data Register Port F Configuration Register Port F Input Pins (read only) Reserved Dividend or Result Byte (MDR1) Dividend/Multiplier or Result Byte (MDR2) Dividend/Result Byte or Undefined (MDR3) Divisor/Multiplicand or Result Byte (MDR4) Divisor or Multiplicand Byte(MDR5) Multiply/Divide Control Register (MDCR) Counter Control 1 Register (CCR1) Counter Control 2 Register (CCR2)
$x \times A 0$ xXA1 $x \times A 2$ x×A3 XXA4 xxA5 XXA6 XXA7 XXAB XXA9 x×AA $x \times A B$ $x \times A C$ $X \times A D$ xxAE XXAF	Counter 1 Prescaler Lower Byte (C1PRL) Counter 1 Prescaler Upper Byte (C1PRH) Counter 1 Count Register Lower Byte (C1CTL) Counter 1 Count Register Upper Byte (C1CTH) Counter 2 Prescaler Lower Byte (C2PRL) Counter 2 Prescaler Upper Byte (C2PRH) Counter 2 Count Register Lower Byte (C2CTL) Counter 2 Count Register Upper Byte (C2CTH) Counter 3 Prescaler Lower Byte (C3PRL) Counter 3 Prescaler Upper Byte (C3PRH) Counter 3 Count Register Lower Byte (C3CTL) Counter 3 Count Register Upper Byte (C3CTH) Counter 4 Prescaler Lower Byte (C4PRL) Counter 4 Prescaler Upper Byte (C4PRH) Counter 4 Count Register Lower Byte (C4CTL) Counter 4 Count Register Upper Byte (C4CTH)
xxB0 xxB1 xxB2 xxB3 xxB4 xxB5 xxB6 xxB7 xxB8 xxB9 xxBA	Capture Timer 1 Prescaler Register (CM1 PSC) Capture Timer 1 Lower Byte (CM1CRL) Read-Only Capture Timer 1 Upper Byte (CM1CRH) Read-Only Capture Timer 2 Prescaler Register (CM2PSC) Capture Timer 2 Lower Byte (CM2CRL) Read-Only Capture Timer 2 Upper Byte (CM2CRH) Read-Only Capture Timer 1 Control Register (CCMR1) Capture Timer 2 Control Register (CCMR2) UART Transmit Buffer (TBUF) UART Receive Buffer (RBUF) UART Control and Status Register (ENU)

Memory Map (Continued)

ADDRESS S/ADD REG	CONTENTS
xxBB xxBC xxBD xxBE xxBF	UART Receive Control and Status Register (ENUR) UART Interrupt and Clock Source Register (ENUI) UART Baud Register (BAUD) UART Prescaler Select Register (PSR) Reserved for UART
$x x C 0$ $x x C 1$ $x x C 2$ $x x C 3$ $x x C 4$ $x x C 5$ $x x C 6$ $x x C 7$ $x x C 8$ $x x C 9$ $x x C A$ $x x C B$ $x x C C$ $x x C D ~ t o ~$ $x x C F$	Timer T2 Lower Byte Timer T2 Upper Byte Timer T2 Autoload Register T2RA Lower Byte Timer T2 Autoload Register T2RA Upper Byte Timer T2 Autoload Register T2RB Lower Byte Timer T2 Autoload Register T2RB Upper Byte Timer T2 Control Register Reserved MIWU Edge Select Register (WKEDG) MIWU Enable Register (WKEN) MIWU Pending Register (WKPND) Reserved Reserved Reserved
xxD0 xxD1 xxD2 xxD3 xxD4 xxD5 xxD6 xxD7 xxD8 xxD9 xxDA xxDB xxDC xxDD to x xDF	Port L Data Register Port L Configuration Register Port L Input Pins (Read Only) Reserved for Port L Port G Data Register Port G Configuration Register Port G Input Pins (Read Only) Port I Input Pins (Read Only) Port C Data Register Port C Configuration Register Port C Input Pins (Read Only) Reserved for Port C Port D Reserved for Port D
```xxE0 to xxE5 xxE6 xxE7 xxE8 xxE9 xxEA xxEB xxEC xxED xxEE xxEF```	Reserved for EE Control Registers   Timer T1 Autoload Register T1RB Lower Byte   Timer T1 Autoload Register T1RB Upper Byte   ICNTRL Register   MICROWIRE Shift Register   Timer T1 Lower Byte   Timer T1 Upper Byte   Timer T1 Autoload Register T1RA Lower Byte   Timer T1 Autoload Register T1RA Upper Byte   CNTRL Control Register   PSW Register
XxFO to xxFB   xxFC   xxFD   xxFE   xxFF	On-chip RAM Mapped as Registers   X Register   SP Register   B Register   S Register
0100 to 017F 0200 to 027F 0300 to 037F	On Chip RAM Bytes (384 Bytes)

[^9] undefined data. Reading memory locations from other segments (i.e., segment 4, segment 5 , etc.) will return all ones.

## Memory Map (Continued)

Addressing Modes
There are ten addressing modes, six for operand addressing and four for transfer of control.

## OPERAND ADDRESSING MODES

## Register Indirect

This is the "normal" addressing mode. The operand is the data memory addressed by the B pointer or X pointer.

Register Indirect (with auto post Increment or decrement of pointer)
This addressing mode is used with the LD and X instructions. The operand is the data memory addressed by the $B$ pointer or $X$ pointer. This is a register indirect mode that automatically post increments or decrements the B or X register after executing the instruction.

## Direct

The instruction contains an 8-bit address field that directly. points to the data memory for the operand.

## Immedlate

The instruction contains an 8-bit immediate field as the operand.

## Short Immediate

This addressing mode is used with the Load B Immediate instruction. The instruction contains a 4-bit immediate field as the operand.

## Indirect

This addressing mode is used with the LAID instruction. The contents of the accumuiator are used as a partial address (lower 8 bits of PC ) for accessing a data operand from the program memory.

## TRANSFER OF CONTROL ADDRESSING MODES

## Relative

This mode is used for the JP instruction, with the instruction field being added to the program counter to get the new program location. JP has a range from -31 to +32 to allow a 1-byte relative jump (JP +1 is implemented by a NOP instruction). There are no "pages" when using JP, since all 15 bits of PC are used.

## Absolute

This mode is used with the JMP and JSR instructions, with the instruction field of I 2 bits replacing the lower 12 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory segment.

## Absolute Long

This mode is used with the JMPL and JSRL instructions, with the instruction field of 15 bits replacing the entire 15 bits of the program counter (PC). This allows jumping to any location in the current 8 k program memory space.

## Indirect

This mode is used with the JID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC ) for accessing a location in the program memory. The contents of this program memory location serve as a partial address (lower 8 bits of PC ) for the jump to the next instruction.
The VIS is a special case of the Indirect Transfer of Control addressing mode, where the double byte vector associated with the interrupt is transferred from adjacent addresses in the program memory into the program counter (PC) in order to jump to the associated interrupt service routine.

## Instruction Set

Register and Symbol Definition

Registers	
A	8-Bit Accumulator Register
B	8-Bit Address Register
X	8-Bit Address Register
SP	8-Bit Stack Pointer Register
PC	15-Bit Program Counter Register
PU	Upper 7 Bits of PC
PL	Lower 8 Bits of PC
C	1 Bit of PSW Register for Carry
HC	1 Bit of PSW Register for Half Carry
GIE	1 Bit of PSW Register for Global
	Interrupt Enable
VIJ	Interrupt Vecter Uprer Byte
VL	Interrupt Vector Lower Byte


Symbols	
[B]	Memory Indirectly Addressed by B Register
[ X ]	Memory Indirectly Addressed by $X$ Register
MD	Direct Addressed Memory
Mem	Direct Addressed Memory or [B]
Meml	Direct Addressed Memory or [B] or Immediate Data
Imm	8-Bit Immediate Data
Reg	Register Memory: Addresses F0 to FF (Includes B, X and SP)
Bit	Bit Number (0 to 7)
$\rightarrow$	Loaded with
$\longleftrightarrow$	Exchanged with

## INSTRUCTION SET

ADD	A, Meml	ADD	$A \leftarrow A+M e m l$
ADC	A,Meml	ADD with Carry	A $\leftarrow$ A + Meml + C, C $\leftarrow$ Carry, HC $\leftarrow$ Half Carry
SUBC	A, Meml	Subtract with Carry	A $\leftarrow$ A - Meml + C, C $\leftarrow$ Carry, HC $\leftarrow$ Half Carry
AND	A, Meml	Logical AND	$A \leftarrow A$ and $\overline{M e m l}$
ANDSZ	A, 1 mm	Logical AND Immed., Skip if Zero	Skip next if ( A and Imm ) $=0$
OR	A, Meml	Logical OR	$A \leftarrow A$ or Meml
XOR	A, Meml	Logical EXclusive OR	$A \leftarrow A$ xor Meml
IFEQ	MD, Imm	IF EQual	Compare MD and Imm, Do next if MD = Imm
IFEQ	A,Meml	IF EQual	Compare $A$ and Meml, Do next if $A=$ Meml
IFNE	A, Meml	IF Not Equal	Compare $A$ and Meml, Do next if $A \neq M e m l$
IFGT	A,Meml	IF Greater Than	Compare A and Meml, Do next if $A>M e m l$
IFBNE	\#	IF B Not Equal	Do next if lower 4 bits of $B \neq 1 \mathrm{~mm}$
DRSZ	Reg	Decrement Reg., Skip if Zero	Reg $\leftarrow$ Reg - 1, Skip if Reg $=0$
SBIT	\#,Mem	Set BIT	1 to bit, Mem (bit $=0$ to 7 immediate)
RBIT	\#,Mem	Reset BIT	0 to bit, Mem
IFBIT	\#,Mem	IF BIT	If bit \#, A or Mem is true do next instruction
RPND		Reset PeNDing Flag	Reset Software Interrupt Pending Flag
X	A,Mem	EXchange A with Memory	$A \longleftrightarrow$ Mem
X	A, $[\mathrm{X}]$	EXchange A with Memory [X]	$A \longleftrightarrow[X]$
LD	A, Meml	LoaD A with Memory	$A \leftarrow$ Meml
LD	A, $[\mathrm{X}]$	LoaD A with Memory [ X ]	$A \leftarrow[X]$
LD	B, Imm	LoaD B with Immed.	$B \leftarrow \mathrm{lmm}$
LD	Mem, Imm	LoaD Memory Immed.	Mem $\leftarrow$ Imm
LD	Reg, Imm	LoaD Register Memory Immed.	Reg $\leftarrow$ Imm
X	A, [ $\mathrm{B} \pm$ ]	EXchange A with Memory [B]	$A \longleftrightarrow[B],(B \leftarrow B \pm 1)$
X	A, [ $\mathrm{X} \pm$ ]	EXchange A with Memory [ X ]	$A \longleftrightarrow[X],(X \leftarrow X \pm 1)$
LD	A, $[\mathrm{B} \pm]$	LoaD A with Memory [B]	$A \leftarrow[B],(B \leftarrow B \pm 1)$
LD	A, [ $\mathrm{X} \pm$ ]	LoaD A with Memory [ X ]	$A \leftarrow[X],(X \leftarrow X \pm 1)$
LD	[ $\mathrm{B} \pm$ ], Imm	LoaD Memory [B] Immed.	$[B] \leftarrow$ Imm, $(B \leftarrow B \pm 1)$
CLR	A	CLeaR A	$A \leftarrow 0$
INC	A	INCrement A	$A \leftarrow A+1$
DEC	A	DECrement A	$A \leftarrow A-1$
LAID		Load A InDirect from ROM	$A \leftarrow R O M(P U, A)$
DCOR	A	Decimal CORrect A	$A \leftarrow B C D$ correction of A (follows ADC, SUBC)
RRC	A	Rotate A Right thru C	$C \rightarrow A 7 \rightarrow \ldots \rightarrow A O \rightarrow C$
RLC	A	Rotate A Left thru C	$C \leftarrow A 7 \leftarrow \ldots \leftarrow A O \leftarrow C$
SWAP	A	SWAP nibbles of $A$	A7 .. A4 $\longleftrightarrow$ A3 . . A0
SC		Set C	$\mathrm{C} \leftarrow 1, \mathrm{HC} \leftarrow 1$
RC		Reset C	$\mathrm{C} \leftarrow 0, \mathrm{HC} \leftarrow 0$
IFC		IF C	If $C$ is true, do next instruction
IFNC		IF Not C	If C is not true, do next instruction
POP	A	POP the stack into $A$	$\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{~A} \leftarrow[\mathrm{SP}]$
PUSH	A	PUSH A onto the stack	[SP] $\leftarrow \mathrm{A}, \mathrm{SP} \leftarrow \mathrm{SP}-1$
VIS		Vector to Interrupt Service Routine	$\mathrm{PU} \leftarrow[\mathrm{VU}], \mathrm{PL} \leftarrow[\mathrm{VL}]$
JMPL	Addr.	Jump absolute Long	$\mathrm{PC} \leftarrow \mathrm{ii}$ (ii $=15$ bits, 0 to 32k)
JMP	Addr.	Jump absolute	PC9 $\ldots 0 \leftarrow \mathrm{i}(\mathrm{i}=12$ bits)
JP	Disp.	Jump relative short	$P C \leftarrow P C+r(r$ is -31 to +32 , except 1$)$
JSRL	Addr.	Jump SubRoutine Long	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow \mathrm{i}$
JSR	Addr	Jump SubRoutine	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} 9 \ldots 0 \leftarrow \mathrm{i}$
JID		Jump InDirect	$\mathrm{PL} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
RET		RETurn from subroutine	SP + 2, PL $\leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETSK		RETurn and SKip	SP $+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$, skip next instruction
RETI		RETurn from Interrupt	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1], \mathrm{GIE} \leftarrow 1$
INTR		Generate an Interrupt	[SP] $\leftarrow$ PL, [SP - 1] $\leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow 0 \mathrm{FF}$
NOP		No OPeration	$\mathrm{PC} \leftarrow \mathrm{PC}+1$

## Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instructions taking two bytes).
Most single byte instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details.

## Bytes and Cycles per Instruction

The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle.
Arithmetic and Logic Instructions

	[B]	Direct	Immed.
ADD	$1 / 1$	$3 / 4$	$2 / 2$
ADC	$1 / 1$	$3 / 4$	$2 / 2$
SUBC	$1 / 1$	$3 / 4$	$2 / 2$
AND	$1 / 1$	$3 / 4$	$2 / 2$
OR	$1 / 1$	$3 / 4$	$2 / 2$
XOR	$1 / 1$	$3 / 4$	$2 / 2$
IFEQ	$1 / 1$	$3 / 4$	$2 / 2$
IFGT	$1 / 1$	$3 / 4$	$2 / 2$
IFBNE	$1 / 1$		
DRSZ		$1 / 3$	
SBIT	$1 / 1$	$3 / 4$	
RBIT	$1 / 1$	$3 / 4$	
IFBIT	$1 / 1$	$3 / 4$	

Instructions Using A \& C

CLRA	$1 / 1$
INCA	$1 / 1$
DECA	$1 / 1$
LAID	$1 / 3$
DCORA	$1 / 1$
RRCA	$1 / 1$
RLCA	$1 / 1$
SWAPA	$1 / 1$
SC	$1 / 1$
RC	$1 / 1$
IFC	$1 / 1$
IFNC	$1 / 1$
PUSHA	$1 / 3$
POPA	$1 / 3$
ANDSZ	$2 / 2$

Transfer of Control Instructions

JMPL	$3 / 4$
JMP	$2 / 3$
JP	$1 / 3$
JSRL	$3 / 5$
JSR	$2 / 5$
JID	$1 / 3$
VIS	$1 / 5$
RET	$1 / 5$
RETSK	$1 / 5$
RETI	$1 / 5$
INTR	$1 / 7$
NOP	$1 / 1$

RPND $1 / 1$

	Memory Transfer Instructions					
	Register Indirect		Direct	Immed.	Register Indirect Auto Incr. and Decr.	
	[B]	[ X ]			[ $\mathrm{B}+, \mathrm{B}-$ ]	[ $\mathrm{X}+, \mathrm{X}-$ ]
X A, *	1/1	1/3	$2 / 3$		1/2	1/3
LD A, *	1/1	1/3	2/3	$2 / 2$	1/2	1/3
LDE, 1 min				i/i		
LD B, Imm				2/2		
LD Mem, Imm	$2 / 2$		3/3		2/2	
LD Reg, Imm			2/3			
IFEQ MD, Imm			3/3			

( $\mathrm{IF} \mathrm{F}<16$ )
(IF B > 15)

Note: * = > Memory location addressed by B or X or directly.

## Opcode List

Bits 7-4

F	E	D	c	B	A	9	8	7	6	5	4	3	2	1	0	
JP -15	JP -31	LD OFO, \#i	DRSZ OFO	RRCA	RC	ADCA, $\# i$	ADC A,[B]	$\begin{array}{\|l\|} \hline \text { IFBIT } \\ \text { O,[B] } \end{array}$	ANDSZ A, \#i	LD B, OF	IFBNE 0	$\begin{gathered} \text { JSR } \\ \times 000-\times 0 F F \end{gathered}$	$\begin{gathered} \mathrm{JMP} \\ \times 000-\mathrm{xOFF} \end{gathered}$	$\mathrm{JP}+17$	INTR	0
JP -14	JP -30	LD 0F1, \#i	DRSZ 0F1	*	SC	$\overline{\text { SUBC } A,}$   \#i	SUB A,[B]	$\begin{array}{\|l\|} \hline \mathrm{IFBIT} \\ 1,[\mathrm{~B}] \\ \hline \end{array}$	*	LD B, OE	IFBNE 1	$\begin{gathered} \text { JSR } \\ \times 100-\times 1 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \mathrm{x} 100-\mathrm{x} 1 \mathrm{FF} \end{gathered}$	JP + 18	$\mathrm{JP}+2$	1
JP - 13	JP -29	LD 0F2, \#i	DRSZ OF2	$\begin{gathered} X A, \\ {[X+]} \end{gathered}$	$\begin{aligned} & \mathrm{XA}, \\ & {[B+]} \end{aligned}$	$\underset{\# i}{\text { IFEQ A, }}$	IFEQ A,[B]	$\begin{array}{\|l\|} \hline \text { IFBIT } \\ 2,[\mathrm{~B}] \end{array}$	*	LD B, OD	IFBNE 2	$\begin{gathered} \text { JSR } \\ \times 200-\times 2 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times 200-\times 2 F F \end{gathered}$	JP + 19	JP + 3	2
JP -12	JP -28	LD 0F3, \#i	DRSZ 0F3	$\begin{gathered} \mathrm{XA}, \\ {[\mathrm{X}-]} \end{gathered}$	$\begin{aligned} & \mathrm{XA}, \\ & {[\mathrm{~B}-]} \end{aligned}$	IFGT A, \#i	IFGT A,[B]	$\begin{aligned} & \text { IFBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	*	LD B, OC	IFBNE 3	$\begin{gathered} \text { JSR } \\ \times 300-\times 3 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times 300-\times 3 F F \end{gathered}$	JP + 20	$\mathrm{JP}+4$	3
JP -11	JP -27	LD 0F4, \#i	DRSZ OF4	VIS	LAID	$\begin{gathered} \text { ADD A, } \\ \# i \end{gathered}$	ADD A,[B]	$\begin{array}{\|l\|} \text { IFBIT } \\ 4,[B] \end{array}$	CLRA	LD B, OB	IFBNE 4	$\begin{gathered} \text { JSR } \\ \text { x400-x4FF } \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times 400-\times 4 F F \end{gathered}$	$\mathrm{JP}+21$	$\mathrm{JP}+5$	4
JP - 10	JP -26	LD 0F5, \#i	DRSZ 0F5	RPND	JID	AND A, $\# i$	AND A,[B]	$\begin{array}{\|l\|} \hline \text { IFBIT } \\ 5,[B] \end{array}$	SWAPA	LD B, OA	IFBNE 5	$\begin{array}{\|c\|} \hline \text { JSR } \\ \times 500-\times 5 F F \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { JMP } \\ \times 500-\times 5 F F \\ \hline \end{array}$	$\mathrm{JP}+22$	$J P+6$	5
JP -9	JP -25	LD 0F6, \#i	DRSZ OF6	X A, [X]	X A, [B]	XORA, \#i	XOR A, [B]	$\begin{aligned} & \text { IFBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	DCORA	LD B, 9	IFBNE 6	$\begin{gathered} \text { JSR } \\ \times 600-\times 6 F F \end{gathered}$	$\begin{array}{\|c\|} \hline \text { JMP } \\ \times 600-\times 6 F F \end{array}$	$\mathrm{JP}+23$	$\mathrm{JP}+7$.	6
JP -8	JP -24	LD 0F7, \#i	DRSZ 0F7	*	*	OR A, \#i	OR A, [B]	$\begin{array}{l\|} \hline \text { IFBIT } \\ 7,[\mathrm{~B}] \end{array}$	PUSHA	LD B, 8	IFBNE 7	$\begin{array}{c\|} \hline \text { JSR } \\ \times 700-\times 7 F F \\ \hline \end{array}$	$\begin{gathered} \text { JMP } \\ \times 700-\times 7 F F \end{gathered}$	JP + 24	JP + 8	7
JP -7	JP -23	LD OF8, \#i	DRSZ OF8	NOP	RLCA	LD A, \#i	IFC	$\begin{array}{\|l\|} \hline \text { SBIT } \\ 0,[B] \end{array}$	$\begin{aligned} & \text { RBIT } \\ & 0,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, 7	IFBNE 8	$\begin{gathered} \mathrm{JSR} \\ \times 800-\times 8 \mathrm{FF} \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times 800-\times 8 F F \end{gathered}$	$\mathrm{JP}+25$	$\mathrm{JP}+9$	8
JP -6	JP -22	LD 0F9, \#i	DRSZ 0F9	$\begin{aligned} & \text { IFNE } \\ & \text { A,[B] } \end{aligned}$	$\begin{aligned} & \text { IFEQ } \\ & \mathrm{Md}, \# \mathrm{i} \end{aligned}$	$\begin{aligned} & \text { IFNE } \\ & \text { A,\#i } \end{aligned}$	IFNC	$\begin{array}{\|l\|} \hline \mathrm{SBIT} \\ 1,[\mathrm{~B}] \end{array}$	$\begin{aligned} & \text { RBIT } \\ & \text { 1,[B] } \end{aligned}$	LD B, 6	IFBNE 9	$\begin{gathered} \text { JSR } \\ \text { x900-x9FF } \end{gathered}$	$\begin{array}{c\|} \hline \text { JMP } \\ \text { x900-x9FF } \end{array}$	JP + 26	$\mathrm{JP}+10$	9
JP -5	JP -21	LD OFA, \#i	DRSZ OFA	$\begin{aligned} & \hline \text { LD A, } \\ & {[\mathrm{X}+]} \end{aligned}$	$\begin{aligned} & \text { LD A, } \\ & {[B+]} \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{LD}[\mathrm{~B}+], \\ \# \mathrm{i} \end{array}$	INCA	$\begin{array}{\|l\|} \hline \text { SBIT } \\ \text { 2,[B] } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { RBIT } \\ & 2,[\mathrm{~B}] \end{aligned}$	LD B, 5	IFBNE OA	$\begin{gathered} \text { JSR } \\ \times A 00-\times A F F \end{gathered}$	$\begin{gathered} \mathrm{JMP} \\ \mathrm{xA} 00-\mathrm{xAFF} \end{gathered}$	$\mathrm{JP}+27$	$\mathrm{JP}+11$	A
JP -4	JP -20	LD 0FB, \#i	DRSZ OFB	$\begin{aligned} & \text { LD A, } \\ & {[\mathrm{X}-]} \end{aligned}$	$\begin{aligned} & \text { LD A, } \\ & {[\mathrm{B}-]} \end{aligned}$	$\begin{gathered} \mathrm{LD}[\mathrm{~B}-\mathrm{]}, \\ \# \mathrm{i} \end{gathered}$	DECA	$\begin{aligned} & \text { SBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & 3,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, 4	IFBNE OB	$\begin{gathered} \text { JSR } \\ \times B 00-\times B F F \end{gathered}$	$\begin{gathered} \mathrm{JMP} \\ \mathrm{xBOO}-\mathrm{xBFF} \end{gathered}$	JP + 28	$\mathrm{JP}+12$	B
JP -3	JP -19	LD OFC, \#i	DRSZ OFC	LD Md, \#i	JMPL	X A,Md	POPA	$\left[\begin{array}{l} \mathrm{SBIT} \\ 4,[\mathrm{~B}] \end{array}\right.$	$\begin{aligned} & \text { RBIT } \\ & 4,[\mathrm{~B}] \end{aligned}$	LD B, 3	IFBNE 0C	$\begin{gathered} \text { JSR } \\ \times \text { COO } \times \text { CFF } \end{gathered}$	$\begin{gathered} \mathrm{JMP} \\ \mathrm{xCOO}-\mathrm{xCFF} \\ \hline \end{gathered}$	$\mathrm{JP}+29$	$\mathrm{JP}+13$	c
JP -2	JP -18	LD OFD, \#i	DRSZ OFD	DIR	JSRL	LD A,Md	RETSK	$\begin{array}{\|l\|} \hline \text { SBIT } \\ 5,[\mathrm{~B}] \end{array}$	$\begin{aligned} & \hline \text { RBIT } \\ & 5,[\mathrm{~B}] \end{aligned}$	LD B, 2	IFBNE 0D	$\begin{gathered} \text { JSR } \\ \times D 00-\times D F F \end{gathered}$	$\begin{gathered} \mathrm{JMP} \\ \mathrm{xD} 00-\mathrm{xDFF} \\ \hline \end{gathered}$	JP + 30	$\mathrm{JP}+14$	D
JP-1	JP -17	LD OFE, \#i	DRSZ OFE	LD A, [X]	LD A, [B]	LD [B], \#i	RET	$\begin{aligned} & \text { SBIT } \\ & 6,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	LD B, 1	IFBNE OE	$\begin{gathered} \mathrm{JSR} \\ \mathrm{xEOO}-\mathrm{xEFF} \end{gathered}$	$\mathrm{JMP}_{\times \mathrm{E} 00-\mathrm{xEFF}}$	$\mathrm{JP}+31$	$\mathrm{JP}+15$	E
JP -0	JP -16	LD OFF, \#i	DRSZ OFF	*	*	LD B, \#i	RETI	$\begin{array}{\|l\|} \hline \text { SBIT } \\ 7,[\mathrm{~B}] \end{array}$	$\begin{aligned} & \hline \text { RBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	LD B, 0	IFBNE OF	$\begin{gathered} \text { JSR } \\ \text { xF00-xFFF } \end{gathered}$	$\begin{gathered} \mathrm{JMP} \\ \mathrm{xFOO}-\mathrm{xFFF} \end{gathered}$	$\mathrm{JP}+32$	$\mathrm{JP}+16$	F

Where,
\# i is the immediate data
Md is a directly addressed memory location

* is an unused opcode

Note: The opcode 60 Hex is also the opcode for IFBIT \#i,A.

## Mask Options

The mask programmable options are shown below. The options are programmed at the same time as the ROM pattern submission.
OPTION 1: CLOCK CONFIGURATION
$=1 \quad$ Crystal Oscillator (CKI/10)
G7 (CKO) is clock generator output to crystal/resonator with CKI being the clock input
OPTION 2: HALT
$=1 \quad$ Enable HALT mode
$=2$ Disable HALT mode
OPTION 3: BONDING OPTIONS
$=1 \quad 68$ Pins PLCC

## Development Support

## IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 In-Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface for maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real-time, full-speed emulation up to $10 \mathrm{MHz}, 32 \mathrm{kBytes}$ of emulation memory and 4 k frames of trace buffer memory. The user may define as many as $32 k$ trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code or address ranges or complex triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user-selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.
During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bar graph format or as actual frequency count.

Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy to use windowed interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefinable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PCRM via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time to under 3 seconds.
The following tables list the emulator and probe cards ordering information.

Emulator Ordering Information

Part Number	Description	Current Version
IM-COP8/400/1 $\ddagger$	MetaLink base unit incircuit emulator for all COP8 devices, symbolic debugger software and RS232 serial interface cable, with 110 V @ 60 Hz Power Supply.	Host   Software:
IM-COP8/400/2 $\ddagger$	MetaLink base unit incircuit emulator for all COP8 devices, symbolic debugger software and RS232 serial interface cable, with 220 V @ 50 Hz Powic: Suppiy.	Rev. 5, Model File Rev 3.050.

$\ddagger$ These parts include National's COP8 Assembler/Linker/Librarian Package (COP8-DEV-IBMA).

Probe Card Ordering Information

Part Number	Package	Voltage   Range	Emulates
MHW-888GW68PWPC	68 PLCC	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP888GW

## MACRO CROSS ASSEMBLER

National Semiconductor offers a COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink iceMASTER emulators.

Development Support (Continued)
Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8         Assembler/   Linker/Librarian   for IBM         PC/XT®, AT® or   compatible.	

## DIAL-A-HELPER

Dial-A-Helper is a service provided by the Microcontroller Applications group. The Dial-A-Helper is an Electronic Bulletin Board Information System.

## INFORMATION SYSTEM

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.

If the user has a PC with a communications package then files from the FILE SECTION can be down loaded to disk for later use.

## Order P/N: MDS-DIAL-A-HLP

Information System Package Contains
Dial-A-Helper User's Manual
Public Domain Communications Software

## Factory Applications Support

Dial-A-Helper also provides immediate factor applications support. If a user has questions, he can leave messages on our electronic bulletin board, which we will respond to.

Voice: (800) 272-9959
Modem: CANADA/US.: (800) NSC-MICRO (800) 672-6427

Baud: . 14.4k
Set-Up: Length: 8-Bit
Parity: None Stop Bit 1
Operation: 24 Hours, 7 Days

## COP8780C/COP8781C/COP8782C

 Single-Chip EPROM/OTP Microcontrollers
## General Description

The COP8780C, COP8781C and COP8782C are members of the COPSTM 8 -bit microcontroller family. They are fully static microcontrollers, fabricated using double-metal, double poly silicon gate microCMOS EPROM technology. These devices are available as UV erasable or One Time Programmable (OTP). These low cost microcontrollers are complete microcomputers containing all system timing, interrupt logic, EPROM, RAM, and I/O necessary to implement dedicated control functions in a variety of applications. Features include an 8-bit memory mapped architecture, MICROWIRE/PLUSTM serial I/O, a 16 -bit timer/counter with associated 16 -bit autoreload/capture register, and a multisourced interrupt. Each I/O pin has software selectable options to adapt the device to the specific application. These devices operate over a voltage range of 4.5 V to 6.0 V . An efficient, regular instruction set operating at a $1 \mu \mathrm{~s}$ instruction cycle rate provides optimal throughput.
The COP8780C, COP8781C and COP8782C can be configured to EMULATE the COP880C, COP840C and COP820C microcontrollers.

## Features

- Low cost 8-bit microcontroller
- Fully static CMOS
- $4096 \times 8$ on-chip UV erasable or OTP EPROM
- EPROM security
- 128 or 64 bytes of on-chip RAM, user configurable
- Crystal, RC or External Oscillator, user configurable
- 1 ! 1 s instruction time ( 10 MHz clock)
- Low current drain
- Extra-low current static HALT mode

■ Single supply operation: 4.5 V to 6.0 V

- 8 -bit stack pointer (stack in RAM)

■ 16-bit read/write timer operates in a variety of modes

- PWM (Pulse Width Modulation) mode with 16-bit autoreload register
- External Event Counter mode, with selectable edge
- Input Capture mode (selectable edge) with 16 -bit capture register
- Multi-source interrupt
- External interrupt with selectable edge
- Timer interrupt or capture interrupt
- Software interrupt
a Powerful instruction set, with most instructions single byte
■ Many single byte, single cycle instructions
- BCD arithmetic instructions
- MICROWIRE/PLUS serial I/O
- Software selectable I/O options (TRI-STATE, push-pull, weak pull-up)
- Temperature ranges: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Schmitt trigger inputs on $G$ port
- COP8780C EPROM Programming fully supported by different sources
- Packages:
- 44 PLCC, OTP, Emulates COP880C, 36 I/O pins
- 40 DIP, OTP, Emulates COP880C, 36 I/O pins
- 28 DIP, OTP, Emulates COP820C/840C/881C, 24 I/O pins
- 20 DIP, OTP, Emulates COP822C/842C, 16 I/O pins
- 28 SO, 20 SO, OTP
- 44 LDCC, UV Erasable
- 40 CERDIP, 28 CERDIP, 20 CERDIP, UV Erasable


## Block Diagram



## Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
Programming Voltage VPP (RESET pin)
and ME (pin G6)
Voltage at any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$

Total Current into VCC Pin (Source)	50 mA
Total Current out of GND Pin (Sink)	60 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics COP87XXC; $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Operating Voltage   Power Supply Ripple (Note 1)	Peak to Peak	4.5		$\begin{gathered} 6.0 \\ 0.1 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
$\begin{aligned} & \text { Supply Current } \\ & \text { CKI = } 10 \mathrm{MHz} \text { (Note 2) } \\ & \text { HALT Current (Note 3) } \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$			$\begin{aligned} & 21 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Input Levels   RESET, CKI   Logic High   Logic Low   All Other Inputs Logic High Logic Low		$\begin{aligned} & 0.9 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.1 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & V \\ & v \\ & v \\ & v \end{aligned}$
Hi-Z Input Leakage Input Pullup Current	$\begin{aligned} & V_{\mathrm{CC}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} -2 \\ -40 \end{gathered}$		$\begin{gathered} +2 \\ -250 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
G Port Input Hysteresis	(Note 6)		$0.05 \mathrm{~V}_{\mathrm{CC}}$		V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up) Source (Push-Pull Mode) Sink (Push-Pull Mode) TRI-STATE Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.4 \\ 10 \\ -10 \\ -0.4 \\ 1.6 \\ -2.0 \end{gathered}$		$\begin{aligned} & -110 \\ & +2.0 \end{aligned}$	mA   mA   $\mu \mathrm{A}$   mA   mA   $\mu \mathrm{A}$
Allowable Sink/Source   Current per Pin   D Outputs (Sink)   All Others				$\begin{gathered} 15 \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current (Notes 4, 6) without Latchup (Room Temp)	Room Temp			$\pm 200$	mA
RAM Retention Voltage, Vr (Note 5)		2.0			V
Input Capacitance	(Note 6)			7	pF
Load Capacitance on D2	(Note 6)			1000	pF

Note 1: Rate of voltage change must be less than $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured atter running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the crystal configurations. Halt test conditions: All Inputs tied to $V_{C C}$. L, C , and G port I/O's configured as outputs and programmed low; D outputs programmed low; the window for UV erasable packages is completely covered with an opaque cover to prevent light from falling onto the die during HALT mode test. Parameter refers to HALT mode entered via setting bit 7 of the G Port data register.
Note 4: Pins G6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $\mathrm{V}_{\mathrm{CC}}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$ ). The effective resistance to $V_{C C}$ is $750 \Omega$ (typ). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .
Note 5: To maintain RAM integrity, the voltage must not be dropped or raised instantaneously.
Note 6: Parameter characterized but not tested.

## COP8780C/COP8781C/COP8782C

AC Electrical Characteristics $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crystal/Resonator or External Clock R/C Oscillator Mode	$\begin{aligned} & V_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
CKI Clock Duty Cycle (Note 7) Rise Time (Note 7) Fall Time (Note 7)	$\begin{aligned} \mathrm{fr} & =\mathrm{Max} \\ \mathrm{fr} & =10 \mathrm{MHz} \text { Ext Clock } \\ \mathrm{fr} & =10 \mathrm{MHz} \text { Ext Clock } \end{aligned}$	45		$\begin{gathered} 55 \\ 12 \\ 8 \end{gathered}$	$\begin{aligned} & \% \\ & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$
Inputs tsetup thold	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \geq 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{Cc}} \geq 4.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 200 \\ 60 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Output Propagation Delay tpD1 $^{\text {t }}$ tPD 0 SO, SK All Others	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.7 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tupD)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$			$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$
Reset Pulse Width		1.0			$\mu \mathrm{S}$

Note 7: Parameter guaranteed by design, but not tested.
$\mathrm{t}_{\mathrm{c}}=$ Instruction Cycle Time.

## Timing Diagram



TL/DD/10802-2
FIGURE 2. MICROWIRE/PLUS Timing



Top View COP8781CN, COP8781CWM COP8781CJ

FIGURE 3. Connection Diagrams

## Pin Descriptions

$V_{C C}$ and GND are the power supply pins.
CKI is the clock input. This can come from an external source, a R/C generated oscillator or a crystal (in conjunction with CKO). See Oscillator description.
RESET is the master reset input. See Reset description.
PORT I is an 8 -bit Hi -Z input port. The 28 -pin device does not have a full complement of PORT I pins. The unavailable pins are not terminated i.e., they are floating. A read operation for these unterminated pins will return unpredictable values. The user must ensure that the software takes this into account by either masking or restricting the accesses to bit operations. The unterminated PORT I pins will draw power only when addressed.
PORT L is an 8-bit I/O port.
PORT $C$ is a 4-bit $1 / O$ port.
Three memory locations are allocated for the L, G and C ports, one each for data register, configuration register and the input pins. Reading bits 4-7 of the C-Configuration register, data register, and input pins returns undefined data.
There are two registers associated with the $L$ and $C$ ports: a data register and a configuration register. Therefore, each L and C I/O bit can be individually configured under software control as shown below:

Config.	Data	Ports L and C Setup
0	0	Hi-Z Input (TRI-STATE Output)
0	1	Input with Pull-Up (Weak One Output)
1	0	Push-Pull Zero Output
1	1	Push-Pull One Output

On the 20-and 28 -pin parts, it is recommended that all bits of Port C be configured as outputs to minimize current.
PORT G is an 8 -bit port with $6 \mathrm{I} / \mathrm{O}$ pins ( $\mathrm{G} 0-\mathrm{G} 5$ ) and 2 input pins (G6, G7). All eight G-pins have Schmitt Triggers on the inputs.
There are two registers associated with the G port: a data register and a configuration register. Therefore, each $G$ port bit can be individually configured under software control as shown below:

Config.	Data	Port G Setup
0	0	Hi-Z Input (TRI-STATE Output)
0	1	Input with Pull-Up (Weak One Output)
1	0	Push-Pull Zero Output
1	1	Push-Pull One Output

Since G6 and G7 are input only pins, any attempt by the user to configure them as outputs by writing a one to the configuration register will be disregarded. Reading the G6 and G7 configuration bits will return zeros. The device will be placed in the HALT mode by writing a one to the G7 bit in the G-port data register.
Six pins of Port G have alternate features:
GO INTR (an external interrupt)
G3 TIO (timer/counter input/output)
G4 SO (MICROWIRE/PLUS serial data output)
G5 SK (MICROWIRE/PLUS clock I/O)
G6 SI (MICROWIRE/PLUS serial data input)
G7 CKO crystal oscillator output (selected by programming the ECON register) or HALT Restart/general purpose input

Pins G1 and G2 currently do not have any alternate functions.
PORT D is an 8 -bit output port that is preset high when RESET goes low. Care must be exercised with the D2 pin operation. At reset, the external load on this pin must ensure that the output voltage stay above $0.7 \mathrm{~V}_{\mathrm{CC}}$ to prevent the chip from entering special modes. Also, keep the external loading on D2 to less than 1000 pF .

## Functional Description

Figure 1 shows the block diagram of the internal architecture. Data paths are illustrated in simplified form to depict how the various logic elements communicate with each other in implementing the instruction set of the device.

## ALU AND CPU REGISTERS

The ALU can do an 8-bit addition, subtraction, logical or shift operation in one cycle time.
There are five CPU registers:
A is the 8 -bit Accumulator register
PU is the upper 7 bits of the program counter ( PC )
PL is the lower 8 bits of the program counter (PC)
$B$ is the 8-bit address register, can be auto incremented or decremented.
X is the 8 -bit alternate address register, can be incremented or decremented.
SP is the 8-bit stack pointer, which points to the subroutine/ interrupt stack in RAM. The SP must be initialized with software (usually to RAM address 06F Hex with 128 bytes of on-chip RAM selected, or to RAM address 02F Hex with 64 bytes of on-chip RAM selected). The SP is used with the subroutine call and return instructions, and with the interrupts.
$B, X$ and SP registers are mapped into the on-chip RAM. The $B$ and $X$ registers are used to address the on-chip RAM.
 subroutine calls and returns.

## PROGRAM MEMORY

The device contains 4096 bytes of UV erasable or OTP EPROM memory. This memory is mapped in the program memory address space from 0000 to OFFF Hex. The program memory may contain either instructions or data constants, and is addressed by the 15 -bit program counter (PC). The program memory can be indirectly read by the LAID (Load Accumulator Indirect) instruction for table lookup of constant data.
All locations in the EPROM program memory will contain OFF Hex (all 1's) after the device is erased. OTP parts are shipped with all locations already erased to OFF Hex. Unused EPROM locations should always be programmed to 00 Hex so that the software trap can be used to halt runaway program operation.
The device can be configured to inhibit external reads of the program memory. This is done by programming the security bit in the ECON (EPROM configuration) register to zero. See the ECON REGISTER section for more details.

## DATA MEMORY

The data memory address space includes on-chip RAM, I/O, and registers. Data memory is addressed directly by instructions, or indirectly by means of the $\mathrm{B}, \mathrm{X}$, or SP point-

## Functional Description (Continued)

ers. The device can be configured to have either 64 or 128 bytes of RAM, depending on the value of the "RAM SIZE" bit in the ECON (EPROM CONFIGURATION) register. The sixteen bytes of RAM located at data memory address 0F0OFF are designated as "registers". These sixteen registers can be decremented and tested with the DRSZ (Decrement Register and Skip if Zero) instruction.
The three pointers X, B, and SP are memory mapped into this register address space at addresses OFC, OFE, and 0FD respectively. The remaining registers are available for general usage.
Any bit of data memory can be directly set, reset or tested. All of the I/O registers and control registers (except A and PC ) are memory mapped. Consequently, any of the I/O bits or control register bits can be directly and individually set, reset, or tested.
Note: RAM contents are undefined upon power-up.

## ECON (EPROM CONFIGURATION) REGISTER

The ECON register is used to configure the user selectable clock, security, and RAM size options. The register can be programmed and read only in EPROM programming mode. Therefore, the register should be programmed at the same time as the program memory locations 0000 through OFFF Hex. UV erasable parts are shipped with OFF Hex in this register while the OTP parts are shipped with 07F Hex in this register. Erasing the EPROM program memory also erases the ECON register.
The device has a security feature which, when enabled, prevents reading of the EPROM program memory. The security bit in the ECON register determines whether security is enabled or disabled. If the security option is enabled, then any attempt to externally read the contents of the EPROM will result in the value E0 Hex being read from all program memory locations. If the security option is disabled, the contents of the internal EPROM may be read. The ECON register is readable regardless of the state of the security bit.
The format of the ECON register is as follows:
TABLE 1

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
$X$	$X$	SECURITY	CKI 2	CKI 1	X	RAM SIZE	$X$

Bit $7=X \quad$ Don't care.
Bit $6=X \quad$ Don't care.
Bit $5=1 \quad$ Security disabled. EPROM read and write are allowed.
$=0$ Security enabled. EPROM read and write are not allowed.
Bits 4,3
$=1,1$ External CKI option selected.
$=0,1$ Not allowed.
$=1,0 \quad$ RC oscillator option selected.
$=0,0$ Crystal oscillator option selected.
Bit $2=X \quad$ Don't care.
Bit $1=1 \quad$ Selects 128 byte RAM option. This emulates COP840 and COP880.
$=0 \quad$ Selects 64 byte RAM option. This emulates COP820.
Bit $0=X \quad$ Don't care.

## RESET

The $\overline{\operatorname{RESET}}$ input when pulled low initializes the microcontroller. Initialization will occur whenever the RESET input is pulled low. Upon initialization, the Ports L, G and C are placed in the TRI-STATE mode and the Port D is set high. The PC, PSW and CNTRL registers are cleared. The data and configuration registers for Ports $\mathrm{L}, \mathrm{G}$ and C are cleared. The external RC network shown in Figure 4 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.


TL/DD/11299-7
RC $\geq 5 \times$ Power Supply Rise Time
FIGURE 4. Recommended Reset Circuit

## OSCILLATOR CIRCUITS

Figure 5 shows the three clock oscillator configurations available for the device. The CKI 1 and CKI 2 bits in the ECON register are used to select the clock option. See the ECON REGISTER section for more details.


FIGURE 5. Crystal, External and R-C Connection Diagrams

## A. Crystal Oscillator

The device can be driven by a crystal clock. The crystal network is connected between the pins CKI and CKO.
Table II shows the component values required for various standard crystal frequencies.

## B. External Oscillator

CKI can be driven by an external clock signal provided it meets the specified duty cycle, rise and fall times, and input levels. In External oscillator mode, G7 is available as a general purpose input and/or HALT restart control.

Functional Description (Continued)
TABLE II. Crystal Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

R1   $(\mathbf{k} \Omega)$	R2   $(\mathbf{M} \Omega)$	$\mathbf{C 1}$   $(\mathbf{p F})$	$\mathbf{C 2}$   $(\mathbf{p F})$	CKI Freq   $(\mathbf{M H z})$	Conditions
0	1	30	$30-36$	10	$V_{C C}=5 \mathrm{~V}$
0	1	30	$30-36$	4	$V_{C C}=5 \mathrm{~V}$

TABLE III. RC Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$\mathbf{R}$   $\mathbf{( k \Omega} \boldsymbol{)}$	$\mathbf{C}$   $(\mathbf{p F})$	CKI Freq.   $(\mathbf{M H z})$	Instr. Cycle   $(\mu \mathbf{s})$	Conditions
3.3	82	2.2 to 2.7	3.7 to 4.6	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
5.6	100	1.1 to 1.3	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	
6.8	100	0.9 to 1.1	8.8 to 9.0	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

Note: (R/C Oscillator Configuration): $3 \mathrm{k} \leq \mathrm{R} \leq 200 \mathrm{k}, 50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}$.

## C. R/C Oscillator

CKI can be configured as a single pin RC controlled oscillator. In RC oscillator mode, G7 is available as a general purpose input and/or HALT restart control.
Table III shows the variation in the oscillator frequencies as functions of the component ( R and C ) values.

## HALT MODE

The device supports a power saving mode of operation: HALT. The controller is placed in the HALT mode by setting the G7 data bit, alternatively the user can stop the clock input. (Stopping the clock input will draw more current than setting the G7 data bit.) In the HALT mode all internal processor activities including the clock oscillator are stopped. The fully static architecture freezes the state of the controller and retains all information until continuing. In the HALT mode, power requirements are minimal as it draws only leakage currents and output current. The applied voltage ( $\mathrm{V}_{\mathrm{C}}$ ) may be decreased down to Vr (minimum RaM1 retention voltage) without altering the state of the machine.
There are two ways to exit the HALT mode: via the RESET or by the G7 pin. A low on the RESET line reinitializes the microcontroller and starts execution from address 0000 H . In external and RC oscillator modes, a low to high transition on the G7 pin also causes the microcontroller to come out of the HALT mode. Execution resumes at the address following the HALT instruction. Except for the G7 data bit, which gets reset, all RAM locations retain the values they had prior to execution of the "HALT" instruction. It is required that the first instruction following the "HALT" instruction be a "NOP" in order to synchronize the clock.

## INTERRUPTS

The device has a sophisticated interrupt structure to allow easy interface to the real world. There are three possible interrupt sources, as shown below.
A maskable interrupt on external G0 input (positive or negative edge sensitive under software control)
A maskable interrupt on timer underflow or timer capture
A non-maskable software/error interrupt on opcode zero

## INTERRUPT CONTROL

The GIE (global interrupt enable) bit enables the interrupt function. This is used in conjunction with ENI and ENTI to select one or both of the interrupt sources. This bit is reset when interrupt is acknowledged.
ENI and ENTI bits select external and timer interrupts respectively. Thus the user can select either or both sources to interrupt the microcontroller when GIE is enabled.
IEDG selects the external interrupt edge ( $0=$ rising edge, $1=$ falling edge). The user can get an interrupt on both rising and falling edges by toggling the state of IEDG bit after each interrupt.
IPND and TPND bits signal which interrupt is pending. After an interrupt is acknowledged, the user can check these two bits to determine which interrupt is pending. This permits the interrupts to be prioritized under software. The pending flags have to be cleared by the user. Setting the GIE bit high inside the interrupt subroutine allows nested interrupts.
The software interrupt does not reset the GIE bit. This means that the controller can be interrupted by other interrupt sources while servicing the software interrupt.

## INTERRUPT PROCESSING

The interrupt, once acknowledged, pushes the program counter (PC) onto the stack and the stack pointer (SP) is decremented twice. The Global Interrupt Enable (GIE) bit is reset to disable further interrupts. The microcontroller then vectors to the address 00FFH and resumes execution from that address. This process takes 7 cycles to complete. At the end of the interrupt subroutine, any of the following three instructions return the processor back to the main program: RET, RETSK or RETI. Either one of the three instructions will pop the stack into the program counter (PC). The stack pointer is then incremented twice. The RETI instruction additionally sets the GIE bit to re-enable further interrupts.
Any of the three instructions can be used to return from a hardware interrupt subroutine. The RETSK instruction should be used when returning from a software interrupt subroutine to avoid entering an infinite loop.

## Functional Description (Continued)



TL/DD/11299-9

## DETECTION OF ILLEGAL CONDITIONS

The device incorporates a hardware mechanism that allows it to detect illegal conditions which may occur from coding errors, noise and "brown out" voltage drop situations. Specifically, it detects cases of executing out of undefined EPROM area and unbalanced stack situations.
Reading an undefined EPROM location returns 00 (hexadecimal) as its contents. The opcode for a software interrupt is also " 00 ". Thus a program accessing undefined EPROM will cause a software interrupt.
Reading an undefined RAM location returns an FF (hexadecimal). The subroutine stack on the device grows down for each subroutine call. By initializing the stack pointer to the top of RAM, the first unbalanced return instruction will cause the stack pointer to address undefined RAM. As a result the program will attempt to execute from FFFF (hexadecimal), which is an undefined EPROM location and will trigger a software interrupt.

## MICROWIRE/PLUS

MICROWIRE/PLUS is a serial synchronous bidirectional communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e. A/D converters, display drivers, EEPROMS, etc.) and with other microcontrollers which support the MICROWIRE/PLUS interface. It consists of an 8-bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 7 shows the block diagram of the MICROWIRE/PLUS interface.


TL/DD/11299-10
FIGURE 7. MICROWIRE/PLUS Block Diagram

The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS interface with the internal clock source is called the Master mode of operation. Operating the MICROWIRE/ PLUS interface with an external shift clock is called the Slave mode of operation.

The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. The SK clock rate is selected by the two bits, SLO and SL1, in the CNTRL register. Table IV details the different clock rates that may be selected.

TABLE IV

SL. 1	SL0	SK Cycle Time
0	0	$2 t_{c}$
0	1	$4 t_{c}$
1	$x$	$8 t_{c}$

where,
$\mathrm{t}_{\mathrm{c}}$ is the instruction cycle time.

## MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS arrangement to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. The device may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 8 shows how two device microcontrollers and several peripherals may be interconnected using the MICROWIRE/PLUS arrangement.

## Master MICROWIRE/PLUS Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally by the device. The MICROWIRE/PLUS Master always initiates all data exchanges (Figure 8). The MSEL bit in the CNTRL register must be set to enable the SO and SK functions on the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register. Table $V$ summarizes the bit settings required for Master mode of operation.

## SLAVE MICROWIRE/PLUS OPERATION

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL

Functional Description (Continued)


TL/DD/11299-11
FIGURE 8. MICROWIRE/PLUS Application
bit in the CNTRL register enables the SO and SK functions on the G Port. The SK pin must be selected as an input and the SO pin selected as an output pin by appropriately setting up the Port G configuration register. Table V summarizes the settings required to enter the Slave mode of operation. The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated (Figure 8).

TABLE V

G4   Config.   Bit	G5   Config.   Bit	G4   Fun.	G5   Fun.	G6   Fun.	Operation
1	1	SO	Int. SK	SI	MICROWIRE Master
0	1	TRI-STATE	Int. SK	SI	MICROWIRE Master
1	0	SO	Ext. SK	SI	MICROWIRE Slave
0	0	TRI-STATE	Ext. SK	SI	MICROWIRE Slave

## TIMER/COUNTER

The device has a powerful 16 -bit timer with an associated 16 -bit register enabling it to perform extensive timer functions. The timer T1 and its register R1 are each organized as two 8 -bit read/write registers. Control bits in the register CNTRL allow the timer to be started and stopped under software control. The timer-register pair can be operated in one of three possible modes. Table VI details various timer operating modes and their requisite control settings.

## MODE 1. TIMER WITH AUTO-LOAD REGISTER

In this mode of operation, the timer T1 counts down at the instruction cycle rate. Upon underflow the value in the register R1 gets automatically reloaded into the timer which continues to count down. The timer underflow can be programmed to interrupt the microcontroller. A bit in the control register CNTRL enables the TIO (G3) pin to toggle upon timer underflows. This allows the generation of square-wave outputs or pulse width modulated outputs under software control (Figure 9).

## MODE 2. EXTERNAL COUNTER

In this mode, the timer T1 becomes a 16 -bit external event counter. The counter counts down upon an edge on the TIO pin. Control bits in the register CNTRL program the counter to decrement either on a positive edge or on a negative edge. Upon underflow the contents of the register R1 are automatically copied into the counter. The underflow can also be programmed to generate an interrupt (Figure 9).

## MODE 3. TIMER WITH CAPTURE REGISTER

Timer T1 can be used to precisely measure external frequencies or events in this mode of operation. The timer T1 counts down at the instruction cycle rate. Upon the occurrence of a specified edge on the TIO pin the contents of the timer T1 are copied into the register R1. Bits in the control register CNTRL allow the trigger edge to be specified either as a positive edge or as a negative edge. In this mode the user can elect to be interrupted on the specified trigger edge (Figure 10).

TABLE VI. Timer Operating Modes

CNTRL   BIts   $\mathbf{7 6 5}$	Operation Mode	Timer   Counts   On	
000	External Counter w/Auto-Load Reg.	TInterrupt	Timer Underflow
001	External Counter w/Auto-Load Reg.	Timer Underflow	TIO Pos. Edge
010	Not Allowed	Not Allowed	Not Allowed
011	Not Allowed	Not Allowed	Not Allowed
100	Timer w/Auto-Load Reg.	Timer Underflow	$t_{c}$
101	Timerw/Auto-Load Reg./Toggle TIO Out	Timer Underflow	$t_{c}$
110	Timerw/Capture Register	TIO Pos. Edge	$t_{c}$
111	Timerw/Capture Register	TIO Neg. Edge	$t_{c}$

Functional Description (Continued)


TL/DD/11299-12
FIGURE 9. Timer/Counter Auto Reload Mode Block Dlagram


TL/DD/11299-13
FIGURE 10. Timer Capture Mode Block Diagram

## TIMER PWM APPLICATION

Figure 11 shows how a minimal component D/A converter can be built out of the Timer-Register pair in the Auto-Reload mode. The timer is placed in the "Timer with auto reload" mode and the TIO pin is selected as the timer output. At the outset the TIO pin is set high, the timer T1 holds the on time and the register R1 holds the signal off time. Setting TRUN bit starts the timer which counts down at the instruction cycle rate. The underflow toggles the TIO output and copies the off time into the timer, which continues to run. By alternately loading in the on time and the off time at each successive interrupt a PWM frequency can be easily generated.


TL/DD/11299-14
FIGURE 11. TImer Application

## Control Registers

CNTRL REGISTER (ADDRESS X'00EE)
The Timer and MICROWIRE/PLUS control register contains the following bits:

$\begin{aligned} & \text { SL1 \& } \\ & \text { IEDG } \end{aligned}$		Select the MICROWIRE/PLUS clock divide-by External interrupt edge polarity select ( $0=$ rising edge, $1=$ falling edge)					
MSEL		Enable MICROWIRE/PLUS functions SO and SK					
TRUN		Start/Stop the Timer/Counter ( $1=$ run, $0=$ stop)					
TC3		Timer input edge polarity select ( $0=$ rising edge, 1 = falling edge)					
TC2		Selects the capture mode Selects the timer mode					
TC1							
TC1	TC2	TC3	TRUN	MSEL	IEDG	S1	So
Bit 7							

PSW REGISTER (ADDRESS X'OOEF)
The PSW register contains the following select bits:
GIE Global interrupt enable
ENI External interrupt enable
BUSY MICROWIRE/PLUS busy shifting
IPND External interrupt pending
ENTI Timer interrupt enable
TPND Timer interrupt pending
C Carry Flag
HC Half carry Flag

HC	C	TPND	ENTI	IPND	BUSY	ENI	GIE
Bit 7	Bit 0						

## Addressing Modes

## REGISTER INDIRECT

This is the "normal" mode of addressing for the device. The operand is the memory location addressed by the B register or X register.

## DIRECT

The instruction contains an 8-bit address field that directly points to the data memory location for the operand.

## IMMEDIATE

The instruction contains an 8-bit immediate field as the operand.

## REGISTER INDIRECT

## (AUTO INCREMENT AND DECREMENT)

This is a register indirect mode that automatically increments or decrements the B or X register after executing the instruction.

## RELATIVE

This mode is used for the JP instruction, the instruction field is added to the program counter to get the new program location. JP has a range of -31 to +32 to allow a one byte relative jump (JP + 1 is implemented by a NOP instruction). There are no "pages" when using JP, all 15 bits of PC are used.

## Memory Map

All RAM, ports and registers (except A and PC) are mapped into data memory address space.

RAM Select	Address	Contents
64 On-Chip RAM Bytes Selected by ECON reg.	$\begin{aligned} & 00-2 F \\ & 30-7 F \end{aligned}$	48 On-Chip RAM Bytes Unused RAM Address Space (Reads as all 1's)
128 On-Chip RAM Bytes Selected by ECON reg.	$\begin{aligned} & 00-6 \mathrm{~F} \\ & 70-7 \mathrm{~F} \end{aligned}$	112 On-chip RAM Bytes Unused RAM Address Space (Reads as all 1's)
	80 to BF	Expansion Space for On-Chip EERAM
	C0 to CF	Expansion Space for 1/O and Registers
	D0 to DF D0 D1 D2 D3 D4 D5 D6 D7	On-Chip I/O and Registers   Port L Data Register   Port L Configuration Register   Port L Input Pins (Read Only)   Reserved for Port L   Port G Data Register   Port G Configuration Register   Port G Input Pins (Read Only)   Port I Input Pins (Read Only)
	$\begin{gathered} \text { D8 } \\ \text { D9 } \\ \text { DA } \\ \text { DB } \\ \text { DC } \\ \text { DD-DF } \end{gathered}$	Port C Data Register   Port C Configuration Register Port C Input Pins (Read Only)   Reserved for Port C   Port D Data Register   Reserved for Port D
	$\begin{gathered} \text { E0 to EF } \\ \text { E0-E7 } \\ \text { E8 } \\ E 9 \\ E A \\ E B \\ E C \\ E D \\ E E \\ E F \\ \hline \end{gathered}$	On-Chip Functions and Registers Reserved for Future Parts   Reserved   MICROWIRE/PLUS Shift Register   Timer Lower Byte   Timer Upper Byte   Timer Autoload Register Lower Byte   Timer Autoload Register Upper Byte   CNTRL Control Register   PSW Register
	$\begin{gathered} \text { FO to } \mathrm{FF} \\ \text { FC } \\ \text { FD } \\ \text { FE } \end{gathered}$	On-Chip RAM Mapped as Registers X Register SP Register B Register

Reading unused memory locations below 7FH will return all ones. Reading other unused memory locations will return undefined data.

## Instruction Set

REGISTER AND SYMBOL DEFINITIONS

## Registers

A 8 -bit Accumulator register
B $\quad$-bit Address register
X 8-bit Address register
SP 8-bit Stack pointer register
PC 15-bit Program counter register
PU upper 7 bits of PC
PL lower 8 bits of PC
C 1-bit of PSW register for carry
HC Half Carry
GIE 1-bit of PSW register for global interrupt enable

## Symbols

[B]	Memory indirectly addressed by B register
$[\mathrm{X}]$	Memory indirectly addressed by X register
Mem	Direct address memory or [B]
Meml	Direct address memory or [B] or Immediate data
Imm	8-bit Immediate data
Reg	Register memory: addresses F0 to FF (Includes B, X   and SP)
Bit Bit number (0 to 7 )   $\leftarrow$ Loaded with	
$\leftarrow$	Exchanged with

Instruction Set

ADD   ADC   SUBC   AND   OR   XOR   IFEQ   IFGT   IFBNE   DRSZ   SBIT   RBIT   IFBIT	add   add with carry   subtract with carry   Logical AND   Logical OR   Logical Exclusive-OR   IF equal   IF greater than   IF B not equal   Decrement Reg., skip if zero   Set bit   Reset bit   If bit	$A \leftarrow A+M e m l$   $A \leftarrow A+M e m l+C, C \leftarrow$ Carry   HC $\leftarrow$ Half Carry   $A \leftarrow A+\overline{M e m l}+C, C \leftarrow$ Carry   HC $\leftarrow$ Half Carry   $A \leftarrow A$ and $M e m l$   $A \leftarrow A$ or Meml   $A \leftarrow A$ xor Meml   Compare $A$ and Meml, Do next if $A=$ Meml   Compare A and Meml, Do next if A>Meml   Do next if lower 4 bits of $B \neq I \mathrm{~mm}$   Reg $\leftarrow$ Reg - 1, skip if Reg goes to 0   1 to bit,   Mem (bit $=0$ to 7 immediate)   0 to bit,   Mem   If bit,   Mem is true, do next instr.
X   LDA   LD mem   LD Reg	Exchange A with memory Load A with memory Load Direct memory Immed. Load Register memory Immed.	$\begin{aligned} & A \leftrightarrows \text { Mem } \\ & A \leftarrow \text { Meml } \\ & \text { Mem } \leftarrow \text { Imm } \\ & \text { Reg } \leftarrow \text { Imm } \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \text { LD A } \\ & \text { LD A } \\ & \text { LD M } \end{aligned}$	Exchange A with memory [B] Exchange $A$ with memory $[\mathrm{X}]$ Load A with memory $[B]$ Load A with memory [ X ] Load Memory Immediate	$\begin{array}{lc} A \longleftrightarrow[B] & (B \leftarrow B \pm 1) \\ A \leftarrow[X] & (X \leftarrow X \pm 1) \\ A \leftarrow[B] & (B \leftarrow B \pm 1) \\ A \leftarrow[X] & (X \leftarrow X \pm 1) \\ {[B] \leftarrow \operatorname{lmm}(B \leftarrow B \pm 1)} \\ \hline \end{array}$
CLRA INCA DECA LAID DCORA RRCA SWAPA SC RC IFC IFNC	Clear A   Increment A   Decrement A   Load A indirect from ROM   DECIMAL CORRECT A   ROTATE A RIGHT THRU C   Swap nibbles of $A$   Set C   Reset C   If C   If not $C$	$\begin{aligned} & A \leftarrow 0 \\ & A \leftarrow A+1 \\ & A \leftarrow A-1 \\ & A \leftarrow R O M(P U, A) \\ & A \leftarrow B C D \text { correction (follows ADC, SUBC) } \\ & C \rightarrow A 7 \rightarrow \ldots \rightarrow A O \rightarrow C \\ & A 7 \ldots A 4 \longleftarrow A 3 \ldots A 0 \\ & C \leftarrow 1, H C \leftarrow 1 \\ & C \leftarrow 0, H C \leftarrow 0 \end{aligned}$   If $C$ is true, do next instruction   If C is not true, do next instruction
	Jump absolute long   Jump absolute   Jump relative short   Jump subroutine long   Jump subroutine   Jump indirect   Return from subroutine   Return and Skip   Return from Interrupt   Generate an interrupt   No operation	

Bits 7-4

F	E	D	c	B	A	9	8	7	6	5	4	3	2	1	0	
JP -15	JP -31	LD OFO, \#i	DRSZ OFO	RRCA	RC	$\begin{gathered} \text { ADC A }, \\ \# i \end{gathered}$	ADC A, [B]	$\begin{aligned} & \text { IFBIT } \\ & 0,[B] \end{aligned}$	*	LD B, OF	IFBNE 0	$\begin{gathered} \text { JSR } \\ 0000-00 \mathrm{FF} \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0000-00 \mathrm{FF} \end{gathered}$	$J P+17$	INTR	0
JP -14	JP -30	LD 0F1,\#i	DRSZ OF1	*	SC	$\underset{\# i}{\operatorname{SUBC} A,}$	$\begin{aligned} & \text { SUBC } \\ & \text { A,[B] } \end{aligned}$	$\begin{gathered} \text { IFBIT } \\ 1,[\mathrm{~B}] \end{gathered}$	*	LD B, 0E	IFBNE 1	$\begin{gathered} \text { JSR } \\ 0100-01 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0100-01 \mathrm{FF} \end{gathered}$	$\mathrm{JP}+18$	$\mathrm{JP}+2$	1
JP -13	JP-29	LD 0F2,\#i	DRSZ OF2	$\begin{gathered} \mathrm{XA}, \\ {[\mathrm{X}+]} \end{gathered}$	$\begin{aligned} & \mathrm{XA}, \\ & {[B+]} \end{aligned}$	$\underset{\# i}{\text { IFEQ } A,}$	$\begin{aligned} & \text { IFEQ } \\ & \mathrm{A},[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & 2,[B] \end{aligned}$	*	LD B, OD	IFBNE 2	$\begin{gathered} \text { JSR } \\ 0200-02 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0200-02 F F \end{gathered}$	$\mathrm{JP}+19$	$\mathrm{JP}+3$	2
JP -12	JP -28	LD 0F3; \#i	DRSZ 0F3	$\begin{gathered} X A \\ {[X-]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{XA}, \\ {[\mathrm{~B}-]} \\ \hline \end{gathered}$	IFGTA,   \#	$\begin{aligned} & \text { IFGT } \\ & \text { A,[B] } \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & 3,[\mathrm{~B}] \\ & \hline \end{aligned}$	*	LD B, OC	IFBNE 3	$\begin{gathered} \text { JSR } \\ \text { 0300-03FF } \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0300-03 F F \\ \hline \end{gathered}$	$\mathrm{JP}+20$	JP + 4	3
JP -11	JP -27	LD 0F4,\#i	DRSZ OF4	*	LAID	ADD A, $\# i$	$\begin{aligned} & \mathrm{ADD} \\ & \mathrm{~A},[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & 4,[\mathrm{~B}] \end{aligned}$	CLRA	LD B, 0B	IFBNE 4	$\begin{gathered} \text { JSR } \\ 0400-04 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0400-04 F F \end{gathered}$	$J P+21$	$\mathrm{JP}+5$	4
JP-10	JP -26	LD 0F5, \#i	DRSZ 0F5	*	JID	$\underset{\#}{\text { AND } A,}$	$\begin{aligned} & \text { AND } \\ & \text { A,[B] } \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & 5,[\mathrm{~B}] \end{aligned}$	SWAPA	LD B, OA	IFBNE 5	$\begin{gathered} \hline \text { JSR } \\ 0500-05 F F \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0500-05 \mathrm{FF} \end{gathered}$	$\mathrm{JP}+22$	$J P+6$	5
JP -9	JP -25	LD 0F6,\#i	DRSZ 0F6	$\begin{gathered} \mathrm{XA}, \\ {[\mathrm{X}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{XA}, \\ \text { [B] } \\ \hline \end{gathered}$	XOR A, \#i	$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A},[\mathrm{~B}] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IFBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	DCORA	LD B, 9	IFBNE 6	$\begin{array}{\|c\|} \text { JSR } \\ 0600-06 F F \\ \hline \end{array}$	$\begin{gathered} \text { JMP } \\ 0600-06 F F \\ \hline \end{gathered}$	$\mathrm{JP}+23$	$J P+7$	6
JP -8	JP -24	LD 0F7, \#i	DRSZ 0F7	*	*	$\begin{gathered} \text { OR A, } \\ \# \mathrm{i} \end{gathered}$	$\begin{gathered} \mathrm{OR} \\ .4,[\mathrm{~B}] \end{gathered}$	$\begin{aligned} & \text { IFBIT } \\ & 7,[B] \end{aligned}$	*	LD B, 8	IFBNE 7	$\begin{gathered} \text { JSR } \\ 0700-07 \mathrm{FF} \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0700-07 F F \\ \hline \end{gathered}$	JP + 24	$J P+8$	7
JP -7	JP -23	LD 0F8,\#i	DRSZ 0F8	NOP	*	$\begin{gathered} \text { LD A, } \\ \# \mathrm{i} \end{gathered}$	IFC	$\begin{aligned} & \text { SBIT } \\ & 0,[B] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 0,[\mathrm{~B}] \end{aligned}$	LD B, 7	IFBNE 8	$\begin{gathered} \text { JSR } \\ 0800-08 \mathrm{FF} \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0800-08 \mathrm{FF} \end{gathered}$	JP + 25	$J P+9$	8
JP -6	JP -22	LD 0F9,\#i	DRSZ OF9	*	*	*	:FNC	$\begin{aligned} & \text { SBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & \text { 1,[B] } \end{aligned}$	LD B, 6	IFBNE 9	$\begin{gathered} \text { JSR } \\ 0900-09 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ 0900-09 F F \end{gathered}$	$\mathrm{JP}+26$	$\mathrm{JP}+10$	9
JP -5	JP -21	LD OFA, \#i	DRSZ OFA	$\begin{aligned} & \hline \mathrm{LDA}, \\ & {[\mathrm{X}+]} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{LDA}, \\ {[\mathrm{~B}+]} \\ \hline \end{array}$	$\begin{gathered} \mathrm{LD} \\ {[\mathrm{~B}+\mathrm{]}, \# \mathrm{i}} \\ \hline \end{gathered}$	INCA	$\begin{aligned} & \text { SBIT } \\ & \text { 2,[B] } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & \text { 2,[B] } \\ & \hline \end{aligned}$	LD B, 5	IFBNE OA	$\begin{array}{\|c\|} \hline \text { JSR } \\ \text { OAOO-OAFF } \\ \hline \end{array}$	$\begin{gathered} \text { JMP } \\ \text { OA00-OAFF } \\ \hline \end{gathered}$	$J P+27$	$J P+11$	A
JP -4	JP -20	LD 0FB, \#i	DRSZ OFB	$\begin{aligned} & \hline \text { LD A, } \\ & {[\mathrm{X}-]} \end{aligned}$	$\begin{aligned} & \text { LD A, } \\ & \text { [B-] } \end{aligned}$	$\begin{gathered} \mathrm{LD} \\ {[\mathrm{~B}-\mathrm{]}, \# \mathrm{i}} \\ \hline \end{gathered}$	DECA	$\begin{aligned} & \text { SBIT } \\ & \text { 3,[B] } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	LD B, 4	IFBNE OB	$\begin{array}{\|c\|} \text { JSR } \\ \text { OBOO-0BFF } \\ \hline \end{array}$	$\begin{gathered} \text { JMP } \\ 0 B 00-0 B F F \end{gathered}$	$J P+28$	$J P+12$	B
JP -3	JP -19	LD OFC, \#i	DRSZ OFC	LD Md, \#i	JMPL	X A,Md	*	$\begin{aligned} & \text { SBIT } \\ & 4,[\mathrm{~B}] \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{RBIT} \\ & 4,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, 3	IFBNE OC	$\begin{array}{\|c\|} \hline \text { JSR } \\ \text { OCOO-OCFF } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { JMP } \\ 0 \mathrm{CO}-0 \mathrm{CFF} \\ \hline \end{array}$	$J P+29$	$\mathrm{JP}+13$	c
JP-2	JP -18	LD OFD, \#i	DRSZ 0FD	DIR	JSRL	$\begin{gathered} \mathrm{LDA}, \\ \mathrm{Md} \end{gathered}$	RETSK	$\begin{aligned} & \text { SBIT } \\ & 5,[\mathrm{~B}] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 5,[\mathrm{~B}] \end{aligned}$	LD B, 2	IFBNE OD	$\begin{array}{\|c\|} \hline \text { JSR } \\ \text { 0D00-0DFF } \\ \hline \end{array}$	$\begin{gathered} \text { JMP } \\ \text { OD00-0DFF } \\ \hline \end{gathered}$	$\mathrm{JP}+30$	$\mathrm{JP}+14$	D
JP -1	JP -17	LD OFE,\#i	DRSZ OFE	$\begin{gathered} \text { LD A, } \\ {[\mathrm{X}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{LD} A, \\ \text { [B] } \\ \hline \end{gathered}$	$\begin{gathered} \text { LD } \\ \text { [B], \#i } \end{gathered}$	RET	$\begin{array}{\|l\|} \hline \text { SBIT } \\ 6,[B] \end{array}$	$\begin{aligned} & \text { RBIT } \\ & 6,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, 1	IFBNE OE	$\begin{array}{\|c\|} \hline \text { JSR } \\ \text { 0E00-0EFF } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { JMP } \\ \text { OEOO-0EFF } \\ \hline \end{array}$	$J P+31$	$\mathrm{JP}+15$	E
JP -0	JP -16	LD OFF,\#1	DRSZ OFF	*	*	*	RETI	$\begin{aligned} & \text { SBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 7,[\mathrm{~B}] \\ & \hline \end{aligned}$	LD B, 0	IFBNE OF	$\begin{gathered} \text { JSR } \\ \text { OFOO-OFFF } \end{gathered}$	$\begin{gathered} \text { JMP } \\ \text { OFOO-0FFF } \end{gathered}$	JP + 32	$J P+16$	$F$

where,
i is the immediate data
Md is a directly addressed memory location

- is an unused opcode (see following table)


## Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instruction taking two bytes).
Most single instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details.

## BYTES and CYCLES per INSTRUCTION

The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle.

Arithmetic Instructions (Bytes/Cycles)

	[B]	Direct	Immed.
ADD	$1 / 1$	$3 / 4$	$2 / 2$
ADC	$1 / 1$	$3 / 4$	$2 / 2$
SUBC	$1 / 1$	$3 / 4$	$2 / 2$
AND	$1 / 1$	$3 / 4$	$2 / 2$
OR	$1 / 1$	$3 / 4$	$2 / 2$
XOR	$1 / 1$	$3 / 4$	$2 / 2$
IFEQ	$1 / 1$	$3 / 4$	$2 / 2$
IFGT	$1 / 1$	$3 / 4$	$2 / 2$
IFBNE	$1 / 1$		
DRSZ		$1 / 3$	
SBIT	$1 / 1$	$3 / 4$	
RBIT	$1 / 1$	$3 / 4$	
IFBIT	$1 / 1$	$3 / 4$	



- $=>$ Memory location addressed by B or X or directly.

Instructions Using A \& C

Instructions	Bytes/Cycles
CLRA	$1 / 1$
INCA	$1 / 1$
DECA	$1 / 1$
LAID	$1 / 3$
DCORA	$1 / 1$
RRCA	$1 / 1$
SWAPA	$1 / 1$
SC	$1 / 1$
RC	$1 / 1$
IFC	$1 / 1$
IFNC	$1 / 1$

Transfer of Control Instructions

Instructions	Bytes/Cycles
JMPL	$3 / 4$
JMP	$2 / 3$
JP	$1 / 3$
JSRL	$3 / 5$
JSR	$2 / 5$
JID	$1 / 3$
RET	$1 / 5$
RETSK	$1 / 5$
RETI	$1 / 5$
INTR	$1 / 7$
NOP	$1 / 1$

## BYTES and CYCLES per INSTRUCTION (Continued)

The following table shows the instructions assigned to unused opcodes. This table is for information only. The operations performed are subject to change without notice. Do not use these opcodes.

Unused   Opcode	Instruction	Unused   Opcode	Instruction
60	NOP	A9	NOP
61	NOP	AF	LD A, [B]
62	NOP	B1	C $\rightarrow$ HC
63	NOP	B4	NOP
67	NOP	B5	NOP
$8 C$	RET	B7	XA, [X]
99	NOP	B9	NOP
$9 F$	LD [B], \#i.	BF	LD A, [X]
A7	XA, [B]		
A8	NOP		

## Programming Support

Programming of the single-chip emulator devices is supported by different sources. The following programmers are certified for programming the One-Time Programmable (OTP) and UV-erasable devices:
In addition to the application program, the ECON register needs to be programmed as well. The following tables provide examples of some ECON register values. For more detailed information refer to the ECON REGISTER section.

EPROM Security Disabled

RAM   Memory	External   CKI	RC   Oscillator	Crystal   Oscillator
64 Bytes	38	30	20
128 Bytes	$3 A$	32	22

EPROM Security Enabled

RAM   Memory	External   CKI	RC   Oscillator	Crystal   Oscillator
64 Bytes	18	10	00
128 Bytes	1 A	12	02

EPROM programmer manufacturers may not all calculate a "checksum" the same way. Before implementing an inhouse verification by comparing checksums, need to ensure how each programming system utilized calculates a checksum. It is strongly recommended not to include the ECON register in the checksum for not all programmers include this byte in their calculated checksum.

## ERASING THE COP8780C EPROM

The EPROM program memory is erased by exposing the transparent window on the UV erasable packages to an ultraviolet light source. Erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms ( $\AA$ ). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the $3000 \AA$ to $4000 \AA$ range.
After programming, "truly opaque" labels should be placed over the window of the device to prevent functional failure due to the generation of photo currents, erasure and excessive HALT current. The term "truly opaque" needs additional clarification when used in the context of covering quartz

EPROM Programmer Information

	نi.S. Finone ivumber	Europe Pnone Number	Asia Phone Number
MetaLinkDebug Module	(602) 926-0797	Germany: $+49-8141-1030$	Hong Kong: 852-737-1800
Xeltek-   Superpro	(408) 745-7974	$\begin{aligned} & \text { Germany: } \\ & +49-2041-684758 \end{aligned}$	$\begin{aligned} & \text { Singapore: } \\ & +65-276-6433 \end{aligned}$
BP Microsystems-EP-1140	(800) 225-2102	Germany: $+49-89-857-6667$	Hong Kong: $+852-388-0629$
Data I/O-Unisite; -System 29, -System 39	(800) 322-8246	Europe: $+31-20-622866$   Germany: $+49-89-85-8020$	Japan: $+33-4326991$
Abcom-COP8   Programmer		Europe: $+89-808707$	
System General Turpro-1-FX; APRO	(408) 263-6667	Switzerland: $+31-921-7844$	Taiwan Taipei: +2-9173005

## Programming Support (Continued)

windows on these devices. The typical white colored stickers or labels are normally used for they are easy to write on. These stickers are not opaque but translucent, they do let a certain percentage of UV-light through. The black write-protect labels supplied with $5.25^{\prime \prime}$ floppy disks work extremely well. If problems are encountered during programming (fails blank check) or during normal operation (intermittent functional or logical failures), need to determine first if an appropriate opaque label is being used to cover the quartz window at all times. Note that the device will also draw more current than normal (especially in HALT mode) when the window of the device is not covered with an opaque label.
The recommended erasure procedure for the device is exposure to short wave ultraviolet light which has a wavelength of $2537 \AA \AA$. The integrated dose (UV intensity $\times$ exposure time) for erasure should be a minimum of $30 \mathrm{~W}-\mathrm{sec} /$ $\mathrm{cm}^{2}$.
The device should be placed within one inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure. The following table shows the minimum erasure time for various light intensities.

Minimum Erasure Time

Light Intensity   (Micro-Watts/cm²)	Erasure Time*   (Minutes)
15,000	36
10,000	50
8,500	60

*Does not include light intensity ramp up time.
An erasure system should be calibrated periodically. The distance from lamp to device should be maintained at one inch. The erasure time increases as the square of the distance. Lamps lose intensity as they age. When a lamp has aged, the system should be checked to make certain that adequate UV dosages are being applied for full erasure.
Common symptoms of insufficient erasure are:

- Inability to be programmed.
- Operational malfunctions associated with $V_{\mathrm{CC}}$, temperature, or clock frequency.
- Loss of data in program memory.
- A change in configuration values in the ECON register.


## Development Support

## IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 In-Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface for maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real time, full speed emulation up to $10 \mathrm{MHz}, 32 \mathrm{kbytes}$ of emulation memory and 4 k frames of trace buffer memory. The user may define as many as $32 k$ trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code or address ranges, or complex triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus
values, opcodes, and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.
During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bar graph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy-to-use windowed interface. Each window can be sized, highlighted. color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefinable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PC via the standard COMM port and its 115.2 kBauid serial link keeps typical program download to under 3 seconds.
The following tables list the emulator and probe cards ordering information.

## Emulator Ordering Information

Part Number	Description	Current   Version
IM-COP8/400/1 $\ddagger$	MetaLink base unit in-   circuit emulator for all   COP8 devices,   symbolic debugger   software and RS232   serial interface cable,   with 110V @ 60 Hz   Power Supply.	Host
IM-COP8/400/2 $\ddagger$	MetaLink base unit in-   circuit emulator for all   COP8 devices,   symbolic debugger   software and RS232   serial interface cable,   with 220V @ 50Hz   Power Supply.	Ver 3.3   Rev. 5,   Model File   Rev 3.050.
DM-COP8/880C $\ddagger$	MetaLink iceMASTER   Debug Module. This is   the low cost version of   the MetaLink's	
iceMASTER.		
Firmware: Ver. 6.07		

$\ddagger$ These parts include National's COP8 Assembler/Linker/Librarian Package (COPB-DEV-IBMA).

Development Support (Continued)
Probe Card Ordering Information

Part Number	Package	Voltage Range	Emulator
MHW-880C28D5PC	28 DIP	4.5V-5.5V	$\begin{aligned} & \text { COP820C, } \\ & 840 C, \\ & 881 C, \\ & 8781 C \end{aligned}$
MHW-880C28DWPC	28 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	$\begin{aligned} & \text { COP820C, } \\ & 840 \mathrm{C}, \\ & 881 \mathrm{C} \\ & 8781 \mathrm{C} \end{aligned}$
MHW-880C40D5PC	40 DIP	4.5V-5.5V	$\begin{aligned} & \text { COP880C, } \\ & 8780 \mathrm{C} \end{aligned}$
MHW-880C40DWPC	40 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	$\begin{aligned} & \text { COP880C, } \\ & 8780 \mathrm{C} \end{aligned}$
MHW-880C44D5PC	44 PLCC	4.5V-5.5V	$\begin{aligned} & \text { COP880C, } \\ & 8780 \mathrm{C} \end{aligned}$
MHW-880C44DWPC	44 PLCC	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	$\begin{aligned} & \text { COP880C, } \\ & 8780 \mathrm{C} \end{aligned}$

## MACRO CROSS ASSEMBLER

Nationa! Semiconductor offers a COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full symbolic debugging features of the Me taLink iceMASTER emulators.

Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8	424410632-001
	Assembler/	
	Linker/Librarian for IBM ${ }^{(8)}$	
	$\mathrm{PC} / \mathrm{XT}^{\oplus}, \mathrm{AT}{ }^{\text {® }}$ cr compatible.	

## CROSS REFERENCE TABLE

The following cross reference table lists the COP800 devices which can be emulated with the COP87XXC single-chip, form fit and function emulators.

Single-Chip Emulator Selectlon Table			
Device   Number	Package	Description	Emulates
COP8780CV	44 PLCC	One Time   Programmable   (OTP)	COP880C
COP8780CEL	44 LDCC	UV Erasable	COP880C
COP8780CN	40 DIP	OTP	COP880C
COP8780CJ	40 DIP	UV Erasable	COP880C
COP8781CN	28 DIP	OTP	COP881C,   COP840C,   COP820C
COP8781CJ	28 DIP	UV Erasable	COP881C,   COP840C,   COP820C
COP8781CWM	28 SO	OTP	COP881C,   COP840C,   COP820C
COP8782CN	20 DIP	OTP	COP842C,   COP822C
COP8782CJ	20 DIP	UV Erasable	COP842C,   COP822C
COP8782CWM	20 SO	OTP	COP842C,   COP822C

## DIAL-A-HELPER

Dial-A-Helper is a service provided by the Microcontroller Applications Group. The Dial-A-Helper is an Electronic Bulletin Board information system.

## INFORMATION SYSTEM

The Dial-A-rieiper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.
If the user has a PC with a communications package then files from the FILE SECTION can be down-loaded to disk for later use.

## FACTORY APPLICATIONS SUPPORT

Dial-A-Helper also provides immediate factory applications support. If a user has questions, he can leave messages on our electronic bulletin board.
Voice: (800) 272-9959

Modem:	CANADA/U.S.:	(800) NSC-MICRO   $(800)$   $672-6427$
	Baud:	14.4 k
	Setup:	Length: 8 -Bit
		Parity: None
	Stop Bit: 1	

# COP8640CMH／COP8642CMH Microcontroller Emulator 

## General Description

The COP8640CMH／COP8642CMH hybrid emulators are members of the COPSTM microcontroller family．The devic－ es（offered in 28－pin DIP LCC and 20－pin DIP）contain trans－ parent windows which allow the EPROM to be erased and reprogrammed．They are fully static parts，fabricated using double－metal silicon gate microCMOS technology．These microcontrollers are complete microcomputers containing all system timing，interrupt logic，EPROM，RAM，EEPROM， and I／O necessary to implement dedicated control functions in a variety of applications．Features include an 8 －bit memo－ ry mapped architecture，MICROWIRE／PLUSTM serial I／O，a 16－bit timer／counter with capture register and a multi－ sourced interrupt．Each I／O pin has software selectable op－ tions to adapt the COP8640CMH／COP8642CMH to the specific application．The part operates over a voltage range of 4.5 V to 6.0 V ．High throughput is achieved with an effi－ cient，regular instruction set operating at a 1 microsecond per instruction rate．

COP8640CMH and COP8642CMH are intended primari－ ly as a prototyping design tool．The Electrical Perform－ ance Characteristics are not tested but are included for reference only．

## Features

－Form fit and function emulation devices for COP8640C／ COP8642C／COP8620C／COP8622C
－Fully static CMOS
－ $1 \mu$ s instruction time
$\square$ Single supply operation： 4.5 V to 6.0 V
－8k bytes EPROM／ 64 bytes RAM／ 64 bytes EEPROM
－16－Bit read／write timer operates in a variety of modes
－Timer with 16－bit auto reload register
－16－bit external event counter
－Timer with 16－bit capture register（selectable edge）
－Multi－source interrupt
－Reset master clear
－External interrupt with selectable edge
－Timer interrupt or capture interrupt
－Software interrupt
－ 8 －bit stack pointer（stack in RAM）
－Powerful instruction set，most instructions single byte
－BCD arithmetic instructions
■ MICROWIRE／PLUS serial I／O
－28－pin and 20－pin DIP packages
■ 24 input／output pins（28－pin package）
－Software selectable I／O options（TRI－STATE ${ }^{\circledR}$ ，push－ pull，weal pull－up）
－Schmitt trigger inputs on Port G
■ Fully supported by National＇s Development Systems

## Ordering Information

Hybrid   Emulator	Package   Type	Part   Emulated
COP8640CMHD－x	28 －DIP	COP8640C－XXX／N   COP8620C－XXX／N
COP8642CMHD－X	$20-$ DIP	COP8642C－XXX／N   COP8622C－XXX／N

$x=1,2,3$ corresponds to oscillator option．

## Connection Diagrams

dUAL-IN-LINE PACKAGES
20-Pin DIP

TL/DD/11207-1
Top View


COP8640CMH/COP8642CMH Pinouts

Port	Type	Alternate   Function	20-Pin   DIP	28-Pin   DIP/LCC
L0	I/O		7	11
L1	I/O		8	12
L2	I/O		9	13
L3	I/O		10	14
L4	I/O		11	15
L5	I/O		12	16
L6	I/O		13	17
L7	I/O		14	18
G0	I/O	Interrupt	17	25
G1	I/O		18	26
G2	I/O		19	27
G3	I/O	TIO	20	28
G4	I/O	SO	1	1
G5	I/O	SK	2	2
G6	I	SI	3	3
G7	I/CKO	Halt Restart	4	4
IO	I			7
I1	1			8
I2	I			9
I3	I			10
D0	O			19
D1	O			20
D2	O			21
D3	O			22
VCC			6	6
GND			15	23
CKI			5	5
RESET			16	24

FIGURE 1. COP8640CMH/COP8642CMH
Connection Diagrams

## COP8640CMH/COP8642CMH

Absolute Maximum Ratings (Note)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage $\left(V_{C C}\right)$	7 V
Voltage at Any Pin	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into $V_{\mathrm{CC}}$ Pin (Source)	50 mA
Total Current out of GND Pin (Sink)	60 mA

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

The following $A C$ and DC Electrical Characteristics are not tested but are for reference only.

DC Electrical Characteristics $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Operating Voltage   Power Supply Ripple (Note 1)	Peak to Peak	4.5		$\begin{gathered} 6.0 \\ 0.1 V_{C C} \end{gathered}$	$\begin{aligned} & V \\ & v \end{aligned}$
Supply Current $\mathrm{CKI}=10 \mathrm{MHz}$   Supply Current during Write Operation (Note 2) $\mathrm{CKI}=10 \mathrm{MHz}$   HALT Current (Note 3)	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s}$ $\begin{aligned} & V_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz} \end{aligned}$		500	19   25	mA   mA   $\mu \mathrm{A}$
Input Levels   RESET, CKI   Logic High Logic Low   All Other Inputs Logic High Logic Low		$\begin{aligned} & 0.9 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.1 V_{C C} \\ & 0.2 V_{C C} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Hi-Z Input Leakage Input Pullup Curent	$\begin{aligned} & V_{C C}=6.0 \mathrm{~V} \\ & V_{C C}=6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -2 \\ & 40 \end{aligned}$		$\begin{array}{r} +2 \\ 250 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
G Port Input Hysteresis			$0.05 \mathrm{~V}_{\mathrm{CC}}$		V
Outut Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)   TRI-STATE Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0.4 \\ 10 \\ \\ 10 \\ 0.4 \\ 1.6 \\ -2.0 \\ \hline \end{gathered}$		$110$ $+2.0$	mA   mA   $\mu \mathrm{A}$   mA   mA   $\mu \mathrm{A}$
Allowable Sink/Source   Current per Pin D Outputs (Sink) All Others				$\begin{gathered} 15 \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current (Note 4) without Latchup (Room Temp)	Room Temp			$\pm 100$	mA
RAM Retention Voltage, $\mathrm{Vr}^{\text {r }}$	500 ns Rise and Fall Time (Min)	2.0			V
Input Capacitance				7	pF

COP8640CMH／COP8642CMH（Continued）
DC Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified（Continued）

Parameter	Condition	Min	Typ	Max	Units
EEPROM Characteristics					
EEPROM Write Cycle Time				10	ms
EEPROM Number of Write Cycles				10,000	Cycle
EEPROM Data Retention			10	Years	

Note 1：Rate of voltage change must be less than $0.5 \mathrm{~V} / \mathrm{ms}$ ．
Note 2：Supply current is measured after running 2000 cycles with a square wave CKI input，CKO open，inputs at rails and outputs open．
Note 3：The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations．Test conditions：All inputs tied to VCC ，L and G ports at TRI－STATE and tied to ground，all outputs low and tied to ground．
Note 4：Pins G6 and RESET are designed with a high voltage input network for factory testing．These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$（the pins do not have source current when biased at a voltage below $V_{C C}$ ）．The effective resistance to $V_{C C}$ is $750 \Omega$（typical）．These two pins will not latch up．The voltage at the pins must be limited to less than 14 V ．

## AC Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Condition	Min	Typ	Max	Units
Instruction Cycle Time（ $\mathrm{t}_{\mathrm{c}}$ ）   Ext，Crystal／Resonator （Div－by 10） R／C Oscillator Mode （Div－by 10）		$\begin{aligned} & 1 \\ & 3 \end{aligned}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\mu \mathrm{S}$   $\mu \mathrm{S}$
CKI Clock Duty Cycle（Note 4）   Rise Time（Note 4）   Fall Time（Note 4）	$\mathrm{fr}=10 \mathrm{MHz}$ Ext Clock   fr $=10 \mathrm{MHz}$ Ext Clock	40		$\begin{gathered} 60 \\ 12 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & \% \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Inputs tsetup $t_{\text {HOLD }}$		$\begin{gathered} 200 \\ 60 \end{gathered}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Output Propagation Delay tpD1 ，tpDo SO，SK All Others	$C_{L}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$			$\begin{gathered} 0.7 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
MICROWIRETM Setup Time（tuws） MICROWIRE Hold Time（Tuwh） MICROWIRE Output Propagation Delay Time（tupD）		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time	－	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \hline \end{aligned}$
Reset Pulse Width		1.0			$\mu \mathrm{s}$

Note 4：Parameter sampled but not 100\％tested．

## Timing Diagram



FIGURE 2. MICROWIRE/PLUS Timing

## Pin Descriptions

$V_{C C}$ and GND are the power supply pins.
CKI is the clock input. This can come from an external source, a R/C generated oscillator or a crystal (in conjunction with CKO). See Oscillator description.
RESET is the master reset inupt. See Reset description.
PORT $I$ is a four bit Hi-Z input port.
PORT L is an 8 -bit I/O port.
There are two registers associated with each LI/O port: a data register and a configuration register. Therefore, each $L$ I/O bit can be individually configured under software control as shown below:

Port L   Config.	Port L   Data	Port L   Setup
0	0	Hi-Z Inupt (TRI-STATE)
0	1	Input with Weak Pull-Up
1	0	Push-Pull "0" Output
1	1	Push-Pull "1" Output

Three data memory address locations are allocated for these ports, one for data register, one for configuration register and one for the input pins.
PORT G is an 8-bit port with 6 I/O pins (G0-G5) and 2 input pins (G6, G7). All eight G-pins have Schmitt Triggers on the inputs. The G7 pin functions as an input pin under normal operation and as the continue pin to exit the HALT mode. There are two registers with each I/O port: a data register and a configuration register. Therefore, each I/O bit can be individually configured under software control as shown below:

Port G   Config.	Port G   Data	Port G   Setup
0	0	Hi-Z Input (TRI-STATE)
0	1	Input with Weak Pull-Up
1	0	Push-Pull "0" Output
1	1	Push-Pull "1" Output

Three data memory address locations are allocated for these ports, one for data register, one for configuration register and one for the input pins. Since G6 and G7 are input only pins, any attempt by the user to set them up as outputs by writing a one to the configuration register will be disregarded. Reading the G6 and G7 configuration bits will return zeros. Note that the chip will be placed in the HALT mode by setting the G7 data bit.

Six bits of Port G have alternate features:
GO.INTR (an external interrupt)
G3 TIO (timer/counter input/output)
G4 SO (MICROWIRE serial data output)
G5 SK (MICROWIRE clock I/O)
G6 SI (MICROWIRE serial data input)
G7 CKO crystal oscillator output (selected by mask option) or HALT restart input (general purpose input)
Pins G1 and G2 currently do not have any alternate functions.
PORT D is a four bit output port that is set high when RESET goes low.

## Functional Description

## OSCILLATOR CIRCUITS

Figure 3 shows the three clock oscillator configurations. Table III shows the clock options per package.

## A. CRYSTAL OSCILLATOR

The COP8640CMH/COP8642CMH can be driven by a crystal clock. The crystal network is cnonected between the pins CKI and CKO.
Table I shows the component values required for various standard crystal values.

## B. EXTERNAL OSCILLATOR

CKI can be driven by an external clock signal. CKI is available as a general purpose input and/or HALT restart control.

## C. R/C OSCILLATOR

CKI is configured as a single pin RC controlled Schmitt trigger oscillator. CKO is available as a general purpose input and/or HALT restart control.
Table II shows the variation in the oscillator frequencies (due to the part) as functions of the R/C component values ( $\mathrm{R} / \mathrm{C}$ tolerances not included).

TABLE I. Crystal Oscillator Configuration
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

$\mathbf{R 1} 1$   $\mathbf{( k \Omega )}$	$\mathbf{R 2}$   $(\mathbf{M} \boldsymbol{\Omega})$	$\mathbf{C 1}$   $\mathbf{( p F})$	$\mathbf{C 2}$   $\mathbf{( p F})$	CKI Freq   $(\mathbf{M H z})$
0	1	30	$30-36$	10
0	1	30	$30-36$	4
5.5	1	100	100	0.455

TABLE II. RC Oscillator Configuration

$$
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}
$$

$\mathbf{R}$   $\mathbf{( k \Omega} \boldsymbol{)}$	$\mathbf{C}$   $(\mathbf{p F})$	CKI Freq.   $(\mathbf{M H z})$	Instr. Cycle   $(\mu \mathbf{s})$
3.3	82	2.2 to 2.7	3.7 to 4.6
5.6	100	1.1 to 1.3	7.4 to 9.0
6.8	100	0.9 to 1.1	8.8 to 10.8

Note: $3 \mathrm{k} \leq \mathrm{R} \leq 200 \mathrm{k}$
$50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}$

Functional Description（Continued）


FIGURE 3．Crystal and R－C Connectlon Dlagrams

TABLE III．Clock Option per Package

Order   Part Number	Package	Clock Option
COP8640CMHD－1   COP8642CMHD－1	28 DIP   20 DIP	Crystal Oscillator $\div 10$
COP8640CMHD－2	28 DIP	External Oscillator $\div 10$
COP8642CMHD－2	20 DIP	
COP8640CMHD－3	28 DIP	R／C Oscillator $\div 10$
COP8642CMHD－3	20 DIP	

## Programming the COP8640CMH／COP8642CMH

Programming the hybrid emulators is accomplished through the duplicator board which is a stand alone programmer ca－ pable of supporting different package types．It works in con－ junction with a pre－programmed EPROM（either via the NSC development system or a standard programmer）holding the application program．The duplicator board essentially copies the information in the EPROM into the hybrid emulator．
The last byte of program memory（EPROM location 01FFF Hex）must contain the proper value specified in the follow－ ing table：

TABLEIV

Device	Package   Type	Contents of   Last Byte   （Address 01FFF）
COP8640CMHD	28 DIP	$6 F$
COP8642CMHD	20 DIP	E7

## ERASING THE PROGRAM MEMORY

Erasure of the EPROM program memory is achieved by re－ moving the device from its socket and exposing the trans－ parent window to an ultra－violet light source．

The erasure characteristics of the device are such that era－ sure begins to occur when exposed to light with wave－ lengths shorter than approximately 4000 Angstroms（ $\AA$ ）．It should be noted that sunlight and certain types of fluores－ cent lamps have wavelengths in the $3000 \AA$ to $4000 \AA$ range． After programming，opaque labels should be placed over the window of the device to prevent temporary functional failure due to the generation of photo currents，erasure，and excessive HALT current．Note that the device will also draw more current than normal（especially in HALT mode）when the window of the device is not covered with an opaque label．

The recommended erasure procedure for the devices is exposure to short wave ultraviolet light which has a wavelength of $2537 \AA$ ．The integrated dose（UV intensity $\times$ exposure time）for erasure should be a minimum of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$ ．
An erasure system should be calibrated periodically．The distance from lamp to device should be maintained at one inch．The erasure time increases as the square of the dis－ tance．Lamps lose intensity as they age．When a lamp has aged，the system should be checked to make certain that adequate UV dosages are being applied for full erasure．
The device should be placed within one inch of the lamp tubes during erasure．Some lamps have a filter on their tubes which should be removed before erasure．The follow－ ing table shows the minimum erasure time for various light intensities：

TABLE V．Minimum Erasure Time

Package   Type	Light Intensity   （Micro－Watts／cm   2	Erasure Time   （Minutes）
28 DIP	15,000	20
	10,000	25
	5,000	50
20 DIP	15,000	40
	10,000	50
	5,000	100

## Development Support

## IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 In-Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface for maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real time, full speed emulation up to $10 \mathrm{MHz}, 32$ kbytes of emulation memory and 4 k frames of trace buffer memory. The user may define as many as 32 k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code or address ranges or complex triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.
During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bar graph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.

The iceMASTER comes with an easy to use windowed interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefineable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a $\mathrm{PC}{ }^{(1)}$ via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time to under 3 seconds.
The following tables list the emulator and probe cards ordering information.

Emulator Ordering Information

Part Number	Description
IM-COP8/400	MetaLink base unit in-circuit emulator   for all COP8 devices, symbolic   debugger software and RS 232 serial   interface cable
MHW-PS3	Power Supply $110 \mathrm{~V} / 60 \mathrm{~Hz}$
MHW-PS4	Power Supply $220 \mathrm{~V} / 50 \mathrm{~Hz}$

Probe Card Ordering Information

Part   Number	Package	Voltage   Range	Emulates
MHW-8640C20D5PC	20 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP8642C,   8622 C
MHW-8640C20DWPC	20 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP8642C,   8622 C
MHW-8640CG28D5PC	28 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP8640C,   8620 C
MHW-8640CG28DWPC	28 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP8640C,   8620 C

## Development Support (Continued)

## MACRO CROSS ASSEMBLER

National Semiconductor offers a COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink iceMASTER emulators.

## SIMULATOR

The COP8 Designers' Toolkit is available for evaluating Na tional Semiconductor's COP8 microcontroller family. The kit contains programmer's manuals, device datasheets, pocket reference guides, assembler and simulator which allow the user to write, test, debug and run code on an industry standard compatible PC. The simulator has a windowed user interface and can handle script files that simulate hardware inputs, interrupts and automatic command processing. The capture file feature enables the user to record to a file current cycle count and output port changes which are caused by the program under test.

## SINGLE CHIP EMULATOR DEVICE

The COP8 family is fully supported by single chip form, fit and function emulators. For more detailed information refer to the emulation device specific data sheets and the form, fit, function emulator selection table below.

## PROGRAMMING SUPPORT

Programming of the single chip emulator devices is supported by different sources. National Semiconductor offers a duplicator board which allows the transfer of program code from a standard programmed EPROM to the single chip emulator and vice versa. Data I/O supports COP8 emulator device programming with its uniSite 48 and System 2900 programmers. Further information on Data I/O program. mers can be obtained from any Data I/O sales office or the following USA numbers:

Telephone: (206) 881-6444 FAX: (206) 882-1043

## Development Support (Continued)

 DIAL-A-HELPERDial-A-Helper is a service provided by the Microcontroller Applications group. The Dial-A-Helper is an Electronic Bulletin Board Information system.

## INFORMATION SYSTEM

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.
If the user has a PC with a communications package then files from the FILE SECTION can be down loaded to disk for later use.

## ORDER P/N: MOLE-DIAL-A-HLP

Information System Package contains: Dial-A-Helper Users Manual
Public Domain Communications Software

## FACTORY APPLICATIONS SUPPORT

Dial-A-Helper also provides immediate factor applications support. If a user has questions, he can leave messages on our electronic bulletin board, which we will respond to.

Voice:	(408) 721-5582	
Modem:	(408) $739-1162$	
	Baud:	300 or 1200 Baud
	Set-up:	Length: 8 -Bit
		Parity: None
	Stop Bit: 1	
	Operation:	24 Hrs., 7 Days

## COP8788CL/COP8784CL microCMOS One-Time Programmable (OTP) Microcontrollers

## General Description

The COP8788CL/COP8784CL programmable microcontrollers are members of the COPSTM microcontroller family. Each device is a two chip system in a plastic package. Within the package is the COP888CL and a 8 k EPROM with port recreation logic. The code executes out of the EPROM. These devices are offered in four packages: 44-pin PLCC, 40 -pin DIP, 28 -pin DIP and 28 -pin SO.
The COP8788CL/COP8784CL are fully static parts, fabricated using double-metal silicon gate microCMOS technology. Features include an 8-bit memory mapped architecture, MICROWIRE/PLUSTM serial I/O, two 16-bit timer/counters supporting three modes (Processor Independent PWM generation, External Event counter, and Input Capture mode capabilities). Each I/O pin has software selectable configurations. The devices operates over a voltage range of 4.5 V to 5.5 V . High throughput is achieved with an efficient, regular instruction set operating at a maximum of $1 \mu \mathrm{~s}$ per instruction rate.

## Features

- Low cost 8-bit microcontroller
- Fully static CMOS, with low current drain
- $1 \mu \mathrm{~s}$ instruction cycle time
- 8192 bytes on-board EPROM
- 128 bytes on-board RAM
- Single supply operation: $4.5 \mathrm{~V}-5.5 \mathrm{~V}$
- MICROWIRE/PLUS serial I/O
- WATCHDOGTM and Clock Monitor logic

■ Idle timer

- Multi-Input Wakeup (MIWU) with optional interrupts (8)
- Ten multi-source vectored interrupts servicing
- External interrupt
- Idle timer TO
- Two timers each with 2 Interrupts
- MICROWIRE/PLUS
- Multi-Input wake up
- Software trap
— Default VIS

■ Two 16-bit timers, each with two 16-bit registers supporting:

- Processor independent PWM mode
- External event counter mode
- Input capture mode
- 8-bit Stack Pointer SP (stack in RAM)
- Two 8-bit register indirect data memory pointers ( B and X )
- Versatile instruction set with True bit manipulation
- Memory mapped I/O
- BCD arithmetic instructions
- Package:
- 44 PLCC with 39 I/O pins
-40 DIP with 33 I/O pins
-28 DIP with 23 I/O pins
-28 SO with 23 I/O pins (contact local sales office for availability)
- Software selectable I/O options
- TRI-STATE® output
- Push-Pull output
- Weak pull-up input
- High impedance input
- Schmitt trigger inputs on ports G and L
- Form fit and function emulation device for the COP888CL/COP884CL
a Real time emulation and full program debug offered by Metalink's Development Systems


## Connection Diagrams



Order Number COP8788CLV-X, COP8788CLFV-R See NS Package Number V44A
Dual-In-Line Package

Top View
Order Number COP8788CLN-X, COP8788CLN-R See NS Package Number N40A

## Dual-In-Line Package



Top View
Order Number COP8784CLN-X, COP8784CLN-R, COP8784CLWM-X and COP8784CLWM-R See NS Package Number M28B or N28B
FIGURE 1. COP8788CL/COP8784CL Connectlon Dlagrams

## Connection Diagrams (Continued)

Pinouts for 28-, 40- and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-Pin Pkg.	40-Pin Pkg.	44-Pin Pkg.
LO	1/0	MIWU		11	17	17
L1	1/0	MIWU		12	18	18
L2	1/0	MIWU		13	19	19
L3	1/0	MIWU		14	20	20
L4	1/0	MIWU	T2A	15	21	25
L5	1/0	MIWU	T2B	16	22	26
L6	1/0	MIWU		17	23	27
L7	1/0	MIWU		18	24	28
G0	1/O	INT	ALE	25	35	39
G1	WDOUT			26	36	40
G2	1/O	T1B	$\overline{W R}$	27	37.	41
G3	1/0	T1A	$\overline{\mathrm{RD}}$	28	38	42
G4	1/O	SO		1	3	3
G5	$1 / 0$	SK		2	4	4
G6	1	SI	ME	3	5	5
G7	I/CKO	Halt Restart		4	6	6
D0	0		ADO	19	25	29
D1	0		AD1	20	26	30
D2	0		AD2	21	27	31
D3	0		AD3	22	28	32
10	I			7	9	9
11	1			8	10	10
12	1				11	11
13	1				12	12
14	1			9	13	13
15	I			10	14	14
16	1					15
17	1					16
D4	0		AD4		29	33
D5	0		AD5		30	34
D6	0		AD6		31	35
D7	0	.	AD7		32	36
C0	1/0				39	43
C1	$1 / 0$				40	44
C2	1/0		,		1	1
C3	1/0				2	2
C4	1/0					21
C5	$1 / 0$					22
C6	1/0					23
C7	1/O					24
Unused*					16	
Unused*		- .			15	
$V_{C C}$				6	8	8
GND				23	33	37
CKI				5	7	7
RESET			$V_{P P}$	24	34	38

Total Current out of GND Pin (Sink)
110 mA
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

Voltage at Any Pin
Total Current into $\mathrm{V}_{\mathrm{CC}}$ Pin (Source)

7 V
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
100 mA

DC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unloss othewise speciiled

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage		4.5		5.5	V
Power Supply Ripple (Note 1)	Peak-to-Peak			$0.1 \mathrm{~V}_{C C}$	V
Supply Current (Note 2) $\mathrm{CKI}=10 \mathrm{MHz}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s}$			25	mA
HALT Current (Note 3)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz}$		250		$\mu \mathrm{A}$
IDLE Current, CKI $=10 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s}$			15	mA
Input Levels   RESET   Logic High   Logic Low   CKI (External and Crystal Osc. Modes)   Logic High   Logic Low   All Other Inputs   Logic High   Logic Low	$: \times$	$0.8 \mathrm{~V}_{\mathrm{CC}}$   $0.7 V_{C C}$   $0.7 \mathrm{~V}_{\mathrm{CC}}$		$0.2 \mathrm{~V}_{\mathrm{CC}}$   $0.2 V_{C C}$   $0.2 V_{C C}$	V
Hi-Z Input Leakage	$V_{C C}=5.5 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
Input Pullup Current	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	40		250	$\mu \mathrm{A}$
G and L Port Input Hysteresis			$0.05 \mathrm{~V}_{\mathrm{CC}}$	$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels   D Outputs   Source   Sink   All Others   Source (Weak Pull-Up Mode)   Source (Push-Pull Mode)   Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.4 \\ & 10 \\ & \\ & 10 \\ & 0.4 \\ & 1.6 \\ & \hline \end{aligned}$		100	mA mA   $\mu \mathrm{A}$   mA   mA
TRI-STATE Leakage	$V_{C C}=5.5 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
Allowable Sink/Source   Current per Pin   D Outputs (Sink)   All others				$\begin{aligned} & 15 \\ & 3 \\ & \hline \end{aligned}$	mA
Maximum Input Current without Latchup (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\pm 100$	mA
RAM Retention Voltage, $\mathrm{V}_{\mathrm{r}}$	500 ns Rise   and Fall Time (Min)	2			V
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to VCC, L and G ports in the TRI-STATE mode and tied to ground, all outputs low and tied to ground. The clock monitor is disabled.
Note 4: Pins G5 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $\mathrm{V}_{\mathrm{CC}}$ and the pins will have sink current to $\mathrm{V}_{\mathrm{CC}}$ when biased at voltages greater than $\mathrm{V}_{\mathrm{CC}}$ (the pins do not have source current when biased at a voltage below $\mathrm{V}_{\mathrm{CC}}$ ). The effective resistance to $V_{C C}$ is $750 \Omega$ (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .

AC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time ( $\mathrm{t}_{\mathrm{c}}$ ) Crystal or Resonator R/C Oscillator		$\begin{aligned} & 1 \\ & 3 \end{aligned}$	,	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\mu \mathrm{s}$
CKI Clock Duty Cycle (Note 5) Rise Time (Note 5) Fall Time (Note 5)	$\begin{aligned} \mathrm{f}_{\mathrm{r}} & =\mathrm{Max} \\ \mathrm{f}_{\mathrm{r}} & =10 \mathrm{MHz} \text { Ext Clock } \\ \mathrm{f}_{\mathrm{r}} & =10 \mathrm{MHz} \text { Ext Clock } \end{aligned}$	40		60   5   5	$\begin{aligned} & \% \\ & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$
Inputs tsetup $t_{\text {Hold }}$		$\begin{gathered} 200 \\ 60 \end{gathered}$	.		ns
```Output Propagation Delay tPD1, tPD0 SO, SK All Others```	$\begin{aligned} & R_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.7 \\ 1 \end{gathered}$	$\mu \mathrm{S}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tupd)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time	,	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$			t_{c}
Reset Pulse Width		1			$\mu \mathrm{S}$

Note 5: Parameter sampled (not 100\% tested).

FIGURE 2. MICROWIRE/PLUS Timing

Pin Descriptions

$V_{C C}$ and GND are the power supply pins.
CKI is the clock input. This can come from an R/C generated oscillator, or a crystal oscillator (in conjunction with CKO). See Oscillator Description section.
RESET is the master reset input. See Reset Description section.
The device contains three bidirectional 8 -bit I/O ports (C, G and L), where each individual bit may be independently configured as an input (Schmitt trigger inputs on ports G and L), output or TRI-STATE under program control. Three data memory address locations are allocated for each of these I/ O ports. Each I/O port has two associated 8-bit memory mapped registers, the CONFIGURATION register and the output DATA register. A memory mapped address is also reserved for the input pins of each I/O port. (See the memory map for the various addresses associated with the 1/O ports.) Figure 3 shows the I/O port configurations. The DATA and CONFIGURATION registers allow for each port bit to be individually configured under software control as shown below:

CONFIGURATION Register	DATA Register	Port Set-Up
0	0	Hi-Z Input
		(TRI-STATE Output)
0	1	Input with Weak Pull-Up
1	0	Push-Pull Zero Output
1	1	Push-Pull One Output

FIGURE 3. I/O Port Configurations
PORT L is an 8-bit I/O port. All L-pins have Schmitt triggers on the inputs.
Port L supports Multi-Input Wakeup (MIWU) on all eight pins. L4 and L5 are used for the timer input functions T2A and T2B.

Port L has the following alternate features:

L0	MIWU
L1	MIWU
L2	MIWU
L3	MIWU
L4	MIWU or T2A
L5	MIWU or T2B
L6	MIWU
L7	MIWU

Port G is an 8-bit port with 5 I/O pins (G0, G2-G5), an input pin (G6), and two dedicated output pins (G1 and G7). Pins G0 and G2-G6 all have Schmitt Triggers on their inputs: Pin G1 serves as the dedicated WDOUT WATCHDOG output, while pin G7 is either input or output depending on the oscillator mask option selected. With the crystal oscillator option selected, G7 serves as the dedicated output pin for the CKO clock output. With the single-pin R/C oscillator mask option selected, G7 serves as a general purpose input pin, but is also used to bring the device out of HALT mode with a low to high transition. There are two registers associated with the G Port, a data register and a configuration register. Therefore, each of the 5 I/O bits (G0, G2-G5) can be individually configured under software control.
Since G6 is an input only pin and G7 is the dedicated CKO clock output pin or general purpose input (R/C clock configuration), the associated bits in the data and configuration registers for G6 and G7 are used for special purpose functions as outlined below. Reading the G6 and G7 data bits will return zeros.
Note that the chip will be placed in the HALT mode by writing a " 1 " to bit 7 of the Port G Data Register. Similarly the chip will be placed in the IDLE mode by writing a " 1 " to bit 6 of the Port G Data Register.
Writing a " 1 " to bit 6 of the Port G Configuration Register enables the MICROWIRE/PLUS to operate with the alternate phase of the SK clock. The G7 configuration bit, if set high, enables the clock start up delay after HALT when the R/C clock configuration is used.

	Config Reg.	Data Reg.
G7	CLKDLY	HALT
G6	Alternate SK	IDLE

Port G has the following alternate features:
G0 INTR (External Interrupt Input)
G2 T1B (Timer T1 Capture Input)
G3 T1A (Timer T1 I/O)
G4 SO (MICROWIRE Serial Data Output)
G5 SK (MICROWIRE Serial Clock)
G6 SI (MICROWIRE Serial Data Input)

Pin Descriptions (Continued)

Port G has the following dedicated functions:
G1 WDOUT WATCHDOG and/or Clock Monitor dedicated output
G7 CKO Oscillator dedicated output or general purpose input
Port C is an 8 -bit I/O port. The 28 -pin device does not have a full complement of Port C pins. The unavailable pins are not terminated. A read operation for these unterminated pins will return unpredictable values.
Port I is an 8 -bit Hi-Z input port. The 28 -pin device does not have a full complement of Port I pins. The unavailable pins are not terminated (i.e. they are floating). A read operation from these unterminated pins will return unpredictable values. The user should ensure that the software takes this into account by either masking out these inputs, or else restricting the accesses to bit operations only. If unterminated, Port I pins will draw power only when addressed. The I port leakage current may be higher in 28 -pin devices.
Port D is a recreated 8 -bit output port that is preset high when RESET goes low. D port recreation is one clock cycle behind the normal port timing. The user can tie two or more D port outputs (except D2 pin) together in order to get a higher drive.

Functional Description

The architecture of the device is modified Harvard architecture. With the Harvard architecture, the control store program memory (ROM) is separated from the data store memory (RAM). Both ROM and RAM have their own separate addressing space with separate address buses. The architecture, though based on Harvard architecture, permits transfer of data from ROM to RAM.

CPU REGISTERS

The CPU can do an 8-bit addition, subtraction, logical or shift operation in one instruction (t_{c}) cycle time.
There âie fiva CPU registers:
A is the 8-bit Accumulator Register
PC is the 15 -bit Program Counter Register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
B is an 8-bit RAM address pointer, which can be optionally post auto incremented or decremented.
X is an 8 -bit alternate RAM address pointer, which can be optionally post auto incremented or decremented.
SP is the 8-bit stack pointer, which points to the subroutine/ interrupt stack (in RAM). The SP is initialized to RAM address 06F with reset.
All the CPU registers are memory mapped with the exception of the Accumulator (A) and the Program Counter (PC).

PROGRAM MEMORY

Program memory consists of 8192 bytes of ROM. These bytes may hold program instructions or constant data (data tables for the LAID instruction, jump vectors for the JID
instruction, and interrupt vectors for the VIS instruction). The program memory is addressed by the 15-bit program counter (PC). All interrupts vector to program memory location OFF Hex.

DATA MEMORY

The data memory address space includes the on-chip RAM and data registers, the I/O registers (Configuration, Data and Pin), the control registers, the MICROWIRE/PLUS SIO shift register, and the various registers, and counters associated with the timers (with the exception of the IDLE timer). Data memory is addressed directly by the instruction or indirectly by the B, X and SP pointers.
The device has 128 bytes of RAM. Sixteen bytes of RAM are mapped as "registers" at addresses OFO to OFF Hex. These registers can be loaded immediately, and also decremented and tested with the DRSZ (decrement register and skip if zero) instruction. The memory pointer registers X, SP, and B are memory mapped into this space at address locations OFC to OFE Hex respectively, with the other registers (other than reserved register OFF) being available for general usage.
The instruction set permits any bit in memory to be set, reset or tested. All I/O and registers on the device (except A and PC) are memory mapped; therefore, I/O bits and register bits can be directly and individually set, reset and tested. The accumulator (A) bits can also be directly and individually tested.

Reset

The RESET input when pulled low initializes the microcontroller. Initialization will occur whenever the RESET input is pulled low. Upon initialization, the data and configuration registers for Ports L, G, and C are cleared, resulting in these Ports being initialized to the TRI-STATE mode. Pin G1 of the G Port is an exception (as noted below) since pin G1 is dedicated as the WATCHDOG and/or Clock Monitor error output pin. Port D is initialized high with RESET. The PC, PSW, CNTRL, ICNTRL, and T2CNTRL control registers are cleared. The Multi-Input Wakeup registers WKEN, WKEDG, and WKPND are cleared. The Stack Pointer, SP, is initialized to 06F Hex.
The device comes out of reset with both the WATCHDOG logic and the Clock Monitor detector armed, and with both the WATCHDOG service window bits set and the Clock Monitor bit set. The WATCHDOG and Clock Monitor detector circuits are inhibited during reset. The WATCHDOG service window bits are initialized to the maximum WATCHDOG service window of $64 \mathrm{k} \mathrm{t}_{\mathrm{c}}$ clock cycles. The Clock Monitor bit is initialized high, and will cause a Clock Monitor error following reset if the clock has not reached the minimum specified frequency at the termination of reset. A Clock Monitor error will cause an active low error output on pin G1. This error output will continue until 16-32 t_{c} clock cycles following the clock frequency reaching the minimum specified value, at which time the G1 output will enter the TRI-STATE mode.
The external RC network shown in Figure 4 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.
Note: In continual state of reset, the device will draw excessive current.

Reset (Continued)

RC $>5 \times$ Power Supply Rise Time
FIGURE 4. Recommended Reset Circuit

Oscillator Circuits

The chip can be driven by a clock input on the CKI input pin which can be between DC and 10 MHz . The CKO output clock is on pin G7 (crystal configuration). The CKI input frequency is divided down by 10 to produce the instruction cycle clock ($1 / \mathrm{t}_{\mathrm{c}}$).
Figure 5 shows the Crystal and R/C diagrams.

TL/DD12063-7
FIGURE 5. Crystal and R/C Oscillator Diagrams

CRYSTAL OSCILLATOR

CKI and CKO can be connected to make a closed loop crystal (or resonator) controlled oscillator.
Table I shows the component values required for various standard crystal values.

TABLE I. Crystal Oscillator Configuration, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

R1 $(\mathbf{k} \Omega)$	R2 $(\mathbf{M} \Omega)$	$\mathbf{C 1}$ $\mathbf{(p F)}$	$\mathbf{C 2}$ $\mathbf{(p F})$	CKI Freq $(\mathbf{M H z})$	Conditions
0	1	30	$30-36$	10	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	30	$30-36$	4	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	200	$100-150$	0.455	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

R/C OSCILLATOR

By selecting CKI as a single pin oscillator input, a single pin R/C oscillator circuit can be connected to it. CKO is available as a general purpose input, and/or HALT restart pin.
Table Il shows the variation in the oscillator frequencies as functions of the component (R and C) values.

TABLE II. R/C Oscillator Configuration, $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$

\mathbf{R} $(\mathbf{k} \Omega)$	\mathbf{C} $(\mathbf{p F})$	$\mathbf{C K I}$ Freq $(\mathbf{M H z})$	Instr. Cycle $(\boldsymbol{\mu \mathbf { s })}$	Conditions
3.3	82	$2.2-2.7$	$3.7-4.6$	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
5.6	100	$1.1-1.3$	$7.4-9.0$	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
6.8	100	$0.9-1.1$	$8.8-10.8$	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

Note: $3 \mathrm{k} \leq \mathrm{R} \leq 200 \mathrm{k}, 50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}$

Current Drain

The total current drain of the chip depends on:

1. Oscillator operation mode-l1
2. Internal switching current-12
3. Internal leakage current-13
4. Output source current-14
5. DC current caused by external input not at V_{CC} or GND-15
6. Clock Monitor current when enabled-16

Thus the total current drain, It , is given as

$$
\mathrm{It}=11+12+13+14+15+16
$$

To reduce the total current drain, each of the above components must be minimum.
The chip will draw more current as the CKI input frequency increases up to the maximum 10 MHz value. Operating with a crystal network will draw more current than an external square-wave. Switching current, governed by the equation, can be reduced by lowering voltage and frequency. Leakage current can be reduced by lowering voltage and temperature. The other two items can be reduced by carefully designing the end-user's system.

$$
\mathrm{I} 2=\mathrm{C} \times \mathrm{V} \times \mathrm{f}
$$

where $C=$ equivalent capacitance of the chip

$$
\begin{aligned}
V & =\text { operating voltage } \\
f & =C K I \text { frequency }
\end{aligned}
$$

Control Registers

CNTRL Register (Address X'OOEE)

The Timer1 (T1) and MICROWIRE/PLUS control register contains the following bits:

SL1 \& SLO Select the MICROWIRE/PLUS clock divide by ($00=2,01=4,1 x=8$)
IEDG External interrupt edge polarity select ($0=$ Rising edge, $1=$ Falling edge)
MSEL Selects G5 and G4 as MICROWIRE/PLUS signals
SK and SO respectively

Control Registers (Continued)
T1C0 Timer T1 Start/Stop control in timer
Timer T1 Underflow Interrupt Pending Flag in timer mode 3
T1C1 Timer T1 mode control bit
T1C2 Timer T1 mode control bit
T1C3 Timer T1 mode control bit

T1C3	T1C2	T1C1	T1C0	MSEL	IEDG	SL1	SL0

Bit 7
Bit 0

PSW Register (Address X'00EF)

The PSW register contains the following select bits:
GIE Global interrupt enable (enables interrupts)
EXEN Enable external interrupt
BUSY MICROWIRE/PLUS busy shifting flag
EXPND External interrupt pending
T1ENA Timer T1 Interrupt Enable for Timer Underflow or T1A Input capture edge
T1PNDA Timer T1 Interrupt Pending Flag (Autoreload RA in mode 1, T1 Underflow in Mode 2, T1A capture edge in mode 3)
C Carry Flag
HC Half Carry Flag

HC	C	T1PNDA	T1ENA	EXPND	BUSY	EXEN	GIE
Bit 7							Bit 0

The Half-Carry bit is also affected by all the instructions that affect the Carry flag. The SC (Set Carry) and RC (Reset Carry) instructions will respectively set or clear both the carry flags. In addition to the SC and RC instructions, ADC, SUBC, RRC and RLC instructions affect the carry and Half Carry flags.

ICNTRL Register (Address X'00E8)
The ICNTRL register contains the following bits:
T1ENB Timer T1 Interrupt Enable for T1B Input capture edge
T1PNDB Timer T1 Interrupt Pending Flag for T1B capture edge
WEN Enable MICROWIRE/PLUS interrupt
WPND MICROWIRE/PLUS interrupt pending
TOEN Timer TO Interrupt Enable (Bit 12 toggle)
TOPND Timer TO Interrupt pending
LPENL Port Interrupt Enable (Multi-Input Wakeup/Interrupt) Bit 7 could be used as a flag
T2CNTRL Register (Address X'00C6)

Unused	LPEN	TOPND	TOEN	WPND	WEN	T1PNDB	T1ENB
Bit 7	Bit 0						

The T2CNTRL register contains the following bits:
T2ENB Timer T2 Interrupt Enable for T2B Input capture edge
T2PNDB Timer T2 Interrupt Pending Flag for T2B capture edge
T2ENA Timer T2 Interrupt Enable for Timer Underflow or T2A Input capture edge
T2PNDA Timer T2 Interrupt Pending Flag (Autoreload RA in mode 1, T2 Underflow in mode 2, T2A capture edge in mode 3)
T2C0 Timer T2 Start/Stop control in timer modes 1 and 2 Timer T2 Underflow Interrupt Pending Flag in timer mode 3
T2C1 Timer T2 mode control bit
T2C2 Timer T2 mode control bit
T2C3 Timar T2 made control bit

T2C3	T2C2	T2C1	T2C0	T2PNDA	T2ENA	T2PNDB	T2ENB

Bit 7
Bit 0

Timers

The device contains a very versatile set of timers (T0, T1, T2). All timers and associated autoreload/capture registers power up containing random data.
Figure 6 shows a block diagram for the timers.

FIGURE 6. Timers

TIMER TO (IDLE TIMER)

The device supports applications that require maintaining real time and low power with the IDLE mode. This IDLE mode support is furnished by the IDLE timer TO, which is a 16-bit timer. The Timer TO runs continuously at the fixed rate of the instruction cycle clock, t_{c}. The user cannot read or write to the IDLE Timer T0, which is a count down timer. The Timer T0 supports the following functions:
Exit out of the Idle Mode (See Idle Mode description)
WATCHDOG logic (See WATCHDOG description)
Start up delay out of the HALT mode
The IDLE Timer TO can generate an interrupt when the thirteenth bit toggles. This toggle is latched into the TOPND pending flag, and will occur every 4 ms at the maximum clock frequency ($\mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$). A control flag TOEN allows the interrupt from the thirteenth bit of Timer TO to be enabled or disabled. Setting TOEN will enable the interrupt, while resetting it will disable the interrupt.

TIMER T1 AND TIMER T2

The device has a set of two powerful timer/counter blocks, T1 and T2. The associated features and functioning of a timer block are described by referring to the timer block Tx. Since the two timer blocks, T1 and T2, are identical, all comments are equally applicable to either timer block.
Each timer block consists of a 16 -bit timer, Tx, and two supporting 16-bit autoreload/capture registers, RxA and RxB. Each timer block has two pins associated with it, TxA and TXB. The pin TXA supports I/O required by the timer block, while the pin TxB is an input to the timer block. The powerful and flexible timer block allows the device to easily perform all timer functions with minimal software overhead. The timer block has three operating modes: Processor Independent PWM mode, External Event Counter mode, and Input Capture mode.
The control bits TxC3, TxC2, and TxC1 allow selection of the different modes of operation.

Mode 1. Processor Independent PWM Mode

As the name suggests, this mode allows the device to generate a PWM signal with very minimal user intervention. The user only has to define the parameters of the PWM signal (ON time and OFF time). Once begun, the timer block will continuously generate the PWM signal completely independent of the microcontroller. The user software services the timer block only when the PWM parameters require updating.
In this mode the timer Tx counts down at a fixed rate of t_{c}. Upon every underflow the timer is alternately reloaded with the contents of supporting registers, RxA and RxB. The very first underflow of the timer causes the timer to reload from the register RxA. Subsequent underflows cause the timer to be reloaded from the registers alternately beginning with the register RxB.
The Tx Timer control bits, TxC3, TxC2 and TxC1 set up the timer for PWM mode operation.
Figure 7 shows a block diagram of the timer in PWM mode.

FIGURE 7. Timer in PWM Mode

Timers (Continued)

The underflows can be programmed to toggle the TXA output pin. The underflows can also be programmed to generate interrupts.
Underflows from the timer are alternately latched into two pending flags, TxPNDA and TxPNDB. The user must reset these pending flags under software control. Two control enable flags, TxENA and TxENB, allow the interrupts from the timer underflow to be enabled or disabled. Setting the timer enable flag TxENA will cause an interrupt when a timer underflow causes the RxA register to be reloaded into the timer. Setting the timer enable flag TxENB will cause an interrupt when a timer underflow causes the RxB register to be reloaded into the timer. Resetting the timer enable flags will disable the associated interrupts.
Either or both of the timer underflow interrupts may be enabled. This gives the user the flexibility of interrupting once per PWM period on either the rising or falling edge of the PWM output. Alternatively, the user may choose to interrupt on both edges of the PWM output.

Mode 2. External Event Counter Mode

This mode is quite similar to the processor independent PWM mode described above. The main difference is that the timer, Tx, is clocked by the input signal from the TxA pin. The Tx timer control bits, TxC3, TxC2 and TxC1 allow the timer to be clocked either on a positive or negative edge from the TxA pin. Underflows from the timer are latched into the TxPNDA pending flag. Setting the TxENA control flag will cause an interrupt when the timer underflows.
In this mode the input pin TxB can be used as an independent positive edge sensitive interrupt input if the TxENB control flag is set. The occurrence of a positive edge on the TxB input pin is latched into the TxPNDB flag.
Figure 8 shows a block diagram of the timer in External Event Counter mode.
Note: The PWM output is not available in this mode since the TXA pin is being used as the counter input clock.

Timers (Continued)

Mode 3. Input Capture Mode

The device can precisely measure external frequencies or time external events by placing the timer block, Tx, in the input capture mode.
In this mode, the timer Tx is constantly running at the fixed t_{c} rate. The two registers, RxA and $R \times B$, act as capture registers. Each register acts in conjunction with a pin. The register RXA acts in conjunction with the TXA pin and the register RxB acts in conjunction with the TxB pin.
The timer value gets copied over into the register when a trigger event occurs on its corresponding pin. Control bits, $\mathrm{TxC3}, \mathrm{~T} \times \mathrm{C} 2$ and $\mathrm{TxC1}$, allow the trigger events to be specified either as a positive or a negative edge. The trigger condition for each input pin can be specified independently.
The trigger conditions can also be programmed to generate interrupts. The occurrence of the specified trigger condition on the TXA and TxB pins will be respectively latched into the pending flags, TxPNDA and TxPNDB. The control flag TxENA allows the interrupt on TXA to be either enabled or disabled. Setting the TxENA flag enables interrupts to be generated when the selected trigger condition occurs on the TXA pin. Similarly, the flag TxENB controls the interrupts from the TxB pin.
Underflows from the timer can also be programmed to generate interrupts. Underflows are latched into the timer TxCO pending flag (the TxC0 control bit serves as the timer under-
flow interrupt pending flag in the Input Capture mode). Consequently, the TxCO control bit should be reset when entering the Input Capture mode. The timer underflow interrupt is enabled with the TxENA control flag. When a TxA interrupt occurs in the Input Capture mode, the user must check both whether a TXA input capture or a timer underflow (or both) caused the interrupt.
Figure 9 shows a block diagram of the timer in Input Capture mode.

