NS16000
DATABOOK

NATIONAL
SEMICONDUCTOR
CORPORATION

NS16000
DATABOOK

NATIONAL |
SEMICONDUCTOR
CORPORATION

Introduction

This NS16000 Databook presents technical descriptions of
the entire NS16000 family of 8-, 16- and 32-bit micro-

. processors, slave processors, peripherals, software and
development tools. It is designed to be updated frequently
so that our customers can have the latest technical infor- -
mation on the NS16000 family.

The NS16000 family leads the way in state-of-the-art
microprocessor designs because of its advanced architec-
ture, which includes:

* 32-Bit Architecture
» Demand Paged Virtual Memory

* Fast Floating-Point Capability

e High-Level Language Support

e Symmetrical Architecture

When we at National Semiconductor began the design of
the NS16000 microprocessor family, we decided to take a
radical departure from popular trends in architectural
design-trends that date back more than a decade. We
chose to take the time to design it properly.

Working from the top down, we analyzed the issues and
anticipated the computing needs of the 80’s and 90’s. The
result is an advanced and efficient family of microprocessor
hardware and software products.

Clearly, software productivity has become a major issue in
computer-related product development. In microprocessor-
based systems this issue centers around the capability of
the microprocessor to maximize the utility of software
relative to shorter development cycles, improved software
reliability and extended software life cycles.

In short, the degree to which the microprocessor can max-
imize software utility directly affects the cost of a product,
its reliability, and time to market. It also eliminates future
software modification for product enhancement or because
of rapid advances in hardware technology.

Our approach has been to define an architecture address-
ing these software issues most effectively. The NS16000
combines 32-bit performance with efficient management
of large address space. It facilitates high-level language
program development and efficient instruction execution.
Floating-point is integrated into the architecture.

This combination gives the user large system computing
power at two orders of magnitude less cost.

But we didn’t stop there. Advanced architecture isn’t
enough. Our top-down approach includes the hardware,
software, and development support products necessary for
your design. The evaluation board, in-system emulator,
software development tools, including a VAX-11 cross- ‘
software package, and third party software are also avail-
able now for your evaluation and development.

The NS16000 family is a solid foundation from which
National can build solutions for your future designs while
satisfying your needs today.

Training

In addition to customer training on National’s micro-
processors, Starplex ™ and ISE™, training on the
NS16000 family is now being conducted. This includes
“The NS16000 Architecture”, “ISE/16”, “NSX-16 Cross-
Software Support”, “GENIX Cross Support” and “SYS16”.

The NS16000 family development tools are thoroughly ex-
plained and demonstrated through lectures and lab exer-
cises. Depending on the topic, these courses take from
two to five days.

National’s Training Center is located in San Jose, Califor-

nia, about forty miles south of San Francisco International
Airport, and only ten minutes from San Jose Airport. Upon
request, National will conduct on-site customer training.

Service

The Service Organization offers three levels of technical
support for the Microcomputer Systems Division’s
products:

1 The Response Center utilizes SPIRE, a computerized
technical data base designed for rapid search, to solve
customer and technical problems. Depot repair services
are available for board and system products. Qur
customers can use our toll-free numbers to contact the
Response Center for immediate solutions. (800) 538-1866
(California only) or (800) 672-1811. ‘

2 When indicated, the Response Center will utilize our
Application System Engineers who have in-depth product
knowledge for dealing with application-oriented issues
(both hardware and software) to help solve customer
design problems. The Application System Engineers are
supported by engineering and manufacturring resources.

3 National’s Field Engineers are located in various cities
in the United States and Canada, and are available for
dispatch to customer sites to repair our development
systems products. Each field engineering location main-
tains an extensive spare parts inventory. ‘

Microcomputer Systems Division

The Microcomputer Systems Division’s goal is to become
a leading force in the microcomputer systems
marketplace.

To achieve this goal, a total systems approach has been
taken on the NS16000 program to provide the customer
with the necessary hardware and software support, evalua-
tion and development tools, training, service and technical
literature.

The focus is on upward migration paths, system integra-
tion at all levels and the preservation of the user’s soft-.
. ware investment.

Four groups (Microprocessors, OEM Board Level Products,
. Software Products and Development Systems) offer a
broad capability to solve customer needs at various levels
of performance and integration.

Quality and Reliability

As electronic systems become more and more complex,
the need for consistently high quality integrated circuits
becomes increasingly important. Having recognized this
need as far back as the 1970’s, National Semiconductor
initiated a unique, company-wide Quality Improvement
Program. The results have been dramatic and, we believe,
unmatched in this industry. Over the years, National has -
regularly been named by many major customers as “Quali-
-ty Manufacturer of the Year”. We are proud of our success,
which sets a standard for others to achieve. And yet our
quest for perfection is ongoing, so that customers can
continue to rely on National Semiconductor integrated cir-
cuits and products in their system designs.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUP-
PORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF
NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical im-
plant into the body, or (b) support or sustain life,
and whose failure to perform, when properly used
in accordance with instructions for use provided
in the labeling, can be reasonably expected to re-
sult in a significant injury to the user.

2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure
of the life support device or system, or to affect its
safety or effectiveness.

TRI-STATE® is a registered trademark of National Semiconductor Corp. !
BLX™, DIGITALKER™, GENIXT™, ISET™, ISE/O8™, ISE/16T™, ISE/32™™, NS16000™, NSX16™™,
STARPLEX™, STARPLEX II™, SYS16™, and XMOS™ are trademarks of National Semiconductor

Corp.
UNIX™ s a trademark of Bell Laboratories
DEC?® is a registered trademark of Digital Equipment Corp.

VAX™, VAX-11™ and VMS™ are trademarks of Digital Equipment Corp.

MICROBUS™ is a trademark of intel Corp.

PAL® isa registered trademark and used with the permission of Monolithic Memories, Inc.

National does not assume any responsibility for use of any circuitry described; no circuit patent
licenses are implied, and National reserves the right, at any time without notice, to change said
circuitry and specifications.

Information contained herein is intended to be a general product description and is subject to
change.

Table of Contents

Introduction it i i et i e i
Training.............. e ieararesreenarer ey e eeae e i
L7274 ii
Microcomputer Systems DiviSionttt i i iii
Quality and Reliability e e e e e, iili

HardwareChart R vii

DevelopmentToolsChart i i i it viii

CPUs ‘

NS08032-6, NS08032-4 High-Performance 8-Bit Microprocessors 3
NS16032-4,NS16032-6 High-Performance Microprocessors.covveuvenns 51
NS16032-10 High-Performance MiCrOprocessor.vvvve i iniinnenrenrennnens 13
NS32032-6, NS32032-4 High-Performance Microprocessorscoeeeeuen.. 175

S|ive Processors
NS16081-6 Floating-PointUnitottt i iiienaes. . 239
NS16082 MemoryManagementUnit. it iiiiiiiiiinnnnnn 253

Peripherals

" DPB350Series CRTCONIONETS - ... eu et eee e aeeeiae e tieeeeeninansannns 275
DP8400 E*C?Expandable Error Checkerand Corrector.oovveineeennnnnnn.. 299
DP8408 Dynamic RAMController/Driver.ttt it iiii i 332
DP8409 Multi-Mode Dynamic RAM Controller/Driver coviiiiiiiiinnnnns 350
DPB460 DataSeparatorcoiiiiiiiiiiit ittt e i e 372
DP84300 Programmable RefreshTimer i, 394
DP84312 Dynamic RAM Controller Interface Circuit for the NS16032CPU 400
INS8250A Asynchronous CommunicationsElementcoooion... 409
NS16201-6 TimingControlUnit................ ... i i, .. 425
NS16202 InterruptControlUnit ...t i i e, .. 443

Development Tools
BLX-281A, BLX-281B Speech Synthesis Expansion Modules. e 467
BLX-350 Parallel /OExpansionModulettt iinii it it 47
BLX-351 Serial /O ExpansionModuleccoiiiiiiiiiiiii i, 475
BLX-391 Prototyping ExpansionModule il 480
DB16000 DevelopmentBoard PP 484
GENIXCross SupportSoftwareooiiiiiiii it 489
NSO08032 In-System Emulator (ISE/08) T i 491
NS16032 In-System Emulator(ISE/M6)ttt i it i i eaenann 506
NSX16 Cross SoftwarePackagecuiiiiiiiiiiini it iii i, 520
SYS16 Multi-User Development System for the NS16000 Microprocessor Family 522

Software
BLMX-16 Board Level, MultitaskingExecutive 527
GENIXOperating Systemttt i i e it i e 531

NS16000 Micrgprooessor Family

CPUs PROSCLEAgSEORS PERIPHERALS PERIPHERAL
%z%s'ﬁ%%% n&ﬂ?ﬂ?um: Timiugs gg!%rgl" Unit Te"“"'\“;ﬂ"g;:??m"'
i i i i
12‘:2?2!36:? gpzu Memyfvségﬂ?g%mem Interrupt Controller INS&%?OA
i i ' i
Doy CUSTOM oY Comtater

Note: Products in the Shaded boxes are additional hardware components planned to
support the NS16000 CPUs. Please contact your local National Sales Office for further

information on their availability.

DP8400

Error Correction

DP8408/9
RAM Controller

DP8460
Hard Disk Data
Separator

NS16000 Development Tools

HOST
DEVELOPMENT CROSS- IN-SYSTEM DEVELOPMENT
BOARDS SOFTWARE EMULATORS SYSTEM
NSX-16 sysie™
i ' 1
SENIXE ISE/16™ STARPLEX I
1
VAX-11" SERIES
VMS, UNIX™ O.S. J
ST T T AN

Note: Products in the Shaded boxes are additional hardware components planned to
support the NS16000 CPUs. Please contact your local National Sales Office for further
information on their availability.

viii

o

den
ik

b
i

National
Semiconductor

PRELIMINARY

NS08032-6, NS08032-4 High-Performance

8-Bit Microprocessors
General Description

The NS08032 functions as a Central Processing Unit
(CPU) in National Semiconductor’s NS16000 microcom-
puter family. It has been designed to optimally support
microprocessor users who need the ability to use a large
addressing space for large programs and/or large data
structures. Because large programs must realistically be
generated and maintained in high-level languages, the
NS16000 architecture provides for very efficient compi-
lation while remaining easy to program at the assembler
level for optimizations. The NS08032 represents an
implementation of this architecture for 8-bit systems.
High-performance Floating-Point instructions are pro-
vided with the NS16081 Floating-Point Unit (FPU). The
NS08032-4 and NS08032-6 have different timing para-
meters. Refer to Section 4 for timing specifications.

Features

B 32-Bit Architecture and Implementation

8-bit Bus for Low System Cost
16-MByte Uniform Addressing Space

Powerful Instruction Set

— General Two-Address Capability

— Very High Degree of Symmetry

— Addressing Modes Optimized for High-Level
Language References

— Expansion via Slave Processors or Traps

® High-Speed XMOS Technology
Single 5V Supply
48-Pin Dual-In-Line Package

NS08032-4/-6 CPU Block Diagram

ADD/DATA CONTROLS & STATUS

DATA
BUS INTERFACE CONTROL
INSTRUCTIONS | 16 :
MICROCODE ROM
AND
CONTROL LOGIC
ABYTE
QUEUE
16
INSTRUCTION
=1 DECODER
@ .
DISPLACEMENT AND 2 a1
: IMMEDIATE EXTRACTOR = CFG REGISTER
E
@
w
=
Z
E
@
REGISTER SET 8
0 INTBASE
0 SB WORKING
0 FP REGISTERS
0 SP1
0 SPO
0 PC
RO
R vV
R2 32-BIT
3 ALU
R4 |
RS |
R6 !
R7 |
MOD i
PSR |
A |
e J TLIC5049

Absolute Maximum Ratings

Temperature under bias

Storage Temperature

All input or output voltages with
respect to GND

Power Dissipation

0to+70°C
-65°C to +150°C

-0.5Vto+7V
1.5 Watt

Note: Absolute maximum ratings indicate limits beyond which
permanent damage may occur. Continuous operation at these
limits is not intended; operation should be limited to those condi-

tions specified under DC Electrical Characteristics.

DC Electrical Characteristics:

NS08032-4- T5=0to +70°C, Voc =5V +5%, GND =0V
NS08032-6 Tp=0to +50°C, Voc =5V +5%, GND =0V

Symbol Parameter Conditions Min. Typ. Max. Unit
ViH Logical 1 Input Voltage 2.0 Vect0.5 \
ViL Logical 0 Input Voltage -0.5 0.8 \'
VcH Logical 1 Clock Voltage PHI1, PHI2 pins only Vec—0.5 Veet+0.5 \
VoL Logical 0 Clock Voltage PHI, PHI2 pins only -0.5 0.3 \"

Logical 0 Clock Voitage, Transient . _
Veur (ringing tolerance) PHI1, PHI2 pins only 0.5 0.6 \"
Vou Logical 1 Output Voltage lon =—400uA 24 Vv
VoL Logical 0 Output Voltage loL=2mA 0.45 \'
s SPC Input Current (low) Vin =0.4V, SPC in input mode 0.05 1.0 mA
<Vin< i :
I Input Leakage Current ng\;INP\HYgC% inputs except -10 10 uA
loorr) | Output Leakage Current 0.4<Vour<Vcc -20 20 uA
lcc Active Supply Current lour=0, Ta=25°C 180 300 mA

1 NS08032 Pin Descriptions

The following is a brief description of all NS08032 pins.
The descriptions reference portions of the Functional
Description, Section 3.

1.1 Supplies

Power (Vcc): +5V Positive Supply. Section 3.1.

Logical ‘Ground (GNDL): Ground reference for on-chip
logic. Section 3.1.

Buffer Ground (GNDB): Ground reference for on-chip
drivers connected to output pins. Section 3.1.

Back-Bias Generator (BBG): Output of on-chip substrate
voltage generator. Section 3.1.

1.2 Input Signals

Clocks (PHI1, PHI2): Two-phase clocking signals. Sec-
tion 3.2

Ready (RDY): Active high. While RDY is inactive, the CPU
extends the current bus cycle to provide for a slower
memory or peripheral reference. Upon detecting RDY
active, the CPU terminates the bus cycle. Section 3.4.1.

Hold Request (HOLD): Active low. Causes the CPU to
release the bus for DMA or multiprocessing purposes.
Section 3.5.

Interrupt (INT): Active low. Maskable Interrupt Request.
Section 3.7.

Non-Maskable Interrupt (NMI): Active low. Non-Ma;k-
able Interrupt Request. Section 3.7.

Reset (RST): Active low. It initiates a Reset. Sectibn 3.3.

Connection Diagram v
\/ 48] vee

A2 11 e
A2 47 [] A23
A20[]3 a6 [JNT
a9 |4 as [Nmi
A18 5 LY i)
A17 % 6 a3 sTO
A7 42 ST1
ADIS [8 a1 sT2
ADW[]9 ©a0 ST3
ADI3[110 39 [} PFS
ap12[1 38] DDIN
AD11 [12 37 [ADS
AD10 [13 NS08032 36 [u/s
ADs [1a . 35 |} SPC
AD8 [15 34 [RST
AD7 16 33 []0s
AD6 é 17 32 [HBE
ADS 18 31 [] HLDA
ADa [19 30 [AOLD
AD3 [71 20 29 [] BBG
AD2 [T 21 28 [RDY
AD1] 22 27 [PHI2
ADO [23 26 PHI1
GNDL [] 24 25 E GNDB
TUCS5049

1.3 Output Signals

Address Bits 16-23 (A16-A23): Active high. These are the
most significant eight bits of the memory address bus.
Section 3.4.

Address Strobe (ADS): Active low. Controls address
latches; indicates start of a bus cycle. Section 3.4.

Data Direction In (DDIN): Active low. Status signal indi-
cating direction of data transfer during a bus cycle. Sec-
tion 3.4.

Status (ST0-ST3): Active high. Bus cycle status code,
STO least significant. Section 3.4.2. Encodings are:

0000—Idle: CPU Inactive on Bus
0001 —Idle: WAIT Instruction

0010 — (Reserved)

0011 —Idle: Waiting for Slave
0100 — Interrupt Ack., Master

0101 —Interrupt Ack., Cascaded
0110—End of Interrupt, Master
0111 — End of Interrupt, Cascaded
1000— Sequential Instruction Fetch
1001 — Nonsequential Instruction Fetch
1010 — Data Transfer

1011 —Read RMW Operand

1100 — Read for Effective Address
1101 —Transfer Slave Operand
1110— Read Slave Status Word
1111 —Broadcast Slave ID.

Hold Acknowledge (HLDA): Active low. Applied by the
CPU in response to HOLD input, indicating that the bus
has been released for DMA or muitiprocessing pur-
poses. Section 3.5.

User/Supervisor (UI§): User or Supervisor Mode status.
High state indicates User Mode, low indicates Supervis-
or Mode. Section 3.6.

Interlocked Operation (ILO): Active low. Indicates that an
interlocked instruction is being executed. Section 3.6.

Program Flow Status (PFS): Active low. Pulse indicates
beginning of an instruction execution. Section 3.6.

Data Strobe (DS): Active low. Data strobe output. Sec-
tion 3.4.

1.4 Input-Output Signals

Address/Data 0-15 (ADO-AD15): Active high. In all
except Slave Processor bus cycles, pins ADO-AD7 serve
as an 8-bit Multiplexed Address/Data bus, and pins
AD8-AD15 hold address bits 8-15 throughout the bus
cycle. Bit 0is defined as the least-significant bit. Section
34.

In Slave Processor bus cycles, all 16 pins are used as a
data bus (Section 3.4.6).

Slave Processor Control (SPC): Active low. Used by the
CPU as the data strobe output for Slave Processor trans-
fers; used by Slave Processors to acknowledge comple-
tion of an instruction. Section 3.4.6 and Section 3.8.

Data Strobe: Active low. Data Strobe output. Section 3.4.

2 Architectural Description
2.1 Programming Model

The NS16000 architecture includes 16 registers on the
NS08032 CPU. Figure 2-1 shows the NS08032 registers.

2.1.1 General Purpose Registers

There are eight registers for meeting high-speed general
storage requirements, such as holding temporary vari-
ables and addresses. The general purpose registers are
free for any use by the programmer. They are 32 bits in
length. If a general register is specified for an operand
which is 8 or 16 bits long, only the low part of the register
is used; the high part is not referenced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the NS08032 are assign-
ed specific functions:

PC: The PROGRAM COUNTER register is a pointer to the
first byte of the instruction currently being executed. The
PC is used to reference memory in the program section.
(In the NS08032, the upper eight bits of this register are
always zero.)

SPO0, SP1: The SPO register points to the lowest address of
the last item stored on the INTERRUPT STACK. This stack
is normally used only by the operating system. It is used
primarily for storing temporary data, and holding return
information for operating system subroutines and inter-
rupt and trap service routines. The SP1 register points to
the lowest address of the last item stored on the USER
STACK. This stack is used by normal user programs to
hold temporary data and subroutine return information.

In this document, reference is made to the SP register.
The terms “SP register” or “SP” refer to either SP0 or SP1,
depending on the setting of the S bit in the PSR register. If
the S bit in the PSR is 0, then SP refers to SPO. If the S bit
in the PSRis 1, then SP refers to SP1. (In the NS08032, the
upper eight bits of these registers are always zero.)

Stacks in the NS16000 family grow downward in memory.
A push operation pre-decrements the stack pointer by the
operand length. A pop operation post-increments the
stack pointer by the operand length.

FP: The FRAME POINTER register is used by a procedure
to access parameters and local variables on the stack.
The FP register is set up on procedure entry with the
ENTER instruction and restored on procedure termination
with the EXIT instruction.

The frame pointer holds the lowest address in memory
occupied by the old contents of the frame pointer. (In the
NS08032, the upper eight bits of this register are always
zero.)

SB: The STATIC BASE register points to the global
variables of a software module. This register is used to
support relocatable global variables for software mod-
ules. The SB register holds the lowest address in memory
occupied by the global variables of a module. (In the
NS08032, the upper eight bits of this register are always
zero.)

DEDICATED
32 >

A

PROGRAM COUNTER J PC

FRAME POINTER | FP

USERSTACK PTR. | SP1

INTERRUPT STACK PTR. | SPO

r
o | STATIC BASE | SB
[
|
|
|

1 e e e e
o

INTERRUPT BASE | INTBASE
PSR MOD

[sratus I wooue |

GENERAL

|
|

b
o
—

0
w
S S T TR SRR SR SR S

0 bl
N e

2 3 2

I I 1 N I O | S | O

rr [

TUC5049

FIGURE 2-1. The General and Dedicated Registers

INTBASE: The INTERRUPT BASE register holds the
address of the dispatch table for interrupts and traps
(Section 3.7). The INTBASE register holds the lowest
‘address in memory occupied by the dispatch table. (In
the NS08032, the upper eight bits of this register are
always zero.) :

MOD: The MODULE register holds the address of the mod-
ule descriptor of the currently executing software module.
The MOD register is 16 bits long, therefore the module
table must be contained within the first 64k bytes of
memory.

PSR: The PROCESSOR STATUS REGISTER holds the
status codes for the NS08032 microprocessor.

The PSR is 16 bits long, divided into two 8-bit halves
(Figure 2-2). The low order eight bits are accessible to all
programs, but the high order eight bits are accessible
only to programs executing in Supervisor Mode.

15 8)7 0
I|P|S|U N]ZIFML|T|C
TLIC5049

FIGURE 2-2. The Processor Status Register

C: The C bit indicates that a carry or borrow occurred
after an addition or subtraction instruction. It'is used in
the calculation of multiple precision numbers. It may
have a setting of 0 (no carry or borrow) or 1 (carry or
borrow).

T:The T bit causes program tracing. If this bitisa 1,a TRC
trap is executed after every instruction (Section 3.7.5).

L: The L bit is altered by comparison instructions. In a
comparison instruction, the L bit is set to “1” if the
second operand is less than the first operand, when both
operands are interpreted as unsigned integers. Other-
wise, it is set to “0”. In Floating-Point comparisons, this
bit is always cleared.

F: The F bit is a general condition flag, which is altered
by many instructions (e.g., integer arithmetic instruc-
tions use it to indicate overflow).

Z: The Z bit is altered by comparison instructions. In a
comparison instruction, the Z bit is set to “1” if the
second operand is equal to the first operand; otherwise
itis set to “0".

N: The N bit is altered by comparison instructions. in a
comparison instruction, the N bit is set to “1” if the
second operand is iess than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to “0".

U: If the U bit is “1”, no privileged instructions may be
executed. If the U bit is “0”, then all instructions may be
executed. When U=0, the NS08032 is said to be in
Supervisor Mode; when U =1, the NS08032 is said to be
in User Mode. A User Mode program is restricted from
executing certain instructions and accessing certain
registers which could interfere with the operating
system. For example, a User Mode program is prevented
from changing the setting of the flag used to indicate its
own privilege mode. A Supervisor Mode program is
assumed to be a trusted part of the operating system,
hence it has no such restrictions.

S: The S bit specifies whether the SPO register or SP1
register is used as the stack pointer. The bit is automatic-
ally cleared on interrupts and traps. It may have a setting
of 0 (use the SPO register) or 1 (use the SP1 register).

P: The P bit prevents a TRC trap from occurring more
than once for an instruction (Section 3.7.5). It may have a
setting of 0 (no trace pending) or 1 (trace pending).

l:IfI =1,then all i_n_t(_arrupts will be accepted (Section 3.7).
If 1 =0, only the NMl interrupt is accepted. Trap enables
are not affected by this bit.

2.1.3 The Configuration Register (CFG)

Within the Control section of the NS08032 CPU is the
4-bit CFG Register, which declares the presence of cer-
tain external devices. It is referenced by only one instruc-
tion, SETCFG, which is intended to be executed only as
part of system initialization after reset. The format of the
CFG Register is shown in Figure 2-3.

o D]

FIGURE 2-3. CFG Register

TUC5049

The CFG | bit declares the presence of external interrupt
vectoring circuitry (specifically, the NS16202 Interrupt
Control Unit). If the CFG 1 bit is set, interrupts requested
through the INT pin are “Vectored.” If it is clear, these
interrupts are “Non-Vectored.” See Section 3.7.

The F and C bits declare the presence of the FPU and Cus-
tom Slave Processors. If these bits are not set, the cor-
responding instructions are trapped as being undefined.

2.1.4 Memory Organization

The main memory of the NS08032 is a uniform linear ad-
dress space. Memory locations are numbered sequen-
tially starting at zero and ending at 22*—1. The number
specifying a memory location is called an address. The
contents of each memory location is a byte consisting of
eight bits (Figure 2-4A). Unless otherwise noted, dia-
grams in this document show data stored in memory
with the lowest address on the right and the highest ad-
dress on the left. Also, when data is shown vertically, the
lowest address is at the top of a diagram and the highest
address at the bottom of the diagram. When bits are
numbered in a diagram, the least significant bit is given
the number zero, and is shown at.the right of the
diagram. Bits are numbered in increasing significance
and toward the left. :

7 0
A
A. Byte at Address A
15 8]7 0
MSB's LSB's
A+1 A
B. Word at Address A
31 24)23 16]15 8|7 0
MSB's LSB's

A+3 A+2 A+
TLIC5049

C. Double Word at Address A

FIGURE 2-4. Data Formats for NS08032 Memory

Two contiguous bytes are called a word (Figure 2-4B).
Except where noted (Section 2.2.1), the least significant
byte of a word is stored at the lower address, and the
most significant byte of the word is stored at the next
higher address. In memory, the address of a word is the
address of its least significant byte, and a word may
start at any address.

Two contiguous words are called a double word (Figure
2-4C). Except where noted (Section 2.2.1), the least
significant word of a double word is stored at the lowest
address and the most significant word of the doubie

word is stored at the address two greater. In memory, the
address of a double word is the address of its least
significant byte, and a double word may start at any ad-
dress.

2.1.5 Dedicated Tables

Two of the NS08032 dedicated registers (MOD and
INTBASE) serve as pointers to dedicated tables in
memory.

The INTBASE register points to the Interrupt Dispatch
and Cascade tables. These are described in Section 3.7.

The MOD register contains a pointer into the Module
Table, whose entries are calied Module Descriptors. A
Module Descriptor contains four pointers, three of which
are used by the NS08032. At any point in time, the MOD
register contains the address of the Module Descriptor
for the currently running module. it is automatically up-
dated by the Call External Procedure instructions (CXP
and CXPD).

The format of a Module Descriptor is shown in Figure
2-5.The Static Base entry contains the address of static
data which is assigned to the running module. It is
loaded into the CPU Static Base register by the CXP and
CXPD instructions. The Program Base entry contains
the address of the first byte of instruction code in the
module. Since a module may have multipie entry points,
the Program Base pointer serves only as a reference to

find them.
o "
31 0
STATIC BASE -
LINK TABLE ADDRESS
PROGRAM BASE
RESERVED

~ ~

FIGURE 2-5. Module Descriptor Format

TUC5049

The Link Table Address points to the Link Table for the
currently running module. The Link Table provides the in-
formation which is needed for:

1. Sharing variables between modules. Such variables
are accessed through the Link Table via the External
addressing mode.

2. Transferring control fromone moduleto another. Thisis
done via the Call External Procedure (CXP) instruction.

The format of a Link Table is given in Figure 2-6. A Link

‘Table Entry for an external variable contains the 32-bit
. address of that variable. An entry for an external proce-

dure contains two 16-bit fields: Module and Offset. The
Module field contains the new MOD register contents for
the module being entered. The Offset field is an un-
signed number giving the position of the entry point
relative to the new module’s Program Base pointer.

For further details of the functions qf these tables, see
the NS16000 Programmer’s Reference Manual.

- ,
ENTRY |31 o’
0 ABSOLUTE ADDRESS (VARIABLE)
1 ABSOLUTE ADDRESS (VARIABLE)
2 OFFSET MODULE (PROCEDURE)
L 4

TUC5049

FIGURE 2-6. A Sample Link Table

2.2 Instruction Set
2.2.1 General Instruction Format

Figure 2-7 shows the general format of an NS16000
instruction. The Basic Instruction is one to three bytes
long and contains the opcode and up to two 5-bit Gener-
al Addressing Mode (“Gen”) fields. Following the Basic
Instruction field is a set of optional extensions which may
appear, depending on the instruction and the addressing
modes selected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose register to use as the index, and
which addressing mode calculation to perform before in-
dexing. See Figure 2-8.

Following Index Bytes come any displacements (address-
ing constants) or immediate values associated with the
selected addressing modes. Each Displacement/Immedi-
ate field may contain one or two displacements, or one
immediate value. The size of a Displacement field is
encoded within the top bits of that field, as shown in
Figure 2-9, with the remaining bits interpreted as a signed
(two’s complement) value. The size of an Immediate value
is determined from the Opcode field. Both Displacement
and Immediate fields are stored most-significant byte
first. Note that this is backward from the usual memory
representation of data (Section 2.1.4).

Some instructions require additional, “implied” immedi-
ates and/or displacements, apart from those associated
with addressing modes. Any such extensions appear at
the end of the instruction, in the order that they appear
within the list of operands in the instruction definition
(Section 2.2.3).

GEN. ADDR. MODE REG. NO.

TUCS049

FIGURE 2-8. Index Byte Format

2.2.2 Addressing Modes

The NS08032 CPU generally accesses an operand by cal-
culating its Effective Address based on information
available when the operand is to be accessed. The
method to be used in performing this calculation is spe-
cified by-the programmer as an “addressing mode.”

Addressing modes in the NS08032 are designed to opti-
mally support high-level language accesses to variables.
In nearly all cases, a variable access requires only one
addressing mode, within the instruction which acts
upon that variable. Extraneous data movement is there-
fore minimized.

NS08032 Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight
General Purpose Registers. In certain Slave Processor
instructions, an auxiliary set of eight registers may be
referenced instead.

Register Relative: A General Purpose Register contains
an address to which is added a displacement value from
the instruction, yielding the effective address of the
operand in memory.

Memory Space: Identical to Register Relative above,
except that the register used is one of the dedicated
registers PC, SP, SB or FP. These registers point to data
areas generally needed by high-level languages.

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the Ef-
fective Address of the operand.

Immediate: The operand is encoded within the instruc-
tion. This addressing mode is not allowed if the operand
is to be written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
N
a / Y
T T i H
1
DISP 2 DISP 1 . i
IMPLIED _ X i GEN |
1 1 INDEX INDE: ADDR | ADDR |
IMMEDIATE BYTE BYTE 1 i OPCODE
OPERAND(S) 2 1 MC:DE | Mozns '
IMM2 IMM1 i !
I
1 H

_) TLC5049

FIGURE 2-7. General Instruction Format

0 SIGNED DISPLACEMENT

‘BVTE DISPLACEMENT: RANGE -64 TO +63

DOUBLE WORD DISPLACEMENT: RANGE (ENTIRE ADDRESSING SPACE)
TUCS5049

FIGURE 2-9. Displacement Encodinés

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis-
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO
or SP1) specifies the location of the operand. The oper-
and is pushed or popped, depending on whether it is
written or read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex-
cept Immediate or another Scaled Index. It has the effect
of calculating an Effective Address, then multiplying any
General Purpose Register by 1, 2, 4 or 8 and adding it into
the total, yielding the final Effective Address of the
operand.

The following table, Table 2-1, is a brief summary of the
addressing modes. For a complete description of their
actions, see the Programmer’s Reference Manual.

2.2.3 Instruction Set Summary

This section presents a brief description of the NS08032
instruction set. The instructions are functionally grouped
in Table 2-2. The Format column of each table is a refer-
ence to the Instruction Format tables (Appendix A). The In-
struction column gives the instruction as coded in
assembly language, and the Description column provides
ashort description of the function provided by that instruc-
tion. Further details of the exact operations performed by
each instruction may be found in the Programmer’s
Reference Manual.

Notations:
i = Integer length suffix: B = Byte
W = Word
D = Double Word

f = Floating-Point length suffix: F = Standard Floating
L =Long Floating

gen = General operand. Any addressing mode can be
specified.

short = A 4-bit value encoded within the Basic
Instruction.

imm = Immediate operand. An 8-bit value appended after
any addressing extensions.

disp = Displacement (addressing constant): 8, 16, 32 bits.
All three lengths legal.

reg = Any General Purpose Register: RO-R7.

areg = Any Dedicated/Address Register: SP, SB, FP,
MOD, INTBASE, PSR, UPSR (bottom eight PSR bits).

creg = A Custom Slave Processor Register (implementa-
tion dependent)

cond = Any condition code, encoded as a 4-bit field
within the Basic Instruction.

Table 2-1. NS08032 Addressing Modes

Encoding Mode Assembler Syntax Effective Address
Register
00000 Register 0 RO or FO None: Operand is in the specified register.
00001 Register 1 R1orF1
00010 Register 2 R2 or F2
00011 Register 3 R3or F3
00100 Register 4 R4 or F4
00101 Register 5 R5or F5
00110 Register 6 R6 or F6
00111 Register 7 R7 or F7
Register Relative
01000 Register 0 relative disp(R0) Disp + Register.
01001 Register 1 relative disp(R1)
01010 Register 2 relative disp(R2)
01011 Register 3 relative disp(R3)
01100 Register 4 relative disp(R4)
01101 Register 5 relative disp(R5)
01110 Register 6 relative disp(R6)
01111 Register 7 relative disp(R7)
Memory Space i : .
11000 Frame memory disp(FP) Disp + Register; “SP” is either SP0Q or
11001 Stack memory disp(SP) SP1, as selected in PSR.
11010 Static memory disp(SB)
11011 Program memory disp(PC)
Memory Relative
10000 Frame memory relative disp2(disp1(FP)) Disp2 + Pointer; Pointer found at address
10001 Stack memory relative disp2(disp1(SP)) ~Disp1+ Register. “SP” is either SP0 or
10010 Static memory relative disp2(disp1(SB)) SP1, as selected in PSR.
Immediate)
10100 Immediate value None: Operand is input from instruction
queue.
Absolute
10101 Absolute @disp Disp.
External
10110 External EXTERNAL (disp1) + Disp2 + Pointer; Pointer is found at Link
disp2 Table Entry number Disp1.
Top of Stack
10111 Top of stack TOS Top of current stack, using either User or
Interrupt Stack Pointer, as selected in
PSR. Automatic Push/Pop included.
Scaled Index
11100 Index, bytes mode[Rn:B] Mode + Rn.
11101 Index, words mode[Rn:W] Mode + 2 X Rn.
11110 Index, double words mode[Rn:D] Mode + 4 X Rn.
11111 Index, quad words mode[Rn:Q] Mode + 8 X Rn.
“Mode” and “n” are contained within the
Index Byte.
10011 (Reserved for Future Use)

10

i

Table 2-2. Instruction Set Summary

Format Instruction Description
Moves

4 MOVi gen,gen Move a value.

2 MOVQi short,gen Extend and move a 4-bit constant.

7 MOVMi gen,gen,disp Move Multiple: disp bytes.

7 MOVZBW gen,gen Move with zero extension.

7 MOVZiD gen,gen Move with zero extension.

7 MOVXBW gen,gen Move with sign extension.

7 MOVXiD gen,gen Move with sign extension.

4 ADDR gen,gen Move Effective Address.
Integer Arithmetic

4 ADDi gen,gen Add.

2 ADDQi short,gen Add 4-bit constant.

4 ADDCi gen,gen Add with carry.

4 SUBI gen,gen Subtract.

4 SUBCi gen,gen Subtract with carry (borrow).

6 NEGi gen,gen Negate (2's complement).

6 ABSI gen,gen Take absolute value.

7 MULI gen,gen Muitiply.

7 QUOI gen,gen Divide, rounding toward zero.

7 REMi gen,gen Remainder from QUO.

7, DIVi gen,gen Divide, rounding down.

7 MODi gen,gen Remainder from DIV (Modulus).

7 MEIi gen,gen Muitiply to Extended Integer.

7 DEIli gen,gen Divide Extended Integer.
Packed Decimal (BCD)

6 ADDPi gen,gen Add Packed.

6 SUBPi gen,gen Subtract Packed.
Integer Comparison

4 CMPi gen,gen Compare.

2 CMPQi short,gen Compare to 4-bit constant.

7 CMPMi gen,gen,disp Compare Multiple: disp bytes.
Logical and Boolean

4 ANDi gen,gen Logical AND.

4 ORi gen,gen Logical OR.

4 BICi gen,gen Clear selected bits.

4 XORi gen,gen Logical Exclusive-OR.

6 COMi gen,gen Complement all bits.

6 NOTi gen,gen Boolean complement: LSB only.

2 Scondi gen Save condition code (cond) as a Boolean variable of size i.
Shifts -

6 LSHi gen,gen Logical Shift, left or right.

6 ASHi gen,gen Arithmetic Shift, left or right.

6 ROTi - gen,gen Rotate, left or right.
Bits

4 TBITi gen,gen Test bit.

6 SBITi gen,gen Test and set bit.

6 SBITIi - gen,gen Test and set bit, interlocked.

6 CBITi gen,gen Test and ciear bit.

6 CBITIi gen,gen Test and clear bit, interlocked.

6 IBITi gen,gen Test and invert bit.

8 FFSi gen,gen Find first set bit.

"

Table 2-2. Instruction Set Summary (Cont’d)

Format

Instruction

Description

Bit Fields (Note 1)

8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSi reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm | Extract bit field (short form).
7 INSSIi gen,gen,imm,imm | Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.
Arrays
8 CHECKI reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.
Strings (Note 2)
5 MOVSi options Move String 1 to String 2.
5 MOVST options Move string, translating bytes.
5 CMPSi options Compare String 1 to String 2.
5 CMPST options Compare, translating String 1 bytes.
5 SKPSi options Skip over String 1 entries.
5 SKPST options Skip, translating bytes for Until/While.
Jumps and Linkage
3 JUMP gen Jump.
0 BR disp Branch (PC Relative).
0 Bcond disp Conditional branch.
3 CASEi gen Multiway branch.
2 ACBi short,gen,disp Add 4-bit constant and branch if nonzero.
3 JSR gen Jump to subroutine.
1 BSR disp Branch to subroutine.
1 CXP disp Call external procedure.
3 CXPD gen Call external procedure using descriptor.
1 SvC Supervisor call.
1 FLAG Flag Trap.
1 BPT Breakpoint Trap.
1 ENTER [reg list],disp Save registers and allocate stack frame (Enter Procedure).
1 EXIT [reg list] Restore registers and reclaim stack frame (Exit Procedure).
1 RET disp Return from subroutine.
1 RXP disp Return from external procedure call.
1 RETT disp Return from trap. (Privileged)
1 RETI Return from interrupt. (Privileged)
CPU Register Manipulation
1 SAVE [reg list] Save General Purpose Registers.
1 RESTORE [reg list] Restore General Purpose Registers.
2 LPRi areg,gen Load Dedicated Register. (Privileged if PSR or INTBASE).
2 SPRi areg,gen Store Dedicated Register. (Privileged if PSR or INTBASE).
3 ADJSPi - gen Adjust Stack Pointer.
3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte length).
3 BICPSRIi gen Clear selected bits in PSR. (Privileged if not Byte length).
5 SETCFG [option list] Set Configuration Register. (Privileged) :

12

Table 2-2, Instruction Set Summary (Cont'd)

Format Instruction J Description
Floating Point -
11 MOVF gen,gen Move a Floating-Point value.
9 MOVLF gen,gen Move and shorten a Long value to Standard.
9 MOVFL gen,gen Move and lengthen a Standard value to Long.
9 MOVif gen,gen Convert any integer to Standard or Long Floating.
9 ROUNDfi gen,gen Convert to integer by rounding.
9 TRUNCHi gen,gen Convert to integer by truncating, toward zero.
9 FLOORfi gen,gen Convert to largest integer less than or equal to value.
1 ADDf gen,gen Add.
1 SuBf gen,gen Subtract.
11 MULf gen,gen Mulitiply.
11 DIVf | gen,gen Divide.
" CMPf gen,gen Compare.
1 NEGf gen,gen Negate.
1 ABSf gen,gen Take absolute value.
9 LFSR gen Load FSR.
9 SFSR gen Store FSR.
Miscellaneous
1 NOP : No Operation.
1 WAIT i Wait for interrupt.
1 DIA " | Diagnose. Single-byte “Branch to Self” for hardware breakpointing. Not

for use in programming.

Custom Slave

15.5 CCALOc gen,gen Custom Calculate.

15.5 CCAL1c gen,gen) ;
15.5 CCAL2c gen,gen
15.5 CCAL3c gen,gen

155 CMOVOc gen,gen Custom Move.
15.5 CMOV1ic gen,gen
15.5 CMOV2c gen,gen

15.5 CCMPc gen,gen .| Custom Compare.

15.1 CCV0ci gen,gen Custom Convert.
15,1 CCVici gen,gen
15.1 CCvaci gen,gen
15.1 CCV3ci gen,gen
15.1 CCv4DQ gen,gen
15.1 CCV5QD .gen,gen

15.1 LCSR ' gen Load Custom Status Registér.

15.1 SCSR gen Store Custom Status Register.
15.0 CATSTO gen Custom Address/Test. (Privileged)
15.0 CATST1 gen

15.0 LCR creg,gen Load Custom Register. (Privileged)
15.0 SCR creg,gen Store Custom Register. (Privileged)

Note 1: Bit fields are values in memory which are not aligned to byte boundaries. Examples are PACKED arrays and records used in Pascal. “Extract”
instructions read and align a bit field. “Insert” instructions write a bit field from an aligned source.
Note 2: String instructions assign specific functions to the General Purpose Registers:
R4—Comparison Value . :
R3—Translation Table Pointer
R2—String 2 Pointer
R1—String 1 Pointer
RO—Limit Count
Options on all string instructions are:
B (Backward): Decrement string pointers after each step rather than incrementing.
U (Until match): End instruction if String 1 entry matches R4.
W (While match): End instruction if String 1 entry does not match R4.
All string instructions end when RO decrements to zero.

13

3 Functional Description
3.1 Power and Grounding

The NS08032 requires a single 5V power supply, applied
on pin 48 (Vcc). See DC Electrical Characteristics.

Grounding connections are made on two pins. Logic
Ground (GNDL, pin 24) is the common pin for on-chip
logic, and Buffer Ground (GNDB, pin 25) is the common
pin for the output drivers. For optimal noise immunity, it
is recommended that GNDL be attached through a single
conductor directly to GNDB, and that all other grounding
connections be made only to GNDB, as shown below
(Figure 3-1).

In addition to Vg and Ground, the NS08032 CPU uses an
internally-generated negative voltage. It is necessary to
filter this voltage externally by attaching a pair of
capacitors (Figure 3-1) from the BBG pin to ground.
Recommended values for these are:

Cq: 1uF, Tantalum.

C,: 1000pF, low inductance. This should be either a

disc or monolithic ceramic capacitor.

F NS08032

C2

OTHER GROUND
CONNECTIONS

GNDB |25}

[‘L"’_i GNDL

FIGURE 3-1. Recommended Supply Connections

TUC5049

3.2 Clocking

The NS08032 inputs clocking signals from the NS16201
Timing Control Unit (TCU), which presents two non-over-
lapping phases of a single clock frequency. These
phases are called PHI1 (pin 26) and PHI2 (pin 27). Their
relationship to each other is shown in Figure 3-2.

Each positive edge of PHI1 defines a transition in the
timing state (“T-State”’) of the CPU. One T-State repre-
sents the execution of one microinstruction within the

a5V rz {,L
vee -/
PHI 1 l——l I—I_“_[—I__[_]_
R AR
= .
=50 usec
TLC5049

FIGURE 3-3. Power-On Reset Requirements

CPU and/or one step of an external bus transfer. See the
AC Electrical Characteristics (Section 4) for complete
specifications of PHI1 and PHI2.

!<— ONE T-STATE -»|

[T

PHI2

L

NON-OVERLAPPING

TLCS5049

FIGURE 3-2. Clock Timing Relationships

As the TCU presents signals with very fast transitions, it
is recommended that the conductors carrying PHI1 and
PHI2 be kept as short as possible, and that they not be
connected anywhere except from the TCU to the CPU. A
TTL clock signal (CTTL) is provided by the TCU for all
other clocking.

3.3 Resetting

The RST pin serves as a reset for on-chip logic. The CPU
may be reset at any time by pulling the RST pin low for at
least 64 clock cycles. Upon detecting a reset, the CPU
terminates instruction processing, resets its internal
logic, and clears the Program Counter (PC) and Proces-
sor Status Register (PSR) to all zeroes.

On application of power, RST must be held low for at
least 50us after V¢ is stable: This is to ensure that all
on-chip voltages are completely stable before operation.
Whenever a Reset is applied, it must also remain active
for not less than 64 clock cycles. The trailing (positive-
going) edge must occur while PHI1 is high, and no later
than 10ns before the PHI1 trailing edge. See Figures 3-3
and 3-4.

I‘—‘—A -64 CLOCK —————=
CYCLES

= I

TLIC5049
FIGURE 3-4. General Reset Timing

B (S
RU

14

The NS16201 Timing Control Unit (TCU) provides
circuitry to meet the Reset requirements of the NS08032
CPU. Figure 3-5 shows the recommended connections.

v
ce NS 16201 NS08032
? TCU CcPU
O — A S
| 1 b3
| P \ — —
| AESET >__.D> L ! RSTI RSO RST
I P _‘L L
b e 4 [
EXTERNAL RESET [!
(OPTIONAL) } = = =50 usec
‘ Leed
RESET SWITCH SYSTEM RESET

TLICS048

FIGURE 3-5. Recommended Reset Connections

3.4 Bus Cycles

The NS08032 will perform a bus cycle for one of the fol-
lowing reasons:

1. To write or read data to or from memory or a periph-
eral interface device. Peripheral input and output are
memory-mapped in the NS16000 family.

2. To fetch instructions into the 4-byte instruction queue.
This happens whenever the bus would otherwise be
idle and the queue i$ not already full.

3. To acknowledge an interrupt and allow external cir-
cuitry to provide a vector number, or to acknowledge
completion of an interrupt service routine.

4. To transfer information to or from a Slave Processor.
In terms of bus timing, cases 1 through 3 above are identi-

cal. For timing specifications, see Section 4. The only
external difference between them is the 4-bit code placed

on the Bus Status pins (STO-ST3). Slave Processor cycles
differ in that separate control signals are applied and
transfers are performed 16 bits at a time (Section 3.4.6).

Figure 3-6 shows typical bus connections for the
NS08032. The address, data, and control signals refer-
enced in the following discussion are shown in this fig-
ure.

The sequence of events in a non-Slave Processor bus
cycle is shown in Figure 3-7 for a Read cycle and Figure
3-8 for a Write cycle. The cases shown assume that the
selected memory or interface device is capable of com-
municating with the CPU at full speed. If it is not, then
cycle extension may be requested through the RDY line
(Section 3.4.1).

15

A full-speed bus cycle is performed in four cycles of the
PHI1 clock signal, labeled T1 through T4. Clock cycles not
associated with a bus cycle are designated Ti (for “Idle”).

During T1, the CPU applies an address on pins
ADO-AD15 and A16-A23. It also provides a low-going
pulse on the ADS pin, which serves the dual purpose of
informing external circuitry that a bus cycle is starting
and of providing control to an external latch for demulti-
plexing address bits 0-7 from the ADO-AD7 pins. See
Figure 3-6. Also during this time the status signal DDIN,
indicating the direction of the transfer, becomes valid.

During T2, the CPU switches the Data Bus, ADO-AD7, to
either accept or present data. Note that the signals
AD8-AD15 and A16-A23 remain valid, and need not be
latched. It also starts the Data Strobe (DS), signaling the
beginning of the data transfer. Associated signals from
the NS16201 Timing Control Unit are also activated at
this time: RD (Read Strobe) or WR (Write Strobe), TSO
(Timing State Output, indicating that T2 has been
reached) and DBE (Data Buffer Enable).

The T3 state provides for access time requirements, and
it occurs at least once in a bus cycle. At the beginning of
T3, on the rising edge of the PHI1 clock, the RDY (Ready)
line is sampled to determine whether the bus cycle will
be extended (Section 3.4.1).

If the CPU is performing a Read cycle, the Data Bus
(ADO-AD?7) is sampled at the falling edge of PHI2 of the
last T3 state. See Timing Specification, Section 4. Data
must, however, be held at least untif the beginning of T4.
DS and RD are guaranteed not to go inactive before this
point, so the rising edge of either of them may safely be
used to disable the device providing the input data.

The T4 state finishes the bus cycle. At the beginning of
T4, the DS, RD or WR, and TSO signals go inactive, and at
the rising edge of PHI2, DBE goes inactive, having pro-
vided for necessary data hold times. Addresses (and
Data during Write cycles) remain valid from the CPU
throughout T4. Note that the Bus Status lines (ST0-ST3)
change at the beginning of T4, anticipating the following
bus cycle (if any).

DDIN /
’ DATA
ADO-AD7 |4)| BUFFER | (ee——)
NS08032 ’
HBE"
ADS ¢
» OCTAL —
4 LATCH
A0-A23
AD8-AD15 -)
A16-A23
PHI1 PHI2 DS
| s
PHI1 PHI2 ADS DDIN DBE__ RD
RD
NS16201 W—R WR
_— TSO
TS0

TLC5049

FIGURE 3-6. Bus Connections

an

" | 2222

2K
" 2227

y
- (7707777 07077

=

NS08032 CPU BUS SIGNALS

o | Lo e | e |
J L L

%(A?,gﬂﬁ,ss}--@% DATAIN }----=}~(NEXT ADDR

_/

STATUS VALID X NEXT STATUS

./

N

NS16201 TCU BUS SIGNALS

L

FIGURE 3-7. Read Cycle Timing

17

PHI1

ADB8-AD15

A16-A23

ADO-AD7

ADS

STO-ST3

DDIN |

RDY

DBE

TSO

AN

NS08032 CPU BUS SIGNALS

’ TAORTi | T 1 T2 ‘

L]

T3 t T4

L]

| T1IORT ‘

)

: //AV/////A ADDRESS VALID

_ L
i
XNEXT ADD‘R

| 200X

NN

DATA OUT

Xriex*r ADDR
1

-

% STATUS VALID

T

NEXT STATUS |

72

T ST

\ NEXT

| 7227722220

2

NS16201 TCU BUS SIGNALS

\L\\
—

FIGURE 3-8. Write Cycle Timing

18

3.4.1 Cycle Extension The RDY pin is driven by the NS16201 Timing Control

To allow sufficient strobe widths and access times for Unltlawhich appfhe.s V\{AIT States tothe CPU as requested

any speed of memory or peripheral device, the NS08032 on three sets of pins: .

provides for extension of a bus cycle. Any type of bus 1. CWAIT (Continuous WAIT), which holds the CPU in

cycle except a Slave Processor cycle can be extended. WAIT States until removed.

2. WAIT1, WAIT2, WAIT4, WAIT8 (collectively, WAITn),
which may be given a 4-bit binary value requesting a
specific number of WAIT States from 0 to 15.

In Figures 3-7 and 3-8, note that during T3 all bus
control signals from the CPU and TCU are flat. There-
fore, a bus cycle can be cleanly extended by causing the

T3 state to be repeated. This is the purpose of the RDY 3. PER (Peripheral), which inserts five additional WAIT
(Ready) pin. states and causes the TCU to reshape the RD and WR
= strobes. This provides the setup and hold times
At the beginning of T3, on the rising edge of PHI1, the RDY required by most MOS peripheral interface devices.
line is sampled by the CPU. If RDY is high, the next T-State o .
will be T4, ending the bus cycle. If it is sampled low, then Combinations of these various WAIT requests are both
the next T-State will be another T3, and the RDY fine will legal and useful. For details on their use, see the
again be sampled on PHI1. Each additional T3 state after NS16201 Data Sheet.

the first is referred to as a “WAIT State.” See Figure 3-9. Figure 3-10 illustrates a typical Read cycle, with two

WAIT states requested through the TCU WATTn pins.

AR N N T A
S UL
/,/////‘////w /] W'/

NEXT NEXT
STATE: STATE:
T3 T4
- ' TUC5049
FIGURE 3-9. RDY Pin Timing

3.4.2 Bus Status

The NS08032 CPU presents four bits of Bus Status infor- address FFFEQOqg, expecting a vector number to
mation on pins STO-ST3. The various combinations on be provided from the Master NS16202 Interrupt
these pins indicate why the CPU is performing a bus Control Unit. If the vectoring mode selected by
cycle, or, if it is idle on the bus, why it is idle. ’ the last SETCFG instruction was Non-Vectored, -

then the CPU will ignore the value it has read and
will use a default vector instead, having assumed
that no NS16202 is present. See Section 3.4.5.

Referring to Figures 3-7 and 3-8, note that Bus Status
leads the corresponding Bus Cycle, going valid one
clock cycle before T1, and changing to the next state at

T4. This allows the system designer to fully decode the 0101 Interrupt Acknowledge, Cascaded.
bus status ‘and, if desired, latch the decoded signals The CPU is reading a vector number from a Cas-
before ADS initiates the Bus Cycle. caded ‘NS16202 Interrupt Control Unit. The
. X address provided is the address of the N516202
The Bus Status pins are interpreted as a 4-bit value, with Hardware Vector register. See Section 3.4.5.
STO the least significant bit. Their values decode as
follows: 0110 . End of Interrupt, Master.
The CPU is performing a Read cycle to indicate
0000 The bus is idle because the CPU does not yet that it is executing a Return from Interrupt (RETI)
need access to the bus. instruction. See Section 3.4.5.
0001 The bus is idle because the CPU is executing the 0111 End of Interrupt, Cascaded.
WAIT instruction. The CPU is reading from a Cascaded Interrupt
0010 (Reserved for future use.) Control Unit to indicate that it is returning

(through RETI). from an interrupt service routine
requested by that unit. See Section 3.4.5.

1000 Sequential Instruction Fetch. .
The CPU is reading the next sequential word frol
the instruction stream into the Instruction
Queue. It will do so whenever the bus would
otherwise be idle and the queue is not already
full.

0011 The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.

0100 Interrupt Acknowledge, Master.
The CPU is performing a Read cycle. To acknowl-
edge receipt of a Non-Maskable Interrupt (on
NMI), it will read from address FFFF004g, but will
ignore any data provided. To acknowledge receipt
of a Maskable Interrupt (on INT), it will read from

19

NS08032 CPU BUS SIGNALS

PREV. CYCLE . NEXT CYCLE
!1'4 ORTi | LA B I I wam | wam | T ITI oRTi |
PHI 1
ADB-15 ! l
A16-A23 [// 9(ADDRESS VALID NEXT ADDR

ADC-AD7 [: A

7.

%DATA

IN)——-—- <iEXT ADDR

WSERVE G

m[

STATUS VALID

NEXT STATUS

DDIN

ST0-ST3 [

/ NEXT

7ZX

[

NS16201 TCU CYCLE EXTENSION SIG

NALS

CWAIT [

%,

Z4

\%

= [2

4

41/

7

A

f

[7

7

//A 1101

7

v

RDY [

(TCU TO CPU)

\

/

NS16201 TCU BUS SIGNALS

—
\i\'\'\

TUC5049

Note: Arrows on CWAIT, PER, WAITn indicate points at which the TCU samples.
Arrows on ADO-AD7 and RDY indicate points at which the CPU samples.

FIGURE 3-10. Extended Cycle Example

20

1001 Non-Sequential Instruction Fetch.

The CPU is performing the first fetch of instruc-
tion code after the Instruction Queue is purged.
This will occur as a result of any jump or branch,
or any interrupt or trap, or execution of certain

instructions.

Data Transfer.
The CPU is reading or writing an operand of an
instruction.

Read RMW Operand.
The CPU is reading an operand which will subse-
quently be modified and rewritten.

Read for Effective Address Calculation.

The CPU is reading information from memory in
order to determine the Effective Address of an
operand. This will occur whenever an instruction
uses the Memory Relative or External addressing
mode.

Transfer Slave Processor Operand.

The CPU is either transferring an instruction oper-
and to or from a Slave Processor, or it is issuing
the Operation Word of a Slave Processor instruc-
tion. See Section 3.8.1

Read Slave Processor Status.

The CPU is reading a status word from a Slave
Processor. This occurs after the Slave Processor
has signaled completion of an instruction. The
transferred word tells the CPU whether a trap
should be taken, and in some instructions, it
presents new values for the CPU Processor
Status Register bits N, Z, L or F. See Section 3.8.1.

Broadcast Slave ID.

The CPU is initiating the execution of a Slave
Processor instruction. The ID Byte (first byte of
the instruction) is sent to all Slave Processors,
one of which will recognize it. From this point,the
CPU is communicating with only one Slave Proc-
essor. See Section 3.8.1.

3.4.3 Data Access Sequences

1010

1011

1100

1101

1110

1111

The NS08032 accesses all memory and peripheral
devices in sequences of single-byte transfers. Transfer of
values larger than bytes is performed from least-signifi-
cant byte (lowest address) to most-significant byte.

3.4.3.1 Bit Accesses

The bit instructions access the byte containing the
designated bit. The Test and Set Bit instruction (SBIT),
for example, reads a byte, alters it, and rewrites it,
having changed the contents of one bit.

3.4.3.2 Bit Field Accesses

An access to a Bit Field in memory always generates a
Double Word transfer starting at the address containing
the least-significant bit of the field. The Double Word is
read by an Extract instruction; an Insert instruction
reads a Double Word, modifies it, and rewrites it.

3.4.3.3 Extending Multiply Accesses

The extending multiply instruction (MEI) will return a
result which is twice the size in bytes of the operands
which it reads. If the multiplicand is in -memory, the
most-significant half of the result is written first (at the
higher address), then the least-significant half.

3.4.4 Instruction Fetches

Instructions for the NS08032 CPU are “prefetched”’; that
is, they are input before being needed into the next avaii-
able entry of the 4-byte Instruction Queue. The CPU
performs two types of Instruction Fetch cycles:
Sequential and Non-Sequential. These can be distin-
guished from each other by their differing status combi-
nations on pins ST0-ST3 (Section 3.4.2).

A Sequential Fetch will be performed by the CPU when-
ever the Data Bus would otherwise be idle and the
Instruction Queue is not currently full.

A Non-Sequential Fetch occurs as a result of any break
in the normally sequential flow of a program. Any jump
or branch instruction, a trap or an interrupt will cause the
next Instruction Fetch cycle to be Non-Sequential. In
addition, certain instructions flush the Instruction
Queue, causing the next instruction fetch to display
Non-Sequential status. Only the first bus cycle after a
break displays Non-Sequential status.

3.4.5 Interrupt Control Cycles -

Activating the INT or NMI pin on the CPU will initiate one
or more bus cycles whose purpose is interrupt control
rather than the transfer of instructions or data. Execu-
tion of the Return from Interrupt instruction (RETI) wili
also cause Interrupt Control bus cycles. These differ
from instruction or data transfers only in the status
presented on pins STO-ST3. All Interrupt Control cycles
are Read cycles. Table 3-1 summarizes N808032 inter-
rupt sequences.

This section describes only the Interrupt Control se-)
quences associated with each interrupt and with the

return from its service routine. For full details of the

NS08032 interrupt structure, see Section 3.7.

21

Table 3-1.
Interrupt Sequences

Cycle Status Address DDIN Bus

A. Nonmaskable Interrupt Control Sequences.
Interrupt Acknowledge

1 0100 FFFFO004g 0 Don’t Care
Interrupt Return
None: Performed through Return from Trap (RETT) instruction.
B. Nonvectored Interrupt Control Sequences.
Interrupt Acknowledge

Don’t Care

1 0100 FFFEQ046 0

Interrupt Return
None. Performed through return from Trap (RETT) instruction.

C. Vectored Interrupt Sequences: Noncascaded.

Interrupt Acknowledge
1 0100 FFFEQ0Og 0

Interrupt Return
1 0110 'FFFEQOg 0

D. Vectored Interrupt Sequences: Cascaded.

Vector: Range 0-127

Vector: Same as in
Previous Interrupt
Acknowledge Cycle

Interrupt Acknowledge
1 0100 FFFEO0Og 0

(The CPU here uses the Cascade Index to find the Cascade Address.)

2 0101 Cascade 0
' Address

Interrupt Return
"1 0110 FFFEQO¢g 0

(The CPU here uses the Cascade Index to find the Cascade Address.)

2 0111 Cascade 0
Address .

Cascade Index:
Range —16 to —1

Vector: Range 0-255
Cascade Index: Same

as in Previous Interrupt
Acknowledge Cycle

Don’t (‘)are

22

3.4.6 Slave Processor Communication

The SPC pin is used as the data strobe for Slave AD(O15) <—————:> Dio-15)
Processor transfers. In a Slave Processor bus cycle, SPC SPC

data is transferred 16 bits at a time on the Data Bus NS08032 SLAVE
(ADO-AD15) and the least-significant two bits of CPU CPU PROCESSOR
cycle status (STO-ST1) are monitored by each Slave sTo sTo

Processor in order to determine the type of transfer
being performed. Figure 3-11 shows typical Slave st ST
Processor connections. SPC is bidirectional, but is
driven by the CPU during all Slave Processor bus cycles.
See Section 3.8 for full protocol sequences.

FIGURE 3-11. Slave Processor Connections

PREV. CYCLE NEXT CYCLE
| T4ORTi T I T4 T1ORTi |

= [T
= N/ [
wsr | D7 P omimywe-eA{ e

)

% VALID NEXT STATUS

S70, ST1

NN\

ADS

=17

Note 1. CPU samples Data Bus here.
Note 2. Slave Processor samples CPU status here.

Note 3. DBE and all other NS16201 TCU bus signals remain inactive because
no ADS pulse is received from the CPU.

TLC5049

FIGURE 3-12. CPU Read from Slave Processor

23

3.4.6.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two
clock cycles, labeled T1 and T4 (see Figures 3-12 and
3-13). During a Read cycle, SPCis activated at T1, datais
sampled at T4, and SPC is removed. The Cycle Status
pins lead the cycle by one clock period, and are sampled
at the leading edge of SPC. During a Write cycle, the CPU
applies data and activates SPC at T1, removing SPC at
T4. The Slave Processor latches status on the leading
edge of SPC and latches data on the trailing edge.

Since the CPU does not pulse the Address Strobe (ADS),
no bus signals are generated by the NS16201 Timing
Control Unit. The direction of a transfer is determined by
the sequence (“protocol’”’) established by the instruction

under execution; but the CPU indicates the direction on
the DDIN pin for hardware debugging purposes.

3.4.6.2 Operand Transfer Sequences

A Slave Processor operand is transferred in one or more
Slave bus cycles. A Byte operand is transferred on the
least-significant byte of the Data Bus (ADO-AD7?), and a
Word operand is transferred on the entire 16-bit bus
(ADO-AD15). A Double Word is transferred in a
consecutive pair of bus cycles, least-significant word
first. A Quad Word is transferred in two pairs of Slave
cycles, with other bus cycles possibly occurring between
them. The word order is from least-significant to most-
significant word.

NEXT CYCLE
| T4 T1ORTi

_I—lf

L

1
{
X NEXT

{m

VALID

DATA OUT
X © NEXT STATUS

_/

PREV. CYCLE
| T4ORTi

PHI1 [1 ’__l
SPC [—1 /
e [T
ST0, ST1 [Z%

= |

= [777
="/

TLICS049

Note 1. Arrows indicate points at which the Slave Processor samples.
Note 2. DBE, being provided by the NS16201 TCU, remains inactive due to
the fact that no pulse is presented on ADS, TCU signals RD, WR and

TSO also remain inactive.

FIGURE 3-13. CPU Write to Slave Processor

3.5 Bus Access Control

The NS08032 CPU has the capability of relinquishing its
access to the bus upon request from a DMA device or
another CPU. This capability is implemented on the
HOLD (Hold Request) and HLDA (Hold Acknowledge)
pins. By asserting HOLD low, an external device
requests access to the bus. On receipt of HLDA from the
CPU, the device may perform bus cycles, as the CPU at
this point has set the ADO-AD15, A16-A23, ADS and
DDIN pins to the TRI-STATE® condition. To return control
of the bus to the CPU, the device sets HOLD inactive, and
the CPU acknowledges return of the bus by setting HLDA
inactive.

Ti

| -

[7

T

Ti

How quickly the CPU releases the bus depends on
whether it is idle on the bus at the time the HOLD request
is made, as the CPU must always complete the current
bus cycle. Figure 3-14 shows the timing sequence when
the CPU s idle. In this case, the CPU grants the bus during
the immediately following clock cycle. Figure 3-15 shows
the sequence if the CPU is using the bus at the time that
the HOLD request is made. If the request is made during
or before the clock cycle shown (two clock cycles before
T4), the CPU will release the bus during the clock cycle
following T4. If the request-occurs closer to T4, the CPU
may already have decided to initiate another bus cycle. In
that case, it will not grant the bus until after the next T4
state. Note that this situation will also occur if the CPU is
idle on the bus, but has initiated a bus cycle internally.

Ti Ti l TiORTH

NI |
LT

=\

—L—

((

|

{

/

))

\

HLDA

[

= | e + \/
] NN P by

s [N PR R =
— <G et wernion
w1t 777 e o

/

TUCS049

FIGURE 3-14. HOLD Timing, Bus Initially Idle

25

ADO-AD7

77072 TN
osezs] SNy
el e 0000000

TTTTTT

DDIN : VALID ‘ >—_——T“' —————————— -/ \ NEXT

FIGURE 3-15. HOLD Timing, Bus Initially Not idle

26

3.6 Instruction Status

In addition to the four bits of bus cycle status (ST0-ST3),
the NS08032 CPU also presents Instruction Status infor-
mation on three separate pins. These pins differ from
STO-ST3 in that they are synchronous to the CPU’s inter-
nal instruction execution section rather than to its bus
interface section.

PFS (Program Flow Status) is pulsed low as each
instruction begins execution. It is intended for
debugging purposes.

U/S originates from the U bit of the Processor Status
Register, and indicates whether the CPU is currently run-
ning in User or Supervisor mode. Although it is not syn-
chronous to bus cycles, there are guarantees on its
validity during any given bus cycle. See the Timing
Specifications, Figure 4-19.

ILO (Interlocked Operation) is activated during an SBIT!
(Set Bit, Interlocked) or CBITI (Clear Bit, Interlocked)
instruction. It is made available to external bus arbitra-
tion circuitry in order to allow these instructions. to
implement the semaphore primitive operations for multi-
processor communication and resource sharing. As
with the U/S pin, there are guarantees on its validity
during the operand accesses performed by the instruc-
tions. See the Timing Specification section, Figures 4-16
and 4-17.

3.7 NS08032 Interrupt Structure

The NS08032 CPU has two interrupt pins: INT, on which
maskable interrupts may be requested, and NMI, on
which nonmaskable interrupts may be requested.

In addition, there is a set of internally-generated “traps”
which cause interrupt service to be performed as a result
either of exceptional conditions (e.g., attempted division
by zero) or of specific instructions whose purpose is to
cause a trap to occur (e.g., the Supervisor Call instruc-
tion).

3.7.1 General Interrupt/Trap Sequence

Upon receipt of an interrupt or trap request, the CPU goes
through four major steps:

1. Adjustment of Registers.
Depending on the source of the interrupt or trap, the
CPU may restore and/or adjust the contents of the Pro-
gram Counter (PC), the Processor Status Register
(PSR) and the currently-selected Stack Pointer (SP). A
copy of the PSR is made, and the PSR is then set to
reflect Supervisor Mode and selection of the Interrupt
Stack. '

2. Saving Processor Status.
The PSR copy is pushed onto the Interrupt Stack as a
16-bit quantity.

3. Vector Acquisition.
A Vector is either obtained from the Data Bus or is sup-
plied by default.

4. Service Call.

The Vector is used as an index into the Interrupt Dis-
patch Table, whose base address is taken from the
CPU Interrupt Base (INTBASE) Register. See Figure
3-16. A 32-bit External Procedure Descriptor is read
from the table entry, and an External Procedure Call is
performed using it. The MOD Register (16 bits) and Pro-
gram Counter (32 bits) are pushed on the Interrupt
Stack.

/TJ
MEMORY { o’
NVI NON-VECTORED INTERRUPT
CASCADE ADDR 0
i 5 NMI NON-MASKABLE INTERRUPT
CASCADETABLE ~ A° .
RESERVED
CASCADE ADDR 14 FPU - FPU TRAP
CASCADE ADDR 15 I P
INTERRUPT BASE L ILLEGAL OPERATION TRAP
REGISTER A FIXED INTERRUPTS y
. P C ISOR CA
¥ ED INTERRY ~- s| sve SUPERVISOR CALL TRAP
L VECTORED | DISPATCHTABLE 4| pyz DIVIDE BY ZERO TRAP
T INTERRUPTS ~
B o 1 7| Fe FLAG TRAP
8| spT” BREAKPOINT TRAP
9| TR TRACE TRAP
10| unp UNDEFINED INSTRUCTION TRAP -
~
1-15 A RESERVED <&
16 VECTORED
INTERRUPTS
~o ~e TLIC5049

FIGURE 3-16. Interrupt Dispatch and Cascade Tables

27

This process is illustrated in Figure 3-17, from the view- Interrupt on INT or NMiI pin:

point of the prograrmmer.

Traps (except Trace):
R Lo Trace Trap:
Full sequences of events in processing interrupts and P
traps may be found as follows:
PSR MOD
(PUSH)
STATUS MODULE \ | 32BITS
RETURN ADDRESS —— IT
: (PUSH) 328178
INTERRUPT
STACK
. H
. .
. L
—————————— A
1
CASCADE TABLE
INTBASE REGISTER |
| INTERRUPT BASE } ’ DISPATCH
L TABLE
VECTOR ©
DESCRIPTOR (32 BITS)
-
DESCRIPTOR
16 16
OFFSET MODULE
o
MOD REGISTER MODULE TABLE
NEW MODULE
MODULE TABLE ENTRY
MODULE TABLE ENTRY
32
STATIC BASE POINTER -1
LINK BASE POINTER
Q L PROGRAM BASE POINTER
' (RESERVED)
PROGRAM COUNTER SB REGISTER
;—{—» ENTRY POINT ADDRESS] _[__. NEW STATIC BASE l

FIGURE 3-17. Interrupt/Trap Service Routine

Calling Sequence

TUC5049

Sec.3.7.7.1
Sec.3.7.7.2
Sec.3.7.7.3

28

3.7.2 Interrupt/Trap Return

To return control to an interrupted program, one of two
instructions is used. The RETT (Return From Trap)instruc-
tion (Figure 3-18) restores the PSR, MOD, PC and SB
registers to their previous contents and, since traps are
often used deliberately as a call mechanism for Super-
visor Mode procedures, it also discards a specified
number of bytes from the original stack as surplus para-
meter space. RETT is used to return fromany trap or inter-
rupt except the Maskable Interrupt. For this, the RETI
~ (Return from Interrupt) instruction is used, which also in-
forms any external Interrupt Control Units that interrupt
service has been completed. Since interrupts are general-
ly asynchronous external events, RETI does not pop para-
meters. See Figure 3-19.

3.7.3 Maskable Interrupts (The INT Pin)

The INT pin is a level-sensitive input. A continuous low
level is allowed for generating multiple interrupt requests.
The input is maskable, and is therefore enabled to gener-
ate interrupt requests only while the Processor Status
Register | bit is set. The | bit is automatically cleared
during service of an INT or NMI request, and is restored to
its original setting upon return from the interrupt service
routine via the RETT or RET! instruction.

The INT pin may be configured via the SETCFG instruc-
tion as either Non-Vectored (CFG register bit 1=0) or
Vectored (bit | =1).

3.7.3.1 Non-Vectored Mode

In the Non-Vectored Mode, an interrupt request on the
INT pin will cause an Interrupt Acknowledge bus cycle,
but the CPU will ignore any value read from the bus and
use instead a default vector of zero. This mode is useful
for small systems in which hardware interrupt prioritiza-
tion is unnecessary. The RETT instruction should be
used to return from an interrupt in Non-Vectored Mode.

PROGRAM COUNTER
(POP)
RETURN ADDRESS 32BITS
(POP)
STATUS MODULE 32BITS
PSR MOD
INTERRUPT
: STACK .
. .
o
MODULE
TABLE
MODULE TABLE ENTRY
J
MODULE TABLE ENTRY
STATICBASEPOINTER ——
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
PARAMETERS
n
BYTES
SB REGISTER .
l STATIC BASE <—J-J STACK SELECTED
\ IN NEWLY-
POPPED PSR.
H H
. .
. .
POP AND
DISCARD TL/IC5049

FIGURE 3-18. Return from Trap (RETTn) Instruction Flow

29

“END OF INTERRUPT"

BUSCYCLE
INTERRUPT
CONTROL
UNIT
PROGRAM COUNTER
1 (POP)
l RETURN ADDRESS l
I (POP)
[STATUS MODULE I
PSR MOD
INTERRUPT
STACK
. .
. .
. .
(o]
MODULE
TABLE
MODULE TABLE ENTRY
MODULE TABLE ENTRY
STATIC BASE POINTER -
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
| STATIC BASE
SB REGISTER ' TUC5049

FIGURE 3-19. Return from Interrupt (RETI) Instruction Flow

30

3.7.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an NS16202 Inter-
rupt Control Unit (ICU) to prioritize up to 16 interrupt
requests. Figure 3-20 shows the connections required
for a single ICU. Upon receipt of an interrupt request on
the INT pin, the CPU performs an “Interrupt
Acknowledge, Master” bus cycle (Section 3.4.2) reading
avector value from the Data Bus. This vector is then used
as an index into the Dispatch Table in order to find the
External Procedure Descriptor for the proper interrupt
service procedure. The service procedure eventually
returns via the Return from Interrupt (RETI) instruction,
which performs an End of Interrupt bus cycle, informing
the ICU that it may reprioritize any interrupt requests still
pending. The ICU provides the vector number again,
which the CPU uses to determine whether it needs also to
inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127;
that is, they must be positive numbers in eight bits. By
providing a negative vector number, an ICU flags the
interrupt source as being a Cascaded ICU (see below).

3.7.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is
made both in the CPU and in the NS16202 Interrupt
Control Unit (ICU) to transparently support cascading.
Figure 3-21 shows a typical cascaded configuration.
Note that the Interrupt output from a Cascaded ICU goes
to an Interrupt Request input of the Master ICU, which is
the only ICU which drives the CPU INT pin.

In a system which uses cascading, two tasks must be

performed upon initialization:

1. For each Cascaded ICU in the system, the Master ICU
must be informed of the line number (0to 15) on which
it receives the cascaded requests.

2. A Cascade Table must be established in memory. The
Cascade Table is located in a negative direction from

the location indicated by the CPU Interrupt Base
(INTBASE) register. Its entries are 32-bit addresses,
pointing to the Vector Registers of each of up to 16
Cascaded ICUs.

Figure 3-16 illustrates the position of the Cascade
Table. To find the Cascade Table entry for a Cascaded
ICU, take its Master ICU line number (0 to 15) and sub-
tract 16 from it, giving an index in the range —16 to —1.
Multiply this value by 4, and add the resulting negative
number to the contents of the INTBASE Register. The
32-bit entry at this address must be set to the address of
the Hardware Vector Register of the Cascaded ICU. This
is referred to as the “Cascade Address.”

Upon receipt of an interrupt request from a Cascaded
ICU, the Master ICU interrupts the CPU and provides the
negative Cascade Table index instead of a (positive) vec-
tor number. The CPU, seeing the negative value, uses it
as an index into the Cascade Table and reads the
Cascade Address from the referenced entry. Applying
this address, the CPU performs an “Interrupt
Acknowledge, Cascaded” bus cycle (Section 3.4.2),
reading the final vector value. This vector is interpreted
by the CPU as an unsigned byte, and can therefore be in
the range of 0 through 255.

In returning from a Cascaded interrupt, the service
procedure executes the Return from Interrupt (RETI)
instruction, as it would for any Maskable Interrupt. The
CPU performs an “End of Interrupt, Master” bus cycle
(Section 3.4.2), whereupon the Master ICU again pro-
vides the negative Cascade Table index. The CPU, see-
ing a negative value, uses it to find the corresponding
Cascade Address from the Cascade Table. Applying this
address, it performs an “End of Interrupt, Cascaded”
bus cycle (Section 3.4.2), informing the cascaded ICU of
the completion of the service routine. The byte read from
the Cascaded ICU is discarded.

DATA

(8)

CONTROL

ADDR 5 BITS

| STATUS 1

NS§08032
cpu

5

5

FROM

ADDRESS —| CS

DECODER

l=—1IR1)
l~—IR3
|
| HARDWARE
l=—IR7 | INTERRUPTS
; OR
l~—IR9 |/ CASCADED
| CONTROLLERS
fe—R11 |
NS16202 i
l~—IR13 *
=—1R15 |
r-——Go/mo)
| G1/IR2 J‘
|~ G2/IR4 |
| INTERRUPTS,
> G3/IR6 | CASCADED.
== G4/IR8 | a0
——-—Gsnmo}
| G6/IR12'
(== G7/IR14,
TLIC5049

FIGURE 3-20. Interrupt Control Unit Connections (16 Levels)

DATA

—

Fe—1rt

|=—IR3

CONTROL ~—IRS

ADDR5BITS

[~—1IR7

HARDWARE

CASCADED INTERRUPTS

NS16202
icu —oIR11

~—IR9

DATA ‘

b

N
14 L"—IFH:C

STATUS 1 IR15 ~J

FROM —
ADDRESS - CS
DECODER

= GO/IRO
| G1/IR2
== G2/IR4
== G3/IR6
-~ G4/IR8
== G5/IR10
= G6/IR12 |.
- G7/|R14_J

INTERRUPTS
OR
BITI/O
INT

' |—— IR1

CONTROL |

|=— IR3

~=—IRS

ADDR I

N$S08032
CPU

l-~—1R7 .
MASTER
Nste202 ['R9

icU | R1y ——

[m—

STATUS 1

v [—1IR13

|-=— IR15

INT

== GO/IR0
) |~ G1/IR2
iNT |~ G2/IR4

FROM
ADDRESS —
DECODER

[~==G3/IR6
== G4/IR8
==G5/IR10
cs ==G6/IR12
[~==G7/IR14

TLIC5049

FIGURE 3-21. Cascaded Interrupt Control Unit Connections

3.7.4 Non-Maskable interrupt (The NMI Pin)

The Non-Maskable interrupt is triggered whenever a fall-
ing edge is detected on the NMI pin. The CPU performs
an “Interrupt Acknowledge, Master” bus cycle (Section
3.4.2) when processing of this interrupt actually begins.
The Interrupt Acknowledge cycle differs from that provid-
ed for Maskable Interrupts in that the address presented
is FFFFQ0046. The vector value used for the Non-Maskable
Interrupt is taken as 1, regardless of the value read from
the bus.

The service procedure returns from the Non-Maskable
Interrupt using the Return from Trap (RETT) instruction.
No special bus cycles occuron return.

For the full sequence of events in processing the Non-
Maskable Interrupt, see Section 3.7.7.1.

3.7.5 Traps

A trap is an internally-generated interrupt request caused
as a direct and immediate result of the execution of an
instruction. Traps recognized by the NS08032 are:

Trap (FPU): An exceptional condition was detected by
the NS16081 Floating-Point unit or another Slave Proces-
sor during the execution of a Slave Instruction. This trap
is requested via the Status Word returned as part of the
Slave Processor Protocol (Section 3.8.1).

Trap (ILL): lllegal operation. A privileged operation was
attempted while the CPUwas in User Mode (PSR bit U=1).

Trap (SVC): The Supervisor: Call (SVC) instruction was
executed.

Trap (DV2): An attempt was made to divide an integer by
zero. (The FPU trap is used for Floating-Point division by
zero.)

Trap (FLG): The FLAG instruction detected a “1” in the
CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execu-
ted.

2

32

Tr;p (TRC): The instruction just completed is being
traced. See below.

Trap (UND): An undefined opcode was encountered by
the CPU.

The Return Address pushed by any trap except TRC is
the address of the first byte of the instruction during

which the trap occurred. Traps do not disable interrupts,

as they are not associated with external events.

A special case is the Trace Trap (TRC), which is enabled
by setting the T bit in the Processor Status Register
(PSR). At the beginning of each instruction, the T bit is
copied into the PSR P (Trace “Pending”’) bit. If the Pbit is
set at the end of an instruction, then the Trace Trap is
activated. If any other trap or interrupt request is made
during a traced instruction, its entire service procedure
is allowed to complete before the Trace Trap occurs.
Each interrupt and trap sequence handies the P bit for
proper tracing, guaranteeing one and only one Trace
Trap per instruction, and guaranteeing that the Return
Address pushed during a Trace Trap is always the
address of the next instruction to be traced.

3.7.6 Prioritization

The NS08032 CPU internally prioritizes simultaneous
interrupt and trap requests as follows:

1. Trapsotherthan Trace (Highest priority)
2. Non-Maskable Interrupt

3. Maskable Interrupts

4. Trace Trap (Lowest priority)

3.7.7 Interrupt/Trap Sequences: Detailed Flow

For purposes of the following detailed discussion of
interrupt and trap service sequences, a single sequence
called “Service” is defined in Figure 3-22. Upon detect-
ing any interrupt request or trap condition, the CPU first
performs a sequence dependent upon the type of inter-
rupt or trap. This sequence will include pushing the
Processor Status Register and establishing a Vector and
a Return Address. The CPU then performs the Service
sequence.

For the sequence followed in processing either
Maskable or Non-Maskable interrupts (on the INT or NMi
pins, respectively), see Section 3.7.7.1. For the Trace
Trap, see Section 3.7.7.3, and for all other traps, see
Section 3.7.7.2.

3.7.7.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI
pin receives a falling edge, or the INT pin becomes active
with the PSR | bit set. The interrupt sequence begins
either at the next instruction boundary or, in the case of
the String instructions, at the next interruptable point
during its execution.

1. If a String instruction was interrupted and not yet
completed:

a. Clear the Processor Status Register P bit.

b. Set “Return Address” to the address of the first
byte of the interrupted instruction.

Otherwise, set “Return Address” to the address of
the next instruction.

. Copy the Processor Status Register (PSR) into a tem-

porary register, then clear PSR bits S, U, T, P and I.

. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF00s, applying
Status Code 0100 (Interrupt Acknowledge, Master:
Section 3.4.2). Discard the byte read.

b. Set “Vector” to 1.
¢. Go to Step 8.