TIMER CONTROL FLAGS

The timers T1 and T2 have indentical control structures. The control bits and their functions are summarized below.
\(\left.$$
\begin{array}{ll}\text { TxC0 } & \begin{array}{l}\text { Timer Start/Stop control in Modes } 1 \text { and } 2 \\
\text { (Processor Independent PWM and External }\end{array}
$$

\& Event Counter), where 1=Start, 0=Stop\end{array}\right\}\)| Timer Underflow Interrupt Pending Flag in | |
| :--- | :--- |
| | Mode 3 (Input Capture) | (Processor Independent PWM and External Event Counter), where $1=$ Start, $0=$ Stop Timer Underflow Interrupt Pending Flag in Mode 3 (Input Capture)

TxPNDA Timer Interrupt Pending Flag
TxPNDB Timer Interrupt Pending Flag
TxENA Timer Interrupt Enable Flag
TxENB Timer Interrupt Enable Flag
$1=$ Timer Interrupt Enabled
$0=$ Timer Interrupt Disabled
ode control
TXC1 Timer mode control

TL/DD12063-11
FIGURE 9. Timer in Input Capture Mode

Timers (Continued)

The timer mode control bits (TxC3, TxC2 and TxC1) are detailed below:

TxC3	TxC2	TxC1	Timer Mode	Interrupt A Source	Interrupt B Source	Timer Counts On
0	0	0	MODE 2 (External Event Counter)	Timer Underflow	Pos. TxB Edge	TxA Pos. Edge
0	0	1	MODE 2 (External Event Counter)	Timer Underflow	Pos. TxB Edge	TxA Neg. Edge
1	0	1	MODE 1 (PWM) TxA Toggle	Autoreload RA	Autoreload RB	t_{c}
1	0	0	MODE 1 (PWM) No TxA Toggle	Autoreload RA	Autoreload RB	t_{c}
0	1	0	MODE 3 (Capture) Captures: TxA Pos. Edge TxB Pos. Edge	Pos. TxA Edge or Timer Underflow	Pos. TxB Edge	t_{6}
1	1	0	MODE 3 (Capture) Captures: TxA Pos. Edge TxB Neg. Edge	Pos. TxA Edge or Timer Underflow	Neg. TxB Edge	t_{c}
0	1	1	MODE 3 (Capture) Captures: TxA Neg. Edge TxB Pos. Edge	Neg. TxB Edge or Timer Underflow	Pos. TxB Edge	t_{c}
1	1	1	MODE 3 (Capture) Captures: TxA Neg. Edge TxB Neg. Edge	Neg. TxA Edge or Timer Underflow	Neg. TxB Edge	t_{6}

Power Save Modes

The device offers the user two power save modes of operation: HALT and IDLE. In the HALT mode, all microcontroller activities are stopped. In the IDLE mode, the on-board oscillator circuitry and timer TO are active but all other microcontroller activities are stopped. In either mode, all on-board RAM, registers, I/O states, and timers (with the exception of TO) are unaltered.

HALT MODE

The device is placed in the HALT mode by writing a " 1 " to the HALT flag (G7 data bit). All microcontroller activities, including the clock, timers, are stopped. The WATCHDOG logic is disabled during the HALT mode. However, the clock monitor circuitry, if enabled, remains active and will cause the WATCHDOG output pin (WDOUT) to go low. If the HALT mode is used and the user does not want to activate the WDOUT pin, the Clock Monitor should be disabled after the device comes out of reset (resetting the Clock Monitor control bit with the first write to the WDSVR register). In the HALT mode, the power requirements are minimal and the applied voltage (V_{CC}) may be decreased to $\mathrm{Vr}(\mathrm{Vr}=2.0 \mathrm{~V})$ without altering the state of the machine.
The device supports three different ways of exiting the HALT mode. The first method of exiting the HALT mode is
with the Multi-Input Wakeup feature on the I. port. The second method is with a low to high transition on the CKO (G7) pin. This method precludes the use of the crystal clock configuration (since CKO becomes a dedicated output), and so may be used with an RC clock configuration. The third method of exiting the HALT mode is by pulling the RESET pin low.
Since a crystal or ceramic resonator may be selected as the oscillator, the Wakeup signal is not allowed to start the chip running immediately since crystal oscillators and ceramic resonators have a delayed start up time to reach full amplitude and frequency stability. The IDLE timer is used to generate a fixed delay to ensure that the oscillator has indeed stabilized before allowing instruction execution. In this case, upon detecting a valid Wakeup signal, only the oscillator circuitry is enabled. The IDLE timer is loaded with a value of 256 and is clocked with the t_{c} instruction cycle clock. The t_{c} clock is derived by dividing the oscillator clock down by a factor of 10. The Schmitt trigger following the CKI inverter on the chip ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.

Power Save Modes (Continued)

If an RC clock option is being used, the fixed delay is introduced optionally. A control bit, CLKDLY, mapped as configuration bit G7, controls whether the delay is to be introduced or not. The delay is included if CLKDLY is set, and excluded if CLKDLY is reset. The CLKDLY bit is cleared on reset.
The WATCHDOG detector circuit is inhibited during the HALT mode. However, the clock monitor circuit, if enabled, remains active during HALT mode in order to ensure a clock monitor error if the device inadvertently enters the HALT mode as a result of a runaway program or power glitch.

IDLE MODE

The device is placed in the IDLE mode by writing a " 1 " to the IDLE flag (G6 data bit). In this mode, all activity, except the associated on-board oscillator circuitry, the WATCHDOG logic, the clock monitor and the IDLE Timer TO, is stopped.
As with the HALT mode, the device can be returned to normal operation with a reset, or with a Multi-Input Wake-up from the L Port. Alternately, the microcontroller resumes normal operation from the IDLE mode when the thirteenth bit (representing 4.096 ms at internal clock frequency of $1 \mathrm{MHz}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$) of the IDLE Timer toggles.
This toggle condition of the thirteenth bit of the IDLE Timer TO is latched into the TOPND pending flag.

The user has the option of being interrupted with a transition on the thirteenth bit of the IDLE Timer T0. The interrupt can be enabled or disabled via the TOEN control bit. Setting the TOEN flag enables the interrupt and vice versa.
The user can enter the IDLE mode with the Timer TO interrupt enabled. In this case, when the TOPND bit gets set, the device will first execute the Timer TO interrupt service routine and then return to the instruction following the "Enter Idle Mode" instruction.
Alternatively, the user can enter the IDLE mode with the IDLE Timer TO interrupt disabled. In this case, the device will resume normal operation with the instruction immediately following the "Enter IDLE Mode" instruction.
Note: It is necessary to program two NOP instructions following both the set HALT mode and set IDLE mode instructions. These NOP instructions are necessary to allow clock resynchronization following the HALT or IDLE modes. Due to the on-board 8k EPROM with port recreation logic, the HALT/IDLE current is much higher compared to the equivalent masked device (COP888CL/COP884CL).

Multi-Input Wakeup

The Multi-Input Wakeup feature is used to return (wakeup) the device from either the HALT or IDLE modes. Alternately Multi-Input Wakeup/Interrupt feature may also be used to generate up to 8 edge selectable external interrupts.
Figure 10 shows the Multi-Input Wakeup logic.

FIGURE 10. Multi-Input Wake Up Logic

Multi-Input Wakeup (Continued)

The Multi-Input Wakeup feature utilizes the L Port. The user selects which particular L port bit (or combination of L Port bits) will cause the device to exit the HALT or IDLE modes. The selection is done through the Reg: WKEN. The Reg: WKEN is an 8 -bit read/write register, which contains a control bit for every L port bit. Setting a particular WKEN bit enables a Wakeup from the associated L port pin.
The user can select whether the trigger condition on the selected L Port pin is going to be either a positive edge (low to high transition) or a negative edge (high to low transition). This selection is made via the Reg: WKEDG, which is an 8 -bit control register with a bit assigned to each L. Port pin. Setting the control bit will select the trigger condition to be a negative edge on that particular L Port pin. Resetting the bit selects the trigger condition to be a positive edge. Changing an edge select entails several steps in order to avoid a pseudo Wakeup condition as a result of the edge change. First, the associated WKEN bit should be reset, followed by the edge select change in WKEDG. Next, the associated WKPND bit should be cleared, followed by the associated WKEN bit being re-enabled.
An example may serve to clarify this procedure. Suppose we wish to change the edge select from positive (low going high) to negative (high going low) for L Port bit 5 , where bit 5 has previously been enabled for an input interrupt. The program would be as follows:

$$
\begin{array}{ll}
\text { RMRBIT } & 5, \text { WKEN } \\
\text { RMSBIT } & 5, \text { WKEDG } \\
\text { RMRBIT } & 5, \text { WKPND } \\
\text { RMSBIT } & 5, \text { WKEN }
\end{array}
$$

If the L port bits have been used as outputs and then changed to inputs with Multi-Input Wakeup/Interrupt, a safety procedure should also be followed to avoid inherited pseudo wakeup conditions. After the selected L port bits have been changed from output to input but before the associated WKEN bits are enabled, the associated edge select bits in WKEDG should be set or reset for the docired edge selects, followed by the associated WKPND bits being cleared.
This same procedure should be used following reset, since the L port inputs are left floating as a result of reset.
The occurrence of the selected trigger condition for Multi-Input Wakeup is latched into a pending register called WKPND. The respective bits of the WKPND register will be set on the occurrence of the selected trigger edge on the corresponding Port L pin. The user has the responsibility of clearing these pending flags. Since WKPND is a pending register for the occurrence of selected wakeup conditions, the device will not enter the HALT mode if any Wakeup bit is both enabled and pending. Consequently, the user has the responsibility of clearing the pending flags before attempting to enter the HALT mode.
The WKEN, WKPND and WKEDG are all read/write registers, and are cleared at reset.

PORT LINTERRUPTS

Port L provides the user with an additional eight fully selectable, edge sensitive interrupts which are all vectored into the same service subroutine.
The interrupt from Port L shares logic with the wake up circuitry. The register WKEN allows interrupts from Port L to be individually enabled or disabled. The register WKEDG specifies the trigger condition to be either a positive or a negative edge. Finally, the register WKPND latches in the pending trigger conditions.
The GIE (Global Interrupt Enable) bit enables the interrupt function. A control flag, LPEN, functions as a global interrupt enable for Port L interrupts. Setting the LPEN flag will enable interrupts and vice versa. A separate global pending flag is not needed since the register WKPND is adequate.
Since Port L is also used for waking the device out of the HALT or IDLE modes, the user can elect to exit the HALT or IDLE modes either with or without the interrupt enabled. If he elects to disable the interrupt, then the device will restart execution from the instruction immediately following the instruction that placed the microcontroller in the HALT or IDLE modes. In the other case, the device will first execute the interrupt service routine and then revert to normal operation.
The Wakeup signal will not start the chip running immediately since crystal oscillators or ceramic resonators have a fi nite start up time. The IDLE Timer (TO) generates a fixed delay to ensure that the oscillator has indeed stabilized before allowing the execution of instructions. In this case, upon detecting a valid Wakeup signal, only the oscillator circuitry and the IDLE Timer TO are enabled. The IDLE Timer is loaded with a value of 256 and is clocked from the t_{c} instruction cycle clock. The t_{c} clock is derived by dividing down the oscillator clock by a factor of 10. A Schmitt trigger following the CKI on-chip inverter ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large ampiiiude to meet the Scimitt trigger speciiications. Inis Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.
If the RC clock option is used, the fixed delay is under software control. A control flag, CLKDLY, in the G7 configuration bit allows the clock start up delay to be optionally inserted. Setting CLKDLY flag high will cause clock start up delay to be inserted and resetting it will exclude the clock start up delay. The CLKDLY flag is cleared during reset, so the clock start up delay is not present following reset with the RC clock options.

Interrupts

The device supports a vectored interrupt scheme. It supports a total of ten interrupt sources. The following table lists all the possible interrupt sources, their arbitration ranking and the memory locations reserved for the interrupt vector for each source.

Interrupts (Continued)

Arbitration Ranking	Source	Description	Vector Address Hi-Low Byte
(1) Highest	Software	INTR Instruction	OyFE-OyFF
	Reserved	for Future Use	OyFC-OyFD
(2)	External	Pin GO Edge	OyFA-OyFB
(3)	Timer T0	Underflow	OyF8-0yF9
(4)	Timer T1	T1A/Underflow	OyF6-0yF7
(5)	Timer T1	T1B	OyF4-0yF5
(6)	MICROWIRE/PLUS	BUSY Goes Low	OyF2-0yF3
	Reserved	for Future Use	OyF0-0yF1
	Reserved	for UART	OyEE-OyEF
	Reserved	for UART	OyEC-OyED
(7)	Timer T2	T2A/Underflow	OyEA-OyEB
(8)	Timer 72	T2B	OyE8-OyE9
	Reserved	for Future Use	OyE6-0yE7
	Reserved	for Future Use	OyE4-OyE5
(9)	Port L./Wakeup	Port LEdge	OyE2-OyE3
(10) Lowest	Default	VIS Instr. Execution without Any Interrupts	OyE0-OyE1

y is VIS page, $\mathrm{y} \neq 0$.

Two bytes of program memory space are reserved for each interrupt source. All interrupt sources except the software interrupt are maskable. Each of the maskable interrupts have an Enable bit and a Pending bit. A maskable interrupt is active if its associated enable and pending bits are set. If $\mathrm{GIE}=1$ and an interrupt is active, then the processor will be interrupted as soon as it is ready to start executing an instruction except if the above conditions happen during the Software Trap service routine. This exception is described in the Software Trap sub-section.
The interruption process is accomplished with the INTR instruction (opcode 00), which is jammed inside the Instruction Register and replaces the opcode about to be executed. The following steps are performed for every interrupt:

1. The GIE (Global Interrupt Enable) bit is reset.
2. The address of the instruction about to be executed is pushed into the stack.
3. The PC (Program Counter) branches to address 00FF. This procedure takes $7 t_{c}$ cycles to execute.

At this time, since $\mathrm{GIE}=0$, other maskable interrupts are disabled. The user is now free to do whatever context switching is required by saving the context of the machine in the stack with PUSH instructions. The user would then program a VIS (Vector Interrupt Select) instruction in order to branch to the interrupt service routine of the highest priority interrupt enabled and pending at the time of the VIS. Note that this is not necessarily the interrupt that caused the branch to address location 00FF Hex prior to the context switching.
Thus, if an interrupt with a higher rank than the one which caused the interruption becomes active before the decision of which interrupt to service is made by the VIS, then the interrupt with the higher rank will override any lower ones and will be acknowledged. The lower priority interrupt(s) are still pending, however, and will cause another interrupt immediately following the completion of the interrupt service routine associated with the higher priority interrupt just serviced. This lower priority interrupt will occur immediately following the RETI (Return from Interrupt) instruction at the end of the interrupt service routine just completed.

Interrupts (Continued)

Inside the interrupt service routine, the associated pending bit has to be cleared by software. The RETI (Return from Interrupt) instruction at the end of the interrupt service routine will set the GIE (Global Interrupt Enable) bit, allowing the processor to be interrupted again if another interrupt is active and pending.
The VIS instruction looks at all the active interrupts at the time it is executed and performs an indirect jump to the beginning of the service routine of the one with the highest rank.
The addresses of the different interrupt service routines, called vectors, are chosen by the user and stored in ROM in a table starting at 01E0 (assuming that VIS is located between 00FF and 01DF). The vectors are 15 -bit wide and therefore occupy 2 ROM locations.
VIS and the vector table must be located in the same 256-byte block ($0 y 00$ to OyFF) except if VIS is located at the
last address of a block. In this case, the table must be in the next block. The vector table cannot be inserted in the first 256-byte block.
The vector of the maskable interrupt with the lowest rank is located at OyE0 (Hi-Order byte) and OyE1 (Lo-Order byte) and so forth in increasing rank number. The vector of the maskable interrupt with the highest rank is located at OyFA (Hi-Order byte) and OyFB (Lo-Order byte).
The Software Trap has the highest rank and its vector is located at $0 y F E$ and $0 y F F$.
If, by accident, a VIS gets executed and no interrupt is active, then the PC (Program Counter) will branch to a vector located at OyEO-OyE1. This vector can point to the Software Trap (ST) interrupt service routine, or to another special service routine as desired.
Figure 11 shows the Interrupt block diagram.

TL/DD12063-13
FIGURE 11. COP888CL Interrupt Block Dlagram

Interrupts (Continued)

SOFTWARE TRAP

The Software Trap (ST) is a special kind of non-maskable interrupt which occurs when the INTR instruction (used to acknowledge interrupts) is fetched from ROM and placed inside the instruction register. This may happen when the PC is pointing beyond the available ROM address space or when the stack is over-popped.
When an ST occurs, the user can re-initialize the stack pointer and do a recovery procedure (similar to reset, but not necessarily containing all of the same initialization procedures) before restarting.
The occurrence of an ST is latched into the ST pending bit. The GIE bit is not affected and the ST pending bit (not accessible by the user) is used to inhibit other interrupts and to direct the program to the ST service routine with the VIS instruction. The RPND instruction is used to clear the software interrupt pending bit. This bit is also cleared on reset.
The ST has the highest rank among all interrupts.
Nothing (except another ST) can interrupt an ST being serviced.

WATCHDOG

The device contains a WATCHDOG and clock monitor. The WATCHDOG is designed to detect the user program getting stuck in infinite loops resulting in loss of program control or "runaway" programs. The Clock Monitor is used to detect the absence of a clock or a very slow clock below a specified rate on the CKI pin.
The WATCHDOG consists of two independent logic blocks: WD UPPER and WD LOWER. WD UPPER establishes the upper limit on the service window and WD LOWER defines the lower limit of the service window.
Servicing the WATCHDOG consists of writing a specific value to a WATCHDOG Service Register named WDSVR which is memory mapped in the RAM. This value is composed of three fields, consisting of a 2-bit Window Select, a 5-bit Key Data field, and the 1-bit Clock Monitor Select field. Table III shows the WDSVR register.

TABLE III. WATCHDOG Service Register (WDSVR)

Window Select		Key Data					
X	X	0	1	1	0	0	Y
7	6	5	4	3	2	1	0

The lower limit of the service window is fixed at 2048 instruction cycles. Bits 7 and 6 of the WDSVR register allow the user to pick an upper limit of the service window.
Table IV shows the four possible combinations of lower and upper limits for the WATCHDOG service window. This flexibility in choosing the WATCHDOG service window prevents any undue burden on the user software.
Bits 5, 4, 3, 2 and 1 of the WDSVR register represent the 5 -bit Key Data field. The key data is fixed at 01100. Bit 0 of the WDSVR Register is the Clock Monitor Select bit.

TABLE IV. WATCHDOG Service Window Select

WDSVR Bit 7	WDSVR Bit 6	Service Window (Lower-Upper Limits)
0	0	$2 k-8 k t_{c}$ Cycles
0	1	$2 k-16 k t_{c}$ Cycles
1	0	$2 k-32 k t_{c}$ Cycles
1	1	$2 k-64 k \mathrm{t}_{\mathrm{c}}$ Cycles

Clock Monitor

The Clock Monitor aboard the device can be selected or deselected under program control. The Clock Monitor is guaranteed not to reject the clock if the instruction cycle clock ($1 / \mathrm{t}_{\mathrm{c}}$) is greater or equal to 10 kHz . This equates to a clock input rate on CKI of greater or equal to 100 kHz .

WATCHDOG Operation

The WATCHDOG and Clock Monitor are disabled during reset. The device comes out of reset with the WATCHDOG armed, the WATCHDOG Window Select (bits 6, 7 of the WDSVR Register) set, and the Clock Monitor bit (bit 0 of the WDSVR Register) enabled. Thus, a Clock Monitor error will occur after coming out of reset, if the instruction cycle clock frequency has not reached a minimum specified value, including the case where the oscillator fails to start.
The WDSVR register can be written to only once after reset and the key data (bits 5 through 1 of the WDSVR Register) must match to be a valid write. This write to the WDSVR register involves two irrevocable choices: (i) the selection of the WATCHDOG service window (ii) enabling or disabling of the Clock Monitor. Hence, the first write to WDSVR Register involves selecting or deselecting the Clock Monitor, select the WATCHDOG service window and match the WATCHDOG key data. Subsequent writes to the WDSVR register will compare the value being written by the user to the WATCHDOG service window value and the key data (bits 7 through 1) in the WDSVR Register. Table V shows the sequence of events that can occur.
The user must service the WATCHDOG at least once before the upper limit of the serivce window expires. The WATCHDOG may not be serviced more than once in every lower limit of the service window. The user may service the WATCHDOG as many times as wished in the time period between the lower and upper limits of the service window. The first write to the WDSVR Register is also counted as a WATCHDOG service.
The WATCHDOG has an output pin associated with it. This is the WDOUT pin, on pin 1 of the port G. WDOUT is active low. The WDOUT pin is in the high impedance state in the inactive state. Upon triggering the WATCHDOG, the logic will pull the WDOUT (G1) pin low for an additional $16 t_{c}-32 t_{c}$ cycles after the signal level on WDOUT pin goes below the lower Schmitt trigger threshold. After this delay, the device will stop forcing the WDOUT output low.
The WATCHDOG service window will restart when the WDOUT pin goes high it is recommended that the user tie the WDOUT pin back to $V_{C C}$ through a resistor in order to pull WDOUT high.
A WATCHDOG service while the WDOUT signal is active will be ignored. The state of the WDOUT pin is not guaranteed on reset, but if it powers up low then the WATCHDOG will time out and WDOUT will enter high impedance state.

WATCHDOG Operation (Continued)

TABLE V. WATCHDOG Service Actions

Key Data	Window Data	Clock Monitor	Action
Match	Match	Match	Valid Service: Restart Service Window
Don't Care	Mismatch	Don't Care	Error: Generate WATCHDOG Output
Mismatch	Don't Care	Don't Care	Error: Generate WATCHDOG Output
Don't Care	Don't Care	Mismatch	Error: Generate WATCHDOG Output

TABLE VI. MICROWIRE/PLUS Master Mode Clock Select

SL1	SL0	SK
$\mathbf{0}$	0	$2 \times \mathrm{t}_{\mathrm{c}}$
0	1	$4 \times \mathrm{t}_{\mathrm{c}}$
1	x	$8 \times \mathrm{t}_{\mathrm{c}}$

Where t_{c} is the instruction cycle clock

The CLOCK MONITOR forces the G1 pin low upon detecting a clock frequency error. The CLOCK MONITOR error will continue until the clock frequency has reached the minimum specified value, after which the G1 output will enter the high impedance TRI-STATE mode following $16 \mathrm{t}_{\mathrm{c}}-32 \mathrm{t}_{\mathrm{c}}$ clock cycles. The CLOCK MONITOR generates a continual CLOCK MONITOR error if the oscillator fails to start, or fails to reach the minimum specified frequency. The specification for the CLOCK MONITOR is as follows:
$1 / \mathrm{t}_{\mathrm{c}}>10 \mathrm{kHz}$-No clock rejection.
$1 / \mathrm{t}_{\mathrm{c}}<10 \mathrm{~Hz}$-Guaranteed clock rejection.

WATCHDOG AND CLOCK MONITOR SUMMARY

The following salient points regarding the WATCHDOG and CLOCK MONITOR should be noted:

- Both WATCHDOG and CLOCK MONITOR detector circuits are inhibited during RESET.
- Following RESET, the WATCHDOG and CLOCK MONITOR are both enabled, with the WATCHDOG having the maximum service window selected.
- The WATCHDOG service window and CLOCK MONITOR enable/disable option can only be changed once, during the initial WATCHDOG service following RESET.
- The initial WATCHDOG service must match the key data value in the WATCHDOG Service register WDSVR in order to avoid a WATCHDOG error.
- Subsequent WATCHDOG services must match all three data fields in WDSVR in order to avoid WATCHDOG errors.
- The correct key data value cannot be read from the WATCHDOG Service register WDSVR. Any attempt to read this key data value of 01100 from WDSVR will read as key data value of all 0 's.
- The WATCHDOG detector circuit is inhibited during both the HALT and IDLE modes.
- The CLOCK MONITOR detector circuit is active during both the HALT and IDLE modes. Consequently, the device inadvertently entering the HALT mode will be detected as a CLOCK MONITOR error (provided that the CLOCK MONITOR enable option has been selected by the program).
- With the single-pin R/C oscillator mask option selected and the CLKDLY bit reset, the WATCHDOG service window will resume following HALT mode from where it left off before entering the HALT mode.
- With the crystal oscillator mask option selected, or with the single-pin R/C oscillator mask option selected and the CLKDLY bit set, the WATCHDOG service window will be set to its selected value from WDSVR following HALT. Consequently, the WATCHDOG should not be servicod for at least 2048 instruction cycles following HALT, but must be serviced within the selected window to avoid a WATCHDOG error.
- The IDLE timer TO is not initialized with RESET.
- The user can sync in to the IDLE counter cycle with an
 flag. The TOPND flag is set whenever the thirteenth bit of the IDLE counter toggles (every 4096 instruction cycles). The user is responsible for resetting the TOPND flag.
- A hardware WATCHDOG service occurs just as the device exits the IDLE mode. Consequently, the WATCHDOG should not be serviced for at least 2048 instruction cycles following IDLE, but must be serviced within the selected window to avoid a WATCHDOG error.
- Following RESET, the initial WATCHDOG service (where the service window and the Clock Monitor enable/disable must be selected) may be programmed anywhere within the maximum service window (65,536 instruction cycles) initialized by RESET. Note that this initial WATCHDOG service may be programmed within the initial 2048 instruction cycles without causing a WATCHDOG error.

Detection of Illegal Conditions

The device can detect various illegal conditions resulting from coding errors, transient noise, power supply voltage drops, runaway programs, etc.
Reading of undefined ROM gets zeros. The opcode for software interrupt is zero. If the program fetches instructions from undefined ROM, this will force a software interrupt, thus signaling that an illegal condition has occurred.

Detection of IIlegal Conditions (Continued)

The subroutine stack grows down for each call (jump to subroutine), interrupt, or PUSH, and grows up for each return or POP. The stack pointer is initialized to RAM location 06F Hex during reset. Consequently, if there are more returns than calls, the stack pointer will point to addresses 070 and 071 Hex (which are undefined RAM). Undefined RAM from addresses 070 to 07F Hex is read as all 1's, which in turn will cause the program to return to address 7FFF Hex. This is an undefined ROM location and the instruction fetched (all 0 's) from this location will generate a software interrupt signaling an illegal condition.
Thus, the chip can detect the following illegal conditions:

1. Executing from undefined ROM
2. Over "POP''ing the stack by having more returns than calls.
When the software interrupt occurs, the user can re-initialize the stack pointer and do a recovery procedure before restarting (this recovery program is probably similar to that following reset, but might not contain the same program initialization procedures).

MICROWIRE/PLUS

MICROWIRE/PLUS is a serial synchronous communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e. A/D converters, display drivers, E2PROMs etc.) and with other microcontrollers which support the MICROWIRE interface. It consists of an 8 -bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 12 shows a block diagram of the MICROWIRE logic.
The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS arrangement with the internal clock source is called the Master mode of operation. Similarly, operating the MICROWIRE/PLUS arrangement with an external shift clock is called the Slave mode of operation.

TL/DD12063-14
FIGURE 12. MICROWIRE/PLUS Block Diagram
The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. In the master mode, the SK clock rate is selected by the two bits, SL0 and SL1, in the CNTRL register. Table VI details the different clock rates that may be selected.

MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. If enabled, an interrupt is generated when eight data bits have been shifted. The device may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 13 shows how two COP888 microcontrollers and several peripherals may be interconnected using the MICROWIRE/PLUS arrangements.

Warning

The SIO register should only be loaded when the SK clock is low. Loading the SIO register while the SK clock is high will result in undefined data in the SIO register. SK clock is normally low when not shifting.
Setting the BUSY flag when the input SK clock is high in the MICROWIRE/PLUS slave mode may cause the current SK clock for the SIO shift register to be narrow. For safety, the BUSY flag should only be set when the input SK clock is low.

MICROWIRE/PLUS Master Mode Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally. The MICROWIRE Master always initiates all data exchanges. The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register. Table VII summarizes the bit settings required for Master mode of operation.

MICROWIRE/PLUS Slave Mode Operation

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must be selected as an input and the SO pin is selected as an output pin by setting and resetting the appropriate bit in the Port G configuration register. Table V summarizes the settings required to enter the Slave mode of operation.
The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated.

Alternate SK Phase Operation

The device allows either the normal SK clock or an alternate phase SK clock to shift data in and out of the SIO register. In both the modes the SK is normally low. In the normal mode data is shifted in on the rising edge of the SK clock and the data is shifted out on the falling edge of the SK clock. The SIO register is shifted on each falling edge of the SK clock in the normal mode. In the alternate SK phase mode the SIO register is shifted on the rising edge of the SK clock.
A control flag, SKSEL, allows either the normal SK clock or the alternate SK clock to be selected. Resetting SKSEL causes the MICROWIRE/PLUS logic to be clocked from the normal SK signal. Setting the SKSEL flag selects the alternate SK clock. The SKSEL is mapped into the G6 configuration bit. The SKSEL flag will power up in the reset condition, selecting the normal SK signal.

TABLE VII

G4 (SO) Config. Bit	G5 (SK) Config. Bit	G4 Fun.	G5 Fun.	Operation
1	1	SO	Int. SK	MICROWIRE/PLUS Master
0	1	TRI-STATE	Int. SK	MICROWIRE/PLUS Master
1	0	SO	Ext. SK	MICROWIRE/PLUS Slave
0	0	TRI-STATE	Ext. SK	MICROWIRE/PLUS Slave

This table assumes that the control flag MSEL is set.

TL/DD1206315
FIGURE 13. MICROWIRE/PLUS Application

Memory Map

All RAM, ports and registers (except A and PC) are mapped into data memory address space

Address	Contents
00 to 6F	On-Chip RAM bytes
70 to BF	Unused RAM Address Space
C0	Timer T2 Lower Byte
C1	Timer T2 Upper Byte
C2	Timer T2 Autoload Register T2RA Lower Byte
C3	Timer T2 Autoload Register T2RA Upper Byte
C4	Timer T2 Autoload Register T2RB Lower Byte
C5	Timer T2 Autoload Register T2RB Upper Byte
C6	Timer T2 Control Register
C7	WATCHDOG Service Register (Reg:WDSVR)
C8	MIWU Edge Select Register (Reg:WKEDG)
C9	MIWU Enable Register (Reg:WKEN)
CA	MIWU Pending Register (Reg:WKPND)
CB to CF	Reserved
D0	Port L Data Register
D1	Port L Configuration Register
D2	Port L Input Pins (Read Only)
D3	Reserved for Port L
D4	Port G Data Register
D5	Port G Configuration Register
D6	Port G Input Pins (Read Only)
D7	Port I Input Pins (Read Only)
D8	Port C Data Register
D9	Port C Configuration Register
DA	Port C Input Pins (Read Only)
DB	Reserved for Port C
DC	Port D Data Register
DD to DF	Reserved for Port D
E0 to E5	Reserved
E6	Timer T1 Autoload Register T1RB Lower Byte
E7	Timer T1 Autoload Register T1RB Upper Byte
E8	ICNTRL Register
E9	MICROWIRE Shift Register
EA	Timer T1 Lower Byte
EB	Timer T1 Upper Byte
EC	Timer T1 Autoload Register T1RA Lower Byte
ED	Timer T1 Autoload Register T1RA Upper Byte
EE	CNTRL Control Register
EF	PSW Register
F0 to FB	On-Chip RAM Mapped as Registers
FC	X Register
FD	SP Register
FE	B Register
FF	Reserved

Note: Reading memory locations 70-7F Hex will return all ones. Reading other unused memory locations will return undefined data.

Addressing Modes

There are ten addressing modes, six for operand addressing and four for transfer of control.

OPERAND ADDRESSING MODES

Register Indirect

This is the "normal" addressing mode. The operand is the data memory addressed by the B pointer or X pointer.

Register Indirect (with auto post increment or decrement of pointer)

This addressing mode is used with the LD and X instructions. The operand is the data memory addressed by the B pointer or X pointer. This is a register indirect mode that automatically post increments or decrements the B or X register after executing the instruction.

Direct

The instruction contains an 8-bit address field that directly points to the data memory for the operand.

Immediate

The instruction contains an 8-bit immediate field as the operand.
Short Immediate
This addressing mode is used with the Load B Immediate instruction. The instruction contains a 4-bit immediate field as the operand.

Indirect

This addressing mode is used with the LAID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC) for accessing a data operand from the program memory.

TRANSFER OF CONTROL ADDRESSING MODES

Relative

This mode is used for the JP instruction, with the instruction field being added to the program counter to get the new program location. JP has a range from -31 to +32 to allow a 1 -byte relative jump ($\mathrm{JP}+1$ is implemented by a NOP instruction). There are no "pages" when using JP, since all 15 bits of PC are used.

Absolute

This mode is used with the JMP and JSR instructions, with the instruction field of 12 bits replacing the lower 12 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory segment.

Absolute Long

This mode is used with the JMPL and JSR instructions, with the instruction field of 12 bits replacing the lower 12 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory space.

Indirect

This mode is used with the JID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC) for accessing a location in the program memory. The contents of this program memory location serve as a partial address (lower 8 bits of PC) for the jump to the next instruction.
Note: The VIS is a special case of the Indirect Transfer of Control addressing mode, where the double byte vector associated with the interrupt is transferred from adjacent addresses in the program memory into the program counter (PC) in order to jump to the associated interrupt service routine.

Instruction Set

Register and Symbol Definition

Registers	
A	8-Bit Accumulator Register
B	8-Bit Address Register
X	8-Bit Address Register
SP	8-Bit Stack Pointer Register
PC	15-Bit Program Counter Register
PU	Upper 7 Bits of PC
PL	Lower 8 Bits of PC
C	1 Bit of PSW Register for Carry
HC	1 Bit of PSW Register for Half Carry
GIE	1 Bit of PSW Register for Global
	Interrupt Enable
VU	Interrupt Vector Upper Byte
VL	Interrupt Vector Lower Byte

Symbols	
[B]	Memory Indirectly Addressed by B Register
[X]	Memory Indirectly Addressed by X Register
MD	Direct Addressed Memory
Mem	Direct Addressed Memory or [B]
Meml	Direct Addressed Memory or [B] or Immediate Data
1 mm	8-Bit Immediate Data
Reg	Register Memory: Addresses F0 to FF (Includes B, X and SP)
Bit	Bit Number (0 to 7)
\leftarrow	Loaded with
\longleftrightarrow	Exchanged with

70ヶ8L8dOJ/7088L8dOJ

Instruction Set (Continued)

INSTRUCTION SET

ADD	A, Meml	ADD	$A \leftarrow A+M e m l$
ADC	A,Meml	ADD with Carry	$A \leftarrow A+\text { Meml }+C, C \leftarrow \text { Carry },$ $\text { HC } \leftarrow \text { Half Carry }$
SUBC	A,Meml	Subtract with Carry	$A \leftarrow A-\text { Meml }+C, C \leftarrow \text { Carry },$ $\mathrm{HC} \leftarrow \text { Half Carry }$
AND	A,Meml	Logical AND	$\mathrm{A} \leftarrow \mathrm{A}$ and Meml
ANDSZ	A, 1 mm	Logical AND Immed., Skip if Zero	Skip next if (A and 1 mm) $=0$
OR	A,Meml	Logical OR	$A \leftarrow A$ or Meml
XOR	A,Meml	Logical EXclusive OR	$A \leftarrow A$ xor Meml
IFEQ	MD, Imm	IF EQual	Compare MD and Imm, Do next if MD = Imm
IFEQ	A, Memi	IF EQual	Compare A and Meml, Do next if $A=$ Meml
IFNE	A,Meml	IF Not Equal	Compare A and Meml, Do next if $A \neq$ Meml
IFGT	A,Meml	IF Greater Than	Compare A and Meml, Do next if A > Meml
IFBNE	\#	If B Not Equal	Do next if lower 4 bits of $B \neq \mathrm{imm}$
DRSZ	Reg	Decrement Reg., Skip if Zero	Reg \leftarrow Reg - 1, Skip if Reg $=0$
SBIT	\#,Mem	Set BIT	1 to bit, Mem (bit $=0$ to 7 immediate)
RBIT	\#,Mem	Reset BIT	0 to bit, Mem
IFBIT	\#,Mem	IF BIT	If bit in A or Mem is true do next instruction
RPND		Reset PeNDing Flag	Reset Software Interrupt Pending Flag
X	A,Mem	EXchange A with Memory	$A \longleftrightarrow M$ Mem
X	A, $[\mathrm{X}]$	EXchange A with Memory [X]	$A \longleftrightarrow[X]$
LD	A, Meml	LoaD A with Memory	$A \leftarrow$ Meml
L.D	A, [X]	LoaD A with Memory [X]	$A \leftarrow[X]$
LD	B,Imm	LoaD B with Immed.	$B \leftarrow 1 \mathrm{~mm}$
LD	Mem, Imm	LoaD Memory Immed.	Mem \leftarrow Imm
LD	Reg, Imm	LoaD Register Memory Immed.	$\mathrm{Reg} \leftarrow \mathrm{Imm}$
X	A, $[B \pm]$	EXchange A with Memory [B]	$A \longleftrightarrow[B],(B \leftarrow B \pm 1)$
X	A, $[\mathrm{X} \pm]$	EXchange A with Memory [X]	$A \longleftrightarrow[X],(X \leftarrow \pm 1)$
LD	A, $[\mathrm{B} \pm]$	LoaD A with Memory [B]	$A \leftarrow[B],(B \leftarrow B \pm 1)$
LD	A, $[\mathrm{X} \pm$]	LoaD A with Memory [X]	$A \leftarrow[X],(X \leftarrow X \pm 1)$
LD	[$\mathrm{B} \pm$], 1 mm	LoaD Memory [B] Immed.	$[B] \leftarrow \operatorname{lmm},(B \leftarrow \pm 1)$
CLR	A	CLeaR A	$\mathrm{A} \leftarrow 0$
INC	A	INCrement A	$A \leftarrow A+1$
DEC	A	DECrementA	$A \leftarrow A-1$
LAID		Load A InDirect from ROM	$\mathrm{A} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
DCOR	A	Decimal CORrect A	$A \leftarrow B C D$ correction of A (follows ADC, SUBC)
RRC	A	Rotate A Right thru C	$C \longleftrightarrow 47 \longleftrightarrow \ldots$ AO
RLC	A	Rotate A Left thru C	$\mathrm{C} \leftarrow \mathrm{A} 7 \leftarrow \ldots \leftarrow \mathrm{~A} 0 \leftarrow \mathrm{C}$
SWAP	A	SWAP nibbles of A	A7 ...A4 \longleftrightarrow A3 ... A0
SC		Set C	$\mathrm{C} \leftarrow 1, \mathrm{HC} \leftarrow 1$
RC		Reset C	$\mathrm{C} \leftarrow 0, \mathrm{HC} \leftarrow 0$
IFC		IFC	IF C is true, do next instruction
IFNC		IF Not C	If C is not true, do next instruction
POP	A	POP the stack into A	$\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{~A} \leftarrow$ [SP]
PUSH	A	PUSH A onto the stack	[SP] $\leftarrow \mathrm{A}, \mathrm{SP} \leftarrow \mathrm{SP}-1$
VIS		Vector to Interrupt Service Routine	$\mathrm{PU} \leftarrow[\mathrm{VU}], \mathrm{PL} \leftarrow[\mathrm{VL}]$
JMPL	Addr.	Jump absolute Long	$\mathrm{PC} \leftarrow \mathrm{ii}$ (ii $=15$ bits, 0 to 32k)
JMP	Addr.	Jump absolute	PC9 $\ldots 0 \leftarrow \mathrm{i}(\mathrm{i}=12 \mathrm{bits})$
JP	Disp.	Jump relative short	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{r}(\mathrm{r}$ is -31 to +32 , except 1)
JSRL	Addr.	Jump SubRoutine Long	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow \mathrm{ii}$
JSR	Addr.	Jump SubRoutine	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} 9 \ldots 0 \leftarrow \mathrm{i}$
JID		Jump InDirect	$\mathrm{PL} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
RET		RETurn from subroutine	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETSK		RETurn and SKip	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETI		RETurn from Interrupt	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1], \mathrm{GIE} \leftarrow 1$
INTR		Generate an Interrupt	[SP] $\leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow 0 \mathrm{FF}$
NOP		No OPeration	$P C \leftarrow P C+1$

ing mode instructions taking two bytes). details.
Bytes and Cycles per Instruction
\square

RPND	$1 / 1$

Instruction Execution Time

Most instructions are single byte (with immediate address-

Most single byte instructions take one cycle time to execute. See the BYTES and CYCLES per INSTRUCTION table for

The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle.

Logic and Arithmetic Instructions

	[B]	Direct	Immed.
ADD	$1 / 1$	$3 / 4$	$2 / 2$
ADC	$1 / 1$	$3 / 4$	$2 / 2$
SUBC	$1 / 1$	$3 / 4$	$2 / 2$
AND	$1 / 1$	$3 / 4$	$2 / 2$
OR	$1 / 1$	$3 / 4$	$2 / 2$
XOR	$1 / 1$	$3 / 4$	$2 / 2$
IFEQ	$1 / 1$	$3 / 4$	$2 / 2$
IFGT	$1 / 1$	$3 / 4$	$2 / 2$
IFBNE	$1 / 1$		
DRSZ		$1 / 3$	
SBIT	$1 / 1$	$3 / 4$	
RBIT	$1 / 1$	$3 / 4$	
IFBIT	$1 / 1$	$3 / 4$	

Instructions Using A and C

CLRA	$1 / 1$
INCA	$1 / 1$
DECA	$1 / 1$
LAID	$1 / 3$
DCORA	$1 / 1$
RRCA	$1 / 1$
RLCA	$1 / 1$
SWAPA	$1 / 1$
SC	$1 / 1$
RC	$1 / 1$
IFC	$1 / 1$
IFNC	$1 / 1$
PUSHA	$1 / 3$
POPA	$1 / 3$
ANDSZ	$2 / 2$

Transfer of Control
Instructlons

JMPL	$3 / 4$
JMP	$2 / 3$
JP	$1 / 3$
JSRL	$3 / 5$
JSR	$2 / 5$
JID	$1 / 3$
VIS	$1 / 5$
RET	$1 / 5$
RETSK	$1 / 5$
RETI	$1 / 5$
INTR	$1 / 7$
NOP	$1 / 1$

	Memory Transfer Instructions					
	Register Indirect		Direct	Immed.	Register Indirect Auto Incr. and Decr.	
	[B]	[X]			[B+, B-]	[$\mathrm{X}+, \mathrm{X}-\mathrm{]}$
亿̈ $\dot{\text {, }}$,	1/1	1/3	213		1/2	1/3
LD A,*	1/1	1/3	2/3	$2 / 2$	1/2	1/3
LD B, Imm				1/1		
LD B, Imm				$2 / 3$		
LD Mem, Imm	$2 / 2$		3/3		$2 / 2$	
LD Reg, Imm			2/3			
IFEQ MD, Imm			3/3			

($F B<16$)
($F B>15$)

* = > Memory location addressed by B or X or directly.

COP8788CL/COP8784CL Opcode Table

								R NIB								
F	E	D	C	B	A	9	8	7	6	5	4	3	2	1	0	
JP-15	JP -31	LD OFO, \#i	DRSZ 0FO	RRCA	RC	ADC A, $\# i$	ADC A,[B]	$\begin{array}{\|l\|} \hline \text { IFBITL } \\ 0,[B] \end{array}$	$\begin{gathered} \text { ANDSZ } \\ \text { A, \#i } \end{gathered}$	LD B, \# OF	IFBNE 0	$\begin{gathered} \text { JSR } \\ \times 000-\times 0 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times 000-\times 0 F F \end{gathered}$	$\mathrm{JP}+17$	JP - 15	0
JP - 14	JP -30	LD OF1, \#i	DRSZ 0F1	*	SC	$\underset{\# i}{\text { SUBC } A,}$	SUBC A, [B]	$\begin{aligned} & \text { IFBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	*	LD B, \# OE	IFBNE 1	$\begin{gathered} \text { JSR } \\ \times 100-\times 1 F F \end{gathered}$	$\frac{\mathrm{JMP}}{\times 100-\times 1 \mathrm{FF}}$	$\mathrm{JP}+18$	JP - 14	1
JP -13	JP -29	LD 0F2, \#i	DRSZ 0F2	$\begin{gathered} X A, \\ {[X+]} \end{gathered}$	$\begin{aligned} & x A, \\ & {[B+]} \end{aligned}$	IFEQ A,	IFEQ A, [B]	$\begin{aligned} & \text { IFBIT } \\ & 2,[\mathrm{~B}] \end{aligned}$	*	LD B, \#0D	IFBNE 2	$\begin{gathered} \text { JSR } \\ \times 200-\times 2 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times 200-\times 2 F F \end{gathered}$	$J P+19$	JP - 13	2
JP -12	JP -28	LD 0F3, \#i	DRSZ 0F3	$\begin{aligned} & \mathrm{XA}, \\ & {[\mathrm{X}-]} \end{aligned}$	$\begin{aligned} & \times \mathrm{A}, \\ & {[\mathrm{~B}-]} \end{aligned}$	IFGTA, $\# \mathrm{i}$	IFGT A,[B]	$\begin{aligned} & \text { IFBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	*	LD B, \#0C	IFBNE 3	$\begin{gathered} \text { JSR } \\ \times 300-\times 3 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times 300-\times 3 F F \end{gathered}$	JP + 20	JP - 12	3
JP - 11	JP -27	LD 0F4, \#i	DRSZ 0F4	VIS	LAID	ADD A,	ADD A, [B]	$\begin{aligned} & \text { IFBIT } \\ & \text { 4,[B] } \end{aligned}$	CLRA	LD B, \#OB	IFBNE 4	$\begin{gathered} \text { JSR } \\ \times 400-\times 4 \text { FF } \end{gathered}$	$\begin{gathered} \mathrm{JMP} \\ \times 400-\times 4 \mathrm{FF} \end{gathered}$	$J P+21$	JP - 11	4
JP - 10	JP -26	LD 0F5, \#i	DRSZ 0F5	RPND	JID	AND A, $\# i$	AND A,[B]	$\begin{aligned} & \hline \text { IFBIT } \\ & 5,[B] \\ & \hline \end{aligned}$	SWAPA	LD B, \#0A	IFBNE 5	$\begin{gathered} \text { JSR } \\ \times 500-\times 5 F F \end{gathered}$	$\begin{gathered} \mathrm{JMP} \\ \times 500-\times 5 \mathrm{FF} \end{gathered}$	$\mathrm{JP}+22$	JP - 10	5
JP -9	JP -25	LD 0F6, \#i	DRSZ 0F6	X A, [X]	X A, [B]	XOR A, $\# i$	XOR A, [B]	$\begin{aligned} & \text { IFBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	DCORA	LD B, \#09	IFBNE 6	$\begin{gathered} \text { JSR } \\ \times 600-\times 6 F F \end{gathered}$	$\begin{array}{\|c\|} \hline \text { JMP } \\ \times 600-\times 6 F F \\ \hline \end{array}$	$\mathrm{JP}+23$	JP - 9	6
JP -8	JP -24	LD 0F7, \#i	DRSZ 0F7	*	*	OR A, \#i	OR A, [B]	$\begin{aligned} & \hline \text { IFBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	PUSHA	LD B, \#08	IFBNE 7	$\begin{gathered} \text { JSR } \\ \times 700-\times 7 F F \end{gathered}$	$\begin{gathered} \mathrm{JMP} \\ \times 700-\times 7 \mathrm{FF} \end{gathered}$	$J P+24$	JP - 8	7
JP -7	JP -23	LD 0F8, \#i	DRSZ 0F8	NOP	RLCA	LD A, \#i	IFC	$\begin{array}{\|l\|} \hline \text { SBIT } \\ 0,[\mathrm{~B}] \end{array}$	$\begin{aligned} & \hline \text { RBIT } \\ & 0,[B] \end{aligned}$	LD B, \# 07	IFBNE 8	$\begin{array}{\|c} \text { JSR } \\ \times 800-\times 8 \mathrm{FF} \end{array}$	$\begin{gathered} \mathrm{JMP} \\ \times 800-\mathrm{x} 8 \mathrm{FF} \end{gathered}$	$\mathrm{JP}+25$	JP - 7	8
JP -6	JP -22	LD 0F9, \#i	DRSZ 0F9	$\mathrm{A},[\mathrm{~B}]$	$\begin{aligned} & \text { IFEQ } \\ & \mathrm{Md}, \# \mathrm{i} \end{aligned}$	$A, \# i$	IFNC	$\begin{aligned} & \text { SBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	LD B, \#06	IFBNE 9	$\begin{gathered} \text { JSR } \\ \times 900-x 9 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times 900-\times 9 F F \end{gathered}$	JP + 26	JP - 6	9
JP -5	JP -21	LD OFA, \#i	DRSZ OFA	$\begin{aligned} & \text { LD A, } \\ & {[\mathrm{X}+]} \end{aligned}$	$\begin{aligned} & \mathrm{LDA}, \\ & {[\mathrm{~B}+]} \end{aligned}$	$\begin{gathered} \hline \text { LD }[B+], \\ \# i \end{gathered}$	INCA	$\begin{aligned} & \hline \text { SBIT } \\ & 2,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & \text { 2,[B] } \end{aligned}$	LD B,\#05	IFBNE OA	$\begin{gathered} \text { JSR } \\ \times A 00-x A F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \text { XAOO-XAFF } \end{gathered}$	$\mathrm{JP}+27$	JP - 5	A
JP -4	JP -20	LD OFB, \#i	DRSZ OFB	$\begin{aligned} & \hline \text { LD A, } \\ & {[\mathrm{X}-]} \end{aligned}$	$\begin{aligned} & \hline \text { LD A, } \\ & {[\mathrm{B}-\mathrm{]}} \end{aligned}$	$\underset{\# \mathrm{ED}}{\mathrm{LB}-1 ;}$	DECA	$\begin{aligned} & \hline \text { SBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	LD B, \#04	IFBNE OB	$\begin{gathered} \text { JSR } \\ \text { xBOO-xBFF } \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times B 00-\times B F F \\ \hline \end{gathered}$	$\mathrm{JP}+28$	JP - 4	B
JP -3	JP -19	LD OFC, \#i	DRSZ OFC	LD Md, \#i	JMPL	X A, Md	POPA	$\begin{aligned} & \text { SBIT } \\ & 4,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \hline \text { RBIT } \\ & 4,[\mathrm{~B}] \end{aligned}$	LD B, \#03	IFBNE OC	$\begin{gathered} \text { JSR } \\ \mathrm{xCOO}-\mathrm{xCFF} \end{gathered}$	$\begin{gathered} \text { JMP } \\ \mathrm{xCOO}-\mathrm{xCFF} \\ \hline \end{gathered}$	$\mathrm{JP}+29$	JP - 3	c
JP -2	JP -18	LD OFD, \#i	DRSZ OFD	DIR	JSRL	LD A,Md	RETSK	$\begin{aligned} & \text { SBIT } \\ & 5,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 5,[B] \end{aligned}$	LD B, \# 02	IFBNE OD	$\begin{gathered} \text { JSR } \\ \times D 00-\times D F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times D 00-\mathrm{xDFF} \\ \hline \end{gathered}$	$\mathrm{JP}+30$	JP - 2	D
JP -1	JP -17	LD OFE, \#i	DRSZ OFE	LD A, [X]	LD A,[B]	LD [B], \#i	RET	$\begin{aligned} & \text { SBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 6,[B] \end{aligned}$	LD B, \#01	IFBNE OE	$\begin{gathered} \text { JSR } \\ \times E 00-x E F F \end{gathered}$	$\begin{gathered} \mathrm{JMP} \\ \mathrm{xE} 00-\mathrm{xEFF} \\ \hline \end{gathered}$	$\mathrm{JP}+31$	JP - 1	E
JP -0	JP -16	LD OFF, \#i	DRSZ OFF	*	*	LD B, \#i	RETI	$\begin{aligned} & \text { SBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 7,[B] \end{aligned}$	LD B, \#00	IFBNE OF	$\begin{gathered} \text { JSR } \\ \text { xF00-xFFF } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { JMP } \\ \text { xFOO-xFFF } \\ \hline \end{array}$	$\mathrm{JP}+32$	JP - 0	F

Where,
is the immediate data
Md is a directly addressed memory location

* is an unused opcode

Note: The opcode 60 Hex is also the opcode for IFBIT \#i,A.

Ordering Information and Development Support

COP8788CL/CIP8784CL Ordering Information

Device Number	Clock Option	Package	Emulates
COP8788CLV-X COP8788CLV-R*	Crystal R/C	44 PLCC	COP888CL
COP8788CLN-X COP8788CLN-R*	Crystal R/C	40 DIP	COP888CL
COP8784CLN-X COP8784CLN-R*	Crystal R/C	28 DIP	COP884CL
COP8784CLWM-X* COP8784CLWM-R*	Crystal R/C	28 SO	COP884CL

*Check with the local sales office about the availability.

PROGRAMMING SUPPORT

Programming of these emulator devices is supported by different sources. The following programmers are certified for programming these One-Time Programmable emulator devices:

EPROM Programmer Information

Manufacturer and Product	U.S. Phone Number	Europe Phone Number	Asla Phone Number
Metalink- Debug Module	(602)926-0797	Germany: $+49-8141-1030$	Hong Kong: 852-737-1800
XeltekSuperpro	(408)745-7974	$\begin{aligned} & \text { Germany: } \\ & +49-20-41-684758 \end{aligned}$	Singapore: 65-276-6433
BP MicrosystemsTurpro	(800)225-2102	$\begin{aligned} & \text { Germany: } \\ & +49-89-85-76667 \end{aligned}$	Hong Kong: 852-388-0629
Data I/O-Unisite - System 29 - System 39	(800)322-8246	Europe: $+31-20-622866$ Germany: $+49-89-85-8020$	$\left\|\begin{array}{l} \text { Japan: } \\ +33-432-6991 \end{array}\right\|$
Abcom-COP8 Programmer		$\begin{aligned} & \text { Europe: } \\ & +89-808707 \end{aligned}$	
System General-Turpro-1-FX -APRO	(408)263-6667	Switzerland: +31-921-7844	Taiwan: $+2-917-3005$

IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 In-Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface for maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real-time, full-speed emulation up to $10 \mathrm{MHz}, 32 \mathrm{kBytes}$ of emulation memory and 4 k frames of trace buffer memory. The user may define as many as 32k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user-selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.
During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bar graph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to tile, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy to use windowed interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefinable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PCRM via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time to under 3 seconds.
COP8788CL/COP8784CL

The following tables list the emulator and probe cards ordering information.
Emulator Ordering Information

Part Number	Description	Current Version
IM-COP8/400/1 \ddagger	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger software and RS 232 serial interface cable, with 110V $@ ~ 60 ~ H z ~ P o w e r ~ S u p p l y . ~$	
IM-COP8/400/2 \ddagger	MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger software and RS 232 serial interface cable, with 220V @ 50 Hz Power Supply.	Host Software: Ver 3.3 Rev. 5, Model File Rev 3.050.
DM-COP8/888CFま \ddagger	MetaLink iceMASTER Debug Modul. This is the low cost version of the MetaLink iceMASTER. Firmware: Ver. 6.07	

\ddagger These parts include National's COP8 Assembler/Linker/Librarian Package (COP8-DEV-IBMA).

Probe Card Ordering Information

Part Number	Package	Voltage Range	Emulates
MHW-884CL28D5PC	28 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP884CL
MHW-884CL28DWPC	28 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP884CL
MHW-888CL40D5PC	40 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888CL
MHW-888CL40DWPC	40 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP888CL
MHW-888CL44D5PC	44 PLCC	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888CL
MHW-888CL44DWPC	44 PLCC	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP888CL

MACRO CROSS ASSEMBLER

National Semiconductor offers a COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink iceMASTER emulators.

Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8 Assembler/ Linker/Librarian for IBM $®$ PC/XT®, AT® or compatible.	$424410632-001$

DIAL-A-HELPER

Dial-A-Helper is a service provided by the Microcontroller Applications group. The Dial-A-Helper is an Electronic Bulletin Board Information System.

Information System

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.
If the user has a PC with a communications package then files from the FILE SECTION can be down loaded to disk for later use.

Order P/N: MOLE-DIAL-A-HLP

Information System Package Contents
Dial-A-Helper User Manual
Public Domain Communications Software

Factory Applications Support

Dial-A-Helper also provides immediate factor applications support. If a user has questions, he can leave messages on our electronic bulletin board, which we will respond to.

Voice:	(800) 272-9959	
Modem:	CANADA/US.:	(800) NSC-MICRO
		$(800) 672-6427$
	Baud:	14.4 k
	Set-Up:	Length: 8 -Bit
		Parity: None
	Stop Bit 1	
	Operation:	24 Hours, 7 Days

National Semiconductor

General Description

The COP8788CF/COP8784CF programmable microcontrollers are members of the COPSTM microcontroller family. Each device is a two chip system in a plastic package. Within the package is the COP888CF and an 8k EPROM with port recreation logic. The code executes out of the EPROM. The device is offered in four packages: 44-pin PLCC, 40 -pin DIP, 28 -pin DIP and 28 -pin SO.
The device is a fully static part, fabricated using doublemetal silicon gate microCMOS technology. Features include an 8-bit memory mapped architecture, MICROWIRE/ PLUSTM serial I/O, two 16 -bit timer/counters supporting three modes (Processor Independent PWM generation, External Event counter, and Input Capture mode capabilities), an 8-channel, 8 -bit A/D converter with both differential and single ended modes. Each I/O pin has software selectable configurations. The device operates over a voltage range of 4.5 V to 5.5 V . High throughput is achieved with an efficient, regular instruction set operating at a maximum of $1 \mu \mathrm{~s}$ per instruction rate.

Features

- Low cost 8 -bit microcontroller

■ Fully static CMOS, with low current drain

- $1 \mu \mathrm{~s}$ instruction cycle time
- 8192 bytes on-board EPROM
- 128 bytes on-bcard Râín
\pm Single supply operation: $4.5 \mathrm{~V}-5.5 \mathrm{~V}$
- 8-channel A/D converter with prescaler and both differential and single ended modes
- MICROWIRE/PLUS serial I/O
- WATCHDOGTM and Clock Monitor logic
a Idle Timer
- Multi-Input Wake Up (MIWU) with optional interrupts (8)
- Ten multi-source vectored interrupts servicing - External interrupt
- Idle timer TO
- Two timers each with 2 interrupts
— MICROWIRE/PLUS
- Multi-Input Wake Up
- Software trap
— Default VIS
- Two 16-bit timers, each with two 16-bit registers supporting:
— Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
- 8 -bit Stack Pointer SP (stack in RAM)
- Two 8-bit Register Indirect Data Memory Pointers (B and X)
- Versatile instruction set with True bit manipulation
- Memory mapped I/O
- $B C D$ arithmetic instructions
- Package:
- 44 PLCC with 37 I/O pins
- 40 DIP with 33 I/O pins
-28 DIP with 21 I/Opins
- 28 SO with 21 I/O pins (contact local sales office for availability)
- Software selectable I/O options
- TRI-STATE® Output
- Push-Pull Output
— Weak Pull Up Input
- High Impedance Input
- Schmitt trigger inputs on ports G and L
\square Form fit and function emulation device for the COP888CF/COP884CF
- Real time emulation and full program debug offered by MetaLink's Development Systems

Connection Diagrams

Plastic Chip Carrier

Top View
Order Number COP8788CFV-X or COP8788CFV-R See NS Package Number V44A

Dual-In-Line Package

TL/DD/12062-2
Top View
Order Number COP8788CFN-X, COP8788CFN-R See NS Package Number N40A

Dual-In-Line Package

TL/DD/12062-3

FIGURE 1. COP8788CF/COP8784CF Connection Diagrams

Pinouts for 28-Pin, 40-Pin and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-Pin Pkg.	40-Pin Pkg.	44-PIn Pkg.
LO	1/0	MIWU		11	17	
L1	1/0	MIWU		12	18	
L2	1/0	MIWU		13	19	19
L3	1/O	MIWU		14	20	20
L4	1/0	MIWU	T2A	15	21	25
L5	1/0	MIWU	T2B	16	22	26
L6	1/0	MIWU		17	23	27
L7	$1 / 0$	MIWU		18	24	28
G0	1/O	INT	ALE	25	35	39
G1	WDOUT			26	36	40
G2	I/O	T1B	$\overline{W R}$	27	37	41
G3	1/0	T1A	$\overline{W D}$	28	38	42
G4	1/0	SO		1	3	3
G5	- 1/O	SK		2	4	4
G6	1	SI	ME	3	5	5
G7	I/CKO	HALT Restart		4	6	6
D0	0		ADO	19	25	29
D1	0		AD1	20	26	30
D2	0		AD2	21	27	31
D3	0		AD3	22	28	32
10	1	ACHO		7	9	9
11	1	ACH1		8	10	10
12	1	ACH2			11	11
13	1	ACH3			12	12
14	1	ACH4			13	13
15	1	ACH5			14	14
16	1	ACH6				15
17	1	ACH7				16
D4	0		AD4		29	33
D5	0		AD5		30	34
D6	0		AD6		31	35
D7	0		AD7		32	36
C0	$1 / 0$				39	43
C1	1/0				40	44
C2	1/0				1	1
C3	1/0				2	2
C4	1/0					21
C5	1/O					22
C6	$1 / 0$					23
C7	1/0					24
$V_{\text {REF }}$	$+\mathrm{V}_{\text {REF }}$			10	16	18
AGND	AGND			9	15	17
$V_{\text {CC }}$				6	8	8
GND				23	33	37
CKI				5	7	7
RESET			V_{PP}	24	34	38

Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

Supply Voltage (V_{CC})
7 V
Voltage at Any Pin
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
100 mA
110 mA
Storage Temperature Range
Total Current into V_{CC} Pin (Source)

Absolute Maximum Ratings
(Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

DC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage		4.5		5.5	V
Power Supply Ripple (Note 1)	Peak-to-Peak			0.1 V CC	V
Supply Current (Note 2) $\mathrm{CKI}=10 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$			25	mA
HALT Current (Note 3)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz}$		250		$\mu \mathrm{A}$
IDLE Current $\mathrm{CKI}=10 \mathrm{MHz}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s}$			15	mA
		$\begin{aligned} & 0.8 V_{C C} \\ & 0.7 V_{C C} \\ & 0.7 V_{C C} \end{aligned}$		$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Hi-Z Input Leakage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
Input Pullup Current	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	40		250	$\mu \mathrm{A}$
G and L Port Input Hysteresis			$0.05 \mathrm{~V}_{\mathrm{CC}}$	$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels D Outputs Source Sink All Others Source (Weak Pull-Up. Mode) Source (Push-Pull Mode) Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.4 \\ & 10 \\ & \\ & 10 \\ & 0.4 \\ & 1.6 \end{aligned}$		100	mA mA $\mu \mathrm{A}$ mA mA
TRI-STATE Leakage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
Allowable Sink/Source Current per Pin D Outputs (Sink) All Others				$\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current without Latchup (Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-		± 100	mA
RAM Retention Voltage, V_{r}	500 ns Rise and Fall Time (Min)	2			V
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to VCC, L and G ports in the TRI-STATE mode and tied to ground, all outputs low and tied to ground. The A/D is disabled. VREF is tied to AGND (effectively shorting the Reference resistor). The clock monitor is disabled.

A/D Converter Specifications $V_{C C}=5 \mathrm{~V} \pm 10 \%\left(V_{S S}-0.050 \mathrm{~V}\right) \leq$ Any Input $\leq\left(\dot{V}_{C C}+0.050 \mathrm{~V}\right)$

Parameter	Conditions	Min	Typ	Max	Units
Resolution				8	Bits
Reference Voltage Input	AGND $=0 \mathrm{~V}$	3		V_{CC}	V
Absolute Accuracy	$V_{\text {REF }}=V_{\text {CC }}$			± 1	LSB
Non-Linearity	$V_{R E F}=V_{C C}$ Deviation from the Best Straight Line			$\pm 1 / 2$	LSB
Differential Non-Linearity	$V_{\text {REF }}=V_{\text {CC }}$			$\pm 1 / 2$	LSB
Input Reference Resistance		1.6		4.8	$\mathrm{k} \Omega$
Common Mode Input Range (Note 7)		AGND		$\mathrm{V}_{\text {REF }}$	V
DC Common Mode Error				$\pm 1 / 4$	LSB
Off Channel Leakage Current			1		$\mu \mathrm{A}$
On Channel Leakage Current			1		$\mu \mathrm{A}$
A/D Clock Frequency (Note 5)		0.1		1.67	MHz
Conversion Time (Note 4)			12		A/D Clock Cycles

Note 4: Conversion Time includes sample and hold time.
Note 5: See Prescaler description.
Note 6: Pins G6 and RESET are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage bolow $V_{C C}$). Tho offoctivo resistance to $V_{C C}$ is 750Ω (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .
Note 7: For $V_{I N(-)} \geq V_{I N(+)}$, the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input. The diodes will forward conduct lor analog input voltages below ground or above the V_{CC} supply. Be careful, during testing at low V_{Cc} levels (4.5V), as high level analog inputs (5 V) can causo th / s input diode to conduct-especially at elevated temperatures. and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of oithor diodo. This means that as long as the analog $\mathrm{V}_{\mathbb{I}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absoluto $0 \mathrm{~V}_{D C}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.

AC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time (t_{c}) Crystal, Resonator R/C Oscillator		$\begin{aligned} & 1 \\ & 3 \end{aligned}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
CKI Clock Duty Cycle (Note 8) Rise Time (Note 8) Fall Time (Note 8)	$\begin{aligned} & \mathrm{f}_{\mathrm{r}}=\mathrm{Max} \\ & \mathrm{f}_{\mathrm{r}}=10 \mathrm{MHz} \text { Ext Clock } \\ & \mathrm{f}_{\mathrm{r}}=10 \mathrm{MHz} \text { Ext Clock } \\ & \hline \end{aligned}$	40		$\begin{gathered} 60 \\ 5 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & \text { \% } \\ & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$
Inputs tsetup thold		$\begin{gathered} 200 \\ 60 \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
```Output Propagation Delay tPD1, tPD0 SO, SK All Others```	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.7 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
MICROWIRETM Setup Time (tuws) MICROWIRE Hold Time (tuwh) MICROWIRE Output Propagation Delay (tupd)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	ns ns ns
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$			$\begin{aligned} & t_{c} \\ & t_{c} \\ & t_{c} \\ & t_{c} \\ & \hline \end{aligned}$
Reset Pulse Width		1			$\mu \mathrm{S}$

Note 8: Parameter sample (not 100\% tested).


FIGURE 2. MICROWIRE/PLUS Timing

## Pin Descriptions

$V_{C C}$ and GND are the power supply pins.
$V_{\text {REF }}$ and AGND are the reference voltage pins for the onboard A/D converter.
CKI is the clock input. This can come from an R/C generated oscillator, or a crystal oscillator (in conjunction with CKO). See Oscillator Description section.
RESET is the master reset input. See Reset Description section.
The device contains three bidirectional 8-bit I/O ports (C, G and L ), where each individual bit may be independently configured as an input (Schmitt trigger inputs on ports G and L ), output or TRI-STATE under program control. Three data memory address locations are allocated for each of these I/O ports. Each I/O port has two associated 8-bit memory mapped registers, the CONFIGURATION register and the output DATA register. A memory mapped address is also reserved for the input pins of each I/O port. (See the memory map for the various addresses associated with the 1/O ports.) Figure 3 shows the I/O port configurations. The DATA and CONFIGURATION registers allow for each port bit to be individually configured under software control as shown below:

Configuration   Register	Data   Register	Port Set-Up
0	0	Hi-Z Input   (TRI-STATE Output)
0	1	Input with Weak Pull-Up
1	0	Push-Pull Zero Output
1	1	Push-Pull One Output



FIGURE 3. I/O Port Configurations

PORT L is an 8-bit I/O port. All L-pins have Schmitt triggers on the inputs.
Port L supports Multi-Input Wakeup (MIWU) on all eight pins. L4 and L5 are used for the timer input functions T2A and T2B. L0 and L1 are not available on the 44-pin version, since they are replaced by VREF and AGND. LO and L1 are not terminated on the 44 -pin version. Consequently, reading LO or L1 as inputs will return unreliable data with the 44-pin package, so this data should be masked out with user software when the $L$ port is read for input data. It is recommended that the pins be configured as outputs.
Port L has the following alternate features:
L0
L1 MIWU

Port G is an 8 -bit port with $5 \mathrm{I} / \mathrm{O}$ pins (G0, G2-G5), an input pin (G6), and two dedicated output pins (G1 and G7). Pins G0 and G2-G6 all have Schmitt Triggers on their inputs. Pin G1 serves as the dedicated WDOUT WATCHDOG output, while pin G7 is either input or output depending on the oscillator mask option selected. With the crystal oscillator option selected, G7 serves as the dedicated output pin for the CKO clock output. With the single-pin R/C oscillator mask option selected, G7 serves as a general purpose input pin, but is also used to bring the device out of HALT mode with a low to high transition on G7. There are two registers associated with the G Port, a data register and a configuration register. Therefore, each of the 5 I/O bits (G0, G2-G5) can be individually configured under software control.
Since G6 is an input only pin and G7 is the dedicated CKO clock output pin or general purpose input (R/C clock configuration), tine associated bits in the data and contiguration registers for G6 and G7 are used for special purpose functions as outlined below. Reading the G6 and G7 data bits will return zeros.
Note that the chip will be placed in the HALT mode by writing a " 1 " to bit 7 of the Port G Data Register. Similarly the chip will be placed in the IDLE mode by writing a " 1 " to bit 6 of the Port G Data Register.
Writing a " 1 " to bit 6 of the Port G Configuration Register enables the MICROWIRE/PLUS to operate with the alternate phase of the SK clock. The G7 configuration bit, if set high, enables the clock start up delay after HALT when the $R / C$ clock configuration is used.

	Config Reg.	Data Reg.
G7	CLKDLY	HALT
G6	Alternate SK	IDLE

Port $G$ has the following alternate features:
GO INTR (External Interrupt input)
G2 T1B (Timer T1 Capture Input)
G3 T1A (Timer T1 I/O)
G4 SO (MICROWIRE Serial Data Output)
G5 SK (MICROWIRE Serial Clock)
G6 SI (MICROWIRE Serial Data Input)

## Pin Descriptions (Continued)

Port $G$ has the following dedicated functions:
G1 WDOUT WATCHDOG and/or Clock Monitor dedicated output
G7 CKO Oscillator dedicated output or general purpose input
Port C is an 8 -bit $\mathrm{I} / \mathrm{O}$ port. The 40 -pin device does not have a full complement of Port C pins. The unavailable pins are not terminated. A read operation for these unterminated pins will return unpredictable values.
Port I is an 8 -bit $\mathrm{Hi}-\mathrm{Z}$ input port, and also provides the analog inputs to the A/D converter. The 28 -pin device does not have a full complement of Port I pins. The unavailable pins are not terminated (i.e. they are floating). A read operation from these unterminated pins will return unpredictable values. The user should ensure that the software takes this into account by either masking out these inputs, or else restricting the accesses to bit operations only. If unterminated, Port I pins will draw power only when addressed. The I port leakage current may be higher in 28 -pin devices.
Port $D$ is a recreated 8 -bit output port that is preset high when RESET goes low. D port recreation is one clock cycle behind the normal port timing. The user can tie two or more D port outputs (except D2 pin) together in order to get a higher drive.

## Functional Description

The architecture of the device is modified Harvard architecture. With the Harvard architecture, the control store program memory (ROM) is separated from the data store memory (RAM). Both ROM and RAM have their own separate addressing space with separate address buses. The architecture, though based on Harvard architecture, permits transfer of data from ROM to RAM.

## CPU REGISTERS

The CPU can do an 8-bit addition, subtraction, logical or shift operation in one instruction ( $\mathrm{t}_{\mathrm{c}}$ ) cycle time.
There are five CPU registers:
A is the 8-bit Accumulator Register
PC is the 15 -bit Program Counter Register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter ( PC )
$B$ is an 8-bit RAM address pointer, which can be optionally post auto incremented or decremented.
$X$ is an 8-bit altemate RAM address pointer, which can be optionally post auto incremented or decremented.
SP is the 8-bit stack pointer, which points to the subroutine/ interrupt stack (in RAM). The SP is initialized to RAM address 06 F with reset.
All the CPU registers are memory mapped with the exception of the Accumulator (A) and the Program Counter (PC).

## PROGRAM MEMORY

Program memory consists of 8192 bytes of ROM. These bytes may hold program instructions or constant data (data tables for the LAID instruction, jump vectors for the JID instruction, and interrupt vectors for the VIS instruction). The program memory is addressed by the 15 -bit program counter (PC). All interrupts vector to program memory location OFF Hex.

## DATA MEMORY

The data memory address space includes the on-chip RAM and data registers, the I/O registers (Configuration, Data and Pin), the control registers, the MICROWIRE/PLUS SIO shift register, and the various registers, and counters associated with the timers (with the exception of the IDLE timer). Data memory is addressed directly by the instruction or indirectly by the $\mathrm{B}, \mathrm{X}$ and SP pointers.
The device has 128 bytes of RAM. Sixteen bytes of RAM are mapped as "registers" at addresses OFO to OFF Hex. These registers can be loaded immediately, and also decremented and tested with the DRSZ (decrement register and skip if zero) instruction. The memory pointer registers $X, S P$, and $B$ are memory mapped into this space at address locations OFC to OFE Hex respectively, with the other registers (other than reserved register OFF) being available for general usage.
The instruction set permits any bit in memory to be set, reset or tested. All I/O and registers (except A and PC) are memory mapped; therefore, I/O bits and register bits can be directly and individually set, reset and tested. The accumulator (A) bits can also be directly and individually tested.

## Reset

The $\overline{\text { RESET }}$ input when pulled low initializes the microcontroller. Initialization will occur whenever the RESET input is pulled low. Upon initialization, the data and configuration registers for Ports L, G, and C are cleared, resulting in these Ports being initialized to the TRI-STATE mode. Pin G1 of the G Port is an exception (as noted below) since pin G1 is dedicated as the WATCHDOG and/or Clock Monitor error output pin. Port D is initialized high with RESET. The PC, PSW, CNTRL, ICNTRL, and T2CNTRL control registers are cleared. The Multi-Input Wakeup registers WKEN, WKEDG, and WKPND are cleared. The A/D control register ENAD is cleared, resulting in the ADC being powered down initially. The Stack Pointer, SP, is initialized to 06F Hex.
The device comes out of reset with both the WATCHDOG logic and the Clock Monitor detector armed, and with both the WATCHDOG service window bits set and the Clock Monitor bit set. The WATCHDOG and Clock Monitor detector circuits are inhibited during reset. The WATCHDOG service window bits are initialized to the maximum WATCHDOG service window of $64 \mathrm{k} \mathrm{t}_{\mathrm{c}}$ clock cycles. The Clock Monitor bit is initialized high, and will cause a Clock Monitor error following reset if the clock has not reached the minimum specified frequency at the termination of reset. A Clock Monitor error will cause an active low error output on pin G1. This error output will continue until $16 \mathrm{t}_{\mathrm{c}}-32 \mathrm{t}_{\mathrm{c}}$ clock cycles following the clock frequency reaching the minimum specified value, at which time the G1 output will enter the TRI-STATE mode.
The external RC network shown in Figure 4 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.
Note: In continued state of reset, the device will draw excessive current.

Reset（Continued）


TL／DD／12062－6
RC $>5 \times$ Power Supply Rise Time
FIGURE 4．Recommended Reset Circuit

## Oscillator Circuits

The chip can be driven by a clock input on the CKI input pin which can be between DC and 10 MHz ．The CKO output clock is on pin G7（crystal configuration）．The CKI input fre－ quency is divided down by 10 to produce the instruction cycle clock（ $1 / \mathrm{t}_{\mathrm{c}}$ ）．
Figure 5 shows the Crystal and R／C diagrams．


TL／DD／12062－7
FIGURE 5．Crystal and R／C Oscillator Diagrams

## CRYSTAL OSCILLATOR

CKI and CKO can be connected to make a closed loop crystal（or resonator）controlled oscillator．
Table I shows the component values required for various standard crystal values．

TABLE I．Crystal Oscillator Configuration， $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$\begin{gathered} R 1 \\ (k \Omega) \end{gathered}$	$\begin{gathered} \text { R2 } \\ (M \Omega) \end{gathered}$	$\begin{gathered} \mathrm{C} 1 \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} \mathrm{C} 2 \\ \text { (pF) } \end{gathered}$	CKI Freq   （MHz）	Conditions
0	1	30	30－36	10	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	30	30－36	4	$V_{\text {CC }}=5 \mathrm{~V}$
0	1	200	100－150	0.455	$V_{C C}=5 \mathrm{~V}$

## R／C OSCILLATOR

By selecting CKI as a single pin oscillator input，a single pin R／C oscillator circuit can be connected to it．CKO is avail－ able as a general purpose input，and／or HALT restart pin．
Table II shows the variation in the oscillator frequencies as functions of the component（ R and C ）values．

TABLE II．R／C Oscillator Configuration， $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$

$\mathbf{R}$   $(\mathbf{k} \Omega)$	$\mathbf{C}$   $\mathbf{( p F})$	CKI Freq   $(\mathbf{M H z})$	Instr．Cycle   $(\boldsymbol{\mu s})$	Conditions
3.3	82	2.2 to 2.7	3.7 to 4.6	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
5.6	100	1.1 to 1.3	7.4 to 9.0	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
6.8	100	0.9 to 1.1	8.8 to 10.8	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

Note： $3 \mathrm{k} \leq \mathrm{R} \leq 200 \mathrm{k}$
$50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}$

## Current Drain

The total current drain of the chip depends on：
1．Oscillator operation mode－11
2．Internal switching current－l2
3．Internal leakage current－l3
4．Output source current－14
5．DC current caused by external input not at $\mathrm{V}_{\mathrm{CC}}$ or GND－I5
6．$D C$ reference current contribution from the $A / D$ converter－16
7．Clock Monitor current when enabled－17
Thus the total current drain，It，is given as

$$
\mathrm{It}=11+12+13+14+15+16+17
$$

To reduce the total current drain，each of the above compo－ nents must be minimum．
The chip will draw more current as the CKI input frequency increases up to the maximum 10 MHz value．Operating with a crystal network will draw more current than an external square－wave．Switching current，governed by the equation， can be reduced by lowering voltage and frequency．Leak－ age current can be reduced by lowering voltage and tem－ perature．The other two items can be reduced by carefully designing the end－user＇s system．

$$
12=c \times v \times f
$$

where $C=$ equivalent capacitance of the chip
$\mathrm{V}=$ operating voltage
$\mathrm{f}=\mathrm{CKI}$ frequency

## Control Registers

## CNTRL REGISTER (ADDRESS X'00EE)

The Timer1 (T1) and MICROWIRE/PLUS control register contains the following bits:
SL1 \& SLO Select the MICROWIRE/PLUS clock divide by $(00=2,01=4,1 x=8)$
IEDG External interrupt edge polarity select ( $0=$ Rising edge, $1=$ Falling edge)
MSEL . Selects G5 and G4 as MICROWIRE/PLUS signals SK and SO respectively
T1C0 Timer T1 Start/Stop control in timer
Timer T1 Underflow Interrupt Pending Flag in timer mode 3
T1C1 Timer T1 mode control bit
T1C2 Timer T1 mode control bit
T1C3 Timer T1 mode control bit

T1C3	T1C2	T1C1	T1C0	MSEL	IEDG	SL1	SL0
Bit 7	Bit 0						

## PSW REGISTER (ADDRESS X'00EF)

The PSW register contains the following select bits:
GIE Global interrupt enable (enables interrupts)
EXEN Enable external interrupt
BUSY MICROWIRE/PLUS busy shifting flag
EXPND External interrupt pending
T1ENA Timer T1 Interrupt Enable for Timer Underflow or T1A Input capture edge
T1PNDA Timer T1 Interrupt Pending Flag (Autoreload RA in mode 1, T1 Underflow in Mode 2, T1A capture edge in mode 3)
C Carry Flag
HC Half Carry Flag

HC	C	T1PNDA	T1ENA	EXPND	BUSY	EXEN	GIE
Bit 7							

The Half-Carry bit is also affected by all the instructions that affect the Carry flag. The SC (Set Carry) and RC (Reset Carry) instructions will respectively set or clear both the carry flags. In addition to the SC and RC instructions, ADC, SUBC, RRC and RLC instructions affect the Carry and Half Carry flags.

## ICNTRL REGISTER (ADDRESS X'00E8)

The ICNTRL register contains the following bits:
T1ENB Timer T1 Interrupt Enable for T1B Input capture edge
T1PNDB Timer T1 Interrupt Pending Flag for T1B capture edge
WEN Enable MICROWIRE/PLUS interrupt
WPND MICROWIRE/PLUS interrupt pending
TOEN Timer TO Interrupt Enable (Bit 12 toggle)
TOPND Timer TO Interrupt pending
LPENL Port Interrupt Enable (Multi-Input Wakeup/ Interrupt)
Bit 7 could be used as a flag
T2CNTRL Register (Address X'00C6)

Unused	LPEN	TOPND	TOEN	WPND	WEN	TIPNDB	T1ENB
Bit 7							

The T2CNTRL register contains the following bits:
T2ENB Timer T2 Interrupt Enable for T2B Input capture edge
T2PNDB Timer T2 Interrupt Pending Flag for T2B capture edge
T2ENA Timer T2 Interrupt Enable for Timer Underflow or T2A Input capture edge
T2PNDA Timer T2 Interrupt Pending Flag (Autoreload RA in mode 1, T2 Underflow in mode 2, T2A capture edge in mode 3)
T2C0 Timer T2 Start/Stop control in timer modes 1 and 2 Timer T2 Underflow Interrupt Pending Flag in timer mode 3
T2C1 Timer T2 mode control bit
T2C2 Timer T2 mode control bit
T2C3 Timer T2 mode control bit

T2C3	T2C2	T2C1	T2C0	T2PNDA	T2ENA	T2PNDB	T2ENB

Bit 7

## Timers

The device contains a very versatile set of timers ( $T 0, T 1$, T2). All timers and associated autoreload/capture registers power up containing random data.
Figure 6 shows a block diagram for the timers.

## TIMER TO (IDLE TIMER)

The device supports applications that require maintaining real time and low power with the IDLE mode. This IDLE mode support is furnished by the IDLE timer TO, which is a 16 -bit timer. The Timer TO runs continuously at the fixed rate of the instruction cycle clock, $\mathrm{t}_{\mathrm{c}}$. The user cannot read or write to the IDLE Timer T0, which is a count down timer. The Timer TO supports the following functions:

Exit out of the Idle Mode (See Idle Mode description)
WATCHDOG logic (See WATCHDOG description)
Start up delay out of the HALT mode
The IDLE Timer TO can generate an interrupt when the thirteenth bit toggles. This toggle is latched into the TOPND pending flag, and will occur every 4 ms at the maximum clock frequency $\left(\mathrm{t}_{\mathrm{c}}=1 \mathrm{~s}\right)$. A control flag TOEN allows the interrupt from the thirteenth bit of Timer TO to be enabled or disabled. Setting TOEN will enable the interrupt, while resetting it will disable the interrupt.

## TIMER T1 AND TIMER T2

The device has a set of two powerful timer/counter blocks, T1 and T2. The associated features and functioning of a timer block are described by referring to the timer block Tx. Since the two timer blocks, T1 and T2, are identical, all comments are equally applicable to either timer block.

Each timer block consists of a 16 -bit timer, Tx, and two supporting 16-bit autoreload/capture registers, RxA and RxB. Each timer block has two pins associated with it, TxA and TxB. The pin TXA supports I/O required by the timer block, while the pin TXB is an input to the timer block. The powerful and flexible timer block allows the device to easily perform all timer functions with minimal software overhead. The timer block has three operating modes: Processor Independent PWM mode, External Event Counter mode, and Input Capture mode.
The control bits TxC3, TxC2, and TxC1 allow selection of the different modes of operation.

## Mode 1. Processor Independent PWM Mode

As the name suggests, this mode allows the device to generate a PWM signal with very minimal user intervention.
The user only has to define the parameters of the PWM signal (ON time and OFF time). Once begun, the timer block will continuously generate the PWM signal completely independent of the microcontroller. The user software services the timer block only when the PWM parameters require updating.
In this mode the timer Tx counts down at a fixed rate of $\mathrm{t}_{\mathrm{c}}$. Upon every underflow the timer is alternately reloaded with the contents of supporting registers, $R \times A$ and $R \times B$. The very first underflow of the timer causes the timer to reload from the register RxA. Subsequent underflows cause the timer to be reloaded from the registers alternately beginning with the register RxB.
The Tx Timer control bits, TxC3, TxC2 and TxC1 set up the timer for PWM mode operation.

Timers (Continued)
Figure 7 shows a block diagram of the timer in PWM mode.


FIGURE 7. Timer In PWM Mode
The underflows can be programmed to toggle the TXA output pin. The underflows can also be programmed to generate interrupts.
Underflows from the timer are alternately latched into two pending flags, TxPNDA and TxPNDB. The user must reset these pending flags under software control. Two control enable flags, TxENA and TxENB, allow the interrupts from the timer underflow to be enabled or disabled. Setting the timer enable flag TxENA will cause an interrupt when a timer underflow causes the RxA register to be reloaded into the timer. Setting the timer enable flag TxENB will cause an interrupt when a timer underflow causes the RxB register to be reloaded into the timer. Resetting the timer enable flags will disable the associated interrupts.

Either or both of the timer underflow interrupts may be enabled. This gives the user the flexibility of interrupting once per PWM period on either the rising or falling edge of the PWM output. Alternatively, the user may choose to interrupt on both edges of the PWM output.

## Mode 2. External Event Counter Mode

This mode is quite similar to the processor independent PWM mode described above. The main difference is that the timer, $T x$, is clocked by the input signal from the TxA pin. The Tx timer control bits, TxC3, TxC2 and TxC1 allow the timer to be clocked either on a positive or negative edge from the TXA pin. Underflows from the timer are latched into the TxPNDA pending flag. Setting the TxENA control flag will cause an interrupt when the timer underflows.
In this mode the input pin TxB can be used as an independent positive edge sensitive interrupt input if the TXENB control flag is set. The occurrence of a positive edge on the TxB input pin is latched into the TxPNDB flag.
Figure 8 shows a block diagram of the timer in External Event Counter mode.
Note: The PWM output is not available in this mode since the TXA pin is being used as the counter input clock.

## Mode 3. Input Capture Mode

The device can precisely measure external frequencies or time external events by placing the timer block, $\mathrm{T}_{\mathrm{x}}$, in the input capture mode.


FIGURE 8. Timer in External Event Counter Mode

Timers（Continued）
In this mode，the timer Tx is constantly running at the fixed $\mathrm{t}_{\mathrm{c}}$ rate．The two registers，RxA and RxB，act as capture registers．Each register acts in conjunction with a pin．The register RxA acts in conjunction with the TxA pin and the register RxB acts in conjunction with the $\mathrm{T} \times \mathrm{B}$ pin．
The timer value gets copied over into the register when a trigger event occurs on its corresponding pin．Control bits， TxC3，TxC2 and TxC1，allow the trigger events to be speci－ fied either as a positive or a negative edge．The trigger con－ dition for each input pin can be specified independently．
The trigger conditions can also be programmed to generate interrupts．The occurrence of the specified trigger condition on the TXA and TxB pins will be respectively latched into the pending flags，TxPNDA and TxPNDB．The control flag TxENA allows the interrupt on TxA to be either enabled or disabled．Setting the TXENA flag enables interrupts to be generated when the selected trigger condition occurs on the TXA pin．Similarly，the flag TxENB controls the interrupts from the TxB pin．
Underflows from the timer can also be programmed to gen－ erate interrupts．Underflows are latched into the timer TxC0 pending flag（the TxCO control bit serves as the timer under－ flow interrupt pending flag in the Input Capture mode）．Con－
sequently，the TxC0 control bit should be reset when enter－ ing the Input Capture mode．The timer underflow interrupt is enabled with the TxENA control flag．When a TxA interrupt occurs in the Input Capture mode，the user must check both whether a TXA input capture or a timer underflow（or both） caused the interrupt．
Figure 9 shows a block diagram of the timer in Input Capture mode．

## TIMER CONTROL FLAGS

The timers T1 and T2 have indentical control structures． The control bits and their functions are summarized below．
TxCO Timer Start／Stop control in Modes 1 and 2 （Proc－ essor Independent PWM and External Event Counter），where $1=$ Start， $0=$ Stop
Timer Underflow Interrupt Pending Flag in Mode 3 （Input Capture）
TxPNDA Timer Interrupt Pending Flag
TxPNDB Timer Interrupt Pending Flag
TxENA Timer Interrupt Enable Flag
TxENB Timer Interrupt Enable Flag
$1=$ Timer Interrupt Enabled
$0=$ Timer Interrupt Disabled
TxC3 Timer mode control
TxC2 Timer mode control
TxC1 Timer mode control


FIGURE 9．Timer in Input Capture Mode

## Timers（Continued）

The timer mode control bits（ $\mathrm{T} \times \mathrm{C} 3, \mathrm{TxC2}$ and $\mathrm{TXC1}$ ）are detailed below：

TxC3	TxC2	TxC1	Timer Mode	Interrupt A Source	Interrupt B Source	Timer Counts On
0	0	0	MODE 2 （External Event Counter）	Timer Underflow	Pos．TxB Edge	TxA Pos．Edge
0	0	1	MODE 2 （External Event Counter）	Timer Underflow	Pos．TxB Edge	TxA Neg．Edge
1	0	1	MODE 1 （PWM）TXA Toggle	Autoreload RA	Autoreload RB	$\mathrm{t}_{\mathrm{c}}$
1	0	0	MODE 1 （PWM）No TxA Toggle	Autoreload RA	Autoreload RB	$\mathrm{t}_{\mathrm{c}}$
0	1	0	MODE 3 （Capture）Captures：   TxA Pos．Edge   TxB Pos．Edge	Pos．TxA Edge or Timer Underflow	Pos．TxB Edge	$\mathrm{t}_{\mathrm{c}}$
1	1	0	MODE 3 （Capture）Captures：   TxA Pos．Edge   TxB Neg．Edge	Pos．TxA Edge or Timer Underflow	Neg．TxB Edge	$\mathrm{t}_{\mathrm{c}}$
0	1	1	MODE 3 （Capture）Captures：   TxA Neg．Edge   TxB Pos．Edge	Neg．TxB Edge or Timer Underflow	Pos．TxB Edge	$t_{c}$
1	1	1	MODE 3 （Capture）Captures： TxA Neg．Edge TxB Neg．Edge	Neg．TxA Edge or Timer Underflow	Neg．TxB Edge	$t_{c}$

## Power Save Modes

The，device offers the user two power save modes of opera－ tion：HALT and IDLE．In the HALT mode，all microcontroller activities are stopped．In the IDLE mode，the on－board oscil－ lator circuitry and timer TO are active but all other microcon－ troller activities are stopped．In either mode，all on－board RAM，registers，I／O states，and timers（with the exception of TO）are unaltered．

## HALT MODE

The device is placed in the HALT mode by writing a＂ 1 ＂to the HALT flag（G7 data bit）．All microcontroller activities， including the clock，timers，and A／D converter，are stopped． The WATCHDOG logic is disabled during the HALT mode． However，the clock monitor circuitry if enabled remains ac－ tive and will cause the WATCHDOG output pin（WDOUT）to go low．If the HALT mode is used and the user does not want to activate the WDOUT pin，the Clock Monitor should be disabled after the device comes out of reset（resetting the Clock Monitor control bit with the first write to the WDSVR register）．In the HALT mode，the power require－ ments of the device are minimal and the applied voltage $\left(V_{C C}\right)$ may be decreased to $V_{r}\left(V_{r}=2.0 \mathrm{~V}\right)$ without altering the state of the machine．
The device supports three different ways of exiting the HALT mode．The first method of exiting the HALT mode is with the Multi－Input Wakeup feature on the L port．The sec－ ond method is with a low to high transition on the CKO（G7） pin．This method precludes the use of the crystal clock con－ figuration（since CKO becomes a dedicated output），and so may be used with an RC clock configuration．The third method of exiting the HALT mode is by pulling the RESET pin low．

Since a crystal or ceramic resonator may be selected as the oscillator，the Wakeup signal is not allowed to start the chip running immediately since crystal oscillators and ceramic resonators have a delayed start up time to reach full ampli－ tude and frequency stability．The IDLE timer is used to gen－ erate a fixed delay to ensure that the oscillator has indeed stabilized before allowing instruction execution．In this case， upon detecting a valid Wakeup signal，only the oscillator circuitry is enabled．The IDLE timer is loaded with a value of 256 and is clocked with the $t_{c}$ instruction cycle clock．The $t_{c}$ clock is derived by dividing the oscillator clock down by a factor of 10．The Schmitt trigger following the CKI inverter on the chip ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications．This Schmitt trigger is not part of the oscillator closed loop．The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip．
If an RC clock option is being used，the fixed delay is intro－ duced optionally．A control bit，CLKDLY，mapped as config－ uration bit G7，controls whether the delay is to be intro－ duced or not．The delay is included if CLKDLY is set，and excluded if CLKDLY is reset．The CLKDLY bit is cleared on reset．
The WATCHDOG detector circuit is inhibited during the HALT mode．However，the clock monitor circuit if enabled remains active during HALT mode in order to ensure a clock monitor error if the device inadvertently enters the HALT mode as a result of a runaway program or power glitch．

## IDLE MODE

The device is placed in the IDLE mode by writing a＂ 1 ＂to the IDLE flag（G6 data bit）．In this mode，all activity，except

## Power Save Modes (Continued)

the associated on-board oscillator circuitry, the WATCHDOG logic, the clock monitor and the IDLE Timer TO, is stopped.
As with the HALT mode, the device can be returned to normal operation with a reset, or with a Multi-Input Wake Up from the L Port. Alternately, the microcontroller resumes normal operation from the IDLE mode when the thirteenth bit (representing 4.096 ms at internal clock frequency of $1 \mathrm{MHz}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ) of the IDLE Timer toggles.
This toggle condition of the thirteenth bit of the IDLE Timer TO is latched into the TOPND pending flag.
The user has the option of being interrupted with a transition on the thirteenth bit of the IDLE Timer T0. The interrupt can be enabled or disabled via the TOEN control bit. Setting the TOEN flag enables the interrupt and vice versa.
The user can enter the IDLE mode with the Timer TO interrupt enabled. In this case, when the TOPND bit gets set, the device will first execute the Timer TO interrupt service routine and then return to the instruction following the "Enter Idle Mode" instruction.

Alternatively, the user can enter the IDLE mode with the IDLE Timer TO interrupt disabled. In this case, the device will resume normal operation with the instruction immediately following the "Enter IDLE Mode" instruction.
Note: It is necessary to program two NOP instructions following both the set HALT mode and set IDLE mode instructions. These NOP instructions are necessary to allow clock resynchronization following the HALT or IDLE modes.

Due to the onboard 8k EPROM with port recreation logic, the HALT/IDLE current is much higher compared to the equivalent masked device.

## Multi-Input Wake Up

The Multi-Input Wake Up feature is used to return (Wake Up) the device from either the HALT or IDLE modes. Alternately Multi-Input Wake Up/Interrupt feature may also be used to generate up to 8 edge selectable external interrupts.
Figure 10 shows the Multi-Input Wake Up logic.
The Multi-Input Wakeup feature utilizes the L Port. The user selects which particular L port bit (or combination of L Port bits) will cause the device to exit the HALT or IDLE modes. The selection is done through the Reg: WKEN. The Reg: WKEN is an 8-bit read/write register, which contains a control bit for every $L$ port bit. Setting a particular WKEN bit enables a Wake Up from the associated $L$ port pin.
The user can select whether the trigger condition on the selected L Port pin is going to be either a positive edge (low to high transition) or a negative edge (high to low transition). This selection is made via the Reg: WKEDG, which is an 8 -bit control register with a bit assigned to each L Port pin. Setting the control bit will select the trigger condition to be a negative edge on that particular L Port pin. Resetting the bit selects the trigger condition to be a positive edge. Changing an edge select entails several steps in order to avoid a pseudo Wake Up condition as a result of tho odgo chango. First, the associated WKEN bit should be reset, followod by the edge select change in WKEDG. Next, the associatod WKPND bit should be cleared, followed by the associated WKEN bit being re-enabled.


## Multi-Input Wake Up (Continued)

An example may serve to clarify this procedure. Suppose we wish to change the edge select from positive (low going high) to negative (high going low) for L Port bit 5 , where bit 5 has previously been enabled for an input interrupt. The program would be as follows:

```
RMRBIT 5, WKEN
RMSBIT 5, WKEDG
RMRBIT 5, WKPND
```

RMSBIT 5, WKEN
If the $L$ port bits have been used as outputs and then changed to inputs with Multi-Input Wake Up/Interrupt, a safety procedure should also be followed to avoid inherited pseudo Wake Up conditions. After the selected L port bits have been changed from output to input but before the associated WKEN bits are enabled, the associated edge select bits in WKEDG should be set or reset for the desired edge selects, followed by the associated WKPND bits being cleared.

This same procedure should be used following reset, since the $L$ port inputs are left floating as a result of reset.
The occurrence of the selected trigger condition for MultiInput Wake Up is latched into a pending register called WKPND. The respective bits of the WKPND register will be set on the occurrence of the selected trigger edge on the corresponding Port L pin. The user has the responsibility of clearing these pending flags. Since WKPND is a pending rogister for the occurrence of selected wakeup conditions, the device will not enter the HALT mode if any Wake Up bit is both enabled and pending. Consequently, the user has the responsibility of clearing the pending flags before attempting to enter the HALT mode.
The WKEN, WKPND and WKEDG are all read/write registers, and are cleared at reset.

## PORT LINTERRUPTS

Port $L$ provides the user with an additional eight fully selectable, edge sensitive interrupts which are all vectored into the same service subroutine.
The interrupt from Port L shares logic with the Wake Up circuitry. The register WKEN allows interrupts from Port $L$ to be individually enabled or disabled. The register WKEDG specifies the trigger condition to be either a positive or a negative edge. Finally, the register WKPND latches in the pending trigger conditions.
The GIE (Global Interrupt Enable) bit enables the interrupt function. A control flag, LPEN, functions as a global interrupt enable for Port L interrupts. Setting the LPEN flag will enable interrupts and vice versa. A separate global pending flag is not needed since the register WKPND is adequate.
Since Port $L$ is also used for waking the device out of the HALT or IDLE modes, the user can elect to exit the HALT or IDLE modes either with or without the interrupt enabled. If he elects to disable the interrupt, then the device will restart execution from the instruction immediately following the instruction that placed the microcontroller in the HALT or IDLE modes. In the other case, the device will first execute the interrupt service routine and then revert to normal operation.

The Wake Up signal will not start the chip running immediately since crystal oscillators or ceramic resonators have a finite start up time. The IDLE Timer (TO) generates a fixed delay to ensure that the oscillator has indeed stabilized before allowing the device 40 execute instructions. In this case, upon detecting a valid Wake Up signal, only the oscillator circuitry and the IDLE Timer TO are enabled. The IDLE Timer is loaded with a value of 256 and is clocked from the $t_{c}$ instruction cycle clock. The $t_{c}$ clock is derived by dividing down the oscillator clock by a factor of 10. A Schmitt trigger following the CKI on-chip inverter ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.
If the RC clock option is used, the fixed delay is under software control. A control flag, CLKDLY, in the G7 configuration bit allows the clock start up delay to be optionally inserted. Setting CLKDLY flag high will cause clock start up delay to be inserted and resetting it will exclude the clock start up delay. The CLKDLY flag is cleared during reset, so the clock start up delay is not present following reset with the RC clock options.

## A/D Converter

The device contains an 8 -channel, multiplexed input, successive approximation, A/D converter. Two dedicated pins, $V_{\text {REF }}$ and AGND are provided for voltage reference.

## OPERATING MODES

The A/D converter supports ratiometric measurements. It supports both Single Ended and Differential modes of operation.
Four specific analog channel selection modes are supported. These are as follows:
Allow any specific channel to be selected at one time. The A/D converter performs the specific conversion requested and stops.
Allow any specific channel to be scanned continuously. In other words, the user will specify the channel and the A/D converter will keep on scanning it continuously. The user can come in at any arbitrary time and immediately read the result of the last conversion. The user does not have to wait for the current conversion to be completed.
Allow any differential channel pair to be selected at one time. The A/D converter performs the specific differential conversion requested and stops.
Allow any differential channel pair to be scanned continuously. In other words, the user will specify the differential channel pair and the A/D converter will keep on scanning it continuously. The user can come in at any arbitrary time and immediately read the result of the last differential conversion. The user does not have to wait for the current conversion to be completed.
The A/D converter is supported by two memory mapped registers, the result register and the mode control register. When the device is reset, the control register is cleared and the A/D is powered down. The A/D result register has unknown data following reset.

## A/D Converter (Continued)

## A/D Control Register

A control register, Reg: ENAD, contains 3 bits for channel selection, 3 bits for prescaler selection, and 2 bits for mode selection. An A/D conversion is initiated by writing to the ENAD control register. The result of the conversion is available to the user from the A/D result register, Reg: ADRSLT.
Reg: ENAD

Channel Select	Mode Select	Prescaler Select
Bits 7,6,5	Bits 4, 3	Bits 2, 1,0

## CHANNEL SELECT

This 3-bit field selects one of eight channels to be the $\mathrm{V}_{I N}+$. The mode selection determines the $\mathrm{V}_{\mathrm{IN}}$ - input.

Single Ended mode:

Bit 7	Bit $\mathbf{6}$	Bit 5	Channel   No.
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Differential mode:

Bit 7	Bit $\mathbf{6}$	Bit $\mathbf{5}$	Pairs $(+,-$ )
0	0	0	0,1
0	0	1	1,0
0	1	0	2,3
0	1	1	3,2
1	0	0	4,5
1	0	1	5,4
1	1	0	6,7
1	1	1	7,6

## MODE SELECT

This 2-bit field is used to select the mode of operation (single conversion, continuous conversions, differential, single ended) as shown in the following table.

Bit 4	Bit 3	Mode
0	0	Single Ended mode, single conversion
0	1	Single Ended mode, continuous scan of a   single channel into the result register
1	0	Differential mode, single conversion
1	1	Differential mode, continuous scan of a   channel pair into the result register

PRESCALER SELECT
This 3-bit field is used to select one of the seven prescaler clocks for the A/D converter. The prescaler also allows the A/D clock inhibit power saving mode to be selected. The following table shows the various prescaler options.

Bit 2	Bit 1	Bit 0	Clock Select
0	0	0	Inhibit A/D clock
0	0	1	Divide by 1
0	1	0	Divide by 2
0	1	1	Divide by 4
1	0	0	Divide by 6
1	0	1	Divide by 12
1	1	0	Divide by 8
1	1	1	Divide by 16

## ADC Operation

The A/D converter interface works as follows. Writing to the A/D control register ENAD initiates an A/D conversion unless the prescaler value is set to 0 , in which case the ADC clock is stopped and the ADC is powered down. The conversion sequence starts at the beginning of the write to ENAD operation powering up the ADC. At the first falling edge of the converter clock following the write operation (not counting the falling edge if it occurs at the same time as the write operation ends), the sample signal turns on for two clock cycles. The ADC is selected in the middle of the sample period. If the ADC is in single conversion mode, the conversion complete signal from the ADC will generate a power down for the A/D converter. If the ADC is in continuous mode, the conversion complete signal will restart the conversion sequence by deselecting the ADC for one converter clock cycle before starting the next sample. The ADC 8 -bit result is loaded into the A/D result register (ADRSLT) except during LOAD clock high, which prevents transient data (resulting from the ADC writing a new result over an old one) being read from ADRSIT.

## PRESCALER

The A/D Converter (ADC) contains a prescaler option which allows seven different clock selections. The A/D clock frequency is equal to CKI divided by the prescaler value. Note that the prescaler value must be chosen such that the A/D clock falls within the specified range. The maximum A/D frequency is 1.67 MHz . This equates to a 600 ns ADC clock cycle.
The A/D converter takes 12 ADC clock cycles to complete a conversion. Thus the minimum ADC conversion time is $7.2 \mu$ s when a prescaler of 6 has been selected. These 12 ADC clock cycles necessary for a conversion consist of 1 cycle at the beginning for reset, 2 cycles for sampling, 8 cycles for converting, and 1 cycle for loading the result into the A/D result register (ADRSLT). This A/D result register is a read-only register. The user cannot write into ADRSLT.

## A/D Converter (Continued)

The prescaler also allows an A/D clock inhibit option, which saves power by powering down the A/D when it is not in use.
Note: The A/D converter is also powered down when the device is in either the HALT or IDLE modes. If the ADC is running when the device enters the HALT or IDLE modes, the ADC will power down during the HALT or IDLE, and then will reinitialize the conversion when the device comes out of the HALT or IDLE modes.

## Analog Input and Source Resistance Considerations

Figure 11 shows the A/D pin model in single-ended mode. The differential mode has a similiar A/D pin model. The leads to the analog inputs should be kept as short as possible. Both noise and digital clock coupling to an A/D input can cause conversion errors. The clock lead should be kept away from the analog input line to reduce coupling. The A/D channel input pins do not have any internal output driver circuitry connected to them because this circuitry would load the analog input signals due to output buffer leakage current.

Source impedances greater than $1 \mathrm{k} \Omega$ on the analog input lines will adversely affect internal RC charging time during input sampling. As shown in Figure 11, the analog switch to the DAC array is closed only during the 2 A/D cycle sample time. Large source impedances on the analog inputs may result in the DAC array not being charged to the correct voltage levels, causing scale errors.
If large source resistance is necessary, the recommended solution is to slow down the A/D clock speed in proportion to the source resistance. The A/D converter may be operated at the maximum speed for $R_{S}$ less than $1 \mathrm{k} \Omega$. For $\mathrm{R}_{\mathrm{S}}$ greater than $1 \mathrm{k} \Omega, A / D$ clock speed needs to be reduced. For example, with $\mathrm{R}_{\mathrm{S}}=2 \mathrm{k} \Omega$, the $A / D$ converter may be operated at half the maximum speed. A/D converter clock speed may be slowed down by either increasing the A/D prescaler divide-by or decreasing the CKI clock frequency. The A/D clock speed may be reduced to its minimum frequency of 100 kHz .


TL/DD/12062-13
*The analog switch is closed only during the sample time.
FIGURE 11. A/D Pin Model (Single Ended Mode)

## Interrupts

The device supports a vectored interrupt scheme. It supports a total of ten interrupt sources. The following table lists all the possible interrupt sources, their arbitration ranking and the memory locations reserved for the interrupt vector for each source.
Two bytes of program memory space are reserved for each interrupt source. All interrupt sources except the software interrupt are maskable. Each of the maskable interrupts have an Enable bit and a Pending bit. A maskable interrupt is active if its associated enable and pending bits are set. If $\mathrm{GIE}=1$ and an interrupt is active, then the processor will be interrupted as soon as it is ready to start executing an instruction except if the above conditions happen during the Software Trap service routine. This exception is described in the Software Trap sub-section.
The interruption process is accomplished with the INTR instruction (opcode 00), which is jammed inside the Instruction Register and replaces the opcode about to be executed. The following steps are performed for every interrupt:

1. The GIE (Global Interrupt Enable) bit is reset.
2. The address of the instruction about to be executed is pushed into the stack.
3. The PC (Program Counter) branches to address 00FF. This procedure takes $7 \mathrm{t}_{\mathrm{c}}$ cycles to execute.
At this time, since $\mathrm{GIE}=0$, other maskable interrupts are disabled. The user is now free to do whatever context switching is required by saving the context of the machine in the stack with PUSH instructions. The user would then program a VIS (Vector Interrupt Select) instruction in order to
branch to the interrupt service routine of the highest priority interrupt enabled and pending at the time of the VIS. Note that this is not necessarily the interrupt that caused the branch to address location OOFF Hex prior to the context switching.
Thus, if an interrupt with a higher rank than the one which caused the interruption becomes active before the decision of which interrupt to service is made by the VIS, then the interrupt with the higher rank will override any lower ones and will be acknowledged. The lower priority interrupt(s) are still pending, however, and will cause another interrupt immediately following the completion of the interrupt service routine associated with the higher priority interrupt just serviced. This lower priority interrupt will occur immediately following the RETI (Return from Interrupt) instruction at the end of the interrupt service routine just completed.
Inside the interrupt service routine, the associated pending bit has to be cleared by software. The RETI (Return from Interrupt) instruction at the end of the interrupt service routine will set the GIE (Global Interrupt Enable) bit, allowing the processor to be interrupted again if another interrupt is active and pending.
The VIS instruction looks at all the active interrupts at the time it is executed and performs an indirect jump to the beginning of the service routine of the one with the highest rank. The addresses of the different interrupt service routines, called vectors, are chosen by the user and stored in ROM in a table starting at 01EO (assuming that VIS is located between 00FF and 01DF). The vectors are 15-bit wide and therefore occupy 2 ROM locations.

Arbitration Ranking	Source	Description	Vector Address Hi-Low Byte
(1) Highest	Software	INTR Instruction	OyFE-OyFF
	Reseryed	for Future U心	$\mathrm{CyF}_{5} \mathrm{C}-\mathrm{CyF}=\mathrm{D}$
(2)	External	Pin G0 Edge	OyFA-0yFB
(3)	Timer T0	Underflow	OyF8-0yF9
(4)	Timer T1	T1A/Underflow	0yF6-0yF7
(5)	Timer T1	T1B	0yF4-0yF5
(6)	MICROWIRE/PLUS	BUSY Goes Low	OyF2-0yF3
	Reserved	for Future Use	0yF0-0yF1
	Reserved	for UART	OyEE-0yEF
	Reserved	for UART	OyEC-0yED
(7)	Timer T2	T2A/Underflow	OyEA-OyEB
(8)	Timer T2	T2B	OyE8-0yE9
	Reserved	for Future Use	0yE6-0yE7
	Reserved	for Future Use	OyE4-0yE5
(9)	Port L/Wakeup	Port L Edge	OyE2-0yE3
(10) Lowest	Default	VIS Instr. Execution	OyE0-0yE1
		without Any Interrupts	

Interrupts (Continued)
VIS and the vector table must be located in the same 256 -byte block ( $0 y 00$ to OyFF) except if VIS is located at the last address of a block. In this case, the table must be in the next block. The vector table cannot be inserted in the first 256-byte block.
The vector of the maskable interrupt with the lowest rank is located at OyE0 (Hi-Order byte) and OyE1 (Lo-Order byte) and so forth in increasing rank number. The vector of the maskable interrupt with the highest rank is located at OyFA (Hi-Order byte) and OyFB (Lo-Order byte).
The Software Trap has the highest rank and its vector is located at OyFE and OyFF.
If, by accident, a VIS gets executed and no interrupt is active, then the PC (Program Counter) will branch to a vector located at $0 \mathrm{yEO}-0 \mathrm{yE}$. This vector can point to the Software Trap (ST) interrupt service routine, or to another special service routine as desired.
Figure 12 shows the device Interrupt block diagram.

## SOFTWARE TRAP

The Software Trap (ST) is a special kind of non-maskable interrupt which occurs when the INTR instruction (used to acknowledge interrupts) is fetched from ROM and placed inside the instruction register. This may happen when the PC is pointing beyond the available ROM address space or when the stack is over-popped.
When an ST occurs, the user can re-initialize the stack pointer and do a recovery procedure (similar to RESET, but not necessarily containing all of the same initialization procedures) before restarting.
The occurrence of an ST is latched into the ST pending bit. The GIE bit is not affected and the ST pending bit (not accessible by the user) is used to inhibit other interrupts and to direct the program to the ST service routine with the VIS instruction. The RPND instruction is used to clear the software interrupt pending bit. This bit is also cleared on reset.
The ST has the highest rank among all interrupts.
Nothing (except another ST) can interrupt an ST being serviced.


FIGURE 12. Interrupt Block Diagram

## WATCHDOG

The device contains a WATCHDOG and clock monitor. The WATCHDOG is designed to detect the user program getting stuck in infinite loops resulting in loss of program control or "runaway" programs. The Clock Monitor is used to detect the absence of a clock or a very slow clock below a specified rate on the CKI pin.
The WATCHDOG consists of two independent logic blocks: WD UPPER and WD LOWER. WD UPPER establishes the upper limit on the service window and WD LOWER defines the lower limit of the service window.
Servicing the WATCHDOG consists of writing a specific value to a WATCHDOG Service Register named WDSVR which Is memory mapped in the RAM. This value is composed of three fields, consisting of a 2 -bit Window Select, a 5-bit Key Data field, and the 1-bit Clock Monitor Select field. Table III shows the WDSVR register.

TABLE III. WATCHDOG Service Register (WDSVR)

Window   Select	Key Data						Clock   Monltor
X	X	0	1	1	0	0	Y
7	6	5	4	3	2	1	0

The lower limit of the service window is fixed at 2048 instruction cycles. Bits 7 and 6 of the WDSVR register allow the user to pick an upper limit of the service window.
Table IV shows the four possible combinations of lower and upper limits for the WATCHDOG service window. This flexibility in choosing the WATCHDOG service window prevents any undue burden on the user software.

TABLE IV. WATCHDOG Service Window Select

WDSVR   Bit 7	WDSVR   Bit 6	Service Window   (Lower-Upper Limits)
0	0	$2 k-8 k \mathrm{t}_{\mathrm{c}}$ Cycles
0	1	$2 \mathrm{k}-16 \mathrm{k} \mathrm{t}_{\mathrm{c}}$ Cycles
1	0	$2 \mathrm{k}-32 \mathrm{k} \mathrm{t}_{\mathrm{c}}$ Cycles
1	1	$2 \mathrm{k}-64 \mathrm{k} \mathrm{t}_{\mathrm{c}}$ Cycles

Bits 5,4,3,2 and 1 of the WDSVR register represent the 5 -bit Key Data field. The key data is fixed at 01100. Bit 0 of the WDSVR Register is the Clock Monitor Select bit.

## Clock Monitor

The Clock Monitor aboard the device can be selected or deselected under program control. The Clock Monitor is guaranteed not to reject the clock if the instruction cycle clock $\left(1 / t_{c}\right)$ is greater or equal to 10 kHz . This equates to a clock input rate on CKI of greater or equal to 100 kHz .

## WATCHDOG Operation

The WATCHDOG and Clock Monitor are disabled during reset. The device comes out of reset with the WATCHDOG armed, the WATCHDOG Window Select (bits 6, 7 of the WDSVR Register) set, and the Clock Monitor bit (bit 0 of the WDSVR Register) enabled. Thus, a Clock Monitor error will occur after coming out of reset, if the instruction cycle clock frequency has not reached a minimum specified value, including the case where the oscillator fails to start.
The WDSVR register can be written to only once after reset and the key data (bits 5 through 1 of the WDSVR Register) must match to be a valid write. This write to the WDSVR register involves two irrevocable choices: (i) the selection of the WATCHDOG service window (ii) enabling or disabling of the Clock Monitor. Hence, the first write to WDSVR Register involves selecting or deselecting the Clock Monitor, select the WATCHDOG service window and match the WATCHDOG key data. Subsequent writes to the WDSVR register will compare the value being written by the user to the WATCHDOG service window value and the key data (bits 7 through 1) in the WDSVR Register. Table $V$ shows the sequence of events that can occur.

TABLE V. WATCHDOG Service Actions

Key   Data	Window   Data	Clock   Monitor	Action
Match	Match	Match	Valid Service: Restart Service Window
Don't Care	Mismatch	Don't Care	Error: Generate WATCHDOG Output
Mismatch	Don't Care	Don't Care	Error: Generate WATCHDOG Output
Don't Care	Don't Care	Mismatch	Error: Generate WATCHDOG Output

## WATCHDOG Operation (Continued)

The user must service the WATCHDOG at least once before the upper limit of the service window expires. The WATCHDOG may not be serviced more than once in every lower limit of the service window. The user may service the WATCHDOG as many times as wished in the time period between the lower and upper limits of the service window. The first write to the WDSVR Register is also counted as a WATCHDOG service.
The WATCHDOG has an output pin associated with it. This is the WDOUT pin, on pin 1 of the port G. WDOUT is active low. The WDOUT pin is in the high impedance state in the inactive state. Upon triggering the WATCHDOG, the logic will pull the WDOUT (G1) pin low for an additional $16 t_{c}-32 t_{c}$ cycles after the signal level on WDOUT pin goes below the lower Schmitt trigger threshold. After this delay, the device will stop forcing the WDOUT output low.
The WATCHDOG service window will restart when the WDOUT pin goes high. It is recommended that the user tie the WDOUT pin back to $\mathrm{V}_{\mathrm{CC}}$ through a resistor in order to pull WDOUT high.
A WATCHDOG service while the WDOUT signal is active will be ignored. The state of the WDOUT pin is not guaranteed on reset, but if it powers up low then the WATCHDOG will time out and WDOUT will enter high impedance state.
The Clock Monitor forces the G1 pin low upon detecting a clock frequency error. The Clock Monitor error will continue until the clock frequency has reached the minimum specified value, after which the G1 output will enter the high impedance TRI-STATE mode following $16 \mathrm{t}_{\mathrm{c}}-32 \mathrm{t}_{\mathrm{c}}$ clock cycles. The Clock Monitor generates a continual Clock Monitor error if the oscillator fails to start, or fails to reach the minimum specified frequency. The specification for the Clock Monitor is as follows:
$1 / \mathrm{t}_{\mathrm{c}}>10 \mathrm{kHz}$-No clock rejection.
$1 / \mathrm{t}_{\mathrm{c}}<10 \mathrm{~Hz}$-Guaranteed clock rejection.

## WATCHDOG AND CLOCK MONITOR SUMMARY

The following salient points regarding the WATCHDOG and CLOCK MONITOR should be noted:

- Both the WATCHDOG and Clock Monitor detector circuits are inhibited during RESET.
- Following RESET, the WATCHDOG and CLOCK MONITOR are both enabled, with the WATCHDOG having the maximum service window selected.
- The WATCHDOG service window and Clock Monitor enable/disable option can only be changed once, during the initial WATCHDOG service following RESET.
- The initial WATCHDOG service must match the key data value in the WATCHDOG Service register WDSVR in order to avoid a WATCHDOG error.
- Subsequent WATCHDOG services must match all three data fields in WDSVR in order to avoid WATCHDOG errors.
- The correct key data value cannot be read from the WATCHDOG Service register WDSVR. Any attempt to read this key data value of 01100 from WDSVR will read as key data value of all 0's.
- The WATCHDOG detector circuit is inhibited during both the HALT and IDLE modes.
- The Clock Monitor detector circuit is active during both the HALT and IDLE modes. Consequently, the device inadvertently entering the HALT mode will be detected as a Clock Monitor error (provided that the Clock Monitor enable option has been selected by the program).
- With the single-pin R/C oscillator mask option selected and the CLKDLY bit reset, the WATCHDOG service window will resume following HALT mode from where it left off before entering the HALT mode.
- With the crystal oscillator mask option selected, or with the single-pin R/C oscillator mask option selected and the CLKDLY bit set, the WATCHDOG service window will be set to its selected value from WDSVR following HALT. Consequently, the WATCHDOG should not be serviced for at least 2048 instruction cycles following HALT, but must be serviced within the selected window to avoid a WATCHDOG error.
- The IDLE timer TO is not initialized with RESET.
- The user can sync in to the IDLE counter cycle with an IDLE counter (TO) interrupt or by monitoring the TOPND flag. The TOPND flag is set whenever the thirteenth bit of the IDLE counter toggles (every 4096 instruction cycles). The user is responsible for resetting the TOPND flag.
- A hardware WATCHDOG service occurs just as the device exits the IDLE mode. Consequently, the WATCHDOG should not be serviced for at least 2048 instruction cycles following IDLE, but must be serviced within the selected window to avoid a WATCHDOG error.
- Following RESET, the initial WATCHDOG service (where the service window and the CLOCK MONITOR enable/ disable must be selected) may be programmed anywhere within the maximum service window ( 65,536 instruction cycles) initialized by RESET. Note that this initial WATCHDOG service may be programmed within the initial 2048 instruction cycles without causing a WATCHDOG error.


## Detection of Illegal Conditions

The device can detect various illegal conditions resulting from coding errors, transient noise, power supply voltage drops, runaway programs, etc.
Reading of undefined ROM gets zeros. The opcode for software interrupt is zero. If the program fetches instructions from undefined ROM, this will force a software interrupt, thus signaling that an illegal condition has occurred.
The subroutine stack grows down for each call (jump to subroutine), interrupt, or PUSH, and grows up for each return or POP, the stack pointer is initialized to RAM location 06F Hex during reset. Consequently, if there are more returns than calls, the stack pointer will point to addresses 070 and 071 Hex (which are undefined RAM). Undefined RAM from addresses 070 to 07F Hex is read as all 1's, which in turn will cause the program to return to address 7FFF Hex. This is an undefined ROM location and the instruction fetched (all 0's) from this location will generate a software interrupt signaling an illegal condition.
Thus, the chip can detect the following illegal conditions:

1. Executing from undefined ROM.
2. Over "POP"ing the stack by having more returns than calls.

## Detection of IIlegal Conditions

(Continued)
When the software interrupt occurs, the user can re-initialize the stack pointer and do a recovery procedure before restarting (this recovery program is probably similar to that following reset, but might not contain the same program initialization procedures).

## MICROWIRE/PLUS

MICROWIRE/PLUS is a serial synchronous communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e. A/D converters, display drivers, E2PROMs etc.) and with other microcontrollers which support the MICROWIRE interface. It consists of an 8 -bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 13 shows a block diagram of the MICROWIRE/PLUS logic.


FIGURE 13. MICROWIRE/PLUS Block Dlagram
The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS arrangement with the internal clock source is called the Master mode of operation. Similarly, operating the MICROMARE/PLUS ariangement witit an external sinit clock is called the Slave mode of operation.
The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. In the master mode the SK clock rate is selected by the two bits, SLO and SL1, in the CNTRL register. Table VI details the different clock rates that may be selected.

TABLE VI. MICROWIRE/PLUS
Master Mode Clock Selection

SL1	SL0	SK
0	0	$2 \times \mathrm{t}_{\mathrm{c}}$
0	1	$4 \times \mathrm{t}_{\mathrm{c}}$
1	x	$8 \times \mathrm{t}_{\mathrm{c}}$

Where $t_{c}$ is the instruction cycle clock

## MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. If enabled, an interrupt is generated when eight data bits have been shifted. The device may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 14 shows how two COP888 microcontrollers and several peripherals may be interconnected using the MICROWIRE/PLUS arrangements.

## Warning

The SIO register should only be loaded when the SK clock is low. Loading the SIO register while the SK clock is high will result in undefined data in the SIO register. SK clock is normally low when not shifting.
Setting the BUSY flag when the input SK clock is high in the MICROWIRE/PLUS slave mode may cause the current SK clock for the SIO shift register to be narrow. For safety, the BUSY flag should only be set when the input SK clock is Iow.

## MICROWIRE/PLUS Master Mode Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally. The MICROWIRE Master always initiates all data exchanges. The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register. Table VI summarizes the bit settings required for Master mode of operation.

## MICROWIRE/PLUS Slave Mode Operation

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must be selected as an input and the SO pin is selected as an output pin by setting and resetting the appropriate bit in the Port G configuration register. Table VII summarizes the settings required to enter the Slave mode of operation.


FIGURE 14. MICROWIRE/PLUS Application

TABLE VII. MICROWIRE/PLUS Mode Selection

G4 (SO)   Config. Bit	G5 (SK)   Config. Bit	G4   Fun.	G5   Fun.	Operation
1	1	SO	Int. SK	MICROWIRE/PLUS Master
0	1	TRI-STATE	Int. SK	MICROWIRE/PLUS Master
1	0	SO	Ext. SK	MICROWIRE/PLUS Slave
0	0	TRI-STATE	Ext. Sk	MICROWIRE/PLUS Slave

This table assumes that the control flag MSEL is set.

The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated.

## Alternate SK Phase Operation

The device allows either the normal SK clock or an alternate phase SK clock to shift data in and out of the SIO register. In both the modes the SK is normally low. In the normal mode data is shifted in on the rising edge of the SK clock and the data is shifted out on the falling edge of the SK
clock. The SIO register is shifted on each falling edge of the SK clock in the normal mode. In the alternate SK phase mode the SIO register is shifted on the rising edge of the SK clock.
A control flag, SKSEL, allows either the normal SK clock or the alternate SK clock to be selected. Resetting SKSEL causes the MICROWIRE/PLUS logic to be clocked from the normal SK signal. Setting the SKSEL flag selects the alternate SK clock. The SKSEL is mapped into the G6 configuration bit. The SKSEL flag will power up in the reset condition, selecting the normal SK signal.

## Memory Map

All RAM，ports and registers（except A and PC）are mapped into data memory address space．

Address	Contents
00 to 6F	On－Chip RAM bytes
70 to BF	Unused RAM Address Space
C0	Timer T2 Lower Byte
C1	Timer T2 Upper Byte
C2	Timer T2 Autoload Register T2RA Lower Byte
C3	Timer T2 Autoload Register T2RA Upper Byte
C4	Timer T2 Autoload Register T2RB Lower Byte
C5	Timer T2 Autoload Register T2RB Upper Byte
C6	Timer T2 Control Register
C7	WATCHDOG Service Register （Reg：WDSVR）
C8	MIWU Edge Select Register （Reg：WKEDG）
C9	MIWU Enable Register（Reg：WKEN）
CA	MIWU Pending Register（Reg：WKPND）
CB	A／D Converter Control Register （Reg：ENAD）
CC	A／D Converter Result Register （Reg：ADRSLT）
CD to CF	Reserved
D0	Port L Data Register
D1	Port L Configuration Register
D2	Port L Input Pins（Read Only）
D3	Reserved for Port L
D4	Port G Data Register
D5	Port G Configuration Register
DS	Port E Input Pins（Road Cnity）
D7	Port I Input Pins（Read Only）
D8	Port C Data Register
D9	Port C Configuration Register
DA	Port C Input Pins（Read Only）
DB	Reserved for Port C
DC	Port D Data Register
DD to DF	Reserved for Port D
E0 to E5	Reserved
E6	Timer T1 Autoload Register T1RB
E7	Timer T1 Autoload Register T1RB
	Upper Byte
E8	ICNTRL Register
E9	MICROWIRE Shift Register
EA	Timer T1 Lower Byte
EB	Timer T1 Upper Byte
EC	Timer T1 Autoload Register T1RA Lower Byte
ED	Timer T1 Autoload Register T1RA
	Upper Byte
EE	CNTRL Control Register
EF	PSW Register

Note：Reading memory locations 70－7F Hex will return all ones．Reading other unused memory locations will return undefined data．

Address	Contents
F0 to FB	On－Chip RAM Mapped as Registers
FC	X Register
FD	SP Register
FE	B Register
FF	Reserved

Note：Reading memory locations 70－7F Hex will return all ones．Reading other unused memory locations will return undefined data．

## Addressing Modes

There are ten addressing modes，six for operand address－ ing and four for transfer of control．

## OPERAND ADDRESSING MODES

## Register Indirect

This is the＂normal＂addressing mode．The operand is the data memory addressed by the B pointer or X pointer．

Register Indirect（with auto post increment or decrement of pointer）
This addressing mode is used with the LD and X instruc－ tions．The operand is the data memory addressed by the B pointer or $X$ pointer．This is a register indirect mode that automatically post increments or decrements the B or X reg－ ister after executing the instruction．

## Direct

The instruction contains an 8－bit address field that directly points to the data memory for the operand．

## Immediate

The instruction contains an 8－bit immediate field as the op－ erand．

## Short Immediate

This addressing mode is used with the Load B Immediate instinution．The instuuction conlains a 4 －vil immediate fieid as the operand．

## Indirect

This addressing mode is used with the LAID instruction．The contents of the accumulator are used as a partial address （lower 8 bits of PC ）for accessing a data operand from the program memory．

## TRANSFER OF CONTROL ADDRESSING MODES

## Relative

This mode is used for the JP instruction，with the instruction field being added to the program counter to get the new program location．JP has a range from -31 to +32 to allow a 1－byte relative jump（JP＋1 is implemented by a NOP in－ struction）．There are no＂pages＂when using JP，since all 15 bits of PC are used．

## Absolute

This mode is used with the JMP and JSR instructions，with the instruction field of 12 bits replacing the lower 12 bits of the program counter（PC）．This allows jumping to any loca－ tion in the current 4 k program memory segment．

## Addressing Modes (Continued)

## Absolute Long

This mode is used with the JMPL and JSRL instructions, with the instruction field of 15 bits replacing the entire 15 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory space.

## Indirect

This mode is used with the JID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC ) for accessing a location in the program memory. The contents of this program memory location serve as a partial address (lower 8 bits of PC ) for the jump to the next instruction.
Note: The VIS is a special case of the Indirect Transfer of Control addressing mode, where the double byte vector associated with the interrupt is transferred from adjacent addresses in the program memory into the program counter (PC) in order to jump to the associated interrupt service routine.

## Instruction Set

## REGISTER AND SYMBOL DEFINITION

## Registers

A 8-Bit Accumulator Register
B 8-Bit Address Register
X 8-Bit Address Register
SP 8-Bit Stack Pointer Register
PC 15-Bit Program Counter Register
PU Upper 7 Bits of PC
PL Lower 8 Bits of PC
C 1 Bit of PSW Register for Carry
HC 1 Bit of PSW Register for Half Carry
GIE 1 Bit of PSW Register for Global Interrupt Enable
VU Interrupt Vector Upper Byte
VL Interrupt Vector Lower Byte
Symbols
[B] Memory Indirectly Addressed by B Register
[X] Memory Indirectly Addressed by X Register
MD Direct Addressed Memory
Mem Direct Addressed Memory or [B]
Meml Direct Addressed Memory or [B] or Immediate Data
Imm 8-Bit Immediate Data
Reg Register Memory: Addresses F0 to FF (Includes B, $X$ and SP)
Bit Bit Number (0 to 7)
$\rightarrow \quad$ Loaded with
$\longleftrightarrow \quad$ Exchanged with

## Instruction Set (Continued)

## INSTRUCTION SET

ADD	A, Meml	ADD	$A \leftarrow A+M e m l$
ADC	A,Meml	ADD with Carry	A $\leftarrow \mathrm{A}+\mathrm{Meml}+\mathrm{C}, \mathrm{C} \leftarrow$ Carry, HC $\leftarrow$ Half Carry
SUBC	A,Meml	Subtract with Carry	A $\leftarrow \mathrm{A}-\mathrm{Meml}+\mathrm{C}, \mathrm{C} \leftarrow$ Carry, HC $\leftarrow$ Half Carry
AND	A, Meml	Logical AND	$A \leftarrow A$ and $\overline{M e m l}$
ANDSZ	A, Imm	Logical AND Immed., Skip if Zero	Skip next if (A and Imm) $=0$
OR	A, Meml	Logical OR	$\mathrm{A} \leftarrow \mathrm{A}$ or Meml
XOR	A, Meml	Logical EXclusive OR	A $\leftarrow \mathrm{A}$ xor Meml
IFEQ	MD, Imm	IF EQual	Compare MD and Imm, Do next if MD $=1 \mathrm{~mm}$
IFEQ	A, Meml	IF EQual	Compare A and Meml, Do next if A = Meml
IFNE	A, Meml	IF Not Equal	Compare $A$ and Meml, Do next if $A \neq M e m l$
IFGT	A, Meml	IF Greater Than	Compare A and Meml, Do next if A > Meml
IFBNE	\#	IF B Not Equal	Do next if lower 4 bits of $B \neq 1 \mathrm{~mm}$
DRSZ	Reg	Decrement Reg., Skip if Zero	Reg $\leftarrow$ Reg - 1 , Skip if Reg $=0$
SBIT	\#,Mem	Set BIT	1 to bit, Mem (bit $=0$ to 7 immediate)
RBIT	\#,Mem	Reset BIT	0 to bit, Mem
IFBIT	\#,Mem	IF BIT	IF bit in A or Mem is two do next instruction
RPND		Reset PeNDing Fiag	Reset Software Interrupt Pending Flag
X	A,Mem	EXchange A with Memory	$A \longleftrightarrow M \mathrm{~mm}$
X	A, $[\mathrm{X}]$	EXchange A with Memory [X]	$A \longleftrightarrow[X]$
LD	A,Meml	LoaD A with Memory	$A \leftarrow M e m l$
LD	A, $[\mathrm{X}]$	LoaD A with Memory [ X ]	$A \leftarrow[X]$
LD	B, Imm	LoaD B with Immed.	$\mathrm{B} \leftarrow \mathrm{Imm}$
LD	Mem, Imm	LoaD Memory Immed.	Mem $\leftarrow$ Imm
LD	Reg, 1 mm	LoaD Register Memory Immed.	Reg $\leftarrow$ Imm
X	A, [B]	EXchange A with Memory [B]	$A \longleftrightarrow[B],(B \leftarrow B 1)$
X	A, $[\mathrm{X}]$	EXchange A with Memory [ X ]	$A \longleftrightarrow[X],(X \leftarrow 1)$
LD	A,[B]	LoaD A with Memory [B]	$A \leftarrow[B],(B \leftarrow B 1)$
LD	A, [X]	LoaD A with Memory [ X ]	$A \leftarrow[X],(X \leftarrow X 1)$
LD	[B], Imm	LoaD Memory [B] Immed	[ B$] \leftarrow 1 \mathrm{~mm},(\mathrm{~B} \leftarrow \mathrm{~B} 1)$
CLR	A	CLeaR A	$A \leftarrow 0$
INC	A	increment A	$A \leftarrow A+1$
DEC	A	DECrement A	$A \leftarrow A-1$
LAID		Load A!nDirect from Pos.a	$\hat{A}$ :- RCivi ( $\mathrm{P} U, \hat{A})$
DCOR	A	Decimal CORrect A	$A \leftarrow B C D$ correction of A (follows ADC, SUBC)
RRC	A	Rotate A Right thru C	$\mathrm{C} \rightarrow \mathrm{A} 7 \rightarrow \ldots \rightarrow \mathrm{AO} \rightarrow \mathrm{C}$
RLC	A	Rotate A Left thru C	$\mathrm{C} \leftarrow \mathrm{A} 7 \leftarrow \ldots \leftarrow \mathrm{~A} 0 \leftarrow \mathrm{C}$
SWAP	A	SWAP nibbles of $A$	$A 7 \ldots A 4 \longleftrightarrow A 3 \ldots A 0$
SC		Set C	$C \leftarrow 1, H C \leftarrow 1$
RC		Reset C	$\mathrm{C} \leftarrow 0, \mathrm{HC} \leftarrow 0$
IFC		IF C	IF C is true, do next instruction
IFNC		IF Not C	IF C is not true, do next instruction
POP	A	POP the stack into A	$\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{~A} \leftarrow[\mathrm{SP}]$
PUSH	A	PUSH A onto the stack	[SP] $\leftarrow \mathrm{A}, \mathrm{SP} \leftarrow \mathrm{SP}-1$
VIS		Vector to Interrupt Service Routine	$\mathrm{PU} \leftarrow[\mathrm{VU}], \mathrm{PL} \leftarrow[\mathrm{VL}]$
JMPL	Addr.	Jump absolute Long	$\mathrm{PC} \leftarrow \mathrm{ii}(\mathrm{ii}=15$ bits, 0 to 32k)
JMP	Addr.	Jump absolute	PC9 ...0 i ( $\mathrm{i}=12 \mathrm{bits}$ )
JP	Disp.	Jump relative short	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{r}(\mathrm{r}$ is -31 to +32 , except 1$)$
JSRL	Addr.	Jump SubRoutne Long	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow \mathrm{ii}$
JSR	Addr	Jump SubRoutine	[SP] $\leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} 9 \ldots 0 \leftarrow \mathrm{i}$
JID		Jump InDirect	$\mathrm{PL} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
RET		RETurn from subroutine	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETSK		RETurn and SKip	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETI		RETurn from Interrupt	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1], \mathrm{GIE} \leftarrow 1$
INTR		Generate an Interrupt	$[\mathrm{SP}] \leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow 0 \mathrm{FF}$
NOP		No OPeration	$\mathrm{PC} \leftarrow \mathrm{PC}+1$

## Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instructions taking two bytes).
Most single byte instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details.

Bytes and Cycles per Instruction
The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle.

## - Logic and Arithmetic Instructions

Instr.	[B]	Direct	Immed.
ADD	$1 / 1$	$3 / 4$	$2 / 2$
ADC	$1 / 1$	$3 / 4$	$2 / 2$
SUBC	$1 / 1$	$3 / 4$	$2 / 2$
AND	$1 / 1$	$3 / 4$	$2 / 2$
OR	$1 / 1$	$3 / 4$	$2 / 2$
XOR	$1 / 1$	$3 / 4$	$2 / 2$
IFEQ	$1 / 1$	$3 / 4$	$2 / 2$
IFGT	$1 / 1$	$3 / 4$	$2 / 2$
IFBNE	$1 / 1$		
DRSZ		$1 / 3$	
SBIT	$1 / 1$	$3 / 4$	
RBIT	$1 / 1$	$3 / 4$	
IFBIT	$1 / 1$	$3 / 4$	

Instructions Using A and C

CLRA	$1 / 1$
INCA	$1 / 1$
DECA	$1 / 1$
LAID	$1 / 3$
DCORA	$1 / 1$
RRCA	$1 / 1$
RLCA	$1 / 1$
SWAPA	$1 / 1$
SC	$1 / 1$
RC	$1 / 1$
IFC	$1 / 1$
IFNC	$1 / 1$
PUSHA	$1 / 3$
POPA	$1 / 3$
ANDSZ	$2 / 2$

Transfer of Control Instructions

JMPL	$3 / 4$
JMP	$2 / 3$
JP	$1 / 3$
JSRL	$3 / 5$
JSR	$2 / 5$
JID	$1 / 3$
VIS	$1 / 5$
RET	$1 / 5$
RETSK	$1 / 5$
RETI	$1 / 5$
INTR	$1 / 7$
NOP	$1 / 1$

```
RPND 1/1
```

Memory Transfer Instructions

	Register Indirect		Direct	Immed.	Register Indirect Auto Incr \& Decr	
	[B]	[ X$]$			[ $B+, B-]$	[ $\mathrm{X}+, \mathrm{X}-\mathrm{]}$
X A, *	1/1	1/3	2/3		1/2	1/3
LD A,*	1/1	1/3	2/3	2/2	1/2	1/3
LD B,Imm				1/1		
LD B, Imm				2/3		
LD Mem, Imm	$2 / 2$		3/3		$2 / 2$	
LD Reg, Imm			2/3			
IFEQ MD, Imm			3/3			

(If $B<16$ )
(If $B>15$ )

* $\geq$ Memory location addressed by B or X or directly


## COP8788CF/COP8784CF Opcode Table

Upper Nibble																	
$F$	E	D	C	B	A	9	8	7	6	5	4	3	2	1	0		
JP-15	JP-31	LD OF0, \#i	DRSZ 0FO	RRCA	RC	ADC A, \#i	ADC A,[B]	$\left\lvert\, \begin{gathered} \text { IFBIT } \\ 0,[B] \end{gathered}\right.$	ANDSZ $A, \# i$	LD B, \# 0F	IFBNE 0	$\begin{gathered} \text { JSR } \\ \times 000-\mathrm{xOFF} \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times 000-\times 0 F F \end{gathered}$	$J P+17$	JP-15	0	
JP-14	JP-30	LD OF1, \#i	DRSZ 0F1	*	SC	$\begin{gathered} \text { SUBC } \\ A, \# i \end{gathered}$	SUBCA,[B]	$\begin{array}{r} \text { IFBIT } \\ 1,[\mathrm{~B}] \end{array}$	*	LD B, \# 0E	IFBNE 1	$\begin{gathered} \text { JSR } \\ \times 100-\times 1 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times 100-\times 1 F F \end{gathered}$	$J P+18$	JP-14	1	
JP-13	JP-29	LD 0F2, \#i	DRSZ 0F2	X A, [X+]	$X A,[B+]$	IFEQ A, \# i	IFEQ A, [B]	$\begin{gathered} \text { IFBIT } \\ 2,[\mathrm{~B}] \end{gathered}$	*	LD B, \#OD	IFBNE 2	$\begin{gathered} \text { JSR } \\ \times 200-x 2 F F \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { JMP } \\ \times 200-x 2 F F \\ \hline \end{array}$	$J P+19$	JP-13	2	
JP-12	JP-28	LD 0F3, \#i	DRSZ 0F3	X A, [X-]	X A, [B-]	IFGT A, \# i	IFGT A,[B]	$\begin{gathered} \text { IFBIT } \\ 3,[\mathrm{~B}] \end{gathered}$	*	LD B, \# 0C	IFBNE 3	$\begin{gathered} \text { JSR } \\ \times 300-\times 3 F F \end{gathered}$	$\begin{array}{\|c\|} \hline \text { JMP } \\ \times 300-x 3 F F \\ \hline \end{array}$	$\mathrm{JP}+20$	JP - 12	3	
JP-11	JP-27	LD 0F4, \#i	DRSZ 0F4	VIS	LAID	ADD A, \# i	ADD A,[B]	$\begin{gathered} \text { IFBIT } \\ 4,[\mathrm{~B}] \end{gathered}$	CLRA	LD B, \# OB	IFBNE 4	$\begin{gathered} \text { JSR } \\ \times 400-\times 4 F F \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { JMP } \\ \times 400-\times 4 F F \\ \hline \end{array}$	$J P+21$	JP-11	4	
JP-10	JR-26	LD 0F5,\#i	DRSZ 0F5	RPND	JID	AND A, \# i	AND A,[B]	$\begin{array}{\|c\|} \hline \text { IFBIT } \\ 5,[\mathrm{~B}] \\ \hline \end{array}$	SWAPA	LD B, \#0A	IFBNE 5	$\begin{gathered} \text { JSR } \\ \times 500-\times 5 F F \\ \hline \end{gathered}$	JMR x500-x5FF	$\mathrm{JR}+22$	JP - 10	5	L
JP-9	JP-25	LD 0F6, \#i	DRSZ 0F6	X A, [X]	X A, [B]	XOR A, \# i	XOR A, [B]	$\begin{aligned} & \text { IFBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	DCORA	LD B, \#09	IFBNE 6	$\begin{gathered} \text { JSR } \\ \times 600-\mathrm{x} 6 \mathrm{FF} \\ \hline \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times 600-x 6 F F \end{gathered}$	$J P+23$	JP-9	6	w
JP-8	JP - 24	LD 0F7, \#i	DRSZ 0F7	*	*	OR A, \#i	OR A, [B]	$\begin{aligned} & \text { IFBIT } \\ & 7,[\mathrm{~B}] \\ & \hline \end{aligned}$	PUSHA	LD B, \#08	IFBNE 7	$\begin{array}{\|c} \text { JSR } \\ \times 700-\times 7 F F \\ \hline \end{array}$	$\begin{gathered} \text { JMR } \\ \times 700-\times 7 F F \\ \hline \end{gathered}$	JR+24	JP-8	7	r
JP-7	JP-23	LD 0F8, \# i	DRSZ OF8	NOP	RLCA	LD A,\#i	IFC	$\begin{array}{\|l\|} \hline \text { SBIT } \\ \text { O,[B] } \\ \hline \end{array}$	RBIT 0,[B]	LD B, \#07	IFBNE 8	$\begin{gathered} \text { JSR } \\ x 800-x 8 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times 800-x 8 F F \end{gathered}$	$\mathrm{JP}+25$	JP-7	8	N j
JP-6	JP - 22	LD 0F9, \#i	DRSZ OF9	IFNE $\mathrm{A},[\mathrm{B}]$	$\begin{aligned} & \text { IFEQ } \\ & \text { Md, \#i } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IFNE } \\ & \mathrm{A}, \# \mathrm{i} \end{aligned}$	IFNC	$\begin{aligned} & \text { SBIT } \\ & 1,[B] \end{aligned}$	RBIT 1,[B]	LD B, \#06	IFBNE 9	$\begin{gathered} \text { JSR } \\ \times 900-x 9 F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \text { x } 900-x 9 F F \\ \hline \end{gathered}$	JP + 26	JP-6	9	b
JP-5	JP-21	LD OFA, \#i	DRSZ OFA	LD A, [X+]	$\begin{gathered} \mathrm{LD} \\ \mathrm{~B},[\mathrm{~B}+] \end{gathered}$	LD [B+], $\mathrm{i}, \mathrm{i}$	INCA	$\begin{aligned} & \text { SBIT } \\ & 2,[B] \end{aligned}$	RBIT 2,[B]	LD B, \#05	IFBNE OA	$\begin{gathered} \text { JSR } \\ \times A 00-\times A F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \times \mathrm{A} 00-\mathrm{xAFF} \\ \hline \end{gathered}$	$J P+27$	JP-5	A	e
JP-4	JP-20	LD 0FB, \#i	DRSZ OFB	LD A, $[\mathrm{X}-\mathrm{]}$	LD A[B-]	LD [B-], $z^{\leq} \mathrm{i}$	DECA	$\begin{array}{\|l\|l\|} \text { SBIT } \\ 3,[\mathrm{~B}] \\ \hline \end{array}$	RBIT 3,[B]	LD B, \#04	IFBNE 0B	$\begin{array}{\|c\|} \hline \text { JSR } \\ \text { xB00-xBFF } \\ \hline \end{array}$	$\begin{gathered} \text { JMP } \\ \times B 00-\times B F F \\ \hline \end{gathered}$	$J P+28$	JP-4	B	
JP-3	JP-19	LD OFC, \#i	DRSZ OFC	LD Md, \#i	JMPL	X A,Md	POPA	$\begin{array}{\|l\|} \mathrm{SBIT} \\ 4,[\mathrm{~B}] \\ \hline \end{array}$	RBIT 4,[B]	LD B, \#03	IFBNE 0C	$\begin{gathered} \text { JSR } \\ \times \mathrm{C} 00-\mathrm{xCFF} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{JMP} \\ \times \mathrm{C} 00-\mathrm{xCFF} \\ \hline \end{array}$	$J P+29$	JP-3	C	
JP-2	JP-18	LD 0FD, \#i	DRSZ 0FD	DIR	JSRL	LD A, Md	RETSK	$\begin{array}{\|l\|} \text { SBIT } \\ 5,[B] \\ \hline \end{array}$	RBIT 5,[B]	LD B, \#02	IFBNE OD	$\begin{array}{\|c\|} \hline \text { JSR } \\ \times D 00-x \text { DFF } \\ \hline \end{array}$	$\begin{gathered} \text { JMP } \\ \text { xD00-xDFF } \\ \hline \end{gathered}$	JP+30	JP-2	D	
JP-1	JP-17	LD OFE, \#i	DRSZ OFE	LD A, [X]	LD A, [B]	LD [B],\#i	RET	$\begin{array}{\|l\|} \hline \text { SBIT } \\ 6,[B] \\ \hline \end{array}$	RBIT 6,[B]	LD B, \#01	IFBNE 0E	$\begin{array}{\|c} \text { JSR } \\ \times E 00-x E F F \\ \hline \end{array}$	$\begin{gathered} \text { JMP } \\ \times E 00-x E F F \end{gathered}$	$\mathrm{JP}+31$	JP-1	E	
JP-0	JP-16	LD OFF, \#i	DRSZ 0FF	*	*	LD B, \#i	RETI	$\begin{array}{\|l\|} \hline \text { SBIT } \\ 7,[B] \\ \hline \end{array}$	RBIT 7,[B]	LD B, \#00	IFBNE OF	$\begin{gathered} \text { JSR } \\ x F 00-x F F F \end{gathered}$	$\begin{gathered} \text { JMP } \\ \text { xF00-xFFF } \end{gathered}$	JP+32	JP-0	F	

[^10]Md is a directly addressed memory location

* is an unused opcode

The opcode 60 Hex is also the opcode for IFBIT \#i,A

Ordering and Development Support
COP8788CF1COP8784CF Ordering Information

Device Number	Clock   Option	Package	Emulates
COP8788CFV－X	Crystal   COP8788CFV－R	44 PLCC	COP888CF
COP8788CFN－X	Crystal	40 DIP	COP888CF
COP8788CFN－R＊	R／C	28 DIP	COP884CF
COP8784CFN－X	Crystal	28 SO	COP884CF
COP8784CFN－R＊	Crystal   COP8784CFWM－X＊	R／C	
COP8784CFWM－R＊			

＊Check with the local sales office about the availability．
PROGRAMMING SUPPORT
Programming of these emulator devices is supported by different sources．The following programmers are certified for program－ ming these One－Time Programmable emulator devices：

EPROM Programmer Information

Manufacturer and Product	U．S．   Phone No．	Europe Phone No．	Asia   Phone No．
MetaLink－ Debug Module	（602）926－0797	Germany： $+49-8141-1030$	Hong Kong： 852－737－1800
Xeltek－   Superpro	（408）745－7974	Germany： $(49-20-41) 684758$	Singapore： (65) 276-6433
BP Microsystems－ Turpro	（800）225－2102	Germany： （49－89－85） 76667	Hong Kong： （852）388－0629
Data I／O－Unisite －System 29 －System 39	（800）322－8246	Europe： +31-20-622866   Germany： $+49-89-85-8020$	Japan： $+33-432-6991$
Abcom－COP8 programmer		$\begin{aligned} & \text { Europe: } \\ & +89808707 \end{aligned}$	
System General－   Turpro－1—FX   －APRO	（408）263－6667	Switzerland： $+31-921-7844$	Taiwan： $+2-917-3005$

## Development System Support

## IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 In-Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface or maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real time, full speed emulation up to $10 \mathrm{MHz}, 32$ kbytes of emulation memory and 4 k frames of trace buffer memory. The user may define as many as 32 k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.

During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.
The iceMASTER's performance analyzer offers a resolution of better than 6 s . The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bar graph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, Examine and mouify. Tile contenis of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy to use window interface. Each window can be sized, highlighted, colorcontrolled, added, or removed completely. Commands can be accessed via pull-down menus and/or redefinable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PCRM via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time to under 3 seconds.

The following tables list the emulator and probe cards ordering information.

## Emulator Ordering Information

Part   Number	Description	Current   Version
IM-COP8/   $400 / 1 \dagger$	MetaLink base unit in-   circuit emulator for all   COP8 devices, symbolic   debugger software and   RS-232 serial interface   cable, with 110V @   60 Hz Power Supply.	
IM-COP8/	MetaLink base unit in-   circuit emulator for all   COP8 devices, symbolic   debugger software and	Host Software:   Ver. 3.3 Rev. 5,   Model File   Rev 3.050.
RS-232 serial interface   cable, with 220V @   50 Hz Power Supply.		
DM-COP8/	MetaLink iceMASTER   Debug Module. This is   the low cost version of   the MetaLink   iceMASTER. Firmware:   Ver. 6.07.	

$\dagger$ These parts include National's COP8 Assembler/Linker/Librarian Package (COP8-DEV-IBMA).

Probe Card Ordering Information

Part Number	Package	Voltage   Range	Emulates
MHW-884CF28D5PC	28 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP884CF
MHW-884CF28DWPC	28 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP884CF
MHW-888CF40D5PC	40 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888CF
MHW-888CF40DWPC	40 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP888CF
MWH-888CF44D5PC	44 PLCC	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888CF
MHW-888CF44DWPC	44 PLCC	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP888CF

## MACRO CROSS ASSEMBLER

National Semiconductor offers a relocatable COP8 macro cross assembler. It runs on industry standard compatible PCs and supports all of the full-symbolic debugging features of the MetaLink iceMASTER emulators.

Assembler Ordering Information

Part Number	Description	Manual
COP8-DEV-IBMA	COP8Assembler/   Linker/Librarian   for IBM ${ }^{\text {® }}$   PC/XT®,   AT* or compatible.	424410632-001

## Development System Support <br> \section*{(Continued)}

## DIAL-A-HELPER

Dial-A-Helper is a service provided by the Microcontroller Applications group. The Dial-A-Helper is an Electronic Bulletin Board Information system.

## INFORMATION SYSTEM

The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communications to and from the Microcontroller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found. The minimum requirement for accessing the Dial-A-Helper is a Hayes compatible modem.
If the user has a PC with a communications package then files from the FILE SECTION can be down loaded to disk for later use.

## ORDER PIN: MOLE-DIAL-A-HLP

Information System Package Contents:
Dial-A-Helper Users Manual
Public Domain Communications Software

## FACTORY APPLICATIONS SUPPORT

Dial-A-Helper also provides immediate factor applications support. If a user has questions, he can leave messages on our electronic bulletin board, which we will respond to.
Voice: (800) 272-9959
Modem: CANADA/U.S.: (800) NSC-MICRO
(800) 672-6427

Baud: $\quad 14.4 \mathrm{k}$
Set-Up: Length: 8-Bit
Parity: None
Stop Bit: 1
Operation: 24 Hours, 7 Days

## COP8788EG/COP8784EG microCMOS One-Time Programmable (OTP) Microcontrollers

## General Description

The COP8788EG/COP8784EG programmable microcontrollers are members of the COPSTM microcontroller family. Each device is a two chip system in a plastic package. Within the package is the COP888EG and an 8k EPROM with port recreation logic. The code executes out of the EPROM. The device is offered in four packages: 44-pin PLCC, 40-pin DIP, 28-pin DIP and 28 -pin SO.
The COP8788EG/COP8784EG are fully static, fabricated using double-metal silicon gate microCMOS technology. Features include an 8 -bit memory mapped architecture, MICROWIRE/PLUSTM serial I/O, three 16-bit timer/counters supporting three modes (Processor Independent PWM generation, External Event counter, and Input Capture mode capabilities), full duplex UART and two comparators. Each I/O pin has software selectable configurations. The devices operates over a voltage range of 4.5 V to 5.5 V . High throughput is achieved with an efficient, regular instruction set operating at a maximum of $1 \mu \mathrm{~s}$ per instruction rate.
The COP8788EG/COP8784EG devices can be used to provide form fit and function emulation for the COP888EG/ COP884EG, COP888CG/COP884CG and COP888CS/ COP884CS family of mask programmable devices. The user must pay special attention, since the COP8788EG/ COP8784EG devices contain additional features and are supersets of COP888CG/COP884CG and COP888CS/ COP884CS. The following table shows the differences between the various devices.

	ncia   (Bytes)	nïivi   (Bytes)	Timers	\# of   Compa-   rators
COP8788EG/   COP8784EG	$8 k$	256	T0, T1, T2, T3	2
COP888EG/   COP884EG	$8 k$	256	T0, T1, T2, T3	2
COP888CG/   COP884CG	$4 k$	192	T0, T1, T2, T3	2
COP888CS/   COP884CS	$4 k$	192	T0, T1	1

## Features

- Low cost 8 -bit microcontroller
- Fully static CMOS, with low current drain
- $1 \mu$ s instruction cycle time
- 8192 bytes on-board EPROM
- 256 bytes on-board RAM
- Single supply operation: $4.5 \mathrm{~V}-5.5 \mathrm{~V}$
- Full duplex UART
- Two analog comparators
- MICROWIRE/PLUSTM serial I/O
- WATCHDOGTM and Clock monitor logic
- Idle Timer
- Multi-Input Wake Up (MIWU) with optional interrupts (8)
- Fourteen multi-source vectored interrupts servicing
- External interrupt
- Idle Timer TO
- Two Timers (each with 2 interrupts)
— MICROWIRE/PLUS
- Multi-Input Wake up
- Software Trap
- UART (2)
— Default VIS
- Three 16 -bit timers, each with two 16 -bit registers supporting:
- Processor Independent PWM mode
- External Event counter mode
- Input Capture mode
m 8-bit Stack Pointer SP (stack in RAM)
- Two ô-iit Fegister Indirect Data Memory Pointers (B and X)
- Versatile instruction set with true bit manipulation
- Memory mapped I/O
- BCD arithmetic instructions
- Package:
- 44 PLCC with 39 I/O pins
-40 DIP with 35 I/O pins
-28 DIP with 23 I/O pins
- 28 SO with 23 I/O pins (contact local sales office for availability)
■ Software selectable I/O options
- TRI-STATE ${ }^{@}$ Output
- Push-Pull Output
— Weak Pull Up Input
- High Impedance Input
- Schmitt trigger inputs on ports $G$ and $L$
- Form fit and function emulation device for the COP888EG/COP884EG, COP888CG/COP884CG and COP888CS/COP884CS
- Real time emulation and full program debug offered by MetaLink's Development Systems


## Connection Diagrams




TLIDD12064－2

Top View
Order Number COP8788EGN－X，COP8788EGN－R See NS Package Number N40A


TL／DD12064－3
Top View
Order Number COP8784EGN－X，COP8784EGN－R， COP8784EGWM－X or COP8784EGWM－R See NS Package Number M28B or N28A

FIGURE 1．COP8788EG／COP8784EG Connection Diagrams

Pinouts for 28-, 40- and 44-Pin Packages

Port	Type	Alt. Fun	Alt. Fun	28-Pin Pkg.	40-Pin Pkg.	44-Pin Pkg.
L0	1/0	MIWU		11	17	17
L1	$1 / 0$	MIWU	CKX	12	18	18
L2	1/O	MIWU	TDX	13	19	19
L3	1/0	MIWU	RDX	14	20	20
L4	1/0	MIWU	T2A	15	21	25
L5	1/0	MIWU	T2B	16	22	26
L6	1/0	MIWU	T3A	17	23	27
L7	1/O	MIWU	T3B	18	24	28
G0	1/0	INT	ALE	25	35	39
G1	WDOUT			26	36	40
G2	1/0	T1B	$\overline{W R}$	27	37	41
G3	1/0	T1A	$\overline{\mathrm{RD}}$	28	38	42
G4	1/0	SO		1	3	3
G5	1/0	SK		2	4	4
G6	1	SI	ME	3	5	5
G7	I/CKO	HALT Restart		4	6	6
D0	0		ADO	19	25	29
D1	0		AD1	20	26	30
D2	0		AD2	21	27	31
D3	0		AD3	22	28	32
10	1			7	9	9
11	1	COMP1IN-		8	10	10
12	1	COMP1IN+		9	11	11
13	1	COMP1OUT		10	12	12
14	1	COMP2IN-			13	13
15	1	COMP2IN+			14	14
16	1	COMP2OUT			15	15
17	1				16	16
D4	0		AD4		29	33
D5	0		AD5		30	34
D6	0		AD6		31	35
D7	0		AD7		32	36
C0	1/0				39	43
C1	$1 / 0$				40	44
C2	1/0				1	1
C3	1/0				2	2
C4	1/0					21
C5	$1 / 0$					22
C6	1/0					23
C7	1/0					24
$V_{\text {CC }}$				6	8	8
GND				23	33	37
CKI				5	7	7
RESET			$V_{\text {PP }}$	24	34	38

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (VCC)
$7 V$
Voltage at Any Pin $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Total Current into VCC Pin (Source) 100 mA

$$
\begin{array}{lr}
\text { Total Current out of GND Pin (Sink) } & 110 \mathrm{~mA} \\
\text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+140^{\circ} \mathrm{C}
\end{array}
$$

Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

DC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Operating Voltage		4.5		5.5	V
Power Supply Ripple (Note 1)	Peak-to-Peak			$0.1 \mathrm{~V}_{\mathrm{CC}}$	V
Supply Current (Note 2) $\mathrm{CKI}=10 \mathrm{MHz}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$			25	mA
HALT Current (Note 3)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CKI}=0 \mathrm{MHz}$		250		$\mu \mathrm{A}$
IDLE Current $\mathrm{CKI}=10 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{t}_{\mathrm{C}}=1 \mu \mathrm{~s}$			15	mA
```Input Levels RESET Logic High Logic Low CKI (External and Crystal Osc. Modes) Logic High Logic Low All Other Inputs Logic High Logic Low```	$\cdots$	$\begin{aligned} & 0.8 V_{C C} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	;	$\begin{aligned} & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & 0.2 \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Hi-Z Input Leakage	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
Input Pullup Current	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	40		250	$\mu \mathrm{A}$
G and L Port Input Hysteresis			0.05 V CC	$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
Output Current Levels D Outputs Source Sink All Others Source (Weak Pull-Up Mode) Source (Push-Pull Mode) Sink (Push-Pull Mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0.4 \\ 10 \\ 10 \\ 0.4 \\ 1.6 \end{gathered}$		100	mA mA $\mu \mathrm{A}$ mA mA
TRI-STATE Leakage	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	-2		$+2$	$\mu \mathrm{A}$
Allowable Sink/Source Current per Pin D Outputs (Sink) All others				$\begin{gathered} 15 \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Maximum Input Current without Latchup (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			± 100	mA
RAM Retention Voltage, V_{r}	500 ns Rise and Fall Time (Min)	2			V
Input Capacitance				7	pF
Load Capacitance on D2				1000	pF

Note 1: Rate of voltage change must be less then $0.5 \mathrm{~V} / \mathrm{ms}$.
Note 2: Supply current is measured after running 2000 cycles with a square wave CKI input, CKO open, inputs at rails and outputs open.
Note 3: The HALT mode will stop CKI from oscillating in the RC and the Crystal configurations. Test conditions: All inputs tied to $V_{C C}$, L and G ports in the TRI-STATE mode and tied to ground, all outputs low and tied to ground. The clock monitor is disabled.
Note 4: Pins G6 and $\overline{\text { RESET }}$ are designed with a high voltage input network for factory testing. These pins allow input voltages greater than $V_{C C}$ and the pins will have sink current to $V_{C C}$ when biased at voltages greater than $V_{C C}$ (the pins do not have source current when biased at a voltage below $V_{C C}$). The effective resistance to $V_{C C}$ is 750Ω (typical). These two pins will not latch up. The voltage at the pins must be limited to less than 14 V .

AC Electrical Characteristics $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Instruction Cycle Time (t_{c}) Crystal, Resonator, R/C Oscillator		$\begin{aligned} & 1 \\ & 3 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
```CKI Clock Duty Cycle (Note 5) Rise Time (Note 5) Fall Time (Note 5)```	$\begin{aligned} & \mathrm{f}_{\mathrm{r}}=\mathrm{Max} \\ & \mathrm{f}_{\mathrm{r}}=10 \mathrm{MHz} \text { Ext Clock } \\ & \mathrm{f}_{\mathrm{r}}=10 \mathrm{MHz} \text { Ext Clock } \end{aligned}$	40		$\begin{gathered} 60 \\ 5 \\ 5 \\ \hline \end{gathered}$	\%   ns   ns
Inputs tsetup thold		$\begin{gathered} 200 \\ 60 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Output Propagation Delay tPD1, $\mathrm{t}_{\text {PDO }}$ SO, SK All Others	$\mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			$\begin{gathered} 0.7 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
MICROWIRETM Setup Time (tuws)   MICROWIRE Hold Time (tuwh)   MICROWIRE Output Propagation Delay (tupD)		$\begin{aligned} & 20 \\ & 56 \end{aligned}$		220	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
Input Pulse Width Interrupt Input High Time Interrupt Input Low Time Timer Input High Time Timer Input Low Time		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$			$\begin{aligned} & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \mathrm{t}_{\mathrm{c}} \\ & \hline \end{aligned}$
Reset Pulse Width		1			$\mu \mathrm{s}$

Note 5: Parameter sample (not 100\% tested).
Comparators AC and DC Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage	$0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$		$\pm 10$	$\pm 25$	mV
Input Common Mode Voltage Range		0.4		$\mathrm{~V}_{\mathrm{CC}}-1.5$	V
Low Level Output Current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.6			mA
High Level Output Current	$\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{~V}$	1.6			mA
DC Supply Current Per Comparator   (When Enabled)				250	$\mu \mathrm{~A}$
Response Time	TBD mV Step, TBD mV   Overdrive, 100 pF Load		1		$\mu \mathrm{~s}$



FIGURE 2. MICROWIRE/PLUS Timing

## Pin Descriptions

$V_{C C}$ and GND are the power supply pins.
CKI is the clock input. This can come from an R/C generated oscillator, or a crystal oscillator (in conjunction with CKO). See Oscillator Description section.
$\overline{\text { RESET }}$ is the master reset input. See Reset Description section.
The device contains three bidirectional 8-bit I/O ports (C, G and L ), where each individual bit may be independently configured as an input (Schmitt trigger inputs on ports $L$ and $G$ ), output or TRI-STATE under program control. Three data memory address locations are allocated for each of these 1/O ports. Each I/O port has two associated 8-bit memory mapped registers, the CONFIGURATION register and the output DATA register. A memory mapped address is also reserved for the input pins of each I/O port. (See the memory map for the various addresses associated with the I/O ports.) Figure 3 shows the I/O port configurations. The DATA and CONFIGURATION registers allow for each port bit to be individually configured under software control as shown below:

CONFIGURATION   Register	DATA   Register	Port Set-Up
0	0	Hi-Z Input   (TRI-STATE Output)
0	1	Input with Weak Pull-Up
1	0	Push-Pull Zero Output
1	1	Push-Pull One Output

PORT L is an 8-bit I/O port. All L-pins have Schmitt triggers on the inputs.
Port L supports Multi-Input Wake Up (MIWU) on all eight pins. L1 is used for the UART external clock. L2 and L3 are used for the UART transmit and receive. L4 and L5 are used for the timer input functions T2A and T2B. L6 and L7 are used for the timer input functions T3A and T3B.
Port $L$ has the following alternate features:

L0	MIWU
L1	MIWU or CKX
L2	MIWU or TDX
L3	MIWU or RDX
L4	MIWU or T2A
L5	MIWU or T2B
L6	MIWU or T3A
L7	MIWU or T3B

Port G is an 8-bit port with 5 I/O pins (G0, G2-G5), an input pin (G6), and two dedicated output pins (G1 and G7). Pins G0 and G2-G6 all have Schmitt Triggers on their inputs. Pin G1 serves as the dedicated WDOUT WATCHDOG output, while pin G7 is either input or output depending on the oscillator mask option selected. With the crystal oscillator option selected, G7 serves as the dedicated output pin for the CKO clock output. With the single-pin R/C oscillator mask option selected, G7 serves as a general purpose input pin but is also used to bring the device out of HALT mode with a low to high transition on G7. There are two registers associated with the G Port, a data register and a configuration register. Therefore, each of the 5 I/O bits (G0, G2-G5) can be individually configured under software control.


FIGURE 3. I/O Port Configurations

## Pin Descriptions (Continued)

Since G6 is an input only pin and G7 is the dedicated CKO clock output pin (crystal clock option) or general purpose input (R/C clock option), the associated bits in the data and configuration registers for G6 and G7 are used for special purpose functions as outlined below. Reading the G6 and G7 data bits will return zeros.
Note that the chip will be placed in the HALT mode by writing a " 1 " to bit 7 of the Port G Data Register. Similarly the chip will be placed in the IDLE mode by writing a " 1 " to bit 6 of the Port G Data Register.
Writing a " 1 " to bit 6 of the Port G Configuration Register enables the MICROWIRE/PLUS to operate with the alternate phase of the SK clock. The G7 configuration bit, if set high, enables the clock start up delay after HALT when the R/C clock configuration is used.

	Config Reg.	Data Reg.
G7	CLKDLY	HALT
G6	Alternate SK	IDLE

Port G has the following alternate features:
GO INTR (External Interrupt Input)
G2 T1B (Timer T1 Capture Input)
G3 T1A (Timer T1 I/O)
G4 SO (MICROWIRE Serial Data Output)
G5 SK (MICROWIRE Serial Clock)
G6 SI (MICROWIRE Serial Data Input)
Port G has the following dedicated functions:
G1 WDOUT WATCHDOG and/or Clock Monitor dedicated output
G7 CKO Oscillator dedicated output or general purpose input
Port C is an 8 -bit I/O port. The 40-pin device does not have a full complement of Port $C$ pins. The unavailable pins are noi ierminated. A read operation for these unterminated pins will return unpredictable values.
PORT I is an eight-bit Hi-Z input port. The 28 -pin device does not have a full complement of Port I pins. The unavailable pins are not terminated i.e., they are floating. A read operation for these unterminated pins will return unpredictable values. The user must ensure that the software takes this into account by either masking or restricting the accesses to bit operations. The unterminated Port I pins will draw power only when addressed. The I port leakage may be higher in 28 -pin devices.
Port I1-13 are used for Comparator 1. Port 14-16 are used for Comparator 2.
The Port I has the following alternate features.
11 COMP1 - IN (Comparator 1 Negative Input)
12 COMP1 + IN (Comparator 1 Positive Input)
13 COMP1OUT (Comparator 1 Output)
14 COMP2-IN (Comparator 2 Negative Input)
$15 \quad$ COMP2 + IN (Comparator 2 Positive Input)
16 COMP2OUT (Comparator 2 Output)
Port $D$ is a recreated 8 -bit output port that is preset high when RESET goes low. D port recreation is one clock cycle behind normal port timing. The user can tie two or more D port outputs (except D2) together in order to get a higher drive.

## Functional Description

The architecture of the device is modified Harvard architecture. With the Harvard architecture, the control store program memory (ROM) is separated from the data store memory (RAM). Both ROM and RAM have their own separate addressing space with separate address buses. The architecture, though based on Harvard architecture, permits transfer of data from ROM to RAM.

## CPU REGISTERS

The CPU can do an 8 -bit addition, subtraction, logical or shift operation in one instruction ( $\mathrm{t}_{\mathrm{c}}$ ) cycle time.
There are six CPU registers:
A is the 8-bit Accumulator Register
PC is the 15 -bit Program Counter Register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
$B$ is an 8 -bit RAM address pointer, which can be optionally post auto incremented or decremented.
X is an 8-bit alternate RAM address pointer, which can be optionally post auto incremented or decremented.
SP is the 8-bit stack pointer, which points to the subroutine/ interrupt stack (in RAM). The SP is initialized to RAM address 06F with reset.
$S$ is the 8 -bit Data Segment Address Register used to extend the lower half of the address range ( 00 to 7F) into 256 data segments of 128 bytes each.
All the CPU registers are memory mapped with the exception of the Accumulator (A) and the Program Counter (PC).

## PROGRAM MEMORY

The program memory consists of 8092 bytes of ROM. These bytes may hold program instructions or constant data (data tables for the LAID instruction, jump vectors for the JID instruction, and interrupt vectors for the VIS instruction). The program memory is addressed by the 15 -bit program counter (PC). All interrupts in the devices vector to program memory location OFF Hex.

## DATA MEMORY

The data memory address space includes the on-chip RAM and data registers, the I/O registers (Configuration, Data and Pin), the control registers, the MICROWIRE/PLUS SIO shift register, and the various registers, and counters associated with the timers (with the exception of the IDLE timer). Data memory is addressed directly by the instruction or indirectly by the $\mathrm{B}, \mathrm{X}, \mathrm{SP}$ pointers and S register.
The data memory consists of 256 bytes of RAM. Sixteen bytes of RAM are mapped as "registers" at addresses OFO to OFF Hex. These registers can be loaded immediately, and also decremented and tested with the DRSZ (decrement register and skip if zero) instruction. The memory pointer registers $X, S P, B$ and $S$ are memory mapped into this space at address locations OFC to OFF Hex respectively , with the other registers being available for general usage. The instruction set permits any bit in memory to be set, reset or tested. All I/O and registers (except A and PC) are memory mapped; therefore, I/O bits and register bits can be directly and individually set, reset and tested. The accumulator (A) bits can also be directly and individually tested.

## Data Memory Segment RAM Extension

Data memory address OFF is used as a memory mapped location for the Data Segment Address Register ( S ).
The data store memory is either addressed directly by a single byte address within the instruction, or indirectly relative to the reference of the B, X, or SP pointers (each contains a single-byte address). This single-byte address allows an addressing range of 256 locations from 00 to FF hex. The upper bit of this single-byte address divides the data store memory into two separate sections as outlined previously. With the exception of the RAM register memory from address locations 00FO to OOFF, all RAM memory is memory mapped with the upper bit of the single-byte address being equal to zero. This allows the upper bit of the single-byte address to determine whether or not the base address range (from 0000 to 00 FF ) is extended. If this upper bit equals one (representing address range 0080 to 00FF), then address extension does not take place. Alternatively, if this upper bit equals zero, then the data segment extension register $S$ is used to extend the base address range (from 0000 to 007F) from XX00 to XX7F, where XX represents the 8 bits from the S register. Thus the 128 -byte data segment extensions are located from addresses 0100 to 017 F for data segment 1,0200 to 027 F for data segment 2 , etc., up to FF00 to FF7F for data segment 255. The base address range from 0000 to 007F represents data segment 0.
Figure 4 illustrates how the S register data memory extension is used in extending the lower half of the base address range ( 00 to 7 F hex) into 256 data segments of 128 bytes each, with a total addressing range of 32 kbytes from XX00 to XX7F. This organization allows a total of 256 data segments of 128 bytes each with an additional upper base segment of 128 bytes. Furthermore, all addressing modes are available for all data segments. The $S$ register must be changed under program control to move from one data segment (128 bytes) to another. However, the upper base segment (containing the 16 memory registers, I/O registers, control registers, etc.) is always available regardless of the contents of the S register, since the upper base segment (address range 0080 to 00FF) is independent of data segment extension.

The instructions that utilize the stack pointer (SP) always reference the stack as part of the base segment (Segment 0 ), regardless of the contents of the $S$ register. The $S$ register is not changed by these instructions. Consequently, the stack (used with subroutine linkage and interrupts) is always located in the base segment. The stack pointer will be intitialized to point at data memory location 006F as a result of reset.
The 128 bytes of RAM contained in the base segment are split between the lower and upper base segments. The first 116 bytes of RAM are resident from address 0000 to 006F in the lower base segment, while the remaining 16 bytes of RAM represent the 16 data memory registers located at addresses 00F0 to 00FF of the upper base segment. No RAM is located at the upper sixteen addresses ( 0070 to 007F) of the lower base segment.
Additional RAM beyond these initial 128 bytes, however, will always be memory mapped in groups of 128 bytes (or less) at the data segment address extensions (XX00 to XX7F) of the lower base segment. The additional 128 bytes of RAM are memory mapped at address locations 0100 to 017F hex.


## FIGURE 4. RAM Organizatlon

## Reset

The RESET input when pulled low initializes the microcontroller. Initialization will occur whenever the RESET input is pulled low. Upon initialization, the data and configuration registers for ports $\mathrm{L}, \mathrm{G}$ and C are cleared, resulting in these Ports being initialized to the TRI-STATE mode. Pin G1 of the G Port is an exception (as noted below) since pin G1 is dedicated as the WATCHDOG and/or Clock Monitor error output pin. Port D is set high. The PC, PSW, ICNTRL, CNTRL, T2CNTRL and T3CNTRL control registers are cleared. The UART registers PSR, ENU (except that TBMT bit is set), ENUR and ENUI are cleared. The Comparator Select Register is cleared. The S register is initialized to zero. The Multi-Input Wake Up registers WKEN, WKEDG and WKPND are cleared. The stack pointer, SP, is initialized to 6F Hex.

The device comes out of reset with both the WATCHDOG logic and the Clock Monitor detector armed, with the WATCHDOG service window bits set and the Clock Monitor bit set. The WATCHDOG and Clock Monitor circuits are inhibited during reset. The WATCHDOG service window bits being initialized high default to the maximum WATCHDOG service window of $64 \mathrm{k} \mathrm{t}_{\mathrm{c}}$ clock cycles. The Clock Monitor bit being initialized high will cause a Clock Monitor error following reset if the clock has not reached the minimum specified frequency at the termination of reset. A Clock Monitor error will cause an active low error output on pin G1. This error output will continue until $16 \mathrm{t}_{\mathrm{c}}-32 \mathrm{t}_{\mathrm{c}}$ clock cycles following the clock frequency reaching the minimum specified value, at which time the G1 output will enter the TRI-STATE mode.
The external RC network shown in Figure 5 should be used to ensure that the RESET pin is held low until the power supply to the chip stabilizes.
Note: Continual state of reset will cause the device to draw excessive current.

Reset (Continued)


RC $>5 \times$ Power Supply Rise Time
FIGURE 5. Recommended Reset Circuit

## Oscillator Circuits

The chip can be driven by a clock input on the CKI input pin which can be between DC and 10 MHz . The CKO output clock is on pin G7 (crystal configuration). The CKI input frequency is divided down by 10 to produce the instruction cycle clock ( $1 / \mathrm{t}_{\mathrm{c}}$ ).
Figure 6 shows the Crystal and R/C diagrams.


TL/DD12064-8
FIGURE 6. Crystal and R/C Oscillator Dlagrams

## CRYSTAL OSCILLATOR

CKI and CKO can be connected to make a closed loop coystal (or resenator) controlled cscillatori.
Table I shows the component values required for various standard crystal values.

TABLE I. Crystal Oscillator Configuration, $\mathrm{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

$\mathbf{R 1}$   $(\mathbf{k} \Omega)$	$\mathbf{R 2}$   $(\mathbf{M} \Omega)$	$\mathbf{C 1}$   $(\mathbf{p F})$	$\mathbf{C 2}$   $\mathbf{( p F})$	CKI Freq   $(\mathbf{M H z})$	Conditions
0	1	30	$30-36$	10	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	30	$30-36$	4	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
0	1	200	$100-150$	0.455	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

## R/C OSCILLATOR

By selecting CKI as a single pin oscillator input, a single pin R/C oscillator circuit can be connected to it. CKO is available as a general purpose input, and/or HALT restart pin.

Table Il shows the variation in the oscillator frequencies as functions of the component ( R and C ) values.

TABLE II. R/C Oscillator Configuration, $\mathrm{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

$\mathbf{R}$   $(\mathbf{k} \Omega)$	$\mathbf{C}$   $(\mathbf{p F})$	CKI Freq   $(\mathbf{M H z})$	Instr. Cycle   $(\mu \mathbf{s})$	Conditions
3.3	82	$2.2-2.7$	$3.7-4.6$	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
5.6	100	$1.1-1.3$	$7.4-9.0$	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
6.8	100	$0.9-1.1$	$8.8-10.8$	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

Note: $3 k \leq R \leq 200 k$

$$
50 \mathrm{pF} \leq \mathrm{C} \leq 200 \mathrm{pF}
$$

## Current Drain

The total current drain of the chip depends on:

1. Oscillator operation mode-11
2. Internal switching current-I2
3. Internal leakage current-13
4. Output source current-14
5. DC current caused by external input not at $\mathrm{V}_{\mathrm{CC}}$ or GND 15
6. Clock Monitor current when enabled-16
7. Clock Monitor current when enabled-17

Thus the total current drain, It , is given as

$$
\mathrm{It}=11+12+13+14+15+16+17
$$

The chip will draw more current as the CKI input frequency increases up to the maximum 10 MHz value. Operating with a crystal network will draw more current than an external square-wave. Switching current, governed by the equation below, can be reduced by lowering voltage and frequency. Leakage current can be reduced by lowering voltage and temperature. The other two items can be reduced by carefully designing the end-user's system.

$$
\mathrm{I} 2=\mathrm{C} \times \mathrm{V} \times f
$$

where $C=$ equivalent capacitance of the chip

$$
\begin{aligned}
y & =\text { oporating voltago } \\
f & =\text { CKI frequency }
\end{aligned}
$$

## Control Registers

CNTRL Register (Address X'OOEE)
The Timer1 (T1) and MICROWIRE/PLUS control register contains the following bits:
SL1 \& SLO Select the MICROWIRE/PLUS clock divide by ( $00=2,01=4,1 x=8$ )
IEDG External interrupt edge polarity select ( $0=$ Rising edge, $1=$ Falling edge)
MSEL Selects G5 and G4 as MICROWIRE/PLUS signals SK and SO respectively
T1C0 Timer T1 Start/Stop control in timer modes 1 and 2
Timer T1 Underflow Interrupt Pending Flag in timer mode 3
T1C1 Timer T1 mode control bit
T1C2 Timer T1 mode control bit
T1C3 Timer T1 mode control bit

T1C3	T1C2	T1C1	T1C0	MSEL	IEDG	SL1	SL0

## Control Registers (Continued)

PSW Register (Address X'00EF)
The PSW register contains the following select bits:
GIE Global interrupt enable (enables interrupts)
EXEN Enable external interrupt
BUSY MICROWIRE/PLUS busy shifting flag
EXPND External interrupt pending
T1ENA Timer T1 Interrupt Enable for Timer Underflow or T1A Input capture edge
T1PNDA Timer T1 Interrupt Pending Flag (Autoreload RA in mode 1, T1 Underflow in Mode 2, T1A capture edge in mode 3)
C Carry Flag
HC Half Carry Flag

HC	C	T1PNDA	T1ENA	EXPND	BUSY	EXEN	GIE
Bit 7	Bit 0						

The Half-Carry bit is also affected by all the instructions that affect the Carry flag. The SC (Set Carry) and RC (Reset Carry) instructions will respectively set or clear both the carry flags. in addition to the SC and RC instructions, ADC, SUBC, RRC and RLC instructions affect the carry and Half Carry flags.

ICNTRL Register (Address X'00E8)
The ICNTRL register contains the following bits:
T1ENB Timer T1 Interrupt Enable for T1B Input capture edge
T1PNDB Timer T1 Interrupt Pending Flag for T1B capture edge
WEN Enable MICROWIRE/PLUS interrupt
WPND MICROWIRE/PLUS interrupt pending
TOEN Timer TO Interrupt Enable (Bit 12 toggle)
TOPND Timer TO Interrupt pending
LPEN L Port Interrupt Enable (Multi-Input Wake Up/ Interrupt)
Bit 7 could be used as a flag

Unused	LPEN	TOPND	TOEN	WPND	WEN	T1PNDB	T1ENB
Bit 7		Bit 0					

## T2CNTRL Register (Address $X^{\prime} 0006$ )

The T2CNTRL register contains the following bits:
T2ENB Timer T2 Interrupt Enable for T2B Input capture edge
T2PNDB Timer T2 Interrupt Pending Flag for T2B capture edge
T2ENA Timer T2 Interrupt Enable for Timer Underflow or T2A Input capture edge
T2PNDA Timer T2 Interrupt Pending Flag (Autoreload RA in mode 1, T2 Underflow in mode 2, T2A capture edge in mode 3)
T2C0 Timer T2 Start/Stop control in timer modes 1 and 2 Timer T2 Underflow Interrupt Pending Flag in timer mode 3

T2C1
T2C2
T2C3

Timer T2 mode control bit
Timer T2 mode control bit
Timer T2 mode control bit

T2C3	T2C2	T2C1	T2C0	T2PNDA	T2ENA	T2PNDB	T2ENB

Bit 7
Bit 0

## T3CNTRL Register (Address X'00B6)

The T3CNTRL register contains the following bits:
T3ENB Timer T3 Interrupt Enable for T3B
T3PNDB Timer T3 Interrupt Pending Flag for T3B pin (T3B capture edge)
T3ENA Timer T3 Interrupt Enable for Timer Underflow or T3A pin
T3PNDA Timer T3 Interrupt Pending Flag (Autoload RA in mode 1, T3 Underflow in mode 2, T3a capture edge in mode 3 )
T3C0 Timer T3 Start/Stop control in timer modes 1 and 2
Timer T3 Underflow Interrupt Pending Flag in timer mode 3
T3C1 Timer T3 mode control bit
T3C2 Timer T3 mode control bit
T3C3 Timer T3 mode control bit

T3C3	T3C2	T3C1	T3CO	T3PNDA	T3ENA	T3PNDB	T3ENB

Bit 7
Bit 0

## Timers

The device contains a very versatile set of timers (TO, T1, T2, T3). All timers and associated autoreload/capture registers power up containing random data.

## TIMER TO (IDLE TIMER)

The devices support applications that require maintaining real time and low power with the IDLE mode. This IDLE mode support is furnished by the IDLE timer TO, which is a 16 -bit timer. The Timer TO runs continuously at the fixed rate of the instruction cycle clock, $t_{c}$. The user cannot read or write to the IDLE Timer T0, which is a count down timer. The Timer TO supports the following functions:
Exit out of the Idle Mode (See Idle Mode description)
WATCHDOG logic (See WATCHDOG description) Start up delay out of the HALT mode.
The IDLE Timer TO can generate an interrupt when the thirteenth bit toggles. This toggle is latched into the TOPND pending flag, and will occur every 4 ms at the maximum clock frequency ( $\mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ). A control flag TOEN allows the interrupt from the thirteenth bit of Timer TO to be enabled or disabled. Setting TOEN will enable the interrupt, while resetting it will disable the interrupt.

## Timers (Continued)

## TIMER T1, TIMER T2 AND TIMER T3

The devices have a set of three powerful timer/counter blocks, T1, T2 and T3. The associated features and functioning of a timer block are described by referring to the timer block Tx. Since the three timer blocks, T1, T2 and T3 are identical, all comments are equally applicable to any of the three timer blocks.
Each timer block consists of a 16-bit timer, Tx, and two supporting 16-bit autoreload/capture registers, RxA and R×B. Each timer block has two pins associated with it, T×A and TxB. The pin TxA supports I/O required by the timer block, while the pin TxB is an input to the timer block. The powerful and flexible timer block allows the device to easily perform all timer functions with minimal software overhead. The timer block has three operating modes: Processor Independent PWM mode, External Event Counter mode, and Input Capture mode.
The control bits TxC3, TxC2, and TxC1 allow selection of the different modes of operation.

## Mode 1. Processor Independent PWM Mode

As the name suggests, this mode allows the device to generate a PWM signal with very minimal user intervention. The user only has to define the parameters of the PWM signal (ON time and OFF time). Once begun, the timer block will continuously generate the PWM signal completely independent of the microcontroller. The user software services the timer block only when the PWM parameters require updating.
In this mode the timer Tx counts down at a fixed rate of $\mathrm{t}_{\mathrm{c}}$. Upon every underflow the timer is alternately reloaded with the contents of supporting registers, R×A and RxB. The very first underflow of the timer causes the timer to reload from the register RxA. Subsequent underflows cause the timer to be reloaded from the registers alternately beginning with the register RxB.
The Tx Timer control bits, TxC3, TxC2 and TxC1 set up the timer for PWM mode operation.
Figure 7 shows a block diagram of the timer in PWM mode. The underflows can be programmed to toggle the TxA output pin. The underflows can also be programmed to generate interrupts.
Underflows from the timer are alternately latched into two pending flags, TxPNDA and TxPNDB. The user must reset these pending flags under software control. Two control enable flags, TxENA and TxENB, allow the interrupts from the timer underflow to be enabled or disabled. Setting the timer enable flag TxENA will cause an interrupt when a timer underflow causes the RxA register to be reloaded into the timer. Setting the timer enable flag TxENB will cause an interrupt when a timer underflow causes the RxB register to be reloaded into the timer. Resetting the timer enable flags will disable the associated interrupts.
Either or both of the timer underflow interrupts may be enabled. This gives the user the flexibility of interrupting once per PWM period on either the rising or falling edge of the PWM output. Alternatively, the user may choose to interrupt on both edges of the PWM output.


## FIGURE 7. Timer in PWM Mode

## Mode 2. External Event Counter Mode

This mode is quite similar to the processor independent PWM mode described above. The main difference is that the timer, Tx , is clocked by the input signal from the TXA pin. The Tx timer control bits, TxC3, TxC2 and TxC1 allow the timer to be clocked either on a positive or negative edge from the TXA pin. Underflows from the timer are latched into the TxPNDA pending flag. Setting the TxENA control flag will cause an interrupt when the timer underflows.
In this mode the input pin TxB can be used as an independent positive edge sensitive interrupt input if the TxENB control flag is set. The occurrence of a positive edge on the TxB input pin is latched into the TxPNDB flag.
Figure 8 shows a block diagram of the timer in External Event Counter mode.
Note: The PWM output is not available in this mode since the TXA pin is being used as the counter input clock.


FIGURE 8. Timer in External Event Counter Mode

## Mode 3. Input Capture Mode

The device can precisely measure external frequencies or time external events by placing the timer block, Tx, in the input capture mode.
In this mode, the timer $\mathrm{Tx}_{\mathrm{x}}$ is constantly running at the fixed $\mathrm{t}_{\mathrm{c}}$ rate. The two registers, $\mathrm{R} \times \mathrm{A}$ and RxB , act as capture registers. Each register acts in conjunction with a pin. The register RXA acts in conjunction with the TXA pin and the register RxB acts in conjunction with the TxB pin.

## Timers (Continued)

The timer value gets copied over into the register when a trigger event occurs on its corresponding pin. Control bits, TxC3, TxC2 and TxC1, allow the trigger events to be specified either as a positive or a negative edge. The trigger condition for each input pin can be specified independently.
The trigger conditions can also be programmed to generate interrupts. The occurrence of the specified trigger condition on the TXA and TxB pins will be respectively latched into the pending flags, TxPNDA and TxPNDB. The control flag TxENA allows the interrupt on TXA to be either enabled or disabled. Setting the TxENA flag enables interrupts to be generated when the selected trigger condition occurs on the TXA pin. Similariy, the flag TxENB controls the interrupts from the TxB pin.
Underflows from the timer can also be programmed to generate interrupts. Underflows are latched into the timer TxC0 pending flag (the TXCO control bit serves as the timer underflow interrupt pending flag in the Input Capture mode). Consequently, the TxCO control bit should be reset when entering the Input Capture mode. The timer underflow interrupt is enabled with the TxENA control flag. When a TxA interrupt occurs in the Input Capture mode, the user must check both the TxPNDA and TxCO pending flags in order to determine whether a TxA input capture or a timer underflow (or both) caused the interrupt.
Figure 9 shows a block diagram of the timer in Input Capture mode.


FIGURE 9. Timer in Input Capture Mode

## TIMER CONTROL FLAGS

The timers T1, T2 and T3 have indentical control structures. The control bits and their functions are summarized below.
TXCO Timer Start/Stop control in Modes 1 and 2 (Processor Independent PWM and External Event Counter), where $1=$ Start, $0=$ Stop Timer Underflow Interrupt Pending Flag in Mode 3 (Input Capture)
TxPNDA Timer Interrupt Pending Flag
TxPNDB Timer Interrupt Pending Flag
TxENA Timer Interrupt Enable Flag
TxENB Timer Interrupt Enable Flag 1 = Timer Interrupt Enabled $0=$ Timer Interrupt Disabled
TxC3 Timer mode control
TxC2 Timer mode control
TxC1 Timer mode control

## Timers (Continued)

The timer mode control bits ( $\mathrm{TxC3}, \mathrm{TxC2}$ and $\mathrm{TxC1}$ ) are detailed below:

TxC3	TxC2	TxC1	Timer Mode	Interrupt A Source	Interrupt B Source	Timer Counts On
0	0	0	MODE 2 (External Event Counter)	Timer Underflow	Pos. TxB Edge	TXA   Pos. Edge
0	0	1	MODE 2 (External Event Counter)	Timer Underflow	Pos. TxB Edge	TxA   Neg. Edge
1	0	1	MODE 1 (PWM) TxA Toggle	Autoreload RA	Autoreload RB	$\mathrm{t}_{\mathrm{c}}$
1	0	0	MODE 1 (PWM)   No TxA Toggle	Autoreload RA	Autoreload RB	$t_{c}$
0	1	0	MODE 3 (Capture)   Captures:   TxA Pos. Edge   TxB Pos. Edge	Pos. TxA   Edge or   Timer   Underflow	Pos. TxB Edge	$\mathrm{t}_{\mathrm{c}}$
1	1	0	MODE 3 (Capture)   Captures:   TxA Pos. Edge   TxB Neg. Edge	Pos. TxA   Edge or   Timer   Underflow	Neg. TxB Edge	$t_{c}$
0	1	1	MODE 3 (Capture)   Captures:   TxA Neg. Edge   TxB Pos. Edge	Neg. TxB   Edge or   Timer   Underflow	Pos. TxB Edge	$\mathrm{t}_{\mathrm{c}}$
1	1	1	MODE 3 (Capture)   Captures:   TxA Neg. Edge   TxB Neg. Edge	Neg. TxA   Edge or   Timer   Underflow	Neg. TxB   Edge	$\mathrm{t}_{\mathrm{c}}$

## Power Save Modes

The devices offer the user two power save modes of opera-
 activities are stopped. In the IDLE mode, the on-board oscillator circuitry the WATCHDOG logic, the Clock Monitor and timer T0 are active but all other microcontroller activities are stopped. In either mode, all on-board RAM, registers, I/O states, and timers (with the exception of TO) are unaltered.

## HALT MODE

The devices can be placed in the HALT mode by writing a " 1 " to the HALT flag (G7 data bit). All microcontroller activities, including the clock and timers, are stopped. The WATCHDOG logic on the device is disabled during the HALT mode. However, the clock monitor circuitry if enabled remains active and will cause the WATCHDOG output pin (WDOUT) to go low. If the HALT mode is used and the user does not want to activate the WDOUT pin, the Clock Monitor should be disabled after the device comes out of reset (resetting the Clock Monitor control bit with the first write to the WDSVR register). In the HALT mode, the power requirements of the device are minimal and the applied voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ may be decreased to $\mathrm{V}_{\mathrm{r}}\left(\mathrm{V}_{\mathrm{r}}=2.0 \mathrm{~V}\right)$ without altering the state of the machine.
The devices support three different ways of exiting the HALT mode. The first method of exiting the HALT mode is with the Multi-Input Wake Up feature on the L port. The second method is with a low to high transition on the CKO (G7) pin. This method precludes the use of the crystal clock configuration (since CKO becomes a dedicated output), and
so may be used with an RC clock configuration. The third meiliod oi exiting ine HALT mode is by pulling the RESET pin low.
Since a crystal or ceramic resonator may be selected as the oscillator, the Wake Up signal is not allowed to start the chip running immediately since crystal oscillators and ceramic resonators have a delayed start up time to reach full amplitude and frequency stability. The IDLE timer is used to generate a fixed delay to ensure that the oscillator has indeed stabilized before allowing instruction execution. In this case, upon detecting a valid Wake Up signal, only the oscillator circuitry is enabled. The IDLE timer is loaded with a value of 256 and is clocked with the $t_{c}$ instruction cycle clock. The $t_{c}$ clock is derived by dividing the oscillator clock down by a factor of 10. The Schmitt trigger following the CKI inverter on the chip ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications. This Schmitt trigger is not part of the oscillator closed loop. The startup timeout from the IDLE timer enables the clock signals to be routed to the rest of the chip.
If an RC clock option is being used, the fixed delay is introduced optionally. A control bit, CLKDLY, mapped as configuration bit G7, controls whether the delay is to be introduced or not. The delay is included if CLKDLY is set, and excluded if CLKDLY is reset. The CLKDLY bit is cleared on reset.

Power Save Modes (Continued)
The WATCHDOG detector circuit is inhibited during the HALT mode. However, the clock monitor circuit if enabled remains active during HALT mode in order to ensure a clock monitor error if the device inadvertently enters the HALT mode as a result of a runaway program or power glitch.

## IDLE MODE

The device is placed in the IDLE mode by writing a " 1 " to the IDLE flag (G6 data bit). In this mode, all activities, except the associated on-board oscillator circuitry, the WATCHDOG logic, the clock monitor and the IDLE Timer TO, are stopped. The power supply requirements of the mi-cro-controller in this mode of operation are typically around $30 \%$ of normal power requirement of the microcontroller.
As with the HALT mode, the device can be returned to normal operation with a reset, or with a Multi-Input Wake Up from the L Port. Alternately, the microcontroller resumes normal operation from the IDLE mode when the thirteenth bit (representing 4.096 ms at internal clock frequency of $1 \mathrm{MHz}, \mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}$ ) of the IDLE Timer toggles.
This toggle condition of the thirteenth bit of the IDLE Timer TO is latched into the TOPND pending flag.
The user has the option of being interrupted with a transition on the thirteenth bit of the IDLE Timer TO. The interrupt can be enabled or disabled via the TOEN control bit. Setting the TOEN flag enables the interrupt and vice versa.

The user can enter the IDLE mode with the Timer T0 interrupt enabled. In this case, when the TOPND bit gets set, the device will first execute the Timer T0 interrupt service routine and then return to the instruction following the "Enter Idle Mode" instruction.
Alternatively, the user can enter the IDLE mode with the IDLE Timer TO interrupt disabled. In this case, the device will resume normal operation with the instruction immediately following the "Enter IDLE Mode" instruction.
Note: It is necessary to program two NOP instructions following both the set HALT mode and set IDLE mode instructions. These NOP instructions are necessary to allow clock resynchronization following the HALT or IDLE modes.
Due to the on-board 8k EPROM with port recreation logic, the HALT/IDLE current is much higher compared to the equivalent masked port.

## Multi-Input Wake Up

The Multi-Input Wake Up feature is ued to return (Wake Up) the device from either the HALT or IDLE modes. Alternately Multi-Input Wake Up/Interrupt feature may also be used to generate up to 8 edge selectable external interrupts.
Figure 10 shows the Multi-Input Wake Up logic. The MultiInput Wake Up feature utilizes the L Port. The user selects which particular $L$ port bit (or combination of $L$ Port bits) will cause the device to exit the HALT or IDLE modes. The selection is done through the Reg: WKEN. The Reg: WKEN


TL/DD12064-12
FIGURE 10. Multi-Input Wake Up Logic

## Multi－Input Wake Up（Continued）

is an 8 －bit read／write register，which contains a control bit for every $L$ port bit．Setting a particular WKEN bit enables a Wake Up from the associated L port pin．
The user can select whether the trigger condition on the selected L Port pin is going to be either a positive edge（low to high transition）or a negative edge（high to low transition）． This selection is made via the Reg：WKEDG，which is an 8 －bit control register with a bit assigned to each L Port pin． Setting the control bit will select the trigger condition to be a negative edge on that particular L Port pin．Resetting the bit selects the trigger condition to be a positive edge．Changing an edge select entails several steps in order to avoid a pseudo Wake Up condition as a result of the edge change． First，the associated WKEN bit should be reset，followed by the edge select change in WKEDG．Next，the associated WKPND bit should be cleared，followed by the associated WKEN bit being re－enabled．
An example may serve to clarify this procedure．Suppose we wish to change the edge select from positive（low going high）to negative（high going low）for L Port bit 5，where bit 5 has previously been enabled for an input interrupt．The pro－ gram would be as follows：

$$
\begin{array}{ll}
\text { RMRBIT } & 5 \text {, WKEN } \\
\text { RMSBIT } & 5 \text {, WKEDG } \\
\text { RMRBIT } & 5 \text {, WKPND } \\
\text { RMSBIT } & 5 \text {, WKEN }
\end{array}
$$

If the $L$ port bits have been used as outputs and then changed to inputs with Multi－Input Wake Up／Interrupt，a safety procedure should also be followed to avoid inherited pseudo wakeup conditions．After the selected L port bits have been changed from output to input but before the as－ sociated WKEN bits are enabled，the associated edge se－ lect bits in WKEDG should be set or reset for the desired edge selects，followed by the associated WKPND bits being cleared．
This same procedure should be used following reset，since the L port inputs are left floating as a result of reset．
The occurrence of the selected trigger condition for Multi－In－ put Wake Up is latched into a pending register called WKPND．The respective bits of the WKPND register will be set on the occurrence of the selected trigger edge on the corresponding Port L pin．The user has the responsibility of clearing these pending flags．Since WKPND is a pending register for the occurrence of selected Wake Up conditions， the device will not enter the HALT mode if any Wake Up bit is both enabled and pending．Consequently，the user has the responsibility of clearing the pending flags before at－ tempting to enter the HALT mode．

WKEN，WKPND and WKEDG are all read／write registers， and are cleared at reset．

## PORT LINTERRUPTS

Port L provides the user with an additional eight fully select－ able，edge sensitive interrupts which are all vectored into the same service subroutine．
The interrupt from Port $L$ shares logic with the wake up cir－ cuitry．The register WKEN allows interrupts from Port L to be individually enabled or disabled．The register WKEDG specifies the trigger condition to be either a positive or a negative edge．Finally，the register WKPND latches in the pending trigger conditions．
The GIE（Global Interrupt Enable）bit enables the interrupt function．
A control flag，LPEN，functions as a global interrupt enable for Port L interrupts．Setting the LPEN flag will enable inter－ rupts and vice versa．A separate global pending flag is not needed since the register WKPND is adequate．
Since Port $L$ is also used for waking the device out of the HALT or IDLE modes，the user can elect to exit the HALT or IDLE modes either with or without the interrupt enabled．If he elects to disable the interrupt，then the device will restart execution from the instruction immediately following the in－ struction that placed the microcontroller in the HALT or IDLE modes．In the other case，the device will first execute the interrupt service routine and then revert to normal oper－ ation．
The Wake Up signal will not start the chip running immedi－ ately since crystal oscillators or ceramic resonators have a finite start up time．The IDLE Timer（TO）generates a fixed delay to ensure that the oscillator has indeed stabilized be－ fore allowing the device to execute instructions．In this case， upon detecting a valid Wake Up signal，only the oscillator circuitry and the IDLE Timer TO are enabled．The IDLE Tim－ er is loaded with a value of 256 and is clocked from the $t_{c}$ instruction cycle clock．The $t_{c}$ clock is derived by dividing down the oscillator clock by a factor of 10．A Schmitt trigger following the CKI on－chip inverter ensures that the IDLE tim－ er is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt trigger specifications．This Schmitt trigger is not part of the oscillator closed loop．The startup timeout from the IDLE timer enables the clock sig－ nals to be routed to the rest of the chip．
If the RC clock option is used，the fixed delay is under soft－ ware control．A control flag，CLKDLY，in the G7 configura－ tion bit allows the clock start up delay to be optionally insert－ ed．Setting CLKDLY flag high will cause clock start up delay to be inserted and resetting it will exclude the clock start up delay．The CLKDLY flag is cleared during reset，so the clock start up delay is not present following reset with the RC clock options．

## UART

The device contains a full-duplex software programmable UART. The UART (Figure 11) consists of a transmit shift register, a receiver shift register and seven addressable registers, as follows: a transmit buffer register (TBUF), a receiver buffer register (RBUF), a UART control and status register (ENU), a UART receive control and status register (ENUR), a UART interrupt and clock source register (ENUI), a prescaler select register (PSR) and baud (BAUD) register. The ENU register contains flags for transmit and receive functions; this register also determines the length of the data frame ( 7,8 or 9 bits), the value of the ninth bit in transmission, and parity selection bits. The ENUR register flags framing, data overrun and parity errors while the UART is receiving.

Other functions of the ENUR register include saving the ninth bit received in the data frame, enabling or disabling the UART's attention mode of operation and providing additional receiver/transmitter status information via RCVG and XMTG bits. The determination of an internal or external clock source is done by the ENUI register, as well as selecting the number of stop bits and enabling or disabling transmit and receive interrupts. A control flag in this register can also select the UART mode of operation: asynchronous or synchronous.


TL/DD12064-13
FIGURE 11. UART Block Diagram

## UART (Continued)

## UART CONTROL AND STATUS REGISTERS

The operation of the UART is programmed through three registers: ENU, ENUR and ENUI. The function of the individual bits in these registers is as follows:
ENU-UART Control and Status Register (Address at OBA)

PEN	PSEL1	XBIT9/	CHL1	CHLO	ERR	RBFL	TBMT		
OSELO								ORW	ORW
:---:									
ORW									

Bit 7
Bit 0
ENUR-UART Receive Control and Status Register (Address at OBB)

DOE	FE	PE	SPARE	RBIT9	ATTN	XMTG	RCVG
ORD	ORD	ORD	ORW*	OR	ORW	OR	OR

ENUI-UART Interrupt and Clock Source Register (Address at OBC)

STP2	STP78	ETDX	SSEL	XRCLK	XTCLK	ERI	ETI
ORW	ORW	ORW	ORW	ORW	ORW	ORW	ORW

Bit7
*Bit is not used.
0 Bit is cleared on reset.

1. Bit is set to one on reset.

R Bit is read-only; it cannot be written by software.
RW Bit is read/write.
D Bit is cleared on read; when read by software as a one, it is cleared automatically. Writing to the bit does not affect its state.

## DESCRIPTION OF UART REGISTER BITS

## ENU-UART CONTROL AND STATUS REGISTER

TBMT: This bit is set when the UART transfers a byte of data from the TBUF register into the TSFT register for transmission. It is autnmaticelly reset when sefture witce into the TBUF register.
RBFL: This bit is set when the UART has received a complete character and has copied it into the RBUF register. It is automatically reset when software reads the character from RBUF.
ERR: This bit is a global UART error flag which gets set if any or a combination of the errors (DOE, FE, PE) occur.
CHL1, CHLO: These bits select the character frame format. Parity is not included and is generated/verified by hardware. $\mathrm{CHL} 1=0, \mathrm{CHLO}=0 \quad$ The frame contains eight data bits.
$\mathrm{CHL} 1=0, \mathrm{CHLO}=1 \quad$ The frame contains seven data bits.
$\mathrm{CHL} 1=1, \mathrm{CHLO}=0 \quad$ The frame contains nine data bits.
CHL1 $=1, C H L 0=1$ Loopback Mode selected. Transmitter output internally looped back to receiver input. Nine bit framing format is used.
XBIT9/PSELO: Programs the ninth bit for transmission when the UART is operating with nine data bits per frame. For seven or eight data bits per frame, this bit in conjunction with PSEL1 selects parity.
PSEL1, PSELO: Parity select bits.
PSEL1 $=0$, PSELO $=0 \quad$ Odd Parity (if Parity enabled)
PSEL1 $=0$, PSELO $=1 \quad$ Odd Parity (if Parity enabled)

PSEL1 $=1$, PSELO $=0 \quad$ Mark(1) (if Parity enabled)
PSEL $1=1$, PSEL1 $=1 \quad$ Space(0) (if Parity enabled)
PEN: This bit enables/disables Parity ( 7 - and 8 -bit modes only).
PEN $=0 \quad$ Parity disabled.
$P E N=1$ Parity enabled.

## ENUR—UART RECEIVE CONTROL AND STATUS REGISTER

RCVG: This bit is set high whenever a framing error occurs and goes low when RDX goes high.
XMTG: This bit is set to indicate that the UART is transmitting. It gets reset at the end of the last frame (end of last Stop bit).
ATTN: ATTENTION Mode is enabled while this bit is set. This bit is cleared automatically on receiving a character with data bit nine set.
RBIT9: Contains the ninth data bit received when the UART is operating with nine data bits per frame.
SPARE: Reserved for future use.
PE: Flags a Parity Error.
$P E=0$ Indicates no Parity Error has been detected since the last time the ENUR register was read.
$P E=1$ Indicates the occurrence of a Parity Error.
FE: Flags a Framing Error.
FE $=0$ Indicates no Framing Error has been detected since the last time the ENUR register was read.
$\mathrm{FE}=1$ Indicates the occurrence of a Framing Error.
DOE: Flags a Data Overrun Error.
DOE $=0$ Indicates no Data Overrun Error has been detected since the last time the ENUR register was read.
$D O E=1$ Indicates the occurrence of a Data Overrun Error.

## ENUI-UART INTERRUPT AND

## 

ETI: This bit enables/disables interrupt from the transmitter section.
ETI = 0 Interrupt from the transmitter is disabled.
$E T I=1$ Interrupt from the transmitter is enabled.
ERI: This bit enables/disables interrupt from the receiver section.
ERI $=0$ Interrupt from the receiver is disabled.
$E R I=1$ Interrupt from the receiver is enabled.
XTCLK: This bit selects the clock source for the transmitter section.
XTCLK $=0$ The clock source is selected through the PSR and BAUD registers.
XTCLK $=1$ Signal on CKX (L1) pin is used as the clock.
XRCLK: This bit selects the clock source for the receiver section.
XRCLK $=0$ The clock source is selected through the PSR and BAUD registers.
XRCLK $=1$ Signal on CKX (L1) pin is used as the clock.
SSEL: UART mode select.
SSEL $=0$ Asynchronous Mode.
SSEL = 1 Synchronous Mode.

## UART (Continued)

ETDX: TDX (UART Transmit Pin) is the alternate function assigned to Port L pin L2; it is selected by setting ETDX bit. To simulate line break generation, software should reset ETDX bit and output logic zero to TDX pin through Port L data and configuration registers.
STP78: This bit is set to program the last Stop bit to be 7/8th of a bit in length.
STP2: This bit programs the number of Stop bits to be transmitted.
STP2 $=0 \quad$ One Stop bit transmitted.
STP2 $=1 \quad$ Two Stop bits transmitted.

## Associated I/O Pins

Data is transmitted on the TDX pin and received on the RDX pin. TDX is the alternate function assigned to Port L pin L2; it is selected by setting ETDX (in the ENUI register) to one. RDX is an inherent function of Port L pin L3, requiring no setup.
The baud rate clock for the UART can be generated onchip, or can be taken from an external source. Port L pin L1 (CKX) is the external clock I/O pin. The CKX pin can be either an input or an output, as determined by Port L Configuration and Data registers (Bit 1). As an input, it accepts a clock signal which may be selected to drive the transmitter and/or receiver. As an output, it presents the internal Baud Rate Generator output.

## UART Operation

The UART has two modes of operation: asynchronous mode and synchronous mode.

## ASYNCHRONOUS MODE

This mode is selected by resetting the SSEL (in the ENUI register) bit to zero. The input frequency to the UART is 16 times the baud rate.
The TSFT and TBUF registers double-buffer data for transmission. While TSFT is shifting out the current character on the TDX pin, the TBUF register may be loaded by software with the next byte to be transmitted. When TSFT finishes transmitting the current character the contents of TBUF are transferred to the TSFT register and the Transmit Buffer Empty Flag (TBMT in the ENU register) is set. The TBMT flag is automatically reset by the UART when software loads a new character into the TBUF register. There is also the XMTG bit which is set to indicate that the UART is transmitting. This bit gets reset at the end of the last frame (end of last Stop bit). TBUF is a read/write register.
The RSFT and RBUF registers double-buffer data being received. The UART receiver continually monitors the signal on the RDX pin for a low level to detect the beginning of a Start bit. Upon sensing this low level, it waits for half a bit time and samples again. If the RDX pin is still low, the receiver considers this to be a valid Start bit, and the remaining bits in the character frame are each sampled a single time, at the mid-bit position. Serial data input on the RDX pin is shifted into the RSFT register. Upon receiving the complete character, the contents of the RSFT register are copied into the RBUF register and the Received Buffer Full Flag (RBFL) is set. RBFL is automatically reset when software reads the character from the RBUF register. RBUF is a read only register. There is also the RCVG bit which is set high
when a framing error occurs and goes low once RDX goes high. TBMT, XMTG, RBFL and RCVG are read only bits.

## SYNCHRONOUS MODE

In this mode data is transferred synchronously with the clock. Data is transmitted on the rising edge and received on the falling edge of the synchronous clock.
This mode is selected by setting SSEL bit in the ENUI register. The input frequency to the UART is the same as the baud rate.
When an external clock input is selected at the CKX pin, data transmit and receive are performed synchronously with this clock through TDX/RDX pins.
If data transmit and receive are selected with the CKX pin as clock output, the device generates the synchronous clock output at the CKX pin. The internal baud rate generator is used to produce the synchronous clock. Data transmit and receive are performed synchronously with this clock.

## FRAMING FORMATS

The UART supports several serial framing formats (Figure 12). The format is selected using control bits in the ENU, ENUR and ENUI registers.
The first format ( $\mathbf{1}, \mathbf{1 a}, 1 \mathrm{~b}, 1 \mathrm{c}$ ) for data transmission (CHLO $=1, \mathrm{CHL} 1=0$ ) consists of Start bit, seven Data bits (excluding parity) and $7 / 8$, one or two Stop bits. In applications using parity, the parity bit is generated and verified by hardware.
The second format ( $\mathrm{CHLO}=0, \mathrm{CHL1}=0$ ) consists of one Start bit, eight Data bits (excluding parity) and $7 / 8$, one or two Stop bits. Parity bit is generated and verified by hardware.
The third format for transmission (CHLO $=0, \mathrm{CHL} 1=1$ ) consists of one Start bit, nine Data bits and 7/8, one or two Stop bits. This format also supports the UART "ATTENTION" feature. When operating in this format, all eight bits of TBUF and RBUF are used for data. The ninth data bit is transmitted and received using two bits in the ENU and ENUR registers, called XBIT9 and RBIT9. RBIT9 is a read only bit. Parity is not generated or verified in this mode.
For any of the above framing formats, the last Stop bit can be programmed to be 7/8th of a bit in length. If two Stop bits are selected and the 7/8th bit is set (selected), the second Stop bit will be 7/8th of a bit in length.
The parity is enabled/disabled by PEN bit located in the ENU register. Parity is selected for 7 - and 8 -bit modes only. If parity is enabled (PEN =1), the parity selection is then performed by PSELO and PSEL1 bits located in the ENU register.
Note that the XBIT9/PSELO bit located in the ENU register serves two mutually exclusive functions. This bit programs the ninth bit for transmission when the UART is operating with nine data bits per frame. There is no parity selection in this framing format. For other framing formats XBIT9 is not needed and the bit is PSELO used in conjunction with PSEL1 to select parity.
The frame formats for the receiver differ from the transmitter in the number of Stop bits required. The receiver only requires one Stop bit in a frame, regardless of the setting of the Stop bit selection bits in the control register. Note that an implicit assumption is made for full duplex UART operation that the framing formats are the same for the transmitter and receiver.

## UART Operation (Continued)



FIGURE 12. Framing Formats

## UART INTERRUPTS

The UART is capable of generating interrupts. Interrupts aro generated on Receive Buffer Full and Transmit Buffer Empty. Both interrupts have individual interrupt vectors. Two bytes of program memory space are reserved for each interrupt vector. The two vectors are located at addresses 0xEC to OXEF Hex in the program memory space. The interrupts can be individually enabled or disabled using Enable Transmit Interrupt (ETI) and Enable Receive Interrupt (ERI) bits in the ENUI register.
The interrupt from the transmitter is set pending, and remains pending, as long as both the TBMT and ETI bits are set. To remove this interrupt, software must either clear the ETI bit or write to the TBUF register (thus clearing the TBMT bit).
The interrupt from the receiver is set pending, and remains pending, as long as both the RBFL and ERI bits are set. To remove this interrupt, software must either clear the ERI bit or read from the RBUF register (thus clearing the RBFL bit).

## Baud Clock Generation

The clock inputs to the transmitter and receiver sections of the UART can be individually selected to come either from an external source at the CKX pin (port L, pin L1) or from a
source selected in the PSR and BAUD registers. Internally, the basic baud c!ock is creatcd from the oscilitator fíequency through a two-stage divider chain consisting of a 1-16 (increments of 0.5 ) prescaler and an 11-bit binary counter. (Figure 13) The divide factors are specified through two read/write registers shown in Figure 14. Note that the 11-bit Baud Rate Divisor spills over into the Prescaler Select Register (PSR). PSR is cleared upon reset.
As shown in Table III, a Prescaler Factor of 0 corresponds to NO CLOCK. NO CLOCK condition is the UART power down mode where the UART clock is turned off for power saving purpose. The user must also turn the UART clock off when a different baud rate is chosen.
The correspondences between the 5 -bit Prescaler Select and Prescaler factors are shown in Table III. There are many ways to calculate the two divisor factors, but one particularly effective method would be to achieve a 1.8432 MHz frequency coming out of the first stage. The 1.8432 MHz prescaler output is then used to drive the software programmable baud rate counter to create a $\times 16$ clock for the following baud rates: 110, 134.5, 150, 300, 600, 1200, 1800, 2400, $3600,4800,7200,9600,19200$ and 38400 (Table IV). Other baud rates may be created by using appropriate divisors. The $\times 16$ clock is then divided by 16 to provide the rate for the serial shift registers of the transmitter and receiver.

## Baud Clock Generation (Continued)



TL/DD12064-15
FIGURE 13. UART BAUD Clock Generation


TL/DD12064-16
FIGURE 14. UART BAUD Clock Divisor Registers

TABLE III. Prescaler Factors

Prescaler   Select	Prescaler   Factor	Prescaler   Select	Prescaler   Factor
00000	NO CLOCK	10000	8.5
00001	1	10001	9
00010	1.5	10010	9.5
00011	2	10011	10
00100	2.5	10100	10.5
00101	3	10101	11
00110	3.5	10110	11.5
00111	4	10111	12
01000	4.5	11000	12.5
01001	5	11001	13
01010	5.5	11010	13.5
01011	6	11011	14
01100	6.5	11100	14.5
01101	7	11101	15
01110	7.5	11110	15.5
01111	8	11111	16

TABLE IV. Baud Rate Divisors (1.8432 MHiz Prescaler Output)

Baud   Rate	Baud Rate   Divisor - 1 (N-1)
$110(110.03)$	1046
$134.5(134.58)$	855
150	767
300	383
600	191
1200	95
1800	63
2400	47
3600	31
4800	23
7200	15
9600	11
19200	5
38400	2

Note: The entries in Table IV assume a prescaler output of 1.8432 MHz . In the asynchronous mode the baud rate could be as high as 625 k .
As an example, considering the Asynchronous Mode and a CKI clock of 4.608 MHz , the prescaler factor selected is:

$$
4.608 / 1.8432=2.5
$$

The 2.5 entry is available in Table III. The 1.8432 MHz prescaler output is then used with proper Baud Rate Divisor (Table II) to obtain different baud rates. For a baud rate of 19200 e.g., the entry in Table IV is V.

$$
\begin{aligned}
& \mathrm{N}-1=5(\mathrm{~N}-1 \text { is the value from Table IV }) \\
& \mathrm{N}=6(\mathrm{~N} \text { is the Baud Rate Divisor }) \\
& \text { Baud Rate }=1.8432 \mathrm{MHz} /(16 \times 6)=19200
\end{aligned}
$$

The divide by 16 is performed because in the asynchronous mode, the input frequency to the UART is 16 times the baud rate. The equation to calculate baud rates is given below.
The actual Baud Rate may be found from:

$$
\mathrm{BR}=\mathrm{Fc} /(16 \times \mathrm{N} \times \mathrm{P})
$$

## Baud Clock Generation (Continued)

Where:
BR is the Baud Rate
Fc is the CKI frequency
N is the Baud Rate Divisor (Table IV).
$P$ is the Prescaler Divide Factor selected by the value in the Prescaler Select Register (Table III)
Note: In the Synchronous Mode, the divisor 16 is replaced by two. Example:
Asynchronous Mode:

$$
\begin{aligned}
\text { Crystal Frequency } & =5 \mathrm{MHz} \\
\text { Desired baud rate } & =9600
\end{aligned}
$$

Using the above equation $\mathrm{N} \times \mathrm{P}$ can be calculated first.

$$
N \times P=(5 \times 106) /(16 \times 9600)=32.552
$$

Now 32.552 is divided by each Prescaler Factor (Table III) to obtain a value closest to an integer. This factor happens to be $6.5(\mathrm{P}=6.5)$.

$$
N=32.552 / 6.5=5.008(N=5)
$$

The programmed value (from Table IV) should be 4 ( $\mathrm{N}-1$ ). Using the above values calculated for N and P :

$$
\begin{gathered}
\text { BR }=(5 \times 106) /(16 \times 5 \times 6.5)=9615.384 \\
\% \text { error }=(9615.385-9600) / 9600=0.16
\end{gathered}
$$

## Effect of HALT/IDLE

The UART logic is reinitialized when either the HALT or IDLE modes are entered. This reinitialization sets the TBMT flag and resets all read only bits in the UART control and status registers. Read/Write bits remain unchanged. The Transmit Buffer (TBUF) is not affected, but the Transmit Shift register (TSFT) bits are set to one. The receiver registers RBUF and RSFT are not affected.
The device will exit from the HALT/IDLE modes when the Start bit of a character is detected at the RDX (L3) pin. This feature is obtained by using the Multi-Input Wake Up scheme provided on the device.
Before entering the HALT or IDLE modes the user program must select the Wake Up source to be on the RDX pin. This selection is done by setting bit 3 of WKEN (Wake Up Enable) register. The Wake Up trigger condition is then selected to be high to low transition. This is done via the WKEDG register (Bit 3 is zero.)
If the device is halted and crystal oscillator is used, the Wake Up signal will not start the chip running immediately because of the finite start up time requirement of the crystal oscillator. The idle timer (TO) generates a fixed delay to ensure that the oscillator has indeed stabilized before allowing the device to execute code. The user has to consider this delay when data transfer is expected immediately after exiting the HALT mode.

## Diagnostic

Bits CHARLO and CHARL1 in the ENU register provide a loopback feature for diagnostic testing of the UART. When these bits are set to one, the following occur: The receiver input pin (RDX) is internally connected to the transmitter output pin (TDX); the output of the Transmitter Shift Register is "looped back" into the Receive Shift Register input. In this mode, data that is transmitted is immediately received. This feature allows the processor to verify the transmit and receive data paths of the UART.

Note that the framing format for this mode is the nine bit format; one Start bit, nine data bits, and 7/8, one or two Stop bits. Parity is not generated or verified in this mode.

## Attention Mode

The UART Receiver section supports an alternate mode of operation, referred to as ATTENTION Mode. This mode of operation is selected by the ATTN bit in the ENUR register. The data format for transmission must also be selected as having nine Data bits and either 7/8, one or two Stop bits.
The ATTENTION mode of operation is intended for use in networking the device with other processors. Typically in such environments the messages consists of device addresses, indicating which of several destinations should receive them, and the actual data. This Mode supports a scheme in which addresses are flagged by having the ninth bit of the data field set to a 1 . If the ninth bit is reset to a zero the byte is a Data byte.
While in ATTENTION mode, the UART monitors the communication flow, but ignores all characters until an address character is received. Upon receiving an address character, the UART signals that the character is ready by setting the RBFL flag, which in turn interrupts the processor if UART Receiver interrupts are enabled. The ATTN bit is also cleared automatically at this point, so that data characters as well as address characters are recognized. Software examines the contents of the RBUF and responds by deciding either to accept the subsequent data stream (by leaving the ATTN bit reset) or to wait until the next address character is seen (by setting the ATTN bit again).
Operation of the UART Transmitter is not affected by selection of this Mode. The value of the ninth bit to be transmitted is programmed by setting XBIT9 appropriately. The value of the ninth bit received is obtained by reading RBIT9. Since this bit is located in ENUR register where the error flags reside, a bit operation on it will reset the error flags.

## Comparators

The devices contain two differential comparators, each with a pair of inputs (positive and negative) and an output. Ports $11-13$ and $14-16$ are used for the comparators. The following is the Port I assignment:

I1 Comparator1 negative input
12 Comparator1 positive input
13 Comparator 1 output
14 Comparator2 negative input
15 Comparator2 positive input
16 Comparator2 output
A Comparator Select Register (CMPSL) is used to enable the comparators, read the outputs of the comparators internally, and enable the outputs of the comparators to the pins. Two control bits (enable and output enable) and one result bit are associated with each comparator. The comparator result bits (CMP1RD and CMP2RD) are read only bits which will read as zero if the associated comparator is not enabled. The Comparator Select Register is cleared with reset, resulting in the comparators being disabled. The comparators should also be disabled before entering either the HALT or IDLE modes in order to save power. The configuration of the CMPSL register is as follows:

## Comparators (Continued)

## CMPSL REGISTER (ADDRESS X'00B7)

The CMPSL register contains the following bits:
CMP1EN Enable comparator 1
CMP1RD Comparator 1 result (this is a read only bit, which will read as 0 if the comparator is not enabled)
CMP10E Selects pin 13 as comparator 1 output provided that CMPIEN is set to enable the comparator
CMP2EN Enable comparator 2
CMP2RD Comparator 2 result (this is a read only bit, which will read as 0 if the comparator is not enabled)
CMP20E Selects pin 16 as comparator 2 output provided that CMP2EN is set to enable the comparator


Note that the two unused bits of CMPSL may be used as software flags.
Comparator outputs have the same spec as Ports L and G except that the rise and fall times are symmetrical.

## Interrupts

The devices support a vectored interrupt scheme. It supports a total of fourteen interrupt sources. The following table lists all the possible device interrupt sources, their arbitration ranking and the memory locations reserved for the interrupt vector for each source.
Two bytes of program memory space are reserved for each interrupt source. All interrupt sources except the software interrupt are maskable. Each of the maskable interrupts have an Enable bit and a Pending bit. A maskable interrupt is active if its associated enable and pending bits are set. If GIE $=1$ and an interrupt is active, then the processor will be interrupted as soon as it is ready to start executing an instruction except if the above conditions happen during the Software Trap service routine. This exception is described in the Software Trap sub-section.
The interruption process is accomplished with the INTR instruction (opcode 00), which is jammed inside the Instruction Register and replaces the opcode about to be executed. The following steps are performed for every interrupt:

1. The GIE (Global Interrupt Enable) bit is reset.
2. The address of the instruction about to be executed is pushed into the stack.
3. The PC (Program Counter) branches to address 00FF. This procedure takes $7 \mathrm{t}_{\mathrm{c}}$ cycles to execute.

Arbitration Ranking	Source	Description	Vector   Address Hi-Low Byte
(1) Highest	Software	INTR instruction	OyFE-0yFF
	Reserved	for Future Use	OyFC-0yFD
(2)	External	Pin GO Edge	OyFA-OyFB
(3)	Timer T0	Underflow	OyF8-0yF9
(4)	Timer T1	T1A/Underflow	OyF6-0yF7
(5)	Timer T1	T1B	OyF4-0yF5
(6)	MICROWIRE/PLUS	BUSY Goes Low	OyF2-0yF3
	Reserved	for Future Use	OyFO-0yF1
(7)	UART	Receive	OyEE-OyEF
(8)	UART	Transmit	OyEC-OyED
(9)	Timer T2	T2A/Underflow	OyEA-OyEB
(10)	Timer T2	T2B	OyE8-0yE9
(11)	Timer T3	T3A/Underflow	OyE6-0yE7
(12)	Timer T3	T3B	OyE4-0yE5
(13)	Port L/Wake Up	Port L Edge	OyE2-OyE3
(14) Lowest	Default	VIS Instr. Execution without Any Interrupts	OyE0-0yE1

y is VIS page, $\mathrm{y} \neq 0$.

## Interrupts (Continued)

At this time, since $\mathrm{GIE}=0$, other maskable interrupts are disabled. The user is now free to do whatever context switching is required by saving the context of the machine in the stack with PUSH instructions. The user would then program a VIS (Vector Interrupt Select) instruction in order to branch to the interrupt service routine of the highest priority interrupt enabled and pending at the time of the VIS. Note that this is not necessarily the interrupt that caused the branch to address location OOFF Hex prior to the context switching.
Thus, if an interrupt with a higher rank than the one which caused the interruption becomes active before the decision of which interrupt to service is made by the VIS, then the interrupt with the higher rank will override any lower ones and will be acknowledged. The lower priority interrupt(s) are still pending, however, and will cause another interrupt immediately following the completion of the interrupt service routine associated with the higher priority interrupt just serviced. This lower priority interrupt will occur immediately following the RETI (Return from Interrupt) instruction at the end of the interrupt service routine just completed.
Inside the interrupt service routine, the associated pending bit has to be cleared by software. The RETI (Return from Interrupt) instruction at the end of the interrupt service routine will set the GIE (Global Interrupt Enable) bit, allowing the processor to be interrupted again if another interrupt is active and pending.
The VIS instruction looks at all the active interrupts at the time it is executed and performs an indirect jump to the beginning of the service routine of the one with the highest rank.

The addresses of the different interrupt service routines, called vectors, are chosen by the user and stored in ROM in a table starting at 01E0 (assuming that VIS is located between 00FF and 01DF). The vectors are 15 -bit wide and therefore occupy 2 ROM locations.
VIS and the vector table must be located in the same 256-byte block ( $0 y 00$ to OyFF) except if VIS is located at the last address of a block. In this case, the table must be in the next block. The vector table cannot be inserted in the first 256 -byte block $(y \neq 0)$.
The vector of the maskable interrupt with the lowest rank is located at 0yE0 (Hi-Order byte) and OyE1 (Lo-Order byte) and so forth in increasing rank number. The vector of the maskable interrupt with the highest rank is located at 0yFA (Hi-Order byte) and OyFB (Lo-Order byte).
The Software Trap has the highest rank and its vector is located at $0 y F E$ and $0 y F F$.
If, by accident, a VIS gets executed and no interrupt is active, then the PC (Program Counter) will branch to a vector located at $0 y E 0-O y E 1$. This vector can point to the Software Trap (ST) interrupt service routine, or to another special service routine as desired.
Figure 15 shows the Interrupt block diagram.

## SOFTWARE TRAP

The Software Trap (ST) is a special kind of non-maskable interrupt which occurs when the INTR instruction (used to acknowledge interrupts) is fetched from ROM and placed inside the instruction register. This may happen when the PC is pointing beyond the available ROM address space or when the stack is over-popped.


FIGURE 15. Interrupt Block Diagram

Interrupts (Continued)
When an ST occurs, the user can re-initialize the stack pointer and do a recovery procedure (similar to reset, but not necessarily containing all of the same initialization procedures) before restarting.
The occurrence of an ST is latched into the ST pending bit. The GIE bit is not affected and the ST pending bit (not accessible by the user) is used to inhibit other interrupts and to direct the program to the ST service routine with the VIS instruction. The RPND instruction is used to clear the software interrupt pending bit. This pending bit is also cleared on reset.
The ST has the highest rank among all interrupts.
Nothing (except another ST) can interrupt an ST being serviced.

## WATCHDOG

The devices contain a WATCHDOG and clock monitor. The WATCHDOG is designed to detect the user program getting stuck in infinite loops resulting in loss of program control or "runaway" programs. The Clock Monitor is used to detect the absence of a clock or a very slow clock below a specified rate on the CKI pin.
The WATCHDOG consists of two independent logic blocks: WD UPPER and WD LOWER. WD UPPER establishes the upper limit on the service window and WD LOWER defines the lower limit of the service window.
Servicing the WATCHDOG consists of writing a specific value to a WATCHDOG Service Register named WDSVR which is memory mapped in the RAM. This value is composed of three fields, consisting of a 2-bit Window Select, a 5 -bit Key Data field, and the 1-bit Clock Monitor Select field. Table V shows the WDSVR register.
The lower limit of the service window is fixed at 2048 instruction cycles. Bits 7 and 6 of the WDSVR register allow the user to pick an upper limit of the service window.
Table VI shows the four possible combinations of lower and upper limits for the WATCHDOG service window. This flexibility in choosing the WATCHDOG service window prevents any undue burden on the user software.
Bits 5, 4, 3, 2 and 1 of the WDSVR register represent the 5bit Key Data field. The key data is fixed at 01100 . Bit 0 of the WDSVR Register is the Clock Monitor Select bit.

TABLE V. WATCHDOG Service Register (WDSVR)

Window   Select		Key Data					Clock   Monitor
X	X	0	1	1	0	0	Y

TABLE VI. WATCHDOG Service Window Select

WDSVR   Bit 7	WDSVR   Bit $\mathbf{6}$	Service Window   (Lower-Upper Limits)
0	0	$2 k-8 k \mathrm{t}_{\mathrm{c}}$ Cycles
0	1	$2 k-16 \mathrm{k} \mathrm{t}_{\mathrm{c}}$ Cycles
1	0	$2 k-32 \mathrm{t}_{\mathrm{c}}$ Cycles
1	1	$2 k-64 \mathrm{k} \mathrm{t}_{\mathrm{c}}$ Cycles

## Clock Monitor

The Clock Monitor aboard the device can be selected or deselected under program control. The Clock Monitor is guaranteed not to reject the clock if the instruction cycle clock $\left(1 / t_{c}\right)$ is greater or equal to 10 kHz . This equates to a clock input rate on CKI of greater or equal to 100 kHz .

## WATCHDOG Operation

The WATCHDOG and Clock Monitor are disabled during reset. The device comes out of reset with the WATCHDOG armed, the WATCHDOG Window Select bits (bits 6,7 of the WDSVR Register) set, and the Clock Monitor bit (bit 0 of the WDSVR Register) enabled. Thus, a Clock Monitor error will occur after coming out of reset, if the instruction cycle clock frequency has not reached a minimum specified value, including the case where the oscillator fails to start.
The WDSVR register can be written to only once after reset and the key data (bits 5 through 1 of the WDSVR Register) must match to be a valid write. This write to the WDSVR register involves two irrevocable choices: (i) the selection of the WATCHDOG service window (ii) enabling or disabling of the Clock Monitor. Hence, the first write to WDSVR Register involves selecting or deselecting the Clock Monitor, select the WATCHDOG service window and match the WATCHDOG key data. Subsequent writes to the WDSVR register will compare the value being written by the user to the WATCHDOG service window value and the key data (bits 7 through 1) in the WDSVR Register. Table VII shows the sequence of events that can occur.
The user must service the WATCHDOG at least once before the upper limit of the service window expires. The WATCHDOG may not be serviced more than once in every lower limit of the service window. The user may service the WATCHDOG as many times as wished in the time period between the lower and upper limits of the service window. The first write to the WDSVR Register is also counted as a WATCHDOG service.
The WATCHDOG has an output pin associated with it. This is the WDOUT pin, on pin 1 of the port G. WDOUT is active low. The WDOUT pin is in the high impedance state in the inactive state. Upon triggering the WATCHDOG, the logic will pull the WDOUT (G1) pin low for an additional $16 t_{c}-32 t_{c}$ cycles after the signal level on WDOUT pin goes below the lower Schmitt trigger threshold. After this delay, the device will stop forcing the WDOUT output low.

TABLE VII. WATCHDOG Service Actions

Key Data	Window Data	Clock Monitor	Action
Match	Match	Match	Valid Service: Restart Service Window
Don't Care	Mismatch	Don't Care	Error: Generate WATCHDOG Output
Mismatch	Don't Care	Don't Care	Error: Generate WATCHDOG Output
Don't Care	Don't Care	Mismatch	Error: Generate WATCHDOG Output

## WATCHDOG Operation（Continued）

The WATCHDOG service window will restart when the WDOUT pin goes high．It is recommended that the user tie the WDOUT pin back to $V_{C C}$ through a resistor in order to pull WDOUT high．
A WATCHDOG service while the WDOUT signal is active will be ignored．The state of the WDOUT pin is not guaran－ teed on reset，but if it powers up low then the WATCHDOG will time out and WDOUT will enter high impedance state．
The Clock Monitor forces the G1 pin low upon detecting a clock frequency error．The Clock Monitor error will continue until the clock frequency has reached the minimum speci－ fied value，after which the G1 output will enter the high im－ pedance TRI－STATE mode following $16 t_{c}-32 t_{c}$ clock cy－ cles．The Clock Monitor generates a continual Clock Moni－ tor error if the oscillator fails to start，or fails to reach the minimum specified frequency．The specification for the Clock Monitor is as follows：
$1 / \mathrm{t}_{\mathrm{c}}>10 \mathrm{kHz}$－No clock rejection．
$1 / \mathrm{t}_{\mathrm{c}}<10 \mathrm{~Hz}$－Guaranteed clock rejection．

## WATCHDOG AND CLOCK MONITOR SUMMARY

The following salient points regarding the WATCHDOG and CLOCK MONITOR should be noted：
－Both the WATCHDOG and CLOCK MONITOR detector circuits are inhibited during RESET．
－Following RESET，the WATCHDOG and CLOCK MONI－ TOR are both enabled，with the WATCHDOG having the maximum service window selected．
－The WATCHDOG service window and CLOCK MONI－ TOR enable／disable option can only be changed once， during the initial WATCHDOG service following RESET．
－The initial WATCHDOG service must match the key data value in the WATCHDOG Service register WDSVR in or－ der to avoid a WATCHDOG error．
－Subsequent WATCHDOG services must match all three data fields in WDSVR in order to avoid WATCHDOG er－ rors．
－The correct key data value cannot be read from the WATCHDOG Service register WDSVR．Any attempt to read this key data value of 01100 from WDSVR will read as key data value of all 0 ＇s．
－The WATCHDOG detector circuit is inhibited during both the HALT and IDLE modes．
－The CLOCK MONITOR detector circuit is active during both the HALT and IDLE modes．Consequently，the COP888 inadvertently entering the HALT mode will be detected as a CLOCK MONITOR error（provided that the CLOCK MONITOR enable option has been selected by the program）．
－With the single－pin R／C oscillator mask option selected and the CLKDLY bit reset，the WATCHDOG service win－ dow will resume following HALT mode from where it left off before entering the HALT mode．
－With the crystal oscillator mask option selected，or with the single－pin R／C oscillator mask option selected and the CLKDLY bit set，the WATCHDOG service window will be set to its selected value from WDSVR following HALT． Consequently，the WATCHDOG should not be serviced for at least 2048 instruction cycles following HALT，but must be serviced within the selected window to avoid a WATCHDOG error．
－The IDLE timer TO is not initialized with RESET．
－The user can sync in to the IDLE counter cycle with an IDLE counter（TO）interrupt or by monitoring the TOPND flag．The TOPND flag is set whenever the thirteenth bit of the IDLE counter toggles（every 4096 instruction cycles）． The user is responsible for resetting the TOPND flag．
－A hardware WATCHDOG service occurs just as the de－ vice exits the IDLE mode．Consequently，the WATCHDOG should not be serviced for at least 2048 instruction cycles following IDLE，but must be serviced within the selected window to avoid a WATCHDOG error．
－Following RESET，the initial WATCHDOG service（where the service window and the CLOCK MONITOR enable／ disable must be selected）may be programmed any－ where within the maximum service window（ 65,536 in－ struction cycles）initialized by RESET．Note that this ini－ tial WATCHDOG service may be programmed within the initial 2048 instruction cycles without causing a WATCHDOG error．

## Detection of Illegal Conditions

The device can detect various illegal conditions resulting from coding errors, transient noise, power supply voltage drops, runaway programs, etc.
Reading of undefined ROM gets zeros. The opcode for software interrupt is zero. If the program fetches instructions from undefined ROM, this will force a software interrupt, thus signaling that an illegal condition has occurred.
The subroutine stack grows down for each call (jump to subroutine), interrupt, or PUSH, and grows up for each return or POP. The stack pointer is initialized to RAM location 06F Hex during reset. Consequently, if there are more returns than calls, the stack pointer will point to addresses 070 and 071 Hex (which are undefined RAM). Undefined RAM from addresses 070 to 07F (Segment 0), 140 to 17F (Segment 1), and all other segments (i.e., Segments $3 \ldots$ etc.) is read as all 1 's, which in turn will cause the program to return to address 7FFF Hex. This is an undefined ROM location and the instruction fetched (all 0's) from this location will generate a software interrupt signaling an illegal condition.
Thus, the chip can detect the following illegal conditions:

1. Executing from undefined ROM
2. Over "POP'ing the stack by having more returns than calls.
When the software interrupt occurs, the user can re-initialize the stack pointer and do a recovery procedure before restarting (this recovery program is probably similar to that following reset, but might not contain the same program initialization procedures). The recovery program should reset the software interrupt pending bit using the RPND instruction.

## MICROWIRE/PLUS

MICROWIRE/PLUS is a serial synchronous communications interface. The MICROWIRE/PLUS capability enables the device to interface with any of National Semiconductor's MICROWIRE peripherals (i.e. A/D converters, display drivers, E2PROMs etc.) and with other microcontrollers which support the MICROWIRE interface. It consists of an 8 -bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 16 shows a block diagram of the MICROWIRE/PLUS logic.


TL/DD12064-18
FIGURE 16. MICROWIRE/PLUS Block Dlagram
The shift clock can be selected from either an internal source or an external source. Operating the MICROWIRE/ PLUS arrangement with the internal clock source is called the Master mode of operation. Similarly, operating the MICROWIRE/PLUS arrangement with an external shift clock is called the Slave mode of operation.
The CNTRL register is used to configure and control the MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS, the MSEL bit in the CNTRL register is set to one. In the master mode, the SK clock rate is selected by the two bits, SLO and SL1, in the CNTRL register. Table VIII details the different clock rates that may be selected.

TABLE VIII. MICROWIRE/PLUS Master Mode Clock Select

SL1	SLO	SK
0	0	$2 \times \mathrm{t}_{\mathrm{c}}$
0	1	$4 \times \mathrm{t}_{\mathrm{c}}$
1	x	$8 \times \mathrm{t}_{\mathrm{c}}$

Where $t_{c}$ is the instruction cycle clock

## MICROWIRE/PLUS OPERATION

Setting the BUSY bit in the PSW register causes the MICROWIRE/PLUS to start shifting the data. It gets reset when eight data bits have been shifted. The user may reset the BUSY bit by software to allow less than 8 bits to shift. If enabled, an interrupt is generated when eight data bits have been shifted. The device may enter the MICROWIRE/PLUS mode either as a Master or as a Slave. Figure 17 shows how two devices, microcontrollers and several peripherals may be interconnected using the MICROWIRE/PLUS arrangements.

## Warning

The SIO register should only be loaded when the SK clock is low. Loading the SIO register while the SK clock is high will result in undefined data in the SIO register. SK clock is normally low when not shifting.
Setting the BUSY flag when the input SK clock is high in the MICROWIRE/PLUS slave mode may cause the current SK clock for the SIO shift register to be narrow. For safety, the BUSY flag should only be set when the input SK clock is low.

## MICROWIRE/PLUS Master Mode Operation

In the MICROWIRE/PLUS Master mode of operation the shift clock (SK) is generated internally by the device. The MICROWIRE Master always initiates all data exchanges. The MSEL bit in the CNTRL register must be set to enable the SO and SK functions onto the G Port. The SO and SK pins must also be selected as outputs by setting appropriate bits in the Port G configuration register. Table IX summarizes the bit settings required for Master mode of operation.

## MICROWIRE/PLUS Slave Mode Operation

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must be selected as an input and the SO pin is selected as an output pin by setting and resetting the appropriate bit in the Port G configuration register. Table IX summarizes the settings required to enter the Slave mode of operation.

The user must set the BUSY flag immediately upon entering the Slave mode. This will ensure that all data bits sent by the Master will be shifted properly. After eight clock pulses the BUSY flag will be cleared and the sequence may be repeated.

## Alternate SK Phase Operation

The device allows either the normal SK clock or an alternate phase SK clock to shift data in and out of the SIO register. In both the modes the SK is normally low. In the normal mode data is shifted in on the rising edge of the SK clock and the data is shifted out on the falling edge of the SK clock. The SIO register is shifted on each falling edge of the SK clock. In the alternate SK phase operation, data is shifted in on the falling edge of the SK clock and shifted out on the rising edge of the SK clock.
A control flag, SKSEL, allows either the normal SK clock or the alternate SK clock to be selected. Resetting SKSEL causes the MICROWIRE/PLUS logic to be clocked from the normal SK signal. Setting the SKSEL flag selects the alternate SK clock. The SKSEL is mapped into the G6 configuration bit. The SKSEL flag will power up in the reset condition, selecting the normal SK signal.

TABLE IX. MICROWIRE/PLUS Mode Selection

G4 (SO)   Config. Bit	G5 (SK)   Config. Bit	G4   Fun.	G5   Fun.	Operation
1	1	SO	Int.   SK	MICROWIRE/PLUS   Master
0	1	TRI-   STATE	Int.   SK	MICROWIRE/PLUS   Master
1	0	SO	Ext.   SK	MICROWIRE/PLUS   Slave
0	0	TRI-   SIAIE	Ext.   SK	MICROWIRE/PLUS   Slave

Note: This table assumes that the control flag MSEL is set.

## Memory Map

All RAM, ports and registers (except A and PC ) are mapped into data memory address space.

Address S/ADD REG	Contents
0000 to 006F	On-Chip RAM bytes (112 bytes)
0070 to 007F	Unused RAM Address Space (Reads As All Ones)
xx80 to xxAF	Unused RAM Address Space (Reads Undefined Data)
xxB0	Timer T3 Lower Byte
xxB1	Timer T3 Upper Byte
xxB2	Timer T3 Autoload Register T3RA Lower Byte
xxB3	Timer T3 Autoload Register T3RA Upper Byte
xxB4	Timer T3 Autoload Register T3RB Lower Byte
xxB5	Timer T3 Autoload Register T3RB Upper Byte
xxB6	Timer 73 Control Register
xxB7	Comparator Select Register (CMPSL)
xxB8	UART Transmit Buffer (TBUF)
xxB9	UART Receive Buffer (RBUF)
xxBA	UART Control and Status Register (ENU)
xxBB	UART Receive Control and Status Register (ENUR)
xxBC	UART Interrupt and Clock Source Register (ENUI)
x $\times$ BD	UART Baud Register (BAUD)
xxBE	UART Prescale Select Register (PSR)
xxBF	Reserved for UART
xxC0	Timer T2 Lower Byte
$x \times C 1$	Timer T2 Upper Byte
xxC2	Timer T2 Autoload Register T2RA Lower Byte
xxC3	Timer T2 Autoload Register T2RA Upper Byte
xxC4	Timer T2 Autoload Register T2RB Lower Byte
xxC5	Timer T2 Autoload Register T2RB Upper Byte
xxC6	Timer T2 Control Register
xxC7	WATCHDOG Service Register (Reg:WDSVR)
xxC8	MIWU Edge Select Register (Reg:WKEDG)
xxC9	MIWU Enable Register (Reg:WKEN)
xxCA	MIWU Pending Register (Reg:WKPND)
xxCB	Reserved
xxCC	Reserved
xxCD to xxCF	Reserved


Address S/ADD REG	Contents
xxD0	Port L Data Register
xxD1	Port L Configuration Register
xxD2	Port L Input Pins (Read Only)
xxD3	Reserved for Port L
xxD4	Port G Data Register
xxD5	Port G Configuration Register
xxD6	Port G Input Pins (Read Only)
xxD7	Port I Input Pins (Read Only)
xxD8	Port C Data Register
xxD9	Port C Configuration Register
xxDA	Port C Input Pins (Read Only)
xxDB	Reserved for Port C
xxDC	Port D
xxDD to DF	Reserved for Port D
xxE0 to xxE5	Reserved for EE Control Registers
xxE6	Timer T1 Autoload Register T1RB Lower Byte
xxE7	Timer T1 Autoload Register T1RB Upper Byte
xxE8	ICNTRL Register
xxE9	MICROWIRE/PLUS Shift Register
xxEA	Timer T1 Lower Byte
xxEB	Timer T1 Upper Byte
xxEC	Timer T1 Autoload Register T1RA Lower Byte
xxED	Timer T1 Autoload Register T1RA Upper Byte
xxEE	CNTRL Control Register
XxEF	PSW Register
xxF0 to FB	On-Chip RAM Mapped as Registers
xxFC	X Register
xxFD	SP Register
xxFE	B Register
xxFF	S Register
0100-017F	On-Chip 128 RAM Bytes

Note: Reading memory locations $0070 \mathrm{H}-007 \mathrm{FH}$ (Segment 0 ) will return all ones. Reading unused memory locations 0080H-00AFH (Segment 0) will return undefined data. Reading memory locations from other Segments (i.e., Segment 2 , Segment 3, ... etc.) will return all ones.

## Addressing Modes

There are ten addressing modes, six for operand addressing and four for transfer of control.

## OPERAND ADDRESSING MODES

## Register Indirect

This is the "normal" addressing mode. The operand is the data memory addressed by the B pointer or X pointer.

## Register Indirect (with auto post increment or decrement of pointer)

This addressing mode is used with the LD and $X$ instructions. The operand is the data memory addressed by the B pointer or X pointer. This is a register indirect mode that automatically post increments or decrements the B or X register after executing the instruction.

## Direct

The instruction contains an 8-bit address field that directly points to the data memory for the operand.

## Immediate

The instruction contains an 8 -bit immediate field as the operand.

## Short Immediate

This addressing mode is used with the Load B Immediate instruction. The instruction contains a 4-bit immediate field as the operand.
Indirect
This addressing mode is used with the LAID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC ) for accessing a data operand from the program memory.

## TRANSFER OF CONTROL ADDRESSING MODES

## Relative

This mode is used for the JP instruction, with the instruction field being added to the program counter to get the new program location. JP has a range from -31 to +32 to allow a 1 -ivyie relative jump ( $\mathrm{JP}+1$ is implemented by a NOP instruction). There are no "pages" when using JP, since all 15 bits of PC are used.

## Absolute

This mode is used with the JMP and JSR instructions, with the instruction field of 12 bits replacing the lower 12 bits of the program counter ( PC ). This allows jumping to any location in the current 4 k program memory segment.

## Absolute Long

This mode is used with the JMPL and JSRL instructions, with the instruction field of 15 bits replacing the entire 15 bits of the program counter (PC). This allows jumping to any location in the current 4 k program memory space.

## Indirect

This mode is used with the JID instruction. The contents of the accumulator are used as a partial address (lower 8 bits of PC ) for accessing a location in the program memory. The contents of this program memory location serve as a partial address (lower 8 bits of PC ) for the jump to the next instruction.
Note: The VIS is a special case of the Indirect Transfer of Control addressing mode, where the double byte vector associated with the interrupt is transferred from adjacent addresses in the program memory into the program counter (PC) in order to jump to the associated interrupt service routine.

## Instruction Set

Register and Symbol Definition

Registers	
A	8-Bit Accumulator Register
B	8-Bit Address Register
X	8-Bit Address Register
SP	8-Bit Stack Pointer Register
PC	15-Bit Program Counter Register
PU	Upper 7 Bits of PC
PL	Lower 8 Bits of PC
C	1 Bit of PSW Register for Carry
HC	1 Bit of PSW Register for Half Carry
GIE	1 Bit of PSW Register for Global
	Interrupt Enable
VU	Interrupt Vector Upper Byte
VL	Interrupt Vector Lower Byte


Symbols	
[B]	Memory Indirectly Addressed by B Register
[ X ]	Memory Indirectly Addressed by X Register
MD	Direct Addressed Memory
Mem	Direct Addressed Memory or [B]
Meml	Direct Addressed Memory or [ B ] or Immediate Data
Imm	8-Bit Immediate Data
Reg	Register Memory: Addresses F0 to FF (Includes B, X and SP)
Bit	Bit Number (0 to 7)
$\ldots$	Loaded with
,	Exchanged with

Instruction Set (Continued)
INSTRUCTION SET

ADD	A, Meml	ADD	$A \leftarrow A+$ Meml
ADC	A, Meml	ADD with Carry	$\begin{aligned} & \mathrm{A} \leftarrow \mathrm{~A}+\mathrm{Meml}+\mathrm{C}, \mathrm{C} \leftarrow \text { Carry } \\ & \mathrm{HC} \leftarrow \text { Half Carry } \end{aligned}$
SUBC	A, Meml	Subtract with Carry	$\begin{aligned} & \mathrm{A} \leftarrow \mathrm{~A}-\text { Meml }+\mathrm{C}, \mathrm{C} \leftarrow \text { Carry } \\ & \mathrm{HC} \leftarrow \text { Half Carry } \end{aligned}$
AND	A, Meml	Logical AND	$\mathrm{A} \leftarrow \mathrm{A}$ and $\overline{\mathrm{Meml}}$
ANDSZ	A, Imm	Logical AND Immed., Skip if Zero	Skip next if ( $A$ and Imm$)=0$
OR	A, Meml	Logical OR	$A \leftarrow A$ or Meml
XOR	A,Meml	Logical EXclusive OR	$A \leftarrow A$ xor Meml
IFEQ	MD, Imm	IF EQual	Compare MD and 1 mm , Do next if MD $=1 \mathrm{~mm}$
IFEQ	A, Memi	IF EQual	Compare A and Meml, Do next if $A=$ Meml
IFNE	A, Meml	IF Not Equal	Compare $A$ and Meml, Do next if $A \neq M e m l$
IFGT	A,Meml	IF Greater Than	Compare A and Meml, Do next if A > Meml
IFBNE	\#	If B Not Equal	Do next if lower 4 bits of $B \neq 1 \mathrm{~mm}$
DRSZ	Reg	Decrement Reg., Skip if Zero	Reg $\leftarrow$ Reg - 1, Skip if Reg $=0$
SBIT	\#,Mem	Set BIT	1 to bit, Mem (bit $=0$ to 7 immediate)
RBIT	\#,Mem	Reset BIT	0 to bit, Mem
IFBIT	\#,Mem	IF BIT	If bit in A or Mem is true do next instruction
RPND		Reset PeNDing Flag	Reset Software Interrupt Pending Flag
X	A,Mem	EXchange A with Memory	$A \longleftrightarrow$ Mem
X	A, $[\mathrm{X}]$	EXchange A with Memory [X]	$A \longleftrightarrow[X]$
LD	A, Meml	LoaD A with Memory	$A \leftarrow M e m l$
LD	A, $[\mathrm{X}]$	LoaD A with Memory [ X ]	$\mathrm{A} \leftarrow[\mathrm{X}]$
LD	B,Imm	LoaD B with Immed.	$B \leftarrow \mathrm{Imm}$
LD	Mem, Imm	LoaD Memory Immed.	Mem $\leftarrow$ Imm
LD	Reg, 1 mm	LoaD Register Memory Immed.	Reg $\leftarrow \mathrm{Imm}$
X	A, [ $\mathrm{B} \pm$ ]	EXchange A with Memory [ $B$ ]	$A \longleftrightarrow[B],(B \leftarrow B \pm 1)$
X	A, $[\mathrm{X} \pm$ ]	EXchange A with Memory [ X ]	$A \longleftrightarrow[X],(X \leftarrow \pm 1)$
LD	$\mathrm{A},[\mathrm{B} \pm]$	LoaD A with Memory [ B ]	$A \leftarrow[B],(B \leftarrow B \pm 1)$
LD	A, $[\mathrm{X} \pm$ ]	LoaD A with Memory [ X ]	$A \leftarrow[X],(X \leftarrow X \pm 1)$
LD	[ $\mathrm{B} \pm$ ],1mm	LoaD Memory [B] Immed.	$[B] \leftarrow$ Imm, $(B \leftarrow B \pm 1)$
CLR	A	CLeaR A	$A \leftarrow 0$
INC	A	INCrement A	$A \leftarrow A+1$
DEC	A	DECrementA	$A \leftarrow A-1$
LAID		Load A InDirect from ROM	$A \leftarrow \operatorname{ROM}(\mathrm{PU}, \mathrm{A})$
DCOR	A	Decimal CORrect A	$A \leftarrow B C D$ correction of $A$ (follows ADC, SUBC)
RRC	A	Rotate A Right thru C	$\mathrm{C} \rightarrow \mathrm{A} 7 \rightarrow \ldots \rightarrow \mathrm{AO} \rightarrow \mathrm{C}$
RLC	A	Rotate A Left thru C	$C \leftarrow A 7 \leftarrow \ldots \leftarrow A O \leftarrow C$
SWAP	A	SWAP nibbles of $A$	$A 7 \ldots A 4 \longleftrightarrow A 3 \ldots A 0$
SC		Set C	$C \leftarrow 1, H C \leftarrow 1$
RC		Reset C	$\mathrm{C} \leftarrow 0, \mathrm{HC} \leftarrow 0$
IFC		IFC	IF C is true, do next instruction
IFNC		IF Not C	If C is not true, do next instruction
POP	A	POP the stack into $A$	$\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{~A} \leftarrow[\mathrm{SP}]$
PUSH	A	PUSH A onto the stack	[SP] $\leftarrow \mathrm{A}, \mathrm{SP} \leftarrow \mathrm{SP}-1$
VIS		Vector to Interrupt Service Routine	$\mathrm{PU} \leftarrow[\mathrm{VU}], \mathrm{PL} \leftarrow$ [VL]
JMPL	Addr.	Jump absolute Long	$\mathrm{PC} \leftarrow \mathrm{ii}(\mathrm{ii}=15$ bits, 0 k to 32k)
JMP	Addr.	Jump absolute	PC9 ... $0 \leftarrow \mathrm{i}(\mathrm{i}=12 \mathrm{bits})$
JP	Disp.	Jump relative short	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{r}(\mathrm{r}$ is -31 to +32 , except 1$)$
JSRL	Addr.	Jump SubRoutine Long	[SP] $\leftarrow \mathrm{PL},[\mathrm{SP}-1] \leftarrow \mathrm{PU}, \mathrm{SP}-2, \mathrm{PC} \leftarrow \mathrm{ij}$
JSR	Add.	Jump SubRoutine	$[S P] \leftarrow P L,[S P-1] \leftarrow P U, S P-2, P C 9 \ldots 0 \leftarrow 1$
JID		Jump InDirect	$\mathrm{PL} \leftarrow \mathrm{ROM}(\mathrm{PU}, \mathrm{A})$
RET		RETurn from subroutine	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETSK		RETurn and SKip	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1]$
RETI		RETurn from Interrupt	$\mathrm{SP}+2, \mathrm{PL} \leftarrow[\mathrm{SP}], \mathrm{PU} \leftarrow[\mathrm{SP}-1], \mathrm{GIE} \leftarrow 1$
INTR		Generate an Interrupt	$[S P] \leftarrow P L,[S P-1] \leftarrow P U, S P-2, P C \leftarrow 0 F F$
NOP		No OPeration	$\mathrm{PC} \leftarrow \mathrm{PC}+1$

## Instruction Execution Time

Most instructions are single byte (with immediate addressing mode instructions taking two bytes).
Most single byte instructions take one cycle time to execute.
See the BYTES and CYCLES per INSTRUCTION table for details.
Bytes and Cycles per Instruction
The following table shows the number of bytes and cycles for each instruction in the format of byte/cycle.

Logic and Arithmetic Instructions			
	[B]	Direct	Immed.
ADD	1/1	3/4	2/2
ADC	1/1	3/4	2/2
SUBC	1/1	3/4	$2 / 2$
AND	1/1	3/4	$2 / 2$
OR	1/1	3/4	2/2
XOR	1/1	3/4	$2 / 2$
IFEQ	1/1	3/4	$2 / 2$
IFGT	1/1	3/4	$2 / 2$
IFBNE	1/1		
DRSZ		1/3	
SBIT	1/1	3/4	
RBIT	1/1	3/4	
IFBIT	1/1	3/4	

Instructions Using A and C

CLRA	$1 / 1$
INCA	$1 / 1$
DECA	$1 / 1$
LAID	$1 / 3$
DCORA	$1 / 1$
RRCA	$1 / 1$
RLCA	$1 / 1$
SWAPA	$1 / 1$
SC	$1 / 1$
RC	$1 / 1$
IFC	$1 / 1$
IFNC	$1 / 1$
PUSHA	$1 / 3$
POPA	$1 / 3$
ANDSZ	$2 / 2$

Transfer of Control
Instructlons

JMPL	$3 / 4$
JMP	$2 / 3$
JP	$1 / 3$
JSRL	$3 / 5$
JSR	$2 / 5$
JID	$1 / 3$
VIS	$1 / 5$
RET	$1 / 5$
RETSK	$1 / 5$
RETI	$1 / 5$
INTR	$1 / 7$
NOP	$1 / 1$

Memory Transfer Instructions


* $=>$ Memory location addressed by B or X or directly.

UPPER NIBBLE

F	E	D	C	B	A	9	8	7	6	5	4	3	2	1	0	
JP -15	JP -31	LD OFO, \#i	DRSZ OFO	RRCA	RC	$\begin{aligned} & \mathrm{ADC} A, \\ & \# \mathrm{i} \end{aligned}$	ADC A, [B]	$\begin{aligned} & \text { IFBIT } \\ & 0,[B] \end{aligned}$	$\begin{array}{l\|l\|} \hline \text { ANDSZ } \\ \mathrm{A}, \# \mathrm{i} \\ \hline \end{array}$	LD B, \# OF	IFBNE 0	$\begin{aligned} & \text { JSR } \\ & \text { x000-x0FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x000-x0FF } \end{aligned}$	$\mathrm{JP}+17$	JP - 15	0
JP -14	JP -30	LD OF1, \#i	DRSZ 0F1	*	SC	SUBC A, $\# i$	SUB A, [B]	$\begin{aligned} & \hline \text { IFBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	*	LD B, \#0E	IFBNE 1	$\begin{aligned} & \text { JSR } \\ & \text { x100-x1FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \mathrm{x} 100-\mathrm{x} 1 \mathrm{FF} \end{aligned}$	$\mathrm{JP}+18$	JP - 14	1
JP - 13	JP -29	LD 0F2, \#i	DRSZ 0F2	$\begin{aligned} & \mathrm{XA}, \\ & {[\mathrm{X}+\mathrm{]}} \end{aligned}$	$\begin{aligned} & \mathrm{XA}, \\ & {[B+]} \end{aligned}$	$\begin{aligned} & \text { IFEQ A, } \\ & \# \mathrm{i} \end{aligned}$	IFEQ A, [B]	$\begin{aligned} & \hline \text { IFBIT } \\ & \text { 2,[B] } \\ & \hline \end{aligned}$	*	LD B, \#0D	IFBNE 2	$\begin{aligned} & \text { JSR } \\ & \times 200-\times 2 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x200-x2FF } \end{aligned}$	$J P+19$	JP - 13	2
JP - 12	JP -28	LD OF3, \#i	DRSZ OF3	$\begin{aligned} & \mathrm{XA}, \\ & {[\mathrm{X}-]} \end{aligned}$	$\begin{aligned} & \mathrm{XA}, \\ & {[\mathrm{~B}-1} \end{aligned}$	IFGT A, $\# 1$	IFGT A,[B]	$\begin{array}{\|l\|} \hline \text { IFBIT } \\ 3,[\mathrm{~B}] \\ \hline \end{array}$	*	LD B, \#0C	IFBNE 3	$\begin{aligned} & \text { JSR } \\ & \times 300-\times 3 F F \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x300-x3FF } \end{aligned}$	$\mathrm{JP}+20$	JP - 12	3
JP -11	JP -27	LD OF4, \#i	DRSZ 0F4	VIS	LAID	$\begin{aligned} & \text { ADD A, } \\ & \# \mathrm{i} \end{aligned}$	ADD A, [B]	$\begin{aligned} & \hline \text { IFBIT } \\ & 4,[\mathrm{~B}] \\ & \hline \end{aligned}$	CLRA	LD B, \# OB	IFBNE 4	$\begin{aligned} & \text { JSR } \\ & \mathrm{x} 400-\mathrm{x} 4 \mathrm{FF} \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x400-x4FF } \end{aligned}$	$\mathrm{JP}+21$	JP - 11	4
JP - 10	JP -26	LD 0F5, \#i	DRSZ 0F5	RPND	JID	AND A, \#i	AND A, [B]	$\begin{aligned} & \hline \text { IFBIT } \\ & 5,[B] \\ & \hline \end{aligned}$	SWAPA	LD B, \#0A	IFBNE 5	$\begin{aligned} & \text { JSR } \\ & \text { x500-x5FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 500-\times 5 F F \end{aligned}$	$\mathrm{JP}+22$	JP - 10	5
JP -9	JP -25	LD 0F6, \#i	DRSZ 0F6	X A, [X]	X A, [B]	$\begin{aligned} & \text { XOR A, } \\ & \# i \end{aligned}$	XOR A, [B]	$\begin{aligned} & \text { IFBIT } \\ & \text { 6,[B] } \\ & \hline \end{aligned}$	DCORA	LD B, \#09	IFBNE 6	$\begin{aligned} & \text { JSR } \\ & \text { x600-x6FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x600-x6FF } \end{aligned}$	$\mathrm{JP}+23$	JP - 9	6
JP -8	JP -24	LD 0F7, \#i	DRSZ 0F7	*	*	OR A, \# i	OR A; [B]	$\begin{aligned} & \text { IFBIT } \\ & 7,[B] \\ & \hline \end{aligned}$	PUSHA	LD B, \#08	IFBNE 7	$\begin{aligned} & \hline \text { JSR } \\ & \text { x700-x7FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \mathrm{x} 700-\times 7 \mathrm{FF} \end{aligned}$	$\mathrm{JP}+24$	JP - 8	7
JP -7	JP -23	LD OF8, \#i	DRSZ OF8	NOP	RLCA	LD A, \#i.	IFC	$\begin{array}{\|l\|} \hline \text { SBIT } \\ 0,[B] \end{array}$	$\begin{array}{\|l\|} \hline \text { RBIT } \\ 0,[\mathrm{~B}] \end{array}$	LD B, \#07	IFBNE 8	$\begin{aligned} & \text { JSR } \\ & \times 800-\times 8 \mathrm{FF} \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \times 800-\times 8 F F \end{aligned}$	$\mathrm{JP}+25$	JP - 7	8
JP -6	JP -22	LD 0F9, \#i	DRSZ 0F9	$\begin{aligned} & \text { IFNE } \\ & \mathrm{A},[\mathrm{~B}] \end{aligned}$	IFEQ   Md, \#i	$\begin{aligned} & \text { IFNE } \\ & \mathrm{A}, \# \mathrm{i} \end{aligned}$	IFNC	$\begin{aligned} & \mathrm{SBIT} \\ & 1,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 1,[\mathrm{~B}] \end{aligned}$	LD B, \#06	IFBNE 9	$\begin{aligned} & \text { JSR } \\ & \text { x900-x9FF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { x900-x9FF } \end{aligned}$	$\mathrm{JP}+26$	JP - 6	9
JP -5	JP -21	LD OFA, \#i	DRSZ OFA	$\begin{aligned} & \text { LDA, } \\ & {[\mathrm{X}+]} \end{aligned}$	$\begin{aligned} & \text { LD A, } \\ & {[B+]} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{LD}[\mathrm{~B}+], \\ \# \mathrm{i} \\ \hline \end{array}$	INCA	$\begin{aligned} & \text { SBIT } \\ & 2,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & \text { 2,[B] } \end{aligned}$	LD B, \#05	IFBNE OA	$\begin{aligned} & \text { JSR } \\ & \text { XAOO-xAFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xAOO-XAFF } \end{aligned}$	$\mathrm{JP}+27$	JP - 5	A
JP -4	JP -20	LD OFB, \#i	DRSZ OFB	$\begin{aligned} & \text { LD A, } \\ & \text { [X-] } \end{aligned}$	$\begin{aligned} & \mathrm{LD} A, \\ & {[B-]} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { LD }[B-], \\ \# i \\ \hline \end{array}$	DECA	$\begin{aligned} & \text { SBIT } \\ & 3,[\mathrm{~B}] \end{aligned}$	$\begin{array}{\|l\|} \hline \text { RBIT } \\ 3,[\mathrm{~B}] \\ \hline \end{array}$	LD B, \#04	IFBNE OB	$\begin{array}{\|l\|} \hline \text { JSR } \\ \text { xBOO-xBFF } \end{array}$	$\begin{aligned} & \text { JMP } \\ & \text { xB00-xBFF } \end{aligned}$	$\mathrm{JP}+28$	JP - 4	B
JP - 3	JP -19	LD OFC, \#i	DRSZ OFC	LD Md, \#i	JMPL	X A,Md	POPA	$\begin{aligned} & \text { SBIT } \\ & 4,[\mathrm{~B}] \end{aligned}$	$\begin{array}{\|l\|} \mathrm{RBIT} \\ 4,[\mathrm{~B}] \end{array}$	LD B, \#03	IFBNE OC	$\begin{aligned} & \text { JSR } \\ & \text { xCOO-xCFF } \end{aligned}$	$\begin{aligned} & \mathrm{JMP} \\ & \mathrm{xCOO-xCFF} \end{aligned}$	$\mathrm{JP}+29$	JP-3	c
JP -2	JP -18	LD OFD, \#i	DRSZ OFD	DIR	JSRL	LD A,Md	RETSK	$\begin{aligned} & \mathrm{SBIT} \\ & 5,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 5,[\mathrm{~B}] \end{aligned}$	LD B, \#02	IFBNE OD	$\begin{aligned} & \text { JSR } \\ & \text { xD00-xDFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xD00-xDFF } \end{aligned}$	JP + 30	JP - 2	D
JP - 1	JP -17	LD OFE, \#i	DRSZ OFE	LD A, [X]	LD A, [B]	LD [B], \#i	RET	$\begin{aligned} & \text { SBIT } \\ & \text { 6,[B] } \end{aligned}$	$\begin{aligned} & \text { RBIT } \\ & 6,[\mathrm{~B}] \end{aligned}$	LD B, \#01	IFBNE 0E	$\begin{array}{\|l\|} \hline \text { JSR } \\ \text { XEOO-XEFF } \end{array}$	$\begin{aligned} & \text { JMP } \\ & \text { xEOO-xEFF } \end{aligned}$	$\mathrm{JP}+31$	JP-1	E
JP -0	JP -16	LD OFF, \#i	DRSZ OFF	*	*	LD B, \#i	RETI	$\begin{aligned} & \text { SBIT } \\ & 7,[\mathrm{~B}] \end{aligned}$	$\begin{aligned} & \mathrm{RBIT} \\ & 7,[\mathrm{~B}] \end{aligned}$	LD B, \#00	IFBNE OF	$\begin{aligned} & \text { JSR } \\ & \text { xFO0-xFFF } \end{aligned}$	$\begin{aligned} & \text { JMP } \\ & \text { xFO0-xFFF } \end{aligned}$	$\mathrm{JP}+32$	JP - 0	F
where,   $i$ is the immediate data   Md is a directly addressed memory location   * is an unused opcode																

Note: The opcode 60 Hex is also the opcode for IFBIT \#i,A

## Ordering Information and Development Support

COP8788EG/COP8784EG Ordering Information

Device Number	Clock   Option	Package	Emulates
COP8788EGV-X   COP8788EGV-R*	Crystal   R/C	44 PLCC	COP888EG
COP8788EGN-X   COP8788EGN-R*	Crystal   R/C	40 DIP	COP888EG
COP8784EGN-X   COP8784EGN-R*	Crystal   R/C	28 DIP	COP884EG
COP8784EGWM-X*   COP8784EGWM-R*	Crystal   R/C	28 SO	COP884EG

*Check with the local sales office about the availability

PROGRAMMING SUPPORT
Programming of these emulator devices is supported by different sources. The following programmers are certified for programming these One-Time Programmable emulator devices:

EPROM Programmer Information

Manufacturer and Product	U.S. Phone Number	Europe Phone Number	Asia Phone Number
MetaLink-Debug Module	$(602) 926-0797$	Germany:   $+49-8141-1030$	Hong Kong:   $852-737-1800$
Xeltek-Superpro	$(408) 745-7974$	Germany:   $+49-20-41-684758$	Singapore:   $65-276-6433$
BP Microsystems-Turpro	$(800) 225-2102$	Germany:   $+49-89-85-76667$	Hong Kong:   $852-388-0629$
Data I/O-Unisite   -System 29   -System 39	$(800) 322-8246$	Europe:   $+31-20-622866$   Germany:   $+49-89-85-8020 ~$	Japan:   $+33-432-6991$
Abcom-COP8   Programmer	Europe:   $+49-89-808707$		
System General-Turpro-1-FX   -APRO	(408) 263-6667	Switzerland:   $+41-31-921-7844$	Taiwan:   $+2.017-2005$

## Development Support

## IN-CIRCUIT EMULATOR

The MetaLink iceMASTERTM-COP8 Model 400 In-Circuit Emulator for the COP8 family of microcontrollers features high-performance operation, ease of use, and an extremely flexible user-interface or maximum productivity. Interchangeable probe cards, which connect to the standard common base, support the various configurations and packages of the COP8 family.
The iceMASTER provides real time, full speed emulation up to $10 \mathrm{MHz}, 32$ kbytes of emulation memory and 4 k frames of trace buffer memory. The user may define as many as 32 k trace and break triggers which can be enabled, disabled, set or cleared. They can be simple triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together. Trace information consists of address bus values, opcodes and user selectable probe clips status (external event lines). The trace buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.
During single-step operation the dynamically annotated code feature displays the contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed.

The iceMASTER's performance analyzer offers a resolution of better than $6 \mu \mathrm{~s}$. The user can easily monitor the time spent executing specific portions of code and find "hot spots" or "dead code". Up to 15 independent memory areas based on code address or label ranges can be defined. Analysis results can be viewed in bar graph format or as actual frequency count.
Emulator memory operations for program memory include single line assembler, disassembler, view, change and write to file. Data memory operations include fill, move, compare, dump to file, examine and modify. The contents of any memory space can be directly viewed and modified from the corresponding window.
The iceMASTER comes with an easy to use window interface. Each window can be sized, highlighted, color-controlled, added, or removed completely. Commands can be accessed via pull-down-menus and/or redefinable hot keys. A context sensitive hypertext/hyperlinked on-line help system explains clearly the options the user has from within any window.
The iceMASTER connects easily to a PC ${ }^{\circledR}$ via the standard COMM port and its 115.2 kBaud serial link keeps typical program download time to under 3 seconds.
The following tables list the emulator and probe cards ordering information.

Emulator Ordering Information

Part Number	Description	Current Version
IM-COP8/400/1 $\ddagger$	MetaLink base unit in-circuit emulator for all COP8   devices, symbolic debugger software and RS 232   serial interface cable, with 110V @ 60 Hz Power   Supply.	
IM-COP8/400/2 $\ddagger$	MetaLink base unit in-circuit emulator for all COP8   devices, symbolic debugger software and RS 232   serial interface cable, with 220V @ 50 Hz Power   Supply.	Host Software:   Ver. 3.3 Rev. 5,   Model File Rev 3.050.
DM-COP8/888EG $\ddagger$	MetaLink IceMaster Debug Modul. This is the low cost   version of the MetaLink IceMaster. Firmware: Ver. 6.07	

$\ddagger$ These parts include National's COP8 Assembler/Linker/Librarian Package (COP8-DEV-IBMA).

Probe Card Ordering Information

Part Number	Package	Voltage   Range	Emulates
MHW－884EG28D5PC	28 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP884EG
MHW－884EG28DWPC	28 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP884EG
MHW－888EG40D5PC	40 DIP	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888EG
MHW－888EG40DWPC	40 DIP	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP888EG
MWH－888EG44D5PC	44 PLCC	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	COP888EG
MHW－888EG44DWPC	44 PLCC	$2.5 \mathrm{~V}-6.0 \mathrm{~V}$	COP888EG

## MACRO CROSS ASSEMBLER

National Semiconductor offers a relocatable COP8 macro cross assembler．It runs on industry standard compatible PCs and supports all of the full－symbolic debugging features of the MetaLink iceMASTER emulators．

Assembler Ordering Information

Part Number	Description	Manual
COP8－DEV－IBMA	COP8   Assembler／   Linker／Librarian   for IBM $®$   PC／XT, AT® or   compatible．	$424410632-001$

DIAL－A－HELPER
Dial－A－Helper is a service provided by the Microcontroller Applications group．The Dial－A－Helper is an Electronic Bulle－ tin Board Information system．

## INFORMATION SYSTEM

The Dial－A－Helper system provides access to an automated information storage and retrieval system that may be ac－ cessed over standard dial－up telephone lines 24 hours a day．The system capabilities include a MESSAGE SECTION （electronic mail）for communications to and from the Micro－ controller Applications Group and a FILE SECTION which consists of several file areas where valuable application software and utilities could be found．The minimum require－ ment for accessing the Dial－A－Helper is a Hayes compatible modem．
If the user has a PC with a communications package then files from the FILE SECTION can be down loaded to disk for later use．

## ORDER P／N：MOLE－DIAL－A－HLP

Information System Package contains：
Dial－A－Helper Users Manual
Public Domain Communications Software

## FACTORY APPLICATIONS SUPPORT

Dial－A－Helper also provides immediate factor applications support．If a user has questions，he can leave messages on our electronic bulletin board，which we will respond to．

Voice：（800）272－9959
Modem：CANADA／U．S．：（800）NSC－MICRO
（800）672－6427
Baud：14．4k
Set－Up：

Operation：
24 Hrs．， 7 Days


Section 2
COP8 Applications
Section 2 Contents
AN-521 Dual Tone Multiple Frequency (DTMF) ..... 2-3
AN-579 MICROWIRE/PLUS Serial Interface for COP800 Family ..... 2-12
AN-596 COP800 MathPak ..... 2-24
AN-607 Pulse Width Modulation A/D Conversion Techniques with COP800 Family Microcontrollers ..... 2-60
AN-662 COP800 Based Automated Security/Monitoring System ..... 2-67
AN-663 Sound Effects for the COP800 Family ..... 2-75
AN-666 DTMF Generation with a 3.58 MHz Crystal ..... 2-98
AN-673 2-Way Multiplexed LCD Drive and Low Cost A/D Converter Using V/F Techniques with COP8 Microcontrollers ..... 2-126
AN-681 PC MOUSE Implementation Using COP800 ..... 2-145
AN-714 Using COP800 Devices to Control DC Stepper Motors ..... 2-170
AN-734 MF2 Compatible Keyboard with COP8 Microcontrollers ..... 2-180
AN-739 RS-232C Interface with COP800 ..... 2-200
AN-952 Low Cost A/D Conversion Using COP800 ..... 2-212
AN-953 LCD Triplex Drive with COP820CJ ..... 2-221

## Dual Tone <br> Multiple Frequency (DTMF)

National Semiconductor Application Note 521
Verne H. Wilson


The DTMF (Dual Tone Multiple Frequency) application is associated with digital telephony, and provides two selected output frequencies (one high band, one low band) for a duration of 100 ms . A benchmark subroutine has been written for the COP820C/840C microcontrollers, and is outlined in detail in this application note. This DTMF subroutine takes 110 bytes of COP820C/840C code, consisting of 78 bytes of program code and 32 bytes of ROM table. The timings in this DTMF subroutine are based on a 20 MHz COP820C/840C clock, giving an instruction cycle time of $1 \mu \mathrm{~s}$.
The matrix for selecting the high and low band frequencies associated with each key is shown in Figure 1. Each key is uniquely referenced by selecting one of the four low band frequencies associated with the matrix rows, coupled with selecting one of the four high band frequencies associated with the matrix columns. The low band frequencies are 697, 770,852 , and 941 Hz , while the high band frequencies are $1209,1336,1477$, and 1633 Hz . The DTMF subroutine assumes that the key decoding is supplied as a low order hex digit in the accumulator. The COP820C/840C DTMF subroutine will then generate the selected high band and low band frequencies on port G output pins G3 and G2 respectively for a duration of 100 ms .
The COP820C/840C each contain only one timer. The problem is that three different times must be generated to satisfy the DTMF application. These three times are the periods of the two selected frequencies and the 100 ms duration period. Obviously the single timer can be used to generate any one (or possibly two) of the required times, with the program having to generate the other two (or one) times.
The solution to the DTMF problem lies in dividing the 100 ms time duration by the half periods (rounded to the nearest micro second) tor each of the eight frequencies, and then examining the respective high band and low band quotients and remainders. The results of these divisions are detailed in Table I. The low band frequency quotients range from 139 to 188 , while the high band quotients range from 241 to 326. The observation that only the low band quotients will each fit in a single byte dictates that the high band frequency be produced by the 16 bit (2 byte) COP820C/840C timer running in PWM (Pulse Width Modulation) Mode.


TL/DD/9662-1
FIGURE 1. DTMF Keyboard Matrix

The solution then is to use the program to produce the selected low band frequency as well as keep track of the 100 ms duration. This is achieved by using three programmed register counters R0, R2, and R3, with a backup register R1 to reload the counter R0. These three counters represent the half period, the 100 ms quotient, and the 100 ms remainder associated with each of the four low band frequencies.
The theory of operation in producing the selected low band frequency starts with loading the three counters with values obtained from a ROM table. The half period for the selected frequency is counted out, after which the G2 output bit is toggled. During this half period countout, the quotient counter is decremented. This procedure is repeated until the quotient counter counts out, after which the program branches to the remainder loop. During the remainder loop, the remainder counter counts out to terminate the 100 ms . Following the remainder countout, the G2 and G3 bits are both reset, after which the DTMF subroutine is exited. Great care must be taken in time balancing the half period loop for the selected low band frequency. Furthermore, the toggling of the G2 output bit (achieved with either a set or reset bit instruction) must also be exactly time balanced to maintain the half period time integrity. Local stall loops (consisting of a DRSZ instruction followed by a JP jump back to the DRSZ for a two byte, six instruction cycle loop) are embedded in both the half period and remainder loops. Consequently, the ROM table parameters for the half period and remainder counters are approximately only one sixth of what otherwise might be expected. The program for the half period loop, along with the detailed time balancing of the loop for each of the low band frequencies, is shown in Figure 2.
The DTMF subroutine makes use of two 16 byte ROM. 1 tables. The first ROM table contains the translation table for the input hex digit into the core vector. The encoding of the hex digit along with the hex digit ROM translation table is shown in Table II. The row and column bits (RR, CC) representing the low band and high band frequencies respectively of the keyboard matrix shown in Figure 1, are encoded in

TABLE I. Frequency Half Periods, Quotients, and Remainders

	Freq Hz	Half Period 0.5P	Half   Period in $\mu \mathrm{s}$	$100 \mathrm{~ms} / 0.5 \mathrm{P}$	
				Quotient	Remainder
Low Band Freq.'s	697	717.36	717	139	337
	770	649.35	649	154	54
	852	586.85	587	170	210
	941	531.35	531	188	172
High Band Freq.'s	1209	413.56	$\begin{array}{\|c\|} \hline 414 \\ (256+158) \\ \hline \end{array}$	241	226
	1336	374.25	$\begin{gathered} 374 \\ (256+118) \end{gathered}$	267	142
	1477	338.52	$\begin{gathered} 339 \\ (256+83) \end{gathered}$	294	334
	1633	306.18	$\begin{gathered} 306 \\ (256+50) \end{gathered}$	326	244

the two upper and two lower bits of the hex digit respectively. Consequently, the format for the hex digit bits is RRCC, so that the input byte in the accumulator will consist of 0000RRCC. The program changes this value into 1101RRCC before using it in setting up the address for the hex digit ROM translation table.
The core vectors from the hex digit ROM translation table consist of a format of XXOOTTOO, where the two T (Timer) bits select one of four high band frequencies, while the two $X$ bits select one of four low band frequencies. The core vector is transformed into four different inputs for the second ROM table. This transformation of the core vector is shown in Table III. The core vector transformation produces a timer vector $1100 \mathrm{TT} 00(\mathrm{~T})$, and three programmed coun-
ter vectors for R1, R2, and R3. The formats for the three counter vectors are $1100 \times X 11(F), 1100 \times X 10(Q)$, and $1100 \times \mathrm{X01}$ (R) for R1, R2, and R3 respectively. These four vectors produced from the core vector are then used as inputs to the second ROM table. One of these four vectors (the $T$ vector) is a function of the $T$ bits from the core vector, while the other three vectors ( $F, Q, R$ ) are a function of the $X$ bits. This correlates to only one parameter being needed for the timer (representing the selected high band frequency), while three parameters are needed for the three counters (half period, 100 ms quotient, 100 ms remainder) associated with the low band frequency and 100 ms duration. The frequency parameter ROM translation table, accessed by the $T, F, Q$, and $R$ vectors, is shown in Table IV.

Program			Bytes/Cycle	Conditional Cycles		Cycles	Total Cycles
	LD	B, \# PORTGD	2/3				
	LD	X, \#R1	2/3				
LUP1:	LD	A, $[\mathrm{X}-\mathrm{]}$	1/3			3	
	IFBIT	2,[B]	1/1			1	
	JP	BYP1	1/3	3	1		
	X	A, $[\mathrm{X}+$ ]	1/3		3		
	SBIT	2,[B]	1/1		1		
	JP	BYP2	1/3		3		
BYP1:	NOP		1/1	1			
	RBIT	2,[B]	1/1	1			
	X	A, $[\mathrm{X}+\mathrm{]}$	1/3	3			
BYP2:	DRSZ	R2	1/3 DECREMENT			3	
	JP	LUP2	1/3 QCOUNT			3	
	JP	FINI	1/3				
LUP2:	DRSZ	R0	1/3 DECREMENT		3	3	
	JP	LUP2	1/3 FCOUNT		3	1	
	NOP		1/1			1	
	LD	A, $[\mathrm{X}]$	1/3			3	
	IFEQ	A,\#104	2/2			2	
	JP	LUP1	1/3		1	3	31
	NOP		1/1		1		
	IFEQ	A, \# 93	2/2		2		
BACK:	JP	LUP1	1/3	1	3		35
	JP	BACK	1/3	3			
				3			39
Table IV		Total $=\mathrm{H}$					
Frequency	$\times \text { Loop }$	Cycles $=$ Pe					
((114-1)	x6)	$+39=$					
((104-1)	x6)	$+31=$					
( $93-1$ )	x6)	+35 =					
$((83-1)$	x6)	+39 =					

FIGURE 2. Time Balancing for Half Period Loop

	TABLE II. Hex Digit ROM Translation Table			
Row	697 Hz	770 Hz	. 852 Hz	941 Hz
COLUMN	1209 Hz	1336 Hz	1477 Hz	1633 Hz
ADDRESS	DATA (HEX)		EYBOARD	
*				* HEX DIGIT IS RRCC,
OxDO	000		1	WHERE $\mathrm{R}=$ ROW \#
OxD1	004		2	AND C = COLUMN \#
$0 \times \mathrm{D} 2$	008		3--	- EXAMPLE: KEY 3 IS ROW \#O,
$0 \times \mathrm{D} 3$	00C		A	COLUMN \#2, SO HEX DIGIT
$0 \times \mathrm{D} 4$	040		4	IS $0010=2$
0xD5	044		5	RRCC
0xD6	048		6	
$0 \times \mathrm{D7}$	04C		B	
0xD8	080		7	
0xD9	084		8	
0xDA	088		9	
$0 \times \mathrm{DB}$	08C		C	
$0 \times \mathrm{DC}$	0 CO		*	
OxDD	$0 \mathrm{C4}$		0	
OXDE	008		\#	
OXDF	OCC		D	

TABLE III. Core Vector Translation


TABLE IV. Frequency Parameter ROM Translation Table
T - TIMER F - FREQUENCY $Q$ - QUOTIENT R - REMAINDER


In summary, the input hex digit selects one of 16 core vectors from the first ROM table. This core vector is then transformed into four other vectors ( $T, F, Q, R$ ), which in turn are used to select four parameters from the second ROM table. These four parameters are used to load the timer, and the respective half period, quotient, and remainder counters. The first ROM table (representing the hex digit matrix table) is arbitrarily placed starting at ROM location 01D0, and has a reference setup with the ADD A, \#0D0 instruction. The second ROM table (representing the frequency parameter table) must be placed starting at ROM location 01C0 (or $0 \times C 0$ ) in order to minimize program size, and has reference setups with the OR A, \# OC3 instruction for the F vector and with the OR A, \# OCO instruction for the T vector.
The three parameters associated with the two $X$ bits of the core vector require a multi-level table lookup capability with the LAID instruction. This is achieved with the following section of code in the DTMF subroutine:


This program code loads the F frequency vector into R4, and then decrements the vector each time around the loop. This successive loop decrementation of the R4 vector changes the $F$ vector into the $Q$ vector, and then changes the $Q$ vector into the $R$ vector. This $R 4$ vector is used to access the ROM table with the LAID instruction. The $X$ pointer references the R4 vector, while the $B$ pointer is incremented each time around the loop after it has been used to store away the three selected ROM table parameters (one per loop). These three parameters are stored in sequential RAM locations R1, R2, and R3. The IFBNE test instruction is used to skip out of the loop once the three selected ROM table parameters have been accessed and stored away.
The timer is initialized to a count of 15 so that the first timer underflow and toggling of the G3 output bit (with timer PWM mode and G3 toggle output selected) will occur at the same time as the first toggling of the G2 output bit. The half period counts for the high band frequencies range from 306 to 414, so these values minus 256 are stored in the timer section of the second ROM table. The selected value from this frequency ROM table is then stored in the lower half of the timer autoreload register, while a 1 is stored in the upper half. The timer is selected for PWM output mode and started with the instruction LD [B], \# OBO where the $B$ pointer is selecting the CNTRL register at memory location OEE.
The DTMF subroutine for the COP820C/840C uses 110 bytes of code, consisting of 78 bytes of program code and 32 bytes of ROM table. A program routine to sequentially call the DTMF subroutine for each of the 16 hex digit inputs is supplied with the listing for the DTMF subroutine. DTMF


NATIONAL SEMICONDUCTOR CORPORATION
PAGE:
2 COP800 CROSS ASSEMBLER,REV:B, 20 JAN 87 DTMF


97		0160
98		
99	0160	DED5
100	0162	9B3F
101	0164	6B
102	0165	6A
103		
104	0166	94D0
105	0168	A4
106		
107	0169	5F
108	016A	A6
109	016B	AE
110	017B	65
111	016C	97 C 3
112	016E	DEF1
113	0170	DCF4
114	0172	B6
115	0173	BE
116	0174	A4
117	0175	A2
118	0176	C4
119	0177	44
120	0178	FA
121		
122	0179	5F
123	017A	AE
124	017C	97C0
125	017E	A4
126	017F	DEEA
127	0181	9AOF
128	0183	9A00
129	0185	A2
130	0186	9AOl
131	0188	9EBO
132		
133	018A	DED4
134	018C	DCF1
135		
136	018E	BB
137	018 F	72
138	0190	03
139	0191	B2
140	0192	7 A
141	0193	03
142	0194	B8
143	0195	6A
144	0196	B2
145	0197	C2
146	0198	01
147	0199	OC
148		
149	019A	CO
150	019B	FE
151		
152	019C	B8
153	019D	BE
154	019E	9268
155	01A0	ED
156		
157	01A1	B8
158	01A2	925D
159	01A4	E9
160	01A5	FE
161		
162	01A6	C3
163	01A7	FE
164		
165	0148	BDEE6C
166	01AB	6B
167	01AC	6A
168		
169	01AD	8E
170		


	. $=0160$			
;	LD	B, \#PORTGC		
	LD	[B-], \#03F		
	RBIT	3, [B]	;	OPTIONAL
	RBIT	2,[B]	;	OPTIONAL
;				
	ADD	A, \#0D0		
	LAID		;	DIGIT MATRIX TABLE
;				
	LD	B, $\mathbf{y}^{0}$		
	X	A, [B]		
	LD	A, [B]		
	SWAP	A		
	OR	A, \%0C3		
	LD	B, \#R1		
	LD	X, \#R4		
	X	A, [ $X$ ]		
LUP:	LD	A, [ $X$ ]		
	LAID		;	LB FREQ TABLES
	X	A, [ $\left.\mathrm{B}^{\text {+ }}\right]$	;	(3 PARAMETERS)
	DRSZ	R4		
	IFBNE	44		
	JP	LUP		
;				
	LD	B, 00		
	LD	A, [B]		
	OR	A, \% OCO		
	LAID		;	HB FREQ TABLE
	LD	B, \#TIMERLO	;	(1 PARAMETER)
	LD	[ $\mathrm{B}+\mathrm{]}$, \#15		
	LD	$[B+], \# 0$		
	X	A, [B+]		
	LD	[B+], \#1		
	LD	[B], \#0BO	;	START TIMER PWM
;				
	LD	B, \#PORTGD		
	LD	$X, 0 \mathrm{Rl}$		
'LUP 1 :				
	LD	A, $[\mathrm{X}-\mathrm{l}$		
	IFBIT	2,[B]	;	TEST LB OUTPUT
	JP	BYP1		
	X	A, [ $X+]$		
	SRIT		;	SET in Suirui
	JP	BYP2		
BYP1:	NOP			
	RBIT	2, [ $\mathrm{B}^{\text {] }}$	;	RESET LB OUTPUT
	X	A, $[\mathrm{X}+\mathrm{]}$		
BYP2:	DRSZ	R2	;	DECR. QUOT. COUNT
	JP	LUP2		
	JP	FINI	;	Q COUNT FINISHED
'LUP2:		R0	;	DECR. F COUNT
	JP	LUP2	;	LB (HALF PERIOD)
;				
	NOP		;	
	LD	A, [ X$]$	;	BALANCE
	${ }_{\text {JP }}{ }^{\text {IFEQ }}$	A,O104	;	LB FREQUENCY HALF PERIOD
	JP	Lup1	;	RESIDUE
;	NOP		;	DELAY FOR
	IFEQ	A, 793	;	EACH OF 4
BACK :	JP	LUP1	;	LB FREQ'S
	JP	BACK	;	
'fiNI:				
	$\begin{aligned} & \text { DRSZ } \\ & \text { JP } \end{aligned}$	FINI	;	R CNT NOT FINISHED
;				
	RBIT		;	
	RBIT	$3,[B]$	;	CLR HB OUTPUT
	RBIT	2,[B]	;	CLR LB OUTPUT
;	RET			

NATIONAL SEMICONDUCTOR CORPORATION
PAGE:
4 COP800 CROSS ASSEMBLER,REV:B, 20 JAN 87 DTMF

171			. FORM							
172			;							
173			; FREQUENCY A		100 MSEC	PARAMETER	TABLE			
174		01 CO		=01C						
175			;							
176	01 CO	9E		BYTE	158		;	T		
177	01 Cl	35		BYTE	53		;	R		
178	01 C 2	8C		BYTE	140		;	Q		
179	01C3	72		BYTE	114		;	F		
180	01 C 4	76		BYTE	118		;	T		
181	$01 C 5$	06		BYTE	6		;	R		
182	$01 C 6$	9 B		BYTE	155		;	Q		
183	01 C 7	68		BYTE	104		;	F		
184	01 C 8	53		BYTE	83		;	T		
185	01C9	20		BYTE	32		;	R		
186	01CA	AB		BYTE	171		;	Q		
187	01CB	5D		BYTE	93		;	F		
188	O1CC	32		BYTE	50		;	T		
189	O1CD	19		BYTE	25		;	R		
190	01CE	BD		BYTE	189		;	Q		
191	01CF	53		BYTE	83		;	F		
192			;							
193			; DIGIT MATR	IX TA						
194		010		$=01 \mathrm{DO}$						
195			;						ROW	COL
196	01D0	00		BYTE	000		;	1	0	0
197	01 D 1	04		BYTE	004		;	2	0	1
198	01D2	08		BYTE	008		;	3	0	2
199	01 D 3	OC		BYTE	00 C		;	A	0	3
200	01 D4	40		BYTE	040		,	4	1	0
201	01 D 5	44		BYTE	044		;	5	1	1
202	01 D6	48		BYTE	048		;	6	1	2
203	01 D 7	4C		BYTE	04 C		;	B	1	3
204	01 D 8	80		BYTE	080		;	7	2	0
205	01 D 9	84		BYTE	084		;	8	2	1
206	01 DA	88		BYTE	088		,	9	2	2
207	01 DB	8 C		BYTE	08C		;	C	2	3
208	01DC	C0		BYTE	OCO		;	*	3	0
209	01 DD	C4		BYTE	0 C 4		;	0	3	1
210	O1DE	C8		BYTE	0C8		;	星	3	2
211	01 DF	CC		BYTE	OCC		,	D	3	3
212			;							
213				END					;	

NATIONAL SEMICONDUCTOR CORPORATION COP800 CROSS ASSEMBLER,REV:B, 20 JAN 87 DTMF

SYMBOL TABLE

B	OOFE		BACK	0144
CNTRL	OOEE		DTMF	0160
LUP	0174		LUP1	018 E
PORTGC	OOD5		PORTGD	00D4
PSW	00EF	*	RO	00FO
R3	00F3		R4	00F4
TIMERL	O0EA		X	00 FC

PAGE: 5

## MACRO TABLE

## NO WARNING LINES

NO ERROR LINES
139 ROM BYTES USED
SOURCE CHECKSUM $=$ 99A7
OBJECT CHECKSUM $=03 E 1$
INPUT FILE C:DTMF.MAC
LISTING FILE C:DTMF.PRN
OBJECT FILE C:DTMF.LM

The code listed in this App Note is available on Dial-A-Helper.
Dial-A-Helper is a service provided by the Microcontroller Applications Group. The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communicating to and from the Microcontro!!cr Applicativis Gïolip anı a FiLE SECTION mode that can be used to search out and retrieve application data about NSC Microcontrollers. The minimum system requirement is a dumb terminal, 300 or 1200 baud modem, and a telephone. With a communications package and a PC, the code detailed in this App Note can be down loaded from the FILE SECTION to disk for later use. The Dial-A-Helper telephone lines are:

Modem (408) 739-1162
Voice (408) 721-5582
For Additional Information, Please Contact Factory

## MICROWIRE/PLUS ${ }^{\text {TM }}$ Serial Interface for COP800 Family

## INTRODUCTION

National Semiconductor's COP800 family of full-feature, cost-effective microcontrollers use a new 8 -bit single chip core architecture fabricated with $\mathrm{M}^{2} \mathrm{CMOS}$ process technology. These high performance microcontrollers provide efficient system solutions with a versatile instruction set and high functionality.
The COP800 family of microcontrollers feature the MICROWIRE/PLUS mode of serial communication. MICROWIRE/ PLUS is an enhancement of the MICROWIRETM synchronous serial communications scheme, originally implemented on the COP400 family of microcontrollers. The MICROWIRE/PLUS interface on the COP800 family of microcontrollers enables easy I/O expansion and interfacing to several COPS peripheral devices (A/D converters, EEPROMs, Display drivers etc.), and interfacing with other microcontrollers which support MICROWIRE/PLUS or SPI* modes of serial interface.

## MICROWIRE/PLUS DEFINITION

MICROWIRE/PLUS is a versatile three wire, SI (serial input), SO (serial output), and SK (serial clock), bidirectional serial synchronous communication scheme where the COP800 is either the Master providing the Shift Clock (SK) or a slave accepting an external Shift Clock (SK). The COP800 MICROWIRE/PLUS system block diagram is shown in Figure 1. The MICROWIRE/PLUS serial interface utilizes an 8-bit memory mapped MICROWIRE/PLUS serial shift register, SIOR, clocked by the SK signal. As the name suggests, the SIOR register serves as the shift register for serial transfers. SI, the serial input line to the COP 800 mi crocontroller, is the shift register input. SO, the shift register output, is the serial output to external devices. SK is the serial synchronous clock. Data is clocked into and out of the


TL/DD/10252-1
-only in COP888XX series
FIGURE 1. MICROWIRE/PLUS Block Diagram

National Semiconductor
Application Note 579
Ramesh Sivakolundu
Sunder Velamuri

peripheral devices with the SK clock. The SO, SK and SI are mapped as alternate functions on pins 4,5 , and 6 respectively of the 8 -bit bidirectional G Port.

## MICROWIRE/PLUS OPERATION

In MICROWIRE/PLUS serial interface, the input data on the SI pin is shifted high order first into the Least Significant Bit (LSB) of the 8 -bit SIOR shift register. The output data is shifted out high order first from the Most Significant Bit (MSB) of the shift register onto the SO pin. The SIOR register is clocked on the falling edge of the SK clock signal. The input data on the SI pin is shifted into the LSB of the SIOR register on the rising edge of the SK clock. The MSB of the SIOR register is shifted out to the SO pin on the falling edge of the SK clock signal. The SK clock signal is generated internally by the COP800 for the master mode of MICROWIRE/PLUS operation. In the slave mode, the SK clock is generated by an external device (which acts as the master) and is input to the COP800.
The MSEL (MICROWIRE Select) flag in the CNTRL register is used to enable MICROWIRE/PLUS operation. Setting the MSEL flag enables the gating of the MICROWIRE/PLUS interface signals through the G port. Pins G4, G5, and G6 of the G port are used for the signals SO, SK and SI, respectively. It should be noted that the $G$ port configuration register must be set up appropriately for MICROWIRE/PLUS operation. Table I illustrates the G-port configurations. In the master mode of MICROWIRE/PLUS operation, G4 and G5 need to be selected as outputs for SO and SK signals. Alternatively, in the slave mode of operation, G5 needs to be configured as an input for the external SK. The SI signal is a dedicated input on G6 and therefore no further setup is required.

TABLE I. G Port Configurations

G4 (SO)   Config. Bit	G5 (SK)   Config Bit.	G4   Fun.	G5   Fun.	Operation
1	1	SO	Int.   SK	MICROWIRE   Master
0	1	TRI-   STATE	Int.   SK	MICROWIRE   Master
1	0	SO	Ext.   SK	MICROWIRE   Slave
0	0	TRI-   STATE	Ext.   SK	MICROWIRE   Slave

The SL. 1 and SLO (S1 and S0 in COP820C and COP840C) bits of the CNTRL register are used to select the clock divjsion factor ( 2,4 , or 8 ) for SK clock generation in MICROWIRE/PLUS master mode operation. A clock select table for these bits of the CNTRL register along with the CNTRL register is shown in Table II. The counter associated with
the master mode clock division factor is cleared when the MICROWIRE/PLUS BUSY flag is low. The clock division factor is relative to the instruction cycle frequency. For example, if the COP800 is operating with an internal clock of 1 MHz , the SK clock rate would be $500 \mathrm{kHz}, 250 \mathrm{kHz}$, or 125 kHz for SL1 and SLO values of 00,01 and 10 (or 11) respectively.

TABLE II
CNTRL Register (Address X'OOEE)
The Timer1 (T1) and MICROWIRE control register contains the following bits:
SL1 \& SL0 Select the MICROWIRE clock divide by $(00=2$, $01=4,1 X=8$ )
IEDG External Interrupt Edge Polarity Select ( $0=$ Rising Edge, 1 = Falling Edge)
MSEL Selects G5 and G4 as MICROWIRE Signals SK and SO Respectively
T1C0 Timer T1 Start/Stop Control in Timer Modes 1 and 2
Timer T1 Underflow Interrupt Pending Flag in Timer Mode 3
T1C1 Timer T1 Mode Control Bit
T1C2 Timer T1 Mode Control Bit
T1C3 Timer T1 Mode Control Bit

T1C3	T1C2	T1C1	T1C0	MSEL	IEDG	SL1	SL0


SL1	SLO	SK
0	0	$2 \times t_{c}$
0	1	$4 \times t_{c}$
1	$x$	$8 \times t_{c}$

Where $\mathrm{t}_{\mathrm{c}}$ is the instruction cycle clock

## MICROWIRE/PLUS MASTER MODE OPERATION

In the MICROWIRE/PLUS master mode, the PUSV flag of PSW (Processor Status Word) is used to control the shifting
of the MICROWIRE/PLUS 8-bit shift register. Setting the BUSY flag causes the SIOR register to shift out 8 bits of data from SO at the high order end of the shift register. During the same time, 8 new bits of data from SI are shifted into the low order end of the SIOR register. The BUSY flag is automatically reset after the 8 bits of data have been shifted (Figure 2). The COP888XX series of microcontrollers provide a vectored maskable interrupt when the BUSY goes low indicating the end of an 8 -bit shift. Input data is clocked into the SIOR register from the SI pin with the rising edge of the SK clock, while the MSB of the SIOR is shifted onto the SO pin with the falling edge of the SK clock. The user may reset the BUSY bit by software to allow less than 8 bits to shift. However, the user should ensure that the software BUSY resets only occurs when the SK clock is low, in order to avoid a narrow SK terminal clock.

## MICROWIRE/PLUS SLAVE MODE OPERATION

In the MICROWIRE/PLUS Slave mode of operation the SK clock is generated by an external source. Setting the MSEL bit in the CNTRL register enables the SO and SK functions onto the G Port. The SK pin must be configured as an input and the SO pin configured as an output by resetting and setting the appropriate bits in the Port $G$ configuration register. The user must set the BUSY flag immediately upon entering the Slave mode. After eight clock pulses the Busy flag will be cleared and the sequence may be repeated. However, in the Slave mode the COP888 series does not shift data if the BUSY flag is reset, whereas the COP820C and COP840C continues to shift regardless of the BUSY flag, if the SK clock is active.

## MICROWIRE/PLUS ALTERNATE SK MODE

The COP888XX series of microcontrollers also allow an additional Alternate SK Phase Operation. In the normal mode data is shifted in on the rising edge of the SK clock and data is shifted out on the falling edge of the SK clock (Figure 2). The SIOR register is shifted on each falling edge of the SK clock. In the alternate SK phase operation, data is shifted in on the falling edge of the SK clock and data is shifted out on the rising edge of the SK clock (Figure 3).
*This bit becomes valid immediately after loading the SIOR register of the transmitting device.
tArrows indicate points at which SI is sampled.
FIGURE 2. MICROWIRE/PLUS Timing


TLL/DD/10252-3
$\uparrow$ Arrows indicates points at which SI is sampled.

## FIGURE 3. Alternate Phase SK Clock Timing

A control flag, SKSEL, allows either the normal SK clock or alternate SK clock to be selected. Resetting SKSEL selects the normal SK clock and setting SKSEL selects the alternate SK clock for the MICROWIRE/PLUS logic. The SKSEL flag is mapped into the G6 configuration bit. The SKSEL flag is reset after power up, selecting the normal SK clock signal. The alternate mode facilitates the usage of the MICROWIRE/PLUS protocol for serial data transfer between peripheral devices which are not compatible with the normal SK clock operation, i.e., shifting data out on the falling edge of the SK clock and shifting in data on the rising edge of the SK clock.

## MICROWIRE/PLUS SAMPLE PROTOCOL

This section gives a sample MICROWIRE/PLUS protocol using a COP888CL and COP840C. The slave mode operating procedure for this sample protocol is explained, and a timing illustration of the protocol is provided.

1. The MSEL bit in the CNTRL register is set to enable MICROWIRE; G0 ( $\overline{\mathrm{CS}}$ ) and G5 (SK) are configured as inputs and $\mathrm{G} 4(\mathrm{SO})$ as an output. $\mathrm{G} 6(\mathrm{SI})$ is always an input.
2. Chip Select line ( $\overline{C S}$ ) from master device is connected to GO of the slave device. An active-low level on $\overline{\mathrm{CS}}$ line causes the slave to interrupt.
3. From the high-to-low transistion on the $\overline{\mathrm{CS}}$ line, there is no data transfer on the MICROWIRE until time "T" (See Figure 4).
4. The master initiates data transfer on the MICROWIRE by turning on the SK clock.
5. A series of data transfers take place between the master and slave devices.
6. The master pulls the $\overline{\mathrm{CS}}$ line high to end the MICROWIRE operation. The slave device returns to normal mode of operation.

## SLAVE MODE OPERATING PROCEDURE

1. The MSEL bit in the CNTRL register is set to enable MICROWIRE; G0 ( $\overline{\mathrm{CS}}$ ) and G5 (SK) are configured as inputs and $\mathrm{G} 4(\mathrm{SO})$ as an output. $\mathrm{G} 6(\mathrm{SI})$ is always an input.
2. Normal mode of operation until interrupted by $\overline{\mathrm{CS}}$ going low.
3. Set the BUSY flag and load SIOR register with the data to be sent out on SO. (The shift register shifts 8 bits of data from SO at the high order end of the shift register. During the same time, 8 new bits of data from SI are loaded into the low order end of the shift register.)
4. Wait for the BUSY flag to reset. (The BUSY flag is automatically reset after 8 bits of data have been shifted).
5. If data is being read in, the user should save contents of the SIOR register.
6. The prearranged set of data transfers are performed.
7. Repeat steps 3 through 6 . The user must ensure steps 3 through 6 are performed in time " t " (See Figure 4) as agreed upon in the protocol.

## DIFFERENCES BETWEEN COP888 AND COP820/COP840

The COP888 series MICROWIRE/PLUS feature differs from that of the COP820/COP840 in some respects. The COP888 series can be configured to interrupt the processor after the completion of a MICROWIRE/PLUS operation indicated by the BUSY flag going low. The COP888 series supports a vectored interrupt scheme. Two bytes of program memory space are reserved for each interrupt source. The user would do any required context switching and then program a VIS (Vector Interrupt Select) instruction in order to branch to the interrupt service routine of the highest priority interrupt enabled and pending at the time of the VIS instruction. The addresses of the different interrupt service routines are chosen by the user and stored in ROM in a table starting at OyEO where " y " depends on the 256 byte block ( $0 y 00$ to OyFF) in which the VIS instruction is located. The vector address for the MICROWIRE/PLUS interrupt is OyF2-0yF3.
Secondly, the COP888 series supports the alternate SK phase mode of MICROWIRE/PLUS operation. This feature facilitates the usage of the MICROWIRE/PLUS protocol for serial data transfer between peripheral devices which are not compatible with the normal SK clock operation, i.e., shifting data out on the falling edge of SK clock and shifting in data on the rising edge of the SK clock.


FIGURE 4. MICROWIRE/PLUS Sample Protocol Timing Diagram

## INTERFACE CONSIDERATIONS

To preserve the integrity of data exchange using MICROWIRE/PLUS, two aspects have to be considered:

1. Serial data exchange timing.
2. Fan-out/fan-in requirements.

Theoretically, infinite devices can access the same interface and be uniquely enabled sequentially in time. In practice, however, the actual number of devices that can access the same serial interface depends on the following: System data transfer rate, system supply requirement, capacitive loading on SK and SO outputs, the fan-in requirements of the logic families or discrete devices to be interfaced.

## HARDWARE INTERFACE

For proper data transfer to occur the output should be able to switch between a HIGH level and a LOW level in a predetermined amount of time. The transfer is strictly synchronous and the timing is related to the MICROWIRE/PLUS system clock (SK). For example, if a COPS controller outputs a value at the falling edge of the clock and is latched in by the peripheral device at the rising edge, then the following relationship has to be satisifed:

$$
t_{\text {DELAY }}+t_{\text {SETUP }} \leq t_{\text {CK }}
$$

where $t_{C K}$ is the time from data output starts to switch to data being latched into the peripheral chip, tSETUP is the setup time for the peripheral device where the data has to be at a valid level, and tDELAY is the time for the output to read the valid level. $\mathrm{t}_{\mathrm{CK}}$ is related to the system clock provided by the SK pin of the COPS controller and can be increased by increasing the COPS instruction cycle time.
Besides the timing requirements, system supply and fan-out/fan-in requirements also have to be considered when interfacing with MICROWIRE/PLUS. To drive multi-devices on the same MICROWIRE/PLUS, the output drivers of the controller need to source and sink the total maximum leakage current of all the inputs connected to it and keep the signal level within the valid logic " 1 " and " 0 " input voltage levels. Thus, if devices of different types are connected to the same serial interface, output driver of the controller must satisfy all the input requirements of each device. Similarly, devices with TRI-STATE ${ }^{\circledR}$ outputs, when connected to the SI input, must satisfy the minimum valid input level of the controller and the maximum TRI-STATE ${ }^{\oplus}$ leakage current of all outputs.
So, for devices that have incompatible input levels or source/sink requirements, external pull-up resistors or buffers are necessarry to providé ievei-silifiting ur diriviry.

TABLE III

Features	Part Number							
	DS890XX	MM545X	COP470	COP472	$\begin{aligned} & \text { ADC83X } \\ & \text { (COP430) } \end{aligned}$	COP498/499	COP452L	$\begin{aligned} & \text { NMC9306 } \\ & \text { (COP494) } \\ & \hline \end{aligned}$
GENERAL								
Chip Function	AM/PM PLL	LED Display Driver	VF Display Driver	LCD Display Driver	A/D	RAM \& Timer	Frequency Generator	E2PROM
Process	ECL	NMOS	PMOS	CMOS	CMOS	CMOS	NMOS	NMOS
$\mathrm{V}_{\text {CC }}$ Range	$4.75 \mathrm{~V}-5.25 \mathrm{~V}$	$4.5 \mathrm{~V}-11 \mathrm{~V}$	-9.5 V to -4.5 V	$3.0 \mathrm{~V}-5.5 \mathrm{~V}$	$4.5 \mathrm{~V}-0.3 \mathrm{~V}$	$2.4 \mathrm{~V}-5.5 \mathrm{~V}$	4.5V-6.3V	$4.5 \mathrm{~V}-5.5 \mathrm{~V}$
Pinout	20	40	20	20	8/14/20	14/8	14	14

HARDWARE INTERFACE

Min $\mathrm{V}_{\mathrm{IH}} /$ Max $\mathrm{V}_{\mathrm{IL}}$		$2.1 \mathrm{~V} / 0.7 \mathrm{~V}$	$2.2 \mathrm{~V} / 0.8 \mathrm{~V}$	$-1.5 \mathrm{~V} /-4.0 \mathrm{~V}$	$0.7 \mathrm{~V}_{\mathrm{cc}} / 0.8 \mathrm{~V}$	$2.0 \mathrm{~V} / 0.8 \mathrm{~V}$	$0.8 \mathrm{~V}_{\mathrm{CC}} / 0.4 \mathrm{~V}_{\mathrm{CC}}$	$2.0 \mathrm{~V} / 0.8 \mathrm{~V}$	2.0V/0.8V
SK Clock Range		$0-625 \mathrm{kHz}$	$0-500 \mathrm{kHz}$	$0-250 \mathrm{kHz}$	$4-250 \mathrm{kHz}$	$10-200 \mathrm{kHz}$	$4-250 \mathrm{kHz}$	$25-250 \mathrm{kHz}$	0-250 kHz
Write Data DI	$\begin{array}{\|c\|} \hline \text { Setup } \\ \text { Min } \end{array}$	$0.3 \mu \mathrm{~s}$	$0.3 \mu \mathrm{~s}$	$1.0 \mu \mathrm{~s}$	$1.0 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~S}$	$0.4 \mu \mathrm{~S}$	800 ns	$0.4 \mu \mathrm{~S}$
	Hold Min	$0.8 \mu \mathrm{~s}$	(Note 3)	50 ns	100 ns   (Note 1)	$0.2 \mu \mathrm{~S}$	$0.4 \mu \mathrm{~s}$	$1.0 \mu \mathrm{~s}$	$0.4 \mu \mathrm{~s}$
Read Data Prop Delay		(Note 4)	( Note 3)	(Note 3)	(Note 3)	(Note 3)	$2 \mu \mathrm{~S}$ (Note 2)	$1 \mu \mathrm{~s}$ (Note 2)	$2.0 \mu \mathrm{~s}$
Chip Enable	Setup	$0.275 \mu \mathrm{~s}$	$0.4 \mu \mathrm{~s}$	$\begin{aligned} & 1.0 \mu \mathrm{~s} \\ & \mathrm{Min} \end{aligned}$	$\begin{gathered} 1 \mu \mathrm{~s} \\ \text { (Note 1) } \end{gathered}$	$0.2 \mu \mathrm{~S}$	$\begin{gathered} 0.2 \mu \mathrm{~s} \\ (\text { Note 1) } \end{gathered}$	(Note 3)	$0.2 \mu \mathrm{~s}$
	HOLD	$0.300 \mu \mathrm{~s}$	(Note 3)	$\begin{gathered} 1.0 \mu \mathrm{~s} \\ \mathrm{Min} \end{gathered}$	$\begin{gathered} 1 \mu \mathrm{~s} \\ \text { (Note 2) } \end{gathered}$	$0.2 \mu \mathrm{~s}$	$\begin{gathered} 0 \\ \text { (Note 2) } \end{gathered}$	(Note 3)	0
Max   Frequency Range	AM	8 MHz	(Note 3)						
	FM	120 MHz	(Note 3)	( Note 3 )	(Note 3)				
Max Osc. Freq.		( Note 3 )	(Note 3)	250 kHz	(Note 3)	(Note 3)	$\begin{gathered} 2.1 \mathrm{MHz}(-21) \\ 32 \mathrm{kHz}(-15) \\ \hline \end{gathered}$	$\left\|\begin{array}{c} 256-2100 \mathrm{kHz}(-4) \\ 64-525 \mathrm{kHz}(-2) \end{array}\right\|$	(Note 3)

## SOFT

Serial I/O   Protocol	11D1-D20	1D1-D35	8 Bits   At a Time	b1-b40	1xxx	1yyxxD6-D0   Start Bit	1yxxxx	1AA-DD
Instruction/   Address Word	None	None	None	None	(Note 4)	(Note 4)	(Note 4)	(Note 4)

Note 1: Reference to SK rising edge.
Note 2: Reference to SK falling edge.
Note 3: Not defined.
Note 4: See data sheet for different modes of operation.

## TYPICAL APPLICATIONS

A whole family of off-the shelf devices exist that are directly compatible with MICROWIRE/PLUS protocol. This allows direct interface with the COP800 family of microcontrollers. Table III provides a summary of the existing devices, their function and specification.

## NMC9306-COP888CG INTERFACE

The pin connection involved in interfacing an NMC9306 (COP494), a 256 bit E2PROM, with the COP888CG microcontroller is shown in Figure 5. Some notes on the NMC9306 interface requirements are:

1. The SK clock frequency should be in the $0 \mathrm{kHz}-250 \mathrm{kHz}$ range.
2. $\overline{C S}$ low period following an Erase/Write instruction must not exceed 30 ms maximum. It should be set at typical or minimum specification of 10 ms .
3. The start bit on DI must be set by a " 0 " to " 1 " transition following a $\overline{C S}$ enable (" 0 " to " 1 ") when executing any instruction. One $\overline{\mathrm{CS}}$ enable transition can only execute one instruction.
4. In the read mode, following an instruction and data train, the DI can be a "don't care", while the data is being outputted, i.e., for the next 17 bits or clocks. The same is true for other instructions after the instrution and data has been fed in.
5. The data out train starts with a dummy bit 0 and is terminated by chip deselect. Any extra SK cycle after 16 bits is not essential.
If $\overline{\mathrm{CS}}$ is held on after all 16 of the data bits have been outputed, the DO will output the state of DI until another $\overline{\mathrm{CS}} \mathrm{LO}$ to HI transition starts a new instruction cycle.
6. After a read cycle, the $\overline{\mathrm{CS}}$ must be brought low for one SK clock cycle before another instruction cycle starts.

Commands	Start   Bit	Opcode	Address	Comments
READ	1	0000	A3A2A1AO	Read Register 0-15
WRITE	1	1000	A3A2A1AO	Write Register 0-15
ERASE	1	0100	A3A2A1AO	Erase Register 0-15
EWEN	1	1100	0001	Write/Erase Enable
ENDS	1	1100	0010	Write/Erase Disable
***WRAL	1	1100	0100	Write All Registers
ERAL	1	1100	0101	Read All Registers

Where A3A2A1A0 corresponds to one of the sixteen 16 -bit registers.

All commands, data in, and data out are shifted in/out on the rising edge of the SK clock.
Write/Erase is then done by pulsing $\overline{\mathrm{CS}}$ low for 10 ms .
All instructions are initiated by a LO-HI transition on $\overline{\mathrm{CS}}$ followed by a LO-HI transition on DI.
READ- After read command is shifted in DI becomes don't care and data can be read out on data out, starting with dummy bit zero.
WRITE- Write command shifted in followed by data in ( 16 bits) the $\overline{C S}$ pulsed low for 10 ms minimum.

ERASE/ERASE ALL—Command shifted in followed by $\overline{C S}$ low.
WRITE ALL- Pulsing $\overline{\mathrm{CS}}$ low for 10 ms .
ENABLE/DISABLE- Command shifted in.
A detailed explanation of the E2PROM timing diagrams, instruction set and the various considerations could be found in the NMC9306 data sheet. A source listing of the software to interface the NMC9306 with the COP888CG is provided.

SOURCE LISTING
.INCLD COP888.INC
;
This program provides in the form of subroutines, the ability to erase, enable, disable, read and write to the COP494 EEPROM.
;
;
SNDBUF $=0 \quad$;CONTAINS THE COMMAND BYTE TO BE WRITTEN TO COP494
RDATL $=1 \quad$;LOWER BYTE OF THE COP494 REGISTER DATA READ
RDATH $=2$;UPPER BYTE OF THE COP494 REGISTER DATA READ
WDATL $=3 \quad$ :LOWER BYTE OF THE DATA TO BE WRITTEN TO COP494 ;REGISTER
WDATH = 4 ;UPPER BYTE OF THE DATA TO BE WRITTEN TO COP494 ;REGISTER
ADRESS $=5 \quad$ THE LOWER 4-BITS OF THIS LOCATION CONTAIN THE ;ADDRESS ;OF THE COP494 REGISTER TO BE READNRITTEN
FLAGS = 6
;USED FOR SETTING UP FLAGS
;
; FLAG VALUE ACTION
$\qquad$
: 00 ERASE,ENABLE,DISABLE,ERASE ALL
; 01 READ CONTENTS OF COP494 REGISTER
; 03 WRITE TO COP494 REGISTER
; OTHERS ILLEGAL COMBINATION