. If the interrupt is Non-Vectored:

a. Read a byte from address FFFEOQO, applying
Status Code 0100 (Interrupt Acknowledge, Master:
Section 3.4.2). Discard the byte read.

b. Set “‘Vector” to 0.
c. Go to Step 8.

. Here the interrupt is Vectored. Read “Byte” from

address FFFEQO4g, applying Status Code 0100 (inter-
rupt Acknowledge, Master: Section 3.4.2).

. If “Byte” > 0, then set “Vector” to ‘“Byte” and go to

Step 8.

. |f “Byte” is in the range —16 through —1, then the inter-

rupt source is Cascaded. (More negative values are

reserved for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory.
The address is calculated as INTBASE +4*Byte.

b. Read ‘“‘Vector,” applying the Cascade Address just
read and Status Code 0101 (Interrupt Acknow-
ledge, Cascaded: Section 3.4.2).

. Push the PSR copy (from Step 2) onto the Interrupt

Stack as a 16-bit value.

. Perform Service (Vector, Return Address), Figure

3-22.

Service (Vector, Return Address):
1

Push MOD Register onto the Interrupt Stack as a 16-bit value. (The
PSR has aiready been pushed as a 16-bit value.)

Push the Return Address onto the Interrupt Stack as a 32-bit
quantity.

Read the 32-bit External Procedure Descriptor from the Interrupt

Dispatch Table: address is Vector*4+INTBASE Register
contents.

Move the Module field of the Descriptor into the MOD Register.

Read the new Static Base pointer from the memory address con-
tained in MOD, placing it into the SB Register.

2

3

4
5

6

Read the Program Base pointer from memory address MOD+8,
and add to it the Offset field from the Descriptor, placing the
result in the Program Counter.

FIGURE 3-22. Service Sequence
Invoked during all interrupt/trap sequences.

TLIC5049

33

3.7.7.2 Trap Sequence: Traps Other Than Trace

1. Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at
the start of the trapped instruction.)

2. Set “Vector” to the value corresponding to the trap
type. .

FPU: Vector=3
ILL: Vector=4
SVC: Vector=5
DVZ: Vector=6
FLG: Vector=7"
BPT: Vector=8
UND: Vector=10

3. Copy the Processor Status Register (PSR) into a
temporary register, then clear PSR bits S,U, Tand P.

4. Pushthe PSR copy onto the Interrupt Stack as a 16-bit
value.

5. Set “Return Address” to the address of the first byte
of the trapped instruction.

6. Perform Service (Vector, Return Address), Figure
3-22.
3.7.7.3 Trace Trap Sequence

1. In the Processor Status Register (PSR), clear the P bit.

2. Copy the PSR into a temporary register, then clear
PSR bits S,Uand T.

3. Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

4. Set “Vector” to 9.

5. Set “Return Address” to the address of the next
instruction.

6. Perform Service (Vector, Return Address), Figure
3-22.

3.8 Slave Processor Instructions
The NS08032 CPU recognizes two groups of instructions
as being executable by external Slave Procesors:
Floating-Point Instruction Set
Custom Instruction Set
Each Slave Instruction Set is validated by a bit in the

Configuration Register (Section 2.1.3). Any Slave
Instruction which does not have its corresponding

Status Combinations:

Send I1D(ID): Code 1111

Xfer Operand (OP): Code 1101
‘ Read Status (ST): Code 1110

Step Status Action

1 1D CPU Send ID Byte.
2 OP CPU Sends Operation Word.
3 OP CPU Sends Required Operands.
4 — Slave Starts E .CPU Pre-fetch
5 - Slave Pulses SPC Low.
6 ST CPU Reads Status Word. (Trap? Alter Flags?)
7 OP CPU Reads Results (If Any). .

FIGURE 3-23. Slave Processor Protocol

Configuration Register bit set will trap as undefined,
without any Slave Processor communication attempted
by the CPU. This allows software simulation of a non-
existent Slave Processor. Slave Processor cycles use
pins AD0-AD15 as a 16-bit data bus.

3.8.1 Slave Processor Protocol

Slave Processor instructions have a 3-byte Basic
Instruction field, consisting of an ID Byte followed by an
Operation Word. The ID Byte has three functions:

1. It identifies the instruction as being a Slave
Processor instruction.

2." It specifies which Slave Processor will execute it.

3. It determines the format of the following Operation
Word of the instruction.

Upon receiving a Slave Processor instruction, the CPU
initiates the sequence outlined in Figure 3-23. While
applying Status Code 1111 (Broadcast ID, Section 3.4.2),
the CPU transfers the ID Byte on the least-significant
half of the data bus (ADO-AD7). All Slave Processors
input this Byte and decode it. The Slave Processor
selected by the 1D Byte is activated, and from this point
the CPU is communicating only with it. if any other slave
protocol was in progress (e.g., an aborted Slave instruc-
tion), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Section
3.4.2). Upon receiving it, the Slave Processor decodes it,
and at this point both the CPU and the Slave Processor
are aware of the number of operands to be transferred and
their sizes. The Operation Word is swapped on the Data
Bus; that is, bits 0-7 appear on pins AD8-AD15, respec-
tively, and bits 8-15 appear on pins ADO-AD7,
respectively.

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing
them to the Slave Processor. To do so, it references any
Addressing Mode extensions which may be appended to
the Slave Processor instruction. Since the CPU is solely
responsible for memory accesses, these extensions are
not sent to the Slave Processor. The Status Code applied
is 1101 (Transfer Slave Processor Operand, Section
3.4.2).

After the CPU has issued the last operand, the Slave
Processor starts the actual execution of the instruction.
Upon completion, it will signal the CPU by pulsing SPC
low. To allow for this, SPC is normally held high only by
an internal pull-up device of approximately 5kQ.

While the Slave Processor is executing the instruction,
the CPU is free to prefetch instructions into its queue. If
it fills the queue before the Slave Processor finishes, the
CPU will wait, applying Status Code 0011 (Waiting for
Slave, Section 3.4.2).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status, Section 3.4.2). This.
word has the format shown in Figure 3-24. If the Q bit
(“Quit,” Bit 0) is set, this indicates that an error was
detected by the Slave Processor. The CPU will not con-
tinue the protocol, but will immediately trap through the

34

FPU vector in the Interrupt Table. Certain Slave
Processor instructions cause CPU PSR bits to be loaded
from the Status Word.

The last step in the protocol is for the CPU to read a
result, if any, and transfer it to the destination. The Read
cycles from the Slave Processor are performed by the
CPU while applying Status Code 1101 (Transfer Slave
Operand, Section 3.4.2).

An exception to the protocol above is a Custom Slave
instruction (LCR: Load Custom Register). In executing
this instruction, the protocol ends after the CPU has
issued the last operand. The CPU does not wait for an
acknowledgement from the Slave Processor, and it does
not read status.

3.8.2 Floating-Point Instructions

Table 3-2gives the protocols followed-for each Floating-
Point instruction. The instructions are referenced by
their mnemonics. For the bit encodings of each instruc-
tion, see Appendix A.

The Operand class columns give the Access Classes for
each general operand, defining how the addressing
modes are interpreted (see Programmer’s Reference
Manual).

The Operand Issued columns show the sizes of the
operands issued to the Floating-Point Unit by the CPU.
“D” indicates a 32-bit Double Word. “I”’ indicates that the
instruction specifies an integer size for the operand
(B =byte, W =word, D =double word). “f” indicates that
the instruction specifies a Floating-Point size for the oper-
and (F = 32-bit standard floating, L = 64-bit Long Floating).

The Returned Value type and Destination column gives
the size of any returned value and where the CPU places
it. The PSR Bits Affected column indicates which PSR
bits, if any, are updated from the Slave Processor Status
Word (Figure 3-24).

Any operand indicated as being of type “f” will not cause
a transfer if the Register addressing mode is specified.
This is because the Floating-Point Registers are
physically on the Floating-Point Unit and are therefore
available without CPU assistance.

Table 3-2.

Floating-Point Instruction Protocols
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Mnemonic Class Class Issued Issued Type and Dest. Affected
ADDf read.f rmw.f f _f ftoOp. 2 none
SuUBf read.f rmw.f f f fto Op. 2 none
MULSf read.f rmw.f f f fto Op. 2 none
DIVt read.f rmw.f f f fto Op. 2 none
MOVt read.f write . f f N/A fto Op. 2 none
ABSf read.f write. f f N/A f to Op.2 none
NEGf read.f write . f f N/A f to Op.2 none
CMPf read.f read.f f f N/A N,Z,L
FLOORfi read.f write.i f N/A itoOp.2 none
TRUNCi read.f write.i f N/A ito Op.2 none
ROUNDfi read.f write.i f N/A itoOp.2 none
MOVFL. read.F write. L F N/A LtoOp.2 none
MOVLF read.L write.F L N/A F to Op. 2 none
MOVif read.i write . f i N/A fto Op. 2 none
LFSR read.D N/A D N/A N/A none
SFSR write.D N/A N/A N/A Dto Op.1 none
Note:

D = Double word.

i = Integer size (B,W,D) specified in mnemonic.

f = Floating-point type (F,L) specified in mnemonic.
N/A = Not applicable to this instruction.

35

3.8.3 Custom Slave Instruction

Provided in the NS08032 is the capability of communi-
cating with a user-defined, “Custom” Slave Processor.
The instruction set provided for a Custom Slave Proc-
essor defines the instruction formats, the operand
classes and the communication protocol. Left to the
user are the interpretations of the opcode fields, the pro-
gramming model of the Custom Slave and the actual
types of data transferred. The protocol specifies only the
size of an operand, not its data type.

Table 3-3 lists the relevant information for the Custom
Slave instruction set. The designation “c” is used to
represent an operand which can be a 32-bit (“D”’) or 64-bit
(“Q”) quantity in any format; the size is determined by

15 817 0
00000000 [NZFOOLOQ

New PSR Bit Value(s) 22—"

“Quit": Terminate Protocol, Trap(FPU).

TLIC5049

FIGURE 3-24. Slave Processor Status Word Format

the suffix onthe mnemonic. Similarly, an “i” indicates an
integer size (Byte, Word, Double Word) selected by the
corresponding mnemonic suffix.

For the instruction encodings,Asee Appendix A.

Table 3-3.
Custom Slave Instruction Protocols
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Mnemonic Class Class Issued Issued Type and Dest. Affected

CCALOc read.c rmw.c c c ctoOp.2 none
CCAL1c read.c rmw.c c c ctoOp.2 none
CCAL2c read.c rmw.c c c ctoOp.2 none
CCAL3c read.c rmw.c c c ctoOp.2 none
CMOVOc read.c write.c c N/A ctoOp.2 none
CMOV1c read.c write.c c N/A ctoOp.2 none
CMOV2¢c read.c write.c c N/A ctoOp.2 none
CCMPc read.c read.c c c N/A NZL
CCV0ci read.c write. i c N/A itoOp.2 none
CCVici read.c write.i c N/A itoOp.2 none
CCVaci read.c write.i c N/A itoOp.2 none
CCV3ic read.i write.c i N/A ctoOp.2 none
CCv4DQ read.D write.Q D N/A Qto Op.2 none
CCv5QD read.Q write.D Q N/A Dto Op.2 none
LCSR read.D N/A D N/A N/A none
SCSR write.D N/A N/A N/A Dto Op. 2 none
CATSTO* addr N/A D N/A N/A F
CATST1* addr N/A D N/A N/A F
LCR* read.D N/A D N/A N/A none
SCR* write.D N/A N/A N/A Dto Op. 1 none
Note:

D = Double word.

i =Integer size (B, W, D) specified in mnemonic.

c =Custom size (D: 32 bits or Q: 64 bits) specified in mnemonic.
* =Privileged instruction; will trap if CPU is in User Mode.

N/A =Not applicable to this instruction.

36

4 AC Electrical Characteristics
4.1 Definitions

All the timing specifications given in this section refer to
50% of the leading or trailing edges of the appropriate
clock phase and 0.8V or 2.0V on the appropriate signal
as illustrated in Figures 4-1 and 4-2, unless specifically
stated otherwise.

PHIn 50% -

SIG1

SIG2

tsiG1l

1SIG2h

20v

045V

FIGURE 4-1. Timing Specification Standard

(Signal Valid After Edge)

4.2 Timing Tables

TUCS5049

Abbreviations:

L.E.—leading edge
T.E.—trailing edge

PHIn C 50%
L
- 24V
SIG1
L 0.8V tsiG11l
0.45V
- 2.4V
2.0V tsiGan
SIG2
- 0.45V
TUCS049

FIGURE 4-2. Timing Specification Standard
(Signal Valid Before Edge)

Table 4-1. Output Signals: Internal Propagation Delays, NS08032-4, NS08032-6
Maximum times assume capacitive loading of 100pF.

Name Description Figure Reference/Conditions | Min. | Typ. | Max. | Unit
tary Address bits 0-7 valid 4-3 after L.E., PHI1 T1 80 | ns
taLn Address bits 0-7 hold 4-3 after L.E., PHI1 TmmuorT2 | O ns
tov Data valid (write cycle) 4-3 after L.E., PHI1 T2 80 | ns
ton Data hold (write cycle) 4-3 after L.E.,PHI1next T1orTi| O ns
tAHV Address bits 8-23 valid 4-3 after L.E., PHI1 T1 80 | ns
tann Address bits 8-23 hold 4-3 after L.E., PHI1next T1orTi| O ns
taLADSs Address bits 0-7 set up to ADS T.E. 4-4 before ADS reaches 2.0V 20 ns
tAHADSs Address bits 8-23 set up to ADS T.E. 4-4 before ADS reaches 2.0V 20 ns
tALADSh Address bits 0-7 hold from ADS T.E. 4-9 after ADS reaches 2.0V 10 ns
tAHADSh Address bits 8-23 hold from ADS T.E. 4-8 after ADS reaches 2.0V 10 ns
taLs Address bits 0-7 floating 4-4 after L.E., PHI1 T2 25 | ns
tstv Status (ST0-ST3) valid 4-3 after L.E., PHI1 T4 90 | ns

(before T1, see note)
tsth Status (STO-ST3) hold 4-3 after L.E., PHI1 T4 (after T1) | O ns
tobiny DDIN signal valid 4-4 after L.E., PHI1 T1 110 | ns
toping DDIN signal hold 4-4 after L.E., PHI1 next T1orTi| 0 ns
tapsa ADS signal active (low) 4-3 after L.E., PHI1 T1 50 | ns
tADSia ADS signal inactive 4-3 after T.E., PHI1 T1 65 | ns
taDsw ADS pulse width 4-3 at 0.8V, both edges 60 ns
tpsa DS signal active (low) 4-3 after L.E., PHI1 T2 70 | ns

37

Table 4-1. Output Signals: Internal Propagation Delays, NS08032-4, NS08032-6 (Cont’d)

Name Description Figure Reference/Conditions | Min. | Typ. | Max.| Unit
tpsia DS signal inactive 4-3 after L.E., PHI1 T4 80 | ns
taLf ADO-AD7 floating (caused by HOLD) 4-5 after L.E., PHI1 T1 100 | ns
tAHF A8-A23 floating (caused by HOLD) 4-5 after L.E., PHI1 T1 100 | ns
tADst ADS floating (caused by HOLD) 4-5 after L.E., PHI1 Ti 100 | ns
tooins DDIN floating (caused by HOLD) 4-5 after L.E., PHI1 Ti 100 | ns
tHLDAa HLDA signal active (low) 4-5 after L.E., PHI1 Ti 100 ns
tHLDAIa . H_LE_)A signal inactive 4-7 after L.E., PHI1 Ti 100 | ns
tapsr g':f:gg’;?' ':%‘i'[;')s from floating 4-7 |after LE, PHI1 Ti 100 | ns
tooiNe zg:j‘::;gg‘ya:gt_‘g;’s from floating 4-7 |after LE., PHI1Ti 100 | ns
tspca SPC output active (low) 4-12 |after L.E., PHI1T1 50 | ns
tspcia SPC output inactive 4-12 |after L.E., PHI1 T4 50 | ns
tspont SPC output nonforcing 4-14 |after L.E., PHI2 T4 40 | ns
tpy Data valid (slave processor write) 4-12 after L.E., PHI1 T1 80 | ns
ton Data hold (slave processor write) 4-12 after L.E,PHITnextT1orTif 0 ns
tpFsw PFS pulse width 4-17 at 0.8V, both edges 70 ns
trEsa PFS pulse active (low) 4-17 |after L.E., PHI2 70 | ns
tersia PFS pulse inactive » 4-17 |after L.E., PHI2 70 | ns
tiLos TLO signal setup 4-19a |before L.E., PHI1T1 0 ns

of first interlocked
write cycle
tiLon ILO signal hold 4-19b |after L.E., PHI1 T3 0 ns
of last interlocked
read cycle)
tiLoa ILO signal active (low) 4-20 |after L.E., PHI1 70 | ns
tiLoia ILO signal inactive 4-20 |after L.E., PHI1 70 | ns
tuss U/S signal setup 4-21 |before L.E., PHI1 T4 0 ns
tusn U/S signal hold 4-21 |after L.E,, PHI1 T1 2 tep
t“?“”’ [F‘f—g—gsjgzﬁ':}',i:;emh tonext 4-18b |after L.E., PHI1 T1 4 tp
tPrNS PFS clock cycie to next 4-18a |before L.E., PHI1 T1 4 tg
nonsequential fetch P
tixpr Last operand transfer of an instruction before L.E., PHI1 T1 of
4-29 0 tep

to next PFS clock cycle

first bus cycle of transfer

Note 1. Timing parameters for components with an “S” suffix are not guérameed compatible with an NS16081 Slave Processor at a clock rate greater than

4MHz.

Note 2. Every memory cycle starts with T4, during which Cycle Status is applied. If the CPU was idling, the sequence will be: “..Ti,T4,T1...”. If the CPU was not
idling, the sequence will be: “..T4,T1...". '

38

Table 4-2. Input Signal Requirements: NS08032-4, NS08032-6

Typ.

Name Description Figure Reference/Conditions | Min. Max. | Unit
tpwr Power stable to RST T.E. 4-24 | after Vg reaches 4.5V 50 us
tois Data in setup (read cycle) 4-4 before T.E., PHI2 T3 20 ns
toin Data in hold (read cycle) 4-4 after L.E., PHI1 T4 0 ns
tHLDa HOLD active (low) setup time (See note) 4-5 before T.E., PHI2 TX1 25 ns
tHLDIa | HOLD inactive setup time 4-7 before T.E., PHI2 Ti 25 ns

- tHLDh HOLD hold time 4-5 after L.E., PHI1 TX2 0 ns
trOYs RDY setup time 4-10, 4-11| before T.E., PHI2 T2 or T3 25 ns
trOYNh RDY hold time 4-10, 4-11 | after L.E.,PHI2 T3 0 ns
trsTs RST setup time 4-24, 4-25| before T.E., PHI1 20 ns
tRsTw RST pulse width 4-25 at 0.8V (both edges) 64 tep
tiNTa INT setup time 4-26 before T.E., PHI1 10 ns
tNMIw NMI pulsewidth 4-27 at 0.8V (both edges) 40 ns
t NMI setup time after a PFS clock cycle

NMPF ffor use P breakpoint) y 4-28 | before L.E., PHI1 (as shown)| -10 ns
tois Data setup (slave read cycle) 4-13 before T.E., PHI2 T1 20 ns
tpin Data hold (slave read cycle) 4-13 after L.E., PHI1 T4 0 ns
tspow SPC pulse width (from slave processor) 4-12 at 0.8V (both edges) 30 ns

Note: This setup time is necessary to ensure prompt acknowledgement via HLDA and the ensuing floating of CPU off the buses. Note that the time from the
receipt of the HOLD signal until the CPU floats is a function of the time HOLD signal goes low, and the state of the RDY input.

Table 4-3. Clocking Requirements: NS08032-4

Name Description Figure Reference/Conditions | Min. Typ. | Max. | Unit

towr PHI1, PHI2 rise time 4-16 :;’e\écg'age 2 9 | ns
— 0,

ter |PHIT, PHI2 fall time 416 | gy O Vor 9 | ns

totn |PHM, PHI2 high time 4-16 051cp ns

tep Clock period 4-16 240 5000| ns

tovL an-overlap time 4-16 at 10% of Vg (see page2) | 0 15 | ns

Table 4-4. Clocking Requirements: NS08032-6

Name Description Figure Reference/Conditions | Min. | Typ. | Max. | Unit

towr PHI1, PHI2 rise time 4-16 };’e\é"g‘age 2 9 | ns
-109

tor |PHI, PHI2 fall time 416 o gy O Vor 9 | ns

town PHI1, PHI2 high time 4-16 offgp ns

tep Clock period 4-16 160 5000| ns

tovL Non-overlap time 4-16 at 10% of Vg (see page 2) | O 15 | ns

39

| ™ T2 . T3 T4
PHI [l
PHI2 [I I ! l I I
tAlv rt,
L])
ADO-AD? [—[AporEss DATA OUT
1 M Itpy .
AD8-AD1S [~ Ll Dh
Al 23[VALID
7 s E P
- = tADSia ‘ tAHN
ADS [- (ADSW
tADSa A
DDIN [(HIGH)
STy
ST0-3 [VALID tsTh NEXT
— tDSa
|
= (= tDSia
RDY [(HIGH)
! TUC5049
FIGURE 4-3. Write Cycle

i T T2 ’ T3 ' T

PHI2 [I I I I l I I I
tDIs
]
ADO-AD? [_ ADDRESS _____(] DATA IN
it —»| ea—1tplh
ADB-AD15 [— ALt —
A16-23 [) VALID
T | tAHADSs
a5 [T
ALADSS
DDIN [\ /
{DDINV —{ IDDINh
<_—NEXT_-L—CVC E
ST0-3 [VALID . STATUS
5| A
RDY [

(HIGH)
- TUC5049

FIGURE 4-4. Read Cycle

40

| ™1
PHI1 [I I

[

TX2] T4

Ti

Ti

[

-

or [| tHLDa L}

1
——-! HLDh

—K]luwna

HLDA [
taDst
—_— 'DDINt
ADS
BOIN
ADO-AD? [

AD8-AD15
A16-23 [

ﬂw« ‘ l
T T T T TR

ATING)
|

TLC5049

Note: Whenever the CPU is not idling (not in Ti), the HOLD request (HOLD Low) must be active tyy p, before the trailing edge of PHI2 of the clock cycle that
appears two clock cycles before T4 (TX1) and stay low until tyy pp after the leading edge of PHI1 of the clock cycle that precedes T4 (TX2) for the request to be

acknowliedged.

FIGURE 4-5. Floating by HOLD Timing (CPU Not lIdle Initially)

tADSt
tDDINt

(FLOATING)

TUC5049

FIGURE 4-6. Floating by HOLD Timing

(CPU Initially Idle)

Ti

(1

=

Ti T4

PHI2 I:

L

tHLDia |~ —={ HLDh
fGLD [
— tHLDAIa
HLDA [VA
. La{ tADSF
ADS, J (HIGH)
DDIN [(FLOATING)
A16-23 [e e
ADO-15 R
(FLOATING)

TUC5049

FIGURE 4-7. Release from HOLD

41

Tior , T2 T3 | T3 ! !
PHI1[J—l Tmmu n r—l I—] PHI1|: m T3 I__—I I I | T

A i I L MM

tRDYh i | |
RDY [\ I RDY [
RDYs | | -1 tRDYs tnn|vn
FIGURE 4-8. Ready Sampling FIGURE 4-9. Ready Sampling
(CPU Initially READY) (CPU Initially NOT READY)

| T1 | T4 i

| i ! } T I T4
PHIY [] | I I J- PHI 1[I I I l
PH'ZI: J l J_—l__ Plel: -; toih l I

‘ ! |~ ton ._'B'i] -

ADO-15 [— | DATA | ADO—15[— VALID

| DATA (FROM SLAVE,
~ t L —_ S)
== SPCw SPC [1 —/__._._
] (CPU) \
—™tspca tSPCia .
DDIN [/ DOIN [\

I

L STO-15 STATUS VALID NEXT STATUS
ST0-3 [sTatusvaLD | Y NEXTOVELE [_
— ADS HIGH
p— [e DS [(HIGH)
FIGURE 4-10. Slave Processor Write Timing " FIGURE 4-11. Slave Processor Read Timing

[
‘ T T4 }

Note: After transterring last operand to.a Slave Processor, CPU
turns OFF driver and holds SPC high with internal 5kQ pultup.

FIGURE 4-12. SPC Non-Forcing Delay

42

tcLh

— |[~—1tCLf

e
- -

teLr

———] l-——- tovL

FIGURE 4-13. Clock Waveforms

(LT

tpra:
'PFS a PFSia

PFSw
‘p‘s's[f \

FIGURE 4-14. Relationship of PFS to Clock Cycles

W LT
p—FsL_ \ /

ST0-3 . . X CODE 1001
L

FIGURE 4-15a. Guaranteed Delay, PFS to Non-Sequential Fetch

|
[

tPENS

I T ‘ T2 o0 e ‘] 1

PHIM I | | l l I I I l I
- — ((

— '\—/))

ADS

ST0-3 CODE 1001

- A(

—) .

PFS . \ [
. INSPF

FIGURE 4-15b. Guaranteed, Delay, Non-Sequential Fetch to PFS

43

l T3ORTi l T4ORTi

L
i

FIGURE 4-16. Relationship of TLO to First Operand Cycle
of an Interlocked Instruction

’ T30RTi ‘ T4ORTi l

no| |
TP LT

o

2 1 T3

tiLoh

FIGURE 4-17. Relationship of ILO to Last Operand Cycle
of an Interlocked Instruction

[T T
_o[__—\ 1

YiLOa YLOia

FIGURE 4-18. Relationship of ILO to Any Clock Cycle

[TsORTi | T4OR Ti T

RN
LTI e

i
= \/

A= X777

NN\

FIGURE 4-19. U/S Relationship to Any Bus Cycle—
Guaranteee Valid Interval

44

m[—/ L WL
ol et TN T

L____”__J

FIGURE 4-20. Power-On Reset FIGURE 4-21. Non-Power—On Reset

[L

_ [By - \ tNMIw /

Note: Violation of t|y1g timing is allowed, but
_detection then occurs one clock cycle later.

FIGURE 4-22.Tﬁ7|nterrdpt Signal Detection . FIGURE 4-23. NMI Interrupt Signal Timing

FIGURE 4-24. Required Relationship of NMi to PFS
(Breakpoint Use)

NEXT

FIRST BUS CYCLE
T T2 | T3 T4 TiorTi !

[B S —

Note: In a transfer of a Read-Modify-inte type operand, this
is the Read transfer, displaying RMW Status (Code 1011).

FIGURE 4-25. Relationship Between Last Data Transfer of an
Instruction and PFS Pulse of Next Instruction

45

Appendix A: Instruction Formats
Notations

7

| PN Integer Type Field
B =00 (Byte)
W =01 (Word)
D = 11 (Double Word)
fooeei i, Floating-Point Type Field
F =1 (Standard Floating: 32 bits)
L =0 (Long Floating: 64 bits)
[Custom Type Field
D =1 (Double Word)
Q=0 (Quad Word)

[o] « B Operation Code

Valid encodings shown with each format.
gen, gent,
gen2....... General Addressing Mode Field.

See Section 2.2 for encodings.
reg......... General Purpose Register Number
cond....... Condition Code Field

0000 =EQual: Z=1

0001 =Not Equal: Z=0

0010 =Carry Set: C=1

0011 =Carry Clear: C=0

0100 = Higher: L=1

0101 =Lower or Same: L=0
0110=Greater Than: N=1

0111 =Lessor Equal: N=0
1000=Flag Set: F=1

1001 =Flag Clear: F=0
1010=LOwer: L=0and Z=0

1011 =Higher or Same: L=1orZ=1
1100=Less Than:N=0and Z=0
1101 =Greater or Equal: N=1orZ=1
1110 = (Unconditionally True)

1111 =(Unconditionally False)

short....... Short Immediate Value. May contain:
quick: Signed 4-bit value, in MOVQ,
ADDQ, CMPQ, ACB

Condition Code (above), in
Scond.

CPU Dedicated Register, in
LPR, SPR.

0000=US

0001-0111 = (Reserved)
1000 =FP

1001 =SP

1010=SB

1011 =(Reserved)

1100 = (Reserved)

1101 = PSR

1110 = INTBASE

1111 =MOD

in String Instructions

zon

' T =Translated
B =Backward
U/W =00: None
01: While Match
11: Until Match

cond:

areg:

Options:

Configuration bits, in SETCFG:
mreg: MMU Register number, in LMR, SMR.
0000 = BPRO
0001 = BPR1
0010 = (Reserved)
0011 = (Reserved)
0100 = PFO

0110 = (Reserved)
0111 = (Reserved)

1000=SC
1001 = (Reserved)
1010=MSR
1011 = BCNT
1100=PTBO
1101 =PTB1
1110 = (Reserved)
1111 =EIA
7 0
TTT T
cond 10 10
Format 0
Bcond (BR)
7 oy
TTT T
op 00 10
Format 1
BSR -0000 ENTER -1000
RET —0001 EXIT -1001
CXP —0010 -~ NOP -1010
RXP -0011 WAIT -1011
RETT —-0100 DIA -1100
RETI -0101 FLAG -1101
SAVE -0110 SvC -1110
RESTORE -0111 BPT -1111
15 817 0
TTTT 1T 11 UL | T ! T
gen short op 11 1
Format 2
ADDQ —000 ACB -100 -
CMPQ -001 MovaQ -101
SPR -010 LPR -110
Scond =011

46

15

0

16]15

lll

7 0
rTrri1iit

"!8

gen 11 1 1 1] i gen1 gen2 op 11001110
Format 3 . Format 7
CXPD -0000 ADJSP -1010 MOVM —0000 MUL -1000
BICPSR -0010 JSR -1100 CMPM —-0001 MEI —1001
JUMP -0100 CASE -1110 INSS -0010 Trap(UND) -1010
BISPSR -0110 EXTS -0011 DEI -1011
MOVXBW -0100 Quo -1100
Trap (UND) on XXX1, 1000 MOVZBW -0101 REM -1101
MOVZiD -0110 MOD -1110
15 8,7 o MOVXiD —0111 DIV -1111
TTTT 711 L] 1
gen 1 [gen 2 op J i
23 - 16)15 817 0
LI | UL l T I I TrTTrT
gen 1 gen 2 101110
Format 4 X op 7
ADD -0000 SuB -1000
CMP -0001 ADDR -1001
BIC -0010 AND -1010 . Format 8
ADDC -0100 SUBC -1100 EXT -000 INDEX -100
MOV -0101 TBIT -1101 CVTP ~001 FFS -101
OR -0110 XOR -1110 INS -010
CHECK ~-011
23 16 15 87 0
T1T 1T T T'TT T T TTTTTd
00000 shon ol op |i00001110 zilll 'I16=15| IB7I|||||I0
gen 1 gen2 |f|i00111110
Format 5
MOVS -0000 SETCFG -0010 Format 9
Trap (UND) on 1XXX, 01XX LFSR -001 TRUNC -101
MOVLF -010 SFSR -110
MOVFL -011 FLOOR =111
23 16115 7 0
TTTT LI l I | l I | TTTTTTT
gen 1 gen 2 ‘ i jJot001t1 10 7 °
- 01111110
‘Format 6 o
NEG -1000
ASH -0001 NOT -1001 Format 10
CBIT -0010 Trap (UND) -1010 Trap (UND) Always
CBITI -0011 SUBP -1011
Trap (UND) -0100 ABS -1100
LSH -0101 coM -1101
SBIT -0110 IBIT -1110
SBITI -0111 ADDP -1111

Trap (UND) on all others

47

23 1615 87 0 23 1615 817 0
TT T T[T T T T T 7T11 TT T T T 711 1 TTT T T 11
gen 1 | gen 2 op Iolf10111110 nnnit10110

Operation Word 1D Byte
Format 11

ADDf -0000 DIV -1000 Format 15

MOVt -0001 Trap(UND) -1010 (Custom Siave)

CMPf —-0010 Trap (UND) =1011 nnn Operation Word Format

SUBf -0100 MULf —1100

NEGf -0101 ABSf -1110

Trap (UND) -0110 Trap (UND) -1110 23 16|15 8

Trap (UND) -0111 Trap (UND) 1111 TT T T T T 1 TT T 1

000 gen1 short |x op i
N 0
1|1'1I 1' 1I1I1|0 Format 15.0
o CATSTO -0000 LCR -0010
CATST1 —0001 SCR -0011
Format 12
Trap (UND) Always 23 16[15 8
. T'T 1T T T T 1
001 gen 1 gen 2 op lc i
7 0
TTTTTTITTd
_roeorrrio Format 15.1
CCV3 -000 CCv2 -100
Format 13 LCSR -001 CCV1 -101
CCV5 -010 SCSR -110

Trap (UND) Always CCV4 -011 CCVvo =111
23 16]15 817 0 23 16{15 8
IIIIIII|III|!IIIIIII T T T T T T T T 17T 1711
gen 1 short 0 op it 100011110 101 gen 1 | gen 2 I op xle

Format 14 Format 15.5
Trap (UND) Always CCALO . -0000 CCAL3 -1000
CMOV0 -0001 Trap (UND) -1010
CCMP —-0010 Trap (UND) -1011
CCAL1 —-0100 CCAL2 -1100
CMOV2 -0101 CMOV1 -1101
Trap (UND) -0110 Trap (UND) -1110
Trap (UND) -0111 Trap (UND) 1111

If nnn =010, 011, 100, 110, 111, then Trap (UND) Always

48

Trap (UND) Always

Trap (UND) Always

Trap (UND) Always

Trap (UND) Always

7

0
LB
01011110

Format 16
7 0
rTr1r1ru1ri
11011110

Format 17
_ 7 0
TTTTTTT
10001110

Format 18
IR
XXX00110

Format 19

Implied Immediate Encodings:

| 1
oftset
1 |

Offset/Length Modifier, appended to INSS, EXTS

49

Physical Dimensions inches (millimeters)

ORDERING INFORMATION
NS08032D-6, NS08032D-4

(VAXIVMS)

243
(©182) ,
a8 &7 L3 a5 “ a3 42 a1 a0 39 38 37 36 35 % 3 32 31 30 2 28 27 26 25
0.580 0610
) 114.73) {15.49)
Max MAX
/PIHMD.HDENT
o N . S
T 7 3 ¢ 8§ & 3 % 8 W n % B oW 5B % 7w oW ® n @ #
. 0.110-0200 045
— MAX TYP -~ |+—
l 0670 \ax I (2.793-5.080) (| 143) A
(7.018) 0.030-0.060
I 1 (0.762-1.524)
T I 1 0.008-0.015 Lenos
{0203-0381) VERTICAL
] 0.035-0.055 __,i |_ 0100 0010 || 0015-0023 EATING PLANE 0.590-0.620 = T0 15" MAX
0.889-1.3871 ™" se mzsa) @amasey |0 SEATWNGR L (14.98-1575) e
TYP 3.175) REF
Ceramic Dual-In-Line Package (D)
NS Package D48A
2,400
(61.98) Max
[(&7 [[[&3] [2) (& [0 (9 [38] (37 (38 (3% (34 [33 [37 (37 [0 [78) [28] [[6] {7
0.550 £0.005 0.062_ |
(1397+0.27) (1579
RAD
PNNo. 1 L
1 IDENT PR——
7T T2 T3] (4 57 To] 177 18] 18] [0 [[l Tl Tl Tl 1@ o] 1@ 19 120 (2] e [124
0.060
{1.528)
0.030
{0.762)
0.600—0.620 max 013020005
(R § o e,
__):_____71 LT
< ! -
™ f aas«
g 0.020 — - ™
95°+5 | s ., g ’[|- 005020015 |- nocoow __f_ - LETE YR 0050 o L_‘
(14.73) IH (1.27+0.381) : {2.54 10.254) {0.457 £0.076) .2
0.009-0.015 __ | s
' 10.229-0.381) .,.
nm‘nnzs
0.6351 H
[y Molded Dual-In-Line Package (N)

NS Package N48A

SFW-90-A500 NS16000 Cross Software Package
(STARPLEX 11™™)

NS08032N-6, NS08032N-4 SPX-90/51 STARPLEX Il with Single-Sided,
EVALUATION TOOLS ORDERING INFORMATION Double-Density System
DB16000* Evaluation Board SPX-90/61 STARPLEX Il with Double-Sided,
NSX-16 NS16000 Cross Software Package Double-Density System

*To be used with an NS08032 plug-in module for NS08032 evaluation and development.

50

National
Semiconductor

NS16032-4, NS16032-6

High-Performance Microprocessors

General Description

The NS16032 functions as a central processing unit (CPU)
in National Semiconductor’s NS16000™ microprocessor
family. It has been designed to optimally support micro-
processor users who need the ability to use a large
addressing space for large programs and/or large data
structures. Because large programs must realistically be
generated and maintained in high-level languages, the
NS16000 architecture provides for very efficient compila-
tion while remaining easy to program at the assembler
level for optimizations. NS16000 architecture provides
for full virtual memory capability, in conjunction with
with the NS16082 Memory Management Unit (MMU). High

Features

performance floating-point instructions are provided

with the NS16081 Floating-Point Unit (FPU). The
NS16032-4 and NS16032-6 have different timing parame-
ters. Refer to Section 4 for timing specifications.

32-bit Architecture and Implementation
16-MByte Uniform Addressing Space

Powerful Instruction Set

— General 2-Address Capability

— Very High Degree of Symmetry '

— Addressing Modes Optimized for High-Level

Language References

High-Speed XMOS™ Technology
Single 5V Supply

48

pin Dual-In-Line Package

NS16032 CPU Block Diagram

ADD/DATA. CONTROLS & STATUS

DATA
BUS INTERFACE CONTROL
INSTRUCTIONS | 16
MICROCODE ROM
AND
SBYTE CONTROL LOGIC
QUEUE
' | INsTRUCTION
> DECODER
. 723
DISPLACEMENT AND a
IMMEDIATE EXTRACTOR o CFG REGISTER
E
&
z
=
Q
REGISTER SET 8
0 INTBASE
0 SB WORKING
) FP REGISTERS
0 SP1
0 SPO
0 PC’
RO
R1 Y4
R2 32-BIT
m ALU
R4 i
R5 |
R6 |
R7 :
MOD |
PSR :
A |
L J

TUC/5054-1

Absolute Maximum Ratings

Temperature under bias 0°C to +70°C
Storage Temperature —65°C to +150°C
All input or output voltages with

respect to GND -0.5Vto+7V
Power Dissipation 1.5 Watt

Note: Absolute maximum ratings indicate limits beyond which
permanent damage may occur. Continuous operation at these
limits is not intended; operation should be limited to those condi-

tions specified under DC Electrical Characteristics.

DC Electrical Characteristics: ns16032: Ty = 0to +70°C, Vg = 5V +5%, GND = 0V

Symbol Parameter Conditions Min. Typ. Max. Unit
Viu Logical 1 Input Voltage 2.0 Vcc+0.5 v
ViL Logical 0 Input Voltage -0.5 0.8 \
VeH Logical 1 Clock Voltage PHI1, PHI2 pins only Vcc—0.4 Vee+0.5 Vv
Voo Logical 0 Clock Voltage PHI1, PHI2 pins only -0.5 0.3 v
Vour | o9ical 0 g:g;:‘n;f‘;gg‘;n o PHI1, PHI2 pins only -05 06 v
Vou Logical 1 Output Voltage loH = —400uA 2.4 Vv
VoL Logical 0 Output Voltage loL=2mA 0.45 v
s ATISPC Input Current (low) Vin=0.4V, AT/SPC in input mode 0.05 1.0 mA
h Input Leakage Current giﬂj?’i&%&%’% uts except - éo 20 A
loorr)| Output Leakage Current 0.4 <Voyt €Vce -20 20 uA
Icc Active Supply Current lout =0, TA=25°C 180 300 mA

52

1 NS16032 Pin Descriptions

The following is a brief description of all NS16032 pins.
The descriptions reference portions of the Functional
Description, Section 3.

1.1 SUPPLIES

Power (Vcc): +5V Positive Supply. Sec. 3.1.

Logic Ground (GNDL): Ground reference for on-chip
logic. Sec. 3.1

Buffer Ground (GNDB): Ground reference for on-chip
drivers connected to output pins. Sec. 3.1.

Back-Bias Generator (BBG): Output of on-chip sub-
strate voltage generator. Sec. 3.1.

1.2 INPUT SIGNALS

Clocks (PHI1, PHI2): Two-phase clocking signals. Sec.
3.2.

Ready (RDY): Active high. While RDY is inactive, the
CPU extends the current bus cycle to provide for a
slower memory or peripheral reference. Upon detecting
RDY active, the CPU terminates the bus cycle. Sec.
3.4.1.

Hold Request (HOLD): Active low. Causes the CPU to

release the bus for DMA or multiprocessing purposes. -

Sec. 3.6. .

Interrupt (INT): Active low. Maskable Interrupt request.
Sec.3.8.

Non-Maskable Interrupt (NMI): Active low. Non-Mask-
able Interrupt request. Sec. 3.8.

Reset/Abort (RST/ABT): Active low. If held active for
one clock cycle and released, this pin causes an Abort
Command, Sec. 3.5.4. If held longer, it initiates a Reset,
Sec.3.3.

Connection Diagram

az—J1e _/ | Jvcc
A2 47 [A23
A20 3 46] INT
A19 4 45] \mi
A8 [4 —]io
A7 6 43 [sTo
a7 42 []sm
AD15 [8 41 [Jsm2
AD1A [o 40 [sT3
AmsE 10 39] PFs
AD12 1 38 DDIN
ADTT [12 NS16032 a7 ADS
AD10 [13 CPU 36 u/s
Do [14 s AT/SPC
a1 1s 38 [RST/ABT
AD7 (] 16 33 [DS/FIY
ADs] 17 32 1 HBE
ADs [18 31 [] HLDA
ADdA [19 30] HOLD
AD3 [20 29] BBG
AD2] 21 28 [rOY
ADY [22 27 [] PHI2
ADO 23 26 [pHI
GNDL 24 25] GNDB

TLIC/S054-2

1.3 OUTPUT SIGNALS

Address Bits 16-23 (A16-A23): Active high. These are
the most significant 8 bits of the memory address bus.
Sec. 3.4.

Address Strobe (ADS): Active low. Controls address
latches; indicates start of a bus cycle. Sec. 3.4.

Data Direction In (DDIN): Active low. Status signal
indicating direction of data transfer during a bus cycle.
Sec. 3.4.

High Byte Enable (HBE): Active low. Status signal
enabling transfer on the most-significant byte of the
Data Bus. Sec. 3.4; Sec. 3.4.3.

Status (ST0-ST3): Active high. Bus cycle status code,
STO least significant. Sec. 3.4.2. Encodings are:

0000 — Idle: CPU Inactive on Bus.

0001 — Idle: WAIT Instruction.

0010 — (Reserved)

0011 — Idle: Waiting for Slave.

0100 — Interrupt Acknowledge, Master.
0101 — Interrupt Acknowledge, Cascaded.
0110 — End of Interrupt, Master. :
0111 — End of Interrupt, Cascaded.

1000 — Sequential Instruction Fetch.

1001 — Non-Sequential Instruction Fetch.
1010 — Data Transfer.

1011 — Read Read-Modify-Write Operand.
1100 — Read for Effective Address.

1101 — Transfer Slave Operand.

1110 — Read Slave Status Word.

1111 — Broadcast Slave ID.

Hold Acknowledge (HLDA): Active low. Applied by the
CPU in response to HOLD input, indicating that the bus
has been released for DMA or multiprocessing pur-
poses. Sec. 3.6.

User/Supervisor (U/S): User or Supervisor Mode
status. Sec. 3.7. High state indicates User Mode, low
indicates Supervisor Mode. Sec. 3.7.

Interlocked Operation (ILO): Active low. Indicates that
an interlocked instruction is being executed. Sec. 3.7.

Program Flow Status (PFS): Active low. Pulse indi-
cates beginning of an instruction execution. Sec. 3.7.

1.4 INPUT-OUTPUT SIGNALS

Address/Data 0-15 (ADO-AD15): Active high. Multi-
plexed Address/Data information. Bit 0 is the least sig-
nificant bit of each. Sec. 3.4.

Address Translation/Slave Processor Control (AT/
SPC): Active low. Used by the CPU as the data strobe
output for Slave Processor transfers; used by Slave
Processors to acknowledge completion of an instruc-
tion. Sec. 3.4.6; Sec. 3.9. Sampled on trailing edge of
Reset pulse as Address Translation Strap. Sec. 3.5.1.

Data Strobe/Float (DS/FLT): Active low. Data Strobe
output, Sec. 3.4, or Float Command input, Sec. 3.5.3.
Pin function is selected on AT/SPCpin, Sec. 3.5.1.

53

2 Architectural Description
2.1 PROGRAMMING MODEL

The NS16000 architecture includes 16 registers on the
NS 16032 CPU.
DEDICATED

32

PROGRAM COUNTER] PC

STATIC BASE | SB

FRAME POINTER | FP

USER STACK PTR. l SP1

b

INTERRUPT BASE l INTBASE
MOD

INTERRUPT STACK PTR. | SPO

VU —
o

[smrus | wmooue]

GENERAL

Ro |

R |

re [

R3[

Ra | :
Rs | :
Re | '
A7 | :

TLC/5054-3

FIGURE 2-1. The General and Dedicated Registers.

2.1.1 General Purpose Registers

There are eight registers for meeting high speed general
storage requirements, such as holding temporary vari-
ables and addresses. The general purpose registers are
free for any use by the programmer. They are thirty-two
bits in length. If a general register is specified for an
operand that is eight or sixteen bits long, only the low
part of the register is used; the high part is not refer-
enced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the NS16032 are as-
signed specific functions.

PC: The PROGRAM COUNTER register is a pointer to
the first byte of the instruction currently being executed.
The PC is used to reference memory in the program
section. (In the NS16032 the upper eight bits of this
register are always zero.)

SPO, SP1: The SPO register points to the lowest address
of the last item stored on the INTERRUPT STACK. This
stack is normally used only by the operating system. Itis
used primarily for storing temporary data, and holding
return information for operating system subroutines and
interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on
the USER STACK. This stack is used by normal user
programs to hold temporary data and subroutine return
information.

In this document, reference is made to the SP register.
The terms “SP register” or “SP" refer to either SPO or
SP1, depending on the setting of the S bit in the PSR

register. If the S bitin the PSRis 0 then SP refersto SPO.

If the S bit in the PSR is 1 then SP refers to SP1. (In the
NS16032 the upper eight bits of these registers are
always zero).

Stacks in the NS16000 family grow downward in mem-
ory. A Push operation pre-decrements the Stack Pointer
by the operand length. A Pop operation post-increments
the Stack Pointer by the operand length.

FP: The FRAME POINTER register is used by a proce-
dure to access parameters and local variables on the
stack. The FP register is set up on procedure entry with
the ENTER instruction and restored on procedure termi-
nation with the EXIT instruction. ~

The frame pointer holds the address in memory occu-
pied by the old contents of the frame pointer. (In the
NS16032 the upper eight bits of this register are
always zero.)

SB: The STATIC BASE register points to the global
variables of a software module. This register is used to
support relocatable global variables for software mod-
ules. The SB register holds the lowest address inmemory
occupied by the global variables of a module. (In the
NS 16032 the upper eight bits of this register are always
zero.) '

INTBASE: The INTERRUPT BASE register holds the
address of the dispatch table for interrupts and traps
(Sec. 3.8). The INTBASE register holds the lowest
address in memory occupied by the dispatch table. (In
the NS16032 the upper eight bits of this register are
always zero.)

MOD: The MODULE register holds the address of the
module descriptor of the currently executing software
module. The MOD register is sixteen bits long, therefore
the module table must be contained within the first 64K
bytes of memory.

PSR: The PROCESSOR STATUS REGISTER (PSR)
holds the status codes for the NS 16032 microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all
programs, but the high order eight bits are accessible
only to programs executing in Supervisor Mode.

15 8|7

0
DD efsTulw]z e XIX] cfr]c]

FIGURE 2-2. Processor Status Register.

54

C: The C bit indicates that a carry or borrow
occurred after an addition or subtraction instruc-
tion. It can be used with the ADDC and SUBC
instructions to perform multiple-precision integer
arithmetic calculations. It may have a setting of 0
(no carry or borrow) or 1 (carry or borrow).

T: The T bit causes program tracnhg If this bitis a 1,
aTRC trap is executed aﬂer every instruction
(Sec. 3.8.5).

L: The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to “1” if the
second operand is less than the first operand, when
both operands are interpreted as unsigned integers.
Otherwise, it is set to “0" In Floating Point compan-
sons, this bit is always cleared.

F: The F bitis a general condition flag, which is altered
by many instructions (e.g., integer arithmetic instruc-
tions use it to indicate overfiow).

Z: The Z bitis altered by comparison instructions. Ina
comparison instruction the Z bit is set to “1" if the
second operand is equal to the first operand; other-
wise itis setto 0"

N: The N bitis altered by comparison instructions. Ina
comparison instruction the N bit is set to “1” if the
second operand is less than the first operand, when
both operands are interpreted as signed integers.
Otherwise, itissetto “0". -

U: If the U bit is “1” no privileged instructions may be
executed. If the U bit is “0” then all instructions may
be executed. When U = 0 the NS16032 is said to be in
Supervisor Mode; when U = 1 the NS16032 is said to
be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing
certain registers which could interfere with the operat-
ing system. For example, a User Mode program is
prevented from changing the setting of the flag used
to indicate its own privilege mode. A Supervisor Mode
programis assumed to be a trusted part of the operat-
ing system, hence it has no such restrictions.

S: The S bit specifies whether the SPO register or SP1
register is used as the stack pointer. The bit is auto-
matically cleared on interrupts and traps. It may have
a setting of 0 (use the SPO register) or 1 (use the SP1
register).

P: The P bit prevents a TRC trap from occurring more
than once for an instruction (Sec. 3.8.5). t may have a
setting of O (no trace pending) or 1 (trace pending).

I: If | = 1, then all interrupts will be accepted (Sec.
3.8). If | = 0, only the NMI interrupt is accepted. Trap
enables are not affected by this bit.

2.1.3 The Configuration Register (CFG)

Within the Control section of the NS16032 CPU is the
four-bit CFG Register, which declares the presence of
certain external devices. It is referenced by only one
instruction, SETCFG, which is intended to be executed
only as part of system initialization after reset. The for-
mat of the CFG Register is shown in Figure 2-3.

FIGURE 2-3. CFG Register.

The CFG | bit declares the presence of external interrupt
vectoring circuitry (specifically, the NS16202 Interrupt
Control Unit). If the CFG | bit is set, lnterrupts requested
through the INT pin are “Vectored. If it is clear, these
interrupts are “Non-Vectored.” See Sec. 3.8.

The F, M and C bits declare the presence of the FPU,
MMU and .Custom Slave Processors. If these bits are
not set, the corresponding instructions are trapped as
being undefined.

2.1.4 Memory Organization

The main memory of the NS16032 is a uniform linear
address space. Memory locations are numbered sequen-
tially starting at zero and ending at 22 — 1. The number
specifying a memory location is called an address. The
contents of each memory location is a byte consisting of
eight bits. Unless otherwise noted, diagrams in this
document show data stored in memory with the lowest
address on the right and the highest address on the left.
Also, when data is shown vertically, the lowest address
is at the top of a diagram and the highest address at the
bottom of the diagram. When bits are numbered in a
diagram, the least significant bit is given the number
zero, and is shown at the right of the diagram. Bits are
numbered in increasing significance and toward the left.

A

Byte at Address A

Two contiguous bytes are called a word. Except where
noted (Sec. 2.2.1), the least significant byte of a word is
stored at the lower address, and the most significant
byte of the word is stored at the next higher address. In
memory, the address of a word is the address of its least
significant byte, and a word may start at any address.

I15 MSB's 8]7 LSB’s (;I

A+1 A

Word at Address A

Two contiguous words are called a double word. Ex-
cept where noted (Sec. 2.2.1), the least significant
word of a double word is stored at the lowest address
and the most significant word of the double word is
stored at the address two greater. In memory, the
address of a double word is the address of its least
significant byte, and a double word may start at any
address.
16] 15

Double Word at Address A

Although memory is addressed as bytes, it is actually
organized as words. Therefore, words and double

l31 MSB's 24|23 8|7 LSB’s 0]

A+3 A+2 A+1 A

" words that are aligned to start at even addresses (mul-

tiples of two) are accessed more quickly than words
and double words that are not so aligned.

55

2.1.5 Dedicated Tables

Two of the NS16032 dedicated registers (MOD and
INTBASE) serve as pointers to dedicated tables in
memory.

The INTBASE register points to the Interrupt Dispatch
and Cascade tables. These are described in Sec. 3.8 .

The MOD register contains a pointer into the Module
Table, whose entries are called Module Descriptors. A
Module Descriptor contains four pointers, three of which
are used by the NS16032. At any point in time, the MOD
register contains the address of the Module Descriptor
for the currently running module. It is automatically up-
dated by the Call External Procedure instructions (CXP
and CXPD).

The format of a Module Descriptor is shown in Figure
2-4. The Static Base entry contains the address of
static data assigned to the running module. It is
loaded into the CPU Static Base register by the CXP
and CXPD instructions. The Program Base entry con-
tains the address of the first byte of instruction code in
the module. Since a module may have multiple entry
points, the Program Base pointer serves only as a ref-
erence to find them. ’

T
31
STATIC BASE
LINK TABLE ADDRESS
PROGRAM BASE
RESERVED
L .

TUC/5054-6

FIGURE 2-4. Module Descriptor Format.

The Link Table Address points to the Link Table for the
currently running module. The Link Table provides the
information needed for:

1) Sharing variables between modules. Such variables
are accessed through the Link Table via the External
addressing mode.

2) Transferring control from one module to another.
This is done via the Call External Procedure (CXP)
instruction.)

The format of a Link Table is given in Figure 2-5. A Link
Table Entry for an external variable contains the 32-bit
address of that variable. An entry for an external proce-
dure contains two 16-bit fields: Module and Offset. The
Module field contains the new MOD register contents for
the module being entered. The Offset field is an unsigned
number giving the position of the entry point relative to
the new module’s Program Base pointer.

For further details of the functions of these tables, see
the NS16000 Programmer’s Manual.

—_ ~

ENTRY |3 9
0 ABSOLUTE ADDRESS (VARIABLE)
1 ABSOLUTE ADDRESS (VARIABLE)
2 OFFSET MODULE (PROCEDURE)

B [N
TLCI5054-7

FIGURE 2-5. A Sample Link Table.

2.2 INSTRUCTION SET
2.2.1 General Instruction Format

Figure 2-6 shows the general format of an NS16000
instruction. The Basic Instruction is one to three bytes
long and contains the Opcode and up to two 5-bit General
Addressing Mode (“Gen") fields. Following the Basic
Instruction field is a set of optional extensions, which
may appear depending on the instruction and the ad- -
dressing modes selected.

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
A
- NS IR
1
DISPZIDISN DISPZIDISH !
1
IMPLIED INDEX GEN ' GEN
IMMEDIATE DISP DIsP '33?;‘ BYTE agopg | ADDR OPCODE
OPERAND(S) o i MOBDE
MM MM !
: 1

t

L_;)J |

TLIC/5054-8

FIGURE 2-6. General Instruction Format.

56

Index Bytes appear when either or both Gen fields spec-
ify Scaled Index. In this case, the Gen field specifies
only the Scale Factor (1, 2, 4 or 8), and the Index Byte
specifies which General Purpose Register to use as the
index, and which addressing mode calculation to per-
form before indexing. See Figure 2-7.

0 ’ SIGNED DISPLACEMENT

BYTE DISPLACEMENT: RANGE —64 TO +63

GEN. ADDR. MODE REG. NO.

TUCI5054-9

FIGURE 2-7. Index Byte Format.

Following Index Bytes come any displacements
(addressing constants) or immediate values associated
with the selected addressing modes. Each Disp/Imm
field may contain one or two displacements, or one
immediate value. The size of a Displacement field is
encoded within the top bits of that field, as shown in
Figure 2-8, with the remaining bits interpreted as a signed
(two's complement) value. The size of an immediate
value is determined from the Opcode field. Both Dis-
placement and Immediate fields are stored most-signi-
ficant byte first. Note that this is backward from the usual
memory representation of data (Sec. 2.1.4).

Some instructions require additional, “implied” immedi-
ates and/or displacements, apart from those associated
with addressing modes. Any such extensions appear at
the end of the instruction, in the order that they appear
within the list of operands in the instruction definition
(Sec.2.2.3).

2.2.2 Addressing Modes

The NS16032 CPU generally accesses an operand by
calculating its Effective Address based on information
available when the operand is to be accessed. The
method to be used in performing this calculation is spe-
cified by the programmer as an “addressing mode.’

‘Addressing modes in the NS16032 are designed to
optimally support high-level language accesses to vari-
ables. In nearly all cases, a variable access requires
only one addressing mode, within the instruction that
acts upon that variable. Extraneous data movement is
therefore minimized.

NS 16032 Addressing Modes fall into nine basic types:

-Register: The operand is available in one of the eight
General Purpose Registers. In certain Slave Processor
instructions, an auxiliary set of eight registers may be
referenced instead.

Register Relative: A General Purpose Register con-
tains an address to which is added a displacement value
from the instruction, yielding the Effective Address of
the operand in memory.

Memory Space: Identical to Register Relative above,
except that the register used is one of the dedicated
registers PC, SP, SB or FP. These registers point to data
areas generally needed by high-level languages.

| =
oo™

WORD DISPLACEMENT: RANGE —8192 TO +8191

DOUBLE WORD DISPLACEMENT: RANGE (ENTIRE ADDRESSING SPACE)
TLIC/5054-10

FIGURE 2-8. Displacement Encodings.

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to-that pointer to generate the
Effective Address of the operand.

Immediate: The operand is encoded within the instruc-
tion. This addressing mode is not allowed if the operand
is to be written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry
of the current Link Table. To this pointer value is added a
displacement, yielding the Effective Address of the
operand.

Top of Stack: The currently-selected Stack Pointer
(SPO or SP1) specifies the location of the operand. The
operand is pushed or popped, depending on whether it
is written or read. '

Scaled Index: Although encoded as an addressing
mode, Scaled Indexing is an option on any addressing
mode except Immediate or another Scaled Index. It has
the effect of calculating an Effective Address, then multi-
plying any General Purpose Register by 1,2, 4 or 8 and
addingitinto the total, yielding the final Effective Address
of the operand. '

Table 2-1 is a brief summary of the addressing modes.
For a complete description of their actions, see the
Programmer’s Manual.

57

TABLE 2-1.

NS16032 Addressing Modes
ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS
Register
00000 Register 0 ROorFO None: Operand s in the specified
00001 Register 1 R1orF1 register.
00010 Register 2 R2 or F2
00011 Register 3 R3orF3
00100 Register 4 R4 orF4
00101 Register 5 - R50rF5
00110 Register 6 R6 or F6
00111 Register 7 R7 or F7
Register Relative ‘
01000 Register 0 relative disp(RO) ‘ " Disp + Register.
.01001 Register 1 relative disp(R1)
01010 Register 2 relative disp(R2)
01011 Register 3 relative’ disp(R3)
01100 Register 4 relative ' disp(R4)
01101 i Register 5 relative disp(R5)
01110 Register 6 relative disp(R6)
01111 Register 7 relative disp(R7)
Memory Relative
10000 Frame memory relative disp2(disp1(FP)) Disp2 + Pointer; Pointer found at
10001 Stack memory relative disp2(disp1(SP)) address Disp1 + Register. “SP”
10010 ’ Static memory relative disp2(disp1(SB)) is either SPO or SP1, as selected
in PSR.
Reserved ‘
10011 (Reserved for Future Use)
Immediate
10100 Immediate value None: Operand is input from
‘ instruction queue.
Absolute
10101 Absolute @disp Disp.
External
10110 External EXT (disp1) + disp2 Disp2 + Pointer; Pointer is found
) atLink Table Entry number Disp1.
Top of Stack
10111 Top of stack TOS Top of current stack, using either
' : User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.
Memory Space
11000 Frame memory disp(FP) Disp + Register; “SP” is either
11001 Stack memory disp(SP) SPO or SP1, as selected in PSR.
11010 Static memory i disp(SB)
11011 Program memory . *+disp
Scaled Index ‘
11100 Index, bytes mode[Rn:B] EA (mode) + Rn.
11101 Index, words mode[Rn:W] EA (mode) +2 x Rn.
11110 Index, double words mode[Rn:D] EA (mode) + 4 x Rn.
1111 Index, quad words mode[Rn:Q] EA (mode) + 8 x Rn.

“Mode” and “n” are contained
within the Index Byte.

EA (mode) denotes the effective
address generated using mode.

58

2.2.3 Instruction Set Summary

Table 2-2 presents a brief description of the NS16032
instruction set. The Format column refers to the
Instruction Format tables (Appendix A). The Instruc-

tion column gives the instruction as coded in assem-

bly language, and the Description column provides a
short description of the function provided by that

instruction. Further details of the exact operations per-

formed by each instruction may be found in the Pro-
grammer’s Manual.

Notations:

i = Integer length suffix: B = Byte
W = Word
D = Double Word

f = Floating Point length suffix: F = Standard Floating
L =Long Floating

gen = General operand. Any addressing mode can be
specified.

short = A 4-bit value encoded within the Basic
Instruction (see Appendix A for encodings).

imm = Implied immediate operand. An 8-bit value
appended after any addressing extensions.

disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal. ‘

reg = Any General Purpose Register: RO-R7.

areg = Any Dedicated/Address Register: SP, SB, FP,
MOD, INTBASE, PSR, US (bottom 8 PSR bits).’

mreg = Any Memory Management Status/Control

Register.

creg = A Custom Slave Processor Register (Implemen-
tation Dependent).

cond = Any condition code, encoded as a 4-bit field
within the Basic Instruction (see Appendix A for
encodings).

59

MOVES
Format Operation

MOVi
MOVQi
MOVMi
MOVZBW
MOVZID
MOVXBW
MOVXiD
ADDR

BNNNNNNDA

INTEGER ARITHMETIC
Format Operation
ADDi
ADDQi
ADDCi
SUBi
SUBCi
NEGi
ABSi
MULI
QUOI
REMi
DIvi
MODi
MEli
DEli

NNSNNNNNOOARAAND

PACKED DECIMAL (BCD)
Format Operation

6 ADDPi
6 SUBPi

INTEGER COMPARISON
Format Operation

4 CMPi
2 CMPQi
7 CMPMi

LOGICAL AND BOOLEAN
Format Operation

ANDiI
ORi
BICi
XORi
COMi
NOTi
Scondi

NOOS AP D

TABLE 2-2.

NS16032 Instruction Set Summary

Operands

gen,gen
short,gen
gen,gen,disp
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

Operands

gen,gen
short,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

Operands

gen,gen
gen,gen

Operands

gen,gen
short,gen
gen,gen,disp

Operands

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

Description

Move a value.

Extend and move a 4-bit constant.
Move Multiple: disp bytes.

Move with zero extension.

Move with zero extension.

Move with sign extension.

Move with sign extension. -

Move Effective Address.

Description

Add.

Add 4-bit constant.

Add with carry.

Subtract.

Subtract with carry (borrow).
Negate (2's complement).
Take absolute value.

Muitiply.

Divide, rounding toward zero.
Remainder from QUO.
Divide, rounding down.
Remainder from DIV (Moduius).
Multiply to Extended Integer.
Divide Extended Integer.

Description

Add Packed.
Subtract Packed.

Description

Compare.
Compare to 4-bit constant.

- Compare Multiple: disp bytes.

Description

Logical AND.

Logical OR.

Clear selected bits.

Logical Exclusive OR.

Complement all bits.

Boolean complement: LSB only.

Save condition code (cond) as a Boolean variable of size i.

60

SHIFTS

Format Operation Operands

6 LSHi gen,gen

6 ASHi gen,gen

6 ROTi gen,gen
BITS)
Format Operation Operands

4 TBITi gen,gen

6 SBITi gen,gen

6 SBITIi gen,gen

6 CBITi gen,gen

6 CBITIi gen,gen

6 IBITi gen,gen

8 FFSi gen,gen
BIT FIELDS

Bit fields are values in memory which are'not aligned to byte boundaries. Examples are PACKED arrays and records used

Description
Logical Shitt, left or right.

Arithmetic Shift, left or right.
Rotate, left or right.

Description

Test bit.

Test and set bit.

Test and set bit, interlocked.
Test and clear bit.

Test and clear bit, interlocked.
Test and invert bit.

Find first set bit.

in Pascal. “Extract” instructions read and align a bit field. “Insert” instructions write a bit field from an aligned source.

Format Operation Operands
8 EXTi reg,gen,gen,disp
8 INSi reg,gen,gen,disp
7 EXTSi gen,gen,imm,imm
7 INSSi gen,gen,imm,imm
8 CVTP reg,gen,gen
ARRAYS
Format Operation Operands
8 CHECKIi reg,gen,gen
8 INDEXi reg,gen,gen
STRINGS

String instructions assign specific functions to the
eral Purpose Registers:

R4 - Comparison Value

R3 - Translation Table Pointer .
R2 - String 2 Pointer

R1 - String 1 Pointer

RO - Limit Count

Format ‘Operation Operands
5 MOVSi options
MOVST options
5 CMPSI options
CMPST options
5 SKPSi options
SKPST options

Description
Extract bit field(array oriented).

Insert bit field (array oriented).
Extract bit field (short form).
Insert bit field (short form).

Convert to Bit Field Pointer.

Description

Index bounds check.
Recursive indexing step for multiple-dimensional arrays.

Gen- Options on all string instructions are:
B (Backward): Decrement string pointers after each
step rather than incrementing.
U (Untilmatch): End instruction if String 1 entry
matches R4.
W (While match): End instruction if String 1 entry does
not match R4.
Al string instructions end when RO decrements to zero.
Description

Move String 1 to String 2.
Move string, translating bytes.

Compare String 1 to String 2.
Compare, translating String 1 bytes.

Skip over String 1 entries.
Skip, translating bytes for Until/While.

61

JUMPS AND LINKAGE

Format Operation Operands
3 JUMP gen
0 BR disp
0 Bcond disp
3 CASEi gen
2 ACBi short,gen,disp
3 JSR gen
1 BSR disp
1 CXP disp
3 CXPD gen
1 SvC
1 FLAG
1 BPT
1 ENTER [reg list],disp
1 EXIT [reg list]
1 RET disp
1 RXP disp
1 RETT disp
1 RETI
CPU REGISTER MANIPULATION
Format Operation Operands
1 SAVE [reg list]
1 RESTORE [reg list]
2 LPRi areg,gen
2 SPRi areg,gen
3 ADJSPI gen
3 BISPSRi gen
3 BICPSRI gen
5 SETCFG [option list]
FLOATING POINT
Format Operation Operands
11 MOVf gen,gen
9 MOVLF gen,gen
9 MOVFL gen,gen
9 MOVif gen,gen
9 ROUNDfi gen,gen
9 TRUNCi gen,gen
9 FLOOR(i gen,gen
11 ADDf gen,gen
11 SuBf gen,gen
11 MULS gen,gen
11 Divf gen,gen
11 CMPf gen,gen
11 NEGf gen,gen
11 ABSf gen,gen
9 LFSR gen
9 SFSR gen
MEMORY MANAGEMENT
Format Operation Operands
14 LMR mreg,gen
14 SMR mreg,gen
14 RDVAL gen
14 WRVAL gen
8 MOVSUi gen,gen
8 MOVUSI gen,gen -

Description

Jump.

Branch (PC Relative).

Conditional branch.

Multiway branch.

Add 4-bit constant and branch if non-zero.

Jump to subroutine.

Branch to subroutine.

Call external procedure.

Call external procedure using descriptor.

Supervisor Call.

Flag Trap.

Breakpoint Trap.

Save registers and allocate stack frame (Enter Procedure).
Restore registers and reclaim stack frame (Exit Procedure).
Return from subroutine.

Return from external procedure call.

Return from trap. (Privileged)

Return from interrupt. (Privileged)

Description

Save General Purpose Registers.

Restore General Purpose Registers.

Load Dedicated Register. (Privileged if PSR or INTBASE)
Store Dedicated Register. (Privileged if PSR or INTBASE)
Adjust Stack Pointer.

Set selected bits in PSR. (Privileged if not Byte length)
Clear selected bits in PSR. (Privileged if not Byte length)
Set Configuration Register. (Privileged)

Description

Move a Floating Point value.

Move and shorten a Long value to Standard.
Move and lengthen a Standard value to Long.
Convert any integer to Standard or Long Floating.
Convert to integer by rounding.

- Convert to integer by truncating, toward zero.

Convert to largest integer less than or equal to value.
Add.

Subtract.

Multiply.

Divide.

Compare.

Negate.

Take absolute value.

Load FSR.
Store FSR.

Description

Load Memory Management Register. (Privileged)
Store Memory Management Register. (Privileged)
Validate address for reading. (Privileged)

Validate address for writing. (Privileged)

Move a value from Supervisor

Space to User Space. (Privileged)

Move a value from User Space

to Supervisor Space. (Privileged)

62

MISCELLANEOUS

" Format Operation

1 NOP

1 WAIT

1 DIA
CUSTOM SLAVE
Format Operation
15.5 CCALOc
15.5 CCAL1c
15.5 CCAL2c
15.5 CCAL3c
155 CMOQOVOc
15.5 CMOV1ic
15.5 CMOV2c
15.5 CCMPc
15.1 CCV0ci
15.1 CCVici
15.1 CCVvaci
15.1 CCV3ic
15.1 - ccvabDQ
15.1 CCVvs5QD
15.1 LCSR
15.1 SCSR
15.0 CATSTO
15.0 CATSTH
15.0 LCR
15.0 SCR

Operands

Operands

gen,gen
gen,gen
gen,gen
gen,gen

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen:
gen

gen

gen

creg,gen
creg,gen

Description

No Operation.

Wait for interrupt.

Diagnose. Single-byte “Branch to Self” for hardware
breakpointing. Not for use in programming.

Description
Custom Calculate.

Custom Move.

Custom Compare.
Custom Convert.

Load Custom Status Register.

Store Custom Status Register.
Custom Address/Test. (Privileged)
(Privileged)

Load Custom Register. (Privileged)
Store Custom Register. (Privileged)

63

3 Functional Description
3.1 POWER AND GROUNDING

The NS16032 requires a single 5-volt power supply,
applied on pin 48 (V¢¢). See DC Specification Section.

Grounding connections are made on two pins. Logic
Ground (GNDL, pin 24) is the common: pin for on-chip
logic, and Buffer Ground (GNDB, pin 25) is the common
pin for the output drivers. For optimal noise immunity, it
is recommended that GNDL be attached through a
single conductor directly to GNDB, and that all other
grounding connections be made only to GNDB, as
shown below (Figure 3-1). °

In addition to V¢ and Ground, the NS16032 CPU uses
aninternally-generated negative voltage. Itis necessary
to filter this voltage externally by attaching a pair of
capacitors (Fig. 3-1) from the BBG pin to ground.
Recommended values for these are:

C;: 1uF, Tantalum.

C,: 1000 pF, low inductance. This should be either a
disc or monolithic ceramic capacitor.

O +5V
Vec {48}

NS16032
CcPU

A
=

C2

OTHER GROUND
CONNECTIONS

[—E{ GNDL - GNDB [25]

FIGURE 3-1. Recommended Supply Connections.

TLIC/5054-11

' 3.2 CLOCKING

The NS16032 inputs clocking signals from the NS 16201
Timing Control Unit (TCU), which presents two"non-
overlapping phases of a single clock frequency. These
phases are called PHI1 (pin 26) and PHI2 (pin 27). Their
relationship to each other is shown in Figure 3-2.

Each positive edge of PHI1 defines a transition in the
timing state (“T-State"”) of the CPU. One T-State repre-
sents the execution of one microinstruction within the
CPU, and/or one step of an external bus transfer. See
the AC Specifications (Sec. 4) for complete specifica-
tions of PHI1 and PHI2.

~=—ONE T-STATE -»

PHI1 \
PHI2 ’ \
TLIC/5054-12

FIGURE 3-2. Clock Timing Relationships.

Y

NON-OVERLAPPING

As the TCU presents signals with very fast transitions, it
is recommended that the conductors carrying PHI1 and
PHI2 be kept as short as possible, and that they not be
connected anywhere except from the TCU to the CPU
and, if present, the MMU. A TTL Clock signal (CTTL) is
provided by the TCU for all other clocking.

3.3 RESETTING

The RST/ABT pin serves both as a Reset for on-chip
logic and as the Abort input for Memory-Managed sys-
tems. For its use as the Abort Command, see Sec.
3.5.4.

The CPU may be reset at any time by pulling the RST/
ABT pin low for at least 64 clock cycles. Upon detecting
a reset, the CPU terminates instruction processing, re-
sets its internal logic, and clears the Program Counter
(PC) and Processor Status Register (PSR) to all zeroes.

On application of power, RST/ABT must be held low for
at least 50 usec after V. is stable. This is to ensure that
all on-chip voltages are completely stable before opera-
tion. Whenever a Reset is applied, it must also remain

4

S N O P O

RST/ABT

-

264 CLOCK
CYCLES

I

250 usec

TLIC/5064-13

FIGURE 3-3. Power-on Reset Requirements.

active for not less than 64 clock cycles. The trailing
(positive-going) edge must occur while PHI1 is high,
and no later than 10 ns before the PHI1 trailing edge.
See Figures 3-3 and 3-4.

The NS16201 Timing Control Unit (TCU) provides cir-
cuitry to meet the Reset requirements of the NS16032
CPU. Figure 3-5a shows the recommended connections
for a non-Memory-Managed system. Figure 3-5b shows
the connections for a Memory-Managed system.

"—Z 64 CLOCK —————|
CYCLES

TL/C/505414

(e
LU

FIGURE 3-4. General Reset Timing.

v
cc NS16201 NS16032
o TCU cPU
Fm————————— - S
i i 2
H I ore—— 1 \
| RESET >_> bt : ASTi ASTO AST/ABT
] P {l T
bere e e ————— 4 i 1
- EXTERNAL RESET ! !
(OPTIONAL) : = | = =50 usec
| S |
RESET SWITCH SYSTEM RESET
(OPTIONAL)
. TUC/5054-15
FIGURE 3-5a. Recommended Reset Connections,
Non-Memory-Managed System.
Vee
NS16201 NS16082 NS16032
o TcU MMU cpu
e —————— = S
| 1 b3
- N s I AN = sl -
| RESET > 1'); L : RSTI ASTO RST ABT RST/ABT
| Vo L 1
! P .! -
e d i |
EXTERNAL RESET | }
(OPTIONAL) : = | = > 50 usec
1
L—_J
RESET SWITCH
(OPTIONAL) TUCI5054-16

FIGURE 3-5b. Recommended Reset Connections,
Memory-Managed System.

3.4 BUSCYCLES

The NS16032 CPU has a strap option which defines the
Bus Timing Mode as either With or Without Address
Translation. This section describes only bus cycles under
the No Address Translation option. For details of the use
of the strap and of bus cycles with address translation,
see Sec. 3.5.

The CPU will perform a bus cycle for one of the following
reasons:

1) To write or read data, to or from memory or a peri-
pheral interface device. Peripheral input and output
are memory-mapped in the NS16000 family.

2) To fetch instructions into the eight-byte instruction
queue. This happens whenever the bus would other-
wise be idle and the queue is not already full.

3) To acknowledge an interrupt and allow external cir-
cuitry to provide a vector number, or to acknowledge
completion of an interrupt service routine.

4) To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are
identical. For timing specifications, see Sec, 4. The
only external difference between them is the four-bit
code placed on the Bus Status pins (ST0-ST3). Slave
Processor cycles differ in that separate control signals
are applied (Sec. 3.4.6).

The sequence of events in a non-Slave bus cycle is
shown below in Figure 3-7 for a Read cycle and Figure
3-8 for a Write cycle. The cases shown assume that the
selected memory or interface device is capable of com-
municating with the CPU at full speed. If it is not, then
cycle extension may be requested through the RDY line
(Sec. 3.4.1).

65

A full-speed bus cycle is performed in four cycles of the
PHI1 clock signal, labeled T1 through T4. Clock cycles
not associated with a bus cycle are designated Ti (fo
“Idle”). .

During T1, the CPU applies an address on pins ADO-
AD15 and A16-A23. It also provides a low-going pulse
on the ADS pin, which serves the dual purpose of inform-
ing external circuitry that a bus cycle is starting and of
providing control to an external latch for demultiplexing
Address bits 0-15 from the ADO-AD15 pins. See Figure
3-6. During this time also the status signals DDIN, indi-
cating the direction of the transfer, and HBE, indicating
whether the high byte (AD8-AD15) is to be referenced,
become valid.

During T2 the CPU switches the Data Bus, ADO-AD15,
to either accept or present data. Note that the signals
A16-A23 remain valid, and need not be latched. It also
starts the data strobe (DS), signalling the beginning of
the data transfer. Associated signals from the NS16201

- Timing Control Unit are also activated at this time: RD
(Read Strobe) or WR (Write Strobe), TSO (Timing State
Output, indicating that T2 has been reached) and DBE
(Data Buffer Enable).

DDIN

The T3 state provides for access time requirements,
and it occurs at least once in a bus cycle. At the begin-
ning of T3, on the rising edge of the PHI1 clock, the RDY
(Ready) line is sampled to determine whether the bus
cycle will be extended (Sec. 3.4.1).

If the CPU is performing a Read cycle, the Data Bus
(ADO-AD15) is sampled at the falling edge of PHI2 of the
last T3 state. See Timing Specification, Sec. 4. Data
must, however, be held at least until the beginning of T4.
DS and RD are guaranteed not to go inactive before this
point, so the rising edge of either of them may safely be
used to disable the device providing the input data.

The T4 state finishes the bus cycle. At the beginning of
T4, the DS, RD or WR, and TSQ signals go inactive, and
at the rising edge of PHI2, DBE goes inactive, having
provided for necessary data hold times. Addresses (and
Data during Write cycles) remain valid from the CPU
throughout T4. Note that the Bus Status lines (ST0-ST3)
change at the beginning of T4, anticipating the foliowing
bus cycle (if any).

ADO-AD15

NS16032

HBE

DATA

HBE

ADS

A16-A23
PHI1 'PHI2 DS/FLT

AO(LBE)

-

PHI1 PHI2 ADS’ DDIN

NS16201

— RD
RD
— WR
WR
— 7SO
TS0

TLICI5054-17

FIGURE 3-6. Bus Connections.

NS16032 CPU BUS SIGNALS

T4ORTi | ™ | T2 | AK] ‘ T4 l TIORTi ‘

[T e s
= [1T LT T
SV 7% Sl e A
= | 77 =l
= 2 X e
|/ /

NS16201 TCU BUS SIGNALS

\ /

b

al

NN\

3l

H|

=}
o
m

g

[/

y

[1/ \ /
[|

FIGURE 3-7. Read Cycle Timing.

67

NS16032 CPU BUS SIGNALS

| T4ORTI | T 1 T2 | T3 | T4 ' T1ORTi l

- [
15y ig!lgligiliy Nyl
: 7////// ,, ADDRESS VALID NEXT ADDR

ADO-AD15 [ZW% “[",R'EEDSSX DATA OUT NEXT ADDR

g

A16-A23

\\\\

v/
= [T e
= |/ |
RV 77/

NS16201 TCU BUS SIGNALS

FIGURE 3-8. Write Cycle Timing.

68

3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for
any speed of memory or peripheral device, the NS16032
provides for extension of a bus cycle. Any type of bus
cycle except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8, note that during T3 all bus control
signals from the CPU and TCU are flat. Therefore, a bus
cycle can be cleanly extended by causing the T3 state to
be repeated. This is the purpose of the RDY (Ready)
pin.

At the end of T2 on the falling edge of PHI 2, the RDY
line is sampled by the CPU. If RDY is high, the next T-
states will be T3 and then T4, ending the bus cycle. If it
is sampled low, then another T3 state will be inserted
after the next T-state and the RDY line will again be
sampled on the falling edge of PHI 2. Each additional
T3 state after the first is referred to as a “wait state”.
See Figure 3-9.

|

5

T2 l

PHI 1

T3

|

The RDY pin is driven by the NS16201 Timing Control
Unit, which applies WAIT States to the CPU as requested
on three sets of pins:

1) CWAIT (Continuous WAIT), which holds the CPU in
WAIT states until removed.

2) WAIT1, WAIT2, WAIT4, WAITS (Collectively WAITn),
which may be given a four-bit binary value requesting
a specific number of WAIT States from O to 15.

3) PER (Peripheral), which inserts five additional WAIT
states and causes the TCU to reshape the RD and
‘WR strobes. This provides the setup and hold times
required by most MOS peripheral interface devices.

Combinations of these various WAIT réquests are both
legal and useful. For details on their use, see the
NS16201 Data Sheet.

Figure 3-10 illustrates a typical Read cycle, with two
WAIT states requested through the TCU WAITn pins.

| wam | |

B —'l —

PHI 2

[]

M

RIEE

- 7000

NEXT
STATE
T3

FIGURE 3-9. RDY Pin Timing.

3.4.2 Bus Status

The NS16032 CPU presents four bits of Bus Status
information on pins STO-ST3. The various combinations
on these pins indicate why the CPU is performing a bus
cycle, or, if itis idle on the bus, then why it is idle.

Referring to Figures 37 and 3-8, note that Bus Status
leads the corresponding Bus Cycle, going valid one
clock cycle before T1, and changing to the next state at
T4. This allows the system designer to fully decode the
Bus Status and, if desired, latch the decoded signals
before ADS initiates the Bus Cycle.

The Bus Status pins are interpreted as a four-bit value,
with STO the least sngnmcant bit. Their values decode as
follows:

0000 - The bus is idle because the CPU does not yet
need access to the bus.

0001 - The bus is idle because the CPU is executing
the WAIT instruction.

0010 - (Reserved for future use.)

0011 - The bus is idle because the CPU is waiting for
a Slave Processor to complete an instruction.
Interrupt Acknowledge, Master.