```
DLYH = OFO
DLYL = OF1
```

;
;THE INTERFACE BETWEEN THE COP888CG AND THE COP494 (256-BIT EEPROM) CONSISTS OF FOUR LINES. THE ;GO (CHIP SELECT LINE), G4 (SERIAL OUT SO), G5 (SERIAL CLOCK SK) ;AND G6 (SERIAL IN SI).
;
: initialization
;

LD	PORTGC, $\# 031$
LD	PORTGD, $\# 00$
LD	CNTROL, $\# 08$
LD	B,\#PSW
LD	X,\#SIOR

;Setup G0,G4,G5 as outputs
;Initialize $G$ data reg to zero
;Enable MSEL, select MW rate of 2tc
;
;THIS ROUTINE ERASES THE MEMORY LOCATION POINTED TO BY THE ADDRESS CONTAINED IN THE LOCATION ;"ADRESS". THE LOWER NIBBLE OF "ADRESS" CONTAINS THE COP494 REGISTER ADDRESS AND THE UPPER NIBBLE ;SHOULD BE SET TO ZERO.
;

ERASE:	LD	A,ADRESS
	OR	A,\#OCO
	X	A,SNDBUF
	LD	FLAGS, $\%$ O
	JSR	INIT
	RET	

;
;THIS ROUTINE ENABLES PROGRAMMING OF THE COP494. PROGRAMMING MUST BE PRECEDED ONCE BY A ;PROGRAMMING ENABLE (EWEN).
;
EWEN: LD , SNDBUF,*030

```
 LD FLAGS,WO
 JSR INIT
 RET
;
:THIS ROUTINE DISABLES PROGRAMMING OF THE COP494.
;
EWDS: LD SNDBUF,*O
 LD FLAGS,WO
 JSR INIT
 RET
;THIS ROUTINE ERASES ALL REGISTERS OF THE COP494.
:
ERAL: LD SNDBUF,W02O
 LD FLAGS,*O
 JSR INIT
 RET
```

;THIS ROUTINE READS THE CONTENTS OF THE COP494 REGISTER. THE COP494 ADDRESS IS SPECIFIED IN THE LOWER NIBBLE OF LOCATION "ADRESS". THE UPPER NIBBLE SHOULD BE SET TO ZERO. THE 16 -BIT CONTENTS OF THE COP494 REGISTER ARE STORED IN RDATL AND RDATH.
;
READ: LD A.ADRESS
OR A.HO8O
$X \quad$ A.SNDBUF
LD FLAGS,W1
JSR INIT
RET
;THIS ROUTINE WRITES A 16-BIT VALUE STORED IN WDATL AND WDATH TO THE COP494 REGISTER WHOSE ADDRESS ;IS CONTAINED IN THE LOWER NIBBLE OF THE LOCATION 'ADRESS'. THE UPPER NIBBLE OF ADDRESS LOCATION ;SHOULD BE SET TO ZERO.
;

WRITE:	ID	A.ADRESS
	OR	A,UO40
	$X$	A.SNDBUF
	LD	FLAGS,*3
	JSR	INIT
	RET	

;
THIS ROUTINE SENDS OUT THE START BIT AND THE COMMAND BYTE. IT ALSO DECIPHERS THE CONTENTS OF THE :FLAG LOCATION AND TAKES A DECISION REGARDING WRITE, READ OR RETURN TO THE CALLING ROUTINE.
;

INIT:	SBIT	0,PORTGD	;SET CHIP SELECT HIGH
	LD	SIOR, 0001	:LOAD SIOR WITH START BIT
	SBIT	BUSY, [B]	;SEND OUT THE START BIT
PUNT1:	IFBIT	BUSY, [B]	
	JP	PUNT1	
	LD	A.SNDBuF	
	X	A.[X]	:LOAD SIOR WITH COMMAND BYTE
	SBIT	BUSY.[B]	:SEND OUT COMMAND BYTE
PUNT2:	IFBIT	BUSY, [B]	
	JP	PUNT2	
	IFBIT	0.FLAGS	ANY FURTHER PROCESSING?



TL/DD/10252-8

## COP472-COP820 Interface

The pin connection required for interfacing COP472-3 Liquid Crystal Display (LCD) Controller with COP820C microcontroller is shown in Figure 6. The COP472-3 drives a multiplexed liquid crystal display directly. Data is loaded serially and is held in internal latches. One COP472-3 can drive 36 segments and two or more COP472-3's can be cascaded to drive additional segments as long as the output loading capacitance does not exceed specifications.
The COP472-3 requires 40 information bits: 36 data and 4 control. The function of each control bit is described briefly. Data is loaded in serially, in sets of eight bits. Each set of segment data is in the following format:

SA	SB	SC	SD	SE	SF	SG	SH

Data is shifted into an eight bit shift register. The first bit of data is for segment H , digit 1 , and the eight bit is for seg: ment $A$, digit 1. A set of eight bits are shifted in and then
loaded into the digit one latches. The second, third, and fourth set is then loaded sequentially. The fifth set of data bits contain special segment data and control data in the following format:

SYNC	Q 7	Q 6	X	SP 4	SP 3	SP 2	SP 1

The first four bits shifted in contain the special character segment data. The fifth bit is not used. The sixth and seventh bits program the COP472-3 as a stand alone LCD driver or as a master or slave for cascading COP472-3's. The Table IV summarizes the function of bits six and seven.
The eight bit is used to synchronize two COP472-3's to drive an $81 / 2$ digit display. A detailed explanation of the various timing diagrams, loading sequence and segment/backplane multiplex scheme can be found in the data sheets of COP472-3. The source listing of the software used in the interface is provided.


FIGURE 6. COP472-COP820C Interface

## SOURCE LISTING

;THIS PROGRAM DISPLAYS FOUR DIGITS OF THE RAM SPECIFIED BY; THE ADDRESS POINTER "HEAD" ON A 4 DIGIT 3 ;DECIMAL POINT (MULTIPLEXED) LCD DISPLAY. THE DATA STREAM IS SENT OUT SERIALLY THROUGH THE ;MICROWIRE/PLUS INTERFACE TO THE COP472 LCD DISPLAY DRIVER. NOTE: THE RAM CONTENTS SHOULD BE ;BETWEEN "O" AND "F".
;
.TITLE LCD
. . CHIP 820
:

;THIS ROUTINE GETS THE SEGMENT DATA FOR RAM DIGITS POINTED BY B REGISTER AND STORES IN RAM MEMORY ;POINTED BY X REGISTER
;

AGAIN:	LD	B, WHEAD	;POINTER TO START ADDRESS
	LD	X, \#MEMSTR	;POINTER TO STORE ADDRESS
NEXDIG:	LD	A, [B+]	;LOAD A WITH RAM DIGIT AND
			;INCREMENT B POINTER
	ADD	A, \#OFO	;ADD OFFSET TO THE DIGIT
	LAID		;LOOKUP SEGMENT DATA TOA
	$X$	A, $(x+1$	;STORE IN MEMORY
	IFBNE	0.04	©CHECK FOR END OF FOUR
			;DIGITS AND REPEAT
	JP	NEXDIG	;IF NECESSARY
;			
;			
; THIS ROUTINE DISPLAYS THE CONTENTS OF FOUR MEMORY LOCATION			
; ON THE LCD DISPLAY.			
;			
;			
DSP:	LD	B,\#MEMEND	;LOAD THE START ADDRESS
	RBIT	1,PORTGD	;BIT G1 IS USED TO SELECT
			;COP472 (PIN 4)


REPEAT:	LD	A, [B-]	;SEGMENT DATA TO A
	X	A,SIO	;LOAD THE SIO REGISTER
	SBIT	\#2,PSW	;SET BUSY BIT IN PSW
WAIT:	IFBIT	\#2,PSW	;WAIT TIL SHIFTING IS
	JP	WAIT	;COMPLETE
	IFBNE	H04	;CHECK FOR END OF FOUR
	JP	REPEAT	;DIGITS AND REPEAT
	SBIT	1,PORTGD	;DESELECT COP472
LOOP:	JP	LOOP	;DONE DISPLAYING
;			
;			
: STORE THE LOOKUP TABLE FOR SEGMENT DATA IN ROM LOCATION OFO			
:			
: $=0$ OO			
;			
	.BYTE	03F,006,05B,04F	;DATA FOR 0, 1,2,3
	.BYTE	066,06D,07D,07	;DATA FOR 4,5,6,7
	.BYTE	07F,067,077,07C	;DATA FOR B,9,A,B
	.BYTE	039,05E,079,071	;DATA FOR C,D,E,F
;			
;			
	.END		

The code listed in this App Note is available on Dial-A-Helper.
Dial-A-Helper is a service provided by the Microcontroller Applications Group. The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communicating to and from the Microcontroller Applications Group and a FILE SECTION mode that can be used to search out and retrieve application data about NSC Microcontrollers. The minimum system requirement is a dumb terminal, 300 or 1200 baud modem, and a telephone.
With a communications package and a PC, the code detailed in this App Note can be downloaded from the FILE SECTION to dict for later ucc. The Dial-A-Hc!per tolophone lines are:

Modem (408) 739-1162
Voice (408) 721-5582
For Additional Information, Please Contact Factory

## COP800 MathPak

National Semiconductor Application Note 596
Verne H. Wilson


## OVERVIEW

This application note discusses the various arithmetic operations for National Semiconductor's COP800 family of 8-bit microcontrollers. These arithmetic operations include both binary and BCD (Binary Coded Decimal) operation. The four basic arithmetic operations (add, subtract, multiply, divide) are outlined in detail, with several examples shown for both binary and BCD addition and subtraction. Multiplication, division, and BCD conversion algorithms are also provided. Both BCD to binary and binary to BCD conversion subroutines are included, as well as the various multiplication and division subroutines.
Four sets of optimal subroutines are provided for

1. Multiplication
2. Division
3. Decimal (Packed BCD) to binary conversion
4. Binary to decimal (Packed BCD) conversion

One class of subroutines is optimized for minimal COP800 program code, while the second class is optimized for minimal execution time in order to optimize throughput time.
This application note is organized in four different sections. The first section outlines various addition and subtraction routines, including both binary and BCD (Binary Coded Decimal). The second section outlines the multiplication algorithm and provides several optimal multiply subroutines for $1,2,3$, and 4 byte operation. The third section outlines the division algorithm and provides several optimal division subroutines for $1,2,3$, and 4 byte operation. The fourth section outlines both the decimal (Packed BCD) to binary and binary to decimal (Packed BCD) conversion algorithms. This section provides several optimal subroutines for these BCD conversions.

The COP800 arithmetic instructions include the Add (ADD), Add with Carry (ADC), Subtract with Carry (SUBC), Increment (INCR), Decrement (DECR), Decimal Correct (DCOR),

Clear Accumulator (ACC), Set Carry (SC), and Reset Carry (RC). The shift and rotate instructions, which include the Rotate Right through Carry (RRC) and the Swap Accumulator Nibbles (SWAP), may also be considered as arithmetic instruction variations. The RRC instruction is instrumental in writing a fast multiply routine.

### 1.0 BINARY AND BCD ADDITION AND SUBTRACTION

In subtraction, a borrow is represented by the absence of a carry and vice versa. Consequently, the carry flag needs to be set (no borrow) before a subtraction, just as the carry flag is reset before an addition. The ADD instruction does not use the carry flag as an input, nor does it change the carry flag. It should also be noted that both the carry and half carry flags (bits 6 and 7, respectively, of the PSW control register) are cleared with reset, and remain unchanged with the ADD, INC, DEC, DCOR, CLR and SWAP instructions. The DCOR instruction uses both the carry and half carry flags. The SC instruction sets both the carry and half carry flags, while the RC instruction resets both these flags.
The following program examples illustrate additions and subtractions of 4 -byte data fields in both binary and BCD (Binary Coded Decimal). The four bytes from data memory locations 24 through 27 are added to or subtracted from the four bytes in data memory locations 16 through 19. The results replace the data in memory locations 24 through 27. These operations are performed both in Binary and BCD. It should be noted that the BCD pre-conditioning of Adding (ADD) the hex 66 is only necessary with the BCD addition, not with the BCD subtraction. The (Binary Coded Decimal) DCOR (Decimal Correct) instruction uses both the carry and half carry flags as inputs, but does not change the carry and half carry flags. Also note that the \# 12 with the IFBNE instruction represents $28-16$, since the IFBNE operand is modulo 16 (remainder when divided by 16).

## BINARY ADDITION:

	LD	X,\#16
	LD	B,\#24
LOOP:	RC	
	LD	A, $[X+]$
	ADC	A,[B]
	X	A,[B+]
	IFBNE	\#12
	JP	LOOP
	IFC	
	JP	OVFLOW

BINARY SUBTRACTION:

LD	X,\#010
LD	B,\#018
SC	
LD	A,[X+]
SUBC	A, $[B]$
X	A,[B+]
IFBNE	\#12
JP	LOOP
IFNC	
JP	NEGRSLT

BCD ADDITION:

	LD	X,\#010
	LD	B,\#018
	RC	
L00P:	LD	A, [ $\mathrm{X}+\mathrm{]}$
	ADD	A,\#066
	ADC	A, [B]
	DCOR	A
	X	A, [ ${ }^{\text {+ }}$ ]
	IFBNE	\#12
	JP	LOOP
	IFC	
	JP	OVFLOW

```
```

LEADING ZERO

```
```

LEADING ZERO
INDICATES HEX
INDICATES HEX
RESET CARRY TO START
RESET CARRY TO START
[X] TO ACC
[X] TO ACC
ADD HEX 66 TO ACC
ADD HEX 66 TO ACC
ADD [B] TO ACC
ADD [B] TO ACC
DECIMAL CORRECT RESULT
DECIMAL CORRECT RESULT
RESULT TO [B]
RESULT TO [B]
IF STILL IN DATA FIELD
IF STILL IN DATA FIELD
JUMP BACK TO REPEAT LOOP
JUMP BACK TO REPEAT LOOP
IF TERMINAL CARRY
IF TERMINAL CARRY
JUMP TO OVERFLOW

```
```

        JUMP TO OVERFLOW
    ```
```

BCD SUBTRACTION:

|  | LD | X,\#16 |
| :--- | :--- | :--- |
|  | LD | B,\#24 |
| LOOP: | C |  |
| LD | $A,[X+]$ |  |
|  | SUBC | $A,[B]$ |
|  | DCOR | $A$ |
|  | X | $A,[B+]$ |
|  | IFBNE | $\# 12$ |
|  | JP | LOOP |
|  | IFNC |  |
|  | JP | NEGRSLT |

```
NO LEADING ZERO
 INDICATES DECIMAL
RESET CARRY TO START
[X] TO ACC
ADD [B] TO ACC
RESULT TO [B]
IF STILL IN DATA FIELD
 JUMP BACK TO REPEAT LOOP
IF TERMINAL CARRY,
 JUMP TO OVERFLOW
```

LEADING ZERO
INDICATES HEX
RESET BORROW TO START
[X] TO ACC
SUBTRACT [B] FROM ACC
RESULT TO [B]
IF STILL IN DATA FIELD
JUMP BACK TO REPEAT LOOP
IF TERMINAL BORROW,
JUMP TO NEGATIVE RESULT

```
NO LEADING ZERO
```

NO LEADING ZERO
INDICATES DECIMAL
INDICATES DECIMAL
[X] TO ACC
SUBTRACT [B] FROM ACC
DECIMAL CORRECT RESULT
RESULT TO [B]
IF STILL IN DATA FIELD
JUMP BACK TO REPEAT LOOP
IF TERMINAL BORROW
JUMP TO NEGATIVE RESULT

```

The astute observer will notice that these previous additions and subtractions are not "adding machine" type arithmetic operations in that the result replaces the second operand rather than the first. The following program examples illus-
trate "adding machine" type operation where the result replaces the first operand. With subtraction, this entails the result replacing the minuend rather than the subtrahend. Note that the B and X pointers are now reversed.

\section*{BINARY ADDITION:}
\begin{tabular}{lll}
& LD & B,\#16 \\
& LD & \(\mathrm{X}, \# 24\) \\
LOOP: & LD & \\
& ADC & \(\mathrm{A},[\mathrm{X}+]\) \\
& X & \(\mathrm{A},[\mathrm{B}]\) \\
& IFBNE & \(\mathrm{A},[\mathrm{B}+]\) \\
& JP & LOOP \\
& IFC & \\
& JP & OVFLOW
\end{tabular}
```

B POINTER AT FIRST OPERAND
X POINTER AT SECOND OPERAND
RESET CARRY TO START
[X] TO ACC
ADD [B] TO ACC
RESULT TO [B]
IF STILL IN DATA FIELD
JUMP BACK TO REPEAT LOOP
IF TERMINAL CARRY
JUMP TO OVERFLOW

```

BINARY SUBTRACTION:
\begin{tabular}{lll}
& LD & B, \#010 \\
LD & LD & \\
& SC & \\
LD & \(A,[X+]\) \\
& \(X\) & \(A,[B]\) \\
& SUBC & \(A,[B]\) \\
& X & \(A,[B+]\) \\
& IFBNE & \(\# 4\) \\
& JP & LOOP \\
& IFNC & \\
& JP & NEGRSLT
\end{tabular}
```

B POINTER AT FIRST OPERAND
X POINTER AT SECOND OPERAND
RESET BORROW TO START
[X] TO ACC
EXCHANGE [B] AND ACC
SUBTRACT [B] FROM ACC
RESULT TO [B]
IF STILL IN DATA FIELD
JUMP BACK TO REPEAT LOOP
IF TERMINAL BORROW
JUMP TO NEGATIVE RESULT

```
```

B POINTER AT FIRST OPERAND
X POINTER AT SECOND OPERAND
RESET CARRY TO START
[X] TO ACC
ADD HEX66 TO ACC
ADD [B] TO ACC
DECIMAL CORRECT RESULT
RESULT TO [B]
IF STILL IN DATA FIELD
JUMP BACK TO REPEAT LOOP
IF TERMINAL CARRY
JUMP TO OVERFLOW

```
B POINTER AT FIRST OPERAND
X POINTER AT SECOND OPERAND
RESET BORROW TO START
[X] TO ACC
EXCHANGE [B] AND ACC
SUBTRACT [B] FROM ACC
DECIMAL CORRECT RESULT
RESULT TO [B]
IF STILL IN DATA FIELD
 JUMP BACK TO REPEAT LOOP
IF TERMINAL BORROW
 JUMP TO NEGATIVE RESULT

Let us now consider a hybrid arithmetic example, where we wish to add five successive bytes of a data table in ROM program memory to a two byte sum, and then subtract the SUM result from a two byte total TOT. Let us further assume
that the ROM table is located starting at program memory address 0401, while SUM and TOT are at RAM data memory locations [1, 0] and [3, 2] respectively, and that we wish to encode the program as a subroutine.

ROM Table:
. = 0401
. Byte 102
. Byte 41
. Byte 31
. Byte 26
. Byte 5
ROM Table Accessed Top Down
SUMLO \(=0\)
SUMHI \(=1\)
TOTLO \(=2\)
TOTHI = 3
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{ARITHL:} & LD & X,\#5 & ; SET UP ROM TABLE POINTER \\
\hline & LD & B,\#0 & ; SET UP SUM POINTER \\
\hline \multirow[t]{12}{*}{LOOP:} & RC & & ; RESET CARRY TO START ADDITION \\
\hline & LD & A, X & ; ROM POINTER TO ACC \\
\hline & LAID & & ; TABLE VALUE FROM ROM TO ACC \\
\hline & ADC & A, [B] & ; ADD SUMLO TO ACC \\
\hline & X & A, [B+] & ; RESULT TO SUMLO \\
\hline & CLR & A & ; CLEAR ACC \\
\hline & ADC & A, [B] & ; ADD SUMHI TO ACC \\
\hline & X & A, [B-] & ; RESULT TO SUMHI \\
\hline & DRSZ & X & ; DECR AND TEST ROM PTR FOR ZERO \\
\hline & JP & L00P & ; JUMP BACK TO REPEAT LOOP IF X PTR NOT ZERO \\
\hline & SC & & ; RESET BORROW TO START SUBTRACTION \\
\hline & LD & B,\#2 & ; SET UP TOT POINTER \\
\hline \multirow[t]{7}{*}{LUP:} & LD & A, [X+] & ; SUBTRAHEND (SUM) TO ACC \\
\hline & X & A, [B] & ; REVERSE OPERANDS \\
\hline & SUBC & A, [B] & FOR SUBTRACTION \\
\hline & X & A, [B+] & ; RESULT TO TOT \\
\hline & IFBNE & \#4 & ; IF STILL IN TOT FIELD \\
\hline & JP & LUP & ; JUMP BACK TO REPEAT LUP \\
\hline & RET & & ; RETURN FROM SUBROUTINE \\
\hline
\end{tabular}

\subsection*{2.0 MULTIPLICATION}

The COP800 multiplications are all based on starting the multiplier in the low order end of the double length product space. The high end of the double length product space is initially cleared, and then the double length product is shifted right one bit. The bit shifted out from the low order end represents the low order bit of the multiplier. If this bit is a " 1 ", the multiplicand is added to the high end of the double length product space. The entire shifting process and the conditional addition of the multiplicand to the upper end of the double length product is then repeated. The number of shift cycles is equal to the number of bit positions in the multiplier plus one extra shift cycle. This extra terminal shift cycle is necessary to correctly align the resultant product.
Note that an M byte multiplicand multiplied by an N byte multiplier will result in an \(M+N\) byte double length product. However, these multiplication subroutines will only use 2 M \(+\mathrm{N}+1\) bytes of RAM memory space, since the multiplier initially occupies the low order end of the double length product. The one extra byte is necessary for the shift counter CNTR.
The minimal code (28 byte) general multiplication subroutine is shown with two different examples, MY2448 and MY4824. Both examples multiply 24 bits by 48 bits. The MY2448 subroutine uses the 48 -bit operand as the multiplier, and consequently uses minimal RAM as well as minimal program code. The MY4824 subroutine uses the 24 -bit operand as the multiplier, and consequently executes considerably faster than the minimal RAM MY2448 subroutine.
\begin{tabular}{|c|c|}
\hline MPY88 & \begin{tabular}{l}
- 8 by 8 Multiplication Subroutine \\
- 19 Bytes \\
- 180 Instruction Cycles \\
- Minimum Code
\end{tabular} \\
\hline MLT88 & \begin{tabular}{l}
— Fast 8 by 8 Multiplication Subroutine \\
- 42 Bytes \\
- 145 Instruction Cycles
\end{tabular} \\
\hline VFM88 & \begin{tabular}{l}
- Very Fast 8 by 8 Multiply Subroutine \\
- 96 Bytes \\
- 116 Instruction Cycles
\end{tabular} \\
\hline MPY168 & \begin{tabular}{l}
- Fast 16 by 8 Multiplication Subroutine \\
- 36 Bytes \\
- 230 Instruction Cycles Average \\
- 254 Instruction Cycles Maximum
\end{tabular} \\
\hline
\end{tabular}

MPY816 (or MPY824, MPY832)
 - 8 by 16 (or 24,32) Multiply Subroutine
 - 22 Bytes
 erage
 - 597 (or 1077, 1685) Instruction Cycles
 Maximum
 - Minimum Code, Minimum RAM
 - Extendable Routine for MPY8XX by
 Changing Parameters, with Number of
 Bytes (22) Remaining a Constant
 - 47 Bytes
 - 289 Instruction Cycles Average
 - 333 Instruction Cycles Maximum
 - 39 Bytes
 498 Instruction Cycles Average
 56 Instruction Cycles Maximum
 - 29 Bytes
 - 759 Instruction Cycles Average
 - 807 Instruction Cycles Maximum
 - Almost Minimum Code
 - 28 Bytes
 - 16 by 16 (or 24,32) Multiply Subroutine
 - 861 (or 1473, 2213) Inst. Cycles Average
 - 1029 (or 1725, 2549) Inst. Cycles Maxi-
 mum
 - Minimum Code, Minimum RAM
 Changing Parameters, with Number of
 Bytes (28) Remaining a Constant
Minimal general multiplication subroutine for any number of
bytes in multiplicand and multiplier
 -28 Bytes
 - Minimum Code
 - MY2448 Used as First Example,
 with Minimum RAM and
 4713 Instruction Cycles Average
 5457 Instruction Cycles Maximum
 MY4824 Used as Second Example,
 2751 Instruction Cycles Average
 3483 Instruction Cycles Maximum
```

MPY88-8 BY 8 MULTIPLICATION SUBROUTINE
MINIMUM CODE
19 BYTES
180 INSTRUCTION CYCLES
MULTIPLICAND IN [O] (ICAND)
MULTIPLIER IN [l]
PRODUCT IN [2,1]
MPY88: LD
RC
LD B,\#2
CLR A
M88LUP: RRC A
X A,[B-]
LD A,[B]
RRC A
X A,[B-]
CLR A
IFC
LD A,[B]
RC
LD B,\#Z
ADC A,[B]
DRSZ
CNTR
JP M88LUP
RET
(IER)
(PROD)
; LD CNTR WITH LENGTH OF
; MULTIPLIER FIELD + 1
; CLEAR UPPER PRODUCT
; RIGHT SHIFT
M88LUP:
RIGHT SHIFT LOWER
PRODUCT/MULTIPLIER
CLR ACC AND TEST LOW
ORDER MULTIPLER BIT
MULTIPLICAND TO ACC IF
LOW ORDER BIT = l
ADD MULTIPLICAND TO
UPPER PRODUCT
DECREMENT AND TEST
CNTR FOR ZERO
RETURN FROM SUBROUTINE

```
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{MLT88-FAST 8 BY 8 MULTIPLICATION SUBROUTINE} \\
\hline \multicolumn{5}{|c|}{42 BYTES} \\
\hline \multicolumn{5}{|c|}{145 INSTRUCTION CYCLES} \\
\hline \multicolumn{3}{|r|}{MULTIPLICAND IN [0]} & & CAND) \\
\hline \multicolumn{3}{|r|}{MULTIPLIER IN [1]} & & ER) \\
\hline \multicolumn{3}{|r|}{PRODUCT IN [2,1]} & & ROD) \\
\hline \multirow[t]{4}{*}{MLT88:} & LD & CNTR,\#3 & ; & LOAD CNTR WITH * \\
\hline & RC & & ; & 1/3 OF LENGTH OF \\
\hline & LD & B,\#2 & ; & (MULTIPLIER FIELD + 1) \\
\hline & CLR & A & ; & CLEAR UPPER PRODUCT \\
\hline \multicolumn{5}{|l|}{;} \\
\hline \multirow{10}{*}{ML88LP :} & X & A, [B-] & ; & \(\cdots\) UPPER PRODUCT \\
\hline & LD & A, [B] & & \\
\hline & RRC & A & ; & 'RIGHT SHIFT LOWER \\
\hline & X & A, [B-] & ; & PRODUCT/MULTIPLIER \\
\hline & CLR & A & ; & CLR ACC AND TEST LOW \\
\hline & IFC & & ; & \(\therefore\) ORDER MULTIPLIER BIT \\
\hline & LD & A, [B] & ; & MULTIPLICAND TO ACC IF \\
\hline & RC & & ; & LOW ORDER BIT \(=1\) \\
\hline & LD & B,\#2 & ; & ADD MULTIPLICAND TO \\
\hline & ADC & A, [B] & ; & \(\therefore\) UPPER PRODUCT *** \\
\hline & RRC & A & & REPEAT THE ABOVE \\
\hline & X & A, [B-] & ; & \(\because 11\) BYTE \\
\hline & LD & A, [B] & ; & 13 Instruction \\
\hline & RRC & A & ; & CYCLE PROGRAM \\
\hline & X & A, [B-] & ; & SECTION (WITH \\
\hline & CLR & A & ; & THE *** DELIMITERS) \\
\hline & IFC & & ; & TWICE MORE FOR A \\
\hline & LD & A, [B] & ; & TOTAL OF THREE TIMES \\
\hline & RC & & & \\
\hline & ID & B,\#2 & & \\
\hline & ADC & A, [B] & ; & END OF SECOND REPEAT \\
\hline & \multicolumn{4}{|l|}{; \({ }^{\text {a }}\) (\({ }^{\text {a }}\)} \\
\hline & X & A, [B-] & & \\
\hline & LD & A, [B] & & \\
\hline & RRC & A & & \\
\hline & X & A, [B-] & & \\
\hline & CLR & A & & \\
\hline & IFC & & & \\
\hline & LD & A, [B] & & \\
\hline & RC & & & \\
\hline & LD & B,\#2 & & \\
\hline & ADC & A, [B] & & END OF THIRD REPEAT \\
\hline \multicolumn{5}{|l|}{;} \\
\hline & DRSZ & CNTR & & DECREMENT AND TEST \\
\hline & JMP & ML88LP & & CNTR FOR ZERO \\
\hline & RET & & & RETURN FROM SUBROUTINE \\
\hline
\end{tabular}
```

VFM88-VERY FAST 8 BY 8 MULTIPLY SUBROUTINE
96 BYTES
116 INSTRUCTION CYCLES
MULTIPLICAND IN [0]
VFM88: RC
LD B,\#2
LD
RRC A
CLR A
IFC
IFC A,[B]
RC
RRC A
A,[B-]
A,[B]
A
X A,[B-]
A
CLR A
IFC
ID A,[B]
RC BD B,\#Z
RC LD B,\#Z
ADC A,[B]
RC
A
B-],\#O ; CLEAR UPPER PRODUCT
RIGHT SHIFT LOWER
A
PRODUCT/MULTIPLIER
CLR ACC AND TEST LOW
ORDER MULTIPLIER BIT
MULTIPLICAND TO ACC IF
LOW ORDER BIT = 1
ADD MULTIPLICAND TO
UPPER PRODUCT
;
RIGHT SHIFT ***
X A,[B-]
*
A,[B]
UPPER PRODUCT
LD
RIGHT SHIFT LOWER
RRC
PRODUCT/MULTIPLIER
CLR ACC AND TEST LOW
ORDER MULTIPLIER BIT
LD A,[
MULTIPLICAND TO ACC IF
LOW ORDER BIT = l
ADD MULTIPLICAND TO
ADC
UPPER PRODUCT ***

| MULTIPLICAND IN [0] | (ICAND) |
| :--- | :--- |
| MULTIPLIER IN [1] | (IER) |
| PRODUCT IN [2,1] | (PROD) |


| LD | B,\#2 |
| :--- | :--- |
| LD | $[B-], \# O$ |
| LD | $A,[B]$ |
| RRC | $A$ |
| $X$ | $A,[B-]$ |
| CLR | $A$ |
| IFC |  |
| LD | $A,[B]$ |
| RC |  |
| LD | $B, \# 2$ |
| ADC | $A,[B]$ |

; CLEAR UPPER PRODUCT
VM88:

```
 THE ABOVE 11 BYTE, 13 INSTRUCTION CYCLE SECTION WITH THE ***
 DELIMITERS REPRESENTS THE PROCESSING FOR ONE MULTIPLIER BIT.
 A,[B-] ; UPPER PRODUCT
 A, \(\mathrm{B}-\mathrm{B}\)
 \(\mathrm{A},[\mathrm{B}]\)
 A
 A, [B]
```

        REPEAT THE
    ```
 REPEAT THE
 ABOVE SECTION
 ABOVE SECTION
 ABOVE SECTION
 ABOVE SECTION
 SIX MORE TIMES,
 SIX MORE TIMES,
 FOR A TOTAL
 FOR A TOTAL
 OF SEVEN TIMES
 OF SEVEN TIMES
 RIGHT SHIFT
 RIGHT SHIFT
 RIGHT SHIFT LOWER
 RIGHT SHIFT LOWER
 PRODUCT/MULTIPLIER
 PRODUCT/MULTIPLIER
 RETURN FROM SUBROUTINE
```

        RETURN FROM SUBROUTINE
    ```
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{MPY168-FAST 16 BY 8 MULTIPLICATION SUBROUTINE} \\
\hline \multicolumn{5}{|c|}{36 BYTES} \\
\hline \multicolumn{5}{|c|}{230 INSTRUCTION CYCLES AVERAGE} \\
\hline \multicolumn{5}{|c|}{254 INSTRUCTION CYCLES MAXIMUM} \\
\hline & \multicolumn{2}{|l|}{MULTIPLICAND IN [1,0\(]\)} & \multicolumn{2}{|l|}{(ICAND)} \\
\hline & \multicolumn{2}{|l|}{MULTIPLIER IN [2]} & & ER) \\
\hline & PROD & [4,3,2] & & ROD) \\
\hline \multirow[t]{6}{*}{MPY168:} & LD & \multirow[t]{2}{*}{CNTR,\#9} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
; LD CNTR WITH LENGTH OF \\
; MULTIPLIER FIELD + 1
\end{tabular}}} \\
\hline & RC & & & \\
\hline & LD & B,\#4 & & \\
\hline & LD & [B-],\#0 & ; & CLEAR \\
\hline & LD & [B-],\#0 & ; & UPPER PRODUCT \\
\hline & JP & MP168S & & \\
\hline \multirow[t]{5}{*}{M168LP:} & RRC & A & ; & RIGHT SHIFT UPPER \\
\hline & X & A, [B-] & ; & BYTE OF PRODUCT \\
\hline & LD & A, [B] & & \\
\hline & RRC & A & ; & RIGHT SHIFT MIDDLE \\
\hline & X & A, [B-] & ; & BYTE OF PRODUCT \\
\hline \multirow[t]{18}{*}{MP168S :} & LD & A, [B] & & \\
\hline & RRC & A & , & RIGHT SHIFT LOWER \\
\hline & X & A, [B] & ; & PRODUCT/MULTIPLIER \\
\hline & IFNC & & ; & TEST LOWER BIT \\
\hline & JP & MP168T & ; & OF MULTIPLIER \\
\hline & RC & & & CLEAR CARRY \\
\hline & LD & B, \#0 & ; & LOWER BYTE OF \\
\hline & LD & A, [B] & ; & MULTIPLICAND TO ACC \\
\hline & LD & B,\#3 & ; & ADD LOWER BYTE OF \\
\hline & ADC & A, [B] & ; & MULTIPLICAND TO \\
\hline & X & A, [B] & ; & MIDDLE BYTE OF PROD \\
\hline & LD & B,\#1 & ; & UPPER BYTE OF \\
\hline & LD & A, [B] & ; & MULTIPLICAND TO ACC \\
\hline & LD & B, \#4 & , & ADD UPPER BYTE OF ICAND \\
\hline & ADC & A, [B] & ; & TO UPPER BYTE OF PROD \\
\hline & DRSZ & CNTR & ; & DECREMENT CNTR AND JUMP \\
\hline & JP & M168LP & - & BACK TO LOOP; CNTR \\
\hline & & & , & CANNOT EQUAL ZERO \\
\hline \multirow[t]{5}{*}{MP168T :} & LD & B, \#4 & ; & HIGH ORDER PRODUCT \\
\hline & ID & A, [B] & ; & BYTE TO ACC \\
\hline & DRSZ & CNTR & ; & DECREMENT AND TEST IF \\
\hline & JP & M168LP & ; & CNTR EQUAL TO ZERO \\
\hline & RET & & & RETURN FROM SUBROUTINE \\
\hline
\end{tabular}
```

MPY816-(OR MPY824, MPY832) 8 BY 16 (OR 24, 32) MULTIPLY SUBROUTINE
MINIMUM CODE, MINIMUM RAM
22 BYTES
589 (OR 1065, 1669) INSTR. CYCLES AVERAGE
597 (OR 1077, 1685) INSTR. CYCLES MAXIMUM
EXTENDABLE ROUTINE FOR MPY8XX BY CHANGING
PARAMETERS, WITH NUMBER OF BYTES (22)
REMAINING A CONSTANT.
MULTIPLICAND IN [O]
(ICAND)
MULTIPLIER IN [2,1] FOR 16 BIT (IER)
OR [3,2,1] for 24 BIT
OR [4,3,2,1] for 32 BIT
PRODUCT IN [3,2,1] FOR 16 BIT (PROD)
OR [4,3,2,1] FOR 24 BIT
OR [5,4,3,2,1] FOR 32 BIT
MPY816: LD CNTR,\#17
; LD CNTR WITH LENGTH OF
RC
LD B,\#3
R A,[B]
X A,[B-]
IFBNE \#O
JP M8XXLP
CLR A
IFNC
JP M8XXT
RC
LD B,\#O
LD A,[B]
MOKMr: LD E,\#゙J
ADC A,[B]
DRSZ CNTR
JP M8XXL
RET

```

\section*{MPY248-FAST 24 BY 8 MULTIPLICATION SUBROUTINE}

47 BYTES
289 INSTRUCTION CYCLES AVERAGE
333 INSTRUCTION CYCLES MAXIMUM
MULTIPLICAND IN \([2,1,0]\) (ICAND)
MULTIPLIER IN [3] (IER)
PRODUCT IN \([6,5,4,3]\) (PROD)

MPY248: LD
CNTR,\#9
ID CNTR WITH LENGTH OF
MULTIPLIER FIELD + 1

CLEAR THREE
UPPER BYTES"
OF PRODUCT
JUMP TO START
RIGHT SHIFT HIGH ORDER PRODUCT BYTE

RIGHT SHIFT NEXT LOWER ORDER PRODUCT BYTE

RIGHT SHIFT NEXT LOWER ORDER PRODUCT BYTE

RIGHT SHIFT LOW ORDER PRODUCT/MULTIPLIER TEST LOW ORDER MULTIPLIER BIT

LOAD ACC WITH LOW ORDER MULTIPLICAND BYTE
ADD LOW ORDER ICAND BYTE TO NEXT TO LOW ORDER PRODUCT BYTE
LOAD ACC WTIH MIDDLE MULTIPLICAND BYTE
ADD MIDDLE ICAND BYTE TO NEXT TO HIGH ORDER MULTIPLICAND BYTE
LOAD ACC WITH HIGH ORDER MULTIPLICAND BYTE ADD HIGH ORDER ICAND BYTE TO HIGH ORDER PROD BYTE
DECREMENT CNTR AND JUMP BACK TO LOOP; CNTR CANNOT EQUAL ZERO
HIGH ORDER PRODUCT BYTE TO ACC
DECREMENT AND TEST CNTR FOR ZERO
RETURN FROM SUBROUTINE

498 INSTRUCTION CYCLES AVERAGE

MULTIPLICAND IN [1,0] (ICAND)
MULTIPLIER IN \([3,2]\)
(IER)
(PROD)

MX1616: LD
; LD CNTR WITH LENGTH OF MULTIPLIER FIELD + 1

CLEAR UPPER TWO PRODUCT BYTES
JUMP TO START
RIGHT SHIFT

RIGHT SHIFT NEXT LOWER
PRODUCT BYTE
RIGHT SHIFT PRODUCT
UPPER MULTIPLIER BYTE
RIGHT SHIFT PRODUCT
LOWER MULTIPLIER BYTE
TEST LOW ORDER
MULTIPLIER BIT
OAD ACC WITH LOWER
MULTIPLICAND BYTE
TO NEXT TO HIGH ORDER PRODUCT BYTE
AD ACC WITH UPPER
DD UPPER ICAND BYTE TO HIGH ORDER PRODUCT DECREMENT CNTR AND JUMP BACK TO LOOP; CNTR CANNOT EQUAL ZERO
HIGH ORDER PRODUCT BYTE TO ACC
DECREMENT AND TEST RETURN FROM SUBROUTINE
MP1616-16 BY 16 MULTIPLICATION SUBROUTINE
MINIMUM CODE
29 BYTES
759 INSTRUCTION CYCLES AVERAGE
807 INSTRUCTION CYCLES MAXIMUM]
MULTIPLICAND IN [1,0]
MULTIPLIER IN \([3,2]\)
(ICAND)
PRODUCT IN \([5,4,3,2]\) (IER)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{MP1616:} & ID & CNTR,\#17 & ; & LD CNTR WITH LENGTH OF \\
\hline & RC & & ; & MULTIPLIER FIELD + 1 \\
\hline & LD & B,\#5 & & \\
\hline & LD & [B-],\#0 & ; & CLEAR UPPER TWO \\
\hline & LD & [B-],\#0 & ; & PRODUCT BYTES \\
\hline M1616X: & LD & A, [B] & ; & FIVE INSTRUCTION \\
\hline \multirow[t]{15}{*}{M1616L :} & RRC & A & ; & PROGRAM LOOP TO \\
\hline & X & A, [B-] & ; & RIGHT SHIFT \\
\hline & IFBNE & \#1 & ; & PRODUCT/MULTIPLIER. \\
\hline & JP & M1616X & ; & LOOP JUMP BACK \\
\hline & CLR & A & ; & CLEAR ACC \\
\hline & IFNC & & ; & TEST LOW ORDER \\
\hline & JP & M1616T & ; & MULTIPLIER BIT \\
\hline & RC & & & \\
\hline & LD & B,\#0 & ; & LOAD ACC WITH LOWER \\
\hline & LD & A, [B] & ; & MULTIPLICAND BYTE \\
\hline & LD & B,\#4 & ; & ADD LOWER ICAND BYTE \\
\hline & ADC & A, [B] & ; & TO NEXT TO LOW \\
\hline & X & A, [B] & ; & ORDER PRODUCT BYTE \\
\hline & LD & B,\#1 & ; & LOAD ACC WITH UPPER \\
\hline & LD & A, [B] & ; & MULTIPLICAND BYTE \\
\hline \multirow[t]{5}{*}{M1616T:} & LD & B, \#5 & ; & ADD UPPER ICAND BYTE TO \\
\hline & ADC & A, [B] & ; & HIGH ORDER PRODUCT \\
\hline & DRSZ & CNTR & ; & DECREMENT AND TEST \\
\hline & JP & M1616L & ; & CNTR EQUAL TO ZERO \\
\hline & RET & & ; & RETURN FROM SUBROUTINE \\
\hline
\end{tabular}
```

MY1616 (OR MY1624, MY1632)-16 BY 16 (OR 24, 32) MULTIPLY SUBROUTINE
MINIMUM CODE, MINIMUM RAM
28 BYTES
81 (OR 1473, 2213) INST. CYCLES AVERAGE
1029 (OR 1725,1473) INST. CYCLES MAXIMUM
EXTENDABLE ROUTINE FOR MY16XX BY CHANGING
PARAMETERS, WITH NUMBER OF BYTES (28)
REmAINING A CONSTANT
MULTIPLICAND IN [1,0]
MULTIPLIER IN [3,2] FOR 16 BIT
(ICAND)
(IER)
OR [4,3,2] FOR 24 BIT
OR [5,4,3,2] FOR 32 BIT
PRODUCT IN [5,4,3,2] FOR 16 BIT
(PROD)
OR [6,5,4,3,2] FOR 24 BIT
OR [7,6,5,4,3,2] FOR 32 BIT

| MY1616: | LD | CNTR,\#17 | ```; LD CNTR WITH LENGTH OF MULTIPLIER FIELD + 1 ; \#17 FOR MY1616 ; (\#25 FOR MY1624) ; (\#33 FOR MY1632)``` |
| :---: | :---: | :---: | :---: |
|  | LD | B, \#5 | ; \#5 FOR MY1616 |
|  |  |  | ; (\#6 FOR MY1624) |
|  |  |  | (\#7 FOR MY1632) |
|  | LD | [B-],\#0 | CLEAR UPPER TWO |
|  | LD | [B-],\#0 | PRODUCT BYTES |
|  | RC |  |  |
| MY16XS : | LD | A, [B] | ; FIVE INSTRUCTION |
|  | RRC | A | PROGRAM LOOP TO |
|  | X | A, [B-] | RIGHT SHIFT |
|  | IFBNE | \#1 | PRODUCT/MULTIPLIER |
|  | JP | M16XS | LOOP JUMP BACK |
|  | IFNC |  | ; TEST LOW ORDER |
|  | JP | MY16XT | MULTIPLIER BIT |
|  | RC |  |  |
|  | LD | B,\#4 | ; \#4 FOR MY1616 |
|  |  |  | ; (\#5 FOR MY1624) |
|  |  |  | ; (\#6 FOR MY1632) |
|  | ID | X,\#0 | ; LOAD ACC WITH |
| MY16XI: | LD | A, [ $\mathrm{X}+$ ] | MULTIPLICAND BYTES |
|  | ADC | A, [B] | ; ADD MULTIPLICAND TO |
|  | X | A, [B+] | HI TWO PROD. BYTES |
|  | IFBNE | \#2 | ; LOOP BACK FOR SECOND |
|  | JP | MY16XL | MULTIPLICAND BYTE |
| MY16XT : | LD | B, \#5 | ; \#5 FOR MY1616 |
|  |  |  | ; (\#6 FOR MY1624) |
|  |  |  | ; (\#7 FOR MY1632) |
|  | DRSZ | CNTR | ; DECREMENT AND TEST |
|  | JP | MY16XS | ; CNTR EQUAL TO ZERO |
|  | RET |  | ; RETURN FROM INTERRUPT |

```

MY2448-MINIMAL GENERAL MULTIPLICATION SUBROUTINE (28 BYTES)
ANY NUMBER OF BYTES IN MULTIPLICAND
AND MULTIPLIER
FIRST EXAMPLE: (MY2448) 24 BY 48 MULTIPLICATION SUBROUTINE
--28 BYTES
--MINIMAL CODE, MINIMAL RAM
--4713 INSTRUCTION CYCLES AVERAGE
--5457 INSTRUCTION CYCLES MAXIMUM MULTIPLICAND IN \([2,1,0]\)
(ICAND)
MULTIPLIER IN \([8,7,6,5,4,3]\)
PRODUCT IN \([11,10,9,8,7,6,5,4,3]\)
SECOND EXAMPLE: (MY4824)
48 BY 24 MULTIPLICATION SUBROUTINE
--28 BYTES
--MINIMAL CODE, NON MINIMAL RAM
--2751 INSTRUCTION CYCLES AVERAGE
--3483 INSTRUCTION CYCLES MAXIMUM
MULTIPLICAND IN \([5,4,3,2,1,0]\)
(ICAND)
MULTIPLIER IN \([8,7,6]\)
(IER)
PRODUCT IN \([14,13,12,11,10,9,8,7,6] \ldots\) (PROD)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{7}{*}{MY2448 :} & \multicolumn{3}{|l|}{; (OR MY4824)} \\
\hline & LD & CNTR, \#49 & ; LD CNTR WITH LENGTH OF \\
\hline & & & \[
\begin{aligned}
& \text { MULTIPLIER FIELD }+1 \\
& \text { \#49 FOR MY2448 }
\end{aligned}
\] \\
\hline & & & \begin{tabular}{l}
; \#49 FOR MY2448 \\
; (\#25 FOR MY4824)
\end{tabular} \\
\hline & LD & B,\#11 & ; TOP OF PROD TO B PTR \\
\hline & & & \#ll FOR MY2448 \\
\hline & & & (\#14 FOR MY4824) \\
\hline \multirow[t]{4}{*}{CLRLUP:} & LD & [B-],\#0 & CLR UNTIL TOP OF IER \\
\hline & IFBNE & \#8 & ; \#8 FOR BOTH MY2448 \\
\hline & JP & CLRLUP & AND MY4824 \\
\hline & RC & & INITIALIZE CARRY \\
\hline \multirow[t]{10}{*}{SHFTLP:} & LD & A, [B] & RIGHT SHIFT PRODUCT \\
\hline & ADC & A, [B] & AND MULTIPLIER \\
\hline & X & A, [B-] & UNTIL TOP OF ICAND \\
\hline & IFBNE & \#2 & \#2 FOR MY2448 \\
\hline & JP & SHFTLP & (\#5 FOR MY4824) \\
\hline & IFNC & & TEST LOW ORDER \\
\hline & JP & MYTEST & MULTIPLIER BIT \\
\hline & LD & B,\#9 & TOP OF IER + 1 TO B PTR \\
\hline & LD & X,\#0 & START OF ICAND TO X PTR \\
\hline & RC & & \\
\hline \multirow[t]{6}{*}{ADDLUP:} & LD & A, [\(\mathrm{X}+\)] & ; ADD MULTIPLICAND TO TOP \\
\hline & ADC & A, [B] & OF PRODUCT ABOVE \\
\hline & X & A, [B+] & MULTIPLIER UNTIL TOP \\
\hline & IFBNE & \#12 & OF PRODUCT + 1 \\
\hline & JP & ADDLUP & ; \#12 FOR MY2448 \\
\hline & & & ; (\#15 FOR MY4824) \\
\hline \multirow[t]{6}{*}{MYTEST :} & LD & B,\#11 & ; TOP OF PROD TO B PTR \\
\hline & & & ; \#ll FOR MY2448 \\
\hline & & & ; (\#14 FOR MY4824) \\
\hline & DRSZ & CNTR & DECREMENT AND TEST \\
\hline & JP & SHFTLP & CNTR FOR ZERO \\
\hline & RET & & ; RETURN FROM SUBROUTINE \\
\hline
\end{tabular}

\subsection*{3.0 DIVISION}

The COP 800 divisions are all based on shifting the dividend left up into a test field equal in length to the number of bytes in the divisor. The divisor is resident immediately above this test field. After each shift cycle of the dividend into the test field, a trial subtraction is made of the test field minus the divisor. If the divisor is found equal to or less than the contents of the test field, then the divisor is subtracted from the test field and a 1's quotient digit is recorded by setting the low order bit of the dividend field. The dividend and test field left shift cycle is then repeated. The number of left shift cycles is equal to the number of bit positions in the dividend. The quotient from the division is formed in the dividend field, while the remainder from the division is resident in the test field.
Note that an M byte dividend divided by an N byte divisor will result in an \(M\) byte quotient and an \(N\) byte remainder. These division algorithms will use \(M+2 N+1\) bytes of RAM memory space, since the test field is equal to the length of the divisor. The one extra byte is necessary for the shift counter CNTR.
In special cases where the dividend has an upper bound and the divisor has a lower bound, the upper bytes of the dividend may be used as the test field. One example is shown (DV2815), where a 28 bit dividend is divided by a 15 -bit divisor. The dividend is less than \(2^{* *} 28\) (upper nibble of high order byte is zero), while the divisor is greater than \(2^{* * 12}\) (4096) and less than \(2^{* * 15}\) (32768). In this case, the upper limit for the quotient is \(2^{* *} 28 / 2^{* *} 12\), which indicates a 16 -bit quotient (\(2^{* *} 16\)) and a 15 -bit remainder. Consequently, the upper two bytes of the dividend may be used as the test field for the remainder, since the divisor is greater than the test field (upper two bytes of the 28 -bit dividend) initially.
The minimal code (40 byte) general division subroutine is shown with the example DV3224, which divides a 32 bit dividend by a 24 bit divisor.
\[
\begin{aligned}
& \text { DIV88 - } 8 \text { by } 8 \text { Division Subroutine } \\
& \text { - } 24 \text { Bytes } \\
& \text { - } 201 \text { Instruction Cycles Average } \\
& \text { - } 209 \text { Instruction Cycles Maximum } \\
& \text { Minimum code } \\
& \text { DV88 - Fast } 8 \text { by } 8 \text { Division Subroutine } \\
& -28 \text { Bytes } \\
& \text { - } 194 \text { Instruction Cycles Average } \\
& \text { - } 202 \text { Instruction Cycles Maximum } \\
& \text { FDV88 - Very Fast } 8 \text { by } 8 \text { Division Subroutine } \\
& \text { - } 131 \text { Bytes } \\
& \text { - } 146 \text { Instruction Cycles Average } \\
& \text { - } 159 \text { Instruction Cycles Maximum } \\
& \text { DIV168 (or DIV248, DIV328) } \\
& \text { - } 16 \text { (or } 24,32 \text {) by } 8 \text { Division Subroutine } \\
& \text { - } 26 \text { Bytes } \\
& \text { - } 649 \text { (or 1161, 1801) Instruction } \\
& \text { Cycles Average } \\
& \text { - } 681 \text { (or 1209,1865) Instruction } \\
& \text { Cycles Maximum } \\
& \text { - Minimum Code } \\
& \text { - Extendable Routine for DIVXX8 by } \\
& \text { Changing Parameters, with Number } \\
& \text { of Bytes (26) Remaining a Constant }
\end{aligned}
\]
\[
\begin{aligned}
\text { FDV168 } & \text { - Fast } 16 \text { by } 8 \text { : Division Subroutine } \\
& \text { - } 35 \text { Bytes } \\
& -481 \text { Instruction Cycles Average } \\
& -490 \text { Instruction Cycles Maximum } \\
\text { FDV248 } & \text { - Fast } 24 \text { by } 8 \text { Division Subroutine } \\
: & -38 \text { Bytes } \\
& -813 \text { Instruction Cycles Average } \\
& -826 \text { Instruction Cycles Maximum } \\
\text { FDV328 } & \text { - Fast } 32 \text { by } 8 \text { Division Subroutine } \\
& \text { - 42 Bytes } \\
& \text { - 1209 Instruction Cycles Average } \\
& \text { - } 1226 \text { Instructions Maximum }
\end{aligned}
\]

Divide by 16 Subroutines:
DV1616 - 16 by 16 Division Subroutine
- 34 Bytes
- 979 Instruction Cycles Average
- 1067 Instruction Cycles Maximum
- Minimum Code

DV2416 (or DV3216)
- 24 (or 32) by 16 Division Subroutine
- 39 Bytes
- 1694 (or 2410) Inst. Cycles Average
- 1886 (or 2766) Inst. Cycles Maximum
- Minimum code
- Extendable Routine for DVXX16 by Changing Parameters; with Number of Bytes (39) Remaining a Constant
DX1616 - Fast 16 by 16 Division Subroutine
- 53 Bytes
- 638 Instruction Cycles Average
- 678 Instruction Cycles Maximum

DV2815 - Fast 28 by 15 Division Subroutine, Where the Dividend is Less Than \(2^{* *} 28\) and the Divisor
is Greater than 2**12 (4096)
and Less than \(2^{* *} 15\) (32768)
- 43 Bytes
- 640 Instruction Cycles Average
- 696 Instruction Cycles Maximum

DX3216 - Fast 32 by 16 Division Subroutine
- 70 Bytes
- 1511 Instruction Cycles Average
- 1591 Instruction Cycles Maximum

Minimal General Division Subroutine for any Number of Bytes in Dividend and Divisor
\[
\text { - } 40 \text { Bytes }
\]
- Minimal Code
— DV3224 Used as Example, with 3879 Instruction Cycles Average 4535 Instruction Cycles Maximum
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{DIV88-8 BY 8 DIVISION SUBROUTINE} \\
\hline & \multicolumn{4}{|l|}{MINIMUM CODE} \\
\hline & \multicolumn{4}{|l|}{24 BYTES} \\
\hline & \multicolumn{4}{|l|}{201 INSTRUCTION CYCLES AVERAGE} \\
\hline & \multicolumn{4}{|l|}{209 INSTRUCTION CYCLES MAXIMUM} \\
\hline & DIVID & IN [0] & (DD) & \\
\hline & \multicolumn{3}{|l|}{DIVISOR IN [2] (D)} & \\
\hline & \multicolumn{3}{|l|}{QUOTIENT IN [0] (Q} & QUOT) \\
\hline & \multicolumn{2}{|l|}{REMAINDER IN [1]} & \multicolumn{2}{|r|}{(TEST FIELD)} \\
\hline \multirow[t]{3}{*}{DIV88:} & ID & CNTR,\#8 & & LOAD CNTR WITH LENGTH \\
\hline & LD & B,\#1 & ; & OF DIVIDEND FIELD \\
\hline & LD & [B],\#0 & ; & CLEAR TEST FIELD \\
\hline \multirow[t]{16}{*}{DIV88S} & \multicolumn{4}{|l|}{RC} \\
\hline & LD & B,\#0 & & \\
\hline & LD & A, [B] & & \\
\hline & ADC & A, [B] & & LEFT SHIFT DIVIDEND \\
\hline & X & A, [B+] & & \\
\hline & LD & A, [B] & & \\
\hline & ADC & A, [B] & & LEFT SHIFT TEST FIELD \\
\hline & X & A, [B] & & \\
\hline & LD & A, [B+] & ; & TEST FIELD TO ACC \\
\hline & SC & & , & TEST SUBTRACT DIVISOR \\
\hline & SUBC & A, [B] & ; & FROM TEST FIELD \\
\hline & IFNC & & ; & TEST IF BORROW \\
\hline & JP & DIV88B & ; & FROM SUBTRACTION \\
\hline & LD & B,\#1 & ; & SUBTRACTION RESULT \\
\hline & X & A, [B-] & ; & TO TEST FIELD \\
\hline & SBIT & 0, [B] & & SET QUOTIENT BIT \\
\hline DIV88B : & DRSZ & CNTR & ; & decrement and test \\
\hline & JP & DIV88S & , & CNTR FOR ZERO \\
\hline & RET & & & RETURN FROM SUBROUTINE \\
\hline
\end{tabular}

\section*{DV88-FAST 8 BY 8 DIVISION SUBROUTINE}

\section*{28 BYTES}

194 INSTRUCTION CYCLES AVERAGE 202 INSTRUCTION CYCLES MAXIMUM DIVIDEND IN [0] (DD) DIVISOR IN [2] (DR) QUOTIENT IN [0] REMAINDER IN [l]

\section*{FDV88-VERY FAST 8 BY 8 DIVISION SUBROUTINE}

\section*{131 BYTES}

146 INSTRUCTION CYCLES AVERAGE 159 INSTRUCTION CYCLES MAXIMUM
DIVIDEND IN [0]
(DD)
DIVISOR IN [2] QUOTIENT IN [0]
(DR)
REMAINDER IN [1]

\section*{FDV88:}
LD
RC
LD
ADC
X
LD
LD
RC
LD
ADC
\(X\)
LD
ADC
\(X\)
LD
SC
SUBC
IFNC
JP
LD
\(X\)
SBIT
RC

B,\#1
[B-], \#0
A, [B]
A, [B]
A, [B+]
A, [B]
A, [B]
A, [B]
A, [B+]
A, [B]
DVBP1
B, \#l
(QUOT)
(TEST FIELD)
; CLEAR TEST FIELD
\(\mathrm{A},[\mathrm{B}-] \quad ; \quad\) TO TEST FIELD
\(0,[B]\); SET QUOTIENT BIT
THIS 16 BYTE SECTION
OF PROGRAM CODE
CONTAINS
16 INSTRUCTIONS, AND REPRESENTS THE PROCESSING FOR THE GENERATION OF 1 QUOTIENT BIT. the program code EXECUTION TIMES IS 16 INSTRUCTION CYCLES FOR A O'S QUOTIENT BIT AND 19 INSTRUCTION CYCLES FOR A l'S QUOTIENT BIT.

REPEAT THE ABOVE ;
;SECTION OF CODE FIVE
;MORE TIMES FOR A
;TOTAL OF SIX TIMES
;
ID B,\#O
ID \(A,[B]\)
\(\mathrm{ADC} \quad \mathrm{A},[\mathrm{B}]\)
\(X \quad A,[B+]\)
ID \(A,[B]\)
ADC A,[B]
\(X \quad A,[B]\)
LD \(\quad A,[B+]\)
SC
A, [B]
IFNC
RET
ID B,\#1
\(X \quad A,[B-]\)
LEFT SHIFT DIVIDEND

LEFT SHIFT TEST FIELD
TEST FIELD TO ACC
TEST SUBTRACT DIVISOR
FROM TEST FIELD
TEST BORROW FROM SUBC
RETURN FROM SUBROUTINE
SUBTRACTION RESULT
TO TEST FIELD
SBIT
SET QUOTIENT BIT
RETURN FROM SUBROUTINE
```

DIV168-16 (OR 24, 32) BY 8 DIVISION SUBROUTINE
MINIMUM CODE
26 BYTES
649 (or 1161,1801) INST. CYCLES AVERAGE
681 (or 1209,1865) INST. CYCLES MAXIMUM
EXTENDABLE ROUTINE FOR DIVXX8 BY CHANGING
PARAMETERS, WITH NUMBER OF BYTES (26)
REMAINING A CONSTANT
DIVIDEND IN [l,0] FOR l6 BIT
OR [2,1,0] FOR 24 BIT
OR [3,2,1,0] FOR 32 BIT
DIVISOR IN [3] FOR 16 BIT
OR [4] FOR 24 BIT
OR [5] FOR 32 BIT
QUOTIENT IN [1,0] FOR 16 BIT
OR [2,1,0] FOR 24 BIT
OR [3,2,1,0] FOR 32 BIT
REMAINDER IN [2] FOR 16 BIT
OR [3] FOR 24 BIT
OR [4] FOR 32 BIT
DIV168: LD CNTR,\#16 ; LOAD CNTR WITH LENGTH
OF DIVIDEND FIELD
\#16 FOR DIV168
(\#24 FOR DIV248)
(\#32 FOR DIV328)
LD B,\#Z ; (\#3 FOR DIVI68)
(\#3 FOR DIV248)
(\#4 FOR DIV328)
LD [B],\#O ; CLEAR TEST FIELD
DVXX8L: RC
LD B,\#O
DXX8LP: LD A,[B] ; LEFT SHIFT DIVIDEND
ADC A,[B] ; AND TEST FIELD
X A,[B+]
IFBNE \#3
\#3 ; \#3 FOR DIV168
JP DXX8LP ; (\#4 FOR DIV248)

```

```

    IFC ; TEST IF BIT SHIFTED OUT
    JP DVXX8S ; OF TEST FIELD***
    IFGT A,[B] ; TEST DIVISOR GREATER
    JP DVXX8T ; THAN REMAINDER
    SC
    X A,[B] ; REMAINDER TO ACC
    ; SUBTRACT DIVISOR
    X A,[B] ; FROM REMAINDER
    LD B,#O
    SBIT 0,[B] ; SET QUOTIENT BIT
    DVXX8T: DRSZ CNTR ; DECREMENT AND TEST
JP DVXX8L ; CNTR FOR ZERO
RET ; RETURN FROM SUBROUTINE
;
*** SPECIAL CASE FOR DIVISION WHERE NUMBER OF BYTES
IN DIVIDEND IS GREATER THAN NUMBER OF BYTES IN DIVISOR, AND
DIVISOR CONTAINS A HIGH ORDER l'S BIT. THE SHIFTED DIVIDEND
MAY CONTAIN A HIGH ORDER l'S BIT IN THE TEST FIELD AND
YET BE SMALLER THAN THE DIVISOR SO THAT NO SUBTRACTION
OCCURS. iN THIS CASE A l'S BIT WILL BE SHIFTED OUT OF
THE TEST FIELD AND AN OVERRIDE SUBTRACTION MUST BE PERFORMED

```
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{FDV168-FAST 16 BY 8 DIVISION SUBROUTINE} \\
\hline \multicolumn{5}{|c|}{35 BYtes} \\
\hline \multicolumn{5}{|c|}{481 INSTRUCTION CYCLES AVERAGE} \\
\hline \multicolumn{5}{|c|}{490 INSTRUCTION CYCLES MAXIMUM} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
DIVIDEND IN [1,0] \\
DIVISOR IN [3] \\
QUOTIENT IN \([1,0]\) \\
REMAINDER IN [2]
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
(DD) \\
(DR) \\
(QUOT) \\
(TEST FIELD)
\end{tabular}}} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{FDV168:} & LD & CNTR,\#16 & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\begin{gathered}
\text {; LOAD CNTR WITH LENGTH } \\
\text {; OF DIVIDEND FIELD } \\
\text { CLEAR TEST FIELD }
\end{gathered}
\]}} \\
\hline & LD & B,\#3 & & \\
\hline & LD & [B],\#0 & & \\
\hline \multirow[t]{18}{*}{\[
\begin{aligned}
& \text { FD168S: } \\
& \text { FD168L: }
\end{aligned}
\]} & LD & B,\#0 & & \\
\hline & \multicolumn{4}{|l|}{RC} \\
\hline & LD & A, [B] & & \\
\hline & ADC & A, [B] & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{; LEFT SHIFT DIVIDEND LO}} \\
\hline & X & A, [B+] & & \\
\hline & LD & A, [B] & & \\
\hline & ADC & A, [B] & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{; LEFT SHIFT DIVIDEND HI}} \\
\hline & X & A, [B+] & & \\
\hline & LD & A, [B] & & \\
\hline & ADC & A, [B] & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{; LEFT SHIFT TEST FIELD}} \\
\hline & X & A, [B] & & \\
\hline & LD & A, [B+] & , & TEST FIELD TO ACC \\
\hline & IFC & & , & TEST IF BIT SHIFTED OUT \\
\hline & JP & FD168B & ; & OF TEST FIELD*** \\
\hline & SC & & ; & TEST SUBTRACT DIVISOR \\
\hline & SUBC & A, [B] & ; & FROM TEST FIELD \\
\hline & IFNC & & ; & TEST IF BORROW \\
\hline & JP & FD168T & ; & FROM SUBTRACTION \\
\hline \multirow[t]{7}{*}{FD168R:} & LD & B, \#2 & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\begin{gathered}
\text {; SUBTRACTION RESULT } \\
\text {; } \quad \text { TO TEST FIELD }
\end{gathered}
\]}} \\
\hline & X & A, [B] & & \\
\hline & LD & B,\#0 & & \\
\hline & SBIT & 0 , [B] & ; & SET QUOTIENT BIT \\
\hline & DRSZ & CNTR & ; & DECREMENT AND TEST \\
\hline & JP & FD168L & ; & CNTR FOR ZERO \\
\hline & RET & & ; & RETURN FROM SUBROUTINE \\
\hline \multirow[t]{3}{*}{FD168T:} & DRSZ & CNTR & ; & \multirow[t]{3}{*}{\begin{tabular}{l}
DECREMENT AND TEST \\
CNTR FOR ZERO \\
RETURN FROM SUBROUTINE
\end{tabular}} \\
\hline & JP & FD168S & , & \\
\hline & RET & & ; & \\
\hline \multirow[t]{2}{*}{FD168B :} & SUBC & A, [B] & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SUBTRACT DIVISOR FROM TEST FIELD***}} \\
\hline & JP & FD168R & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{DX1616-FAST 16 BY 16 DIVISION SUBROUTINE} \\
\hline \multicolumn{5}{|c|}{53 BYTES} \\
\hline \multicolumn{5}{|c|}{638 INSTRUCTION CYCLES AVERAGE} \\
\hline \multicolumn{5}{|c|}{678 INSTRUCTION CYCLES MAXIMUM} \\
\hline & \multicolumn{2}{|l|}{DIVIDEND IN [1,0\(]\)} & (D) & \\
\hline & \multicolumn{2}{|l|}{DIVISOR IN [5,4]} & (DR) & \\
\hline & \multicolumn{2}{|l|}{QUOTIENT IN [1,0\(]\)} & & UOT) \\
\hline & \multicolumn{2}{|l|}{REMAINDER IN [3,2]} & \multicolumn{2}{|l|}{(TEST FIELD)} \\
\hline \multirow[t]{10}{*}{DX1616:} & LD & CNTR,\#16 & ; & LOAD CNTR WITH LENGTH \\
\hline & LD & B,\#5 & ; & OF DIVIDEND FIELD \\
\hline & LD & A, [B] & ; & REPLACE DIVISOR WITH \\
\hline & XOR & A, \#0FF & ; & 1'S COMPLEMENT OF \\
\hline & X & A, [B-] & ; & DIVISOR TO ALLOW \\
\hline & LD & A, [B] & ; & OPTIONAL ADDITION OF \\
\hline & XOR & A, \#OFF & ; & DIVISOR'S COMPLEMENT \\
\hline & X & A, [B-] & ; & IN MAIN PROG. LOOP \\
\hline & LD & [B-],\#0 & ; & CLEAR \\
\hline & LD & [B],\#0 & ; & test field \\
\hline \multirow[t]{34}{*}{DX616S: DX616L:} & LD & B,\#0 & & \\
\hline & \multicolumn{4}{|l|}{RC} \\
\hline & LD & A, [B] & & \\
\hline & ADC & A, [B] & ; & LEFT SHIFT DIVIDEND LO \\
\hline & X & A, [B+] & & \\
\hline & LD & A, [B] & & \\
\hline & ADC & A, [B] & ; & LEFT SHIFT DIVIDEND HI \\
\hline & X & A, [B+] & & \\
\hline & LD & A, [B] & & \\
\hline & ADC & A, [B] & ; & LEFT SHIFT TEST FIELD LO \\
\hline & X & A, [B+] & & \\
\hline & LD & A, [B] & & \\
\hline & ADC & A, [B] & ; & LEFT SHIFT TEST FIELD HI \\
\hline & X & A, [B+] & & \\
\hline & \multicolumn{4}{|l|}{SC} \\
\hline & LD & A, [B] & ; & DIVISORX (DRX) LO TO ACC \\
\hline & LD & B,\#2 & ; & (1'S COMPLEMENT) \\
\hline & ADC & A, [B] & & ADD REM LO TO DRX LO \\
\hline & LD & B, \#5 & & \\
\hline & ID & A, [D] & ; & DIVISORA (DRE) HI IO ACC \\
\hline & LD & B, \#3 & ; & (1'S COMPLEMENT) \\
\hline & ADC & A, [B] & & ADD REM HI TO DRX HI \\
\hline & \multicolumn{2}{|l|}{IFNC} & ; & TEST IF NO CARRY FROM \\
\hline & JP & DX616T & ; & 1'S COMPL.ADDITION \\
\hline & X & A, [B+] & & RESULT TO REM HI \\
\hline & LD & A, [B] & & DRX LO TO ACCUMULATOR \\
\hline & LD & B, \#2 & & \\
\hline & ADC & A, [B] & ; & ADD REM LO TO DRX LO \\
\hline & X & A, [B] & & RESULT TO REM LO \\
\hline & LD & B,\#0 & & \\
\hline & SBIT & 0 , [B] & & SET QUOTIENT BIT \\
\hline & DRSZ & CNTR & ; & DECREMENT AND TEST \\
\hline & JP & DX616L & ; & CNTR FOR ZERO \\
\hline & \multicolumn{2}{|l|}{RET} & ; & RETURN FROM SUBROUTINE \\
\hline \multirow[t]{3}{*}{DX616T:} & DRSZ & CNTR & ; & DECREMENT AND TEST \\
\hline & \multirow[t]{2}{*}{JMP
RET} & DX616S & ; & CNTR FOR ZERO \\
\hline & & & & RETURN FROM SUBROUTINE \\
\hline
\end{tabular}

DV2815—FAST 28 BY 15 DIVISION SUBROUTINE
WHERE THE DIVIDEND IS LESS THAN 2**28
AND THE DIVISOR IS GREATER THAN \(2 * * 12\) (4096) AND LESS THAN \(2 * * 15\) (32768)
43 BYTES
640 INSTRUCTION CYCLES AVERAGE
696 INSTRUCTION CYCLES MAXIMUM
DIVIDEND IN [3,2,1,0] (DD)
DIVISOR IN \([5,4]\) (DR)
QUOTIENT IN \([1,0]\) (QUOT)
REMAINDER IN [3,2] (TEST FIELD)
\begin{tabular}{|c|c|c|c|c|c|}
\hline DV2815: & LD & CNTR,\#16 & ; & LOAD CNTR WITH LENGTH OF & QUOTIENT FIELD \\
\hline D2815S: & LD & B,\#0 & & & \\
\hline D2815L : & RC & & & & \\
\hline & LD & A, [B] & & & \\
\hline & ADC & A, [B] & ; & LEFT SHIFT LOWER & \\
\hline & X & A, [B+] & ; & BYTE OF DIVIDEND & \\
\hline & LD & A, [B] & & & \\
\hline & ADC & A, [B] & ; & LEFT SHIFT NEXT HIGHER & \\
\hline & X & A, \([\mathrm{B}+\mathrm{]}\) & ; & BYTE OF DIVIDEND & \\
\hline & LD & A, [B] & & & \\
\hline & ADC & A, [B] & ; & LEFT SHIFT NEXT HIGHER & \\
\hline & X & A, [B+] & ; & BYTE OF DIVIDEND & \\
\hline & LD & A, [B] & & & \\
\hline & ADC & A, [B] & ; & LEFT SHIFT UPPER & \\
\hline & X & A, [B-] & ; & BYTE OF DIVIDEND & \\
\hline
\end{tabular}

NOTE THAT WITH A 16 BIT DIVISOR (DIV 2816) SUBROUTINE, A TEST FOR A HIGH ORDER BIT SHIFTED OUT OF THE TEST FIELD WOULD BE NECESSARY AT THIS POINT. IFC
JP SUBTRMD ; SUBTRACT REM MINUS DR
the presence of this carry would require that the divisor be subtracted FROM THE REMAINDER AS SHOWN WITH THE DIV168*** SUBROUTINE.
\begin{tabular}{|c|c|c|}
\hline LD & A, [B] & ; REM LOWER BYTE TO ACC \\
\hline SC & & ; TEST SUBTRACT LOWER \\
\hline LD & B,\#4 & BYTE OF DR FROM \\
\hline SUBC & A, [B] & LOWER BYTE OF REM \\
\hline LD & B,\#3 & TEST SUBTRACT UPPER \\
\hline LD & A, [B] & BYTE OF DIVISOR \\
\hline LD & B,\#5 & FROM UPPER BYTE \\
\hline SUBC & A, [B] & OF REMAINDER \\
\hline IFNC & & TEST IF BORROW \\
\hline JP & D2815T & FROM SUBTRACTION \\
\hline LD & B,\#3 & ; UPPER BYTE OF RESULT \\
\hline X & A, \([\mathrm{B}+]\) & TO UPPER BYTE OF REM \\
\hline LD & A, [B] & ; DR LOWER BYTE TO ACC \\
\hline ID & B,\#2 & ; SUBTRACT LOWER BYTE \\
\hline X & A, [B] & OF DIVISOR FROM \\
\hline SUBC & A, [B] & LOWER BYTE OF \\
\hline X & A, [B] & REMAINDER \\
\hline LD & B, \#0 & \\
\hline SBIT & \(0,[B]\) & ; SET QUOTIENT BIT \\
\hline DRSZ & CNTR & DECREMENT AND TEST \\
\hline JMP & D2815L & CNTR FOR ZERO \\
\hline RET & & RETURN FROM SUBROUTINE \\
\hline DRSZ & CNTR & DECREMENT AND TEST \\
\hline JMP & D2815S & CNTR FOR ZERO \\
\hline RET & & ; RETURN FROM SUBROUTINE \\
\hline
\end{tabular}
DX3216-FAST 32 BY 16 DIVISION SUBROUTINE 70 BYTES
1510 INSTRUCTION CYCLES AVERAGE
1590 INSTRUCTION CYCLES MAXIMUM
DIVIDEND IN \([3,2,1,0]\) (DD)
DIVISOR IN [7,6] (DR)
QUOTIENT IN \([3,2,1,0]\) (QUOT)
REMAINDER IN \([5,4]\)
DX3216:
(TEST FIELD)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{10}{*}{DX3216:} & LD & CNTR,\#32 & ; LOAD CNTR WITH LENGTH \\
\hline & LD & B,\#7 & OF DIVIDEND FIELD \\
\hline & LD & A, [B] & ; REPLACE DIVISOR WITH \\
\hline & XOR & A, \#OFF & I'S COMPLEMENT OF \\
\hline & X & A, [B-] & DIVISOR TO ALLOW \\
\hline & LD & A, [B] & OPTIONAL ADDITION OF \\
\hline & XOR & A, \#0FF & DIVISOR'S COMPLEMENT \\
\hline & X & A, [B-] & IN MAIN PROG. LOOP \\
\hline & LD & [B-],\#0 & CLEAR \\
\hline & LD & [B],\#0 & TEST FIELD \\
\hline DX326S: & LD & B,\#0 & \\
\hline \multirow[t]{10}{*}{DX3265:} & RC & & \\
\hline & LD & A, [B] & \\
\hline & ADC & A, [B] & ; LEFT SHIFT DIVIDEND LO \\
\hline & X & A, [\(\mathrm{B}+]\) & \\
\hline & LD & A, [B] & \\
\hline & ADC & A, [B] & ; LEFT SHIFT NEXT HIGHER \\
\hline & X & A, [\({ }^{\text {+ }}\)] & ; DIVIDEND BYTE \\
\hline & LD & A, [B] & \\
\hline & ADC & A, \([\mathrm{B}+]\) & ; LEFT SHIFT NEXT HIGHER \\
\hline & X & A, \([\mathrm{B}+]\) & DIVIDEND BYTE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline LD & A, [B] & \\
\hline ADC & A, \({ }^{\text {[}}\)] & ; LeFt Shift dividend hi \\
\hline \(X\) & A, [B+] & \\
\hline LD & A, [B] & \\
\hline ADC & A, [B] & ; LEFT SHIFT TST FIELD L0 \\
\hline X & \(\mathrm{A},[\mathrm{B}+]\) & \\
\hline LD & A, [B] & \\
\hline ADC & A, [B] & ; LeFt Shift tST FIELD HI \\
\hline X & A, [\(\mathrm{B}+]\) & \\
\hline IFC & & **TEST IF BIT SHIFTED \\
\hline JP & DX326B & ** OUT OF TEST FIELD \\
\hline SC & & \\
\hline LD & A, [B] & ; DVSORX (DRX) LO TO ACC \\
\hline LD & B,\#4 & (1'S COMPLEMENT) \\
\hline ADC & A, [B] & ; ADD REM LO TO DRX LO \\
\hline LD & B, \#7 & \\
\hline LD & A, [B] & ; DVSORX (DRX) HI TO ACC \\
\hline LD & B, \#5 & ; (1'S COMPLEMENT) \\
\hline ADC & A, [B] & ; ADD REM HI TO DRX HI \\
\hline IFNC & & ; TEST IF NO CARRY FROM \\
\hline JP & DX326T & 1'S COMPL. ADDITION \\
\hline X & A, [B+] & ; RESULT TO REM NI \\
\hline LD & A, [B] & ; DRX LO TO ACCUMULATOR \\
\hline LD & B,\#4 & \\
\hline
\end{tabular}
DX326R: ADC A,[B] ; ADD REM LO TO DRX LO
\(X \quad A,[B]\)
; ** ADD REM HI TO DRX HI
; RESULT TO REM LO ; ** RESULT TO REM HI
LD
\begin{tabular}{|c|c|c|}
\hline D & & B,\#0 \\
\hline & SBIT & \(0,[B]\) \\
\hline & DRSZ & CNTR \\
\hline & JMP & DX326 \\
\hline & RET & \\
\hline DX326T: & DRSZ & CNTR \\
\hline & JMP & DX326 \\
\hline & RET & \\
\hline DX326B: & LD & A, [B] \\
\hline & LD & B, \#6 \\
\hline & ADC & A, [B] \\
\hline & X & A, [B] \\
\hline & LD & B,\#7 \\
\hline & LD & A, [B] \\
\hline & LD & B,\#5 \\
\hline & JP & DX36R \\
\hline
\end{tabular}

\section*{SET QUOTIENT BIT}
DECREMENT AND TEST CNTR FOR ZERO
RETURN FROM SUBROUTINE
DECREMENT AND TEST CNTR FOR ZERO

MINIMAL GENERAL DIVISION SUBROUTINE (40 BYTES)
ANY NUMBER OF BYTES IN DIVIDEND AND DIVISOR DV3224 SERVES AS EXAMPLE 32 BY 24 DIVISION SUBROUTINE
--40 BXTES
--MINIMAL CODE
--3879 INSTRUCTION CYCLES AVERAGE
--4535 INSTRUCTION CYCLES MAXIMUM

DIVIDEND IN [3,2,1,0]
DIVISOR IN [9,8,7] QUOTIENT IN \([3,2,1,0]\)
REMAINDER IN \([6,5,4]\)
\begin{tabular}{|c|c|c|c|}
\hline DV3224: & LD & CNTR,\#32 & ; LOAD CNTR WITH LENGTH \\
\hline & LD & B,\#6 & ; OF DIVIDEND FIELD \\
\hline CLRLUP: & LD & [B-],\#0 & ; CLEAR TEST FIELD \\
\hline & IFBNE & \#3 & ; TOP OF DIVIDEND FIELD \\
\hline & JP & CLRLUP & \\
\hline DVSHFT : & RC & & \\
\hline & LD & B,\#0 & \\
\hline SHFTLP: & LD & A, [B] & \\
\hline & ADC & A, [B] & ; LEFT SHIFT DIVIDEND \\
\hline & X & A, [\({ }^{\text {+ }}\)] & ; AND TEST FIELD \\
\hline & IFBNE & \#7 & ; BOTTOM OF DR FIELD \\
\hline & JP & SHFTLP & \\
\hline & IFC & & ; TEST IF BIT SHIFTED \\
\hline & JP & DVSUBT & ; *** OUT OF TEST FIELD \\
\hline & SC & & ; RESET BORROW \\
\hline & LD & X,\#4 & \\
\hline TSTLUP: & LD & A, [\(\mathrm{X}+\)] & TEST SUBTRACT DIVISOR \\
\hline & SUBC & A, [B] & ; FROM TEST FIELD \\
\hline & LD & A, [B+] & ; INCREMENT B POINTER \\
\hline & IFBNE & \#10 & ; TOP OF DIVISOR + 1 \\
\hline & JP & TSTLUP & \\
\hline & IFNC & & ; TEST IF BORROW \\
\hline & JP & DVTEST & ; FROM SUBTRACTION \\
\hline & LD & B,\#7 & \\
\hline DVSUBT: & LD & X,\#4 & \\
\hline SUBTLP: & LD & A, [X] & ; SUBTRACT DIVISOR \\
\hline & SUBC & A, [B] & FROM REMAINDER \\
\hline & X & A, [\(\mathrm{X}+\)] & ; IN TEST FIELD \\
\hline & LD & A, [B+] & INCREMENT B POINTER \\
\hline & IFBNE & \#10 & ; TOP OF DIVISOR + 1 \\
\hline & JP & SUBTLP & \\
\hline & LD & B,\#0 & \\
\hline & SBIT & \(0,[B]\) & ; SET QUOTIENT BIT \\
\hline DVTEST: & DRSZ & CNTR & ; DECREMENT AND TEST \\
\hline & JP & DVSHFT & CNTR FOR ZERO \\
\hline & RET & & ; RETURN FROM SUBROUTINE \\
\hline
\end{tabular}
```

4.0 DECIMAL (PACKED BCD)/BINARY CONVERSION
Subroutines For Two Byte Conversion:
DECBIN - Decimal (Packed BCD) to Binary
-24 Bytes ***
-1030 Instruction Cycles
FDTOB - Fast Decimal (Packaged BCD) to Binary
-76 Bytes
-92 Instruction Cycles
BINDEC - Binary to Decimal (Packed BCD)
-25 Bytes ***
-856 Instruction Cycles

```
\[
\begin{aligned}
\text { FBTOD } & \text { - Fast Binary to Decimal (Packed BCD) } \\
& \text { - } 59 \text { Bytes } \\
& \text { - } 334 \text { Instruction Cycles } \\
\text { VFBTOD } & \text { - Very Fast Binary to Decimal (Packed BCD) } \\
& \text { - } 189 \text { Bytes } \\
& \text { - } 144 \text { Instruction Cycles Average } \\
& \text { - } 208 \text { Instruction Cycles Maximum }
\end{aligned}
\]
***These subroutines extendable to multiple byte conversion by simply changing parameters within subroutine as shown, with number of bytes in subroutine remaining constant.

\section*{DECBIN-Decimal (Packed BCD) to Binary}

This 24 byte subroutine represents very minimal code for translating a packed BCD decimal number of any length to binary.

ALGORITHM:
The binary result is resident just below the packed BCD decimal number. During each cycle of the algorithm, the decimal operand and the binary result are shifted right one bit position, with the low order bit of the decimal operand shifting down into the high order bit position of the binary field. The residual decimal operand is then tested for a high order bit in each of its nibbles. A three is subtracted from each nibble in the BCD operand space that is found to contain a high order bit equal to one. (This process effectively right shifts the BCD operand one bit position, and then corrects the result to BCD format.) The entire cycle is then repeated, with the total number of cycles being equal to the number of bit positions in the decimal field.
16 Bit: Binary IN [1,0]
Packed BCD in [3, 2]
24 Bit: Binary in [2, 1, 0]
Packed BCD in \([5,4,3]\)
32 Bit: Binary in [3, 2, 1, 0]
Packed BCD in [7, 6, 5, 4]
24 Bytes
1030 Instruction Cycles (16 Bit)
\begin{tabular}{|c|c|c|c|}
\hline DECBIN: & LD & CNTR,\#16 & \begin{tabular}{l}
LOAD CNTR WITH NUMBER \\
OF BIT POSITIONS \\
IN BCD FIELD \\
\#16 FOR 16 BIT (2 BYTE) \\
\#'S 24/32 FOR 24/32 BIT
\end{tabular} \\
\hline DB1: & LD & B,\#3 & \#'S 5/7 FOR 24/32 BIT \\
\hline & RC & & \\
\hline DB2: & LD & A, [B] & PROGRAM LOOP TO \\
\hline & RRC & A & RIGHT SHIFT \\
\hline & X & A, [B-] & DECIMAL (BCD) AND \\
\hline & IFBNE & \#OF & BINARY FIELDS. \\
\hline & JP & DB2 & LOOP JUMP BACK \\
\hline & LD & B,\#3 & \#'S 5/7 FOR 24/32 BIT \\
\hline & SC & & SET CARRY FOR SUBTRACT \\
\hline DB3: & LD & A, [B] & TEST HIGH ORDER BITS \\
\hline & IFBIT & 7, [B] & OF BCD NIBBLES, AND \\
\hline & SUBC & A,\#030 & SUBTRACT A THREE \\
\hline & IFBIT & 3, [B] & FROM EACH NIBBLE IF \\
\hline & SUBC & A,\#3 & HIGH ORDER BIT OF \\
\hline & X & A, [B-] & NIBBLE IS A ONE \\
\hline & IFBNE & \#1 & \#'S 2/3 FOR 24/32 BIT \\
\hline & JP & DB3 & LOOP BACK FOR MORE BCD BYTES \\
\hline & DRSZ & CNTR & DECREMENT AND TEST IF \\
\hline & JP & DB1 & CNTR EQUAL TO ZERO \\
\hline & RET & & RETURN FROM SUBROUTINE \\
\hline
\end{tabular}

\section*{FDTOB-FAST DECIMAL (PACKED BCD) TO BINARY}

BCD Format: \(\quad\) Four Nibbles \(-W, X, Y, Z\), with \(W=H i\) Order Nibble
\[
{ }^{* * *}[1]=16 W+X
\]
\[
\text { *** }[0]=16 Y+Z
\]

Algorithm: \(\quad\) Binary Result is equal to \(100(10 \mathrm{~W}+\mathrm{X})+(10 \mathrm{Y}+\mathrm{Z})\)
BCD IN \([1,0]^{* * *}\)
Temp in [2]
Binary in \([4,3]\)
76 Bytes
92 Instruction Cycles

\section*{FDTOB: RC}
\begin{tabular}{|c|c|c|}
\hline LD & B,\#1 & \\
\hline LD & A, [B+] & ; 16W + X \\
\hline AND & A,\#OFO & ; EXTRACT 16W \\
\hline RRC & A & ; 8W \\
\hline X & A, [B] & ; 8W TO TEMP \\
\hline RRC & A & ; 4W \\
\hline RRC & A & ; 2 W \\
\hline ADD & A, [B] & ; \(2 W+8 W=10 W\) \\
\hline X & A, [B-] & ; LOW TO TEMP \\
\hline LD & A, [B+] & ; l6W + X \\
\hline AND & A, \#0F & ; EXTRACT X \\
\hline ADC & A, [B] & ; 10W + X \\
\hline X & A, [B] & ; 10W + X TO TEMP \\
\hline LD & A, [B] & \\
\hline ADC & A, [B] & ; 2. (10W + X) \\
\hline X & A, [B] & ; 2. \((10 \mathrm{~W}+\mathrm{X})\) TO TEMP \\
\hline ADC & A, [B] & ; 3. (10W + X) \\
\hline LD & B, \#3 & ; \(\quad=16 P+Q\) \\
\hline X & A, [B+] & ; 16P + Q T0 [3] \\
\hline CLR & A & \\
\hline IFC & & \\
\hline LD & A,\#010 & ; 16C TO A (\(\mathrm{C}=\) CARRY) \\
\hline X & A, [B-] & ; 16C T0 [4] \\
\hline LD & A, [B] & ; \(16 \mathrm{P}+\mathrm{Q}\) \\
\hline SWAP & A & ; \(16 Q+\mathrm{P}\) \\
\hline X & A, [B] & ; 16Q + P TO [3] \\
\hline LD & A, [B+] & ; 16Q + P \\
\hline AND & A, \#0F & ; EXTRACT P \\
\hline ADD & A, [B] & ; 16C + P \\
\hline X & A, [B-] & ; 16C + P T0 [4]** \\
\hline LD & A, [B] & ; 16Q + P \\
\hline AND & A,\#OFO & ; EXTRACT 16Q \\
\hline X & A, [B-] & ; 16Q TO [3]** \\
\hline LD & A, [B+] & ; 2.(10W + X) \\
\hline ADC & A, [B] & ; 2. \((10 W+X)+16 Q\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline X & A, [B+] & ; & 2 BYTE 2.(10W + X) \\
\hline CLR & A, [B-] & ; & ADD \(:+48 . * *(10 W+X)\) \\
\hline ADC & A, [B] & ; & \(16 \mathrm{C}+\mathrm{P}+\mathrm{NUC}\) \\
\hline X & A, [B-] & ; & 50. (10W + X) \\
\hline LD & A, [B] & & \\
\hline ADC & A, [B] & ; & DOUBLE \\
\hline X & A, \([\mathrm{B}+]\) & ; & 50. (10W + X) \\
\hline LD & A, [B] & ; & TO FORM \\
\hline ADC & A, [B] & ; & 100. (10W + X) \\
\hline X & A, [B] & ; & IN [3,4] \\
\hline LD & B, \#0 & & \\
\hline LD & A, [B] & ; & 16Y + Z \\
\hline AND & A,\#0F0 & ; & EXTRACT 16Y \\
\hline LD & B,\#2 & & \\
\hline RRC & A & ; & 8Y \\
\hline X & A, [B] & ; & 8Y T0 TEMP \\
\hline LD & A, [B] & & \\
\hline RRC & A & ; & 4Y \\
\hline RRC & A & ; & \(2 Y\) \\
\hline ADC & A, [B] & ; & \(2 \mathrm{Y}+8 \mathrm{Y}=10 \mathrm{Y}\) \\
\hline X & A, [B] & ; & 10Y TO TEMP \\
\hline LD & B, \#0 & & \\
\hline LD & A, [B] & ; & 16Y + Z \\
\hline AND & A, \#OF & ; & EXTRACT Z \\
\hline LD & B, \#2 & & \\
\hline ADD & A, [B] & ; & \(10 Y+2\) \\
\hline LD & B, \#3 & & \\
\hline ADC & A, [B] & ; & TWO BYTE ADD \\
\hline X & A, \([B+]\) & ; & 100. (10W + X) \\
\hline CLR & A & ; & + (10Y + Z) \\
\hline ADC & A, [B] & ; & WITH BINARY \\
\hline X & A, [B] & ; & RESULT TO [3,4] \\
\hline
\end{tabular}

\section*{BINDEC-Binary to Decimal (Packed BCD)}

This 25 byte subroutine represents very minimal code for translating a binary number of any length to packed BCD decimal.

\section*{ALGORITHM:}

The packed BCD decimal result is resident just above the binary number. A sufficient number of bytes must be allowed for the BCD result. During each cycle of the algorithm the binary number is shifted left one bit position. The packed BCD decimal result is also shifted left one bit position, with the high order bit of the binary field being shifted up into the low order bit position of the BCD field. The shifted result in the BCD field is decimal corrected by using the DCOR instruction. Note that for addition an "ADD A, \#066" instruction must be used in conjunction with the DCOR (Decimal Correct) instruction. The entire cycle is then repeated, with the total number of cycles being equal to the number of bit positions in the binary field.
\begin{tabular}{rl}
16 Bit: & Binary in \([1,0]\) \\
& Packed BCD in \([4,3,2]\) \\
24 Bit: & \begin{tabular}{l}
Binary in \([2,1,0]\) \\
32 Bit:
\end{tabular} \\
Packed BCD in \([6,5,4,3]\) \\
& \begin{tabular}{l}
Binary in \([3,2,1,0]\) \\
Packed BCD in \([8,7,6,5,4]\)
\end{tabular}
\end{tabular}

\section*{25 Bytes}

856 Instructions Cycles (16 Bit)

FBTOD-FAST BINARY TO DECIMAL (PACKED BCD)
Algorithm: \(\quad\) This algorithm is based on the BINDEC algorithm, except that it is optimized for speed of execution.
Binary in [1, 0]
Packed BCD in [4, 3, 2]
59 Bytes
334 Instruction Cycles

FBTOD:
\begin{tabular}{|c|c|}
\hline RC & \\
\hline LD & B,\#1 \\
\hline LD & A, [B] \\
\hline SWAP & A \\
\hline X & A, [B] \\
\hline LD & A, [B+] \\
\hline AND & A, \#OF \\
\hline IFGT & A,\#9 \\
\hline ADD & A,\#06 \\
\hline X & A, [B+] \\
\hline LD & [\(\mathrm{B}+\mathrm{]}, \# 0\) \\
\hline LD & [B],\#0 \\
\hline LD & CNTR,\#4 \\
\hline LD & B,\#1 \\
\hline LD & A, [B] \\
\hline ADC & A, [B] \\
\hline X & A, [B+] \\
\hline LD & A, [B] \\
\hline ADD & A,\#066 \\
\hline ADC & A, [B] \\
\hline DCOR & A \\
\hline X & A, [B+] \\
\hline LD & A, [B] \\
\hline ADC & A, [B] \\
\hline X & A, [B] \\
\hline DRSZ & CNTR \\
\hline JP & FBDI \\
\hline LD & CNTR,\#8 \\
\hline LD & B, \#0 \\
\hline LD & A, [B] \\
\hline ADC & A, [B] \\
\hline X & A, [B] \\
\hline LD & B,\#2 \\
\hline LD & A, [B] \\
\hline ADD & A,\#066 \\
\hline ADC & A, [B] \\
\hline DCOR & A \\
\hline X & A, [\(\mathrm{B}+\)] \\
\hline LD & A, [B] \\
\hline ADD & A,\#066 \\
\hline ADC & A, [B] \\
\hline DCOR & A \\
\hline X & A, [B+] \\
\hline LD & A, [B] \\
\hline ADC & A, [B] \\
\hline X & A, [B] \\
\hline DRS2 & CNTR \\
\hline JP & FBD2 \\
\hline RET & \\
\hline
\end{tabular}

\section*{VFBTOD-VERY FAST BINARY TO DECIMAL (PACKED BCD)}

Algorithm: Decimal (Packed BCD) result is equal to summation in BCD of powers of two corresponding to 1 's bits present in binary number.
Note that binary field (2 bytes) is initially one's complemented by program, in order to facilitate bypass branching when a tested bit in the binary field is found equal to zero.
Binary in [1, 0]
\(B C D\) in \([4,3,2]\)
189 Bytes
144 Instruction Cycles Average 208 Instruction Cycles Maximum

VFBTOD: RC
\begin{tabular}{|c|c|c|c|c|}
\hline , & R & & & \\
\hline & LD & B, \#0 & & \\
\hline & LD & A, [B] & & \\
\hline & AND & A, \#OF & ; & Extract lo Nibble \\
\hline & IFGT & A,\#9 & ; & TEST NIBBLE 9 \\
\hline & ADD & A,\#6 & ; & ADD 6 FOR CORRECTION \\
\hline & LD & B, \#2 & & \\
\hline & X & A, [B+] & ; & STORE IN LO BCD NIBBLE \\
\hline & LD & [B+],\#0 & ; & CLEAR UPPER \\
\hline & LD & [B],\#0 & ; & BCD NIBBLES \\
\hline & LD & B,\#1 & & \\
\hline & LD & A, [B] & & \\
\hline & XOR & A,\#0FF & ; & COMPLEMENT HI BYTE \\
\hline & X & A, [B-] & ; & FOR REVERSE TESTING \\
\hline & LD & A, [B] & ; & OF BINARY NUMBER \\
\hline & XOR & A, \#OFF & ; & COMPLEMENT LO BYTE \\
\hline & X & A, [B] & ; & FOR REVERSE TESTING \\
\hline & IFBIT & 4, [B] & ; & TEST BINARY BIT 4 \\
\hline & JP & VFBI & ; & TO CONDITIONALLY \\
\hline & LD & B,\#2 & ; & ADD BCD 16 \\
\hline & LD & A,\#07C & ; & \(16+66\) \\
\hline & \(\dot{H} D C\) & A, [Bj\(]\) & ; & ADD ECD İ \\
\hline & DCOR & A & & \\
\hline & X & A, [B] & & \\
\hline & LD & B, \#0 & & \\
\hline VFBl: & IFBIT & 5, [B] & ; & TEST BINARY BIT 5 \\
\hline & JP & VFB2 & ; & TO CONDITIONALLY \\
\hline & LD & B, \#2 & ; & ADD BCD 32 \\
\hline & LD & A,\#098 & ; & \(32+66\) \\
\hline & ADC & A, [B] & ; & ADD BCD 32 \\
\hline & DCOR & A & & \\
\hline & X & A, [B] & & \\
\hline & LD & B,\#0 & & \\
\hline VFB2: & IFBIT & 6, [B] & ; & TEST BINARY BIT 6 \\
\hline & JP & VFB3 & ; & TO CONDITIONALLY \\
\hline & LD & B,\#2 & ; & ADD BCD 64 \\
\hline & LD & A,\#OCA & ; & \(64+66\) \\
\hline & ADC & A, [B] & ; & ADD BCD 64 \\
\hline & DCOR & A & & \\
\hline & X & A, [B+] & & \\
\hline & CLR & A & & \\
\hline & ADC & A, [B] & ; & ADD CARRY \\
\hline & X & A, [B] & & \\
\hline & LD & B,\#0 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{10}{*}{VFB3:} & IFBIT & 7, [B] & ; & TEST BINARY BIT 7 \\
\hline & JP & VFB4 & ; & TO CONDITIONALLY \\
\hline & LD & B, \#2 & ; & ADD BCD 128 \\
\hline & LD & A, \#08E & & \(28+66\) \\
\hline & ADC & A, [B] & ; & ADD BCD 28 \\
\hline & DCOR & A & & \\
\hline & X & A, \([B+]\) & & \\
\hline & LD & A,\#1 & & \\
\hline & ADC & A, [B] & ; & ADD BCD 1 \\
\hline & X & A, [B] & & \\
\hline \multirow[t]{12}{*}{VFB4:} & LD & B,\#1 & ; & HI BINARY BYTE \\
\hline & IFBIT & 0, [B] & ; & TEST BINARY BIT 8 \\
\hline & JP & VFB5 & ; & TO CONDITIONALLY \\
\hline & LD & B,\#2 & ; & ADD BCD 256 \\
\hline & LD & A, \#OBC & ; & \(56+66\) \\
\hline & ADC & A, [B] & ; & ADD BCD 56 \\
\hline & DCOR & A & & \\
\hline & X & A, [B+] & & \\
\hline & LD & A,\#2 & & \\
\hline & ADC & A, [B] & ; & ADD BCD 2 \\
\hline & X & A, [B] & & \\
\hline & LD & B,\#1 & & \\
\hline \multirow[t]{12}{*}{VFB5:} & IFBIT & 1, [B] & ; & TEST BINARY BIT 9 \\
\hline & JP & VFB6 & ; & TO CONDITIONALLY \\
\hline & LD & B,\#2 & ; & ADD BCD 512 \\
\hline & LD & A,\#078 & ; & \(12+66\) \\
\hline & ADC & A, [B] & ; & ADD BCD 12 \\
\hline & DCOR & A & & \\
\hline & X & A, [B+] & & \\
\hline & LD & A,\#06B & ; & \(5+66\) \\
\hline & ADC & A, [B] & ; & ADD BCD 5 \\
\hline & DCOR & A & & \\
\hline & X & A, [B] & & \\
\hline & LD & B,\#1 & & \\
\hline \multirow[t]{12}{*}{VFB6:} & IFBIT & 2, [B] & ; & TEST BINARY BIT 10 \\
\hline & JP & VFB7 & ; & TO CONDITIONALLY \\
\hline & LD & B, \#2 & ; & ADD BCD 1024 \\
\hline & LD & A,\#08A & ; & \(24+66\) \\
\hline & ADC & A, [B] & ; & ADD BCD 24 \\
\hline & DCOR & A & & \\
\hline & X & A, [B+] & & \\
\hline & LD & A,\#076 & ; & 10 + 66 \\
\hline & ADC & A, [B] & ; & ADD BCD 10 \\
\hline & DCOR & A & & \\
\hline & X & A, [B] & & \\
\hline & LD & B,\#1 & & \\
\hline \multirow[t]{12}{*}{VFB7:} & IFBIT & 3, [B] & ; & TEST BINARY BIT 11 \\
\hline & JP & VFB8 & ; & TO CONDITIONALLY \\
\hline & LD & B,\#2 & ; & ADD BCD 2048 \\
\hline & LD & A, \#OAE & ; & \(48+66\) \\
\hline & ADC & A, [B] & ; & ADD BCD 48 \\
\hline & DCOR & A & & \\
\hline & X & A, [\(\mathrm{B}+]\) & & \\
\hline & LD & A,\#086 & ; & \(20+66\) \\
\hline & ADC & A, [B] & ; & ADD BCD 20 \\
\hline & DCOR & A & & \\
\hline & X & A, [B] & & \\
\hline & LD & B,\#1 & & \\
\hline
\end{tabular}

\section*{Pulse Width Modulation A/D Conversion Techniques with COP800 Family Microcontrollers}

\subsection*{1.0 BASIC TECHNIQUE}

This application note describes a technique for creating an analog to digital converter using a microcontroller with other low cost components. Many applications do not require the speed associated with a dedicated hardware A/D converter and it is worth evaluating a more cost effective approach. With a high speed CMOS microcontroller an eight bit A/D can be implemented that converts in approximately 10 ms . This method is based on the fact that if a repetitive waveform is applied to an RC network, the capacitor will charge to the average voltage, provided that the RC time constant is much larger than the pulse widths. The basic equation for computing the analog to digital result is:
\[
\begin{equation*}
V_{\text {in }}=V_{\text {ref }}\left[T_{\text {on }} /\left(T_{\text {on }}+T_{\text {off }}\right)\right] \tag{1}
\end{equation*}
\]

With this equation it is necessary to precisely measure several time periods within both the \(T_{\text {on }}\) and \(T_{\text {off }}\) in order to achieve the desired resolution. Additionally, the waveform would have to be gradually adjusted to allow for the large RC time constant to settle out. This results in a relatively long conversion cycle. Modifying the equation and technique slightly, significantly speeds up the process. This technique works by averaging several pulses over a fixed period of time and is based on the following equation:
\[
\begin{equation*}
V_{\text {in }}=V_{\text {ref }}\left[\text { Sum of } T_{\text {on }} /\left(\text { Sum of }\left(T_{\text {on }}+T_{\text {off }}\right)\right]\right. \tag{2}
\end{equation*}
\]

\subsection*{2.0 IMPLEMENTATION}

Figure 1 describes the basic circuit schematic that uses a National Semiconductor COP822C microcontroller, a low cost LM2901 comparator, two 100k resistors, and a 0.047 mfd film capacitor. The CMOS COP822C microcontroller provides a squarewave signal with logic levels very close to GND and \(\mathrm{V}_{\mathrm{C}}\). This generates a small ramp voltage on the capacitor for the LM2901 quad comparator input.

FIGURE 1. Basic Circuit

National Semiconductor Application Note 607
Kevin Daugherty

To minimize error, a tradeoff must be made when selecting the resistor. The microcontroller output (L1) should have a large resistor to minimize the output switching offset (\(\mathrm{V}_{\mathrm{os}}\)), and the comparator should have a small resistor due to error caused by \(\mathrm{I}_{\text {bos }}\) (input bias offset current).
Once the resistor is determined, the capacitor should be chosen so that the RC time constant is large enough to provide a small incremental voltage ramp. This design has a sample time of \(20 \mu \mathrm{~s}\) and has a 4.7 ms time constant with a 0.047 mfd film type capacitor which has low leakage current to prevent errors. Since a 100 k resistor is used in the RC network for one comparator input, another 100k resistor is required for the \(\mathrm{V}_{\text {in }}\) input to balance the offset voltage caused by the comparator \(\mathrm{I}_{\mathrm{b}}\) (input bias current).
Figure 2 illustrates the relationship between the microcontroller squarewave output and the capacitor charge and discharge. Every \(20 \mu \mathrm{~s}\) the comparator is sampled. If the capacitor voltage \(\left(V_{C}\right)\) is below \(V_{\text {in }}\) the RC network will receive a positive pulse. The inverse is true if \(V_{c}\) is above \(V_{\text {in }}\) at sample time. Note that with this approach, the PWM waveform is broken up into several small pulses over a fixed period instead of having a single pulse represent the duty cycle; thus a relatively small RC time constant can be used. Mathematical Analysis:
let \(\quad n=\) total number of \(T_{\text {on }}\) pulses and
\[
\mathrm{m}=\text { total number of } \mathrm{T}_{\text {off }} \text { pulses }
\]
then \(\quad V_{c}(t)=V_{c}+n\left[\left(V_{\text {out }}-V_{c}\right)(1-e-t / R C)\right]-\)
\[
m\left[\left(V_{c}-V_{0}\right)(1-e-t / R C)\right]
\]
let \(\quad V_{c}=V_{\text {in }}\) at start of conversion and
\[
K=(1-e-t / R C)
\]
then \(\quad V_{\text {in }}=V_{\text {in }}+K_{n} V_{\text {out }}-K_{n} V_{\text {in }}-K_{m} V_{\text {in }}+K_{m} V_{O}\)
\[
0=K_{n} V_{\text {out }}+K_{m} V_{o}-K V_{\text {in }}(n+m)
\]
let \(\quad V_{\text {out }}=V_{\text {ref }}-V_{\text {os }}\)
solving for \(V_{\text {in }}\) :
\[
\begin{align*}
& V_{\text {in }}=n V_{\text {ref }} /(n+m) \\
& -\left(n V_{o s}-m V_{0}\right)(1 /(n+m) \tag{3}
\end{align*}
\]

Note that the RC value drops out of the equation and therefore is not an error factor.

\subsection*{3.0 SOFTWARE DESCRIPTION}

\section*{Single Channel}

Referring to the flow chart in Figure 3, and the code listed in Figure 4, the software counters \(\mathrm{T}_{\text {on }}\) and TOTAL are first preloaded with the FF. The accumulator and register OF1 are then loaded with 2 to provide for an initialization and final conversion cycle. Next, the L port is configured to complete the initialization of the microcontroller.
The comparator output is checked with the IFBIT 0,0D2 instruction. This will determine whether the RC network will receive a positive \(\left(\mathrm{V}_{\text {ref }}\right)\) or ground pulse. You can think of the microcontroller as part of the feedback path of the comparator. The microcontroller uses the comparator output to decide what level output on L1 is required to keep the capacitor equal to the unknown input voltage. Each time the negative or GND pulse is applied, the \(T_{\text {on }}\) counter is decremented by DRSZ. Similarly, each time a sample loop is completed the TOTAL counter is decremented by DRSZ. Note that NOP instructions are used in the high and low loops. These are necessary to provide exactly the same cycles for a high or low L1 output pulse.
Once the TOTAL register is decremented to zero, the initialization loop is completed. Immediately afterwards, the L1 output is put in TRI-STATE® mode to minimize capacitor voltage variations while other instructions are completed. After the first conversion, the IFEQ A, OF1 instruction will be true and the \(\mathrm{T}_{\text {on }}\) and TOTAL registers will be reloaded with FF. Following this, the L1 pin is restored as a high output and the OF1 multiplier is decremented.
At this point the capacitor is equal to \(V_{i n}\) and the actual conversion is started. When the TOTAL register is decremented to zero (255 samples later), the conversion is complete. Ton will not be reloaded since OF1 was decremented and IFEQ A,OF1 will no longer be true. The accumulator is then loaded with \(T_{\text {on }}\) and stored in RAM location 00 with \(\mathrm{XA}, 00\).
The final two instructions (RBIT 1,LCONF \& RBIT 1[B]) are optional depending on the application and the amount of additional code required. This will prevent the capacitor from decaying appreciably between conversions and allow for a much quicker capacitor initialization time. Otherwise more time may be required, or a diode speed-up circuit as shown in Figure \(7 d\) is required to fully charge the capacitor prior to starting the actual conversion.

\section*{Eight Channel}

This is bascially the same as that for the single channel. Referring to the flow chart in Figure 5 and the code in Figure 6 , the differences are in the front and back ends. Before the
conversions are started, the \(X\) register is initialized to 00 for RAM location 00. The accumulator is then loaded with the current RAM pointer (LD A,X), OR'ed with the LDATA (OR A,LDATA), and finally the LDATA register is modified to provide for the proper output select (X A,LDTA).
Following the actual conversion cycle, the result is stored at the current RAM pointer (\(\mathrm{XA},[\mathrm{X}+]\)) which also auto-increments the \(X\) register. The next conversion will use this to select the next channel and determine where to store the result. Once the eighth channel is converted, the IFEQ A,X instruction will be true and the RAM pointer will be reset (LD X, \#00) before the next conversion is started.

TL/DD/10407-7
FIGURE 3. PWM A/D Flow Chart
```

;The program listed below will work in any COP800 microcontroller
;(i.e. COP820, COP840, COP880, C0P888). SET UP FOR . }047\textrm{mfd CAP.,
;100K RES, @l MICRO. CYCLE TIME. THE FIRST CONVERSION
;INITIALIZES, AND 2nd IS THE RESULT STORED IN RAM LOCATION OO.
.CHIP 820
LCONF=OD1
LDATA=ODO
TON=OF2
TOTAL=0FO
;
USED TO DETERMINE WHEN TO RELOAD
LD TOTAL,\#OFF ;PRELOAD TOTAL COUNTS
LD OF1,\#2 ;MULTIPLIER (255 TO INIT. PLUS 255 FOR RESULT)
LD TON,\#OFF ;PRELOAD T T N
LD OFE,\#ODO ;LOAD B REG TO POINT TO LDATA REG.
LD LDATA,\#O1 ;L PORT DATA REG, LO=WEAK PULL UP, Ll=HIGH
LD LCONF,\#O2 ;L PORT CONFIG REG, LO=INPUT, Ll=OUTPUT
LOOP: IFBIT 0,OD2 ;TEST COMPARATOR OUTPUT
JP HIGH
NOP
NOP
RBIT 1,[B] ;DRIVE Ll LOW
DRSZ Ton
JMP COUNT
HIGH: SBIT 1,[B] ;DRIVE Ll HIGH
NOP
NOP
NOP
NOP
NOP
NOP ;EQUALIZE HIGH AND LOW LOOPS
COUNT: DRSZ TOTAL ;DECREMENT TOTAL COUNTS
JP LOOP
RBIT 1,LCONF ;TRISTATE Ll TO MINIMIZE ERRORS FROM EXTRA
RBIT 1,[B] ;CYCLES
IFEQ A,OFl
JP RELOAD
JP DEC
RELOAD: LD OF2,\#OFF
LD OFO,\#OFF
DEC: SBIT 1,[B]
SBIT 1,LCONF
DRSZ OFI
JMP LOOP
LD A,TON
X, A,00 ;STORE RESULT IN RAM LOCATION 00
;CHECK INITIALIZATION LOOP COMPLETE
;JUMP IF TRUE.
;JUMP IF NOT END OF 2nd LOOP
;RELOAD Ton WITH FF
;SYNC TOTAL AND Ton COUNTERS
;SET Ll HIGH
;RESTORE Ll AS OUTPUT.
;DECREMENT MULTIPLIER UNTIL ZERO
;CONTINUE A/D UNTIL AFTER 2nd CONVERSION
;LOAD A WITH T
.end

```

FIGURE 4. Single Channel PWM A/D Listing

FIGURE 5. 8 Channel PWM A/D Flow Chart
```

;LO,1,2 SELECTS CHANNEL OF CD4051 8:1 MUX, L3 IS THE COMP.
;OUTPUT, AND L4 DRIVES THE RC. RESULTS STORED IN RAM 00-07.
.CHIP 820
LDATA=ODO
LCONF=ODI
TON=0F2
TOTAL=0F0
LD X,\#00 ;INITIALIZE X REG FOR lst RAM LOC.
CONVER: LD TOTAL,\#OFF ;PRELOAD TOTAL COUNTS
LD OFL,\#02 ;TOTAL LOOP COUNTER
LD TON,\#OFF ;PRELOAD Ton
LD OFE,\#ODO ;INIT. B REG TO POINT TO LDATA REG
LD LDATA,\#018 ;LDATA, L0-2=LOW, L3=PULLUP, L4=HIGH
LD A,X
OR A,LDATA
X A,LDATA
LD LCONF,\#O17
LOOP: IFBIT 3,0D2
JMP HIGH
NOP
NOP ;EQUALIZE TIME FOR SET AND RESET
RBIT 4,[B] ;DRIVE L4 LOW WHEN COMPARATOR IS LOW.
DRSZ TON
JMP COUNT
HIGH: SBIT 4,[B]
NOP
NOP
NOP
NOP
NOP
NOP ;EQUALIZE HIGH AND LOW LOOP TIMES
COUNT: DRSZ TOTAL ;DEC. TOTAL COUNTS EACH LOOP
JMP LOOP
RBIT 4,LCONF
RBIT 4,[B]
LD A,\#02
IFEQ A,OFI
JP RELOAD
JP DEC
RELOAD: LD TON,\#OFF
LD TOTAL,\#OFF
SBIT 4,[B]
SBIT 4,LCONF
DRSZ OFI
JMP LOOP
ID A,TON
X A,[X+]
LD A,\#08
IFEQ A,X
LD X,\#00
JMP CONVER
;JUMP UNLESS TOTAL CNTS.=0
;TRISTATE L4 TO MINIMIZE ERROR
; "
;USE TO DETERMINE WHEN TO RELOAD
;CHECK FOR 2nd CONVERSION COMPLETE
;IF TRUE.
;OTHERWISE JUMP TO DEC
;RELOAD Ton FOR START OF NEXT CONV.
;SYNC Ton AND TOTAL COUNTERS
DEC:
;SET L4 HIGH
;RESTORE L4 AS OUTPUT.
;DECREMENT TOTAL LOOP UNTIL ZERO
;DONE WHEN OFI IS ZERO.
;LOAD A WITH TON RESULT
;STORE RESULT AT CURRENT RAM POINTER
;AND AUTO INCREMENT POINTER
;CHECK [X] RAM POINTER FOR
;EIGHTH CHANNEL CONVERTER
;RESET RAM POINTER IF [X]=8

```

FIGURE 6. 8-Channel PWM A/D Listing

\subsection*{4.0 ACCURACY AND CIRCUIT CONSIDERATIONS}

The basic circuit will provide 8 bits \(\pm 1\) LSB accuracy depending on the choice of comparator, and passive components. With this type of design several tradeoffs and error sources should be considered. First of all, conversion equation 2 assumes that the microcontroller output switches exactly to GND and \(V_{C C}\) (or \(V_{\text {ref }}\)). The COP822C will typically switch between 10 mV and 20 mV from GND and \(V_{C c}\) with a light load. This will cause an error equal to the offset voltage times the duty cycle (equ. 3). Fortunately, the offsets tend to cancel each other at mid range voltages. At near GND and VCC input voltages the offsets are minimal due to the very small voltage drop across the resistor. If the error is undesirable, the offset voltage can be reduced by paralleling outputs with the same levels together, or by using a CMOS buffer such as a 74 HCO to drive the RC network (see Figure 7 for suggested circuits).
Another possible source of error is with the LM2901 worst case input bias offset current of 200 nA over temperature. This will cause an error equal to \(\mathrm{R}_{\text {in }} \times \mathrm{I}_{\text {bos }}\), which equals 20 mV with a 100 k resistor. Either the resistor or the \(\mathrm{I}_{\text {bos }}\) can be reduced to improve the error. If the resistor is reduced then the L port offset voltages will increase so the preferred approach is to select a comparator with lower Ibos such as the LP339 which has an \(\mathrm{I}_{\text {bos }}\) of only \(\pm 15 \mathrm{nA}\). The comparator \(\mathrm{V}_{\text {os }}\) may also introduce error. The LM2901 \(\mathrm{V}_{\text {os }}\) is \(\pm 9 \mathrm{mV}\), the LP339 \(\mathrm{V}_{\text {os }}\) is only \(\pm 5 \mathrm{mV}\). An added benefit of using the LP339 is that since the \(I_{b o s}\) is so small, the resistor for the RC network can be larger. In addition, one RC network could be used for several comparator input channels (refer to Figure 7A).
By using the LM604 (Figure \(7 B\)) the basic software can be easily extended for converting several channels. This will only require a control line to be selected before a conversion is started. Since the LM604 needs to be powered from a higher voltage than the input voltage range, the output voltage will also be higher than the microcontroller supply. This requires a current limiting resistor to be used in series

TL/DD/10407-4
A. Multiple Channels with LP339 Low Ibos Comparator
between the LM604 output and the COP8XX. Note that two or more LM604's can be paralleled for providing several more A/D channels by utilizing the EN control input that can TRI-STATE the LM604 output when high.
When more than 4 channels of analog signals are required to be measured, the circuit in Figure \(7(d)\) is recommended. This circuit utilizes an inexpensive CD4051 8:1 multiplexer with a single comparator (which could be on-board the micro). When measuring several input voltages that can vary, TRI-STATING the output driving the RC between conversions is not possible. It is necessary to provide \(6 \times\) RC time constants to charge the capacitor to within \(0.25 \%\). Note that there are two 1N4148's across the comparator inputs. The diodes provide a quick capacitor charge path providing that the total input resistance is much smaller than the resistor used in the RC network (a 2 k resistor will meet the requirements within 255 sample times). Once the capacitor is charged to within about 0.6 V , the diodes will start turning off. At this point the microcontroller will start dominating the charge/discharge of the capacitor. After the initialization cycle is complete, the capacitor is very close to the unknown \(V_{\text {in }}\) and the diodes are effectively out of the circuit.
Depending on the speed and accuracy requirements, the total number of counts used in the conversion can be changed. Increasing the counts will give more accuracy with the practical limit of about 9-10 bits. With increased resolution, the capacitor ramp voltage per sample time should be decreased so that the capacitor can be initialized to within 1 LSB prior to conversion. This can be done by either increasing the RC time constant, or by using an initialization routine with a shorter sample time. The conversion time will depend on the total counts and the microcontroller oscillator frequency as described below:
\[
\mathrm{T}_{\text {con }}=\underset{\text { time })}{\text { Total counts } \times(20 \text { cycles }) \times \text { (instruction cycle }}
\]

Another factor to consider is when a non-ratiometric conversion is required, the reference voltage must have the tolerance to match the desired accuracy.

\section*{B. High Drive with Multiple Outputs}

FIGURE 7. Suggested Circuits

C. Four Channel A/D with LM604 MUX-Ampilfier

\section*{D. Eight Channel PWM A/D Circuit}

\section*{FIGURE 7. Suggested Circults (Continued)}

\subsection*{5.0 CONCLUSION}

The PWM A/D technique described in this application note provides a relatively fast discrete implementation with substantial cost savings compared to a dedicated hardware A/D. Minimal microcontroller I/O and software is required to interface with a comparator and RC network. Depending on the application requirements, the designer can tailor the basic 8 -bit A/D a number of ways. By varying the total software counts, the desired speed and resolution can be adjusted. The number of A/D channels will determine the number of comparators used. In chosing the comparator, it is recommended that the designer refer to the data sheets and match the \(I_{\text {bos }}\) and \(V_{O S}\) to the desired accuracy.
When other than a \(1 \mu \mathrm{~s}\) instruction cycle is used, the RC time constant of 4.7 ms should be scaled to provide for
a maximum peak-peak ramp voltage of \(<1\) LSB of the desired accuracy. For example, if 8 -bit accuracy is desired and the instruction cycle time is now \(4 \mu \mathrm{~s}\) instead of \(1 \mu \mathrm{~s}\), multiply 4.7 ms by 4 to calculate the new RC.
Keep in mind that the comparator input voltage is limited so that you do not get erroneous/nonlinear results. Another possible problem is during development. When doing in-circuit emulation with the development equipment, note that there will be ground loops in the cable thus causing errors in your measurements. You can reduce this by connecting an extra GND and \(V_{C C}\) wire between your prototype and development system power and GND. It is still possible to see offsets in the sockets holding the COP8XX in the development board, however this should be relatively small. The best test is to take accurate measurements with an emulator in the actual prototype circuit.

\section*{COP800 Based Automated Security/Monitoring \\ System}

\section*{INTRODUCTION}

National Semiconductor's COP800 family of full-feature, cost effective, fully static, single chip micro CMOS microcontrollers provide efficient system solutions with a versatile instruction set and high functionality. The heart of the ASM System prototype is a COP800 family member with at least the following features: 4 k bytes of on-board program memory, 192 bytes of on-board data memory, memory mapped I/O, fourteen multi-sourced vectored interrupts and a versatile instruction set. The family member used is the COP888CG microcontroller.
This application note describes the implementation of a Security/Monitoring System using the COP888CG microcontroller. The COP888CG contains features such as:
- Low power HALT and IDLE modes
- MICROWIRE/PLUSTM serial communication
- Multiple multi-mode general purpose timers
- Multi-input wakeup/interrupt
- WATCHDOGTM and Clock monitor
- Maskable vectored interrupt scheme
- UART

In addition to these features common to the COP888 subfamily of microcontrollers, COP888CG has a full duplex, double buffered UART and two Differential Comparators.
The COP888CG based Automated Security/Monitoring (ASM) System consists of several features:
- Automatic Telephone Dialing
- Real Time Clock
- Non-Volatile storage of real time information of events
- Continuous display of events on the terminal
- Battery operated remote sensors and transmitters
- Exit and Entry delays
- Expandable to add new features

National Semiconductor
Application Note 662
Ramesh Sivakolundu

\section*{SYSTEM OVERVIEW}

Figure 1 gives the block diagram of the ASM System prototype hardware. The application consists of following major blocks:
- Central Controlling Unit
- Receiver
- Sensors and Transmitters
- Keypad Unit
- Auto-Dialer Unit
- Data Storage Unit
- Display Terminal Unit
- LED Display Unit

The implementation allows easy expansion of the ASM System features by adding new blocks to the Central Controlling Unit.
COP888CG is the workhorse of the ASM System and provides the processing power to scan the keypad, service the Receiver interrupts, update the real time clock, serially communicate with the LED display unit and Data Storage Unit, activate the Auto-Dialer Unit and use the full-duplex double buffered UART to interface with the Display Terminal Unit. System capabilities may be enhanced or scaled down by simply changing the processor's algorithm. The subsequent sections describe each of the units and their interface with the COP888CG.

FIGURE 1. Block Dlagram of Security/Monitoring System

\section*{HARDWARE DESCRIPTION}

This section describes the various blocks in the ASM System briefly and highlights the hardware considerations in the design of the System.

\section*{Receiver Unit}

The Receiver Unit operates with the Sensors and Transmitter Unit. An eight-key dip switch makes it possible to select 256 different digital codes. A detector LED indicates the level of the radio frequency (RF) energy detected by the receiver and enables the user to determine the best locations for the transmitter(s) and receiver, assuring reliable operation.
Figure 2 shows the interface between the COP888CG and the Receiver Unit on the bi-directional I/O Port L capable of functioning as Multi-Input WakeUp (MIWU). In this implementation the WR-200 series of receivers manufactured by Visonic Ltd was used. These receivers are designed to operate with Visonic standard transmitters. The receiver operates on 12 VDC . When RF signal from the transmitter(s) is detected, the receiver activates a relay which in turn interrupts the microcontroller. The output of the relay is connected to the Port L of the COP888CG whose alternate function includes, the Multi-Input WakeUp feature. The COP888CG, after a time delay of 10 seconds, activates the Auto-Dialer Unit. The microcontroller turns on a LED to indicate an alarm signal was detected and is being processed.

\section*{Sensors and Transmitters}

This unit has a built-in reed switch which can be used with a magnet to activate the transmitter. An eight-key dip switch forms the code selector and each key can be set to either ON or OFF position to create a unique code. This code should match with the code selected on the receiver unit.
Model WR-100 Universal Wireless Transmitter, manufactured by Visonic Ltd. was used in the implementation of the Security/Monitoring System.

\section*{Keypad Unit}

The reypau Uunii consistis oi \(4 \times 4\) mairix keyboard. The Figure 2 shows the keyboard matrix interface to COP888CG: The keyboard is scanned periodically by addressing a column in the keyboard matrix. The program senses the key closure in that column by testing the Port I lines (10 to 13) which are connected to the rows of the keyboard matrix. Thus, each key is associated with the conjunction of one Port D output line and one Port I input line only.
The keypad unit is used to program the real time clock in order to set the time and date. The telephone number to be dialed in case of a security breach can also be programmed through the keypad as well as the terminal keyboard in the Terminal Unit.

\section*{Auto-Dialer Unit}

The Auto-Dialer Unit dials the number programmed by the user upon detection of RF signal by the Receiver from the Sensors and Transmitter Unit. The unit consists of two ICs and some peripheral circuitry. National Semiconductor's TP5700A is the Telephone Speech Circuit and TP5088 is the DTMF generator. These two chips are interfaced to the COP888CG as in Figure 2. The COP888CG outputs the digit to be dialed to TP5088 and the output of the DTMF generator is inputted to the Speech Circuit. The Speech Circuit interfaces with the telephone lines.

TP5088 is a low cost CMOS device that provides the tonedialing capability in microprocessor-controlled telephone applications. TP5700A is a linear bipolar device which includes the functions required to build the speech circuit of a telephone. It replaces the hybrid transformer, compensation circuit and sidetone network used traditional designs.

\section*{Data Storage Unit}

The Data Storage Unit stores the real time data of events that the Receiver Unit detects and informs the Central Controlling Unit. The storage is non-volatile and can be archived for later references. The Terminal Unit can request the Central Controlling Unit to display the events and the data stored in the Storage Unit. The telephone number to be dialed by the Auto-Dialer Unit is also stored in this unit. This unit interfaces with the COP888CG using the MICROWIRE/ PLUSTM serial communication protocol.
In this implementation the COP888CG microcontroller interfaces with NM93C06A Serial EEPROM Memory. The NM93C06A contains 256 bits of read/write EEPROM organized as 16 registers of 16 bits each. Written information has a retention period of at least 10 years. Figure 2 shows the interface between COP888CG and NMC9306.
Any sequentially accessible memory device that is compatible with the MICROWIRE/PLUSTM serial communication protocol can be used as a Data Storage Unit. The Central Controlling Unit checks for the availability of memory and informs the user of the same if memory is full. Upon receipt of memory full prompt, the user can decide to overwrite or replace the memory device.

\section*{Display Terminal Unit}

The Display Terminal Unit interfaces with the COP888CG through the full-duplex, double buffered UART. The COP888CG is interrupted by the terminal and the microcontroller decodes the ASCII character sent and services the corresponding request. The terminal keyboard can be used to program the telephone number to be dialed by the AutoDialer Unit. The real time clock is displayed on the terminal screen. The user can request the Central Controlling Unit to display the history of events monitored by the AMS System. The Central Controlling Unit retrieves the information from the Date Storage Unit and displays it on the screen.
The ASM System utilized a Visual 550 terminal. The terminal employs two independent display memories: alphanumerics and graphics. The alphanumeric functions of the V550 is ANSI X3.64 compatible and the graphics functions are fully compatible with Tectronix Plot \(10{ }^{\circledR}\) software.
With slight modification of the Central Controlling Unit's algorithm it is possible to make the ASM System interface with any other terminal unit.

\section*{LED Display Unit}

The LED Display Unit is used to display the time and date information. Figure 2 shows the interface between COP888CG and the Display Terminal Unit. The COP888CG communicates with this unit serially using the MICROWIRE/ PLUS protocol.
The NSM4000A LED Display with Driver is used in the ASM System. The NSM4000A is a 4-digit \(0.3^{\prime \prime}\) height LED display with serial data-in parallel data-out LED driver designed to operate with minimal interface to the data source. The Cen-
tral Controlling Unit does not update the display when it is servicing the Receiver Unit. The APS System has a toggle switch that enables toggling the display between Hours-Minutes to Seconds-1/80th of Seconds. The Keypad Unit is used to toggle the display between time and date.

\section*{Central Controlling Unit}

This is the main unit in the application and is responsible for the efficient operation of the various units in the ASM System. The unit consists of COP888CG and the application software. The next section describes the application software in detail. The COP888CG interfaces with the various units described in the previous sections (Figure 2).
The application is a real time system and is totally interrupt driven with some of the tasks being executed in the background. The various units that interface with the COP888CG can be considered as tasks and the Central Controlling Unit executes these tasks based on their priority and the sequence of occurrence. The real time clock counter is given the highest priority. The Receiver Unit uses the Multi-Input Wakeup/Interrupt feature of the COP888CG to wakeup the microcontroller and service the Alarm routine. The Display Unit has a display toggle switch which also uses the MultiInput Wakeup/Interrupt to toggle the display between Hours-Minutes and Seconds-1/80th of Seconds.

The COP888CG communicates with the Terminal Unit through the on-board, full duplex, double buffered UART. The terminal keyboard can be used to interrupt the COP888CG to program the phone number to dial in case of an emergency. The COP888CG uses the MICROWIRE/ PLUSTM serial communication protocol to display the time and date information on the LED display and also to store real time information of events in the non-volatile data storage unit. Thus the MICROWIRE/PLUS protocol is time shared between the Display Unit and Data Storage Unit.
The Keypad Unit is a \(4 \times 4\) array of keys and the COP888CG periodically polls the keypad. The input/output ports of the COP888CG is used to read the key pressed and is decoded by the software. The Auto-Dialer Unit is driven by the input/ output lines and the interface between COP888CG. This unit is activated by the COP888CG 10 seconds after the Receiver Unit interrupts the microcontroller. This delay is used to disarm the Alarm routine.

\section*{SOFTWARE DESCRIPTION}

The instruction set of the COP800 family of microcontrollers provide easy optimization of program size and throughput efficiency. Most of the instructions of the COP800 family are single-byte, single-cycle instructions (approximately 60\%). The COP800 family of microcontrollers has three memory mapped registers (\(B, X\) and \(S P\)). The \(B\) and \(X\) registers can be used as data store memory pointers for register indirect addressing with optional auto post incrementing or decrementing of the associated pointer. This allows greater efficiency in cycle time and program code. The COP800 family allows true bit-manipulation i.e., the ability to set, reset or test any individual bit in data memory including the memory mapped I/O ports.

The architecture of COP800 family is based on a modified Harvard type architecture, where the Control Store Program (in ROM) is separated from the Data Store Memory (in RAM). Both types of memory have their own separate addressing space and separate address busses. This architecture allows the overlap of ROM and RAM memory accesses which is not possible with single-address bus Von Neu-mann-style architecture. The modified Harvard architecture allows access to ROM data tables which is not possible with the classical Harvard architecture.
The COP888 sub-family of microcontrollers support a total of sixteen vectored interrupts, of which fourteen are maskable interrupts and two high-priority, non-maskable interrupts. A 2-byte interrupt vector is reserved for each of these sixteen interrupts and they are stored in a user-defined 32-byte program memory (ROM) table. Please refer to the COP888 users manual or the Microcontrollers Databook for more detailed information on interrupts.
The MIWU feature, which utilizes the Port L, of the COP888 sub-family can be used to wakeup the microcontroller from the two power saving modes, i.e., HALT or IDLE modes. Alternately, the MIWU/Interrupt allows the user to generate eight additional edge selectable external interrupts. Three 8 -bit memory mapped registers (WKEDG, WKEN and WKPND) are used to implement the MIWU/Interrupt. The three control registers each contain an associated pin for each \(L\) port pin. The WKEN register is used to select which particular Port \(L\) inputs will be used. The user can select whether the trigger condition on a selected \(L\) port pin is to be a positive edge (low to high transition) or a negative edge (high to low transition). This selection is made through the WKEDG register. The occurrence of the selected trigger condition for MIWU/Interrupt is latched into the associated bit of the Wakeup Pending Register (WKPND).
The COP800 family has the ability to detect various illegal conditions resulting from coding errors, transient noise power supply voltage drops, runaway programs, etc. Reading an undefined ROM location gets zeroes, which results in a non-maskable software interrupt thus signalling an illegal condition has occurred. In addition to this, the COP888 subfamily supports both WATCHDOGTM and Clock Monitor. The WATCHDOGTM is used to monitor the number of instruction cycles between WATCHDOGTM services in order to avoid runaway programs or infinite loops. The Clock Monitor is used to detect the absence of a clock or a very slow clock below a specified rate. These features of the COP800 family provide easy implementation of real time applications where the proper execution of the software plays a crucial role.
The major features of the software written for the ASM System implementation are described on the flow chart Figure 3. The main program flow is to detect the flags set, service the flags and scan the Keypad. The rest of the software is interrupt driven. The program is real time and the interrupts are serviced as and when they occur. Some of the routines are running in the background all the time, such as, Time Keeping Routine and Keypad Scan Routine. Figures 4 and 5 gives the flow of the various interrupt service routines. The following sub-sections briefly describe each module of software connected to the units described earlier.

TL/DD/10607-3
FIGURE 3. ASM System Program Flow

FIGURE 4. Interrupt Service Routines Flow

FIGURE 5. Multi-Input Wakeup/Interrupt Service Routines

\section*{Initialization Routine}

The Initialization Routine loads the Data Memory locations being used in the program with default values and initializes the various control and configuration registers. It also brings up the display on the Terminal Unit and the LED Display Unit.

\section*{Time Keeping Routine}

The Time Keeping Routine is the most important routine and is executed irrespective of the other modules being executed. The program uses the IDLE Timer T0 for this purpose. The IDLE Timer is a 16 -bit timer and runs continuously at a fixed rate of the instruction cycle clock. The IDLE Timer counter is not memory mapped and consequently, the user cannot read or write to it. The toggling of the twelfth bit of the IDLE counter can be programmed to generate an interrupt. This interrupt is generated every 4 ms at the maximum instruction cycle clock rate of 1 MHz . The software uses this interrupt to update counters in Data Memory for time keeping. The Time Keeping routine then sets a flag to update the display which is then used by the main program.

\section*{LED Display Routine}

The COP888CG uses the MICROWIRE/PLUS to interface with NSM4000 LED Display with Driver. The time and date information is displayed on the 4-digit LED display. The user is provided with a toggle switch connected to MIWU/Interrupt feature of the COP888CG to toggle the display between Hours-Minutes and Seconds-1/80th of Seconds. The toggle switch is connected to \(L\) port pin 5 . Upon receipt of the MIWU/Interrupt of \(L\) port pin 5 this routine toggles the display. This routine upon receipt of the date display request through the Keypad Unit responds by switching the LED Display to show the date. The toggle switch could be used to change the display back to time. However, the display changes to time after a minute by default.

\section*{Keypad Scan Routine}

This module scans the \(4 \times 4\) matrix keyboard connected to Port D (D1-D4) as rows and to Port I (10-13) as columns. Thus each key in the matrix is associated with one Port \(D\) line and one Port I line. Each row in the matrix is addressed in sequence and the key closure is sensed by testing the Port I lines. The moment one key closure is detected the program jumps to load the debounce counter. The keypad scan is stopped at that particular row and the program returns to its main flow. The keypad is again scanned and when the debounce counter is decremented. When the debounce counter is zero the key pressed is accepted and decoded. The versatility of the COP888 family of instructions set allows decoding the key pressed with one instruction. The Port D (lines D1-D4) and Port I (lines 10-13) in conjunction form an eight bit number that is unique to each key. The JID (Jump Indirect) instruction uses the contents of the accumulator to point to the indirect vector table of program address. The accumulator contents are transferred to the program counter (lower 8 bits). The data accessed from the program memory location addressed by program counter is transferred to the program counter (lower 8 bits). The JID instruction is a single-byte, three cycle instruction and provides an efficient way to decode and branch to service the appropriate routine based upon the key pressed.
The Keypad is used to set the time and data information after power up and can also be used to program the phone number to be dialed by the Auto-Dialing Unit.

\section*{Non-Volatile Data Storage Routine}

The COP888CG interfaces with NM93C06A in the ASM System to store the real time data of the events monitored and also the telephone number to be dialed by the AutoDialer Unit. This routine is executed whenever the Receiver Unit detects a signal and the ASM System is not disarmed within 10 seconds of detection of the signal or when the

Display Terminal Unit programs the telephone number to be dialed. The Keypad can also be used to program the phone number to be dialed by the Auto-Dialer Unit. The Terminal Unit can request for the history of events, during which the COP888CG reads the NM93C06A. Please refer to the application note on MICROWIRE/PLUS for details regarding the interface between COP888CG and NMC9306.

\section*{Display Terminal Interface Routine}

The Display Terminal as previously mentioned interfaces with the COP888CG through the full-duplex, double buffered UART. The terminal is used to display the history of events, real time, and sequence of operations upon detection of signal by the Receiver Unit.
The request for display of events and programming the phone number interrupts the COP888CG. However, the Time Keeping Routine updates the LED display and terminal with real time periodically, except when the COP888CG is servicing the Receiver Unit.
The operation mode of the UART may be selected in conjunction with both a prescaler and baud rate register. Character data lengths of seven, eight or nine bits are program selectable, in conjunction with a start bit, an optional parity bit, and stop bits of \(7 / 8,1,1\) and \(7 / 8\), or 2 . The UART also contains a full set of error detection circuitry and a diagnostic test capability, as well as an ATTENTION mode to facilitate networking with other processors.
Please refer to the Users Manual or Microcontroller Databook for details.
In the ASM System the COP888CG interfaces with the V550 terminal at 2400 baud, 8 data bits, 1 Stop bit, no parity. The receiver buffer full and transmit buffer empty generates an interrupt. The Port L (pins L1, L2, L3) are used for the UART interface as CKX (clock), TDX (transmit) and RDX (receive), respectively.
The display terminal is used to display time both in analog and digital form. The V550 allows interfacing both in alphanumeric and graphic modes with separate memory for each of the modes. The COP888CG is procrammed to send out the ASCII ESC sequence required to generate the graphics on the screen.

\section*{Auto-Dialing Routine}

This routine is responsible for dialing the number in the event of an emergency. The COP888CG interfaces with TP5088, which in turn interfaces with TP5700A. The COP888CG activates the relay that keeps the telephone line on-hook to the off-hook position. After this it times out to get the dial tone. After a fixed amount of time, the digit to be dialed is sent out on the D port, lines D1-D4, to TP5088 along with the Chip Select. The TP5088 generates the DTMF signal for the digit. The COP888CG takes care of the timing required between two digits and also the on-time of the DTMF signal for each digit. The output of the DTMF signal goes to the TP5700A which interfaces with the Tip and Ring of the telephone lines. The TP5700A receives the signal from the telephone lines and LM567 along with the associated circuitry is used to detect whether the required frequency signal was sent by the unit responding to the telephone. The output of the LM567 is connected to Port I pin 5.
The Receiver Routine polls the Port I pin 5 periodically to check for response from the unit dialed by the Auto-Dialer Unit.

\section*{Receiver Routine}

This is the main interrupt service routine of the ASM System. The Receiver Unit interfaces with the COP888CG
through the L port pin 4. Upon receipt of the signal from the Sensors and Transmitter Unit the Receiver Unit activates a relay which causes a MIWU/Interrupt. The interrupt service routine then waits for 10 seconds before reacting to the signal. This time is allowed to disarm the Security/Monitoring System. The Time Keeping Routine is used to caculate the delay and if the user disarms the System by toggling a switch the signal is ignored. Otherwide the Non-Volatile Storage Routine is executed to read the telephone number and this information is passed on to the Auto-Dialer Unit. The Auto-Dialer Unit dials the number and looks for a response over the telephone line. If however, there is no response, the Receiver Routine times out after a minute and tries the same number again. The number of trials can be modified in software and the time out period can also be changed. In the ASM System the number of trials is two. With slight modification the Auto-Dialer Unit can be made to dial a different number during the second attempt. The real time and date of occurrence of the event is stored in the NMC9306 along with the outcome of the telephone call. This routine keeps track of the non-volatile memory capacity and if it overflows, it prompts the user on the terminal of the same. The user is given the choice to overwrite the nonvolatile memory or replace the device.

\section*{USING THE ASM SYSTEM}

The ASM System upon installation and initial power-up has some preliminary steps to be performed. The time and date should be set, the phone number to be dialed by the AutoDialer Unit should be programmed. The toggle switch could be used to toggle the display between Hours-Minutes and Seconds-1/80th of Seconds.

\section*{Setting Time and Date}

The steps involved in setting the time and date are:
1. Press key A on the keypad. The LED display flashes.
2. Set the desired time (Hours and Minutes) using the keypad.
3. The LED display and the Terminal Screen displays the tillie sel.
4. Press key C on the keypad. The display toggles and displays the date.
5. Press key A on the keypad. The LED display begins to flash.
6. Set the date (month and day) using the keypad.
7. The LED display now shows the date set.
8. The LED display could be toggled to show the time using the toggle switch. However, the system after one minute will default to display time.

\section*{Programming the Phone Number}

The phone number to be dialed could be programmed in two ways, i.e., using the terminal or the keypad. Using the terminal, the steps to be performed are:
1. Press CNTRL \(B\) on the terminal keyboard. The COP888CG sends a carriage return to terminal.
2. Press CNTRL D on the terminal keyboard. Then type the number to be dialed. At the end press CNTRL \(C\) to end programming.
Using the keypad, perform the following steps:
1. Press "*" key on the keypad.
2. Press the digits to be dialed.
3. Press "\#" key on the keypad to end programming the number.
The ASM System is now ready to start monitoring. Upon receipt of the alarm signal from the Receiving Unit the ASM System will dial the number programmed. In order to display the history of events on the terminal screen press CNTRL S from the terminal keyboard.

\section*{CONCLUSIONS}

The architecture, features and flexibility of the COP800 family of microcontrollers makes it cost-effective as the work-
horse of any system by eliminating external components from the circuit. This approach not only reduces the system cost and development time, but also increases the flexibility and market life of the product.
The Automated Security/Monitoring System implemented using the COP888CG illustrates a single chip system solution. The application also illustrates interfacing the COP888CG to a number of specialized peripherals using an absolute minimum number of I/O lines. The ASM System approximately uses \(3 k\) bytes of program memory (ROM) space and demonstrates an efficient method of handling multi-sourced interrupts.

\section*{Sound Effects for the COP800 Family}

This application note describes the creation of sound effects using National Semiconductor's COP800 family of microcontrollers. The following applications are described in detail:
1. Whistle
2. White Noise
3. Explosion
4. Bomb
5. Laser Gun

These applications were developed on a COP820C using a 20 MHz crystal and a \(1 \mu \mathrm{~s}\) instruction cycle time. By making the appropriate changes to control registers within the routines, slower clock speeds may be used. Program flow diagrams and complete source codes are included in this document.

\section*{I. WHISTLE}

The whistle routine utilizes the timer underflow interrupt and employs the TIO function on pin G3. Each timer underflow causes the TIO pin to toggle. This creates a tone whose frequency remains constant as long as the timer autoreload register value remains unchanged. In order to create a desending or ascending whistle tone, the autoreload register value is increased or decreased after every thirty-two timer interrupts (FCNTR register is used to count the interrupts). When the maximum or minimum frequency has been reached, the autoreload value must be reinitialized so that the whistle frequency does not exceed the desired range.

\section*{II. WHITE NOISE}

White noise is generated by using a random number generating algorithm called a RING COUNTER. One random number is exiracled periodicaily and placed into the MICROWIRE/PLUSTM serial shift register. These bits are shifted onto the serial output (SO) pin which is wired to a transistor amplifier that drives a speaker. The serial input (SI) and serial output (SO) pins must be tied together.
The RING COUNTER is a pseudo-random number generator which operates on the principle of a linear feedback shift register (see Figure 1). This shift register is not to be confused with the MICROWIRE/PLUS serial shift register. Rather it is created using two bytes of data memory (RAM), and the carry flag. Each bit is called a "stage" with the carry flag being "stage 1 " and bit 0 of the two byte data register being "stage 17 ". Using a seventeen stage shift register results in a clean tone with little distortion.
Implementation of the ring counter shift register is accomplished by a rotate right with carry instruction (RRC A). The linear feedback function is accomplished using an "exclusive or" on stages fourteen and seventeen. This particular choice of feedback stages results in a complete cycle of bit combinations, (217-1), as long as the loop does not begin with zero in the RNGVAL register.

The "exclusive or" function is not explicit in that the XOR instruction is not used. Rather, stages seventeen and fourteen are tested in software using the principle that if only one of them is set then the result is a logic one, otherwise the result is logic zero. It turns out that since the rotate occurs prior to the test, the actual bits tested are the carry flag (stage 1) and bit 2 (stage 15).
A short example using four bits can be used to demonstrate how the ring counter works (see Figure 2). If you perform the "exclusive or" on stages three and four, then a complete cycle results. If instead, you use stages two and four, two cycles of six and one cycle of three results depending on the bit combination you begin with.

\section*{III. EXPLOSION}

The explosion sound effect is generated by manipulating the white noise algorithm to begin with a high pitch and progress to a lower pitch. This is done by altering the rate (contained in the register LUPREG) at which the random numbers are extracted from the ring counter before being placed into the MICROWIRE/PLUS serial shift register (SIOR). If for example LUPREG initially contains the value 4, the white noise will be at a high pitch. By incrementing this number after every ten timer interrupts (using the register TCNTR) the white noise pitch will be reduced. Several other registers are used to provide control of strategic portions of sound within the routine. First and last tones are controlled with FIRSTR and LASTR. The value in EXITR is used to control the overall length of the explosion and the length of each tone is controlled by the register TCNTR. To vary the white noise pitch, the register LUPCNT is used. The value in LUPCNT is incremented each time the pitch of the white noise is decreased within the timer interrupt routine. Prior to entering the ring count loop, LUPCN i is loaded into LUPREG. The serial input (SI) pin must be tied to the serial output (SO) pin.

\section*{IV. BOMB}

The bomb sound effect combines the descending whistle with an explosion at the end. The TIMER I/O (TIO) and serial input (SI) pins must be tied to the serial output (SO) pin. The explosion portion of this routine was altered slightly in that the first tone control register (FIRSTR) was removed. The first initialization of TCNTR, the tone control register, provides a means to control the first tone length. Subsequent tones are controlled (at label NF2 in the timer interrupt routine) where TCNTR is reinitialized. Both versions were retained for comparison and in the event that greater control of the first tone is needed.

\section*{V. LASER GUN}

The laser gun sound effect combines the output from the white noise routine and the COP800 timer I/O (TIO) pin (tie TIO to SO). The SI pin is not tied to SO in this application and the ring counter uses only nine stages instead of seventeen.

The registers used for program control are EXITR, TCNTR, and the TIMER. By adjusting the value in EXITR the duration of the laser "shot" can be shortened or lengthened. (A value larger than 03F hex may create problems.) By adjusting the TIMER values (TVALO, TVALHI) and the tone counter (TCNTR) value, interesting variations in the laser sound can be attained.

NOTE: This note applies to all routines that use both the timer interrupt and the ring counter: In order to return to the main program from which the subroutine was called, the stack pointer must be manually restored during the timer interrupt before executing the return (RET) instruction. The reason for this is that the timer interrupt is two levels below the main program. A simple return statement will only serve to return to the ring counter routine from the point at which the timer interrupt occurred. By adding two to the stack pointer (SP + 2), the return statement will force the address of the instruction following the JSR in MAIN into the program counter (PC) from which point execution will continue.

TL/DD/10716-1
FIGURE 1. 17 Stage Ring Counter
\begin{tabular}{llll}
& 2 & \(\oplus\) & 4 \\
& \(\downarrow\) & & \(\downarrow\) \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
\hline 1 & 1 & 1 & 1
\end{tabular}
\(\left.\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ \hline 0 & 1 & 1 & 0\end{array}\right]\)
\begin{tabular}{lllll}
& & 3 & \(\oplus\) & 4 \\
& & \(\downarrow\) & \(\downarrow\) \\
1 & 1 & 1 & 1 & \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\hline 1 & 1 & 1 & 1
\end{tabular}

FIGURE 2. Example Showing Possible Cycles from a 4 Stage Ring Counter

\section*{Whistle Flow Diagram}

\section*{Descending Whistle}

\section*{Descending Whistle (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 59 & 0104 & BDEE6C & TIMO & RBIT & TRUN, CNTRL & & STOP THE TIMER & \\
\hline 60 & 0107 & BDF075 & & IFBIT & 5,FCNTR & ; & COUNT CYCLES & \\
\hline 61 & 010A & 06 & & JP & TM & & & \\
\hline 62 & 010B & 9DF0 & & LD & A, FCNTR & ; & INCREMENT COUNT & \\
\hline 63 & O10D & 8A & & INC & A & & & \\
\hline 64 & O10E & 9CFO & & X & A, FCNTR & & & \\
\hline 65 & 0110 & 8D & & RETSK & & & & \\
\hline 66 & 0111 & D000 & TM : & LD & FCNTR,\#FCNT & ; & RESET COUNT & \\
\hline 67 & 0113 & DEEC & & LD & B,\#TAULO & & & \\
\hline 68 & 0115 & AE & & LD & A, [B] & & CHANGE FREQUENCY & \\
\hline 69 & 0116 & 92FF & & IFEQ & A,\#MINFREQ & ; & TIMER = MIN FREQ? & \\
\hline 70 & 0118 & 03 & & JP & DONE & ; & YES & \\
\hline 71 & 0119 & 8A & & INC & A & & & \\
\hline 72 & 011A & A6 & & X & A, [B] & ; & STORE FREQ IN AUTO RELOAD & \\
\hline 73 & 011B & 8D & & RETSK & & & & \\
\hline 74 & 011C & 9DFD & DONE & LD & A, SP & ; & *** RESTORE STACK POINTER & *** \\
\hline 75 & O11E & 9402 & & ADD & A,\#002 & ; & *** AND RETURN TO CALLING & *** \\
\hline 76 & 0120 & 9CFD & & X & A, SP & ; & *** ROUTINE. & *** \\
\hline 77 & 0122 & 8E & & RET & & & & \\
\hline 78 & & & & . END & & & & \\
\hline
\end{tabular}

\section*{Ascending Whistle}

Ascending Whistle (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 53 & & ; & & & \\
\hline 54 & & ; **** & INTERRUPT & ROUTINE **** & \\
\hline 55 & & ; & & & \\
\hline 56 & 00FF & & . \(=0 \mathrm{FF}\) & & \\
\hline 57 00FF & BDEF75 & & IFBIT & TPND, PSW & ; TEST TIMER PENDING FLAG \\
\hline 580102 & 01 & & JP & TIMOUT & \\
\hline 590103 & FF & & JP & . & \\
\hline 600104 & BDEE6C & TIMOUT : & RBIT & TRUN, CNTRL & ; STOP THE TIMER \\
\hline 610107 & BDF075 & & IFBIT & 5, FCNTR & ; FREQUENCY TIMED OUT? \\
\hline 62 010A & 06 & & JP & TM & ; YES, CHANGE FREQUENCY \\
\hline 63 010B & 9DF0 & & LD & A, FCNTR & ; NO, KEEP GOING \\
\hline 64 O10D & 8A & & INC & A & ; INCREMENT COUNT \\
\hline 65 O10E & 9CFO & & X & A, FCNTR & \\
\hline 660110 & 8D & & RETSK & & ; RETURN \\
\hline 670111 & D010 & TM : & LD & FCNTR,\#FCNT & ; RESET COUNTER \\
\hline 680113 & 9DEC & & LD & A, TaULO & ; CHANGE FREQUENCY \\
\hline 690115 & 920A & & IFEQ & A, \#MAXFREQ & ; TIMER = MAX FREQUENCY \\
\hline 700117 & 05 & & JP & DONE & ; YES \\
\hline 710118 & 94FF & & ADD & A, \#OFF & ; INCREMENT FREQUENCY \\
\hline 72 011A & 9CEC & & X & a, taulo & ; STORE FREQ IN AUTO RELOAD \\
\hline 73 011C & 8D & & RETSK & & \\
\hline 74 011D & 9DFD & DONE: & ID & A, SP & ; *** RESTORE STACK POINTER *** \\
\hline 75 011F & 9402 & & ADD & A,\#002 & ; *** AND RETURN TO CALLING *** \\
\hline 760121 & 9CFD & & X & A, SP & ; *** ROUTINE. *** \\
\hline 770123 & 8E & & RET & & \\
\hline
\end{tabular}

White Noise (Continued)

\section*{Explosion}

Explosion (Continued)

\section*{Explosion (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 61 & 001A & D502 & & LD & FIRSTR,\#FIRST & ; LENGTHEN FIRST TONE \\
\hline 62 & 001C & D602 & & LD & LASTR,\#LAST & ; LENGTHEN LAST TONE \\
\hline 63 & 001E & D710 & & LD & EXITR,\#EXIT & ; INITIALIZE EXIT COUNT \\
\hline 64 & 0020 & D80A & & LD & TCNTR,\#TCNT & ; INITIALIZE TONE COUNT \\
\hline 65 & 0022 & DA04 & & LD & LUPCNT, \#XTRCT & ; INITIALIZE EXTRACTION RATE \\
\hline 66 & 0024 & BD0068 & & RBIT & 0 , TEMP & ; RESET LAST TONE FLAG \\
\hline 67 & 0027 & BDEE7C & & SBIT & TRUN, CNTRL & ; START TIMER \\
\hline 68 & 002A & Al & NOISE: & SC & & ; INIT. STAGE 1 \\
\hline 69 & 002B & 5D & & LD & B,\#RNGVAL & ; POINT TO RANDOM NUMBER \\
\hline 70 & 002C & 9AFF & & LD & [B+],\#OFF & ; INIT TO ALL ONE'S \\
\hline 71 & 002E & 9EFF & & LD & [B], \#0FF & \\
\hline 72 & 0030 & 9CE9 & SHIFT: & X & A,SIOR & ; LOAD AND START SIOR \\
\hline 73 & 0032 & BDEF7A & & SBIT & BUSY, PSW & \\
\hline 74 & 0035 & 9DFA & & LD & A,LUPCNT & ; RESTORE EXTRACTION COUNT \\
\hline 75 & 0037 & 9CF9 & & X & A,LUPREG & \\
\hline 76 & & & ; & & & \\
\hline 77 & & & ; ***** & ***** & *************** & **** \\
\hline 78 & & & ; RING & COUNT & (17 STAGE) & \\
\hline 79 & & & ; & & & \\
\hline 80 & & & ; THIS & IS A & ENTEEN STAGE RI & COUNTER (LINEAR \\
\hline 81 & & & ; FEEDB & ACK S & T REGISTER) WI & THE RRC COMMAND. \\
\hline 82 & & & ; THE C & OUNTER & 14th AND 17th & AGES THROUGH AN \\
\hline 83 & & & ; EXCLU & SIVE- & SERVE AS THE FE & BACK FUNCTION. \\
\hline 84 & & & ; THIS & 14, 1 & ING COUNTER BRE & S DOWN INTO \\
\hline 85 & & & ; 1 CYC & EF & 2** 17) - 1] & NTS. SINCE THE EXCLUSIVE OR \\
\hline 86 & & & ; OCCUR & AFT & THE ROTATE, IT & THE 15th AND CARRY \\
\hline 87 & & & ; STAGE & THA & RE XOR'D (BIT & ND CARRY). \\
\hline 88 & & & ; & & & \\
\hline 89 & & & & & STAGE & \\
\hline 90 & & & & & -------- & \\
\hline 91 & & & ; BEFOR & R ROT & : \(14 \quad 17\) & \\
\hline 92 & & & ; AFTER & Rota & 15 CARRY & \\
\hline 93 & & & & & & \\
\hline 94 & & & ; CARR & BIT & STAGE 1 & \\
\hline 95 & & & ; LOW & ORDER & T OF 16 BIT REG & TER \(=\) STAGE 17 \\
\hline 96 & & & ; **** & ***** & *************** & **** \\
\hline 97 & & & ; & & & \\
\hline 98 & 0039 & AE & RING: & LD & A, [B] & ; GET RANDOM \# \\
\hline 99 & 003A & B0 & & RRC & A & ; ROTATE UPPER Byte \\
\hline 100 & 003B & A3 & & X & A, [B-] & \\
\hline 101 & 003C & AE & & LD & A, [B] & \\
\hline 102 & 003D & B0 & & RRC & A & ; ROTATE LOWER BYTE \\
\hline 103 & 003E & A6 & & X & A, [B] & \\
\hline 104 & 003F & 9804 & & ID & A,\#004 & ; PERFORM XOR \\
\hline 105 & 0041 & 85 & & AND & A, [B] & \\
\hline 106 & 0042 & 9200 & & IFEQ & A,\#000 & \\
\hline 107 & 0044 & 05 & & JP & TSLUP & \\
\hline 108 & 0045 & 88 & & IFC & & \\
\hline 109 & 0046 & 02 & & JP & RC & \\
\hline 110 & 0047 & Al & & SC & & \\
\hline 111 & 0048 & 01 & & JP & TSTLUP & \\
\hline 112 & 0049 & AO & RC: & RC & & \\
\hline 113 & 004A & AA & TSTLUP: & LD & A, [B+] & ; POINT TO UPPER BYTE \\
\hline 114 & 004B & C9 & & DRSZ & LUPREG & ; EXTRACT THIS \# ? \\
\hline 115 & 004C & EC & & JP & RING & ; NO, KEEP ROTATING \\
\hline 116 & 004D & AE & & LD & A, [B] & ; YES \\
\hline 117 & 004E & El & & JP & SHIFT & \\
\hline
\end{tabular}

Explosion (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & \multicolumn{5}{|l|}{; \({ }^{\text {a }}\)} \\
\hline & & & ; **** & TIMER & TERRUPT ROUTINE & ** & \\
\hline \multicolumn{8}{|l|}{120} \\
\hline 121 & & 00FF & ; & - \(=\) & OFF & & \\
\hline 122 & 00FF & BDEF75 & & IFBIT & TPND, PSW & ; TEST TIMER PND FLAG & \\
\hline 123 & 0102 & 02 & & JP & TMOUT & & \\
\hline 124 & 0103 & 2005 & & JMP & XPLOD & & \\
\hline 125 & 0105 & BDEE6C & TMOUT : & RBIT & TRUN, CNTRL & ; STOP TIMER & \\
\hline 126 & 0108 & DEFA & & LD & B,\#LUPCNT & & \\
\hline 127 & 010A & C5 & & DRSZ & FIRSTR & ; TEST FOR FIRST TONE & \\
\hline 128 & 010B & 213B & & JMP & NXT1 & ; AND ADJUST & \\
\hline 129 & 010D & C8 & & DRSZ & TCNTR & ; TEST FOR NEW TONE & \\
\hline 130 & Ol0E & 01 & & JP & NXT & ; NO & \\
\hline 131 & 010F & OD & & JP & NEWF & & \\
\hline 132 & 0110 & D501 & NXT: & LD & FIRSTR,\#1 & ; DISABLE FIRST TONE REG & \\
\hline 133 & 0112 & BDEF7C & NXT2: & SBIT & 4, PSW & ; ENABLE TIMER INTERRUPT & \\
\hline 134 & 0115 & BDEF6D & & RBIT & 5, PSW & ; RESET TPND FLAG & \\
\hline 135 & 0118 & 5D & & LD & B,\#RNGVAL & ; POINT TO RANDOM\# & \\
\hline 136 & 0119 & BDEE7C & & SBIT & TRUN, CNTRL & ; RESTART TIMER & \\
\hline 137 & 011C & 8F & & RETI & & ; RETURN & \\
\hline 138 & 011D & C7 & NEWF: & DRSZ & EXITR & ; TEST EXIT COUNT & \\
\hline 139 & 011E & 10 & & JP & NF & ; NO & \\
\hline 140 & 011F & C6 & & DRSZ & LASTR & ; ENABLE LAST TONE & \\
\hline 141 & 0120 & 01 & & JP & LST & & \\
\hline 142 & 0121 & 06 & & JP & NLST & & \\
\hline 143 & 0122 & D709 & LST : & LD & EXITR,\#09 & ; SET LAST TONE LENGTH & \\
\hline 144 & 0124 & BD0078 & & SBIT & 0, TEMP & ; SET LAST TONE Flag & \\
\hline 145 & 0127 & OF & & JP & NF2 & & \\
\hline 146 & 0128 & 9DFD & NLST : & LD & A, SP & ; *** RESTORE STACK POINTER & *** \\
\hline 147 & 012A & 9402 & & ADD & A,\#002 & ; *** FROM TIMER INTERRUPT & ** \\
\hline 148 & 012C & 9CFD & & X & A, SP & ; *** AND RETURN TO MAIN & ** \\
\hline 149 & 012E & 8 E & & RET & & & \\
\hline 150 & 012F & BD0070 & NF: & IFBIT & 0,TEMP & ; LAST TONE ? & \\
\hline 151 & 0132 & 04 & & JP & NF2 & ; YES & \\
\hline 152 & 0133 & AE & & LD & A, [B] & ; NEW TONE & \\
\hline 153 & 0134 & 9404 & NF4: & ADD & A,\#04 & ; INCR EXTRACTION VALUE & \\
\hline 154 & 0136 & A6 & & X & A, [B] & & \\
\hline 155 & 0137 & D80A & NF2: & LD & TCNTR,\#TCNT & ; REINITIALIZE TONE TIME & \\
\hline 156 & 0139 & 2110 & & JMP & NXT & & \\
\hline 157 & 013B & D820 & NXT1: & LD & TCNTR,\#TCNT1 & ; ADJUST FIRST TONE LENGTH & \\
\hline 158 & 013D & 2112 & & JMP & NXT2 & & \\
\hline 159 & & & & . END & & & \\
\hline
\end{tabular}

\section*{Bomb}

Bomb (Continued)

Bomb (Continued)

Explosion (Continued)

Explosion (Continued)

Laser Gun (Continued)

Laser Gun (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 113 & 004F & C9 & TSTLUP: & DRSZ & LUPREG & & ; EXTRACT THIS \# ? & \\
\hline 114 & 0050 & F0 & & JP & RING & & ; NO, KEEP ROTATING & \\
\hline 115 & 0051 & AE & & LD & A, [B] & & ; YES & \\
\hline 116 & 0052 & E5 & & JP & SHIFT & & & \\
\hline 117 & & & ; & & & & & \\
\hline 118 & & & ; **** & TIMER & INTERRUPT ROUTINE & **** & & \\
\hline 119 & & & ; & & & & & \\
\hline 120 & & O0FF & & . \(=\) & OFF & & & \\
\hline 121 & 00FF & BDEF75 & & IFBIT & TPND, PSW & & ; TEST TIMER PND FLAG & \\
\hline 122 & 0102 & 01 & & JP & TMOUT & & & \\
\hline 123 & 0103 & FF & & JP & - & & ; ERROR & \\
\hline 124 & & & ; & & & & & \\
\hline 125 & 0104 & BDEE6C & TMOUT: & RBIT & TRUN, CNTRL & & ; STOP TIMER & \\
\hline 126 & 0107 & DEFA & & LD & B, \#LUPCNT & & & \\
\hline 127 & 0109 & C8 & & DRSZ & TCNTR & & ; TEST FOR NEW TONE & \\
\hline 128 & 010A & 01 & & JP & NXT & & ; NO & \\
\hline 129 & 010B & OB & & JP & NEWF & & & \\
\hline 130 & 010C & BDEF7C & NXT : & SBIT & 4, PSW & & ; ENABLE TIMER INTERRUPT & \\
\hline 131 & 010F & BDEF6D & & RBIT & 5,PSW & & ; RESET TPND FLAG & \\
\hline 132 & 0112 & 5D & & LD & B,\#RNGVAL & & ; POINT TO RANDOM \# & \\
\hline 133 & 0113 & BDEE7C & & SBIT & TRUN, CNTRL & & ; RESTART TIMER & \\
\hline 134 & 0116 & 8F & & RETI & & & ; RETURN & \\
\hline 135 & 0117 & C7 & NEWF: & DRSZ & EXITR & & ; EXIT COUNT = 0 ? & \\
\hline 136 & 0118 & 07 & & JP & NF & & ; NO & \\
\hline 137 & 0119 & 9DFD & NLST : & LD & A, SP & & ; *** RESTORE STACK POINTER & *** \\
\hline 138 & 011B & 9402 & & ADD & A,\#002 & & ; *** FROM TIMER INTERRUPT & *** \\
\hline 139 & 011D & 9CFD & & X & A, SP & & ; *** AND RETURN TO MAIN & *** \\
\hline 140 & 011F & 8E & & RET & & & & \\
\hline 141 & 0120 & AE & NF: & LD & A, [B] & & ; NEW TONE & \\
\hline 142 & 0121 & 9404 & & ADD & A,\#04 & & ; INCR EXTRACTION VALUE & \\
\hline 143 & 0123 & A6 & & X & A, [B] & & & \\
\hline 144 & 0124 & D820 & & LD & TCNTR,\#TCNT & & ; REINITIALIZE TONE TIME & \\
\hline 145 & 0126 & E5 & & JP & NXT & & & \\
\hline 146 & & & & .END & & & & \\
\hline
\end{tabular}

\section*{DTMF Generation with a 3.58 MHz Crystal}

DTMF (Dual Tone Multiple Frequency) is associated with digital telephony, and provides two selected output frequencies (one high band, one low band) for a duration of 100 ms . DTMF generation consists of selecting and combining two audio tone frequencies associated with the rows (low band frequency) and columns (high band frequency) of a pushbutton touch tone telephone keypad.
This application note outlines two different methods of DTMF generation using a COP820C/840C microcontroller clocked with a 3.58 MHz crystal in the divide by 10 mode. This yields an instruction cycle time of \(2.79 \mu \mathrm{~s}\). The application note also provides a low true row/column decoder for the DTMF keyboard.
The first method of DTMF generation provides two PWM (Pulse Width Modulation) outputs on pins G3 and G2 of the G port for 100 ms . These two PWM outputs represent the selected high band and low band frequencies respectively, and must be combined externally with an LM324 op amp or equivalent feed back circuit to produce the DTMF signal.
The second method of DTMF generation uses ROM lookup tables to simulate the two selected DTMF frequencies. These table lookup values for the selected high band and low band frequencies are then combined arithmetically. The high band frequencies contain a higher bias value to compensate for the DTMF requirement that the high band frequency component be 2 dB above the low band frequency component to compensate for losses in transmission. The resultant value from the arithmetic combination of sine wave values is output on L port pins L0 to L5, and must be combined externally with a six input resistor ladder network to produce the DTMF signal. This resultant value is updated every \(118 \mu \mathrm{~s}\). The COP820C/840C timer is used to time out the 100 ms duration of the DTMF. A timer interrupt at the end of the 100 ms is used to terminate the DTMF output. The external ladder network need not contain any active components, unlike the first method of DTMF generation with the two PWM outputs into the LM324 op amp.
The associated COP820C/840C program for the DTMF generation is organized as three subroutines. The first subroutine (KBRDEC) converts the low true column/row input from the DTMF keyboard into the associated DTMF hexadecimal digit. In turn, this hex digit provides the input for the other two subroutines (DTMFGP and DTMFLP), which represent the two different methods of DTMF generation. These three subroutines contain 35, 94, and 301 bytes of COP820C/840C code respectively, including all associated ROM tables. The Program Code/ROM table breakdowns are 19/16, 78/16, and 88/213 bytes respectively.

\section*{DTMF KEYBOARD MATRIX}

The matrix for selecting the high and low band frequencies associated with each key is shown in Figure 1. Each key is uniquely referenced by selecting one of the four low band frequencies associated with the matrix rows, coupled with selecting one of the four high band frequencies associated with the matrix columns. The low band frequencies are

National Semiconductor Application Note 666 Verne H . Wilson
\(697 \mathrm{~Hz}, 770 \mathrm{~Hz}, 852 \mathrm{~Hz}\), and 941 Hz , while the high band frequencies are \(1209 \mathrm{~Hz}, 1336 \mathrm{~Hz}, 1477 \mathrm{~Hz}\), and 1633 Hz . The DTMF keyboard input decode subroutine assumes that the keyboard is encoded in a low true row/column format, where the keyboard is strobed sequentially with four low true column selects with each returning a low true row select. The low true column and row selects are encoded in the upper and lower nibbles respectively of the accumulator, which serves as the input to the DTMF keyboard input decode subroutine. The subroutine will then generate the DTMF hexadecimal digit associated with the DTMF keyboard input digit.
The DTMF keyboard decode subroutine (KBRDEC) utilizes a common ROM table lookup for each of the two nibbles representing the low true column and row encodings for the keyboard. The only legal low true nibbles for a single key input are E, D, B, and 7. All other low true nibble values represent multiple keys, no key, or no column strobe. Results from two legal nibble table lookups (from the same 16 byte ROM table) are combined to form a hex digit with the binary format of 0000RRCC, where RR represents the four row values and CC represents the four column values. The illegal nibbles are trapped, and the subroutine is exited with a RET (return) command to indicate multiple keys or no key. A pair of legal nibble table lookups result in the subroutine being exited with a RETSK (return and skip) command to indicate a single key input. This KBRDEC subroutine uses 35 bytes of code, consisting of 19 bytes of program code and 16 bytes of ROM table.

\section*{DTMF GENERATION USING PWM AND AN OP AMP}

The first DTMF generation method (using the DTMFGP subroutine) generates the selected high band and low band frequencies as PWM (Pulse Width Modulation) outputs on pins G3 and G2 respectively of the G port. The COP820C/ 840C microcontrollers each contain only one timer, and three times must be generated to satisfy the DTMF application. These three times are the half periods of the two selected frequencies and the 100 ms duration period. Obviously the single timer can only generate one of the required times, while the program must generate the two remaining times. The solution lies in dividing the 100 ms duration time by the half periods for each of the eight DTMF frequencies, and then examining the respective high band and low band quotients and remainders. Naturally these divisions must be normalized to the instruction cycle time (\(\mathrm{t}_{\mathrm{C}}\)). 100 ms represents 35796 tc's. \(^{\prime}\). The results of these divisions are detailed in Table l.
The four high band frequencies are produced by running the COP820C/840C timer in PWM (Pulse Width Modulation) mode, while the program produces the four low band frequencies and the 100 ms duration timeout. The programmed times are achieved by using three programmed register counters RO, R2 and R3, with a backup register R1 to reload the counter RO. These three counters represent the half period, the 100 ms quotient, and the 100 ms remainder associated with each of the four low band frequencies.

TL/DD/10740-22

FIGURE 1. DTMF Keyboard Matrix

TABLE I. Frequency Half Periods, Quotients and Remainders
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Freq. \\
Hz
\end{tabular}} & \multirow[t]{2}{*}{Half Perlod in \(\mu \mathrm{s}\)} & \multirow[t]{2}{*}{Half Period In tc's} & \multicolumn{2}{|c|}{\[
\begin{gathered}
100 \mathrm{~ms} / 0.5 \mathrm{P} \\
\text { in tc's }
\end{gathered}
\]} \\
\hline & & & & Quotlent & Remainder \\
\hline \multirow[t]{4}{*}{Low Band Frequencies} & 697 & 717.36 & 257 & 139 & 73 \\
\hline & 770 & 649.35 & 232 & 154 & 68 \\
\hline & 852 & 586.85 & 210 & 170 & 96 \\
\hline & 941 & 531.35 & 190 & 188 & 76 \\
\hline \multirow[t]{4}{*}{High Band Frequencies} & 1209 & 413.56 & 148 & 241 & 128 \\
\hline & 1336 & 374.25 & 134 & 267 & 18 \\
\hline & 1477 & 338.53 & 121 & 295 & 101 \\
\hline & 1633 & 306.18 & 110 & 325 & 46 \\
\hline
\end{tabular}

Note: 100 ms represents 35796 tc's.

The DTMFGP subroutine starts by transforming the DTMF hex digit in the accumulator (with binary format 0000RRCC) into low and high frequency vectors with binary formats 0011 RR11 and 0011CC00 respectively. The transformation of the hex digit 0000RRCC (where RR is the row select and CC is the column select) into the frequency vectors is shown in Table II. The conversion produces a timer vector \(0011 \mathrm{CC00}(\mathrm{~T})\), and three programmed counter vectors for R1, R2, and R3. The formats for the three counter vectors are 0011RR11 (F), 0011RR10 (Q), and 0011RR01 (R). These four vectors created from the core vector are used as
inputs for a 16 byte ROM table using the LAID (Load Accumulator InDirect) instruction. One of these four vectors (the \(T\) vector) is a function of the column bits (CC), while the other three vectors (\(F, Q, R\)) are a function of the row bits (RR). This correlates to only one parameter being needed for the timer (representing the selected high band frequency), while three parameters are needed for the three counters (half period, 100 ms quotient, 100 ms remainder) associated with the low band frequency and 100 ms duration. The frequency parameter ROM translation table, accessed by the \(T, F, Q\), and \(R\) vectors, is shown in Table III.

TABLE II. DTMF Hex Digit Translation
\begin{tabular}{|c|c|c|c|}
\hline & & & ** \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline Timer Vector & Timer & T & 0011 CC00 \\
\hline Half Period Vector & R1 & F & 0011 RR11 \\
\hline 100 ms Quotient Vector & R2 & Q & 0011RR10 \\
\hline 100 ms Remainder Vector & R3 & R & 0011RR01 \\
\hline
\end{tabular}

TABLE III. Frequency Parameter ROM Translation Table
\begin{tabular}{ccc}
T-Timer & F-Frequency & Q-Quotient \\
Address & Data (Decimal) & R—Remainder \\
\(0 \times 30\) & 147 & Vector \\
\(0 \times 31\) & 10 & R \\
\(0 \times 32\) & 140 & Q \\
\(0 \times 33\) & 38 & F \\
\(0 \times 34\) & 133 & R \\
\(0 \times 35\) & 9 & Q \\
\(0 \times 36\) & 155 & T \\
\(0 \times 37\) & 33 & R \\
\(0 \times 38\) & 120 & Q \\
\(0 \times 39\) & 14 & F \\
\(0 \times 3 \mathrm{~A}\) & 171 & T \\
\(0 \times 3 \mathrm{~B}\) & 31 & Q \\
\(0 \times 3 \mathrm{C}\) & 109 & F \\
\(0 \times 3 \mathrm{D}\) & 10 &
\end{tabular}

The theory of operation in producing the selected low band frequency starts with loading the three counters with values obtained from a ROM table. The half period for the selected frequency is counted out, after which the G2 output bit is toggled. During this half period countout, the quotient counter is decremented. This procedure is repeated until the quotient counter counts out, after which the program branches to the remainder loop. During the remainder loop, the remainder counter counts out to terminate the 100 ms . Following the remainder countout, the G2 and G3 bits are both reset, after which the DTMF subroutine is exited. Great care must be taken in time balancing the half period loop for
the selected low band frequency. Furthermore, the toggling of the G2 output bit (achieved with either a set or reset bit instruction) must also be exactly time balanced to maintain the half period time integrity. Local stall loops (consisting of a DRSZ instruction followed by a JP jump back to the DRSZ for a two byte, six instruction cycle loop) are embedded in both the half period and remainder loops. Consequently, the ROM table parameters for the half period and remainder counters are approximately only one-sixth of what otherwise might be expected. The program for the half period loop, along with the detailed time balancing of the loop for each of the low band frequencies, is shown in Figure 2.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Program} & \begin{tabular}{l}
Bytes/ \\
Cycles
\end{tabular} & & Conditional Cycles & Cycles & Total Cycles \\
\hline & LD & B,\#PORTGD & \(2 / 3\) & & & & \\
\hline . & LD & X, \#R1 & \(2 / 3\) & & - . & : & \\
\hline \multirow[t]{6}{*}{LUP1:} & LD & A, \([\mathrm{X}-\mathrm{]}\) & 1/3 & & & 3 & \\
\hline & IFBIT & 2,[B] & 1/1 & & & 1 & \\
\hline & JP & BYP1 & 1/3 & & 31 & & \\
\hline & X & A, \([\mathrm{X}+\mathrm{]}\) & 1/3 & & 3 & & \\
\hline & SBIT & 2,[B] & 1/1 & & 1 & & \\
\hline & JP & BYP2 & 1/3 & & 3 & & \\
\hline \multirow[t]{3}{*}{BYP1:} & NOP & & 1/1 & & 1 & & \\
\hline & RBIT & 2,[B] & 1/1 & & 1 & & \\
\hline & X & A, \([\mathrm{X}+\mathrm{]}\) & 1/3 & & 3 & & \\
\hline \multirow[t]{3}{*}{BYP2:} & DRSZ & R2 & 1/3 & & & 3 & \\
\hline & JP & LUP2 & 1/3 & & & 3 & - \\
\hline & JP & FINI & 1/3 & & , & & \\
\hline \multirow[t]{18}{*}{LUP2:} & DRSZ & Ro & 1/3 & & 3 & 3 & \\
\hline & JP & LUP2 & 1/3 & & 3 & 1 & \\
\hline & LD & A, [X] & 1/3 & & & 3 & \\
\hline & IFEO & A, \#31 & \(2 / 2\) & & & 2 & \\
\hline & JP & LUP1 & 1/3 & & 1 & 3 & 30 \\
\hline & NOP & & 1/1 & & 1 & & \\
\hline & NOP & & 1/1 & & 1 & & \\
\hline & IFEQ & A, \#38 & 2/2 & & 2 & & \\
\hline & JP & LUP1 & 1/3 & & 13 & & 35 \\
\hline & LAID & & 1/3 & & 3 & & \\
\hline & NOP & & 1/1 & & 1 & & \\
\hline & JP & LUP1 & 1/3 & & 3 & & 40 \\
\hline & & Table III & Stall & Total & Half & & \\
\hline & & Frequency & Loop & Cycles & Period & & \\
\hline & & [(38-1) & \(\times 6]\) & \(+35\) & \(=257\) & & \\
\hline & & [(33-1) & \(\times 6]\) & \(+40\) & \(=232\) & & \\
\hline & & [(31-1) & \(\times 6]\) & \(+30\) & \(=210\) & & \\
\hline & & [(26-1) & \(\times 6]\) & \(+40\) & \(=190\) & & \\
\hline
\end{tabular}

FIGURE 2. Time Balancing for Half Period Loop

TABLE IV. Time Balancing for Remainder Loop
Table III
Remainder
Stall
Loop
\(\times 6]\)
\(\times 6]\)
\(\times 6]\)
\(\times 6]\)
\begin{tabular}{cc}
R Loop & Total \\
Overhead & Cycles \\
+20 & \(=74\) \\
+20 & \(=68\) \\
+20 & \(=98\) \\
+20 & \(=74\)
\end{tabular}

Table I Remainder
[(10-1)
Loop
[(\(9-1\))
[(14-1)
\(\times 6]\)
\(\times 6]\)
\(+20\)
\(=74\)
This program loads the \(F\) frequency vector into \(R 1\), and then decrements the vector each time around the loop. The vector is successively moved with the exchange commands from R1 to R2 to R3 as one of the same exchange commands loads the data from the ROM table into R1, R2, and R3. This successive decrementation of the \(F\) vector changes the \(F\) vector into the \(Q\) vector, and then changes the \(Q\) vector into the \(R\) vector. These vectors are used to access the ROM table with the LAID instruction. The B pointer is incremented each time around the loop after it has been used to store away the three selected ROM table parameters (one per loop). These three parameters are stored in sequential RAM locations R1, R2, and R3. The IFBNE test instruction is used to skip out of the loop once the three selected ROM table parameters have been accessed and stored away.
The timer is initialized to a count of 15 so that the first timer underflow and toggling of the G3 output bit (with timer PWM mode and G3 toggle output selected) will occur at the same time as the first toggling of the G2 output bit. The half period counts for the high band frequencies minus one are stored in the timer section of the ROM table. The selected value from this frequency ROM table is stored in the timer autoreload register. The timer is selected for PWM output mode and started with the instruction LD \([B], \# 0 B 0\) where the \(B\) pointer is selecting the CNTRL register at memory location OEE.
This first DTMF generation subroutine for the COP820C/ 840 C uses 94 bytes of code, consisting of 78 bytes of program code and 16 bytes of ROM table. A program test routine to sequentially call the DTMFGP subroutine for each of the 16 keyboard input digits is supplied with the listing for the DTMF35 program. This test routine uses a 16 byte ROM table to supply the low true encoded column/row keyboard input to the accumulator. An input from the 10 input pin of the I port is used to select which DTMF generation subroutine is to be used. The DTMFGP subroutine is selected with \(10=0\).

> A TYPICAL OP AMP CONFIGURATION FOR MIXING THE TWO DTMF PWM OUTPUTS IS SHOWN IN FIGURE 3.

FIGURE 3. Typical Op Amp Configuration for Mixing DTMF PWM Outputs

\section*{DTMF GENERATION USING A RESISTOR LADDER NETWORK}

The second DTMF generation method (using the DTMFLP subroutine) generates and combines values from two table lookups simulating the two selected sine waves. The high band frequency table values have a higher base line value (16 versus 13) than the low band frequency table values. This higher bias for the high frequency values is necessary to satisfy the DTMF requirement that the high band DTMF frequencies need a value 2 dB greater than the low band DTMF frequencies to compensate for losses in transmission.
The resultant value from arithmetically combining the table lookup low band and high band frequency values is output on pins LO to L5 of the L port in order to feed into a six input external resistor ladder network. The resultant value is updated every \(1171 / 3 \mu \mathrm{~s}\) (one cycle of the LUP42 program loop). The LUP42 program loop contains 42 instruction cycles (tc's) of \(2.7936511 \mu \mathrm{~s}\) each for a total loop time of \(1171 / 3 \mu \mathrm{~s}\). The COP820C/840C timer is used to count out the 100 ms DTMF duration time.
An interrupt from the timer terminates the 100 ms DTMF output. Note that the Stack Pointer (SP) must be adjusted following the timer interrupt before returning from the DTMFLP subroutine.
The DTMFLP subroutine starts by quadrupling the value of the DTMF hex digit value in the accumulator, and then adding an offset value to reach the first value in the telephone key table. The telephone key ROM table contains four values associated with each of the 16 DTMF hex keys. These four values represent the low and high frequency table sizes and table starting addresses associated with the pair of frequencies (one low band, one high band) associated with each DTMF key. The FRLUP section of the program loads the four associated telephone key table values from the ROM table into the registers LFTBSZ (Low Freq Table Size), LFTADR (Low Freq Table Address), HFTBSZ (High Freq Table Size), and HFTADR (High Freq Table Address). The program then initializes the timer and autoreload regieter, starts the timer, and then jumps to LUP42. Note that the timer value in \(\mathrm{t}_{\mathrm{c}}\) 's is 100 ms plus one LUP42 time, since the initial DTMF output is not until the end of the LUP42 program.
Multiples of the magic number \(118 \mu \mathrm{~s}\) (approximately) are close approximations to all eight of the DTMF frequencies. The LUP42 program uses 42 instruction cycles (of \(2.7936511 \mu \mathrm{~s} \mathrm{each}\)) to yield a LUP42 time of \(1171 / 3 \mu \mathrm{~s}\). The purpose of the LUP42 program is to update the six \(L\) port outputs by accessing and then combining the next set of
values from the selected low band and high band sine wave frequency tables in the ROM. The ROM table offset frequency pointers (LFPTR and HFPTR) must increment each time and then wrap around from top to bottom of the two selected ROM tables. The ROM table size parameters (LFTBSZ and HFTBSZ) for the selected frequencies are tested during each LUP42 to determine if the wrap around from ROM table top to bottom is necessary. The wrap around is implemented by clearing the frequency pointer in question. Note that the ROM tables are mapped from a reference of 0 to table size minus one, so that the table size is used in a direct comparison with the frequency offset pointer to test for the need for a wrap around. Also note that the offset pointer incremented value is used during the following LUP42 cycle, while the pre-incremented value of the pointer is used during the current cycle. However, it is the incremented value that is tested versus the table size for the need to wrap around.
After the low band and high band ROM table sine wave frequency values are accessed in each cycle of the LUP42 program, they are added together and then output to pins L0-L5 of the L port. As stated previously, the low band frequency values have a lower bias than the high band frequency values to compensate for the required 2 dB offset. Specifically, the base line and maximum values for the low frequency values are 13 and 26 respectively, while the base line and maximum values for the high frequency values are 16 and 32 respectively. Thus the combined base line value is 29 , while the combined maximum value is 58 . This gives a range of values on the L port output (L0-L5) from 0 to 58.
The minimum time necessary for the LUP42 update program loop is 36 instruction cycles including the jump back to the start of the loop. Consequently, two LAID instructions are inserted just prior to the jump back instruction at the end of LUP42 to supply the six extra NOP instruction cycles needed to increase the LUP42 instruction cycles from 36 to 42. A three cycle LAID instruction can always be used to simulate three single cycle NOP instructions if the accumulator data is not needed.
Table \(V\) shows the multiple LUP42 approximation to the eight DTMF frequencies, including the number of sine wave cycles and data points in the approximation. As an example, three cycles of a sine wave with a total of 19 data points across the three cycles is used to approximate the 1336 Hz DTMF frequency. The 19 cycles of LUP42 times the LUP42 time of \(1171 / 3 \mu \mathrm{~s}\) is divided into the three cycles to yield a value of 1345.69 Hz . This gives an error of \(+0.73 \%\) when compared with the DTMF value of 1336 Hz . This is well within the \(1.5 \%\) North American DTMF error range.

TABLE V. DTMF Frequency Approximation Table
\begin{tabular}{ccc}
DTMF & \begin{tabular}{c}
\# of Sine \\
Wave Cycles
\end{tabular} & \begin{tabular}{c}
\# of Data \\
Points
\end{tabular} \\
Freq. & 4 & 49 \\
697 & 1 & 11 \\
770 & 1 & 10 \\
852 & 1 & 9 \\
941 & 1 & 7 \\
1209 & 3 & 19 \\
1336 & 4 & 23 \\
1477 & 4 & 21
\end{tabular}
Calculation
\(4 /(49 \times 1171 / 3)\)
\(1 /(11 \times 1171 / 3)\)
\(1 /(10 \times 1171 / 3)\)
\(1 /(9 \times 1171 / 3)\)
\(1 /(7 \times 1171 / 3)\)
\(3 /(19 \times 1171 / 3)\)
\(4 /(23 \times 1171 / 3)\)
\(4 /(21 \times 1171 / 3)\)
\begin{tabular}{ll}
\begin{tabular}{c}
Approx. \\
Freq.
\end{tabular} & \% Error \\
\(=695.73\) & -0.18 \\
\(=774.79\) & +0.62 \\
\(=852.27\) & +0.03 \\
\(=946.97\) & +0.63 \\
\(=1217.53\) & +0.71 \\
\(=1345.69\) & +0.73 \\
\(=1482.21\) & +0.35 \\
\(=1623.38\) & -0.59
\end{tabular}

The frequency approximation is equal to the number of cycles of sine wave divided by the time in the total number of LUP42 cycles before the ROM table repeats.
The values in the DTMF sine wave ROM tables are calculated by computing the sine value at the appropriate points, scaling the sine value up to the base line value, and then adding the result to the base line value. The following example will help to clarify this calculation.
Consider the three cycles of sine wave across 19 data points for the 1336 Hz high band frequency. The first value in the table is the base line value of 16 . With \(2 \pi\) radians per sine wave cycle, the succeeding values in the table represent the sine values of \(1 \times(6 \pi / 19), 2 \times(6 \pi / 19), 3 \times\) \((6 \pi / 19), \ldots\), up to \(18 \times(6 \pi / 19)\). Consider the seventh and eighth values in the table, representing the sine values of \(6 \times(6 \pi / 19)\) and \(7 \times(6 \pi / 19)\) respectively. The respective calculatons of \(16 \times \sin [6 \times(6 \pi / 19)]\) and \(16 \times \sin [7\) \(\times(6 \pi / 19)\)] yield values of -5.20 and 9.83 . Rounding to the nearest integer gives values of -5 and 10. When added to the base line value of 16, these values yield the results 11 and 26 for the seventh and eighth values in the 1336 Hz DTMF ROM table. Symmetry in the loop of 19 values in the DTMF table dictates that the fourteenth and thirteenth values in the table are 21 and 6 , representing values of 5 and -10 from the calculations.
The area under a half cycle of sine wave relative to the area of the surrounding rectangle is \(2 / \pi\), where \(\pi\) radians represent the sine wave half cycle. This surrounding rectangle has a length of \(\pi\) and a height of 1 , with the height representing the maximum sine value. Consequently, the area of the surrounding rectangle is \(\pi\). The integral of the area under the half sine wave from 0 to \(\pi\) is equal to 2 . The ratio of \(2 / \pi\) is equal to \(63.66 \%\), so that the total of the values for each half sine wave should approximate \(63.66 \%\) of the sum of the max values. The maximum values (relative to the base line) are 13 and 16 respectively for the low and high band DTMF frequencies.
For the previous 1336 Hz example, the total of the absolute values for the 19 sine values from the 1336 Hz ROM
table is equal to 196. The surrounding rectangle for the three cycles of sine wave is 19 by 16 for a total area of 304 . The ratio of \(196 / 304\) is \(64.47 \%\) compared with the \(2 / \pi\) ratio of \(63.66 \%\). Thus the sine wave approximation gives an area abundance of \(0.81 \%\) (equal to \(64.47-63.66\)).
An application of the sine wave area criteria is shown in the generation of the DTMF 852 Hz frequency. The ten sine values calculated are \(0,7.64,12.36,12.36,7.64,0,-7.64\), \(-12.36,-12.36\), and -7.64 . Rounding off to the nearest integer yields values of \(0,8,12,12,8,0,-8,-12,-12\) and -8 . The total of these values (absolute numbers) is 80 , while the area of the surrounding rectangle is \(130(10 \times 13)\). The ratio of \(80 / 130\) is \(61.54 \%\) compared with the \(2 / \pi\) ratio of \(63.66 \%\). Thus the sine wave approximation gives an area deficiency of \(2.12 \%\) (equal to \(63.66-61.54\)), which is overly deficient. Consequently, two of the ten sine values are augmented to yield sine values of \(0,8,12,13^{*}, 8,0,-8\), \(-12,-13^{*}\), and -8 . This gives an absolute total of 82 and a ratio of \(82 / 130\), which equals \(63.08 \%\) and serves as a much better approximation to the \(2 / \pi\) ratio of \(63.66 \%\).
The sine wave area criteria is also used to modify two values in the DTMF 941 Hz frequency. The nine sine values calculated are \(0,8.36,12.80,11.26,4.45,-4.45,-11.26\), -12.80 , and -8.36 . Rounding off to the nearest integer yields values of \(0,8,13,11,4,-4,-11,-13\), and -8 . The total of these values (absolute numbers) is 72 , while the area of the surrounding rectangle is \(117(9 \times 13)\). The ratio of \(72 / 117\) is \(61.54 \%\) compared to the \(2 / \pi\) ratio of \(63.66 \%\). Thus the sine wave approximation gives an area deficiency of \(2.12 \%\) (equal to \(63.66-61.54\)), which is overly deficient. Rounding up the two values of 4.45 and -4.45 to 5 and -5 , rather than down to 4 and -4 , yields values of \(0,8,13,11\), \(5,-5,-11,-13\) and -8 . This gives an absolute total of 74 and a ratio of \(74 / 117\), which equals \(63.25 \%\) and serves as a much better approximation to the \(2 / \pi\) ratio of \(63.66 \%\).
With these modified values for the 852 and 941 DTMF frequencies, the area criteria ratio of \(2 / \pi=63.66 \%\) for the sine wave compared to the surrounding rectangle has the following values:
\begin{tabular}{cc}
DTMF & Sum of \\
Freq. & Values \\
697 Hz & 406 \\
770 Hz & 92 \\
852 Hz & 82 \\
941 Hz & 74 \\
1209 Hz & 72 \\
1336 Hz & 196 \\
1477 Hz & 232 \\
1633 Hz & 216
\end{tabular}
Rectangle
Area
\(49 \times 13=637\)
\(11 \times 13=143\)
\(10 \times 13=130\)
\(9 \times 13=117\)
\(7 \times 16=112\)
\(19 \times 16=304\)
\(23 \times 16=368\)
\(21 \times 16=336\)
\begin{tabular}{cc}
Percentage & Diff. \\
\(63.74 \%\) & \(+0.08 \%\) \\
\(64.34 \%\) & \(+0.68 \%\) \\
\(63.08 \%\) & \(-0.58 \%\) \\
\(63.25 \%\) & \(-0.41 \%\) \\
\(64.29 \%\) & \(+0.63 \%\) \\
\(64.47 \%\) & \(+0.81 \%\) \\
\(63.04 \%\) & \(-0.62 \%\) \\
\(64.29 \%\) & \(+0.63 \%\)
\end{tabular}

The LUP42 program loop is interrupted by the COP820C/ 840 C timer after 100 ms of DTMF output. As stated previously, the Stack Pointer (SP) must be adjusted (incremented by 2) following the timer interrupt before returning from the DTMFLP subroutine.
This second DTMF generation subroutine for the COP820C/840C uses 301 bytes of code, consisting of 88 bytes of program code and 213 bytes of ROM table. The following is a summary of the DTMFLP subroutine code allocation.
DTMFLP Code \# of
Allocation
1. Subroutine Header Code Bytes
2. Interrupt Code 16
3. LUP42 Code 30
4. Telephone Key Table 64
5. Sine Value Tables 149
Total
301

A program test routine to sequentially call the DTMFLP subroutine for each of the 16 DTMF keyboard input digits is supplied with the listing for the DTMF35 program. This test routine uses a 16 byte ROM table to supply the low true encoded column/row keyboard input to the accumulator. An input from the 10 pin of the I port is used to select which DTMF generation subroutine is to be used. The DTMFLP subroutine is selected with \(10=1\).
A TYPICAL RESISTOR LADDER NETWORK IS SHOWN IN FIGURE 4.

\section*{SUMMARY}

In summary, the DTMF35 program assumes a COP820C/ 840 C clocked with a 3.58 MHz crystal in divide by 10 mode. The DTMF35 program contains three subroutines, KBRDEC, DTMFGP, and DTMFLP. The KBRDEC subroutine is a low true DTMF keyboard decoder, while the DTMFGP and DTMFLP subroutines represent the alternative methods of DTMF generation.
The KBRDEC subroutine provides a low true decoding of the DTMF keyboard input and assumes that the keyboard input has been encoded in a low true column/row format, with the columns of the keyboard being sequentially strobed.
The DTMFGP subroutine produces two PWM (Pulse Width Modulation) outputs (representing the selected high and low band DTMF frequencies) for combination with an external op amp network (LM324 or equivalent).
The DTMFLP subroutine produces six bits of combined high band and low band DTMF frequency output for combination in an external resistor ladder network. This output represents a combined sine wave simulation of the two selected DTMF frequencies by combining values from two selected ROM tables, and updating these values every \(118 \mu \mathrm{~s}\).
The three DTMF35 subroutines contain the following number of bytes of program and ROM table memory:
\begin{tabular}{lccc}
Subroutine & \begin{tabular}{c}
\# of Bytes \\
of Program
\end{tabular} & \begin{tabular}{c}
\# of Bytes \\
of ROM Table
\end{tabular} & \begin{tabular}{c}
Total \# \\
of Bytes
\end{tabular} \\
KBRDEC & 19 & 16 & 35 \\
DTMFGP & 78 & 16 & 94 \\
DTMFLP & 88 & 213 & 301
\end{tabular}

6 SINE WAVE OUTPUTS

FIGURE 4. Typical Resistor Ladder Network
DTMF GENERATION WITH A 3.58 MHZ VERNE H. WILSON CRYSTAL FOR COP820C/840C 10/28/89
dTMF - DUAL tone multiple frequency
PROGRAM NAME: DTMF35.MAC
-TITLE DTMF35
. CHIP 840
;
; THIS DTMF PROGRAM IS BASED ON A COP820C/840C RUNNING WITH A CKI CLOCK OF 3.579545 MHZ (TV COLOR CRYSTAL FREQUENCY) IN DIVIDE BY 10 MODE, FOR AN INSTRUCTION CYCLE TIME OF 2.7936511 MICROSECONDS.
THIS PROGRAM CONTAINS THREE SUBROUTINES, ONE FOR A LOW TRUE ROW/COLUMN DTMF KEYBOARD DECODING (KBRDEC), AND THE OTHER TWO (DTMFGP, DTMFLP) FOR ALTERNATE METHODS OF DTMF GENERATION.
REYBOARD INPUT DATA IS IN ACCUMULATOR WITH A
LOW TRUE FORMAT AS FOLLOWS: bits 7 TO 4 : LOW TRUE COLUMN VALUE (E, D, B,7) BITS 3 TO 0 : LOW TRUE ROW VALUE (E,D,B,7)
ASSUMPTION MADE THAT COLUMN STROBES (LOW TRUE) ARE OUTPUT, WHILE ROW VALUES (LOW TRUE) ARE INPUT.
THE FIRST METHOD OF DTMF GENERATION CONSISTS OF GENERATING TWO PWM OUTPUTS ON THE G PORT G2 AND G3 OUTPUT PINS. THESE TWO OUTPUTS NEED TO BE MIXED EXTERNALLY WITH AN APPROPIATE LM324 OP AMP FEEDBACK CIRCUIT TO GENERATE THE DTMF.
THE SECOND METHOD OF DTMF GENERATION USES ROM LOOKUP tables to simulate the two dtmf sine waves and COMBINES THEM ARITHMETICALLY. THE RESULT IS OUTPUT ON THE LOWER SIX BITS OF THE L PORT (LO - L5). THESE SIX OUTPUTS ARE COMBINED EXTERNALLY WITH A LADDER NETWORK TO GENERATE THE DTMF.
THE SECOND DTMF GENERATION METHOD USES APPROXIMATELY THREE TIMES AS MUCH ROM CODE (INCLUDING PROGRAM CODE AND ROM TABLES) AS THE FIRST METHOD, BUT HAS THE ADVANTAGE OF ELIMINATING THE COST OF THE EXTERNAL ACTIVE COMPONENT (LM324 OR EQUIVALENT).
BOTH OF THE DTMF SUBROUTINES GENERATE THEIR OUTPUTS FOR A PERIOD OF 100 MILLISECONDS.

half periods for the 8 dtmp frequencies (697,770,852, 941,1209,1336,1477, AND 1633 KHZ) ARE 257,232, 210,190,148,134,121, aND 110 TC 's RESPECTIVELY

THE 100 MSEC DIVIDED BY. HALF PERIOD QUOTIENTS ARE 139,154,170,188,241.267.295, AND 325 RESPECTIVELY
the 100 msec divided by half period remainders are 72,67,95,75,127,17,100, AND 45 RESPECTIVELY
binary format for the hex digit key value from the kbrdec subroutine is oooorrcc,
where - ri is row select (lb frequencies)
- CC IS COLUMN SELECT (hb frequencies)
frequency vectors (hb \& lb) for freo parameter table made from key value
hb freq vectors (4) end with 00 for timer counts, hhere vector format is oollccoo

Lb freduency vectors (12) end hith: 11 FOR half period loop counts. where vector format is oollrril 10 FOR 100 msec divided by half period quotients, WhERE VECTOR FORMAT IS OOllRRIO 01 for 100 msec divided by half period remainders, WhERE VECTOR FORMAT IS OOIlRROI

Freq parameter table at hex 003* (required location)
key value 0000RRCC
TIMER t ccoo
\begin{tabular}{lll}
R1 & F & RR11 \\
R2 & 0 & RR10
\end{tabular}
\begin{tabular}{lll}
185 & & \\
186 & & \\
187 & & \\
188 & & \\
189 & 0030 & 93 \\
190 & 0031 & \(0 A\) \\
191 & 0031 & \(0 A\) \\
192 & 0032 & \(8 C\) \\
193 & 0033 & 26 \\
194 & 0034 & 85 \\
195 & 0035 & 09 \\
196 & 0036 & \(9 B\) \\
197 & 0037 & 21 \\
198 & 0038 & 78 \\
199 & 0039 & \(0 E\) \\
200 & \(003 A\) & \(A B\) \\
201 & \(003 B\) & \(1 F\) \\
202 & \(003 C\) & \(6 D\) \\
203 & \(003 D\) & \(0 A\) \\
204 & \(003 E\) & \(B D\) \\
205 & \(003 F\) & \(1 A\) \\
206 & & \\
207 & & \\
208 & & \\
209 & 0040 & \(D E D 5\) \\
210 & 0042 & \(9 B 3 F\) \\
211 & 0044 & \(6 B\) \\
212 & 0045 & \(6 A\) \\
213 & 0046 & \(5 F\) \\
214 & 0047 & \(A 6\) \\
215 & 0048 & \(A E\) \\
216 & 0049 & 9733 \\
217 & \(004 B\) & \(D E F 1\) \\
218 & \(004 D\) & \(A 6\) \\
219 & \(004 E\) & \(A E\) \\
220 & \(004 F\) & \(A 4\) \\
221 & 0050 & \(A 2\) \\
222 & 0051 & \(8 B\) \\
223 & 0052 & 44 \\
224 & 0053 & \(F 9\) \\
225 & 0054 & \(5 F\) \\
226 & 0055 & \(A E\) \\
227 & 0056 & 65 \\
228 & 0057 & \(A 0\) \\
229 & 0058 & \(B 0\) \\
230 & 0059 & \(B 0\) \\
231 & \(005 A\) & 9730 \\
232 & \(005 C\) & \(A 4\) \\
233 & \(005 D\) & \(D E E A\) \\
234 & \(005 F\) & \(9 A 0 F\) \\
235 & 0061 & \(9 A 00\) \\
10
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{. FORM} & \\
\hline \multirow[t]{17}{*}{; FREQUEN} & Y AND & MSEC PARAME & & TABLE \\
\hline & . BYTE & 147 & & ; T \\
\hline & . BYTE & 10 & & ; R \\
\hline & . BYTE & 140 & & : 0 \\
\hline & - BYTE & 38 & & ; \(\mathbf{F}\) \\
\hline & . BYTE & 133 & & ; \(\mathbf{T}\) \\
\hline & . BYTE & 9 & & ; R \\
\hline & . BYTE & 155 & & ; 0 \\
\hline & . BYTE & 33 & & ; F \\
\hline & . BYTE & 120 & & ; \\
\hline & . BYTE & 14 & & ; R \\
\hline & - BYTE & 171 & & ; 0 \\
\hline & . BYTE & 31 & & ; F \\
\hline & . BYTE & 109 & & ; \(\mathbf{T}\) \\
\hline & . BYtE & 10 & & ; 8 \\
\hline & . BYTE & 189 & & ; 0 \\
\hline & . BYTE & 26 & & ; F \\
\hline \multicolumn{5}{|l|}{;} \\
\hline \multicolumn{5}{|l|}{;} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multirow{8}{*}{DTMFGP:} & LD & [B-], \#03F & : & FOR OUTPUTS \\
\hline & RBIT & 3.[B] & & OPTIONAL HB RESET \\
\hline & RBIT & 2,[B] & : & OPTIONAL LB RESET \\
\hline & LD & B,\#KDATA & & \\
\hline & X & A, [B] & ; & Store key value \\
\hline & LD & A. [B] & ; & KEY Value to acc \\
\hline & OR & A, \#033 & ; & CREATE LB FREQ VECTOR \\
\hline & LD & B, \#R1 & ; & FROM REY VaLue \\
\hline \multirow[t]{18}{*}{LUP:} & X & A, [B] & & \\
\hline & LD & A, [B] & ; & THREE PARAMETERS \\
\hline & LAID & & ; & FROM LOW BAND \\
\hline & X & A, [\(\mathrm{B}^{+}\)] & ; & FREQ ROM TABLE \\
\hline & DEC & A & ; & TO R1, R2,R3 \\
\hline & IFBNE & \# 4 & & \\
\hline & JP & LUP & & \\
\hline & LD & B.\#KDATA & & \\
\hline & LD & A.[B] & ; & KEY Value to acc \\
\hline & SWAP & A & ; & CREATE HB FREQ VECTOR \\
\hline & RC & & ; & from key value \\
\hline & RRC & A & & \\
\hline & RRC & A & & \\
\hline & OR & A, \#030 & & \\
\hline & LAID & & ; & HB FREO TABLE \\
\hline & LD & B, \#TMRLO & ; & (1 PARAMETER) \\
\hline & LD & [\(\mathrm{B}+\mathrm{]}\), \#15 & ; & INSTRUCTION CYCLE \\
\hline & LD & [\(\mathrm{B}+\mathrm{]}\), \# 0 & ; & time Until toggle \\
\hline
\end{tabular}

TL/DD/10740-5
\begin{tabular}{|c|c|c|}
\hline 236 & 0063 & A2 \\
\hline 237 & 0064 & 9A00 \\
\hline 238 & 0066 & 9EB0 \\
\hline 239 & 0068 & DED4 \\
\hline 240 & 006A & DCF1 \\
\hline 241 & 006C & BB \\
\hline 242 & 006D & 72 \\
\hline 243 & 006E & 03 \\
\hline 244 & 006F & B2 \\
\hline 245 & 0070 & 7A \\
\hline 246 & 0071 & 03 \\
\hline 247 & 0072 & B8 \\
\hline 248 & 0073 & 6A \\
\hline 249 & 0074 & B2 \\
\hline 250 & 0075 & C2 \\
\hline 251 & 0076 & 01 \\
\hline 252 & 0077 & OE \\
\hline 253 & 0078 & C0 \\
\hline 254 & 0079 & FE \\
\hline 255 & & \\
\hline 256 & 007A & BE \\
\hline 257 & 007B & 921F \\
\hline 258 & 007D & EE \\
\hline 259 & 007E & B8 \\
\hline 260 & 007F & B8 \\
\hline 261 & 0080 & 9226 \\
\hline 262 & 0082 & E9 \\
\hline 263 & 0083 & A4 \\
\hline 264 & 0084 & B8 \\
\hline 265 & 0085 & E6 \\
\hline 266 & 0086 & C3 \\
\hline 267 & 0087 & FE \\
\hline 268 & 0088 & BDEE6C \\
\hline 269 & 008B & 6B \\
\hline 270 & 008C & 6A \\
\hline 271 & 008D & 8E \\
\hline 272 & & \\
\hline 273 & & \\
\hline 274 & & \\
\hline
\end{tabular}
A. \([B+]\)
[B+],\#0
[B],\#OBO B, \#PORTGD X, \#R1 A, \([\mathrm{X}-\mathrm{]}\) 2.[B] ; TEST LB OUTPUT BYP1
A. [\(\mathrm{X}+\)]
2.[B] ; SET LB OUTPUT

BYP2
\begin{tabular}{ll}
\(2,[B]\) & ; RESET LB OUTPUT \\
\(A,[X+]\) & ; DECR OUOT COUNT
\end{tabular}

R2
LUP2
FINI : O COUNT FINISHED
RO ; DECR. F COUNT
LUP2 ; LB (HALF PERIOD)
A.[X] ; ******************

A, \#31 ; BALANCE
LUP1 ; LOW BAND FREQUENCY RESIDUE
A.\#38 : DELAY FOR *** LUP1 ; EACH OF THE *** EACH OF THE
FOUR LOW BAND
\(* * *\) FREQUENCIES *** - ******************

LUP1
R3
FINI
4.CNTRL
3.[B]

2, [B]

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
```

                . FORM
    ; SECOND DTMF SUBROUTINE (DTMFLP) PRODUCES SIX
COMBINED LOW BAND AND HIGH BAND FREQUENCY
SINE WAVE OUTPUTS ON PINS LO - L5
SIX L PORT OUTPUTS (LO - L5) FEED INTO AN EXTERNAL
RESISTOR LADDER NETWORR TO CREATE THE DTMF OUTPUT.
FOUR VALUES FROM A KEYBOARD ROM TABLE ARE LOADED
INTO LFTBSZ (LOW FREO TABLE SIZE), LFTADR (LOW
FREQ TABLE ADDRESS), HFTBSZ (HIGH FREQ TABLE SIZE).
AND HFTADR (HIGH FREQ TABLE ADDRESS).
LUP42 USES THE LFPTR (LOW FREQ POINTER) AND HFPTR
(HIGH FREQ POINTER) TO ACCESS THE SINE DATA TABLES
FOR THE SELECTED FREQUENCIES ONCE PER LOOP. THESE
POINTERS ARE BOTH INCREMENTED ONCE PER LUP42.
LUP42 PROGRAM LOOP UPDATES THE OUTPUT VALUE EVERY
117 1/3 USEC BY SELECTING AND THEN COMBINING NEW
VALUES FROM THE SELECTED LOW BAND AND HIGH BAND
FREQUENCY ROM TABLES WHICH SIMULATE THE SINE WAVES
FOR THE TWO FREQUENCIES.
MULTIPLES OF THE MAGIC NUMBER OF APPROXIMATELY
118 USEC ARE CLOSE APPROXIMATIONS TO ALL EIGHT OF
THE DTMF FREQUENCIES.
COP820C/840C TIMER USED TO INTERRUPT THE DTMF LUP42
PROGRAM LOOP AFTER 100. MSEC TO FINISH THE DTMF
OROGRAM LOOP AFTER IROM THE DTMFLP SUBROUTINE. NOTE
THAT THE STACK POINTER (SP) MUST BE ADJUSTED AFTER
THE INTERRUPT BEFORE RETURNING FROM THE SUBROUTINE.
DECLARATIONS:

```
0005
0006
0007
0008
0009
000A
000B
0004 ;

```

371 : KEY 3
372 00C0 31
00Cl 2D
00C2 17
00C3 96
373
374
375 00C4 31
00C5 2D
00C6 15
00C7 AD
376 ;
377 ; KEY
378 00C8 OB
00C9 5E
00CB 7C
379 ;

```