The CPU is performing a Read cycle. To
acknowledge _receipt of a Non-Maskable
Interrupt (on NMI) it will read from address
FFFFO0O,, but will ignore any data provided.

0100 -

/

\%/

NEXT
STATE:
T4

TL/C/5054-20

To acknowledge receipt of a Maskable
Interrupt (on INT) it will read from address
FFFEOQO,, expecting a vector number to be
provided from the Master NS16202 Interrupt
Control Unit. If the vectoring mode selected by
the last SETCFG instruction was Non-Vec-
tored, then the CPU willignore the value it has
read and will use a default vector instead,
having assumed that no NS16202 is present.
Sée Sec. 3.4.5.

0101 - Interrupt Acknowledge, Cascaded.
The CPU is reading a vector number from a
Cascaded NS16202 Interrupt Control Unit.
The address provided is the address of the
NS 16202 Hardware Vector register. See Sec.
3.45. ‘

0110 - End of Interrupt, Master.
The CPU is performing a Read cycle to indi-
cate thatitis executing a Return from Interrupt
(RETI) instruction. See Sec. 3.4.5.

0111 - End of Interrupt, Cascaded.
The CPU is reading from aCascaded Interrupt
Control Unit to indicate that it is returning
(through RETI) from an interrupt service rou-
tine requested by that unit. See Sec. 3.4.5.
1000 - Sequential Instruction Fetch.
The CPU is reading the next sequential word
from the instruction stream into the Instruction

69

PREV.CYCLE

'T4ORTi| iz

[T

NS16032

I1

CPU BUS SIGNALS

[1T1

[

11

]

NEXTCYCLE

| 2 | m | wam | wam | T4 |TromTi|

ML

-
[

A16-A23 [

ADO-AD15 [//

|
STO-ST3 [Z

W[A

7// % ADDRESS VALID NEXT ADDR
i

. // /] CESS_}-—@f /// //ﬁ% DATA IN)--- ~<NEXT ADDR

X STATUS VALID Xj NEXT STATUS

% / NEXT B

V/A VALID NEXT

=[

—

e

NS

I

6201 TCU CYCLE EXTENSION SIGNALS

b

.

7

\%

.

A,

w,

FEﬁ[/

v

["

7

i

%,

U,

\N

),

f

w7

w,

1101

4

727

ﬁ//J

.

%0

RDY [

(TCUTO CPUV)

S

m[]

\

NS16201 TCU BUS SIGNALS

w

[

|/

?s_o[

a

NOTE:

FIGURE 3-10. Extended Cycle Example.

TL/C/5054-21

Arrows on CWAIT, FETR, WAITn indicate points at which the TCU samples. Arrows on ADO-AD15 and
RDY indicate points at which the CPU samples.

70

Queue. It will do so whenever the bus would
otherwise be idle and the queue is not already
full.

1001- Non-Sequential Instruction Fetch.
The CPU is performing the first fetch of instruc-
tion code after the Instruction Queue is purged.
This will occur as a result of any jump or branch,
or any interrupt or trap, or execution of certain
instructions.

1010 - Data Transfer.
The CPU is reading or writing an operand of
an instruction.

1011 - Read RMW Operand.
The CPU is reading an operand which will
subsequently be modified and rewritten. If
memory protection circuitry would not allow
the following Write cycle, it must abort this
cycle.

1100 - Read for Effective Address Calculation.
The CPU is reading information from memory
in order to determine the Effective Address of
an operand. This will occur whenever an
instruction uses the: Memory Relative or
External addressing mode.

1101 - Transfer Slave Processor Operand.
The CPU is either transferring an instruction
operand to or from a Slave Processor, or it is
issuing the Operation Word of a Slave Pro-
cessor instruction. See Sec. 3.9.1.

1110 — Read Slave Processor Status.

The CPU is reading a Status Word from a
Slave Processor. This occurs after the Slave
Processor has signalled completion of an in-
struction. The transferred word tells the CPU
whether a trap should be taken, and in some
instructions it presents new values for the
CPU Processor Status Register bits N, Z, L or
F. See Sec. 3.9.1.

1111 - Broadcast Slave ID.
The CPU is initiating the execution of a Slave
Processor instruction. The ID Byte (first byte
-of the instruction) is sent to all Slave Proces-
sors, one of which will recognize it. From this
point the CPU is communicating with only one
Slave Processor. See Sec. 3.9.1.

3.4.3 Data Access Sequences

The 24-bit address provided by the NS16032 is a byte
address; that is, it uniquely identifies one of up to
16,777,216 eight-bit memory locations. An important
feature of the NS16032 is that the presence of a 16-bit
data bus imposes no restrictions on data alignment; any
data item, regardless of size, may be placed starting at
any memory address. The NS16032 provides a special
control signal, High Byte Enable (HBE), which facilitates
individual byte addressing on a 16-bit bus.

Memory is intended to be organized as two eight-bit
banks, each bank receiving the word address (A1-A23)
in parallel. One bank, connected to Data Bus pins ADO-
AD?7, is enabled to respond to even byte addresses; i.e.,
when the least significant address bit (AQ) is low. The
other bank, connected to Data Bus pins AD8-AD15, is
enabled when HBE is low. See Figure 3-11.

HBE AO(LBE)
8BITS 8BITS

A1-A23

Yy
by
AS
b}

LS BYTE

16 BITS DATA

TUCI5054-22

FIGURE 3-11. Memory Interface.

Any bus cycle falls into one of three categories: Even
Byte Access, Odd Byte Access, and Even Word Access.
All accessesto any data type are made up of sequences
of these cycles. Table 3-1 gives the states of A0 and
HBE for each category.

Table 3-1.
Bus Cycle Categories
Category HBE A0
Even Byte 1 0
Odd Byte 0 1
Even Word 0 0

Accesses of operands requiring more than one bus
cycle are performed sequentially, with no idle T-States
separating them. The number of bus cycles required to
transfer an operand depends on its size and its align-
ment (i.e., whether it starts on an even byte address or.
an odd byte address). Table 3-2 lists the bus cycle
performed for each situation. For the timing of A0 and
HBE see Sec. 3.4.

Al

Table 3.2

Access Sequences
Cycle Type Address HBE A0 High Bus Low Bus
A. Odd Word Access Sequence
[BYTE1 BYTEO |
1 Odd Byte A . 0 1 Byte O Don't Care
2 Even Byte A+1 1 0 Don'tCare Byte 1
B. Even Double-Word Access Sequence
[evies | eviez | evien | svieo |
1 Even Word A 0 0 Bytet Byte 0
2 Even Word A+2 0 0 Byte3 Byte 2
| C. Odd Double-Word Access Sequence
liws 3 I BYTE2 L BYTE1 I BYTE o]
1 ~ OddByte A 0 1 Byte0 Don't Care
2 Even Word A+ 0 0 Byte2 Byte 1
3 Even Byte A+3 1 0 Don’tCare Byte 3
: D. Even Quad-Word Access Sequence
| BYTE7 : I BYTE 6 J BYTES I BYTE A4,] BYTE3 BYTE 2 BYTE1 l BYTEO l
1 Even Word A 0 . 0 Byl Byte 0
2 Even Word . A+2 0 0 Byte3 Byte 2
Other bus cycles (instruction prefetch or slave) can occur here.
3 Even Word A+4 0 0. Byteb Byte 4
4 Even Word A+6 0 0 Byte7 Byte 6

E. Odd Quad-Word Access Sequence

LBYTE 7 | BYTE6 | BYTES | BYTE4 | BYTE3 [BYTE2 [BYTE1 { aweﬂ

1 Odd Byte A 0 1 Byte 0 Don’t Care
2 ~ Even Word CA+1 0 0 Byte2 Byte 1

3 Even Byte A+3 1 0 Don'tCare Byte 3
Other bus cycles (instruction prefetch or slave) can occur here.

4 Odd Byte A+4 0 1 Byte 4 Don’t Care
5 Even Word A+5 0 0 Byte6 Byte 5

6 Even Byte A+7 1 0 Don'tCare Byte 7

—A

72

3.4.3.1 BitAccesses

The Bit Instructions perform byte accesses to the byte
containing the designated bit. The Test and Set Bit
instruction (SBIT), for example, reads a byte, alters it,
and rewrites it, having changed the contents of one bit.

3.4.3.2 BitField Accesses

An access to a Bit Field in memory always generates a
Double-Word transfer at the address containing the least
significant bit of the field. The Double Word is read by an
Extract instruction; an Insert instruction reads a Double
Word, modifies it, and rewrites it.

3.4.3.3 Extending Multiply Accesses

The Extending Muttiply instruction (MEI) will return a
result which is twice the size in bytes of the operands .
which it reads. If the multiplicand is in memory, the
most-significant half of the result is written first (at the
higher address), then the least-significant half. This is
done in order to support retry if this instructionis aborted.

3.4.4 Instruction Fetches

Instructions for the NS16032 CPU are “prefetched”;
that is, they are input before being needed into the next
available entry of the eight-byte Instruction Queue. The
CPU performs two types of Instruction Fetch cycles:
Sequential and Non-Sequential. These can be distin-
guished from each other by their differing status combi-
nations on pins STO-ST3 (Sec. 3.4.2).

A Sequential Fetch will be performed by the CPU when-
ever the Data Bus would otherwise be idle and the
Instruction Queue is not currently full. Sequential Fetches
are always Even Word Read cycles (Table 3-1).

A Non-Sequential Fetch occurs as a result of any break
in the normally sequential flow of a program. Any jump
or branch instruction, a trap or an interrupt will cause the
next Instruction Fetch cycle to be Non-Sequential. In
addition, certain instructions flush the instruction queue,
causing the next instruction fetch to display Non-
Sequential status. Only the first bus cycle after a break
displays Non-Sequential status, and that cycle is either
an Even Word Read or an Odd Byte Read, depending
on whether the destination address is even or odd.

3.4.5 Interrupt Control Cycles

Activating the INT or NM! pin on the CPU will initiate one
or more bus cycles whose purpose is interrupt control
rather than the transfer of instructions or data. Execution
of the Return from interrupt instruction (RET!) will also
cause Interrupt Control bus cycles. These differ from
instruction or data transfers only in the status presented
on pins STO-ST3. All Interrupt Control cycles are single-
byte Read cycles.

This section describes only the Interrupt Control se-
quences associated with each interrupt and with the
return from its service routine. For full details of the
NS 16032 interrupt structure, see Sec. 3.8.

73

f Table 3-3

Interrupt Sequences
Cycle Status Address DDIN HBE A0 High Bus Low Bus
A. Non-Maskable Interrupt Control Sequences.
Interrupt Acknowledge P 9
1 0100 FFFFO00,¢ 0 1 0 Don'tCare Don't Care
Interrupt Return
None: Performed through Return from Trap (RETT) instruction.
B. Non-Vectored Interrupt Control Sequences.
Interrupt Acknowledge
1 0100 FFFEO0O,¢ 0 1 0 Don'tCare Don’t Care
Interrupt Return
None: Performed through Return from Trap (RETT) instruction.
C. Vectored Interrupt Sequences: Non-Cascaded.
Interrupt Acknowledge _
1 0100 FFFEO00,¢ 0 1 0 Don'tCare Vector:
Range: 0-127
Interrupt Return
1 0110 FFFEOQO,¢ 0 1 0 Don'tCare Vector: Same as
in Previous Int.
Ack. Cycle
D. Vectored Interrupt Sequences: Cascaded.
Interrupt Acknowledge)]
1 0100 FFFEQO,¢ 0 1 0 Don'tCare Cascade Index:
range —16to —1
(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0101 Cascade 0 1or Oor Vector, range 0-255; on appropriate
Address o* 1* half of Data Bus for even/odd address
Interrupt Return
1 0110 FFFEQO,¢ 0 1 0 Don't Care Cascade Index:
same as in
previous Int.
Ack. Cycle
(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0111 Cascade 0 1or Oor Don'tCare Don’t Care

Address 0* 1

*If the Cascaded ICU Address is Even (A0 is low), then the CPU applies HBE high and reads the vector number from bits 0-7 of the Data Bus.
If the address is Odd (AQ is high), then the CPU applies HBE low and reads the vector number from bits 8-15 of the Data Bus. The vector number

may be in the range 0-255.

74

3.46 Silave Processor Communication

In addition to Its _use as | as the Address Translation strap AE('ﬂ <J‘::> D(__M 5
(Sec. 3.5.1), the AT/SPC pin is used as the data strobe Av/sPc SPC

for Slave Processor transfers. In this role, it is referred to NS16032 SLAVE
as Slave Processor Control (SPC). in a Slave Processor crPy PROCESSOR

bus cycle, data is transferred on the Data Bus (ADO-
AD15), and the least significant two bits of CPU cycle
status (ST0-ST1) are monitored by each Slave Proces-
sor in order_to_determine the type of transfer being
performed. SPC is bidirectional, but is driven by the

CPU during all Slave Processor bus cycles. See Sec. TUCIs054-23
3.9 for full protocol sequences. FIGURE 3-12. SI§ve Processor Connections.

STO-ST3 | sTo-s73

X PREV. CYCLE ¢ NEXTCYCLE
| TdorTi oy ’ T4 T1ORTi |

w LU LT
iy Npiliy Wy

g
L
-
//
~—
|

ADO-AD15

ST0-ST3 A; ? VALID X NEXT STATUS
L.

1 \I
N\
SN
e
&
m

ADS

DoIN [/% NEXT
HBE 27///// | / NEXT B
_— af _/

(1). CPU samples Data Bus here.
(2) Slave Processor samples CPU Status here.

(3) DBE and all other NS16201 TCU bus signals remain inactive because no ADS pulse is received
from the CPU.

A\

1S

TUCI5054-24

FIGURE 3-13. CPU Read from Slave Processor.

75

3.4.6.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two
clock cycles, labelled T1 and T4 (see Figures 3-13 and

3-14). During a Read cycle, SPC is activated at T1, data

is sampled at T4, and SPC is removed. The Cycle

Status pins lead the cycle by one clock period, and are

sampled at the leading edge of SPC. During a Write
cycle, the CPU applies data and activates SPC at T1,
removing SPC at T4. The Slave Processor latches status
on the leading edge of SPC and latches data on the
trailing edge.

Since the CPU does not pulse the Address Strobe
(ADS), no bus signals are generated by the NS16201
Timing Control Unit. The direction of a transfer is-deter-

B

PREV.CYCLE

™

mined by the sequence (“protocol”) established by the
instruction under execution; but the CPU indicates the
direction on the DDIN pin for hardware debugging
purposes.

3.4.6.2 Operand Transfer Seque'ncés

A Slave Processor operand is transferred in one or more
Slave bus cycles. A Byte operand is transferred on the
least-significant byte of the Data Bus (AD0-AD7), and a
Word operand is transferred on the entire bus. A Double
Word is transferred in a consecutive pair of bus cycles,
least-significant word first. A Quad Word is transferred
in two pairs of Slave cycles, with other bus cycles poss-
ibly occurring between them. The word order is from
least-significant word to most-significant.

NEXT CYCLE
TIORTi 1

A

|

[1

N
' (1)

DATA OUT X NEXT

'(1)

VALID

NEXT STATUS

\/

NEXT

T
W,
oo 7
s

= | 000
- (7.
=17

NOTE:

TLIC/5054-25

(1) Arrows indicate points at which the Slave Processor samples.

(2) DBE, being provided by the NS16201 TCU, remains inactive due to the fact that no pulse is
presented on ADS. TCU signals RD, WR and TSO also remain inactive.

FIGURE 3-14. CPU Write to Slave Processor.

76

3.5 MEMORY MANAGEMENT OPTION

The NS16032 CPU, in conjunction with the NS16082
Memory Management Unit (MMU), provides full support
for address translation, memory protection, and memory
allocation techniques up to and including Virtual Memory.

3.5.1 Address Translation Strap

The Bus Interface Control section of the NS16032 CPU

has two bus timing modes: With or Without Address
Translation. The mode of operation is selected by the
CPU by sampling the AT/SPC (Address Translation/
Slave Processor Control) pin on the rising edge of the
RST (Reset) pulse. If AT/SPC is sampled as high, the

bus timing is as previously described in Sec. 3.4; Ifitis
sampled as low, two changes occur: ‘

1) An extra clock cycle, Tmmu, is inserted into all bus
cycles except Slave Processor transfers.

2) The DS/FLT pin_changes in function from a_Data
Strobe output (DS) to a Float Command input (FLT).

The NS16082 MMU will itself pull the CPU AT/SPC pin
low when it is reset, but this pin may be left floating in
non-Memory-Managed systems.

Note that the Address Translation strap does not speci-
fically declare the presence of an NS16082 MMU, but

Szl lislis il
[LT LI
wewss [N)= A== At ===~ H= === et aobn
= | \/
= (77 =T
- [7770777 | O

TUCI5054-26

FIGURE 3-15. Read Cycle with Address Translation (CPU Action).

77

only the presence of external address translation cir-
cuitry. MMU instructions will still trap as being undefined
unless the SETCFG (Set Configuration) instruction is
executed to declare the MMU instruction set valid. See
Sec.2.1.3.

3.5.2 Translated Bus Timing

Figures 3-15 and 3-16 illustrate the CPU activity during a
Read cycle and a Write cycle in Address Translation
mode. The additional T-State, Tmmu, is inserted between
T1 and T2. During this time the CPU places AD0-AD15
and A16-A23 into the TRI-STATE® mode, allowing the
MMU to assert the translated address and issue the

T4ORTi I

L]

71 l Tmmu

B

PHI1

physical address strobe PAV. T2 through T4 of the cycle
are identical to their counterparts without Address Trans-
lation, with the exception that the CPU Address lines
A16-A23 remain in the TRI-STATE condition. This
allows the MMU to continue asserting the . translated
address on those pins.

Figures 3-17 and 3-18 show a Read cycle and a Write
cycle as generated by the 16032/16082/16201 group.
Note that with the CPU ADS signal going only to the
MMU, and with the MMU PAV signal substituting for
ADS everywhere else, Tmmu through T4 look exactly

_ like T1 through T4 in a non-Memory-Managed system.

For the connection diagram, see Appendix B.

T2 l T3 | T4 | TIORTi {

L LT

PHI 2

[L]

[]

[]

A16-A23 /// /A%‘%ﬂﬁfgf).____~ .
s | N1,

=
— = = = == —=m — |={ NEXT ADDR
XIEXT ADDR

DATA OUT

= [70 o |
w [77/ o | Y|
~ [077077 | O

TUIC/5490-27

FIGURE 3-16. Write Cycle with Address Translation (CPU Action).

78

VIRTUAL PHYSICAL l
1

7, I
A16-A23 - f//// ADDRESS ADDRESS VALID NEXT ADDR
(4]

VIRTUAL PHYSICAL

[
[
[
W 7/ o S Al e & i
[
[

17222 | =T
= [7 N
Wi/

NS 16201 TCU BUS SIGNALS

JuY \ /
<[17
=[17 \ /
=[]

FIGURE 3-17. Memory-Managed Read Cycle.

79

gl

3l

o

m

gl
8l

TAORTi

| -
J_I

ﬂ

Tmmu I T2

A

I T3

=

|
[]

| TIORTi l

Il

HRINN

L

VIRTUAL PHYSICAL
ADDRESS VALID NEXT ADDR
/) / // VALID
, VIRTUAL PHYSICAL
> }
ADDRESS Y ADDRESS
/// CORES X DDRES X DATA OUT NEXT ADDR

\/

\/

STATUS VALID NEXT STATUS
& / \ NEXT
V VALID | X NEXT
A

f

702

%

727

NS 16201 TCU BUS

SIGNALS

7

FIGURE 3-18. Memory-Managed Write Cycle.

TLIC/5054-29

at) Pin 1) Sets ADO-AD15, A16-A23 and DDIN to the TRI-

n mode, the DS/FLT pin is treated STATE condition (*“floating”).
d FLT (Float). Activating FLT during 2) Sets HBE low.)

: i mu f . .
l':g Vtgﬁg:ttitolr:).r}g;; }gg?ur-?is L’s:(; 3) Suspends further internal processing of the current

. AN i ion. This ensures that the current instruction
'S16082 MMU in order to update its instruction. T! ¢ gurrent ins ¢
ache from page tables in memory, tr_emaéns agosrt;lble with retry. (See RST/ABT descrip-
tatus bits within them. ion, Sec. 3.5.4.)

. Note that the ADO-AD15 pins may be briefly asserted
he effects of FLT. Upon sampling during thefirst idle T-State. The above conditions remain
1, the CPU enters idle T-States (Tf) in effect until FLT again goes high. See the Timing

Specifications, Sec. 4.

Tmmu T b d Tt T2

dpipipliniinht
LAt

:

; VIRTUAL I TABLE PHYSICAL
// ADDRESS /™~ ADDRESS ADDRESS
- |
VIRTUAL \ __ _ _] TABLE PHYSICAL 2
é ADDRESS ADDRESS ADDRESS
L. A

{(—

N\ -

7 .

VALID

o 1\

FIGURE 3-19. FLT Float Command Timing.

ALID

/ALID

A A
>

ALID

171 C

(f
Ar

TUCI5064-30

81

3.5.4 Aborting Bus Cycles

The RST/ABT pin, apart from its Reset function (Sec.
3.3), also serves as the means to “abort’, or cancel, a
bus cycle and the instruction, if any, which initiated it. An
Abort request is distinguished from a Reset in that the
RST/ABT piniis held active for only one clock cycle.

If RST/ABT is pulled low during Tmmu or Tf, this signals
that the cycle must be aborted. The CPU itself will enter
T2 and then Ti, thereby terminating the cycle. Since itis
the MMU PAV signal which triggers a physical cycle, the
rest of the system remains unaware that a cycle was
even started.

The NS16082 MMU will abort a bus cycle for either of
two reasons:

1) The CPU is attempting to access a virtual address
which is not currently resident in physical memory.
The referenced page must be brought into physical

memory from mass storage to make it accessible to -

the CPU.

*2) The CPU is attempting to perform an access which is
not allowed due to the protection level assigned to
that page.

When a bus cycle is aborted by the MMU, the instruction
which caused it to occur isalso abortedin such amanner
that it is guaranteed re-executable later. Due to the
NS 16000 Family instruction set definition and its imple-
mentation in the NS16032 CPU, the only information
which is changed irrecoverably by such partly-executed
. instructions is information which does not affect their
re-execution. :

3.5.4.1 The Abort Interrupt

Upon aborting an instruction, the CPU immediately per-
forms an interrupt throughthe ABT vector in the Interrupt
Table (see Sec. 3.8). The Return Address pushed on the
Interrupt Stack is the address of the aborted instruction,
such that a Return from Trap (RETT) instruction will
automatically retry it.

The one exception to this sequence occurs if the aborted
bus cycle was an instruction prefetch. If so, it is not yet
certain that the aborted prefetched code is to be exe-
cuted. Instead of causing an interrupt, the CPU only
aborts the bus cycle, and stops prefetching. If the infor-
mation in the Instruction Queue runs out, meaning that
the instruction will actually be executed, the ABT inter-
rupt will occur, in effect aborting the instruction which
was being fetched.

3.5.4.2 Hardware Considerations

In order to guarantee instruction retry, certain rules must
be followed in applying an Abort to the CPU. These rules
are followed by the NS16082 Memory Management
Unit.

1) If FLT has not
pulse must oc
Timing Specific

If FLT has bee
must be applie
inactive. The (
Abort commar
4-23.

No bus cycle r
of a Read-Mox
guarantees th
Memory Mana
RMW status (
half of the acc
status, that cyc
to write to any

If RST/ABT is pu
cated above, it wil
under execution ¢
a very high-priori
which was running
erable, and shoul

2)

3)

3.6 BUSACCE

The NS16032 CP
access to the bus
another CPU. Tt
HOLD (Hold Req
pins. By asserting
access to the bu:
the device may p
point has set the
HBE pinstothe T
of the bus to the
and the CPU ack
HLDA inactive.

How quickly the
whether “it is idle
request is made,
current bus cycle.
when the CPU is
bus during the im
3-21 showsthe s
the time that the }
made during or b
cycles before T4
the clock cycle fo
to T4, the CPU

another bus cycl
until after the ne»
also occurifthe C
bus cycle interna

Ina Memory-Mat
nected in a daisy
the MMU can rel¢

82

3.53 TheFLT (Float) Pin

In Address Translation mode, the DS/FLT pin is treated
as the input command FLT (Float). Activating FLT during
Tmmu causes the CPU to wait longer than Tmmu for
address translation and validation. This feature is used
occasionally by the NS16082 MMU in order to update its
internal translation cache from page tables in memory,
or to update certain status bits within them.

Figure 3-19 shows the effects of FLT. Upon sampling
LT low, late in Tmmu, the CPU enters idle T-States (Tf)
during which it:

1) Sets ADO-AD15, A16-A23 and DDIN to the TRI-
STATE condition (*‘floating”).

2) Sets HBE low.

3) Suspends further internal processing of the current
instruction. This ensures that the current instruction
remains abortable with retry. (See RST/ABT descrip-
tion, Sec. 3.5.4.)

Note that the ADO-AD15 pins may be briefly asserted
during the first idle T-State. The above conditions remain
in effect until FLT again goes high. See the Timing
Specifications, Sec. 4.

™ Tmmu T Tt LA Tf T2

[LT
e [L AL L LT
woszs | 000)1 ---—{_udindhs [N e
wusos | 7ttty s XN s X000
= [T\ ’

= [TN\

= (72 Y,

STO-ST3 : VALID | VALID

DDIN izy ALID)— ----- -(VALID Z% ALID
HBE [Z% viAuo \ P / ALID

FIGURE 3-19. FLT Float Command Timing.

TUC/5054-30

81

3.5.4 Aborting Bus Cycles

The RST/ABT pin, apart from its Reset function (Sec.
3.3), also serves as the means to “abort”, or cancel, a
bus cycle and the instruction, if any, which initiated it. An
Abort request is distinguished from a Reset in that the
RST/ABT pin is held active for only one clock cycle.

If RST/ABT is pulled low during Tmmu or Tf, this signals
that the cycle must be aborted. The CPU itself will enter
T2 and then Ti, thereby terminating the cycle. Since itis
the MMU PAV signal which triggers a physical cycle, the
rest of the system remains unaware that a cycle was
even started.

The NS16082 MMU will abort a bus cycle for either of
two reasons:

1) The CPU is attempting to access a virtual address
which is not currently resident in physical: memory.
The referenced page must be brought into physical

memory from mass storage to make it accessible to -

the CPU.

- 2) The CPU s attempting to perform an access whichis
not allowed due to the protection level assigned to
that page.

When a bus cycle is aborted by the MMU, the instruction
which caused it to occur is also aborted in such a manner
that it is guaranteed re-executable later. Due to the
NS 16000 Family instruction set definition and its imple-
mentation in the NS16032 CPU, the only information
which is changed irrecoverably by such partly-executed

. instructions is information whlch does not affect their
re-execution.

3.5.4.1 The Abort Interrupt

Upon aborting an instruction, the CPU immediately per-
forms aninterrupt through the ABT vectorin the Interrupt
Table (see Sec. 3.8). The Return Address pushed onthe
Interrupt Stack is the address of the aborted instruction,
such that a Return from Trap (RETT) instruction will
automatically retry it.

The one exception to this sequence occurs if the aborted
bus cycle was an instruction prefetch. If so, it is not yet
certain that the aborted prefetched code is to be exe-
cuted. Instead of causing an interrupt, the CPU only
aborts the bus cycle, and stops prefetching. If the infor-
mation in the Instruction Queue runs out, meaning that
the instruction will actually be executed, the ABT inter-

rupt will occur, in effect aborting the instruction which

was being fetched.
3.5.4.2 Hardware Considerations

In order to guarantee instruction retry, certain rules must
be followed in applying an Abort to the CPU. These rules

are followed by the NS16082 Memory Management

Unit.

1) If FIT has not been applied to the CPU, the Abort
pulse must occur during or before Tmmu. See the
Timing Specifications, Figure 4-22.

If FLT has been applied to the CPU, the Abort pulse
must be applied before the T-State in which FLT goes
inactive. The CPU will_not actually respond to the
Abort command until FLT is removed. See Figure
4-23.

No bus cycle may be aborted which is the Write half
of a Read-Modify-Write operand access. The CPU
guarantees that this will never be necessary for
Memory Management functions by applying a special
RMW status (Status Code 1011) during the Read
half of the access. When the CPU presents RMW
status, that cycle must be aborted if it would be illegal
to write to any of the accessed addresses.

tf RST/ABT is pulsed at any time other than as indi-
cated above, it will abort either the instruction currently
under execution or the next instruction and will act as
a very high-priority interrupt. However, the program
which was running at the time is not guaranteed recov-
erable, and should be terminated.

2

~

3

~

3.6 BUS ACCESS CONTROL

The NS16032 CPU has the capability of relinquishing its
access to the bus upon request from a DMA device or
another CPU. This capability is implemented on the
HOLD (Hold Request) and HLDA (Hold Acknowledge)
pins. By asserting HOLD low, an external device requests
access to the bus. On receipt of HLDA from the CPU,
the device may perform bus cycles, as the CPU at this
point has set the ADO-AD15, A16-A23, ADS, DDIN and
HBE pins to the TRI-STATE*® condition. To return control
of the bus to the CPU, the device sets HOLD inactive,
and the CPU acknowledges return of the bus by setting
HLDA inactive.

How quickly the CPU releases the bus depends on
whether ‘it is idle on the bus at the time the HOLD
request is made, as the CPU must always complete the
current bus cycle. Figure 3-20 shows the timing sequence
when the CPU is idle. In this case, the CPU grants the

" bus during the immediately following clock cycle. Figure

3-21 shows the sequence if the CPU is using the bus at
the time that the HOLD request is made. If the request is
made during or before the clock cycle shown (two clock
cycles before T4), the CPU will release the bus during
the clock cycle following T4. If the request occurs closer
to T4, the CPU may already have decided to initiate
another bus cycle. In that case it will not grant the bus
until after the next T4 state. Note that this situation will
also occur if the CPU is idle on the bus but has initiated a
bus cycle internally.

In a Memory-Managed system, the HLDA signal is con-
nected in a daisy-chain through the NS16082, such that
the MMU can release the bus if it is using it.

82

ERENE
[L LT
gl Ny

PHI 2

HOLD

HLDA

ADS

HBE

ADO-AD15

A16-A23

ST0-ST3

L4 l Ti I Ti l TiORT4| TIORT1 |

H :

B

((

T

)

[N

77

_____ _{5______.____._..___ — =4 ——— -4 { NEXTADDR

V /5,

AFFECTED SIGNALS

\/

N
_Nei
(=

-ﬂ —< NEXT ADDR

PREVIOUS

NEXT STATUS

A

FIGURE 3-20. HOLD Timing, Bus Initially Idle.

83

S L LT
w[L T T
o \ /

AFFECTED SIGNALS

| ATS[{f- .l

C

DDIN VALID ‘ _ —«L“»-—— i QU P — J NEXT

gud

HBE VALID __“"”'--""‘—-j"““"j NEXT

O 7 e . Y e
waz| o S T R

wen| | w077 0050k

l 1

FIGURE 3-21. HOLD Timing, Bus Initially Not Idle.

H

m
I g

3.7 INSTRUCTION STATUS

In addition to the four bits of Bus Cycle status (ST0-ST3),
the NS16032 CPU also presents Instruction Status infor-
mation on three separate pins. These pins differ from
STO0-ST3 in that they are synchronous to the CPU’s
internal instruction execution section rather than to its
bus interface section.

PFS (Program Flow Status) is pulsed low as each in-
struction begins execution. It is intended for debugging
purposes, and is used that way by the NS16082 Memory
Management Unit.

U/S originates from the U bit of the Processor Status
Register, and indicates whether the CPU is currently
running in User or Supervisor mode. Itis sampled by the
MMU for mapping, protection and debugging purposes.
Although it is not synchronous to bus cycles, there are
guarantees on its validity during any given bus cycle.
See the Timing Specifications, Figure 4-21.

ILO (Interlocked Operation) is activated during an SBIT!
(Set Bit, Interiocked) or CBITI (Clear Bit, Interlocked)
instruction. It is made available to external bus arbitra-
tion circuitry in order to allow these instructions to
implement the semaphore primitive operations for multi-

processor communication and resource sharing. Aswith

the U/S pin, there are guarantees on its validity during
the operand accesses performed by the instructions.
See the Timing Specification Section, Figure 4-19.

3.8 NS16032 INTERRUPT STRUCTURE

INT, on which maskable interrupts may be requested,

NMI, on which non-maskable interrupts may be re-
quested, and

RST/ABT, which may be used to abort a bus cycle
and any associated instruction. It generates an inter-
rupt request if an instruction was aborted. See
Sec.3.54.
In addition, there is a set of internally-generated “traps” -
which cause interrupt service to be performed as a
result either of exceptional conditions (e.g., attempted
division by zero) or of specific instructions whose pur-
pose is to cause a trap to occur(e.g., the Supervisor Call
instruction). :

3.8.1 General Interrupt/Trap Sequence

Upon receipt of an interrupt or trap request, the CPU
goes through four major steps:

1) Adjustment of Registers.

Depending on the source of the interrupt or trap, the
CPU may restore and/or adjust the contents of the
Program Counter (PC), the Processor Status Regi-
ster (PSR) and the currently-selected Stack Pointer
(SP). A copy of the PSR is made, and the PSR is
then set to reflect Supervisor Mode and selection of
the Interrupt Stack.

Saving Processor Status.

The PSR copy is pushed onto the Interrupt Stack as
a 16-bit quantity.

3) Vector Acquisition.

A Vector is either obtained from the Data Bus or is
supplied by defaulit.

Service Call.

The Vector is used as an index into the Interrupt
Dispatch Table, whose base address is taken from
the CPU Interrupt Base (INTBASE) Register. See
Figure 3-22. A 32-bit External Procedure Descriptor
is read from the table entry, and an External Proce-
dure Call is performed using it. The MOD Register
(16 bits) and Program Counter (32 bits) are pushed
ot the Interrupt Stack.

2

-~

4

=

T MEMORY { 31 ol
NVI NON-VECTORED INTERRUPT
CASCADE ADDR 0
NMI NON-MASKABLE INTERRUPT
CASCADE TABLE A= .
: hd ABT ABORT
CASCADE ADDR 14
FPU FPU TRAP
\NTERRUPT BASE CASCADE ADDR 15 ILL ILLEGAL OPERATION TRAP
REGISTER
L FIXeDINTERRUPTS 51 svc SUPERVISOR CALL TRAP
- AND TRAPS ™~ .
L VECTORED A DISPATCH TABLE 6| pvz DIVIDE BY ZERO TRAP
I~ INTERRUPTS it ‘
- 1 7] FLG FLAG TRAP
.
8 BPT BREAKPOINT TRAP
9| TRC TRACE TRAP
10 UND UNDEFINED INSTRUCTION TRAP
115 /A RE;ERVED :‘:
16 VECTORED
INTERRUPTS
~o ~e

TL/CI5054-33

FIGURE 3-22. interrupt Dispatch and Cascade Tables.

This process is illustrated in Figure 3-23, from the view-

Interrupt on INT or NMI pin:

point of the programmer. Abort Interrupt:
Full sequences of events in processing interrupts and -{:gg: S;)a(cgpt Trace):
traps may be found as follows: p:
PSR MOD
‘ (PUSH) :
STATUS MODULE | 32BITS
RETURN ADDRESS FUSH) . 32 8ITS
INTERRUPT
STACK
. .
. .
. .
______________ -
CASCADE TABLE
INTBASE REGISTER 1
l INTERRUPT BASE Il > DISPATCH
I - TABLE
> —¢
DESCRIPTOR (32 BITS)
r —J
DESCRIPTOR
OFFSET MODULE
0
MOD REGISTER MODULE TABLE
l NEW MODULE .
l———~———— MODULE TABLE ENTRY
MODULE TABLE ENTRY
32
STATIC BASE POINTER T
LINK BASE POINTER
(g*———- PROGRAM BASE POINTER
(RESERVED)
PROGRAM COUNTER SB REGISTER
\—Jr—— ENTRY POINT ADDRESS J LF_. NEW STATIC BASE J

TLIC/5054-34

FIGURE 3-23. Interrupt/Trap Service Routine Calling
Sequence.

Sec. 3.8.7.1.
Sec.3.8.74.
Sec.3.8.7.2.
Sec. 3.8.7.3.

86

3.8.2

To return control to an interrupted program, one of two
instructions is used. The RETT (Return from Trap) instruc-
tion (Figure 3-24) restores the PSR, MOD, PC and SB
registers to their previous contents and, since traps are
often used deliberately as a call mechanism for Super-
visor Mode procedures, it also discards a specified num-
ber of bytes from the original stack as surplus parameter
space. RETT is used to return from any trap or interrupt
exceptthe Maskable Interrupt. For this, the RETI (Return
from Interrupt) instruction is used, which also informs
any external Interrupt Control Units that interrupt ser-
vice has completed. Since interrupts are generally asyn-
chronous external events, RETI does not pop para-
meters. See Figure 3-25.

3.8.3 Maskable Interrupts (The INT Pin)
The INT pin is a level-sensitive input. A continuous low

Interrupt/Trap Return

level is allowed for generating multiple interrupt re-
quests. The input is maskable, and is therefore enabled
to generate interrupt requests only while the Processor
Status Register | bit is set. The | bit is automatically
cleared during service of an INT, NMI or Abort request,

and is restored to its original setting upon return from the
interrupt service routine via the RETT or RETlinstruction.

The INT pin may be configured via the SETCFG instruc-
tion as either Non-Vectored (CFG Register bit | = 0) or
Vectored (biti = 1).

3.8.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the
TNT pin will cause an Interrupt Acknowledge bus cycle,
but the CPU will ignore any value read from the bus and
use instead a default vector of zero. This mode is useful
for small systems in which hardware interrupt prioritiza-
tion is unnecessary.

PROGRAM COUNTER
(POP)
RETURN ADDRESS 32BITS
(POP)
STATUS MODULE 328ITS
PSR Moo INTERRUPT
. STACK .
: :
)
MODULE
TABLE
MODULE TABLE ENTRY
J
MODULE TABLE ENTRY
STATICBASEPONTER ——
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
PARAMETERS
n
BYTES
SBREGISTER
l STATIC BASE <J—J STACK SELECTED
IN NEWLY-
POPPED PSR.
L] -
L] L
: :
POP AND
DISCARD

TLIC/5064-35

FIGURE 3-24. Return from Trap (RETT n) Instruction Flow.

87

“END OF INTERRUPT”

BUS CYCLE

INTERRUPT
CONTROL
UNIT
PROGRAM COUNTER
1 (POP)
I RETURN ADDRESS J
[(POP)
l STATUS MODULE 1
PSR MOD
INTERRUPT
STACK
. .
. .
. .
0
MODULE
TABLE
MODULE TABLE ENTRY
MODULE TABLE ENTRY
STATIC BASE POINTER —
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
l STATIC BASE
SB REGISTER

TL/CI5054-36

FIGURE 3-25. Return fromInterrupt (RETI) Instruction Flow.

88

3.8.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an NS16202 inter-
rupt Control Unit (ICU) to prioritize up to 16 interrupt '
gﬁ%uests. Upon receipt of an interrupt request on the
INT pin, the CPU performs an “Interrupt Acknowledge,
Master” bus cycle (Sec. 3.4.2) reading a vector value
from the low-order byte of the Data Bus. This vector is
then used as an index into the Dispatch Table in order to
find the External Procedure Descriptor for the proper
interrupt service procedure. The service procedure
eventually returns via the Return from Interrupt (RETI)
instruction, which performs an End of Interrupt bus cycle,
informing the ICU that it may re-prioritize any interrupt
requests still pending. The ICU provides the vector num-
ber again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127;
that is, they must be positive numbers in eight bits. By
providing a negative vector number, an ICU flags the
interrupt source as being a Cascaded ICU (see below).

3.8.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is
made both in the CPU and in the NS16202 Interrupt
Control Unit (ICU) to transparently support cascading.
Figure 3-27, shows a typical cascaded configuration.
Note that the Interrupt output from a Cascaded ICU
goes to an Interrupt Request input of the Master ICU,
which is the only ICU which drives the CPU INT pin.

In a system which uses cascading, two tasks must be
performed upon initialization:

1) For each Cascaded ICU in the system, the Master
ICU must be informed of the line number (0 to 15) on
which it receives the cascaded requests.

2) A Cascade Table must be established in memory.
The Cascade Table is located in a NEGATIVE direc-
tion from the location indicated by the CPU Interrupt
Base (INTBASE) Register. Its entries are 32-bit
addresses, pointing to the Vector Registers of each
of up to 16 Cascaded ICUs.

Figure 3-22 illustrates the position of the Cascade
Table. To find the Cascade Table entry for a Cascaded
ICU, take its Master ICU line number (0 to 15) and
subtract 16 from it, giving an index in the range —16 to
—1. Multiply this value by 4, and add the resulting nega-
tive number to the contents of the INTBASE Register
The 32-bit entry at this address must be set to the
address of the Hardware Vector Register of the Cas-
caded ICU. This is referred to as the “Cascade Address.’
Upon receipt of an interrupt request from a Cascaded
ICU, the Master ICU interrupts the CPU and provides
the negative Cascade Table index instead of a (positive)
vector number. The CPU, seeing the negative value,

" uses it as an index into the Cascade Table and reads the

Cascade Address from the referenced entry. Applying
this address, the CPU performs an “Interrupt Acknow!-
edge, Cascaded” bus cycle (Sec. 3.4.2), reading the
final vector value. This vector is interpreted by the CPU
as an unsigned byte, and can therefore be in the range
of 0 through 255.

In returning from a Cascaded interrupt, the service pro-
cedure executes the Return from Interrupt (RETH) instruc-
tion, as it would for any Maskable Interrupt. The CPU
performs an “End of Interrupt, Master” bus cycle (Sec.
3.4.2), whereupon the Master ICU again provides the
negative Cascade Table index. The CPU, seeinganega-
tive value, uses it to find the corresponding Cascade
Address from the Cascade Table. Applyingthisaddress,
it performs an “End of Interrupt, Cascaded” bus cycle
(Sec. 3.4.2), informing the Cascaded ICU of the comple-
tion of the service routine. The byte read from the Cas-
caded ICU is discarded.

F DATA v
B =3
(@) =—oIR3
l<— RS
CONTROL HARDWARE
le— IR7 mmgguns
' -~ IR9 CASCADED
NS16032 ADDR 5 BITS NS16202 CONTROLLERS
CcPU —
GROUP
l=——IR13
l~—IR15
TATUS 1
STATUS = GO/IRO).
L= G1/IR2
iNT. INT |~ G2/IR4
INTERRUPTS,
== G3/IR6 CAS%ADED.
R
== G4/IRS oo
- GS5/IR10
FROM — == GE/IR12
ADDRESS ——={ CS »
DECODER < G7/IR14

TUC/5054-37

FIGURE 3-26. Interrupt Control Unit Connections (16 Levels).

89

DATA

L—lm b

~=—IR3

CONTROL [~—IRS

HARDWARE

~=—IR7
CASCADED . INTERRUPTS

NS16202 [~IR9

ADDR 5 BITS
icu l~—IR11

[~~—IR13
—IR15
= GO/IRO "

STATUS 1

CONTROL

-~ G1/IR2
= G2/IR4
[~+=-G3/IR6
[~ G4/IR8
[~ G5/IR10
> G6/IR12
e GTIlRﬂ) :

FROM _ ,
ADDRESS —~| Cs INTERRUPTS
DECODER

BIT1/O

INT

l~— IR1
l<«— IR3

|=—IR5

NS16032
CPU ADDR
GROUP

STATUS 1 l

=—rIR7

weren o no
icu l—IR11 -~

IR13
[=—1IR15

== G0/IR0

iNT

| G1/IR2

iNT < G2/IR4
<= G3/IR6
== Ga/IR8
L~ GS5/IR10

[~==G6/IR12
[=>=G7/IR14

FROM —
ADDRESS ——=1 CS
DECODER

TLIC/5054-38

FIGURE 3-27. Cascaded Interrupt Control Unit Connections.

3.8.4 Non-Maskable Interrupt (The NMI Pin)

The Non-Maskable Interrupt is triggered whenever a
falling edge is detected on the pin. The CPU per-
forms an “Interrupt Acknowledge, Master” bus cycle
(Sec. 3.4.2) when processing of this interrupt actually
begins. The Interrupt Acknowledge cycle differs from
that provided for Maskable Interrupts in that the address
presented is FFFF00,,. The vector value used for the
Non-Maskable Interrupt is taken as 1, regardless of the
value read from the bus.

The service procedure returns from the Non-Maskable
Interrupt using the Return from Trap (RETT) instruction:
No special bus cycles occur on return.

For the full sequence of events in processing the Non-
Maskable Interrupt, see Sec. 3.8.7.1.

3.8.5 Traps

A trap is an internally-generated interrupt request
caused as a direct and immediate result of the execu-
tion of an instruction. The Return Address pushed by
any trap except Trap (TRC) below is the address of the
first byte of the instruction during which the trap
occurred. Traps do not disable interrupts, as they are
not associated with external events. Traps recognized
by NS16032 CPU are:

Trap (FPU): An exceptional condition was detected by
the NS16081 Floating Point Unit or another Slave Pro-
cessor during the execution of a Slave Instruction. This
trap is requested via the Status Word returned as part of
the Slave Processor Protocol (Sec. 3.9.1).

90

Trap (ILL): lllegal operation. A privileged operation was
attempted while the CPU was in User Mode (PSR bit
U=1).

Trap (SVC): The Supervisor Call (SVC) instruction was
executed.

Trap (DVZ): An attempt was made to divide an integer
by zero. (The FPU trap is used for Floating Point division
by zero.)

Trap (FLG): The FLAG instruction detected a “1” in the
CPU PSR F bit.

Trap (BPT): The Breakpoint - (BPT) instruction was
executed.

Trap (TRC): The instruction just completed is being
traced. See below.

Trap (UND): An undefined opcode was encountered by
the CPU.

A special case is the Trace Trap (TRC), which is enabled
by setting the T bit in the Processor Status Register
(PSR). At the beginning of each instruction, the T bit is
copied into the PSR P (Trace “Pending”) bit. If the P bit
is set at the end of an instruction, then the Trace Trap is
activated. If any other trap or interrupt request is made
during a traced instruction, its entire service procedure
is allowed to complete before the Trace Trap occurs.
Each interrupt and trap sequence handles the P bit for
proper tracing, guaranteeing one and only one Trace
Trap per instruction, and guaranteeing that the Return
Address pushed during a Trace Trap is always the ad-
dress of the next instruction to be traced.

3.8.6 Prioritization

The NS16032 CPU internally prioritizes snmultaneous
interrupt and trap requests as follows:

1) Traps other than Trace (Highest priority)
2) Abort :
3) Non-Maskable Interrupt

4) Maskable Interrupts

5) Trace Trap. (Lowest priority)

3.8.7 Interrupt/Trap Sequences: Detailed Flow
For purposes of the following detailed discussion‘ of
interrupt and trap service sequences, a single sequence
called “Service” is defined in Figure 3-28. Upon detect-
ing any interrupt request or trap condition, the CPU first
performs a sequence dependent upon the type of inter-
rupt or trap. This sequence will include pushing the
Processor Status Register and establishing a Vector
and a Return Address. The CPU then performs the
Service sequence.

For the sequence followed in processing either Mask-
able or Non-Maskable interrupts (on the INT or NMI
pins, respectively), see Sec. 3.8.7.1. For Abort inter-
rupts, see Sec. 3.8.7.4. For the Trace Trap, see Sec.
3.8.7.3, and for all other traps see Sec. 3.8.7.2.

3.8.7.1 Maskable/Non-Maskable Interrupt
Sequence

This sequence is performed by the CPU when the NMI
pin receives a falling edge, or the INT pin becomes
active with the PSR | bit set. The interrupt sequence
begins either at the next instruction boundary or, in the
case of the String instructions, at the next interruptible
point during its execution.

6. If “Byte”

. If a String instruction was interrupted and not yet
completed:
a. Clear the Processor Status Register P bit.
b. Set “Return Address” to the address of the first
byte of the interrupted instruction.

Otherwise, set “Return Address” to the address of
the next instruction.

2. Copy the Processor Status Reglster (PSR) into a

temporary register, then clear PSR bits S, U, T, P
and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF0046, applying
Status Code 0100 (Interrupt Acknowledge, Mas-
ter: Section 3.4.2). Discard 1he byte read.

b. Set “Vector” to 1.
c. Go to Step 8.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFF0046, applying
Status Code 0100 (Interrupt Acknowledge, Mas-
ter: Section 3.4.2). Discard the byte read.

b. Set “Vector” to 0.
c. Go to Step 8.

5. Here the interrupt is Vectored. Read “Byte” from

address FFFEOQO.5, applying Status Code 0100
(Interrupt Acknowledge, Master: Section 3.4.2).

= 0, then set “Vector” to “Byte” and go
to Step 8. ‘

7. If “Byte” is in the range — 16 through -1, then the

interrupt source is Cascaded. (More negative val-

ues are reserved for future use.) Perform the follow-

ing:

a. Read the 32-bit Cascade Address from memory.
The address is calculated as INTBASE +4*
Byte.

b. Read !'Vector,” applying the Cascade Address
just read and Status Code 0101 (Interrupt
Acknowledge, Cascaded: Section 3.4.2).

8. Push the PSR copy (from Step 2) onto the Interrupt

Stack as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-

28.

Service (Vector, Retu}n Address):

" 1) PushMOD Register onto the Interrupt Stack as a 16-bit value. (The PSR

has already been pushed as a 16-bit value.)

'2) Push the Return Address onto the Interrupt Stack as a 32-bit quantity.

3) Read the 32-bit External Procedure Descriptor from the Interrupt Dis-
patch Table: address is Vector*4 + INTBASE Register contents.

4) Move the Module field of the Descriptor into the MOD Register.

5) Read the new Static Base pointer from the memory address contained
in MOD, placing it into the SB Register.
6) Read the Program Base pointer from memory address MOD+8, and add
to it the Offset field from the Descriptor, placing the resuit in the Program
Counter.

TUC/5054-39

FIGURE 3-28. Service Sequence.
Invoked during all interrupt/trap sequences.

91

3.8.7.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at
the start of the trapped instruction.

2) Set “Vector” to the value corresponding to the trap
type.
FPU: Vector = 3.
ILL: Vector =
SVC: Vector = 5.
DvZz: Vector = 6.
FLG: Vector = 7.
BPT: Vector = 8.
UND: Vector = 10.
3) Copy the Processor Status Register (PSR) into a
temporary register, then clear PSR bits S, U,Pand T.
4) Push the PSR copy onto the Interrupt Stack as a
16-bit value.
5) Set “Return Address” to the address of the first byte

of the trapped instruction.

6) Perform Service (Vector, Return Address), Figure
3-28.

3.8.7.3 Trace Trap Sequence

1) In the Processor Status Register (PSR), clear the P
bit.

2) Copy the PSR into a temporary register, then clear
PSRbits S,Uand T.

3) Push the PSR copy onto the Interrupt Stack as a
16-bit value.

4) Set “Vector’to 9.

5) Set “Return Address” to the address of the next
instruction.

6) Perform Service (Vector, Return Address), Figure
- 3-28. ‘

‘3.8.7.4 Abort Sequence

1) Restore the currently selected Stack Pointer to its
~ original contents at the beginning of the aborted
instruction.

2) Clear the PSR P bit.

3) Copy the PSR into a temporary register, then clear
PSR bits S, U, Tand .

4) Push the PSR copy onto the Interrupt Stack as a
16-bit value.

5). Set “Vector” to 2. '

6) Set “Return Address” to the address of the first byte
of the aborted instruction.

7) Pezréorm Service (Vector, Return Address), anure
3-
3.9 SLAVE PROCESSOR INSTRUCTIONS

The NS16032 CPU recognizes three groups of instruc-
tions as being executable by external Slave Processors:

Floating Point Instruction Set

Memory Management Instruction Set -
Custom Instruction Set

Each Slave Instruction Set is validated by a bit in the
Configuration Register (Sec. 2.1.3). Any Slave Instruc-
tion which does not have its corresponding Configura-
tion Register bit set will trap as undefined, without any
Slave Processor communication attempted by the CPU.
This allows software simulation of a non-existent Slave
Processor.

3.9.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic
Instruction field, consisting of an ID Byte followed by an
Operation Word. The ID Byte has three functions:

1) It identifies the instruction as being a
Slave Processor instruction.

2) It specifies which Slave Processor will
execute it.

3) It determines the format of the following
Operation Word of the instruction.

Upon receiving a Slave Processor instruction, the CPU
initiates the sequence outlined in Figure 3-29. While
applying Status Code 1111 (Broadcast ID, Sec. 3.4.2),
the CPU transfers the ID Byte on the least-significant
half of the Data Bus (AD0-AD7). All Slave Processors
input this byte and decode it. The Slave Processor
selected by the ID Byte is activated, and from this point
the CPU is communicating only with it. If any other slave
protocol was in progress (e.g., an aborted Slave instruc-
tion), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.2).
Upon receiving it, the Slave Processor decodes it, and
at this point both the CPU and the Slave Processor are
aware of the number of operands to be transferred
and their sizes. The operation Word is swapped on the
Data Bus; that is, bits 0-7 appear on pins AD8-AD15
and bits 8-15 appear on pins AD0-AD7.

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing
them to the Slave Processor. To do so, it references any
Addressing Mode extensions which may be appended
to the Slave Processor instruction. Since the CPU is

Status Combinations:

Send ID (ID): Code 1111
Xfer Operand (OP): Code 1101
Read Status (ST): Code 1110

Step Status Action

1 D CPU Send ID Byte.

2 oP CPU Sends Operation Word.

3 oP CPU Sends Required Operands.

4 — Slave Starts E CPU Pre-fi

5 — Slave Pulses SPC Low.

6 ST CPU Reads Status Word. (Trap? Alter Flags?)
7 OP CPU Reads Resuits (if Any).

TLICI5054-40

FIGURE 3-29. Slave Processor Protocol.

92

solely responsible for memory accesses, these exten-

" sions are not sent to the Slave processor. The Status
Code applied is 1101 (Transfer Slave Processor Oper-
and, Sec. 3.4.2). ‘

After the CPU has issued the last operand, the Slave
Processor starts the actual execution of the instruction.
Upon completion, it will signal the CPU by pulsing SPC
low.To allow for this, and for the Address Translation strap
function, AT/SPC is normally held high only by an internal
pull-up device of approximately 5K ohms.

While the Slave Processor is executing the instruction,
the CPU is free to prefetch instructions into its queue. If it
fills the queue before the Slave Processor finishes, the
CPU will wait, applying Status Code 0011 (Waiting for
Slave, Sec. 3.4.2).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status, Sec. 3.4.2). This
word has the format shown in Figure 3-30. If the Q bit
(“Quit", Bit 0) is set, this indicates that an error was
detected by the Slave Processor. The CPU will not con-
tinue the protocol, but will immediately trap through the
FPU vector in the Interrupt Table. Certain Slave Proces-
sor instructions cause CPU PSR bits to be loaded from
the Status Word.

The last step in the protocol is for the CPU to read a
result, if any, and transfer it to the destination. The Read
cycles from the Slave Processor are performed by the
CPU while applying Status Code 1101 (Transfer Slave
Operand, Sec. 3.4.2).

An exception to the protocol above is the LMR (Load
Memory Management Register) instruction, and a
corresponding Custom Slave instruction (LCR: Load
Custom Register). In executing these instructions, the
protocol ends after the CPU has issuedthe lastoperand.
The CPU does not wait for an acknowledgement from
the Slave Processor, and it does not read status.

3.9.2 Floating Point instructions

Table 3-4 gives the protocols followed for each Float-
ing Point instruction. The instructions are referenced by
their mnemonics. For the bit encodings of each instruc-
tion, see Appendix A.

The Operand class columns give the Access Class for
each general operand, defining how the addressing
modes are interpreted (see Programmer’s Manual).

The Operand Issued columns show the sizes of the

operands issued to the Floating Point Unit by the CPU.

“D” indicates a 32-bit Double Word. “i" indicates_that
the instruction specifies an integer size for the operand
(B = Byte, W = Word, D = Double Word). “f” indicates
that the instruction specifies a Floating Point size for the
operand (F = 32-bit Standard Floating, L = 64-bit Long
Floating). '

The Returned Value Type and Destination column gives
the size of any returned value and where the CPU
places it. The PSR Bits Affected column indicates which
PSR bits, if any, are updated from the Slave Processor
Status Word (Figure 3-30).

Table 3-4.
Floating Point Instruction Protocols.
Operand1 Operand 2 Operand1 Operand2 ReturnedValue PSR Bits

Mnemonic Class Class Issued Issued Type and Dest. Affected
ADDf read.f rmw.f f f ftoOp. 2 none
SUBf read.f rmw.f f f ftoop.2 none
MULf read.f rmw.f f f ftoOp. 2 none
DIvf read.f rmw.f f f ftoOp.2 none
MOVf read.f write.f f N/A ftoOp.2 none
ABSf read.f write.f f N/A ftoOp. 2 none
NEGf read.f write.f f N/A ftoOp.2 none
CMPf read.f read.f f f N/A N,Z,L
FLOOR(i read.f write.i f N/A itoop.2 none
TRUNCHi read.f write.i f N/A itoOp. 2 none
ROUNDfi read.f write.i f N/A itoOp.2 none
MOVFL read.F write.L F N/A LtoOp.2 none
MOVLF read.L write.F L N/A FtoOp.2 none
MOVif read.i write. f i N/A ftoOp. 2 . none
LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A DtoOp.2 none
NOTE:

D = Double Word.

i='Integer size (B,W,D) specified in mnemonic.

¢ = Custom size {(D:32 bits or Q:64 bits) specified in mnemonic.
* = Privileged Instruction: will trap if CPU is in User Mode.
N/A = Not Applicable to this instruction.

93

15 87 0

00000000 INZFOOLOQJ

New PSR Bit Value(s) 22— /

“Quit”: Terminate Protocol, Trap(FPU).
TLC/S054-41

FIGURE 3-30. Slave Processor Status Word Format.

Any operand indicated as being of type “f” will not cause
a transfer if the Register addressing mode is specified.
This is because the Floating Point Registers are physi-
cally on the Floating Point Unit and are therefore avail-
able without CPU assistance.

3.9.3 Memory Management Instructions

Table 3-5 gives the protocols for Memory Manage-
ment instructions. Encodings for these instructions may
be found in Appendix A.

In executing the RDVAL and WRVAL instructions, the
CPU calculates and issues the 32-bit Effective Address
of the single operand. The CPU then performs a single-
byte Read cycle from that address, allowing the MMU to
safely abort the instruction if the necessary information
is not currently in physical memory. Upon seeing the
memory cycle complete, the MMU continues the proto-
col, and returns the validation result in the F bit of the
Slave Status Word.

The size of a Memory Management operand is always a
32-bit Double Word. For futher details of the Memory
Management Instruction set, see the Programmer’s
Manual and the NS 16082 MMU Data Sheet.

Table 3-5.
Memory Management instruction Protocols.

Operand1 Operand 2 Operand1 Operand2 = Returned Value PSR Bits
Mnemonic Class Class Issued Issued Type and Dest. Affected
RDVAL * addr N/A D N/A N/A F
WRVAL * addr N/A D N/A N/A F
LMR * read.D N/A D N/A N/A none
SMR * write.D N/A N/A N/A Dto Op. 1 none
NOTE:

In the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single-byte Read cycle from that memory
address. For details. see the Programmer’s Manual and the NS16082 Memory Management Unit Data Sheet.

D = Double Word.
+ = Privileged Instruction: will trap if CPU is in User Mode.
NJ/A = Not Applicable to this instruction.

94

3.9.4 Custom Siave Instructions

Provided in the NS16032 is the capability of communi-
cating with a user-defined, “Custom” Slave Processor.
The instruction set provided for a Custom Slave
Processor defines the instruction formats, the operand
classes and the communication protocol. Left to the
user are the interpretations of the Op Code fields, the
programming model of the Custom Slave and the actual
types of data transferred. The protocol specifies only the
size of an operand, not its data type.

Table 3-6 lists the relevant information for the Custom
Slave instruction set. The designation “c” is used to
represent an operand which can be a 32-bit (“D") or
64-bit (“Q") quantity in any format; the size is deter-
mined by the suffix on the mnemonic. Similarly, an “i”
indicates an integer size (Byte, Word, Double Word)
selected by the corresponding mnemonic suffix.

Any operand indicated as being of type ‘c’ will not
cause a transfer if the register addressing mode is
specified. It is assumed in this case that the slave proc-
essor is already holding the operand internally.

For the instruction encodings, see Appendix A.

Table 3-6.
Custom Slave Instruction Protocols.

Operand1 Operand 2 Operand1 Operand2 Returned Value PSR Bits
Mnemonic Class Class Issued Issued Type and Dest. Affected
CCALOc read.c rmw.c c c ctoOp. 2 none
CCAL1c read.c rmw.c c c ctoOp.2 none
CCAL2c read.c rmw.c c c ctoOp.2 none
CCAL3c read.c rmw.c c c ctoOp. 2 none
CMOVoc read.c write.c [N/A ctoOp.2 none
CMOV1ic read.c write.c c N/A ctoOp.2 none
CMOV2c read.c write.c c N/A ctoOp.2 none
CCMPc read.c read.c c c N/A N,ZL
CCVOci read.c write.i c N/A itoOp. 2 none
CCVici read.c write.i c N/A itoOp.2 none
CCV2ci read.c write.i c N/A itoOp. 2 none
CCV3ic read.i ~ write.c i N/A ctoOp.2 none
CCv4DQ read.D write.Q D N/A QtoOp. 2 none
CCvVv5QD read.Q write.D Q N/A DtoOp. 2 none
LCSR read.D N/A D N/A N/A none
SCSR N/A write.D N/A N/A DtoOp.2 none
CATSTO " addr N/A D N/A N/A F
CATST1* addr N/A D N/A N/A F
LCR* read.D N/A D N/A N/A none
SCR* write.D N/A N/A N/A DtoOp. 1 none
NOTE:

D = Double Word

i = integer size (B,W,D) specified in mnemonic.

= Floating Point type (F,L) specified in mnemonic.
N/A = Not Applicable to this instruction.

95

4 AC Electrical Characteristics
4.1 Definitions

All the timing specifications given in this section refer to
50% of the leading or trailing edges of the appropriate
clock phase and 0.8V or 2.0V on the appropriate signal

PHIn 50%
| ——\ " —— 2.4V
SIG1
tsiG11
0.8v
L 0.45V
- 2.4V
tsSIG2h
2.0v

SiG2

TLC/5054-42

FIGURE 4-1. Timing Specification Standard
(Signal Valid After Clock Edge)

4.2 Timing Tables

as illustrated in Figures 4-1 and 4-2, unless specifically

stated. otherwise.

Abbreviations:
L.E—leading edge
T.E.—trailing edge

PHIn

50%

SIG1

SIG2

FIGURE 4-2. Timing Specification Standard
(Signal Valid Before Clock Edge)

424 Output Signals: Internal Propagation Delays, NS16032-4, NS16032-6
Maximum times assume capacitive loading of 100 pF.

TL/C/5054-43

Name Description Figure Reference/Conditions | Min. | Typ. | Max. | Unit
taLy " | Address bits 0-15 valid 4-3 after L.E., PHI1 T1 80 | ns
tath Address bits 0-15 hold 4-3 after L.E, PHI1 Tmmu orT2| 0 ns
toy Data valid (write cycle) 4-3 after L.E., PHI1 T2 80 ns
ton Data hold (write cycle) 4-3 after L.E.,PHI1next T1orTi| O ns
tAHY Address bits 16-23 valid 4-3 after L.E., PHI1 T1 95 ns
tAHR Address bits 16-23 hold 4-3 after LE,PHITnextT1orTi| O ns
tALADSS Address bits 0-15 set up to ADS T.E. 4-4 before ADS reaches 2.0V 20 ns
tAHADSS Address bits 16-23 set up to ADS T.E. 4-4 before ADS reaches 2.0V 20 ns
tALADSh Address bits 0-15 hold from ADS T.E. 4-9 after ADS reaches 2.0V 10 ns
tAHADSh Address bits 16-23 hold from ADS T.E. 4-8 after ADS reaches 2.0V 10 ns
taLs Address bits 0-15 floating (no MMU) 4-4 after L.E., PHI1 T2 25 | ns
tALMF Address bits 0-15 floating (with MMU) 4-8 after L.E., PHI1 Tmmu 25 | ns
tAHME Address bits 16-23 floating (with MMU) 4-8 after L.E., PHI1 Tmmu 25 | ns
tuser HBE signal valid 4-3 after L.E., PHI1 T1 95 | ns
tHBER HBE signal hold 4-3 after L.E., PHITnext T1orTi| O ns
tsty Status (STO-ST3) valid 4-3 after L.E., PHI1 T4 90 | ns

(before T1, see note)
tsth Status (ST0-ST3) hold 4-3 after L.E., PHI1 T4 (after T1) | O ns
topiny DDIN signal valid 4-4 after L.E., PHI1T1 110 | ns
toping DDIN signal hold 4-4 after L.E., PHITnext T1orTi| 0 ns
tapsa ADS signal active (low) 4-3 after L.E., PHI1 T1 55 | ns
taDsia ADS signal inactive 4-3 after T.E., PHI1 T1 60 | ns
tADSW ADS pulse width 4-3 at 0.8V, both edges 60 ns
tpsa DS signal active (low) 4-3 after L.E., PHI1 T2 70 ns

96

4.2.1 Output Signals: Internal Propagation Delays, NS16032-4, NS16032-6 (continued)

Reference/Conditions

Name Description Figure Min. | Typ. | Max. | Unit
tpsia DS signal inactive 4-3 after L.E., PHI1 T4 60 | ns
taLs ADO-AD15 floating (caused by HOLD) 4-5 after L.E., PHI1 T1 100 | ns
tans A16-A23 floating (caused by HOLD) 4-5 after L.E., PHI1 T1 100 | ns
tapst ADS floating (caused by HOLD) 4-5 |after L.E., PHI1Ti 100 | ns
tHBEs HBE floating (caused by HOLD) 4-5 after L.E., PHI1 Ti 100 | ns
toDINS DDIN floating (caused by HOLD) 4-5 after L.E., PHITTi 100 | ns
tHLDAa HLDA signal active (low) 4-5 after L.E., PHI1 Ti 100 | ns
tHLDAIa E_EBA signal inactive 4-7 after L.E., PHI1 Ti 100 | ns
taosr ggﬁig';‘;' "_ms from floating 4-7 |after LE,PHNTi 100 | ns
ther g:f:;‘g’:;‘,' ——;‘%‘l‘_g‘)s from floating 4-7 |after LE., PHITi 100 | ns
tooine g::f‘;:;gé‘ya:_"g:_‘g;‘s from floating 4-7 |after LE, PHIT Ti 100 | ns
taLs ADO-AD15 floating (caused by FLT) 4-8 after L.E., PHI1 Tf 60 | ns
toDING DDIN signal floating (caused by FLT) 4-8 after FLT reaches 0.8V 80 | ns
tugel HBE signal low (caused by FLT) 4-8 after FLT reaches 0.8V 100 | ns
tDD'N' zl::‘l::;g;ya::r_g)ums from floating 4-9 after FLT reache; 2.0V 75 ns
tHeEr ggfigg?‘%ms from floating 4-9 | after FLT reaches 2.0V 90 | ns
tspca SPC output active (low) 4-12 |after L.E., PHI1T1 50 | ns
tspcia SPC output inactive 4-12 | after L.E., PHI1 T4 50 | ns
tspent SPC output nonforcing 4-14 | after L.E., PHI2 T4 40 | ns
tov Data valid (slave processor write) 4-12 after L.E., PHI1 T1 80 | ns
ton Data hold (slave processor write) 4-12 after L.E., PHI1next T1orTi| 0 ns
tprsw PFS pulse width 4-17 | at 0.8V, both edges 70 ns
tprsa PFS pulse active (low) 4-17 | after L.E., PHI2 70 | ns
tpFsia PFS pulse inactive 4217 |after L.E., PHI2 70 | ns

) before L.E., PHI1 T1
tiLos 1LO signal setup 4-19a | of first interlocked 0 ns
write cycle
after L.E., PHI1 T3
tiLon 1LO signal hold 4-19b | of last interlocked 0. ns
read cycle
tiLoa 1LO signal active (low) 4-20 | after L.E., PHI1 70 | ns
tiLoia TLO signal inactive 4-20 | after L.E., PHI1 70 | ns
tuss U/S signal setup 4-21 before T.E., PHI1 T4 or Ti 15 ns
tush U/S signal hold 4-21 |after LE., PHI1T1 2 tep
tNsPF g—:gielgg:':;z:;emh to next 4-18b |after L.E., PHI1 T1 4 tcp
t PFS X , '
PEiS nons‘;':::n?;'fe‘t“’::e ! 4-18a | before L.E., PHI1 T1 4 top
tixer Last operand transfer of an instruction 4-28 before L.E., PHI1 T1 of 0 t
to next PFS clock cycle first bus cycle of transfer Ce
NOTE:

_Every memory cycle starts with T4, during which Cycle Status is applied. If the CPU was idling, the sequence will be: “...Ti,T4,T1...".1fthe CPUwas not idling, the
sequence will be: “..T4,T1..”.

97

4.2.2 Input Signal Requirements: NS16032-4, NS16032-6

Name Description Figure Reference/Conditions [Min. | Typ. | Max. | Unit
tpwr Power stable to RST T.E. 4-24 | after Vg reaches 4.5V 50 us
tois Data in setup (read cycle) 4-4 before T.E., PHI2'T3 20 ns
toin Data in hold (read cycle) 4-4 after T.E., PHI2 T3 10 ns
tHLDa HOLD active (low) setup time (See note) 4-5 before T.E., PHI2 TX1 25 ns
tHLDIa HOLD inactive setup time 4-7 before T.E., PHI2 Ti 25 ns
tHLDh HOLD hold time 4-5 after L.E., PHI1 TX2 0 ns
tFLTa FLT active (low) setup time 4-8 before T.E., PHI2 Tmmu 25 ns
tFLTIa FLT inactive setup time 4-9 before T.E., PHI2 T2 25 ns
trRDYs RDY setup time 4-10, 4-11| before T.E., PHI2 T2 or T3 25 ns
trRoYh RDY hold time 4-10, 4-11| after T.E., PHI1 T3 0 ns
tasTs ABT setup time (FLT inactive) 4-22 | before T.E., PHI2 Tmmu 30 ns .
taBTs ABT setup time (FLT active) 4-23 | before T.E., PHI2 T2 30 ns
tagTh ABT hold time 4-22 | after L.E., PHI1 0 ns
trsTs RST setup time 4-24, 4-25) before T.E., PHI1 20 ns
trRsTw @ pulse width 4-25 at 0.8V (both edges) 64 tep
tiNTs INT setup time 4-26 before T.E., PHI1 20 ns
tNMIw ‘NMI pulsewidth 4-27 | at 0.8V (both edges) 40 ns
tpis Data setup (slave read cycle) 4-13 before T.E., PHI2 T1 20 ns
tpin Data hold (slave read cycle) 4-13 after T.E., PHI2 T1 10 ns
tspcw SPC pulse width (from slave processor) 4-12 at 0.8V (both edges) 30 ns
taTs AT/SPC setup for address 4-15 | before L.E,, PHI1of 1 tep

translation strap cycle during which RST
pulse is removed
tamh AT/SPC hold for address 4-15 | after TE,PHITof 2 tep
translation strap cycle during which RST
pulse is removed
NOTE:

This setup time is necessary to ensure prompt acknowledgement via HLDA and the ensuing floating of CPU off the buses. Note that the time from

the receipt of the HOLD signal until the CPU floats is a function of the time HOLD signal goes low, the state of the RDY input (in MMU systems), and the
length of the current MMU cycle.

4.2.3 Clocking Requirements: NS16032-4

Name Description Figure Reference/Conditions | Min. | Typ. | Max. | Unit
tor | PHIT, PHI2 rise time 416 | Qo 2 9 |ns
— 0,
teus PHI1, PHI2 fall time 4-16 g‘gg‘::ggoz)/ o of Von 9 |ns
tein PHI1, PHI2 high time 4-16 0.4 . | top
tcu PHI1, PHI2 low time 4-16 0.35 tep
tep Clock period 4-16 240 5000 | ns
tovL Non-overlap time 4-16 at 10% of Vcy (see page 2) 0 ns
4.2.4 Clocking Requirements: NS16032-6
Name Description Figure Reference/Conditions | Min. | Typ. | Max. | Unit
tou PHI1, PHI2 rise time 46| (ot o 2) 9 |ns
. from 90-10% of Vgy 9 ns
tous PHI1, PHI2 fall time 4-16 | (see page 2)
toun PHI1, PHI2 high time 4-16 0.4 tep
tou PHI1, PHI2 low time 4-16 0.35 top
tep Clock period 4-16 160 5000 | ns
tovL Non-overlap time 4-16 0 ns

at 10% of Vg (see page 2)

98

| T T2 13 T4
I—
PHIN [I
PHI2 [| l I I
it v It '
L
ADO-15 [ADDRESS DATA OUT
tAHY —=itov tDh |
A16-23 [¢ [VALID
F— ‘apsia tamh > ™
ADS [/ tADSW
tADSa HBEh » =
ABE [X VALID
—1 tHBEV gl
O [(HIGH)
tsTv
ST0-3 l VALID tstnlml K| NEXT
— tDsa
55|
tpsia
RDY [(HIGH)
TLICI5054-44
FIGURE 4-3. Write Cycle.
T T2 3 T4

(]
el UL T T

ADO-15 [-1 ADDRESS ;Z (Prmam
AL —=] [=TpIh
At623 [] - VALID
=T

FiBE [:D(‘ VALID
o= [T ’

= tDDINh

DDINV
il X
B | N\ A
RDY [(HIGH)
: TUCI5054-45 .

FIGURE 4-4. Read Cycle.

PHI1 [
PHI2 [

HOLD [

|:|_

™1 TX2

I

[

T4

Ti

Ti

LI

[1

|
! ¢
S[] ——j HLDh
tHLDa T

HLDA [
ADS

tHBEf
tapst
'DDINt

HBE
DDIN

ADO-15 I:

A16-23 [

9
—=1 tant | |
____________ 4
(FLOATING)

TUCI5490-46

FIGURE 4-5. Floating by HOLD Timing (CPU Not Idle Initially).

Note that whenever the CPU is not idling (not in Ti), the HOLD request (HOLD low) must be active tHLDa before the trailing edge of PHI2 of the
clock cycle that appears two clock cycles before T4 (TX1) and stay low until tHLDh after the leading edge of PHI1 of the clock cycle that precedes
T4 (TX2) for the request to be acknowledged.

PHI2 [I I
Y — [tHLDh
HOLD [\ i |
=
HLDA [
P tHLDa tHBES
ADS, topint
HBE,| | | y-=c=e-
DDIN
ADO-15 [“’"“"_" T(FLOATING) |
A16-23 [TTTTT T T‘ —(;Lz)l—lﬁﬁﬁ-)-

TUCI5490-47

FIGURE 4-6. Floating by HOLD Timing (CPU Initially Idle).

Note that during Ti1 the CPU is already idling.

i Ti Ti T4
[T 111
tHLDi: | N l—_L
ia [~ = TLDh

——-f tHLDAia

e

'HBEr
tapsr |
topine

(HIGH)

(FLOATING) TUIC/5490-48

FIGURE 4-7. Release from HOLD.

100

CPU
CYCLES

MMU
CYCLES
PHI1

[
PHIZ[
ol

ADO-15 FLTa
~——ADDRESS (CPU))- — —
(CPU),[(:(FLOATlNG)

A16-23
(opoy || —TCADDRESS (CPUN-— — —+ —
P 1 tapms
& [T\ st
1 tAHADSh
DDIN
(CPU)
HBE[\

CPU
CYCLES

MMU
CYCLES

[7]

PHI2 [

T
- l

TMMU

TMMU

—

T

T

-

n.

=

Il

tALMt \

taLs

I

(FLOATING, DRIVEN BY MMU)

(FLOATING, DRIVEN BY MMU)

>

tDDINt

(FLOATING, DRIVEN BY MMU)

FIGURE 4-8. FLT Initiated Float Cycle Timing.

Tt
Tmmu

T2

[

tHBEI

"

(FORCING LOW)

TLICi5490-49

T4

11

[]

-

-

FIT
(MHU) __/f tFLTia
ate-23[
(CPY) (FLOATING, DRIVEN BY MMU)
DOIN 'DDINT
(CPU) [<
ADS
(CPU) |
tHBEr
. HBE j
(FORCING LOW)

Note that when FLT is deasserted the CPU restarts driving DDIN before the MMU releases it. This, however, does not cause any conflict, since

FIGURE 4-9. Release from FLT Timing.

both CPU and MMU force DDIN to the same logic level.

|

PHI [
PHI2 [

Tior
Tmmu

hrzhra

[

[1

TL/C/5490-50

T3

-

-

M

[1

RDY [

tRDYh

\L—('RDVs

TUC/5490-51

FIGURE 4-10. Ready Sampling (CPU Initially READY).

101

! I
w[T L
o L

. oY [-P—/I» tRDYs 'ntTvn

FIGURE 4-11. Ready Sampling (CPU Initially NOT READY).

TL/CI5054-52

i T T4

bl L
w11] |
=TTy S miinl

|~ tDh
ADO-15 [— | DATA ADO-15[— VALID -
DATA (FROM SLAVE)

~ tspcw L . = - —
v SPC =
PG [j’ el |\ /
tspca tspcia

Som [7 ‘ DDIN [—\
A ST0-3 [STATUS VALID NEXT STATUS -
ST03 [sTATUS vaLiD | X NEXTCYCLE ‘

ADS [(HIGH) ADS [(HIGH)

.
]

- TLIC/5054-53 TL/C/5054-54

FIGURE 4-12. Slave Processor Write Timing. FIGURE 4-13. Slave Processor Read Timing.

[Vn‘

|
][] M
=1L T

L»i' Cnt

o S AU/ B

TLIC/5054-55

FIGURE 4-14. SPC Non-Forcing Delay.

After transferring last operand to a Slave Processor, CPU
turns OFF driver and holds SPC high with internal 5K pullup.

l [| l [1

[1 [T inEp gl
v /

AT/SPC [

tars taTh
. TLICI5054-56

FIGURE 4-15. Reset Configuration Timing.

102

tcLh

— |——toLf

tcp

tcLi) /

.».[J/
n

-

tewr

[T LT

"_\ t

'pFsa

FFE[

tovL

TLICI5054-57

FIGURE 4-16. Clock Waveforms.

PFSw

\.

TLIC/5054-58

FIGURE 4-17. Relationship of PFS to Clock Cycles.

W ML

S$T0-3

X CODE 1001

TLIC/5054-59

FIGURE 4-18a. Guaranteed Delay, PFS to Non-Sequential Fetch.

“iglplg¥p

- ; ;
=[N\ _/
ST0-3 CODE 1001
- {(
_)
PFS
i .
INSPF

TUCI5054-60

FIGURE 4-18b. Guaranteed Delay, Non-Sequential Fetch to PFS.

103

PHI1

ADS

o

PHI1

ADS

ico

PHIt

iLo

I

T3ORTI i T40R'rj hal

L

T2

|
[1

| =
LT L

.

11

tLos

!

TL/C/5054-61

FIGURE 4-19a. Relationship of ILO to First Operand Cycle
of an Interlocked Instruction.

T3ORTi T4ORTI

[]

|
ﬂ

|
L

—l
\/

——’ tLon

/____‘_

I

TLIC/5054-62

FIGURE 4-19b. Relationship of ILO to Last Operand Cycle
of an Interlocked Instruction.

1M

[]

L LT

{(

I
tiLoa

tiLoia

TL/CI5054-63

FIGURE 4-20. Relationship of ILO to Any Clock Cycle.

"rsonn ‘ T4 OR Tiy, sl

PHI1 I |

-

|
n

T2

lraln

L]

ADS

\/

tush

.|
l

>

LID

B4

TUCI5054-64

FIGURE 4-21. U/S Relationship to Any Bus Cycle —
Guaranteed Valid interval.

104

tABTs tABTh

TUC/5054-65

FIGURE 4-22. Abort Timing, FLT Not Applied.

Tt Tt Tf Tt T2 Ti

jEpEpEaEaEy
g I 1 [T

tABTs tABTh

RST/ABT

TLICI5054-66

FIGURE 4-23. Abort Timing, FLT Applied.

(

vee _“/“"’/F !
L T

tnsrsH

tPWR

rTs?/nFT[.
)

TUC/5054-67

FIGURE 4-24. Power-On Reset.

WL

tRSTS —-—{

—_ tRSTW

RST/ABT @ /
-

1

TUCI5054-68

FIGURE 4-25. Non-Power-On Reset.

1056

[LTI

L= tinTs

m?[_—___\

TUCI5054-69
FIGURE 4-26. INT Interrupt Signal Detection.
Violation of tINTs timing is allowed, but detection then occurs

one clock cycle later.

T2

— NMIw
NMI \
\

FIGURE 4-27. NMi Interrupt Signal Timing.

FIRST BUS CYCLE

’ T3

T4

—

Bl

tLXPF

FIGURE 4-28. Relationshi
an Instruction and

NOTE:

[

TUC/5054-71

Between Last Data Transfer of

Pulse of Next’Instruction.

In a transfer of a Read-Modify-Write type operand; this is the Read transfer, displaying

RMW Status (Code 1011).