```

    OOCD 5E
    OOCE 13
    00CF 83
    382
; KEY 6
OODO OB .BYTE 11,05E,23,096
00D1 5E
00D2 17
00D3 96
385
386 ; KEY B
387 00D4 OB .BYTE 11,05E,21,OAD
00D5 5E
00D6 15
00D7 AD
388
389
00D9 69
00DA 07
00DB 7C
391
; KEY 8
OODC OA
00DD 69
OODE 13
00DF }8
394
395
396 00EO OA
; KEY }
.BYTE 10,069,23,096

```


431
432
433
434
435
436
437 010F 5A
4380110 AE
4390111 8A
440011257
441011382
442011464
4430115 5A
4440116 A6
445011756
446011884
4470119 A4
448 011A 59
449 011B A2
450 OllC AE
451 011D 8A
452 OIIE 55
453 011F 82
454012064
455012158
4560122 A6
457012354
458012484
4590125 A4
460012659
461012784
4620128 9CDO
463 012A A4
464 012B A4
465 012C E2
466
467
468
469
470
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{. FORM} \\
\hline \multicolumn{4}{|l|}{; LUP42 CONSISTS OF 42 COP840C INSTRUCTION CYCLE TIMES} \\
\hline ; LUP42 & TIMING LOOP & IS \(42 / 0\). & \(45=1171 / 3\) USEC \\
\hline \multirow[t]{30}{*}{LUP42:} & LD & B, \#LFPTR & \\
\hline & LD & A, [B] & : INCREMENT LOW FREQ \\
\hline & INC & A & ; OFFSET POINTER \\
\hline & LD & B,\#LFTBSZ & ; TEST IF LFPTR \\
\hline & IFEQ & A, [B] & : BEYOND LIMIT \\
\hline & CLR & A & : REINITIALIZE LFPTR \\
\hline & LD & B.\#LFPTR & ; FOR NEXT TIME \\
\hline & X & A, [B] & \\
\hline & LD & B, \#LFTADR & : ADD PTR TO LO FREQ \\
\hline & ADD & A, [B] & ; TABLE ADDRESS \\
\hline & LAID & & ; LOW FREQ COMPONENT \\
\hline & LD & B.\#TEMP & ; RESULT TO TEMP \\
\hline & X & A, [\(\mathrm{B}+]\) & \\
\hline & LD & A, [B] & : InCREmENT HI FREQ \\
\hline & INC & A & OFFSET POINTER \\
\hline & LD & B.\#HFTBSZ & ; TEST IF HFPTR \\
\hline & IFEQ & A, [B] & : BEYOND LIMIT \\
\hline & CLR & A & : REINITIALIZE HFPTR \\
\hline & LD & B, \#HFPTR & : FOR NEXT TIME \\
\hline & X & A, [B] & \\
\hline & LD & B, \#HFTADR & ; ADD PTR TO HI FREO \\
\hline & ADD & A, [B] & ; TABLE ADDRESS \\
\hline & LAID & & : HI FREO COMPONENT. \\
\hline & LD & B,\#TEMP & ; ADD LOW FREQ VALUE \\
\hline & ADD & A, [B] & ; TO HI FREO VALUE \\
\hline & X & A, PORTLD & : RESULT TO PORT L \\
\hline & LAID & & : EQUIVALENT OF \\
\hline & LAID & & : SIX NOP'S \\
\hline & JP & LUP42 & ; TIMING LOOP OF \\
\hline & & & ; \(1171 / 3\) USEC \\
\hline
\end{tabular}

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
510
514
515
516
517
518
519
520 521
;
THE FREQUENCY APPROXIMATION IS, EQUAL TO THE NUMBER OF CYCLES OF SINE WAVE DIVIDED BY THE TIME IN THE TOTAL NUMBER OF LUP42 CYCLES BEFORE THE REPETITION OF THE ROM TABLE, AS AN EXAMPLE, CONSIDER THE THREE CYCLES OF SINE WAVE AND 19 VALUES IN THE ASSOCIATED 1336 HZ ROM TABLE. THE 19 CYCLES OF LUP42 TIMES THE LUP42 TIME OF \(1171 / 3\) USEC IS DIVIDED INTO THE THREE CYCLES OF SINE WAVE TO YIELD A VALUE OF 1345.69 HZ AS THE 1336 HZ APPROXIMATION.

THE VALUES IN THE ROM TABLES FOR THE DTMF SINE WAVES SHOULD WRAP AROUND END TO END IN EITHER DIRECTION TO FORM A SYMETRICAL LOOP. THE FIRST VALUE IN THE ROM TABLE REPRESENTS THE BASE LIME FOR THAT FREQUENCY.

THE HIGH BAND DTMF FREQUENCIES HAVE A BASE LINE VALUE OF 16 AND A MAXIMUM VALUE OF 32. THE LOW BAND DTMF FREQUENCIES HAVE A BASE LINE VALUE OF 13 AND A MAXIMUM VALUE OF 26. THIS DIFFERENCE IN BASE LINE VALUES IS NECESSARY TO SATISFY. THE REQUIREMENT OF THE HIGH BAND FREQUENCIES NEEDING A LEVEL 2 dB ABOVE THE LEVEL OF THE LOW BAND FREQUENCIES TO COMPENSATE FOR LOSSES IN TRANSMISSION, THE SUM OF THE TWO BASE LINE VALUES YIELDS A BASE LIHE VALUE OF 29, WHILE THE SUM OF THE TWO MAXIMUM VALUES YIELDS A MAXIMUM VALUE OF 58. THUS THE SIX BIT DTMF OUTPUT FROM THE L PORT TO , THE LADDER NETWORK RANGES FROM 0 TO 58, WITH A BASE LINE VALUE OF 29.

THE VALUES IN THE DTMF SINE WAVE TABLES ARE CALCULATED BY COMPUTING THE SINE VALUE AT THE APPROPIATE POINTS, SCALING THE SINE VALUE UP TO THE BASE LIHE VALUE, AND THEH ADDING THE RESULT TO THE BASE LINE VALUE. THE FOLLOWING EXAMPLE WILL HELP TO CLARIFY THIS CALCULATION.

CONSIDER THE THREE CYCLES OF SINE WAVE ACROSS 19 DATA POINTS FOR THE 1336 HZ DTMF HIGH BAND FREQUENCY. THE FIRST VALUE IN THE TABLE IS THE BASE LINE VALUE OF 16. WITH 2 PI RADIANS PER SINE WAVE CYCLE,
 SINE VALUES OF \(1 \mathrm{X}(6 \mathrm{PI} / \mathrm{l9}), 2 \mathrm{X}(6 \mathrm{PI} / \mathrm{l}\) 19). \(3 \mathrm{X}(6 \mathrm{PI} / 19), \quad . \quad . \mathrm{UP} \mathrm{TO} 18 \mathrm{X}(6 \mathrm{PI} / 19)\). LET US HOW CONSIDER THE SEVENTH AND EIGHTH VALUES IN THE TABLE, REPRESENTING THE SIHE VALUES OF \(6 \times(6 \mathrm{PI} / 19)\) AHD \(7 \mathrm{X}(6 \mathrm{PI} / 19)\) RESPECTIVELY. THE CALCULATIONS OF 16 X SIN [\(6 \mathrm{X}(6 \mathrm{PI} / \mathrm{19})]\) AND 16 X SIN [7 X (6 PI / 19)] YIELD VALUES OF - 5.20 AND 9.83 RESPECTIVELY. ROUNDED TO THE NEAREST INTEGER
\begin{tabular}{|c|c|c|c|}
\hline 522 & & ; & gives values of - 5 and 10. When added to the base \\
\hline 523 & & ; & LINE VALUE OF 16, THESE VALUES YIELD THE RESULTS \\
\hline 524 & & ; & 11 and 26 FOR THE SEVENTH AND EIGHTH VALUES IN THE \\
\hline 525 & & ; & 1336 HZ DTMF TABLE. SYMMETRY IN THE LOOP OF 19 VALUES \\
\hline 526 & & ; & IN THE DTMF table dictates that the fourteenth and \\
\hline 527 & & ; & THIRTEENTH VALUES IN THE TABLE ARE 21 and 6, \\
\hline 528 & & ; & REPRESENTING VALUES OF 5 AND - 10 FROM THE \\
\hline 529 & & ; & CALCULATIONS. \\
\hline 530 & & ; & \\
\hline 531 & & ; & THE AREA UNDER A HALF CYCLE OF SINE WAVE RELATIVE TO \\
\hline 532 & & ; & THE AREA OF THE SURROUNDING RECTANGLE IS 2/PI, WHERE \\
\hline 533 & & ; & PI RADIANS REPRESENT THE SINE WAVE HALF CYCLE. THIS \\
\hline 534 & & ; & SURROUNDING RECTANGLE HAS A LENGTH OF PI AND A HEIGHT \\
\hline 535 & & ; & OF 1, WITH THE HEIGHT REPRESENTING the Maximum Sine \\
\hline 536 & & ; & VALUE. CONSEQUENTLY, THE AREA OF THIS SURROUNDING \\
\hline 537 & & ; & RECTANGLE IS PI. THE INTEGRAL OF THE AREA UNDER THE \\
\hline 538 & & ; & HALF SINE WAVE FROM 0 to PI IS EQUAL TO 2. THE RATIO \\
\hline 539 & & ; & OF 2/PI IS EQUAL TO \(63.66 \%\), SO THAT THE TOTAL OF \\
\hline 540 & & ; & THE VALUES FOR EACH HALF SINE WAVE SHOULD APPROXIMATE \\
\hline 541 & & ; & 63.66 \% OF THE SUM OF THE MAX VALUES. THE MAXIMUM \\
\hline 542 & & ; & Values (relative to the base line) are 13 and 16 \\
\hline 543 & & ; & RESPECTIVELY, FOR THE LOW AND HIGH BAND FREQUENCIES. \\
\hline 544 & & ; & \\
\hline 545 & & ; & \\
\hline 546 & & ; & \\
\hline 547 & & ; & \\
\hline 548 & & ; & \\
\hline 549 & & ; & LF697: 4 CYCLES OF SINE WAVE SPREAD \\
\hline 550 & & ; & ACROSS 49 TIMING LOOP (LUP42) CYCLES \\
\hline 551 & & ; & \\
\hline 552 & & ; & FREQ. \(=4 /(49 \times 1171 / 3)=695.73 \mathrm{HZ}\) \\
\hline 553 & & ; & ERROR \(=(697-695.73) / 697=-0.18 \%\) \\
\hline 554 & & ; & \\
\hline 555 & O12D OD & & . BYTE 13,19,24,26,25,20,14,7,2,0 \\
\hline & 012E 13 & & \\
\hline & 012F 18 & & \\
\hline & 0130 1A & & \\
\hline & 013119 & & \\
\hline & 013214 & & \\
\hline & 0133 OE & & \\
\hline & 013407 & & \\
\hline & 013502 & & \\
\hline & 013600 & & \\
\hline 556 & 013701 & & . BYTE 1,5,11,18,23,26,25,21,15,9 \\
\hline & 013805 & & \\
\hline & 0139 OB & & \\
\hline & 013A 12 & & \\
\hline & 013817 & & \\
\hline & 013 Cl 1A & & \\
\hline & 013D 19 & & \\
\hline & O13E 15 & & \\
\hline
\end{tabular}

571
572
572
573
574
574 575
576 577
5780169 OD
\(\begin{array}{lll} & \\ & & \\ & & \\ 0169 & 0 D \\ 016 A & 15 \\ 016 B & 19 \\ 016 C & 1 A \\ 016 D & 15 \\ 016 E & 0 D \\ 016 F & 05 \\ 0170 & 01 \\ 0171 & 00 \\ 0172 & 05\end{array}\)
\(\begin{array}{lll} & \\ & & \\ & & \\ 0169 & 0 D \\ 016 A & 15 \\ 016 B & 19 \\ 016 C & 1 A \\ 016 D & 15 \\ 016 E & 0 D \\ 016 F & 05 \\ 0170 & 01 \\ 0171 & 00 \\ 0172 & 05\end{array}\)
\(\begin{array}{lll} & \\ & & \\ & & \\ 0169 & 0 D \\ 016 A & 15 \\ 016 B & 19 \\ 016 C & 1 A \\ 016 D & 15 \\ 016 E & 0 D \\ 016 F & 05 \\ 0170 & 01 \\ 0171 & 00 \\ 0172 & 05\end{array}\)
\(\begin{array}{lll} & \\ & & \\ & & \\ 0169 & 0 D \\ 016 A & 15 \\ 016 B & 19 \\ 016 C & 1 A \\ 016 D & 15 \\ 016 E & 0 D \\ 016 F & 05 \\ 0170 & 01 \\ 0171 & 00 \\ 0172 & 05\end{array}\)
\(\begin{array}{lll} & \\ & & \\ & & \\ 0169 & 0 D \\ 016 A & 15 \\ 016 B & 19 \\ 016 C & 1 A \\ 016 D & 15 \\ 016 E & 0 D \\ 016 F & 05 \\ 0170 & 01 \\ 0171 & 00 \\ 0172 & 05\end{array}\)
\(\begin{array}{lll} & \\ & & \\ & & \\ 0169 & 0 D \\ 016 A & 15 \\ 016 B & 19 \\ 016 C & 1 A \\ 016 D & 15 \\ 016 E & 0 D \\ 016 F & 05 \\ 0170 & 01 \\ 0171 & 00 \\ 0172 & 05\end{array}\)
\(\begin{array}{lll} & \\ & & \\ & & \\ 0169 & 0 D \\ 016 A & 15 \\ 016 B & 19 \\ 016 C & 1 A \\ 016 D & 15 \\ 016 E & 0 D \\ 016 F & 05 \\ 0170 & 01 \\ 0171 & 00 \\ 0172 & 05\end{array}\)
\(\begin{array}{lll} & \\ & & \\ & & \\ 0169 & 0 D \\ 016 A & 15 \\ 016 B & 19 \\ 016 C & 1 A \\ 016 D & 15 \\ 016 E & 0 D \\ 016 F & 05 \\ 0170 & 01 \\ 0171 & 00 \\ 0172 & 05\end{array}\)
\(\begin{array}{lll} & \\ & & \\ & & \\ 0169 & 0 D \\ 016 A & 15 \\ 016 B & 19 \\ 016 C & 1 A \\ 016 D & 15 \\ 016 E & 0 D \\ 016 F & 05 \\ 0170 & 01 \\ 0171 & 00 \\ 0172 & 05\end{array}\)
579
580
581
582
583
584
585
586
5870173 OD
 017415
 0175 1A
 017618
 017712
 017808
 017902
 017A 00
 017B 05
588
589
590
591
592
593
594
595
596
597 017C 10
 017D 1D
 017E 20
 017 F 17
 018009
 018100
 018203
598
```

LF852: }1\mathrm{ CYCLE OF SINE WAVE SPREAD
ACROSS 10 TIMING LOOP (LUP42) CYCLES
FREQ. = 1 / (10 X 117 1/3) = 852.27 HZ
ERROR = (852.27-852)/852=+0.03%
.BYTE 13,21,25,26,21,13,5,1,0,5

```

```

; LF941: 1 CYCLE OF SINE WAVE SPREAD
ACROSS 9 TIMING LOOP (LUP42) CYCLES
FREQ. = 1 / (9 X 117 1/3) = 946.97 HZ
ERROR = (946.97-941) / 941 = + 0.63 %
.BYTE 13,21,26,24,18,8,2,0,5

```
```

599
600
6 0 1
602
6 0 3
604
605
606 0183 10
0184 1D
0185 1F
0186 13
018704
0 1 8 8 0 0
0189 0B
018A 1A
018B 20
018C 18
607 018D 08
018E 00
018F 06
019015
019120
0192 1C
O193 OD
0194 01
0195 03
6 0 8
6 0 9
6 1 0
6 1 1
6 1 2
6 1 3
614
6 1 5
616 0196 10
0197 1E
0198 1D
O199 OE
019A 01
019B 04
019C 14
019D }2
019E 1A
019F 0A
617 01AO 00
01Al 08
01A2 18
01A3 20
01A4 }1
01A5 06
01AG 00
HF1336: 3 CYCLES OF SINE WAVE SPREAD
FREQ. = 3 / (19 X 117 1/3) = 1345.69 HZ
ERROR = (1345.69 - 1336) / 1336 = + 0.73%
.BYTE 16,29,31,19,4,0,11,26,32,24
.BYTE 0,0,6,21,32,28,13,1,3
HF1477: 4 CYCLES OF SINE WAVE SPREAD
ACROSS 23 TIMING LOOP (LUP42) CYCLES
FREQ. = 4 / (23 x 117 1/3) = 1482.21 HZ
ERROR = (1482.21-1477) / 1477 = + 0.35 %
.BYTE 16,30,29,14,1,4,20,32,26,10
.BYTE 0,8,24,32,22,6,0,12,28,31

```
\begin{tabular}{|c|c|}
\hline & 014700 \\
\hline & 01 AB 1 C \\
\hline & 01A9 1F \\
\hline \multirow[t]{3}{*}{618} & 01AA 12 \\
\hline & 01 AB 03 \\
\hline & 01AC 02 \\
\hline 619 & \\
\hline 620 & \\
\hline 621 & \\
\hline 622 & \\
\hline 623 & \\
\hline 624 & \\
\hline 625 & \\
\hline 626 & \\
\hline \multirow[t]{10}{*}{627} & 01ad 10 \\
\hline & 01aE 1F \\
\hline & 01AF 1B \\
\hline & 01B0 09 \\
\hline & 01B1 00 \\
\hline & 01B2 OB \\
\hline & \(01 \mathrm{B3} 1 \mathrm{D}\) \\
\hline & \(01 \mathrm{B4} 1 \mathrm{E}\) \\
\hline & 01B5 0E \\
\hline & 01B6 00 \\
\hline \multirow[t]{10}{*}{628} & 018707 \\
\hline & 01B8 19 \\
\hline & 0189 20 \\
\hline & 01BA 12 \\
\hline & 01BB 02 \\
\hline & 01 BC 03 \\
\hline & O1BD 15 \\
\hline & O1BE 20 \\
\hline & OlBF 17 \\
\hline & 01 CO 05 \\
\hline 629 & 01 Cl 01 \\
\hline 630 & \\
\hline 631 & \\
\hline 632 & \\
\hline
\end{tabular}
```

.BYTE 18,3,2

```
;
HF1633: 4 CYCLES OF SINE WAVE SPREAD
 ACROSS 21 TIMING LOOP (LUP42) CYCLES
 FREQ. \(=4 /(21 \times 1171 / 3)=1623.38 \mathrm{HZ}\)
 ERROR \(=(1633-1623.38) / 1633=-0.59 \%\)
.BYTE \(16,31,27,9,0,11,29,30,14,0\)
. BYTE \(\quad 7,25,32,18,2,3,21,32,23,5\)
 01B9 20
 01BA 12
 01BB 02
 01BC 03
 O1BE 20
 01 BF 17
 01C0 05
630 201
632 ;
.BYTE 1
 020F C0
669
. FORM
DTMF KEYBOARD DECODE SUBROUTINE (KBRDEC)
KEYBOARD INPUT DATA IS IN ACCUMULATOR WITH A LOW TRUE FORMAT AS FOLLOWS:

BITS 7 TO 4 : LOW TRUE COLUMN VALUE (E,D,B,7) BITS 3 to 0 : LOW true row Value (E,D,B,7)

ASSUMPTION MADE THAT COLUMN STROBES (LOW TRUE) ARE OUTPUT, WHILE ROW VALUES (LOW TRUE) ARE INPUT.

LOW TRUE COLUMN/ROW INPUT DIGIT IN ACCUMULATOR IS TRANSFORMED INTO A DTMF HEX DIGIT REY VALUE

TABLE LOOKUP TRANSFORMATION CHECKS FOR MULTIPLE KEYS, NO KEY. OR NO COLUMN SELECT, AND THEN PRODUCES a dtmf hex digit key value with a binary format OF OOOORRCC FOR A SINGLE KEY INPUT,
WHERE - RR IS LOW BAND (LB) FREQUENCY SELECT
- CC IS HIGH BAND (HB) FREQUENCY SELECT

KBRDEC SUBROUTINE IS EXITED WITH A RETURN (RET) COMMAND TO INDICATE MULTIPLE KEYS, NO KEY, OR NO COLUMN SELECT

KBRDEC SUBROUTINE IS EXITED WITH A RETURN AND SKIP (RETSK) COMMAND TO INDICATE A SINGLE KEY ENTRY . \(=0200\)

LOW tRUE TRANSLATION TABLE - ONLY E,D,B. 7 aCCEPTABLE . BYTE OCO,OCO,OCO,OCO,OCO,OCO,OCO,OC
.BYTE OCO,0CO,0C0,8,0C0,4,0,0C0

670
6710210 5F
6720211 A6
6730212 AE
6740213 95F0
675021565
6760216 A4
67702.17 AO

6780218 BO
6790219 BO
680 021A A6
681 021B 950F
682021 D A4
683 021E 84
684 021F 930F
.6850221 8E
6860222 8D
. 687
. 688
689
690
691
;
KBRDEC: LD
 AND SWAP LAID RC RRC RRC
X AND LAID ADD IFGT
RET RETSK .END

B,\#KDATA
A. [B] ; STORE LOW TRUE

A,[B] : COLUMN/ROW VALUE
A,\#OFO : EXTRACT LOW TRUE COLUMN \& PUT IN LOWER NIBBLE
OOOOCCOO FROM TABLE
SHIFT TABLE VALUE DOWN TWO BITS TO PRODUCE
\(\begin{array}{l:c}\text { A } & 000000 C C \\ \text { A.[B] } & \text { STORE RESULT }\end{array}\)
A,\#OF : EXTRACT LOW TRUE ROW
OOOORROO FROM TABLE ADD TO PRODUCE OOOORRCC RETURN IF MULTIPLE KEYS, NO KEYS, OR NO COLUMN RETURN AND SKIP IF SINGLE KEY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline B & OOFE & & BYP1 & 0072 & & BYP2 & 0075 & & BYPA & 0019 \\
\hline BYPB & 001B & & CNTRL & OOEE & & DTMFGP & 0040 & & DTMFLP & 008E \\
\hline FINI & 0086 & & FRLUP & 00AO & & HFPTR & 0007 & & HFTADR & 000B \\
\hline HFTBSZ & 000A & & INTRPT & 00FF & * & KBRDEC & 0210 & & KDATA & 0000 \\
\hline LFPTR & 0005 & & LFTADR & 0009 & & LFTBSZ & 0008 & & LOOP & 0006 \\
\hline LUP & 004D & & LUP1 & 006C & & LUP2 & 0078 & & LUP42 & 010F \\
\hline PORTD & 00DC & & PORTGC & 00D5 & & PORTGD & 00D4 & & PORTI & 00D7 \\
\hline PORTLC & OOD1 & & PORTLD & 00DO & & PSW & 00EF & & RO & 00FO \\
\hline R1 & 00Fl & & R2 & 00F2 & & R3 & 00F3 & & SP & 00FD \\
\hline START & 0000 & * & tauhi & OOED & * & taulo & 00EC & * & TEMP & 0006 \\
\hline TMRHI & OOEB & * & TMRLO & OOEA & & TRUN & 0004 & & X & 00FC \\
\hline
\end{tabular}

\section*{2-Way Multiplexed LCD Drive and Low Cost A/D Converter Using V/F Techniques with COP8 Microcontrollers}

\section*{ABSTRACT}

This application note is intended to show a general solution for implementing a low cost A/D and a 2-way multiplexed LCD drive using National Semiconductor's COP840C 8 -bit microcontroller. The implementation is demonstrated by means of a digital personal scale. Details and function of the weight sensor itself are not covered in this note. Also the algorithms used to calculate the weight from the measured frequency are not included, as they are too specific and depend on the kind of sensor used.
Typical Applications
- Weighing scales

■ Sensors with voltage output
- Capacitive or resistive sensors
- All kinds of measuring equipment
- Automotive test and control systems

\section*{Features}
- 2-way multiplexed LCD drive capability up to 30 segments (4 digit and 2 dot points)
- Precision frequency measurement
- Low current consumption
- Current saving HALT mode
- Additional computing power for application specific tasks

\section*{INTRODUCTION}

Today's most popular digital scales all have the following characteristics:
They are battery powered and use a LCD to display the weight. Instead of using a discrete A/D-converter, in many cases a V/F converter is used, which converts an output voltage change of the weight sensor to a frequency change. This frequency is measured by a microcontroller and is used to calculate the weight. The advantages of a V/F over an A/D converter are multifold. Only one line from the V/F to the microcontroller is needed, whereas a parallel A/D needs at least 8 lines or even more (National also offers A/Ds with serial output). A V/F can be constructed very simply using National Semiconductor's low cost, precision voltage to frequency converters LM331 or LM331A. Other possibilities are using Op-amps or a 555 -timer in astable mode.

\section*{V/F-CONVERSION}

\section*{Hardware}

The basic configuration of the scale described in this application note is shown in Figure 1.

FIGURE 1. System Diagram

A capacitive or resistive sensor's weight related capacitance or resistance change is transformed by a 555 timer (in astable mode) to a change of frequency. The output frequency \(f\) is determined by the formula:
\[
f=1.44 /((R a+2 R b) * C)
\]

The output high time is given by:
\[
\mathrm{t} 1=0.693^{*}(\mathrm{Ra}+\mathrm{Rb})^{*} \mathrm{C}
\]

The output low time is given by:
\[
\mathrm{t} 2=0.693^{*} \mathrm{Rb}^{*} \mathrm{C}
\]

This frequency is measured using the COP800 16-bit timer in the "input capture" mode. After calculation, the weight is displayed on a 2-way multiplexed LCD. Using this configuration a complete scale can be built using only two ICs and a few external passive components.
For more information on V/F converters generally used with voltage output sensors, refer to the literature listed in the reference section.

\section*{Frequency Measurement}

The COP 16 -bit timer is ideally suited for precise frequency measurements with minimum software overhead. This timer has three programmable operating modes, of which the "input capture" mode is used for the frequency measurement. Allocated with the timer is a 16 -bit "autoload/capture register'. The G3-I/O-pin serves as the timer capture input (TIO). In the "input capture" mode the timer is decremented with the instruction cycle frequency (tc). Each positive going edge at TIO (also neg. edge programmable) causes the timer value to be copied automatically to the autoload/capture register without stopping the timer or destroying its
contents. The "timer pending" flag (TPND) in the PSW-register is set to indicate a capture has occurred, and if the timer-interrupt is enabled, an interrupt is generated. The frequency measurement routine listed below executes the following operations (refer to the RAM/register definition file listed at the beginning for symbolic names used in the routines):
The timer is preset with FFFF Hex and is started by setting the TRUN bit, after which the software checks the TPNDflag in a loop (timer interrupt is disabled). When the TPND flag is set the first time, the contents of the capture register is saved in RAM locations STALO and STAHI (start value). The TPND pending flag now must be reset by the software. Then, another 255 positive going edges are counted (equal to 255 pulses) before the capture register is saved in RAM locations ENDLO, ENDH (end value). The shortest time period that can be measured depends on the number of instruction cycles needed to save the capture register, because with the next positive going edge on TIO the contents of the capture register is overwritten (worst case is 18 in struction cycles, which equals a max. frequency of 55.5 kHz at tc \(=1 \mu \mathrm{~s}\)).
The end-value is subtracted from the start-value and the result is restored in RAM locations STALO, STAHI. This value can then be used to calculate the time period of the frequency applied to TIO (G3) by multiplying it with the tctime and dividing the result by the number of pulses measured (\(\mathrm{N}=255\)).
\[
T=(\text { startvalue }- \text { endvalue) } * \mathrm{tc} / \mathrm{N}
\]
```

;THE FOLLOWING "INCLUDE FILE" IS USED
;AS PART OF THE DEFINITION- AND INITIALIZATION PHASE
;IN COP800 PROGRAMS.
; REGISTER NAMES,CONTROL BITS ETC ARE NAMED IN THE
; SAME WAY IN THE COP800 DATA-SHEETS.
; --- COP800 MEMORY MAPPED ---
; ******************************************************
; * PORT -, CONFIGURATION - AND CONTROL REGISTERS *
; ****************************************************

| PORTLD | $=0 D 0$ | $;$ L-PORT DATA REGISTER |
| :--- | :--- | :--- |
| PORTLC | $=0 D 1$ | $; L-P O R T$ CONFIGURATION |

```
```

        PORTLP = 0D2 ; L-PORT INPUT REGISTER
                PORTGD = OD4 ; G-PORT DATA REGISTER
                PORTGC = OD5 ; G-PORT CONFIGURATION
                PORTGP = OD6 ; G-PORT INPUT REGISTER
                    PORTD = ODC ; D-PORT (OUTPUT)
    PORTI = OD7 ; I-PORT (INPUT)
SIOR = OE9 ; MWIRE SHIFT REGISTER
TMRLO = OEA ; TIMER LOW-BYTE
TMRHI = OEB ; TIMER HIGH-BYTE
TAULO = OEC ; T.-AUTO REG.LOW BYTE
TAUHI = OED ; T.-AUTO REG.HIGH BYTE
CNTRL = OEE ; CONTROL REGISTER
PSW = OEF ; PSW-REGISTER
.FORM
;
;
;
;
; --- P S W REGISTER ---
GIE = 00 ; GLOBAL INTERRUPT ENABLE

```
\begin{tabular}{llll}
ENI & \(=\) & 01 & \(;\) EXTERNAL INTERRUPT ENABLE \\
BUSY & \(=\) & 02 & \(;\) MICROWIRE BUSY SHIFTING \\
IPND & \(=\) & 03 & \(;\) EXTERNAL INTERR. PENDING \\
ENTI & \(=\) & 04 & \(;\) TIMER INTERRUPT ENABLE \\
TPND & \(=\) & 05 & TIMER INTERRUPT PENDING \\
C & \(=\) & 06 & CARRY FLAG \\
HC & \(=\) & 07 & HALE CARRY ELAG
\end{tabular}

```

;**** REGISTER DEFINITIONS ****
COUNT = 0FO
COUNT2 = 0F1
COUNT3 = OF2
FLAG = OFF ;ELAG REGISTER
BIT DEFINITIONS FLAG REGISTER ****
POUND = 04 ;POUND=1:DISPLAY POUND SEGMENT
;POUND=0:DISPLAY kg SEGMENT
;***** G-PORT BIT DEFINITIONS *****
BP1 = 05 ; BACKPLANE 1

```
;TIME OF 255 PULSES, USING TIMER INPUT CAPTURE MODE

FMEAS:
; PERIOD TIME=
; (START-ENDVALUE) *tc/255 ; DIFEERENCE START-ENDVALUE ; IS STORED IN ENDLO, ENDHI
LD COUNT, \#000 ; LOAD PULSE COUNTER (255 PULSES)

LD \(X, \# T A U L O\);POINT TO AUTO REG. LOW B.
LD B,\#TMRLO ;PRESET TIMER
LD [B+],\#OFF ;REG. WITH FFFFh
LD [B],\#0EF
LD B, \#CNTRL
LD [B+],\#OD0 ;CNTRL-REG.: TIMER CAPTURE ;MODE,TIO POS. TRIGGERED, ; START TIMER

RBIT \#TPND,[B] ;RESET TIMER PENDING FLAG
L1: IFBIT \#TPND,[B]
JP SSTORE
JP L1
SSTORE:
RBIT \#TPND,[B]
LD \(A,[\mathrm{X}+]\); LOAD TIMER CAPTURE REG. ; LOW BYTE
\(X\) A, STALO ; STORE IN RAM
LD A, \([\mathrm{X}-]\);LOAD HIGH BYTE CAPTURE, ;POINT TO LOW BYTE CAPTURE
\(X\) A,STAHI ;STORE IN RAM
L256:
LD B, \#PSW
IFBIT \#TPND,[B]
JP DCOU
JP L256
DCOU: RBIT \#TPND,[B] ;RESET TIMER PENDING FLAG DRSZ COUNT ; DECREMENT PULSE COUNTER ; COUNTER = 0 ? ; NO, LOOP 'TIL 255 PULSES ; HAVE BEEN MEASURED

ESTORE:
; STORE END VALUE
\begin{tabular}{|c|c|c|}
\hline LD & CNTRL, \#00 & ; STOP TIMER \\
\hline LD & B, \#STALO & ; POINT TO START VALUE LOW BYTE \\
\hline LD & A, \([\mathrm{X}+\)] & ; LOAD END VALUE LOW BYTE \\
\hline X & A, [B] & ; LOAD ACCU WITH STARTVALUE LOW BYTE ;\& STALO WITH END VALUE LOW BYTE \\
\hline \multicolumn{3}{|l|}{SC} \\
\hline SUBC & A, [B] & ; SUBTRACT ENDVALUE LOW BYTE \\
\hline & & ; FROM STARTVALUE LOW BYTE \\
\hline \multirow[t]{2}{*}{X} & A, [\(\mathrm{B}^{+}\)] & ; STORE RESULT IN STALO, \\
\hline & & ;POINT TO STAHI \\
\hline LD & A, [X] & ; LOAD ACCU WITH ENDVALUE HIGH BYTE \\
\hline X & A, [B] & ; LOAD ACCU WITH STARTVALUE HIGH BYTE \\
\hline & & ; \& STAHI WITH ENDVALUE HIGH BYTE \\
\hline \multirow[t]{2}{*}{SUBC} & A, [B] & ; SUBTRACT ENDVALUE HIGH BYTE FROM \\
\hline & & ; Startvalue high byte \\
\hline X & A, [B] & ; STORE RESULT IN STAHI \\
\hline RET & & \\
\hline . END & & \\
\hline
\end{tabular}

\section*{2-WAY MULTIPLEXED LCD DRIVE}

Today a wide variety of LCDs, ranging from static to multiplex rates of 1:64 are available on the market. The multiplex rate of a LCD can be determined by the number of its backplanes (segment-common plate). The higher the multiplex rate the more individual segments can be controlled using only one line. e.g. a static LCD only has one backplane; only one segment can be controlled with one line. A two-way multiplexed LCD has two backplanes and two segments can be controlled with one line, etc.
Common to all LCDs is the fact that the drive voltage applied to the backplane(s) and segments has to be alternating. DC-components higher than 100 mV can cause electrochemical reactions (refer to manufacturer's spec), which reduce reliability and lifetime of the display.
If the multiplex ratio of the LCD is \(N\) and the amount of available outputs is \(M\), the number of segments that can be driven is:
\[
S=(M-N) * N
\]

So the maximum number of a 2-way mux LCD's segments that can be driven with a COP800 in 28-pin package (if all outputs can be used to drive the LCD) is:
\[
S=(18-2) * 2=32
\]

During one LCD refresh cycle tx (typical values for \(1 / t x=f x\) are in the range \(30 \mathrm{~Hz} \ldots 60 \mathrm{~Hz}\)), three different voltages levels: Vop, \(0.5^{*} \mathrm{Vop}\) and 0 V have to be generated. The "off" voltage across a segment is not OV as with static LCDs and also the "on" voltage is not Vop, but only a fraction of it. The ratio of "on" to "off" r.m.s.-voltage (discrimination) is determined by the multiplex ratio and the number of voltage levels involved. The most desirable discrimination ratio is one that maximizes the ratio of \(\mathrm{V}_{\mathrm{ON}}\) to \(\mathrm{V}_{\mathrm{OFF}}\), allowing the maximum voltage difference between activated and non-activated states. In general the maximum achievable ratio for any particular value of \(N\) is given by:
\[
\begin{gathered}
\left(V_{\mathrm{ON}} / \mathrm{V}_{\mathrm{OFF}}\right) \max =\operatorname{SQR}((\operatorname{SQR}(\mathrm{N})+1) /(\operatorname{SQR}(\mathrm{N})-1)) \\
\mathrm{SQR}=\text { square root }
\end{gathered}
\]

Using this formula the maximum achievable discrimination ratio for a 2-way multiplex LCD is 2.41, however, it is also possible to order a customized display with a smaller ratio. For ease of operation, most LCD drivers use equal voltage steps (\(0 \mathrm{~V}, 0.5^{*} \mathrm{Vop}, \mathrm{Vop}\)). Thus a discrimination ratio of 2.24 is achieved. When using the COP800 to drive a 2-way multiplexed LCD the only external hardware required to achieve the three voltage steps are 4 equal resistors that form two voltage dividers-one for each backplane
(Figure 1). The procedure is to set G4 and G5 to "0" for OV, to \(\mathrm{HI}-\mathrm{Z}\) (TRI-STATE®) for \(0.5^{*} \mathrm{Vop}\) and to " 1 " in order to establish Vop at the backplane electrodes.
With the COP800 each I/O pin can be set individually to TRI-STATE, " 1 " or " 0 ", so this procedure can be implemented very easily.
The current consumption of typical LCDs is in the range of \(3 \mu \mathrm{~A}\) to \(4 \mu \mathrm{~A}\) (at \(\mathrm{Vop}=4.5 \mathrm{~V}\), refresh rate 60 Hz) per square centimeter of activated area. Thus the backplane and segment terminals can be treated as \(\mathrm{Hi}-\mathrm{Z}\) loads. At high refresh rates the LCD's current consumption increases dramatically, which is the reason why many LCD manufacturers recommend not using a refresh frequency higher than 60 Hz .

\section*{Timing Considerations}

As shown in Figures 2 and 3, one LCD refresh cycle tx is subdivided into four equally distant time sections ta, tb, tc and td during which the backplane and segment terminals have to be updated in order to switch a specific segment on or off. Considering a refresh frequency of 50 Hz (tx \(=\) \(20 \mathrm{~ms}) \mathrm{ta}, \mathrm{tb}, \mathrm{tc}\) and td are equal to 5 ms ; COP800 running from an external clock of 2 MHz has an internal instruction cycle time of \(5 \mu \mathrm{~s}\) and a typical current consumption of less than \(350 \mu \mathrm{~A}\) (at \(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\) and room temperature), thus meeting both the requirements of low current consumption and additional computing power between LCD refreshes.
The timing is done using the COP800's 16-bit timer in the PWM autoload mode. The timer and the assigned 16 -bit autoload register are preset with proper values. By setting the TRUN-flag in the CNTRL-register the timer is decremented each instruction cycle. A flag (TPND) is set at underflow and the timer is automatically reloaded with the value stored in the autoload-register. Timer underflow can also be programmed to generate an interrupt.

\section*{Segment Control}

Figure 2 shows the voltage-waveforms applied to the two backplane-electrodes (a) and the waveform at a segementelectrode (b), which is needed to switch segment \(A\) on and sogmont Q off. The resulting voitage over the segments (o and d) is achieved by subtracting waveform (b) from BP1 (segment \(A\)) and waveform (b) from BP2 (segment \(B\)).
Figure 3 shows the four different waveforms which must be generated to meet all possible combinations of two segments connected to the same driving terminal (off-off, onoff, off-on, on-on).
Figure 4 shows the internal segment and backplane connections for a typical 2-way mux LCD.

TL/DD/10788-7
FIGURE 2. LCD Waveforms

\section*{Resulting Voltages at Segments}

BP1 voltage-segment voltage (1) BP2 voltage-segment voltage (1)

\[
\left|-{ }_{t a}+f_{t b}\right|_{t c} \mid
\]

BP1 voltage - segment voltage (3) BP2 voltage-segment voltage (3)

FIGURE 3. Backplane and Segment Voltage Scheme for 1:2 Mux LCD-Drive

FIGURE 4. Customized LCD Display (Backplane and Segment Organization)

\section*{LCD Drive Subroutine}

The LCD drive subroutine DISPL converts a 16-bit binary value to a 24 -bit \(B C D\)-value for easier display data fetch. The drive subroutine itself is built up of a main routine doing the backplane refresh and 7 subroutines (SEGO, SEG1, SEG2, SEG3, SEGOUT, TTPND, DISPD). The subroutines SEG0 to SEG4 are used to get the LCD segment data from a look-up table in ROM for time phases ta, tb, tc and td respectively. Subroutine SEGOUT writes the segment data for each time phase to the corresponding output ports. One time phase takes 5 ms , giving a total refresh cycle time of \(20 \mathrm{~ms}(50 \mathrm{~Hz})\). The exact timing is done by using the COP800 16-bit timer in the PWM autoload mode. In that mode the timer is reloaded with the value stored in the autoload register on every timer underflow. At the same time the timer pending flag is set. The subroutine TTPND checks this flag in a loop. If the timer pending flag is set, this subroutine resets it and returns to the calling program. Thus a 5 ms time delay is created before the segment and backplane data for the next time phase is written to the output ports. Finally the subroutine DISPD switches off the LCD by setting the backplane and segment connections to " 0 ". In this digital scale application a frequency measurement is made while the LCD is off. Then the weight is calculated from this frequency and is displayed for 10 s . After this 10 s the LCD is switched off again and the COP800 is programmed to enter the current saving HALT mode (\(\mathrm{I}_{\mathrm{DD}}<10 \mu \mathrm{~A}\)). A new weight cycle on the digital scale is initiated by pressing a push button, which causes a reset of the microcontroller.

\section*{CONCLUSIONS}

National Semiconductor's COP800 Microcontroller family is ideally suited for use with V/F converters and 2-way multiplexed LCDs, as they offer features, which are essential for these types of applications. The high resolution, 3-mode programmable 16 -bit timer allows precise frequency measurement in the input capture mode with minimum software overhead. The timer's PWM autorelead mode offers an easy way to implement a precise timebase for the LCD refresh. The COP800's programmable I/O ports provide flexibility in driving 2 -way multiplexed LCDs directly. The COP800 family, fabricated using M2CMOS technology, offers both low voltage (min \(\mathrm{V}_{\mathrm{CC}}\) of 2.5 V) and low current drain.

\section*{REFERENCES}
1. National Semiconductor, "Linear Databook 2, Rev. 1" LM331, LM331A datasheets pages 3-285 ff.
2. National Semiconductor, "Linear Applications Databook, 1986", "Versatile monolithic V/Fs can compute as well as convert with high accuracy", pages 1213 ff .
3. National Semiconductor, "Microcontrollers Databook, Rev. 1", COP820C/COP840C datasheets pages 2-7 ff.
4. U. Tietze, Ch. Schenk, "Halbleiter-Schaltungstechnik" 8.Auflage 1986, Springer Verlag, ISBN 0-387-16720-X, "Funktionsgeneratoren mit steuerbarer Frequenz", pages 465 ff , "Multivibratoren", pages 183 ff .
5. Lucid Displays, "LCD design guide", English Electric Valve Company Ltd., Chelmsford, Essex, Great Britain.

\section*{APPENDIX—Software Routines}
```

;LOOKUP TABLE FOR CUSTOMIZED 2-WAY MULIPLEX LCD
. = X'200 ;START LOOK-UP TABLE AT ROM ADRESS 200
;TIMEPHASE Ta 7 SEGMENT DATA
.BYTE 004 ;"0" AND ".0"
.BYTE 00E ;"1" AND ".1"
.BYTE 008 ;"2" AND ".2"
.BYTE 008 ;"3" AND ".3"
.BYTE 002 ;"4" AND ".4"
.BYTE 001 ;"5" AND ".5"
.BYTE 001 ;"6" AND ".6"
.BYTE 00C ;"7" AND ".7"
.BYTE 000 ;"8" AND ".8"
.BYTE 000 ;"9" AND ".9"
.BYTE 00F ;" " AND "." "
;SPECIAL SEGMENTS TIMPHASE Ta
.BYTE 001 ;"LB"
.BYTE 000 ;"LB 2"
.BYTE 003 ;"KG"
.BYTE 002 ;"KG 2"
. = .+ 1
;TIMEPHASE Tb 7 SEGMENT DATA
.BYTE 002 ;"0"
.BYTE 00E ;"1"
.BYTE 003 ;"2"
.BYTE 00A ;"3"
.BYTE 00E ;"4"
.BYTE 00A ;"5"
.BYTE 002 ;"6"
.BYTE 00E ;"7"

```
```

        .BYTE 002 ;"8"
        .BYTE 00A ;"9"
        .BYTE OOF ;" "
        .BYTE 000 ;".0"
        .BYTE 0OC ;".1"
        .BYTE 001 ;".2"
        .BYTE 008 ;".3"
        .BYTE OOC ;".4"
        .BYTE 008 ;".5"
        .BYTE 000 ;".6"
        .BYTE 00C ;".7"
        .BYTE 000 ;".8"
        .BYTE 008 ;".9"
    .BYTE OOD ;"."
    . LOCAL
    TTPND:
LD B,\#PSW
\$LOOP:
IFBIT \#TPND,[B]
JP SEND
JP \$LOOP
\$END:
RBIT \#TPND,[B]
LD B,\#PORTGD
RET
. LOCAL
. = . +1
;TIMEPHASE TC }7\mathrm{ SEGMENT DATA
.BYTE 00B ;"O" AND ".0".
.BYTE 001 ;"1" AND ".1"
.BYTE 007 ;"2" AND ".2"
.BYTE 007 ;"3" AND ".3"
.BYTE 00D ;"4" AND ".4"
.BYTE OOE ;"5" AND ".5"
.BYTE OOE ;"6" AND ".6"
.BYTE 003 ;"7" AND ".7"
.BYTE OOF ;"8" AND ".8"
.BYTE 00F % ;"9" AND ".9"
COPY:
;COPY 2BYTES POINTED TO
;BY B AND B+1 TO RAM
;POINTED TO BY X AND X+1
LD A,[B+]
X A,[X+]
LD A,[B+]
X A,[X+]
RET
.LOCAL

```
```

        ; TIMEPHASE Td 7 SEGMENT DATA
        .BYTE OOD ;"0"
        .BYTE 001 ;"1"
        .BYTE 00C ;"2"
        .BYTE 005 ;"3"
        .BYTE 001 ;"4"
        .BYTE 005 ;"5"
        .BYTE OOD ;"6"
        .BYTE 001 ;"7"
        .BYTE OOD ;"8"
        .BYTE 005 ;"9"
        .BYTE 000 ;" "
        .BYTE OOF ;".0"
        .BYTE 003 ;".1"
        .BYTE OOE ;".2"
        .BYTE 007 ;".3"
        .BYTE 003 ;".4"
        .BYTE 007 ;".5"
        .BYTE 00F ;".6"
        .BYTE 003 ;".7"
        .BYTE . 00F ;".8"
        .BYTE 007 ;".9"
    .BYTE 002 ;"."
    ; SPECIAL SEGMENTS TIMEPHASE Tb
    .BYTE 003 ;"LB"
    .BYTE 003 ;"LB 2 "
    .BYTE 001 ;"KG"
    .BYTE 001 ;"KG 2"
    ; SPECIAL SEGMENTS TIMPHASE TC
    .BYTE 002 ;"LB"
    .BYTE 003 ;"LB 2"
    .BYTE 000 ;"KG"
    .BYTE 001 ;"KG 2"
    ; SPECIAL SEGMENTS TIMEPHASE Td
    .BYTE 000 ;;"LB"
    .BYTE 000 ;"LB 2"
    .BYTE 002 ;"KG"
    .BYTE 002 ;"KG 2"
    . END
    ;DISPL:
;INPUT PARAMETER: COUNT2 =RAM REGISTER, WHICH CONTAINS
;THE DISPLAY TIME IN SEC.
;EXAMPLE COUNT2= 1-> DISPLAY TIME IS 1SEC.
;LCD DRIVE ROUTINE FOR CUSTOMIZED 2 WAY MULTIPLEX
; LCD

```

TL/DD/10788-12
```

;ROUTINE CONVERTS BCD DATA STORED IN RAM LOCATIONS
;BCDLO, BCDHI INTO LCD OUTPUT DATA STORED AT
;MWBUFO = LPORT DATA
;MWBUF1 = DPORT DATA
;MNBUF2 = G-PORT DATA (GO,G1 ONLY, OTHER BITS
; STAY UNCHANGED)
;SUBROUTINES INCLUDED:
;SEGO: GETS LCD SEGMENT DATA FOR TIMEPHASE TA
;SEG1: GETS LCD SEGMENT DATA FOR TIMEPHASE TB
;SEG2: GETS LCD SEGMENT DATA FOR TIMEPHASE TC
;SEG3: GETS LCD SEGMENT DATA FOR TIMEPHASE TD
;DISPD: SWITCHES THE DISPLAY OFF AND
; CONEIGURES G-,L- AND D-PORTS
;TTPND: CHECKS TIMER PENDING FLAG (REFRESH
; RATE GENERATION)
;SEGOUT: OUTPUTS LCD SEGMENT AND BACKPLANE DATA
;SUBROUTINES SEGO... SEG1 MUST FOLLOW DIRECTLY AFTER LOOK-UP
;TABLE, BECAUSE OF THE USE OF THE LAID-INSTRUCTION
.LOCAL
SEG0:
LD B,\#OFF1 ;POINT TO OFFSET 1 REG.
LD [B+],\#000
LD [B+],\#000
LD A,\#00B
\$TWO:
IFBIT \#05,BCDHI ;WEIGHT >= 200 POUNDS?
INCA ;YES DISPLAY DIGIT5 ("2")
\$POUND:
IFBIT \#POUND,FLAG
JP \$LPORT
ADD A,\#002
SLPORT:
X A,[B]
LD X,\#BCDLO
LD B,\#MWBUF0
LD A,[X]
AND A,\#OOF ;ELIMINATE DIGIT1 BITS
ADD A,OFF2
LAID ;GET DIGIT1 DATA
X A,[B] ;SAVE DIGIT1 DATA
LD A,[X+]
AND A,\#OFO ;ELIMINATE DIGIT1 BITS
SWAP A
ADD A,OFF1 ;ALWAYS DISPLAY DECIMAL POINT
LAID ;GET DIGIT1 DATA
SWAP A
OR A,[B] ;STORE DIGIT1 AND
X A,[B+] ;DIGIT2 DATA IN MWBUF0

```
\$DPORT:
LD \(A,[\mathrm{X}]\)
IFBIT \#04,BCDHI
JP \$ADD1
AND A,\#00F
ADD A,OFF2 ;DISPLAY NO LEADING ZERO
JP \(\quad\) GGET
\$ADD1:
AND A, \#00F
ADD A,OFF1 ;DISPLAY "1" (DIGIT4)
\$GET:
LAID ;GET DIGIT3 DATA
\(\mathrm{X} \quad \mathrm{A},[\mathrm{B}+]\); STORE DIGIT3 DATA IN ; MWBUF1
\$GPORT:
LD A, OFF3
LAID ;GET DIGIT5 ("2") AND SPECIAL
; SEGMENT DATA
OR A, \#OFC ; SET BITS 2...7 TO 1
X A,[B] ;SAVE DATA IN MWBUF2 RET
SEG1:
\begin{tabular}{ll}
LD & B,\#OFF1 \\
LD & {\([B+], \# 01 B\)} \\
LD & {\([B+], \# 010\)} \\
LD & A,\#056 \\
JP & \(\$ T W O\)
\end{tabular}

SEG2:
\begin{tabular}{ll}
LD & B, \#OFF1 \\
LD & {\([\mathrm{B}+], \# 030\)} \\
LD & {\([\mathrm{B}+], \# 030\)} \\
LD & A,\#05A \\
JP & \(\$ \mathrm{TWO}\)
\end{tabular}

SEG3:
\begin{tabular}{ll}
LD & B,\#OFF1 \\
LD & {\([B+], \# 04 B\)} \\
LD & {\([B+], \# 040\)} \\
LD & A,\#05E \\
JP & STWO \\
.LOCAL &
\end{tabular}

DISPL:
IFBIT \#POUND,FLAG
JP MULT2
JP LDT
MULT2:
\(\mathrm{LD} \quad \mathrm{B}, \# \mathrm{BUF} 12 \mathrm{LO} \quad\); (Multiplication of \(\mathrm{kg} * 2.2\))
\begin{tabular}{ll}
& \\
LD & X,\#STALO \\
JSR & MULBI168 \\
LD & B,\#BUF12LO \\
JSR & COPY \\
LD & STAHI+1,\#00 \\
LD & DIVO,\#10 \\
JSR & DIVBI248
\end{tabular}

LDT:

LD
LD B,\#TMRLO
LD [B+],\#0E8 ; LOAD TIMER WITH 1000 (03E8h)
LD [B+],\#003; (=50 Hz LCD REFRESH AT tc=5us)
LD [B+],\#0E8 ; LOAD AUTOREG. WITH 1000
LD [B+],\#003
LD [B+],\#090
LD
DISP1:
JSR
JSR
TP0:
SBIT
LD
RBIT
SBIT
RBIT \#BP2,[B]
JSR
JSR
JSR
TP1:
SBIT \#BP2,[B]
LD A, \([B+]\);POINT TO G-CONF.-REG.
RBIT \#BP1,[B]
SBIT \#BP2,[B]
LD A, \(\mathrm{B}-\mathrm{B}\)
RBIT \#BP1,[B]
JSR SEGOUT
JSR SEG2 ;GET 7-SEGM. DATA FOR TC
JSR
TP2:
RBIT \#BP1,[B]
LD \(A,[B+]\);POINT TO G-CONFIG.-REG.
RBIT \#BP2,[B]
SBIT \#BP1,[B]
LD A, \([B-]\);POINT TO G-DATA-REG.
RBIT \#BR2,[B]
JSR SEGOUT
\begin{tabular}{|c|c|c|c|}
\hline & JSR & SEG3 & \\
\hline & JSR & TTPND & \\
\hline \multirow{13}{*}{TP3:} & RBIT & \#BP1, [B] & \\
\hline & RBIT & \#BP2, [B] & \\
\hline & LD & \(\mathrm{A},[\mathrm{B}+]\) & \\
\hline & RBIT & \#BP1, [B] & \\
\hline & SBIT & \#BP2, [B] & \\
\hline & JSR & SEGOUT & \\
\hline & DRSZ & COUNT & \\
\hline & JP & DISP1 & \\
\hline & LD & COUNT, \#50 & \\
\hline & DRSZ & COUNT2 & ; 10SEC OVER? \\
\hline & JP & DISP1 & ; NO, DISPLAY WEIGHT \\
\hline & JSR & DISPD & \\
\hline & RET & & ; YES ROUTINE FINISHED \\
\hline \multirow[t]{9}{*}{DISPD:} & & & ;SWITCH DISPLAY OFF \\
\hline & LD & B,\#PORTLD & \\
\hline & LD & [\(\mathrm{B}+\)], \#000 & ; OUTPUT 0 TO L PORT \\
\hline & LD & [\(\mathrm{B}+\mathrm{]}\), \#0FF & ; L-PORT = OUTPUT PORT \\
\hline & LD & B, \#PORTGD & \\
\hline & LD & [\(\mathrm{B}+\)], \#000 & ; OUTPUT 0 TO G OUTPUTS \\
\hline & LD & [B+], \#037 & ; G0. . G2, G4, G5=OUTPUTS \\
\hline & LD & PORTD, \#000 & ; OUTPUT 0 TO D-PORT. \\
\hline & RET & & \\
\hline \multicolumn{4}{|l|}{SEGOUT:} \\
\hline & LD & B, \#MWBUF 0 & \\
\hline & LD & A, \([\mathrm{B}+]\) & ; POINT TO MWBUF1 \\
\hline & X & A, PORTLD & ; OUTPUT 7 SEG. DATA IN ;MWBUFO TO L-PORT \\
\hline & LD & A, [\(\mathrm{B}^{\text {+ }}\)] & ;POINT TO MWBUF2 \\
\hline & X & A, PORTD & ;OUTPUT MWBUF1 TO D-PORT \\
\hline & LD & X, \#PORTGD & \\
\hline & LD & A, [X\(]\) & \\
\hline & AND & A, [B] & \begin{tabular}{l}
; AND MWBUF2 WITH PORTGD \\
; LEAVE BITS 2...7 UNCHANGED
\end{tabular} \\
\hline & \multirow[t]{2}{*}{X} & A, [B] & ; STORE RESULT (\({ }^{\prime}\) ') IN \\
\hline & & & ; MWBUF2, LOAD A WITH \\
\hline & \multirow[t]{2}{*}{AND} & A, \#003 & ;ORIGINAL MWBUF2 VALUE ; AND 007 WITH ORIGINAL \\
\hline & & & \begin{tabular}{l}
; MWBUF2 (\(\mathrm{A}^{\prime \prime}\)), SET BITS 0,1 TO \\
; CORRECT VALUE
\end{tabular} \\
\hline & \multirow[t]{2}{*}{OR} & A, [B] & ; OR A' WITH A'',RESTORE ORIGINAL \\
\hline & & & ;G2...G7 BITS . \\
\hline & X & A, [X] & ; OUTPUT RESULT TO G-PORT \\
\hline & RET & & \\
\hline
\end{tabular}
```

;16 BIT BINARY TO BCD CONVERSION
;THE MEMORY ASSIGNMEMTS ARE AS FOLLOWS:
;BINLO: RAM ADRESS BINARY LOW BYTE
;BCDLO: RAM ADRESS BCD LOW BYTE
; COUNT: RAM ADRESS SHIFT COUNTER (OFO...OFB,OFF)
; BCD NUMBER IN BCDLO,BCDLO+1,BCDLO+2
;
;MEMORY ADRESS M(BINLO+1) M(BINLO)
;DATA
;
;MEMORY ADRESS M(BCDLO+2) M(BCDLO+1) M(BCDLO)
;DATA
;
BINLO = STALO
.LOCAL
\$BCDT = (BCDLO + 3) \& OF
\$BINT = (BINLO + 2) \& OF
BINBCD:
LD COUNT,\#16 ;LOAD CONTROL REGISTER WITH
;NUMBER OF LEFTSHIFTS TO
; EXECUTE
LD B,\#BCDLO ; LOAD BCD-NUMBER LOWEST BYTE
; ADRESS
$CBCD:
    LD [B+],#00
    IFBNE #$BCDT
JP \$CBCD
\$LSH: ;LEFTSHIFT BINARY NUMBER
LD B,\#BINLO
RC
$LSHFT:
    LD A,[B]
    ADC A,[B] ;IF MSB IS SET, SET CARRY
    X A,[B+]
    IFBNE #$BINT
JP \$LSHFT
LD B,\#BCDLO
$BCDADD:
    LD A,[B]
    ADD A,#066 ;ADD CORRECTION FACTOR
    ADC A,[B] ;LEFTSHIFT BCD NUMBER
        ; (BCD=2**WEIGHT OF
        ;BINARY BIT(=CARRY BIT))
        DCOR A ;DECIMAL CORRECT ADDITION
    X A,[B+]
    IFBNE #$BCDT
JP \$BCDADD
DRSZ COUNT ;DECREMENT SHIFT COUNTER
JP \$LSH
RET
. LOCAL

```
; BINARY DIVIDE 24BIT BY 8BIT (\(\mathrm{Q}=\mathrm{Y} / \mathrm{Z}\))
;YL: LOW BYTE RAM ADRESS DIVIDEND
;ZL: LOW BYTE RAM ADRESS DIVISOR
;CNTR: RAM ADRESS SHIFT COUNTER (OFO...OFB,OFF)
; QUOTIENT AT RAM LOCATIONS YL..YL+2
; REMAINDER AT YL+3
; QUOTIENT IS ALL '1's IF DIVIDE BY ZERO, REMAINDER ;THEN CONTAINS YL
; THE MEMORY ASSIGNMENTS ARE AS FOLLOWS:
;
; \(\quad \mathrm{M}(\mathrm{YH}+1) \quad \mathrm{M}(\mathrm{YH}) \quad \mathrm{M}(\mathrm{YL}+1) \quad \mathrm{M}(\mathrm{YL})\)
; \(0 \quad Y(H I G H\) BYTE \() \quad Y \quad Y(L O W ~ B Y T E) ~\)
;
; \(\quad \mathrm{M}(\mathrm{ZL})\)
; \(\quad 2\)
;
; ROUTINE NEEDS 1.21ms FOR EXECUTION AT tc=1us
```

ZL = DIVO
YL = STALO
CNTR = COUNT
. LOCAL
\$YH = YL+2
$BTY = ($YH\&00F)+2 ;PARAMETER FOR "IFBNE"-INSTR.

```

DIVBI248:
LD CNTR,\#018 ; INITIALIZE SHIFT COUNTER
LD B, \#\$YH+1 ;FOR 24 COUNTS
LD [B],\#000 ;PUT 0 IN M(YH+1)
LD \(\mathrm{X}, \#\) \#YH+1
\$LSHFT:
LD B,\#YL ;LEET SHIFT DIVIDEND
RC
\$LUP:
LD \(A,[B]\)
ADC A, \(B]\)
\(X \quad A,[B+]\)
IFBNE \#\$BTY
JP \$LUP
LD B,\#ZL
IFC
JP \(\$\) SUBT
\$TSUBT:
\begin{tabular}{ll}
SC & \\
LD & A,[X] \\
SUBC & A,[B] \\
IFNC & \\
JP & STEST
\end{tabular}
```

\$SUBT:

```
 ; SUBTRACT Z FROM M(YH+1,YH+2)
 LD \(A,[X]\)
 SUBC \(A,[B]\)
 \(\mathrm{X} \quad \mathrm{A},[\mathrm{X}]\)
 LD B,\#YL
 SBIT \#0,[B]
§TEST:
 DRSZ CNTR ; 24 SHIFTS EXECUTED?
 JP \(\$\) LSHFT ; NO, LEFT SHIFT DIVIDEND
 RET
 . LOCAL
;BINARY MULTIPLIES A 16BIT VALUE (X1)
;WITH A 8BIT VALUE (X2): M = X1 * X2
; X1L: RAM ADRESS X1 LOW BYTE
;X2L: RAM ADRESS X2
;COUNT RAM ADRESS SHIFT COUNTER
;M IS STORED AT RAM ADRESSES X2L...X2L+2
; THE MEMORY ASSIGNMEMTS ARE AS FOLLOWS:
;MEMORY M(X2L+2) M(X2L+1) M(X2L)
;DATA \(0 \quad 0 \quad\) X2

;MEMORY M(X1L+1) M(X1L)
;DATA X1(H.B.) X1(LOW BYTE)
;THE EXECUTION TIME FOR THE ROUTINE AT tc=1us IS 240us
;
. LOCAL

MULBI168:
\begin{tabular}{llll}
LD & COUNT, \#9 & ;PRESET SHIFT COUNTER \\
LD & {\([\mathrm{B}+], \# 00\)} & ;PRESET \(\mathrm{X} 2 \mathrm{~L}+1, \mathrm{X} 2 \mathrm{~L}+2 \mathrm{WITH}\), \\
LD & {\([\mathrm{B}], \# 00\)}
\end{tabular}
LD [B],\#00
RC
\$LOOP:
\begin{tabular}{lll}
LD & \(A,[B]\) & ;RIGHT SHIFT \\
RRCA & & \\
\(X\) & \(A,[B-]\) & \\
LD & \(A,[B]\) \\
RRCA & & \\
X & \(A,[B-]\) & \\
LD & \(A,[B]\) \\
RRCA & & \\
\(X\) & \(A,[B+]\) &
\end{tabular}

\section*{PC® MOUSE Implementation Using COP800}

\begin{abstract}
The mouse is a very convenient and popular device used in data entry in desktop computers and workstations. For desktop publishing, CAD, paint or drawing programs, using the mouse is inevitable. This application note will describe how to use the COP822C microcontroller to implement a mouse controller.

\section*{INTRODUCTION}

Mouse Systems was the first company to introduce a mouse for PCs. Together with Microsoft and Logitech, they are the most popular vendors in the PC mouse market. Most mainstream PC programs that use pointing devices are able to support the communication protocols laid down by Mouse Systems and Microsoft.
\end{abstract}

A typical mouse consists of a microcontroller and its associated circuitry, which are a few capacitors, resistors and transistors. Accompanying the electronics are the mechanical parts, consisting of buttons, roller ball and two disks with slots. Together they perform several major functions: motion detection, host communication, power supply, and button status detection.

\section*{MOTION DETECTION}

Motion detection with a mouse consists of four commonly known mechanisms. They are the mechanical mouse, the opto-mechanical mouse, the optical mouse and the wheel mouse.
The optical mouse differs from the rest as it requires no mechanical parts. It uses a special pad with a reflective surface and grid lines. Light emitted from the LEDs at the bottom of the mouse is teilected by tie suriace and movement is detected with photo-transistors.
The mechanical and the opto-mechanical mouse use a roller ball. The ball presses against two rollers which are connected to two disks for the encoding of horizontal and vertical motion. The mechanical mouse has contact points on the disks. As the disks move they touch the contact bars,
which in turn generates signals to the microcontroller. The opto-mechanical mouse uses disks that contain evenly spaced slots. Each disk has a pair of LEDs on one side and a pair of photo-transistors on the other side.
The wheel mouse has the same operation as the mechanical mouse except that the ball is eliminated and the rollers are rotated against the outside surface on which the mouse is placed.

\section*{HOST COMMUNICATION}

Besides having different operating mechanisms, the mouse also has different modes of communication with the host. It can be done through the system bus, the serial port or a special connector. The bus mouse takes up an expansion slot in the PC. The serial mouse uses one of the COM ports.
Although the rest of this report will be based on the optomechanical mouse using the serial port connection, the same principle applies to the mechanical and the wheel mouse.

\section*{MOTION DETECTION FOR THE OPTO-MECHANICAL MOUSE}

The mechanical parts of the opto-mechanical mouse actually consist of one roller ball, two rollers connected to the disks and two pieces of plastic with two slots on each one for LED light to pass through. The two slots are cut so that they form a 90 degree phase difference. The LEDs and the photo-transistors are separated by the disks and the plastic. As the disks move, light pulses are received by the phototransistors. The microcontroller can then use these quadrature signals to decode the movement of the mouse.
Figure la shows the arrangement of the LEDs, diisks, piastic and photo-transistors. The shaft connecting the disk and the ball is shown separately on Figure 1b. Figure 2 shows the signals obtained from the photo-transistors when the mouse moves. The signals will not be exactly square waves because of unstable hand movements.

b
FIGURE 1

TL/DD/10799-3

Signals at phototransistors are similar for vertical and horizontal motion.
Track 1 leads track 0 by 90 degrees
FIGURE 2

\section*{RESOLUTION, TRACKING SPEED}

\section*{AND BAUD RATE}

The resolution of the mouse is defined as the number of movement counts the mouse can provide for each fixed distance travelled. It is dependent on the physical dimension of the ball and the rollers. It can be calculated by measuring the sizes of the mechanical parts.
An example for the calculation can be shown by making the following assumptions:
- The disks have 40 slots and 40 spokes
- Each spoke has two data counts
(This will be explained in the section "An Algorithm for Detecting Movements')
- Each slot also has two data counts
- The roller has a diameter of 5 mm

For each revolution of the roller, there will be \(40 \times 2 \times 2=\) 160 counts of data movement. At the same time, the mouse would have travelled a distance of \(\pi \times 5=15.7 \mathrm{~mm}\). Therefore the resolution of the mouse is \(15.7 / 160=\) 0.098 mm per count. This is equivalent to 259 counts or dots per inch (dpi).
The tracking speed is defined as the fastest speed that the mouse can move without the microcontroller losing track of the movement. This depends on how fast the microcontroller can sample the pulses from the photo-transistors. The effect of a slow tracking speed will contribute to jerking movements of the cursor on the screen.

The baud rate is fixed by the software and the protocol of the mouse type that is being emulated. For mouse systems and microsoft mouse, they are both 1200 . Baud rate will affect both the resolution and the tracking speed. The internal movement counter may overflow while the mouse is still sending the last report with a slow baud rate. With a fast baud rate, more reports can be sent for a certain distance moved and the cursor should appear to be smoother.

\section*{POWER SUPPLY FOR THE SERIAL MOUSE}

Since the ecrial port of the PC has no powor cupply lince, the RTS, CTS, DTR and DSR RS232 interface lines are
utilized. Therefore the microcontroller and the mouse hardware should have very little power consumption. National Semiconductor's COP822C fits into this category perfectly. The voltage level in the RS232 lines can be either positive or negative. When they are positive, the power supply can be obtained by clamping down with diodes. When they are negative, a 555 timer is used as an oscillator to transform the voltage level to positive. The 1988 National Semiconductor Linear 3 Databook has an example of how to generate a variable duty cycle oscillator using the LMC555 in page 5-282.
While the RTS and DTR lines are used to provide the voltage for the mouse hardware, the TXD line of the host is utilized as the source for the communication signals. When idle, the TXD line is in the mark state, which is the most negative voltage. A pnp transistor can be used to drive the voltage of the RXD pin to a voltage level that is compatible with the RS232 interface standard.

\section*{AN ALGORITHM FOR DETECTING MOVEMENTS}

The input signal of the photo-transistors is similar to that shown in Figure 2. Track 1 leads track 0 by 90 degrees. Movement is recorded as either of the tracks changes state. State tables can be generated for clockwise and counterclockwise motions.
With the two tracks being 90 degrees out of phase, there could be a total of four possible track states. It can be observed that the binary values formed by combining the present and previous states are unique for clockwise and coun-ter-clockwise motion. A sixteen entry jump table can be formed to increment or decrement the position of the cursor. If the value obtained does not correspond to either the clockwise or counter-clockwise movement, it could be treated as noise. In that case either there is noise on the microcontroller input pins or the microcontroller is tracking motions faster than the movement of the mouse. A possible algorithm can be generated as follows. The number of instruction cycles for some instructions are shown on the left.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{(TRK1, TRK0) \({ }_{\mathbf{t}}\)} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& (\text { TRK 1, TRK0 })_{t-1} \\
& \text { CCW }
\end{aligned}
\]} & Binary Value \\
\hline 0 & 1 & 0 & 0 & 4 \\
\hline 1 & 1 & 0 & 1 & D \\
\hline 1 & 0 & 1 & 1 & B \\
\hline 0 & 0 & 1 & 0 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{(TRK1, TRK0) \({ }_{\text {t }}\)} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& (\text { TRK } 1, \text { TRK } 0)_{t-1} \\
& \text { CW }
\end{aligned}
\]} & Binary Value \\
\hline 1 & 0 & 0 & 0 & 8 \\
\hline 0 & 0 & 0 & 1 & 1 \\
\hline 0 & 1 & 1 & 1 & 7 \\
\hline 1 & 1 & 1 & 0 & E \\
\hline
\end{tabular}

Going through the longest route in the sensor routine takes 75 instruction cycles. So at 5 MHz the microcontroller can track movement changes within \(150 \mu \mathrm{~s}\) by using this algorithm.

\section*{MOUSE PROTOCOLS}

Since most programs in the PC support the mouse systems and microsoft mouse, these two protocols will be discussed here. The protocols are byte-oriented and each byte is framed by one start-bit and two stop-bits. The most commonly used reporting mode is that a report will be sent if there is any change in the status of the position or of the buttons.

\section*{MICROSOFT COMPATIBLE DATA FORMAT}

Bit
\begin{tabular}{cccccccc}
\(\mathbf{6}\) & \(\mathbf{5}\) & \(\mathbf{4}\) & \(\mathbf{3}\) & \(\mathbf{2}\) & \(\mathbf{1}\) & \(\mathbf{0}\) & Number \\
\(\mathbf{1}\) & L & R & Y 7 & Y 6 & X 7 & X 6 & Byte 1 \\
\(\mathbf{0}\) & X 5 & X 4 & X 3 & X 2 & X 1 & X 0 & Byte 2 \\
\(\mathbf{0}\) & Y 5 & Y 4 & Y 3 & Y 2 & Y 1 & Y 0 & Byte 3
\end{tabular}

L, R \(=\) Key data (Left, Right key) \(1=\) key depressed
X0-X7 \(=\mathrm{X}\) distance 8 -bit two's complement value -128 to +127
\(Y 0-Y 7=Y\) distance 8-bit two's complement value -128 to +127
Positive \(=\) South
In the Microsoft Compatible Format, data is transferred in the form of seven-bit bytes. \(Y\) movement is positive to the south and negative to the north.

\section*{FIVE BYTE PACKED BINARY FORMAT (MOUSE SYSTEMS CORP)}
\begin{tabular}{ccccccccc}
\(\mathbf{7}\) & \(\mathbf{6}\) & \(\mathbf{5}\) & \(\mathbf{4}\) & \(\mathbf{3}\) & \(\mathbf{2}\) & \(\mathbf{1}\) & \(\mathbf{0}\) & \begin{tabular}{c}
Bit \\
Number
\end{tabular} \\
\(\mathbf{1}\) & \(\mathbf{0}\) & \(\mathbf{0}\) & \(\mathbf{0}\) & 0 & \(\mathrm{~L}^{*}\) & \(\mathrm{M}^{*}\) & \(\mathrm{R}^{*}\) & Byte 1 \\
X 7 & X 6 & X 5 & X 4 & X 3 & X 2 & X 1 & X 0 & Byte 2 \\
Y 7 & Y 6 & Y 5 & Y 4 & Y 3 & Y 2 & Y 1 & Y 0 & Byte 3 \\
X 7 & X 6 & X 5 & X 4 & X 3 & X 2 & X 1 & X 0 & Byte 4 \\
Y 7 & Y 6 & Y 5 & Y 4 & Y 3 & Y 2 & Y 1 & YO & Byte 5
\end{tabular}
\(L^{*}, M^{*}, R^{*}=\) Key data (Left, Middle, Right key), \(0=\) key depressed
X0-X7 \(=\mathrm{X}\) distance 8-bit two's complement value -127 to +127
Y0-Y7 \(=\mathrm{Y}\) distance 8-bit two's complement value -127 to +127
In the Five Byte Packed Binary Format data is transferred in the form of eight-bit bytes (eight data bits without parity). Bytes 4 and 5 are the movement of the mouse during the transmission of the first report.

\section*{THE COP822C MICROCONTROLLER}

The COP822C is an 8-bit microcontroller with 20 pins, of which 16 are I/O pins. The I/O pins are separated into two ports, port L and port G. Port G has built-in Schmitt-triggered inputs. There is 1 k of ROM and 64 bytes of RAM. In the mouse application, the COP822C's features used can be summarized below. Port G is used for the photo-transistor's input. Pin GO is used as the external interrupt input to monitor the RTS signal for the microsoft compatible protocol. The internal timer can be used for baud rate timing and interrupt generation. The COP822C draws only 4 mA at a crystal frequency of 5 MHz . The instruction cycle time when operating at this frequency is \(2 \mu \mathrm{~s}\).

\section*{A MOUSE EXAMPLE}

The I/O pins for the COP822C are assigned as follows:
\begin{tabular}{cl}
Pin & \multicolumn{1}{c}{\(\quad\)\begin{tabular}{c}
Functlon \\
G0
\end{tabular}} \\
Interrupt Input (Monitoring RTS Toggle) \\
G1 & Reserved for Input Data (TXD of Host) \\
G2 & Output Data (RXD of Host) \\
G3-G6 & LED Sensor Input \\
L0-L2 & Button Input \\
L3 & Jumper Input (for Default Mouse Mode)
\end{tabular}

The timer is assigned for baud rate generation. It is configured in the PWM auto-reload mode (with no G3 toggle output) with a value of 1A0 hex in both the timer and the autoreload register. When operating at 5 MHz , it is equivalent to \(833 \mu \mathrm{~s}\) or 1200 baud. When the timer counts down, an interrupt is generated and the service routine will indicate in a timer status byte that it is time for the next bit. The subroutine that handles the transmission will look at this status byte to send the data.
The other interrupt comes from the GO pin. This is implemented to satisfy the microsoft mouse requirement. As the RTS line toggles, it causes the microcontroller to be interrupted. The response to the toggling is the transmission of the character " \(M\) " to indicate the presence of the mouse.
The main program starts by doing some initializations. Then it loops through four subroutines that send the report, sense the movement, sense the buttons, and set up the report format.
Subroutine "SDATA" uses a state table to determine what is to be transmitted. There are 11 or 12 states because microsoft has only 7 data bits and mouse systems has 8. The state table is shown below:
\begin{tabular}{ll}
SENDST & \multicolumn{1}{c}{ State } \\
0 & IDLE \\
1 & START BIT \\
\(2-8\) & DATA (FOR MICROSOFT) \\
\(2-9\) & DATA (FOR MOUSE SYSTEMS) \\
\(9-10\) & STOP BIT (FOR MICROSOFT) \\
\(10-11\) & STOP BIT (FOR MOUSE SYSTEMS) \\
11 & NEXT WORD (FOR MICROSOFT) \\
12 & NEXT WORD (FOR MOUSE SYSTEMS)
\end{tabular}

The G2 pin is set to the level according to the state and the data bit that is transmitted.
Subroutine "SENSOR" checks the input pins connected to the LEDs. The horizontal direction is checked first followed by the vertical direction. Two jump tables are needed to decode the binary value formed by combining the present and previous status of the wheels. The movements are recorded in two counters.
Subroutines "BUTUS" and "BUTMS" are used for polling the button input. They compare the button input with the value polled last time and set up a flag if the value changes. Two subroutines are used for the ease of setting up reports for different mice. The same applies for subroutines "SRPTMS" and "SRPTUS" which set up the report format for transmission. The status change flag is checked and the report is formatted according to the mouse protocol. The
movement counters are then cleared. Since the sign of the vertical movement of mouse systems and microsoft is reversed, the counter value in subroutine "SRPTMS" is complemented to form the right value.
There is an extra subroutine "SY2RPT" which sets up the last two bytes in the mouse systems' report. It is called after the first three bytes of the report are sent.
The efficiency of the mouse depends solely on the effectiveness of the software to loop through sensing and transmission subroutines. For the COP822C, one of the most effective addressing modes is the B register indirect mode.

It uses only one byte and one instruction cycle. With autoincrement or autodecrement, it uses one byte and two instruction cycles. In order to utilize this addressing mode more often, the organization of the RAM data has to be carefully thought out. In the mouse example, it can be seen that by placing related variables next to each other, the saving of code and execution time is significant. Also, if the RAM data can fit in the first 16 bytes, the load B immediate instruction is also more efficient. The subroutine "SRPTMS" is shown below and it can be seen that more than half the instructions are B register indirect which are efficient and compact.
```

;
; VARIABLES
;
WORDPT = 000 ;WORD POINTER
WORD1 = 001 ;BUFFER TO STORE REPORTS
WORD2 = 002
WORD3 = 003
CHANGE = 004 ;MOVEMENT CHANGE OR BUTTON PRESSED
XINC = 005 ;X DIRECTION COUNTER
YINC = 006 ;Y DIRECTION COUNTER
NUMWORD = ; 007 ;NUMER OF BYTES TO SEND
SENDST = 008 ;SERIAL PROTOCOL STATE
;
;******************************************************
; SUBROUTINE SET UP REPORT 'SRPT' FOR MOUSE SYSTEMS
CHANGE OF STATUS DETECTED
SET UP THE FIRST 3 WORDS FOR REPORTING
IF IN IDLE STATE
;******************************************************
;
SRPTMS:
LD A,CHANGE
IFEQ A, \#O
RET
;
RBIT GIE, PSW ; DISABLE INTERRUPT
Ll B, \#WORDPT
LD [B+],\#O1 ; (WORDPT) SET WORD POINTER
LD A, BUTSTAT
X A, [B+]
; (WORDl)
;
LD A, XINC
X A, [B+] ; (WORD2)
;
SC
CLR A
SUBC A, YINC ; FOR MOUSE SYSTEM NEG Y
X
;
RBIT RPT, [B] ; (CHANGE) RESET CHANGE OF STATUS
SBIT SYRPT, [B] ; (CHANGE)
LD A,[B+] ; INC B
LD [B+], \#0 ; (XINC)
ID [B+],\#O ; (YINC)
;
LD [B+], \#03 ; (NUMWORD) SEND 3 BYTES
LD [B], \#01 ; (SENDST) SET TO START BIT STATE
SBIT GIE, PSW
; ENABLE INTERRUPT

```

\section*{CONCLUSION}

The COP822C has been used as a mouse controller. The code presented is a minimum requirement for implementing a mouse systems and microsoft compatible mouse. About 550 bytes of ROM code has been used. The remaining ROM area can be used for internal diagnostics and for communicating with the host's mouse driver program. The unused I/O pins can be used to turn the LED's on only when necessary to save extra power. This report demonstrated the use of the efficient instruction set of the COP800 family. It can be seen that the architecture of the COP822C is most suitable for implementing a mouse controller. The table below summarizes the advantages of the COP822C.

Feature Port G GO Timer Low Power \(\quad 4 \mathrm{~mA}\) at 5 MHz Small Size \(\quad 20-\) Pin DIP

\section*{REFERENCE}

The mouse still reigns over data entry-Electronic Engineering Times, October 1988.
MICE for mainstream applications-PC Magazine, August 1987.

Logimouse C7 Technical Reference Manual-Logitech, January 1986.

\section*{APPENDIX A—MEMORY UTILIZATION}

\section*{RAM Variables}
\begin{tabular}{lll}
TEMP & \(=0 F 1 \quad\) Work Space \\
ASAVE & \(=0 F 4 \quad\) Save A Register \\
PSSAVE & \(=0 F 6 \quad\) Save PSW Register \\
& & \\
WORDPT & \(=000 \quad\) Word Pointer \\
WORD1 & \(=001 \quad\) Buffer to Store Report \\
WORD2 & \(=002 \quad\) Buffer \\
WORD3 & \(=003 \quad\) Buffer \\
CHANGE & \(=004 \quad\) Movement or Button Change \\
XINC & \(=005 \quad\) X Direction Counter \\
YINC & \(=006 \quad\) Y Direction Counter \\
NUMWORD & \(=007 \quad\) Number of Bytes to Send \\
SENDST & \(=008 \quad\) Serial Protocol State \\
TSTATUS & \(=00 A \quad\) Counter Status \\
MTYPE & \(=00 B \quad\) Mouse Type \\
GTEMP & \(=00 \mathrm{C} \quad\) Track Input from G Port \\
TRACKS & \(=00 D \quad\) Previous Track Status \\
BTEMP & \(=00 E \quad\) Button Input from L Port \\
BUTSTAT & \(=00 F \quad\) Previous Button Status
\end{tabular}

APPENDIX B-SUBROUTINE SUMMARY
\begin{tabular}{lll}
Subroutine & Location & \multicolumn{1}{c}{ Function } \\
MLOOP & \(03 D\) & Main Program Loop \\
SENSOR & 077 & Sample Photo-Transistor Input \\
INTRP & 0 FF & Interrupt Service Routines \\
SRPTUS & 136 & Set Up Report for Microsoft \\
SRPTMS & 16 C & Set Up 1st 3 Bytes Report for Mouse Systems \\
SDATA & 191 & \begin{tabular}{l}
Drive Data Transmission Pin According to Bit \\
\\
Salue of Report
\end{tabular} \\
SY2RPT & \(1 D 1\) & Set Up Last 2 Bytes Report for Mouse Systems \\
BUTUS & 200 & Sample Button Input for Microsoft \\
BUTMS & 210 & Sample Button Input for Mouse Systems
\end{tabular}

\section*{APPENDIX C—SYSTEM SCHEMATIC，SYSTEM}

Flowchart，complete program listing．

Note 1：All diodes are 1 N 4148.
Note 2：All resistor values are in ohms， \(5 \%, 1 / 8 \mathrm{~W}\) ．
Note：Unless otherwised specified
FIGURE 3．System Schematic

Flowchart for Mouse Systems and Microsoft Mouse

```

NATIONAL SEMICONDUCTOR CORPORATION
COP800 CROSS ASSEMBLER,REV:D1,12 OCT }8
AMOUSE

```


158
155
156
157
158
159
160
161
1620027 DEEA
1630029 9A9D
164 OO2B 9AO1
165002 D 9 A 9 D
166002 F 9 EOL
167
1680031 BC0800
1690034 9DEF
17000369713
1710038 9CEF
172 OO3A BDEETC
173
174
175 003D BCD03F
17600403191
17700423077
17800449008
17900469300
1800048 Eq
181
1820049 9002
\(183004 B\) BO
184004 C 51
185
\(186004 D\) BDOB77
1870050 OB
188
18900513210
\(1900053316 C\)
191
1920055 BDD273
1930058 E4
1940059 306B
195 005B E1
196
197 005C 3200
198 005E 3136
199
2000060 BDD273
20100633071
20200652030
203
204
\begin{tabular}{|c|c|c|c|}
\hline 205 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
; SELECT MOUSE TYPE \\
;
\end{tabular}}} \\
\hline 206 & & & \\
\hline 207 & \multicolumn{2}{|l|}{} & \\
\hline 208 & \multicolumn{3}{|l|}{SELECT:} \\
\hline 2090067 B02273 & IFBIT & SH, PORTIP & ;CHECK Juper \\
\hline 210006806 & JP & SYM & \\
\hline 211 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\stackrel{\circ}{\text { OSM: }}\)}} \\
\hline 212 & & & \\
\hline 213006854 & 1 D & B, IMTYP & \\
\hline 214006 C 78 & SBIT & USOFT, (\(B\)] & ; (MTPPE) IS MICROSOFT MOUSE \\
\hline 2150060 BCOF87 & 10 & BUTSTAT, 1087 & ;NO KEY PRESSED \\
\hline 2160070 88 & RET & & \\
\hline 217 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{'sm:}} \\
\hline 218 & & & \\
\hline 21900715 & LD & B, INTYPE & \\
\hline 220007268 & RBIT & USOFT, [B] & ; (MTYPE) IS HOUSE SYSTEMS \\
\hline 2210073 BCOFOO & 10 & BuTsTat, io & ; WO KEY PRESSED \\
\hline 222007688 & RET & & \\
\hline 223 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline 224 & & & \\
\hline 225 & \multicolumn{3}{|l|}{} \\
\hline 226 & \multicolumn{3}{|l|}{; INC OR DEC THE POSITION} \\
\hline 227 & \multicolumn{3}{|r|}{-127 is osed instead of -128 in checking} \\
\hline 228 & \multicolumn{3}{|c|}{negative coing position so that both} \\
\hline 229 & \multicolumn{3}{|l|}{; MICROSOFT AND MOUSE SYSTEMS EIT IN} \\
\hline 230 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline 231 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{SENSOR:}} \\
\hline 232 & & & \\
\hline 233007753 & 10 & B, IGIEMP & \\
\hline 23400789006 & L & A, PORTGP & \\
\hline 235007 A BCDOOE & L & PORTLD, 10 F & ; (NOT USED) TURN OFP LED \\
\hline 236007 DBO & RRC & , & \\
\hline 237007 E 953 C & AND & A, 103C & ;G5,64, G3, C2 \\
\hline 2380080 A6 & \(x\) & A, [B] & ; (GTEMP) \\
\hline 239 & \multicolumn{3}{|l|}{;} \\
\hline 240 & \multicolumn{3}{|l|}{;} \\
\hline 241 & \multicolumn{3}{|l|}{: \({ }^{\text {cen }}\) (TRK1, TRK0)t-1 (TRK1, TRK0)t} \\
\hline 242 & CCW & 01 & 00 \\
\hline 243 & ; & 11 & 01 \\
\hline 244 & ; & 1 & 11 \\
\hline 245 & ; & 00 & 10 \\
\hline 246 & ; & & \\
\hline 247 & CH & 1 & 0 0 8 \\
\hline 298 & ; & 00 & 01 \\
\hline 249 & ; & 01 & 11 \\
\hline 250 & ; & 11 & 10 E \\
\hline 251 & , & & \\
\hline 2520081 AA & L & A, [B+] & :(GTEMP) X IN 3,2 \\
\hline 2530082 B0 & RRC & \({ }^{\text {A }}\) & \\
\hline 2540083 B0 & RRC & A & \\
\hline 25500849503 & AND & A, 103 & ;GET X TRACKS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 256008687 & & OR & \(A_{1}\) [\(]^{1}\) & ;OVERLAY WITH PREVLOUS (TRACKS) \\
\hline 2570087 97BO & & OR & A, 1OBO & ;X MOVEMENT TABLE \\
\hline 2580089 A5 & & JID & & \\
\hline 259 & ; & & & \\
\hline 260 008A OF & MOISEX: & JR & YDIR & \\
\hline 261 & ; & & & \\
\hline 262 & INCX: & & & \\
\hline 263 008B 9D05 & & ID & A, XINC & \\
\hline 264008088 & & INC & A & \\
\hline \(265008 E 03\) & & JP & COHX & ;CHECK If LIMIT IS REACHED \\
\hline 266 & DECX: & & & \\
\hline 267 0085 9005 & & LD & A, XINC & \\
\hline 268009188 & & DEC & A & \\
\hline 269 & COMX: & & & ;CHECK FOR LIMIT \\
\hline 27000929250 & & IFEQ & A, 180 & \\
\hline 271009405 & & JP & YDIR & ;YES DO NOTHING \\
\hline 27200959005 & & X & A, XINC & ;ELSE NEM POSITION \\
\hline \(27300975 B\) & & LD & B, ICHANGE & \\
\hline 274009878 & & SBIT & RPT, [\({ }^{\text {] }}\) & ; (CHANGE) \\
\hline 275009952 & & LD & B, \(\ddagger\) TRACKS & \\
\hline 276 & ; & & & \\
\hline 277 & YDIR: & & & \\
\hline 278 009a 52 & & LD & B, ITRACKS & \\
\hline 279 009B AB & & D & \(\mathrm{A}_{1}[\mathrm{~B}-]\) & ; (TRACXS) Y IN 5,4 \\
\hline 280 009C 65 & & SWBP & A & \\
\hline 281009 DO & & RRC & A & \\
\hline 282 009E BO & & RRC & A & \\
\hline 283009 FBO & & RRC & A & \\
\hline 284 00AO 95CD & & aND & A, 1000 & \\
\hline 285 COA2 87 & & OR & A, [B] & ; (GTEMP) \\
\hline 286 COA3 65 & & SKAP & A & \\
\hline 287 00A4 97CO & & OR & \(\mathrm{A}_{1} 10 \mathrm{CO}\) & ;Y HOVEMENT TABLE \\
\hline 288 00A6 A5 & & JID & & \\
\hline 289 & ; & & & \\
\hline 290 OOBO & & . \(=0 B O\) & & \\
\hline 291 & MOVEMX: & & & \\
\hline 292 OOBO 8A & & .ADDR & MOISEX & ; 0 \\
\hline 293 OOB1 8F & & .ADDR & DECX & ;1 \\
\hline 29400 B 28 B & & .ADDR & INCX & ;2 \\
\hline \(29500 \mathrm{B3} 8 \mathrm{~A}\) & & .ADDR & NOISEX & ;3 \\
\hline \(29600 \mathrm{B4} 8 \mathrm{~B}\) & & .ADDR & INCX & ; 4 \\
\hline 297 00B5 8A & & .ADDR & MOISEX & ; 5 \\
\hline 298 00B6 8A & & .ADDR & MOISEX & ; 6 \\
\hline 299 00B7 8F & & . ADDR & DECX & ;7 \\
\hline 300 00b8 8F & & .ADDR & DECX & ;8 \\
\hline 301 00B9 8A & & . ADDR & NOISEX & ;9 \\
\hline 302 00BA 8A & & . \(A D D R\) & NOISEX & ;A \\
\hline 303 OOBB 88 & & . \(A D D R\) & INCX & ; B \\
\hline 304 OOBC 8 A & & .ADDR & NOISEX & ;C \\
\hline 305 00BD 8B & & .ADDR & INCX & ; \\
\hline 306 008E 85 & & .ADDR & DECX & ; \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 409 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{; SET UP TGE 3 HORDS FOR REPORTING IF IN IDLE STATE}} \\
\hline 410 & & & \\
\hline 411 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{SRPTUS:}} \\
\hline 412 & & & \\
\hline 413013658 & 10 & B, ICHANGE & \\
\hline 414013770 & IfBit & RPT, (B) & \\
\hline 415013801 & JP & SRUS1 & \\
\hline 416013988 & \multicolumn{2}{|l|}{RET} & ;EXIT IF MOT CHANGE \\
\hline 117 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{SROSI:}} \\
\hline 118 & & & \\
\hline 419 013A BDEF68 & RBIT & GIE,PSW & ;DISABLE INTERRUPT \\
\hline 420013058 & LD & B, 180.DPT & \\
\hline 42101389801 & 10 & [\(3+\), / HORD1 & ; (HORDPT) SET MORD POINTER \\
\hline 42201409805 & \(1{ }^{\text {d }}\) & A, XINC & \\
\hline 423014265 & Stap & A & \\
\hline 4240143 BO & RRC & A & \\
\hline 4250144 B & RRC & A & \\
\hline 12601459503 & AND & A, 103 & ; x , x6 \\
\hline 1270147 a6 & x & \(\mathrm{A}_{1}\) [B\(]\) & ; (\%OROI) \\
\hline 128 & \multicolumn{3}{|l|}{; \({ }^{\text {a }}\)} \\
\hline 42901489006 & L & A, YINC & \\
\hline 430014 A 65 & SwAP & A & \\
\hline 431014 B 950 C & AND & \(\mathrm{A}, 10 C^{\text {a }}\) & ; 77,96 \\
\hline 432014087 & OR & \(\mathrm{A}_{1}\) [B\(]\) & : (worol) \\
\hline 13301489740 & OR & A, 1040 & ;SET BIT 6 \\
\hline 4340150 BCOF87 & OR & A, BUTSTAT & ;GET bution status \\
\hline 4350153 A2 & x & A, (B+] & ; (WOROI) \\
\hline 436 & \multicolumn{3}{|l|}{; \({ }^{\text {a }}\)} \\
\hline 13701599005 & L0 & A, XINC & \\
\hline 4380156 953\% & AND & A, 1038 & ; \(\mathrm{X0-x5}\) \\
\hline 4390158 A2 & \(\chi\) & \(\mathrm{A},_{\text {, }}(\mathrm{BH}]\) & ; (HOR22) \\
\hline 440 & \multicolumn{3}{|l|}{; \({ }^{\text {a }}\)} \\
\hline 44101599006 & LD & A, YINC & \\
\hline 442 015B 953F & AND & A, 103F & ;Y0-Y5 \\
\hline 1430150 A2 & \(\chi\) & \(\mathrm{A}_{1}(\mathrm{BH}]\) & ; (HORD3) \\
\hline 4440015868 & RBIT & RPT, [B] & : (CAANEE) RESET CHANGE OF STATUS \\
\hline 415 015: AA & \({ }^{1}\) & \(\mathrm{A},_{\text {a }}(\mathrm{B}+]\) & ; INC B \\
\hline 44601609800 & LD & [\(\mathrm{B}+\)],10 & ;(XINC) \\
\hline 44701629800 & 1 D & [\(3+1,10\) & : (YINC) \\
\hline 448 & ; & & \\
\hline 41901649803 & 10 & [BH], 103 & ; (NOMHORD) SEND 3 BYTES \\
\hline 45001669801 & L & [B], 101 & ; (SENOST) SET TO START BIT STATE \\
\hline 451 & ; & & \\
\hline 4520168 B0EE78 & SBIT & GIE,PSW & ;ENABLE INTERROPT \\
\hline 4530163 8E & RET & & \\
\hline 454 & ; & & \\
\hline 155 & ;1414titath & 14Ahthahtat & \\
\hline 456 & SUBROOT & INE SET UP REP & 'SRPT' FOR HOUSE SYSTEMS \\
\hline 457 & ; & & \\
\hline 458 & Chamge & Of STatus dete & \\
\hline 459 & SET UR & The first 3 W & FOR REPORTING \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 511 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline 512 & & & & \\
\hline 513 & ; & & & \\
\hline 514019155 & SDATA: & ID & B, ITSTATUS & \\
\hline 515019272 & & IFBIT & TBAUB, [B] & ; (TSTATOS)CHECK IF BALD RATE TIMER ENDS \\
\hline 516019301 & & JP & SOATAI & \\
\hline 517019488 & \multicolumn{4}{|c|}{RET} \\
\hline 518 & ; & & & \\
\hline 519 & \multicolumn{4}{|l|}{SDATAl:} \\
\hline 5200195 6A & & RBIT & TBAUB, [B] & ; (TSTATUS) \\
\hline 5210196 AA & & 1D & A, [B+] & ;INC B TO (MTYPE) \\
\hline 52201979008 & & LD & A, SENOST & \\
\hline 52301999750 & & OR & A, 10FO & \\
\hline 524 0198 A5 & \multicolumn{4}{|c|}{JID} \\
\hline 525 & ; & & & \\
\hline \(526019 C^{88}\) & IDLE: & RET & & ; EXIT If IDLE \\
\hline 527 & \multicolumn{4}{|l|}{;} \\
\hline 528019077 & STAT9: & IFBIT & USOET, [B] & ; (MTYPE) \\
\hline 529019816 & & JP & STOPB & \\
\hline 530 & \multicolumn{4}{|l|}{DATAB:} \\
\hline 531019 F 9000 & & LD & A, MORDPT & \\
\hline 532 O1A1 MCFE & & X & A, B & ;B POINTS TO THE MORD \\
\hline 533 & \multicolumn{4}{|l|}{; \({ }^{\text {a }}\)} \\
\hline 534 01a3 A0 & & RC & & \\
\hline 53501 A 4 AE & & LD & \(A_{1}(\mathrm{~B})\) & \\
\hline 5360145 BO & & RRC & A & ;XMIT LEAST SIG BIT \\
\hline 537 01a6 A6 & & X & \(A_{\text {, }}\) [B\(]\) & \\
\hline 538 O1A7 DED4 & & LD & B, 1PORTCD & \\
\hline 539014988 & & IFC & & \\
\hline 540 01ad 7a & & SBIT & KMT, [[B] & \\
\hline 541 01AB 89 & & IFNC & & \\
\hline 542 OIAC 6A & & RBIT & XMT, \({ }^{\text {[}}\)] & \\
\hline 543 & \multicolumn{4}{|l|}{;} \\
\hline 54401 AD 9008 & NEXT: & LD & A,SENDST & \\
\hline 54501 AF 8 A & & INC & A & \\
\hline 5460180 COB & & X & A, SENDST & \\
\hline 547018288 & & RET & & ;EXIT \\
\hline 548 & \multicolumn{4}{|l|}{;} \\
\hline 549018377 & STATl1: & IfBIT & usorf, [B] & ; (MTYPE) \\
\hline 550018404 & & JP & NXYORD & \\
\hline 551 & \multicolumn{4}{|l|}{;} \\
\hline \(55201 \mathrm{B5}\) 80047A & STOPB: & SBIT & XMT, PORTGD & \\
\hline 5530188 E4 & & JP & NEXT & \\
\hline 554 & \multicolumn{4}{|l|}{;} \\
\hline 55501899800 & NXWORD: & ID & A, MORDPT & \\
\hline 556018888 & & INC & A & \\
\hline 557 0180 5500703 & & ITS: & a, wimus & Miviucn os mins io ciuid \\
\hline 55801 BF 09 & & JP & ENORPT & ;END OR REPORT \\
\hline 55901 CO 9 COD & & \(x\) & A, MORDPT & \\
\hline 560 01C2 BC0801 & & LD & SENDST, 101 & ;SEND START BIT \\
\hline 561 & ; & & & \\
\hline
\end{tabular}
SDATA1:
IDLE: RE
;
ATAB:
;
534 01A3 AO
535 O1A4 AE
536 01A5 BO
31ab ab
539014988
540 01AA 7A
541 01AB 89
543
544 OLAD 9008
545 01AF 8 A
546 O1BO 9 COB
548
;
549018377
550 0184 04
551
552 01B5 BDD47A
553 01B8 E4
554
NKW
 \(\begin{array}{ll}\text { DC } & A \\ \text { IN }\end{array}\)
556 01BB 8A
557 N10 2020703
558 01BF 09
559 OICO 9 COO
560 O1C2 BCOBO1
;

\begin{tabular}{|c|c|c|c|c|c|}
\hline 664 & & : & & & \\
\hline & 021A AA & & 10 & A, [B+] & ; (BTEMP) \\
\hline 666 & 021B 82 & & IFES & A, (B) & ; (BUTSTAT) \\
\hline 667 & 021C 8E & & RET & & ; NO CHANGE \\
\hline 668 & & ; & & & \\
\hline & 0210 A6 & & \(\chi\) & A, [B] & ; (BUTSTAT) \\
\hline 670 & 0212 B00478 & & SBIT & RPT, CHANGE & ;INDICATE TO SEND DATA \\
\hline & 02218 E & & RET & & \\
\hline 672 & & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
; \\

\end{tabular}}} \\
\hline 673 & & & & & \\
\hline 674 & & \multicolumn{4}{|l|}{;} \\
\hline 675 & 0300 & & . \(=0300\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{- (C) 1990 NATIONAL SEMICONDUCTOR AMOUSE VER \(1.0^{\circ}\)}} \\
\hline 676 & 030028 & & \multirow[t]{18}{*}{. BYTE} & & \\
\hline & 030143 & & & & \\
\hline & 030229 & & & & \\
\hline & 030320 & & & & \\
\hline & 03 D \$31 & & & & \\
\hline & 030539 & & & & \\
\hline & 03D6 39 & & & & \\
\hline & 030730 & & & & \\
\hline & O3D8 20 & & & & \\
\hline & 03 D 9 48 & & & & \\
\hline & O3DA 41 & & & & \\
\hline & O3DB 54 & & & & \\
\hline & O3DC 49 & & & & \\
\hline & O3DD 4F & & & & \\
\hline & O3DE 4E & & & & \\
\hline & O3DP 41 & & & & \\
\hline & O3EO 4C & & & & \\
\hline & O3E1 20 & & & & \\
\hline & 03E2 53 & & & & \\
\hline & O3E3 45 & & & & \\
\hline & O3E 4 4D & & & & \\
\hline & O3E5 49 & & & & \\
\hline & 03 E 643 & & & & \\
\hline & O3E7 45 & & & & \\
\hline & O3ES 48 & & & & \\
\hline & O3E9 44 & & & & \\
\hline & OJEA 55 & & & & \\
\hline & O3EB 43 & & & & \\
\hline & O3EC 54 & & & & \\
\hline & O3ED 4F & & & & \\
\hline & O3EE 52 & & & & \\
\hline & O3EF 20 & & & & \\
\hline & 035041 & & & & \\
\hline & 03 F 14 D & & & & \\
\hline & 0352 dF & & & & \\
\hline & 03F3 55 & & & & \\
\hline & 035453 & & & & \\
\hline & 03F5 45 & & & & \\
\hline & 035620 & & & & \\
\hline & 035756 & & & & \\
\hline & 035845 & & & & \\
\hline & 03F9 52 & & & & \\
\hline & 03Fa 20 & & & & \\
\hline & 03 FB 31 & & & & \\
\hline & O3FC 2E & & & & \\
\hline & 03FD 30 & & & & \\
\hline 677 & & ; & & & \\
\hline 678 & & & .END & & \\
\hline
\end{tabular}

NATIONAL SEMICONDUCTOR CORPORATION
COPBOO CROSS ASSEMBLER,REV:D1, 12 OCT 88
ayOUSE
SYMBOL TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline ASAVE & 0054 & & B & OOFE & & BSAVE & 00F5 & * & BTEMP & OOOE \\
\hline BUSY & 0002 & * & BUTMS & 0210 & & BUTSTA & 000F & & BUTUS & 0200 \\
\hline CARRY & 0006 & * & CHANGE & 0004 & & CKO & 0007 & * & CNTRL & OOEE \\
\hline COHX & 0092 & & COHY & 0008 & & CSEL & 0006 & * & datab & 0198 \\
\hline DECX & 008F & & DECY & 0005 & & ENDRPT & O1C9 & & ENI & 0001 \\
\hline ENTI & 0004 & * & ESENS & OOEO & & GIE & 0000 & & GTEMP & 000c \\
\hline HCARRY & 0007 & * & IDLE & 019 & & IEDG & 0002 & * & INCX & 008B \\
\hline INCY & 0001 & & INTR & 0000 & * & INTRET & 0109 & & INTRP & 00FF \\
\hline IPND & 0003 & & LPOS & OOSC & & LTIMER & 0027 & * & MLOPP & 0030 \\
\hline MOVEMX & OOBO & * & MOVEMY & OOCO & * & MSEL & 0003 & * & MTYPE & 000B \\
\hline NEXT & 01AD & & NOISEX & 008A & & NOISEY & 0000 & & NUMWOR & 0007 \\
\hline NXWORD & 0189 & & PORTGC & 0005 & & PORTGD & 0004 & & PORTCP & 0006 \\
\hline PORTLC & 0001 & & PORTLD & 0000 & & PORTLP & 0002 & & PSSAVE & 00F6 \\
\hline PSW & OOEF & & RPT & 0000 & & RSVD & 0080 & * & RTSR2 & 012E \\
\hline SO & 0000 & \(\pm\) & S1 & 0001 & \(\pm\) & SDATA & 0191 & & SDATAI & 0195 \\
\hline SELECT & 0067 & & SENDST & 0008 & & SENSOR & 0077 & & SI & 0006 \\
\hline SK & 0005 & * & SO & 0004 & * & SP & OOED & & SRMS1 & 0170 \\
\hline SRPTMS & \(016 C\) & & SRPTOS & 0136 & & SRDS1 & 013A & & START & 0000 \\
\hline STARTB & 01c5 & & STATIL & 0183 & & statg & 0190 & & STOPB & 0185 \\
\hline SN & 0003 & & SY2RPT & 0101 & & SYM & 0071 & & SYRPT & 0001 \\
\hline tauni & OOED & * & TAULO & OOEC & * & TBAD & 0083 & * & TBAUB & 0002 \\
\hline TBAOR & 0009 & * & TED & 0005 & * & TEMP & OOFl & * & TINTR & 010 C \\
\hline TIO & 0003 & * & TMRHI & OOEB & * & TMRLO & ODEA & & TPND & 0005 \\
\hline TRACKS & 0000 & & TRUN & 0004 & & TSEL & 0007 & * & TSTATU & 000A \\
\hline USM & 006 B & & USOFT & 0007 & & WORD1 & 0001 & & WORD2 & 0002 \\
\hline HORD3 & 0003 & * & WORDPT & 0000 & & X & OOFC & & XINC & 0005 \\
\hline XINTR & 0113 & & XINTR1 & 011B & & XIMT & 0002 & & YDIR & 009A \\
\hline
\end{tabular}

NATIONAL SEMICONDUCTOR CORPORATION
COP800 CROSS ASSEMBLER,REV:D1,12 OCT 88
AMOUSE
MACRO TABLE

\section*{No warving lines}
iov gañỗ Lieñós
556 ROM BYTES USED

SOURCE CHECKSUM \(=987 \mathrm{~A}\)
OBJECT CHECKSUM \(=\) OA39
INPUT FILE D:BMOUSE.MAC
LISTING FILE D:BMOUSE.PRN
OBJECT FILE D:BMOUSE.LM

\section*{INTRODUCTION}

COP800 devices can be used to control DC stepper motors with limited effort. This application note describes the use of a COP820 to control the speed, direction and rotation angle of a stepper motor. In addition to the COP820, this application requires a quad high current peripheral driver (DS3658) to meet the high current needs of the stepper motor.

\section*{DC STEPPER MOTOR}

A DC stepper motor translates current pulses into rotor movement. A typical motor contains four winding coils labeled red, yellow/white, red/white, and yellow. Applying current to these windings forces the motor to step. For normal operation, two windings are activated (pulsed) concurrently. The motor moves clockwise one step per change in windings activated with the following activation sequence: red and yellow, yellow and red/white, red/white and yellow/ white, yellow/white and red, repeat. Half-steps may be generated by altering the sequence to: red and yellow, yellow, yellow and red/white, red/white, red/white and yellow/ white, yellow/white, yellow/white and red, red, repeat. The motor runs in a counterclockwise direction if either sequence is applied in reverse order. The speed of rotation (number of steps/second) is controlled by the frequency of the pulses.

\section*{COP820 CONTROL OF STEPPER MOTOR}

The COP820 controls the stepper motor by sending pulse sequences to the motor windings in response to control commands. Commands executed by the code in this application include: single step the motor in a clockwise or counterclockwise direction (i.e. rotate the rotor through a certain number of degrees), run the motor continuously at one of four speeds in a clockwise or counterclockwise direction, and stop the motor.
Note: Half-stepping is not implemented in this example.

During continuous mode operation, the 16 -bit timer of the COP820 is used to control the speed of the stepper motor. The timer is set up with a value that causes an underflow once every \(x\) seconds or at a frequency of \(1 / x\). Each underflow of the timer interrupts the microcontroller. In response to the timer interrupt, the microcontroller generates a new pulse and causes a single step of the motor. Thus the motor steps at the frequency of the timer underflows. This application sets up the timer to generate interrupts at four different frequencies. These frequencies produce the following motor speeds: 25 steps/second, 100 steps/second, 200 steps/ second, and 400 steps/second.
The determination of which windings to activate and deactivate to step the motor is performed by a single subroutine in this example. A block of memory is allocated to store a step pointer and the four possible stepper drive values are shown in Table I (\(9, C, 6,3\)). Consecutive memory locations are used to store the stepper drive values so that applying the value from location \(X\) and then location \(X+1\) (or \(X-1\)) causes the motor to step once. The motor drive subroutine increments or decrements the pointer to the current drive value based on the selection of a clockwise or counterclockwise direction. Writing the value from the newly selected location to the motor causes a single step of the motor in the appropriate direction.
During single step operation, the microcontroller steps the motor the exact number of times requested in the control command. Each step corresponds to 1.8 degrees of rotor movement. Therefore, a request to perform 200 steps will rotate the rotor through one complete revolution (360 degrees) at a fixed speed.
A block diagram of the application is shown in Figure 1. A flowchart of the code used to control the motor is given in Figure 2. The complete code is given at the end.

TABLE I. Stepper Motor Drive Sequence
\begin{tabular}{|c|c|c|c|c|c|}
\hline Step & Yellow & Red/White & Yellow/White & Red & Hex Value \\
\hline 0 & ON & OFF & OFF & ON & 9 \\
1 & ON & ON & OFF & OFF & C \\
2 & OFF & ON & ON & OFF & 6 \\
3 & OFF & OFF & ON & ON & 3 \\
4 & ON & OFF & OFF & ON & 9 \\
\hline
\end{tabular}

FIGURE 1. Schematic Diagram

\section*{Program Code Flow Chart}

FIGURE 2. Program Flowchart
```

NATIONAL SEMICONDUCTOR CORPORATION
COP800 CROSS ASSEMBLER, REV: D1, 12 OCT 88
;STEPPER MOTOR CONTROL PROGRAM
;MAY 1990
i
;Tbis program controls the speed, direction, and degree of rotation of
a DC atepper motor.
M\mp@code{Mamy Map }
01 (MS1) step motor drive value OCH
02 (NS2) step motor drive value 06H
03 (MS3) step motor drlve value 03H
04 (CMD) control command
bit7-bit4 = motor speed or upper nibble of * singlesteps
bit 3 = unused
bit 2 = (MODE) single step or continuous mode select (1 = ss)
bIt 1 = (DIR) cw or cow direction select (1 = cw)
blt 0 = (GO) motor go or motor stop select (i = stop)
05 (STEPS) lower byte of number of single steps
07 (FLGREG) flag register
bit 0 = (INT) ready to read in cmd (ext int occured)
biti - bit7 = unused
14 (TVALO) value to load in lower byte of timer for speed X
(TVALI) value to load In upper byte of timer for speed X
(PORTLP) port L input pins used for incomming commands
(PORTGD) port G data pins used to drive status LEDs
(PORTD) port D data pins used to ouput pulses to the stepper motor
(CREGO) step counter reglster zero
(CREG1) step counter register one
(STPPTR) polnter to current step motor drive value (RAM 00 - 03)
;
;REGISTER AND CONSTANT DEFINITIONS
0000
0001
0002
;COMMAND BITS
0000
0 0 0 1
0002
0003
0004
0005
0004
GO COMMAND BIT
| = STOP 0 = GO
;DIRECTION COMMAND BIT
-1 = CW 0 = CCW
;MODE COMMAND BIT
; 1 = SINGLE STEP 0 = CONTINUOUS
;PORTG BITS

```



```

;FLAG BIT (SET IF EXTINT OCCURS)
;READY LED
;CLOCKWISE LED
;COUNTER CLOCKWISE LED
;SINGLE STEP LEn
;CONTINUOUS (NON-STOP) LED
;REGISTERS
CMD = 04
;INPUT COMMAND STORAGE REGISTER

```

NATIONAL SEMICONDUCTOR CORPORATION COP800 CROSS ASSEMBLER, REV: D1, 12 OCT 88

NATIONAL SEMICONDUCTOR CORPORATION
COP800 CROSS ASSEMBLER, REV: D1, 12 OCT 88
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 103 & 0005 & BCEF03 & & LD & PSW, \#003 & ; GLObAL INT ENABLE/EXTINT ENABLE \\
\hline 104 & 0008 & BCD401 & & LD & PORTGD, 01 & \\
\hline 105 & 000B & BCD5 3 E & & LD & PORTGC, \#03E & ; CONFIG PORTG FOR OUTPUTS \\
\hline 106 & 000E & BCDC09 & & LD & PORTD, 09 & ; START MOTOR DRIVE VALUE \\
\hline 107 & 0011 & BCD100 & & LD & PORTLC, \#00 & ; CONFIG PORTL FOR INPUTS \\
\hline 108 & 0014 & BCDOFF & & LD & PORTLD, \#OFF & ; CONFIG PORTL FOR HEAK PULL-UPS \\
\hline 109 & 0017 & 5 F & & LD & B, \#MS0 & ; SETUP MOTOR DRIVE VALUES \\
\hline 110 & 0018 & 9 A 09 & & LD & \([B+], 09\) & \\
\hline 111 & 001A & 9A0C & & LD & [\(\mathrm{B}+], \ldots 0 \mathrm{C}\) & \\
\hline 112 & 001C & 9A06 & & LD & [\(\mathrm{B}+1,006\) & \\
\hline 113 & 001E & 9E03 & & LD & [B], \#03 & \\
\hline 114 & 0020 & D200 & & LD & STPPTR,*00 & ; INIT STEP POINTER \\
\hline 115 & 0022 & BC0700 & & LD & FLGREG, 00 & ; INIT FLAG REGISTER \\
\hline 116 & & & & & & \\
\hline 117 & & & & & & \\
\hline 118 & & & ; READ, & DECODE & AND EXECUTE COMMAND & \\
\hline 119 & & & & & & ;****************************** \\
\hline 120 & 0025 & BDD479 & TOP: & SBIT & READY, PORTGD & ; TURN ON READY FOR NEXT CMD LED \\
\hline 121 & 0028 & 3081 & & JSR & WAIT & ; HAIT FOR CMD AND READ CUD \\
\hline 122 & 002A & BDD469 & & RBIT & READY, PORTGD & ; TURN OFF READY FOR NEXT CMD LED \\
\hline 123 & 002 D & 9 CO 4 & & X & A,CMD & ;STORE IN CMD REGISTER \\
\hline 124 & 002F & BD0470 & & 1 FBIT & GO, CMD & ; IF STOP BIT SET \\
\hline 125 & 0032 & 08 & & JP & STOP & ; THEN STOP MOTOR \\
\hline 126 & 0033 & BD0472 & & IFBIT & MODE, CMD & ; ELSE CHEK MODE \\
\hline 127 & 0036 & 3041 & & JSR & SSTEP & ; IF MODE SET THEN GO SINGLE STEP \\
\hline 128 & 0038 & 305F & & JSR & CONT & ; ELSE GO CONTINUOUS \\
\hline 129 & 003 A & EA & & JP & TOP & ; GO HaIt for next comand \\
\hline 130 & & & STOP: & & & ; STOP THE MOTOR \\
\hline 131 & 003 B & 308E & & JSR & TMRSET & ; STOP THE TIMER \\
\hline 132 & 003 D & BCD401 & & LD & PORTGD, \#01 & ; TURN OFF ALL LEDS \\
\hline 133 & 0040 & E4 & & JP & TOP & ; GO WAIT FOR NEXT CMD \\
\hline 134 & & & & & & \\
\hline 135 & & & & & & \\
\hline 136 & & & ;SINGLE & STEP & THE MOTOR (SS) & \\
\hline 137 & & & & & & \\
\hline 138 & & & SSTEP: & & & ;****************************** \\
\hline 139 & 0041 & 308 E & & JSR & TMRSET & ; STOP TIMER \\
\hline 140 & 0043 & BCD4 10 & & LD & PORTGD, 010 & ; TURN ON SS LED (RST ALL OTHER LEDS) \\
\hline 141 & 0046 & 3081 & & JSR & HAIT & ; WAIT FOR CMD BYTE 2 (\# STEPS) \\
\hline 142 & 0048 & 8A & & INC & A & ;ADD 1 TO CORRECT FOR LOOP \\
\hline 143 & 0049 & 9 CF 0 & & X & A, CREGO & ;STORE \#STEPS IN LOBYTE COUNT REG \\
\hline 144 & 004 B & 9D04 & & LD & A, CMD & ; LOAD HIBYTE * STEPS \\
\hline 145 & 004 D & 65 & & SWAP & \(\wedge\) & ; MOVE TO LOWER NIBBLE \\
\hline 146 & 004E & 950 F & & AND & A, \#0F & ; GET RID OF UPPER BITS \\
\hline 147 & 0050 & 8A & & INC & \(\wedge\) & ; ADD 1 TO CORRECT FOR LOOP \\
\hline 148 & 0051 & 9CF1 & & X & A, CREG1 & ; MOVE TO HIBYTE OF COUNT REG \\
\hline 149 & 0053 & C0 & TP2: & DRS2 & CREGO & ; DECR LOBYTE AND IF NOT ZERO \\
\hline 150 & 0054 & 05 & & JP & D0 & ;THEN GO DO A STEP \\
\hline 151 & 0055 & C1 & MID: & DRS2 & CREG1 & ; ELSE DECR HIBYTE AND IF NOT ZERO \\
\hline 152 & 0056 & 01 & & JP & D02 & ; THEN GO DO A STEP AND RST LO COUNT \\
\hline 153 & 0057 & 8 D & & RETSK & & ; ELSE END OF LOOP RETURN \\
\hline
\end{tabular}

NATIONAL SEMICONDUCTOR CORPORATION
COP800 CROSS ASSEMBLER, REV: D1, 12 OCT 88
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 154 & 0058 & DOFF & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { D02: } \\
& \text { D0: }
\end{aligned}
\]} & LD & \multirow[t]{2}{*}{CREGO, \#OFF NXTVAL} & & ; RESET LOBYTE OF COUNTER \\
\hline 155 & 005A & 3098 & & JSR & & & ; STEP THE MOTOR \\
\hline 156 & 005C & 3158 & & JSR & delay & & ; SLOW THE STEPPING \\
\hline 157 & 005E & F4 & & JP & TP2 & & ;GO TO TOP OF LOOP \\
\hline \multicolumn{8}{|l|}{158} \\
\hline \multicolumn{8}{|l|}{159} \\
\hline 160 & & & ;RUN THE & MOTOR & CONT INUOUSLY & (\(\mathrm{NS}=\mathrm{NON}-\mathrm{S}\) & TOP \(=\) CONTINUOUSLY) \\
\hline \multicolumn{8}{|l|}{161} \\
\hline 162 & & & CONT: & & & & ;****************************** \\
\hline 163 & 005F & BDEE 74 & & IFBIT & TRUN, CNTRL & & ; IF MOTOR ALREADY RUNNING NS \\
\hline 164 & 0062 & 01 & & JP & CHKSPD & & ; THEN CHECK THE CURRENT SPEED \\
\hline 165 & 0063 & 03 & & JP & SETGO & & ; ELSE GO START THE MOTOR \\
\hline 166 & 0064 & 3148 & CHKSPD: & JSR & SPEED & & ; COMPARE INPUT WITH ACTUAL SPD \\
\hline 167 & 0066 & 8 E & & RET & & & ; IF EQUAL RET ELSE RESTART MOTOR \\
\hline 168 & 0067 & 308E & SETGO: & JSR & TMRSET & & ; STOP THE TIMER \\
\hline 169 & 0068 & BCD4 20 & & LD & PORTGD, 020 & & ; TURN ON CONTINUOUS LED \\
\hline 170 & 006 C & 3126 & & JSR & TIMVAL & & ; Calculate timer (SPEED) Value \\
\hline 171 & 006E & AE & & LD & A, [B] & & ; LOAD A HITH TVALI \\
\hline 172 & 006F & 9 CEB & & X & A, TMRHI & & ;MOVE SPEED VAL INTO TIMER \\
\hline 173 & 0071 & AB & & LD & A, [\(\mathrm{B}^{\text {- }}\)] & & ; LOAD A with tvali point to tvalo \\
\hline 174 & 0072 & 9CED & & X & A, TAUHI & & ; MOVE SPEED Val into autoreload reg \\
\hline 175 & 0074 & AE & & LD & A, [B] & & ; LOAD A WITH TVALO \\
\hline 176 & 0075 & 9CEA & & X & A, TMRLO & & ; MOVE SPEED VAL INTO TIMER \\
\hline 177 & 0077 & AE & & LD & A, [B] & & ; LOAD A HITH TVALO \\
\hline 178 & 0078 & 9 CEC & & X & A, TAULO & & \\
\hline 179 & 007A & BDEFTC & & SBIT & ENTI, PSF & & ; ENABLE TIMER INTERRUPT \\
\hline 180 & 007 D & BDEE7C & & SBIT & TRUN, CNTRL & & ; START THE TIMER \\
\hline 181 & 0080 & 8E & & RET & & & ;RET TO MAIN AND MAIT FOR TMRINT \\
\hline \multicolumn{8}{|l|}{182} \\
\hline 183 & & & ; SUPPORT & ROUT 1 & NES ********** & ************ & ******************************* \\
\hline \multicolumn{8}{|l|}{184} \\
\hline 185 & & & HAIT: & & & & ;****************************** \\
\hline 186 & & & & ; WAIT & FOR AN EXTERNA & INTERRUPT & TO SIGNAL AN INCOMMING COMMAND \\
\hline 187 & & & & ; READ & THE INCOMMING & COMMAND FROM & PORT L \\
\hline 188 & 0081 & BD0770 & & IFBIT & INT, FLGREG & & ; IF EXTERNAL INTERRUPT OCCURED \\
\hline 189 & 0084 & 01 & & JP & OUT & & ; THEN JUMP OUT OF LOOP \\
\hline 190 & 0086 & FB & & JP & WAIT & & ; ELSE CONTINUE TO HAIT \\
\hline 191 & 0086 & BD0768 & OUT : & RBIT & INT, FLGREG & & ; RESET EXTERNAL INTERRUPT FLAG \\
\hline 192 & 0089 & 9DD2 & & LD & A, PORTLP & & ; READ INCOMMING COMOAND \\
\hline 193 & 008B & 96FF & & XOR & A, \#0FF & & ; COMPLEMENT INCOMMING COMMAND \\
\hline 194 & 008 D & 8E & & RET & & & ;RETURN COMMAND IN ACC \\
\hline \multicolumn{8}{|l|}{195} \\
\hline \multicolumn{8}{|l|}{196} \\
\hline 197 & & & TMRSET : & & & & ;****************************** \\
\hline 198 & & & & ; RESET & THE TIMER & & \\
\hline 199 & 008E & BDEE6C & & RBIT & TRUN, CNTRL & & ; STOP THE TIMER \\
\hline 200 & 0091 & BDEF6D & & RBIT & TPND, PSW & & ; RESET THE TIMER PENDING BIT \\
\hline 201 & 0094 & BDEF6C & & RBIT & ENTI, PSF & & ; DISABLE TIMER INTERRUPT \\
\hline 202 & 0097 & 8 E & & RET & & & \\
\hline 203 & & & & & & & \\
\hline
\end{tabular}

\section*{NATIONAL SEMICONDUCTOR CORPORATION COP800 CROSS ASSEMBLER, REV: D1, 12 OCT 88}

NATIONAL SEMICONDUCTOR CORPORATION
COP800 CROSS ASSEMBLER, REV: D1, 12 OCT 88

\section*{MF2 Compatible Keyboard with COP8 Microcontrollers}

\section*{ABSTRACT}

This application note describes the implementation of an IBM MF2 compatible keyboard with National Semiconductor's COP888CL or COP943C/COP880CL microcontrollers. Two different solutions have been developed. One solution, suitable for laptop/notebook keyboards is based on the COP888CL with special power saving techniques. The other for most price competitive standard desktop keyboards is based on the COP943C/COP880C microcontrollers. The same principles can be applied to all types of keyboards or data input devices.

\section*{FEATURES}
- Single chip solution
- Low cost R/C or ceramic oscillator optional
- LED direct drive capability
- I/Os with software programmable on chip pull-ups
- Current saving M2CMOS technology
- Multi-input wakeup and HALT mode for further power consumption reduction (COP888CL only)
- Software key rollover
- Schmitt triggers on keyboard data and clock lines

\section*{INTRODUCTION}

The expression MF2 keyboard stands for multi-functional keyboard version 2. This type of keyboard was first developed and defined by IBM for use with all types of PC (XT,

National Semiconductor
Application Note 734
Volker Soffel

AT, PS/2). In the meantime it has become an industry standard and today nearly all PCs have an MF2 compatible keyboard. As the name suggests, this keyboard features all operation modes which are necessary to stay compatible with the older XT and AT type keyboards. In the following chapters the features and functions of an MF2 keyboard as well as their implementation with a COP8 microcontroller are described.

\section*{MF2 KEYBOARD KEY-LAYOUT}

Figure 1 shows the key layout of the U.S. version of an MF2 keyboard. Its outer appearance is characterized by 101 keys (102 for some countries), a separate cursor and numeric key pad, and 12 function keys in the upper row. The keyboard sends a "make" code if a key is depressed and a "break" code if the key is released. These make and break codes are independent of any country-specific keyboard layouts, which means they are independent of the symbols printed on the keys. These codes are solely determined by the physical position of a key on the keyboard. The physical position of a key on an MF2 keyboard is defined by its assigned key number, which is shown in Figure 1.

\section*{HARDWARE}

\section*{Laptop/Notebook Keyboard With COP888CL}

Figure 2 shows the schematics of an MF2 keyboard with a COP888CL microcontroller. The G, C and L ports of the COP888CL are software programmable I/Os and can be programmed either as TRI-STATE \({ }^{\circledR}\) inputs, inputs with weak pull-up, push-pull output low, or push-pull output high.

FIGURE 1. MF2 Keyboard U.S. Layout

Note 1: C 2 (\(47 \mu \mathrm{~F}\) level off capacitor) can be removed when the power supply ripple \(< \pm 10 \%, 0.5 \mathrm{~V} / \mathrm{ms}\).
Note 2: Jumper P1: Mode select: \(0=\) XT-mode, \(1=\) AT-mode. Jumper P2, P3: not used.
Note 3: Care must be taken if there are pullups in the computer system that clock/data line current \(<3 \mathrm{~mA}\).
Note 4: Diodes D2-D6 should be removed if keyboard has hardware keyroliover (diodes in matrix).
FIGURE 2. MF-2 Keyboard Schematics with a 44-Pin COP888CL

The keyboard is organized as an 8 input by 16 output matrix. The COP888CL's L port is configured as a weak pull-up input port, thus allowing the use of the multi-input wakeup feature. Most of the time the chip is in the current saving HALT mode (ldd \(\leq 10 \mu \mathrm{~A}\)). Any keystroke or a data transmission from the computer will create a high to low transition on one of the L lines, which wakes up the \(\mu \mathrm{C}\) from HALT mode. After returning from the HALT mode, the keyboard is scanned in order to detect which key is pressed and the appropriate key code is sent to the computer. This event-driven keyboard scanning results in lowest possible current consumption as HALT mode is even entered between successive single keystrokes. The diodes in the D-lines of the key matrix prevent a high current from being drawn. When two keys in the same column are pressed, two outputs could be potentially connected together: one of the D output lines, which is high and the polled line, which is pulled low. In this case, excessive current would be drawn without the protection diodes. These diodes can be omitted if the keyboard already has decoupling diodes in its matrix (hardware key rollover). All other matrix lines source current in the \(\mu \mathrm{A}\) range and there is no need for current limiting diodes.
The G0 and G3 pins are used for the keyboard data and clock lines. The pull-ups on these lines ensure a defined logic " 1 " level. The keyboard interface on the computer side uses open collector drivers and the G0, G3 pins of the COP888CL are configured as TRI-STATE (Hi-Z) inputs when a " 1 " is written to the data or clock line. To output a logic " 0 " the \(\mu \mathrm{C}\) pulls the data or clock line low (push-pull low output). A maximum current of 3 mA can be sunk into the data and clock pins. Schmitt triggers on the data and clock line inputs reduce the risk of errors in the data received by the keyboard.

The microcontroller provides the option of using a low cost R/C oscillator with frequency variation tight enough to fulfill the requirements for a keyboard, in addition to the option of using a crystal or a ceramic clock.
The XT or AT/PS-2 operation mode can be selected via a hardware switch. Additional inputs for customer specific settings are available.
The three LEDs of an MF2 keyboard are driven directly by three of the COP888CL's high sink D-lines (max. 15 mA for each pin), thus eliminating the need for additional LED drivers or transistors.
The keyboard logic generates a Power-On Reset (POR) signal when the power is first applied to the keyboard. After POR the keyboard performs the Basic Assurance Test (BAT). The BAT consists of a keyboard controller self-test. During the BAT, any activity on the data and clock lines is ignored. The 3 keyboard LEDs are turned on at the beginning and turned off at the end of the BAT. Upon satisfactory completion of the BAT, the keyboard sends the BAT completion code (hex AA) to the computer and keyboard scanning begins. Any code other than hex AA is interpreted by the computer as a BAT error.

\section*{Desktop Keyboard with COP943C or COP880C}

Figure 3 shows the schematic for an MF2 keyboard with the COP943C/COP880C. The only difference compared to COP888CL solution is that the COP943C/COP880C microcontrollers do not have the multi-input wakeup feature, which allows an event driven keyboard scanning. The key matrix is therefore continuously scanned in a loop. With the COP943C/COP880C solution a part of the I port is used as the key matrix input. The I port is a TRI-STATE (\(\mathrm{Hi}-\mathrm{Z}\)) input port (requires external pull-ups).

Note 1: \(\mathrm{C} 2(47 \mu \mathrm{~F}\) level off capacitor) can be removed when the power supply ripple \(< \pm 10 \%, 0.5 \mathrm{~V} / \mathrm{ms}\).
Note 2: Jumper P1: Mode select: \(0=\) XT-mode, 1 = AT-mode. Jumper P2: P3: not used.
Note 3: Care must be taken if there are pullups in the computer system that clock/data line current \(<3 \mathrm{~mA}\).
Note 4: Diodes D2-D4 should be removed if keyboard has hardware keyrollover (diodes in matrix).
FIGURE 3. MF-2 Keyboard Schematic with a 40-Pin COP943C/COP880C

\section*{Key Matrix Organization}

Figure 4 shows an example of what an MF2 keyswitch matrix could look like. Each key position in the matrix is marked with its key number.
For example: Key number " 58 " is located at the key matrix position number " 2 " and has the AT-set make code " 14

Hex". Looking at Figure 1, one can see that key number " 58 " belongs to the left "CNTRL" key. Note that the "SHIFT", "CNTRL" and "ALT" keys are located in their own matrix lines, separate from all other keys. The reasons for that will be explained in the chapter "Software Key Rollover'.

FIGURE 4. Keyboard Matrix COP888CL AT Code Set

\section*{Code Sets}

The MF2 keyboard supports 3 different sets of make and break codes. Code set 1 is used for XT/PC and PS/2-30 compatible computers. Code set 2 is used for AT and all other PS/2 models compatible computers and code set 3 is used for workstations and terminal emulations on the PC. The country specific keyboard driver on the PC side converts the "key position" codes from the keyboard into the ASClI codes that correspond to the characters printed on the keycaps (as long as the right driver is installed on the PC). Appendix 1 gives a complete overview of the key numbers and their make and break codes for all 3 code sets. The symbols of the U.S. keyboard layout are only listed for reference and are different for other country layouts. The break code for code set 1 is equal to the make code with the most significant bit set. The make codes preceded with a "FO Hex" code give the break codes of code sets 2 and 3.

\section*{KEYBOARD SOFTWARE}

The software of the keyboard microcontroller can be subdivided into the following five main tasks:
- key detection
- software key rollover
- key decoding and encoding
- keycode transmission
- keyboard command set

\section*{Key Detection}

Key detection is done by scanning the keyboard matrix in the following way. Sequentially each of the 16 matrix output lines are pulled low, while all the others are high. The 8
matrix input lines are read and the 8 -bit input value is compared with the result of the previous scanning of the same matrix output line (a history of the previous scan is kept in the \(\mu \mathrm{C}\) 's RAM). Thus the keyboard microcontroller's key detection routine detects any key change in that matrix output line (key pressed or released) since the previous scan. It is important to recognize released keys, as the MF2 keyboard not only sends a key's "make" code when the key is pressed, but also a key's "break" code when the key is released. Key debouncing is performed by software by making sure that the time between two scans is bigger than the key bounce time (typically 8 ms).

\section*{Software Key Rollover}

Software key rollover means that no decoupoing diodes are used in the key switch matrix. However, the keyboard action is still N key rollover in nature. That is, if N keys are depressd in some sequence and held down, the make code of these keys is transmitted in that sequence. However, if three keys from three corners of a rectangle in the key switching matrix are depressed, a "ghost" key (a key which is not really pressed) would be created (see Figure 5). To prevent this, a special algorithm, which checks for such special key combinations, has been implemented into the keyboard software. If a "ghost" key has been detected the keyboard outputs the "key detection error code" and the \(N\) key rollover reverts to a 2 key rollover. To ensure that all 3-key combinations used on a PC (e.g., CNTRL+ALT+DEL) are still possible, keyboard manufacturers using this method organize the key switch matrix accordingly (an example is given in Figure 4).

FIGURE 5. Software Key Rollover
```

; SOFTWARE KEY ROLLOVER
;
;LENGTHC: COUNTER FOR NO. OF BYTES (15 FOR A 16 BY 8 MATRIX)
; WHICH HAVE TO BE COMPARED WITH THE ACTUAL SCANNED
; BYTE.
;LASTSCN: RAM LOCATION WHICH CONTAINS THE RESULT OF THE ACTUAL
; SCANNED LINE
;
;PNTSCAN: RAM LOCATION WHICH CONTAINS A POINTER TO THE RAM
; CELL IN THE SCAN HISTORY TABLE THAT STORES THE RESULT
; OF THE PREVIOUS SCAN FOR THE ACTUAL SCANNED MATRIX
; LINE
; SCNLOT: START ADRESS OF THE RAM SCAN HISTORY TABLE (16 BYTES)
;MATLEN: MATRIX LENGTH (IN THIS CASE MATLEN=16dec)
;BITC : SHIFT COUNTER FOR BYTE SHIFT
;TYPSAV: RAM ADRESS OF TYPEMATIC RATE SAVE REGISTER
;TYPST : RAM ADRESS FOR TYPEMATIC RATE VALUE
;STATUS: RAM ADRESS OF GENERAL STATUS FLAG REGISTER
;STAT2 : RAM ADRESS OF GENERAL STATUS FLAG REGISTER 2
;TYPCO1: RAM ADRESS OF REGISTER THAT CONTAINS TYPEMATIC KEY
; MAKE CODE
;SCNCNT: SCAN COUNTER FOR 16 MATRIX LINES
;
;
;
KEYROL:
LD LENGTHC,\#OOF ;LOAD TABLE LENGTH COUNTER
LD X,\#LASTSCN ;POINT TO RAM LOCATION WHERE
;RESULT OF PREVIOUS SCAN IS
;STORED
LD A,PNTSCAN ;LOAD POINTER TO ACTUAL SCAN
;LINE
INC A
X A,B ;POINT TO THE NEXT SCAN LINE
\$NEXTB:
IFBNE \#((SCNLOT+MATLEN)\&OOF) ; IF END OF HISTORY SCANTABLE
;IN RAM NOT REACHED
JP \$1
LD B,\#SCNLO
LD A,[X] ;COMPARE NEW SCANNED MATRIX LINE
OR A,[B]
IFEQ A,\#OFF
JP \$INCB
LD A,[X]
;WITH ALL OTHER PREVIOUS SCANNED
;BYTES IN TABLE
;IF NO KEYS PRESSED IN
; SAME INPUT LINE
;THEN COMPARE WITH NEXT BYTE
;IN SCAN TABLE
;ELSE LOOK IF MORE THAN
;TWO KEYS ARE PRESSED
; IN ONE OF THE TWO
;COMPARED BYTES
;LOAD 1ST OF COMP.BYTES

```

TL/DD/11091-1
\begin{tabular}{|c|c|c|c|}
\hline \multirow{8}{*}{\＄2ERO1：} & LD & BITC，\＃08 & ；LOAD BIT COUNTER \\
\hline & RRC & A & \\
\hline & IFNC & & ；IF 1 KEY PRESSED \\
\hline & JP & \＄2ERO3 & ；THEN TEST IF 2ND \\
\hline & & & ；KEY IS PRESSED \\
\hline & DRSZ & BITC & ；IF NOT ALL BITS CHECKED \\
\hline & JP & \＄2ERO1 & ；THEN CONTINUE CHECK \\
\hline & JP & \＄INCB & \\
\hline \multicolumn{4}{|l|}{\＄2ERO2：} \\
\hline & RRC & A & \\
\hline & IFNC & & ；IF 2ND KEY PRESSED \\
\hline & JP & \＄ENDLP & ；THEN ERROR：＂GHOST KEY＂ \\
\hline \multirow[t]{2}{*}{\＄2ERO3：} & DRSZ & BITC & ；IF NOT ALL BITS CHECKED \\
\hline & JP & \＄2ERO2 & ；THEN CONTINUE CHECK \\
\hline & LD & A，［B＋］ & ；INC B \\
\hline & DRSZ & LENGTHC & ；IF NEW SCANNED MATRIX LINE \\
\hline & & & ；NOT COMPARED WITH ALL OTHER \\
\hline & & & ；BYTES IN TABLE \\
\hline & JP & \＄NEXTB & ；THEN COMP．WITH NEXT \\
\hline & & & ；BYTE IN TABLE \\
\hline & SC & & ；IF ALL COMPARED，SET NO ERROR \\
\hline & & & ；FLAG \\
\hline \multicolumn{4}{|l|}{\＄ENDLP：} \\
\hline & LD & B，\＃STAT2 & ；POINT TO STATUS FLAG REGISTER \\
\hline & IFNC & & ；ERROR DURING THIS SCAN？ \\
\hline & JP & \＄ERROR & ；YES，DO ERROR PROCEDURE \\
\hline & IFBIT & ERR2，［B］ & ；ERROR DURING PREVIOUS SCANS， \\
\hline & & & \begin{tabular}{l}
；BUT NO ERROR DURING THIS \\
；SCAN？
\end{tabular} \\
\hline & JP & \＄RESTORE & ；YES，RESTORE TYPEMATIC RATE \\
\hline & RET & & \\
\hline \multicolumn{4}{|l|}{\＄RESTORE：} \\
\hline & に可示 & & \\
\hline & JSR & TSTOP & ；STOP TYPEMATIC TIMER \\
\hline & LD & A，TYPSAV & ；LOAD SAVED TYPEMATIC VALUE \\
\hline & X & A，TYPST & ；RESTORE OLD TYPEMATIC VALUE \\
\hline & RET & & \begin{tabular}{l}
；NO ERROR DURING THIS SCAN： \\
；RETURN
\end{tabular} \\
\hline \multicolumn{4}{|l|}{\＄ERROR：} \\
\hline & IFBIT & ERR2，［B］ & ；IF ERROR OCURRED ALREADY ；DURING PREVIOUS SCAN \\
\hline & JP & \＄ERREND & ；THEN DO NOTHING \\
\hline & SBIT & ERR2，［B］ & ；ELSE SET PREVIOUS ERROR FLAG \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{LD}} & B，\＃TYPST & ；POINT TO TYPEMATIC VALUE \\
\hline & & & ；REGISTER \\
\hline & LD & \[
A,[B]
\] & \\
\hline \multicolumn{2}{|r|}{X} & A，TYPSAV & ；SAVE TYPEMATIC RATE／DELAY \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{LD}} & ［B］，\＃07F & ；SET TYPEMATIC TO is DELAY， \\
\hline & & & ； 2 CHARACTERS／s FOR ERROR CODE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline LD & A, \#000 \\
\hline LD & B, \#STATUS \\
\hline IFBIT & SET1, [B] \\
\hline LD & A, \#OFF \\
\hline X & A, TYPCO1 \\
\hline JSR & TSTART \\
\hline \multicolumn{2}{|l|}{\$ERREND:} \\
\hline LD & A, SCNCNT \\
\hline INCA & \\
\hline X & A, SCNCNT \\
\hline RETSK & \\
\hline . LOCAL & \\
\hline . END & \\
\hline
\end{tabular}
; REPETITION
; IF SET2,3 ERROR CODE 00
;POINT TO STATUS FLAG REGISTER
; ELSE ERROR CODE FF
;PUT IN TYPEMATIC BUFFER
;INIT \& START TYPEMATIC TIMER
; INCREMENT SCAN COUNTER
; RET AND SKIP FOR ROLLOVER ERROR

\section*{Key Decoding and Encoding}

After detection of a key change (pressing or releasing a key), the software first has to determine the physical location of the key in the key matrix. This decoding process is done by calculating an internal key number out of the key matrix column and row position of the changed key. At the same time, it is determined if the key has been pressed or released. A pressed or released key is then signaled by setting or resetting a "key down" flag in RAM. The internal key number and the "key down" status flag are the input parameters to the key encoding procedure. The internal key number is used to get the "make" code for the key out of a ROM look-up table, which has been matched to the physical matrix organization of the keyboard. If the "key down" flag is reset (key is released) the software calculates the key "break" code out of the previously fetched key "make" code. In this way, each pressed or released key is encoded with its appropriate "make" or "break" code, which is then written to the keyboard controllers 16 byte output buffer (FIFO) until the computer interface is ready to receive it. Before writing to the FIFO the software checks whether there is still enough capacity to store the key code.

\section*{Key Repetition}

All keys are typematic (repetitive) by default. That means when a key is pressed and held down, the \(\mu \mathrm{C}\) continues to send the "make" code for that key until it is released. When two or more keys are held down, only the code for the last key pressed is repeated. Typematic operation will stop

TL/DD/11091-3
when this key is released, even if other keys are still held down.
The default values for typematic operation are:
delay time \(=500 \mathrm{~ms}\)
repetition rate \(=10\) characters \(/\) second,
where the delay time is the time which is inserted before a character is repeated for the first time.

\section*{Operating Protocol}

There are two different transmission protocols for an MF2 keyboard: the AT transmission protocol and the XT transmission protocol. Data transmission to and from the keyboard is synchronous serial, the data format for the XT mode is:

9 bits in length
1 start bit (high)
8 data bits (LSB first)
The data format for AT and PS/2 modes is:
11 bits in length
1 start bit (low) 8 data bits (LSB first)
1 parity bit (odd)
1 stop bit (high)
If no data is transmitted, both data and clock lines are in the high state. The clock signal is always provided by the keyboard. Figure 6 shows the XT and the AT protocol timings.

\section*{XT-Protocol}

AT-Protocol

TL/DD/11091-16
FIGURE 6. XT and AT Protocol Timings

\section*{Keyboard Data Transmission in XT Format}

At the falling edge of the clock, the start bit (high) is shifted out, followed by the 8 data bits (least significant bit first). Data is valid on the rising edge of the clock and changes after the falling edge of the clock.

\section*{Keyboard Data Transmission in AT Format}

Before sending data, the keyboard monitors the clock and data lines. If the clock line is low, then the keyboard is disabled by the computer and no data is transmitted. The microcontroller continues to scan the keyboard and stores key data in its output buffer. If the data line is low, while the clock line is high, the computer requests to send and the
keyboard goes into receive mode. The keyboard is only allowed to transmit data when both data and clock lines are high.
The keyboard pulls the data line low (start bit) and starts the clock. The 8 data bits (least significant bit first) are shifted out, followed by the parity (odd) and stop bit (high). Data is valid after the falling edge of the clock and changes after the rising edge of the clock. If no data is transmitted both data and clock lines are high. If the computer pulls the clock line low for at least \(60 \mu \mathrm{~s}\) before the 10th bit is transmitted, the keyboard stops transmission and stores the aborted data in its output buffer.
```

; SENDBY: SEND BYTE TO COMPUTER
;INPUT PARAMETER:
;BYTSEN: RAM LOCATION CONTAINING THE
; BYTE TO BE TRANSMITTED
;OUTPUT:
; DATSEN FLAG IN STATUS REGISTER
; l=BYTE SENT,0=BYTE NOT SENT
;PARCNT: PARITY COUNTER REGISTER'
;BITC : DATA LENGTH COUNTER FOR TRANSMISSION LOOP
;
;CLOCK HIGH TIME (=CLOCK LOW TIME) = 40us
;AT 3.58MHz CLOCK (INSTR. CYCLE = 2.79us)
;
;DATA REGISTER OF PORT G DATA AND CLOCK LINES IS
;PRESET WITH "O"

```
 . LOCAL
SendBy:
 LD B,\#STATUS ;POINT TO STATUS FLAG REGISTER
 RBIT DatSen, [B] ;RESET "BYTE SEND" FLAG
 LD A,BytSen ;LOAD BYTE TO SEND
 LD BITC,\#009 ;DATA LENGTH
 IFBIT PCXT,[B] ;IF XT MODE
 JMP PCMode
 ; THEN JUMP TO XT
 ; SEND ROUTINE
 ; ELSE SEND AT PROTOCOL
\$ATSEND:
 LD PARCNT,\#10 ;LOAD PARITY COUNTER
 LD B,\#PORTGP ;POINT TO GPORT INPUT
 ; REGISTER
WAITS:
\begin{tabular}{lll}
IFBIT & ClockL, [B] & ;IF CLOCKLINE HIGH \\
JP & SClocOK & ;THEN OK \\
JP & WAITS & \\
& & ;ELSE KEYBOARD DISABLED \\
& & \\
& & \\
IFAIT \\
JP & DataLn, [B] & ;IF DATALINE IS HIGH \\
RET & & ;THEN OK \\
& & ;ELSE PC SENDS DATA: \\
& & ;RETURN (GOTO RECEIVE)
\end{tabular}
\$DataOK:
LD \(\quad\)\begin{tabular}{rl}
& \\
& \(;\) POINT TO PORTGC G CONFIGURATION
\end{tabular} ; REGISTER
;STARTBIT \(=0\)
\$SendBt:
RBIT ClockL,[B]
IFBIT ClockI, PORTGP JP \$ClockH RBIT Dataln, [B] ; SET CLOCKLINE HIGH (TRI-STATE) ;IF PC DOES NOT PULL CLOCKL LOW ; THEN OK ; ELSE SET DATA LINE BACK TO HIGH ; STOP TO SEND
\$ClockH:
\begin{tabular}{ll}
IFC & \\
JP & SDATHI \\
SBIT & DataIn, [B] \\
JP & \$CLKLOW \\
RBIT & DataIn, [B]
\end{tabular}
```

;IF BIT TO TRANSMIT = "1"
;THEN DATALINE HIGH
;ELSE DATALINE LOW
;SET CLOCKLINE LOW
; SET DATALINE HIGH (TRI-STATE)

```
\$CLKLOW:
 SBI
 IFC
 DRSZ PARCN
 RRC A
 NOP
 DRSZ BITC
 JP
 :
 NOP
 NOP
 NOP
 RBIT
 IFBIT
 ClockL, [B]
 00, PARCNT
 JP \$DLOW
 ;IF NUMBER OF "1" = ODD
; THEN PARITY \(=0\)
RBIT DataLn, [B] ;ELSE PARITY = 1
JP \$CLKL2
\$DLOW:
 SBIT
 Datain, [B]
 NOP
\$CLKL2:
NOP ;DELAY
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{NOP} \\
\hline & SBIT & ClockL, [B] & ; SET CLOCKLINE LOW \\
\hline & JSR & DEL12 & ;INSERT DELAY 12 INSTR. CYCLES \\
\hline & RBIT & ClockL, [B] & ; SET CLOCKLINE HIGH \\
\hline & & & ; TRANSMIT STOP BIT \\
\hline & RBIT & DataLn, [B] & ; SET DATA LINE HIGH (STOP BIT) \\
\hline & JSR & DEL11 & ; INSERT DELAY 11 INSTR. CYCLES \\
\hline & SBIT & Clockl, [B] & ; SET CLOCKLINE LOW \\
\hline & JSR & DEL12 & ; INSERT DELAY 12 INSTR. CYCLES \\
\hline \multicolumn{4}{|l|}{\$ENDSB:} \\
\hline & RBIT & ClockL, [B] & ; SET CLOCKLINE HIGH \\
\hline & RBIT & DATALN, [B] & ; DATA HIGH (XT MODE) \\
\hline & LD & B, \#STATUS & ; POINT TO STATUS FLAG REG. \\
\hline & SBIT & DatSen, [B] & ; SET DATA SENT FLAG \\
\hline & LD & A, BYTSEN & \\
\hline & IFEQ & A, \#0FE & \begin{tabular}{l}
; IF SENT BYTE = RESEND \\
; COMMAND
\end{tabular} \\
\hline & RET & & ; THEN DON'T SAVE \\
\hline & X & A, SENBYT & ; ELSE SAVE LAST SENT BYTE \\
\hline & & & \begin{tabular}{l}
;IN SENBYT IN CASE PC ASKS \\
; KEYBOARD TO RESEND
\end{tabular} \\
\hline & RET & & \\
\hline \multicolumn{4}{|l|}{; XT TRANSMISSION PROTOCOL} \\
\hline \multicolumn{4}{|l|}{PCMode:} \\
\hline & IFBIT & CLOCKL, PORTGP & ; CLOCKLINE HIGH? \\
\hline & JP & \$PCSND & ;YES,START TO SEND \\
\hline & JMP & POWRUP & ;ELSE RESET \\
\hline \multicolumn{4}{|l|}{\$PCSND:} \\
\hline & LD & B, \#PORTGC & \\
\hline & SBIT & DATALN, [B] & ; DATA LINE LOW BEFORE \\
\hline & & & ;START TO SEND \\
\hline & SC & & ; START BIT = 1 \\
\hline \multicolumn{4}{|l|}{\$PCSEND:} \\
\hline & SBIT & ClockL, [B] & ; CLOCKLINE LOW \\
\hline & IFC & & ; IF BIT TO SEND=1 \\
\hline & JP & \$DATH2 & ; THEN SET DATALINE HIGH \\
\hline & SBIT & DataLn, [B] & ;ELSE SET DATALINE LOW \\
\hline & NOP & & ;DELAY \\
\hline & NOP & & \\
\hline & NOP & & \\
\hline & NOP & : & \\
\hline & NOP & & . \\
\hline & NOP & & \\
\hline & JP & \$CLKHI & \\
\hline \multicolumn{4}{|l|}{\$DATH2:} \\
\hline & RBIT & Dataln, [B] & ; SET DATALINE HIGH \\
\hline & IFBIT & DATALN, PORTGP & ; IF DATALINE HIGH \\
\hline & JP & \$CLKHI & ; THEN OK \\
\hline & & & ;ELSE KEYBOARD DISABLED \\
\hline & RBIT & CLOCKL, [B] & ; CLOCKLINE HIGH \\
\hline
\end{tabular}
```

```
 RET ;STOP TO SEND
```

```
 RET ;STOP TO SEND
$CLKHI:
$CLKHI:
 RBIT ClockL,[B]
 RBIT ClockL,[B]
 RRC A
 RRC A
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
$PCOK:
$PCOK:
 DRSZ BITC
 DRSZ BITC
 JP $PCSEND
 JP $PCSEND
 SBIT CLOCKL, [B]
 SBIT CLOCKL, [B]
 SBIT DATALN,[B]
 SBIT DATALN,[B]
 JSR DELAYD
 JSR DELAYD
 JP $ENDSB
 JP $ENDSB
DEL12: NOP
DEL12: NOP
DEL11: NOP
DEL11: NOP
DELAYD: RET
DELAYD: RET
 .LOCAL
 .LOCAL
 . END
```

    . END
    ```
\begin{tabular}{ll}
DRSZ & BITC \\
JP & \$PCSEND \\
SBIT & CLOCKL, [B] \\
SBIT & DATALN, [B] \\
JSR & DELAYD \\
JP & \$ENDSB
\end{tabular}
```

    ;SET CLOCKLINE HIGH
    ```
 ;SET CLOCKLINE HIGH
 ;SHIFT NEXT BIT TO TRANSMIT
 ;SHIFT NEXT BIT TO TRANSMIT
 ;INTO CARRY
 ;INTO CARRY
 ;DELAY
 ;DELAY
;IF NOT ALL BITS SENDED
;IF NOT ALL BITS SENDED
;THEN CONTINUE
;THEN CONTINUE
;ELSE CLOCKLINE LOW
;ELSE CLOCKLINE LOW
;DATA LOW
;DATA LOW
;10 INSTR. CYCLES DELAY
```

;10 INSTR. CYCLES DELAY

```

\section*{Keyboard Receives Data}

The keyboard can only receive data from the computer in AT-PS/2 mode. The computer pulls the data line low (start bit) after which the keyboard starts to shift out 11 clock pulses within 15 ms . Transmission has to be completed within 2 ms . Data from the computer changes after the falling edge of the clock and is valid before the rising edge of
the clock. After the start bit, 8 data bits (least significant bit first), followed by the parity bit (odd) and the stop bit (high) are shifted out by the computer with the clock signal provided by the keyboard. The keyboard pulls the stop bit low in order to acknowledge the receipt of the data. If a transmission error occurred (parity error or similar) the keyboard issues the "RESEND" command to the PC.
```

;
; RECDAT: RECEIVE DATA COMMING FROM PC
;RETURN, IF PARITY ERROR
;
;RETURN SKIP , IF BYTE WAS RECEIVED
;WITHOUT ERROR
;
;BTRECV: RAM LOCATION CONTAINING THE
; RECEIVED BYTE
;
;BITC : RECEIVE LOOP COUNTER REGISTER
;PARCNT: PARITY COUNTER REGISTER
;

```

RecDat:
CLRA
LD B,\#PORTGC ;B POINT TO PORT G ; CONFIGURATION
LD \(X, \# B T R E C V\);X POINT TO RECEIVED BYTE ; RAM CELL
LD PARCNT,\#10 ;LOAD PARITY COUNTER
LD BITC,\#009 ; LOAD RECEIVE LOOP COUNTER ; (8 DATABITS + 1 PARITY BIT)
RC ; START BIT= "0"
RdByte:
SBIT ClockL, [B] ;SET CLOCKLINE LOW ; (CLOCK IN START BIT)
IFC ;IF "1"-BIT RECEIVED
DRSZ PARCNT ;THEN DECR. PARITY COUNTER
RRC A ; SHIFT CARRY TO BIT 7 OF ACCU
\(X\) A, \(X\) [X] ;STORE RECEIVED BYTE
LD \(A,[X] \quad ; R E S T O R E\) AS LONG AS NOT ;FULL BYTE RECEIVED

RBIT ClockL, [B] ;SET CLOCKLINE HIGH
; READ IN RECEIVED BIT
RC ;RECEIVED BIT= "0"
IFBIT DataLn,PORTGP ;IF DATALINE = "1"
SC ;THEN RECEIVED BIT= "1"
DRSZ BITC ;9 BITS RECEIVED?
JP RdByte ;NO,LOOP
;CLOCK LOW PULSE AFTER PARITY HAS BEEN RECEIVED
SBIT ClockL, [B] ;SET CLOCKLINE LOW
JSR DELAYD ;INSERT 10 INSTR. CYCLES DELAY RBIT ClockL,[B] ;SET CLOCKLINE HIGH
;PC SENDS STOP BIT
SBIT DataLn,[B] ;PULL STOP BIT LOW
```

                    ;TO ACKNOWLEDGE RECEIPT OF BYTE
                    ;INSERT DELAY
    ;CLOCK LOW PULSE (CLOCK ACKNOWLEDGE FOR PC)
SBIT ClockL,[B] ;SET CLOCKLINE LOW
JSR DELAYD ;INSERT DELAY
RBIT ClockL,[B] ;SET CLOCKLINE HIGH
RBIT DataLn,[B] ;RETURN DATA TO HIGH
;PARITY CHECK
IFBIT 00,PARCNT
JP PARO
ParOne:
IFC
RETSK
JP
PARERR
PARO:
IFNC
RETSK
THEN
;THEN OK,RETURN SKIP
;ELSE PARITY ERROR
ParErr: LD BytSen,\#OFE ;LOAD "RESEND" CODE
JSR SByWPO
;SEND RESEND CODE TO PC
RET
.END

```

\section*{Commands from the Computer}

The following table shows the commands and their hexadecimal values the computer may send to the keyboard. Only AT-PS/2 compatible computers can send commands to the keyboard and the keyboard can only receive the commands when operated in the AT-mode.
The commands can be sent to the keyboard at any time. The keyboard responds within 20 ms to any valid transmission with ACK (FA Hex), except for the ECHO command where the keyboard responds with EE Hex, the RESEND command and the reconod commande.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Command } & Hex Value \\
\hline Set/Reset Mode Indicators & ED \\
Echo & EE \\
Reserved & EF \\
Select Alternate Code Set & F0 \\
Reserved & F1 \\
Read Keyboard ID & F2 \\
Set Typematic Rate/Delay & F3 \\
Enable & F4 \\
Default Disable & F5 \\
Set Default & F6 \\
Set All Keys & \\
Typematic/No Break & F7 \\
Make/Break/No Typematic & F8 \\
Make/No Typematic & F9 \\
Typem./Make/Br. & FA \\
Set Key Type & \\
Typematic/No Break & FB \\
Make/Break/No Typematic & FC \\
Make/No Typematic & FD \\
Resend & FE \\
Reset & FF \\
\hline
\end{tabular}

In the XT mode the keyboard only accepts the RESET command, which is assumed when the computer pulls the clock line low for at least 10 ms .

\section*{Commands to the Computer}

The following table shows the commands and their hexadecimal values the keyboard may send to the system.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Command } & Hex Value \\
\hline Key Detection Error/ & 00 \\
Quffer OVrrin & (Codo Scta 2and 2) \\
Keyboard ID & 83 AB \\
BAT Completion Code & AA \\
BAT Failure Code & FC \\
Echo & EE \\
Acknowledge & FA \\
Resend & FE \\
Key Detection Error/ & FF \\
Buffer Overrun & (Code Set 1) \\
\hline
\end{tabular}

\section*{SUMMARY}

When using National Semiconductor's microcontroller to implement the functions of an MF2 keyboard, very few external components are necessary. Figure 2 shows the complete schematic of an MF2 keyboard based on the COP888CL. The implementation of software key rollover eliminates the need for decoupling diodes in the 16 by 8 key matrix. LED direct drive capability of the COP8 and a RC oscillator with tolerances tight enough to meet the requirements for a keyboard further reduce component count and price. Schmitt triggers on the ports used for the keyboards data and clock lines add additional security against transmission errors. Where low power consumption is the most important design factor (e.g., laptop or notebook computers) the COP8's M2CMOS technology and the multi-input wakeup feature offer a remarkable improvement over the NMOS controllers used in most of today's existing solutions.

National Semiconductor offers three chips tailored for the needs of a keyboard designer. Starting with the most price competitive 2.5 k ROM device COP943C, an upgrade path is provided with the COP880C to 4 k ROM. Both devices are intended for the use in standard MF2 desktop keyboards. The COP888CL is ideally suited for notebook or lap-
top keyboards, as it has special power saving features. The complete software for an MF2 keyboard as well as complete demo keyboards and keyboard evaluation boards for the COP888CL and COP943C/COP880C microcontrollers are available. Contact National Semiconductor's \(\mu \mathrm{C}\) marketing or applications for further information.

\section*{APPENDIX I. KEY NUMBERS AND THEIR CORRESPONDING MAKE/BREAK CODES FOR ALL THREE CODE SETS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Key Position and Symbol}} & \multicolumn{2}{|l|}{Table I (XT and PS/2 30)} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Table II \\
(AT and PS/2 50, 60, 80)
\end{tabular}} & \multicolumn{2}{|r|}{Table III (Terminal MODE)} \\
\hline & & Make & Break & Make & Break & Code & Type \\
\hline 01 & \(\sim\) & 29 & A9 & OE & FO-0E & OE & Typematic \\
\hline 02 & \(!1\) & 02 & 82 & 16 & F0-16 & 16 & Typematic \\
\hline 03 & @ 2 & 03 & 83 & 1 E & F0-1E & 1E & Typematic \\
\hline 04 & \# 3 & 04 & 84 & 26 & F0-26 & 26 & Typematic \\
\hline 05 & \$ 4 & 05 & 85 & 25 & F0-25 & 25 & Typematic \\
\hline 06 & \% 5 & 06 & 86 & 2 E & F0-2E & 2E & Typematic \\
\hline 07 & \(\wedge 6\) & 07 & 87 & 36 & F0-36 & 36 & Typematic \\
\hline 08 & \& 7 & 08 & 88 & 3D & F0-3D & 3D & Typematic \\
\hline 09 & * 8 & 09 & 89 & 3E & F0-3E & 3 E & Typematic \\
\hline 10 & 19 & OA & 8A & 46 & F0-46 & 46 & Typematic \\
\hline 11 &) 0 & OB & 8B & 45 & F0-45 & 45 & Typematic \\
\hline 12 & - - & OC & 8C & 4E & F0-4E & 4E & Typematic \\
\hline 13 & \(+\quad=\) & OD & 8D & 55 & F0-55 & 55 & Typematic \\
\hline 15 & B.S. \(\leftarrow\) & OE & 8E & 66 & F0-66 & 66 & Typematic \\
\hline 16 & TAB & OF & 8 F & OD & FO-OD & OD & Typematic \\
\hline 17 & Q & 10 & 90 & 15 & F0-15 & 15 & Typematic \\
\hline 18 & W & 11 & 91 & 1D & F0-1D & 1D & Typematic \\
\hline 19 & E & 12 & 92 & 24 & F0-24 & 24 & Typematic \\
\hline 20 & R & 13 & 93 & 2 D & F0-2D & 2D & Typematic \\
\hline 21 & T & 14 & 94 & 2 C & F0-2C & 2 C & Typematic \\
\hline 22 & Y & 15 & 95 & 35 & F0-35 & 35 & Typematic \\
\hline 23 & U & 16 & 96 & 3C & F0-3C & 3 C & Typematic \\
\hline 24 & 1 & 17 & 97 & 43 & F0-43 & 43 & Typematic \\
\hline 25 & 0 & 18 & 98 & 44 & F0-44 & 44 & Typematic \\
\hline 26 & P & 19 & 99 & 4D & F0-4D & 4D & Typematic \\
\hline 27 & 1 [& 1A & 9A & 54 & F0-54 & 54 & Typematic \\
\hline 28 & 1] & 1B & 9 B & 5B & F0-5B & 5B & Typematic \\
\hline 29* & 11 & 2B & AB & 5D & F0-5D & 5 C & Typematic \\
\hline 30 & Caps Lk & 3A & BA & 58 & F0-58 & 14 & Make/Break \\
\hline 31 & A & 1E & 9E & 1C & F0-1C & 1 C & Typematic \\
\hline 32 & S & 1F & 9 F & 1B & F0-1B & 1B & Typematic \\
\hline 33 & D & 20 & AO & 23 & F0-23 & 23 & Typematic \\
\hline 34 & F & 21 & A1 & 2B & F0-2B & 2B & Typematic \\
\hline 35 & G & 22 & A2 & 34 & F0-34 & 34 & Typematic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Key Positlon and Symbol}} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Table I } \\
\text { (XT and PS/2 30) }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Table II
(AT and PS/2 50, 60, 80)} & \multicolumn{2}{|r|}{Table III (Terminal MODE)} \\
\hline & & Make & Break & Make & Break & Code & Type \\
\hline 36 & H & 23 & A3 & 33 & F0-33 & 33 & Typematic \\
\hline 37 & J & 24 & A4 & 3B & F0-3B & 3 B & Typematic \\
\hline 38 & K & 25 & A5 & 42 & F0-42 & 42 & Typematic \\
\hline 39 & L & 26 & A6 & 4B & F0-4B & 4B & Typematic \\
\hline 40 & : ; & 27 & A7 & 4 C & F0-4C & 4C & Typematic \\
\hline 41 & " & 28 & A8 & 52 & F0-52 & 52 & Typematic \\
\hline 42** & 1 & 2B & AB & 5D & F0-5D & 53 & Typematic \\
\hline 43 & Enter (L) & 1 C & 9 C & 5A & F0-5A & 5A & Typematic \\
\hline 44 & Shift (L) & 2 A & AA & 12 & F0-12 & 12 & Typematic \\
\hline 45** & Macro & 56 & D6 & 61 & F0-61 & 13 & Typematic \\
\hline 46 & Z & 2C & AC & 1A & F0-1A & 1 A & Typematic \\
\hline 47 & X & 2D & \(A D\) & 22 & F0-22 & 22 & Typematic \\
\hline 48 & C & 2 E & \(A E\) & 21 & F0-21 & 21 & Typematic \\
\hline 49 & V & 2 F & AF & 2 A & F0-2A & 2 A & Typematic \\
\hline 50 & B & 30 & B0 & 32 & F0-32 & 32 & Typematic \\
\hline 51 & N & 31 & B1 & 31 & F0-31 & 31 & Typematic \\
\hline 52 & M & 32 & B2 & 3A & F0-3A & 3A & Typematic \\
\hline 53 & < & 33 & B3 & 41 & F0-41 & 41 & Typematic \\
\hline 54 & > & 34 & B4 & 49 & F0-49 & 49 & Typematic \\
\hline 55 & ? / & 35 & B5 & 4A & F0-4A & 4A & Typematic \\
\hline 57 & Shift (R) & 36 & B6 & 59 & F0-59 & 59 & Make/Break \\
\hline 58 & Ctrl (L) & 1D & 9 D & 14 & F0-14 & 11 & Make/Break \\
\hline 60 & Alt (L) & 38 & B8 & 11 & F0-11 & 19 & Make/Break \\
\hline 61 & Space & 39 & B9 & 29 & F0-29 & 29 & Typematic \\
\hline 62 & Alt (R) & E0-38 & E0-B8 & E0-11 & E0-F0-11 & 39 & Make \\
\hline 64 & Ctrl (R) & E0-1D & E0-9D & E0-14 & E0-F0-14 & 58 & Make \\
\hline 90 & Num Lk & 45 & C5 & 77 & F0-77 & 76 & Make \\
\hline 91 & 7 Home & 47 & C7 & 6 C & F0-6C & 6C & Make \\
\hline 92 & \(4 \leftarrow\) & 4B & CB & 6B & F0-6B & 6B & Make \\
\hline 93 & 1 End & 4F & CF & 69 & F0-69 & 69 & Make \\
\hline 96 & 8 个 & 48 & C8 & 75 & F0-75 & 75 & Make \\
\hline 97 & 5 & 4C & CC & 73 & F0-73 & 73 & Make \\
\hline 98 & \(2 \downarrow\) & 50 & D0 & 72 & F0-72 & 72 & Make \\
\hline 99 & 0 Ins & 52 & D2 & 70 & F0-70 & 70 & Make \\
\hline 100 & * & 37 & B7 & 7 C & F0-7C & 7E & Make \\
\hline \multicolumn{8}{|l|}{*101-Keyboard only **102-Keyboard only} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Key Position and Symbol}} & \multicolumn{2}{|l|}{Table I (XT and PS/2 30)} & \multicolumn{2}{|l|}{Table II
(AT and PS/2 50, 60, 80)} & \multicolumn{2}{|l|}{Table III (Terminal MODE)} \\
\hline & & Make & Break & Make & Break & Code & Type \\
\hline 101 & 9 Pg UP & 49 & C9 & 7D & F0-7D & 7D & Make \\
\hline 102 & \(6 \rightarrow\) & 4D & CD & 74 & F0-74 & 74 & Make \\
\hline 103 & 3 Pg DN & 51 & D1 & 7A & F0-7A & 7A & Make \\
\hline 104 & Del & 53 & D3 & 71 & F0-71 & 71 & Make \\
\hline 105 & - & 4A & CA & 7B & F0-7B & 84 & Make \\
\hline 106 & + & 4E & CE & 79 & F0-79 & 7 C & Make \\
\hline 108 & Enter & E0-1C & E0-9C & E0-5A & E0-F0-5A & 79 & Typematic \\
\hline 110 & Esc & 01 & 81 & 76 & F0-76 & 08 & Make \\
\hline 112 & F1 & 3B & BB & 05 & F0-05 & 07 & Make \\
\hline 113 & F2 & 3 C & BC & - 06 & F0-06 & 0 F & Make \\
\hline 114 & F3 & 3D & BD & 04 & F0-04 & 17 & Make \\
\hline 115 & F4 & 3E & BE & OC & F0-0C & 1F & Make \\
\hline 116 & F5 & 3 F & BF & 03 & F0-03 & 27 & Make \\
\hline 117 & F6 & 40 & C0 & OB & F0-0B & \(2 F\) & Make \\
\hline 118 & F7 & 41 & C1 & 83 & F0-83 & 37 & Make \\
\hline 119 & F8 & 42 & C2 & OA & F0-0A & 3 F & Make \\
\hline 120 & F9 & 43 & C3 & 01 & F0-01 & 47 & Make \\
\hline 121 & F10 & 44 & C4 & 09 & F0-09 & 4F & Make \\
\hline 122 & F11 & 57 & D7 & 78 & F0-78 & 56 & Make \\
\hline 123 & F12 & 58 & D8 & 07 & F0-07 & 5E & Make \\
\hline 125 & Scr Lk & 46 & C6 & 7E & F0-7E & 5F & Make \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow{3}{*}{Key Position and Symbol}} & \multicolumn{4}{|c|}{Cursor Pad <NUM Lock Off/Shift Off> or <NUM Lock On/Shift On>} & \multicolumn{2}{|l|}{\multirow{2}{*}{Table III (Terminal Mode)}} \\
\hline & & \multicolumn{2}{|l|}{Table I (XT and PS/2 30)} & \multicolumn{2}{|l|}{Table II (AT and PS/2 50, 60, 80)} & & \\
\hline & & Make & Break & Make & Break & Code & Type \\
\hline 75 & Insert & E0-52 & E0-D2 & E0-70 & E0-F0-70 & 67 & Make \\
\hline 76 & Delete & E0-53 & E0-D3 & E0-71 & E0-F0-71 & 64 & Typematic \\
\hline 79 & \(\leftarrow\) & E0-4B & E0-CB & E0-6B & E0-F0-6B & 61 & Typematic \\
\hline 80 & Home & E0-47 & E0-C7 & E0-6C & E0-F0-6C & 6E & Make \\
\hline 81 & End & E0-4F & E0-CF & E0-69 & E0-F0-69 & 65 & Make \\
\hline 83 & \(\uparrow\) & E0-48 & E0-C8 & E0-75 & E0-F0-75 & 63 & Typematic \\
\hline 84 & \(\downarrow\) & E0-50 & E0-D0 & E0-72 & E0-F0-72 & 60 & Typematic \\
\hline 85 & PG UP & E0-49 & E0-C9 & E0-7D & E0-F0-7D & 6 F & Make \\
\hline 86 & PG DN & E0-51 & E0-D1 & E0-7A & E0-F0-7A & 6D & Make \\
\hline 89 & \(\rightarrow\) & E0-4D & E0-CD & E0-74 & E0-F0-74 & 6A & Typematic \\
\hline
\end{tabular}
*. Cursor Pad Key-<NUM Lock On/Shift Off>
Table l: Make Code \(==\) E0-2A-Make Code
Break Code \(==\) Break Code-E0-AA
Table II: Make Code \(==\) E0-12-Make Code
Break Code \(==\) Break Code E0-FO-12
*. Cursor Pad Key-<NUM Lock Off/Shift On>
Table I: Make Code \(=\) EO-AA-Make Code
Break Code \(=\) Break Code-E0-2A
Table II: Make Code \(=\) E0-F0-12-Make Code
Break Code \(=\) Break Code E0-12

Key Code of "Pause", "PRTSC" and " \(/\) " Keys
TABLE I. XT and PS/2 30
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{c|}{\begin{tabular}{c}
Key Positton \\
and Symbols
\end{tabular}} & Make & Break \\
\hline 126 & Pause & E1-1D-45-E1-9D-C5 & No Break Code (Make Only) \\
\hline & Ctr1-"Pause" & E0-46-E0-C6 & No Break Code (Make Only) \\
\hline 124 & Print Screen & E0-2A-E0-37 & E0-B7-E0-AA \\
\hline & Shift-"PRTSC" & E0-37 & E0-B7 \\
\hline & Ctr1-"PRTSC" & E0-37 & E0-B7 \\
\hline & Alt-"PRTSC" & 54 & D4 \\
\hline 95 & \(/\) & E0-35 & E0-B5 \\
\hline & Shift-"/" & E0-AA-E0-35 & E0-B5-E0-2A \\
\hline
\end{tabular}

TABLE II. AT and PS/2 50, 60, 80
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{c|}{\begin{tabular}{c}
Key Position \\
and Symbols
\end{tabular}} & Make & Break \\
\hline 126 & Pause & E1-14-77-E1-F0-14-F0-77 & No Break Code (Make Only) \\
\hline & Ctrl-"Pause" & E0-7E-E0-F0-7E & No Break Code (Make Only) \\
\hline 124 & Print Screen & E0-12-E0-7C & E0-F0-7C-E0-F0-12 \\
\hline & Shift-"PRTSC"" & E0-7C & E0-F0-7C \\
\hline & Ctrl-"PRTSC" & E0-7C & E0-F0-7C \\
\hline & Alt-"PRTSC" & 84 & F0-84 \\
\hline 95 & \(/\) & E0-4A & E0-F0-4A \\
\hline & Shift-"/" & E0-F0-12-E0-4A & E0-F0-4A-E0-12 \\
\hline
\end{tabular}

TABLE III. Terminal Mode
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{c|}{ Key Position and Symbols } & Code & Type \\
\hline 126 & Pause & 62 & Make \\
\hline 124 & Print Screen & 57 & Make \\
\hline 95 & \(/\) & 77 & Make \\
\hline
\end{tabular}

\section*{APPENDIX II. REFERENCES}
1. IBM Technical Reference Manuals XT, AT and PS/2
2. Chicony, Chicony Keyboards General Specification, 1988
3. C' T Magazin fuer Computertechnik, No. 6, 1988, pages 148ff. No. 7, 1988, pages 178ff. Martin Gerdes, "Knoepfchen, Knoepfchen"

\section*{INTRODUCTION}

This application note describes an implementation of the RS-232C interface with a COP888CG. The COP888CG 8-bit microcontroller features three 16-bit timer/counters, MICROWIRE/PLUSTM Serial I/O, multi-source vectored interrupt capability, two comparators, a full duplex UART, and two power saving modes (HALT and IDLE). The COP888CG feature set allows for efficient handling of RS-232C hardware handshaking and serial data transmission/reception.

\section*{SYSTEM OVERVIEW}

In this application, a COP888CG is connected to a terminal using the standard RS-232C interface. The serial port of the terminal is attached to the COP888CG interface hardware using a standard ribbon cable with DB-25 connectors on either end. The terminal keyboard transmits ASCII characters via the cable to the COP888CG interface. All characters received by the COP888CG are echoed back to the terminal screen. If the COP888CG detects a parity or framing error, it transmits an error message back to the terminal screen.

\section*{HARDWARE DESCRIPTION}

The COP888CG features used in this application include the user programmable UART, the 8 -bit configurable L PORT, and vectored interrupts. In addition to the COP888CG, the RS-232C interface requires a DS14C88 driver and a DS14C89A receiver. The DS14C88 converts TTL/CMOS level signals to RS-232C defined levels and the DS14C89A does the opposite. Figure 1 contains a diagram of the COP888CG interface hardware.
The COP888CG is configured as data communications equipment (DCE) and the terminal is assumed to be data terminal equipment (DTE). The following RS-232C signals are used to communicate between the COP888CG (DCE) and the terminal (DTE):
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ RS-232C Signal Name } & Signal Origin \\
\hline TxD (Transmit Data) & DTE \\
RxD (Receive Data) & DCE \\
CTS (Clear To Send) & DCE \\
RTS (Request To Send) & DTE \\
DSR (Data Set Ready) & DCE \\
DTR (Data Terminal Ready) & DTE \\
DCD (Data Carrier Detect) & DCE \\
\hline
\end{tabular}

Five general purpose I/O pins on the COP888CG L PORT are used for the control signals CTS, DSR, DCD, RTS and DTR. Two additional L PORT pins are used for TxD and RxD. These two general purpose pins are configured for their alternate functions, UART transmit (TDX) and UART receive (RDX). According to the RS-232C interface standard, DCE transmits data to DTE on RxD and receives data from DTE on TxD. Therefore, the UART transmit data pin (TDX) is used for the RS-232C receive data signal (RxD) and the UART receive data pin (RDX) is used for the RS232C transmit data signal (TxD). In this example, all handshaking between DCE and DTE is performed in hardware.

National Semiconductor
Application Note 739
Michelle Giles

The terminal is setup to interface with the COP888CG by selecting the 9600 baud, 7 bits/character, odd parity and one stop bit options. The local echo back of characters is disabled to allow the COP888CG to perform the echo back function. The terminal is also configured to use the hardware control signals (CTS, DSR, RTS, DTR) for handshaking.

\section*{SOFTWARE DESCRIPTION}

The software for this application consists of an initialization routine, several interrupt routines, and a disable routine. These routines handle RS-232C handshaking, transmitting and receiving of characters, error checking, and echoing back of received characters. Figures 2 thru 5 contain flowcharts of the routines. The complete code is given at the end of this application note.
The initialization routine configures the UART, initializes the transmit/receive data buffer, and enables the 8-bit L PORT handling of RS-232C control signals. In this particular example, the UART is configured to operate at 9600 BAUD in full duplex, asynchronous mode. The framing format is chosen to be: 7 bits/character, odd parity, and one stop bit. Different baud rates, modes of operation, and framing formats may be selected by setting the ENUCMD, ENUICMD, BAUDVAL and PSRVAL constants located at the beginning of the code to alternative values. (Refer to the COP888CG data sheet or COP888 Family User's Manual for details on configuring the UART.) Each RS-232C control signal is assigned to an L PORT pin. Pins L0, L2, L5 and L6 are configured as outputs for the DCD, TxD, CTS and DSR signals, respectively. Pins L3, L4 and L7 are configured as inputs for TxD, RTS and DTR, respectively. The transmit/receive data buffer is a circular buffer whose location and size is selected by setting the START and END constants located at the beginning of the program. The initialization routine sets up the buffer based on these constants.
The interrupt routines respond to transmit buffer empty, receive buffer full, and L PORT interrupts. A generic context switching routine is used for entering and exiting all interrupts. This routine saves the contents of the accumulator, the PSW register and the B pointer before vectoring to the appropriate interrupt routine. It also restores the contents of saved registers before a return from interrupt is executed.
The UART transmitter interrupt is called when the transmit buffer empty flag (TBMT) is set. This routine checks for active RTS and DTR control signals. If both signals are active and there is data to be transmitted, a byte of data is loaded into the UART transmit buffer. Otherwise, the UART transmitter is disabled.
The L PORT interrupts are used to indicate an active-low transition of RTS and/or DTR. When both signals are active (the remote receiver is ready to accept data), this routine enables the UART transmitter.
The UART receiver interrupt routine is called when the receive buffer full flag (RBFL) is set. This routine reads the

UART receive buffer and checks for errors. If no errors are detected, the incoming data is placed in the data buffer for echoing. If errors are detected, an error message is queued for transmission.
The receiver interrupt disables the remote transmitter by deactivating CTS whenever the transmit/receive data buffer is almost full. This action prevents the data buffer from overflowing. Note that CTS is turned off before the buffer is completely full to insure buffer space will exist for storing characters which are in the process of being sent when CTS is deactivated.
The disable routine clears the UART control registers, disables the L PORT interrupts, and de-activates the RS-232C control signals.

\section*{CONCLUSION}

The user configurable UART, multiple external interrupt capabilities, and vectored interrupt scheme of the COP888CG microcontroller allow for an efficient implementation of the RS-232C interface standard. This application note shows how the COP888CG may be configured for connection to a terminal using these features. However, the code for this application can be easily adapted to other applications requiring different baud rates or framing formats, connection to a modem (DCE), separate transmit and receive buffers, incoming command decoding and/or handling of character strings. The versatility of the RS-232C standard and the COP888CG provides a means to develop practical solutions for many applications.

TL/DD/11110-1
FIGURE 1. Interface Diagram

FIGURE 2. Main Program Flow

FIGURE 3. Receiver Interrupt Routine

FIGURE 4. Transmitter Interrupt Routine

FIGURE 5. L. Port Interrupt Routine

NATIONAL SEMICONDUCTOR CORPORATION COPB00 CROSS ASSEMBLER, REV:D1, 12 OCT 88

The following set of routines uses the COPBBBCG UART and several I/O pins ito simulate an RS232 port interface. The code handles hardware control isignals, echo back of received characters, and error checking. A single iroutine called INIT initializes the UART and hardware control signals. iThe transmittirg and receiving of characters is handled in several interrupt routines. The UART is disabled by calling the DISABLE routine. iThe user must select values for several constants before compiling ithis code.
i
iNOTES:
The COP tranmitter is enabled only when the transmit/receive buffer is not empty and the appropriate RS232 control signals from the remote receiver are present.
* The COp receiver is always enabled. the remote transmitter
* The remote transmitter is disabled whenever the transmit/ receive data buffer is full.
iValue to put in the ENU register iSelects bits per char and parity option ;DEFAULT = 081 (7 bits/char and odd parity)
iValue to put in the ENUI register
iSelects number of stop bits, uart clock option, isync/async option, xmit/rev interrupt enable, ;and TDX pin enable
DEFAULT \(=023\) (1 stop bit, internal BRG, iasync operation, no interrupt, and TDX enabled)
;Baud rate divisor equals N-1
;Baud rate prescalar
; \(B R=F C /(16 * N * P)\) where
; \(\quad\)\begin{tabular}{rlrl}
& \(F C\) & \(=\) CKI frequency \\
; & & \(N\) & \(=\) Baud Divisor \\
; Prescalar
\end{tabular}
GGIVEN: CALCULATE: BAUDVAL: PSRVAL:
;CKI \(=10 \mathrm{MHz} \quad \mathrm{N}=5\)
iBR \(=9600 \quad P=13 \quad 04 \quad\) OCB
;
CKI \(=10 \mathrm{MHz} \quad \mathrm{N}=10\)
;BR = 4800 \(\quad P=13 \quad 09 \quad\) OCB
;
See tables in users manual for translation iof \(N\) and \(P\) to BRUDVAL and PSRVAL

0010
0010 \(001 E\) \(001 F\) 000 E

NATIONAL SEMICONDUCTOR CORPORATION
COPBOO CROSS ASSEMBLER,REV:D1,12 OCT 88
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 52 & & 0000 & & DCD & \(=00\) & iBit & position of DCD signal on \(L\) port pins \\
\hline 53 & & 0005 & & CTS & \(=05\) & ; Bit & position of CTS signal on \(L\) port pins \\
\hline 54 & & 0007 & & DTR & \(=07\) & ; Bit & position of DTR signal on \(L\) port pins \\
\hline 55 & & 0004 & & RTS & \(=04\) & ; Bit & position of RTS signal on \(L\) port pins \\
\hline 56 & & 0006 & & DSR & \(=06\) & ;it & position of DSR signal on \(L\) port pins \\
\hline 57 & & 0005 & & ETDX & \(=05\) & ;Bit & position of TDX enable pin in ENUI \\
\hline 58 & & 0000 & & TIE & \(=00\) & ;Bit & position of TX interrupt enable bit \\
\hline 59 & & 0001 & & RIE & \(=01\) & ; Bit & position of RX interrupt enable bit \\
\hline 60 & & 0005 & & PE & \(=0.5\) & ;Bit & position of parity error in ENUR \\
\hline 61 & & 0006 & & FE & \(=06\) & ; Bit \(^{\text {c }}\) & position of framing error in ENUR \\
\hline 62 & & 0907 & & DCE & \(=07\) & ;Bit & position of data overrun error in ENUR \\
\hline 63 & & & & & & & \\
\hline 64 & & & & & & & \\
\hline 65 & & & & & & & \\
\hline 66 & & & & . INCLD & COPA88. INC & & \\
\hline 67 & & & & & & & \\
\hline 68 & 0002 & 3008 & MAIN: & JSR & INIT & & ; INITIALIZE UART \\
\hline 69 & 0004 & FF & & JP & - & & ;DO OTHER TASKS \\
\hline 70 & 0005 & 3044 & ; & JSR & DISABLE & & ; DISABLE UART \\
\hline 71 & 0007 & FF & & JP & . & & ido OTHER TASKS \\
\hline 72 & & & & & & & \\
\hline 73 & & & INIT: & & & & \\
\hline 74 & 0008 & 9FEF & & LD & B, \#PSW & & \\
\hline 75 & 000A & 68 & & RBIT & GIE, [B] & & ;DISABLE ALL INTERRUPTS \\
\hline 76 & 000B & BCBEDO & & LD & PSR, \#00 & & iUART OFF (POWERDOWN) \\
\hline 77 & OODE & BCD165 & & LD & PORTLC, \#065 & & ; SET I/D \\
\hline 78 & 0011 & 9FDO & & LD & B, \#PORTLD & & iNOT READY TO RECEIVE \\
\hline 79 & 0013 & 7E & & SBIT & DSR, [日] & & ; TURN OFF DATA SET READY \\
\hline 80 & 0014 & 7D & & SBIT & [TS, [B] & & ; TURN OFF CLEAR TO SEND \\
\hline 81 & 0015 & 68 & & RBIT & DCD, [B] & & ; TURN ON DATA CARRIER DETECT \\
\hline 82 & 0016 & BCIE10 & & LD & HEAD, \#START & & IINIT HEAD POINTER \\
\hline 83 & 0019 & BCIF10 & & LD & TAIL, \#START & & ;INIT TAIL POINTER \\
\hline 84 & 0015 & 9FE8 & & LD & B, \#ICNTRL & & ;CONFIGURE PORTL INTERRUPTS \\
\hline 85 & 0015 & 6E & & RBIT & LPEN, [B] & & ; DISABLE PDRTL INTERRUPTS \\
\hline 86 & D01F & BCC890 & & LD & WKEDG, \#090 & & ; SELECT FALLING EDGE FDR RTS AND DTR \\
\hline 87 & 002e & BCC990 & \(\bigcirc\) & LD & WKEN, \#890 & & ; ENABLE RTS AND DTR INTERRUPT \\
\hline 88 & 0025 & BCCAOD & & LD & WKPND, \#D0 & & (CLEAR PORTL INTERRUPT PENDING FLAGS \\
\hline 89 & 0028 & 7E & & SEIT & LPEN, [B] & & ; ENABLE PORT L INTERRUPTS \\
\hline 90 & 0029 & BCBR89 & & LD & ENU, \#ENUCMD & & ;SELECT BITS/CHAR AND PARITY OPTION \\
\hline 91 & 002 C & BCBB00 & & LD & ENUR, \#OOI & & ;CLEAR ERROR BITS \\
\hline 92 & 002F & BCBC20 & & LD & ENUI, \#ENUICMD & & ;SELECT CLOCK, INTERRUPTS, STOPRITS \\
\hline 93 & 0032 & BCBD04 & & LD & BAUD, \#BAUDVRL & & ; SETUP BRG \\
\hline 94 & 0035 & 9FBC & & LD & B, \#ENUI & & \\
\hline 95 & 0037 & 78 & . & SBIT & TIE, [B] & & ; ENABLE TRANSMITTER INTERRUPT \\
\hline 96 & 0038 & 79 & & SBIT & RIE, [B] & & ; ENABLE RECEIVER INTERRUPT \\
\hline 97 & 0039 & BCBECB & & LD & PSR, \#PSRUAL & & ; UART ON \\
\hline 98 & D033C & 9FD0 & & LD & B,\#PORTLD & & ; READY TO RECEIVE \\
\hline 99 & Q03E & 6E & & RBIT & DSR, [B] & & ; TURN ON DATA SET READY \\
\hline 180 & 003F & 6D & & RBIT & CTS, [日] & & ; TURN ON CLEAR TO SEND \\
\hline 101 & 0040 & 9FEF & & LD & B, \#PSW & & \\
\hline 102 & 0042 & 78 & & SBIT & GIE, [B] & & ; ENABLE ALL INTERRUPTS \\
\hline
\end{tabular}

TL/DD/11110-7

NATIONAL SEMICONDUCTOR CORPORATION COP800 CROSS ASSEMBLER, REV:D1, 12 OCT 88
\begin{tabular}{|c|c|c|c|c|c|}
\hline 103 & 0043 BE & & RET & & \\
\hline 104 & & & & & \\
\hline 105 & & \multicolumn{4}{|l|}{DISABLE:} \\
\hline 106 & D044 BDEF68 & & RBIT & GIE, PSW & ; DISABLE INTERRUPTS \\
\hline 107 & Q0147 ECD061 & & LD & PORTLD, \#061 & ; TURN OFF HANDSHAKING SIGNALS \\
\hline 108 & 004 A BCBEDD & & LD & PSR, \#00 & ; UART POWERDOWN \\
\hline 109 & 004 D BCBA00 & & LD & ENU, \#00 & iclear uart control registers \\
\hline 110 & 0050 BCBCEO & & LD & ENUI, \#00 & \\
\hline 111 & 0053 BCBB00 & & LD & ENUR, \#80 & \\
\hline 112 & 0056 9FC9 & & LD & B, \#WKEN & ;DISABLE RTS AND DTR INTERRUPTS \\
\hline 113 & 0058 6C & & RBIT & RTS, [B] & \\
\hline 114 & 0059 6F & & RBIT & DTR, [B] & \\
\hline 115 & 005A BDEF78 & & SBIT & GIE, PSW & ; ENABLE INTERRUPTS \\
\hline 116 & 005D 8E & & RET & & \\
\hline 117 & & & & & \\
\hline \multicolumn{6}{|l|}{118} \\
\hline 119 & & ; INTER & JPT ROU & NES & \\
\hline \multicolumn{6}{|l|}{120} \\
\hline 121 & DefF & & . \(=0 \mathrm{~F}\) & & ; INTERRUPT START ADDRESS \\
\hline 122 & DOFF 67 & & PUSH & A & iCONTEXT SAVE \\
\hline 123 & 0100 9DFE & & LD & A, B & \\
\hline 124 & 010267 & & PUSH & A & \\
\hline 125 & 0103 9DEF & & LD & A, PSW & \\
\hline 126 & 010567 & & PUSH & A & \\
\hline 127 & 0106 84 & & VIS & & \\
\hline 128 & 010780 & REST: & POP & A & ;CONTEXT RESTORE \\
\hline 129 & 0108 9CEF & & X & A, PSW & \\
\hline 130 & D10A 8C & & POP & A & \\
\hline 131 & O10B 9CFE & & X & A, B & \\
\hline 132 & 010D 8C & & POP & A & \\
\hline 133 & O10E 8F & & RET I & & \\
\hline 134 & & & & & \\
\hline \multicolumn{6}{|l|}{135} \\
\hline 136 & & ; PORT & INTERR & & \\
\hline 137 & & ; The & port L & aterrupts are & indicate a return to active \\
\hline 138 & & ; stat & of the & DTR and RTS & from the remote receiver. \\
\hline 139 & & ; If b & h DTR & nd RTS are act & (he remote receiver is ready \\
\hline 140 & & i to ac & ept da & and the COP & itter is enabled. \\
\hline \multicolumn{6}{|l|}{141} \\
\hline 142 & & LINT: & & & ;PORT L INTERRUPT \\
\hline 143 & 010F BCCA00 & & LD & WKPND, \#00 & ; RESET PENDING BITS \\
\hline 144 & 0112 9DDE & & LD & A, PORTLP & ; RERD PDRT L PINS \\
\hline 145 & 01146010 & & IFBIT & \#RTS, A & ; IF RTS (ACTIVE LOW) NDT PRESENT \\
\hline 146 & 0116 & & JP & NOTRDY & ; THEN REMOTE NOT READY TD RECEIVE \\
\hline 147 & 01176080 & & IFBIT & \#DTR,A & ; IF DTR (ACTIVE LOW) NOT PRESENT \\
\hline 148 & 0119 & & JP & NDTRDY & ; THEN REMOTE NDT READY TO RECEIVE \\
\hline 149 & 011A 9FBC & READY: & LD & B, \#ENUI & .. ' \({ }^{\text {a }}\) \\
\hline 150 & 011C 78 & & SBIT & TIE, [B] & ;RE-ENABLE TRANSMITTER INTERRUPT \\
\hline 151 & 011D E9 & NOTRDY & JP & REST & ;EXIT INTERRUPT \\
\hline \multicolumn{6}{|l|}{152} \\
\hline 153 & & & & & \\
\hline
\end{tabular}

NATIONAL SEMICONDUCTOR CORPORATION
COP800 CROSS ASSEMBLER, REV:D1,12 OCT 88
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{154} \\
\hline \multicolumn{2}{|l|}{155} \\
\hline \multicolumn{2}{|l|}{156} \\
\hline 157 & \\
\hline \multicolumn{2}{|l|}{158} \\
\hline \multicolumn{2}{|l|}{159} \\
\hline \multicolumn{2}{|l|}{160} \\
\hline \multicolumn{2}{|l|}{161} \\
\hline 162 & \\
\hline \multicolumn{2}{|l|}{163 011E 9DIF} \\
\hline 164 & 0120 9CFE \\
\hline 165 & 0122 9DB9 \\
\hline 166 & 0124 A2 \\
\hline 167 & 0125 9D8B \\
\hline 168 & 0127 BDBC78 \\
\hline 169 & 012a 6eed \\
\hline 170 & 012 C 1A \\
\hline 171 & 012 d 9DFE \\
\hline 172 & 012F 921E \\
\hline 173 & 01319810 \\
\hline 174 & 0133 9C1F \\
\hline 175 & 0135 9DIE \\
\hline 176 & 0137 A1 \\
\hline 177 & 0138 BD1F81 \\
\hline 178 & 013889 \\
\hline 179 & 013C 940E \\
\hline 180 & 013 E 9303 \\
\hline 181 & 01402107 \\
\hline 182 & 0142 BDD07D \\
\hline 183 & 01452107 \\
\hline \multicolumn{2}{|l|}{184} \\
\hline 185 & 0147 BCIE10 \\
\hline 186 & 014 AF 10 \\
\hline 187 & 014C 6020 \\
\hline 188 & \(014 \mathrm{EA50}\) \\
\hline 189 & 01506040 \\
\hline 190 & 01529446 \\
\hline 191 & 01546080 \\
\hline 192 & 01569444 \\
\hline 193 & 0158 9R20 \\
\hline 19\% & 21ER \\
\hline 195 & 015C 9RS2 \\
\hline 196 & 015 C 9 55 \\
\hline 197 & 0160 9 945 \\
\hline 198 & 01629 955 \\
\hline 199 & 0164 9R0A \\
\hline 200 & 0166 9R0D \\
\hline 201 & 0168 9DFE \\
\hline 202 & 0168 9C1F \\
\hline 203 & 016C 2107 \\
\hline 204 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{;UART RECEIVE INTERRUPT} \\
\hline \multirow[t]{27}{*}{; The
;
;
;
i
i
RCUINT:} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{UART receive interrupt does the following: 1. Reads the received data}} \\
\hline & & & \\
\hline & \multicolumn{3}{|l|}{2. Checks for receiver errors} \\
\hline & \multicolumn{3}{|l|}{3. If no errors detected, places the received data in} \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{4. If errors detected, the transmit/receive buffer is cleared}} \\
\hline & & & \\
\hline & \multicolumn{3}{|l|}{; of ALL data and an error message is placed in the data buffer.} \\
\hline & & & ; RECEIVER INTERRUPT \\
\hline & LD & A, TAIL & \\
\hline & \(x\) & A, B & ; GET TAIL POINTER \\
\hline & LD & A, RBUF & ; READ RECEIVED DATA \\
\hline & x & A, [\(\mathrm{B}+\mathrm{]}\) & iSTORE RECEIVED DATA \\
\hline & LD & A, ENUR & ; READ ERROR REGISTER \\
\hline & SBIT & TIE, ENUI & ; ENABLE TRANSMITTER INTERRUPT \\
\hline & ANDSZ & A, \#0E0 & ; CHECK FOR PE, DOE, FE \\
\hline & JP & ERROR & ; THROW DATA AWAY IN BUFFER \\
\hline & LD & A, B & ilload acc with new tail ptr \\
\hline & IFEQ & A, \#END+1 & ; IF END DF DATA BUFFER \\
\hline & LD & A, \#START & ; SET tail ptr to start of buffer \\
\hline & X & A, TAIL. & ;SAVE TAIL PTR \\
\hline & LD & A, HEAD & iIS DATA BUFFER FULL? \\
\hline & \multicolumn{3}{|l|}{SC} \\
\hline & SUBC & A, tail & ; \(\mathrm{A}=\mathrm{HEAD}-\mathrm{TAIL}\) \\
\hline & IFNC & & ; IF BCRROWED (TAIL) HEAD) \\
\hline & ADD & A, \#SIIE & ; THEN ADD BUFFER SIZE TO RESULT \\
\hline & IFGT & A, \#03 & ; IF DATA BUFFER NOT FULL \\
\hline & JMP & REST & ; THEN EXIT INTERRUPT \\
\hline RXOFF: & SBIT & CTS, PDRTLD & ; ELSE TURN DFF REMOTE TRANSMITTER \\
\hline & JMP & REST & ; EXIT INTERRUPT \\
\hline \multicolumn{4}{|l|}{ERROR:} \\
\hline & LD & HEAD, \#START & ; CLEAR BUFFER \\
\hline & LD & B, \#START & ;POINT TO START OF BUFFER \\
\hline & IFBIT & PE, A & \\
\hline & LD & [B+], \#' \({ }^{\text {P' }}\) & ; \(\mathrm{P}=\) PRRITY \\
\hline & IFBIT & FE, A & \\
\hline & LD & [B+], \#' \({ }^{\text {P }}\) & ; \(\mathrm{F}=\) FRAMING \\
\hline & IFBIT & DOE, A & \\
\hline & LD & [B+], \#' \({ }^{\text {' }}\) & ; \(\mathrm{D}=\) DATA OVERRUN \\
\hline & LD & [B+], \#020 & ;BLANK SPACE \\
\hline & LD & [0+], H' \(^{\text {E }}\) & \\
\hline & LD & [\(8+1\), \#' \({ }^{\text {' }}\) & \\
\hline & LD & [B+], \#' R' & \\
\hline & LD & [B+], \#'0 & \\
\hline & LD & [\(8+3\), \#' \(\mathrm{R}^{\prime}\) & \\
\hline & LD & \([B+]\), \#DA & ; LINE FEED \\
\hline & LD & \([B+]\), \#D & ;CARRIAGE RETURN \\
\hline \multirow[t]{3}{*}{OUTERR:} & LD & A, B & ;SAVE NEW TAIL PTR \\
\hline & x & A, TAIL & \\
\hline & JMP & REST & \\
\hline
\end{tabular}

NATIONAL SEMICONDUCTOR CORPDRATION
COP800 CROSS RSSEMBLER, REV:D1, 12 OCT 88

```

NATIONAL SEMICONDUCTOR CORPORATION
COP800 CROSS ASSEMBLER,REV:D1,12 OCT 8日

```

SYMBOL TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline B & 0 FE & BAUD & D0BD & & BAUDVA & 0004 & & CNTRL & OOEE & ＊ \\
\hline CTS & 0005 & DCD & 0000 & & DISABL & 0044 & & DOE & 0007 & \\
\hline DSR & 0006 & DTR & 0007 & & END & 001 D & & ENU & DOBA & \\
\hline ENUCMD & 0089 & ENUI & 00 BC & & ENUICM & 0020 & & ENUR & 008B & \\
\hline ERROR & 0147 & ETDX & 0005 & ＊ & FE & 0006 & & GIE & 0000 & \\
\hline HEAD & 001E & ICNTRL & 00E8 & & IDLE & 0195 & & INIT & 0008 & \\
\hline LINT & 010 F & LPEN & 0006 & & MRIN & 0002 & ＊ & NFULL & 0197 & \\
\hline NOTRDY & 011 D & OUTERR & 0168 & ＊ & PE & 0005 & & PORTLC & O0D1 & \\
\hline PORTLD & OODO & PORTLP & 00D2 & & PSR & 00BE & & PSRVAL & D日c8 & \\
\hline PSW & DOEF & RBUF & 0089 & & RCVINT & 011E & & READY & 011 A & \\
\hline REST & 0107 & RIE & 0001 & & RTS & 0004 & & RXDFF & 0142 & ＊ \\
\hline SFTINT & D1A1 & SIZE & D00E & & Sp & 00FD & & START & 0010 & \\
\hline TAIL & 0015 & TBUF & 0088 & & TIE & 0000 & & WKEDG & ロ0c8 & \\
\hline WKEN & 00C9 & WKPND & D0CA & & X & DOFC & & XMITIN & 016E & \\
\hline
\end{tabular}

NATIONAL SEMICONDUCTOR CORPORATION
COP800 CROSS ASSEMBLER，REV：D1，12 OCT 88
MACRD TABLE

> ND WARNING LINES ND ERROR LINES 267 ROM BYTES USED SOURCE CHECKSUM = 6884 OBJECT CHECKSUM \(=096 B\) INPUT FILE C:UART.MRC LISTING FILE C:UART. PRN OBJECT FILE C:URRT.LM

\section*{INTRODUCTION}

Many microcontroller applications require a low cost analog to digital conversion. In most cases the controller applications do not need high accuracy and short conversion time. This appnote describes a simple method for performing analog to digital conversion by reducing external elements and costs.

\section*{PRINCIPLE OF A/D CONVERSION}

The principle of the single slope conversion technique is to measure the time it takes for the RC network to charge up to the threshold level on the port pin, by using Timer T1 in the input capture mode. The cycle count obtained in Timer T1 can be converted into voltage, either by direct calculation or by using a suitable approximation.
Figure 1 shows the block diagram for the simple A/D conversion which measures the temperature.

\section*{BASIC CIRCUIT IMPLEMENTATION}

Usually most applications use a comparator to measure the time it takes for a RC network to charge up to the voltage level on the comparator input. To reduce cost, it is possible to switch both inputs as shown in Figure 2.
Port G3 is the Timer T1 input. Ports G2/G1 are general purpose I/O pins that can be configurated using the I/O configurations (push-pull output/tristate). All Port G pins are Schmitt Trigger inputs. \(\mathrm{R}_{\text {LIM }}\) is required to reduce the discharge current.

\section*{GENERAL IMPLEMENTATION}

The temperature is measured with a NTC which is linearized with a parallel resistor. Using a parallel resistor, a linearization in the range of 100 Kelvin can be reached. The value of the resistor can be calculated as follow:
\[
R_{p}=R_{t m} *\left(B-2 T_{m}\right) /\left(B+2 T_{m}\right)
\]

National Semiconductor Application Note 952 Robert Weiss

The linearization reduces the code, improves the accuracy and the tolerance of the NTC-R network (e.g. NTC \(=\) \(100 \mathrm{k} \Omega \pm 10 \%, R=12 \mathrm{k} \Omega \pm 1 \%, N T C / / R \pm 2 \%)\). Using that method the useful range does not cover the whole operating temperature range of the NTC.

\section*{GENERAL ACCURACY CONSIDERATIONS}

Using a single slope A/D conversion the accuracy is dependent on the following parameters:
- Stability of the Clock frequency
- Time constant of the RC network
- Accuracy of the Schmitt Trigger level
- Non-linearity of the RC-network

Figure 3. The maximum failure that appears when a sawtooth is generated without using a current source. In the current application the maximum failure would be more than \(15 \%\) without using methods for reducing the non-linearities of RC-network/NTC-network.

FIGURE 2. Basic Circuit Implementation
\(\mathrm{R}_{\mathrm{tm}} \quad\) Value of the NTC at a medium temperature
\(T_{m} \quad\) Medium Temperature
B NTC-material constant

FIGURE 1. Simple A/D Conversion

FIGURE 3. Single Slope A/D Conversion

The maximum error occurs when the gradient of the exponential function (RC) equals the gradient of the straight line (counter).
To reduce the error that is caused by the non-linearity of the RC-network a offset should be added to the calculated value. The offset reduce the failure to the middle.
Further, the accuracy can be improved by using a relative measurement method. The following diagram shows the method.

TL/DD12075-4
FIGURE 4. Accuracy Improvement

Measurement:
- Timer Capture mode: \(\mathrm{R}_{\mathrm{CAL}}{ }^{*} \mathrm{C}\) is measured
- Timer Capture mode: \(\mathrm{R}_{\text {NTC//R }}{ }^{*} \mathrm{C}\) is measured

\section*{Calculation:}
- Build the vertical-component (\(\mathrm{R}_{\text {TMIN }}\) - \(\mathrm{R}_{\text {TMAX }}\)) of the triangle
- Calculate the slope
- Calculate the actual temperature

Using this method the accuracy is primarily dependent on the accuracy of RTMIN and RTMAX and independent of the stability of the system clock, the capacitor and the threshold of the Schmitt Trigger level. The variation of the capacitor only leads to variation of the resolution.
The following diagram shows the ideal resistance/temperature characteristic of a NTC which is linearized with a parallel resistor.

FIGURE 5. Resistance vs Temperature Characteristics

\section*{APPLICATION EXAMPLE}

The following application example for temperature measurement demonstrates the procedure. The temperature is measured from \(20^{\circ}\) to \(100^{\circ}\) and is displayed on a Triplex LCD display.
\(\mathrm{NTC}_{20}=100 \mathrm{k} \Omega \pm 10 \%\)
\(\mathrm{Rp}_{\mathrm{p}} \quad=12 \mathrm{k} \Omega \pm 1 \%\)
\(T_{m} \quad=333\) Kelvin \(\rightarrow 60\) Degrees
\(\mathrm{B} \quad=4800\) Kelvin
\(\mathrm{NTC}_{20} / / \mathrm{R}_{\mathrm{P}}=10.7 \mathrm{k} \Omega \pm 2 \%\)
\(\mathrm{R}_{\mathrm{CAL}} \quad=10.7 \mathrm{k} \Omega \pm 1 \%\)
\(\mathrm{T}_{\mathrm{MIN}}=20\) Degree
\(\mathrm{R}_{\text {TMIN }}=10.7 \mathrm{k} \Omega\)
\(T_{\text {MAX }}=100\) Degree
\begin{tabular}{rl}
\(\mathrm{R}_{\text {TMAX }}\) & \(=2.8 \mathrm{k} \Omega\) \\
C & \(=1 \mu \mathrm{~F}\) \\
RC-Clock & \(=2 \mathrm{MHz} \rightarrow 200 \mathrm{kHz}\) instruction cycle, \(5 \mu \mathrm{~s}\) \\
Timeconst. & \(=\mathrm{R}_{\mathrm{CAL}} * \mathrm{C} \rightarrow 0.0107 \mathrm{~s}\) \\
Resolution & \(=2140 \rightarrow 11\) byte, depends which Cap. value \\
& is used \\
Accuracy & \(= \pm 2\) Degree
\end{tabular}

This temperature measurment example shows a low cost technique ideally suited for cost sensitive applications which do not need high accuracy.
Figure 6 shows the complete circuit of the demoboard using the Triplex LCD method and the low cost A/D conversion technique.
The Triplex LCD drive technique is documented in a separate application note.

FIGURE 6. Circuit Diagram
Pressing key 1, key 2 the temperature is displayed in Degree/Fahrenheit. Pressing key 3, key 4 Up/Down counter is displayed.

\section*{SOURCE CODE}

Figure 7 shows the flow chart of the program.

FIGURE 7. Flow Chart

The following code is required to implement the function. It does not include the code for the Triplex LCD drive.
```

RAM = 17 Byte;
ROM = 450 Byte; Optimization is possible about 50 byte if the B - pointer consistent is used!
;******************************A/D-CONVERSION************************************
:
;
;****************************VAR. DECLARIATION*********************************
.SECT REGPAGE,REG
COUNT1: .DSB 1
COUNT2: .DSB 1
;
.SECT BASEPAGE,BASE
ZL: .DSB 1 ;TEMPORARY
YL: .DSB 1 ;TEMPORARY
;
.SECT RAMPAGE,RAM
CALIBLO: .DSB 1 ;CALIBRATION-VALUE
CALIBHI: .DSB 1
NTCLO: .DSB 1 ;NTC-VALUE
NTCHI: .DSB 1
TEMP: .DSB 2 ;TEMP.-VALUE
KORRL: .DSB 2
COMPL: .DSB I
COMPH: .DSB 1
CONTROL: .DSB 1 ;STATUS REGISTER
;********************************STARTMAIN PROGRAM*****************************
MAIN: LD SP,\#06F ;INIT SPACKPOINTER
JSR DISCH ;DISCHARGEC (A/D-CONVERSION)
JSR CALB ;INIT CAPTURE MODE FOR UREF. MEASURMENT
POLL: IFBIT 3,PORTGP ;POLL - MODE (TIO - PORT)
JP CAL
JP POLL
CAL: LD B,\#CALIBLO
JSR CAPTH ;STOP TIMER, STORE CAPTURE VALUE
JSR CALCR ;SLOPE IS CALCULATED
NEW: JSR DISCH ;DISCHARGE C (A/D-CONVERSION)
JSR NTC
;INIT CAPTURE MODEFOR UNTC MEASURMENT
POLLL:IFBIT 3,PORTGP ;POLL-MODE
JP CAl1
JP POLL1
CAL1: LD B.\#NTCLO
JSR CAPTH ;STOP TIMER, STORE CAPTURE VALUE
JSR CALCN ;TEMPERATURE IS CALCULATED
JSR DISCH ;DISCHARGEC (A/D-CONVERSION)
JSR DCHECK ;REDUCE THE DISPLAY FLICKERING
JMP NEW
.ENDSECT
*****************************************************************************

```
```

*******************************************************************************
SECT CODE1,ROM
;THIS ROUTINE IS REQUIRED TO REDUCE THE NOICE ON THE LINE AND THE
;DISPLAY FLICKERING.
.SECT CODE1,ROM
DCHECK: ;COMPARE TWO VALUES, IF EQUAL THEN
LD A,CONTROL ;DISPLAY IT, OTHERWISE THE OLD VALUE
XOR A,\#080 ;IS DISPLAYED
X A,CONTROL
IFBIT 7,CONTROL
JSR SAVE ;TEMP.SAVE
JSR COMP ;COMPARE
RET

```

```

; HANDLER FOR CAPTURE MODE
CAPTH: RBIT TPND,PSW ;RESET TIMER PENDING
RBIT TRUN,PSW ;STOP TIMER
LD A,\#OFF
SC
SUBC A,TAULO
X A,[B+] ;STORE THE CAPTURED VALUE
LD A,\#OFF
SUBC A,TAUHI
X A,[B+] ;STORE THE CAPTURED VALUE
RET

```

```

; CALIBRATION SUBROUTINE, UREF IS MEASURED
CALB:
RBIT 3,PORTGD
RBIT 3,PORTGC
LD PORTCD,\#00
LD PORTCC,\#00
TlCAP HIGH
LD B,\#CALIBLO
SBIT 0,PORTCD ;CONFIGURE C0 TO OUTPUT HIGH
SBIT 0,PORTCC ;CHARGE CAP.
SBIT TRUN,CNTRL ;START TIMER CAPTURE MODE
RET
; NTC SUBROUTINE, UNTC IS MEASURED
NTC:
RBIT 3,PORTGD
RBIT 3,PORTGC ;TRISTAT TIO
LD PORTCD,\#00
LD PORTCC,\#OO ;TRISTATE PORT C
TICAP HIGH ;INIT CAPTURE MODE. HIGH SENSITIVE (MACRO)
LD B,\#NTCLO
SBIT 1,PORTCD ;CONFIGURE C1 TO OUTPUT HIGH
SBIT 1,PORTCC ;CHARGE CAP.
SBIT TRUN,CNTRL ;START TIMER CAPTURE MODE
RET

```
-*****************
;***kk*****************:k*:k*****
;DISCHARGE - ROUTINE DISCH:

LD PORTCD,\#000
LD PORTCC,\#000
RBIT TIO,PORTGD ;DISCHARGE CAP.
SBIT TIO,PORTGC
LD COUNT1,\#H(500) ;DISCHARGE TIME
LD COUNT2,\#L(500)
JSR Cl
;DELAY ROUTINE FOR DISCHARGE TIME
RET
;THIS SUBROUTINE CALCULATES THE SLOPE
;THE FOLLOWING CALCULATIONS ARE DONE
;KORR=CALIB \(/ 11 \mathrm{KOHM}\) (RCALIB. \(=11 \mathrm{KOHM}\))
;KORR=KORR*2,8KOHM (T=100 DEGREE, RNTC=2,8KOHM)
;CALIB=CALIB-KORR
;DIV=CALIB180 (TEMPRANGE=80 DEGREE,100-20), SLOPE IS CALCULATED CALCR:
;KORR=CALIB/11KOHM
LD ZL,\#L(110)
LD ZL+1, \#H(110)
LD A,CALIBLO
\(\mathrm{X} A, \mathrm{YL}\)
LD A.CALIBHI
X A, YL+1
JSR DIVBIN16 ;SUBROUTINE BINARY DIVIDE 16 BIT BY 16 BIT
LD A,YL
X A,KORRL
;***
;KORR=KORR*28
LD A,KORRL
X A,ZL
LD A,\#28
X A, YL
JSR MULBIN8 ;SUBROUTINE MULTIPLY TWO 8 BIT.VALUES
LD A, YL
X A,KORRL
LD A, YL+1
X A,KORRL+1
\(:^{* ~}\)
;KORR=CALIB-KORR
LD B.\#CALIBLO
LD A, [B+]
SC
SUBC A,KORRL
XA,KORRL
LD A.[B]
```

    SUBC A,KORRL+1
    X A.KORRL+1
    ```

```

;DIV=KORR/80
LD ZL,\#L(80)
LD ZL+l,\#H(80)
LD A,KORRL
X A,YL
LD A,KORRL+1
X A,YL+1
JSR DIVBIN16 :SUBROUTINE BINARY DIVIDE 16 BIT BY 16 BIT
LD A,YL
X A,DIV
RET
*****************************************************************************
;THIS SUBROUTINE CALCULATES THE TEMPERATURE
;THE FOLLOWING CALCULATIONS ARE DONE
;TEMP=CALIB-NTC
;TEMP=TEMP/DIV
;ADD OFFSET 20 DEGREE
;CONVERSION FROM HEX TO BCD
:****************************************************************************
;TEMP=CALIB-NTC
CALCN: LD B,\#CALIBLO
LD A,[B+]
SC
SUBC A,NTCLO
X A,TEMP
LD A.[B]
SUBC A,NTCHI
IFNC
JMP ERR
X A,TEMP+1
*******************************************************************************
;TEMPIF=TEviP/DIV
LD A,TEMP
X A,YL
LD A,TEMP+1
X A,YL+1
LD A,DIV
X A.ZL
CLRA
X A.ZL+1
JSR DIVBINI6 ;SUBROUTINE BINARY DIVIDE 16 BIT BY 16 BIT
LD A,YL
ADD A,\#20 :ADD TEMPERATURE OFFSET
IFGT A.\#56 :IF TEMPERATURE IS HIGER THAN 56 DEGREE THEN
JSR CORR ;ADD CORRECTION. OFFSET

```

```

;HEX TO BCD CONVERSION
X A,ZL
LD A,ZL
IFGT A,\#100 ;IF TEMPERATURE IS MORE THAN }100\mathrm{ DEGREE THEN
JP ERR
JSR BINBCD ;SUBROUTINE BINARY TO BCD CONVERSION;
LD A,BCDLO
X A,TEMP
LD A,BCDLO+1
X A,TEMP+1
RET
ERR: LD A,\#00E ;ERROR MESSAGE IS DISPLAYED
X A,TEMP
CLR A
X A,TEMP+1
RET
;****************************************************************************
COMP:LD A,COMPL ;IF THE LAST BOTH MEASURMENTS ARE EQUAL
SC ;THEN DISPLAY
SUBC A,TEMP
IFEQ A,\#O
JP DISPLAY
RET ;OTHERWISE DISPLAY THE OLD VALUE
DISPLAY:LD A,TEMP
X A,PB+2
LD A,TEMP+1
M1: X A,PB+3
JSR LCDDR ;UPDATE THE DISPLAY
JSR DEL ;DELAY TIME
RET
;*****************************************************************************
SAVE: LD A,TEMP ;TEMPORARY SAVE
X A,COMPL
LD A,TEMP+1
X A,COMPH
RET

```
\(* x * * * * * * * * * * * * * *: k * * * * * * * * * * * * * * * * * *\)

\section*{LCD Triplex Drive with COP820CJ}

\section*{National Semiconductor}

Application Note 953
Klaus Jaensch and
Siegfried Rueth

\section*{INTRODUCTION}

There are many applications which use a microcontroller in combination with a Liquid Crystal Display. The normal method to control a LCD panel is to connect it to a special LCD driver device, which receives the display data from a microcontroller. A cheaper solution is to drive the LCD directly from the microcontroller. With the flexibility of a COP8 microcontroller the multiplexed LCD direct drive is possible. This application note shows a way how to drive a three way multiplexed LCD with up to 36 segments using a 28 -pin COP800 device.

\section*{ABOUT MULTIPLEXED LCD'S}

There is a wide variety of LCD's, ranging from static devices to multiplexed versions with multiplex rates of up to 1:256.

The multiplex rate of a LCD is determined by the number of its backplanes (segment-common planes). The number of segments controlled by one line (with one segment pin) is equal to the number of backplanes on the LCD. So, a three way multiplexed LCD has three backplanes and three segments are controlled with one segment pin. For example in a three way multiplexed LCD with three segment inputs (SA, \(\mathrm{SB}, \mathrm{SC}\)) one can drive a 7 -segment digit plus two special segments.
These are \(3 \times 3=7+2=9\) segments. The special segments can have an application specific image. (" + ", "-", ".", "mA", . . . etc).

TL/DD12076-1
FIGURE 1. Schematic for LCD Triplex Driver

FIGURE 2. Example: Backplane-Segment Arrangement

A typical configuration of a triplex LCD is a four digit display with 8 special segments (thus having a total of 36 segments). Fifteen outputs of the COP8 are needed; \(4 \times 3\) segment pins and 3 backplane pins.
Common to all LCD's is that the voltage across backplane(s) and segment(s) has to be an AC-voltage. This is to avoid electrochemical degradation of the liquid crystal layer. A segment being "off" or "on" depends on the r.m.s. voltage across a segment.
The maximum attainable ratio of "on" to "off" r.m.s. voltage (discrimination) is determined by the multiplex ratio. It is given by:
\(\left(V_{\text {ON }} / V_{\text {OFF }}\right) \max =\operatorname{SQR}((\operatorname{SQR}(\mathrm{N})+1) /(\operatorname{SQR}(\mathrm{N})-1))\) \(N\) is the multiplex ratio.

The maximum discrimination of a 3 way multiplexed LCD is 1.93, however, it is also possible to order a customized display with a smaller ratio. With the approach used in this application note, it may not be possible to acheive the optimum contrast acheived with a standard 3 way muxed driver. As a result of decreased discrimination (1.93 to 1.73) the user may have to live with a tighter viewing angle and a tighter temperature range.
In this application you get a VrmsOFF voltage of \(0.408^{*}\) Vop and a VrmsON voltage of \(0.707^{*}\) Vop. Vop is the operating voltage of the LCD. Typical Vop values range from 3V-5V. With the optoelectrical curve of the LCD you can evaluate the maximum contrast of the LCD by calculating the difference between the relative "OFF" contrast and the relative "ON" contrast.

In this example:
\[
\begin{aligned}
& \mathrm{VrmsON}=0.707^{\circ} \mathrm{Vop} \\
& \text { VrmsOFF }=0.408^{\circ} \mathrm{Vop}
\end{aligned}
\]

FIGURE 3. Example Curve: Contrast vs r.m.s. Drive Voltage

The backplane signals are generated with the voltage steps OV, Vop/2 and Vop at the backplanes; also see Figure 4.
Two resistors are necessary for each backplane to establish all these levels.
The backplane connection scheme is shown in Figure 1.
The Vop/2 level is generated by switching the appropriate COP's port pin to Hi-Z.
The following timing considerations show a simple way how to establish a discrimination ratio of 1,732 .

\section*{TIMING CONSIDERATIONS}

A Refresh cycle is subdivided in 6 timephases. Figure 4 shows the timing for the backplanes during the equal distant timephases 0... 5 .

TL./DD12076-4
Note: After timephase 5 is over the backplane control timing starts with timephase 0 again.

FIGURE 4. Backplane Timing

While the backplane control timing continuously repeats after 6 timephases, the segment control depends on the combination of segments just being activated.

TABLE I. Possible Segment ON/OFF Variations
\begin{tabular}{|c|c|c|c|}
\hline Tiphtab Address & Segment A & Segment B & Segment C \\
\hline 0 & off & off & off \\
\hline 1 & on & off & off \\
\hline 2 & off & on & off \\
\hline 3 & on & on & off \\
\hline 4 & off & off & on \\
\hline 5 & on & off & on \\
\hline 6 & off & on & on \\
\hline 7 & on & on & on \\
\hline
\end{tabular}

Figure 5 through Figure 12 below show all possible combinations of controlling a "Segment Triple" with help of the 3 backplane connections and one segment pin. The segment switching has to be done according to the ON/OFF combination required (see also Table I).
Each figure shows in the first 3 graphs the constant backplane timing.
The 4th graph from the top shows the segment control timing necessary to switch the 3 segments (SA/SB/SC), activated from one pin, in the eight possible ways.
The 3 lower graphs show the resulting r.m.s. voltages across the 3 segments (SA, SB, SC).

\section*{Segment/Backplane Control-Timing}

TL/DD12076-9
tiphtab address \(=4\)
FIGURE 9

TL/DD12076-10
tiphtab address \(=5\)
FIGURE 10

Segment/Backplane Control-Timing

TL/DD12076-11
tiphtab address \(=6\)
FIGURE 11

TL/DD12076-12
tiphtab address \(=7\)

\section*{REFRESH FREQUENCY}

One period with six timephases is called a refresh cycle (also see Figure 4).
The refresh cycle should be in a frequency range of 30 ... 60 Hz . A frequency below 30 Hz will cause a flickering display. On the other hand, current consumption increases with the LCD's frequency. So it is also recommended to choose a frequency below 60 Hz .
In order to periodically update the \(\mu\) C's' port pins (involved in backplane or segment control) at the beginning of a new timephase, the COP8 needs a timebase of typ. 4 ms which is realized with an external RC-circuit at the GO/INT pin.
The G0 pin is programmable as input (Schmitt Trigger). The conditions for the external interrupt could be set for a low to high transition on the G0 pin setting the IPND-flag (external interrupt pending flag) upon an occurrence of such a transition. The external capacitor can be discharged, with the G0 pin configured as Push/Pull output and programmed to " 0 ". When, switching G0 as input the Cap. will be charged through the resistor, until the threshold voltage of the Schmitt-Trigger input is reached. This triggers the external interrupt. The first thing the interrupt service routine has to do is to discharge the capacitor and switch GO as input to restart the procedure.
This timing method has the advantage, that the timer of the device is free for other tasks (for example to do an A/D conversion).
The time interval between two interrupts depends on the RC circuit and the threshold of the G0 Schmitt Trigger \(\mathrm{V}_{\mathrm{TH}}\).
The refresh frequency is independent of the clock frequency provided to the COPs device.
The variations of "threshold" levels relative to \(\mathrm{V}_{\mathrm{CC}}\) (over process) are as follows:
\[
\begin{aligned}
& \left(V_{\mathrm{TH}} / \mathrm{V}_{\mathrm{CC}}\right) \min =0.376 \\
& \left(\mathrm{~V}_{\mathrm{TH}} / \mathrm{V}_{\mathrm{CC}}\right) \max =0.572
\end{aligned}
\]
at \(V_{C C}=5 \mathrm{~V}\)
Charge Time:
\[
T=-\left(\ln \left(1-V_{T H} / V_{C C}\right)^{*} \mathrm{RC}\right)
\]

To prevent a flickering display one should aim at a minimum refresh frequency of \(f_{\text {refr }}=30 \mathrm{~Hz}\). This means an interrupt frequency of \(f_{\text {int }}=6 \times 30 \mathrm{~Hz}=180 \mathrm{~Hz}\). So, the maximum charge up time \(T_{\text {max }}\) must not exceed 5.5 ms (\(T_{\text {min }}=\) 2.78 ms).

With the formula:
\[
\begin{gathered}
R C_{\text {max }}=T_{\max } /\left(-\ln \left(1-\left(V_{T H} / V_{\mathrm{CC}}\right) \max \right)\right)=5.5 \mathrm{~ms} \times 0.849 \\
R C_{\text {max }}=6.48 \mathrm{~ms} \\
\left(\mathrm{RC}_{\min }=5.98 \mathrm{~ms}\right)
\end{gathered}
\]

The maximum RC time-constant is calculated. The minimum RC time constant can be calculated similarly.
A capacitor in the nF -range should be used (e.g. 68 nF), because a bigger one needs too much time to discharge. To discharge a 68 nF Cap., the GO pin of the device has to be low for about \(40 \mu\) s.

On the other hand the capacitor should be large enough to reduce noise susceptibility.
When the RC combination is chosen, one can calculate the maximum refresh frequency by using the minimum values of the RC constant and the minimum threshold voltage:
\[
\begin{gathered}
T_{\min }=R C_{\text {min }} *\left(-\ln \left(1-\left(V_{T H} / V_{C C}\right) \min =R C_{\text {min }} * 0.472\right.\right. \\
\text { and } \\
f_{\text {refr,max }}=f_{\text {int,max }} / 6=1 /\left(T_{\text {min }} * 6\right)
\end{gathered}
\]

In the above example one timephase would be minimum 2.82 ms long. This means that about 250 instructions could be executed during this time.

\section*{SOFTWARE}

The software for the triplex LCD drive-demo is composed of three parts:
1. The initialization routine is executed only once after resetting the device, as part of the general initialization routine of the main program. The function of this routine is to configure the ports, set the timephase counter (tiphase) to zero, discharge the external capacitor and enable the external interrupt.
The initialization routine needs 37 bytes ROM.
Figure 13 shows the flowchart of this routine.

TL/DD12076-13
FIGURE 13. Flowchart for İnitialization Routine
2. The update routine calculates the port-data for each timephase according to the BCD codes in the RAM locations 'digit1' . . . 'digit4' and the special segments. This routine is only called if the display image changes.

The routine converts the BCD code to a list 1st, which is used by the refresh routine. Figure 14 gives an overview and illustrates the data flow in this routine.
In Figure 15 the data flow chart is filled with example data according to the display image in Figure 16.
First the routine creates the seg1st (4 bytes long), which contains the "on/off" configuration of each segment of the display. The display has 36 segments but the 4 bytes have only 32 bits, so the four special segments S1 are stored in the specbuf location. The bcdsegtab table (in ROM) contains the LOOK-UP data for all possible Hex numbers from 0 to F .
The routine takes three bits at the beginning of each timephase from the seg1st.

These 3 bits address the 8 bytes of the tiphtab table in ROM. Each byte of this table contains the time curve for a segment pin (only 6 bits out of 8 are used). Using this information, the program creates the lists for port \(D\) and port \(L\) (pod1st, pol1st). Every byte of this list contains the timing representatives for the pins D0-D3 and L0-L7, to allow an easy handling of the refresh routine.
The external interrupt has to be disabled while the copy routine is working, because the mixed data of two different display images would result in improper data on the display. Figure 17 shows the flowchart of the update routine. The Flowchart of the convert subroutine is shown in Figure 18.

\section*{MEMORY REQUIREMENTS}

ROM: 152 bytes incl. look up tables
RAM: 43 bytes (Figure 15 illustrates the RAM locations)

TL/DD12076-14
FIGURE 14. Data Flow Chart for Update Routine

FIGURE 16. Display Example
3. The refresh routine is the interrupt service routine of the external interrupt and is invoked at the beginning of a new timephase. First the routine discharges the external capacitor and switches the GO/INT pin back to the input mode, to initialize the next timephase. The backplane ports G2, G4 and G5 and the segment pin ports \(D\) and \(L\) are updated by this routine according to the actual timephase. For the backplanes the data are loaded from the bptab table in ROM. Table II shows how the bptab values are gathered. Figure 20 shows the flowchart for the refresh routine.

TIME REQUIREMENTS
The routine runs max. 150 cycles.

For a non flickering display, the refresh frequency must be 30 Hz minimum. One refresh cycle has six timephases and is max. 33 ms long. So each timephase is 5.5 ms long. With an oscillator (CKI) frequency of 2 MHz , one instruction cycle takes \(1 /(2 \mathrm{MHz} / 10)=5 \mu \mathrm{~s}\) to execute. During one timephase the controller can execute:
\(5.5 \mathrm{~ms} / 5 \mu \mathrm{~s}=1100\) cycles. So the refresh routine needs \(134 / 1100=0.122=12.2 \%\) of the whole processing time (in this case).
With a refresh frequency of 50 Hz the routine needs about \(20.1 \%\) of the whole processing time.
The refresh routine needs about 103 ROM bytes.

TABLE II. Phase Values
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tiphase & G5 & G4 & G2 & Portg Data & Hex & Portg Config. & Hex \\
\hline 0 & 0/0 & 0/0 & 1/1 & XX00x1xX & 04 & XX00X1XX & 04 \\
\hline 1 & 0/0 & 1/1 & 0/0 & xX01X0XX & 10 & XX01X0XX & 10 \\
\hline 2 & 1/1 & 0/0 & 0/0 & XX10x0xX & 20 & XX10x0XX & 20 \\
\hline 3 & 0/0 & 0/0 & \(0 / 1\) & XX00X0XX & 00 & XX00X1XX & 04 \\
\hline 4 & 0/0 & 0/1 & 0/0 & xx00x0xx & 00 & XX01X0XX & 10 \\
\hline 5 & 0/1 & 0/0 & 0/0 & XX00X0XX & 00 & XX10X0XX & 20 \\
\hline
\end{tabular}
data/configuration register of portg
0/0: Hi-Z input
\(0 / 1\) : output low
1/1: output high
```

SUMMARY OF IMPORTANT DATA
LCD type: 3 way multiplexed
Amount of segments: 36
VOP}=(\mp@subsup{V}{CC}{})\mathrm{ (range): }\quad2.5\textrm{V}\mathrm{ to 6V
Oscillator frequency: }2\textrm{MHz}\mathrm{ (typ.)
Instruction cycle time: }5\mu\textrm{s
ROM requirements:
init routine: }\quad37\mathrm{ bytes
update routine: }152\mathrm{ bytes
refresh routine: }103\mathrm{ bytes
total: 292 bytes
RAM requirements:
permanent use: 25 bytes
temporary use: }18\mathrm{ bytes
stack: 6 bytes
total: 49 bytes
(also see Figure 19)
Timer: not used
External interrupt: with RC circuit used as time-base gen-
erator
Ports D, L: used for LCD control
Port G: }\quad3\mathrm{ G-pins are still free for other
purposes +
Port I: can be used as key-inp.

```


FIGURE 17. Flowchart for Update Routine

FIGURE 18. Flowchart for Convert Subroutine

ram location table

TL/DD12076-19

FIGURE 19. RAM Assignment

TL/DD12076-20
FIGURE 20. Flowchart for Refresh-Routine

\section*{Listing}
```

; DEMO FOR COR820CJ:
; 3 WAY MULTIPLEXED LCD DRIVER DEMO
; CONSTANT DISPLAY "01A3" and two special segments on

```
 .incld cop820cj.inc
; RAM assignments
tiphase=01E
special=01F ;this byte must contain the ;on/off configuration of ; the extra segments ; ('-','low bat', etc.)
; in these RAM locations the ; \(B C D\) code of the dispiay ; digits are stored. ;
;accu buffer used during ;interrupt service routine ; b buffer ;psw buffer

\section*{; register definition:}
\[
\begin{aligned}
& \text { podbuf }=0 f 0 \\
& \text { polbuf }=0 f 1 \\
& \text { pogdbuf }=0 \text { f } 2 \\
& \text { pogcbuf }=0 f 3 \\
& \text { flags }=0 f 4
\end{aligned}
\]
;flag definition in flags byte
podfla=07

init:
ld sp, \#02f
ld portlc, \#0ff
ld portgc, \#037
ld portgd, \#00
ld tiphase, \#00
ld psw, \#002
```

;initialize stackpoinこer

```
;port 1 output
; port g:G1,G2,G4,G5 are
; outputs
; all outputs low, all
 ; inputs Hi-z
 ; C at GO is discharges
 ; begin with timephase 0
 ;ext. interrupt enabie
```

begin: sbit \#gie,psw ;interrupts are welcome now
rbit \#00,portgc ;now the external C can be
ld b,\#special
ld [b+],\#088
ld [b+], \#00
ld [b+],\#001
ld [b+],\#00A
ld [b],\#003
;charged
;two special segments
;are 'ON'
;display:"01A3"
;digitl
;digit2
;digit3
;digit4

```
\(; \star \star * * * * * * * * * * * * \cdot m a i n ~ p r o g r a m ~ *\)
loop:
 jsr update
 jp loop
;************** update subroutine
;RAM definitions:
specbuf \(=01 \mathrm{C}\)
temp \(=01 D\)
;buffer for 'special' ;temporary used
; pointer on tables:

\(x\) 'a, specbuf
ifnc
rbit \#2,temp
ld a, temp
xa,[x+]
ifbne \#04
jp nxtdig
sbit \#podfla, flags
jsr convert
```

;prepare for next
; special segment
; special bit not set ?
; then reset it in the
;temp byte
;store temp
;to the seglst list
;if not last digit
;load data for next digit
;set flag for working at
;port d list
; convert 3 bits from the
; segment bytes to the
; timephaselist for portd

```
; shift with carry
shwe:
```

    ld b,#seglst
    nxtshwc:
ld a,specbuf
rrc a
x a,specbuf
ld a,[b]
rrc a
rrc a
rrc a
x a,[b+]
ifbne \#00
jp nxtshwc
rbit \#podfla,flags
jsr convert
;shift (without carry)
shift: ld b,\#seglst
nxtshift: ld a,(b)
rrc a
rrc a
rrc a
x a,[b+]
ifbne \#00
jp nxtshift

```
```

;b points seglst
;load special segment bit
;to carry
;prepare for next
;special segment
;shift the segmentbyte
;three positions right
;and append the special
; segment bit
;
;store shifted byte
;end of segment list
; not reached ?
;then shift the next
;segment byte
;reset flag for working
;at port l list
; convert 3 bits of the
; segment bytes to the
;timephaselist for port l
;b points segmnet list
;load segment byte
; shift the segmentbyte
;three positions right
;
; store shifted byte
;end of segment list
; not reached ?
; then shift the next
; segment byte

```
```

jsr convert ;convert 3 bits of the
; segment bytes to the
;timephaselist for port l

```
; copy portdata to the list on which the refresh routine will access
copy:
nxtd:
nxtl:
\begin{tabular}{|c|c|}
\hline rbit \#eni,psw & ; disable interrupt to \\
\hline & ;prevent fail display \\
\hline ld b, \#podlst & ; b points podlst \\
\hline ld \(\mathrm{x}, \#\) \#st & ;x points refresh list \\
\hline ld \(a,[b+]\) & ; load portbyte \\
\hline swap a & ; swap it \\
\hline x a, [x+] & ;store it to refresh list \\
\hline 1d \(a,[x+]\) & ; increment x \\
\hline ifbne \#06 & \begin{tabular}{l}
;if the end of the podlst \\
;is not reached
\end{tabular} \\
\hline jp nxtd & ; then next timephase \\
\hline ld b,\#pollst & ; b points pollst \\
\hline ld \(x, \# 1 s t\) & ; x points refresh list \\
\hline 1d \(a,[x+]\) & ; increment \(x\) \\
\hline ld \(a,[b+]\) & ; load portbyte \\
\hline swap a & ; swap it \\
\hline \(x\) a, \(x+]\) & ; store it to refresh list \\
\hline ifbne \#OC & \begin{tabular}{l}
;if the end of the pollst \\
;is not reached
\end{tabular} \\
\hline jp nxtl & ; then next timephase \\
\hline sbit \#eni,psw & \begin{tabular}{l}
; refresh routine allowed \\
; again
\end{tabular} \\
\hline ret & ; end of update routine \\
\hline
\end{tabular}
; subroutines for update routine:
convert:
ld \(x, \#\) seglst
nxtsgl:
ld \(a,[x+]\)
and \(a, 4007\)
add \(a, \# L(t i p h t a b)\)
laid
1d b, \#pollst
ifbit \#podfla,flags
ld b, \#podlst
```

;x points segment list
;load segment byte
;mask out first three bits
; pointer on timephase table
;load timephase curve for
;one segment pin
;b points list for portd
;working at podlst ?
;then b points on podlst

```
; shift timephase data according to 3 bits (8 combinations are ;possible with 3 segments)
tipsh:
\(x\) a,temp istore timephase curve to ; temp buffer
; load timephase curve again
; shift out one bit into

```

;carry bit
;store shifted curve
;load portbyte
;shift in one bit from
;carry bit
;store shifted portbyte
;again
;end of podlst ?
i
;then return
;else end of pollst
;
iif the end of the segment
;list is not reached
; work at next segment byte

```
bcdsegtab:
; in this bytes are the on/off configuration of the segments ; for a digit are stored. there are only 7 bits of each byte ; the configuration of the 2 special segments is stored ; in the 'special' byte.
\[
\begin{aligned}
& \text {. BYTE OEF, 007,OBD,03F ;'0'...'3' } \\
& \text {. BYTE 057,07E, OFE, OOE } \quad \text { ' }^{\prime \prime} \ldots \text { ' }^{\prime} \text { ' } \\
& \text {. BYTE OFE,O7E,ODE,OF6 } \quad \text { ' }^{\prime} 8^{\prime} \ldots ' B^{\prime} \\
& \text {.BYTE OEC,OB7,OEC,ODC } ;^{\prime} C^{\prime} \ldots ' E^{\prime}
\end{aligned}
\]
tiphtab:
; one pin controls 3 segments. there are 8 possible ; combinations. for each combination there is one byte. ; 6 bits of one byte control the pin for each timephase.
. BYTE 007,00E, 015,01C,023,02A,031,038

TL/DD12076-25
```

rbit \#00,[b]
ld b,\#psw
rbit \#ipnd, [b]
ld a,[b]
x a,pswsto
ld a,tiphase
add a,tiphase
x a,b
ld a,[b+]
x a,podbuf
ld a,[b+]
x a,polbuf
ld a,b
add a,\#L(bptab)-2
x a,b
ld a,b
laid
x a,pogdbuf
ld a,[b+]
ld a,b
laid
x a,pogcbuf
ld b,\#podbuf
ld a,[b+]
x a,portd
ld a,[b+]
x a,portld
la portgc,\#\#OO
ld a,[b+]
x a,portgd
ld a,[b+]
x a,porrgc
ld a,tiphase
inc a
ifeq a,\#06
ld a,\#00
x a,tiphase
ld b,\#pswsto
rC
ifbit \#07, [b]

```
```

;C can be charged again

```
;C can be charged again
;reset ext. interrupt
;reset ext. interrupt
;pending flag
;pending flag
;load psw
;load psw
;store psw
;store psw
;accu:=tiphase*2
;accu:=tiphase*2
;
;
;store accu in b
;store accu in b
;load portbyte from
;load portbyte from
;refresh list('lst')
;refresh list('lst')
;store it to port d buffer
;store it to port d buffer
;load portbyte
;load portbyte
;store it to port l buffer
;store it to port l buffer
; accu:=timephase*2+2
; accu:=timephase*2+2
;accu points on
;accu points on
;backplane table
;backplane table
;store pointer
;store pointer
;
;
;load port g data byte
;load port g data byte
;store it to port g data
;store it to port g data
;buffer
;buffer
;increment b
;increment b
;load pointer
;load pointer
;load portg conf. byte
;load portg conf. byte
;store it to buffer
;store it to buffer
;b points buffer list
;b points buffer list
;
;
;refresh port d
;refresh port d
;
;
;refresh port l
;refresh port l
iall backplanc :"ires on
iall backplanc :"ires on
;Vop/2 level to prevent
;Vop/2 level to prevent
;spikes
;spikes
;
;
;refresh port g data
;refresh port g data
;
;
;refresh port g config.
;refresh port g config.
;update timephase counter
;update timephase counter
;
;
;}\mathrm{ tiphase = 0..5
;}\mathrm{ tiphase = 0..5
;
;
;
;
;restore carry bit
;restore carry bit
;
```

;

```
```

    sbit #07,psw
    ifbit #06,[b] ;restore halfcarry bit
    sbit #06,psw %;
    ld a,bsto ;restore b
    x a,b ;
    ld a,accsto irestore accu
    reti ;return from lcd
    ;refresh routine
    bptab: .BYTE 004,004,010,010,020,020
.BYTE 000,004,000,010,000,020
.END

```

Section 3 MICROWIRE/PLUS \({ }^{\text {TM }}\) Peripherals

\section*{Section 3 Contents}MICROWIRE and MICROWIRE/PLUS: 3-Wire Serial Interface3-3
COP472-3 Liquid Crystal Display Controller 3-7

\title{
MICROWIRE \({ }^{\text {TM }}\) and MICROWIRE/PLUS \({ }^{\text {TM }}\) : 3-Wire Serial Interface
}

National's MICROWIRE and MICROWIRE/PLUS provide for high-speed, serial communications in a simple 3-wire implementation.
Originally designed to interface COP400 microcontrollers to peripheral devices, the MICROWIRE protocol has been extended to both the COP800 and HPCTM families with the enhanced version, MICROWIRE/PLUS.
Because the shift clock in MICROWIRE/PLUS can be internal or external, the interface can be designated as either bus master or slave, giving it the flexibility necessary for distributed and multiprocessing applications.
With its simple 3-wire interface, MICROWIRE/PLUS can connect a variety of nodes in a serial-communication network.
This simple 3-wire design also helps increase system reliability while reducing system size and development time.
MICROWIRE/PLUS consists of an 8-bit serial shift register (SIO), serial data input (SI), serial data output (SO), and a serial shift clock (SK).
Because the COP800 and HPC families have memorymapped architectures, the contents of the SIO register can be accessed through standard memory-addressing instructions.

The control register (CNTRL) is used to configure and control the mode and operation of the interface through userselectable bits that program the internal shift rate. This greatly increases the flexibility of the interface.
MICROWIRE/PLUS can also provide additional I/O capability for COP800 and HPC microcontrollers by connecting, for example, external 8 -bit parallel-to-serial shift registers to 8 bit serial-to-parallel shift registers.
And it can interface a wide variety of peripherals:
- Memory (CMOS RAM and EEPROM)
\(\square\) A/D converters
- Timers/counters
- Digital phase locked-loops
- Telecom peripherals
- Vacuum fluorescent display drivers
- LED display drivers
- LCD display drivers

Both MICROWIRE and MICROWIRE/PLUS give all the members of National's microcontroller families the flexibility and design-ease to implement a solution quickly, simply, and cost-effectively.

TL/XX/0074-2

\section*{MICROWIRE and MICROWIRE/PLUS Peripherals}
\begin{tabular}{|c|c|c|}
\hline Part Number & Description & Databook \\
\hline \multicolumn{3}{|l|}{A/D CONVERTERS AND COMPARATORS} \\
\hline ADC0811 & 11 Channel 8-Bit A/D Converter with Multiplexer & Linear \\
\hline ADC0819 & 19 Channel 8-Bit A/D Converter with Multiplexer & Linear \\
\hline ADC0831 & 1 Channel 8-Bit A/D Converter with Multiplexer & Linear \\
\hline ADC0838 & 8 Channel 8-Bit A/D Converter with Multiplexer & Linear \\
\hline ADC0832 & 2 Channel 8-Bit A/D Converter with Multiplexer & Linear \\
\hline ADC0833 & 4 Channel 8-Bit A/D Converter with Multiplexer & Linear \\
\hline ADC0834 & 4 Channel 8-Bit A/D Converter with Multiplexer & Linear \\
\hline ADC0852 & Multiplexed Comparator with 8-Bit Reference Divider & Linear \\
\hline ADC0854 & Multiplexed Comparator with 8-Bit Reference Divider & Linear \\
\hline
\end{tabular}

DISPLAY DRIVERS
\begin{tabular}{l|l|l}
\hline COP472-3 & \(3 \times 12\) Multiplexed Expandable LCD Display Driver & Microcontroller \\
\hline MM5450 & 35 Output LED Display Driver & Interface \\
\hline MM5451 & 34 Output LED Display Driver & Interface \\
\hline MM5483 & 31 Segment LCD Display Driver & Interface \\
\hline MM5484 & 16 Segment LED Display Driver & Interface \\
\hline MM5486 & 33 Output LED Display Driver & Interface \\
\hline MM58201 & 8 Backplane and 24 Segment Multiplexed LCD Driver & Interface \\
\hline MM58241 & 32 Output High Voltage Display Driver & Interface \\
\hline MM58242 & 20 Output High Voltage Display Driver & Interface \\
\hline MM58248 & 35 Output High Voltage Display Driver & Interface \\
\hline MM58341 & 32 Output High Voltage Display Driver & Interfaco \\
\hline MM58342 & 20 Output High Voltage Display Driver & Intorfaco \\
\hline MM58348 & 35 Output High Voltage Display Driver & Interface \\
\hline
\end{tabular}

MEMORY DEVICES
\begin{tabular}{l|l|l}
\hline NM93C06 & \(16 \times 16\) CMOS EEPROM & Memory \\
\hline NM93C13 & \(16 \times 16\) CMOS EEPROM & Memory \\
\hline NM93C14 & \(64 \times 16\) CMOS EEPROM & Memory \\
\hline NM93C46 & \(64 \times 16\) CMOS EEPROM & Memory \\
\hline NM93CS06 & \(16 \times 16\) CMOS EEPROM with Write Protect & Memory \\
\hline NM93CS46 & \(64 \times 16\) CMOS EEPROM with Write Protect & Memory \\
\hline NM93CS56 & \(128 \times 16\) CMOS EEPROM with Write Protect & Memory \\
\hline NM93C56 & \(128 \times 16\) CMOS EEPROM & Memory \\
\hline NM93CS66 & \(256 \times 16\) CMOS EEPROM with Write Protect & Memory \\
\hline NM93C66 & \(256 \times 16\) CMOS EEPROM & Memory \\
\hline
\end{tabular}

Note: The low voltage (2V-6V) versions of the NM93C06, NM93C46, NM93C56 and NM93C66 are also available.

MICROWIRE and MICROWIRE/PLUS Peripherals (Continued)
\begin{tabular}{|c|l|c|c}
\hline \multicolumn{2}{|c|}{ Part Number } & \multicolumn{1}{|c}{ Description } & Databook \\
\hline TELECOM DEVICES & S Interface Device (SID) & Telecom \\
\hline TP3420 & AM/FM Digital PLL Synthesizer & \\
\hline AUDIO AND RADIO DEVICES & AM/FM Digital PLL Frequency Synthesizer & Interface \\
\hline DS8906 & AM/FM Digital PLL Frequency Synthesizer & Interface \\
\hline DS8907 & AM/FM/TV Sound Up-Conversion Frequency Synthesizer & Interface \\
\hline DS8908 & Stereo Volume/Tone/Fade with Source Select & Interface \\
\hline DS8911 & Stereo Volume/Tone/Fade/Loudness with Source Select & Linear \\
\hline LMC1992 & 7Band Graphic Equalizer & Linear \\
\hline LMC1993 & & Linear \\
\hline LMC835 & &
\end{tabular}

\section*{National Semiconductor}

\section*{COP472-3 Liquid Crystal Display Controller}

\section*{General Description}

The COP472-3 Liquid Crystal Display (LCD) Controller is a peripheral member of the COPSTM family, fabricated using CMOS technology. The COP472-3 drives a multiplexed liquid crystal display directly. Data is loaded serially and is held in internal latches. The COP472-3 contains an on-chip oscillator and generates all the multi-level waveforms for backplanes and segment outputs on a triplex display. One COP472-3 can drive 36 segments multiplexed as \(3 \times 12\) (\(41 / 2\) digit display). Two COP472-3 devices can be used together to drive 72 segments (\(3 \times 24\)) which could be an \(81 / 2\) digit display.

Features
- Direct interface to TRIPLEX LCD
- Low power dissipation (\(100 \mu \mathrm{~W}\) typ.)
- Low cost
- Compatible with all COPS processors
- Needs no refresh from processor
- On-chip oscillator and latches
- Expandable to longer displays
- Operates from display voltage
- MICROWIRETM compatible serial I/O
- 20-pin Dual-In-Line package and 20 -pin SO

\section*{Block Diagram}

TL/DD/6932-1

\section*{Absolute Maximum Ratings}
\begin{tabular}{lr}
Voltage at CS, DI, SK pins & -0.3 V to +9.5 V \\
Voltage at all other Pins & -0.3 V to \(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\) \\
Operating Temperature Range & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
\end{tabular}
\begin{tabular}{lr}
Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Lead Temp. (Soldering, 10 Seconds) & \(300^{\circ} \mathrm{C}\)
\end{tabular}

\section*{DC Electrical Characteristics}
\(\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}\) to \(5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) (depends on display characteristics)
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter & Conditions & Min & Max & Units \\
\hline Power Supply Voltage, \(\mathrm{V}_{\text {DD }}\) & & 3.0 & 5.5 & Volts \\
\hline Power Supply Current, IDD (Note 1) & \(V_{D D}=5.5 \mathrm{~V}\) & & 250 & \(\mu \mathrm{A}\) \\
\hline & \(V_{D D}=3 \mathrm{~V}\) & & 100 & \(\mu \mathrm{A}\) \\
\hline ```
Input Levels
 DI, SK, CS
 VIL
 VIH
``` & & \(0.7 \mathrm{~V}_{\text {DD }}\) & \[
\begin{aligned}
& 0.8 \\
& 9.5
\end{aligned}
\] & \begin{tabular}{l}
Volts \\
Volts
\end{tabular} \\
\hline \[
\begin{gathered}
\text { BPA (as Osc. in) } \\
V_{I L} \\
V_{I H} \\
\hline
\end{gathered}
\] & & \(V_{D D}-0.6\) & \[
\begin{gathered}
0.6 \\
V_{D D} \\
\hline
\end{gathered}
\] & Volts Volts \\
\hline ```
Output Levels, BPC (as Osc. Out)
    VOL
    VOH
``` & & \(V_{D D}-0.4\) & \[
\begin{gathered}
0.4 \\
V_{D D}
\end{gathered}
\] & Volts Volts \\
\hline ```
Backplane Outputs (BPA, BPB, BPC)
 \(V_{B P A, B P B, B P C} O N\)
 \(V_{B P A, ~ B P B, ~ B P C ~}\) OFF
``` & During BP+ Time & \[
\begin{gathered}
V_{D D}-\Delta V \\
1 / 3 V_{D D}-\Delta V \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
V_{D D} \\
1 / 3 V_{D D}+\Delta V \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Volts \\
Volts
\end{tabular} \\
\hline \begin{tabular}{l}
\(V_{B P A, B P B, B P C} O N\) \\
\(V_{B P A, ~ B P B, ~ B P C ~ O F F ~}^{\text {O }}\)
\end{tabular} & During
BP- Time & \[
2 / 3 V_{D D}-\Delta V
\] & \[
\begin{gathered}
\Delta V \\
2 / 3 V_{D D}+\Delta V
\end{gathered}
\] & Volts Volts \\
\hline \[
\begin{aligned}
& \text { Segment Outputs }\left(\mathrm{SA}_{1} \sim \mathrm{SA}_{4}\right) \\
& \mathrm{V}_{\mathrm{SEG}} \text { ON } \\
& \mathrm{V}_{\mathrm{SEG}} \text { OFF } \\
& \hline
\end{aligned}
\] & During BP+ Time & \[
\begin{gathered}
0 \\
2 / 3 V_{D D}-\Delta V \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\Delta V \\
2 / 3 V_{D D}+\Delta V
\end{gathered}
\] & \begin{tabular}{l}
Volts \\
Volts
\end{tabular} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{SEG}} O N \\
& \mathrm{~V}_{\mathrm{SEG}} \mathrm{OFF} \\
& \hline
\end{aligned}
\] & During BP- Time & \[
\begin{gathered}
V_{D D}-\Delta V \\
1 / 3 V_{D D}-\Delta V \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
V_{D D} \\
1 / 3 V_{D D}+\Delta V
\end{gathered}
\] & \begin{tabular}{l}
Volts \\
Volts
\end{tabular} \\
\hline Internal Oscillator Frequency & & 15 & 80 & kHz \\
\hline Frame Time (Int. Osc. - 192) & & 2.4 & 12.8 & ms \\
\hline Scan Frequency (1/TSCAN) & & 39 & 208 & Hz \\
\hline SK Clock Frequency & & 4 & 250 & kHz \\
\hline SK Width & & 1.7 & & \(\mu \mathrm{S}\) \\
\hline DI Data Setup, tseTup Data Hold, thOLD & & \[
\begin{aligned}
& 1.0 \\
& 100
\end{aligned}
\] & & \[
\begin{aligned}
& \mu \mathrm{s} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\[
\overline{\mathrm{CS}}
\] \\
\(\mathrm{t}_{\text {SETUP }}\) thold
\end{tabular} & & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & & \[
\begin{aligned}
& \mu \mathrm{s} \\
& \mu \mathrm{~s}
\end{aligned}
\] \\
\hline Output Loading Capacitance & & & 100 & pF \\
\hline
\end{tabular}

Note 1: Power supply current is measured in stand-alone mode with all outputs open and all inputs at \(V_{D D}\).
Note 2: \(\Delta V=0.05 V_{D D}\).

\section*{Absolute Maximum Ratings}

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

Voltage at CS, DI, SK Pins
Voltage at All Other Pins
-0.3 V to +9.5 V
-0.3 V to \(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\)
\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)

Storage Temperature
Lead Temperature
(Soldering, 10 seconds)
\(300^{\circ} \mathrm{C}\)

\section*{DC Electrical Characteristics}

GND \(=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}\) to \(5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) (depends on display characteristics)
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter & Conditions & Min & Max & Units \\
\hline Power Supply Voltage, V \({ }_{\text {DD }}\) & & 3.0 & 5.5 & Volts \\
\hline Power Supply Current, IDD (Note 1) & \(V_{D D}=5.5 \mathrm{~V}\) & & 300 & \(\mu \mathrm{A}\) \\
\hline & \(V_{D D}=3 \mathrm{~V}\) & & 120 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{gathered}
\text { Input Levels } \\
\text { DI, SK, CS } \\
\mathrm{V}_{\mathrm{IL}} \\
\mathrm{~V}_{\mathrm{IH}} \\
\hline
\end{gathered}
\] & & \(0.7 \mathrm{~V}_{\mathrm{DD}}\) & \[
\begin{aligned}
& 0.8 \\
& 9.5 \\
& \hline
\end{aligned}
\] & Volts Volts \\
\hline \[
\begin{gathered}
\text { BPA (as Osc. In) } \\
V_{\mathrm{IL}} \\
V_{\mathrm{IH}} \\
\hline
\end{gathered}
\] & & \(V_{D D}-0.6\) & \[
\begin{gathered}
0.6 \\
V_{D D} \\
\hline
\end{gathered}
\] & Volts Volts \\
\hline ```
Output Levels, BPC (as Osc. Out)
    \(V_{\text {OL }}\)
    \(\mathrm{V}_{\mathrm{OH}}\)
``` & & \[
V_{D D}-0.4
\] & \[
\begin{gathered}
0.4 \\
V_{D D} \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Volts \\
Volts
\end{tabular} \\
\hline \begin{tabular}{l}
Backplane Outputs (BPA, BPB, BPC) \\
\(V_{B P A, B P B, B P C} O N\) \\
\(V_{B P A, B P B, B P C} O F F\)
\end{tabular} & During
\[
\mathrm{BP}+\text { Time }
\] & \[
\begin{gathered}
V_{D D}-\Delta V \\
1 / 3 V_{D D}-\Delta V
\end{gathered}
\] & \[
\begin{gathered}
V_{D D} \\
1 / 3 V_{D D}+\Delta V
\end{gathered}
\] & Volts Volts \\
\hline \begin{tabular}{l}
\(V_{B P A, B P B, B P C} O N\) \\
\(V_{B P A, ~ B P B, ~ B P C ~ O F F ~}^{\text {O }}\)
\end{tabular} & During
BP- Time & \[
\begin{gathered}
0 \\
2 / 3 V_{D D}-\Delta V
\end{gathered}
\] & \[
\begin{gathered}
\Delta V \\
2 / 3 V_{D D}+\Delta V
\end{gathered}
\] & Volts Volts \\
\hline \[
\begin{aligned}
& \text { Sogmont Cutputs }\left(S \Lambda_{1}-S \Lambda_{4}\right) \\
& V_{\text {SEG }} \text { ON } \\
& V_{\text {SEG }} \text { OFF }
\end{aligned}
\] & During
\[
\mathrm{BP}+\text { Time }
\] & \[
\begin{gathered}
0 \\
2 / 3 V_{D D}-\Delta V
\end{gathered}
\] & \[
\begin{gathered}
\Delta V \\
2 / 3 V_{D D}+\Delta V \\
\hline
\end{gathered}
\] & Volts Volts \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{SEG}} O N \\
& \mathrm{~V}_{\mathrm{SEG}} \mathrm{OFF}
\end{aligned}
\] & During
\[
\mathrm{BP} \text { - Time }
\] & \[
\begin{gathered}
V_{D D}-\Delta V \\
1 / 3 V_{D D}-\Delta V \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
V_{D D} \\
1 / 3 V_{D D}+\Delta V
\end{gathered}
\] & \begin{tabular}{l}
Volts \\
Volts
\end{tabular} \\
\hline Internal Oscillator Frequency & & 15 & 80 & kHz \\
\hline Frame Time (Int. Osc. \(\div\) 192) & & 2.4 & 12.8 & ms \\
\hline Scan Frequency (\(1 / T_{\text {SCAN }}\)) & & 39 & 208 & Hz \\
\hline SK Clock Frequency & & 4 & 250 & kHz \\
\hline SK Width & & 1.7 & & \(\mu \mathrm{s}\) \\
\hline DI Data Setup, tsETUP Data Hold, thOLD & & \[
\begin{gathered}
1.0 \\
100
\end{gathered}
\] & & \[
\begin{aligned}
& \mu \mathrm{s} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\(\overline{C S}\) \\
tsetup thold
\end{tabular} & & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & & \[
\begin{aligned}
& \mu \mathrm{s} \\
& \mu \mathrm{~s}
\end{aligned}
\] \\
\hline Output Loading Capacitance & & & 100 & pF \\
\hline
\end{tabular}

Note 1: Power supply current is measured in stand-alone mode with all outputs open and all inputs at \(V_{D D}\).
Note 2: \(\Delta V=0.05 V_{D D}\).

Top View
\(\quad\) Pln
CS
\(V_{D D}\)
\(G N D\)
DI
\(S K\)
\(B P_{A}\)
\(B P_{B}\)
\(B P_{C}\)
\(S A 1 \sim S C 4\)

Order Number COP472MW-3 or COP472N-3 See NS Package Number M20A or N20A

FIGURE 2. Connection Dlagram

TL/DD/6932-3
FIGURE 3. Serial Load Timing Diagram

FIGURE 4. Backplane and Segment Waveforms

TL/DO/6932-5
FIGURE 5. Typical Display Internal Connections
Epson LD-370

\section*{Functional Description}

The COP472-3 drives 36 bits of display information organized as twelve segments and three backplanes. The COP472-3 requires 40 information bits: 36 data and 4 control. The function of each control bit is described below. Display information format is a function of the LCD interconnections. A typical segment/backplane configuration is illustrated in Figure 5, with this configuration the COP472-3 will drive 4 digits of 9 segments.
To adapt the COP472-3 to any LCD display configuration, the segment/backplane multiplex scheme is illustrated in Table l.
Two or more COP472-3 chips can be cascaded to drive additional segments. There is no limit to the number of COP472-3's that can be used as long as the output loading capacitance does not exceed specification.

TABLE I. COP472-3 Segment/Backplane Multiplex Scheme
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Multiplex Scheme} \\
\hline Bit Number & Segment, Backplane & \multicolumn{2}{|r|}{Data to Numeric Display} \\
\hline 1 & SA1, BPC & SH & \\
\hline 2 & SB1, BPB & SG & \\
\hline 3 & SC1, BPA & SF & \\
\hline 4 & SC1, BPB & SE & \\
\hline 5 & SB1, BPC & SD & Digit 1 \\
\hline 6 & SA1, BPB & SC & \\
\hline 7 & SA1, BPA & SB & \\
\hline 8 & SB1, BPA & SA & \\
\hline 9 & SA2, BPC & SH & \\
\hline 10 & SB2, BPB & SG & \\
\hline 11 & SC2, BPA & SF & \\
\hline 12 & SC2, BPB & SE & \\
\hline 13 & SB2, BPC & SD & Digit 2 \\
\hline 14 & SA2, BPB & SC & \\
\hline 15 & SA2, BPA & SB & \\
\hline 16 & SB2, BPA & SA & \\
\hline 17 & SA3, BPC & SH & \\
\hline 18 & SB3, BPB & SG & \\
\hline 19 & SC3, BPA & SF & \\
\hline 20 & SC3, BPB & SE & \\
\hline 21 & SB3, BPC & SD & Digit 3 \\
\hline 22 & SA3, BPB & SC & \\
\hline 23 & SA3, BPA & SB & \\
\hline 24 & SB3, BPA & SA & \\
\hline 25 & SA4, BPC & SH & \\
\hline 26 & SB4, BPB & SG & \\
\hline 27 & SC4, BPA & SF & \\
\hline 28 & SC4, BPB & SE & Digit 4 \\
\hline 29 & SB4, BPC & SD & Digit 4 \\
\hline 30 & SA4, BPB & SC & \\
\hline 31 & SA4, BPA & SB & \\
\hline 32 & SB4, BPA & SA & \\
\hline 33 & SC1, BPC & SPA & Digit 1 \\
\hline 34 & SC2, BPC & SP2 & Digit 2 \\
\hline 35 & SC3, BPC & SP3 & Digit 3 \\
\hline 36 & SC4, BPC & SP4 & Digit 4 \\
\hline 37 & not used & & \\
\hline 38 & Q6 & & \\
\hline 39 & Q7 & & \\
\hline 40 & SYNC & & \\
\hline
\end{tabular}

\section*{SEGMENT DATA BITS}

Data is loaded in serially, in sets of eight bits. Each set of segment data is in the following format:

Data is shifted into an eight bit shift register. The first bit of the data is for segment \(H\), digit 1 . The eighth bit is segment A, digit 1 . A set of eight bits is shifted in and then loaded into the digit one latches. The second set of 8 bits is loaded into digit two latches. The third set into digit three latches, and the fourth set is loaded into digit four latches.

\section*{CONTROL BITS}

The fifth set of 8 data bits contains special segment data and control data in the following format:
\begin{tabular}{l|l|l|l|l|l|l|l|}
SYNC & Q 7 & Q 6 & X & SP 4 & SP 3 & SP 2 & SP 1 \\
\hline
\end{tabular}

The first four bits shifted in contain the special character segment data. The fifth bit is not used. The sixth and seventh bits program the COP472-3 as a stand alone LCD driver or as a master or slave for cascading COP472-3's. BPC of the master is connected to BPA of each slave. The following table summarizes the function of bits six and seven:
\begin{tabular}{cclll}
\hline Q7 & Q6 & Function & BPC Output & BPA Output \\
\hline 1 & 1 & Slave & Backplane & Oscillator \\
0 & 1 & Stand Alone & Output & \begin{tabular}{l}
Input \\
Backplane
\end{tabular} \\
Oackplane \\
\(\mathbf{1}\) & \(\mathbf{0}\) & Not Used & \begin{tabular}{l}
Output \\
Internal
\end{tabular} & \begin{tabular}{l}
Output \\
Oscillator \\
0
\end{tabular} \\
\(\mathbf{0}\) & Master & \begin{tabular}{l}
Osc. Output \\
Internal \\
Osc. Output
\end{tabular} & Backplane \\
\hline
\end{tabular}

The eighth bit is used to synchronize two COP472-3's to drive an \(81 / 2\)-digit display.

\section*{LOADING SEQUENCE TO DRIVE A 4½-DIGIT DISPLAY}

\section*{Steps:}
1. Turn \(\overline{C E}\) low.
2. Clock in 8 bits of data for digit 1 .
3. Clock in 8 bits of data for digit 2.
4. Clock in 8 bits of data for digit 3.
5. Clock in 8 bits of data for digit 4 .
6. Clock in 8 bits of data for special segment and control function of BPC and BPA.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
0 & 0 & 1 & 1 & SP 4 & SP 3 & SP 2 & SP 1 \\
\hline
\end{tabular}
7. Turn \(\overline{C S}\) high.

Note: \(\overline{\mathrm{CS}}\) may be turned high after any step. For example to load only 2 digits of data, do steps \(1,2,3\), and 7.
\(\overline{\mathrm{CS}}\) must make a high to low transition before loading data in order to reset internal counters.

\section*{LOADING SEQUENCE TO DRIVE AN 81/2-DIGIT DISPLAY}

Two or more COP472-3's may be connected together to drive additional segments. An eight digit multiplexed display is shown in Figure 7. The following is the loading sequence to drive an eight digit display using two COP472-3's. The right chip is the master and the left the slave.
Steps:
1. Turn \(\overline{\mathrm{CS}}\) low on both COP472-3's.
2. Shift in 32 bits of data for the slave's four digits.
3. Shift in 4 bits of special segment data: a zero and three ones.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 0 & SP 4 & SP 3 & SP 2 & SP 1 \\
\hline
\end{tabular}

This synchronizes both the chips and BPA is oscillator input. Both chips are now stopped.
4. Turn CS high to both chips.
5. Turn CS low to master COP472-3.
6. Shift in 32 bits of data for the master's 4 digits.
7. Shift in four bits of special segment data, a one and three zeros.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
0 & 0 & 0 & 1 & SP 4 & SP 3 & SP 2 & SP 1 \\
\hline
\end{tabular}

This sets the master COP472-3 to BPA as a normal backplane output and BPC as oscillator output. Now both the chips start and run off the same oscillator.
8. Turn \(\overline{\mathrm{CS}}\) high.

The chips are now synchronized and driving 8 digits of display. To load new data simply load each chip separately in the normal manner, keeping the correct status bits to each COP472-3 (0110 or 0001).

FIGURE 6. System Diagram - 41⁄2 Digit Display

TL/DD/6932-7
FIGURE 7. System Diagram - 81/2 Digit Display

Section 4 COP8 Development Support

Section 4 ContentsDevelopment Support.4-3
COP8 Development System 4-6

\section*{Development Support}

Our job doesn't end when you buy a National microcontroller, it only begins.
The next step is to help you put that microcontroller to work-delivering real-world performance in a real-world application.
That's why we offer you such a comprehensive, powerful, easy-to-use package of development tools.

\section*{Microcontroller Development Support COP400 Family}

The COPSTM Microcontroller Development system is a complete, inexpensive system, designed to support both hardware and software development of the COP400 family of microcontrollers.
Using a standard IBM \({ }^{\oplus}\) PC \({ }^{\circledR}\) platform as a host, this system provides the tools to write, assemble, debug and emulate software for user target design.
The development system itself consists of two circuit boards that interface with each other and to the host computer using a software package. The first board is called the Brain Board. It provides the major functional features of the system, linking the various elements of the host system. The other board is called the Personality Board and it is common for all members of the COP400 family of microcontrollers.