TUC/5054-70

106

Appendix A: Instruction Formats
NOTATIONS:

Integer Type Field

B = 00 (Byte)

W = 01(Word)

D = 11 (Double Word)

Floating Point Type Field

F =1 (Std. Floating: 32 bits)
L =0 (Long Floating: 64 bits)
Custom Type Field

D=1 (Double Word)
Q=0 (QuadWord)

Operation Code
Valid encodings shown with each format.

op=

gen, gen 1, gen 2 = General Addressing Mode Field
See Sec. 2.2 for encodings.

reg = General Purpose Register Number

Condition Code Field

0000 = EQual: Z= 1

0001 = Not Equal: Z=0

0010 = Carry Set:C = 1
‘0011 = CarryClear:C =0

0100 = Higher: L = 1

0101 = Loweror Same:L =0

0110 = Greater Than:N = 1

0111 = Lessor Equal:N =0

1000 = Flag Set: F = 1

1001 = Flag Clear: F =0

1010 = LOwer:L=0andZ=0

1011 = Higheror Same: L =10orZ =1
1100 = Less Than:N=0andZ =0
1101 = Greateror Equal:N=10orZ =1
1110 = (Unconditionally True)

1111 = (Unconditionally False)

cond =

short = Short Immediate value. May contain:
quick: Signed 4-bit value, in MOVQ, ADDQ,

CMPQ, ACB.

Condition Code (above), in Scond.
CPU Dedicated Register, in LPR, SPR.
0000 = US

0001 — 0111 = (Reserved)

1000 = FP

1001 = SP

1010 = SB

1011 = (Reserved)

1100 = (Reserved)

cond:
areg:

1101 = PSR
1110 = INTBASE
1111 = MOD

Options: in String Instructions

[ow o ||

T = Translated

B = Backward

U/W = 00: None
01: While Match
11: Until Match

Configuration bits, in SETCFG:

mreg: MMU Register number, in LMR, SMR.

0000 = BPRO

0001 = BPR1

0010 = (Reserved)

0011 = (Reserved)

0100 = PFO

0101 = PF1

0110 = (Reserved)

0111 = (Reserved)

1000 = SC
1001 = (Reserved)
1010 = MSR
1011 = BCNT
1100 = PTBO
1101 = PTB1
1110 = (Reserved)
1111 =EIA
7 0
Format 0
Bcond (BR)
7 0
Format 1
BSR —-0000 ENTER —-1000
RET —0001 EXIT —-1001
CXP -0010 NOP -1010
RXP —-0011 WAIT —-1011
RETT -0100 DIA -1100
RETI -0101 FLAG -1101
SAVE -0110 SvVC -1110
RESTORE -0111 BPT -1111
15 8,7 0
TTTTT T T T I'TT
’ gen l short op l 11 i
Format 2
ADDQ —-000 ACB -100
CMPQ —-001 MovQ -101
SPR -010 LPR -110
Scond -011

107

0 23 16/15 87 0
T1IIIITIHII TT T T [T T T T[T T T[T [TTTTTT
gen 11111Iil Lgenl [gen 2] op iJtt001 110
Format 3 Format 7
CXPD —-0000 ADJSP -1010 MOVM —-0000 MUL -1000
BICPSR -0010 JSR -1100 CMPM —0001 MEI -1001
JUMP -0100 CASE -1110 INSS -0010 Trap (UND) -1010
BISPSR -0110 EXTS -0011 DEI -1011
ND)on XXX1, 1000 MOVXBW —-0100 QuUO -1100
Trap (UND) on XXX1, 10 MOVZBW —0101 REM ~1101
MOVZD -0110 MOD -1110
MOVXiD -0111 DIV -1111
5 8,7 0
T Tl 1T I T |]
gen 1 gen 2 op i
23 16|15 8
U L L T | L
Format 4 I gen 1 l gen2 reg I i 10111
ADD —~0000 , SUB ~1000 Nop S
. CMP —0001 ADDR -1001
BIC -0010 AND -1010 Format 8
ADDC —-0100 SuUBC -1100
MOV —-0101 TBIT -1101 EXT -000 INDEX 100
OR -0110 XOR -1110 CVTP —-001 FFS —~101
INS -010
CHECK -0 11
MOVSU -110, reg = 001
16,15 & 7 0 MOVUS —110, reg =011
lllllll TT T[T [T T T T 1711 .
Io OODOLshon lo‘ op i oogo111ol 23 1615 817 . o
: T T 1 T T T T T TTT11
[_rgen1 gen 2 plfli 00t1t11110
Format 5
MOVS *—0000 SETCFG -0010
CMPS 0001 SKPS —0011 Format3
Trap (UND) on 1XXX, 01XX MOVif -000 ROUND -100
LFSR —001 TRUNC -101
MOVLF -010 SFSR -110
MOVFL -011 FLOOR -111
16!15 8|7 0
L IIIIIIIII[T Fllllll
gen 1 gen 2 op i 010011
Format 6
7 0
ROT —-0000 NEG —-1000 -
ASH —0001 NOT ~1001 l" trrrt ‘j°
CBIT -0010 Trap (UND) —-1010
CBITI -0011 SuBP —1011
Trap (UND) —0100 ABS -1100
LSH —-0101 COM -1101 Format 10
SBIT -0110 IBIT -1110
SBITI —-0111 ADDP 1111 Trap (UND) Always

108

23 16 {15 8|7

23 16,15 \ 8|7 0 0
[TIIIIIII IIIIIIIIII]J TTTTTTT
gen1 gen2 op (Ojff1 0111110 nnn10110
o Operation Word ID Byte
Format 11 ,
' : Format 15
ADDf —0000 DIvf —1000
MOVS —~0001 Trap (UND) —1010 (Custom Siave)
CMP} —-0010 Trap (UND) —1011
suBf -0100 MULS -1100
NEGf -0101 ABSf -1101 .
Trap (UND) —0110 Trap (UND) —1110 nnn Operation Word Format
Trap (UND) —-0111 Trap (UND) —1111
. 23 16 |15
TTTT T 711 TT1
000 gen 1 short xl op i
Format 15.0
7 L]
TT T TV 11 CATSTO —-0000 LCR - -0010
11111 °J CATSTH1 —0001 SCR —-0011
Trap (UND) on all others)
Format 12
23 16|15
Trap (UND) Always TT 11711 { TT 11
001 gen 1 gen2 l op |¢c| i
Format 15.1
7 o
ccvs —-000 ccv2 -100
LCSR —001 CcCcv1 -101
CCvs -010 ~ SCSR -110
Format 13 CCv4 -011 ‘CCVo -111
16 {15 8|
Trap (UND) Always | TTT 11T 1 TTTTT
101 gen1 gen 2 op x|c
Format 15.5
23 16 15 8;7 0
h :
oot " [omon’ Jo] "o [0 [ololas i CMOVO —~0001 Trap (UND) —1010
CCMP -0010 Trap (UND) —1011
Format 14 CCAL1 -0100 CCAL2 -1100
CMOVv2 -0101 CMOVH1 -1101
RDVAL —0000 LMR —0010 Trap (UND) —-0110" Trap (UND) -1110
WRVAL —0001 SMR —0011 Trap (UND) = —0111 Trap (UND) —1111

Trap (UND) on 01XX, 1XXX

if nnn = 010, 011, 100, 110, 111
then Trap (UND) Always

109

Trap (UND) Always

‘Format 17

Trap (UND) Always

Format 18

Trap (UND) Always

Format 19

Trap (UND) Always

. 0 Implied Immediate Encodings:
[i1o1 1110 7 0
I 1 1 1 | I T
7 6 5 r4]] n 0
| 1 | 1 | - 1 1

7 0

10001110

Register Mask, appended to SAVE, ENTER

T]] I I I |
0 r r2 3 r4 [4] 7
| 1 1 1 | | 1

Register Mask, appende& to RESTORE, EXIT

T T I T I T
offset . length — 1
1 1 | 1 | 1

Offset/Length Modifier appended to INSS, EXTS

110

L

PERIPH. CYCLE

XCTAL2 ~ PER|e
_DE CWAIT READY
T _XCTAL1 NS16201 WAITS [¢
. TCU WAITd le— | WAIT REQUESTS
WAIT2 je— [(ADDR. DECODED OR STRAPPED)
RESET — .)
RSTI WATTT fe— 7o)
PHI1 AD >
PHI2 WR >
. ADS WR
RSTO CTTL DDIN RDY DBE
r Lo
HBE
_ "HOLD
I HALDAO
A A i WIS —— - y Ny
RDY PHI PHI2 iLO HBE HOLD »|opiy FOLD RDY RST PHYSICAL
»{PHI2 ADDR.
HLDA HLDAT HLDAO VALID
DS/FT FLT PAV. STROBE
wts. —INT PFS +|PFS ADDRESS
! o NS16032 vl e »u/s (24) ADDRESS BUS
CPU — ol NS16082 LATCH/ —
ADS #1ADS MMU BUFFER (24)
DDIN »{ GDIN
STO-ST3 STO-ST3
RST/ABT [¢ ABT
ADDR/DATA AT/SPC [¢ »SPC ADDR/DATA
DDIN
ADDR/DATA (16)
MULTIPLEXED
BUS v
DATA . EN DIR
SPC
STO-ST1 MULTIPLEXED
NS16081 I\ BZS 2
FPU RST|¢ + ———>RAST MEMORY/ (16)
cikhe »lcLk PERIPHERALS g
DATA BUFFERS
STATUS

FIGURE B-1. System Connection Diagram.

TLICI5054-72

suopsabbng Bujoeau) ‘g xipuaddy

ORDERING INFORMATION

NS16032D-6 NS16032D-4
NS16032N-6 NS16032N-4

DEVELOPMENT TOOLS ORDERING INFORMATION

DB16000 Evaluation Board

I

"NSX-16 Cross Software Package (VAX/VMS)

SFW-90-A010 Cross Software Package
(STARPLEX II™)

NS-ISE-16 In-System Emulator (VAX/VMS)
SPM-90-A1632 In-System Emulator (STARPLEX I1)

Physical Dimensions inches (millimeters)

243
6182
4 4 a6 45 M a e LU] ¥ » 3 36 35 i oun n 31 30 29 28 27 % 25
0.580 0610
(1873) (15.49)
MAX
/pm NO.11DENT -
1 2 3 4 5‘ 6 7 L] L] 0 1" 12 12 AL} 15 % 17 % 19 20 il 22 23 n
0.110-0.200 O 1Y e
LI I (2.794-5.080) a3
{17.018) | 0.030-0.060
1 1 (0.762-1520) [
T 0.008-0.015 .
T el TYP, LEADS
L 02030381 vehmeas
0.035-0,055 _'1 |__u,m:n.mo _‘“‘ 0.015-0.023 0.590-0520 T0 15° MAX
10.889-1.397) - s ossios " SEATING PLANE 0.125 (1499-15.75) Sypnano
TYP . . 3.175) REF
Ceramic Dual-In-Line Package (D)
NS Package D48A
2,440
e -
gl [o7) [o5 [3 (o7 [(@) [3 31 (8 [B 3 [[[[28 (7 26 [2
0550£0005 0062 |
(13.97+0127) (1.574)
RAD
PINNO. 1
0ENT T
L0 2 3 3 5 3 2 3 0 5) T O P 7 R P R
0.060
{1.529)
0030
{0.762) S
0.600-0.620 MAX 0300005
ATy T T 1 ; (3.302 l“‘ 127
— = i =
—T 1 | !
) I
) ‘ | 86°04°
. 0.020 v
95°+5 8020
0.580 0.508) 0.050 20,015 0.10020.00 0.018.+0.003 0.050 Vs
0560 L i -—] ol 0.050
Tiazy MV MIN b | {127=0.381)]«(zsun.zsq ‘ w00 " iz P I
0.003-0.015 s
. 0.229-0.381) MiN
+0.025
062570 0%
(s 88 755%) Molded Dual-In-Line Package (N)

NS Package N48A

112

National
Semiconductor

NS16032-10
HighfPerformance Microprocessor | .

General Description Features

The NS16032 functions as a central processing unit (CPU) ® 32-bit Architecture and Implementation
in National Semiconductor's NS16000™ microprocessor g 16-MByte Uniform Addressing Space

family. It has been designed to optimally support micro-) .
processor users who need the ability to use a large - ™ Powerful Instruction Set

addressing space for large programs and/or large data - Genera'I 2-Address Capability

structures. Because large programs must realistically be — Very High Degree of Symmetry .
generated and maintained in high-level languages, the — Addressing Modes Optimized for High-Level
NS16000 architecture provides for very efficient compila- Language References

tion while remaining easy to program at the assembler ~ ® High-Speed XMOS™ Technology
level for optimizations. NS16000 architecture provides g o

for full virtual memory capability, in conjunction with Slng.Ie Sv Supp!y
with the NS16082 Memory Management Unit (MMU). High - ® 48-pin Dual-In-Line Package
performance floating-point instructions are provided

with the NS16081 Floating-Point Unit (FPU).

NS16032 CPU Block Diagram

ADD/DATA CONTROLS & STATUS

DATA
BUS INTERFACE CONTROL
INSTRUCTIONS | 16
MICROCODE ROM
AND
&BYTE CONTROL LOGIC
QUEUE
16 | INsTRUCTION
1 DECODER
w
DISPLACEMENT AND 2
IMMEDIATE EXTRACTOR e CFG REGISTER
. ;)
&
=
Z
=
o
REGISTER SET 8
0 INTBASE
0 SB WORKING
S 3 REGISTERS .
SP1
SPO
PC
RO
i V
R2 32-8IT
S ALU
R4 1
RS |
R6 N |
R7 |
MOD |
PSR :
A |
e J

TL/C/5490-1

Absolute Maximum Ratings

Temperature under bias + 0°Cto +70°C
Storage Temperature —65°C to +150°C
All input or output voltages with

respect to GND -0.5Vto+7V
Power Dissipation 1.5 Watt

Note: Absolute maximum ratings indicate limits beyond which
permanent damage may occur. Continuous operation at these
limits is not intended; operation should be limited to those condi-

tions specified under DC Electrical Characteristics.

DC Electrical Characteristics: T, = 0o +70°C, Voc = 5V +5%, GND = 0V

Symbol ' Parameter Conditions Min. Typ. | Max. Unit
Vin Logical 1 Input Voltage ' 2.0 Vcc+0.5 Vv
ViL Logical 0 Input Voltage -0.5 0.8 \
VcH Logical 1 Clock Voltage PHI1, PHI2 pins only Vec—0.4 Vec+0.5 \
VoL Logical 0 Clock Voitage PHI1, PHI2 pins only -0.5 0.3 Vv
Vour | o9l g:r‘:g:‘n;‘;gf‘g‘:n ce) PHI1, PHI2 pins only -05 0.6 v
Vou Logical 1 Output Voltage loy = —400uA 24 Vv
VoL Logical 0 Output Voltage loL=2mA 0.45 \
his AT/SPC Input Current (low) Vin=0.4V, AT/SPC in input mode 0.05 1.0 mA
I Input Load Current g:x%ﬁl\g%g;—ng uts except -20 20 uA
loer| Output Leakage Current 0.4 <Vout <Vee -20 20 pA
lcc Active Supply Current lout =0, Ta=25°C 180 300 mA

14

1 NS16032 Pin Descriptions

The following is a brief description of all NS16032 pins.
The descriptions reference portions of the Functional
Description, Section 3.

1.1 SUPPLIES
Power (V¢c): +5V Positive Supply. Sec. 3.1.

Logic Ground (GNDL): Ground reference for on-chip
logic. Sec. 3.1

Buffer Ground (GNDB): Ground reference for on-chip
drivers connected to output pins. Sec. 3.1.

Back-Bias Generator (BBG): Output of on-chip sub-
strate voltage generator. Sec. 3.1.

1.2 INPUT SIGNALS

Clocks (PHI1, PHI2): Two-phase clocking signals. Sec.
3.2

Ready (RDY): Active high. While RDY is inactive, the
CPU extends the current bus cycle to provide for a
slower memory or peripheral reference. Upon detecting
RDY active, the CPU terminates the bus cycle Sec.
3.4.1.

Hold Request (HOLD) Active low. Causes the CPU to
release the bus for DMA or multiprocessing purposes.
Sec. 3.6.

Interrupt (INT): Active low. Maskable Interrupt request.
Sec. 3.8.

;Non-Maskable Interrupt (NMI): Active low. Non-Mask-
able Interrupt request. Sec. 3.8.

Reset/Abort (RST/ABT): Active low. If held active for
one clock cycle and released, this pin causes an Abort
Command, Sec. 3.5.4. If held longer, it initiates a Reset,
Sec. 3.3.

Connection Diagram

A2 11 e U a8 [vece
Aa21[]2 47 [A23
A20[]3 46 [INT
-a9[]4 45 NI
A18 5 2 % iLo
A17E 6 43] sTo
a7 42 [] sm
AD1s (18 4 [sT2
AD14a [9 40 []sT3
AD13] 10 o
abi2[— n 38 [__] DDIN
AD11 [} 12 NS16032 37 [ADS
. AD10] 13 CPU 36 [Jus
AD9 [14 35 [T AT/SPC
ADs [15 34] RST/ABT
AD7 16 33 [os/Far
AD6 17 32] HBE
_AD5 18 31] ALDA
AD4 19 30 [] Aolp
AD3 E 20 29] BBG
AD2 [21 28 RDY
AD1 [22 27 % PHI2
ADO [23 26] PHIt
GNDL [24 25 GNDB

TLIC/5490-2

1.3 OUTPUT SIGNALS
Address Bits 16-23 (A16-A23): Active high. These are

- the most significant 8 bits of the memory address bus.

Sec. 3.4.

Address Strobe (ADS): Active low. Controls address
latches; indicates start of a bus cycle. Sec. 3.4.

Data Direction In (DDIN): Active low. Status signal
indicating direction of data transfer during a bus cycle.
Sec.34.

High Byfe Enable (HBE): Active low. Status signal
enabling transfer on the most-significant byte of the
Data Bus. Sec. 3.4; Sec. 3.4.3.

Status (ST0-ST3): Active high. Bus cycle status code,
STO least significant. Sec. 3.4.2. Encodings are:

0000 — Idle: CPU Inactive on Bus.

0001 — Idle: WAIT Instruction.

0010 — (Reserved)

0011 — Idle: Waiting for Slave.

0100 — Interrupt Acknowledge, Master.
0101 — Interrupt Acknowledge, Cascaded.
0110 — End of Interrupt, Master.

0111 — End of Interrupt, Cascaded.

1000 — Sequential Instruction Fetch.

1001 — Non-Sequential Instruction Fetch.
1010 — Data Transfer.

1011 — Read Read-Modify-Write Operand.
1100 — Read for Effective Address.

1101 — Transfer Slave Operand.

1110 — Read Slave Status Word.

1111 — Broadcast Slave ID.

Hold Acknowledge(HL A): Active low. Applied by the
CPU in response to HOLD input, indicating that the bus
has been released for DMA or multiprocessing pur-
poses. Sec. 3.6.

User/Supervisor (U/S): User or Supervisor Mode
status. Sec. 3.7. High state indicates User Mode, low
indicates Supervisor Mode. Sec. 3.7.

Interiocked Operation (iLO): Active low. Indicates that
an interlocked instruction is being executed. Sec. 3.7.

Program Flow Status (PFS): Active low. Pulse indi-
cates beginning of an instruction execution. Sec. 3.7.

1.4 INPUT-OUTPUT SIGNALS

Address/Data 0-15 (AD0-AD15): Active high. Multi-
plexed Address/Data information. Bit 0 is the least sig-
nificant bit of each. Sec. 3.4.

Address Translation/ Slave Processor Control (AT/
SPC): Active low. Used by the CPU as the data strobe
output for Slave Processor transfers; used by Slave
Processors to acknowledge completion of an instruc-
tion. Sec. 3.4.6; Sec. 3.9. Sampled on trailing edge of
Reset pulse as Address Translation Strap. Sec. 3.5.1.

Data Strobe/Float (DS/FLT): Active low. Data Strobe
output, Sec. 3.4, or Float Command input, Sec. 3.5. 3.
Pin function is selected on AT/SPCpin, Sec. 3.5.1.

115

2 Architectural Description
2.1 PROGRAMMING MODEL

The NS16000 architecture includes 16 registers on the
NS16032 CPU. :

DEDICATED
SR
[o | . PROGRAMCOUNTER | PC
| o] STATICBASE | SB
| o] FRAME POINTER | FP
[o 1 USER STACK PTR. | SP1
[o] |msnnum'sm§xmrﬂ SPO } =
[0] INTERRUPT BASE | INTBASE
PSR MoD
[smws | wooue |

GENERAL

ro | :
m[,
Rz | i
R3 L

R |

Rs |

Re |

L—_—J_—I——‘L—Jl_—l—l‘

7 |

TLICI54903

FIGURE 2-1. The General and Dedicated Registers.

2.1.1 General Purpose Registers

There are eight registers formeeting high speed general
storage requirements, such as holding temporary vari-
ables and addresses. The general purpose registers are
free for any use by the programmer. They are thirty-two
bits in Iength. If a general register is specified for an
operand that is eight or sixteen bits long, only the low
part of the register is used; the high part is not refer-
enced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the NS16032 are as-
signed specific functions.

PC: The PROGRAM COUNTER register is a pointer to
the first byte of the instruction currently being executed.
The PC is used to reference memory in the program
section. (In the NS16032 the upper eight bits of this
register are always zero.)

SP0, SP1: The SPO register points to the lowest address
of the last item stored on the INTERRUPT STACK. This
stack is normally used only by the operating system. Itis
used primarily for storing temporary data, and holding
return information for operating system subroutines and
interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on
the USER STACK. This stack is used by normal user
programs to hold temporary data and subroutine return
information.

In this document, reference is made to the SP register.
The terms “SP register” or “SP” refer to either SPO or
SP1, depending on the setting of the S bit in the PSR
register. If the S bitin the PSR is 0 then SP refers to SPO.
If the S bitin the PSR is 1 then SP refers to SP1. (In the
NS16032 the upper eight bits of these registers are
always zero).

Stacks in the NS16000 family grow downward in mem-
ory. A Push operation pre-decrements the Stack Pointer
by the operand length. A Pop operation post-increments
the Stack Pointer by the operand length.

FP: The FRAME POINTER register is used by a proce-
dure to access parameters and local variables on the
stack. The FP register is set up on procedure entry with
the ENTER instruction and restored on procedure termi-
nation with the EXIT instruction.

The frame pointer holds the address in memory occu-
pied by the old contents of the frame pointer. (In the
NS16032 the upper eight bits of this register are
always zero.)

SB: The STATIC BASE register points to the global
variables of a software module. This register is used to
support relocatable global variables for software mod-
ules. The SB register holds the lowest address in memory
occupied by the global variables of a module. (In the
NS16;032 the upper eight bits of this register are always
zero.

INTBASE: The INTERRUPT BASE register holds the
address of the dispatch table for interrupts and traps
(Sec. 3.8). The INTBASE register holds the lowest
address in memory occupied by the dispatch table. (In
the NS16032 the upper eight bits of this register are
always zero.)

MOD: The MODULE register holds the address of the
module descriptor of the currently executing software
module. The MOD register is sixteen bits long, therefore
the module table must be contained within the first 64K
bytes of memory.

PSR: The PROCESSOR STATUS REGISTER (PSR)
holds the status codes for the NS 16032 microprocessor.

The PSR is sixteen bits long, divided into two eight-bit.
halves. The low order eight bits are accessible to all
programs, but the high order eight bits are accessible
only to programs executing in Supervisor Mode.

15 817 0
DX [elsun]z]e[XIXI] T]c]

TLIC/5490-4

FIGURE 2-2. Processor Status Register.

116

C: The C bit indicates that a carry or borrow
occurred after an addition or subtraction instruc-
tion. It can be used with the ADDC and SUBC
instructions to perform multiple-precision integer
arithmetic calculations. It may have a setting of 0
(no carry or borrow) or 1 (carry or borrow).

T: The T bit causes program tracing. If this bitis a 1,
aTRC trap is executed after every mstructlon
(Sec. 3.8.5).

L: The L bitis altered by comparison instructions. Ina
comparison instruction the L bit is set to “1” if the
second operand is less than the first operand, when
both operands are interpreted as unsigned integers.
Otherwise, it is set to “0". In Floating Point compari-
sons, this bit is always cleared.

F: The F bitis ageneral condition flag, whichiis altered
by many instructions (e.g., integer arithmetic instruc-
tions use it to indicate overflow).

Z: The Z bitis altered by comparison instructions. In a
comparison instruction the Z bit is set to ‘1" if the
second operand is equal to the first operand; other-
wise itis setto “0”.

N: The N bitis altered by comparison instructions. Ina
comparison instruction the N bit is set to “1” if the
second operand is less than the first operand, when
both operands are interpreted as signed integers.
Otherwise, itis setto “0".

U: If the U bitis “1” no privileged instructions may be
executed. If the U bit is “0” then all instructions may
be executed. When U = 0the NS 16032 is said to be in
Supervisor Mode; when U = 1the NS16032 is said to
be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing
certain registers which could interfere with the operat-
ing system. For example, a User Mode program is
prevented from changing the setting of the flag used
to indicate its own privilege mode. A Supervisor Mode
program is assumed to be a trusted part of the operat-
ing system, hence it has no such restrictions.

S: The S bit specifies whether the SPO register or SP1
register is used as the stack pointer. The bit is auto-
matically cleared on interrupts and traps. It may have
a setting of 0 (use the SPO register) or 1 (use the SP1
register).

P: The P bit prevents a TRC trap from occurring more
than once for an instruction (Sec. 3.8.5). It may have a
setting of 0 (no trace pending) or 1 (trace pending).

I: If | = 1, then all interrupts will be accepted (Sec.‘

3.8). If | = 0, only the NMI interrupt is accepted. Trap
enables are not affected by this bit.

2.1.3 The Configuration Register (CFG)

Within the Control section of the NS16032 CPU is the
four-bit CFG Register, which declares the presence of
certain external devices. It is referenced by only one
instruction, SETCFG, which'is intended to be executed
only as part of system.initialization after reset. The for-
mat of the CFG Register is shown in Figure 2-3.

TLICI5490-5
FIGURE 2-3. CFG Register.

The CFG | bit declares the presence of external interrupt
vectoring circuitry (specifically, the NS16202 Interrupt
Control Unit). If the CFG | bit is set, interrupts requested
through the INT pin are “Vectored.” If it is clear, these
interrupts are “Non-Vectored.’ See Sec. 3.8.

The F, M and C bits declare the presence of the FPU,
MMU and Custom Slave Processors. If these bits are
not set, the corresponding instructions are trapped as
being undefined.

2.1.4 Memory Organization

The main memory of the NS16032 is a uniform linear
address space. Memory locations are numbered sequen-
tially starting at zero and ending at 22* — 1. The number
specifying a memory location is called an address. The
contents of each memory location is a byte consisting of
eight bits. Unless otherwise noted, diagrams in this
document show data stored in memory with the lowest
address on the right and the highest address on the left.
Also, when data is shown vertically, the lowest address
is at the top of a diagram and the highest address at the
bottom of the diagram. When bits are numbered in a
diagram, the least significant bit is given the number
zero, and is shown at the right of the diagram. Bits are
numbered in increasing significance and toward the left.

A

Byte at Address A

Two contiguous bytes are called a word. Except where
noted (Sec. 2.2.1), the least significant byte of a word is
stored at the lower address, and the most significant
byte of the word is stored at the next higher address. In
memory, the address of a word is the address of its least
significant byte, and a word may start at any address.

[15 MSB's Bl 7 LSB's OJ

A+1 A

Word at Address A

Two contiguous words are called a double word. Ex-
cept where noted (Sec. 2.2.1), the least significant
word of a double word is stored at the lowest address
and the most significant word of the double word is
stored at the address two greater. In memory, the
address of a double word is the address of its least
significant byte, and a double word may start at any
address.

[31 MSB's 24|23 16]15 8{7 LSB's 0

A+3 A+2 A+1

Double Word at Address A

Although memory is addressed as bytes, it is actually
organized as words. Therefore, words and double
words that are aligned to start at even addresses (mul-
tiples of two) are accessed more quickly than words
and double words that are not so aligned.

117

2.1.5 Dedicated Tables

Two of the NS16032 dedicated registers (MOD and
INTBASE) serve as pointers to dedicated tables in
memory.

The INTBASE register points to the Interrupt Dis‘patch
and Cascade tables. These are described in Sec. 3.8

The MOD register contains a pointer into the Module
Table, whose entries are called Module Descriptors. A
Module Descriptor contains four pointers, three of which
are used by the NS16032. At any point in time, the MOD
register contains the address of the Module Descriptor
for the currently running module. It is automatically up-
dated by the Call External Procedure instructions (CXP
and CXPD). .

The format of a Module Descriptor is shown in Figure
2-4. The Static Base entry contains the address of
static data assigned to the running module. It is
loaded into the CPU Static Base register by the CXP
and CXPD instructions. The Program Base entry con-
tains the address of the first byte of instruction code in
the module. Since a module may have multiple entry
points, the Program Base pointer serves only as a ref-
erence to find them.

31

STATIC BASE

LINK TABLE ADDRESS

PROGRAM BASE

RESERVED

~ e

TLIC/5490-6

FIGURE 2-4. Module Descriptor Format.

The Link Table Address points to the Link Table for the
currently running module. The Link Table provides the
information needed for:

1) Sharing variables between modules. Such variables
are accessed through the Link Table via the External
addressing mode.

2) Transferring control from one module to another..
This is done via the Call External Procedure (CXP)
instruction.

The format of a Link Table is given in Figure 2-5. A Link
Table Entry for an external variable contains the 32-bit
address of that variable. An‘entry for an external proce-
dure contains two 16-bit fields: Module and Offset. The
Module field contains the new MOD register contents for
the module being entered. The Offset field is an unsigned
number giving the position of the entry point relative to
the new module’s Program Base pointer.

For further details of the functions of these tables, éee
the NS16000 Programmer’s Manual.

—_— - _
ENTRY |31 0

0 ABSOLUTE ADDRESS (VARIABLE)

"l
1 ABSOLUTE ADDRESS (VARIABLE)
2 OFFSET MODULE (PROCEDURE)
. i
TLICI5490-7

FIGURE 2-5. A Sample Link Table.

2.2 INSTRUCTION SET
2.2.1 General Instruction Format

Figure 2-6 shows the general format of an NS16000
instruction. The Basic Instruction is one to three bytes
iong and contains the Opcode and up to two 5-bit General
Addressing Mode (“Gen”) fields. Following the Basic
Instruction field is a set of optional extensions, which
may appear depending on. the instruction and the ad-
dressing modes selected.

OPTIONAL BASIC
EXTENSIONS . INSTRUCTION
4 N R

1
mspz'olsm mspzlmsm !
1

IMPLIED INDEX INDEX GEN | GEN

IMMEDIATE DISP DISP BYTE ADDR | - ADDR OPCODE

OPERAND(S) ‘ BYTE "'OADE i MOBDE
MM IMM H
I

|

TLIC/5490-8

FIGURE 2-6. General Instruction Format.

118

Index Bytes appear when either or both Gen fields spec-
ify Scaled Index. In this case, the Gen field specifies
only the Scale Factor (1, 2, 4 or 8), and the Index Byte
specifies which General Purpose Register to use as the
index, and which addressing mode calculation to per-
- form before indexing. See Figure 2-7.

0 SIGNED DISPLACEMENT

BYTE DISPLACEMENT: RANGE —64 TO +63

GEN. ADDR. MODE REG. NO.

et
Ve
! o g

TLCI54900

FIGURE 2-7. Index Byte Format.

Following
(addressing constants) or immediate values associated

Index Bytes come any displacements -

with the selected addressing modes. Each Disp/Imm -

field may contain one or two displacements, or one
immediate value. The size of a Displacement field is
encoded within the top bits of that field, as shown in
Figure 2-8, with the remaining bits interpreted as a signed
(two's complement) value. The size of an immediate
value is determined from the Opcode field. Both Dis-
placement and Immediate fields are stored most-signi-
ficant byte first. Note that this is backward from the usual
memory representation of data (Sec. 2.1.4).

Some instructions require additional, “implied” immedi-
ates and/or displacements, apart from those associated
with addressing modes. Any such extensions appear at
the end of the instruction, in the order that they appear
within the list of operands in the instruction definition
(Sec.2.2.3).

2.2.2 Addressing Modes

The NS16032 CPU generally accesses an operand by
calculating its Effective Address based on information
available when the operand is to be accessed. The
method to be used in performing this calculation is spe-
cified by the programmer as an “addressing mode.’

Addressing modes in the NS16032 are designed to
optimally support high-level language accesses to vari-
ables. In nearly all cases, a variable access requires
only one addressing mode, within the instruction that
acts upon that variable. Extraneous data movement is
therefore minimized.

NS 16032 Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight
General Purpose Registers. in certain Slave Processor
instructions, an auxiliary set of eight registers may be
referenced instead.

Register Relative: A General Purpose Register con-
tains an address to which is added a displacement value
from the instruction, yielding the Effective Address of
the operand in memory.

Memory Space: Identical to Register Relative above,
except that the register used is one of the dedicated
registers PC, SP, SB or FP. These registers point to data
areas generally needed by high-level languages.

g

WORD DISPLACEMENT: RANGE —8192 TO +8191

DOUBLE WORD DISPLACEMENT RANGE (ENTIRE ADDRESSING SPACE)
TLICI5490-10

FIGURE 2-8. Displacement Encodings.

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the
Effective Address of the operand.

Immediate: The operand is encoded within the instruc-
tion. This addressing mode is not allowed if the operand
is to be written. ‘

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry
of the current Link Table. To this pointer value is added a
displacement, yielding the Effective Address of the:
operand.

Top of Stack: The currently-selected Stack Pointer
(SPO or SP1) specifies the location of the operand. The
operand is pushed or popped, depending on whether it
is written or read.

Scaled Index: Although encoded as an addressing
mode, Scaled Indexing is an option on any addressing
mode except Immediate or another Scaled Index. It has
the effect of calculating an Effective Address, then multi-
plying any General Purpose Register by 1, 2, 4 or 8and
adding itinto the total, yielding the final Effective Address
of the operand.

Table 2-1 is a brief summary of the addressing modes.
For a complete description of their actions, see the
Programmer’s Manual.

119

ENCODING

Register
00000
00001
00010
00011
00100
00101
00110
00111

Register Relative
01000
01001
01010
01011
01100
01101
01110
01111

Memory Relative
10000
10001
10010

Reserved
10011

Immediate
10100

Absolute
10101

External
10110

Top of Stack
10111

Memory Space
11000
11001
11010
11011

Scaled Index
11100
11101
11110
11111

TABLE 2-1.

NS;16032 Addressing Modes

MODE

Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Register 0 relative
Register 1 relative
Register 2 relative
Register 3 relative’
Register 4 relative
Register 5 relative
Register 6 relative

" Register 7 relative

Framé memory relative
Stack memory relative
Static memory relative

(Reserved for Future Use)

" Immediate

Absolute

" External

Top of stack

Frame memory
Stack memory
Static memory
Program memory

Index, bytes

Index, words

Index, double words
Index, quad words

ASSEMBLER SYNTAX

RO or FO
R1orF1
R2 or F2
R3or F3
R4 or F4
R5or F5
R6orF6 .
R7or F7

disp(RO)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(disp1(FP))
disp2(disp1(SP))
disp2(disp1(SB))

value

@disp

EXT (disp1)+ disp2

TOS

disp(FP)
disp(SP)
disp(SB)
* +disp.

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q)

EFFECTIVE ADDRESS

None: Operand is in the specified
register.

Disp + Register.

Disp2 + Pointer; Pointer found at
address Disp1 + Register. “SP”
is either SPO or SP1, as selected
in PSR.

None: Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included. :

Disp + Register; “SP" is either
SPO0 or SP1, as selected in PSR.

EA (mode) +Rn.

EA (mode)+2 x Rn.
EA (mode) + 4 x Rn.
EA (mode) + 8 x Rn.

[Te L]

“Mode” and “n” are contained
within the Index Byte.

EA (mode) denotes the effective
address generated using mode.

120

2.2.3 Instruction Set Summary

Table 2-2 presents a brief description of the NS16032
instruction set. The Format column refers to the
Instruction Format tables (Appendix A). The Instruc-
tion column gives the instruction as coded in assem-
bly language, and the Description column provides a
short description of the function provided by that
instruction. Further details of the exact operations per-
formed by each instruction may be found in the Pro-
grammer’s Manual.

Notations:

i = Integer length suffix: B = Byte
W = Word
D = Double Word

f = Floating Point length suffix: F = Standard Floating
L = Long Floating

gen = General operand. Any addressing mode can be
specified. .

short = A 4-bit value encoded within the Basic
Instruction (see Appendix A for encodings).

imm = Implied immediate operand. An 8-bit value
appended after any addressing extensions.

disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal.

reg = Any General Purpose Register: R0-R7.

areg = Any Dedicated/Address Register: SP, SB, FP,
MOD, INTBASE, PSR, US (bottom 8 PSR bits).

mreg
Register.

Any Memory Management Status/Control

creg = A Custom Slave Processor Register (Implemen-
tation Dependent).

cond = Any condition code, encoded as a 4-bit field
within the Basic Instruction (see Appendix A for
encodings).

121

MOVES
Format Operation

MOVi
MOVQi
MOVMi
MovzBw
MOVzZiD
MOVXBW
MOVXiD
ADDR

ANNNNNNDD

INTEGER ARITHMETIC
Format Operation

ADDi
ADDQi
ADDCi
SUBI
SUBCi
NEGi
ABSi
MULI
QUOI
REMi
DIVi
MODi
MEIi
DEli

NNNNNNNOODADRANS

PACKED DECIMAL (BCD)
Format Operation

6 ADDRPI
6 SUBPI

INTEGER COMPARISON
Format Operation

4 CMPi
2 CMPQi
7 CMPMi

LOGICAL AND BOOLEAN
Format Operation

ANDi
ORi
BICi
XORi
COMi
NOTi
Scondi

NODDARAADN

TABLE 2-2.

NS16032 Instruction Set Summary

Operands

gen,gen
short,gen
gen,gen,disp
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

Operands

gen,gen
short,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

Operands

gen,gen
gen,gen

Operands

gen,gen
short,gen
gen,gen,disp

Operands

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

Description

Move a value.

Extend and move a 4-bit constant.
Move Multiple: disp bytes.

Move with zero extension.

Move with zero extension.

Move with sign extension.

Move with sign extension.

Move Effective Address.

Description

Add.

Add 4-bit constant.

Add with carry.

Subtract.

Subtract with carry (borrow).
Negate (2's complement).
Take absolute value.

Multiply.

Divide, rounding toward zero.
Remainder from QUO.
Divide, rounding down.
Remainder from DIV (Modulus).
Multiply to Extended Integer.
Divide Extended Integer.

Description

Add Packed.
Subtract Packed.

Description

Compare.
Compare to 4-bit constant.
Compare Multiple: disp bytes.

Description

Logical AND.

Logical OR.

Clear selected bits.

Logical Exclusive OR.

Complement all bits.

Boolean complement: LSB only.

Save condition code (cond) as a Boolean variable of size i.

122

SHIFTS

Format Operation Operands Description
6 LSHi gen,gen Logical Shift, left or right.
6 ASHi gen,gen Arithmetic Shift, left or right.
6 ROTi gen,gen Rotate, left or right.
‘BITS
Format Operation Operands Description
4 TBITi gen,gen Test bit.
6 SBITi' gen,gen Test and set bit.
6 SBITIi gen,gen Test and set bit, interlocked.
6 CBITi. gen,gen Test and clear bit.
6 _CBITIl gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit.
BIT FIELDS

Bit fields are values in memory which are not aligned to byte boundaries. Examples are PACKED arrays and records used
. in Pascal. “Extract” instructions read and align a bit field. “Insert” instructions write a bit field from an aligned source.

Format Operation Operands Description
8 EXTi reg,gen,gen,disp Extract bit field(array oriented).
8 INSI reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.
ARRAYS]
Format Operation Operands Description
8 CHECKI reg,gen,gen - Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.
STRINGS
String instructions_ assign specific functions to the Gen- Options on all string instructions are:
eral Purpose Registers: B (Backward): Decrement string pointers after each
R4 — Comparison Value ' step rather than incrementing.
R3 - Translation Table Pointer U (Until match): End instruction if String 1 entry
R2 - String 2 Pointer _ matchesR4.
R1 - String 1 Pointer W (While match): End instruction if String 1 entry does
RO - Limit Count not match R4.

All string instructions end when RO decrements to zero.

Format Operation Operands Description
5 MOVSi options Move String 1 to String 2.
MOVST options Move string, translating bytes.
5 CMPSi options Compare String 1 to String 2.
CMPST options Compare, translating String 1 bytes.
5 SKPSi options Skip over String 1 entries.
SKPST options Skip, translating bytes for Until/While.

123

JUMPS AND LINKAGE

Operands

gen
disp
disp
gen
short,gen,disp
gen
disp
disp
gen

[reg list].disp
[reg list]
disp

disp

disp

Operands

[reg list]
[reg list]
areg,gen
areg,gen
gen

gen

gen
[option list]

Operands

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gengen -

gen
gen

Operands

mreg,gen
mreg,gen
gen’

gen
gen,gen

Format Operation
3 JUMP
0 BR
0 Bcond
3 CASEi
2 ACBi
3 JSR
1 BSR
1 CXP
3 CXPD
1 SvC
1 FLAG
1 BPT
1 ENTER
1 EXIT
1 RET
1 RXP
1 ‘RETT
1 RETI
CPU REGISTER MANIPULATION
Format Operation
1 SAVE
1 RESTORE
2 LPRi
2 SPRi
3 ADJSPI
3 BISPSRi
3 BICPSRI
5 SETCFG
FLOATING POINT
Format Operation
11 MOVf
9 MOVLF
9 MOVFL
9 MOVif
9 ROUNDfi
9 TRUNCHi
9 FLOOR(i
11 ADDf
11 SuBf
11 MULf
11 DIvf
11 CMPf
11 NEGf
11 ABSf
9 LFSR
9 SFSR
MEMORY MANAGEMENT
Format Operation
14 LMR
14 SMR
14 RDVAL
14 WRVAL
8 MOVSUi
8 MOVUSI

gen,gen

Description

Jump.

Branch (PC Relative).

Conditional branch.

Multiway branch.

Add 4-bit constant and branch if non-zero.

Jump to subroutine.

Branch to subroutine.

Call external procedure.

Call external procedure using descriptor.

Supervisor Call.

Flag Trap.

Breakpoint Trap.

Save registers and allocate stack frame (Enter Procedure).
Restore registers and reclaim stack frame (Exit Procedure).
Return from subroutine.

Return from external procedure call.

Return from trap. (Privileged)

Return from interrupt. (Privileged)

Description

Save General Purpose Registers.

Restore General Purpose Registers.

Load Dedicated Register. (Privileged if PSR or INTBASE)
Store Dedicated Register. (Privileged if PSR or INTBASE)
Adjust Stack Pointer.

Set selected bits in PSR. (Privileged if not Byte length)
Clear selected bits in PSR. (Privileged if not Byte length)
Set Configuration Register. (Privileged)

Description

Move a Floating Point value.

Move and shorten a Long value to Standard.
Move and lengthen a Standard value to Long.
Convert any integer to Standard or Long Floating.
Convert to integer by rounding.

Convert to integer by truncating, toward zero.
Convert to largest integer less than or equal to value.
Add. »

Subtract.

Multiply.

Divide.

Compare.

Negate.

Take absolute value.

Load FSR.
Store FSR.

Description

Load Memory Management Register. (Privileged)
Store Memory Management Register. (Privileged)
Validate address for reading. (Privileged)

Validate address for writing. (Privileged)

Move a value from Supervisor

Space to User Space. (Privileged)

Move a value from User Space

to Supervisor Space. (Privileged)

124

MISCELLANEOUS

Format Operation
1 NOP
1 WAIT
1 DIA
CUSTOM SLAVE
Format Operation
15.5 CCALOc
15.5 CCAL1c
15.5 CCAL2c
15.5 CCAL3c
15.5 CMOVOc
15.5 " CMOV1c
155 CMOV2¢
15.5 CCMPc
151 CCVOci
15.1 CCV1ci
15.1 CCV2ci
15.1 CCV3ic
151 CCv4DQ
15.1 CCvsQD
15.1 LCSR
15.1 SCSR
15.0 CATSTO
15.0 CATST1
15.0 LCR
15.0 SCR

Operands

Operands

gen,gen
gen,gen
gen,gen
gen,gen
gengen
gen,gen
gen,gen

gen,gen

gen,gen
gen,gen
gen,gen
gen,gen
gengen
gen,gen

gen
gen

gen

gen
creg,gen
creg,gen

Description

No Operation.

Wait for interrupt.

Diagnose. Single-byte “Branch to Self” for hardware
breakpointing. Not for use in programming.

Description
Custom Calculate.

Custom Move.

Custom Compare.
Custom Convert.

Load Custom Status Register.

. Store Custom Status Register.

Custom Address/Test. (Privileged)

(Privileged)

Load Custom Register. (Privileged)
Store Custom Register. (Privileged)

125

3 Functional Description
3.1 POWER AND GROUNDING

The NS16032 requires a single 5-volt power supply,
applied on pin 48 (Vcc). See DC Specification Section.

Grounding connections are made on two pins. Logic
Ground (GNDL, pin 24) is the common pin for on-chip
logic, and Buffer Ground (GNDB, pin 25) is the common
pin for the output drivers. For optimal noise immunity, it
is recommended that GNDL be attached through a
single conductor directly to GNDB, and that all other
grounding connections be made only to GNDB, as
shown below (Figure 3-1).

In addition to V¢ and Ground, the NS16032 CPU uses
an internally-generated negative voltage. Itis necessary
to filter this voltage externally by attaching a pair of
capacitors (Fig. 3-1) from the BBG pin to ground.
Recommended values for these are:

C,: 1 uF, Tantalum.

C,: 1000 pF, low inductance. This should be either a
disc or monolithic ceramic capacitor.

O +5V

OTHER GROUND
CONNECTIONS

TLIC/S430-11
FIGURE 3-1. Recommended Supply Connections.

3.2 CLOCKING

The NS 16032 inputs clocking signals from the NS 16201
Timing Control Unit (TCU), which presents two non-
overlapping phases of a single clock frequency. These
phases are called PHI1 (pin 26) and PHI2 (pin 27). Their
relationship to each other is shown in Figure 3-2.

Each positive edge of PHI1 defines a transition in the
timing state (“T-State") of the CPU. One T-State repre-
sents the execution of one microinstruction within the
CPU, and/or one step of an external bus transfer. See
the AC Specifications (Sec. 4) for complete specifica-
tions of PHI1 and PHI2.

!<‘ONE T-STATE =~

-
-_ I

FIGURE 3-2. Clock Timing Relationships.

NON-OVERLAPPING

TL/CI5490-12

As the TCU presents signals with very fast transitions, it
is recommended that the conductors carrying PHI1 and
PHI2 be kept as short as possible, and that they not be
connected anywhere except from the TCU to the CPU
and, if present, the MMU. A TTL Clock signal (CTTL) is
provided by the TCU for all other clocking.

3.3 RESETTING

The RST/ABT pin serves both as a Reset for on-chip
logic and as the Abort input for Memory-Managed sys-
tems. For its use as the Abort Command, see Sec.
3.54.

The CPU may be reset at any time by puliing the RST/
ABT pin low for at least 64 clock cycles. Upon detecting
a reset, the CPU terminates instruction processing, re-
sets its internal logic, and clears the Program Counter
(PC) and Processor Status Register (PSR) to all zeroes.

On application of power, RST/ABT must be held low for
at least 50 usec after V. is stable. This is to ensure that
all on-chip voltages are completely stable before opera-
tion. Whenever a Reset is applied, it must also remain

PHI 1

=64 CLOCK

[1
L

LIUL

]

CYCLES
{ ;_._/
7

250 usec

TLCI5490-13

FIGURE 3-3. Power-on Reset Requirements.

active for not less than 64 clock cycles. The trailing
(positive-going) edge must occur while PHI1-is high,
and no later than 10 ns before the PHI1 trailing edge.
See Figures 3-3 and 3-4. ‘

The NS16201 Timing Control Unit (TCU) provides cir-
cuitry to meet the Reset requirements of the NS16032
CPU. Figure 3-5a shows the recommended connections
for a. non-Memory-Managed system. Figure 3-5b shows
the connections for a Memory-Managed system.

RST/ABT E§§§§

PHI1 I i | I | | I I I l
‘ ‘~'—~2646LOCK~~———-> :
CYCLES

(4
v

TL/C/5490-14

FIGURE 3-4. General Reset Timing.

v
cc NS16201 NS16032
[o] TCU cPU
e a $
i | <
| [N\ JEE —
: RESET > D; : T . : RSTI ASTO RST/ABT
| . l [4
! ; .| \
U Jd h |
EXTERNAL RESET S
(OPTIONAL) = = .| = > 50 usec
1
L—_J ;
RESET SWITCH SYSTEM RESET
(OPTIONAL)
‘
N TLACI543015
FIGURE 3-5a. Recommended Reset Connections,
Non-Memory-Managed System.
7
ce NS16201 NS16082 NS16032
o TCU MMU cPU
| bbbttt] ::
| ! <
1 1 r=——=" \ —_—
| RESET > % : : RSTI RSTO RST ABT RST/ABT
! Yo l 1
1 i .' ' A
g M MU U d i 1
EXTERNAL RESET ! ! .
(OPTIONAL) : = = 250 ysec -
| I |
RESET SWITCH
(OPTIONAL) TUCI5490-16

FIGURE 3-5b. Recommended ﬁeset Connections,
Memory-Managed System.

3.4 BUSCYCLES

The NS16032 CPU has a strap option which defines the
Bus Timing Mode as' either With or Without Address
Translation. This section describes only bus cycles under
the No Address Translation option. For details of the use
of the strap and of bus cycles with address translation,
see Sec. 3.5.

The CPU will perform a bus cycle for one of the following
reasons:

1) To write or read data, to or frdm memory or a peri-
pheral interface deyice. Peripheral input and output
are memory-mapped in the NS16000 family.

2) To fetch instructions into the eight-byte instruction
queue. This happens whenever the bus would other-
wise be idle and the queue is not already full.

3) To acknowledge an interrupt and allow external cir-
cuitry to provide a vector number, or to acknowledge
completion of an interrupt service routine.

4) Totransferinformation to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are
identical. For timing specifications, see Sec. 4. The
only external difference between them is the four-bit
code placed on the Bus Status pins (ST0-ST3). Slave
Processor cycles differ in that separate control signals
are applied (Sec. 3.4.6). :

The sequence of events in.a non-Slave bus cycle is
shown below in Figure 3-7 for a Read cycle and Figure
3-8 for a Write cycle. The cases shown assume that the
selected memory or interface device is capable of com-
municating with the CPU at full speed. If it is not, then
cycle extension may be requested through the RDY line
(Sec.3.4.1).

127

A full-speed bus cycle is performed in four cycles of the
PHI1 clock signal, labeled T1 through T4. Clock cycles
not associated with a bus cycle are designated Ti (for
“Idle”).

During T1, the CPU applies an address on pins ADO-
AD15 and A16-A23. It also provides a low-going pulse
on the ADS pin, which serves the dual purpose of inform-
ing external circuitry that a bus cycle is starting and of
providing control to an external latch for demultiplexing
Address bits 0-15 from the AD0-AD15 pins. See Figure
3-6. During this time also the status signals DDIN, indi-
cating the direction of the transfer, and HBE, indicating
whether the high byte (AD8-AD15) is to be referenced,
become valid.

During T2 the CPU switches the Data Bus, AD0-AD15,
to either accept or present data. Note that the signals
A16-A23 remain valid, and need not be latched. It also
starts the data strobe (DS), signalling the beginning of
the data transfer. Associated signals from the NS16201
Timing Control Unit are also activated at this time: RD
(Read Strobe) or WR (Write Strobe), TSO (Timing State
Output, indicating that T2 has been reached) and DBE
(Data Buffer Enable).

‘The T3 state provides for access time requirements,

and it occurs at least once in a bus cycle. At the begin-
ning of T3, on the rising edge of the PHI1 clock, the RDY
(Ready) line is sampled to determine whether the bus
cycle will be extended (Sec. 3.4.1).

If the CPU is performing a Read cycle, the Data Bus
(AD0-AD15) is sampled at the falling edge of PHI2 of the'
last T3 state. See Timing Specification, Sec. 4. Data
must, however, be held at least until the beginning of T4.
DS and RD are guaranteed not to go inactive before this
point, so the rising edge of either of them may safely be
used to disable the device providing the input data.

The T4 state finishes the bus cycle At the beginning of
T4, the DS, RD or WR, and TSO signals goinactive, and
at the rising edge of PHI2, DBE goes inactive, having
provided for necessary data hold times. Addresses (and
Data during Write cycles) remain valid from the CPU
throughout T4. Note that the Bus Status lines (ST0-ST3)
change at the beginning of T4, antici ipating the following
bus cycle (if any).

DDIN
. DATA
ADO-AD15 BUFFER h
NS16032
HBE
HBE
ADS
AO(LBE)
P r———— e
A16-A23
PHI1 PHI2 DS/FLT
Ds
PHI1 PHI2 ADS DDIN DBE B
RD
- WR
NS16201 W
— 750
TS0 -

TLIC/5490-17

FIGURE 3-6. Bus Connections.

128

PHI 1

PHI 2

A16-A23

ADO-AD15

ADS

S$T0-ST3

DDIN

HBE

al

RDY

TSO

NN

INI

INI

[]]

L

T4ORTiI | m

1

NS16032 CPU BUS SIGNALS

| =

3

l T3

|

T4

-

| T1ORTI ! ‘

[

[]

-

|
LT

NN

| 2022

ADDRESS VALID

XNEXT ADDR

s

DRESS

_4@'

S S,

DATA

W Koo

I -< NEXT ADDR

21

NN/

STA

TUS VALID

NEXT STATUS

YN

[]

7

VALID

\ e

[/

k\\

V%

7

Y

\

7.

NN

NS16201 TCU BUS SIGNALS|

\k\\

FIGURE 3-7. Read Cycle Timing.

TUC/5490-18

129

PHI1

PHI 2

A16-A23

ADO-AD15

ADS

STO-ST3

DDIN

HBE

RDY

DBE

| T4O0RTi l T l T2

[[

b

NS16032 CPU BUS SIGNALS

-

| T3 } T4 | TIORTi |

T T T

1

[7,

| W
¥ 2/ Voor |

Y /78

/

\ /

FIGURE 3-8. Write Cycle Timing.

Y2 /R
Y

7 a

[/ \ /

7

130

3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for
any speed of memory or peripheral device, the NS16032
provides for extension of a bus cycle. Any type of bus
cycle except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8, note that during T3 all bus control
signals from the CPU and TCU are flat. Therefore, a bus
cycle can be cleanly extended by causing the T3 state to
be repeated. This is the purpose of the RDY (Ready)
pin.

At the end of T2 on the falling edge of PHI 2, the RDY
line is sampled by the CPU. If RDY is high, the next T-
states will be T3 and then T4, ending the bus cycle. If it
is sampled low, then another T3 state will be inserted
after the next T-state and the RDY line will again be
sampled on the falling edge of PHI 2. Each additional
T3 state after the first is referred to as a “wait state”.
See Figure 3-9.

| =

H

PHI1

The RDY pin is driven by the NS16201 Timing Control
Unit, which applies WAIT States to the CPU as requested
on three sets of pins:

1) CWAIT (Continuous WAIT), which holds the CPU in
WAIT states until removed.

2) WAIT1, WAIT2, WAIT4, WAIT8 (Collectively WAITn),
which may be given a four-bit binary value requesting
a specific number of WAIT States from 0 to 15.

3) PER (Peripheral), which inserts five additional WAIT
states and causes the TCU to reshape the RD and
WR strobes. This provides the setup and hold times
required by most MOS peripheral interface devices.

Combinations of these various WAIT requests are both
legal and useful. For details on their use, see the
NS16201 Data Sheet.

Figure 3-10 illustrates a typical Read cycle, with two
WAIT states requested through the TCU WAITn pins.

T.:! I (w?m |

S

W

B

PHI 2

[1

RN

RDY

AN

/1

NEXT
STATE:
T3

FIGURE 3-9.

3.4.2 Bus Status

The NS16032 CPU presents four bits of Bus Status
information on pins STO-ST3. The various combinations
on these pins indicate why the CPU is performing a bus
cycle, or, if it is idle on the bus, then why it is idle.

Referring to Figures 3-7 and 3-8, note that Bus Status
leads the corresponding Bus Cycle, going valid one
clock cycle before T1, and changing to the next state at
T4. This allows the system designer to fully decode the
Bus Status and, if desired, latch the decoded signals
before ADS initiates the Bus Cycle.

The Bus Status pins are interpreted as a four-bit value,
with STO the least significant bit. Their values decode as
follows:

0000 - The bus is idle because the CPU does not yet
need access to the bus.

0001 - The bus is idle because the CPU is executing
the WAIT instruction.

0010 - (Reserved for future use.)

0011 — The bus is idle because the CPU is waiting for
a Slave Processor to complete an instruction.

0100 - Interrupt Acknowledge, Master.
The CPU is performing a Read cycle. To
acknowledge _receipt of a Non-Maskable
Interrupt (on NMI) it will read from address
FFFF00,s, but will ignore any data provided.

NEXT
STATE:
T4

RDY Pin Timing.

TL/C/5490-20

To acknowledge receipt of a Maskable
Interrupt (on INT) it will read from address
FFFEOQO,, expecting a vector number to be
provided from the Master NS16202 Interrupt
Control Unit. If the vectoring mode selected by
the last SETCFG instruction was Non-Vec-
tored, then the CPU will ignore the value it has
read and will use a default vector instead,
having assumed that no NS16202 is present.
See Sec. 3.4.5.

0101 - Interrupt Acknowledge, Cascaded.
The CPU is reading a vector number from a
Cascaded NS16202 Interrupt Control Unit.
The address provided is the address of the
NS 16202 Hardware Vector register. See Sec.
3.4.5.

0110 - End of Interrupt, Master.
The CPU is performing a Read cycle to indi-
cate that it is executing a Return from Interrupt
(RET]) instruction. See Sec. 3.4.5.

0111 - End of Interrupt, Cascaded.
The CPU is reading from a Cascaded Interrupt
Control Unit to indicate that it is returning
(through RETI) from an interrupt service rou-
tine requested by that unit. See Sec. 3.4.5.

1000 - Sequential Instruction Fetch.
The CPU is reading the next sequential word
from the instruction stream into the Instruction

131

PREV. CYCLE
’n ORTi | T

PHI1

~ PHI2 [

NS16032 CPU BUS SIGNALS

NEXT CYCLE

| 7 | ®](\»Em](wT,?m' T4 lT10RTI|

LT

-

11

Il

LT

A16-A23 [

ADO-AD15 (: /

ADS [
STO-ST3 [Z

DOIN [/

= [Z

/// /A ADDRESS VALID ' NEXT ADDR
///j 3233)"%7// /) /// A%DATAIN -——4 {nExT ADDR
% STATUSVALID | ° NEXT STATUS
22 |
///A VALID NEXT

=[

U/

\

r

i

|

NS16201 TCU CYCLE EXTENSION SIGNALS

m[é

]

Y

Y

Y,

FEFT[A

L,

U

X

7

7

0

)

{

WAITn [Z

Y,

1101

Y,

A,

.

.

|

RDY [

{TCUTOCPU)

7

|

e

B[_

\

NS16201 TCU BUS SIGNALS

w []

[

ﬁ[

NOTE:

FIGURE 3-10. Extended Cycle Example.

TUC/5490-21

Arrows on CWAIT, P_ER, WAITn indicate points at which the TCU samples. Arrows on AD0O-AD15 and
RDY indicate points at whic_h the CPU samples.

132

Queue. It will do so whenever the bus would
otherwise be idle and the queue is not already
full.

1001 - Non-Sequential Instruction Fetch.
The CPU is performing the first fetch of instruc-
tion. code after the Instruction Queue is purged.
This will occur as a result of any jump or branch,
or any interrupt or trap, or execution of certain
instructions.

1010 - Data Transfer.
The CPU is reading or writing an operand of
an instruction.

1011 — Read RMW Operand. ’
The CPU is reading an operand which will
subsequently be modified and rewritten. If
memory protection circuitry would not allow
the following Write cycle, it must abort this
cycle.

1100 - Read for Effective Address Calculation.
The CPU is reading information from memory
in order to determine the Effective Address of
an operand. This will occur whenever an
instruction uses the Memory Relative or
External addressing mode.

1101 - Transfer Slave Processor Operand.
The CPU is either transferring an instruction
operand to or from a Slave Processor, or it is
issuing the Operation Word of a Slave Pro-
cessor instruction. See Sec. 3.9.1.

1110 — Read Slave Processor Status.

The CPU is reading a Status Word from a
Slave Processor. This occurs after the Slave
Processor has signalled completion of an in-
struction. The transferred word tells the CPU
whether a trap should be taken, and in some
instructions it presents new values for the
CPU Processor Status Register bits N, Z, L or
F. See Sec.3.9.1.

1111 - Broadcast Slave ID. .
The CPU is initiating the execution of a Slave
Processor instruction. The ID Byte (first byte
of the instruction) is sent to all Slave Proces-
sors, one of which will recognize it. From this
point the CPU is communicating with only one
Slave Processor. See Sec. 3.9.1.

3.4.3 Data Access Sequences

The 24-bit address provided by the NS16032 is a byte
address; that is, it uniquely identifies one of up to
16,777,216 eight-bit memory locations. An important
feature of the NS16032 is that the presence of a 16-bit
data bus imposes no restrictions on data alignment; any
data item, regardless of size, may be placed starting at
any memory address. The NS16032 provides a special
control signal, High Byte Enable (HBE), which facilitates
individual byte addressing on a 16-bit bus.

Memory is intended to be organized as two eight-bit
banks, each bank receiving the word address (A1-A23)
in parallel. One bank, connected to Data Bus pins ADO-
AD?7, is enabled to respond to even byte addresses;i.e.,
when the least significant address bit (A0Q) is low. The
other bank, connected to Data Bus pins AD8-AD15, is
enabled when HBE is low. See Figure 3-11.

HBE AO(LBE)
BBITS BBITS

A1-A23

Y
\C
0
Y

2l
kY
1

LSBYTE

16 BITS DATA

| TUCI5490-22
FIGURE 3-11. Memory Interface.

Any bus cycle falls into one of three categories: Even
Byte Access, Odd Byte Access, and Even Word Access.
All accesses to any data type are made up of sequences
of these cycles. Table 3-1 gives the states of A0 and
HBE for each category.

Table 3-1.
Bus Cycle Categories
Category BE A0
Even Byte 1 0
Odd Byte 0 1
Even Word 0 0

Accesses of operands requiring more than one bus
cycle are performed sequentially, with no idle T-States
separating them. The number of bus cycles required to
transfer an operand depends on its size and its align-
ment (i.e., whether it starts on an even byte address or
an odd byte address). Table 3-2 lists the bus cycle
performed for each situation. For the timing of A0 and
HBE see Sec. 3.4.

133

Table 3.2

Access Sequences
Cycle Type Address HBE A0 High Bus Low Bus
A. Odd Word Access Sequence
. [BviE1 | “BYTEO |
1 Qdd Byte A o 1 Byte 0 Don't Care
2 Even Byte A+1 1 0 Don'tCare Byte 1
B. Even Double-Word Access Sequence
[evies | ez | Bver | evieo | -
1 Even Word A 0 0 Bytet Byte O
2 Even Word A+2 0 0 Byte3 Byte 2

C. Odd Double-Word Access Sequence

IBVTE3 I BYTE2 l BYTE1 I

BYTE ;l

1 Qdd Byte A o 0 1 ByteO Don't Care
2 Even Word A+1 0 0 Byte2 Byte 1
3 Even Byte A+3 1 0 Don'tCare Byte 3
) D. Even Quad-Word Access Sequence
| BYTE7 l BYTE6 1 BYTES 1 BYTE4, [BYTE3 r BYTE2 BYTE 1 I BYTEO I
1 ' EvenWord A 0 0 Byte1 Byte 0
2 Even Word A+2 0 0 Byte3 Byte 2
Other bus cycles (instruction prefetch or slave) can occur here.
3 Even Word A+4 0 0 Byteb Byte 4
4 Even Word A+6 0 0 Byte7 Byte 6
E. Odd Quad-Word Access Sequence
[BYTE7 l BYTE®6 i BYTES TBWE 4 l BYTE3 T BYTE 2] BYTE1 l BYTE ﬂ
1 Odd Byte A 0 1 Byte 0 Don't Care
2 Even Word A+1 0 0 Byte2 Byte 1
3 Even Byte A+3 1 0 Don'tCare Byte 3
Other bus cycles (instruction prefetch or slave) can occur here.
4 QOdd Byte A+4 0 1 Byte 4 Don't Care
5 Even Word A+5 0 0 Byte6 Byte 5
0 Don'tCare Byte 7

6 EvenByte - A+7 1

—A

<A

—A

—A

134

3.4.3.1 Bit Accesses

The Bit Instructions perform byte accesses to the byte
containing the designated bit. The Test and Set Bit
instruction (SBIT), for example, reads a byte, alters it,
and rewrites it, having changed the contents of one bit.

3.4.3.2 BitField Accesses

An access to a Bit Field in memory always generates a
Double-Word transfer at the address containing the least
significant bit of the field. The Double Word is read by an
Extract instruction; an Insert instruction reads a Double
Word, modifies it, and rewrites it.

3.4.3.3 Extending Multiply Accesses

The Extending Multiply instruction (MEI) will return a
result which is twice the size in bytes of the operands
which it reads. If the multiplicand is in memory, the
. most-significant half of the result is written first (at the
higher address), then the least-significant half. This is
donein order to support retry if this instruction is aborted.

3.4.4 Instruction Fetches

Instructions for the NS16032 CPU are “prefetched”;
that is, they are input before being needed into the next
available entry of the eight-byte Instruction Queue. The

" CPU performs two types of Instruction Fetch cycles:
Sequential and Non-Sequential. These can be distin-
guished from each other by their differing status combi-
nations on pins STO-ST3 (Sec. 3.4.2).

A Sequential Fetch will be performed by the CPU when-
ever the Data Bus would otherwise be idle and the
Instruction Queue is not currently full. Sequential Fetches
arealways Even Word Read cycles (Table 3-1).

A Non-Sequential Fetch occurs as a result of any break

- in the normally sequential flow of a program. Any jump

or branch instruction, a trap or an interrupt will cause the
next Instruction Fetch cycle to be Non-Sequential. In
addition, certain instructions flush the instruction queue,

causing the next instruction fetch to display Non-
Sequential status. Only the first bus cycle after a break
displays Non-Sequential status, and that.cycle is either
an Even Word Read or an Odd Byte Read, depending
on whether the destination address is even or odd.

3.4.5 Interrupt Control Cycles

Activating the INT or NMi pin on the CPU will initiate one
or more bus cycles whose purpose is interrupt control
rather than the transfer ofinstructions or data. Execution
of the Return from Interrupt instruction (RETI) will also
cause Interrupt Control bus cycles. These differ from
instruction or data transfers only in the status presented
on pins STO-ST3. All Interrupt Control cycles are single-
byte Read cycles.

This section describes only the Interrupt Control se-
quences associated with each interrupt and with the
return from its service routine. For full details of the
NS 16032 interrupt structure, see Sec. 3.8.

135

Table 3-3

Interrupt Sequences
Cycle Status Address DDIN HBE A0 HighBus Low Bus
Interrupt Acknowledge A. Non-Maskable Interrupt Congrol Sequences.
1 0100 FFFF00,, 0 1 0 DontCare Don'tCare
Interrupt Return |

None: Performed through Return from Trap (RETT) instruction.

B. Non-Vectored Interrupt Control Sequences.

Interrupt Acknowledge
1 0100 FFFEOQO,¢ 0 1 0 Don’t Care Don't Care

Interrupt Return
None: Performed through Return from Trap (RETT) instruction.

C. Vectored Interrupt Sequences: Non-Cascaded.

interrupt Acknowledge
1 0100 FFFEQQ 4 0 1 0 Don'tCare Vector:
' Range: 0-127

Interrupt Return

1 - 0110 FFFEQO,¢ 0 1 0 . Don'tCare . Vector: Same as
in Previous Int. -
Ack. Cycle

D. Vectored Interrupt Sequences: Cascaded.
Interrupt Acknowledge
1 0100 FFFEOQO,¢ 0 1 0 Don'tCare Cascade Index:

range —16to —1
(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0101 Cascade 0 1or Oor Vector, range 0-255; on appropriate
Address 0* 1* half of Data Bus for even/odd address

Interrupt Return

1 0110 FFFEOQO,¢ 0 1 0 Don'tCare Cascade Index:
same as in
previous Int.
Ack. Cycle

(The CPU here uses the Cascade Index to find the Cascade Address.)

2 0111 Cascade 0 1or Oor Don'tCare Don't Care

Address o* 1*

*If the Cascaded ICU Address is Even (A0 is low), then the CPU applies HBE high and reads the vector number from bits 0-7 of the Data Bus.
If the address is Odd (A0 is high), then the CPU applies HBE low and reads the vector number from bits 8-15 of the Data Bus. The vector number
may be in the range 0-255.

136

3.4.6 Slave Processor Communication

In addition to its use as the Address Translation strap “E“i‘ﬂ <:> j'fs’

(Sec. 3.5.1), the AT/SPC pin is used as the data strobe AT/SPC SPC

for Slave Processor transfers. In this role, itis referred to . NS16032 SLAVE

as Slave Processor Control (SPC). Ina Slave Processor Llad PROCESSOR
bus cycle, data is transferred on the Data Bus (ADO-

AD15), and the least significant two bits of CPU cycle

status (ST0-ST1) are monitored by each Slave Proces- STO-8T3 STO-ST3

sor in order_to_determine the type of transfer being

performed. SPC is bidirectional, but is driven by the —_—

CPU during all Slave Processor bus cycles. See Sec.

3.9 for full protocol sequences. FIGURE 3-12. Slave Processor Connections.

PREV.CYCLE NEXT CYCLE
l TaorTi T I T4 T1ORTi l

- [T T T
s [T 1L
|

ADO-AD15

N
\
N
~
\f’/

STO-ST3

NN\

% VALID X NEXT STATUS

= | Y
HBE %7/////) NEXT §
w[T/

(1) CPU samples Data Bus here.
(2) Slave Processor samples CPU Status here.

(3) DBE and all other NS16201 TCU bus signals remain inactive because no ADS pulse is received
from the CPU.

TR C

TUC/5490-24

FIGURE 3-13. CPU Read from Slave Processor.

137

3.4.6.1 Slave Processor Bus Cycles mined by the sequence (“protocol”) established by the
) instruction under execution; but the CPU indicates the

A Slave Processor bus cycle always takes exactly two directi ; -
clock cycles, labelled T1 and T4 (see Figures 3-13 and - pgfpco'ggs.on the DDIN pin for hardware debugging
3-14). During a Read cycle, SPC is activated at T1, data

is sampled at T4, and SPC is removed. The Cycle 3.4.6.2 Operand Transfer Sequences

Status pins lead the cycle by one clock period, and are A Slave Processor o ; ;
C Lo : . perand is transferred in one or more
sampled at the leading edge of SPC. During a Write Slave bus cycles. A Byte operand is transferred on the

cycle, the_CPU applies data and activates SPC at T1, least-significant byte of the Data Bus (ADO-AD7
he L1 - ,and a
removing SPCat T4. The Slave Processor latches status Word ogerand is tryat\nsferred onthe en(tire bus. A)Double

on the leading edge of SPC and laiches data on the Word is transferred in a consecutive pair of bus cycles,

trailing edge. least-significant word first. A Quad Word is transferred
Since the CPU does not pulse the Address Strobe in two pairs of Slave cycles, with other bus cycles poss-
(ABS), no bus signals are generated by the NS16201 ibly occurring between them. The word order is from
Timing Control Unit. The direction of a transfer is deter- least-significant word to most-significant.
PREV.CYCLE NEXTCYCLE
; T4 ORTi T ; T4 TIORTi |

SPC

o [T
7 /I

! (1)
ADO-AD15 ///% Df\TA ouT NEXT

T

o

r 7 T
STO-ST3 VALID | NEXT STATUS
L il

[\

ADS \—/
_ |
DDIN / y \ NEXT
T —
HBE NEXT
L

TL/C/5480-25

NOTE:
(1) Arrows indicate points at which the Slave Processor samples.

(2) DBE, being provided by the NS16201 TCU, remains inactive due to the fact that no pulse is
presented on ADS. TCU signals RD, WR and TSO also remain inactive.

FIGURE 3-14. CPU Write to Slave Processor.

138

35 MEMORY MANAGEMENT OPTION

The NS16032 CPU, in conjunction with the NS16082
Memory Management Unit (MMU), provides full support
for address translation, memory protection, and memory
allocation techniques up to and including Virtual Memory.

3.5.1 Address Translation Strap

The Bus Interface Control section of the NS16032 CPU
has two bus timing modes: With-or Without Address
Translation. The mode of operation is selected by the
CPU by sampling the AT/SPC (Address Translation/
Slave Processor Control) pin on the rising edge of the
RST (Reset) pulse. If AT/SPC is sampled as high, the

bus timing is as previously described in Sec. 3.4. If itis
sampled as low, two changes occur: .

1) An extra clock cycle, Tmmuy, is inserted into all bus
cycles except Slave Processor transfers.

2) The DS/FLT pin changes in function from a_Data
Strobe output (DS) to a Float Command input (FLT).

The NS16082 MMU will itself pull the CPU AT/SPC pin
low when it is reset, but this pin may be left floating in
non-Memory-Managed systems. ‘

Note that the Address Translation strap does not speci-
fically declare the presence of an NS16082 MMU, but

4!__] |r—|" !_*l"""" l_ln L]n _lu |__] i
SNy Nyiiyiliy Nyt
O /) | S | R W e
WV o e e e

STO-ST3 [Z%(STATUS VALID X NEXT STATUS
DO :/2/ //% / NExT B
HWBE [%V////A% VALID X;xr

X202

TLICI5490-26

FIGURE 3-15. Read Cycle with Address Translation (CPU Action).

139

only the presence of external address transiation cir-
cuitry. MMU instructions will still trap as being undefined
unless the SETCFG (Set Configuration) instruction is
executed to declare the MMU instruction set valid. See
Sec.2.1.3.

3.5.2 Translated Bus Timing

Figures 3-15 and 3-16 illustrate the CPU activity duringa
Read cycle and a Write gycle in Address Translation
mode. The additional T-State, Tmmu, is inserted between
T1 and T2. During this time the CPU places AD0-AD15
and A16-A23 into the TRI-STATE® mode, allowing the
MMU to assert the translated address and issue the

e [T

physical address strobe PAV. T2 through T4 of the cycle
are identical to their counterparts without Address Trans-
lation, with the exception that the CPU Address lines
A16-A23 remain in the TRI-STATE condition. This
allows the MMU to continue asserting the translated
address on those pins.

Figures 3-17 and 3-18 show a Read cycle and a Write
cycle as generated by the 16032/16082/16201 group.
Note that with the CPU ADS signal going only to the
MMU, and with the MMU PAV signal substituting for
ADS everywhere else, Tmmu through T4.look exactly
like T1 through T4 in a non-Memory-Managed system.
For the connection diagram, see Appendix B.

T4O0RTi I T | Tmmu | T2 ' T3 ' T4 l TIORTi |

L]

]

[

PHI 2 l I

A16-A23 i %V///%A%‘L‘%‘}--"q_;-

ADDRESS
VALID

AD0-AD15 47/////

————s -(DATA OUT

:
[] [1
e o

NEXT ADDR

ADS

.
st | 7
STO-ST3 éx

STATUS VALID

x NEXT STATUS

N

w [377

NEXT

VALID ‘

NEXT

N4

AN\

TU/C/5480-27

FIGURE 3-16. Write Cycle with Address Translation (CPU Action).

l T4O0RTi | ™ ’ Tmmu l T2 l T3 l T4 | T1ORTi l

LT
I [A | I

1
VIRTUAL PHYSICAL l

] 1
7//// "\Q’RE'E"SSX ADDRESS VALID X NEXT ADDR

VIRTUAL -~ PHYSICAL

/

PHI1

.

PHI 2

A16-A23

ADO-AD15

AN\ NN\ B

&l

0
|
mrm || | - M | ~— — r r 1

N
>

STATUS VALID X NEXT STATUS

N | e T
07777 | 277

N

|
[N\

P

=

<
N

NS16201 TCU BUS SIGNALS

=1/ \ /

H
N~

=[17 N
o]

TU/CI5490-28

FIGURE 3-17. Memory-Managed Read Cycle.

141

VIRTUAL PHYSICAL

7 T 7
- ADDRESS
A16-A23 4 ///% VALID X ADPHESS VALID XNEXT ADDR

VIRTUAL ~ PHYSICAL

7 ADDRESS \/ ADDRESS
ADO-AD15 /////// S X DDRES DATA OUT XNEXT ADDR

0777 |

NS 16201 TCU BUS SIGNALS

N\

/
/ |
/

TL/C/5490-29

FIGURE 3-18. Memory-Managed Write Cycle.

142

3.5.3 TheFLT (Float) Pin

In Address Translation mode, the DS/FLT pin is treated

as the input command FLT (Float). Activating FLT during

. Tmmu causes the CPU to wait longer than Tmmu for
address translation and validation. This feature is used
occasionally by the NS 16082 MMU in order to update its
internal translation cache from page tables in memory,
or to update certain status bits within them.

Figure 3-19 shows the effects of FLT. Upon sampling
low, late in Tmmu, the CPU enters idle T-States (Tf)
during which it; i

Tmmu Tf

‘PHI1

) ™
L l

1) Sets ADO-AD15, A16-A23 and DDIN to the TRI-
STATE condition (“floating”).

2) Sets HBE low. ’ -

3) Suspends further internal processing of the current
instruction. This ensures that the current instruction
remains abortable with retry. (See RST/ABT descrip-
tion, Sec. 3.5.4.)

Note that the ADO-AD15 pins may be briefly asserted
during the first idle T-State. The above conditions remain
in effect until FLT again goes high. See the Timing
Specifications, Sec. 4. ‘

1,

T2

=

PHI 2

B
]

1

r- I_—|
L]
S

St

LT

-
Il e e 7
r . 7-
sonsors | 2N s -1 { o)@Z}(m)@ |
- Vs
" —ff-
“aDs _/ a
= | NS
PAV
o
= [270 WA/
.]}__.
ST0-ST3 VALID VALID
=
T 77
DDIN é% ALID >— -— -{--(VALID %% ALID
_ ?
HBE ZK VALID / ALID
5 T

P2

TUCI5490-30

FIGURE 3-19. FLT Float Command Timing.

143

3.5.4 Aborting Bus Cycles

The RST/ABT pin, apart from its Reset function (Sec.
3.3), also serves as the means to “abort”, or cancel, a
bus cycle and the instruction, if any, which initiated it. An
Abort request is distinguished from a Reset in that the
RST/ABT pin is held active for only one clock cycle.

If RST/ABT is pulled low during Tmmu or Tf, this signals
that the cycle must be aborted. The CPU itself will enter
T2 and then Ti, thereby terminating the cycle. Since itis
the MMU PAV signal which triggers a physical cycle, the
rest of the system remains unaware that a cycle was
even started.

The NS16082 MMU will abort a bus cycle for either of
two reasons:

1) The CPU is attempting to access a virtual address
which is not currently resident in physical memory.
The referenced page must be brought into physical
memory from mass storage to make it accessible to
the CPU.

2) The CPU is attempting to perform an access whichis
not allowed due to the protection level assigned to
that page.

When a bus cycle is aborted by the MMU, the instruction
which caused it to occur is also aborted in such a manner
that it is guaranteed re-executable later. Due to the
NS 16000 Family instruction set definition and its imple-
mentation in the NS16032 CPU, the only information
which is changed irrecoverably by such partly-executed
instructions is information which does not affect their
re-execution.

3.5.4.1 The Abort Interrupt

Upon aborting an instruction, the CPU immediately per-
forms an interrupt through the ABT vectorin the Interrupt
Table (see Sec. 3.8). The Return Address pushed onthe
Interrupt Stack is the address of the aborted instruction,
such that a Return from Trap (RETT) instruction will
automatically retry it.

The one exceptionto this sequence occurs if the aborted
bus cycle was an instruction prefetch. If so, it is not yet
certain that the aborted prefetched code is to be exe-
cuted. Instead of causing an interrupt, the CPU only
aborts the bus cycle, and stops prefetching. If the infor-
mation in the Instruction Queue runs out, meaning that
the instruction will actually be executed, the ABT inter-
rupt will occur, in effect aborting the instruction which
was being fetched.

3.5.4.2 Hardware Considerations

In order to guarantee instruction retry, certain rules must
be followed in applying an Abort to the CPU. These rules
are followed by the NS16082 Memory Management
Unit.

1) if FLT has not been applied to the CPU, the Abort
pulse must occur during or before Tmmu. See the
Timing Specifications, Figure 4-22.

If FLT has been applied to the CPU, the Abort pulse
must be applied before the T-State in which FLT goes
inactive. The CPU will_not actually respond to the
Abort command until FLT is removed. See Figure
4-23.

No bus cycle may be aborted which is the Write half
of a Read-Modify-Write operand access. The CPU
guarantees that this will never be necessary for
Memory Management functions by applying a special
RMW status (Status Code 1011) during the Read
half of the access. When the CPU presents RMW
status, that cycle must be aborted if it would be illegal
to write to any of the accessed addresses.

If RST/ABT is pulsed at any time other than as indi-
cated above, it will abort either the instruction currently
under execution or the next instruction and will act as
a very high-priority interrupt. However, the program
which was running at the time is not guaranteed recov-
erable, and should be terminated.

2

~

«

3.6 BUS ACCESS CONTROL

The NS16032 CPU has the capability of relinquishing its
access to the bus upon request from a DMA device or
another CPU. This capability is implemented on the
HOLD (Hold Request) and HLDA (Hold Acknowledge)
pins. By asserting HOLD low, an external device requests
access to the bus. On receipt of HLDA from the CPU,
the device may perform bus cycles, as the CPU at this
point has set the AD0-AD15, A16-A23, ADS, DDIN and
HBE pins to the TRI-STATE® condition. To return control
of the bus to the CPU, the device sets HOLD inactive,
and the CPU acknowledges return of the bus by setting
HLDA inactive.

How quickly the CPU releases the bus depends on
whether it is idle on the bus at the time the HOLD
request is made, as the CPU must always complete the
current bus cycle. Figure 3-20 shows the timing sequence
when the CPU is idle. In this case, the CPU grants the
bus during the immediately following clock cycle. Figure
3-21 shows the sequence if the CPU is using the bus at
the time that the HOLD request is made. If the request is
made during or before the clock cycle shown (two clock
cycles before T4), the CPU will release the bus during
the clock cycle following T4. If the request occurs closer
to T4, the CPU may already have decided to initiate
another bus cycle. In that case it will not grant the bus
until after the next T4 state. Note that this situation will
also occur if the CPU is idle on the bus but has initiated a
bus cycle internally.

In a Memory-Managed system, the HLDA signal is con-
nected in a daisy-chain through the NS16082, such that
the MMU can release the bus if it is using it.

144

Ti ’ Ti I' e o ’ Ti | Ti l TiORle TiORT1 |

eI O O I B
LM A

AFFECTED SIGNALS

& A e R d
w1 e e S

e e ¥

¥/t i et e SRt o e
Il e e (e
sm-sta: PREVIOUS /Aé ‘%7////7////4, NEXT STATUS

ARCEE

s 18T 1

ADO-AD15

NN\

A16-A23

AN\

TUC/5490-31

FIGURE 3-20. HOLD Timing, Bus Initially Idle.

145

I T20RT3 l T3 \ T4 l Ti |0 . ol Ti I Ti l Ti I TiORT1 l

PHI1 | I I

PHI 2 l | I I

HOLD \ /
L ((

HLDA \ /
L _‘{

AFFECTED SIGNALS

! S e AV
al: —\ /A | VS S IS L/

b_J
5
]
]
]
.:

DOIN VALID) - "'r'“'———-{ ———————————— s NEXT

\ o]
HBE VALID >'__._'”_—"'— __________ Jf \ NEXT

A16-A23: VALID | --——”————--——-——--—————;—;———C:

| I

TUC/5490-32

FIGURE 3-21. HOLD Timing, Bus Initially Not idie.

146

3.7 INSTRUCTION STATUS

In addition to the four bits of Bus Cycle status (STO-ST3),
the NS 16032 CPU also presents Instruction Status infor-
mation on three separate pins. These pins differ from
STO-ST3 in that they are synchronous to the CPU'’s
internal instruction execution section rather than to its
bus interface section.

PFS (Program Flow Status) is pulsed low as each in-
struction begins execution. It is intended for debugging
purposes, and is used that way by the NS 16082 Memory
Management Unit.

U/S originates from the U bit of the Processor Status
Register, and indicates whether the CPU is currently
running in User or Supervisor mode. Itis sampled by the
MMU for mapping, protection and debugging purposes.
Although it is not synchronous to bus cycles, there are
guarantees on its validity during any given bus cycle.
See the Timing Specifications, Figure 4-21.

ILO (Interlocked Operation) is activated during an SBITI
(Set Bit, Interlocked) or CBITI (Clear Bit, Interlocked)
instruction. It is made available to external bus arbitra-
tion circuitry in' order to" allow these instructions to
implement the semaphore primitive operations for multi-
processor communication and resource sharing. As with
the U/S pin, there are guarantees on its validity during
the operand accesses performed by the instructions.
See the Timing Specification Section, Figure 4-19.

3.8 NS16032 INTERRUPT STRUCTURE

INT, on which maskable interrupts may be requested,

NMI, on which non-maskable interrupts may be re-
quested, and

RST/ABT, which may be used to abort a bus cycle
and any associated instruction. It generates an inter-
rupt request if an instruction was aborted. See
Sec.3.54.) ‘
In addition, there is a set of internally-generated “traps”
which cause interrupt service to be performed as a
result either of exceptional conditions (e.g., attempted
division by zero) or of specific instructions whose pur-
pose is to cause a trap to occur (e.g., the Supervisor Call
instruction).

3.8.1 General Interrupt/Trap Sequence

Upon receipt of an interrupt or trap request, the CPU
goes through four major steps:

1) Adjustment of Registers.

Depending on the source of the interrupt or trap, the
CPU may restore and/or adjust the contents of the
Program Counter (PC), the Processor Status Regi-
ster (PSR) and the currently-selected Stack Pointer
(SP). A copy of the PSR is made, and the PSR is
then set to reflect Supervisor Mode and selection of
the Interrupt Stack.

2) Saving Processor Status.

The PSR copy is pushed onto the Interrupt Stack as

. a 16-bit quantity.

3) Vector Acquisition.
A Vector is either obtained from the Data Bus or is
supplied by default.
Service Call.
The Vector is used as an index into the Interrupt
Dispatch Table, whose base address is taken from
the CPU Interrupt Base (INTBASE) Register. See
Figure 3-22. A 32-bit External Procedure Descriptor
is read from the table entry, and an External Proce-
dure Call is performed using it. The MOD Register
(16 bits) and Program Counter (32 bits) are pushed
on the Interrupt Stack.

4

-~

s
g ‘ ,
MEMORY { 31 0
- NVI NON-VECTORED INTERRUPT
CASCADE ADDR 0
- NMI NON-MASKABLE INTERRUPT
CASCADETABLE. 2% .
hd ABT ABORT
CASCADE ADDR 14
FPU FPU TRAP
INTERRUPT BASE CASCADE ADDR 15 L ILLEGAL OPERATION TRAP
REGISTER
- FIXEDINTERRUPTS 5| sve SUPERVISOR CALL TRAP
- AND TRAPS ™
L VECTORED 1 DISPATCH TABLE 6] DVZ DIVIDE BY ZERO TRAP
- INTERRUPTS i
< 7| FLG FLAG TRAP
L .
8 BPT - BREAKPOINT TRAP
9| TRC TRACE TRAP
10 UND UNDEFINED INSTRUCTION TRAP
~

FIGURE 3-22. Interrupt Dispatch and Cascade Tables.

L'P{ESERVED . ﬁ

VECTORED
INTERRUPTS

TLICI5490-33

This process is illustrated in Figure 3-23, from the view- Interrupt on INT or NMI pin:
point of the programmer. Abort Interrupt:

. L Tra T :
Full sequences of events in processing interrupts and Trag: Sﬁ;g?pt Trace)
traps may be found as follows: :
PSR MOD
STATUS MODULE (PuSH) | 32BITS
RETURN ADDRESS
(PUSH) = 32BITS
INTERRUPT
STACK
.
. .
.
______________ -
CASCADE TABLE
INTBASE REGISTER]
[INTERRUPT BASE AJI ’ DISPATCH
T) TABLE
@>—¢
DESCRIPTOR (32 BITS)
—
DESCRIPTOR
16 16
OFFSET MODULE
- 0
MOD REGISTER MODULE TABLE
NEW MODULE
MODULE TABLE ENTRY
MODULE TABLE ENTRY
32
STATIC BASE POINTER -
LINK BASE POINTER
ﬁg«—— PROGRAM BASE POINTER
® (RESERVED)
PROGRAM COUNTER SB REGISTEﬁ

\————F ENTRY POINT ADDRESS J _[__b NEW STATIC BASE J

TLC/5490-34

FIGURE 3-23. interrupt/Trap Service Routine Calling
Sequence.

Sec.3.8.7.1.
Sec.3.8.74.
Sec. 3.8.7.2.
Sec.3.8.7.3.

148

382

To return control to an interrupted program, one of two
instructions is used. The RETT (Return from Trap) instruc-
tion (Figure 3-24) restores the PSR, MOD, PC and SB
registers to their previous contents and, since traps are
often used deliberately as a call mechanism for Super-
visor Mode procedures, it also discards a specified num-
ber of bytes from the original stack as surplus parameter
space. RETT is used to return from any trap or interrupt
exceptthe Maskable Interrupt. For this, the RETI (Return
from Interrupt) instruction is used, which also informs
any external Interrupt Control Units that interrupt ser-
vice has completed. Since interrupts are generally asyn-
chronous external events, RETI does not pop para-
meters. See Figure 3-25.

3.8.3 Maskable Interrupts (The INT Pin)
The INT pin is a level-sensitive input. A continuous low

Interrupt/Trap Return

level is allowed for generating multiple interrupt re-
quests. The input is maskable, and is therefore enabled
to generate interrupt requests only while the Processor
Status Register | bit is set. The | bit is automatically
cleared during service of an INT, NMI or Abort request,

and is restored to its original setting upon return from the
interruptservice routine via the RETT or RETlinstruction.

The INT pin may be configured via the SETCFG instruc-
tion as either Non-Vectored (CFG Register bit | = 0) or
Vectored (bit | = 1).

3.8.3.1 Non-Vectored Mode

In the Non-Vectored mode, an mterrupt request on the
TNT pin will cause an Interrupt Acknowledge bus cycle,
but the CPU will ignore any value read from the bus and
use instead a default vector of zero. This mode is useful
for small systems in which hardware interrupt prioritiza-
tion is unnecessary.

PROGRAM COUNTER
(POP)
RETURN ADDRESS 32BITS
(POP) ’
STATUS MODULE 32BITS
PSR Moo INTERRUPT
: STACK :
. :
0 .
MODULE
TABLE
MODULE TABLE ENTRY
J
MODULE TABLE ENTRY
STATIC BASE POINTER —_T
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
' PARAMETERS
n
BYTES
SBREGISTER
STATIC BASE :jl'—/ STACK SELECTED
IN NEWLY-
POPPED PSR.

H .

. .

. .

POP AND
DISCARD

TLIC/5490-35

FIGURE 3-24. Return from Trap (RETT n) Instruction Flow.

149

“END OF INTERRUPT"

BUS CYCLE
INTERRUPT
CONTROL
UNIT
PROGRAM COUNTER
1 (POP)
RETURN ADDRESS I
l (POP)
STATUS 1 MODULE .
]
PSR MOD
INTERRUPT
STACK

.

. .

. .

0
MODULE
TABLE
MODULE TABLE ENTRY
MODULE TABLE ENTRY

STATIC BASE POINTER =

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

STATIC BASE

SB REGISTER

TLICI5490-36

FIGURE 3-25. Return from Iiterrupt (RETI) Instruction Flow.

150

3.8.3.2 Vectored Mode: Noﬁ-Cascaded Case

In the Vectored mode, the CPU uses an NS16202 Inter-
rupt Control Unit (ICU) to prioritize up to 16 interrupt
requests. Upon receipt of an interrupt request on the
INT pin, the CPU performs an “Interrupt Acknowledge,
" Master” bus cycle (Sec. 3.4.2) reading a vector value
from the low-order byte of the Data Bus. This vector is
then used as an index into the Dispatch Table in order to
find the External Procedure Descriptor for the proper
interrupt service procedure. The service procedure
eventually returns via the Return from Interrupt (RETI)
instruction, which performs an End of Interrupt bus cycle,
informing the ICU that it may re-prioritize any interrupt
requests still pending. The ICU provides the vector num-
ber again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127;
that is, they must be positive numbers in eight bits. By
providing a negative vector number, an ICU flags the
interrupt source as being a Cascaded ICU (see below).

3.8.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is
made both in the CPU and in the NS16202 Interrupt
Control Unit (ICU) to transparently support cascading.
Figure 3-27, shows a typical cascaded configuration.
Note that the Interrupt output from a Cascaded ICU
goes to an Interrupt Request input of the Master ICU,
which is the only ICU which drives the CPU INT pin.

In a system which uses cascading, two tasks must be
performed upon initialization:

1) For each Cascaded ICU in the system, the Master
ICU must be informed of the line number (0 to 15) on
which it receives the cascaded requests.

2) A Cascade Table must be established in memory.
The Cascade Table is located in a NEGATIVE direc-
tion from the location indicated by the CPU Interrupt
Base (INTBASE) Register. Its entries are 32-bit
addresses, pointing to the Vector Registers of each
of up to 16 Cascaded ICUs.

Figure 3-22 illustrates the position of the Cascade
Table. To find the Cascade Table entry for a Cascaded
ICU, take its Master ICU line number (0 to 15) and
subtract 16 from it, giving an index in the range — 16 to
—1. Multiply this value by 4, and add the resulting nega-
tive number to the contents of the INTBASE Register
The 32-bit entry at this address must be set to the
address of the Hardware Vector Register of the Cas-
caded ICU. This is referred to as the “Cascade Address”’

Upon receipt of an interrupt request from a Cascaded
ICU, the Master ICU interrupts the CPU and provides
the negative Cascade Table index instead of a (positive)
vector number. The CPU, seeing the negative value,
uses it as an index into the Cascade Table and reads the
Cascade Address from the referenced entry. Applying
this address, the CPU performs an “Interrupt Acknowl-
edge, Cascaded” bus cycle (Sec. 3.4.2), reading the
final vector value. This vector is interpreted by the CPU
as an unsigned byte, and can therefore be in the range
of 0 through 255.

In returning from a Cascaded interrupt, the service pro-
cedure executes the Return from Interrupt (RET) instruc-
tion, as it would for any Maskable Interrupt. The CPU
performs an “End of Interrupt, Master” bus cycle (Sec.
3.4.2), whereupon the Master ICU again provides the
negative Cascade Table index. The CPU, seeinganega-
tive value, uses it to find the corresponding Cascade
Address from the Cascade Table. Applying this address,
it performs an “End of Interrupt, Cascaded” bus cycle
(Sec. 3.4.2), informing the Cascaded ICU of the comple-
tion of the service routine. The byte read from the Cas-
caded ICU is discarded.

DATA
|<—IR1)
® <R3
. ~—IRS
CONTROL HARDWARE
l<—IR7 INTERRUPTS
R
' - CASCADED
NS16032 ADDR 5 BITS NS16202 R9 CONTROLLERS
CPU j~—o-IR11
GROUP
l«—JR13
l~—R15
ATUS 1
st L GO/IRO 1
<= G1/IR2
iNT iNT e G2/IR4
<= G3iIRs | "WASCADED,
<+ G4/IR8 a0
<> G5/IR10
FROM — <= G6/IR12
ADDRESS —={ €S
DECODER <> G7/IR14

TLIC/5490-37

FIGURE 3-26. Interrupt Control Unit Connections (16 Levels).

151

DATA

CONTROL

|~=—IR1
|=—IR3
CONTROL —~—IRS
~=—IR7 HARDWARE
ADDR S BITS ca:tf:zggo e IRe INTERRUPTS
icu ~—1IR11
~—IR13
STATUS 1 s
= GO/IRO
> G1/IR2
= G2/IR4
f\googsss & == G3/IR6 msrg;uws
DECODER == G4/IR8 BIT1/O
= GS5/IR10
> G6/IR12
== G7/IR14

|«— IR1
~—IR3
~=—IR5

NS16032

ADDR

STATUS 1

[~—IR7?

MASTER

NS16202
ICU

F=—IR9

[~=—IR11 ~———r
~~—IR13
~=—IR15

<> G0/IRO

iNT

G1/IR2
iNT

FROI
ADDRESS —
DECODER

[==G2/IR4
[~~>=-G3/IR6
—=>G4/IR8
~=>=-G5/IR10
[~==—G6/IR12
~==G7/IR14

M

TL/C/5490-38

FIGURE 3-27.Cascaded Interrupt Control Unit Connections.

3.8.4 Non-Maskabile Interrupt (The NMI Pin)

The Non-Maskable Interrupt is R}%ﬁgered whenever a
falling edge is detected on the pin. The CPU per-
forms an “Interrupt Acknowledge, Master” bus cycle
(Sec. 3.4.2) when processing of this interrupt actually
begins. The Interrupt Acknowledge cycle differs from
that provided for Maskable Interrupts in that the address
presented is FFFF00,s. The vector value used for the
Non-Maskable Interrupt is taken as 1, regardless of the
value read from the bus. -

The service procedure returns from the Non-Maskable
Interrupt using the Return from Trap (RETT) instruction.
No special bus cycles occur on return.

For the full sequence of events in processing the Non-
Maskable Interrupt, see Sec. 3.8.7.1.

3.8.5 Traps

A trap is an internally-generated interrupt request
caused as a direct and immediate result of the execu-
tion of an instruction. The Return Address pushed by
any trap except Trap (TRC) below is the address of the .
first byte of the instruction during which the trap
occurred. Traps do not disable interrupts, as they are
not associated with external events. Traps recognized
by NS16032 CPU are:

Trap (FPU): An exceptional condition was detected by
the NS16081 Floating Point Unit or another Slave Pro-
cessor during the execution of a Slave Instruction. This
trap is requested via the Status Word returned as part of
the Slave Processor Protocol (Sec. 3.9.1).

152

Trap (ILL): lllegal operation. A privileged operation was
attempted while the CPU was in User Mode (PSR bit
U=1).

Trap (SVC): The Supervisor Call (SVC) instruction was
executed.

Trap (DVZ): An attempt was made to divide an integer
by zero. (The FPU trap is used for Floating Point division
by zero.)

Trap (FLG): The FLAG instruction detected a “1” in the
CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was
executed.

Trap (TRC): The instruction just completed is being
traced. See below.

Trap (UND): An undefined opcode was encountered by
the CPU.

A special case is the Trace Trap (TRC), which is enabled
by setting the T bit in the Processor Status Register
(PSR). At the beginning of each instruction, the T bit is
copied into the PSR P (Trace “Pending”) bit. If the P bit
is set at the end of an instruction, then the Trace Trap is
activated. If any other trap or interrupt request is made
during a traced instruction, its entire service procedure
is allowed to complete before the Trace Trap occurs.
Each interrupt and trap sequence handles the P bit for
proper tracing, guaranteeing one and only one Trace
Trap per instruction, and guaranteeing that the Return
Address pushed during a Trace Trap is always the ad-
dress of the next instruction to be traced.

3.8.6 Prioritization

The NS16032 CPU internally prioritizes simultaneous
interrupt and trap requests as follows:

1) Traps other than Trace (Highest priority)
2) Abort ‘

3) Non-Maskable Interrupt

4) Maskable Interrupts

5) Trace Trap (Lowest priority)

3.8.7 Interrupt/Trap Sequences: Detailed Flow

For purposes of the following detailed discussion of
interrupt and trap service sequences, a single sequence
called “Service” is defined in Figure 3-28. Upon detect-
ing any interrupt request or trap condition, the CPU first
performs a sequence dependent upon the type of inter-
rupt or trap. This sequence will include pushing the
Processor Status Register and establishing a Vector
and a Return Address. The CPU then performs the
Service sequence.

For the sequence followed in processing either Mask-
able or Non-Maskable interrupts (on the INT or NMI
pins, respectively), see Sec. 3.8.7.1. For Abort inter-
rupts, see Sec. 3.8.7.4. For the Trace Trap, see Sec.
3.8.7.3, and for all other traps see Sec. 3.8.7.2.

3.8.7.1 Maskable/Non-Maskable Interrupt
Sequence

This sequence is performed by the CPU when the NMI
pin receives a falling edge, or the TNT pin becomes
active with the PSR | bit set. The interrupt sequence
begins either at the next instruction boundary or, in the
case of the String instructions, at the next interruptible
point during its execution.

. If a String instruction was interrupted and not yet
completed:
a. Clear the Processor Status Register P bit.
b. Set “Return Address” to the address of the first
byte of the interrupted instruction.

Otherwise, set “Return Address” to the address of
the next instruction.

2. Copy the Processor Status Register (PSR) into a

temporary register, then clear PSR bits S, U, T, P
and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF0046, applying
Status Code 0100 (Interrupt Acknowledge, Mas-
ter: Section 3.4.2). Discard the byte read.

b. Set “Vector” to 1.
c. Go to Step 8.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFF00,¢, applying
Status Code 0100 (Interrupt Acknowledge, Mas-
ter: Section 3.4.2). Discard the byte read. -

b. Set “Vector” to 0.
c. Go to Step 8.

5. Here the interrupt is Vectored. Read “Byte” from

address FFFEO00,5, applying Status Code 0100
(Interrupt Acknowledge, Master: Section 3.4.2).

6. If “Byte” = 0, then set “Vector” to “Byte” and go

to Step 8.

7. If “Byte” is in the range - 16 through -1, then the

interrupt source is Cascaded. (More negative val-

ues are reserved for future use.) Perform the follow-

ing:

a. Read the 32-bit Cascade Address from memory.
The address is calculated as INTBASE +4*
Byte. ’ :

b. Read “Vector,” applying the Cascade Address
just read and Status Code 0101 (Interrupt
Acknowledge, Cascaded: Section 3.4.2).

8. Push the PSR copy (from Step 2) onto the Interrupt ‘

Stack as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-

28.

Service (Vector, Return Address):

1) Push MOD Register onto the Interrupt Stack as a 16-bit value. (The PSR
has already been pushed as a 16-bit value.)

'2) Push the Return Address onto the Interrupt Stack as a 32-bit quantity.

3) Read the 32-bit External P dure Dx iptor from the
patch Table: address is Vector*4 + INTBASE Register contents.

4) Move the Module field of the Descriptor into the MOD Register.

5) Read the new Static Base pointer from the memory address contained
in MOD, placing it into the SB Register.

6) Read the Program Base pointer from memory address MOD+8, and add
to it the Offset field from the Descriptor, placing the result in the Program
Counter.

pt Dis-

TLICI5480-39

FIGURE 3-28. Service Sequence.
Invoked during all interrupt/trap sequences.

153

3.8.7.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at
the start of the trapped instruction.

- 2) Set “Vector” to the value corresponding to the trap
type.
FPU: Vector = 3.
ILL: Vector = 4.
SVC: Vector = 5.
DvZ: Vector = 6.
FLG: Vector = 7.
BPT: Vector = 8.
UND: Vector = 10.
3) Copy the Processor Status Register (PSR) into a
temporary register, then clear PSR bits S, U, Pand T.
4) Push the PSR copy onto the Interrupt Stack as a
16-bit value.
5) Set “Return Address” to the address of the first byte

of the trapped instruction.

6) Perform Service (Vector, Return Address), Figure
3-28.

3.8.7.3 Trace Trap Sequence

f) In the Processor Status Register (PSR), clear the P
bit.

2) Copy the PSR into a temporary register, then clear
PSRbits S,Uand T.

3) Push the PSR copy onto the Interrupt Stack as a
16-bit value.

4) Set “Vector'to 9.

5) Set “Return Address” to the address of the next
instruction.

6) Perform Service (Vector, Return Address), Figure
3-28. ‘

3.8.7.4 Abort Sequence

1) Restore the currently selected Stack Pointer to its
original contents at the beginning of the aborted
instruction.

2) Clear the PSR P bit.

3) Copy the PSR into a temporary register, then clear
PSRbits S, U, Tand I.

4) Push the PSR copy onto the Interrupt Stack as a
16-bit value.

5) Set “Vector” to 2.

6) Set “Return Address” to the address of the first byte
of the aborted instruction.

7) :I;’erform Service (Vector, Return Address), Figure
28
3.9 SLAVE PROCESSOR INSTRUCTIONS

The NS16032 CPU recognizes three groups of instruc-
tions as being executable by external Slave Processors:

Floating Point Instruction Set

Memory Management Instruction Set
Custom Instruction Set

Each Slave Instruction Set is validated by a bit in the
Configuration Register (Sec. 2.1.3). Any Slave Instruc-
tion which does not have its corresponding Configura-
tion Register bit set will trap as undefined, without any
Slave Processor communication attempted by the CPU.
This allows software simulation of a non-existent Slave
Processor.

3.9.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic
Instruction field, consisting of an ID Byte followed by an
Operation Word. The ID Byte has three functions:

1) It identifies the instruction as being a
Slave Processor instruction.

2) It specifies which Slave Processor will
execute it.

3) It determines the format of the following
Operation Word of the instruction.

Upon receiving a Slave Processor instruction, the CPU
initiates the sequence outlined in Figure 3-29. While
applying Status Code 1111 (Broadcast ID, Sec. 3.4.2),
the CPU transfers the ID Byte on the least-significant
half of the Data Bus (AD0O-AD7). All Slave Processors
input this byte and decode it. The Slave Processor
selected by the ID Byte is activated, and from this point
the CPU is communicating only with it. If any other slave
protocol was in progress (e.g., an aborted Slave instruc-
tion), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.2).
Upon receiving it, the Slave Processor decodes it, and
at this point both the CPU and the Slave Processor are
aware of the number of operands to be transferred
and their sizes. The operation Word is swapped on the
Data Bus; that is, bits 0-7 appear on pins AD8-AD15
and bits 8-15 appear on pins AD0-AD7.

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing
them to the Slave Processor. To do so, it references any
Addressing Mode extensions which may be appended
to the Slave Processor instruction. Since the CPU is

Status Combinations:

Send 1D (ID): Code 1111
Xfer Operand (OP): Code 1101
Read Status (ST): Code 1110

Step Status Action
1 D CPU Send ID Byte.
2 oP CPU Sends Operation Word.
3 oP CPU Sends Required Operands.
4 — Slave Starts E CPU Pre-fi
5 — Slave Pulses SPC Low.
s ST CPUReads Status Word. (Trap? Alter Flags?)
7 oP CPU Reads Resuilts (If Any).

TUC/5490-40

FIGURE 3-29. Slave Processor Protocol.

- 154

solely responsible for memory. accesses, these exten-
sions are not sent to the Slave processor. The Status
Code applied is 1101 (Transfer Slave Processor Oper-
and, Sec. 3.4.2).

After the CPU has issued the last operand, the Slave
Processor starts the actual execution of the instruction.
Upon completion, it will signal the CPU by pulsing SPC
low. To allow for this, and for the Address Translation strap
function, AT/SPC is normally held high only by an internal
pull-up device of approximately 5K ohms.

While the Slave Processor is executing the instruction,
the CPU is free to prefetch instructions into its queue. If it
fills the queue before the Slave Processor finishes, the
CPU will wait, applying Status Code 0011 (Waiting for
Slave, Sec. 3.4.2).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status, Sec. 3.4.2). This
word has the format shown in Figure 3-30. If the Q bit
(“Quit”, Bit 0) is set, this indicates that an error was
detected by the Slave Processor. The CPU will not con-
tinue the protocol, but will immediately trap through the
FPU vector in the Interrupt Table. Certain Slave Proces-
sor instructions cause CPU PSR bits to be loaded from
the Status Word.

The last step in the protocol is for the CPU to read a
result, if any, and transfer it to the destination. The Read
cycles from the Slave Processor are performed by the
CPU while applying Status Code 1101 (Transfer Slave
Operand, Sec. 3.4.2).

An exception to the protocol above is the LMR (Load
Memory Management Register) instruction, and a
corresponding Custom Slave instruction (LCR: Load
Custom Register). In executing these instructions, the
protocol ends after the CPU hasissuedthe lastoperand.
The CPU does not wait for an acknowledgement from
the Slave Processor, and it does not read status.

3.9.2 Floating Point Instructions

Table 3-4 gives the protocols followed for each Float-
ing Point instruction. The instructions are referenced by
their mnemonics. For the bit encodings of each instruc-
tion, see Appendix A.

The Operand class columns give the Access Class for
each general operand, defining how the addressing
modes are interpreted (see Programmer’s Manual).

The Operand Issued columns show the sizes of the
operands issued to the Floating Point Unit by the CPU.
“D” indicates a 32-bit Double Word. “i" indicates that
the instruction specifies an integer size for the operand
(B = Byte, W = Word, D = Double Word). “f” indicates
that the instruction specifies a Floating Point size for the
operand (F = 32-bit Standard Floating, L = 64-bit Long
Floating).

The Returned Value Type and Destination column gives
the size of any returned value and where the CPU
places it. The PSR Bits Affected column indicates which
PSR bits, if any, are updated from the Slave Processor
Status Word (Figure 3-30).

Table 3-4.
Floating Point Instruction Protocols.

. Operand 1 ' Operand 2 Operand1 Operand2 ReturnedValue PSR Bits
Mnemonic Class Class * Issued Issued Type and Dest. Affected
ADDf read.f rmw.f f f ftoOp. 2 none
SuBf read.f rmw.f f f ftoop.2 none
MULf read.f rmw.f f f ftoOp. 2 none
Divf read.f rmw.f f f ftoOp. 2 none
MOVf read.f write.f f N/A ftoOp. 2 none
ABSf read.f write.f f N/A ftoOp. 2 none
NEGf read.f write.f f N/A ftoOp. 2 none
CMPf read.f read.f f f N/A N,ZL
FLOOR(i read.f write.i f N/A itoop.2 none
TRUNCHi read.f write.i f N/A itoOp. 2 none
ROUNDfi read.f write.i f N/A itoOp.2 none
MOVFL read.F write.L F N/A LtoOp.2 none
MOVLF read.L write.F L . N/A FtoOp. 2 none
MOvif read.i write.f i N/A ftoOp. 2 none
LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A DtoOp.2 none
NOTE:

D = Double Word

i=integer size (B,W,D) specified in mnemonic.

f = Floating Point type (F,L) specified in mremonic.
N/A = Not Applicable to this instruction.

155

15 87 0

|°°°°°°°° lNZFOOLOQl

New PSR Bit Value(s) &22—" /

*Quit"": Terminate Protocol, Trap(FPU).
TLICI5490-41

FIGURE 3-30. Slave Processor Status Word Format.

Any operand indicated as being of type “f” will not cause
a transfer if the Register addressing mode is specified.
This is because the Floating Point Registers are physi-
cally on the Floating Point Unit and are therefore avail-
able without CPU assistance.

3.9.3 Memory Management Instructions

Table 3-5 gives the protocols for Memory Manage-
ment instructions. Encodings for these instructions may
be found in Appendix A. .

In executing the RDVAL and WRVAL instructions, the
CPU calculates and issues the 32-bit Effective Address
of the single operand. The CPU then performs a single-
byte Read cycle from that address, allowing the MMU to
safely abort the instruction if the necessary information
is not currently in physical memory. Upon seeing the
memory cycle complete, the MMU continues the proto-
col, and returns the validation result in the F bit of the
Slave Status Word.

The size of a Memory Management operand is always a
32-bit Double Word. For futher details of the Memory
Management Instruction set, see the Programmer’s
Manual and the NS16082 MMU Data Sheet.

Table 3-5.
Memory Management Instruction Protocols.

Operand1 Operand 2 Operand1 Operand2 ReturnedValue PSR Bits
Mnemonic Class Class Issued Issued Type and Dest. Affected
RDVAL " addr N/A D N/A N/A F
WRVAL * addr N/A D N/A N/A F
LMR ™~ read.D N/A D N/A N/A none
SMR* write.D N/A N/A N/A Dto Op. 1 none
NOTE:

In the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single-byte Read cycle from that memory
address. For details, see the Programmer’s Manual and the NS16082 Memory Management Unit Data Sheet.

D =Double Word.
* = Privileged Instruction: will trap if CPU is in User Mode.
N/A= Not Applicable to this instruction.

156

3.9.4 Custom Slave Instructions

Provided in the NS16032 is the capability of communi-
cating with a user-defined, “Custom” Slave Processor.
The instruction set provided for a Custom Slave
Processor defines the instruction formats, the operand
classes and the communication protocol. Left to the
user are the interpretations of the Op Code fields, the
programming model of the Custom Slave and the actual
types of data transferred. The protocol specifies only the
size of an operand, not its data type.

Table 3-6 lists the relevant information for the Custom
Slave instruction set. The designation “c” is used to
represent an operand which can be a 32-bit (“D”) or
64-bit (“Q”) quantity in any format; the size is deter-
mined by the suffix on the mnemonic. Similarly, an “i”
indicates an integer size (Byte, Word, Double Word)
selected by the corresponding mnemonic suffix.

Any operand indicated as being of type ‘c’ will not
cause a transfer if the register addressing mode is
specified. It is assumed in this case that the slave proc-
essor is already holding the operand internally.

For the instruction encodings, see Appendix A.

Table 3-6.
'Custom Siave Instruction Protocols.

Operand1 Operand2 Returned Value

Operand1 Operand 2 PSR Bits
Mnemonic Class Class Issued Issued Type and Dest. Affected
CCALOc read.c rmw.c c c ctoOp. 2 none
CCAL1c read.c rmw.c c c ctoOp.2 none
CCAL2c read.c rmw.c c c ctoOp. 2 none
CCAL3c read.c rmw.c c c ctoOp.2 none
CMOVOc read.c write.c c N/A ctoOp.2 none
CMOV1ic read.c write.c c N/A ctoOp. 2 none
CMOV2c read.c write.c c N/A ctoOp. 2 none
CCMPc read.c read.c c c N/A N,ZL
CCVOci read.c write.i c N/A itoOp. 2 none
CCVi1ici read.c write. i c N/A itoOp. 2 none
CCv2ci read.c write.i c N/A itoOp. 2 none
CCVSic read.i write.c i N/A ctoOp. 2 none
ccv4DQ read.D write.Q D N/A QtoOp.2 none
CCvsQD read.Q write.D Q N/A DtoOp. 2 none
LCSR read.D N/A D N/A N/A none
SCSR N/A ‘write.D N/A N/A DtoOp.2 none
CATSTO * addr N/A D N/A N/A F
CATST1* addr N/A D N/A N/A F
LCR* read.D N/A D N/A N/A ‘none
SCR* write.D N/A N/A N/A DtoOp. 1 none
NOTE:

D = Doubie Word.

i=Integer size (B,W,D) specified in mnemonic.

¢ = Custom size (D:32 bits or Q:64 bits) specified in mnemonic.
* = Privileged Instruction: will trap if CPU is in User Mode.
N/A = Not Applicable to this instruction.

157

4 AC Electrical Characteristics
4.1 Definitions

All the timing specifications given in this section refer to
50% of the leading or trailing edges of the appropriate
clock phase and 0.8V or 2.0V on the appropriate signal

as illustrated in Figures 4-1 and 4-2, unless specifically
stated otherwise.

Abbreviations:
L.E—leading edge
T.E.—trailing edge

PHIn 50% - PHIn — 50%
— 24v - 24V
SIG1 SiG1
tsIG11
L 08 v tsiG11
- ——0.45V
[1SIG2h 24v r 24V
2.0v t81G2h
SIG2 SIG2
L —_ 0.45V - ———— — 0.45V
TUCI5490-42 TLIC/5490-43
FIGURE 4-1. Timing Specmcatlon Standard FIGURE 4-2. Timing Specification Standard
(Signal Valid After Clock Edge) (Signa! Valid Before Clock Edge)
4.2 Timing Tables
4.2.1 Output Signals: Internal Propagation Delays
Maximum times assume capacitive loading of 100pF
Name Description Figure Reference/Conditions | Min. | Typ. | Max. | Unit
taLy Address bits 0-15 valid 4-3 after L.E., PHI1 T1 50 | ns
taLh Address bits 0-15 hold 4-3 after L.E., PHI1 Tmmu or T2| 0 ns
tov Data valid (write cycle) 4-3 after L.E., PHI1 T2 50 ns
ton Data hold (write cycle) 4-3 after L.E., PHI1next T1orTi| 0 ns
tAHY . Address bits 16-23 valid 4-3 after L.E.,, PHI1 T1 50 ns
tAHh Address bits 16-23 hold 4-3 after L.LE,PHI1next T1orTi| 0 ns
tALADSs Address bits 0-15 set up to ADS T.E. 4-4 before ADS reaches 2.0V 20 ns
tAHADSS Address bits 16-23 set up to ADS T.E. 4-4 before ADS reaches 2.0V 20 ns
tALADSh Address bits 0-15 hold from ADS T.E. 4-9 after ADS reaches 2.0V 10 ns
tAHADSh Address bits 16-23 hold from ADS T.E. 4-8 after ADS reaches 2.0V 10 ns
taLs Address bits 0-15 floating (no MMU) 4-4 after L.E., PHI1 T2 25 | ns
taLme Address bits 0-15 floating (with MMU) 4-8 after L.E., PHI1 Tmmu 25 ns
takimi Address bits 16-23 floating (with MMU) 4-8 after L.E., PHI1 Tmmu 25 ns
tHeEy HBE signal valid 4-3 after L.E., PHI1 T1 70 | ns
thBEn HBE signal hold 4-3 after L.LE.,PHI1next T1orTi| 0 ns
tsTv Status (ST0-ST3) valid 4-3 after L.E., PHI1 T4 45 ns
(before T1, see note)
tsTh Status (ST0-ST3) hold 4-3 after L.E., PHI1 T4 (after T1) | 0 ns
tpDINY DDIN signal valid 4-4 after L.E., PHI1 T1 65 ns
toping DDIN signal hold 4-4 after L.E., PHI1next T1orTi| 0 ns
tapsa ADS signal active (low) 4-3 after L.E., PHI1 T1 40 ns
taDSia ADS signal inactive 4-3 after T.E., PHI1 T1 45 | ns
taDsw ADS pulse width 4-3 at 0.8V, both edges 35 ns
tosa DS signal active (low) 4-3 after L.E., PHI1 T2 45 | ns

158

4.2.1 Output Signals: Internal Propagation Delays (continued)

Name Description Figure Reference/Conditions | Min. | Typ. | Max. | Unit
tpsia DS signal inactive 4-3 after L.E., PHI1 T4 ‘ 40 | ns
taLs ADO-AD15 floating (caused by OLD) 4-5 after L.E., PHI1 T1 25 | ns
tant A16-A23 floating (caused by HOLD) 4-5 after L.E., PHI1 T1 25 | ns
taDst ADS floating (caused by HOLD) 4-5 after L.E., PHI1 Ti 55 | ns
thBEf HBE floating (caused by H LD) 4-5 after L.E., PHI1 Ti 55 | ns
tooing DDIN floating (caused by HOLD) 4-5 after L.E., PHI1 Ti 55 | ns
tHLDAa HLDA signal active (low) 4-5 after L.E., PHI1 Ti 75 | ns
tHLDAIa HLDA signal inactive 4-7 after L.E., PH Ti 75 | ns
taps: @212313' ;%‘i’l;‘)s from floating 4-7 |after LE, PHI Ti 55 | ns
thee ;:s:e'g';?' r:e(;‘:g‘)s from floating 4-7 |after LE., PHH Ti 55 | ns
toDINY ZZL'::;{‘;L’S‘L‘S;‘S from floating 4-7 |after LE. PHH Ti 55 | ns
taLs ADO-AD?15 floating (caused by FLT) 4-8 after L.E., PHI1 Tf 30 | ns
topint DDIN signal floating (caused by FLT) 4-8 after FLT reaches 0.8V 50 | ns
thEl HBE signal low (caused by FLT) 4-8 after FLT reaches 0.8V 65 | ns
toDiNe g:ll}l\sl:ég;;:::_e%urns from floatmg 4-9 after FLT reaches 2.0V 50 | ns
tHeEr HBE signal returns from floating 4-9 | after FLT reaches 2.0V 75 | ns

(caused by FLT)
tspca SPC output active (low) 4-12 | after L.E, PHH T1 35 | ns
tspcia SPC output inactive 4-12 | after L.E., PHI1 T4 35 | ns
tspent SPC output nonforcing 4-14 |after LE., PHI2 T4 10 | ns
tov Data valid (slave processor write) 4-12 after L.E., PHI1 T1 50 ns
ton Data hold (slave processor write) 4-12 after L.E., PHItnext T1orTi| 0 ns
tpFsw PFS pulse width 4-17 |at 0.8V, both edges 70 ns
tersa PFS puise active (low) 4-17 | after L.E., PHI2 50 | ns
tpFsia PFS pulse inactive 4-17 | after L.E., PHI2 50 | ns

before L.E., PHI1 T1
tiLos 1LO signal setup 4-19a of first interlocked 0 ns
write cycle
} after L.E., PHI1 T3

tiLon 1LO signal hold 4-19b | of last interlocked 0 ns

: read cycle
tiLoa TLO signal active (low) 4-20 after L.E., PHI1 . 70 | ns
tiLoia 1LO signal inactive 4-20 |after L.E., PHI1 70 | ns
tuss U/S signal setup 4-21 before T.E., PHI1 T4 or Ti 10 ns
tush uis signal hold 4-21 after L.E., PHI1 T1 2 tep
tnsPF ';%iﬁgﬁ:‘:;z:;ew" to next 4-18b | after LE., PHI1T1 4 top
t PFS clock ¢ nex

PFNS nonsequentm?ﬁ;&he t 4-18a | before L.E., PHI1 T1 4 tep

tixer Last operand transfer of an instruction 4-28 before L.E., PHI1 T1 of 0 i

to next PFS clock cycle first bus cycle of transfer Cp
NOTE:

Every memory cycle starts with T4,during which Cycle Statusisapplied. IftheCPUwasmImg thesequencewnlbe CLUTLTA T

sequence will be: .. T4,T1.."

"./fthe CPUwas notidling,the

159

4.2.2 Input Signal Requirements:

This setup time is necessary to ensure prompt acknowledgement via HLDA and the ensuing floating of CPU off the buses. Note that the time from

Name Description Figure Reference/Conditions | Min. | Typ. | Max. | Unit
tpwR Power stable to RST T.E. 4-24 | after Vg reaches 4.5V 50 us
tols Data in setup (read cycle) 4-4 before T.E., PHI2 T3 10 ns
toin Data in hold (read cycle) 4-4 after T.E., PHI2 T3 10 ns
tHLDa HOLD active (low) setup time (See note) 4-5 before T.E., PHI2 TX1 25 ns
tHLDIa HOLD inactive setup time 4-7 before T.E., PHI2 Ti 25 ns
tHLDR HOLD hold time 4-5 after L.E., PHI1 TX2 0 ns
tFLTa FLT active (low) setup time 4-8 before T.E., PHI2 Tmmu 25 ns
trLTia FLT inactive setup time 4-9 | before T.E., PHI2 T2 25 ns
tRDYs RDY setup time 4-10, 4-11| before T.E., PHI2 T2 0r T3 15 ns
tRDYh RDY hold time 4-10, 4-11| after T.E., PHI1 T3 0 ns
tasTs ABT setup time (FLT inactive) 4-22 | before T.E., PHI2 Tmmu 20 ns
tasts ABT setup time (FLT active) 4-23 | beforeT.E., PHI2 T2 20 ns
tasTh ABT hold time 4-22 | after L.E., PHI1 0 ns
trsTs RST setup time 4-24, 4-25| before T.E., PHI1 20 ns
tRsTw RST pulse width 4-25 | at 0.8V (both edges) 64 tep
tinTs INT setup time 4-26 before T.E., PHI1 20 ns
tNMIw NMI pulsewidth 4-27 at 0.8V (both edges) 40 ns
tpis Data setup (slave read cycle). 4-13 before T.E., PHI2 T1 10 ns
tpin Data hold (slave read cycle) 4-13 after T.E., PHI2 T1 10 ns
tspcw SPC pulse width (from slave processor) 4-12 | at 0.8V (both edges) 20 ns
tats AT/SPC setup for address 4-15 | before LE, PHI1of 1 tep

translation strap cycle during which RST
pulse is removed
tath ATISPC hold for address 4-15 | after TE, PHITof 2 tep
translation strap cycle during which RST
pulse is removed
NOTE:

the receipt of the HOLD signal until the CPU floats is a function of the time HOLD sngnal goes Iow the state of the RDY input (in MMU systems), and the
length of the current MMU cycle.

4.2.3 Clocking Requirements:

Name Description Figure Reference/Conditions | Min. | Typ. | Max. | Unit
tour PHI1, PHI2 rise time 4-16 z;’e‘écgage 2) 5 | ns
— o,
tous PHI1, PHI2 fall time 4-16 g‘é’:gfg;ozf of Von 5 | ns
tcih PHI1, PHI2 high time 4-16 0.4 tep
tou PHI1, PHI2 low time 4-16 0.35 tep
tep Clock period 4-16 100 15000 | ns
tovL Non-overlap time 4-16 at 10% of Vcy (see page 2) 0 ' ns

160

| T T2 3 T4
I
PHi1 [_[—| [
PHI2 [l I I I I I
t v tALh
ADO-1S [wess- DATA OUT
tAHV —==1tpv toh |
At6-23 [(VALID
= taDSia taHh ™|
Al [tADSW
tADSa tHBE «-J fren
WBE [) VALID
—— tgev |
o [. (HIGH)
—- STV
$103 [' VALID ‘SJ'.E;;:P NEXT
—_ tDSa S S
|
= = 1DSia
rov [(HIGH) |
TLICI5490-44

FIGURE 4-3. Write Cycle.

T1 T2 T3 T4

PHI2 [] []]’;] [_I
ADO-15 | (] ADDRESS | d;;:m
?A{‘f] [="oin

VALID

[~ 'AHADSs

L J
e

ALADSs

[
[
[
[
[
me[| X VALID
[
[
|
[

T\ | /

tDDINV | tDDIND
$T03 VALID)(fEsrz ETUTEEE
o8 N
RDY (HIGH)
TUC/5490-45

FIGURE 4-4. Read Cycle.

161

]

PHI2 [

™1

| TX2 T4

[

-

[L]

|
HOLD[_ |

*—'j}HLDh

tHLDAa

HLDA I:
ADS

tHBEf
tADst
tDDINt

HBE
DDIN

ADO-15 [

At16:23 [

FIGURE 4-5. Floating by HOLD Timing (CPU Not Idle Initially).’

S

ATING)
I

TLICI5490-46

Note that whenever the CPU is not idling (not in Ti), the HOLD request (HOLD low) must be active tHLDa before the trailing edge of PHI2 of the
clock cycle that appears two clock cycles before T4 (TX1) and stay low until tHLDh after the leading edge of PHI1 of the clock cycle that precedes
T4 (TX2) for the request to be acknowledged.

| |
[J_l Ti1 r—‘l Ti2 I‘—I
PHI1
PHI2 [I | I | I |
= tHLDNh
FOLD [
' : HLDAa
HLDA [
tHLDa :ADSf
Y HBES
a%' 9 tDDINS
BDIN (FLOATING)
ADOA5 I: T T TT T T TRoatNG [T T T
I | _
A16:23 [(FLOATING)

TLICI5490-47

FIGURE 4-6. Floating by HOLD Timing (CPU Initially Idle).

Note that during Ti1 the CPU is already idling.

.

[

—

Ti T4

PHI2 [

L

tHLDia -~

—={ tHLDh

AOLD [/ :
— tHLDAIa

HLDA [
f 'HBEr [+

- :ADSr

ADS, DDINr

HBE,| —r———rmm———f ———— ——— (HIGH)

DOIN (FLOATING)
A16:23 _] _______ [_______ _<
ADO-15

(FLOATING) TL/C/5490»4‘8

FIGURE 4-7. Release from HOLD.

162

CPU

CYCLES n
MMU m
CYCLES [l
PHIt []

TMMU T

TMMU T

[T

[L [l

—

s—&[

|

tFLTa taLf

ADOS | ADDRESS (CPUDY-———L— Hy-————d e e

(CPU) l (FLOATING) \—"(FLOATING, DRIVEN BY MMU)
Al °"ﬁ’ [- ADDRESS (CPU) —_

-~ (CPU) (FLOATING, DRIVEN BY MMU)

—_ tapmt

ADS [~

(CPU) [! tALADSH

I tAHADSh

DDIN R

(cPU) > (FLOATING

3, DRIVEN BY MMU)

—

tDDINt

e [

FIGURE 4-8. FLT Initiated Float Cycle Timing.

—

(FORCING LOW)

TUCI5490-49

cPU
CYCLES 0 T2 T3 T4
MMU
CYCLES Tmmu
PHI1[I | l l
Pulz[l I l I
FIT ¢
(MMU) _._/ tFLTia
at6-23[_
(CPU) (FLOATING, DRIVEN BY MMU)
BoiR j‘DDINr
(CPU)[<]
ADS
(CPU) |
tHBEr

HBE }

(FORCING LOW)

TLICI5490-50

FIGURE 4-9. Release from FLT Timing.

Note that when FLT is deasserted the CPU restarts driving DDIN before the MMU releases it. This, however, does not cause any conflict, since
both CPU and MMU force DDIN to the same logic level.

pidiphlin
oo ally

tRDYh
RDY [
tRDYs

FIGURE 4-10. Ready Sampling (CPU Initially READY).

Tior
Tmmu

[]

T3

nl

e

TUCI5490:51

163

| L
s I O I

PHI2 [l_—[l I I——L
| N
™ ["——/I—I 'RDYs tnDIVh
TLIC/5490-52

FIGURE 4-11. Ready Sampling (CPU Initially NOT READY).

T4

T

|
[T

|
[U

g S N N w | T

t
|~ toh Dis

AD015 [— DATA ADO-15 [— VALID [

DATA (FROM SLAVE)

~ tspcw L == - -
sre | T\ /]
tsPCa tspPCia i
|

tov
————

wa[T/ Bom ["IN

sTo-3 [STATUS VALID

NEXT STATUS

- NEXT CYCLE
ST0-3 [STATUS VALID TATUS

ADS [(HiGH) ADS [

TLC/5490-53

FIGURE 4-12. Slave Processor Write Timing.

£ s R o B o N
1T

PHI2 [

L»H PCnt

= N_/ T

TLIC/5490-55

FIGURE 4-14. SPC Non-Forcing Delay.

After transferring last operand to a Slave Processor, CPU
turns OFF driver and holds SPC high with internal 5KQ pullup.

| | | | l |

(HIGH)

TUC/5490-54

FIGURE 4-13. Slave Processor Read Timing.

-

RSTIABT

AT/5PC [

taTs tath

(L gl
X

FIGURE 4-15. Reset Configuration Timing.

TL/C/5490-56

164

tcLh

— ——tCLf

[teLl
PHI1 .
-/ tcp .

[toLr
PHI2

—~ ‘-——— tovL

FIGURE 4-16. Clock Waveforms.

t,
'PEsa "Fs"’ tPESW
PFS [
\;)
TL/IC/5490-58

FIGURE 4-17. Relationship of PFS to Clock Cycles.

|
Bl BNyl
=T ___/ o
sT0a X CODE 1001

TUC/5490-59

FIGURE 4-18a. Guaranteed Delay, PFS to Non-Sequential Fetch.

TUCI5490-57

\ ™ | T2] o0 0 l l I l
SiglglisMalisly
. ((
\va .
ADS
ST0-3 CODE 1001
- {(
_ —)
' PFS
‘ tNSPF

TLIC/5490-60

FIGURE 4-18b. Guaranteed Delay, Non-Sequential Fetch to PFS.

165

PHI1
ADS

iLo

PHI1
ADS

Lo

[]
.Lo[]

PHI

ADS

2K

FIGURE 4-21. U/S Relationship to Any Bus Cycle —

u/s

T3ORTI

]

T4ORTi ‘

]
[] l_l

m |
F_l)

___]_

o
./

tLos

TL/CI5490-61

FIGURE 4-19a. Relationship of ILO to First Operand Cycle
of an Interlocked Instruction.

T3ORTi

(]

TAORTI

|
[] ﬂ

f__J

.
T

<_l

HLoh

TUC/5490-62

FIGURE 4-19b. Relationship of ILO to Last Operand Cycle
of an Interlocked Instruction.

LT

L L

HLoa

tLoia

TL/C/5490-63

FIGURE 4-20. Relationship of ILO to Any Clock Cycle.

,TSORTi l T4ORTi it .

LT L

L]

"—'-l tuss

VALID

TL/C/5490-64

Guaranteed Valid Interval.

166

w117

—

[LT

ADS

tABTs

RST/ABT

tABTh

FIGURE 4-22. Abort Timing, FLT Not Applied.

T

.

PHH1

¢

=

T

-

T2

ol

TLIC/5490-65

-
cilniiy

[]

LT

ps/FT

/

taBTs

RST/ABT

tABTh

FIGURE 4-23. Abort Timing, FLT Applied.

45V _jr—

vce 4
PHI [

RST/ABT [

TL/C/5490-66

{L

tRSTw

1

FIGURE 4-25. Non-Power-On Reset.

167

[LT

m—r[_——\

b~ tiNTs

I

TL/C/5490-69

FIGURE 4-26. INT Interrupt Signal Detection.
Violation of tINTs timing is allowed, but detection then occurs

one clock cycle later.

FIRST BUS CYCLE
T T2 l T3

INMIw

—

TLIC/5490-70

FIGURE 4-27. NMi Interrupt Signal Timing.

! T4

NEXT
TiorTi |
|

[

[
L/

]

TUC/5490-71

FIGURE 4-28. Relationship Between Last Data Transfer of
an Instruction and Pulse of Next Instruction.

NOTE:

In a transfer of a Read-Modify-Write type operand, this is the Read transfer, displaying
RMW Status (Code 1011).

168

Appendix A: Instruction Formats
NOTATIONS:

Integer Type Field

B = 00 (Byte)

W = 01(Word)

D = 11 (Double Word)

Floating Point Type Field
F =1 (Std. Floating: 32 bits)
L =0 (Long Floating: 64 bits)

¢ = Custom Type Field
D=1 (Double Word)
Q=0 (QuadWord)
op = Operation Code

Valid encodings shown with each format.

gen, gen 1, gen 2 = General Addressing Mode Field
' See Sec. 2.2 for encodings.

General Purpose Register Number

Condition Code Field

0000 = EQual: Z= 1

0001 = NotEqual:Z=0

0010 = Carry Set:C = 1

0011 = Carry Clear:C =0

0100 = Higher: L'=1

0101 = Loweror Same:L =0

0110 = Greater Than: N = 1

0111 = Lessor Equa: N =0

1000 = Flag Set: F =1

1001 = Flag Clear:F =0
1010=LOwer:L=0andZ=0

1011 = Higheror Same:L=1orZ =1
1100 = Less Than:N=0andZ=0
1101 = Greateror Equal: N=10orZ =1
1110 = (Unconditionally True)

1111 = (Unconditionally False)

reg =
cond =

short = Short Immediate value. May contain:
quick: Signed 4-bit value, in MOVQ, ADDQ,

CMPQ, ACB.
Condition Code (above), in Scond.
CPU Dedicated Register, in LPR, SPR.

0000 = US

0001 — 0111 = (Reserved)
1000 = FP

1001 = SP

1010 = SB

1011 = (Reserved)

1100 = (Reserved)

1101 = PSR

1110 = INTBASE

1111 = MOD

Options: in String Instructions

[ow [o+
T = Translated
B = Backward
U/W = 00: None
01: While Match
11: Until Match

cond:
areg:

Configuration bits, in SETCFG:
lefe e

mreg: MMU Register number, in LMR, SMR.

0000 = BPRO

0001 = BPR1

0010 = (Reserved)
0011 = (Reserved)
0100 = PFO

0101 = PF1 ‘
0110 = (Reserved)
0111 = (Reserved)

1000 = SC
1001 = (Reserved)
1010 =MSR -
1011 = BCNT
1100 = PTBO
1101 = PTB1
1110 = (Reserved)
1111 =EIA
7 0
Format 0
Bcond (BR)
7 [}
ARARAANY
Format 1
BSR -0000 ENTER —1000
RET —-0001 EXIT —1001
CXP -0010 NOP -1010
RXP —-0011 WAIT —-1011
RETT -0100 DIA —-1100
RETI -0101 FLAG -1101
SAVE -0110 SvC -1110
RESTORE —-0111 BPT -1111
15 87 0
TTTT [T T T [TTT]T
gen i short op 1 Llj«_]
Format 2
- ADDQ —-000 ACB -100
CMPQ -001 MovQ -101
SPR -010 LPR -110
Scond -011

169

16{15 . 8y7

15 8|7 0 23 0
TT I T[T T T[T TTT T[] T T T T[T T T T[T T T[T [TTTTTTT
gen | op 11111[i—| l gen 1 gen 2 op li 11001110
Format 3 Format 7
CXPD —-0000 ADJSP -1010 MOVM —-0000 MUL —1000
BICPSR -0010 JSR —1100 CMPM —0001 MEI -1001
JUMP —-0100 CASE -1110 INSS -0010 Trap (UND) —1010
BISPSR -0110 EXTS —-0011 DEI -1011
rap (UND) on : MOVZBW —0101 REM ~1101
. MOVziD -0110 MOD -1110
MOVXiD —-0111 DIv 1111
15
'TT FJ T I I | l | l TJ
gen 1 gen2
23 16(15 8|7 >0
TT T T[T T 1T 711 T T T T T1
Format 4 [gen 1 gen2 reg [i 101110
ADD —0000 SuB ~1000 Nop
CMP —-0001 ADDR —1001
BIC -0010 AND -1010 Format 8
ADDC -0100 SuBC -1100
MOV —-0101 TBIT —-1101 EXT —~000 INDEX ~100
OR -0110 XOR -1110 CVTP -0 01 FFS -101
INS -010
CHECK -0 11
MOVSU -110, reg =001
23 16115 0 MOVUS -110, reg =011
[rlllrllHulll!llTlll
00000 short i {0 0001110 23 16[15 7 0
TTTT T 1 T TT T TTT1
[gen1 gen 2 ll 00111110
Format5
MOVS ~0000 SETCFG ~0010
CMPS 0001 SKPS 0011 Format 9
Trap (UND) on 1XXX, 01XX MOVit -000 ROUND -100
LFSR -001 TRUNC -101
MOVLF —-010 SFSR -110
MOVFL -011 FLOOR —-111
23 16(15 8|7 0
HHIITIIIIIIIIIIIII
I gen 1] gen2 op Ii 01001110
Format 6
7 .0
ROT —0000 NEG —-1000
ASH ~0001 NOT ~1001 [" ot °I
CBIT —0010 Trap (UND) —-1010
CBITI —-0011 SuUBP —-1011
Trap (UND) -0100 ABS -1100
LSH —-0101 COM -1101 Format 10
SBIT -0110 1BIT —-1110
SBITI -0111 ADDP -1111 Trap (UND) Always

170

16;15 8,7 [} 23 15|f5 8|7 0
IIIIIIIIII! TTT T T 17T ‘ TTTTTTT
lgenl gen2 ||1011111o] nnnt10110

Operation 1D B
Format 11 Word vie
Format 15
ADDf -0000 Divf —-1000
MOV —0001 Trap (UND) —1010 (Custom Stave)
CMPf -0010 Trap (UND) —1011
suBf -0100 MULF ~1100
NEGf —-0101 ABSf -1101
Trap (UND) —0110 Trap (UND) —1110 nnn Operation Word Format
Trap (UND) -0111 Trap (UND) —-1111 _
23 16 15
TTTTT1 T 1 x
000 gen i short I l i
Format 15.0
7 0
TT T 1111 CATSTO —0000 LCR —-0010
11111110 CATST1 -0001 SCR -0011
Trap (UND) on all others
Format 12 -
23 16| 15 8]
Trap (UND) Always TT 1T T1 % T I T1 T
001 gen 1 gen2 op cl i
Format 15.1
7 4 :
AAFPFULRR CCvs -000 ccvz: -100
oo i1 1 o] LCSR —~001 cevi ~101
CCV5 -010 SCSR -110
Format 13 CCv4 -011 CCVO —111
8
Trap (UND) Always ‘ | T TT 1 l I I T T 1
101 gen1 gen 2 op xlc
Format 15.5
23 16 15 817 0
T T TT T[T [T 1T TTT71 CCALO —0000 CCAL3 1000
| gent | shon IOI o l rjooortnt °] CMOV0 —0001 Trap (UND) —1010
CCMP -0010 Trap (UND) —1011
Format 14 CCAL1 -0100 CCAL2 -1100
CMOV2 —-0101 CMOV1 —1101
RDVAL ~0000 LMR —-0010 Trap (UND) —0110 Trap (UND) —1110
WRVAL —0001 SMR —0011 Trap (UND) 0111 Trap (UND) —1111

Trap (UND) on 01XX, 1XXX

it nnn = 010, 011, 100, 110, 111

then Trap (UND) Always

Format 16 Format 19
Trap (UND) Always Trap (UND) Always
B 0 implied Inmediate Encodings: v
|1 101111 ol 7 0
- T T T T T T T
7 4] <] r4 3 r2 [} 4]
Format 17 1 | 1 1 i 1 |
Register Mask, appended to SAVE, ENTER
Trap (UND) Always
7 0
T T T T T T T
7 0 r0 r1 r2 [() [r6 (74
7 | L 1 | | 1]
I tooor °] Register Mask, appended to RESTORE, EXIT
Format 18 7 [
T T T T T T
Trap (UND) Always offset | leng:h -1
1]] 1

Offset/Length Modifier appended to INSS, EXTS

172

€Ll

XCTAL2 PER PERIPH. CYCLE
L WA : READY
XCTAL1 NS16201 WAITS j¢—
TCu WAIT4 j¢— | WAIT REQUESTS
WAIT2 le— [(ADDR. DECODED OR STRAPPED}
RESET _— .
RSTI WAITT f¢— T
PHI RD >
PHI2 WR -+
ADS |e WR
ASTO CTTL DDIN RDY DBE
iLo
BE
. _ HOLD
r HLDAO
y 3 3 A 4 »
Y Pl HOLD ST
RDY PHI1 PHI2 iLO HBE HOLD o|pryy FOLD RDY RST PHYSICAL
lpHI ADDR.
HALDA »IHALDAT ALDAO) VALID
DS/FLT FLT PAV STROBE -
NTS j INT PFS —+»|{PFS ADDRESS
: Wt NS16032 u/s »uss (24) ADDRESS BUS
cPU ABS D5 NS16082 LATCH/
ADS > . MMU BUFFER (24)
DDIN —»{ DDIN
ST0-ST3 ST0-ST3 .
RST/ABT ABT
ADDR/DATA AT/SPC —»|SPC ADDR/DATA
DDIN
ADDR/DATA
MULTIPLEXED .
BUS EN DIR
STO-ST1 MULTIPLEXED DATA BUS,
NS16081 BUS
FPU RST|e + —RsT MEMORY/ 16) (16)

CLK}e

PERIPHERALS

DATA BUFFERS

FIGURE B-1. System Connection Diagram.

TLIC/S054-72

suonsabbng Hujoepaiu) ‘g xipuaddy

ORDERING INFORMATION

NS16032D-10
NS16032N-10

DEVELOPMENT TOOLS ORDERING INFORMATION
DB16000 Evaluation Board

Physical Dimensions inches (millimeters)

NSX-16
SFW-90-A010

NS-ISE-16
SPM-90-A1632

Cross Software Package (VAX/VMS)

Cross Software Package
(STARPLEX II™)

In-System Emulator (VAX/VMS)
In-System Emulator (STARPLEX 1)

7 1 oD

NS Package N48A

24%
1"
a8 47 :_‘. 'l_s' “ a3 a2 41 'l_!‘ 3 EL n 3 'J_S‘ M '1_3‘ 32 li_l‘ 2 ,13.. 28 ‘Z_Yl ‘1_5A 25
¥
0580 0610
) (14.73) (15.49)
MAX MAX
/nn NO. 1 IDENT !
|
& t
Tz 3 4 § 5 7 & 9 W n mw | w % w8 nm oW 1w @ n o2 A
0.110-0200 B85 A TYe—] o
! 0670 oy | (2794-5.080) (1.143)
(17.018) i | 0.030-0.060
— 1 (0762-1528) J_
t T 0.008-0.015
b VP LEADS
L ‘ {0203-0.381) veanica
0.035-0.055 |__0.100 :0010 ___" 0015-0.023 0.580-0620 T0 15° MAX
ae-i33n sz I aiose | SEATINGPLARE 0.125 {1489-1575) AR
. . {3.175) REF
Ceramic Dual-In-Line Package (D)
NS Package D48A
2.440
5198 "
148 147] [a6] [a5| [aa] f[a3] [a2] [a1] [a0] [39] [38] [37] [36] [35] [3a] (33 [32] [3]] 28] _J27] 2
——
0.550 +0.005 0062 |
(1397£0927) (1.574)
RAD
PINNO. 1
10ENT T .
3 T 53 33 5 3 1) 5 O)) 2 3 2 N 2
0.060
(1.524)
| Do
| (0762
0.600-0.620 I wac 01300005
(15.24-15.74) 1 (3.302 T" 127)
-—

\ 1 '[7
86094
Y 0.580 T | oosotoos | 0.100+0.010 Il 0 0 ! "
X : 0.508) 050 & 01000, 0.018+0.003 0050
! fara) N MM . z;’ (1.2720.381) i {25420.250) —~ "~ osrzo0m " fin P
0.009-0015 __j_ 3.175)
10.229-0.381) MIN
+0.025
L
(15.88 +2:53%) Molded Dual-In-Line Package (N)

174

National
Semiconductor

NS32032-6, NS32032-4

PRELIMINARY

High-Performance Microprocessors

General Description

The NS32032 functions as a central processing unit (CPU)
in National Semiconductor’s NS16000™ microprocessor
family. It has been designed to optimally support micro-
processor users who need the ability to use a large
addressing space for large programs ‘and/or large data
structures. Because large programs must realistically be
generated and maintained in high-level languages, the
NS§16000 architecture provides for very efficient compila-
tion while remaining easy to program at the assembler
level for optimizations. NS16000 architecture provides
for full virtual memory capability, in conjunction with
the NS16082 Memory Management Unit (MMU). High per-
formance floating-point instructions are provided with the
NS16081 Floating-Point Unit (FPU). The NS32032-4 and
NS32032-6 have different timing parameters. Refer to Sec-
tion 4 for timing specifications.

Features

32-bit Architecture and Implementation

32-bit Data Bus

16-Mbyte Uniform Addressing Space

Powerful Instruction Set

— General 2-Address Capability

— Very High Degree of Symmetry

— Addressing Modes Optimized for High Level
Lanuguage References

NS16000 Slave Processor Support

High-Speed XMOS™ Technology

Single 5V Supply

68-pin Leadiess Chip Carrier

NS32032 CPU Block Diagram

ADD/DATA- CONTROLS & STATUS

DATA
BUS INTERFACE CONTROL
INSTRUCTIONS | 32
MICROCODE ROM
AND
SBYTE CONTROL LOGIC
QUEUE
'8 | iNsTRUCTION
| * DECODER
7]
DISPLACEMENT AND 2
IMMEDIATE EXTRACTOR g CFG REGISTER
3 ‘
:
£
@
REGISTER SET 8
9 INTBASE
0 SB WORKING
[) FP REGISTERS
0 SP1
0 SPO
0 PC
RO
Ri \Y4
R2 32-BIT
"3 ALU
R4 |
R5 |
R6 !
R7 :
MOD |
PSR ;
A |
e J

TUC/54911

Absolute Maximum Ratings

Temperature under bias 0°Cto +70°C
Storage Temperature —65°C to +150°C
All input or output voltages with

respect to GND -0.5Vto+7V
Power Dissipation 1.5Watt

Note: Absolute maximum ratings indicate limits beyond which
permanent damage may occur. Continuous operation at these
limits is not intended; operation should be limited to those condi-
tions specified under DC Electrical Characteristics.

DC Electrical Characteristics: Ns32032-4 T, = 010 +70°C, Ve = 5V +5%, GND = OV
NS32032-6 Tp = 0to +70°C, Vgc = 5V +5%, GND = 0V
Symbol Parameter Conditions Min. Typ. Max. Unit
Vin Logical 1 Input Voltage 2.0 Voc+0.5 \"
ViL Logical O input Voltage -0.5 0.8 \%
VeH Logical 1 Clock Voltage PHI, PHI2 pins only Vee—0.5 Vcct0.5 v
VoL Logical 0 Clock Voitage PHI1, PHI2 pins only -0.5 0.3 v
Logical 0 Ciock Voltage, .
Vour | . Transient (ringing tolerance) PHI1, PHI2 pins only 05 06 v
Vou Logical 1 Output Voltage lon = —400uA 2.4 \
VoL Logical 0 Output Voltage loL=2mMA 0.45 \'
liLs AT/SPC Input Current (low) Vin = 0.4V, AT/SPC in input mode 0.05 1.0 mA
. 0 <Vin < Vg, All inputs except
Iy Input Load Current PHI1, PHI2, AT/SPC ‘—20 20 uA
loorr| Output Leakage Current 0.4 <Vourt €V -20 20 uA
Icc Active Supply Current loutr =0, Ta =25°C 180 300 mA
Connection Diagram
- g 2
BCBcEEz338885888¢2
B UuUUu U UUUOUL -
RESERVED AD22
B AD21
PFS AD20
DDIN AD19
RESERVED AD18
RESERVED AD17
PHI AD16
PHI2 N$32032 AD15
ADS cpu AD14
uis AD13
RESERVED AD12
RESERVED ADN
ATISPC AD10
OSIFT AD9
RST/ABT AD8
RESERVED AD7
RESERVED (CONNECT TO GROUND) AD6

AONNNNONONOO0000A
hoed NI e O > = o5 D T N T D
EIEERIZ53E528852588¢8
x i Ec
Bottom View

TUC/5491-2

176

1 NS32032 Pin Descriptions

The following is a brief description of all NS32032
pins. The descriptions reference portions of the Func-
tional Description, Section 3.

Unless otherwise indicated (see pin 34) reserved pins
should be left open.

1.1 SUPPLIES
Power (Vcc): +5V Positive Supply. Sec. 3.1.

Logic Ground (GNDL): Ground reference for on-chip
logic. Sec. 3.1.

Buffer Ground #1 (GNDB1): Ground reference for
half of the on-chip drivers connected to output pins.
Sec. 3.1.

Buffer Ground #2 (GNDB2): Ground reference for
the other half of on-chip drivers connected to output
pins. Sec. 3.1.

'Back-Bias Generator (BBG): Output of on-chip sub-
strate voltage generator. Sec. 3.1.

1.2 INPUT SIGNALS

Clocks (PHI1, PHI2): Two-phase clocking signals. Sec.
3.2

Ready (RDY): Active high. While RDY is inactive, the
CPU extends the current bus cycle to provide for a
slower memory or peripheral reference. Upon detecting
RDY active, the CPU terminates the bus cycle. Sec.
3.4.1.

Hold Request (HOLD): Active low. Causes the CPU to
release the bus for DMA or multiprocessing purposes.
Sec. 3.6.

Interrupt (INT): Active low. Maskable Interrupt request.
. Sec. 3.8.

Non-Maskable Interrupt (NMI): Active low. Non- Mask-
able Interrupt request. Sec. 3.8.

Reset/Abort (RST/AB'I). Active low. If held active for
one clock cycle and released, this pin causes an Abort
Command, Sec. 3.5.4. If held longer, it initiates a Reset,
Sec. 3.3.

Physical Address, bit 1 (PA1): Active high. This
input is connected to address A1. It is used during
MMU cycles to tell the CPU which word the MMU is
accessing, so the appropriate byte enable control sig-
nals.can be activated. .

1.3 OUTPUT SIGNALS

Address Strobe (ADS): Active low. Controls address
latches; indicates start of a bus cycle. Sec. 3.4.

Data Direction In (DDIN): Active low. Status signal
indicating direction of data transfer during a bus cycle.
Sec.3.4.

Byte Enable (BED-BE3): Active low. Four control sig-
nals enabling data transfers on individual bus bytes.
Sec. 3.4.3.

Status (ST0-ST3): Active high. Bus cycle status-code,
STO least significant. Sec. 3.4.2. Encodings are:

0000 — dle: CPU Inactive on Bus.
0001 — Idle: WAIT Instruction.
0010 — (Reserved)
0011 — Idle: Waiting for Siave.
0100 — Interrupt Acknowledge, Master.
0101 — Interrupt Acknowledge, Cascaded.
0110 — End of Interrupt, Master.
0111 — End of Interrupt, Cascaded.
1000 — Sequential Instruction Fetch.
1001 — Non-Sequential Instruction Fetch.
1010 — Data Transfer.
1011 — Read Read-Modify-Write Operand.
1100 — Read for Effective Address.
1101 — Transfer Slave Operand.

. 1110 — Read Slave Status Word.
1111 — Broadcast Slave ID.

Hold Acknowledge (HLDA): Active low. Applied by the
CPU in response to HOLD input, indicating that the bus
has been released for DMA or multiprocessing pur-
poses. Sec. 3.6.)

User/Supervisor (U/S): User or Supervisor Mode
status. Sec. 3.7. High state indicates User Mode, low
indicates Supervisor Mode. Sec. 3.7.

Interlocked Operation (iLO): Active low. Indicates that
an interlocked instruction is being executed. Sec. 3.7.

Program Flow Status (PFS): Active low. Pulse indi-
cates beginning of an instruction execution. Sec. 3.7.

1.4 INPUT-OUTPUT SIGNALS

Address/Data 0-23 (AD0-AD23): Active high. Multi-
plexed Address/Data information. Bit 0 is the least sig-
nificant bit of each. Sec. 3.4.

Data Bits 24-31 (D24-D31): Active high. The high
order 8 bits of the data bus.

Address Translation/ Slave Processor Control (AT/
SPC): Active low. Used by the CPU as the data strobe
output for Slave Processor transfers; used by Slave
Processors to acknowledge completion of an instruc-
tion. Sec. 3.4.6; Sec. 3.9. Sampled on trailing edge of
Reset pulse as Address Translation Strap. Sec. 3.5.1.

Data Strobe/Float (DS/FLT): Active low. Data Strobe
output, Sec. 3.4, or Float Command input, Sec. 3.5.3.
Pin function is selected on AT/SPCpin, Sec.3.5.1.

177

‘

2 Architectural Description
2.1 PROGRAMMING MODEL

The NS16000 architecture includes 16 registers on
the NS32032 CPU.
DEDICATED

32

PROGRAM COUNTER | PC

STATICBASE | SB

USER STACK PTR. | SP1

be

INTERRUPT BASE | INTBASE
MOD

INTERRUPT STACK PTR. | sPo

e o
o

[

| ‘

| _FRAME POINTER | FP
[

[

|

PSR

[smus | wooue |

GENERAL

Re |

R [

1
|
'
n5|)
1
)
1
|

TLIC/5481-3

FIGURE 2-1. The General and Dedicated Registers.

2.1.1 General Purpose Registers

There are eight registers for meeting high speed general
storage requirements, such as holding temporary vari-
ables and addresses. The general purpose registers are

free for any use by the programmer. They are thirty-two -

bits in length. If a general register is specified for an
operand that is eight or sixteen bits long, only the low
part of the register is used; the high part is not refer-
enced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the NS32032 are
assigned specific functions.

PC: The PROGRAM COUNTER register is a pointer to
the first byte of the instruction currently being executed.
The PC is used to reference memory in the program
section. (In the NS32032 the upper eight bits of this
register are always zero.)

SPO0, SP1: The SPO register pointsto the lowest address
of the last item stored on the INTERRUPT STACK. This
stack is normally used only by the operating system. Itis
used primarily for storing temporary data, and holding
return information for operating system subroutines and
interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on
the USER STACK. This stack is used by normal user
programs to hold temporary data and subroutine return
information.

In this document, reference is made to the SP register.
The terms “SP register” or “SP” refer to either SPO or
SP1, depending on the setting of the S bit in the PSR
register. If the S bitinthe PSRis 0 then SP refers to SPO.
If the S bitin the PSR is 1 then SP refers to SP1. (In the
NS32032 the upper eight bits of these registers are
always zero).

Stacks in the NS16000 family grow downward in mem-
ory. A Push operation pre-decrements the Stack Pointer
by the operand length. A Pop operation post-increments
the Stack Pointer by the operand length.

FP: The FRAME POINTER register is used by a proce-
dure to access parameters and local variables on the
stack. The FP register is set up on procedure entry with
the ENTER instruction and restored on procedure termi-
nation with the EXIT instruction.

The frame pointer holds the address in memory occu-
pied by the old contents of the frame pointer. (In the
NS32032 the upper eight bits of this register are
always zero.)

SB: The STATIC BASE register points to the global
variables of a software module. This register is used to
support relocatable global variables for software mod-
ules. The SB register holds the lowest address in memory
occupied by the global variables of a module. (In the
NS32032 the upper eight bits of this register are
always zero.)

INTBASE: The INTERRUPT BASE register holds the
address of the dispatch table for interrupts and traps
(Sec. 3.8). The INTBASE register holds the lowest
address in memory occupied by the dispatch table. (In
the NS32032 the upper eight bits of this register are
always zero.)

MOD: The MODULE register holds the address of the
module descriptor of the currently executing software
module. The MOD register is sixteen bits long, therefore
the module table must be contained within the first 64K
bytes of memory.

PSR: The PROCESSOR STATUS REGISTER (PSR)
holds the status codes for the NS32032
microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all
programs, but the high order eight bits are accessible
only to programs executing in Supervisor Mode.

15 8|7 0
DX [el sTuln]z[eXIXI L 7] <]

TL/CI5491-4

FIGURE 2-2. Processor Status Register.

178

C: The C bit indicates that a.carry or borrow
occurred after an addition or subtraction instruc-
tion. It can be used with the ADDC and SUBC
instructions to perform multiple-precision integer
arithmetic calculations. It may have a setting of 0
(no carry or borrow) or 1 (carry or borrow).

T: The T bit causes program tracing. If this bit is a 1,
a TRC trap is executed after every instruction
(Sec. 3.8.5).

L: The L bitis altered by comparison instructions. In a
comparison instruction the L bit is set to “1” if the
second operand is less than the first operand, when
both operands are interpreted as unsigned integers.
Otherwise, it is set to “0". In Floating Point comparl-
sons, this bit is always cleared.

F:The Fbitisa general condition flag, which is altered
by many instructions (e.g., integer arithmetic instruc-
tions use it to indicate overflow).

Z: The Zbit is altered by comparison instructions. Ina
comparison instruction the Z bit is set to “1” if the
second operand is equal to the first operand; other-
wise itis setto “0"

N: The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to “1” if the
second operand is less than the first operand, when
both operands are interpreted as signed integers.
Otherwise, itis setto “0"

U: If the U bitis “1” no privileged instructions may be
executed. If the U bit is “0” then all instructions may
be executed. When U =0 the NS32032is said to be in
Supervisor Mode; when U = 1 the NS32032 is said to
be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing
certain registers which could interfere with the operat-
ing system. For example, a User Mode program is
prevented from changing the setting of the flag used
to indicate its own privilege mode. A Supervisor Mode
program is assumed to be a trusted part of the operat-
ing system, hence it has no such restrictions.

S: The S bit specifies whether the SPO registe} or SP1
register is used as the stack pointer. The bit is auto-
matically cleared on interrupts and traps. It may have

TLICI5491-5

FIGURE 2-3. CFG Register.

The CFG | bitdeclares the presence of external interrupt
vectoring circuitry (specifically, the NS32032 Interrupt
Control Unit). If the CFG | bit is set, |nterrupts requested
through the INT pin are “Vectored.” If it is clear, these
interrupts are “Non-Vectored.” See Sec. 3.8.

The F, M and C bits declare the presence of the FPU,
MMU and Custom Slave Processors. If these bits are
not set, the corresponding instructions are trapped as

~ being undefined.

a setting of 0 (use the SPO register) or 1 (use the SP1 ~

register).

P: The P bit prevents a TRC trap from occurring more
than once for an instruction (Sec. 3.8.5). It may have a
setting of 0 (no trace pending) or 1 (trace pending).

I: if | = 1, then all interrupts will be accepted (Sec.
3.8). If I = 0, only the NMI interrupt is accepted. Trap
enables are not affected by this bit.

2.1.3 The Configuration Register (CFG)

Within the Control section of the NS32032 CPU is the
four-bit CFG Register, which declares the presence of
certain external devices. It is referenced by only one
instruction, SETCFG, which is intended to be executed
only as part of system initialization after reset. The for-
mat of the CFG Register is shown in Figure 2-3.

2.1.4 Memory Orgamzatlon

The main memory of the NS32032 i is a uniform linear
address space. Memory locations are numbered sequen-
tially starting at zero and ending at 22* — 1. The number
specifying a memory location is called an address. The
contents of each memory location is a byte consisting of
eight bits. Unless otherwise noted, diagrams in this
document show data stored in memory with the lowest
address on the right and the highest address on the left.
Also, when data is shown vertically, the lowest address
is at the top of a diagram and the highest address at the
bottom of the diagram. When bits are numbered in a
diagram, the least significant bit is given the number
zero, and is shown at the right of the diagram. Bits are
numbered in increasing significance and toward the left.

Byte at Address A A
Two contiguous bytes are called a word. Except where
noted (Sec. 2.2.1), the least significant byte of a word is
stored at the lower address, and the most significant
byte of the word is stored at the next higher address. In
memory, the address of a word is the address of its least
significant byte, and a word may start at any address.

I1s " MSB’s s|7 LSB's ﬂ

A+1
Word at Address A

A

Two contiguous words are called a double word. Ex-
cept where noted (Sec. 2.2.1), the least significant
word of a double word is stored at the lowest address
and the most significant word of the double word is
stored at the address two greater. In memory, the
address of a double word is the address of its least
significant byte, and a double word may start at any
address.

31 MSB’'s 24{23 16(15 8{7 LsB's 0

A+3 A+2 A+1

Double Word at Address A

Although memory is addressed as bytes, it is actually
organized as double-words. Note that access time to a
word or a double-word depends upon its address, e.g.
double-words which are aligned to start at addresses
that are multiples. of four will be accessed more
quickly than those not so aligned. This also applies to
words that cross a double-word boundary.

179

2.1.5 Dedicated Tables

Two of the NS32032 dedicated registers (MOD and
INTBASE) serve as pointers to dedlcated tables in
memory.

The INTBASE register points to the Interrupt Dispatch
and Cascade tables. These are described in Sec. 3.8 .

The MOD register contains a pointer into the Module
Table, whose entries are called Module Descriptors. A
Module Descriptor contains four pointers, three of which
are used by NS32032. At any point in time, the MOD
register contains the address of the Module Descriptor
for the currently running module. It is automatically up-
dated by the Call External Procedure instructions (CXP
. and CXPD).

The format of a Module Descriptor is shown in Figure
2-4. The Static Base entry contains the address of
static data assigned to the running module. It is
loaded into the CPU Static Base register by the CXP
and CXPD instructions. The Program Base entry con-
tains the address of the first byte of instruction code in
the module. Since a module may have multiple entry
points, the Program Base pointer serves only as aref-

erence to find them.

- T
31 0
. STATIC BASE
LINK TABLE ADDRESS
PROGRAM BASE
RESERVED
- -~

TLICI5491-6

FIGURE 2-4. Module Descriptor Format.

The Link Table Address points to the Link Table for the
currently running module. The Link Table provides the
information needed for:

1) Sharing variables between modules. Such variables
are accessed through the Link Table via the External
addressing mode.

2) Transferring control from one module to another.
This is done via the Call External Procedure (CXP)
instruction.

The format of a Link Table is given in Figure 2-5. A Link
Table Entry for an external variable contains the 32-bit
address of that variable. An entry for an external proce-
dure contains two 16-bit fields: Module and Offset. The
Module field contains the new MOD register contents for
the module being entered. The Offset field is an unsigned
number giving the position of the entry point relative to
the new module’s Program Base pointer.