\section*{Microcontroller Development Support COP800 Family}

MetaLink Corporation's iceMASTERTM COP8 Model 400 inCircuit Emulator provides complete real-time full speed emulation of all COP8 family devices. It consists of a base unit and interchangeable probe cards, which support various configurations and packages. The source symbolic debugger with a window based user interface is a powerful tool to accomplish software and hardware debug and integration tasks.
COP800 code development is supported by a macro crossassembler running DOS on the IBM compatible PC.
COP800 development is also supported with a low cost Designer's Kit. The Designer's Kit includes a simulator with a window based menu driven user interface and the COP8 cross-assembler. It is a tool designed for product evaluation and code development and debug. It comes equipped with complete debug capability and full assembler. The host for the designer kit is an IBM PC/XT/AT or compatible running DOS.

\section*{Microcontroller Development Support HPCTM Family}

HPC-MDS is a complete packaged system for all members of the HPC family except for HPC46100. The host system is IBM PC/AT® (PC-DOS, MS-DOS) and Sun® SPARCstation (SunOSTM). It provides true real time in-system emulation with support tools such as ANSI compatible C-Compiler, assembler, Linker and Source/Symbolic debugger. The debugger interface is based on MS-Windows 3.0 for IBM PC/AT and a line debugger for Sun SPARCstation users.
HPC-MDS gives the user the flexibility to symbolically debug his code and download it to the target hardware. The user can set breakpoints and traces, can execute time measurements and examine and modify internal registers and I/O.
A low cost HPC designer's kit is also available. The kit has complete in-system emulation capability and is packaged with an evaluation version of C compiler and full package of Assembler/Linker.
The HPC46100 DSP-Microcontroller, is supported by a development kit for ROM emulation, logic and timing analysis, code debug with inverse assembly and PC based debug monitor. The kit consists of a Logic Analyzer Interface Board, a Target Board, Assembler/Linker/Librarian software, an inverse assembler to run on Hewlett-Packard 1650 and 16500A/B logic analyzers and PC based debug monitor, "The Serial Hook".
Third Party development support is also available for various sources for the HPC family.
Hewlett Packard offers HP64775 emulator/analyzer for 30 MHz HPC \(16083 / 16064\) and 20 MHz 16400E emulation. The stand alone HP system provides a very fast serial link to the host system and offers complete emulation and timing and logic analysis capability. The software tools for HP emulator are provided by National Semiconductor \({ }^{\circledR}\).
Signum System offers a USP-HPC in-circuit emulator for the HPC46100 with 40 MHz 1 wait state real time emulation. This system is supported with 256 kbyte overlay emulation memory, 32k frames deep trace buffer memory, complex breakpoints, high level language source/symbolic debugger, fast serial download and a window based menu driven user interface.
The language tools hosted on the IBM PC/AT and compatibles and Sun SPARCstation are available from National Semiconductor to support third party emulation systems.

Emulation Technology offers a passive preprocessor and inverse assembler package for HP1650 and 16500A series of Logic analyzers. The preprocessor provides a low cost and convenient way of doing timing and state analysis of the HPC based design.
Emulation Technology also offers debug tool accessories for 68-pin PLCC and 80-pin (QFP) Quad Flat Packages. This includes PLCC to QFP adapter, QFP test clip and a QFP surface mount replacement base.
Programming support for the HPC emulator devices is available from Data I/O on their Unisite models.
For more details on the third party support tools for NSC's microcontroller products, please contact the third party office in your area or the National Semiconductor sales office.

\section*{Dial-A-Helper On-Line Applications Support}

Dial-A-Helper lets you communicate directly with the Microcontroller Applications Engineers at National.
Using standard computer communications software, you can dial into the automated Dial-A-Helper Information System 24 hours a day.
You can leave messages on the electronic bulletin board for the Applications Engineers, then retrieve their responses.
You can select and then download specific applications data.

\section*{Dlal-A-Helper}

Voice: (408) 721-5582 (8 a.m.-5 p.m. PST)
Modem: (408) 739-1162 (24 Hrs./day)
Setup: Baud rate 300 bps or 1200 bps 8 bits, no parity, 1 stop

\section*{Dedicated Applications Engineers}

We've assembled a dedicated team of highly trained, highly experienced engineering professionals to help you implement your solution quickly, effectively, efficiently and to ensure that it's the best solution for your specific application.
At National, we believe that the best technology is also the most usable technology. That's why our microcontrollers provide such practical solutions to such real design problems. And that's why our microcontroller development support includes such comprehensive tools and such powerful enginearing resources.
No one makes more microcontrollers than National and no one does more to help you put those microcontrollers to work.

\section*{NOTES}

\title{
COP8 Development System
}
iceMASTERTM COP8/400

TL/DD/11386-1

\section*{Product Overview}

The iceMASTER COP8/400 in-circuit emulator manufactured by MetaLink Corporation and marketed by National Semiconductor provides complete real-time emulation support for all members of the COP8 family. This stand-alone system is designed to provide maximum flexibility to the user through the interchangeable probe cards to support the various configurations and packages of the COP8 family. The interchangeable probe card connects to a common base unit which is linked with an IBM \({ }^{\oplus}\) PC \({ }^{\circledR}\) host through the RS-232 serial communications channel. Full assembly-level symbolic debugging is supported.

\section*{MetaLink COP8 iceMASTER Feature List}
- Flexible, easy-to-use windowed interface, with window size, position, contents and color being completely configurable.
- Fast serial download with 115.2 kBaud using a standard PC COMM port.
- Context-sensitive hypertext on-line help system.
- Commands can be accessed via pull-down menus and/or redefinable hot keys.
- Dynamically annotated code feature displays contents of all accessed (read and write) memory locations and registers, as well as flow-of-control direction change markers next to each instruction executed when single-stepping.
- 4 k -frame trace buffer captures data in real-time. Trace information consists of address and data bus values and user-selectable probe clips (external event lines). Trace buffer data can be viewed as raw hex or disassembled instructions. The probe clip bit values can be displayed in binary, hex or digital waveform formats.
- Performance analyzer with a resolution better than \(6 \mu \mathrm{~s}\). Up to 15 independent memory areas based on code address, line number or label ranges can be defined. Analysis results can be viewed in bar graph format or as actual frequency count.
- 32k of break and trace triggers. Triggers can be enabled, disabled, set or cleared. They can be simple triggers based on code or address ranges or complex triggers based on code address, direct address, opcode value, opcode class or immediate operand. Complex breakpoints can be ANDed and ORed together.
- Memory operations for program memory include single-line assembler, disassembler, view, change, and write to file.
- Memory operations for data memory include fill, move, change, compare, dump to file and examine, modify for registers and program variables.
- Complete status of debugger including breakpoints, trace triggers, etc. can be saved to file for later resumption of debugging process.

\section*{Specifications}

EMULATOR SYSTEM REQUIREMENTS
Basic Emulator System Model 400
Interchangeable Probe Card
\(+5 \mathrm{~V}, 1.5 \mathrm{~A}\) Power Source

\section*{MODELS}

400 Emulator with:
4k Trace Buffer
2 Performance Analyzers
Full WATCHDOGTM Timer Support

\section*{FILE FORMATS}

Intel HEX and National Semiconductor

\section*{MACRO}

Repetitive Routines
User-created and callable
MEMORY OPERATIONS
Program Memory:
Single Line Assembler
Disassemble
Disassemble to File
View/Change
Mapping
Data/Code Memory:
Dump
Dump to File
Fill
Move
Change
Compare
Registers:
Examine/Modify
Program Variables:
Examine/iviodify
OPERATING CHARACTERISTICS
Electrically Transparent
Operationally Transparent
USER INTERFACE
Keyboard or Mouse Control
Pull-Down and Pop-Up Menus
Main Screen Windows:
Registers/SFRs/PSW Bits
Stack
Up to 5 Internal Data Memory
Up to 5 Code Memory
Source Program
Watch
System Status

User Window Controls:
Selectable (On/Off)
Movable
Resizable
Scrollable
Color Selection
Highlighting
Function/Hot Key Access:
User-Assignable
EMULATION CONTROLS
Reset from Emulator
Reset from Target
Reset Processor
Go
Go From
Go Until
Slow Motion
Step
Step Line
Step Over
Step To
Repetition Counter
PERFORMANCE ANALYZER
Real-Time Program Profiling
\(5.4 \mu \mathrm{~s}\) Sampling Period
7 Year Duration
Display Options:
Bar Graph
Frequency Count
Display Modes:
Raw
Symbolic
Up to 15 Bin Capacity:
Multiple Ranges per Bin
User-Controlled Bin Setup:
By Address
By Symbol
Automatic
TRACE
Trace Triggers:
Start
Center
End
Variable
4k-Frame Trace Buffer

Specifications (Continued)
Trace Contents:
Address
Data
External Clips
Trace Display Modes:
Raw Hex
Symbolic
Binary (Clips)
Digital Waveform (Clips)
Trace Buffer Operations:
Write Buffer to File
Search Trace Buffer
HELP
On-Line
Context Sensitive
Hypertext/Hyperlinked
SOURCE/SYMBOL SUPPORT
Source-Level Debug
ELECTRICAL SPECIFICATIONS
Input Power (Maximum):
1.5 A @ \(+5 \mathrm{~V}_{\mathrm{DC}} \pm 5 \%\)

MECHANICAL SPECIFICATIONS
Emulator Dimensions:
\(1.0^{\prime \prime} \times 7.0^{\prime \prime} \times 5.5^{\prime \prime}\)
(\(2.5 \mathrm{~cm} \times 17.8 \mathrm{~cm} \times 14 \mathrm{~cm}\))
Probe Card Cable Length: \(14.0^{\prime \prime}\) (35.6 cm)
Emulator Weight: \(2.0 \mathrm{lbs} .(0.9 \mathrm{~kg})\)

\section*{WARRANTY}

One (1) year limited warranty, parts and labor, for registered users.
\begin{tabular}{|lc|}
\hline \multicolumn{1}{|c|}{ iceMASTER COP8 } & \\
\hline Emulation Memory & 32 k \\
Program & DC -10 MHz \\
Real Time: & 32 k \\
Breakpoints: & 32 k \\
Trace On: & 32 k \\
Trace Off: & 32 K \\
Pass Count & \\
Trigger Conditions: & X \\
PC Address and Range & X \\
Opcode Value & X \\
Opcode Class & X \\
SFRs/Registers & X \\
Direct Byte Address and Range & X \\
Direct Bit Address and Range & X \\
Immediate Operand Value & X \\
Read/Write to Bit Address & X \\
Register Address Modes & X \\
Read/Write to Register Address & X \\
\hline Logical AND/OR of & \\
Any of the Above & \\
External Input & \\
Operating Modes & \\
Single-Chip/ROM & \\
\hline
\end{tabular}

\section*{HOST SYSTEM REQUIREMENTS}

IBM PC-XT/PC-AT or compatibles, 640 kbytes of Memory with \(5.25^{\prime \prime}\) Double Density Floppy Drive.
RS-232 Serial Port
MS-DOS or PC-DOS Operating System

\section*{Ordering Information}

Emulator Ordering Information
\begin{tabular}{|l|l|}
\hline Part Number & \multicolumn{1}{c|}{ Description } \\
\hline IM-COP8/400 & \begin{tabular}{l}
MetaLink base unit in-circuit emulator for all COP8 devices, symbolic debugger software and \\
RS-232 serial interface cable
\end{tabular} \\
\hline MHW-PS3 & Power Supply: \(110 \mathrm{~V} / 60 \mathrm{~Hz}\) \\
\hline MHW-PS4 & Power Supply: \(220 \mathrm{~V} / 50 \mathrm{~Hz}\) \\
\hline
\end{tabular}

Probe Card Ordering Information
\begin{tabular}{|c|c|c|c|}
\hline Device & Package & Voltage Range & Probe Card \\
\hline \multirow[t]{2}{*}{COP880C, 8780C} & \multirow[t]{2}{*}{44 PLCC} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-880C44D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-880C44DWPC \\
\hline \multirow[t]{2}{*}{COP880C, 8780C} & \multirow[t]{2}{*}{40 DIP} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-880C40D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-880C40DWPC \\
\hline \multirow[t]{2}{*}{COP881C, 8781C, 840C, 820C} & \multirow[t]{2}{*}{28 DIP} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-880C28D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-880C28DWPC \\
\hline \multirow[t]{2}{*}{COP842C, 822C, 8742C} & \multirow[t]{2}{*}{20 DIP} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-880C20D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-880C20DWPC \\
\hline \multirow[t]{2}{*}{COP820CJ} & \multirow[t]{2}{*}{28 DIP} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-820CJ28D5PC \\
\hline & & \(2.3 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-820CJ28DWPC \\
\hline \multirow[t]{2}{*}{COP822CJ} & \multirow[t]{2}{*}{20 DIP} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-820CJ20D5PC \\
\hline & & \(2.3 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-820CJ20DWPC \\
\hline \multirow[t]{2}{*}{COP8640C, 8620C} & \multirow[t]{2}{*}{28 DIP} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-8640C28D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-8640C28DWPC \\
\hline \multirow[t]{2}{*}{COP8642C, 8622C} & \multirow[t]{2}{*}{20 DIP} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-8640C20D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-8640C20DWPC \\
\hline \multirow[t]{2}{*}{COP888CF} & \multirow[t]{2}{*}{44 PLCC} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-888CF44D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-888CF44DWPC \\
\hline \multirow[t]{2}{*}{COP888CF} & \multirow[t]{2}{*}{40 DIP} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-888CF40D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-888CF40DWPC \\
\hline \multirow[t]{2}{*}{COP884CF} & \multirow[t]{2}{*}{28 DIP} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-884CF28D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-884CF28DWPC. \\
\hline \multirow[t]{4}{*}{COP888CL} & \multirow[t]{2}{*}{44 PLCC} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-888CL44D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-888CL44DWPC \\
\hline & \multirow[t]{2}{*}{40 DIP} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-888CL40D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-888CL40DWPC \\
\hline
\end{tabular}

Ordering Information (Continued)
Probe Card Ordering Information (Continued)
\begin{tabular}{|c|c|c|c|}
\hline Device & Package & Voltage Range & Probe Card \\
\hline \multirow[t]{2}{*}{COP884CL} & \multirow[t]{2}{*}{28 DIP} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-884CL28D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-884CL28DWPC \\
\hline \multirow[t]{4}{*}{COP888CG, 888CS} & \multirow[t]{2}{*}{44 PLCC} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-888CG44D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-888CG44DWPC \\
\hline & \multirow[t]{2}{*}{40 DIP} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-888CG40D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-888CG40DWPC \\
\hline \multirow[t]{2}{*}{COP884CG, 884CS} & \multirow[t]{2}{*}{28 DIP} & \(4.5 \mathrm{~V}-5.5 \mathrm{~V}\) & MHW-884CG28D5PC \\
\hline & & \(2.5 \mathrm{~V}-6.0 \mathrm{~V}\) & MHW-884CG28DWPC \\
\hline
\end{tabular}

LANGUAGE TOOLS
\begin{tabular}{|c|c|l|l|c|}
\hline Product & \multicolumn{1}{|c|}{ NSID } & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{c|}{ Includes } & Number \\
\hline COP800 Family & MOLE-COP8-IBM & \begin{tabular}{l}
Assembly Language \\
Software for the COP800 \\
Family
\end{tabular} & \begin{tabular}{l}
COP800 System \\
Software User's Manual
\end{tabular} & 424410527 \\
\hline
\end{tabular}

\section*{Single-Chip Emulator}

Form, Fit, Function Emulator Ordering Information
\begin{tabular}{|c|c|c|l|l|}
\hline \multirow{3}{*}{\(\begin{array}{c}\text { Part } \\
\text { Number }\end{array}\)} & \multicolumn{2}{|c|}{ Emulator } & \multicolumn{2}{|c|}{\(\begin{array}{c}\text { Clock } \\
\text { Option }\end{array}\)}
\end{tabular}\()\)

\section*{Single-Chip Emulator (Continued)}

Form, Fit, Function Emulator Ordering Information (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Part Number} & \multicolumn{2}{|l|}{Emulator} & \multirow[t]{2}{*}{Clock Option} & \multirow[b]{2}{*}{Description} \\
\hline & Part Number & Package & & \\
\hline \multirow[t]{3}{*}{COP881C, COP840C, COP820C} & COP881CMHEA-X & \begin{tabular}{l}
28 LCC \\
(Shoebox)
\end{tabular} & \[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=2: \text { External } \\
& X=3: R / C
\end{aligned}
\] & Multi-Chip Module, Same Footprint as 28 SO , UV Erasable \\
\hline & COP8781CWN & \multirow[t]{2}{*}{28 SO} & \multirow[t]{2}{*}{Programmable} & One-Time Programmable \\
\hline & COP8781CMC & & & UV Erasable \\
\hline COP842C & COP842CMHD-X & \multirow[t]{2}{*}{20 DIP} & \multirow[t]{2}{*}{\[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=2: \text { External } \\
& X=3: R / C
\end{aligned}
\]} & \multirow[t]{2}{*}{Multi-Chip Module, UV Erasable} \\
\hline COP822C & COP822CMHD-X & & & \\
\hline \multirow[t]{4}{*}{COP842C, COP822C} & COP8742CN & \multirow[t]{2}{*}{20 DIP} & \multirow[t]{2}{*}{Programmable} & One-Time Programmable \\
\hline & COP8742CJ & & & UV Erasable \\
\hline & COP8742CWM & \multirow[t]{2}{*}{20 SO} & \multirow[t]{2}{*}{Programmable} & One-Time Programmable \\
\hline & COP8742CMC & & & UV Erasable \\
\hline \multirow[t]{2}{*}{COP8640C, COP8620C} & COP8640CMHD-X & 28 DIP & \multirow[t]{2}{*}{\[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=2: \text { External } \\
& X=3: R / C
\end{aligned}
\]} & Multi-Chip Module, UV Erasable \\
\hline & COP8640CMHEA-X & \begin{tabular}{l}
28 LCC \\
(Shoebox)
\end{tabular} & & Multi-Chip Module, Same Footprint as 28 SO, UV Erasable \\
\hline COP8642C, COP8622C & COP8642CMHD-X & 20 DIP & \[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=2: \text { External } \\
& X=3: R / C
\end{aligned}
\] & Multi-Chip Module, UV Erasable \\
\hline \multirow[t]{2}{*}{COP820CJ} & COP820CJMHD-X & 28 DIP & \multirow[t]{2}{*}{\[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=2: \text { External } \\
& X=3: R / C
\end{aligned}
\]} & Multi-Chip Module, UV Erasable \\
\hline & COP820CJMHEA-X & \begin{tabular}{l}
28 LCC \\
(Shoebox)
\end{tabular} & & Multi-Chip Module, Same Footprint as 28 SO, UV Erasable \\
\hline COP822CJ & COP822CJMHD-X & 20 DIP & \[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=2: \text { External } \\
& X=3: R / C
\end{aligned}
\] & Multi-Chip Module, UV Erasable \\
\hline \multirow[t]{2}{*}{COP888CL} & COP888CLMHEL-X & 44 LDCC & \multirow[t]{2}{*}{\[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=3: R / C
\end{aligned}
\]} & \multirow[t]{2}{*}{Multi-Chip Module, UV Erasable} \\
\hline & COP888CLMHD-X & 40 DIP & & \\
\hline \multirow[t]{2}{*}{COP884CL} & COP884CLMHD-X & 28 DIP & \multirow[t]{2}{*}{\[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=3: R / C
\end{aligned}
\]} & Multi-Chip Module, UV Erasable \\
\hline & COP884CLMHEA-X & \begin{tabular}{l}
28 LCC \\
(Shoebox)
\end{tabular} & & Multi-Chip Module, Same Footprint as 28 SO, UV Erasable \\
\hline \multirow[t]{2}{*}{COP888CF} & COP888CFMHEL-X & 44 LDCC & \multirow[t]{2}{*}{\[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=3: R / C
\end{aligned}
\]} & \multirow[t]{2}{*}{Multi-Chip Module, UV Erasable} \\
\hline & COP888CFMHD-X & 40 DIP & & \\
\hline \multirow[t]{2}{*}{COP884CF} & COP884CFMHD-X & 28 DIP & \multirow[t]{2}{*}{\[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=3: R / C
\end{aligned}
\]} & Multi-Chip Module, UV Erasable \\
\hline & COP884CFMHEA-X & \begin{tabular}{l}
28 LCC \\
(Shoebox)
\end{tabular} & & Multi-Chip Module, Same Footprint as 28 SO, UV Erasable \\
\hline \multirow[t]{2}{*}{COP888CG} & COP888CGMHEL-X & 44 LDCC & \multirow[t]{2}{*}{\[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=3: R / C
\end{aligned}
\]} & \multirow[t]{2}{*}{Multi-Chip Module, UV Erasable} \\
\hline & COP888CGMHD-X & 40 DIP & & \\
\hline
\end{tabular}

\section*{Single-Chip Emulator (Continued)}

Form, Fit, Function Emulator Ordering Information (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Part \\
Number
\end{tabular}} & \multicolumn{2}{|l|}{Emulator} & \multirow[t]{2}{*}{Clock Option} & \multirow{2}{*}{Description} \\
\hline & Part Number & Package & & \\
\hline \multirow[t]{2}{*}{COP884CG} & COP884CGMHD-X & 28 DIP & \multirow[t]{2}{*}{\[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=3: \text { R/C }
\end{aligned}
\]} & Multi-Chip Module, UV Erasable \\
\hline & COP884CGMHEA-X & \begin{tabular}{l}
28 LCC \\
(Shoebox)
\end{tabular} & & Multi-Chip Module, Same Footprint as 28 SO, UV Erasable \\
\hline \multirow[t]{2}{*}{COP888EG} & COP888EGMHEL-X & 44 LDCC & \multirow[t]{2}{*}{\[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=3: R / C
\end{aligned}
\]} & \multirow[t]{2}{*}{Multi-Chip Module, UV Erasable} \\
\hline & COP888EGMHD-X & 40 DIP & & \\
\hline \multirow[t]{2}{*}{COP884EG} & COP884EGMHD-X & 28 DIP & \multirow[t]{2}{*}{\[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=3: \text { R/C }
\end{aligned}
\]} & Multi-Chip Module, UV Erasable \\
\hline & COP884EGMHEA-X & \begin{tabular}{l}
28 LCC \\
(Shoebox)
\end{tabular} & & Multi-Chip Module, Same Footprint as 28 SO, UV Erasable \\
\hline \multirow[t]{2}{*}{COP888CS} & COP888CSMHEL-X & 44 LDCC & \multirow[t]{2}{*}{\[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=3: R / C
\end{aligned}
\]} & \multirow[t]{2}{*}{Multi-Chip Module, UV Erasable} \\
\hline & COP888CSMHD-X & 40 DIP & & \\
\hline \multirow[t]{2}{*}{COP884CS} & COP884CSMHD-X & 28 DIP & \multirow[t]{2}{*}{\[
\begin{aligned}
& X=1: \text { Crystal } \\
& X=3: R / C
\end{aligned}
\]} & Multi-Chip Module, UV Erasable \\
\hline & COP884CSMHEA-X & \begin{tabular}{l}
\[
28 \text { LCC }
\] \\
(Shoebox)
\end{tabular} & & Multi-Chip Module, Same Footprint as 28 SO, UV Erasable \\
\hline
\end{tabular}

\section*{Programming Support}

The main board and scrambler boards can be purchased separately or as a set. The table below lists the product identification numbers of the Duplicator Board products.
\begin{tabular}{|c|l|}
\hline Product ID & \multicolumn{1}{|c|}{ Description } \\
\hline COP8-PRGM-28D & \begin{tabular}{l}
COP8 Duplicator Board for \\
28-pin DIP Multi-Chip \\
Module (MCM) and for use \\
with Scrambler Boards
\end{tabular} \\
\hline COP8-SCRM-DIP & \begin{tabular}{l}
MCM-Scrambler Board for \\
20-pin DIP and 40-pin DIP
\end{tabular} \\
\hline COP8-SCRM-PCC & \begin{tabular}{l}
MCM-Scrambler Board for \\
44-pin PLCC/LDCC
\end{tabular} \\
\hline COP8-PRGM-DIP & \begin{tabular}{l}
COP8 Duplicator Board with \\
DIP MCM Scrambler Board \\
(PRGM-28D and SCRM- \\
DIP)
\end{tabular} \\
\hline COP8-PRGM-PCC & \begin{tabular}{l}
COP8 Duplicator Board with \\
PLCC/LDCC MCM \\
Scrambler Board (PRGM- \\
28D and SCRM-PCC)
\end{tabular} \\
\hline COP8-SCRM-87A & \begin{tabular}{l}
Scrambler Board for \\
COP8780 devices, 28-pin \\
DIP, 40-pin DIP, 28-pin SO
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Product ID & \multicolumn{1}{|c|}{ Description } \\
\hline COP8-SCRM-87B & \begin{tabular}{l}
Scrambler Board for \\
COP8780 devices, 20-pin \\
DIP, 20-pin SO, 44-pin \\
PLCC/LDCC
\end{tabular} \\
\hline COP8-PRGM-87A & \begin{tabular}{l}
COP8 Duplicator Board with \\
COP8-SCRM-87A \\
Scrambler Board
\end{tabular} \\
\hline COP8-PRGM-87B & \begin{tabular}{l}
COP8 Duplicator Board with \\
COP8-SCRM-87B \\
Scrambler Board
\end{tabular} \\
\hline COP8-PRGM-SBX & \begin{tabular}{l}
COP8 Duplicator Board with \\
COP8-SCRM-SBX \\
Scrambler Board
\end{tabular} \\
\hline COP8-SCRM-SBX & \begin{tabular}{l}
Scrambler Board for 28-pin \\
LCC MCM Package \\
(Shoebox)
\end{tabular} \\
\hline
\end{tabular}

\section*{Programming Support (Continued)}

The COP device pin/package types, COP device numbers, and the Duplicator Board product identification number for each package type are listed in the table below.
\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ Package Type } & \multicolumn{1}{|c|}{ COP Devices } & \begin{tabular}{c}
COP Duplicator \\
Product ID \(\#\)
\end{tabular} \\
\hline 20-Pin DIP & \(842 \mathrm{CMH}, 8642 \mathrm{CMH}, 822 \mathrm{CJMH}\) & COP8-PRGM-DIP \\
\hline 28 -Pin DIP & \begin{tabular}{l}
\(884 \mathrm{CLMH} / \mathrm{CFMH} / \mathrm{CGMH} / \mathrm{EGMH} / \mathrm{CSMH}\), \\
\(881 \mathrm{CMH}, 8640 \mathrm{CMH}, 820 \mathrm{CJMH}\)
\end{tabular} & COP8-PRGM-28D \\
\hline 28-Pin LCC (Shoebox) & \begin{tabular}{l}
\(881 \mathrm{CMH}, 820 \mathrm{CJMH}, 8640 \mathrm{CMH}\), \\
\(884 \mathrm{CFMH} / \mathrm{CLMH/CGMH/EGMH/CSMH}\)
\end{tabular} & COP8-PRGM-SBX \\
\hline 40-Pin DIP & \begin{tabular}{l}
\(888 \mathrm{CLMH} / \mathrm{CFMH} / \mathrm{CGMH} / \mathrm{EGMH} / \mathrm{CSMH}\), \\
\(880 \mathrm{CMH}, 943 \mathrm{CMH}\)
\end{tabular} & COP8-PRGM-DIP \\
\hline 44-Pin PLCC/LDCC & \(888 \mathrm{CLMH/CFMH/CGMH/EGMH/CSMH,880CMH}\) & COP8-PRGM-PCC \\
\hline \begin{tabular}{l}
28-Pin DIP or SO, \\
\(40-P i n ~ D I P ~\)
\end{tabular} & \(8780 \mathrm{C}, 8781 \mathrm{C}\) & COP8-PRGM-87A \\
\hline \begin{tabular}{l}
20-Pin DIP or SO, \\
44-Pin PLCC/LDCC
\end{tabular} & \(8780 \mathrm{C}, 8742 \mathrm{C}\) & COP8-PRGM-87B \\
\hline
\end{tabular}

\section*{General Description}

The COP800 Designer's Tool Kit is available today to help you evaluate National's COP800 microcontroller family. The Kit contains programmer's manuals, device data sheets, application notes, and pocket reference guides for immediate in-circuit evaluation. The Designer Kit includes an assembler and simulator, which allow you to write, test and debug COP800 code before your target system is finalized.
The simulator can handle script files that simulate hardware inputs and interrupts to the device being simulated. Any simulator command and comments may be included in a script file. The simulator also supports an additional command called WAIT, used to simulate machine cycles to delay before continuing with the script file.
A capture file feature enables you to record current cycle count and changes to an output port which are caused by the program under test. When used in combination with script files, this feature provides powerful software testing and debug capability.

\section*{Features}
- Software simulator
- Assembler
- Programmer's manuals
- Device data sheets
- Application notes
- Assembler manual
- Tool kit user's guide
- Pocket reference guides
- COP8 SIM user's guide

Features (Continued)
\begin{tabular}{|c|c|c|c|}
\hline @RAM [ramadd] & Causes a break in execution to occur when a write to the & LISTON & Turns on screen listing during stepping. \\
\hline & specified RAM location & LISTOFF & Turns off screen listing \\
\hline ASM & attempted. & LOAD filename & Loads Intel hex format file into \\
\hline ASM [add & specified address or starting at last address used by command. & PRINTON & Sends all debug output to printer. \\
\hline BR [add] & Set breakpoint at the indicated ROM address. & PRINTOF & Stops sending debug output to printer. \\
\hline CAPTURE fname & Saves all hardware outputs in the file specified. & RAM add [& Sets RAM location at indicated address to value specified. \\
\hline CAPTUREOFF & Stops capture and closes capture file. & REG & Shows register status in debug window. \\
\hline CY \(n\) & Sets cycle counter. & RESET & Simulates a hardware reset. \\
\hline DASM [add] & Disassembles memory to screen starting at specified address or last location disassembled. & RESTORE fname & Restores simulator state from a file created with the SAVE command. \\
\hline EVAL \(n\) [op] [n] & Evaluates input in decimal, hex, and binary. Can do simple calculations where op may be ,,\(+- /, o r\) *. & SAVE filename & \begin{tabular}{l}
Sets ROM location at indicated address to value specified. \\
Saves the simulator state in the specified file.
\end{tabular} \\
\hline GO [add] [add] & Sets breakpoint at second address. Go from first address. & STEP [n] & Single step execution of \(n\) instructions. \\
\hline GOTIL add & Go from the current PC until the \(\mathrm{PC}=\) add . & STEPTIL add QUIT, EXIT & Single step until the PC = add. Return to DOS. \\
\hline
\end{tabular}

\section*{Ordering Information}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ NSID } & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{c|}{ Includes: } \\
\hline COP8-TOOL-KIT & \begin{tabular}{l}
COP800 Designer's \\
Tool Kit
\end{tabular} & \begin{tabular}{l}
Software Simulator \\
\\
\\
\\
\\
\end{tabular} \\
& & \begin{tabular}{l}
Assembler \\
Assembmer's Manual \\
Tool Kit User's Guide
\end{tabular} \\
\hline
\end{tabular}

\section*{Section 5}

Appendices/ Physical Dimensions

\section*{Section 5 Contents}
Surface Mount 5-3
PLCC Packaging 5-23
Physical Dimensions 5-27
BookshelfDistributors

\section*{Surface Mount}

Cost pressures today are forcing many electronics manufacturers to automate their production lines. Surface mount technology plays a key role in this cost-savings trend because:
1. The mounting of devices on the PC board surface eliminates the expense of drilling holes;
2. The use of pick-and-place machines to assemble the PC boards greatly reduces labor costs;
3. The lighter and more compact assembled products resulting from the smaller dimensions of surface mount packages mean lower material costs.
Production processes now permit both surface mount and insertion mount components to be assembled on the same PC board.

\section*{SURFACE MOUNT PACKAGING AT NATIONAL}

To help our customers take advantage of this new technology, National has developed a line of surface mount packages. Ranging in lead counts from 3 to 360, the package offerings are summarized in Table I .
Lead center spacing keeps shrinking with each new generation of surface mount package. Traditional packages (e.g., DIPs) have a 100 mil lead center spacing. Surface mount packages currently in production (e.g., SOT, SOIC, PCC, LCC, LDCC) have a 50 mil lead center spacing. Surface mount packages in production release (e.g., PQFP) have a 25 mil lead center spacing. Surface mount packages in development (e.g., TAPEPAK®) will have a lead center spacing of only 12-20 mils.

TABLE I. Surface Mount Packages from National
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Package Type & \begin{tabular}{l}
Small Outine \\
Transistor (SOT)
\end{tabular} & Small Outline IC (SOIC) & Plastic Chip Carrier (PCC) & Plastic Quad Flat Pack (PQFP) & \begin{tabular}{l}
Leadless Chip \\
Carrier (LCC) \\
(LDCC)
\end{tabular} & Leaded Chip Carrier \\
\hline Package Material & Plastic & Plastic & Plastic & Plastic & Ceramic & Ceramic \\
\hline Lead Bend & Gull Wing & Gull Wing & \(J\)-Bend & Gull Wing & - & Gull Wing \\
\hline Lead Center Spacing & 50 Mils & 50 Mils & 50 Mils & 25 Mils & 50 Mils & 50 Mils \\
\hline Tape \& Reel Option & Yes & Yes & Yes & tbd & No & No \\
\hline Lead Counts & \begin{tabular}{l}
SOT-23 \\
High Profile SOT-23 \\
Low Profile
\end{tabular} & \[
\begin{aligned}
& \text { SO-8(*) } \\
& \text { SO-14(*) } \\
& \\
& \text { SO-14 Wide(*) } \\
& \text { SO-16(*) } \\
& \text { SO-16 Wide }{ }^{(*)} \\
& \text { SO-20(*) } \\
& \text { SO-24(*) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PCC-20(*) } \\
& \text { PCC-28(*) } \\
& \text { PCC-44(*) } \\
& \text { PCC-68 } \\
& \text { PCC-84 } \\
& \text { PCC-124 }
\end{aligned}
\] & \begin{tabular}{l}
PQFP-84 \\
PQFP-100 \\
PQFP-132 \\
PQFP-196(*) \\
PQFP-244
\end{tabular} & \begin{tabular}{l}
LCC-18 \\
LCC-20(*) \\
LCC-28 \\
LCC-32 \\
LCC-44 (*) \\
LCC-48 \\
LCC-52 \\
LCC-68 \\
LCC-84 \\
LCC-124
\end{tabular} & \begin{tabular}{l}
LDCC-44 \\
LDCC-68 \\
LDCC-84 \\
LDCC-124
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
*In production (or planned) for linear products
}

\section*{LINEAR PRODUCTS IN SURFACE MOUNT}

Linear functions available in surface mount include:
- Op amps
- Comparators
- Regulators
- References
- Data conversion
- Industrial
- Consumer
- Automotive

A complete list of linear part numbers in surface mount is presented in Table III. Refer to the datasheet in the appropriate chapter of this databook for a complete description of the device. In addition, National is continually expanding the list of devices offered in surface mount. If the functions you need do not appear in Table III, contact the sales office or distributor branch nearest you for additional information.
Automated manufacturers can improve their cost savings by using Tape-and-Reel for surface mount devices. Simplified handling results because hundreds-to-thousands of semiconductors are carried on a single Tape-and-Reel pack (see ordering and shipping information-printed later in this sec-tion-for a comparison of devices/reel vs. devices/rail for those surface mount package types being used for linear products). With this higher device count per reel (when compared with less than a 100 devices per rail), pick-and-place machines have to be re-loaded less frequently and lower labor costs result.
With Tape-and-Reel, manufacturers save twice-once from using surface mount technology for automated PC board assembly and again from less device handling during shipment and machine set-up.

\section*{BOARD CONVERSION}

Besides new designs, many manufacturers are converting existing printed circuit board designs to surface mount. The resulting PCB will be smaller, lighter and less expensive to manufacture; but there is one caveat-be careful about the thermal dissipation capability of the surface mount package. Because the surface mount package is smaller than the traditional dual-in-line package, the surface mount package is not capable of conducting as much heat away as the DIP (i.e., the surface mount package has a higher thermal resist-ance-see Table II).
The silicon for most National devices can operate up to a \(150^{\circ} \mathrm{C}\) junction temperature (check the datasheet for the rare exception). Like the DIP, the surface mount package can actually withstand an ambient temperature of up to \(125^{\circ} \mathrm{C}\) (although a commercial temperature range device will only be specified for a max ambient temperature of \(70^{\circ} \mathrm{C}\) and an industrial temperature range device will only be specified for a max ambient temperature of \(85^{\circ} \mathrm{C}\)). See AN-336, "Understanding Integrated Circuit Package Power Capabilities", (reprinted in the appendix of each linear databook volume) for more information.

TABLE II: Surface Mount Package
Thermal Resistance Range*
\begin{tabular}{|l|c|}
\hline Package & \begin{tabular}{c}
Thermal Resistance \({ }^{* *}\) \\
\(\left(\theta_{\mathrm{J},},{ }^{\circ} \mathbf{C} / \mathrm{W}\right)\)
\end{tabular} \\
\hline SO-8 & \(120-175\) \\
SO-14 & \(100-140\) \\
SO-14 Wide & \(70-110\) \\
SO-16 & \(90-130\) \\
SO-16 Wide & \(70-100\) \\
SO-20 & \(60-90\) \\
SO-24 & \(55-85\) \\
\hline PCC-20 & \(70-100\) \\
PCC-28 & \(60-90\) \\
PCC-44 & \(40-60\) \\
\hline
\end{tabular}
*Actual thermal resistance for a particular device depends on die size. Refer to the datasheet for the actual \(\theta_{\mathrm{jA}}\) value.
**Test conditions: PCB mount (FR4 material), still air (room temperature), copper traces (\(150 \times 20 \times 10\) mils).
Given a max junction temperature of \(150^{\circ} \mathrm{C}\) and a maximum allowed ambient temperature, the surface mount device will be able to dissipate less power than the DIP device. This factor must be taken into account for new designs.
For board conversion, the DIP and surface mount devices would have to dissipate the same power. This means the surface mount circuit would have a lower maximum allowable ambient temperature than the DIP circuit. For DIP circuits where the maximum ambient temperature required is substantially lower than the maximum ambient temperature allowed, there may be enough margin for safe operation of the surface mount circuit with its lower maximum allowable ambient temperature. But where the maximum ambient temperature required of the DIP current is close to the maximum allowable ambient temperature, the lower maximum ambient temperature allowed for the surface mount circuit may fall below the maximum ambient temperature required. The circuit designer must be aware of this potential pitfall so that an appropriate work-around can be found to keep the surface mount package from being thermally overstressed in the application.

\section*{SURFACE MOUNT LITERATURE}

National has published extensive literature on the subject of surface mount packaging. Engineers from packaging, quality, reliability, and surface mount applications have pooled their experience to provide you with practical hands-on knowledge about the construction and use of surface mount packages.
The applications note AN-450 "Surface Mounting Methods and their Effect on Product Reliability" is referenced on each SMD datasheet. In addition, "Wave Soldering of Surface Mount Components" is reprinted in this section for your information.

\section*{Amplifiers and Comparators}
\begin{tabular}{|l|l|}
\hline Part Number & Part Number \\
\hline LF347WM & LM392M \\
LF351M & LM393M \\
LF451CM & LM741CM \\
LF353M & LM1458M \\
\cline { 1 - 1 } LF355M & LM2901M \\
LF356M & LM2902M \\
LF357M & LM2903M \\
LF444CWM & LM2904M \\
\hline LM10CWM & LM2924M \\
LM10CLWM & LM3403M \\
\hline LM308M & LM4250M \\
LM308AM & LM324M \\
LM310M & LM339M \\
\hline LM311M & LM365WM \\
LM318M & LM607CM \\
\hline LM319M & LMC669BCWM \\
LM324M & LMC669CCWM \\
\hline LM339M & LF441CM \\
\hline LM346M & \\
\hline LM348M & \\
\hline LM358M & \\
\hline
\end{tabular}

Regulators and References
\begin{tabular}{|l|l|}
\hline Part Number & Part Number \\
\hline LM317LM & LM2931M-5.0 \\
LF3334M & LM3524M \\
\hline LM336M-2.5 & LM78L05ACM \\
LF336BM-2.5 & LM78L12ACM \\
LM336M-5.0 & LM78L15ACM \\
LM336BM-5.0 & LM79L05ACM \\
LM337LM & LM79L12ACM \\
\hline LM385M & LM79L15ACM \\
LM385M-1.2 & LP2951ACM \\
\hline LM385BM-1.2 & LP2951CM \\
\hline LM385M-2.5 & \\
LM385BM-2.5 & \\
LM723CM & \\
LM2931CM & \\
\hline
\end{tabular}

Data Acquisition Circuits
\begin{tabular}{|l|l|}
\hline Part Number & Part Number \\
\hline ADC0802LCV & ADC1025BCV \\
ADC0802LCWM & ADC1025CCV \\
ADC0804LCV & DAC0800LCM \\
ADC0804LCWM & DAC0801LCM \\
ADC0808CCV & DAC0802LCM \\
ADC0809CCV & DAC0806LCM \\
\hline ADC0811BCV & DAC0807LCM \\
ADC0811CCV & DAC0808LCM \\
ADC0819BCV & DAC0830LCWM \\
ADC0819CCV & DAC0830LCV \\
ADC0820BCV & DAC0832LCWM \\
ADC0820CCV & DAC0832LCV \\
\hline ADC0838BCV & \\
ADC0838CCV & \\
ADC0841BCV & \\
ADC0841CCV & \\
ADC0848BCV & \\
ADC0848CCV & \\
ADC1005BCV & \\
ADC1005CCV & \\
\hline
\end{tabular}

\section*{Industrial Functions}
\begin{tabular}{|l|l|}
\hline Part Number & Part Number \\
\hline AH5012CM & LM13600M \\
LF13331M & LM13700M \\
LF13509M & LMC555CM \\
LF13333M & LM567CM \\
LM555CM & MF4CWM-50 \\
\hline Livi556Civi & MF4CWM-100 \\
LM567CM & MF6CWM-50 \\
LM1496M & MF10CCWM \\
LM2917M & MF6CWM-100 \\
\hline LM3046M & MF5CWM \\
\hline LM3086M & \\
LM3146M & \\
\hline
\end{tabular}

Commercial and Automotive
\begin{tabular}{|l|l|}
\hline Part Number & Part Number \\
\hline LM386M-1 & LM1837M \\
LM592M & LM1851M \\
LM831M & LM1863M \\
LM832M & LM1865M \\
LM833M & LM1870M \\
\hline LM837M & LM1894M \\
LM838M & LM1964V \\
\hline LM1131CM & LM2893M \\
\cline { 1 - 1 } & LM3361AM \\
\hline
\end{tabular}

\section*{Hybrids}
\begin{tabular}{|l|l|}
\hline Part Number & Part Number \\
\hline LH0002E & LH0032E \\
LH4002E & LH0033E \\
\hline
\end{tabular}

\section*{A FINAL WORD}

National is a world leader in the design and manufacture of surface mount components.
Because of design innovations such as perforated copper leadframes, our small outline package is as reliable as our DIP-the laws of physics would have meant that a straight "junior copy" of the DIP would have resulted in an "S.O." package of lower reliability. You benefit from this equivalence of reliability. In addition, our ongoing vigilance at each step of the production process assures that the reliability we designed in stays in so that only devices of the highest quality and reliability are shipped to your factory.
Our surface mount applications lab at our headquarters site in Santa Clara, California continues to research (and publish) methods to make it even easier for you to use surface mount technology. Your problems are our problems.
When you think "Surface Mount"-think "National"!

\section*{Ordering and Shipping Information}

When you order a surface mount semiconductor, it will be in one of the several available surface mount package types. Specifying the Tape-and-Reel method of shipment means that you will receive your devices in the following quantities per Tape-and-Reel pack: SMD devices can also be supplied in conventional conductive rails.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Package } & \begin{tabular}{c}
Package \\
Designator
\end{tabular} & Max/Rail & Per Reel* \\
\hline SO-8 & M & 100 & 2500 \\
SO-14 & M & 50 & 2500 \\
SO-14 Wide & WM & 50 & 1000 \\
SO-16 & M & 50 & 2500 \\
SO-16 Wide & WM & 50 & 1000 \\
SO-20 & M & 40 & 1000 \\
SO-24 & M & 30 & 1000 \\
\hline PCL-20 & V & 50 & 1000 \\
PCL-28 & V & 40 & 1000 \\
PCL-44 & V & 25 & 500 \\
\hline PQFP-196 & VF & TBD & - \\
\hline TP-40 & TP & 100 & TBD \\
\hline LCC-20 & E & 50 & - \\
LCC-44 & E & 25 & - \\
\hline
\end{tabular}
*Incremental ordering quantities. (National Semiconductor reserves the right to provide a smaller quantity of devices per Tape-and-Reel pack to preserve lot or date code integrity. See example below.)
Example: You order 5,000 LM324M ICs shipped in Tape-and-Reel.
- Case 1: All 5,000 devices have the same date code
- You receive 2 SO-14 (Narrow) Tape-and-Reel packs, each having 2500 LM324M ICs
- Case 2: 3,000 devices have date code \(A\) and 2,000 devices have date code \(B\)
- You receive 3 SO-14 (Narrow) Tape-and-Reel packs as follows:
Pack \# 1 has 2,500 LM324M ICs with date code A Pack \#2 has 500 LM324M ICs with date code A Pack \#3 has 2,000 LM324M ICs with date code B

\section*{Short-Form Procurement Specification}

TAPE FORMAT
\(\rightarrow\) Direction of Feed
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{Trailer (Hub End)*} & Carrier* & \multicolumn{2}{|r|}{Leader (Start End)*} \\
\hline & Empty Cavities, min (Unsealed Cover Tape) & Empty Cavities, min (Sealed Cover Tape) & Filled Cavities (Sealed Cover Tape) & Empty Cavities, min (Sealed Cover Tape) & Empty Cavities, min (Unsealed Cover Tape) \\
\hline \multicolumn{6}{|l|}{Small Outline IC} \\
\hline SO-8 (Narrow) & 2 & 2 & 2500 & 5 & 5 \\
\hline SO-14 (Narrow) & 2 & 2 & 2500 & 5 & 5 \\
\hline SO-14 (Wide) & 2 & 2 & 1000 & 5 & 5 \\
\hline SO-16 (Narrow) & 2 & 2 & 2500 & 5 & 5 \\
\hline SO-16 (Wide) & 2 & 2 & 1000 & 5 & 5 \\
\hline SO-20 (Wide) & 2 & 2 & 1000 & 5 & 5 \\
\hline SO-24 (Wide) & 2 & 2 & 1000 & 5 & 5 \\
\hline \multicolumn{6}{|l|}{Plastic Chip Carrier IC} \\
\hline PCC-20 & 2 & 2 & 1000 & 5 & 5 \\
\hline PCC-28 & 2 & 2 & 750 & 5 & 5 \\
\hline PCC-44 & 2 & 2 & 500 & 5 & 5 \\
\hline
\end{tabular}

\footnotetext{
*The following diagram identifies these sections of the tape and PIn \# 1 device orientation.
}

Short-Form Procurement Specification (Continued) device orientation

TL/DD/11325-7

\section*{MATERIALS}
- Cavity Tape: Conductive PVC (less than \(10^{5} \mathrm{Ohms} / \mathrm{Sq}\))
- Cover Tape: Polyester
(1) Conductive cover available
(1) Solid 80 pt fibreboard (standard)
(2) Conductive fibreboard available
(3) Conductive plastic (PVC) available

TAPE DIMENSIONS (\(\mathbf{2 4}\) Millimeter Tape or Less)

Short－Form Procurement Specification（Continued）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & w & P & F & E & \(\mathrm{P}_{2}\) & \(\mathrm{P}_{0}\) & D & T & \(\mathrm{A}_{0}\) & \(\mathrm{B}_{0}\) & \(K_{0}\) & \(\mathrm{D}_{1}\) & R \\
\hline \multicolumn{14}{|l|}{Small Outline IC} \\
\hline SO－8 （Narrow） & \(12 \pm .30\) & \(8.0 \pm .10\) & \(5.5 \pm .05\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & ． \(30 \pm .10\) & \(6.4 \pm .10\) & \(5.2 \pm .10\) & \(2.1 \pm .10\) & \(1.55 \pm .05\) & 30 \\
\hline \begin{tabular}{l}
SO－14 \\
（Narrow）
\end{tabular} & \(16 \pm .30\) & \(8.0 \pm .10\) & \(7.5 \pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & ． \(30 \pm .10\) & \(6.5 \pm .10\) & \(9.0 \pm .10\) & \(2.1 \pm .10\) & \(1.55 \pm .05\) & 40 \\
\hline \begin{tabular}{l}
SO－14 \\
（Wide）
\end{tabular} & \(16 \pm .30\) & \(12.0 \pm .10\) & \(7.5 \pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & ． \(30 \pm .10\) & 10．9土． 10 & \(9.5 \pm .10\) & \(3.0 \pm .10\) & \(1.55 \pm .05\) & 40 \\
\hline \[
\begin{aligned}
& \text { SO-16 } \\
& \text { (Narrow) }
\end{aligned}
\] & \(16 \pm .30\) & \(8.0 \pm .10\) & \(7.5 \pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & ． \(30 \pm .10\) & \(6.5 \pm .10\) & 10．3土． 10 & \(2.1 \pm .10\) & \(1.55 \pm .05\) & 40 \\
\hline SO－16 （Wide） & \(16 \pm .30\) & \(12.0 \pm .10\) & \(7.5 \pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & 1．55 \(\pm .05\) & ． \(30 \pm .10\) & 10．9土．10 & 10．76土．10 & \(3.0 \pm .10\) & \(1.55 \pm .05\) & 40 \\
\hline SO－20 （Wide） & \(24 \pm .30\) & 12．0土．10 & \(11.5 \pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & ． \(30 \pm .10\) & 10．9土． 10 & \(13.3 \pm .10\) & \(3.0 \pm .10\) & \(2.05 \pm .05\) & 50 \\
\hline \[
\begin{aligned}
& \text { SO-24 } \\
& \text { (Wide) }
\end{aligned}
\] & \(24 \pm .30\) & \(12.0 \pm .10\) & \(11.5 \pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & ． \(30 \pm .10\) & 10．9土． 10 & 15．85土． 10 & \(3.0 \pm .10\) & \(2.05 \pm .05\) & 50 \\
\hline
\end{tabular}

Plastic Chip Carrier IC
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PCC－20 & \(16 \pm .30\) & \(12.0 \pm .10\) & \(7.5 \pm .10\) & \(1.75 \pm .1\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & ． \(30 \pm .10\) & \(9.3 \pm\) & \(9.3 \pm .10\) & \(4.9 \pm .10\) & \(1.55 \pm .05\) & 40 \\
\hline PCC－28 & \(24 \pm .30\) & \(16.0 \pm .10\) & \(11.5 \pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & \(.30 \pm .10\) & \(13.0 \pm .10\) & \(13.0 \pm .10\) & \(4.9 \pm .10\) & \(2.05 \pm .05\) & 50 \\
\hline
\end{tabular}

Note 1：\(A_{0}, B_{0}\) and \(K_{0}\) dimensions are measured 0.3 mm above the inside wall of the cavity bottom．
Note 2：Tape with components shall pass around a mandril radius R without damage．
Note 3：Cavity tape material shall be PVC conductive（less than \(10^{5} \mathrm{Ohms} / \mathrm{Sq}\) ）．
Note 4：Cover tape material shall be polyester（ \(30-65\) grams peel－back force）．
Note 5：\(D_{1}\) Dimension is centered within cavity．
Note 6：All dimensions are in millimeters．

REEL DIMENSIONS

TL／DD／11325－9
STAR \({ }^{\text {rm }}\)＊Surface Mount Tape and Reel

Short-Form Procurement Specifications (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & A (Max) & B (Min) & C & D (Min) & N(Min) & G & T (Max) \\
\hline 12 mm Tape & SO-8 (Narrow) & \(\frac{(13.00)}{(330)}\) & \(\frac{.059}{1.5}\) & \(\frac{.512 \pm .002}{13 \pm 0.05}\) & \(\frac{.795}{20.2}\) & \(\frac{1.969}{50}\) & \(\frac{0.488}{12.4}{ }_{-0}^{+.000}\) & \(\frac{.724}{18.4}\) \\
\hline 16 mm Tape & \begin{tabular}{l}
SO-14 (Narrow) \\
SO-14 (Wide) \\
SO-16 (Narrow) \\
SO-16 (Wide) \\
PCC-20
\end{tabular} & \(\frac{(13.00)}{(330)}\) & \(\frac{.059}{1.5}\) & \(\frac{.512 \pm .002}{13 \pm 0.05}\) & \(\frac{.795}{20.2}\) & \(\frac{1.969}{50}\) & \(\frac{0.646}{16.4}{ }_{-0}^{+.000}\) & \(\frac{.882}{22.4}\) \\
\hline 24 mm Tape & SO-20 (Wide) SO-24 (Wide) PCC-28 & \(\frac{(13.00)}{(330)}\) & \(\frac{.059}{1.5}\) & \(\frac{.512 \pm .002}{13 \pm 0.05}\) & \(\frac{.795}{20.2}\) & \(\frac{1.969}{50}\) & \(\frac{0.960}{24.4}{ }_{-0}^{+. .000}\) & \(\frac{1.197}{30.4}\) \\
\hline 32 mm Tape & PCC-44 & \(\frac{(13.00)}{(330)}\) & \(\frac{.059}{1.5}\) & \(\frac{.512 \pm .002}{13 \pm 0.05}\) & \(\frac{.795}{20.2}\) & \(\frac{1.969}{50}\) & & \(\frac{1.512}{38.4}\) \\
\hline
\end{tabular}
\[
\text { Units: } \frac{\text { Inches }}{\text { Millimeters }}
\]

\section*{Material: Paperboard (Non-Flaking)}

LABEL
Human and Machine Readable Label is provided on reel. A variable (C.P.I) density code 39 is available. NSC STD label (7.6 C.P.I.)

FIELD
Lot Number
Date Code
Revision Level
National Part No. I.D.
Qty.
EXAMPIF

Fields are separated by at least one blank space.
Future Tape-and-Reel packs will also include a smaller-size bar code label (high-density code 39) at the beginning of the tape. (This tape label is not available on current production.) National Semiconductor will also offer additional labels containing information per your specific specification.

\section*{Wave Soldering of Surface Mount Components}

\section*{ABSTRACT}

In facing the upcoming surge of "surface mount technology", many manufacturers of printed circuit boards have taken steps to convert some portions of their boards to this new process. However, as the availability of surface mount components is still limited, may have taken to mixing the lead-inserted standard dual-in-line packages (DIPs) with the surface mounted devices (SMDs). Furthermore, to take advantage of using both sides of the board, surface-mounted components are generally aanered to the bottom side of the board while the top side is reserved for the conventional lead-inserted packages. If processed through a wave solder machine, the semiconductor components are now subjected to extra thermal stresses (now that the components are totally immersed into the molten solder).
A discussion of the effect of wave soldering on the reliability of plastic semiconductor packages follows. This is intended to highlight the limitations which should be understood in the use of wave soldering of surface mounted components.

\section*{ROLE OF WAVE-SOLDERING IN APPLICATION OF SMDs}

The generally acceptable methods of soldering SMDs are vapor phase reflow soldering and IR reflow soldering, both requiring application of solder paste on PW boards prior to placement of the components. However, sentiment still exists for retaining the use of the old wave-soldering machine.

\section*{Wave Soldering of Surface Mount Components (Continued)}

The reasons being:
1) Most PC Board Assembly houses already possess wave soldering equipment. Switching to another technology such as vapor phase soldering requires substantial investment in equipment and people.
2) Due to the limited number of devices that are surface mount components, it is necessary to mix both lead inserted components and surface mount components on the same board.
3) Some components such as relays and switches are made of materials which would not be able to survive the temperature exposure in a vapor phase or IR furnace.

\section*{PW BOARD ASSEMBLY PROCEDURES}

There are two considerations in which through-hole ICs may be combined with surface mount components on the PW Board:
a) Whether to mount ICs on one or both sides of the board.
b) The sequence of soldering using Vapor Phase, IR or Wave Soldering singly or combination of two or more methods.
The various processes that may be employed are:
A) Wave Solder before Vapor/IR reflow solder.
1. Components on the same side of PW Board. Lead insert standard DIPS onto PW Board Wave solder (conventional)
Wash and lead trim
Dispense solder paste on SMD pads
Pick and place SMDs onto PW Board
Bake
Vapor phase/IR reflow
Clean
2. Components on opposite side of PW Board.

Lead insert standard DIPs onto PW Board
Wave Solder (conventional)
Clean and lead trim
Invert PW Board
Dispense solder paste on SMD pads
Dispense drop of adhesive on SMD sites (optional for smaller components)
Pick and place SMDs onto board Bake/Cure
Invert board to rest on raised fixture
Vapor/IR reflow soldering
Clean
B) Vapor/IR reflow solder then Wave Solder.
1. Components on the same side of PW Board.

Solder paste screened on SMD side of Printed Wire Board
Pick and place SMDs
Bake
Vapor/IR reflow
Lead insert on same side as SMDs
Wave solder
Clean and trim underside of PCB
C) Vapor/IR reflow only.
1. Components on the same side of PW Board.

Trim and form standard DIPs in "gull wing" configuration
Solder paste screened on PW Board
Pick and place SMDs and DIPs
Bake
Vapor/IR reflow
Clean
2. Components on opposite sides of PW Board.

Solder paste screened on SMD-side of Printed Wire Board
Adhesive dispensed at central location of each component
Pick and place SMDs
Bake
Solder paste screened on all pads on DIP-side or alternatively apply solder rings (performs) on leads
Lead insert DIPs
Vapor/IR reflow
Clean and lead trim
D) Wave Soldering Only
1. Components on opposite sides of PW Board.

Adhesive dispense on SMD side of PW Board
Pick and place SMDs
Cure adhesive
Lead insert top side with DIPs
Wave solder with SMDs down and into solder bath
Clean and lead trim
All of the above assembly procedures can be divided into three categories for I.C. Reliability considerations:
1) Components are subjected to both a vapor phase/IR heat cycle then followed by a wave-solder heat cycle or vice versa.
2) Components are subjected to only a vapor phase/IR heat cycle.
3) Components are subjected to wave-soldering only and SMDs are subjected to heat by immersion into a solder pot.
Of these three categories, the last is the most severe regarding heat treatment to a semiconductor device. However, note that semiconductor molded packages generally possess a coating of solder on their leads as a final finish for solderability and protection of base leadframe material. Most semiconductor manufacturers solder-plate the component leads, while others perform hot solder dip. In the latter case the packages may be subjected to total immersion into a hot solder bath under controlled conditions (manual operation) or be partially immersed while in a 'pallet' where automatic wave or DIP soldering processes are used. It is, therefore, possible to subject SMDs to solder heat under certain conditions and not cause catastrophic failures.

\section*{Wave Soldering of Surface Mount Components (Continued)}

\section*{THERMAL CHARACTERISTICS OF MOLDED INTEGRATED CIRCUITS}

Since Plastic DIPs and SMDs are encapsulated with a thermoset epoxy, the thermal characteristics of the material generally correspond to a TMA (Thermo-Mechanical Analysis) graph. The critical parameters are (a) its Linear thermal expansion characteristics and (b) its glass transition temperature after the epoxy has been fully cured. A typical TMA graph is illustrated in Figure 1. Note that the epoxy changes to a higher thermal expansion once it is subjected to temperatures exceeding its glass transition temperature. Metals (as used on lead frames, for example) do not have this characteristic and generally will have a consistent Linear thermal expansion over the same temperature range.
In any good reliable plastic package, the choice of lead frame material should be such to match its thermal expansion properties to that of the encapsulating epoxy. In the event that there is a mismatch between the two, stresses can build up at the interface of the epoxy and metal. There now exists a tendency for the epoxy to separate from the metal lead frame in a manner similar to that observed on bimetallic thermal range.
In most cases when the packages are kept at temperatures below their glass transition, there is a small possibility of separation at the expoxy-metal interface. Howerver, if the package is subjected to temprature above its glass-transition temperature, the epoxy will begin to expand much faster than the metal and the probability of separation is greatly increased.

\section*{CONVENTIONAL WAVE-SOLDERING}

Most wave-soldering operations occur at temperatures between \(240-260^{\circ} \mathrm{C}\). Conventional epoxies for encapsulation have glass-transition temperature between \(140-170^{\circ} \mathrm{C}\). An I.C. directly exposed to these temperatures risks its long term functionality due to epoxy/metal separation.
Fortunately, there are factors that can reduce that element of risk:
1) The PW board has a certain amount of heat-sink effect and tends to shield the components from the temperature of the solder (if they were placed on the top side of the board). In actual measurements, DIPs achieve a temperature between \(120-150^{\circ} \mathrm{C}\) in a 5 -second pass over the solder. This accounts for the fact that DIPs mounted in the conventional manner are reliable.
2) In conventional soldering, only the tip of each lead in a DIP would experience the solder temperature because the epoxy and die are standing above the PW board and out of the solder bath.

\section*{EFFECT ON PACKAGE PERFORMANCE BY EPOXY-METAL SEPARATION}

In wave soldering, it is necessary to use fluxes to assist the solderability of the components and PW boards. Some facilities may even process the boards and components through some form of acid cleaning prior to the soldering temperature. If separation occurs, the flux residues and acid residues (which may be present owing to inadequate cleaning) will be forced into the package mainly by capillary action as the residues move away from the solder heat source. Once the package is cooled, these contaminants are now trapped within the package and are available to diffuse with moisturo from the epoxy over time. It should be noted that electrical tests performed immediately after soldering generally will give no indication of this potential problem. In any case, the end result will be corrosion of the chip metallization over time and premature failure of the device in the field.

\section*{VAPOR PHASE/IR REFLOW SOLDERING}

In both vapor phase and IR reflow soldering, the risk of separation between epoxy/metal can also be high. Operating temperatures are \(215^{\circ} \mathrm{C}\) (vapor phase) or \(240^{\circ} \mathrm{C}\) (IR) and duration may also be longer (\(30 \mathrm{sec}-60 \mathrm{sec}\)). On the same theoretical basis, there should also be separation. However, in both these methods, solder paste is applied to the pads of the boards; no fluxes are used. Also, the devices are not immersed into the hot solder. This reduces the possibility of solder forcing itself into the epoxy-lead frame interface. Furthermore, in the vapor phase system, the soldering environment is "oxygen-free" and considered "contaminant free". Being so, it could be visualized that as far as reliability with respect to corrosion, both of these methods are advantageous over wave soldering.

\section*{BIAS MOISTURE TEST}

A bias moisture test was designed to determine the effect on package performance. In this test, the packages are pressured in a stream chamber to accelerate penetration of moisture into the package. An electrical bias is applied on the device. Should there be any contaminants trapped within the package, the moisture will quickly form an electrolyte and cause the electrodes (which are the lead fingers), the gold wire and the aluminum bond-pads of the silicon device to corrode. The aluminum bond-pads, being the weakest link of the system, will generally be the first to fail.
This proprietary accelerated bias/moisture pressure-test is significant in relation to the life test condition at \(85^{\circ} \mathrm{C}\) and

FIGURE 1. Thermal Expansion and Glass Transition Temperature

\section*{Wave Soldering of Surface Mount Components (Continued)}
\(85 \%\) relative humidity. Once cycle of approximately 100 hours has been shown to be equivalent to 2000 hours in the 85/85 condition. Should the packages start to fail within the first cycle in the test, it is anticipated that the boards with these components in the harsh operating environment (\(85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}\)) will experience corrosion and eventual electrical failures within its first 2000 hours of operation.

Whether this is significant to a circuit board manufacturer will obviously be dependent on the products being manufactured and the workmanship or reliability standards. Generally in systems with a long warranty and containing many components, it is advisable both on a reputation and cost basis to have the most reliable parts available.

\section*{TEST RESULTS}

The comparison of vapor phase and wave-soldering upon the reliability of molded Small-Outline packages was performed using the bias moisture test (see Table IV). It is clearly seen that vapor phase reflow soldering gave more consistent results. Wave-soldering results were based on manual operation giving variations in soldering parameters such as temperature and duration.

TABLE IV. Vapor Phase vs. Wave Solder
1. Vapor phase (60 sec . exposure @ \(215^{\circ} \mathrm{C}\))
= 9 failures/1723 samples
\(=0.5 \% \quad\) (average over 32 sample lots)
2. Wave solder (2 sec total immersion @ \(260^{\circ} \mathrm{C}\))
\(=16\) failures/ 1201 samples
\(=1.3 \%\) (average over 27 sample lots)
Package: SO-14 lead
Test: Bias moisture test 85\% R.H., \(85^{\circ} \mathrm{C}\) for 2000 hours
Device: LM324M

In Table V we examine the tolerance of the Small-Outlined (SOIC) package to varying immersion time in a hot solder pot. SO-14 lead molded packages were subjected to the bias moisture test after being treated to the various soldering conditions and repeated four (4) times. End point was an electrical test after an equivalent of 4000 hours 85/85 test. Results were compared for packages by itself against packages which were surface-mounted onto a FR-4 printed wire board.

TABLE V. Summary of Wave Solder Results (\(85 \%\) R.H. \(/ 85^{\circ} \mathrm{C}\) Bias Moisture Test, 2000 hours) (\# Failures/Total Tested)
\begin{tabular}{|l|c|c|}
\hline & Unmounted & Mounted \\
\hline \begin{tabular}{l}
Control/Vapor Phase \\
15 sec @ \(215^{\circ} \mathrm{C}\)
\end{tabular} & \(0 / 114\) & \(0 / 84\) \\
\hline \begin{tabular}{l}
Solder Dip \\
2 sec @ \(260^{\circ} \mathrm{C}\)
\end{tabular} & \(2 / 144(1.4 \%)\) & \(0 / 85\) \\
\hline \begin{tabular}{l}
Solder Dip \\
4 sec @ \(260^{\circ} \mathrm{C}\)
\end{tabular} & - & \(0 / 83\) \\
\hline \begin{tabular}{l}
Solder Dip \\
6 sec @ \(260^{\circ} \mathrm{C}\)
\end{tabular} & \(13 / 248(5.2 \%)\) & \(1 / 76(1.3 \%)\) \\
\hline \begin{tabular}{l}
Solder Dip \\
10 sec @ \(260^{\circ} \mathrm{C}\)
\end{tabular} & \(14 / 127(11.0 \%)\) & \(3 / 79(3.8 \%)\) \\
\hline
\end{tabular}

\footnotetext{
Package: SO-14 lead
Device: LM324M
}

Since the package is of very small mass and experiences a rather sharp thermal shock followed by stresses created by the mismatch in expansion, the results show the package being susceptible to failures after being immersed in excess of 6 seconds in a solder pot. In the second case where the packages were mounted, the effect of severe temperature excursion was reduced. In the second case where the packages were mounted, the effect of severe temperature excursion was reduced. In any case, because of the repeated treatment, the package had failures when subjected in excess of 6 seconds immersion in hot solder. The safety margin is therefore recommended as maximum 4 seconds immersion. If packages were immersed longer than 4 sec onds, there is a probable chance of finding some long term reliability failures even though the immediate electrical test data could be acceptable.
Finally, Table VI examines the bias moisture test performed on surface mount (SOIC) components manufactured by various semiconductor houses. End point was an electrical test after an equivalent of 6000 hours in a 85/85 test. Failures were analyzed and corrosion was checked for in each case to detect flaws in package integrity.

\section*{TABLE VI. U.S. Manufacturers Integrated CIrcuits Reliability in Various Solder Environments \\ (\# Failure/Total Tested)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Package \\
SO-8
\end{tabular} & \begin{tabular}{c}
Vapor \\
Phase \\
\(\mathbf{3 0 ~ s e c}\)
\end{tabular} & \begin{tabular}{c}
Wave \\
Solder \\
2 sec
\end{tabular} & \begin{tabular}{c}
Wave \\
Solder \\
4 sec
\end{tabular} & \begin{tabular}{c}
Wave \\
Solder \\
\(\mathbf{6 ~ s e c}\)
\end{tabular} & \begin{tabular}{c}
Wave \\
Solder \\
10 sec
\end{tabular} \\
\hline Manuf A & \(8 / 30^{*}\) & \(1 / 30^{*}\) & 0.30 & \(12 / 30^{*}\) & \(16 / 30^{*}\) \\
Manuf B & \(2 / 30^{*}\) & \(8 / 30^{*}\) & \(2 / 30^{*}\) & \(22 / 30^{*}\) & \(20 / 30^{*}\) \\
Manuf C & \(0 / 30\) & \(0 / 29\) & \(0 / 29\) & \(0 / 30\) & \(0 / 30\) \\
\hline Manuf D & \(1 / 30^{*}\) & \(0 / 30\) & \(12 / 30^{*}\) & \(14 / 30^{*}\) & \(2 / 30^{*}\) \\
Manuf E & \(1 / 30^{* *}\) & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) \\
Manuf F & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) \\
Manuf G & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) \\
\hline
\end{tabular}
*Corrosion-failures
**No Visual Defects-Non-corrosion failures
Test: Accelerated Bias Moisture Test; 85\% R.H./85\({ }^{\circ} \mathrm{C}, 6000\) equivalent hours.

\section*{SUMMARY}

Based on the results presented, it is noted that surfacemounted components are as reliable as standard molded DIP packages. Whereas DIPs were never processed by being totally immersed in a hot solder wave during printed circuit board soldering, surface mounted components such as SOICs (Small Outline) are expected to survive a total immersion in the hot solder in order to capitalize on maximum population on boards. Being constructed from a thermoset plastic of relatively low Tg compared to the soldering temperature, the ability of the package to survive is dependent on the time of immersion and also the cleanliness of material. The results indicate that one should limit the immersion time of package in the solder wave to a maximum of 4 seconds in order to truly duplicate the reliability of a DIP. As the package size is reduced, as in a SO-8 lead, the requirement becomes even more critical. This is shown by the various manufacturers' performance. Results indicate there is room for improvement since not all survived the hot solder immersion without compromise to lower reliability.

\section*{Small Outline (SO) Package Surface Mounting MethodsParameters and Their Effect on Product Reliability}

The SO (small outline) package has been developed to meet customer demand for ever-increasing miniaturization and component density.

\section*{COMPONENT SIZE COMPARISON}

Because of its small size, reliability of the product assembled in SO packages needs to be carefully evaluated.
SO packages at National were internally qualified for production under the condition that they be of comparable reliability performance to a standard dual in line package under all accelerated environmental tests. Figure \(A\) is a summary of accelarated bias moisture test performance on 30 V bipolar and 15V CMOS product assembled in SO and DIP (control) packages.

TL/DD/11325-14
FIGURE A

In order to achieve reliability performance comparable to DIPs-SO packages are designed and built with materials and processes that effectively compensate for their small size.
All SO packages tested on \(85 \%\) RA, \(85^{\circ} \mathrm{C}\) were assembled on PC conversion boards using vapor-phase reflow soldering. With this approach we are able to measure the effect of surface mounting methods on reliability of the process. As illustrated in Figure \(A\) no significant difference was detected between the long term reliability performance of surface mounted S.O. packages and the DIP control product for up to 6000 hours of accelerated \(85 \% / 85^{\circ} \mathrm{C}\) testing.

\section*{SURFACE-MOUNT PROCESS FLOW}

The standard process flowcharts for basic surface-mount operation and mixed-lead insertion/surface-mount operations, are illustrated on the following pages.
Usual variations encountered by users of SO packages are:
- Single-sided boards, surface-mounted components only.
- Single-sided boards, mixed-lead inserted and surfacemounted components.
- Double-sided boards, surface-mounted components only.
- Double-sided boards, mixed-lead inserted and surfacemounted components.
In consideration of these variations, it became necessary for users to utilize techniques involving wave soldering and adhesive applications, along with the commonly-used vaporphase solder reflow soldering technique.

\section*{PRODUCTION FLOW}

Basic Surface-Mount Production Flow

\section*{Mixed Surface-Mount and Axial-Leaded Insertion} Components Production Flow

TL/DD/11325-16

Thermal stress of the packages during surface-mounting processing is more severe than during standard DIP PC board mounting processes. Figure \(B\) illustrates package temperature versus wave soldering dwell time for surface mounted packages (components are immersed into the molten solder) and the standard DIP wave soldering process. (Only leads of the package are immersed into the molten solder).

FIGURE \(B\)
For an ideal package, the thermal expansion rate of the encapsulant should match that of the leadframe material in order for the package to maintain mechanical integrity during the soldering process. Unfortunately, a perfect matchup of thermal expansion rates with most presently used packaging materials is scarce. The problem lies primarily with the epoxy compound.
Normally, thermal expansion rates for epoxy encapsulant and metal lead frame materials are linear and remain fairly close at temperatures approaching \(160^{\circ} \mathrm{C}\), Figure C. At lower temperatures the difference in expansion rate of the two materials is not great enough to cause interface separation. However, when the package reaches the glass-transition temperature (\(\mathrm{T}_{\mathrm{g}}\)) of epoxy (typically \(160-165^{\circ} \mathrm{C}\)), the thermal expansion rate of the encapsulant increases sharply, and the material undergoes a transition into a plastic state. The epoxy begins to expand at a rate three times or more greater than the metal leadframe, causing a separation at the interface.

TL/DD/11325-18
FIGURE C

When this happens during a conventional wave soldering process using flux and acid cleaners, process residues and even solder can enter the cavity created by the separation and become entrapped when the material cools. These contaminants can eventually diffuse into the interior of the package, especially in the presence of moisture. The result is die contamination, excessive leakage, and even catastrophic failure. Unfortunately, electrical tests performed immediately following soldering may not detect potential flaws. Most soldering processes involve temperatures ranging up to \(260^{\circ} \mathrm{C}\), which far exceeds the glass-transition temperature of epoxy. Clearly, circuit boards containing SMD packages require tighter process controls than those used for boards populated solely by DIPs.
Figure \(D\) is a summary of accelerated bias moisture test performance on the 30V bipolar process.
Group 1 - Standard DIP package
Group 2 - SO packages vapor-phase reflow soldered on PC boards
Group 3-6 SO packages wave soldered on PC boards
Group 3 - dwell time 2 seconds
4 - dwell time 4 seconds
5 - dwell time 6 seconds
6 - dwell time 10 seconds

TL/DD/11325-19
FIGURE D
It is clear based on the data presented that SO packages soldered onto PC boards with the vapor phase reflow process have the best long term bias moisture performance and this is comparable to the performance of standard DIP packages. The key advantage of reflow soldering methods is the clean environment that minimized the potential for contamination of surface mounted packages, and is preferred for the surface-mount process.
When wave soldering is used to surface mount components on the board, the dwell time of the component under molten solder should be no more than 4 seconds, preferrably under 2 seconds in order to prevent damage to the component. Non-Halide, or (organic acid) fluxes are highly recommended.

\section*{PICK AND PLACE}

The choice of automatic (all generally programmable) pick-and-place machines to handle surface mounting has grown considerably, and their selection is based on individual needs and degree of sophistication.

The basic component-placement systems available aro classified as:
(a) In-line placement
- Fixed placement stations
- Boards indexed under head and respective components placed
(b) Sequential placement
— Either a \(X-Y\) moving table system or a \(\theta, X-Y\) moving pickup system used
-Individual components picked and placed onto boards
(c) Simultaneous placement
- Multiple pickup heads
- Whole array of components placed onto the PCB at the same time
(d) Sequential/simultaneous placement
- X-Y moving table, multiple pickup heads system
- Components placed on PCB by successive or simultaneous actuation of pickup heads
The SO package is treated almost the same as surfacemount, passive components requiring correct orientation in placement on the board.

Pick and Place Action

TL/DD/11325-20

\section*{BAKE}

This is recommended, despite claims made by some solder paste suppliers that this step be omitted.
The functions of this step are:
- Holds down the solder globules during subsequent reflow soldering process and prevents expulsion of small solder balls.
- Acts as an adhesive to hold the components in place during handling between placement to reflow soldering.
- Holds components in position when a double-sided sur-face-mounted board is held upside down going into a va-por-phase reflow soldering operation.
- Removes solvents which might otherwise contaminate other equipment.
- Initiates activator cleaning of surfaces to be soldered.
- Prevents moisture absorption.

The process is moreover very simple. The usual schedule is about 20 minutes in a \(65^{\circ} \mathrm{C}-95^{\circ} \mathrm{C}\) (dependent on solvent system of solder paste) oven with adequate venting. Longer bake time is not recommended due to the following reasons:
- The flux will degrade and affect the characteristics of the paste.
- Solder globules will begin to oxidize and cause solderability problems.
- The paste will creep and after reflow, may leave behind residues between traces which are difficult to remove and vulnerable to electro-migration problems.

\section*{REFLOW SOLDERING}

There are various methods for reflowing the solder paste, namely:
- Hot air reflow
- Infrared heating (furnaces)
- Convectional oven heating
- Vapor-phase reflow soldering
- Laser soldering

For SO applications, hot air reflow/infrared furnace may be used for low-volume production or prototype work, but va-por-phase soldering reflow is more efficient for consistency and speed. Oven heating is not recommended because of "hot spots" in the oven and uneven melting may result. Laser soldering is more for specialized applications and requires a great amount of investment.

\section*{HOT GAS REFLOW/INFRARED HEATING}

A hand-held or table-mount air blower (with appropriate orifice mask) can be used.
The boards are preheated to about \(100^{\circ} \mathrm{C}\) and then subjected to an air jet at about \(260^{\circ} \mathrm{C}\). This is a slow process and results may be inconsistent due to various heat-sink properties of passive components.
Use of an infrared furnace is the next step to automating the concept, except that the heating is promoted by use of IR lamps or panels. The main objection to this method is that certain materials may heat up at different rates under IR radiation and may result in damage to these components (usually sockets and connectors). This could be minimized by using far-infrared (non-focused) system.

\section*{VAPOR-PHASE REFLOW SOLDERING}

Currently the most popular and consistent method, vaporphase soldering utilizes a fluoroinert fluid with excellent heat-transfer properties to heat up components until the solder paste reflows. The maximum temperature is limited by the vapor temperature of the fluid.
The commonly used fluids (supplied by 3M Corp) are:
- FC-70, \(215^{\circ} \mathrm{C}\) vapor (most applications) or FX-38
- FC-71, \(253^{\circ} \mathrm{C}\) vapor (low-lead or tin-plate)

HTC, Concord, CA, manufactures equipment that utilizes this technique, with two options:
- Batch systems, where boards are lowered in a basket and subjected to the vapor from a tank of boiling fluid.
- In-line conveyorized systems, where boards are placed onto a continuous belt which transports them into a concealed tank where they are subjected to an environment of hot vapor.
Dwell time in the vapor is generally on the order of 15-30 seconds (depending on the mass of the boards and the loading density of boards on the belt).

The question of thermal shock is asked frequently because of the relatively sharp increase in component temperature from room temperature to \(215^{\circ} \mathrm{C}\). SO packages mounted on representative boards have been tested and have shown little effect on the integrity of the packages. Various packages, such as cerdips, metal cans and TO-5 cans with glass seals, have also been tested.

Solder Joints on a SO-14 Package on PCB

\section*{PRINTED CIRCUIT BOARD}

The SO package is molded out of clean, thermoset plastic compound and has no particular compatibility problems with most printed circuit board substrates.
The package can be reliably mounted onto substrates such as:
- G10 or FR4 glass/resin
- FR5 glass/resin systems for high-temperature applications
- Polymide boards, also high-temperature applications
- Ceramic substrates

General requirements for printed circuit boards are:
- Mounting pads should be solder-plated whenever applicable.
- Solder masks are commonly used to prevent solder bridging of fine lines during soldering.
The mask also protects circuits from processing chemical contamination and corrosion.
If coated over pre-tinned traces, residues may accumulate at the mask/trace interface during subsequent reflow, leading to possible reliability failures.
Recommended application of solder resist on bare, clean traces prior to coating exposed areas with solder.
General requirements for solder mask:
- Good pattern resolution.
- Complete coverage of circuit lines and resistance to flaking during soldering.
- Adhesion should be excellent on substrate material to keep off moisture and chemicals.
- Compatible with soldering and cleaning requirements.

\section*{SOLDER PASTE SCREEN PRINTING}

With the initial choice of printed circuit lithographic design and substrate material, the first step in surface mounting is the application of solder paste.

Solder Joints on a SO-14 Package on PCB

TL/DD/11325-25
The typical lithographic "footprints" for SO packages are illustrated below. Note that the 0.050 " lead center-center spacing is not easily managed by commercially-available air pressure, hand-held dispensers.
Using a stainless-steel, wire-mesh screen stencilled with an emulsion image of the substrate pads is by far the most common and well-tried method. The paste is forced through the screen by a V-shaped plastic squeegee in a sweeping manner onto the board placed beneath the screen.
The setup for SO packages has no special requirement from that required by other surface-mounted, passive components. Recommended working specifications are:
- Use stainless-steel, wire-mesh screens, \#80 or \#120, wire diametor 2.6 mils. Rule of thumb: moch cponing should be approximately 2.5-5 times larger than the average particle size of paste material.
- Use squeegee of Durometer 70.
- Experimentation with squeegee travel speed is recommended, if available on machine used.
- Use solder paste of mesh 200-325.
- Emulsion thickness of \(0.005^{\prime \prime}\) usually used to achieve a solder paste thickness (wet) of about \(0.008^{\prime \prime}\) typical.
- Mesh pattern should be 90 degrees, square grid.
- Snap-off height of screen should not exceed \(1 / 8^{\prime \prime}\), to avoid damage to screens and minimize distortion.

\section*{SOLDER PASTE}

Selection of solder paste tends to be confusing, due to numerous formulations available from various manufacturers. In general, the following guidelines are sufficient to qualify a particular paste for production:
- Particle sizes (see photographs below). Mesh 325 (approximately 45 microns) should be used for general purposes, while larger (solder globules) particles are preferred for leadless components (LCC). The larger particles can easily be used for SO packages.
- Uniform particle distribution. Solder globules should be spherical in shape with uniform diameters and minimum amount of elongation (visual under 100/200 \(\times\) magnification). Uneven distribution causes uneven melting and subsequent expulsion of smaller solder balls away from their proper sites.

\section*{RECOMMENDED SOLDER PADS FOR SO PACKAGES}

TL/DD/11325-26

TL/DD/11325-28

- Composition, generally \(60 / 40\) or \(63 / 37 \mathrm{Sn} / \mathrm{Pb}\). Use \(62 / 36\) \(\mathrm{Sn} / \mathrm{Pb}\) with \(2 \% \mathrm{Ag}\) in the presence of Au on the soldering area. This formulation reduces problems of metal leaching from soldering pads.
- RMA flux system usually used.
- Use paste with aproximately \(88-90 \%\) solids.

TL/DD/11325-27

TL/DD/11325-29

TL/DD/11325-30

\section*{CLEANING}

The most critical process in surface mounting SO packages is in the cleaning cycle. The package is mounted very close to the surface of the substrate and has a tendency to collect residue left behind after reflow soldering.
Important considerations in cleaning are:
- Time between soldering and cleaning to be as short as possible. Residue should not be allowed to solidify on the substrate for long periods of time, making it difficult to dislodge.
- A low surface tension solvent (high penetration) should be employed. Solvents commercially available are:
```

Freon TMS (general purpose)
Freon TE35/TP35 (cold-dip cleaning)
Freon TES (general purpose)

```

It should also be noted that these solvents generally will leave the substrate surface hydrophobic (moisture repellent), which is desirable.

Prelete or 1,1,1-Trichloroethane

\section*{Kester 5120/5121}
- A defluxer system which allows the workpiece to be subjected to a solvent vapor, followed by a rinse in pure solvent and a high-pressure spray lance are the basic requirments for low-volume production.
- For volume production, a conveyorized, multiple hot solvent spray/jet system is recommended.
- Rosin, being a natural occurring material, is not readily soluble in solvents, and has long been a stumbling block to the cleaning process. In recent developments, synthetic flux (SA flux), which is readily soluble in Freon TMS solvent, has been developed. This should be explored where permissible.

The dangers of an inadequate cleaning cycle are:
- Ion contamination, where ionic residue left on boards would cause corrosion to metallic components, affecting the performance of the board.
- Electro-migration, where ionic residue and moisture present on electrically-biased boards would cause dentritic growth between close spacing traces on the substrate, resulting in failures (shorts).

\section*{REWORK}

Should there be a need to replace a component or re-align a previously disturbed component, a hot air system with appropriate orifice masking to protect surrounding components may be used.
When rework is necessary in the field, specially-designed tweezers that thermally heat the component may be used to remove it from its site. The replacement can be fluxed at the

\section*{Hot-Air Solder Rework Station}

TL/DD/11325-35
lead tips or, if necessary, solder paste can be dispensed onto the pads using a varimeter. After being placed into position, the solder is reflowed by a hot-air jet or even a standard soldering iron.

\section*{WAVE SOLDERING}

In a case where lead insertions are made on the same board as surface-mounted components, there is a need to include a wave-soldering operation in the process flow.
Two options are used:
- Surface mounted components are placed and vapor phase reflowed before auto-insertion of remaining components. The board is carried over a standard wave-solder system and the underside of the board (only lead-inserted leads) soldered.
- Surface-mounted components are placed in position, but no solder paste is used. Instead, a drop of adhesive about 5 mils maximum in height with diameter not exceeding \(25 \%\) width of the package is used to hold down the package. The adhesive is cured and then proceeded to autoinsertion on the reverse side of the board (surface-mounted side facing down). The assembly is then passed over a "dual wave" soldering system. Note that the surfacemounted components are immersed into the molten solder.
Lead trimming will pose a problem after soldering in the latter case, unless the leads of the insertion components are pre-trimmed or the board specially designed to localize certain areas for easy access to the trim blade.
The controls required for wave soldering are:
- Solder temperature to be \(240-260^{\circ} \mathrm{C}\). The dwell time of components under molten solder to be short (preferably kept under 2 seconds), to prevent damage to most components and semiconductor devices.
- RMA (Rosin Mildly Activated) flux or more aggressive OA (Organic Acid) flux are applied by either dipping or foam fluxing on boards prior to preheat and soldering. Cleaning procedures are also more difficult (aqueous, when OA flux is used), as the entire board has been treated by flux (unlike solder paste, which is more or less localized). Nonhalide OA fluxes are highly recommended.
- Preheating of boards is essential to reduce thermal shock on components. Board should reach a temperature of about \(100^{\circ} \mathrm{C}\) just before entering the solder wave.
- Due to the closer lead spacings (\(0.050^{\prime \prime}\) vs \(0.100^{\prime \prime}\) for dual-in-line packages), bridging of traces by solder could occur. The reduced clearance between packages also causes "shadowing" of some areas, resulting in poor solder coverage. This is minimized by dual-wave solder systems.

(a) Same Side

A typical dual-wave system is illustrated below, showing the various stages employed. The first wave typically is in turbulence and given a transverse motion (across the motion of the board). This covers areas where "shadowing" occurs. A second wave (usually a broad wave) then proceeds to perform the standard soldering. The departing edge from the solder is such to roduce "icicles," and is cti!l furthor reducod by an air knife placed close to the final soldering step. This air knife will blow off excess solder (still in the fluid stage) which would otherwise cause shorts (bridging) and solder bumps.

\section*{AQUEOUS CLEANING}
- For volume production, a conveyorized system is often used with a heated recirculating spray wash (water temperature \(130^{\circ} \mathrm{C}\)), a final spray rinse (water temperature \(\left.45-55^{\circ} \mathrm{C}\right)\), and a hot \(\left(120^{\circ} \mathrm{C}\right)\) air/air-knife drying section.
- For low-volume production, the above cleaning can be done manually, using several water rinses/tanks. Fastdrying solvents, like alcohols that are miscible with water, are sometimes used to help the drying process.
- Neutralizing agents which will react with the corrosive materials in the flux and produce material readily soluble in water may be used; the choice depends on the type of flux used.
- Final rinse water should be free from chemicals which are introduced to maintain the biological purity of the water. These materials, mostly chlorides, are detrimental to the assemblies cleaned because they introduce a fresh amount of ionizable material.

TL/DD/11325-37

\section*{CONFORMAL COATING}

Conformal coating is recommended for high-reliability PCBs to provide insulation resistance, as well as protection against contamination and degradation by moisture.
Requirements:
- Complete coating over components and solder joints.
- Thixotropic material which will not flow under the packages or fill voids, otherwise will introduce stress on solder joints on expansion.
- Compatibility and possess excellent adhesion with PCB material/components.
- Silicones are recommended where permissible in application.

\section*{SMD Lab Support}

FUNCTIONS
Demonstration-Introduce first-time users to surfacemounting processes.
Service-Investigate problems experienced by users on surface mounting.
Reliability Builds-Assemble surface-mounted units for reliability data acquisition.

Techniques-Develop techniques for handling different materials and processes in surface mounting.
Equipment-In conjunction with equipment manufacturers, develop customized equipments to handle high density, new technology packages developed by National.

In-House Expertise-Availability of in-house expertise on semiconductor research/development to assist users on packaging queries.

\section*{Plastic Leaded Chip Carrier (PLCC) Packaging}

\section*{General Description}

The Plastic Leaded Chip Carrier (PLCC) is a miniaturized low cost semiconductor package designed to replace the Plastic Dual-In-Line Package (P-DIP) in high density applications. The PLCC utilizes a smaller lead-to-lead spacing\(0.050^{\prime \prime}\) versus \(0.100^{\prime \prime}\) - and leads on all four sides to achieve a significant footprint reduction over the P-DIP. The rolled under J-bend leadform separates this package style from other plastic quad packages with flat or gull wing lead forms. As with virtually all packages of \(0.050^{\prime \prime}\) or less lead spacing, the PLCC requires surface mounting to printed circuit boards as opposed to the more conventional thru-hole mounting of the P-DIP.

\section*{History}

The Plastic Leaded Chip Carrier with J-bend leadform was first introduced in 1976 as a premolded plastic package. The premolded version has yet to become popular but the quad format with J-Bend leads has been adapted to traditional post molded packaging technology (the same technology used to manufacture the P-DIP). In 1980 National Semiconductor developed a post molded version of the PLCC. The J-bend leadform allowed them to adopt the footprint connection pattern already registered with JEDEC for the leadless chip carrier (LCC). In 1981 a task force was organized within JEDEC to develop a PLCC registration for package I/O counts of \(20,28,44,52,68,84,100\), and 124. A registered outline was completed in 1984 (JEDEC Outline MO-047) after many changes and improvements over the original proposals. This first PLCC registration covers square pacteges with an equa! number of leads on a! sideo. A second registration, MO-052, was completed in 1985 for rectangular packages with I/O counts of 18,22, 28 and 32.
Since 1980 many additional semiconductor manufacturers and packaging subcontractors have developed PLCC capability. There are now well over 20 sources with the number growing steadily.

\section*{Surface Mounting}

Surface mounting refers to component attachment whereby the component leads or pads rest on the surface of the PCB instead of the traditional approach of inserting the leads into through-holes which go through the board. With surface mounting there are solder pads on the PCB which align with the leads or pads on the component. The resulting solder joint forms both the mechanical and electrical connection.

\section*{ADVANTAGES}

The primary reason for surface mounting is to allow leads to be placed closer together than the \(0.100^{\prime \prime}\) standard for DIPs with through-hole mounting. Through-hole mounting on smaller than \(0.100^{\prime \prime}\) spacing is difficult to achieve in production and generally avoided. The move to \(0.050^{\prime \prime}\) lead spacing offered with the current generation of surface mounted components, along with a switch from a dual-in-line format to a quad format, has achieved a threefold increase in component mounting density. A need to achieve greater density is a major driving force in today's marketplace.

\section*{MANUFACTURING TECHNIQUES}

Learning how to surface mount components to printed circuit boards requires the user to become educated in new assembly processes not typically associated with throughhole insertion/wave soldering assembly methods.
Surface mounting involves three basic process steps:
1) Application of solder or solder paste to the printed circuit board.
2) Positioning of the component onto the printed circuit board
3) Reflowing of the solder or solder paste.

As with any process, there are many details involved to achieve acceptable throughput and acceptable quality. Na tional Semiconductor offers a surface mounting guide which deals with the specifics of successful surface mounting. We encourage the user to review this document and to contact us if further information on surface mounting is desired.

\section*{Benefits of the PLCC}

There are four principle advantages offered the user by switching from P-DIP to PLCC. These four advantages are outlined below as follows:
1. Increased Density-
- Typically 3-to-1 size reduction of printed circuit boards. See Figure 1 for a footprint comparison between PLCC and P-DIP. This can be as high as 6-to1 in certain applications.
- Surface mounting allows components to be placed on both sides of the board.
- Suiface mount and thru-hoco molint components can be placed on the same board.
- The large diameter thru-holes can be reduced in number, entirely eliminated, or reduced in size (if needed for via connection).
2. Increased Performance-
- Shorter traces on printed circuit boards.
- Better high frequency operation.
- Shorter leads in package. Figure 2 and Table I compare PLCC and P-DIP mechanical and electrical characteristics.
3. Increased Reliability-
- Leads are well protected.
- Fewer connectors.
- Simplified rework.
- Vibration and shock resistant.
4. Reduced Cost-
- Fewer or smaller printed circuit boards.
- Less hardware.
- Same low cost printed circuit board material.
- Plastic packaging material.
- Reduced number of costly plated-through-holes.
- Fewer circuit layers.

FIGURE 1. Footprint Area of PLCC vs. P-DIP

FIGURE 2. Longest Internal Lead PLCC vs. P-DIP

TABLE I. Electrical Performance of PLCC vs. P-DIP (44 I/O PLCC vs. 40 I/O P-DIP, both with Copper Leads)
\begin{tabular}{c|c|c|c|c}
\hline \multirow{2}{*}{ Criteria } & \multicolumn{2}{|c|}{ Shortest Lead } & \multicolumn{2}{c}{ Longest Lead } \\
\cline { 2 - 5 } & PLCC & P-DIP & PLCC & P-DIP \\
\hline \begin{tabular}{l}
Lead Resistance \\
(Measured)
\end{tabular} & \(3 \Omega\) & \(4 \Omega\) & \(6 \Omega\) & \(7 \Omega\) \\
\hline \begin{tabular}{l}
Lead-to-Lead Capacitance \\
(Measured on Adjacent Leads)
\end{tabular} & 0.1 pF & 0.1 pF & 0.3 pF & 3.0 pF \\
\hline \begin{tabular}{l}
Lead Self-Inductance \\
(Calculated)
\end{tabular} & 3.2 nH & 1.4 nH & 3.5 nH & 19.1 nH \\
\hline
\end{tabular}

FIGURE 3. Package Outline
TABLE II. Principle Dimensions Inches/(Millimeters) (Refer to Figure 3)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Lead Count} & \multicolumn{2}{|c|}{Total Width} & \multicolumn{2}{|c|}{Total Height} & \multicolumn{2}{|c|}{Body Width} & \multicolumn{2}{|l|}{Contact Spread} \\
\hline & Min & Max & Min & Max & Min & Max & Min & Max \\
\hline 20 & \[
\begin{gathered}
0.385 \mathrm{sq} . \\
(9.779) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.395 \mathrm{sq} . \\
(10.03) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.165 \mathrm{sq} . \\
(4.191) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.180 \text { sq. } \\
(4.572) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.345 \text { sq. } \\
(8.763)
\end{gathered}
\] & \[
\begin{gathered}
0.355 \text { sq. } \\
(9.017)
\end{gathered}
\] & \[
\begin{gathered}
0.310 \text { sq. } \\
(7.874)
\end{gathered}
\] & \[
\begin{gathered}
0.330 \text { sq. } \\
(8.382)
\end{gathered}
\] \\
\hline 28 & \[
\begin{gathered}
0.485 \text { sq. } \\
(12.32) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.495 \text { sq. } \\
(12.57) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.165 \text { sq. } \\
(4.191)
\end{gathered}
\] & \[
\begin{gathered}
0.180 \text { sq. } \\
(4.572)
\end{gathered}
\] & \[
\begin{gathered}
0.445 \text { sq. } \\
(11.30)
\end{gathered}
\] & \[
\begin{gathered}
0.455 \text { sq. } \\
(11.56)
\end{gathered}
\] & \[
\begin{gathered}
0.410 \text { sq. } \\
(10.41)
\end{gathered}
\] & \[
\begin{gathered}
0.430 \text { sq. } \\
(10.92)
\end{gathered}
\] \\
\hline 44 & \[
\begin{gathered}
0.685 \text { sq. } \\
(17.40)
\end{gathered}
\] & \[
\begin{gathered}
0.695 \text { sq. } \\
(17.65)
\end{gathered}
\] & \[
\begin{gathered}
0.165 \text { sq. } \\
(4.191)
\end{gathered}
\] & \[
\begin{gathered}
0.180 \mathrm{sq} . \\
(4.572) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.645 \mathrm{sq} . \\
(16.38)
\end{gathered}
\] & \[
\begin{gathered}
0.655 \text { sq. } \\
(16.64)
\end{gathered}
\] & \[
\begin{gathered}
0.610 \text { sq. } \\
(15.49)
\end{gathered}
\] & \[
\begin{gathered}
0.630 \text { sq. } \\
(16.00)
\end{gathered}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Lead Count} & \multicolumn{2}{|c|}{Total Width} & \multicolumn{2}{|c|}{Total Helght} & \multicolumn{2}{|c|}{Body WIdth} & \multicolumn{2}{|l|}{Contact Spread} \\
\hline & Min & Max & Min & Max & Min & Max & Min & Max \\
\hline 68 & \[
\begin{gathered}
0.985 \text { sq. } \\
(25.02)
\end{gathered}
\] & \[
\begin{gathered}
0.995 \mathrm{sq} \text {. } \\
(25.27) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.165 \mathrm{sq} . \\
(4.191) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.180 \text { sq. } \\
(4.572) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.945 \mathrm{sq} . \\
(24.00)
\end{gathered}
\] & \[
\begin{gathered}
0.955 \mathrm{sq} . \\
(24.26) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.910 \text { sq. } \\
(23.11) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.930 \text { sq. } \\
(23.62) \\
\hline
\end{gathered}
\] \\
\hline 84 & \[
\begin{gathered}
1.185 \mathrm{sq} . \\
(30.10) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1.195 \text { sq. } \\
(30.36) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.165 \text { sq. } \\
(4.191) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.180 \text { sq. } \\
(4.572) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1.150 \text { sq. } \\
(29.21) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1.158 \mathrm{sq} . \\
(29.41) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1.110 \mathrm{sq} . \\
(28.20) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 1.130 \mathrm{sq} . \\
& (28.70) \\
& \hline
\end{aligned}
\] \\
\hline 124 & \[
\begin{gathered}
1.685 \mathrm{sq} . \\
(49.13)
\end{gathered}
\] & \[
\begin{gathered}
1.695 \mathrm{sq} . \\
(49.39)
\end{gathered}
\] & \[
\begin{gathered}
0.180 \text { sq. } \\
(4.572) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.200 \mathrm{sq} . \\
(5.080)
\end{gathered}
\] & \[
\begin{gathered}
1.650 \mathrm{sq} . \\
(41.91) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 1.658 \text { sq. } \\
& \text { (42.11) }
\end{aligned}
\] & \[
\begin{aligned}
& 1.610 \mathrm{sq} . \\
& (40.90)
\end{aligned}
\] & \[
\begin{aligned}
& 1.630 \mathrm{sq} . \\
& (41.40) \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Package Design Criteria}

Experience has taught us there are certain criteria to the PLCC design which must be followed to provide the user with the proper mechanical and thermal performance. These requirements should be carefully reviewed by the user when selecting suppliers for devices in PLCC. Some of these are covered by the JEDEC registration and some are not. These important requirements are listed in Table IV.

\section*{Reliability}

National Semiconductor utilizes an assembly process for the PLCC which is similar to our P-DIP assembly process. We also utilize identical materials. This is a very important point when considering reliability. Many years of research
and development have gone into steadily improving our P-DIP quality and maintaining a leadership position in plastic package reliability. All of this technology can be directly applied to the PLCC. Table V shows the results of applying this technology to the PLCC. As we make further advances in plastic package reliability, these will also be applied to the PLCC.

\section*{Sockets}

There are several manufacturers currently offering sockets for the plastic chip carrier. Following is a listing of those manufacturers. The listing is divided into test/burn-in and production categories. There may be some individual sockets that will cover both requirements.

TABLE IV. Package Design Criteria
\begin{tabular}{l|c}
\hline \multicolumn{1}{c|}{ Criteria } & \begin{tabular}{c}
Required to Comply with \\
JEDEC Registration
\end{tabular} \\
\hline \begin{tabular}{l}
Minimum Inside Bend Radius of Lead at Shoulder Equal or Greater than Lead \\
Thickness-to Prevent Lead Cracking/Fatigue
\end{tabular} & Not Required \\
\hline \begin{tabular}{l}
Minimum One Mil Clearance Between Lead and Plastic Body at all Points-to \\
Provide Lead Compliancy and Prevent Shoulder Joint Cracking/Fatigue
\end{tabular} & Not Required \\
\hline Copper Leads for Low Thermal Resistance & Not Required \\
\hline \begin{tabular}{l}
Minimum 10 Mil Lead Thickness for Low Thermal Resistance and Good \\
Handling Properties
\end{tabular} & Not Required \\
\hline \begin{tabular}{l}
Minimum 26 Mil Lead Shoulder Width to Prevent Interlocking of Devices \\
During Handling
\end{tabular} & Yes \\
\hline Maximum 4 Mils coplanarity Across Seating Plane of all Leads & Yes \\
\hline
\end{tabular}

TABLE V. Rellability Test Data (Expressed as Failures per Units Tested)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Device/Package } & OPL & TMCL & TMSK & BHTL & ACLV \\
\hline LM324/20 Lead & \(0 / 96\) & \(0 / 199\) & \(0 / 50\) & \(0 / 97\) & \(0 / 300\) \\
\hline LF353/20 Lead & \(0 / 50\) & \(0 / 50\) & - & \(0 / 45\) & \(0 / 100\) \\
\hline DS75451/20 Lead & \(0 / 47\) & - & \(0 / 50\) & \(0 / 93\) & \(0 / 179\) \\
\hline DM875191/28 Lead & \(0 / 154\) & \(0 / 154\) & \(0 / 154\) & \(0 / 154\) & \(0 / 154\) \\
\hline DM875181/28 Lead & \(0 / 77\) & \(0 / 77\) & \(0 / 77\) & \(0 / 77\) & \(0 / 77\) \\
\hline
\end{tabular}

OPL \(=\) Dynamic high temperature operating life at \(125^{\circ} \mathrm{C}\) or \(150^{\circ} \mathrm{C}, 1,000\) hours.
TMCL \(=\) Temperature cycle, Air-to-Air, \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) or \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}, 2,000\) cycles.
TMSK \(=\) Thermal shock, Liquid-to-Liquid, \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}, 100\) cycles.
BHTL \(=\) Biased humidity temperature life, \(85^{\circ} \mathrm{C}, 85 \%\) humidity, 1,000 hours.
ACLV \(=\) Autoclave, \(15 \mathrm{psi}, 121^{\circ} \mathrm{C}, 100 \%\) humidity, 1,000 hours.

\section*{Production Sockets}

AMP
Harrisburg, PA
(715) 564-0100

Augat
Attleboro, MA
(617) 222-2202

Burndy
Norwalk, CT
(203) 838-4444

Methode
Rolling Meadows, IL
(312) 392-3500

Textool
Irving, TX
(214) 259-2676

Thomas \& Betts
Raritan, NJ
(201) 469-4000

\section*{Test/Burn-In Sockets}

Plastronics
Irving, TX
(214) 258-1906

Textool
Irving, TX
(214) 259-2676

Yamaichi
c/o Nepenthe Dist.
(415) 856-9332

\section*{ADDITIONAL INFORMATION AND SERVICES}

National Semiconductor offers additional Databooks which cover surface mount technology in much greater detail. We also have a surface mount laboratory to provide demonstrations and customer support, as well as technology development. Feel free to contact us about these additional resources.

\section*{20 Lead Ceramic Sidebrazed Dual-in-Line Package, Dual Cavity NS Package Number D20B}

\section*{28 Lead Ceramic Sidebrazed Dual-in-Line Package, Dual Cavity NS Package Number D28H}

All dimensions are in inches [millimeters]

44 Lead Ceramic Quad J-Bend, EPROM NS Package Number EL44C

All dimensions are in inches [millimeters]

ELASC (REV. A)

\section*{20 Lead Ceramic Dual-in-Line Package, EPROM NS Package Number J20AQ}

All dimensions are in inches [millimeters]

\section*{28 Lead Ceramic Dual-in-Line Package, EPROM} NS Package Number J28AQ

\section*{40 Lead Ceramic Dual-in-Line Package, EPROM NS Package Number J40AQ}

All dimensions are in inches (millimeters)

\section*{16 Lead (\(0.300^{\prime \prime}\) Wide) Molded Small Outline Package, JEDEC NS Package Number M16B}

\section*{20 Lead (0.300 " Wide) Molded Small Outline Package, JEDEC NS Package Number M20B}

\section*{28 Lead (\(0.300^{\prime \prime}\) Wide) Molded Small Outline Package, JEDEC NS Package Number M28B}

\section*{20 Lead (0.300 " Wide) Molded Dual-in-Line Package NS Package Number N20A}

All dimensions are in inches (millimeters)

\section*{28 Lead (0.600 " Wide) Molded Dual-in-Line Package NS Package Number N28B}

All dimensions are in inches (millimeters)

\section*{40 Lead (0.600 " Wide) Molded Dual-in-Line Package NS Package Number N40A}

All dimensions are in inches (millimeters)

N4OA (REY E)

44 Lead Molded Plastic Leaded Chip Carrier NS Package Number V44A

\section*{68 Lead Molded Plastic Leaded Chip Carrier NS Package Number V68A}

All dimensions are in inches [millimeters]

\section*{National Semiconductor}

\author{
Bookshelf of Technical Support Information \\ National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature. \\ This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book. \\ For datasheets on new products and devices still in production but not found in a databook, please contact the National Semiconductor Customer Support Center at 1-800-272-9959. \\ We are interested in your comments on our technical literature and your suggestions for improvement. \\ Please send them to: \\ Technical Communications Dept. M/S 16-300 \\ 2900 Semiconductor Drive \\ P.O. Box 58090 \\ Santa Clara, CA 95052-8090
}

\title{
ADVANCED BiCMOS LOGIC (ABTC, IBF, BiCMOS SCAN, LOW VOLTAGE BiCMOS, EXTENDED TTL TECHNOLOGY) DATABOOK—1994 \\ ABTC/BCT Description and Family Characteristics • ABTC/BCT Ratings, Specifications and Waveforms ABTC Applications and Design Considerations • Quality and Reliability • Integrated Bus Function (IBF) Introduction 54/74ABT3283 Synchronous Datapath Multiplexer • 74FR900/25900 9-Bit 3-Port Latchable Datapath Multiplexer 54/74ACTQ3283 32-Bit Latchable Transceiver with Parity Generator/Checker and Byte Multiplexing SCAN18xxxA BiCMOS 5V Logic with Boundary Scan • 74LVT Low Voltage BiCMOS Logic VME Extended TTL Technology for Backplanes
}

\author{
ALS/AS LOGIC DATABOOK—1990 \\ Introduction to Advanced Bipolar Logic • Advanced Low Power Schottky • Advanced Schottky
}

\section*{ASIC DESIGN MANUAL/GATE ARRAYS \& STANDARD CELLS—1987}

SSI/MSI Functions • Peripheral Functions • LSI/VLSI Functions • Design Guidelines • Packaging

\section*{CMOS LOGIC DATABOOK-1988}

CMOS AC Switching Test Circuits and Timing Waveforms • CMOS Application Notes • MM54HC/MM74HC MM54HCT/MM74HCT • CD4XXX • MM54CXXX/MM74CXXX • Surface Mount

\title{
CLOCK GENERATION AND SUPPORT (CGS) DESIGN DATABOOK-1994 \\ Low Skew Clock Buffers/Drivers • Video Clock Generators • Low Skew PLL Clock Generators Crystal Clock Generators
}

\author{
CROSSVOLT \({ }^{\text {TM }}\) LOW VOLTAGE LOGIC SERIES DATABOOK—1994 \\ LCX Family • LVX Translator Family •LVX Bus Switch Family •LVX Family • LVQ Family • LVT Family
}

\section*{DATA ACQUISITION DATABOOK—1993}

Data Acquisition Systems • Analog-to-Digital Converters • Digital-to-Analog Converters • Voltage References
Temperature Sensors • Active Filters • Analog Switches/Multiplexers • Surface Mount

\section*{DATA ACQUISITION DATABOOK SUPPLEMENT一1992}

New devices released since the printing of the 1989 Data Acquisition Linear Devices Databook.

\section*{DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK—1989}

Selection Guide and Cross Reference Guides • Diodes • Bipolar NPN Transistors Bipolar PNP Transistors • JFET Transistors • Surface Mount Products • Pro-Electron Series Consumer Series • Power Components • Transistor Datasheets • Process Characteristics
DRAM MANAGEMENT HANDBOOK—1993Dynamic Memory Control • CPU Specific System Solutions • Error Detection and CorrectionMicroprocessor Applications
EMBEDDED CONTROLLERS DATABOOK—1992
COP400 Family • COP800 Family • COPS Applications • HPC Family • HPC Applications MICROWIRE and MICROWIRE/PLUS Peripherals • Microcontroller Development Tools
FDDI DATABOOK—1991
FDDI Overview • DP83200 FDDI Chip Set • Development Support • Application Notes and System Briefs
F100K ECL LOGIC DATABOOK \& DESIGN GUIDE-1992
Family Overview • 300 Series (Low-Power) Datasheets • 100 Series Datasheets • 11C Datasheets Design Guide • Circuit Basics • Logic Design • Transmission Line Concepts • System Considerations Power Distribution and Thermal Considerations • Testing Techniques • 300 Series Package Qualification Quality Assurance and Reliability • Application Notes
FACTTM ADVANCED CMOS LOGIC DATABOOK—1993Description and Family Characteristics • Ratings, Specifications and WaveformsDesign Considerations • 54AC/74ACXXX • 54ACT/74ACTXXX • Quiet Series: 54ACQ/74ACQXXXQuiet Series: 54ACTQ/74ACTQXXX • 54FCT/74FCTXXX • FCTA: 54FCTXXXA/74FCTXXXA/B
FAST® ADVANCED SCHOTTKY TTL LOGIC DATABOOK—1990
Circuit Characteristics • Ratings, Specifications and Waveforms • Design Considerations • 54F/74FXXX
FAST® \({ }^{\circledR}\) APPLICATIONS HANDBOOK—1990
Reprint of 1987 Fairchild FAST Applications Handbook
Contains application information on the FAST family: Introduction • Multiplexers • Decoders • EncodersOperators • FIFOs • Counters • TTL Small Scale Integration • Line Driving and System DesignFAST Characteristics and Testing • Packaging Characteristics
HIGH-PERFORMANCE BUS INTERFACE DATABOOK—1994QuickRing • Futurebus + /BTL Devices • BTL Transceiver Application Notes • Futurebus + Application NotesHigh Performance TTL Bus Drivers • PI-Bus • Futurebus + /BTL Reference
IBM DATA COMMUNICATIONS HANDBOOK—1992
IBM Data Communications • Application Notes
INTERFACE: DATA TRANSMISSION DATABOOK—1994
TIA/EIA-232 (RS-232) • TIA/EIA-422/423 • TIA/EIA-485 • Line Drivers • Receivers • RepeatersTransceivers • Low Voltage Differential Signaling • Special Interface • Application Notes
LINEAR APPLICATIONS HANDBOOK-1994The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuitapplications using both monolithic and hybrid circuits from National Semiconductor.Individual application notes are normally written to explain the operation and use of one particular device or to detail variousmethods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence bykeeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.
LINEAR APPLICATION SPECIFIC IC's DATABOOK—1993
Audio Circuits • Radio Circuits • Video Circuits • Display Drivers • Clock Drivers • Frequency SynthesisSpecial Automotive • Special Functions • Surface Mount
LOCAL AREA NETWORKS DATABOOK—1993 SECOND EDITION

\section*{LOW VOLTAGE DATABOOK—1992}

This databook contains information on National's expanding portfolio of low and extended voltage products. Product datasheets included for: Low Voltage Logic (LVQ), Linear, EPROM, EEPROM, SRAM, Interface, ASIC, Embedded Controllers, Real Time Clocks, and Clock Generation and Support (CGS).

\author{
MASS STORAGE HANDBOOK—1989 \\ Rigid Disk Pulse Detectors • Rigid Disk Data Separators/Synchronizers and ENDECs \\ Rigid Disk Data Controller • SCSI Bus Interface Circuits • Floppy Disk Controllers • Disk Drive Interface Circuits Rigid Disk Preamplifiers and Servo Control Circuits • Rigid Disk Microcontroller Circuits • Disk Interface Design Guide
}

\author{
MEMORY DATABOOK—1994 \\ FLASH • CMOS EPROMs • CMOS EEPROMs • PROMs • Application Notes
}

\section*{MEMORY APPLICATIONS HANDBOOK—1994 \\ FLASH • EEPROMs • EPROMs • Application Notes}

\section*{OPERATIONAL AMPLIFIERS DATABOOK—1993 \\ Operational Amplifiers • Buffers • Voltage Comparators • Instrumentation Amplifiers • Surface Mount}

\section*{PACKAGING DATABOOK-1993}

Introduction to Packaging • Hermetic Packages • Plastic Packages • Advanced Packaging Technology Package Reliability Considerations • Packing Considerations • Surface Mount Considerations

\section*{POWER IC's DATABOOK—1993}

Linear Voltage Regulators • Low Dropout Voltage Regulators • Switching Voltage Regulators • Motion Control
Peripheral Drivers • High Current Switches • Surface Mount

\section*{PROGRAMMABLE LOGIC DEVICE DATABOOK AND DESIGN GUIDE-1993}

Product Line Overview • Datasheets • Design Guide: Designing with PLDs • PLD Design Methodology PLD Design Development Tools • Fabrication of Programmable Logic • Application Examples

\section*{REAL TIME CLOCK HANDBOOK-1993}

3-Volt Low Voltage Real Time Clocks • Real Time Clocks and Timer Clock Peripherals • Application Notes

\section*{RELIABILITY HANDBOOK—1987}

Reliability and the Die • Internal Construction • Finished Package • MIL-STD-883 • MIL-M-38510
The Specification Development Process • Reliability and the Hybrid Device • VLSI/VHSIC Devices Radiation Environment • Electrostatic Discharge • Discrete Device • Standardization
Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device European Reliability Programs • Reliability and the Cost of Semiconductor Ownership Reliability Testing at National Semiconductor • The Total Military/Aerospace Standardization Program 883B/RETSTM Products • MILS/RETSTM Products • 883/RETSTM Hybrids • MIL-M-38510 Class B Products Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging Semiconductor Packages • Glossary of Terms • Key Government Agencies • AN/ Numbers and Acronyms Bibliography • MIL-M-38510 and DESC Drawing Cross Listing

\section*{SCAN \({ }^{\text {M }}\) DATABOOK—1994}

Evolution of IEEE 1149.1 Standard • SCAN BiCMOS Products • SCAN ACMOS Products • System Test Products Other IEEE 1149.1 Devices

\section*{TELECOMMUNICATIONS—1994}

COMBO and SLIC Devices • ISDN • Digital Loop Devices • Analog Telephone Components • Software Application Notes

\section*{VHC/VHCT ADVANCED CMOS LOGIC DATABOOK—1993}

This databook introduces National's Very High Speed CMOS (VHC) and Very High Speed TTL Compatible CMOS (VHCT) designs. The databook includes Description and Family Characteristics • Ratings, Specifications and Waveforms Design Considerations and Product Datasheets. The topics discussed are the advantages of VHC/VHCT AC Performance, Low Noise Characteristics and Improved Interface Capabilities.

\section*{NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS}

\section*{ALABAMA}

Huntsville
Anthem Electronics
(205) 890-0302 Hamilton/Hallmark (205) 837-8700 Pioneer Technology (205) 837-9300 Time Electronics (800) 258-8513

\section*{ARIZONA}

Phoenix Hamilton/Hallmark (602) 437-1200

Scottsdale Alliance Electronics Inc. (602) 483-9400

Tempe Anthem Electronics (602) 966-6600 Bell Industries (602) 966-7800 Time Electronics (602) 967-2000

CALIFORNIA
Agora Hills Bell Industries (818) 706-2608 Pioneer Standard (818) 865-5800 Time Electronics (818) 707-2890

Calabasas F/X Electronics (818) 591-9220

Chatsworth Anthem Electronics (818) 775-1333

Costa Mesa Hamilton/Hallmark (714) 641-4100

Invine Anthem Electronics (714) 768-4444 Bell Industries (714) 727-4500 Pioneer Standard (714) 753-5090 Zeus Elect. an Airrow ©o (714) 581-4622

Los Angeles Bell Industries (310) 447-6321

Rocklin
Anthem Electronics (916) 624-9744 Beill Industries (916) 652-0414

Roseville Hamilton/Hallmark (916) 624-9781

San Diego Anthem Electronics (619) 453-9005 Hamilton/Hallmark (619) 571-7540 Pioneer Standard (619) 546-4906 Time Electronics (619) 674-2800

San Jose Anthem Electronics (408) 453-1200 Hamilton/Hallmark (408) 743-3300 Pioneer Technology (408) 954-9100

Zeus Elect. an Arrow Co. (408) 629-4789

Sunnyvale
Bell Industries
(408) 734-8570

Time Electronics
(408) 734-9888

Tustin
Time Electronics (714) 669-0100

Woodland Hills Hamilton/Hallmark (818) 594-0404

Time Electronics (818) 593-8400

COLORADO
Denver Bell Industries (303) 691-90t0

Englewood
Anthem Electronics
(303) 790-4500 Hamilton/Hallmark
(303) 790-1662 Time Electronics (303) 721-8882

CONNECTICUT
Cheshire Hamilton/Hallmark (203) 271-2844

Shelton Pioneer Standard (203) 929-5600

Waterbury
Anthem Electronics (203) 575-1575

FLORIDA
Altamonte Springs
Anthem Electronics (407) 831-0007

Bell Industries
(407) 339-0078

Pioneer Technology (407) 834-9090

Deerfield Beach Pioneer Technology (305) 428-8877

Fort Lauderdale Hamilton/Hallmark (305) 484-5482 Time Electronics (305) 484-1778

Lake Mary
Zeus Elect. an Arrow Co. (407) 333-9300

Largo
Hamilton/Hallmark
(813) 541-7440

Orlando
Chip Supply
Die Distributor
(407) 298-7100

Time Electronics
(407) 841-6565

Winter Park
Hamilton/Hallmark
(407) 657-3300

GEORGIA
Duluth
Hamilton/Hallmark
(404) 623-4400

Pioneer Technology
(404) 623-1003

Norcross
Bell Industries
(404) 662-0923

Time Electronics
(404) 368-0969

ILLINOIS
Addison
Pioneer Electronics (708) 495-9680

Bensenville Hamilton/Hallmark (708) 860-7780

Elk Grove Village Bell Industries (708) 640-1910

Schaumburg
Anthem Electronics
(708) 884-0200

Time Electronics (708) 303-3000

INDIANA
Fort Wayne Bell Industries (219) 423-3422

Indianapolis Advent Electronics Inc. (317) 872-4910 Bell Industries (317) 875-8200 Hamilton/Hallmark (317) 872-8875 Pioneer Standard (317) 573-0880

IOWA
Cedar Rapids Advent Electronics (319) 363-0221

KANSAS
Lenexa Hamilton/Hallmark (913) 332-4375

KENTUCKY
Lexington Hamilton/Hallmark (602) 288-4911

MARYLAND
Columbia
Anthem Electronics (410) 995-6840 Bell Industries (410) 290-5100 Hamilton/Hallmark (110) 099.0900 Time Electronics (410) 720-3600

Gaithersburg Pioneer Technology (301) 921-0660

MASSACHUSETTS
Andover Bell Industries (508) 474-8880

Beverly Sertech Laboratories (508) 927-5820

Lexington Pioneer Standard (617) \(86 t-9200\)

Newburyport Rochester Electronics "Obsolete Products" (508) 462-9332

Norwood Gerber Electronics (617) 769-6000

Peabody
Hamilton/Hallmark
(508) 532-3701

Time Electronics (508) 532-9900

Tyngsboro Port Electronics (508) 649-4880

Wilmington Anthem Electronics (508) 657-5170 Zeus Elect. an Arrow Co. (508) 658-0900

MICHIGAN
Grand Rapids Pioneer Standard (616) 698-1800

Novi
Hamilton/Hallmark (313) 347-4271

Plymouth Pioneer Standard (313) 416-2157

Wyoming R. M. Electronics, Inc. (616) \(531-9300\)

MINNESOTA
Bloomington Hamilton/Hallmark (612) 881-2600

Eden Prairie Anthem Electronics (612) 944-5454 Pioneer Standard (612) 944-3355

Edina Time Electronics (612) 943-2433

Thief River Falls Digi-Key Corp. "Catalog Sales Only" (800) 344-4539

MISSOURI
Earth City Hamilton/Hallmark (314) 291-5350

Manchester Time Electronics (314) \(391-6444\)

NEW JERSEY
Cherry Hill Hamilton/Hallmark (609) 424-0110

Fairfield Bell Industries (201) 227-6060 Hamilton/Hallmark (201) 575-3390 Pioneer Standard (201) 575-3510

Marlton Time Electronics (609) 596-6700

Mount Laurel Seymour Electronics (609) 235-7474

Parsippany Hamilton/Hallmark (201) 515-1641

Pine Brook Anthem Electronics (201) 227-7960

Wayne Time Electronics (201) 785-8250

NEW MEXICO
Albuquerque Bell Industries (505) 292-2700 Hamilton/Hallmark (505) 828-1058

\section*{NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)}

NEW YORK
Binghamton
Pioneer
(607) 722-9300

Buffalo
Summit Electronics (716) 887-2800

Commack
Anthem Electronics (516) 864-6600

Fairport
Pioneer Standard
(716) 381-7070

Hauppauge Hamilton/Hallmark (516) 434.7490 Time Electronics (516) 273-0100

Port Chester Zeus Elect. an Arrow Co. (914) 937.7400

Rochester
Hamilton/Hallmark
(800) 475-9130

Summit Electronics
(716) 334-8110

Ronkonkoma Hamilton/Hallmark (516) 737-0600

Syracuse
Time Electronics
(315) 432-0355

Westbury
Hamilton/Hallmark Export Div. (516) 997-6868

Woodbury
Pioneer Electronics
(516) 921-8700

Seymour Electronics
(516) 496-7474

NORTH CAROLINA
Morrisville
Pioneer Technology (919) 460-1530

Raleigh
Hamilton/Hallmark
(919) 872-0712

OHIO
Cleveland
Pioneer
(216) 587-3600

Columbus
Time Electronics
(614) 794-3301

Dayton
Bell Industries
(513) 435-8660

Bell Industries-Military
(513) 434-8231

Hamilton/Hallmark
(513) \(439-6735\)

Pioneer Standard
(513) 236-9900

OKLAHOMA
Tulsa
Hamilton/Hallmark (918) 254-6110 Pioneer Standard (918) 665-7840 Radio Inc. (918) 587-9123

OREGON
Beaverton
Anthem Electronics
(503) 643-1114

Bell Industries
(503) 644-3444 Hamilton/Hallmark (503) 526-6200 Pioneer Technology (503) 626-7300

Portland
Time Electronics (503) 684-3780

PENNSYLVANIA
Horsham
Anthem Electronics (215) 443-5150 Pioneer Technology (215) 674-4000

Mars Hamilton/Hallmark (412) \(281-4150\)

Pittsburgh Pioneer Standard (412) 782-2300

Trevose Bell Industries (215) 953-2800

\section*{TEXAS}

Austin
Hamilton/Hallmark (512) 258-8848

Minco Technology Labs. (512) 834-2022 Pioneer Standard (512) 835-4000 Time Electronics (512) 346-7346

Carrollton
Zeus Elect. an Arrow Co. (214) 380-6464

Dallas
Hamilton/Hallmark (214) 553-4300 Pioneer Standard (214) 386-7300

Houston
Hamilton/Hallmark
(713) 781-6100

Pioneer Standard
(713) 495-4700

Richardson
Anthem Electronics
(214) 238-7100

Time Electronics
(214) 644-4644

UTAH
Midvale Bell Industries (801) 255-9611

Salt Lake City Anthem Electronics (801) 973-8555 Hamilton/Hallmark (801) 266-2022

West Valley Time Electronics (801) 973-8494

WASHINGTON
Bellevue Pioneer Technology (206) 644-7500

Bothell
Anthem Electronics (206) 483-1700

Kirkland Time Electronics (206) 820-1525

Redmond Bell Industries (206) 867-5410 Hamilton/Hallmark (206) 881-6697

\section*{WISCONSIN}

Brookfield Pioneer Electronics (414) 784-3480

Mequon
Taylor Electric (414) 241-4321

New Berlin Hamilton/Hallmark (414) 780-7200

Waukesha Bell Industries (414) 547-8879 Hamilton/Hallmark (414) 784-8205

CANADA
WESTERN PROVINCES
Burnaby
Hamilton/Hallmark (604) 420-4101 Semad Electronics (604) 451-3444

Calgary
Electro Sonic Inc.
(403) 255-9550

Semad Electronics
(403) 252-5664

Zentronics
(403) 295-8838

Edmonton
Zentronics
(403) \(482-3038\)

Markham
Semad Electronics Ltd.
(416) 475-8500

Richmond
Electro Sonic Inc.
(604) 273-2911

Zentronics
(604) 273.5575

Winnipeg
Zentronics
(204) 694-1957

EASTERN PROVINCES
Mississauga
Hamilton/Hallmark
(416) 564-6060

Time Electronics
(416) 672-5300

Zentronics
(416) 507-2600

Nepean
Hamilton/Hallmark
(613) 226-1700

Zentronics
(613) 226-8840

Ottawa
Electro Sonic Inc.
(613) 728-8333

Semad Electronics
(613) \(526-4866\)

Pointe Claire Semad Electronics (514) 694-0860

Ville St. Laurent
Hamilton/Hallmark
(514) 335-1000

Zentronics
(514) 737-9700

Willowdale
ElectroSonic Inc.
(416) 494-1666

Winnipeg
Electro Sonic Inc.
(204) 783-3105

National Semiconductor

\section*{National Semiconductor Corporation \\ 2900 Semiconductor Drive \\ P.O. Box 58090 \\ Santa Clara, CA 95052-8090}

For sales, literature and technical support for North America, please contact the National Semiconductor Customer Response
Group at 1-800-272-9959.

\section*{SALES OFFICES}

\section*{CANADA}

National Semiconductor
5925 Airport Rd.
Suite 615
Mississauga, Ontario L4V 1W1
Tel: (416) 678-2920
Fax: (416) 678-2535

\section*{PUERTO RICO}

National Semiconductor La Electronica Bldg.
Suite 312, R.D. \#1 KM 14.5 Rio Piedias, Puerto Rico 00927 Tel: (809) 758-9211
Fax: (809) 763-6959

\section*{INTERNATIONAL OFFICES}

National Semiconductor
(Australia) Pty, Ltd.
16 Business Park Dr.
Notting Hill, VIC 3168
Australia
Tel: (3) 558-9999
Fax: (3) 558-9998
National Semiconductores
Do Brazil Ltda.
Rua Deputado Lacerda Franco
120-3A
Sao Paulo - SP
Brazil 05418-000
Tel: (55-11) 212-5066
Telex: 391-1131931 NSBR BR
Fax: (55-11) 212-1181
National Semiconductor

\section*{Bulgaria}
P.C.I.S.A.

Dondukov Bld. 25/3
Sofia 1000
Bulgaria
Tel: (02) 880116
Fax: (02) 803618
National Semiconductor
(UK) Ltd.
Valdemarsgade 21
DK-4100 Ringsted
Denmark
Tel: (57) 672080
Fax: (57) 672082

National Semiconductor
(UK) Ltd.
Mekaanikonkatu 13
SF-00810 Helsinki
Finland
Tel: (0) 759-1855
Fax: (0) 759-1393
National Semiconductor
France
Centre d'Affaires "La Boursidière"
Bâtiment Champagne
BP 90
Route Nationale 186
F-92357 Le Plessis Robinson
Paris, France
Tel: (01) 40-94-88-88
Telex: 631065
Fax: (01) 40-94-88-11
National Semiconductor

\section*{France}

Parc d'Affaires Technopolis
3, Avenue du Canada
Bat. ZETA-L.P. 821 LES ULIS
F-91974 COURTABOEUF CEDEX
Tel: (1) 69183700
Fax: (1) 69183769
National Semiconductor
GmbH
Eschborner Landstrasse 130-132
D-60489 Frankfurt
Germany
Tel: (0-69) 7891090
Fax: (0-69) 78-94-38-3

\section*{National Semiconductor}

GmbH
Industriestrasse 10
D-82256 Fürstenfeldbruck
Germany
Tel: (0-81-41) 103-0
Telex: 527649
Fax: (0-81-41) 10-35-06
National Semiconductor
GmbH
Untere Waldplätze 37
D-70569 Stuttgart
Germany
Tel: (07-11) 68-65-11
Fax: (07-11) 68-65-260

\section*{National Semiconductor}

Hong Kong Ltd.
13th Floor, Straight Block
Ucean Centre
5 Canton Rd.
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 737-1600
Telex: 51292 NSHKL
Fax: (852) 736-9960
National Semiconductor
(UK) Ltd.
Unit 2A
Clonskeagh Square
Clonskeagh Road
Dublin 14
Ireland
Tel: (01) 260-0022
Fax: (01) 283-0650
National Semiconductor SpA
Strada 7, Palazzo R/3
1-20089 Rozzano-Milanofiori
Italy
Tel: (02) 57500300
Fax: (02) 57500400
National Semiconductor
Sumitomo Chemical
Engineering Center Bldg. 7F
1-7-1, Nakase, Mihama-Ku
Chiba-City, Ciba Prefecture 261
Tel: (043) 299-2300
Fax: (043) 299-2500
National Semiconductor
(Far East) Ltd.
Korea Branch
13th Floor, Dai Han
Life Insurance 63 Building
60, Yoido-dong, Youngdeungpo-ku
Seaul
Korea 150-763
Tel: (02) 784-8051
Telex: 24942 NSRKLO
Fax: (02) 784-8054
Electronica NSC
de Mexico SA
Juventino Rosas No. 118-2
Col Guadalupe Inn
Mexico, 01020 D.F. Mexico
Tel: (525) 661-7155
Fax: (525) 661-6905

National Semiconductor
Asia Pacific Pte. Ltd.
200 Cantonment Road \# 13-01
Southpoint
Singapore 0208
Singapore
Tel: (65) 225-2226
Telex: NATSEMI RS 33877
Fax: (65) 225-7080
National Semiconductor
Calle Agustin de Foxa, 27 (\(9^{\circ} \mathrm{D}\))
E-28036 Madrid
Spain
Tel: (01) 7-33-29-58
Fax: (01) 7-33-80-18
National Semiconductor AB
P.O. Box 1009

Grosshandlarvagen 7
S-12123 Johanneshov
Sweden
Tel: (08) 7228050
Fax: (08) 7229095
National Semiconductor
Alte Winterthurerstrasse 53
CH-8304 Wallisellen-Zürich
Switzerland
Tel: (01) 8-30-27-27
Fax: (01) 8-30-19-00
National Semiconductor
(Far East) Ltd.
Taiwan Branch
9F, 44 Chungshan North Road
Section 2
Taipei, Taiwan, R.O.C.
Tel: (02) 521-3288
Fax: (02) 561-3054
National Semiconductor
(UK) Ltd.
The Maples, Kembrey Park
Swindon, Wiltshire SN2 6YX
United Kingdom
Tel: (0793) 614141
Telex: 444674
Fax: (0793) 522180

Printed on Recycled Paper```

[^0]: Note 5: Parameter characterized but not production tested.

[^1]: \ddagger These parts include National's COP8 Assembler/Linker/Librarian Package (COP8-DEV-IBMA)

[^2]: * $=$ On the 40-pin package Pins 15 and 16 must be connected to GND.

[^3]: \ddagger These parts include National's COP8 Assembler/Linker/Librarian Package (COP8/DEV-IBMA).

[^4]: - = > Memory location addressed by B or X or directly.

[^5]: *Check with the local sales office about the availability.

[^6]: \ddagger These parts include National's COPB Assembler/Linker/Librarian Package (COP8-DEV-IBMA).

[^7]: FIGURE 4. RAM Organization

[^8]: * y is a variable which represents the VIS block. VIS and the vector table must be located in the same 256-byte block except if VIS is located at the last address of a block, In this case, the table must be in the next block.

[^9]: Reading memory locations $0070 \mathrm{H}-007 \mathrm{FH}$ (Segment 0) will return all ones. Reading unused memory locations between 0080H-00F0 Hex (Segment 0) will return

[^10]: where, i is the immediate data