For further details of the functions of these tables, see
the NS16000 Programmer’s Manual.

—_— _
ENTRY |31 q]
0 ABSOLUTE ADDRESS (VARIABLE)
3 ABSOLUTE ADDRESS (VARIABLE)
2 - OFFSET MODULE (PROCEDURE)
J d

TLICIS491-7

FIGURE 2-5. A Sample Link Table.

2.2 INSTRUCTION SET
2.2.1 General Instruction Format

Figure 2-6 shows the general format of an NS16000
instruction. The Basic Instruction is one to three bytes
long and contains the Opcode and up to two 5-bit General
Addressing Mode (“Gen”) fields. Following the Basic
Instruction field is a set of optional extensions, which
may appear depending on the instruction and the ad-
dressing modes selected.

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
A
/4 Y4] N
: T
mspzlmsm ouspzlmsm i !
.)]

IMPLIED INDEX INDEX GEN ~ GEN |
IMMEDIATE DISP DISP ADDR | ADDR | OPCODE
OPERAND(S) BYTE BYTE M‘ZDE E M%DE E

MM IMM : :
] ;

1

=

L .

TLICI5491-8

FIGURE 2-6. General Instruction Format.

180

Index Bytes appear when either or both Gen fields spec-
ify Scaled Index. In this case, the Gen field specifies
only the Scale Factor (1, 2, 4 or 8), and the Index Byte
specifies which General Purpose Register to use as the
index, and which addressing mode calculation to per-
form before indexing: See Figure 2-7.

0 SIGNED DISPLACEMENT

BYTE DISPLACEMENT: RANGE —64 TO +63 -

GEN. ADDR. MODE REG. NO.

TUC/5491-9

FIGURE 2-7. Index Byte Format.

Following Index Bytes come any displacements
(addressing constants) orimmediate values associated
with the selected addressing modes. Each Disp/Imm
field may contain one or two displacements, or one
immediate value. The size of a Displacement field is
encoded within the top bits of that field, as shown in
Figure 2-8, with the remaining bits interpreted as a signed
(two’s complement) value. The size of an immediate
value is determined from the Opcode field. Both Dis-
placement and Immediate fields are stored most-signi-
ficant byte first. Note that this is backward from the usual
memory representation of data (Sec. 2.1.4).

Some instructions require additional, “implied” immedi-
ates and/or displacements, apart from those associated
with addressing modes. Any such extensions appear at
the end of the instruction, in the order that they appear
within the list of operands in the instruction definition
(Sec. 2.2.3).

2.2.2 Addressing Modes

The NS32032 CPU generally accesses an operand by
calculating its Effective Address based on information
available when the operand is to be accessed. The
method to be used in performing this calculation is spe-
cified by the programmer as an “addressing mode.’

Addressing modes in the NS32032 are designed to
optimally support high-level language accesses to var-
iables. In nearly all cases, a variable access requires
only one addressing mode, within the instruction that
acts upon that variable. Extraneous data movement is
therefore minimized.

NS32032 Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight
General Purpose Registers. In certain Slave Processor
instructions, an auxiliary set of eight registers may be
referenced instead.

Register Relative: A General Purpose Register con-
tains an address to which is added a displacement value
from the instruction, yielding the Effective Address of
the operand in memory.

Memory Space: Identical to Register Relative above,
except that the register used is one of the dedicated
registers PC, SP, SB or FP. These registers point to data
areas generally needed by high-level languages.

DOUBLE WORD DISPLACEMENT: RANGE (ENTIRE ADDRESSING SPACE)
TUC/5491-10

FIGURE 2-8. Displacement Encodings.

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the
Effective Address of the operand.

Immediate: The operand is encoded within the instruc
tion. This addressing mode is not allowed if the operand
is to be written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry
of the current Link Table. To this pointer value is added a
displacement, yielding the Effective Address of the
operand.

Top of Stack: The currently-selected Stack Pointer
(SPO or SP1) specifies the location of the operand. The
operand is pushed or popped, depending on whether it
is written or read.

Scaled Index: Although encoded as an addressing
mode, Scaled Indexing is an option on any addressing
mode except Immediate or another Scaled Index. It has
the effect of calculating an Effective Address, then multi-
plying any General Purpose Register by 1, 2, 4 or 8 and
addingitinto the total, yielding the final Effective Address
of the operand.

Table 2-1 is a brief summary of the addressing modes.
For a complete description of their actions, see the
Programmer’s Manual.

181

ENCODING

Register
00000
00001
00010
00011
00100
00101
00110
00111

Register Relative
01000
01001
01010
01011
01100
01101
01110
01111

Memory Relative
10000
10001
10010

Reserved
10011

Immediate
10100

Absolute
10101

External
10110

Top of Stack
10111

Memory Space
11000
11001
11010
11011

Scaled Index
11100
11101
11110
11111

MODE

Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7 :

Register 0 relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory relative
Stack memory relative
Static memory relative

TABLE 2-1.
NS32032 Addressing Modes

ASSEMBLER SYNTAX

RO or FO
R1orF1
R2or F2
R3or F3
R4 or F4
R5 or F5
R6 or F6
R7or F7

disp(R0)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(disp1(FP))
disp2(disp1(SP))
disp'2(disp1 (SB))

(Reserved for Future Use)

Immediate

Absolute

External

Top of stack

Frame memory
Stack memory
Static memory
Program memory

Index, bytes

Index, words

Index, double words
Index, quad words

value

@disp

EXT (disp1) + disp2

TOS

disp(FP)
disp(SP)
disp(SB)
* + disp

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

EFFECTIVE ADDRESS

None: Operand is in the specified
register.

Disp + Register.

Disp2 + Pointer; Pointer found at
address Disp1 + Register. “SP”
is either SPO or SP1, as selected
in PSR.

None: Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
atLink Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; “SP” is either

“ SPO or SP1, as selected in PSR.

EA (mode) + Rn.

EA (mode) +2x Rn.
EA (mode) +4 x Rn.
EA (mode) + 8 x Rn.

‘Mode’ and ‘n’ are contained
within the Index Byte.

EA (mode) denotes the effective
address generated using mode.

182

2.2.3 Instruction Set Summary

Table 2-2 presents a brief description of the NS32032
instruction set. The Format column refers to the
Instruction Format tables (Appendix A). The Instruc-
tion column gives the instruction as coded in assem-
bly language, and the Description column provides a
short description of the function provided by that
instruction. Further details of the exact operations per-
formed by each instruction may be found in the Pro-
grammer’s Manual.

Notations:

i = Integer length suffix: B = Byte
W = Word
D = Double Word

f = Floating Point length suffix: F = Standard Floating
L = Long Floating

gen = General operand. Any addressing mode can be
specified.

short A 4-bit value encoded within the Basic
Instruction (see Appendix A for encodings).

imm Implied immediate operand. An 8-bit value
appended after any addressing extensions.

disp = Displacement (addressing oonstant) 8, 16 or 32
bits. All three lengths legal.

reg = Any General Purpose Register: RO-R7.

areg = Any Dedicated/Address Register: SP, SB, FP,
MOD, INTBASE, PSR, US (bottom 8 PSR bits).

mreg
Register.

Any Memory Management Status/Control

creg = A Custom Slave Processor Register (Implemen-
tation Dependent).

cond = Any condition code, encoded as a 4-bit field
within the Basic Instruction (see Appendix A for
encodings).

183

MOVES
Format Operation

MOVi
MOVQi
MOVMi
MOvzBwW
MOVziD
MOVXBW
MOVXiD
ADDR

ANNNNNN DS

INTEGER ARITHMETIC
Format Operation

ADDi
ADDQi
ADDCi
SUBi
SUBCi
NEGi
ABSi
MULI
QUOI
REMi
DIvi
MODi
MELi
DEIi

NNNSNNNNOOOPRARARANDS

PACKED DECIMAL (BCD)
Format Operation

6 ADDPi
6 SUBPi

INTEGER COMPARISON
Format Operation

4 CMPi
2 CMPQi
7 CMPMi

LOGICAL AND BOOLEAN
Format Operation

ANDi
ORi
BICi
XORi
COMi
NOTi
Scondi

NOOBMAMDMNDN

TABLE 2-2.

NS32032 Instruction Set Summary

Operands

gen,gen
short,gen
gen,gen,disp
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

Operands

gen,gen
short,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

Operands

gen,gen
gen,gen

Operands

' gen,gen

short,gen
gen,gen,disp-

Operands

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

Description

Move a value.

Extend and move a 4-bit constant.
Move Multiple: disp bytes.

Move with zero extension.

Move with zero extension.

Move with sign extension.

Move with sign extension.

Move Effective Address.

Description

Add. -

Add 4-bit constant.

Add with carry.

Subtract.

Subtract with carry (borrow).
Negate (2's complement).
Take absolute value.

Mulitiply.

Divide, rounding toward zero.
Remainder from QUO.
Divide, rounding down.
Remainder from DIV (Modulus).
Multiply to Extended Integer.
Divide Extended Integer.

Description

Add Packed.
Subtract Packed.

- Description

Compare.
Compare to 4-bit constant.
Compare Multiple: disp bytes.

Description

Logical AND.

Logical OR.

Clear selected bits.

Logical Exclusive OR.

Complement all bits.

Boolean complement: LSB only.

Save condition code (cond) as a Boolean variable of size i.

184

SHIFTS

Format Operation Operands Description
6 - LSHi gen,gen Logical Shift, left or right.
6 ASHi gen,gen Arithmetic Shift, left or right.
6 ROTi . gengen Rotate, left or right.
BITS ‘
Format Operation Operands Description
4 TBITi gen,gen Test bit.
6 SBITi' gen,gen Test and set bit.
6 SBITIi gen,gen Test and set bit, interlocked.
6 CBITi gen,gen Test and clear bit.
6 CBITli gen,gen Test and clear bit, interlocked.
6 1BITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit.
BIT FIELDS

Bit fields are values in memory which are not aligned to byte boundaries. Examples are PACKED arrays and records used
in Pascal. “Extract” instructions read and align a bit field. “Insert” instructions write a bit field from an aligned source.

Format Operation Operands Description
8 EXTi reg,gen,gendisp Extract bit field(array oriented).
8 INSi reg.gengendisp Insertbitfield (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.
ARRAYS
Format Operation Operands Description
8 CHECKI reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for mu!tiple-dimensipnal arrays.
STRINGS
String instmcﬁon; assign specific functions to the Gen- Options on all string instructions are:
eral Purpose Registers: ‘ B (Backward): Decrement string pointers after each
R4 - Comparison Value - step rather than incrementing.
R3 - Translation Table Pointer U (Until match): End instructionif String 1 entry
R2 - String 2 Pointer _ matches R4.
R1 - String 1 Pointer W (While match): End instruction if String 1 entry does
RO - Limit Count not match R4.
" All string instructions end when RO decrements to zero.
Format Operation Operands Description
5 MOVSi options Move String 1 to String 2.
‘ MOVST options Move string, translating bytes.
5 CMPSi options Compare String 1 to String 2.
CMPST options Compare, translating String 1 bytes.
5 SKPSi options Skip over String 1 entries.

SKPST options Skip, transiating bytes for Until/While.

185

JUMPS AND LINKAGE

Format Operation Operands
3 JUMP gen
0 BR disp
0 Bcond disp
3 CASEi gen
2 ACBiI short,gen,disp
3 JSR gen -
1 BSR disp
1 CXP disp
3 CXPD gen
1 SvC
1 FLAG
1 BPT
1 ENTER [reg list],disp
1 EXIT [reg list]
1 RET disp
1 RXP disp
1 RETT disp
1 RETI
CPU REGISTER MANIPULATION
Format |, Operation Operands
1 SAVE [reg list]
1 RESTORE [reg list]
2 LPRi areg,gen
2 SPRi areg,gen
3 ADJSPi gen
3 BISPSRi gen
3 BICPSRi gen
5 SETCFG [option list]
FLOATING POINT
Format Operation Operands
11 MOVf gen,gen
9 MOVLF gen,gen
9 MOVFL gen,gen
9 MOVif gen,gen
9 ROUNDfi gen,gen
9 TRUNCi gen,gen
9 FLOOR(i gen,gen
1 ADDf gen,gen
11 SuBf gen,gen
1" MULf gen,gen
11 Divf gen,gen
11 CMPf - gen,gen
11 NEGf gen,gen
11 ABSf gen,gen
9 LFSR gen
9 . SFSR gen
MEMORY MANAGEMENT
Format Operation Operands
14 LMR mreg,gen
14 SMR mreg,gen
14 RDVAL gen
14 WRVAL gen
8 MOVSUi gen,gen
8 MOVUSI gen,gen

Description

Jump.

Branch (PC Relative).

Conditional branch.

Multiway branch.

Add 4-bit constant and branch if non-zero.

Jump to subroutine.

Branch to subroutine.

Call external procedure.

Call external procedure using descriptor.

Supervisor Call.

Flag Trap.

Breakpoint Trap.

Save registers and allocate stack frame (Enter Procedure).
Restore registers and reclaim stack frame (Exit Procedure).
Return from subroutine.

Return from external procedure call.

Return from trap. (Privileged)

Return from interrupt. (Privileged)

Description

Save General Purpose Registers.

Restore General Purpose Registers.

Load Dedicated Register. (Privileged if PSR or INTBASE)
Store Dedicated Register. (Privileged if PSR or INTBASE)
Adjust Stack Pointer.

Set selected bits in PSR. (Privileged if not Byte length)
Clear selected bits in PSR. (Privileged if not Byte length)
Set Configuration Register. (Privileged)

Description

Move a Floating Point value.

Move and shorten a Long value to Standard.
Move and lengthen a Standard value to Long.
Convert any integer to Standard or Long Floating.
Convert to integer by rounding.

Convert to integer by truncating, toward zero.
Convert to largest integer less than or equal to value.
Add. ‘

Subtract.

Multiply.

Divide.

Compare.

Negate.

Take absolute value.

Load FSR.
Store FSR.

Description

Load Memory Management Register. (Privileged)
Store Memory Management Register. (Privileged)
Validate address for reading. (Privileged)

Validate address for writing. (Privileged)

Move a value from Supervisor

Space to User Space. (Privileged)

Move a value from User Space

to Supervisor Space. (Privileged)

186

MISCELLANEOUS

Format Operation
1 NOP
| WAIT
1 DIA
CUSTOM SLAVE
" Format Operation
15.5 - CCALOc
15.5 CCAL1c
15.5 CCAL2c
15.5 CCAL3c
15.5 CMOVOc
15.5 CMOV1ic
155 CMOV2c
15.5 CCMPc
15.1 CCVOci
15.1 CCV1ici
15.1 CCV2ci
15.1 CCVsic
15.1 CCVv4DQ
15.1 ccvsab
15.1 LCSR
15.1 SCSR
15.0, CATSTO
15.0 - CATST1
15.0 LCR
15.0 SCR

Operands

Operands

gen,gen
gen,gen
gen,gen
gen,gen

gen,gen
gen,gen
gen,gen

gen,gen

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

gen
gen
gen
gen

creg,gen
creg,gen

Description

No Operation.

Wait for interrupt. ‘

Diagnose. Single-byte “Branch to Self” for hardware
breakpointing. Not for use in programming.

Description
Custom Calculate.

Custom Move.

Custom Compare.
Custom Convert.

Load Custom Status Register.
Store Custom Status Register.

Custom Address/Test. (Privileged)

" (Privileged)

Load Custom Register. (Privileged)
Store Custom Register. (Privileged) .

187

3 Functional Description
3.1 POWER AND GROUNDING

The NS32032 requires a single 5-volt power supply,
applied on pin 9 (Vcc). See DC Specification Section.

Grounding connections are made on three pins. Logic
Ground (GNDL, pin 44) is the common pin for on-chip
logic, and Buffer Grounds (GNDB1, pin 43 and
GNDB2, pin 11) are the common pins for the output
drivers. For optimal noise immunity it is recommended
that GNDB1 and GNDB2 be connected together
through a single conductor, and GNDL be directly con-
nected to the middle point of this conductor. All other
* ground connections should be made to the common
line as shown in Figure 3-1.

In addition to V¢ and Ground, the NS32032 CPU uses
an internally-generated negative voltage. Itis necessary
to filter this voltage externally by attaching a pair of
capacitors (Fig. 3-1) from the BBG pin to ground.
Recommended values for these are:

C,: 1 uF, Tantalum.

C,: 1000 pF, low inductance. This should be either a
disc or monolithic ceramic capacitor.

+5V
NS32032 }_9 -
cPU
BBG |45
c1 c2
'GNDB2 |41
OTHER GROUND
GNDL |44 CONNECTIONS
GNDB1[43

TUC/5491-11

FIGURE 3-1. Recommended Supply Connections.

3.2 CLOCKING

The NS32032 inputs clocking signals from the NS16201
Timing Control Unit (TCU), which presents two non-
overlapping phases of a single clock frequency. These

-nn

phases are called PHI1 (pin 26) and PHI2 (pin 27). Their
relationship to each other is shown'in Figure 3-2.\

Each positive edge of PHI1 defines a transition in the
timing state (“T-State”) of the CPU. One T-State repre-
sents the execution of one microinstruction within the
CPU, and/or one step of an external bus transfer. See
the AC Specifications (Sec. 4) for complete specifica-

i

Sk

tions of PHI1 and PHI2.

[~=—ONE T-STATE -»|

- N

NON-OVERLAPPING

TUC/5491-12

FIGURE 3-2. Clock Timing Relationships.

As the TCU presents signals with very fast transitions, it
is recommended that the conductors carrying PHI1 and
PHI2 be kept as short as possible, and that they not be
connected anywhere except from the TCU to the CPU
and, if present, the MMU. A TTL Clock signal (CTTL) is
provided by the TCU for all other clocking.

3.3 RESETTING

The RST/ABT pin serves both as a Reset for on-chip
logic and as the Abort input for Memory-Managed sys-
tems. For its use as the Abort Command, see Sec.
3.54.

The CPU may be reset at any time by pulling the RST/
ABT pin low for at least 64 clock cycles. Upon detecting
a reset, the CPU terminates instruction processing, re-
sets its internal logic, and clears the Program Counter
(PC) and Processor Status Register (PSR) to all zeroes.

On application of power, RST/ABT must be held low for
at least 50 usec after V. is stable. This is to ensure that
all on-chip voltages are completely stable before opera-
tion. Whenever a Reset is applied, it must also remain

45V i~

vee —/
PHI1 I |

A(
N

LTl

RST/ABT

2 64 CLOCK
CYCLES

L

250 usec

!

TLIC/S49143

FIGURE 3-3. Power-on Reset Requirements.

active for not less than 64 clock cycles. The trailing
(positive-going) edge must occur while PHI1 is high,
and no later than 10 ns before the PHI1 trailing edge.
See Figures 3-3 and 3-4.

The NS16201 Timing Control Unit (TCU) provides cir-
cuitry to meet the Reset requirements of the NS32032
CPU. Figure 3-5a shows the recommended connections
for a non-Memory-Managed system. Figure 3-5b shows
the connections for a Memory-Managed system.

RST/ABT E§§§

L‘—“ =64 CLOCK ——
CYCLES

TUC/5491-14

L(
v

FIGURE 3-4. General Reset Timing.

Vce :
° NS16201 NS32032
Tcu CPU
'- ———————————— - 1’
i ' b3
- N i B AN S
| RES > D; — : RSTI RSTO RST/ABT
! P 11 b=
. d 1 1
EXTERNAL RESET | !
(OPTIONAL) : = | = > 50 usec
L4
RESET SWITCH SYSTEM RESET
(OPTIONAL)
. TLICI5491-15
FIGURE 3-5a. Recommended Reset Connections,
Non-Memory-Managed System.
Vece
NS16201 NS16082 NS32032
9 TCU MMU CPU
e —————— | S
[i 3
H [| T -
: RESET >—.—D> : : : RSTI . RSTO RST ABT RST/ABT
! | ! _!l -
U S, M, d \ |
EXTERNAL RESET | :
(OPTIONAL) { = = = 50 usec
]
| R |
RESET SWITCH
(OPTIONAL)

TUC/5491-16

FIGURE 3-5b. Recommended Reset Connections,
Memory-Managed System.

3.4 BUSCYCLES

The NS32032 CPU has a strap option which defines the
Bus Timing Mode as either With or Without Address
Translation. This section describes only bus cycles under
the No Address Translation option. For details of the use
of the strap and of bus cycles with address translation,
see Sec. 3.5.

The CPU will perform abus cycle for one of the following
reasons: .

1) To write or read data, to or from memory or a peri-
pheral interface device. Peripheral input and output
are memory-mapped in the NS16000 family.

2) To fetch instructions into the eight-byte instruction
queue. This happens whenever the bus would other-
wise be idle and the queue is not already full.

3) To acknowledge an interrupt and allow external cir-
cuitry to provide a vector number, or to acknowledge
completion of an interrupt service routine.

4) Totransferinformation to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are
identical. For timing specifications, see Sec. 4. The
only external difference between them is the four-bit
code placed on the Bus Status pins (ST0-ST3). Slave
Processor cycles differ in that separate control signals
are applied (Sec. 3.4.6).

The sequence of events in a non-Slave bus cycle is
shown below in Figure 3-7 for a Read cycle and Figure

-3-8 for a Write cycle. The cases shown assume that the

selected memory or interface device is capable of com-
municating with the CPU at full speed. If it is not, then
cycle extension may be requested through the RDY line
(Sec. 3.4.1).

189

A full-speed bus cycle is performed in four cycles of the
PHI1 clock signal, labeled T1 through T4. Clock cycles
not associated with a bus cycle are designated Ti (for
“Idle”).

During T1, the CPU applies an address on pins
ADO0-AD23. It also provides a low-going pulse on the
ADS pin, which serves the dual purpose of informing
external circuitry that a bus cycle is starting and of pro-
viding control to an external latch for demultiplexing
Address bits 0-23 from the ADO-AD23 pins. See Fig-
ure 3-6. During this time also the status signals DDIN,
indicating the direction of the transfer, and BEO-BES,
indicating which of the four bus bytes are to be refer-
enced, become valid.

During T2 the CPU switches the Data Bus, ADO-AD31
to either accept or present data. It also starts the data
strobe (DS), signalling the beginning of the data trans-
fer. Associated signals from the NS16201 Timing Con-
trol Unit are also activated at this time: RD (Read
Strobe) or WR (Write Strobe), TSO (Timing State Out-
put, indicating that T2 has been reached) and DBE
(Data Buffer Enable).

DDIN

The T3 state provides for access time requirements,
and it occurs at least once in a bus cycle. At the begin-
ning of T3, on the rising edge of the PHI1 clock, the RDY
(Ready) line is sampled to determine whether the bus
cycle will be extended (Sec. 3.4.1).

If the CPU is performing a Read cycle, the Data Bus
(ADO-AD31) is sampled at the falling edge of PHI2 of the
last T3 state. See Timing Specification, Sec. 4. Data
must, however, be held at least until the beginning of T4.
DS and RD are guaranteed not to go inactive before this
point, so the rising edge of either of them may safely be
used to disable the device providing the input data.

The T4 state finishes the bus cycle. At the beginning of
T4, the DS, RD or WR, and TSO SO signals go inactive, and
at the rising edge of PHI2, DBE goes inactive, having
provided for necessary data hold times. Addresses (and
Data during Write cycles) remain valid from the CPU
throughout T4. Note that the Bus Status lines (STO-ST3)
change at the beginning of T4, anticipating the following
bus cycle (if any).

[
I

I DO0-D31 |

AD0-AD23 BUFFER
NS32032
o] BE0-8E3
BEO-BE3
ADS *
A0
. .
Al
A
LATCH A2-A23
PHI1 PHI2 DS/FLT
DS
PHI1 PHI2 ADS DDIN DBE 7
RD
NS 16201 WR wA
. TS0
Ts0

TLC/5491-17

FIGURE 3-6. Bus Connections.

NS32032 CPU BUS SIGNALS

T4O0RTi I ™ 1 T2 | T T3 T4 | TI1O0RTi |

w [T
e [LML

_I
1

AD0-AD23 : 47///4%“%’?%’)—--@{ DATA IN >----— ~(NEXT ADD
.

1BE]

ST0-ST3

D24-D31

. l \\
N\

STATUS VALID X NEXT STATUS

| 22722 []
v e T X =
=[1/ \ /

l
| 722222227 | 2722777

NS16201 TCU BUS SIGNALS]

DDIN

[S=s
>

BE0-BE3

Y

AN\
N\N

RDY

<[/ \ /
= [/

[T 71 |\ a
= [/ |

FIGURE 3-7. Read Cycle Timing.

191

NS32032 CPU BUS SIGNALS

‘ T4ORTi I T1 ' T2 | T3 l T4 | T10RTi l

w [T
w [LML
N e [wwor| | Yo

ADO-AD23

[N\

D24-D31

NN\EENNE

ADS

ST0-ST3 :Zx STATUS VALID NEXT STATUS
DDIN [//// 7 \ NEXT
i B
BEO-BE3 7 VALID NEXT
=[1/ \ /
- —

w | 27272 | 222207

NS 16201 TCU BUS SIGNALS

/

/ \ /
=1 /] N\ /

/

FIGURE 3-8. Write Cycle Timing.

192

3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for
any speed of memory or peripheral device, the NS 16032
provides for extension of a bus cycle. Any type of bus
cycle except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8, note that during T3 all bus control
signals from the CPU and TCU are flat. Therefore, abus
cycle can be cleanly extended by causing the T3 state to
be repeated. This is the purpose of the RDY (Ready)
pin.

At the end of T2 on the falling edge of PHI2, the RDY

line is sampled by the CPU. If RDY is high, the next T- .

states will be T3 and then T4, ending the bus cycle. If
RDY is low, then another T3 state will be inserted after
the next T-state and the RDY line will again be sam-
pled on the falling edge of PHI2. Each additional T3
state after the first is referred to as a “WAIT STATE”.
See Figure 3-9.

T I T2 I

-

PHI1

T3

3

The RDY pin is driven by the NS16201 Timing Control
Unit, which applies WAIT States to the CPU as requested
on three sets of pins:

1) CWAIT (Continuous WAIT), which holds the CPU in
WAIT states until removed.

2) WAIT1, WAIT2, WAIT4, WAIT8 (Collectively WAITn),
which may be given a four-bit binary value requesting
a specific number of WAIT States from 0 to 15.

3) PER (Peripheral), which inserts five additional WAIT
states and causes the TCU to reshape the RD and
WR strobes. This provides the setup and hold times
required by most MOS peripheral interface devices.

Combinations of these various WAIT requests are both
legal and useful. For details on their use, see the
NS16201 Data Sheet.

Figure 3-10 illustrates a typical Read cycle, with two
WAIT states requested through the TCU WAITn pins.

| o | |

—

PHI 2

giligligh

I

/ 71

NEXT
STATE!
T3

NEXT
STATE:
T4

TUCI5491-20

FIGURE 3-9. RDY Pin Timing.

3.4.2 Bus Status

The NS32032 CPU presents four bits of Bus Status
information on pins STO-ST3. The various combinations
on these pins indicate why the CPU is performing a bus
cycle, or, if itis idle on the bus, then why it is idle.

Referring to Figures 3-7 and 3-8, note that Bus Status
leads the corresponding Bus Cycle, going valid one
clock cycle before T1, and changing to the next state at
T4. This allows the system designer to fully decode the
Bus Status and, if desired, latch the decoded signals
before ADS initiates the Bus Cycle.

The Bus Status pins are interpreted as a four-bit value,
with STO the least significant bit. Their values decode as
follows:

0000 - The bus is idle because the CPU does not yet
need access to the bus.

0001 - The bus is idle because the CPU is executing
the WAIT instruction.

0010 — (Reserved for future use.)

0011 - The bus is idle because the CPU is waiting for
a Slave Processor to complete an instruction.

0100 - Interrupt Acknowledge, Master.
The CPU is performing 4 Read cycle. To
acknowledge _receipt of a Non-Maskable
Interrupt {on NMI) it will read from address

FFFF00,, but will ignore any data provided.

To acknowledge receipt of a Maskable
Interrupt (on INT) it will read from address
FFFEOQQ,, expecting a vector number to be
provided from the Master NS16202 Interrupt
Control Unit. If the vectoring mode selected by
the last SETCFG instruction was Non-Vec-
tored, then the CPU will ignore the value it has
read and will use a default vector instead;
having assumed that no NS16202 is present.
See Sec. 3.4.5.

0101 - Interrupt Acknowledge, Cascaded.
' The CPU is reading a vector number from a

-

Cascaded NS16202 Interrupt Control Unit. .

The address provided is the address of the
NS16202 Hardware Vector register. See Sec.
3.4.5.

0110 - End of Interrupt, Master.
The CPU is performing a Read cycle to indi-
cate that itis executing a Return from Interrupt
(RETI) instruction. See Sec. 3.4.5.

0111 — End of Interrupt, Cascaded.
The CPU is reading froma Cascaded Interrupt
Control Unit to indicate that it is returning
" (through RETI) from an interrupt service rou-
tine requested by that unit. See Sec. 3.4.5.
1000 - Sequential Instruction Fetch.'
The CPU is reading the next sequential word
from the instruction stream into the Instruction

193

PREV. CYCLE NS32032 CPU BUS SIGNALS NEXT CYCLE

}'raon'n| LU S I B ¢ l(WAml(WAlT)I T4 |nonn

[T

T
e HﬂrrrqﬂrLl,

ADO-AD23 [Z/ / K Ve)—- 7/ /d//////l%mrim}-- NEXT ADDR
won [717 -0 000 o),

s [\/
STO-ST3 [Z% STATUS VALID NEXT STATUS

= [72 Jre |
-5 | K vauD X vexr
=[N\ /

NS16201 TCU CYCLE EXTENSION SIGNALS

AIERAR;
[7722207 NGl

= 22470 2 77077
w | N N2

RDY [/

(TCUTO CPU)
=[]
=[]
DBE []

TSO

NS16201 TCU BUS SIGNALS

\ /

N

\I\'\
_~
SN

—

TL/C/5491-21

FIGURE 3-10. Extended Cycle Example.

NOTE:
Arrows on CWAIT, PER, WAITn indicate points at which the TCU samples. Arrows on ADO-AD15 and
RDY indicate points at which the CPU samples.

194

Queue. It will do so whenever the bus would
otherwise be idle and the queue is not already
full.

1001 - Non-Sequential Instruction Fetch.
The CPU is performing the first fetch of instruc-
tion code after the Instruction Queue is purged.
This will occur as a result ofany jump or branch,
or any interrupt or trap, or execution of certain
instructions.

1010 — Data Transfer.
The CPU is reading or writing an operand of
an instruction.

1011 - Read RMW Operand.
The CPU is reading an operand which will
subsequently be modified and rewritten. If
memory protection circuitry would not allow
the following Write cycle, it must abort this
cycle. .

1100 — Read for Effective Address Calculation.
The CPU is reading information from memory
in order to determine the Effective Address of
an operand. This will occur whenever an
instruction uses the Memory Relative. or
External addressing mode.

1101 - Transfer Slave Processor Operand.
The CPU is either transferring an instruction
operand to or from a Slave Processor, or it is
issuing the Operation Word of a Slave Pro-
cessor instruction. See Sec. 3.9.1.

1110 - Read Slave Processor Status.

The CPU is reading a Status Word from a
Slave Processor. This occurs after the Slave
Processor has signalled completion of an in-
struction. The transferred word tells the CPU
whether a trap should be taken, and in some
instructions it presents new values for the
CPU Processor Status Register bits N, Z, L or
F. See Sec. 3.9.1.

1111 - Broadcast Slave ID.
The CPU is initiating the execution of a Slave
Processor instruction. The ID Byte (first byte
of the instruction) is sent to all Slave Proces-
sors, one of which will recognize it. From this
point the CPU is communicating with only one
Slave Processor. See Sec. 3.9.1.

3.4.3 Data Access Sequences

The 24-bit address provided by the NS32032 is a byte
address; that is, it uniquely identifies one of up to
16,777,216 eight-bit memory locations. An important
feature of the NS32032 is that the presence of a 32-bit
data bus imposes no restrictions on data alignment;
any data item, regardless of size, may be placed start-
ing at any memory address. The NS32032 provides
special control signals, Byte Enable (BEO-BE3) which
facilitate individual byte accessing on a 32-bit bus.

Memory is organized as four eight-bit banks, each

bank receiving the double-word address (A2-A23) in
parallel. One bank, connected to Data Bus pins

v

ADO-AD7 is enabled when BEO is low. The second
bank, connected to data bus pins AD8-AD15 is
enabled when BET is low. The third and fourth banks
are enabled by BE2 and BE3, respectively. See Figure
3-11.

BE3 BE2 BE1 BEO
8BTS | sBits | smits | sBits

A2-A23

TUC/5491-22
5

FIGURE 3-11. Memory Interface.

There are 12 combinations of operand lengths and
address bits A1, A0, which imply 10 different types of
bus accesses. Table 3-1 lists the bus access types, the
least significant address bits, and the byte enable
levels.

TABLE 3-1.
Bus Access Types
Type Operand A1, A0 BE3 BE2 BEi BEO
1 byte o0 1 1 1 0
2 byte 01 1 1 0 1
3 byte 10 1 0 1 1
4 byte 1N 0 1 1 1
5 word 00 1 1 0 0
6 word 01 i | 0 0 1
7 word 10 0 0 1 1
8 dw 00 0 0 0 0
9 dw 01 0 0 0 1
10 dw 00 1 0 0 0

Accesses of operands requiring more than one bus
cycle are performed sequentially, with no idle T-States
separating them. The number of bus cycles required
to transfer an operand depends on its size and its
alignment. Table 3-2 lists the bus cycles performed for
each situation.

195

TABLE 3-2.
Access Sequences

Data Bus

Cycle Type Address BE3 BE2 BE1 BEO Byte3 Byte2 Byte1 Byte0
A. Word at address ending with 11 _ “a
1. 4 A 0 1 1 1 Byte 0 X X X

2. 1 A+1 1 1 1 0 X X X Byte 1
B. Double word at address ending with 01 ‘ BYTE 3J BYTE 2 [swz 1 | BYTE o| “A
1. 9 A 0 0 0 1 Byte2 Byte1 ByteO X
2. 1 A+3 1 1 1 0 X X X Byte 3
C. Double word at address ending with 10 lBYTE 3 l BYTE 2 l BYTE 1| BYTE o] «a
1. 7 A 0 0 1 1 Byte1 Byte O X X
2. 5 A+2 1 1 0 0 X X Byte 3 Byte 2
D. Double word at address ending with 11 [svres|avie2|evre 1][BvrEo] «a
1. 4 A 0 1 1 1 Byte 0 X X X
2. - 10 A+1 1 0 0 0 X Byte 3 Byte2 Byte 1
E. Quad word at address ending with 00 I BYTE 7[BYTE 6 I BYTE 5] BYTE 4 | BYTE 3 l BYTE 2 I‘swe 1 ' BYTE o' “A
1. 8 A 0 0 0 0 Byte3 Byte2 Byte1 ByteO
Other bus cycles (instruction prefetch or slave) can occur here. ‘
2. 8 A+4 0 0 0 0 Byte7 Byte6 Byte5 Byte4
F Quad word at address ending with 01 ! BYTE 7 | BYTE 6 ‘ BYTE 5| BYTET[BYTE 3 | BYTE 2 | BYTE 1 l BYTE cﬂ «A
1. 9 A 0 o 0 1 Byte2 Byte1 ByteO X
2. 1 A+3 1 1 1 0 X X X Byte 3
Other bus cycles (instruction prefetch or slave) can occur here.
3. 9 A+4 0 0 0 1 Byte6 Byte5 Byte4 X
4, 1 A+7 1 1 1 0 X X X Byte 7
G. Quad word at address ending with 10 [evie 7] evre 6 [Byre 5| evre a [svres [evie2 [vre 1 [avreo] «a
1, 7 A 0 0 1 1 Byte1 Byte O X X
2. 5 ° A+2 1 1 0 0 X X Byte 3 Byte 2
Other bus cycles (instruction prefetch or slave) can occur here.
3. 7 A+d 0 0 1 1 Byte5 Byte 4 X X
4, 5 A+6 1 1 0 0 X X Byte 7 Byte 6
H. Quad word at address ending with 11 [evre 7] evres | Brre 5| Bvre 4 | BYTE‘:!J BviE2 | BYTE 1 [BYTED| A
1. 4 A 0 1 1.1 Byte 0 X X X
2. 10 A+1 1 0 0 0 X Byte3 Byte2 Byte1
Other bus cycles (instruction prefetch or slave) can occur here.
3, 4 A+4 0 1 1 1 Byte 4 X X X
4. 10 A+5 1 0 0 0. X Byte7 Byte6 Byteb
X =Don’t Care

196

3.4.3.1 Bit Accesses

The Bit Instructions perform byte accesses to the byte
containing the designated bit. The Test and Set Bit
instruction (SBIT), for example, reads a byte, alters it,
and rewrites it, having changed the contents of one bit.

3.4.3.2 BitField Accesses

An access to a Bit Field in memory always generates a
Double-Word transfer atthe address containing the least
significant bit of the field. The Double Word is read by an
Extract instruction; an Insert instruction reads a Double
Word, modifies it, and rewrites it.

3.4.3.3 Extending Multiply Accesses

The Extending Multiply instruction (MEI) will return a
result which is twice the size in bytes of the operands
which it reads. If the multiplicand is in memory, the
most-significant half of the result is written first (at the
higher address), then the least-significant half. This is
done in order to support retry if this instruction is aborted.

3.4.4 Instruction Fetches

Instructions for the NS32032 CPU are “prefetched”;
that is, they are input before being needed into the next
available entry of the eight-byte Instruction Queue. The
CPU performs two types of Instruction Fetch cycles:
Sequential and Non-Sequential. These can be distin-
guished from each other by their differing status combi-
nations on pins ST0-ST3 (Sec. 3.4.2).

A Sequential Fetch will be performed by the CPU when-
ever the Data Bus would otherwise be idle and the
Instruction Queue is not currently full. Sequential Fetches
are always type 8 Read cycles (Table 3-1).

A Non-Sequential Fetch occurs as a result of any break
in the normally sequential flow of a program. Any jump
or branch instruction, a trap or an interrupt will cause the
next Instruction Fetch cycle to be Non-Sequential. In
addition, certain instructions flush the instruction queue,
causing the next instruction fetch to display Non-
Sequential status. Only the first bus cycle after a break
displays Non-Sequential status, and that cycle de-
pends on the destination address.

3.4.5 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one
or more bus cycles whose purpose is interrupt control
rather than the transfer ofinstructions or data. Execution
of the Return from Interrupt instruction (RETI) will also
cause Interrupt Control bus cycles. These differ from
instruction or data transfers only in the status presented
on pins STO-ST3. All Interrupt Control cycles are single-
byte Read cycles.

This section describes only the Interrupt Control se-
quences associated with each interrupt and with the
return from its service routine. For full details of the
NS32032 interrupt structure, see Sec. 3.8.

197

TABLE 3-3.
Interrupt Sequences

Data Bus

Cycle Status Address DDIN BE3 BE2 BE1 BE0 Byte3 Byte2 Byte1 Byte 0
A. Non-Maskable Interrupt Control Sequences

Interrupt Acknowledge)
1 0100 FFFF00;g O 1 1 1 0 X X X X

Interrupt Return
None: Performed through Return from Trap (RETT) instruction.

B. Non-Vectored Interrupt Control Sequences
Interrupt Acknowledge

1 0100 FFFE00;3 O 1 1 1 0 X X X X
Interrupt Return)
1 010 FFFE00;g O 1 1 1 0 X X X X

C. Vectored Interrupt Sequences: Non-Cascaded.
Interrupt Acknowledge

1 0100 FFFEOQO4g 0 1 1 1 0 X X X Vector:
Range: 0-127
Interrupt Return
1 0110 FFFE004 O 1 1 1 0 X X X Vector: Same as
in Previous Int.
Ack. Cycle

D. Vectored Interrupt-Sequences: Cascaded

Interrupt Acknowledge

1 0100 FFFEOO0+s 0 1 1 1 0 X X X Cascade Index:
range —16to —1

(The CPU here uses the Cascade Index to find the Cascade Address.)

2 0101 Cascade 0 See Note Vector, range 0-255; on appropriate byte of
Address data bus.
Interrupt Return
1 0110 FFFE00 O 1 1 .1 0 X X X Cascade Index:
. Same as in
previous Int.
Ack. Cycle
(The CPU here uses the Cascade Index to find the Cascade Address.) ,
2 0111 Cascade 0 See Note X X X X
Address
X = Don’t Care
NOTE:

BEO-BE3 signals will be activated according to the cascaded ICU address. The cycle type can be 1, 2, 3, or 4, when reading the interrupt vector.
The vector value can be in the range 0-255.

198

3.4.6 Slave Processor Communication

In addition to its_use as the Address Translation strap
(Sec. 3.5.1), the AT/SPC pin is used as the data strobe
for Slave Processor transfers. In this role, itis referred to
as Slave Processor Control (SPC). In a Slave Processor
bus cycle, data is transferred on the Data Bus (ADO-
AD15), and the least significant two bits of CPU cycle
status (ST0-ST1) are monitored by each Slave Proces-
sor in order_to determine the type of transfer being
performed. SPC is bidirectional, but is driven by the
CPU during all Slave Processor bus cycles. See Sec.
3.9 for full protocol sequences.

PREV.CYCLE

l T4orTi

- LT

AD(0-15) <:> D(0-15)

AT/SPC SPC
NS32032 SLAVE
CPU PROCESSOR
ST0-ST3 ST0-ST3

TUC/5491-23

FIGURE 3-12. Slave Processor Connections.

™ i T4 T10RTi |

PHI 2 | l

LT L

SPC /
o

NN

ADO-AD15

==

2

ST0-ST3

Y

% VALID NEXT STATUS

-
= | 7%

\/
=t

[17

NOTE:
(1) CPU samples Data Bus here.

(2) Stave Processor samples CPU Status here.
(3) DBE and all other NS16201 TCU bus signals remain inactive because no ADS puise is received

from the CPU.

FIGURE 3-13. CPU Read from Slave Processor.

NEXT CYCLE

TUC/5491-24

199

0

3.4.6.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two
clock cycles, labelled T1 and T4 (see Figures 3-13 and
3-14). During a Read cycle, SPC is activated at T1, data
is sampled at T4, and SPC is removed. The Cycle
Status pins lead the cycle by one clock period, and are
sampled at the leading edge of SPC. During a Write
cycle, the CPU applies data and activates SPC at T1,
removing SPC at T4. The Slave Processor latches status
on the leading edge of SPC and latches data on the
trailing edge.

Since the CPU does not pulse the Address Strobe
(ADS), no bus signals are generated by the NS16201
Timing Control Unit. The direction of a transfer is deter-
mined by the sequence (“protocol”) established by the
instruction under execution; but the CPU indicates the

PREV.CYCLE

| T4O0ORTi ™

w [T

direction on the DDIN pin for hardware debugging
purposes.

3.4.6.2 Operand Transfer Sequences

A Slave Processor operand is transferred in one or more
Slave bus cycles. A Byte operand is transferred on the
least-significant byte of the Data Bus (AD0-AD7), and a
Word operand is transferred on bits ADO-AD15. A
Double Word is transferred in a consecutive pair of bus
cycles, least-significant word first. A Quad Word is
transferred in two pairs of Slave cycles, with other bus
cycles possibly occurring between them. The word
order is from least-significant word to most-significant.

Note that the NS32032 uses only the two least signifi-
cant bytes of the data bus for slave cycles. This is to
maintain compatibility with existing slave processors:

NEXT CYCLE
T4 T1ORTI ‘

T
SPC
L

1
i -

& Q)]

7%
ADO-AD1S | 7/ / DATA OUT NEXT
L 24 .
‘ (1)
[7
ST0-ST3 % VALID NEXT STATUS
L
I
ADS

W
Nz

__af 7
DBE

NOTE:

TLIC/5491-25

(1) Arrows indicate points at which the Slave Processor samples.

(2) DBE, being provided by the NS16201£U, remains inactive due to the fact that no pulse is
presented on ADS. TCU signals RD, WR and TSO also remain inactive.

FIGURE 3-14. CPU Write to Slave Processor.

200

3.5 MEMORY MANAGEMENT OPTION

The NS32032 CPU, in conjunction with the NS16082
Memory Management Unit (MMU), provides full support
for address translation, memory protection, and memory
allocation techniques up to and including Virtual Memory.

3.5.1 Address Translation Strap

The Bus Interface Control section of the NS32032 CPU
has two bus timing modes: With or Without Address
Translation. The mode of operation is selected by the
CPU by sampling the AT/SPC (Address Translation/
Slave Processor Control) pin on the rising edge of the
RST (Reset) pulse. If AT/SPC is sampled as high, the

bus timing is as previously described in Sec. 3.4. lf itis
sampled as low, two changes occur:

1) An extra clock cycle, Tmmu, is inserted into all bus
cycles except Slave Processor transfers.

2) The DS/FLT pin_changes in function from a_Data
Strobe output (DS).to a Float Command input (FLT).

The NS16082 MMU will itself pull the CPU AT/SPC pin
low when it is reset, but this pin may be left floating in
non-Memory-Managed systems.

Note that the Address Translation strap does not speci-
fically declare the presence of an NS16082 MMU, but

) l._Tt:ORTi | T |_—1‘nnmu |—T2 | T3 T4 | TIORTI |

PHI1 |] ’_ []] —|
wi | |] ML nn
| J PN 1~ e

D24-D31

NN\

7

DATAIN

N\

%

&

STO-ST3

IN\N|

STATUS VALID

NEXT STATUS

g
z
| | r— rm | r | |

727 []
BEO-BE3 é% VALID NEXT

TUCI5481-26

FIGURE 3-15. Read Cycle with Address Translation (CPU Action).

201

only the presence of external address translation cir-
cuitry. MMU instructions will still trap as being undefined
unless the SETCFG (Set Configuration) instruction is
executed to declare the MMU instruction set valid. See
Sec.2.1.3.

3.5.2 Translated Bus Timing

Figures 3-15 and 3-16 illustrate the CPU activity during a
Read cycle and a Write cycle in Address Translation
mode. The additional T-State, Tmmu, is inserted between
T1 and T2. During this time the CPU places
AD0-AD23 into the TRI-STATE® mode, allowing the
MMU to assert the translated address and issue the
physical address strobe PAV. T2 through T4 of the
cycle are identical to their counterparts without

\

Address Translation. Note that in order for the
NS16082 MMU to operate correctly it must be set to
the 32032 mode by strapping A24 to ground during
reset.

In this mode the bus lines AD16-AD23 are floated after
the MMU address has been latched since they are
used by the CPU to transfer data.

Figures 3-17 and 3-18 show a Read cycle and a Write
cycle as generated by the 32032/16082/16201 group.
Note that with the CPU ADS signal going only to the
MMU, and with the MMU PAV signal substituting for
ADS everywhere else, Tmmu through T4 look exactly
like T1 through T4 in a non-Memory-Managed system.
For the connection diagram, see Appendix B.

:_LLLL_H I_1 l_] Ll Ll B
e LT
wosens [7N X || owmon | Yooerst
w | 777 \rer [
- [2077 | 7777

TUC/5491-27

FIGURE 3-16. Write Cycle with Address Translation (CPU Action).

202

VIRTUAL

PHYSICAL

ADDRESS \/ADDRESS /
VALID VALID Y

7

7

W,

N\NEBEABE!

AW,

Za(ATUS NEXT STATUS

%4

VALID

NEXT

Y,

%

i

NS1

6201 TCU BUS

\

W

w7

\}'

7
7
7
/

FIGURE 3-17. Memory-Managed Read Cycle.

TLIC/5491-28

203

VIRTUAL PHYSICAL

2070 Seass K ogseX__ || ool

DR

NN

ST0-ST3 Z% ‘ STATUS VALID NEXT STATUS
DDIN ?V///%/ NEXT i
BE0-BE3 Z/V// /% VALID x NEXT

70007007 | 2

7

AN\

NS 16201 TCU BUS SIGNALS

3l

[=]
m

2
o

H

ko

— [| r L]
1

FIGURE 3-18. Memory-Managed Write Cycle.

/
/
1/ _ /]
/

204

3.5.3 The FLT (Float) and PA1 (Physical A1) Pins ‘

In Address Translation mode, the DS/FLT pin is treated
as the input command FLT (Float). Activating FLT during
Tmmu causes the CPU to wait longer than Tmmu for
address translation and validation. This feature is used
occasionally by the NS16082 MMU in order to update its
internal translation cache from page tables in memory,
or to update certain status bits within them.

Figure 3-19 shows the effects of FLT. Upon sampling
low, late in Tmmu, the CPU enters idle T-States (Tf)
during which it:

1) Sets ADO-AD23, D24-D31 and DDIN
STATE condition (““floating”).

2) Sets BE3-BEO according to PA1.

3) Suspends further internal processing of the current
instruction. This ensures that the current instruction
remains abortable with retry. (See RST/ABT descrip-
tion, Sec. 3.5.4.)

Note that the AD0O-AD23 pins may be briefly asserted
during the first idle T-State. The above conditions
remain in effect until FLT again goes high. See the
Timing Specifications, Sec. 4.

to the TRI-

e LT

W[
o [)0 VNN
D24-D31 : >——-~—-@---- ---------------------- .

= | ST\

= [27220 AV

DDIN :Z?(ALID _—’.--< VALID %9(ALID

w | 72220707220 27707

\ BE0-BE3 [wu_n:Tl %@(iVALID ‘ X ALID

TLIC/5491-30

FIGURE 3-19. FLT Float Command Timing.

205

3.5.4 Aborting Bus Cycles

The RST/ABT pin, apart from its Reset function (Sec.
3.3), also serves as the means to “abort”, or cancel, a
bus cycle and the instruction, if any, which initiated it. An
Abort request is distinguished from a Reset in that the
RST/ABT pin is held active for only one clock cycle.

IfRST/ABT is pulled low during Tmmu or Tf, this signals
that the cycle must be aborted. The CPU itself will enter
T2 and then Ti, thereby terminating the cycle. Since it is
the MMU PAV signal which triggers a physical cycle, the
rest of the system remains unaware that a cycle was
even started.

The NS16082 MMU will abort a bus cycle for either of,

two reasons:

1) The CPU is attempting to access a virtual address
which is not currently resident in physical memory.
The referenced page must be brought into physical
memory from mass storage to make it accessible to
the CPU.

2) The CPU is attempting to perform an access which is
not allowed due to the protection level assvgned to
that page.

When a bus cycle is aborted by the MMU, the instruction
which caused it to occur is also aborted in such a manner
that it is guaranteed re-executable later. Due to the
NS16000 Family instruction set definition and its imple-
mentation in the NS32032 CPU, the only information
which is changed irrecoverably by such partly-executed
instructions is information which does not affect their
re-execution.

.3.5.4.1 The Abort Interrupt

Upon aborting an instruction, the CPU immediately per-
forms an interruptthrough the ABT vectorin the Interrupt
Table (see Sec. 3.8). The Return Address pushed on the
Interrupt Stack is the address of the aborted instruction,
such that a Return from Trap (RETT) instruction will
automatically retry it.

The one exception to this sequence occurs if the aborted
bus cycle was an instruction prefetch. If so, it is not yet
certain that the aborted prefetched code is to be exe-
cuted. Instead of causing an interrupt, the CPU only
aborts the bus cycle, and stops prefetching. If the infor-
mation in the Instruction Queue runs out, meaning that
the instruction will actually be executed, the ABT inter-
rupt will occur, in effect aborting the instruction which
was being fetched.

3.5.4.2 Hardware Considerations

In order to guarantee instruction retry, certain rules must
be followed in applying an Abort to the CPU. These rules
are followed by the NS16082 Memory Management
Unit.

1) If FLT has not been applied to the CPU, the Abort
pulse must occur during or before Tmmu. See the
Timing Specifications, Figure 4-22.

If FLT has been applied to the CPU, the Abort pulse
must be applied before the T-State in which FLT goes
inactive. The CPU will_not actually respond to the
Abort command until FLT is removed. See Figure
4-23.

No bus cycle may be aborted which is the Write half
of a Read-Modify-Write operand access. The CPU
guarantees that this will never be necessary for
Memory Management functions by applying a special
RMW status (Status Code 1011) during the Read
half of the access. When the CPU presents RMW
status, that cycle must be aborted if it would be illegal
to write to any of the accessed addresses.

If RST/ABT is pulsed at any time other than as indi-
cated above, it will abort either the instruction currently
under execution or the next instruction and will act as a
very high-priority interrupt. However, the program
which was running at the time is not guaranteed recov-
erable, and should be terminated.

3.6 BUS ACCESS CONTROL

The NS32032 CPU has the capability of relinquishing its
access to the bus upon request from a DMA device or
another CPU. This capability is implemented on the
HOLD (Hold Request) and HLDA (Hold Acknowledge)
pins. By asserting HOLD low, an external device requests
access to the bus. On receipt of HLDA from the CPU,
the device may perform bus cycles, as the CPU at this
point has set the AD0-AD23, D24-D31, ADS, DDIN
and BEO-BE3 pins to the TRI-STATE® condition. To
return control of the bus to the CPU, the device sets
HOLD inactive, and the CPU acknowledges return of
the bus by setting HLDA inactive.

2)

3)

How quickly the CPU releases the bus depends on
whether it is idle on the bus at the time the HOLD
request is made, as the CPU must always complete the
current bus cycle. Figure 3-20 shows the timing sequence
when the CPU is idle. In this case, the CPU grants the
bus during the immediately following clock cycle. Figure
3-21 shows the sequence if the CPU is using the bus at
the time that the HOLD request is made. If the request is
made during or before the clock cycle shown (two clock
cycles before T4), the CPU will release the bus during
the clock cycle following T4. If the request occurs closer
to T4, the CPU may already have decided to initiate
another bus cycle. In that case it will not grant the bus
until after the next T4 state. Note that this situation will
also occur if the CPU is idle on the bus but has initiated a
bus cycle internally.

In a Memory-Managed system, the HLDA signal is con-
nected in a daisy-chain through the NS16082, such that
the MMU can release the bus if it is using it.

206

e o | Ti i Ti I TIORT4| TiORTt |

I
[P LT
e [L PP T T
w[T\ | |/

C

755 [\ —] /

5% [W] . —a

| DDIN : ____. -“—-_—-r_..___‘ _________ / NEXT

BE0-BE3 : _«___.._”. IS SRR .@ NEXT

LW _”""”"""""_"'_","'@f—f
SN/ ——— T

ST0-ST3 : PREVIOUS %; 7///7//////7////41 NEXT STATUS

FIGURE 3-20. HOLD Timing, Bus Initially Idle.

207

l T20RT3 I T3 | T4 | Ti | o o o l Ti ' Ti ! TiOR T4 l TiORT1 ’

SR)

= § iy Np/iiy NaNipipyNg iyl

)

| \ /

SN

)

AFFECTED SIGNALS

| R - /|
L1\ 2 D e e ¥
oo | T ——
sem] P) N {
SRl % e e i e A
[0%+ T{_
we Y0770, e

j=3

SN

I I

FIGURE 3-21. HOLD Timing, Bus Initially Not Idle.

208

3.7 INSTRUCTION STATUS

In addition to the four bits of Bus Cycle status (ST0-ST3),

the NS32032 CPU also presents Instruction Status infor-
mation on three separate pins. These pins differ from
STO0-ST3 in that they are synchronous to the CPU'’s
internal instruction execution section rather than to its
bus interface section.

PFS (Program Flow Status) is pulsed low as each in-
struction begins execution. It is intended for debugging
purposes, and is used that way by the NS 16082 Memory
Management Unit.

U/S originates from the U bit of the Processor Status
Register, and indicates whether the CPU is currently
running in User or Supervisor mode. Itis sampled by the
MMU for mapping, protection and debugging purposes.
Although it is not synchronous to bus cycles, there are
guarantees on its validity during any given bus cycle.
See the Timing Specifications, Figure 4-21.

TLO (Interlocked Operation) is activated during an SBITI
(Set Bit, Interlocked) or CBITI (Clear Bit, Interlocked)
instruction. It-is made available to external bus arbitra-
tion circuitry in order to allow these instructions to
implement the semaphore primitive operations for multi-
processor communication and resource sharing. Aswith
the U/S pin, there are guarantees on its validity during
the operand accesses performed by the instructions.
See the Timing Specification Section, Figure 4-19.

3.8 NS32032 INTERRUPT STRUCTURE

INT, on which maskable interrupts may be requested,

NMI, on which non-maskable lnterrupts may be re-
quested and

RST/ABT, which may be used to abort a bus cycle
and any associated instruction. It generates an inter-
rupt request if an instruction was aborted. See
Sec. 3.5.4.
In addition, there is a set of internally-generated “traps”
which cause interrupt service to be performed as a
result either of exceptional conditions (e.g., attempted
division by zero) or of specific instructions whose pur-
pose is to cause a trap to occur (e.g., the Supervisor Call
instruction).
3.8.1 General Interrupt/Trap Sequence

Upon receipt of an interrupt or trap request, the CPU
goes through four major steps:

1) Adjustment of Registers.
Depending on the source of the interrupt or trap, the
CPU may restore and/or adjust the contents of the
Program Counter (PC), the Processor Status Regi-
ster (PSR) and the currently-selected Stack Pointer
(SP). A copy of the PSR is made, and the PSR is
then set to reflect Supervisor Mode and selection of
the Interrupt Stack.

2) Saving Processor Status.
The PSR copy is pushed onto the Interrupt Stack as
a 16-bit quantity.

3) Vector Acquisition.
A Vector is either obtained from the Data Bus or is
supplied by default.

4) Service Call.

The Vector is used as an index into the Interrupt
Dispatch Table, whose base address is taken from
the CPU Interrupt Base (INTBASE) Register. See
Figure 3-22. A 32-bit External Procedure Descriptor
is read from the table entry, and an External Proce-
dure Call is performed using it. The MOD Register
(16 bits) and Program Counter (32 bits) are pushed
on the Interrupt Stack.

?u
MEMORY ‘ 31 ‘ o’
NVI NON-VECTORED INTERRUPT
CASCADE ADDR 0
. NMI NON-MASKABLE INTERRUPT
CASCADE TABLE ﬁ: .
ABT ABORT
CASCADE ADDR 14
! FPU FPUTRAP
INTERRUPT BASE " CASCADE ADDR 15 L ILLEGAL OPERATION TRAP
REGISTER - -
A FXEDINTERRUPTS | 5| sve SUPERVISOR CALL TRAP
~ AND TRAPS -
C VECTORED L DISPATCH TABLE 6| ovz DIVIDE BY ZERO TRAP
- INTERRUPTS ™ e N
C fL 7 FLAG TRAP
8| BpT BREAKPOINT TRAP
9| TRC TRACE TRAP
10 UND UNDEFINED INSTRUCTION TRAP
1115 A RESERVED 2\
1 VECTORED
INTERRUPTS
~e

FIGURE 3-22. Interrupt Dispatch and Cascade Tables.

TL/C/5491-33

This process is illustrated in Figure 3-23, from the view-
point of the programmer.

Interrupt on INT or NMI pin:
Abort Interrupt:

Full sequences of events in processing interrupts and ;::gg gr?;cgpt Trace):
traps may be found as follows: p:
PSR MoD
. (PUSH) .
STATUS MODULE | -
RETURN ADDRESS
{PUSH) - 32BITS
INTERRUPT
STACK
. .
: :
. .
o ——————————— -
CASCADE TABLE
INTBASE REGISTER 1
l INTERRUPT BASE l " DISPATCH
TABLE
o>
DESCRIPTOR (32 BITS)
-
DESCRIPTOR
16 16
OFFSET MODULE
- : 0
MOD REGISTER MODULE TABLE
[NEW MODULE
l MODULE TABLE ENTRY
MODULE TABLE ENTRY
32
STATIC BASE POINTER B
LINK BASE POINTER
9[) PROGRAM BASE POINTER
(RESERVED)
PROGRAM COUNTER SB REGISTER

\—*[-— ENTRY POINT ADDRESS

l _l_.. NEW STATIC BASE

FIGURE 3-23. Interrupt/Trap Service Routine Calling
i Sequence.

Sec.3.8.7.1.
Sec.3.8.7.4.
Sec.3.8.7.2.
Sec. 3.8.7.‘3.

TLIC/5491-34

210

3.8.2 Interrupt/Trap Return

To return control to an interrupted program, one of two
instructionsis used. The RETT (Return from Trap) instruc-
tion (Figure 3-24) restores the PSR, MOD, PC and SB
registers to their previous contents and, since traps are
often used deliberately as a call mechanism for Super-
visor Mode procedures, it also discards a specified num-
ber of bytes from the original stack as surplus parameter
space. RETT is used to return from any trap or interrupt
except the Maskable Interrupt. For this, the RETI (Return
from Interrupt) instruction is used, which also informs
‘any external Interrupt Control Units that interrupt ser-
vice has completed. Since interrupts are generally asyn-
chronous external events, RET| does not pop para-
meters. See Figure 3-25.

3.8.3 Maskable Interrupts (The INT Pin)
The INT pin is a level-sensitive input. A continuous low

level is allowed for generating muiltiple interrupt re-
quests. The input is maskable, and is therefore enabled
to generate interrupt requests only while the Processor
Status Register 1 bit is set. The_| bit is automatically
cleared during service of an INT, NMI or Abort request,
and is restored to its original setting upon return fromthe
interrupt service routine via the RETT or RETlinstruction.

The INT pin may be configured via the SETCFG instruc-
tion as either Non-Vectored (CFG Register bit | = 0) or

‘Vectored (bitl = 1).

3.8.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the
INT pin will cause an Interrupt Acknowledge bus cycle,
but the CPU will ignore any value read from the bus and
use instead a default vector of zero. This mode is useful
for small systems in which hardware interrupt prioritiza-
tion is unnecessary.

PROGRAM COUNTER
(POP)
RETURN ADDRESS 32BITS
(POP)
STATUS MODULE 32BITS
PSR oD INTERRUPT
s STACK M
- .
[}
MODULE
TABLE
|
MODULE TABLE ENTRY
i J
MODULE TABLE ENTRY
STATIC BASE POINTER 1
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
PARAMETERS
n
BYTES
SB REGISTER
STATIC BASE <j—/ STACK SELECTED
IN NEWLY-
POPPED PSR.
. .
L] .
. .
POP AND
DISCARD

TUC/5491-35

FIGURE 3-24. Return from Trap (RETT n) Instruction Flow.

21

“END OF INTERRUPT”

BUS CYCLE
INTERRUPT
CONTROL
UNIT
PROGRAM COUNTER
1 (POP)
RETURN ADDRESS I
] (POP)
STATUS l MODULE .
PSR MOD
INTERRUPT
STACK
.
- .
.
0
MODULE
TABLE
MODULE TABLE ENTRY
MODULE TABLE ENTRY
STATIC BASE POINTER —]
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
STATIC BASE

SB REGISTER
' TUCI5491-36

FIGURE 3-25. Return fromInterrupt (RET!) Instruction Flow.

212

3.8.3.2 Vectored Mode: Non-Cascaded Case

‘In the Vectored mode, the CPU uses an NS16202 Inter-
rupt Control Unit (ICU) to prioritize up to 16 interrupt
requests. Upon receipt of an interrupt request on the
INT pin, the CPU performs an “Interrupt Acknowledge,
Master” bus cycle (Sec. 3.4.2) reading a vector value
from the low-order byte of the Data Bus. This vector is
then used as an index into the Dispatch Table in.order to
find the External Procedure Descriptor for the proper
interrupt service procedure. The service procedure
eventually returns via the Return from Interrupt (RETI)
instruction, which performs an End of Interrupt bus cycle,
informing the ICU that it may re-prioritize any interrupt
requests still pending. The ICU provides the vector num-
ber again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127;
that is, they must be positive numbers in eight bits. By
-providing a negative vector number, an ICU flags the
interrupt source as being a Cascaded ICU (see below).

3.8.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is
made both in the CPU and in the NS16202 Interrupt
Control Unit (ICU) to transparently support cascading.
Figure 3-27, shows a typical cascaded configuration.
Note that the Interrupt output from a Cascaded ICU
goes to an Interrupt Request input of the Master ICU,
which is the only ICU which drives the CPU INT pin.

In a system which uses cascading, two tasks must be
performed upon initialization:

1) For each Cascaded ICU in the system, the Master
ICU must be informed of the line number (0 to 15) on
which it receives the cascaded requests.

2) A Cascade Table must be established in memory.
The Cascade Table is located in a NEGATIVE direc-
tion from the location indicated by the CPU Interrupt
Base (INTBASE) Register. Its entries are 32-bit
addresses, pointing to the Vector Registers of each
of up to 16 Cascaded ICUs.

Figure 3-22 illustrates the position of the Cascade
Table. To find the Cascade Table entry for a Cascaded
ICU, take its Master ICU line number (0 to 15) and
subtract 16 from it, giving an index in the range —16 to
— 1. Multiply this value by 4, and add the resulting nega-
tive number to the contents of the INTBASE Register
The 32-bit entry at this address must be set to the
address of the Hardware Vector Register of the Cas-
caded ICU. This is referred toas the “Cascade Address’’

Upon receipt of an interrupt request from a Cascaded
ICU, the Master ICU interrupts the CPU and provides
the negative Cascade Table index instead of a (positive)
vector number. The CPU, seeing the negative value,
uses it as an index into the Cascade Table and reads the
Cascade Address from the referenced entry. Applying
this address, the CPU-performs an “Interrupt Acknowl-
edge, Cascaded” bus cycle (Sec. 3.4.2), reading the
final vector value. This vector is interpreted by the CPU
as an unsigned byte, and can therefore be in the range
of 0 through 255.

In returning from a Cascaded interrupt, the service pro-
cedure executes the Return from Interrupt (RET!) instruc-
tion, as. it would for any Maskable Interrupt. The CPU
performs an “End of Interrupt, Master” bus cycle (Sec.
3.4.2), whereupon the Master ICU again provides the
negative Cascade Table index. The CPU, seeinganega-
tive value, uses it to find the corresponding Cascade
Address from the Cascade Table. Applying this address,
it performs an “End of Interrupt, Cascaded” bus cycle
(Sec. 3.4.2), informing the Cascaded ICU of the comple-
tion of the service routine. The byte read from the Cas-
caded ICU is discarded.

DATA
< IR1 W
®) |~=—-IR3
<—IRS
CONTROL HARDWARE
> l<— IR7 mre%nuws
: R
~—IR9 CASCADED
NS32032 ADDR 5 BITS NS16202 CONTROLLERS
cPU =« IR11
GROUP
T ——
l=—1R15
TUS 1
STA < GO/IRO)
= G1/IR2
INT iNT |~ G2/IR4
- cane | LTS
~ : OR
== G4/IR8 Bityo
== G5/IR10
FROM — | G6/IR12
ADDRESS ———{ CS
DECODER <= G7/IR14

TLICI5491-37

FIGURE 3-26. Interrupt Control Unit Connections (16 Levels).

213

DATA

-

|~=—IR3

CONTROL [~~—1IRS

ADDR 5 BITS

~—IR7
[=~—1R9
[~—1IR11"
~=—IR13
~—1IR15 _)

HARDWARE

CASCADED INTERRUPTS

NS16202
icu

CONTROL

FROM
ADDRESS —»|
DECODER

= GO/IRO "
== G1/IR2
= G2iIR4
== G3/IRG
= G4/IR8
= GS/IR10
[~ G6/IR12
= G7/IR14

INTERRUPTS
OR
BITI/O

|<—IR1
l——IR3
=—1IR5

NS32032
CPU

ADDR

STATUS1 l

[~—r1IR7

MASTER

NS16202
IcU

~=—IR9

[~=~—IR11
~=—1IR13
~=—1IR15

INT

=== G0/IR0
== G1/IR2

FROM
ADDRESS ——
DECODER

[~~=G2/IR4
[~=>-G3/IR6
[~ G4/IR8
[~~>-G5/IR10
~=>G6/IR12
~=>G7/IR14

TUC/5491-38

FIGURE 3-27. Cascaded Interrupt Control Unit Connections.

3.8.4 Non-Maskable Interrupt (The NMI Pin)

The Non-Maskable Interrupt is triggered whenever a
falling edge is detected on the I pin. The CPU per-
forms an “Interrupt Acknowledge, Master” bus cycle
(Sec. 3.4.2) when processing of this interrupt actually
begins. The Interrupt Acknowledge cycle differs from
that provided for Maskable Interrupts in that the address
presented is FFFFQ0,,. The vector value used for the
Non-Maskable Interrupt is taken as 1, regardless of the
value read from the bus.

The service procedure returns from the Non-Maskable
Interrupt using the Return from Trap (RETT) instruction.
No special bus cycles occur on return.

For the full sequence of events in processing the Non-
Maskable Interrupt, see Sec. 3.8.7.1.

3.8.5 Traps

A trap is an internally-generated interrupt request
caused as a direct and immediate result of the execu-
tion of an instruction. The Return Address pushed by
any trap except Trap (TRC) is the address of the first
byte of the instruction during which the trap occurred.
Traps do not disable interrupts, as they are not associ-
ated with external events. Traps recognized by the
NS32032 CPU are:

Trap (FPU): An exceptional condition was detected by
the NS16081 Floating Point Unit or another Slave Pro-
cessor during the execution of a Slave Instruction. This
trap is requested via the Status Word returned as part of
the Slave Processor Protocol (Sec. 3.9.1).

214

Trap (ILL): llegal operation. A privileged operation was
attempted while the CPU was in User Mode (PSR bit
=1). .

Ti'ap (SVC) The Supervisor Call (SVC) instruction was
executed.

Trap (DV2): An attempt was made to divide an integer
by zero. (The FPU trap is used for Floating Point division
by zero.)

Trap (FLG): The FLAG instruction detected a “1” in the
CPU PSRF bit.

Trap (BPT): The Breakpoint (BPT) instruction was
executed.

Trap (TRC): The instruction just completed is being
traced. See below.

Trap (UND): An undefined opcode was encountered by
the CPU.

A spécial case is the Trace Trap (TRC), which is enabled
by setting the T bit in the Processor Status Register
(PSR). At the beginning of each instruction, the T bit is
copied into the PSR P (Trace “Pending”) bit. If the P bit
is set at the end of an instruction, then the Trace Trap is
activated, If any other trap or interrupt request is made
during a traced instruction, its entire service procedure
is allowed to complete before the Trace Trap occurs.
Each interrupt and trap sequence handles the P bit for
proper tracing, guaranteeing one and only one Trace
Trap per instruction, and guaranteeing that the Return
Address pushed during a Trace Trap is always the ad-
dress of the next instruction to be traced. ‘
3.8.6 Prioritization

The NS16032 CPU internally prioritizes simultaneous
interrupt and trap requests as follows:

1) Traps other than Trace (Highest priority)
2). Abort

3) Non-Maskable Interrupt

4) Maskable Interrupts

5) Trace Trap (Lowest priority)

3.8.7 Interrupt/Trap Sequences: Detailed Flow

For purposes of the following detailed discussion of
interrupt and trap service sequences, a single sequence
- called “Service” is defined in Figure 3-28. Upon detect-

ing any interrupt request or trap condition, the CPU first

performs a sequence dependent upon the type of inter-
rupt or trap. This sequence will include pushing the
Processor Status Register and establishing a Vector
and a Return Address. The CPU then performs the
Service sequence.

 For the sequence followed in processing elther Mask-
able or Non-Maskable interrupts (on the INT or NMI
pins, respectively), see Sec. 3.8.7.1. For Abort inter-
rupts, see Sec. 3.8.7.4. For the Trace Trap, see Sec.
3.8.7.3, and for all other traps see Sec. 3.8.7.2.

3.8.71 Maskable/Non-Maskable Interrupt
Sequence

This sequence is performed by the CPU when the NMI
pin receives a falling edge; or the TNT pin becomes
active with the PSR | bit set. The interrupt sequence
begins either at the next instruction boundary or, in the
case of the String instructions, at the next interruptible
point during its execution.

6. If “Byte”

. If a String instruction was interrupted and not yet
completed:
a. Clear the Processor Status Register P bit.
b. Set “Return Address” to the address of the first
byte of the interrupted instruction.

Otherwise, set “Return Address” to the address of
the next instruction.

2. Copy the Processor Status Register (PSR) into a

temporary register, then clear PSR bits S, U, T, P
and .

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF00,¢, applying
Status Code 0100 (interrupt Acknowledge, Mas-
ter: Section 3.4.2). Discard the byte read.

b. Set “Vector” to 1. .

c. Go to Step 8.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFF0045, applying
Status Code 0100 (Interrupt Acknowledge, Mas-
ter: Section 3.4.2). Discard the byte read.

b. Set “Vector” to 0.

c. Go to Step 8.

5. Here the interrupt is Vectored. Read “Byte” from

address FFFE0046, applying Status Code 0100
(Interrupt Acknowledge, Master: Section 3.4.2).

= 0, then set “Vector” to “Byte” and go
to Step 8.

7. If “Byte” is in the range — 16 through — 1, then the

interrupt source is Cascaded. (More negative val-

ues are reserved for future use.) Perform the follow-

ing: _

a. Read the 32-bit Cascade Address from memory.
The address is calculated as INTBASE +4*
Byte.

b. Read “Vector,” applying the Cascade Address
just read and Status Code 0101 (Interrupt
Acknowledge, Cascaded: Section 3.4.2).

8. Push the PSR copy (from Step 2) onto the Interrupt

Stack as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-

28.

Service (Vector, Return Address):

1) PushMOD Registeronto the Interrupt Stack as a 16-bit value. (The PSR
has already been pushed as a 16-bit value.)

2) Push the Return Address onto the Interrupt Stack as a 32-bit quantity.

3) Read the 32-bit External Procedure Descriptor from the Interrupt Dis-
patch Table: address is Vector*4 + INTBASE Register contents.

4) Move the Module field of the Descriptor into the MOD Register.

5) Read the new Static Base pointer from the memory address contained
in MOD, placing it into the SB Register.

6) Read the Program Base pointer from memory address MOD+8, and add
to it the Offset field from the Descriptor, placing the resuit in the Program
Counter.

FIGURE 3-28. Service Sequence.
Invoked during all interrupt/trap sequences.

215

3.8.72 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at
the start of the trapped instruction.

2) Set “Vector” to the value‘corresponding to the trap
type. :

FPU: Vector = 3.
ILL: Vector = 4.
SVC: Vector = 5.
DvZ: Vector = 6.
FLG: Vector = 7.
BPT: Vector = 8.
UND: Vector = 10.

3) Copy the Processor Status Register (PSR) into a
temporary register, then clear PSR bits S, U,Pand T.

4) Push the PSR copy onto the Interrupt Stack as a
16-bit value.

5) Set “Return Address” to the address of the first byte
of the trapped instruction.

6) Perform Service (Vector, Return Address), Figure
3-28.

3.8.7.3 Trace Trap Sequence

1) In the Processor Status Register (PSR), clear the P
bit.

2) Copy the PSR into a temporary register, then clear
PSRbitsS,Uand T.

3) Push the PSR copy onto the Interrupt Stack as a
16-bit value.

4) Set “Vector”to 9.

5) Set “Return Address” to the address of the next
instruction.

6) Perform Service (Vector, Return Address), Figure
3-28.

3.8.74 Abort Sequence

1) Restore the currently selected Stack Pointer to its
original contents at the beginning of the aborted
instruction.

2) Clear the PSR P bit.

3) Copy the PSR into a temporary register,‘then clear
PSRbits S, U, Tand I.

4) Push the PSR copy onto the Interrupt Stack as a
16-bit value.

5) Set“Vector’to 2.

6) Set “Return Address” to the address of the first byte
of the aborted instruction.

7) Perform Service (Vector, Return Address), Figure
3-28.
3.9 SLAVE PROCESSOR INSTRUCTIONS

The NS32032 CPU recognizes three grodps of instruc-
tions as being executable by external Slave Processors:

Floating Point Instruction Set

Memory Management Instruction Set
Custom Instruction Set

Each Slave Instruction Set is validated by a bit in the
Configuration Register (Sec. 2.1.3). Any Slave Instruc-
tion which does not have its corresponding Configura-
tion Register bit set will trap as undefined, without any
Slave Processor communication attempted by the CPU.
This allows software simulation of a non-existent Slave
Processor.

3.9.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic
Instruction field, consisting of an I1D Byte followed by an
Operation Word. The ID Byte has three functions:

1) It identifies the instruction as being a
Slave Processor instruction.

2) It specifies which Slave Processor will
execute it.

3) It determines the format of the following
Operation Word of the instruction.

Upon receiving a Slave Processor instruction, the CPU
initiates the sequence outlined in Figure 3-29. While
applying Status Code 1111 (Broadcast ID, Sec. 3.4.2),
the CPU transfers the ID Byte on the least-significant
byte of the Data Bus (ADO-AD7). All Slave Processors
input this byte and decode it. The Slave Processor
selected by the ID Byte is activated, and from this point
the CPU is communicating only with it. If any other slave
protocol was in progress (e.g., an aborted Slave instruc-
tion), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.2).
Upon receiving it, the Slave Processor decodes it, and
at this point both the CPU and the Slave Processor are
aware of the number of operands to be transferred
and their sizes. The operation Word is swapped on the
Data Bus; that is, bits 0-7 appear on pins AD8-AD15
and bits 8-15 appear on pins ADO-AD?7.

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing
them to the Slave Processor. To do so, it references any
Addressing Mode extensions which may be appended
to the Slave Processor instruction. Since the CPU is

Status Combinations:

Send ID (ID): Code 1111
Xfer Operand (OP): Code 1101
Read Status (ST): Code 1110

Step - Status Action

1 D CPU Send ID Byte.

2 oP CPU Sends Operation Word.

3 oP CPU Sends Required Operands.

4 —_ Slave Starts E CPU Pre-fi

5 —_ Slave Pulses SPC Low.)

6 ST CPU Reads Status Word. (Trap? Alter Flags?)
7 oP CPU Reads Results (If Any).

FIGURE 3-29. Slave Processor Protocol.

216

solely responsible for memory accesses, these exten-
sions are not sent to the Slave processor. The Status
Code applied is 1101. (Transfer Slave Processor Oper-
and, Sec. 3.4.2). :

After the CPU has issued the last operand, the Slave
Processor starts the actual execution of the instruction.
Upon completion, it will signal the CPU by pulsing SPC
low. To allow for this, and for the Address Translation strap
function, AT/SPC is normally held high only by an internal
pull-up device of approximately 5K ohms.

While the Slave Processor is executing the instruction,
the CPU is free to prefetch instructions into its queue. If it
fills the queue before the Slave Processor finishes, the
CPU will wait, applying Status Code 0011 (Waiting for
Slave, Sec. 3.4.2). :

 Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status, Sec. 3.4.2). This
word has the format shown in Figure 3-30. If the Q bit
(“Quit", Bit 0) is set, this indicates that an error was
detected by the Slave Processor. The CPU will not con-
tinue the protocol, but will immediately trap through the
FPU vector in the Interrupt Table. Certain Slave Proces-
sor instructions cause CPU PSR bits to be loaded from
the Status Word.

The last step in the protocol is for the CPU to read a
result, if any, and transfer it to the destination. The Read
cycles from the Slave Processor are performed by the
CPU while applying Status Code 1101 (Transfer Slave
Operand, Sec. 3.4.2).

An exception to the protocol above is the LMR (Load
Memory Management Register) instruction, and a
corresponding Custom Slave instruction (LCR: Load
Custom Register). In executing these instructions, the
protocol ends after the CPU has issued the lastoperand.
The CPU does not wait for an acknowledgement from
the Siave Processor, and it does not read status..

3.9.2 Floating Point Instructions

Table 3-4 gives the protocols followed for each Float-
ing Point instruction. The instructions are referenced by
their mnemonics. For the bit encodings of each instruc-
tion, see Appendix A.

The Operand class columns give the Access Class for
each general operand, defining how the addressing
modes are interpreted (see Programmer’s Manual).

The Operand Issued columns show the sizes of the
operands issued to the Floating Point Unit by the CPU.
“D" indicates a 32-bit Double Word. “i”" indicates that
the instruction specifies an integer size for the operand
(B = Byte, W = Word, D = Double Word). “f" indicates
that the instruction specifies a Floating Point size for the
operand (F = 32-bit Standard Floating, L = 64-bit Long
Floating).

.The Returned Value Type and Destination column gives

the size of any returned value and where the CPU
places it. The PSR Bits Affected column indicates which
PSR bits, if any, are updated from the Slave Processor
Status Word (Figure 3-30).

Table 3-4.
Floating Point Instruction Protocols.
Operand1 Operand 2 Operand1 Operand2 Returned Value PSR Bits
Mnemonic Class Class Issued Issued Type and Dest. Affected
ADDf read.f rmw.f f f ftoOp.2 none
SuBf read.f rmw.f f f ftoop. 2 none
MULf ~ read.f rmw.f f f ftoOp. 2 none
DIvf read.f rmw.f f f ftoOp. 2 none
MOVf read.f write.f f N/A ftoOp. 2 none
ABSf read.f write.f f N/A ftoOp. 2 none
NEGf read.f write.f f N/A ftoOp.2 none
CMPf read.f read.f f f N/A NZL
FLOOR(i read.f write.i f N/A itoop. 2 none
TRUNCHi read.f write.i f N/A itoOp.2 none
ROUNDfi read.f write.i f N/A itoOp.2 none
"MOVFL read.F write.L F N/A LtoOp.2 none
MOVLF read.L write.F L N/A FtoOp.2 none
MOVif read.i write.f i N/A ftoOp. 2 none
LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A DtoOp.2 none
NOTE:

D = Double Word

i= integer size (B,W,D) specified in mnemonic.

f= Floating Point type (F,L) specified in mnemonic.
N/A = Not Applicable to this instruction.

217

15 87 0

LOOOOOOOO]NZFOOLOQI

New PSR Bit Value(s) &22—"

“Quit”": Terminate Protocol, Trap(FPU).

TLIC/5491-41

FIGURE 3-30. Slave Processor Status Word Format.

Any operand indicated as being of type “f” will not cause
a transfer if the Register addressing mode is specified.
This is because the Floating Point Registers are physi-
cally on the Floating Point Unit and are therefore avail-
able without CPU assistance.

3.9.3 Memory Management Instructions

Table 3-5 gives the protocols for Memory Manage-
ment instructions. Encodings for these instructions may
be found in Appendix A.

In executing the RDVAL and WRVAL instructions, the
CPU calculates and issues the 32-bit Effective Address
of the single operand. The CPU then performs a single-
byte Read cycle from that address, allowing the MMUto
safely abort the instruction if the necessary information
is not currently in physical memory. Upon seeing the
memory cycle complete, the MMU continues the proto-
col, and returns the validation result in the F bit of the
Slave Status Word.

The size of a Memory Management operand is always a
32-bit Double Word. For futher details of the Memory
Management Instruction set, see the Programmer’s
Manual and the NS16082 MMU Data Sheet.

. Table 3-5.
Memory Management Instruction Protocols.

Operand1 Operand 2 Operand1 Operand2 Returned Value PSR Bits
Mnemonic Class Class Issued Issued Type and Dest. Affected
RDVAL * addr N/A D N/A N/A ‘ F
WRVAL * addr N/A D N/A N/A F
LMR* read.D N/A D N/A N/A none
SMR* write.D N/A N/A N/A DtoOp. 1 none

NOTE:

In the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single-byte Read cycle from that memory
address. For details, see the Programmer’'s Manual and the NS16082 Memory Management Unit Data Sheet. X

D = Double Word.
* = Privileged Instruction: will trap if CPU is in User Mode.
N/A = Not Applicable to thisinstruction.

218

3.9.4 Custom Slave Instructions

Provided in the NS32032 is the capability of communi-
cating with a user-defined, “Custom” Slave Proces-
sor. The instruction set provided for a Custom Slave
Processor defines the instruction formats, the operand
classes and the communication protocol. Left to the
user are the interpretations of the Op Code fields, the
programming model of the Custom Slave and the actual
types of data transferred. The protocol specifies only the
size of an operand, not its data type.

Table 3-6 lists the relevant information for the Custom
Slave instruction set. The designation “c” is used to
represent an operand which can be a 32-bit (“D”) or
64-bit (“Q”) quantity in any format; the size is deter-
mined by the sqﬁix on the mnemonic. Similarly, an “i"
indicates ‘an integer size (Byte, Word, Double Word)
selected by the corresponding mnemonic suffix.

Any operand indicated as being of type ‘c’ will not
cause a transfer if the register addressing mode is
specified. It is assumed in this case that the slave proc-
essor is already holding the operand internally.

For the instruction encodings, see Appendix A.

Table 3-6.
Custom Slave Instruction Protocols.

Operand 1

Operand1 Operand 2 Operand2 Returned Value PSR Bits
Mnemonic Class Class Issued Issued Type and Dest. Affected
CCALOc read.c rmw.c c c ctoOp.2 none
CCAL1c read.c rmw.c c c ctoOp.2 none
CCAL2c read.c mw.c c c ctoOp.2 none
CCAL3c - read.c rmw.c c c ctoOp.2 none
CMOVOc read.c write.c c N/A ctoOp.2 none
CMOV1c read.c write.c c N/A ctoOp.2 none
CMOV2c read.c write.c c N/A ctoOp.2 none
CCMPc read.c read.c c c N/A N,Z,L
CCVO0ci read.c write.i c N/A itoOp. 2 none
CCV1ci read.c write.i c N/A itoOp.2 none
CCvaci read.c write.i c N/A itoOp.2 none
CCVaic read.i write.c i N/A ctoOp.2 none
CcCcv4DQ read.D write.Q D N/A QtoOp.2 none
CCcvsQb read.Q write.D Q N/A DtoOp. 2 none
LCSR read.D N/A D N/A N/A none
SCSR N/A write.D N/A N/A DtoOp.2 none
CATSTO ™ addr N/A D N/A N/A F
CATST1* addr N/A D N/A N/A F
LCR™ read.D N/A D N/A N/A none
SCR* write.D N/A N/A N/A DtoOp. 1 none
NOTE:

D = Double Word.

i= Integer size (B,W,D) specified in mnemonic.

¢ = Custom size (D:32 bits or Q:64 bits) specified in mnemonic.
* = Privileged Instruction: will trap if CPU is in User Mode.
N/A = Not Applicable to this instruction.

219

4 AC Electrical Characteristics
4.1 Definitions

All the timing specifications given in this section refer to
50% of the leading or trailing edges of the appropriate
clock phase and 0.8V or 2.0V on the appropriate signal

PHIn

SIG1

SIG2

50% -)

tSIG11

tsIG2h 20v

TLIC/5491-45

FIGURE 4-1. Timing Specification Standard

(Signal Valid After Clock Edge)

4.2 Timing Tables

as illustrated in Figures 4-1 and 4-2, unless specifically
stated otherwise.

Abbreviations:
L.E—leading edge

TE.

PHIn

SIG1

SIG2

—trailing edge

0.8v

FIGURE 4-2. Timing Specification Standard

tsIG11
——0.45V

2.4V
tsiG2h

TUIC/5491-46

(Signal Valid Before Clock Edge)

4.2.1 Output Signals: Internal Propagation Delays, NS32032-4, NS32032-6
Maximum times assume capacitive loading of 100 pF.

Name Description Figure Reference/Conditions Min | Typ | Max |Unit
taLy Address bits 0-23 valid 4-3 after L.E., PHI1 T1 80 | ns
taLh Address bits 0-23 hold 4-3 after L.E., PHI1 TmmuorT2 | 0 ns
tpy Data valid (write cycle) 4-3 after L.E., PHI1 T2 80 ns
ton Data hold (write cycle) 4-3 after LE,PHI1next T1orTi| 0 ns
tALADSs Address bits 0-23 set up to ADS T.E. 4-4 before ADS reaches 2.0V 20 ns
tALADSh Address bits 0-23 hold from ADS T.E. 4-9 after ADS reaches 2.0V 10 ns
taLs Address bits 0-23 floating (no MMU) 4-4 after L.E., PHI1 T2 25 | ns
taDf Data bits D24-D31 floating (no MMU) 4-4 after L.E., PHI1 T2 25 | ns
taLme Address bits 0-23 floating (with MMU) 4-8 after L.E., PHI1 Tmmu 25 | ns
tADME Data bits 21-31 floating (with MMU) 4-8 after L.E., PHI1 Tmmu 25 | ns
tagy BEn signals valid 4-3 after L.E., PHI2 T4 95 | ns
teen BEn signals hold 4-3 after L.E., PHI2 T4 or Ti 0 ns
tsTy Status (ST0-ST3) valid 4-3 after L.E., PHI1 T4 90 | ns

(before T1, see note)
tsTh Status (ST0-ST3) hold 4-3 after L.E., PHI1 T4 (after T1) | 0 ns
tooiny DDIN signal valid 4-4 after L.E., PHI1T1 110 | ns
tooinn DDIN signal hold 4-4 after LE., PHI1next T1orTi| 0 ns
tADSa ADS signal active (low) 4-3 after L.E., PHI1 T1 50 | ns
tADSIa ADS signal inactive 4-3 after T.E., PHI1 T1 65 | ns
tADSW ADS pulse width 4-3 at 0.8V, both edges 60 ns
tpsa DS signal active (low) 4-3 after L.E., PHI1 T2 70 ns

220

4.2.1 Output Signals: Internal Propagation Delays, NS32032-4, NS32032-6 (continued)

Name Description Figure - Reference/Conditions Min | Typ | Max | Unit
tpsia DS signal inactive 4-3 after L.E., PHI1 T4 60 | ns
taLs ADO-AD23 floating (caused by HOLD) 4-5 after L.E., PHI1T1 100 | ns
taos D24-D31 floating (caused by HOLD) 4-5 after L.E., PHI1 T1 100 | ns
tapst ADS floating (caused by HOLD) 4-5 after L.E., PHI1 Ti 100 | ns
tags BEn floating (caused by HOLD) 4-5 |after LE., PHI1Ti 100 | ns
tooing DDIN floating (caused by HOLD) 4-5 after L.E., PHI1 Ti 100 ns
tHLDAa HLDA signal active (low) 4-5 after L.E., PHI1 Ti 100 | ns
tHLDAIa HLDA signal inactive 4-7 after L.E., PHI1 Ti 100 | ns
tapsr g:f;‘g';?' ;eé';'_'l;‘)s from floating 4-7 |after LE, PHITI 100 | ns
teer (253323"35——;;’]‘_’;; from floating 4-7 |after LE. PHI1Ti 100 | ns
Yoo (?;2::: :(;g;‘ya:(‘;:_‘g;'s from floating 4-7 " |after LE, PHI Ti 100 | ns
tave ADO-AD15 floating (caused by FLT) 4-8 after L.E., PHI1 Tf 60 | ns
tooIng DDIN signal floating (caused by FLT) 4-8 after FLT reaches 0.8V 80 | ns

ADS signal floating (caused by FLT) 4-8 after FLT reaches 0.8V 80 | ns
tEl BEn signals invalid (caused by FLT) 4-8 after FLT reaches 0.8V 100 | ns
tpage Delay from PA1 to BEn 4-8 after PA1 reaches .08V 50 | ns

or 2.0V
tooine DDIN signal returns from floating 4-9 after FLT reaches 2.0V 75 | ns

(caused by FLT)
teer Zﬁ: :;%"s;s%m from floating 4-9 |after FLT reaches 2.0V 90 | ns
tspca SPC output active (low) 4-12 | after L.E., PHI1 T1 50 | ns
tspcia SPC output inactive 4-12 |after LE., PHI1 T4 50 | ns
tspcnt SPC output nonforcing 4-14 | after LE., PHI2 T4 40 | ns
tov Data valid (slave processor write) 4-12 after L.E., PHI1 T1 80 | ns
ton Data hold (slave processor write) 4-12 after LE., PHITnext TtorTi| 0 ns
tprsw PFS pulse width 4-17 | at 0.8V, both edges 70 ns
tprsa PFS pulse active (low) 4-17 |after L.E., PHI2 70 | ns
tpesia PFS pulse inactive 4-17 | after L.E., PHI2 70 | ns

before L.E., PHI1 T1
tiLos 1LO signal setup 4-19a | of first interlocked 0 ns
write cycle
after L.E., PHI1 T3
tiLon 1LO signal hold 4-19b | of last interlocked 0 ns
read cycle
tiLoa 1LO signal active (Iow) 4-20 | after L.E., PHI1 70 | ns
tiLoia TLO signal inactive 4-20 after L.E., PHI1 70 | ns
tuss U/S signal setup 4-21 before T.E., PHI1 T4 or Ti 15 ns
tush U/S signal hold 4-21 |after L.E, PHI1 T1 2 tep
tNspF %ﬁgg:‘:ﬁ";e“’h to next 4-18b | after L.E., PHI1 T1 4 tp
teens PPS clock cycle to next 4-18a |before LEE., PHI1 T1 4 top
nonsequential fetch
tixer Last ope_r_a_nd transfer of an instruction 4-28 before L.E., PHI1 T1 of 0 t
to next PFS clock cycle first bus cycle of transfer Cp
NOTE:

Every memory cycle starts with T4, during which Cycle Status is applied. if the CPU was idling, the sequence will be: “...Ti,T4,T1...”. Ifthe CPUwas notidling, the
sequence will be: “..T4,T1...".

221

4.2.2 Input Signal Requirements: NS32032-4, NS$32032-6

This setup time is necessary to ensure prompt acknowledgement via HLDA and the ensuing floating of CRU off the buses. Note that the time from

Name Description Figure Reference/Conditions Min | Typ | Max | Unit
tpwr Power stable to RST T.E. 4-24 | after Vog reaches 4.5V 50 us
tois Data in setup (read cycle) 4-4 before T.E., PHI2 T3 20 ns
ton Data in hold (read cycle) . 4-4 after TE., PHI2 T3 10 ns
tHLDa HOLD active (low) setup time (See note) 4-5 before T.E., PHI2 TX1 25 ns
tHLDIa HOLD inactive setup time 4-7 before T.E., PHI2 Ti 25 ns
tHLoh HOLD hold time 4-5 after L.E., PHI1 TX2 0 ns
tFLTa FLT active (low) setup time 4-8 before T.E., PHI2 Tmmu 25 ns
tELTia FLT inactive setup time 4-9 before T.E., PHI2 T2 25 ns
trRDYs RDY setup time 4-10, 4-11| before T.E., PHI2T20r T3 25 ns
trRoYh RDY hold time 4-10, 4-11| after T.E., PHI1 T3 0 ns

tasTs ABT setup time (FLT inactive) 4-22 | pbefore T.E., PHI2 Tmmu 30 . ns
taBTs ABT setup time (FLT active) 4-23 | before T.E,, PHI2 T2 30 ns
tasTh ABT hold time '4-22 | after L.E., PH11 0 ns
tRsTs RST setup time 4-24, 4-25| before T.E., PHI 20 ns
tRsTw RST pulse width 4-25 | at 0.8V (both edges) 64 tep
tiNTs INT setup time 4-26 before T.E., PHI1 20 ns
tNMIw ‘NMI pulsewidth 4-27 at 0.8V (both edges) 40 ns
tpis Data setup (slave read cycle) 4-13 before T.E., PHI2 T1 20 ns
tom Data hold (slave read cycle) 4-13 after TE., PHI2 T1 10 ns
tspcw SPC pulse width (from slave processor) 4-12 at 0.8V (both edges) 30 ns
taTs AT/SPC setup for address 4-15 | before L.E., PHI1of 1 tep
translation strap cycle during which RST
pulse is removed
tath AT/SPC hold for address 4-15 | after T.E., PHH1 of 2 tep
translation strap cycle during which RST
pulse is removed
NOTE:

the receipt of the HOLD signal until the CPU floats is a function of the time HOLD signal goes low, the state of the RDY input (in MMU systems), and the
length of the current MMU cycle.

4.2.3 Clocking Requirements: NS32032-4

Name Description Figure Reference/Conditions Min | Typ | Max | Unit
tewr PHI1, PHI2 rise time 4-16 }ge\écgage 2 9 |ns
— 0,
torr | PHI, PHI2 fall time 416 | om0y of Vou o |ns
tein PHI1, PHI2 high time 4-16 0.4 tep
tey PHI1, PHI2 low time 4-16 0.35 tep
tep Clock period 4-16 240 5000 | ns
tovL Non-overlap time 4-16 at 10% of Vcn (see page 2) 0 ns
4.2.4 Clocking Requirements: NS32032-6
Name Description Figure Reference/Conditions Min | Typ | Max | Unit
tour PHI1, PHIZ rise time 416 | (S o) 9 |ns
Pede <
tour PHI1, PHI2 fall time 4-16 {;gg’ffg;%)/“ of Vox 9 | ns
tewn PHI1, PHI2 high time 4-16 0.4 tep
tcu PHI1, PHI2 low time 4-16 0.35 tep
tep Clock period 4-16 160 5000 | ns
tovL Non-overlap time 4-16 at 10% of Vg (see page 2) 0 ns

222

TAORTI | T 2 3 | T
—
PHI1 [| | |
PHI2 [l I | i I l I I
taLv ’fl__
ADO-AD23 [¢, ADDRESS DATA OUT
. ! I =—{tov ton] I
D24-D31 [! DATA OUT
| tADSia
ADS { LB@“/ADSw
tADSa BEN ||
E0-BE3 [‘ VALID ><
-=1 tggy 1
DDIN [(HIGH)
. tsTv
sma[X VALID o= K] NEXT
>~ tpsa ‘
DS [|
= | tDSia
ROY [(HIGH) {
‘ ' TUCI5491-47
FIGURE 4-3. Write Cycle.
T4 OR Ti T1 T2 T3 | T4
|
PHI1 [I I
sz[I l I I l I] l I ‘ l
tpis
=]
ADO-AD23 [‘ ADDRESS | |- DATA’ IN
. tALT *’1 Dih
D24-D31 [ADDRESS 2'. _______ T
tapt
708 [N—"o" | °
tALADSs
BEO-BE3 [X VALID X
DDIN [\ /
'DDINV [tpDiNK
<—NE'XT_CVC_—LE
stes [:>< VALID) STATUS
%[e
RDY [(HIGH)

FIGURE 4-4. Read Cycle.

TLIC/5491-48

223

PHI2 [I l | | | l
HOLD [5[| —-—i tHLDh
tHLDa T
ALDA [:ADSf
705 DDINt l
DDIN
BEf
BE0-BE3 [
AD0-AD23 [
D24-D31 [

w L

l

T4

=

FIGURE 4-5. Floating by HOLD Timing (CPU Not Idle Initially).

Astmm l
R T s 1T
|

TL/C/5491-49

Note that whenever the CPU is not idling (not in Ti), the HOLD request (HOLD low) must be active tHLDa before the trailing
edge of PHI2 of the clock cycle that appears two clock cycles before T4 (TX1) and stay low until tHLDh after the leading edge
of PHI1 of the clock cycle that precedes T4 (TX2) for the request to be acknowledged.

[1 T
T\

HOLD [

HLDA I:

B

BE0-BE3 [

ADO0-AD23 [

D24-D31 [

—-L

(FLOATING)

TL/C/5491-50

|
=[]

T4

[| [

=l

tHLDia [

—=1 'HLDh

oD [/
- tHLDAia

HLDA [[
— tADsr

. ADS, tDDINT _)L_—
= . R0 HIGH)
DDIN (FLOATING) (

tBEr
BEO-BE3 [e e e e | e e | I
ADO-AD23 | | e |

D24-D31

FIGURE 4-6. Floating by HOLD Timing (CPU Initially Idle).

Note that during Ti1 the CPU is already idling.

[rememeeoee

(FLOAT'NG) TL/C/5491-51

FIGURE 4-7. Release from HOLD.

224

CPU

. CYCLES T TMMU T2
MMU T TMMU T4
CYCLES [| I
PHI1 -

PHI2 I:

T2

T

LT

=

s [
ADO-AD23 _
(CPU)

D24-D31 [_|
(CPU)

ADS

(CPU)

TN

taLMt \ ‘

tFLTa)

_I-—J ALt
ADDRESS (CPUY)- — — _d. _____
l(FLOAﬂNG)

(MMU)

'ADDRESS (CPU) D —_--O ___________ -

-

tADMf

tALADSh

PAV
(MMU)

DDIN [

DDINt

PA1 [

BEO-BE3 [

cpU
CYCLES

MMU
CYCLES

[1

PHI2 I:

tBEI

FIGURE 4-8. FLT Initiated Float Cycle Timing.

T

l T2 T3

[]

Tmmu

tPABE

TLICI5491-52

-

11

1T

-

1

FIT

o | _| /]

tFLTia

A16-23

(CPU)

DDIN

(FLOATING, DRIVEN BY MMU)
tDDINF

(CPU) [

<

ADS
(cPy)

BEG-8E3 [

\——.%‘BEr

Note that when FLT is deasserted the CPU restarts driving DDIN before the MMU releases it. This, however, does not cause any conflict, since

both CPU and MMU force DDIN to the same

s

FIGURE 4-9. Release from FLT Timing.

TUC/5491-53

|

RDY [

FIGURE 4-10. Ready Sampling (CPU Initially READY).

logic level.
1‘_!;1‘;:) h T2 Jl— T3 i———-] T3
L T T JL
| tRDYh
L'RD\(S

TUC/5491-54

225

| |
P"”I:_’_—Ln I_' 3 I"_lu

ol al

RDY [
-1 tRDYs tRDYh
I . TUCI5491-55

FIGURE 4-11. Ready Sampling (CPU Initially NOT READY).

' Tt ‘ T4 | : '
) l T1 ' T4
P [_’-_—l : PHI1[Jl——l I_'_l
PHI2 [I | PHI2[[_‘ o I_L
< vaLp Dy
DATA (FROM SLAVE)

tDIs
. [~ tDh [t
ADOA15 [— DATA ADO-15 [
Dv
- tspcw L —_ |
== SPC [
sec [;ﬂl‘ ZITN_ |/
1’% tsPCia

DDIN [/ DDIN [T\ ‘

-

=

[
N\

- . ST0-3 STATUS VALID NEXT STATUS
NEXT CYCLE
sTo3 [statusvaup |) NEXTCYC [X
w8 [HIGH) a0s [(HicH
TLIC/5491-56 TLIC/5491-57
FIGURE 4-12. Slave Processor Write Timing. FIGURE 4-13. Slave Processor Read Timing.

~[_7] M

I—P-‘ tspcnt

=N T

TL/C/5491-58

FIGURE 4-14. SPC Non-Forcing Delay.

After transferring last operand to a Slave Processor, CPU
turns OFF driver and holds SPC high with internal 5KQ pullup.

v hh

RST/ABT [

A7/SPC [

tATs tath
TL/CI5491-58

FIGURE 4-15. Reset Configuration Timing.

29R/

tcLh

— |l=—1tCLf

SV
o [-

teLr

— tovL

TLIC/5491-60

FIGURE 4-16. Clock Waveforms.

t
‘pEsa PFS'“ tPESW

PFS [
\ l

FIGURE 4-17. Relationship of PFS to Clock Cycles.

WL L

TUCI5491-61

s \ /
L
tPFNS
ST0-3 ‘ x CODE 1001

TLIC/5491-62

FIGURE 4-18a. Guaranteed Delay, PFS to Non-Sequential Fetch.

| ™ | T2 | oo | | 1 }
— ((
A
ADS
ST0-3 [CODE 1001
- {{
.)
PFS
L
INSPF

TUC/5491-63

FIGURE 4-18b. Guaranteed Delay, ‘Non-Sequential Fetch to PFS.

227

T3ORTi T4ORTi

(LI
ol \/

tLos

NN
LT LT

iLo

|
TLCI5491-64
FIGURE 4-19a. Relationship of ILO to First Operand Cycle
of an Interlocked Instruction.

T3ORTi T40RTi

TR
gEglgl)

-
= Va

tiLon

TUCI5491-65

FIGURE 4-19b. Relationship of ILO to Last Operand Cycle
of an Interlocked Instruction.

[T LT
W] .

i
YLoa YiLoia

TU/C/5491-66

FIGURE 4-20. Relationship of ILO to Any Clock Cycle.

‘ T3ORTi T4ORTi

T i T2 l 3 l T4
mﬂHIj ipiiglailip)

ADS
tush |
-
=[z
u/s VALID v,
v/ 8 ; X777
FIGURE 4-21. U/S Relationship to Any Bus Cycle — ***"%

Guaranteed Valid Interval.

299

[T L]
[LT T

ADS
- tABTs tABTh
RST/ABT
) TUCI5491-68
FIGURE 4-22. Abort Timing, FLT Not Applied.
T T T T T2 ' Ti

e LT
LML

-

DS/FLT /
|

’

taBTs tABTh

RST/ABT

' TLIC/5491-69
FIGURE 4-23. Abort Timing, FLT Applied.
45v {
vcc / r
‘Rs‘l‘sH
— —— tPWR
RST/ABT[
il
)
TLCI5491-70

FIGURE 4-24. Power-On Reset.

[LTI

tRSTS —-{
—— S tRsTW
RST/ABT [@

A

L

TUC/5491-71

FIGURE 4-25. Non-Power-On Reset.

229

[L _—
NW

] s INMIw
w | . ‘
TLICI5491-72 TUC/5491-73
FIGURE 4-26. INT Interrupt Signal Detection. FIGURE 4-27. NMI Interrupt Signal Timing.

Violation of tINTs timing is allowed, but detection then occurs
one clock cycle later. ‘

FIRST BUS CYCLE NEXT
m T2 [5] | T4 TiorTi |

[LT L T1 S B

1L XPF

[O —

TLCI6491-74

FIGURE 4-28. Relationship Between Last Data Transfer of
an Instruction and Puise of Next Instruction.

NOTE:

In a transfer cf a Read-Modify-Write type operand, this is the Read transfer, displaying
RMW Status (Code 1011).

230

Appendix A: Instruction Formats
NOTATIONS:

i = Integer Type Field

B = 00 (Byte)

W = 01(Word)

D = 11 (Double Word)
Floating Point Type Field

F =1 (Std. Floating: 32 bits)
L =0 (LongFloating: 64 bits)

¢ = Custom Type Field
D=1 (Double Word)
Q=0 (QuadWord)
op = Operation Code

Valid encodings shown with each format.

gen, gen 1, gen 2 = General Addressing Mode Field
See Sec. 2.2 for encodings.

General Purpose Register Number

Condition Code Field

0000 = EQual: Z= 1

0001 = NotEqual: Z=0

0010 = Carry Set:C = 1

0011 = Carry Clear:C =0

0100 = Higher:L = 1

0101 = LowerorSame:L =0

0110 = Greater Than:N = 1

0111 = LessorEqual:N =0

1000 = Flag Set: F = 1

1001 = FlagClear:F =0

1010 =LOwer:L=0andZ=0

1011 = Higheror Same:L=10rZ =1
1100 = LessThan:N=0andZ =0
1101 = GreaterorEqual:N=1o0rZ =1
1110 = (Unconditionally True)

1111 = (Unconditionally False)

reg =
cond =

short = Short Immediate value. May contain:

quick: Signed 4-bit value, in MOVQ, ADDQ,
CMPQ, ACB.

Condition Code (above), in Scond.
CPU Dedicated Register, in LPR, SPR.

0000 = US

0001 — 0111 = (Reserved)
1000 = FP

1001 = SP

1010 = SB

1011 = (Reserved)

1100 = (Reserved)

1101 = PSR

1110 = INTBASE

1111 = MOD

Options: in String Instructions

[ow [o]7]

T = Translated

B = Backward

U/W = 00: None
01: While Match
11: Until Match

cond:
areg:

Configuration bits, in SETCFG:

mreg: MMU Register number, in LMR, SMR.

0000 = BPRO

0001 = BPR1

0010 = (Reserved)

0011 = (Reserved)

0100 = PFO

0101 = PF1

0110 = (Reserved)

0111 = (Reserved)

1000 = SC
1001 = (Reserved)
1010 = MSR
1011 = BCNT
1100 = PTBO
1101 = PTB1
1110 = (Reserved)
1111 =EIA
7 1]
[eona' [0 1]
Format 0
Bcond (BR)
7]
Format 1
BSR —0000 ENTER -1000
RET —-0001 EXIT —-1001
CXP -0010 NOP -1010
RXP —0011 WAIT —-1011
RETT —-0100 DIA -1100
RETI -0101 FLAG —-1101
SAVE -0110 SvVC -1110
RESTORE -0111 BPT —-1111
15 8(7 0
T T T T 1 I I
| gen short J op l1 1{ i J
Format 2
ADDQ —000 ACB —100
CMPQ —-001 MovaQ -101
SPR -010 LPR -110
Scond —-011

231

15 8|7 0 23 1615 817 0
lllllll|||T|ll|1| |||I|||1||l||l||||||||
gen op 111 11 i gen 1 gen 2 op i ftr1001 110
Format 3 Format 7
CXPD —0000 ADJSP —-1010 MOVM —-0000 MUL —1000
BICPSR -0010 JSR -1100 CMPM —0001 MEI .—1001
JUMP —-0100 CASE -1110 INSS —-0010 Trap (UND) -1010
BISPSR -0110 EXTS —-0011 DEI -1011
Trap (UND) on XXX1, 1000 mggg‘\/’vv :818? ggﬁ - 1 }8?
MOVZiD -0110 MOD -1110
MOVXiD -0111 DIv 1111
8,7 0
l 1T l T T T l | l
gen1 gen2 op i
23 1615 8|7 0
TT T T[T T 1T T T TTTT
Format4) l gent l gen2 reg | i]1 01110
ADD —0000 suB ~1000 *op
CMP —-0001 ADDR -1001
BIC -0010 AND -1010 Format 8
ADDC -0100 SuUBC -1100
MOV -0101 TBIT -1101 EXT —000 INDEX —100
OR -0110 XOR -1110 CVTP —-001 FFS ~101
INS -010
CHECK -0 11
MOVSU -110, reg = 001
23 0 MOVUS —110, reg =011
‘[Tl T IIIIIIIIIIIIIJ
ooooo shon ifjoooo01110 23 16115]a7 [10
TT T T T T 1T T[T TT T 11
l gen1l gen 2 op f|i00111110_
Format 5
MOVS —-0000 SETCFG —-0010
CMPS 0001 SKPS —0011 Format9
Trap (UND) on 1XXX, 01XX MOVif -000 ROUND -100
LFSR —001 TRUNC -101
MOVLF —-010- SFSR -110
MOVFL' —-011 FLOOR —111
16|15 8|7 1]
|Illllll|l|]llllllllJ
gen 1 gen 2 op i J]01 001
Format 6
7 L]
ROT —0000 NEG ~1000
ASH —0001 NOT -1001 ottt °J
CBIT —0010 Trap (UND) —-1010
CBITI -0011 SUBP -1011
Trap (UND) - —0100 ABS -1100
LSH —-0101 COM —-1101 Format 10
SBIT -0110 IBIT -1110
SBITI —-0111 ADDP -1111 Trap (UND) Always

232

23 16]15 8(7 0 23 16 |15 8|7 0
T 1T 1T T T T T 17T T0TT v 71ririi FTT1TTTTT
Lgerﬂ | genz[op !01110111110 nnn110110
ID B
Format 11 Operation Word ve
Format 15
ADDf —0000 DIVf —1000
MOVf —0001 Trap (UND) —1010 (Custom Stave)
CMPf -0010 Trap (UND) —1011
SUBf -0100 MULSf -1100
NEGf —-0101 ABSf -1101 .
Trap (UND) —0110 Trap (UND) —1110 nnn Operation Word Format
Trap (UND) —-0111 Trap (UND) —1111
23 16 {15 8
T TT 1T T T I
000 gen 1 short XL op i
Format 15.0
7 0 .
l—‘_'_r_‘_‘_‘—j CATSTO —~0000 LCR —-0010
11111110 CATSTH —0001 SCR -0011
Trap (UND) on all others
Format 12
23 16| 15 8
Trap (UND) Always TR T
001 gen 1 gen 2 op lcl i
Format 15.1
N 7 0
Cccv3 —-000 ccv2 -100
roortt 'j" LCSR —001 covi ~101
CCvs -010 SCSR -110
Format 13 CCv4 -011 CCV0 -111
16 |15
Trap (UND) Always 1 TTT 1T r TT T
101 gen1 gen 2 op |x|e
Format 15.5
23 15 15 817 0
T Ty ‘ ' PPy TrTrTarTd CCALO —0000 CCAL3 —1000
Lo snort o] "op " | 1 fo'a 0 i1 CMOVO 0001 Trap (UND) —1010
CCMP —-0010 Trap (UND) —1011
Format 14 CCAL1 —-0100 CCAL2 —-1100
CMOV2 —-0101 CMOV1 —1101
RDVAL —0000 LMR —0010 Trap (UND) —0110 Trap (UND) —1110
WRVAL —000t SMR —-0011 Trap (UND) -0111 Trap (UND) —1111
Trap (UND) on 01XX, 1XXX Ifnnn = 010, 011, 100, 110, 111
then Trap (UND) Always

233

o

01011110

Format 16 Format 19
Trap (UND) Always Trap (UND) Always
I 0 Implied Immediate Encodings:
11011110 7
- I] T | I I
7 3 5 4 <] 2
Format 17 1 | | 1 i 1
Register Mask, appended to SAVE, |
Trap (UND) Always
, .
] - I I] |
7 0 0 2] r2 1] r4 5
_ppooeorrro Register Mask, appended to RESTOF
Format 18 7
I ! I |]
Trap (UND) Always offset lengt

Offset/Length Modifier appended to IN

GET

— L PERIPH. CYCLE
XCTAL2 - v;:: N READY
D—E XCTAL1 WAITS
WAIT3| WAIT REQUESTS
NS16201 WAIT2 (ADDR. DECODED OR STRAPPED)
RESET __ TCU
»{RSTI WAIT] ¢ AD
PHI RD| —
PHI2 WR| L
ADS|¢
ASTO CTTL _ DDW RDY °°C o
L1 4 io_
[\
. HOLD
§ + v ¥ i ¢ —p
RDY PHIt PHI2 iLO BE0-BE3 vy v v HLDAD
PA1 | HOLD RDY RST
> PHI1 A1
| PHI2
__ HOLD}« A28
m'rs.[—> % DS/FLT« HLDAT HLDAD -
HLDA - »| FLT PAV > STROBE
’ LDA o = ADDRESS
NEg20a2 PFS PIPFS st6082 ADO-AD23 LATCH/
uisf Puis - oMU s7 BUFFER
ADS »| ADS :
DDIN DDIN
ST0-ST3 ST0-ST3
RST/ABT |4~ ABT DATA BUFFERS
AT/SPC |4~ >
AD0-AD23 D24-D31 AD0-AD23
(24)
ADO-AD15
ADDR/DATA BUS
ADO-AD15 ___
SPC
NS16081 STO-STH DO-D31
‘FPU

RST]| I
CLK|

NOTE:

For higher speed versions of the 32032 it is recommended to
use an external muitiplexer to handle the BEO-BES lines dur-

ing MMU cycles, instead of PA1.

(32)

FIGURE B-1. Single Processor System Connection Diagram.

ADO-AD23
AND D24-D31

DATA BUFFERS

STO-ST3

TLC/5491-75

‘suonsabbng Buroepaiu ‘g xipuaddy

Physical Dimensions inches (millimeters)

16 SPACES AT 0.050 = 0.800
0,050 121 = 032
121 0.045
REF

1

0.040)
(1.016) w4
MAX .
0.985/0.995
100 @5.019025.273)
0.020 —|-(.016) SQUARE
0.910/0.930 _ {0.508) -4 L
(23.114123.672) MAX 0.945/0.955
= 0.800 SQUARE {28.003724.257)
= 2032 ACT SQUARE
DIMENSION 150
1

0.032 (0.813)
TYP

} 0.026 (0.660)
o w02 ot
0.018

TYP

0125
@3.175)
NOTE: STANDARD LEAD FINISH: oy =~ oum

200 (INCHES MINIMUM SOLDER o
THICKNESS ON COPPER. V6B (REV D)

Plastic Chip Carrier
NS Package Number V68

+0.015
050”00 _
g 11 +0.381
(24"3—u.zﬁa>
sa
0.624+0.008 0.050 0.036+0.003 0.084
(15.85+0.203) 0.040 > (1.270) {0.194£0.076) (2.138) -
s0 1015 N | TYP P MAX
T Lok AR U —
T 5|
! | [
| — =) Cd 0.050+0.008
; =] 3 1270+ 0.203)
| m i TP
!) [x
|) =
| u| [x
0.085+0.010] [
{2.159£0.258)] 0
| [=
| | [
|] [
| u} C
= =
i :] [
1 I 3r T o e o
0.8500.009 0.00 0.075:+0.010
- (215040.229) (0.203) > {1.905 0.258)
v RAD PLC'S e £0688 (REV A)

Chip Carrier
NS Package Number ED68B

National
Semiconductor

NS16081-6 Floating-Point Unit

General Description

The NS16081 Floating-Point Unit functions as a slave proc-
essor in National Semiconductor's NS16000™ microcom-
puter family. It provides a high-speed floating-point
instruction set for any NS16000 family CPU, while remain-
ing architecturaily consistent with.the full two-address
architecture and powerful addressing modes of the
NS16000 microprocessor family.

Features

B Eight on-chip data registe}s

PRELIMINARY

W Standard (32-bit) and long (64-bit) operations
B Supports proposed |EEE standard for binary fioating-

point arithmetic

B Directly compatible with NS16032, NS16008 and

NS32032 CPUs

W High-speed XMOS™ technology .

* B Single 5V supply

W 24-pin dual-in-line package

Block Diagram

- ———— = ——— - — - =

|
MICRO MICRO ENTRY ‘
| 'SEQUENCER Rom POINY
STORE GENERATOR
l ' Initiate
Sequence
|.. - —-— - - - —

Command

' '(:onditiun and
s N I — -

EXPONENT | FRACTION FRACTION
PROCESSOR PROCESSOR SEQUENCER

PRBCESSOR

11 55

Internal Data Bus

REGISTER DATA
FILE QUEUE

|
|
|
R I
|
|
|
|
|

SLAVE

SEQUENCER
l e G

4

Control Bus

= CONTROLUNIT]

- Ex?Eurl'EtTuuﬁ"

INTERFACE Aﬁ)'l
STORAGE UNIT

L e e e e e e e e e 4

TLICI5234-1

239

Absolute Maximum Ratings

Temperature Under Bias 0°Cto +70°C

Storage Temperature —65°Cto +150°C
All Input or Output Voltages

with Respect to GND -0.5Vto +7.0V
Power Dissipation 1.5W

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous opera-
tion at these limits is not intended; operation should be
limited to those conditions specified under DC Electrical
Characteristics.

DC Electrical Characteristics 7, =0°C to 70°C, Vo = 5V + 5%, GND = 0V

Symbol - Parameter Conditions Min Typ Max Units
Vi Logical 1 Input Voltage 20 Vec+05 \
ViL Logical 0 Input Voltage -05 0.8 v
Vou Logical 1 Output Voltage lon= —400 A 24 \
VoL Logical 0 Output Voltage loo=2mA 0.45 \

) Input Leakage Current 0=<ViN<Vco -10.0 10.0 wA
Iqopp) Output Leakage Current 045<V|Ns2.4V -20.0 20.0 A
lcc Active Supply Current lour=0, TA=0°C 300 mA

System Connections

16-BIT
DATA BUS

A/D 0-15 D0-15

—| 570
sT1
§PC
RST

CLK

N$16000
FAMILY
CPU

NS16081
FPU

ST CTTL
NS16201
U

TLIC/5234-2

Connection Diagram

Dual-In-Line Package

D0 — 1@ U 24— V¢
| n—e2 23— s10
08—{3 2f—sT
07— 4 21 |—S°C
06—]5 20—0n
05— 6 NS e 19— 12
p4—7 w03
03—8 17 |— 14
p2—]9 16 j— D15
01— 10 15 r—_RLST
00— 11 18— cik
GNDL —] 12 13 |— aNDB
T0P VIEW

TLICI5234-3

24N

1. NS16081 FPU Pin Descriptions

The following are brief descriptions of all NS16081 FPU
pins. The descriptions reference the relevant portions of
the Functional Description, Section 3.

1.1. SUPPLIES

Power (Vcc): + 5V positive supply. Section 3.1.

Logic Ground (GNDL): Ground reference for on-chip logic.
Section 3.1.

Buffer Ground (GNDB): Ground reference for on-chip
drivers connected to output pins. Section 3.1.

1.2. INPUT SIGNALS
Clock (CLK): TTL-evel clock signal.
Reset (RST): Active low. Initiates a Reset, Section 3.3.

Status (STO, ST1): Active high. Input from CPU, Section
3.4. STO is the least significant bit. The status codes are:

00—(Reserved)

01—Transferring Operation'Word or Operand
10—Transferring Status Word
11—Broadcasting Slave ID

1.3. INPUT/OUTPUT SIGNALS

Slave Processor Control (SPC): Active low. Driven by the
CPU as the data strobe for bus transfers to and from the
NS16081 FPU, Section 3.4. Driven by the FPU to signal
completion of an operation, Section 3.5.1.

Data Bus (D0-D15): Active high. 16-bit bus for data
transfer. DO is the least significant bit. Section 3.4.

2. Architectural Description

2.1. OPERAND FORMATS

The NS16081 FPU operates on two floating-point data
types—single precision (32 bits) and double precision
(64 bits). Floating-point instruction mnemonics use the suffix
F (Floating) to select the single precision data type, and the
suffix L (Long Floating) to select the double precision data
type.

A floating-point number is divided into three fields, as shown \

in Figure 2-1.

31 30

The F field is the fractional portion of the represented
number. In Normalized numbers (Section 2.1.1), the binary
point is assumed to be immediately to the left of the most
significant bit of the F field, with animplied 1 bit to the left
of the binary point. Thus, the F field represents values
from 1.0 (inclusive) to 2.0 (exclusive) as shown in Table 2-1.

TABLE 2-1. SAMPLE F FIELDS
F Field

Binary Value Decimal Value
000...0 1.000...0 1.000...0
010...0 1.010...0 1.250...0
100...0 1.100...0 1.500...0
110...0 1.110...0 1.750...0
Implied Bit

The E field is an unsigned number which gives the binary
exponent of the represented number. The value in the E
field is biased; that is, a constant bias value must be sub-
tracted from the E field value in order to obtain the true ex-
ponent. The bias value is 011...11,, which is either the
value 127 (single precision) or 1023 (double precision).
Thus, the true exponent can be either positive or negative,
as shown in Table 2-2.

TABLE 2-2. SAMPLE E FIELDS

E Field F Field Represented Value
011...110 100...0 15x2-1=0.75
011...111 100...0 1.5%x2°=1.50
100...000 100...0 1.5%2'=3.00

Two forms of the E field represent special values, and are
not available for use as exponents. 11...11 represents a
value which is a reserved operand (Section 2.1.3). 00...00
represents the number zero if the F field is also all zeroes,
otherwise the represented value is a reserved operand.

The S bit indicates the sign of the operand—O0 for positive
and 1 for negative. Floating-point numbers are in sign-
magnitude form, such that only the S bit is complemented
in order to change the sign of the represented number.

Single Precision N
23 22 0

ls]

e | F

1

8 23

Double Precision

63 62 52 51

: |

52

TL/C/5234-4

FIGURE 2-1. Floating-Point Operand Formats

241

2.1.1. Normalized Numberé

Normalized numbers are numbers which can be ex-
pressed as floating-point operands, as described above,
where the E field is neither all zeroes nor all ones.

The value of a Normalized number can be derived by the
formula: :
(- 1)3x2E8) 1 F

The range of Normalized numbers is given in Table 2-3.
21.2. Zero

There are two representations for zero—pasitive and neg-
ative. Positive zero has all-zero F and E fields, and the S bit
is zero. Negative zero also has all-zero F-and E fields, but
its S bit is one.

2.1.3. Reserved Operands

The proposed IEEE Standard for Binary Floating-Point
Arithmetic (Task P754) provides for certain exceptional
forms of floating-point operands. The NS16081 FPU treats
these forms as reserved operands. The reserved operands
are:

* Positive and negative infinity
* Not-a-Number (NaN) values
* Denormalized numbers

Both Infinity and NaN values have all ones in their E fields.
Denormalized numbers have all zeroes in their E fields and
non-zero values in their F fields.

The NS16081 FPU causes an Invalid Operation trap (Sec-
tion 2.2.2.2) if it receives a reserved operand, unless the
operation is simply a move (without conversion). The FPU
does not generate reserved.operands as results.

2.1.4. Integers

In addition to performing floating-point arithmetic, the
NS16081 FPU performs conversions between integer and
floating-point datatypes. Integers are accepted and gener-
ated by the FPU astwo’s complement values of byte (8 bits),
word (16 bits)or double word (32 bits) length.

2.1.5. Memory Representations

The NS16081 FPU does not directly access memory.
However, it is cooperatively involved in the execution of a
set of two-address instructions with its NS16000 Family
CPU. The CPU determines the representation of operands
in memory.

In the NS16000 family of CPUs, operands are stored in
memory with the least significant byte at the lowest byte,
address. The only exception to this rule is the Immediate
addressing mode, where the operand is held (within the in-
struction format) with the most significant byte at the
lowest address.

2.2, PROGRAMMING MODEL

The NS16000 architecture includes nine registers which
are implemented on the NS16081 Floating-Point Unit
(FPU).

DEDICATED DATA
32 32
I R | rof |

n——]
L I
R[]
A
1
1
] I

TLICI5234.5

FIGURE 2-2. Register Set

2.2.1. Floating-Point Registers

There are eight registers (FO-F7) on the NS16081 FPU for
providing high-speed access to floating-point operands.
Each is 32 bits long. A floating-point register is referenced
whenever a floating-point instruction uses the Register
addressing mode (Section 2.3.2) for a floating-point
operand. All other Register mode usages (i.e., integer
operands) refer to the General Purpose Registers (R0-R7)
on the CPU. When the Register addressing mode is speci-
fied for a double precision (64-bit) operand, a pair of regis-
ters holds the operand. The programmer must specify the
even register of the pair. The even register contains the
least significant half of the operand and the next con-
secutive register contains the most significant haif.

TABLE 2-3. NORMALIZED NUMBER RANGES

Single Precision

Most Positive 22y 22" %

=3.4028235 x 10%8
Least Positive = 2126

=1.1754943 x 10~ 38
Least Negative — (27125

= —1.1754943 x 10~ 38
Most Negative —21 7 @2-2"%

= —3.4028235 x 10%8

Double Precision
21023 x(2-2" 52)
=1.797693134862316 x 10308
2- 1022
=2.225073858507201 x 10 ~ 308
—@- 1022)
= —2.225073858507201 x 10 ~308
_ 01023 (2-2- 52)'
= - 1.797693134862316 x 10°08

242

2.2.2. FIoaﬂng-Pdlnt Status Register (FSR)

The Floating-Point Status Register (FSR) selects operat-
ing modes and records any exceptional conditions en-
countered during execution of a floating-point operation.
Figure 2-3 shows the format of the FSR.

3, 1615] 98 7 65 4 3 21
s [, o [[Ffefofe] m]

TLICI52346

FIGURE 2-3. The Floating-Point Status Register

2.2.2.1. FSR Mode Control Fields

The FSR mode control fields select FPU operation modes.
The meanings of the FSR mode control bits are given
below.

Rounding Mode (RM): Bits 7 and 8. This field selects the
rounding method. Floating-point results are rounded
whenever they cannot be exactly represented. The round-
ing modes are:

00 Round to nearest value. The value which is nearest to

: the exact result is returned. If the result is exactly
halfway between the two nearest values the even
value (LSB = 0) is returned.

01 Round toward zero. The nearest value which is closer
to zero or equal to the exact result is returned.

10 Round toward positive infinity. The nearest value
which is greater than or equal to the exact result is
returned.

11 Round toward negativé infinity. The nearest value
which is less than or equal to the exact result is
returned.

Underflow Trap Enable (UEN): Bit 3. If this bit is set, the
FPU requests a trap whenever a result is too small in abso-
lute value to be represented as a Normalized number. If it
is not set, any underflow condition returns a result of ex-
actly zero.

Inexact Result Trap Enable (IEN): Bit 5. If this bit is set, the
FPU requests a trap whenever the result of an operation
cannot be represented exactly in the operand format of
the destination. Ifit is not set, the result is rounded accord-
ing to the selected rounding mode.

2.2.2.2. FSR Status Fields

The FSR Status Fields record exceptional conditions en-
countered during floating-point data processing. The
meanings of the FSR status bits are given below:

Trap Type (TT): Bits 0-2. This 3-bit field indicates the
reason for any trap requested by the FPU. It is cleared by
writing zeroes into it with the Load FSR instruction or by a
hardware reset.

000 ' Notrap requested. ,

001 Underflow.Ifthe UEN bit is set, thistrapoccurs when-
ever aresult is too close to zero to be represented as
a Normalized number.

010 Overflow. This trap occurs whenever a result is too
large in absolute value to be represented.

011 Divide by zero. An attempt was made todivide anon-
zero value by zero.

100 lllegal instruction. An undefined Floating-Point in-
_struction was passed to the FPU.

101 Invalid operation. This trap occurs if either:

1. A Reserved operand is used as a floating-point
operand by any instruction except MOVf (move
without conversion), or '

2. Both operands of the DIVf (Divide) instruction are
zero.

110 Inexact Result. If the IEN bit is set, this trap occurs
whenever the result of an operation cannot be repre-
sented exactly in the operand format of the destina-
tion. It occurs only if no other error has occurred.

Underflow Flag (UF): Bit 4. This bit is set by the FPU
whenever a result is too small in absolute value to be
represented as a Normalized number. Its function is not af-
fected by the state of the UEN bit. The UF bit is cleared
only by writing a zero into it with the Load FSR instruction
or by a hardware reset.

Inexact Result Flag (IF): Bit 6. This bit is set by the FPU
whenever the result of an operation must be rounded to fit
within the destination format. This situation applies both
to floating-point and integer destinations. The IF bit is set
only if no other error has occurred. It is cleared only by
writing a zero into it with the Load FSR instruction or by a
hardware reset. . '

2.2.2.3. FSR Software Field (SWF)

Bits 9-15 of the FSR hold and display any information
written to them (using the LFSR and SFSR instructions),
but are not otherwise used by FPU hardware. They are
reserved for use with NSC floating-point extension
software.

2.3. INSTRUCTION SET

2.3.1. General Instruction Format

Figure 2-4 shows the general format of an NS16000 in-
struction. The Basic Instruction is one to three bytes long
and contains the opcode and up to two 5-bit General Ad-
dressing Mode (Gen) fields. Following the Basic Instruc-
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes
selected.

The only form of extension issued to the NS16081 FPU
is an Immediate operand. Other extensions are used only
by the CPU to reference memory operands needed by
the FPU.

OPTIONAL BASIC
EXTENSIONS INSTRUCTION ¢

LJ
oisp2 | oiset | iwpex | noex | GEM Vo d
'l AL T

ovie | ey | OOR | aooe =0PCDI!E
MM2 1 IMM1 z 1 ‘i“‘ | M‘;DE
121

Y

IMPLIED
OPERAND(S)

TLICI52347

FIGURE 2-4. General Instruction Format

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before in-
dexing. See Figure 2-5.

Following Index Bytes come any displacements (address-
ing constants) or immediate values associated with the
selected addressing modes. Each Disp/Imm field may
contain one or two displacements, or one immediate
value. The size of a Displacement field is encoded within
the top bits of that field, as shown in Figure 2-6, with the re-
maining bits interpreted as a signed (two’s complement)
value. The size of an immediate value is determined from
the Opcode field. Both Displacement and Immediate
fields are stored most significant byte first.

Some non-FPU instructions require additional, “implied”
immediates and/or displacements, apart from those asso-
ciated with addressing modes. Any such extensions ap-
pear at the end of the instruction, in the order that they
appear within the list of operands in the instruction
definition.

2.3.2. Addressing Modes

The NS16000 Family CPUs generally access an operand
by calculating its Effective Address based on information
available when the operand is to be accessed. The method
to be used in performing this calculation is specified by
the programmer as an “addressing mode.”

Addressing modes in the NS16000 family are designed to
optimally support high-level language accesses to vari-
ables. In nearly all cases, a variable access requires only
one addressing mode within the instruction which acts
upon that variable. Extraneous data movement is there-
fore minimized.

NS16000 Addressing Modes fall into nine basic types:

Register: In floating-point instructions, these addressing
modes refer to a Floating-Point Register (FO-F7) if the
operand is of a floating-point type. Otherwise, a CPU Gen-
eral Purpose Register (R0-R7) is referenced. See Section
2.2.1.

1 3|2 0
* GEN. ADDR. MODE REG. NO.

TLICI5234-8

FIGURE 2-5. Index Byte Format

Register Relative: A CPU General Purpose Register con-
tains an address to which is added a displacement value
from the instruction, yielding the Effective Address of the
operand in memory.

Memory Space: Identical to Register Relative above, ex-
cept that the register used is one of the dedicated CPU

-registers PC, SP, SB or FP. These registers point to data

areas generally needed by high-level languages.

Memory Relative: A pointer variable is found within the
memory space pointed to by the CPU SP, SB or FP register.
A displacement is added to that pointer to generate the
Effective Address of the operand.

Immediate: The operand is encoded within the instruc-
tion. This addressing mode is not allowed if the operand is
to be written. Floating-point operands as well as integer
operands may be specified using Immediate mode.

Absolute: The address of the operand is specified by a
Displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis-
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected CPU Stack Pointer
(SPO or SP1) specifies the location of the operand. The
operand is pushed or popped, depending on whether it is
written or read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex-
cept Immediate or another Scaled Index. It has the effect
of calculating an Effective Address, then muitiplying any
General Purpose Register by 1, 2, 4 or 8 and adding it into
the total, yielding the final Effective Address of the
operand.

The following table, Table 2-4, is a brief summary of the
addressing modes. For a complete description of their ac-
tions, see the NS16000 Family Programmer’s Reference
Manual.

7 0
0 L SIGNED DISPLACEMENT

Byte Displacement: range —64to +63

7 0

et
GNED 0\$“‘N'E
o

Double Word Displacement: range (entire addressing space)
TLICI5234-9

FIGURE 2-6. Displacement Encodings

ENCODING
Register
00000
00001
00010
00011
00100
00101
00110
00111
Register Relative
01000
01001
01010
01011
01100
01101
01110
01111
Memory Space
11000
11001
11010
11011
Memory Relative
10000
10001
10010

Immediate
10100

Absolute
10101
External
10110

Top of Stack
10111

Scaled Index
11100
11101
11110
11111

10011

TABLE 2-4. NS16000 FAMILY ADDRESSING MODES

MODE

Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Register 0 relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory
Stack memory
Static memory
Program memory

Frame memory relative
Stack memory relative
Static memory relative

Immediate

Absolute

External

Top of stack

Index, bytes

Index, words

Index, double words
Index, quad words

(Reserved for Future Use)

ASSEMBLER SYNTAX

RO or FO
R1or F1
R2 or F2
R3 or F3
R4 or F4
R5 or F5
R6 or F6
R7 or F7

disp(R0)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp(FP)
disp(SP)
disp(SB)
~ +disp

disp2(disp1(FP))

disp2(disp1(SP))
disp2(disp1(SB))

value

@disp

EXT (disp1) + disp2

TOS

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

EFFECTIVE ADDRESS

None: Operand is in the specified
register.

Disp + Register.

Disp + Register; “SP” is either
SPO or SP1, as selected in PSR.

Disp2 + Pointer; Pointer found at

. address Disp1 + Register. “SP” is

either SP0 or SP1, as selected in
PSR.

None: Operand is issued from
CPU instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Mode + Rn.
Mode + 2 x Rn.
Mode + 4 x Rn.

Mode + 8 x Rn.
“Mode” and “n” are contained
within the Index Byte.

245

2.3.3. Floating-Point Instruction Set .

The NS16081 FPU instructions occupy formats 9 and 11 of
the NS16000 Family instruction set (Figure 2-7). Alist of all
NS16000 family instruction formats is found in the appli-
cable CPU data sheet.

Certain notations in the following instruction description
tables serve to relate the assembly language form of each
instruction to its binary format in Figure 2-7.

Format 9
7 0
I 1T I I I l LI "I* rvr1rrrri
genl I gen2 l 00111110
g — >
OPERATION WORD 1D BYTE
TUICI5234-10
Format 11
2 16]15
L T 1T I l 1 T T T 1T 1T71
‘JM gen2 Ilf1011111n
OPERATION WORD 1D BYTE

TLICI523471

FIGURE 2-7. Floating-Point Instruction Formats

The Format column indicates which of the two formats in
Figure 2-7 represents each instruction.

The Op column indicates the binary pattern for the field
called “op” in the applicable format.

The Instruction column gives the form of each instruction
as‘it appears in assembly language. The form consists of
an instruction mnemonic in upper case, with one or more
suffixes (i or f) indicating data types, followed by a list of
operands (gen1, gen2).

An i suffix on an instruction mnemonic indicates a choice
of integer data types. This choice affects the binary pat-
tern in the i field of the corresponding instruction format
(Figure 2-7) as follows:

Suffixi Data Type i Field
B Byte 00
W Word 01
D Double Word 1"

An f suffix on an instruction mnemonic indicates a choice
of floating-point datatypes. This choice affects the setting
of the f bit of the corresponding instruction format (Fig-
ure 2-7) as follows:

Suffix f Data Type f Bit
F Single Precision 1
L Double Precision (Long) 0

An operand designation (gen1, gen2) indicates a choice of
addressing mode expressions. This choice affects the
binary pattern in the corresponding gen1 or gen2 field of
theinstruction format (Figure 2-7). Refer to Table 2-4 for the
options available and their patterns.

Further details of the exact operations performed by each
instruction are foundin the NS16000 Family Programmer’s
Reference Manual.

Movement and Conversion

The following instructions move the gen1 operand to the
gen2 operand, leaving the gen1 operand intact.

Instruction
MOVf gent, gen2

Format Op
" 0001

Description

Move without
conversion.
Move, converting
from double
precision to
single precision.
Move, converting
from single
precision to
double
precision.
Move, converting
from any integer
type to any
floating-point
type.

Move, converting
from floating-
point to the
nearest integer.
Move, converting
from floating-
point to the
nearest integer
closer to zero.
Move, converting
from floating-
point to the
largest integer
less than or
equal to its
value.

9 010 MOVLF gent,gen2

9 011 MOVFL gen1,gen2

MOVif gen1,gen2

ROUNDfi gen1,gen2

9 101 TRUNCfi gen1,gen2

‘FLOOR(i gen1,gen2

Note: The MOVLF instruction f bit must be 1 and the i field must be 10.
The MOVFL instruction f bit must be 0 and the i field must be 11.

Arithmetic Operations

The following instructions perform floating-point
arithmetic operations on the gen1 and gen2 operands,
leaving the result'in the gen2 operand.

Format Op Instruction Description
" 0000 ADDf gent,gen2 Addgenttogen2.
11 0100 SUBf gen1,gen2 Subtract gent
from gen2.

1 1100 . MULf . gen1,gen2 Multiply gen2 by
gent.

" 1000 DIVf gen1,gen2 Divide gen2 by
gent.

" 0101 NEGf geni,gen2 Move negative of
gen1 to gen2.

11 1101 ABSf gent,gen2 Move absolute

value of gent to
gen2. ¢

246

Comparison

The Compare instruction compares two floating-point
values, sending the result to the CPU PSR Z and N bits for
use as condition codes. The Z bit is set if the gen1 and
gen2 operands are equal; it is cleared otherwise. The N bit
is set ifthe gen1 operand is greater than the gen2 operand;
it is cleared otherwise. The CPU PSR L bit is uncondition-
ally cleared. Positive and negative zero are considered
equal.

Instruction
CMPf

Format Op
1 0010

Description

geni,gen2 Compare gent

to gen2.

Floating-Point Status Register Access

The following instructions load and store the FSR as a
32-bit integer.

Format Op Instruction Description
9 001 LFSR gent Load FSR
9 110 SFSR gen2 Store FSR
LY
2.4. TRAPS

Upon detecting an exceptional condition in executing a
floating-point instruction, the NS16081 FPU requests a
trap by setting the Q bit of the status word transferred dur-
ing the slave protocol (Section 3.5). The CPU responds by
performing a trap using a defauit vector value of 3. See the
Programmer’s Reference Manual and the applicable CPU
data sheet for trap service details.

A trapped floating-point instruction returns no result, and
does not affect the CPU Processor Status Register (PSR).
The FPU displays the reason for the trap in the Trap Type
(TT) field of the FSR (Section 2.2.2.2).

3. Functional Description

3.1. POWER AND GROUNDING

The NS16081 requires a single 5V power supply, appliedon
pin 24 (Vcc). See DC Electrical Characteristics table.

Grounding connections are made on two pins. Logic
Ground (GNDL, pin 12) is the common pin for on-chip logic,
and Buffer Ground (GNDB, pin 13) is the common pin for
the output drivers. For optimal noise immunity, it is recom-
mended that GNDL be attached through a single conduc-
tor directly to GNDB, and that all other grounding connec-
tions be made only to GNDB, as shown below (Figure 3-1).

+5V
24
Veo
NS16081
FPU
12 13 OTHER
GNDL GNDB ¢— GROUND
F _L CONNECTIONS

TLICI5234-12

FIGURE 3-1. Recommended Supply Connections

3.2. CLOCKING

The NS16081 FPU requires a single-phase TTL clock input
on its CLK pin (pin 14). The CLK signal is asynchronous to
bus transfers and can come from any source, but the CTTL
signal, provided by the NS16201 Timing Control Unit, can
be used for this purpose.

3.3. RESETTING

The RST pin serves as a reset for on-chip logic. The FPU
may be reset at any time by pulling the RST pin low for at
least 64 clock cycles. Upon detecting a reset, the FPU ter-
minates instruction processing, resets its internal logic,
and clears the FSR to all zeroes.

On application of power, RST must be held low for at least
50 us after Vo is stable. This ensures that all on-chip
voltages are completely stable before operation. See
Figures 3-2 and 3-3.

“ LILTLTL

>64 CLOCK
CYCLES

- f

=50 s

TLiC/5234-13

FIGURE 3-2. Power-On Reset Requirements

TLICI5234-14

FIGURE 3-3. General Reset Timing

3.4. BUS OPERATION

Instructions and operands are passed to the NS16081 FPU
with slave processor bus cycles. Each bus cycle transfers
either one byte (8 bits) or one word (16 bits) to or from the
FPU. During all bus cycles, the SPC line is driven by the
CPU as an active low data strobe, and the FPU monitors
pins STO and ST1 to keep track of the sequence (protocol)
established for the instruction being executed. This is
especially necessary in a virtual memory environment,
allowing the FPU to retry an aborted instruction.

247

3.4.1. Bus Cycles

A bus cycle is initiated by the CPU, which asserts the
proper status on STO and ST1 and pulses SPC low. STO and
ST1 are sampled by the FPU on the leading (falling) edge of
the SPC pulse. If the transfer is from the FPU (a slave proc-
essor read cycle), the FPU asserts data on the data bus for
the duration of the SPC pulse. If the transfer is to the FPU -
(a slave processor write cycle), the FPU latches data from
the data bus on the trailing (rising) edge of the SPC pulse.
Figures 3-4 and 3-5 illustrate these sequences.

The direction of the transfer and the role of the bidirec-
tional SPC line are determined by the instruction protocol
being performed. SPC is always driven by the CPU during
slave processor bus cycles. Protocol sequences for each
instruction are given in Section 3.5.

3.4.2. Operand Transfer Sequences

An operand is transferred in one or more bus cycles. A
1-byte operand is transferred on the least significant byte
of the data bus (D0-D7). A 2-byte operand is transferred on
the entire bus. A 4-byte or 8-byte operand is transferred in
consecutive bus cycles, least significant word first.

3.5. INSTRUCTION PROTOCOLS

3.5.1. General Protocol Sequence

Slave Processor instructions have a three-byte Basic In-
struction field, consisting of an ID Byte followed by an
Operation Word. See Figure 2-7 for FPU instruction en-
codings. The ID Byte has three functions:

1) It identifies the instruction to the CPU as being a Slave
Processor instruction. ’

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation
Word of the instruction.

" Upon receiving a Slave Processor instruction, the CPU ini-
tiates the sequence outlined in Table 3-2. While applying
Status Code 11 (Broadcast ID, Table 3-1), the CPU trans-
fers the ID Byte on the least significant half of the Data
Bus (D0-D7). All Slave Processors input this byte and
decode it. The Slave Processor selected by the ID Byte is
activated, and from this point the CPU is communicating
only with it. If any other slave protocol was in progress
(e.g., an aborted Slave instruction), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 01 (Transfer Siave Operand, Table 3-1). Upon
receiving it, the Slave Processor decodes it, and at this
point both the CPU and the Slave Processor are aware of
the number of operands to be transferred and their sizes.
The Operation Word is swapped on the Data Bus; that is,
bits 0-7 appear on pins D8-D15 respectively, and bits 8-15
appear on pins D0-D7 respectively.

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing them
to the Slave Processor. To do so, it references any Ad-
dressing Mode extensions which may be appended to the
Slave Processor instruction. Since the CPU is solely
responsible for memory accesses, these extensions are
not sent to the Slave Processor. The Status Code applied
is 01 (Transfer Slave Processor Operand, Table 3-1).

After the CPU has issued the last operand, the Slave Proc- |
essor starts the actual execution of the instruction. Upon
completion, it will signal the CPU by pulsing SPC low. To
allow for this, SPC is normally held high only by a pull-up
device of approximately 5 k2 inside the CPU.

VALID

ST0, 8T1 //////////////////////

Ui

)
|
o

(NOTE 1)

|

00-D15

Note 1: FPU samples CPU status here.

-

VALID FROM FPU

)__...

TLICI5234-15

FIGURE 3-4. Slave Processor Read Cycle

VALID

sto.sm W

Wi

(NOTE 1) ’

(NOTE 2)

']

D0-D15 -——.———.(

VALID FROM CPU

F—--

Note 1: FPU samples CPU status here.
Note 2: FPU samples data bus here.

FIGURE 3-5.

TLICI5234-16

Slave Processor Write Cycle

248

Upon receiving the pulse on SPC, the CPU uses SPC to

read a Status Word from the Slave.Processor, applying
Status Code 10 (Read Slave Status, Table 3-1). This word
has the format shown in Figure 3-6. If the Q bit (“Quit”,
Bit 0) is set, this indicates that an error has been detected
by the Slave Processor. The CPU will not continue the pro-
tocol, but will immediately trap through the FPU vector in
the Interrupt Table. If the instruction being performed is
CMPf (Section 2.3.3) and the Q bit is not set, the CPU loads
Processor Status Register (PSR) bits N, Z and L from the
corresponding bits in the Status Word. The NS16081 FPU
always sets the L bit to zero.

15] 8 7 0
looonunooluzoouou|

NEW PSR BIT VALUE(S)
*‘QUIT"": TERMINATE PROTOCOL, TRAP (FPU).

TLICI5234-47

FIGURE 3-6. FPU Protocol Status Word Format

"The last step in the protocol is for the CPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 01 (Transfer Slave Operand,
Table 3-1).

TABLE 31. BUS STATUS COMBINATIONS

TABLE 3-2. GENERAL INSTRUCTION PROTOCOL

Step Status Action
1 1" CPU sends ID Byte.
2 01 CPU sends Operation Word.
3 01 CPU sends required operands.
4 XX FPU starts execution.
5 XX FPU pulses SPC low.
6 10 CPU reads Status Word.
7 01 CPU reads result (if any).

3.5.2. Floating-Point Protocols

Table 3-3 gives the protocols followed for each floating-
point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Section 2.3.3.

The Operand Class columns give the Access Classes for
each general operand, defining how the addressing
modes are interpreted by the CPU (see NS16000 Family
Programmer’s Reference Manual).

The Operand Issued columns show the sizes of the
operands issued to the Floating-Point Unit by the CPU.
“D" indicates a 32-bit Double Word. “‘i”’ indicates that the
instruction specifies an integer size for the operand
(B = Byte, W=Word, D = Double Word). “f”” indicates that
the instruction specifies a floating-point size for the
operand (F=232-bit Standard Floating, L=64-bit Long
Floating).

The Returned Value Type and Destination column gives
the size of any returned value and where the CPU places it.
The PSR Bits Affected column indicates which PSR bits, if
any, are updated from the Slave Processor Status Word
(Figure 3-6).

Any operand indicated as being of type “f”’ will not cause a
transfer if the Register addressing mode is specified. This
is because the Floating-Point Registers are physically on
the Floating-Point Unit and are therefore available without
CPU assistance.

TABLE 3-3. FLOATING POINT INSTRUCTION PROTOCOLS

ST1 STO CPU Function
0 0 (Reserved)
0 1 Transferring Operation
Word or Operand

1 0 Reading Status Word

1 1 Broadcasting ID Byte

. Operand 1 Operand 2 Operand 1
Mnemonic pglass pglass l;‘ssued
ADDf read.f rmw.f f
SUBf read.f rmw.f f
MULF read.f rmw.f f
Divf read.f rmw.f f
MOVf read.f write.f f
ABSf read.f write.f f
NEGf read.f write.f f
CMPf read.f read.f f
FLOORfi read.f write.i f
TRUNCHi read.f write.i f
ROUNDfi read.f write.i f
MOVFL read.F write.L F
MOVLF read.L write.F L
MOVif read.i write.f i
LFSR read.D N/A D
SFSR N/A write.D N/A

D =Double word

i =Integer size (B,W,D) specified in mnemonic.

f = Floating-Point type (F,L) specified in mnemonic.
N/A = Not Applicable to this instruction.

Operand 2 Returned Value PSR Bits

Issued Type and Dest. Atfected
f fto Op. 2 none
f ftoOp.2 none
f fto Op. 2 none
f fto Op. 2 none
N/A fto Op. 2 none
N/A fto Op. 2 none
N/A fto Op.2 none
f N/A N,Z,L
N/A itoOp. 2 none
N/A itoOp. 2 none
N/A itoOp.2 none
N/A Lto Op. 2 none
N/A FtoOp. 2 none
N/A fto Op. 2 none
N/A N/A none
N/A D toOp.2 none

249

4. AC Electrical Characteristics

4.1. OUTPUT SIGNAL PROPAGATION bELAYS

Maximum times assume capacitive loading of 100 pF.

Name Figure Description Min Typ Max Units
toy 45 SPC Low to Data Valid 0 65 ns
tps 45 SPC High to Data Bus Invalid (Floating)] 50 ns
tsporw 4-6 SPC Pulse Width from FPU (at 0.8V) toLkp — 50 toukp + 50 ns
tspcri 46 CLK High to SPC Low from FPU 0 120 ns
tspcFn 46 CLK High to SPC High from FPU 0 120 ns
tspCEnt 46 CLK Low to FPU not Forcing SPC High 0 75 ns
4.2, INPUT SIGNAL REQUIREMENTS

Name Figure Description Min Typ Max Units
tewr 4-2 Power-On Reset Duration 50 us
trRsTw 4-3 Reset Pulse Width (at 0.8V) 64 tcLkp
tss 44 Status Set-Up to SPC Low 75 . ns
tsn 4.4 Status Hold from SPC Low 100 ns
tos 44 Data Set-Up to SPC High 75 ns
ton 4-4 Data Hold from SPC High 100 ns
tspow 4-4 SPC Pulse Width from GPU (at 0.8V) 100 ns
4.3. CLOCKING REQUIREMENTS

Name Figure ‘Description Min Typ Max Units
tcLkh 41 Clock High Time (above 2.0V) 60 1000 ns
toLki 4-1 Clock Low Time (below 0.8V) 60 1000 ns
torkp 41 Clock Period 160 2000 ns

CLK

' Vee
tcikp

toikn

4.5V

S 2.0v CLK
0.8v

towk!

TLIC/5234-18

FIGURE 4-1. Clock Timing

FIGURE 4-2. Power-On Reset

TLIC/5234-19

250

—

TLICI5234-20

FIGURE 4-3. Non-Power-On Reset

$T0, §T1 m[‘— VALID ~ '
] f—t

" _/L
]

TLICI5234-21

FIGURE 4-4. Write Cycle to FPU

T P—

} ‘._to,,—-l o
DO-D15 e o e s s e e -(VALID FROM FPU -

TLIC/5234-22

FIGURE 4-5. Read Cycle from FPU

—->| tSPCFI |~— -—-—| r—— tspeFn

CLK

’ ""i I‘— tspCFnt

SPC \ /

Lf— tspeFw —'I

TLICI5234-23

FIGURE 4-6. SPC Pulse from FPU

251

Physical Dimensions inches (millimeters)
1.230
(31.23)

4 [P2 1] Poj [is] fre) [7) [fe] (i3] fra] fi3)

0.568--0.605
(14.43-15.37)

-)
NO. 1 DeNT — T o] Gl]] o []]

0.050 0.005 —~ |- s Eﬁi)
(1270 0127 | {13.208) @191
TvP l I SQUARE MAX
I | ¥ { (0508-1528)
0.005 I
0.008-0.015 02 i
{0203-0.381) | MmN
0.005
0.590-0.620 m—* <= 0.100:0010 ‘ _“ 0.015-0.023 | | 0150
(14.99-15.75) | {2540 0.25) 254, (0.381-0.584) (::l.‘ll:‘u)
(1“4‘:’; — e 0 0.125-0200
BSC TYP REL (3.175-5.080)
MAXTYP TO LEADS 1 AND 24)
Ceramic Dual-In-Line Package (D)
Order Number NS16081D-6
NS Package Number D24C
1270
[~ @z258)
MAX
24 22| [21] 19] i8] 17 {16] |15 [ia] [13]
d |
0.062 | :
[1] 0.540 -0.008
Wi37is-0027)
PIN NO. 1IDENT :
1'\:; \
[L] Taf [Te] Te] o) Ta] ToJ Tl T T
DOTTED OUTLINES
REFLECT ALTERNATE “
0580 MOLDED BODY CONFIGURATION
1473}
e ! (::::) wos
1 aad 09.040 0.160 :0.005
lo Q000X | MAX {1805) s P
{15.26-15.748) | B ’I [‘ 064 0.
T = [T y
i /]
0,50 0.009-0.015 e [y
95°25 0015 86°94 ’
0.015
0625 0028 N mzzm?:m i __”_‘ 0.018 :0.007 mm& 3sn
(15:75‘"”) (1.905 +0.381) ‘J LMM 0010 035700760 —— MIN
{2540 0.254) MIN
Molded Dual-in-Line Package (N)
Order Number NS16081N-6
NS Package Number N24A
i\ 4
%

252

National
Semiconductor

NS16082 Memory
Management Unit (MMU)

General Description

The NS16082 Memory Management Unit (MMU) provides
hardware support for demand-paged virtual memory man-
agement. Its specific capabilities include fast dynamic
address translation, protection on individual 512-byte
pages, and detailed status to assist an operating system
in efficiently managing up to 16 MB of physical memory.
Support for virtual machine implementations is provided,
along with comprehensive software debugging features.

High-speed address translation is performed on-chip
through a 32-entry associative cache, which maintains
itself from tables in memory with no software interven-
tion. Protection violations and page faults (references
to nonresident pages) are automatically detected by the
MMU, invoking the instruction abort with retry feature of
the CPU. This fault handling mechanism provides the
necessary hooks for virtual memory and virtual
machines.

Additional features for program debugging include two
hardware breakpoint registers and a program flow
traceback facility, which provide the programmer with
powerful stand-alone debugging capability even with-
out expensive test equipment.

PRELIMINARY

Features

B Dynamic address translation

B 32-entry on-chip translation cache, updated
automatically from page tables in memory

® Full hardware support for virtual memory and
virtual machines

B Security mechanisms implemented via access level
checking and dual-space mapping

® Program debugging support:
— Two breakpoint registers
— “Break on Branch” mode
— Program flow traceback

B High-speed XMOS technology
B 48-pin dual-in-line package °
® Single 5V supply

NS16082 MMU Block Diagram

1/0
BUFFERS
AND
LATCHES

ADDRESS AND
CONTROL LINES

REGISTER

BLOCK

TRANSLATION
BUFFER
BLOCK
(CACHE)

CONTROL
BLOCK

253

Absolute Maximum Ratings

Temperature Under Bias
Storage Temperature

All Input or Output Voltages
with respect to GND

Power Dissipation

0°Cto70°C
-65°Cto 150°C

-0.5Vto +7.0V

Note: Absolute maximum ratings are those values
beyond which the safety of the device cannot be guar-

anteed. Continuous operation at these limits is not

"1.5Watt

DC Electrical Characteristics v..=5v=5%

intended. Therefore, operation should be limited to
those conditions specified under DC Electrical
Characteristics (see below).

Symbol / Parameter Test Min. Max. Unit
Vi Input Low Voltage -0.5 +0.8 Vv
Vi Input High Voltage 2.0 Vec+0.5 v
VoL Output Low Voltage loL=2.0mA 0.45 \"
Vo Output High Voltage loy = —400pA 2.4 \
lee Power Supply Current Ta=0°C 300 mA
Iy Input Leakage Current 0< ViN< Vce 10 uA
loL Output Leakage Current 0.45 < Vo < Ve 10 uA

NS16082 MMU Bit Maps

—r — — — T T a— —
) (m’:sawald) { NT] ut | FT I Al l uB]BEN\ AD ‘ DS l s lTU ‘BST. . .EST‘ | BO | ED BN TETI | ERC
kil 2|2 16 | 15 8 7 0
Memory Management Status Register (MSR)

M J ' iRasev'vod) ' ' ' I N l ' ‘rlddlress B‘ns 10‘-23 IL ' i | 0 0) 00 0 N rﬂ 0 0 ' 0
3 4|23 . RN []
Page Table Base Registers (PTBO, PTB1)

AS ’ I(I!ssur’wau) I ’ ' ' I T I ' ' Vi‘nual Alduras‘s ' ' ' I I l " ' I
31 24|23 0
Error/Invalidate Address Register (EIA)
Program Flow Registers (PF0, PF1)
as [w] oe [on | ow] ce T T T e T
31 2|23 0
Breakpoint Registers (BPR0O, BPR1)
3t 2|2
Breakpoint Counter Register (BCNT)
T T T T s:|;1 T T T T T T T T L T T T T sjcu : : T T T ‘l ‘v
kil 16 | 15 0
Sequential Count Register (SC)

BS '(Rsse‘rvi : liago F:rama élumhe:r ' ' ') :(Rese:rved)l M | R I PVI. u
A 24|23 9 8 5 4 0
Page Table Entry (PTE) In Memory

gen 'sh;mj lnl 'npf;nde[\% 0:0:0:1'1'1'1'0
23 Operation Word 8 7 1D Code 0
Slave Instruction Format
: ' ' Ind‘?x 1 N :) ' l%mox 2:) ‘r))) :ﬂﬂsul:)
23 16 | 15 9 8 0

Virtual Address Format.

254

1 Pin Descriptions

1e 48 V(e

2 4Tp—A23

3 46 —A 24

4 45 p—T1NT

5 a4 —PAV

6 43p—ST0

7 42}—ST 1

8 41 p—ST 2

9 40 —-ST 3

10 39 p~—PFS

n 38 |~—DDIN

12 NS16082 37 }—ADS

13 MMU g b—uss

14 35 p~—RAT/SPC

15 34 |~——RST/ABT

16 33 P—FLT

17 32 |—HLDAD

18 31 —HLDAI

19 30 —HOLD

20 29 —RST
AD 2 —21 28 p~—RDY
AD 1 =22 27 p—PHI2
AD 0~—{23 26 f—PHN
GNDL —24 25 f——GNDB

Pin Configuration

1 Pin Descriptions

The following is a brief description of all NS16082 pins.
The descriptions reference portions of the functional
descriptions, Section 3.

1.1 Supplies

Power (Vcc): +4.75 to 5.25 V DC supply. (Sec. 3.1)

Logical Ground (GNDL): Internal Logic Common Ground.
(Sec. 3.1)

Buffer Ground (GNDB): Signal Ground and Power Supply

return. (Sec. 3.1)

1.2 Input Signals

Clock (PHI1, PHI2): Two-phase clocking signals from 0.5
to 10 MHz MOS Level clocks from NS16201 clock gen-
erator. See NS16032.

Ready (RDY): Used by slow memories to extend the
memory cycle for more than four clock periods. It is syn-
chronized externally and sampled at the beginning of T3.

Hold Request (HOLD), (HLDAI), (HLDAO): Hold/Hold Ac-
knowledge Input/Hold Acknowledge Output —three pins
for active low sngnils used in DMA transfers. A DMA de-
vice requests the bus pulling the HOLD line low. HLDAI is
connected to the HLDA output line of the GPU and HLDAO
is output to the DMA device.

Reset (RST): System reset, active low.

Status Lines (ST0-3): Status lines output by the CPU.
Active from T4 of previous bus transfer through T3 of
present bus transfer. See NS16032 Data Sheet for
assignments.

Program Flow Status (PFS): Active low pulse issued by
the CPU at the beginning of each instruction.

User/Supervisor Modes (U/S): This signal is provided by
~ the CPU, from its U-bit in Program Status Register (PSR).
It is used by the MMU for memory protection and for se-
lection of the Address Space (in Bual Space mode only).

Address Strobe Input (ADS): Active low pulse received
from the CPU during T1. Used as a strobe to latch the
virtual address from the muitiplexed bus.

1.3 Output Signals

Reset Output or Abort (RST/ABT): Active low pulse
accepted by the CPU during TMMU or T2. When active,
the CPU is interrupted. The MMU status register (MSR)
holds the information about the cause of the abort.
When held longer than one clock cycle it is interpreted
by the CPU as a reset signal. Upon receiving the RST
signal_on its own pin, the MMU will activate the
RST/ABT pin to reset the CPU.

Interrupt Output (INT): Active low pulse used by the
debug functions to inform the CPU (when connected to
its NMI input) or external hardware that a break
condition has occurred. The MMU status register (MSR)
holds the information about the cause of the interrupt.

Float Output (FLT): An active low signal that floats the
CPU from the bus, when the MMU has to get Page Table
Entries from memory. It is sampled by the CPU during
TMMU. It is held high during reset.

Physical Address Valid (PAV): Active low pulse gener-
ated during TMMU. Used as a strobe pulse by the memory
address latches. It floats during HOLD ACKNOWL-
EDGE and it is also pulsed when FLT is active to access
page tables.

Most significant bit of Physical Address (A24): Valnd
from TMMU to T4.

Hold Acknowiedge Output (HLDAO): See Hold Request.
(Sec. 1.2)

1.4 Input-Output Signals

Multiplexed Address/Data Bus (ADO-AD15): During
clock period T1, contains the Virtual Address (output by
the CPU). During period TMMU contains the Physical
Address (output by the MMU). During periods T2-T4 con-
tains Data (output by the CPU, memory or MMU).

Virtual/Physical Address Multiplexed Bus (A16-A23):
High-order bits of address. During T1, the bus contains
the.Virtual Address (output by the CPU). During TMMU-
T4 it contains the Physical Address (output by the
MMU).

Data Direction In (DDIN): As an input indicates to the
MMU the type of memory cycle: Low for Read and high
‘for Write. When the CPU tri-states this line, the line is
driven by the MMU allowing it to read/write in the
memory pages independently of the CPU.

Address Translation or Slave Processor Control (AT/SPC):
A bidirectional control line used in slave instructions. For
a description of the characteristics of this line refer to
the NS16032 CPU Data Sheet. During reset it is held low
‘by the MMU to set the CPU for the Address Transiation
mode.

255

2 General Description

For purposes of address translation, memory is divided
into 512-byte pages. A virtual address for the MMU is
composed of two fields: a virtual page frame number and
a 9-bit offset. The offset is unchanged by the translation
algorithm. The MMU translates the virtual page number
to a physical page number, according to page tables
stored in memory.

The Operating System and MMU exchange information
on the status of the memory pages through a Page Table
in physical memory. The entries track both the presence
of apagein the physical memory and the protection level
of that page.

By manipulating the page tables, an Operating System
dynamically controls the mapping of virtual to physical
addresses. In particular, the Operating System may
specify that references to certain pages should generate
translation error aborts. This mechanism implements
virtual memory management and protection.

“The virtual address output from the NS16032 CPU is 24

bits wide while the physical address output from the
MMU is 25 bits wide. The extra bit (bit 25) can partition
memory, making it especially useful in an In-System
Emulation (ISE™) environment. -

The MMU has an internal cache memory which contains
direct virtual-to-physical address mappings of the 32
most recently used pages. Thus, most address transla-
tions take only one additional clock cycle. The “hit rate”
of the cache memory is usually better than 98%, so that
the time overhead involved in dynamic translation is
minimal.

The MMU is also capable of debugging support. The
MMU’s ability to perform program flow tracing and
address breakpoints aids debugging.

Program flow tracing allows software to reconstruct the
sequence of instructions executed prior to an exception
or a breakpoint. The address of a nonsequential instruc-
tion is stored and a count is kept of the number of in-
structions following until the next nonsequential
instruction is reached. The MMU enables retracing of
two such branchings with no effect on execution time.
By enabling a special “Break on Nonsequential Fetch”
feature, a table of arbitrary length can be maintained.

Up to two breakpoint addresses, virtual or physical, may
be activated in the MMU. A counter may be attached
to one of these, enabling “break on N occurances”
capability. .

2.1 Internal Organization

Internal organization of the NS16032 MMU consists of
five functional blocks and their respective addressable
registers. These are shown in Figure 2-1. Both internal
and external MMU connections are shown in the block
diagram. Detailed block and register operation is des-
cribed in the following subsections.

2.1.1 Hardware Debug Block

This block contains the registers, counters, and logic
which allow the execution of program breakpoints. The
circuits also permit program flow tracing, which, in turn,

enables the software to reconstruct the sequence of in-
structions executed before breakpoint.

Program flow tracing information is recorded in the two
24-bit Program Flow registers (PFO and PF1). The 32-bit
Sequential Counter (SC) contains the number of se-
quentially executed instructions following the last two
program flow changes. The PF registers store the virtual
addresses of the last two nonsequentially executed in-
structions. If such an address is obtained, it is entered
into PFO. The old PFO contents are shifted into PF1; the
previous contents of PF1 are lost. The corresponding
counts in the halves of SC are transferred similarly. For
the user these are read-only registers read by means of
the Store Memory Management Register (SMR) slave in-
struction. A Load Memory Management Register (LMR)
instruction addressing any of the PF registers will reset
the PF and SC registers.

The debug block includes the following registers. Each
is described below. Particular emphasis is placed on
the the MMU Status Register (MSR).

* MMU Status Register (MSR)

* Program Flow Registers (PFO and PF1)
* Sequential Counter (SC)

* Breakpoint Registers (BPRO and BPR1)
* Breakpoint Counter Register (BCNT)

Memory Management Status Register

The Memory Management Status Register (MSR) speci-
fies the operational mode and current processing status
of the MMU. The register permits user control of address
translation, breakpoints, and program tracing. The MMU
Status Register is 32 bits in length. The MSR format is
shown on page 2.

Bits 0 to 25 are the various control bits and flags of the
MMU. Bits 26 to 31 are not used. The following des-
cribes the control bits and flags:

ERC s the Error Class flag. The 3-bit flag specifies the

cause of the current MMU exception.
Bit 0 is set to 1 on an address translation error.
Bit 1 is not used.

Bit 2 is set to 1 on a break and set to 0 on a non-
sequential trace interrupt.

TET is the Translation Error Trace flag. The 3-bit flag
specifies the cause of the current address trans-

lation error.
Bit 3 is set to 1 on a protection level error.

Bit 4 is set to 1 on an invalid Level 1 Page Table
Entry.

Bit 5 is set to 1 on an invalid Level 2 Page Table
Entry.

BN is the Breakpoint Number bit. BN is set to
indicate the breakpoint address of the current
break. If BN is 1, the breakpoint address is con-
tained in BPR1. If BN is 0, the breakpoint address

is in BPRO.

is the error Data Direction bit. If ED is 1, a read
operation or the first part of a read-modify-write
operation caused an address translation error. If

ED

256

BD

EST

BST

TU

TS

DS

AO

BEN

ED is 0, a write or the last part of a read-modify-
write operation caused the error.

is the Breakpoint Direction bit. If BD is 1, a read
operation or the first part of a read-modify-write
operation caused the current break. If BD is 0,a
write operation on the last part of a read-modify-
write operation caused the break.

is the Error Status flag. The 3-bit flag is set on an
address translation error to the low order three
bits of the system status bus. (See" CPU Hard-
ware Specs.)

is the Breakpoint Status flag. The 3-bit flag is set
on a break to the low order three bits of the
system status bus. (See CPU Hardware Specs.)

is the Translate User bit. If TU is 1, the MMU
translates all adddresses specified in the User
mode. If TU is 0, the MMU interprets addresses
specified in the User mode as physical address.

is the Translate 'Supertlisor bit. If TS is 1, the
MMU translates all addresses specified in the
Supervisor mode. If TS is 0, the MMU interprets
addresses specified in the Supervisor mode as
physical addresses.

is the Dual Space bit. If DS is 1, the PTB1 register
contains the Level 1 Page Table Base address of
all addresses specified in the User mode. If DS is
0, the PTBO register contains the Level 1 Page
Table Base address of all addresses specified in
both User and Supervisor modes.

is the Access Override bit. If AO is 1, the MMU
overrides the protection level of all addresses.
This permits a program to access memory which
is normally accessible only to the supervisor
while the system is in' the User mode. If AQ is O,
the MMU does not override protection level.

is the Breakpoint Enable bit. If BEN is 1, the
MMU enables the BPRO and BPR1 registers and

breaks program execution whenever a breakpoint
is encountered. If BEN is 0, the MMU disables the
BPRO and BPR1 registers.

is the User Break bit. If UB is 1, the MMU enables
the BPRO and BPR1 registers for User mode.
operation only. If UB is 0, the MMU enables the
registers for both User and Supervisor mode. The
UB bit is ignored if breakpoints are disabled
(BE=0).

is the Abort or Interrupt bit.

is the Flow Trace bit. If FT is 1, the MMU enables
the PFOQ, PF1, SCO, and SC1 registers and traces
program execution. If FT is 0, the MMU disables
the registers.

is the User Trace bit. IF UT is 1, the MMU enables

the PFO, PF1, SCO, and SC1 registers for User

mode operation only. IF UT is 0, the MMU en-

ables the registers for both User and Supervisor

mode. The UT bit is ignored if flow trace is dis-
. abled (FT=0).

is the Nonsequential Trace bit. If NT is 1, the
MMU enables the Nonsequential Trace interrupt.
The MMU stops execution of any branch, jump,
call, or return instruction and sends a non-
maskable interrupt to the system CPU. If NT is 0,
the MMU disables the interrupt.

uB

Al
FT

uT

NT

The MSR control bits and flags may be read or modified
by executing the SMR and LMR instructions. The NT,
FT, TS, TU bits and the ERC flag are set to 0 whenever
the system is reset. The NT, FT, and BEN bits are set to
0 whenever the MMU generates a break on a breakpoint,
a flow trace interrupt, or an instruction abort on an
address translation error.

After writing to the MSR, the MMU automatically sup-
presses the generation of breaks and flow tracing until
a branch, jump, call, or return instruction has been
executed. This permits a routine to set the MSR and

sunn GNDI. +z .:,1 f PFS INT
Ao o INTERNAL 1/0 CONTROL BU
H REGISTERS 1
: FILE BLOCK
AD{5 <t T
Mg =] . MSR
DEBUG 74 B
SYSTEM) pggactmn BLOCK -z"’ WORKING
s e Caar]? | Reaisteas
$T0 e = -sm
- i (3280 Jerrg Eal
ST =t BUFFERS 32 BIT_]8PRy 258 Jereo
Stg—-l e [Zam Jecwr (758 e
DODIN b
AT/ SPT -t} ST 1 STATE BUS
RST/ABT <ty
[—
W._. TRANSLATIO
N
KBS » CONTROL BUFFER
U/§ =] BLOCK BLOCK
RDY | {CACHE)
HOLD wmemi
HLDA| e

Figure 2-1. MMU Block Diagram

257

then pass execution to the program being debugged
without generating a premature break. The Error
Memory Cycle Type (EMCT) is the combination of the
BST, EST, BD and ED fields.

Program Flow Registers

The Program Flow registers PFO and PF1 record the
addresses of the two most recently executed nonse-
quential instructions. Nonsequential instructions are
instructions to which execution control is passed by a
program exception or-a branch, jump, call, or return
instruction.

The PFO and PF1 registers are each 24 bits in length.
PFO contains the address of the last nonsequential
instruction to be executed, and PF1 contains the
address of the next to last nonsequential instruction to
be executed.

The MMU records program flow by copying the address

of the current nonsequential instruction to PFO and -

copying the previous contents of PFO to PF1. The MMU
copies new addresses to the PFO and PF1 registers
each time a nonsequential instruction is executed by
the system.

The FT bit in the MSR enables/disables the registers. If
FT is 1, the registers record the program flow. If FT is 0,
the registers are disabled.

The contents of the PF0 and PF1 registers may be read
by executing the SMR instruction -and cleared by
executing the LMR instruction to any of the program
flow registers.

Sequential Count Registers

The Sequential Count Registers SC0 and SC1record the
number of sequential instructions the system executes
after each of the two most recent non-sequential in-
structions. The SCO and SC1 registers occupy one 32-bit
register and have the format shown on page 2.

SCO contains the number of sequential instructions
executed after the most recent nonsequential instruc-
tion. SC1 specifies the number of sequential instruc-
tions executed between the nonsequential instruction
specified by PF1 and the instruction specified by PFO.

The MMU records the sequential count by incrementing
by 1 the SCO register for each sequential instruction
executed. On execution of a nonsequential instruction,
the MMU copies the contents of SCO to SC1 and clears
SCO to 0 to begin a new count. The MMU continues to
increment SCO until another nonsequential instruction
is executed or until SCO is incremented to 65535. SCO
count cannot exceed 65535.)

The FT bit in the MSR enables/disables the SCO and SC1
registers. If FT is 1, the registers record the sequential
instruction count. If FT is 0, the registers are disabled.

The contents of the SC0 and SC1 registers may be read
by executing the SMR instructions and cleared by exe-
cuting the LMR instruction to any of the program flow
registers. The instructions treat the registers as a single
32-bit register with SCO at the low order word, SC1 at the
high order word.

Breakpoint Registers

The Breakpoint Registers BPRO and BPR1 provide the
breakpoint addresses and breakpoint conditions for
system breaks. The registers are each 32 bits in length
and have the format shown on page 2.

Bits 0 to 23 specify the breakpoint address. The MMU
compares the breakpoint address with addresses refer-
red to by the program. If a match is found and breakpoint
conditions are met, the MMU sends a Nonmaskable inter-
rupt to the system CPU and breaks program execution.

Bits 26 to 31 specify the breakpoint conditions (bits 24
and 25 are not used). Breakpoint conditions define how
the MMU compares the breakpoint address and which
conditions permit the MMU to generate breaks.

AS is the Address Space bit. If AS is 0, the MMU
compares the breakpoint address with virtual ad-
dresses whose Level 1 Page Table is specified by
the PTBO register. If AS is 1, the MMU compares
the breakpoint address with virtual addresses
whose Level 1 Page Table is specified by the PTB1
register. If the VP bit is 1,the MMU takes the AS bit
as bit 24 of the physical address.

is the Virtual/Physical bit. If VP is 0, the MMU
compares the breakpoint address with virtual
addresses only. If VP is 1,the MMU compares the
breakpoint address with transiated virtual ad-
dresses (i.e., final physical addresses)or physical
addresses only.

BE is the Breakpoint Execution bit. If BE is 1, the
MMU breaks program execution when the instruc-
tion at the breakpoint address is executed. The
instruction must start at the breakpoint address
for the break to occur. If BE is 0, no break occurs.

is the Breakpoint Read bit. If BR is 1, the MMU
breaks execution when data is read from the
breakpoint address. If BRis 0, no break occurs.

is the Breakpoint Write bit. If BW is 1, the MMU
breaks execution when data is written to the
breakpoint address or when data is read from the
breakpoint address in the first part of a read-
modify-write operation. If BW is 0, no break
occurs.

is the Counter Enable bit (BPRO only). If CE is 1,
the Breakpoint Count register is enabled. If CE is.
0, the register is disabled. The Breakpoint Count
register is described in the next section.

VP

BR

BW

CE

Breakpoint Count Register

The Breakpoint Count Register (BCNT) controls the
generation of the MMU interrupt signal to the CPU. It
permits the user to specify the number of breakpoints
the MMU should ignore before generating a break. The
BCNT register is 24 bits in length.

The BCNT register affects system breaks only when it is
enabled. The CE bit in the BPRO register enables/disables
the register. When the MMU encounters a breakpoint, it
chécks the CE bit in the register containing the break-
point address. If CE is 1, the MMU decrements the con-
tents of BCNT by 1, compares the new contents with

258

zero. If the new contents are not equal to zero, the MMU
ignores the breakpoint, i.e., it permits program execution
to continue. If the contents are zero, the MMU breaks
execution. If CE is 0, the MMU ignores the BCNT register
and breaks program execution.

The user may set the register to any value within the
range 0 to 224-1 by executing an LMR instruction. If the
register is not given a new value after a break, the next
breakpoint decrements the register contents by 1.

2.1.2 Register File Block

This block contains a number of working registers, with
no external access, used to execute the address transla-
tion algorithm. In addition, it has three addressable
registers (PTBy, PTBy, and EAI) used in performing dy-
namic address translations.

Page Table Base Registers

The Page Table Base registers PTBO and PTB1 specify
the base addresses of the Level 1 Page Tables used in
address translation. The PTBO and PTB1 registers are
each 32bits in length and have the format shown on page 2.

Bits 0 to 23 specify the Page Table Base address. When a

.virtual address is translated, the MMU reads the base
address from the register and accesses the specified
Page Table. Bits 0 to 9 must be zeroes. Bits 24 to 30 are
not used. Bit 31is the Memory Space bit. It is intended to
be used in system emulation.

The MMU accesses only one Page Table Baseregister for
any given address translation. The current mode of
system operation (User or Supervisor) and the Dual
Space bit (DS) in the MSR specify which register is read.
If the DS bit is 0, the MMU reads the base address from
the PTBO register when in either User or Supervisor
mode. If the DS bit is 1, the MMU reads the base address
from PTB1 when in User mode and reads the base
address from PTBO when in Supervisor mode.

The contents of the registers may be read or modified at
any time by executing an SMR and LMR instruction.

Error/invalidate Address Register

The Error/invalidate Address register (EIA) is a dual
purpose register that (1) holds a virtual address that has
generated an MMU exception, and (2) when written to,
removes page table entries from the MMU'’s Translation
Buffer. The EIA is 32 bits in length.

The EIA permits examination of the virtual address that
caused the current MMU exception: On an exception (such
as a protection level error), the MMU copies the virtual
address that generated the error to the EIA. The MMU sets
bit 31 in the ElA to 1if the address’s Level 1 Page Table is
specified by PTB1 and to 0 if the Level 1 Page Table is
specified by PTBO. The error address may be read by
executing an SMR instruction. The cause of the error is
-specified by the ERC and TET flags in the MSR.

The EIA also permits removal of invalid Page Table
Entries from the MMU’s Translation Buffer. The Trans-
lation Buffer contains a copy of the Level 2 Page Table
Entries of recently accessed virtual addresses. A virtual
address written to the EIA causes the MMU to remove
the Page Table Entries of that virtual address from the
Translation Buffer. Bit 31 of the EIA must be set to 1 if
the address’ Level 1 Page Table is specified by PTB1
and set to 0 if the Level 1 Page Table is specified by
PTBO. Page Table Entries must be removed whenever
the user modifies the corresponding entries in the page
tables. The user may write to the EIA register using an
LMR instruction.

2.1.3 Translation Buffer Block

The Translation Buffer is the cache memory of the chip.
It provides direct virtual to physical address mapping

for the most recently used pages in memory. Entries in

the Translation Buffer are allocated and replaced by the

MMU; the programmer is not involved in the process.

The Translation Buffer is a content-addressable mem-
ory. The virtual page frame number (the 15 high order
bits of the virtual address) and the address space bit are
compared to the entries in the buffer. If the virtual page
frame number is present in the buffer, the mapped
physical address is output immediately. If not, a control
line is set, indicating to the Control Block that the
memory page tables should be referenced. When this
occurs, the MMU gets the corresponding mapping from
memory and replaces the least recently used entry in
the Translation Buffer with the new mapping.

Each entry in the Translation Buffer has, besides the
virtual and physical page frame numbers and the
address space bit, a copy of the protection level field
(PL) and the modified bit (M) of the corresponding Page
Table Entry. These bits are used by the MMU to imple-
ment the translation and error handling algorithms
described in the Functional Description. The protection
level field contains the most restrictive combination of
the Level 1 and Level 2 PTE’s.

2.1.4 Control Block

This block is made up of :state machines and combina-
torial logic. Each machine controis the sequence of oper-
ations taking place during the different MMU operations.
A State Bus carries the operation code; the different
blocks decode appropriate signals from the State Bus.

2.1.5 Input/Output Block

The Input/Output block consists of 1/0 buffers and
internal buffers.

The 1/0 buffers provide the.communication between the
MMU and the outside system bus. The internal buffers
between the 1/0 buses which transfer the address offset
and the complete address in no-translation mode are
also part of this block.

259

2.2 Memory Management Instructions

Format Instruction Description
14 LMR mreg,gen Load Memory Management
‘Register. (Privileged)
14 SMR mreg,gen Store Memory Management

Register. (Privileged)
Validate address for reading.
(Privileged)
Validate address for writing.
(Privileged)
8 MOVSUi gen,gen Move a value from Supervisor
Space to User Space. (Priv.)
8 MOVUSi gen,gen Move a value from User Space
to Supervisor Space. (Priv.)

14 RDVAL gen

14 WRVAL gen

The MOVSUi and MOVUSI instructions are intended for
memory management. Instruction format detail can be
found in the NS16032 Data Sheet, Appendix A.

3 Functional Description
3.1 Power and Grounding

The NS16082 requires a single 5V power supply applied
to pin 48 (Vo). See DC Electrical Characteristics.

Grounding connections are made on pins 24 and 25,
Logic Ground Pin (GNDL) and Buffer Ground Pin
(GNDB), respectively. GNDL is the common pin for on-
chip logic, and GNDB is the common pin for the output
drivers. As shown in Figure 3-1, GNDL is directly
connected to GNDB with a single conductor.

All other grounding connections should be made only to
GNDB (pin 25) to ensure optimum noise immunity.

3.2 MMU Operation

The MMU operation incorporates the following:

1. Bus Operation —related to Address Translation,
DMA Transfers, Breakpoints on Physical Address,
and Slave Operation

. Slave Instruction Execution

. Address Translation

. Hardware Debugging

. Error Handling

aObhWON

NS16082

GNDB

OTHER GROUND
CONNECTIONS

Figure 3-1. Grounding Connections
3.2.1 Bus Operation

Address Translation (see Figures 3-2 to 3-5): The MMU
time-shares the address/data bus with the CPU. During
a memory access cycle, the MMU reads the virtual
address, performs the virtual to physical translation,
and places the physical address on the bus. A typical
memory cycle has five clock periods: T1, TMMU (time of
physical address on the bus), T2, T3, and T4. The 16 A/D
bus drivers of the MMU are in high impedance state at
all times except during TMMU or when the FLT signal is
active.-The bus drivers of lines A16 to A24 drive the bus
from TMMU through T4.

HOLD HOLD
AT/SPC »| AT/SPC |—>- HLDAD
DS/FLT T
RST/ABT RST/ABT
PFS »| PFS
ADS —>~{ ADS

STO-ST3 ju— ST0-ST3

S N§16082
INT MMU

ADDR/DATA
MULTIPLEXED BUS

M
, I_..} AoDRESS

uss —> U/5
HLDA HLDAT
DDIN -»{ DDIN
PHI1 PHI1
PHI2 PHI2
RDY »{ RDY

RST

——{PAV ADDR/
ADDR/DATA DATA A2

(25 BITS)

RDY PHI2 PHI1 DDIN RST ADS

NS16201
CLOCK GENERATOR

Figure 3-2. CPU, MMU Interconnections

mn TMMU A3 LE] T4

CLOCK
A/D _<; V. ADD. X P. ADD. } { DATA ‘,
ADS

wCm W m Xy

_ /

Figure 3-3. Bus Operation Timing: Virtual Address in Translation Buffer

m ITMM!J Tt l READ CYCLE 1 l READ CYCLE 2 | READ CYCLE 3 l READ CYCLE 4 | T l T2 l n l T4 |
PHIT)
BUS ={V.AD) (A0 1) (A0 2) (oA 2)=(an 3) (a0 4) (0ATA 4)~{PH A) (oara)
WS
w \WE \/ S \/ \/
m \ / \ I\ I\ I\ /
it —\

Y aamae
Figure 3-4. Bus Operation: Read Cycle When Virtual Address Is Not In Translation Buffer

n ‘TMMHI i\ l READ CYCLE 1 I READ CYCLE 2 l READ CYCLE 3 I READ CYCLE 4 I T | T2 I T3 | T4 |

PHI1

BUS —(V AD) (A0 1)———oata 1)~{ a0 2) (oaTa 2~ 40 3) (0aTA 3)-(a0 4) (oaTA a)—(PH AN ___DATA)

N\ |
m S \W) _/ —_S \/

B\ I\ / \ / \ /

o _-—\

WA

/
Figure 3-5. Bus Translation Write Cycle When Virtual Address Is Not In Translation Buffer

261

During period T1, the CPU places on the bus the virtual
address to be translated; this address is strobed into the
MMU with the ADS pulse. During period TMMU, the CPU
places the bus in high impedance and the MMU does one
of two things. If the address to be translated is in the
Translation Buffer, the MMU sends the physical address
on the bus with a PAV timing pulse; if not, it takes the bus
from the CPU with the FLT signal and executes four
memory read cycles, to get the two double words needed
to perform the translation algorithm. When necessary,
the MMU executes two memory write cycies to update
the referenced and modified bits in the Page Table Entry.
It then releases control of the bus and sends the physical
address on the bus. The memory cycle initiated by the
CPU is resumed from the point it was stopped.

Between periods T2 and T4, there is data on the
ADO-AD15 bus lines, output either by the CPU or
memory. Bus lines A16 to A24 continue to hold the
physical address.

DMA Transfers: The Hold and Hold Acknowledge lines
are connected as shown in Figure 3-6.

The DMA device pulls the HOLD line low to request the
bus; this line is input to both the CPU and the MMU. If
the MMU is not floating the CPU (through the FLT line),
the MMU transfers the HLDA CPU output directly to the
HLDAO MMU output. If the MMU (when accessing the
Memory Page Tables) is floating the CPU, the CPU can-
not respond to HOLD request, HLDAI remains high, and
the MMU grants the bus by pulling low HLDAO at the
end of the present memory cycle. When the DMA device
releases HOLD, the MMU releases HLDAO and regains
control of the bus.

Breakpoint on Physical Address: During debug, if a
breakpoint is specified to occur on a physical address
(VP is set in any BPR), an additional clock period is
needed in the bus cycle. The additional clock period is

required to make the address comparison after getting

the physical address from the cache or page table. In
this case the MMU floats the CPU for one clock period.
This gives the memory cycles six periods: T1, TMMU, Tf,
T2, T3, and T4. The corresponding waveforms are
illustrated in the Timing Characteristics, Figure 3-7.

Slave Instruction Bus Operation: For slave instructions,
the bus operation follows a different protocol. The bus
cycle has only two periods (T1 and T4) and the timing is
done by a one-clock-wide pulse on the Slave Processor
Control (SPC) bidirectional line. All bus transfers are
illustrated in Timing Diagrams, Figures 3-8 and 3-9.

3.2.2 Slave Instructions
Introduction to Slave Instructions

The MMU Slave Instructions serve two purposes. First,
slave instructions set up the different registers and

check their contents (LMR and SMR instructions) in

order to control the MMU mode of operation. Second, a

slave instruction can request the MMU to return a flag

indicating whether a specified access to a given address -
would generate a protection fault in user mode.

The general format for slave instructions appears in the
NS16032 Microprocessor Data Sheet. The formats for
the MMU slave instructions are described below.

Note: All MMU instructions are privileged. While in the
User Mode, the CPU will trap on any MMU instruction.

MMU Slave Instruction Format

The 3-byte format of the MMU slave instruction is
shown on page 2.

The format corresponds to the instructions as they are
stored in memory; the CPU sends the operation word to
the MMU with its bytes swapped, i.e., high byte in low
bus byte and vice versa.

The short code assignments for the registers are shown
below:

Code Value Register
0000 BPRO
0001 BPR1
0100 PFO
0101 PF1
1000 SC
1010 MSR
1011 BCNT
1100 PTBO
1101 PTB1

EAI/INVALIDATE
Note: All other short codes are illegal.
Address Translation Validation Instructions

The two instructions used to validate an address are:
RDVAL address and WRVAL address. Both instructions
consist of mnemonics and address type operands.

Upon receipt of a RDVAL or WRVAL instruction, the
MMU checks if the address operand can be translated
without protection violations in user mode (user space).
If the address can be translated without violations, the
MMU sends status word zero. If not, the MMU sends
status word 32.

A trap is generated with error class 1 and error transla-
tion type 2 if the first Page Table Entry is invalid. No trap
is generated if the second PTE is invalid or if protection
violation errors occur. .

A Validate instruction generates a status word which
sets or resets a flag bit (F) in the CPU PSR register. This
flag is positioned in bit 5. The remaining bits are all
zero. Slave Instruction operation is shown in the follow-
ing charts.

262

RDVAL/WRVAL Instruction (Validate Read/Write Address) .

CPU

MMU

Execution Unit

Bus Interface Unit

Status Pins

Action

Sends Opcode in two
bytes

24-31 set to zero)
with address to be

validated

Reads MMU status

Sends ID Code in low byte

Sends Address to be vali-
dated in two words (bits

Generates Dummy Read

Sends ID Code with SPC timing
pulse

Sends Opcode with SPC timing
pulse

Sends Address in two Write Slave
cycles with SPC timing pulse

Starts a Read cycle with address
to be validated

Detects MMU completion

Reads MMU status word with SPC
strobe

1111
1101

1101

1010

0011

1110

Recognizes ID Code

Latches Opcode

Performs validation

Signals completion
SPC pulse

Sends status word

LMR Instruction (Load MMU Register)
LMR short, read.d (See NS16000 Programmers Reference Manual, Document No. 420306565-001.)
The MMU register specified by first operand is loaded with the ‘contents of the second operand. The instruction

executes as follows:

operand

SPC timing pulse

CPU MMU
Execution Unit Bus Interface Unit Status Pins Action

Sends ID Code in low byte Sends ID Code with SPC timing 1111 Recognizes 1D Code
puise

Sends Opcode in two Sends Opcode with SPC timing 1101 Latches Opcode

bytes pulse

Sends low word of Sends low word of operand with 1101 Stores operand in low

operand SPC timing pulse word of addressed

register
Sends high word of Sends high word of operand with 1101 Stores operand in high

word of addressed
register

SMR Instruction (Store MMU Register)

SMR short, write.d

The MMU register specified by first operand is stored in the second operand. The instruction executes as follows:

pulse

CPU MMU
Execution Unit Bus Interface Unit Status Pins Action

Sends ID Code in low byte Sends ID Code with SPC timing 1111 Recognizes |D Code
pulse

Sends Opcode in two Sends Opcode with SPC timing 1101 Latches Opcode

bytes pulse (See Note 1)

) Detects MMU completion 0011 Signals completion
with SPC pulse

Reads status with SPC strobe 1110 Sends zero status
Strobes operand with the SPC 1101 Sends low word of
pulse addressed register
Strobes operand with SPC 1101 Sends high word of

addressed register

Notes:

1. The CPU may prefetch more code before this step.
2. After CPU reads the operand, the contents are stored in second operand according to the second operand addressing mode.
3. If addressed register is less than 32 bits, then the high order bits are reset to zero.

263

CPU MMU DMA
N$§16032 - N$16082 N$§16203 OPTIONAL
LDA HLDAI HLDAD HLDIA ALDAC |—> CHAINI}?G

t i [

Figure 3-6. Hold Connections

T TMMU T T2 T3 T4

PHI1 _/_—__/—__/—_/_—_/___/___/—_
AD —(V. ADD. X PHYS. ADDRESS DATA

ADS

N

A/D { V. ADD. x PHYS. ADDRESS x DATA)-—

ADS

T

PAV

v |
o/
S

WA

\ /

Figure 3-7. Bus Operation in Breakpoints on Physical Address

264

] T4

v -
"\ /

(HIGH)

DBE.

STATUS STATUS VALID X INVALID

Figure 3-8. Slave Instruction Timing: Get ID/Opcode/ Data from CPU

it : T4

A/D ————(. DATA FROM MMU >—-———————
SPC \ /

(HIGH)

STATUS STATUS VALID X INVALID

Figure 3-9. Slave Instruction Timing: MMU Sends Status/Data to CPU

265

3.2.3 Address Translations
Page Table Entry (PTE) Format

Address translation is controlled by page tables con-
tained in memory. A page table is a linear array of Page
Table Entries. Each PTE defines the access characteris-
tics of one page (512 bytes) of virtual storage. The PTE
bit format is shown on page 2.

BS Bank select; most significant bit of PFN field.

PFN Page Frame Number; when the V bit is set, the
PFN low field, together with the BS bit, contains
the high order 16 bits of a physical page address
which is used by the address translation algorithm.

M Modified; used only in index 2 (bits 9 to 15 of vir-
tual address) PTE’s and set when page mapped is
modified.

R Referenced; set when page mapped by PTE is
referenced.

PL . Protection Level; Index 1 PTE and Index 2 PTE’s
control access to pages mapped by the PTE. The
table below shows the relationship between
User, Supervisor and protection level bit:

PSR Protection Level Bits
Mode bit 8 00 01 10 1
User 1 no no read full
access access only access
Supervisor 0 read fuil full full

only access access access

\ Valid bit; when set indicates that the correspond-
ing page is resident in physical memory. When
cleared, any attempted reference to the page wili
cause the MMU to abort the reference. If the V-bit
is cleared, the PTE may be used by the Operating
System for any desired function.

Note: Bits 7 and 8 are reserved for the user and are not
affected by the MMU.

Address Translation Algorithm

The MMU translates the 24-bit virtual address generated
by the CPU to either a 25-bit physical address or a trans-
lation error. This process is described below. See Figure
3-10.

The virtual address is divided into three components as
shown on page 2.

The access level of a reference is a two-bit number
whose logical expressions are:
bit 1=U and AO
where AO = Access Override bit in MSR

bit 0=1 for write, read/modify/write, (RMW)
bit 0=0 for read

The detailed description of the translation algorithm
follows. (See NS16000 Programmers Reference Manual
420306565-001.)

If TU=0and U=10or TS=0 and U =0, then PA =virtual
address, else
1. Select first PTE:

If DS (in MSR)=1 and U (in PSR)=1, then PTEP =
PTB1 or Index 1 * 4

else

PTEP=PTBO or Index 1 * 4
end.
Validate PTE:

If access level is greater than (PTEP).PL or if
(PTEP).V =0, then abort CPU

else
Set (PTEP).R=1

2. Select second PTE:
PTEP =(PTEP).PFN + 512 or Index 2 + 4

Validate PTE:
If access level is greater than (PTEP).PL or if
(PTEP).V =0, then abort CPU
else
Set (PTEP).R=1
If writing, then set (PTEP).M =1

3. Generate physical address:
PA=(PTEP).PFN * 512 or Offset

Legend:

PA - Physical Address

TU,DS, TS - MSR bits

u - Program Status .Register bit
(sent to MMU via the U/S pin)

PTEP - PTE pointer

(PTEP).PL - represents protection level in
Page Table Entry

(PTEP).V -~ represents valid bit in Page Table

Entry

(PTEP).M - represents modified bit in Page
Table Entry

PFN - Page Frame Number

The MMU marks bits R and M of the PTE for subsequent
use by the operating system. If a physical page is written
upon, it is assumed that the user intends for this modifi-
cation to be permanent in his storage system. The M bit
indicates whether a page needs to be written to mass
storage when it is deallocated from physical memory.
The Rbit is tested and cleared periodically by the operat-
ing system in order to compile statistics of the frequency
of references to each page currently in memory. It will
use this information to deallocate the ieast frequently
used pages when new pages must be called in.

Page tables that refer to physical pages are themselves
referenced by two page tables of double length. Selec-
tion of the PTBO or PTB1 register depends on the Dual
Space (DS) and User/Supervisor (U/S) modes as shown
below:

u/s
0 1
0 PTBO PTBO
DS
1 PTBO PTB1

VIRTUAL ADDRESS

23 1615 98 0

INDEX 1 I INDEX 2 ‘ OFFSET P—-—

INDEX 1 PAGE TABLE

INDEX 2 PAGE TABLE
PFN "

INDEX 2 PTE

| PN | INDEX 2 |unl———->

PTBX —_
INDEX 1 PTE [
L
| PTBx | INDEX 1 lou /% % v
2 09 Z1 0 3
(1) SELECT 15T PTE . e
IF DS=0 THEN i
i
X=1 FOR USER MODE
X=0 FOR SUPV MODE
vintuaL 95=0. puysica
2 38
(2) SELECT 2ND PTE
user %! SUPY.
(SPACE 0) PHYSICAL (SPACE 1)
VMx M
SUPY KERNEL
USER
STACK

21 0

PHYSICAL ADDRESS
23

98 0
(3) GENERATE PHYSICAL
ADDRESS

Figure 3-10. Virtual to Physical Address Translation

Page Table Base (PTB) Registers.

PTBO and PTB1 registers are specified as double words.
The BS bit is used by the MMU to produce the 25th bit of
~-the physical addresses pointing to the entries in the
first translation table. Their format is given on page 2.

3.2.4 Hardware Debugging

The MS16082 MMU incorporates two special debugging
facilities: program flow tracing and breakpointing.

Program Flow Tracing: Program Flow Tracing allows the
software to reconstruct the sequence of exception exe-
cuted prior to a certain instruction or breakpoint. Regis-
ters PFO, PF1 and SC are used to record program flow
information. The SC register is divided into two 16-bit
fields (SCO and SC1). SCO is also a 16-bit counter. For
the user, these are read-only registers which can be
read via an SMR slave instruction. An LMR instruction
addressing any of the PF registers resets all of them.

When a sequential instruction is executed, a PFS pulse
is received form the CPU for acknowledgement. This
pulse is also used to increment the SCO counter.

When a nonsequential instruction is fetched, the con-
tent of register PFO is copied into PF1 and that of SCO
into SC1; then the virtual address of this instruction is
stored in PFO and the SCO counter is reset. This
happens only if before the fetch the SCO content was
not zero (to prevent multiple tracing for instructions

which cause more than one queue flush, e.g., ACBI), and
bits FT and UT in the MSR register were set.

Note: When the SCO counter reaches 64k minus 1, it
stops counting.

Entry To and Exit From a Debugged Program: When the
MSR is written to, debugging traps are disabled. At the
end of the second nonsequential fetch cycle they are
enabled. This feature enables entry to a debugged pro-
gram from a monitor or debugger after the flushing of the
queue and a nonsequential fetch. This will occur normally
without getting an immediate trap if bit NT is set.

After a debugging trap, the MSR bits which enabie this
trap (NT, BEN) are cleared, thus inhibiting further debug
traps until the MSR is rewritten by the monitor or debug-
ger program. Bit FT in the MSRiis also cleared thus freez-
ing the program tracing. This last feature inhibits the
tracing of useless information (like the program flow in-
side the monitor or debugger), until the program tracing
registers are read.

Breakpoints: A breakpoint generates an abort or inter-
rupt pulse when a software specified address is refer-
enced under software controlled conditions. It also
updates the ERC and BN fields in MSR. Breakpoints are
controlied by the BEN and UB bits (in MSR) and the BPR
registers which have the format shown on page 2.

267

Breakpoint on Execution Fetch mechanism: When a se-
quential instruction is fetched by the CPU, the instruc-
tion is placed in the queue. Unless the queue is empty,
aborts on queue fetches are not received and so a
breakpoint could be missed. The proper operation of
breakpoint execution requires flushing the queue, as
described below.

When the BE bit is set and the location specified in the
BPR is accessed in a nonsequential fetch, an Abort or
INT -pulse is generated.

When the BE bit is set and the location specified in the
breakpoint register is accessed in a sequential fetch
(or in a nonsequential fetch from an even-numbered
address (2n) and the location specified in BPRis (2n+1),
the MMU returns a DIA instruction instead of the mem-
ory byte at the breakpoint location. This is preceded by
a read cycle in order to return the other original byte
. from memory. This causes the CPU to flush the queue
and to fetch the instruction a second time, now with a
nonsequential fetch status.

The BPR bit functions are tabulated below:

AS Address Space; virtual address when VP =0,

bank select bit of physical address when VP =1.

VP Virtual or Physical address; if VP is set, address
field is matched against physical address. If VP
is reset, address field is matched against virtual

address.

BE Breakpoint on Execution; if BE is set, abreakpoint
occurs when the location specified in ADDRESS
field is referenced in an instruction fetch cycle

(instruction execution detailed below).

BR Breakpoint on Read operand; if BR is set, a
breakpoint occurs when the location specified in
ADDRESS field referenced in a read operand

cycle.

BW Breakpoint on Write operands; if BW is set, a
breakpoint occurs when the location specified in
ADDRESS field is referenced in a write or RMW

operand cycle.

Counter Enable (BPRO only);, the 24-bit BCNT
counter decrements when Counter Enable bit
(CE) is set and the conditions for a breakpoint in
register BPRO are obtained. When this counter
reaches zero, an “abort” or INT pulse is gener-
ated by the MMU.

Note: An erroneous count will tesult if both the CE and
BW bits are set.

CE

3.2.5 Error Handling

Traps are serviced according to class and type (c, t) as
follows:

In the MSR register, the appropriate bit in the ERC field is
set due to the fact that RMW accesses are counted twice.

For Address Translation Error, the following bits are set

©in the TET field:

If access level is greater than (PTEP).PL bit 0 set
If (PTEP).V=0inIndex 1 PTE bit 1 set
If (PTEP).V =0inIndex 2 PTE bit 2 set

In the EMCT field set the CPU status and DDIN bits.

In the EALl register, set AS bit to designate the address
space PTBO/PTB1 of virtual address being translated
and set the address field to the value of the virtual
address being translated, as shown in the register
format shown on page 2.

For Breakpoint Error, the following bits are set in the
MSR register:

BN field — the number of the appropriate
breakpoint register

EMCT field — CPU status and DDIN bits

4 AC Electrical Characteristics
4.1 Definitions

All the timing specifications given in this chapter refer
to 50% of the leading or trailing edges of the appro-
priate clock phase and 0.8V or 2.0V on the appropriate
signal as illustrated in Figures 4-1 and 4-2, unless
specifically stated otherwise.

4
PHI 50%

SIG1

tsign

0.8V ‘\
20V ————
/

/

tsiGzh

Sig2

Figure 4-1. Timing Specification Standard (Signal Valid
After Edge)

—
PHI 50% (

K—
$IG1 tsmu\ 0.8V |

181G2h Jf ——n|
-/ 2.0V

SiG2

Figure 4-2. Timing Specification Standard (Signal Valid
After Edge)

268

e Figure 4-3 through 4-10.)

0°Cto70°C
5V 5%
100pF max.
Description . Duration (ns)
high pulse width Note 3
low pulse width Note 3
fall time 5 max.
rise time 5 max.
d 100 min./
2000 max.

iress valid 50 max.
iress float 25 max.
7 active 35 max.
/ inactive 95 max.

40 min.
t up time before

20 min.
Id time after PAVTE 10 min.
iN active 50 max.
IN inactive 50 max.
Ip time before TE of

30 min.

iinst PHI are relative to PHI leading
d.

railing edge.

I to 0.35 xtCp.

TMMU T2

N\

Timing Description Duration (ns)

tRDYh Ready hold time after LE of

PHI1 (T3) 0 min.
tSPCa PHI1 to SPC active 35 max.
tSPCia PHI1 to SPC inactive 35 max.
tDvSPCia Data hold time after SPC TE 15 min.
tDVv PHI1 to Data valid 50 max.
tDiv PHI1 to Data invalid 25 max.
tDs Data set-up time before TE of

PHI2 (T4) 15 min.
tDh Data hold time after LE of

PHI1 (T4) 0 min.
tFLTa PHI1 to FLT active 45 max.
tFLTia PHI1 to FLT inactive 45 max.
tFLTw FLT width 40 min.
tABTa PHI1 to ABT active 55 max.
tABTia PHI1 to ABT inactive 45 max.
tABTW ABT width 70 min.
tHLDd delay from HLDAI to HLDAO 30 max.

3 T4

SN\

/N /\

<—‘Au‘\|
ADDRESS

el -

| tpg —>|

-
\ /|

I‘I—‘ALADSS —>|

y
¢ oamamw)
'

>(ADDRESS

B—
-

Figure 4-3. Write Cycle

269

TMMU 12 13

PHI1

\

‘PAVia’I — toy
PHI2 /_\ /—\
- I“‘lALv *tALh»I I

AQ-15/
DATA —"'< ADDRESS X DATA OUT

— [+ tasv |
A6-23 ADDRESS
PAV
— tPAVa
Figure 4-4. Read Cycle
CPU
CYCLES TMMU Tt
CV’g&g TMMU T4

PHI1

£\

PHI2

A7 ‘ \
|[~——1tFLTa ——I I

A0-15
-_— ADDRESS (CPU) e o oo s o o o e ———
oA (FLOATING) o
A16-23 ADDRESS (CPU)
(FL

—
N

= tDDINa "

>E
>

/_

Figure 4-5. FLT Initiated Float Cycle Tim

270

CPU T T2 T3 T4
CYCLES

MMy
CYCLES

i) /

-——1FLTia—>

ME23 ——
(CPU) ™ (FLOATING, DRIVEN BY MMU)
<—tDDINia —
DOIN o i A —————
(DRIVEN BY MMU) /

Figure 4-6. Release from FLT Timing

T1 OR T2 T3 13
TMMU

N\

I l " THE RDY LINE IS SAMPLED AT

REPEATED. IF RDY IS HIGH,
T4 WILL BE THE NEXT T STATE.

Figure 4-7. Réady Sampling (MMU Initially Ready)

™ .

|<——tImVs~——|

-

Figure 4-8. Ready Sampling (MMU Initially Not Ready)

27

-\ Tw
) |

wt—
o]

DATA / >_

‘

ton—»]

T4
PHI

PHI2

— !‘—‘Dlh /_\
o]

DATA

SPC SPC
(CPU) (cPu)
— 15PCa —| <—5PCia
OOIN / DOIN \
STATUS STATUS VALID X NEXT CYCLE STATUS STATUS VALID X NEXT CYCLE STATUS
STATUS
DS (HIGH) a6s (HIGH)
DBE (HIGH) BEE (HIGH)

Figure 4-9. Write Slave Processor Timing

Figure 4-10. Read Slave Processor Timing

Physical Dimensions inches (mi\IIimeters)

200
G858
a8 4 4% as el a3 a2 an 40 39 38 37 36 35 3a 33 32 31 30 29 28 27 2% 25
= p— = ,]
0540 0500
20 Max o MAX
e X 2
/"N NO. 1 IDENT
*
T 7 3 @ & & 7 8 3 o wm nm om ®m w1’ % v oW w w 7n @ B n
) .045
0.150-0.200 0. MAX TYP |
060 | (.81-5.08) @18
(17.018) | 0.040_0.050 |
ooso-0m0
L 1 {1.076-1.528)
[1 0.008-0.015 LeADs
{0203-0381) VERTICAL
0.050 ! 0.100 +0.010 H 0.015-0.023 B 0,600 - TO 15° MAX
| | TYP — — | TYP SEATING PLANE ——— REF
wzn (258 0.258) 0.361-0.584) _""25) MIN (1528) fpnaRe
3.175)

48-Lead Dual-In-Line Package (D)

Order No. NS16082D
NS Package D48A

272

National
Semiconductor

DP8350 Series CRT Controllers

General Description

The DP8350 Series of CRT Controllers are single-chip
bipolar (I2L technology) circuits in a 40-pin package. They
are designed to be dedicated CRT display refresh cir-
cuits. Three standard products are available, designated
DP8350, DP8352, DP8353. Custom devices, however, are
available in a broad range of mask programmable options.

The CRT Controller (CRTC) provides an internal dot rate
crystal controlled oscillator for ease of system design.
For systems where a dot rate clock is already provided,
an external clock may be inputted to the CRTC. In either
case system synchronization is made possible with the
use of the buffered Dot Rate Clock Output.

The DP8350 Series has 11 character generation related
timing outputs. These outputs are compatible for sys-
tems with or without line buffers, using character ROMs,
or DM86S64-type latch/ROM/shift register circuits.

12 bits (4k) of bidirectional TRI-STATE® character mem-
ory addresses are provided by the CRTC for direct inter-
face to character memory.

Three on-chip registers provide for external loading of the
row starting address, cursor address, and top-of-page
address. ’

A complete set of video outputs is available including
cursor enable, vertical blanking, horizontal sync, and
vertical sync.

The DP8350 Series CRTC provides for a wide range of
programmablility using internal mask programmable
ROMs: .

* Character Field (both number of dots/character and
number of scan lines/character)

* Characters per Row
® Character Rows per Video Frame
¢ Format of Video Outputs

The CRTC also provides system sync and program inputs
including Refresh Control, Reset, and Address Mode.

Features

Internal crystal controlled dot rate oscillator
External dot rate clock input
Buffered dot rate clock output
Timing pulses for character generation
Character memory address outputs (12 bits)

' Internal cursor address register
Internal row starting address register
Internal top-of-page address register (for scrolling)
Programmable horizontal and vertical sync outputs
Programmable cursor enable output
Programmable vertical blanking output
2 programmable refresh rates, pin selectable
Programmable characters/row (128 max.)
Progammable character field size (up to 16 dots x 16
scan line field size)
Programmable scan lines/frame (612 max.)
Programmable character rows/frame
Single +5V power supply
Inputs and outputs TTL compatible .
Direct interface with DM86S64 character generator
Ease of system design/application

,

Connection Diagram

REGISTER SELECTB —{ T _/~ 40 }— Vcc (+5V)
VERTICAL BLANKING —f 2 39 |— REGISTER SELECT A
REFRESH CONTROL ——] 3 38 |— REGISTER LOAD
VERTICAL SYNC —] 4 37 |— RAM ADDRESS ENABLE
FULL/HALF = § 36— ag)
L3 — 6 35 |— Ay
LINE | 10y —d —yY
countend 2|7 o 2
OUTPUTS | LC1 — 8 33 f— A3
i 32— M | pam apDRESS
CLEAR LINE COUNTER ==] 10 g!; 850 s — s gﬂgmg/
ADDRESS MODE —— 11 DP 8353 30 [— Ag Pneslsren
LINE BUFFER _| INPUTS
RECIRCULATE ENABLE — | 12 B M
LINE RATE CLOCK —1 13 28 [— Ag

HORIZONTAL SYNC — 14

RESET —] 15

LINE BUFFER CLOCK =~ 16
EXTERNAL CHAR/ __J 47

. LINE CLOCK
LOAD VIDEO SHIFT REGISTER ——q 18

CURSOR ENABLE ——f 19
GND —] 20

27 t A9
26 Ag

E A11)
LATCH CHARACTER
% GENERATOR ADDRESS

23 |— DOT RATE CLOCK
2 f— x1| CRYSTAL

2 OSCILLATOR
X2) INPUTS

275

Block Diagram

12:8/T RAM ADDRESS OUTPUTS AND
REGISTER ADDRESS INPUTS

a1 4] u I

CURSOR ADDRESS TOP-OF-PAGE
TRI-STATE BUFFERS | REGISTER l [ADDRESS REGISTER
>] REGISTER
it (oA
1 1] REGISTER
SELECTA
| e———SELECTA
CURSOR ADDRESS REGISTER REGISTER
> Soumren [COMPARATOR I LOAD LOGIC | SELECTB
12 BITS y
{ y
HORIZONTAL
ROW START 370-1 LINE MUX
LINE BUFFER ADDRESS REGISTER 12 BITS B
RECIRCULATE VERTICAL
ENABLE SYNC

E N
CLEAR LINE I
COUNTER

VERTICAL
BLANKING

CURSOR
ENABLE

LINE RATE
CLOCK

LINE BUFFER
CLOCK

TIMING AND CONTROL LOGIC

LATCH CHARACTER

GENERATOR ADD. ADDRESS MODE

I I REFRESH
DOT RATE CONTROL
CLOCK ROM R ROM D ——

ot CHARACTER FRAME LINE
CRYSTAL LINE
COUNTER COUNTER COUNTER
OSCILLATOR 4BITS TBITS CouNTER IBITS

EXTERNAL
CHAR/LINE
CRYSTAL cLock

LINE COUNTER QUTPUTS

LOAD VIDEQ
SHIFT REGISTER

276

The Video Display

Discussion of the CRT Controller necessitates an under-
standing of the video display as presented by a raster
scan monitor. The resolution of the data displayed on the
monitor screen is a function of the dot size. As shown in
Figure 1, the dot size is determined by the frequency of
the system dot clock. The visible size of the dot can be
modified to less than 100% by external gating of the
serial video data. The CRT Controller organizes the dots

| |
TUULLLILULLUL

S [5 R N Iy

SYSTEM
DOT CLOCK

SERIAL VIDEO DATA
INPUTED TO MONITOR

into cell groupings that define video rows. These cells
are accessed by a specific horizontal address output
(4096 maximum) and are resolved by a row scan-line-
counter output (16 maximum) as shown in Figure 2. The
relation of the video portion of a frame to the horizontal

blanking and vertical blanking intervals is shown in

Figure 3 in a two-dimensional format.

’,—VISIBLE INTENSIFIED DOT

GATED DOT PROVIDES SPACEV
BETWEEN CONSECUTIVE DOTS

VIDEO

Figure 1. Dot Definition

SCAN LINE (ELECTRON BEAM TRACE)
‘ ADDRESS HHH
=

T

DOT INTERVAL

Figure 2. Character Cell Definition
(Example Shown is a 7 x 10 Character Cell)

TYPICAL POSITION
TOP-OF-PAGE /gET \'I‘EHGTEML
mmmm;/4r END OF
OF FRAME ROWS
aeamuma/
OF ROWS IFE:‘IR MlJEF
TYPICAL POSITION
OF HORIZONTAL
RETRACE

Figure 3. Frame Format Definition

277

Character Generation/Timing Outputs

The CRT controller provides 11 interface timing outputs
for line buffers, character generator ROMs, DM86S64-
type latch/ROM/shift register combination character
generators, and system status timing. All outputs are
buffered to provide TTL compatible direct interface to
popular system circuits such as:

e DMB86S64 Series Character Generators
¢ MM52116 Series Character ROMs
e DM74166 Dot Shift Register

e MM5034, MM5035 Octal 80-Bit Shift Registers (Line
Buffers)

Dot Rate Clock: This output is provided for use in
system synchronization and interface to the dot shift
register used in character generation. This output is
non-inverting with respect to an external clock applied
to the X1 oscillator input (see Figure 6). The dot rate
clock output exhibits a 50% duty cycle. All CRTC output
logic transitions are synchronous with the rising edge of
the Dot Rate Clock output.

Latch Character Generator Address (Character Rate
Clock): This output provides an active clock pulse at
character rate frequency which is active at all times.
The rising edge of this pulse is synchronous with the
beginning of each character cell. This output is in-
tended for direct interface to character/video genera-
tion data latch registers. ‘

Line Rate Clock: This output provides an active clock
puise at scan-line rate frequency (horizontal frequency),
which is active at all times. The falling edge of this pulse
is synchronous with the beginning of horizontal blanking.
This output is intended for direct interface to character
generation scan line counters.

Load Video Shift Register: This output provides a char-
acter rate signal intended for direct interface to the video
dot shift register used in character generation. Active low
pulses are outputted only during video time. As a result
of the inactive time, horizontal and vertical video blank-
ing can be derived from this output signal.

Clear Line Counter: This output signal is active only
during the first scan line of all rows. It exhibits an active
low pulse identical and synchronous to the Line Rate
Clock and is provided for direct interface to character
generation scan line counters.

Line Counter Outputs (LCy to LC3): These outputs clock
at line rate frequency, synchronous with the falling edge
of the line rate clock, and provide a consecutive binary
count for each scan line within a row. These outputs are
provided for system designs that require decoded infor-
mation indicating the present scan line position within a
row. These outputs are always active, however, the next
to the last row during vertical blanking will exhibit an in-
valid line count as a function of internal frame synchro-
nization.

Line Buffer Clock: This output directly interfaces to data
shift registers when they are incorporated as line buffers
in a system design (see Figure 16). This signal is active at
character rate frequency and is intended for shift regis-
ters that shift on a falling edge clock. This output is inac-
tive during all horizontal blanking intervals yielding the
number of active clocks per scan line equal to the number

of video characters per row. For custom requirements,
the duty cycle of this output is mask programmabile.

Line Buffer Recirculate Enable: This output is provided
to control the input loading mode of the data shift regis-
ter (line buffer) when used in a system design. The format
of this output is intended for shift registers that load ex-
ternal data into the input with the mode control in the
low state, and load output data into the input (recircu-
late) with the mode control in the high state. This output
will transition to the low state, synchronous with the line
rate clock falling edge, for one complete scan line of each
row. The position of this scan line will either be the first
scan line of the addressed row, or the last scan line of
the previous row depending upon the logic level of the
address mode input (pin 11), tabulated in Table 3.

Memory Address Outputs/inputs and Registers

Address Outputs (Ag-Aqq): These 12 address bits (4k)
are bi-directional TRI-STATE® outputs that directly inter-
face to the system RAM memory address bus.

In the output mode (enabled), these outputs will exhibit
a specific 12-bit address for each video character cell to
be displayed on the CRT screen. This 12-bit address
increments sequentially at character rate frequency
and is valid at the address bus 2 character times prior to
the addressed character appearing as video on the CRT
screen. This pipelining by 2 characters is provided to
allow sufficient time for first, accessing the RAM mem-
ory, and second, accessing the character generation
memory with the RAM memory data. Since a character
cell is comprised of several scan lines of the CRT beam,
the sequential address output string for a given video
row is identically repeated for each scan line within the
row. The starting address for each video scan line is
stored within an internal 12-bit register called the Row
Start Register. At the beginning of each video scan line,
the internal address counter logic is preset with the
contents of the Row Start Register (see Figure 4). To
accomplish row by row sequential addressing, internal
logic updates the Row Start Register at the beginning of
the first scan line of a video row with the last address + 1
of the last scan line of the previous video row. Since the
number of address locations on the video screen display
is typically much less than the 4k dimension of the 12-bit
address bus, an internal 12-bit register called the Top Of
Page Register, contains the starting address of the first
video row. Internal logic loads the contents of this top
of page register into the Row Start Register at the begin-
ning of the first scan line of the first video row. The Top
Of Page Register is loaded with address zero whenever
the Reset input is pulsed to the logic “0” state.

In the input mode (disabled), external addresses can be
loaded into the internal 12-bit registers by external con-
trol of the register select A, register select B, and register
load inputs (see Table 1). As a result of specific external
loading of the contents of the Row Start Register, Top
Of Page Register, and the Cursor Register, row by row
page scrolling, non-sequential row control, and cursor
location control, can easily be accomplished.

278

During the non-video intervals, the address output oper-
ation is modified. During all horizontal blanking intervals,
the incrementing of the address counter is inhibited and
the address count is held constant at the last video ad-
dress + 1. For example, if a video row has an 80 character
cell format and addressing for the video portion of a
given scan line starts at address 1, the address counter
will increment up through address 81. Address 81 is
held constant during the horizontal blanking interval
until 3 character times before the next video scan line.
At this point, the address counter is internally loaded
with the contents of the Row Start Register which may
contain address 1 or 81 as a function of internal control,
or a new address that was loaded from the external bus.
During vertical blanking, however, this loading of the
internal address counter with the contents of the Row
Start Register is inhibited providing scan line by scan
line sequential address incrementing. This allows mini-
mum access time to the CRTC when the address counter
outputs are being used for dynamic RAM refresh.

RAM Address Enable Input: At all times the status of
the bi-directional address outputs is controlled exter-
nally by the logic level of the enable input. A ‘low’ logic
level at this input places the address outputs in the TRI-
STATE® (disabled) input mode. A ‘high’ logic level at
this input places the address outputs in the active (en-
abled) output mode.

Register Load/Select Inputs: When the Register Load
input is pulsed to the logic ‘low’ state, the Top Of Page,
Row Start, or Cursor Register will be loaded with a 12-bit
address which originates from either the internal address
counter or the external address bus (refer to discussion
on register loading constraints). The destination register
is selected prior to the load puise by setting the register
select inputs to the appropriate state as defined in
Table 1.

Table 1. Register Load Truth Table

Register | Register | Register |Register Loading
Select A | Select B | Load Input| Destination
(Pin 39) (Pin 1) (Pin 38)

0 0 0 No Select

0 1 -0 Top-of-Page

1 0 0 Row-Start*

1 1 0 Cursor

X X 1 . No Load
*During the vertical blanking interval, a load to this regis-
ter is internally routed to the Top-Of-Page register.

Internal Registers and Loading Constraints: There are 3
internal- 12-bit registers that facilitate video screen
management with respect to row-by-row page scrolling,
non-sequential row control and cursor location. These

' registers can be loaded with addresses from the exter-
nal address bus while the address outputs are disabled
(RAM address enable inut in the low state), by control-
ling the register select and load inputs within the con-
straints of each register.

The Row-Start Register (RSR) holds the starting address
for each scan line of the video portion of a frame. The |
video addressing format is completely determined by the
contents of this register. With no external loading, the
RSR is automatically loaded by internal contro! such
that row-by-row sequential addressing is achieved. Re-
ferring to Figure 4, the RSR is loaded automatically once
for each video row during the first addressed scan line.
The source of the loaded address is internally controlied
such that the RSR load for the first video row comes from
the Top-Of-Page Register. The RSR load for all subse-
quent video rows comes from the address counter which
holds the last displayed address + 1. If non-sequential
row formatting is desired, the RSR can be loaded exter-
nally with a 12-bit address. However, this external load
must be made prior to the internal automatic load. Gen-
erally speaking, the external load to the RSR should be
made during the video domain of the last addressed scan
line of the previous row. Figure 4 indicates the internal
automatic loading intervals which must be avoided, if the
foad must be -made during the horizontal blanking inter-
val. Once an external address has been loaded to the
RSR, the next occurring internal automatic RSR load will
be inhibited by internal detection logic. If an external
foad is made to the RSR during the vertical blanking
interval, the 12-bit address is loaded into the Top-Of-
Page Register instead of the RSR as a result of internal
control. This internai function is performed due to the
fact that the address loaded into the RSR for the first
video row can only come from the Top-Of-Page Register.

The Top-Of-Page register (TOPR) holds the address of the
first character of the first video row. As a function of
internal control the contents of this register are loaded
into the RSR at the beginning of the first addressed
scan line of the first video row (see Figure 4). This
loading operation is strictly a function of internal
control and cannot be overridden by an external load to
the RSR. For this reason, any external load to the RSR
during the vertical blanking interval is interpreted
internally as a TOPR load. When the Reset input is
pulsed to the logic “0” state, the TOPR register is
loaded with address zero by internal control. This yields
a video page display with the first row of sequential
addressing beginning at zero. Page scrolling can be
accomplished by externally loading a new address into
the TOPR. This loading operation can be performed at
any time during the frame prior to the interval where the
TOPR is loaded automatically into the RSR (see Figure
4). Once the TOPR has been loaded, it does not have to
be accessed again until the contents are to be modified.

The Cursor Register (CR) holds the present address of
the cursor location. A true comparison of the address
counter outputs and the contents of the CR results in a
Cursor Enable output signal delayed by two character
times. When the Reset input is pulsed to the logic “0”
state, the contents of the CR are set to address zero by
internal control. Modifying the contents of the CR is
accomplished by external loading at any time during
this frame. Typically, loading is performed only during
intervals .when the address outputs are not actively
controlling the video display. Once the CR has been
loaded, it does not have to be accessed again until the
contents are to be modified.

279

First Addressed Scan Line of a Video Row

LINE BUFFER e = o o e i o o o o o o e o o o o o e o
RECIRCULATE
ENABLE OUTPUT

,—HORIZONTAL BLANKING — VIDEO

i T T)

e
1

>

-

2nd Through Last Addressed Scan Lines of a Video Row

LINE BUFFER Ay 7
RECIRCULATE \ /
ENABLE OUTPUT

VIDEO

i,

,/—HORIZONTAL BLANKING —

SCAN LINE
DOMAINS

>

]

Note 1: Dimensions are in character time intervals.

Note 2: “A” denotes the interval that the address counter is

preset with the contents of the Row Start Register.

Note 3: “RSR” denotes the interval that the Row Start Register
. isinternally loaded with either the contents of the Top-Of-Page

Register (1st video row) or the last video address + 1 from the

address counter.

Figure 4. Automatic Internal Loading Intervals

Video-Related Outputs

Horizontal Sync: This output provides the necessary
scan line rate sync signal for direct interface to either
three-terminal or composite sync monitors. The pulse
width, position, and logic polarity are mask program-
mable, in character time increments, for custom require-
ments. This output may also be mask programmed to
have RS-170 compatible serration pulses during the verti-
cal sync interval (refer to DP8352 format and Figure 15).

Vertical Sync: This output provides the necessary frame
rate sync signal for direct interface to either three-terminal
or composite sync monitors. The pulse width, position,
and logic polarity are mask programmable, in scan line
increments, for custom requirements.

Cursor Enable: This output provides a signal that is in-
tended to be combined with the video signal to display a
cursor attribute which serves as a visual pointer for video
RAM location. Internally, the 12-bit address count is
continuously being compared with the 12-bit address
stored in the Cursor Register. When a true compare is
detected, an active high level signal will be present at
the Cursor Enable output, delayed by 2 character times
after the corresponding address bus output. The signal

is delayed by 2 character times so that it will be coinci-
dent with the video information resulting from the cor-
responding address. Mask programmability allows the
cursor enable output signal to be formatted such that a
signal will be outputted for all addressed scan lines of a
video character cell or any single scan line of that cell.
The cursor enable output signal is inhibited during the
horizontal and vertical blanking intervals so that video
blanking is maintained. When the addressing is ad-
vanced by setting the address mode input (pin 11)in the
logic “0” state, the cursor enable signal will also be
shifted with respect to the scan line count. Specifically,
for a character cell with the cursor output active on all
addressed scan lines of the cell, the first scan line of
the cursor signal will occur at the last scan line count of
the previous video row, and the last scan line count of
the addressed character cell will have no cursor output
signal. This mode of operation gives rise to a unique
situation for the first video row where the first addressed
scan line of a character cell has no cursor output signal
since its advanced scan line position is inhibited by the
vertical blanking interval.

280

CRT System Control Functions

Refresh Control Input: This input provides a logic level
selectable CRT system refresh rate. Typically, this input
will select either a 60Hz or 50 Hz refresh rate to provide
geographical marketing flexibility. However, mask pro-
grammability provides the capability of a wide range of
frequencies for custom requirements. For definition of
the input logic truth table and the refresh rate format,
refer to Table 2 and the standard device type format
tables.

-Table 2. Refresh Rate Select Truth Table

Refre(:h Cc)mtrol Frame Refresh Rate
in 3
Logic Level | Symbol | DP8350 | DP8352 | DP8353
1 1 60 Hz 60Hz 60Hz
0 fo 50 Hz 50Hz 50Hz

Vertical .Blanking Output: This output provides a signal
that transitions at the end of the last video scan line of
the last video row and indicates the beginning of the
vertical blanking interval. This signal transitions back to
the inactive state during the row of scan lines just prior
to the first video row. The transition position within this
last row of vertical blanking, as well as the active logic
polarity, is a function of the particular device format
(item 21 of the format tables) or is mask programmable
for custom requirements.

Address Mode: When a system utilizes a line buffer shift
register, the first scan line of addressing for a row is used
to load the shift register. As a result of this loading
operation, addressing for a particular row will not begin
accessing the video RAM until the second scan line of
addressing for the row. It also follows that the first scan
line of a row can only exhibit addressed data for the pre-
vious video row that is in the shift register. This offset in
addressing becomes a problem for character generation
designs that output video on the first scan line of a row
(with respect to the line counter outputs). The result is
invalid data being displayed for the first scan line. One
solution would be to utilize a character generation de-
sign that began outputting video on the second scan line
of a row. However, since most single chip character
generators begin video on the first scan line, the DP8350
series CRT controller provides a pin selectable advanced
addressing mode which will compensate for addressing
shifts resulting from shift register loading. Referring to
Table 3, a high logic level at this input will cause address-
ing to be coincident with the scan line counter positions
of a row, and a low logic level at this input will cause
addressing to start on the last scan line counter position
of the previous row. This shifted alignment of the ad-
dressing, with respect to the designated scan lines of a
row, is diagrammed in Figure 5. Characteristically, it fol-
lows that, when addressing is advanced by one scan line,
the Line Buffer Recirculate Enable output and the Cursor
Enable output are also advanced by one scan line. This
advanced position of the Cursor Enable output may
deserve special consideration depending upon the sys-
tem design.

Table 3. Address Mode Truth Table

Address Mode | New Row Addressing At Address
Input (Pin 11) | Outputs and Line Buffer Recirculate
Enable Logic Low Level

(Scan Line Position)

(Logic Level)

0 Last scan line of previous row
1 First scan line of row

Full/Half Row Control: This control input is provided
for applications that require the option of half-page ad-
dressing. As an example, if the normal video page format
is 80 characters/row by 24 rows, setting this input to the
logic “0” state will cause the video format to become
evenly spaced at 80 characters/irow by 12 rows. Specifi-
cally, when this input is in the logic *“0” state, row ad-
dressing is repeated for every other row. This yields suc-
cessive groups of two rows of identical addressing. The
second row of addressing, however, has the Load Video
Shift Register output and the Cursor Enable output inter-
nally inhibited to provide the necessary video blanking.
Setting this input to the logic “1” state yields normal
frame addressing.

External Character/Line Rate Clock: This input is in-
tended to aid testing of the CRTC and is not meant to be
used as an active input in a CRT system. When this
input is left open, it is guaranteed not to interfere with
normal operation.

Reset Input: This input is provided for power-up syn-
chronization. When brought to the logic ““0” state, device
operation is halted. Internal logic is set at the beginning
of vertical blanking, and the Top-Of-Page Register and
the Cursor Register are loaded with address zero. When
this input returns to the logic “1” state, device operation
resumes at the vertical blanking interval followed by
video addressing which begins at zero. This input has
hysteresis and may be connected through a resistor to
V¢ and through a capacitor to ground to accomplish a
power-up Reset. The logic “0” state should be main-
tained for a minimum of 250ns.

ADDRESS MODE INPUT =*1"

LINE COUNTER
QUTPUT COUNT
—oaaeag— 0]
—ea s |1
ADDRESSED | — OG5S [2] :
FOR VIOROROW | o = 0 0 0o 13 vioeo
ARE COINCIDENT { _ = O ™ 0 0 0O 4] how
wWihuNg | SO ®E5 86— |5
COUNTER | — @& & 5558 | 6|
POSITION | — =855 [1]
5555508 N
—sgaea-ae— _[9
ADDRESS MODE INPUT = 0"
LINE COUNTER
y_ OUTRUT COUNT
—F- e [0]
ADDRessep | W O O C@E5 1]
SCAN LiNEs | — &G 55— 2
FOR VIDEO ROW | —m-5—5-—5-m—5& 3] vino
ARE ADVANCED | — g m-5—5—> [4] Row
BY 1 SCAN i 8
LNEWITH) B S & #5858 |5
RESPECTTO | —C—@@®SH5H5— |6
LINECOUNTER | —BBBB-8585— |7
POSITON | —5-55-5-5556 8
Dooooo0o 9

Figure 5. Address Mode Functionality

281

Crystal Inputs X1 and X2: The “Pierce’-type oscillator
is controlled by an external crystal providing parallel
resonant operation. Connection of external bias compo-
nents is made to pin 22 (X1) and pin 21 (X2) as shown in
Figure 6. It is important that the crystal be mounted in
close proximity to the X1 and X2 pins to ensure that
printed gircuit trace lengths are kept to an absolute mini-
mum. Typical specifications for the crystal are shown in
Table 4 for each of the standard products, DP8350,
DP8352, and DP8353. When customer mask options re-
quire higher frequencies, it may be necessary to change
the crystal specifications and biasing components. If
the CRTC is to be clocked by an external system dot
clock, pin 22 (X1) should be driven directly by Schottky
family logic while pin 21 (X2) is left open. The typical
threshold for pin 22 (X1) is Vgg/2.

vee

c1 . R1
30pF 510Q

Table 4. Typical Crystal Specifications

Specification
Parameter
DP8350 | DP8352 | DP83s3

Type i At-Cut
Frequency 10.92 MHz] 7.02MHz | 17.6256 MHz
Tolerance 0.005% at 25°C
Stability 0.01% from 0°C to +70°C
Resonance Fundamental, Parallel
Maximum Series

Resistance - 509
Load

Capacitance 20pF

TO INTERNAL
LOGIC

CRYSTAL]

DOT RATE

Figure 6. Dot Clock Oscillator Configuration with
Typical External Bias Circuitry Shown

Custom Order Mask Programmability: The DP8350
Series CRT controller is available in three standard op-
tions designated DP8350, DP8352, and DP8353. The
functional format of these devices was selected to meet
the typical needs of CRT terminal designs. In order to
accommodate specific customer formats, the DP8350
series CRT controller is. mask programmable with a
diverse range of options available. The items listed in
the program table worksheet indicate the available
options, while Table 5 tabulates the programming con-
straints.

Table 5. Mask Programming Limitations

Desig- Min. Max.
nation|. Parameter Value Value
fooT Dot Rate Frequency DC 30MHz
fcnar | Character Rate Frequency DC 25MHz

— | Line Buffer Clock Logic “0”
Width (Item 20 x Item 24) | 200ns
Item 3 |Dots per Character Field
Width 4 16
Item 4 |Scan Lines per Character
Field 2 16
Item 12| Scan Lines per Frame 512
Item 14| Character Times Video 5 122
per Row Blanking 6 123
Item 11|Scan Lines per Vertical (Item 4)
Blanking +2

If the cursor enable output, Item 22, is active on only one
line of a character row, then Item 21 value must be either
“1” or “0” or equivalent to the line selected for the
cursor enable output.

282

DP8350 Series Custom Order Format Table

This table is provided as a worksheet to aid in determining the programmed configuration for custom mask options. Refer
to Table 5 for a list of programming limitations.

Item
No. Paramgter Value
1 Character Font Size Dots per Character (Width)
2 (Reference Only) Scan Lines per Character (Height) N
3 Dots per Character (Width)
Character Field Block Size
4 Scan Line per Character (Height)
5 | Number of Video Characters per Row
6 | Number of Video Character Rows per Frame
7 | Number of Video Scan Lines (item 4 x Item 6)
8 | Frame Refresh Rate (Hz) (two pin selectable frequencies allowed) (item 13 = Item 12) f1= fo=
9 | Delay after Vertical Blank start to start of Vertical Sync (Number of Scan Lines)
10 | Vertical Sync Width (Number of Scan Lines)
11 Interval between Vertical Blank start and start of Video
(Number of Scan Lines of Video Blanking)
12 | Total Scan Lines per Frame (item 7 + ltem 11)
13 | Horizontal Scan Frequency (Line Rate) (kHz) (Item 8 x ltem 12)
14 | Number of Character Times per Scan Line
15 | Character Clock Rate (MHz) (item 13 X item 14)
16 | Character Time (ns) (1 + Item 15)
~ 17 | Delay after Horizontal Blank start to Horizontal Sync start (Character Times)
18 | Horizontal Sync Width (Character Tirhes)
19 | Dot Frequency (MHz) (item 3 x Iltem 15)
20 | Dot Time (ns) (1 +1tem 19)
21 Vertical Blanking Output Stop before start of Video (Number of Scan Lines)
(Range = ltem 4 —1 line to 0 lines)
22 | Cursor Enable on all Scan Lines of a Row? (Yes or No) if not, which Line?
23 | Does the Horizontal Sync Pulse have Serrations during Vertical Sync? (Yes or No)
24 Width of Line Buffer Clock logic “0” state within a Character Time
(Number of Dot Time increments) (Typically Y2 Item 3 rounded up)
25 | Serration Pulse Width, if used (Character Times) (See Figure 13)
26 | Horizontal Sync Pulse Active state logic level (1 or 0)
27 | Vertical Sync Puise Active state logic level (1 or 0)
28 | Vertical Blanking Pulse Active state logic level (1 or 0)

Video Monitor: Manufacturer and Model No. (For Engineering Reference)

283

Absolute Maximum Ratings ote 1) Operating Conditions (note 5)

Supply Voltage, Vcc 7.0V Min. Max. Units
input Voltage 5.6V Vce, Supply Voltage 475 525 v
Output Voltage 5.5V T, Ambient Temperature 0 +70 °C
Storage Temperature Range -65°Cto+150°C
Lead Temperature (soldering, 10 seconds) 300°C
Electrical Characteristics voc=5v=5%, Ta=0°C to +70°C (Notes 2, 3, and 5)
Parameter Conditions Min. Typ. Max. Units
Vin Logic “1” Input Voltage 2.0 \"
All Inputs Except X1, X2 RESET 2.6 \'
RESET
ViL Logic “0” Input Voltage -)
All Inputs Except X1, X2 | 08 v
Vhys RESET Input Hysteresis L 0.4 , v
Velamp Input Clamp Voltage '
All Inputs Except X1, X2 Iin=—-12mA -0.8 -1.2 \
I Logic “1” Input Current
Ag-Aqq Enable Input =0V,
Vec =5.25V, VN =5.25V 10 100 uA
All Other Inputs Except X1, X2 | Voc=5.25V, Viy=5.25V 20 20 uA
I Logic “0” Input Current
Ag-A11 Enable Input =0V,
Ve =5.25V, Viy=0.5V -20 -100 uA
All Other Inputs Except X1, X2 | Vg =5.25V, ViN=0.5V -20 -100 uA
VoH Logic “1”” Output Voltage lon =—-100uA 3.2 4.1 \

‘ lon=-1mA 25 3.3 v
VoL Logic “0” Output Voltage lo,=5mA 0.35 0.5 \
los Output Short Circuit Current Vec =5V, Vour =0V (Note 4) 10 40 100 mA
lcc Power Supply Current (Note 10) Vee =5.25V 220 300 mA

Note 1: “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed. They are not
meant to imply that the device should be operated at these limits. The table of “‘Electrical Characteristics” provides conditions for
actual device operation. ’

Note 2: Unless otherwise specified, min./max. limits apply across the 0°C to +70°C temperature range and the 4.75V to 5.25V power
supply range. All typical values are for Ta = 25°C and Vg = 5.0V and are intended for reference only.

Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are refer-
enced to ground, unless otherwise specified. All values shown as max. or min. are so classified on absolute value basis.

Note 4: Only one output at a time should be shorted.
Note 5: Electrical specifications do not apply to pin 17, external char/line clock, as this pin is used for production testing only.
Note 6: Functional operation of device is not guaranteed when operated beyond specified operating condition limits.

Switching Characteristics v.c=50v+5%, T,=25°C (Note 7)

Load .
Parameter Circuit Notes Min. Typ. Max. Units

Symmetry | Dot Rate Clock Output High

Symmetry With Crystal Control 1 50% ~4 | 50% -2 | 50% +1 ns
toa1 X! Input to Dot Rate Clock

Output Positive Edge 1 17 22 ns
todo Xl input to Dot Rate Clock . :

Output Negative Edge 1 21 26 ns
tpy Dot Clock to Load Video Shift

- | Register Negative Edge 1 6.0 10 ns

tp2 Dot Clock to Load Video Shift -

Register Positive Edge 1) 1 15 ns
tps Dot Clock to Latch Character .

Generator Positive Edge 1 8.0 13 ns
tpa Dot Clock to Latch Character

Generator Negative Edge 1 6.0 10 ns

2R4

Switching Characteristics (cont'd.) Ve =5.0v £ 5%, Ty =25°C (Note 7)

Load

Parameter Circuit Notes Min. Typ. Max. Units

tp2-tps Latch Character Generator Positive

Edge to Load Video Shift Register

Positive Edge 1 0 3.0 ns
tps Dot Clock to Line Buffer Clock

Negative Edge 1 23 35 ns
tpwa Line Buffer Clock Pulse Width 1 8,9 N(DT) N(DT)+8 | N(DT)+12 ns
tps Dot Clock to Cursor Enable Output

Transition 1 24 36 ns
to7 Dot Clock to Valid Address Output 1 15 25 ns
tps, Latch Character Generator to Line

Rate Clock Neg. Transition 1 8,10 425+ DT | 500+ DT ns
tps, Latch Character Generator to

Line Rate Clock Pos. Transition 1 8,10 300+ DT | 400+ DT ns
tpg, Latch Character Generator to

Clear Line Counter Neg. Transition 1 8,10 525+ DT | 700+ DT ns
tpg, Latch Character Generator to

Clear Line Counter Pos. Transition 1 8,10 290+ DT | 400+ DT ns
tps,~tpg, | Clear Line Counter Pos. Transition

to Line Rate Clock Pos. Transition 1 10 10 60 ns
to1o Line Rate Clock to Line Counter

Output Transition 1 60 120 ns
to1 Line Rate Clock to Line Buffer

Recirculate Enable Transition 1 195 300 ns
to12 Line Rate Clock to Vertical

Blanking Transition 1 160 300 ns
tp1s Line Rate Clock to Vertical Sync

Transition 1 220 300 ns
tp1a Latch Character Generator to

Horizontal Sync Transition 1 96 150 ns
ts1 Register Select Set-up Before

Register Load Negative Edge 0 ns
tH1 Register Select Hold After Register

Load Positive Edge 0 ns
ts2 Valid Address Input Set-Up Before

Register Load Positive Edge 250 ns
th2 Valid Address Hold Time After

Register Load Positive Edge 0 ns
tpw2 Register Load Required Pulse Width 150 65 ns
toz, thz Delay from Enable Input to Address

Output High Impedance State from

Logic “0” and Logic “1” 2 15 30 ns
tz1, tzH Delay from Enable Input to Logic

“0” and Logic “1” from Address

Output High Impedance State 2 17 30 ns

Note 7: Typical values are for Voo =5.0V and Ty = 25°C and are meant for reference only.

Note 8: “DT" denotes dot rate clock period time, item 20 from option format table.

Note 9: “N’” denotes value of item 24 from option format table.

Note 10: Revised since last issue.

Switching Load Circuits

T0 OUTPUT
UNDER TEST

Cy = 50pF
(SEE NGTE)I

Load Circuit 1

TO OUTPUT
UNDER TEST

Cp = 15pF
(SEE nnm]:

Load Circuit 2
Note: C, includes probe and jig capacitance. All diodes are 1N914 or equivalent.

Switching Waveforms

SYMMETRY = JH x 100%

T

T

<—TH——>I

DOT RATE CLOCK

Figure 7. Dot Rate Clock Output Waveform Symmetry

with Crystal Control

CHARACTER
X-1

tr=tf<10ns
X2 (PIN 21) = OPEN

veg——
vee vee
X1 5 =t
ov
' tpd1 l l tpdo '
e | | <

DOT RATE CLOCK 1.5V

Figure 8. X1 input to Dot Ra
Propagation Delay

DOT COUNT MAX

==

CHAR’A(\BTER

I MAX -1 I MAX

te Clock Output

CHARACTER
X+1 e

1 ’ 2

|

l 5

—tD1 F—IDZ

b))

e

LOAD VIDEQ
SHIFT REGISTER) 1
—=| fe—t03 —toa
LATCH CHARACTER f \
GENERATOR ADD. y/ , 3
j89
I | tpg—m . |- |
| Pt |
LINE BUFFER CLOCK ’ l \ t : \
- I\)
\Sy
04|
————— by3
CURSOR A l
ENABLE OUTPUT e
e e e
,]4—101—»

ADDRESS
COUNTER OUTPUTS

Note 1: All measurement points are 1.5V
Figure 9. Dot/Character Rate Timing

LINE X =TL LINE X +1
TAL VIDEO ! HORIZONTAL
BLANKING CHAR CHAR CHAR BLANKING
~ 1 *"— 2 "'r" MAX >
LATCH CHARACTER
GENERATOR ADDRESS [[

—| 081 l——- I R

LINE RATE !
cLock / l “1 \I
—»l tnslr<- N 1090 '4—
CLEAR LINE « \
COUNTER . \I
. 1 l ~—I!mn [—
2 ——— ———
LINE COUNTER | « l
OUTPUTS LCo — LC3 I | _}(
S B S R
— —————
LINE BUFFER 148 T
RECIRCULATE ENABLE I | | |
—————————————————————————————— et e St S
| | T [
VERTICAL I 1 e | !)‘ -
stawkwne _ Vo Y PRI S
! l N | foom
VER] f N | x —————
meaLsvee b S U N

— fe—to14 (NOTE 1) |

e ey ey ————
HORIZONTAL SYNC \ g \ \ \ \ \ ! : ? I /
“) A 1 [A L0 L RN T

Note 1: Actual polarity and position of the horizontal sync start and stop points is a function of the particular device format.
Note 2: All measurement points are 1.5V.

Figure 10. Character/Line Rate Timing

noc

Switching Waveforms (cont'a)
o
: v ' - v
REGISTER N ENABLE 1.5V 1.5V
o o —

I<—131+|<-——>I;—tﬂ1+| 1] 72 ' I tzL
av =1.5V $—n o
REGISTER i
SELECT Eu.sv
AAND B VoL
ov <l izH
|<ts2=|<to~] vou —
W }:n.sv
ADDRESS * ‘ Tosv
BUS X . 'HZ’I ~1.5V _$’u
ov
Note 1: All measurement points are 1.5V.
Note 2: t,=t; < 10ns.
Note 3: Address enable (pin 37)=0V.
Figure 11. Register Select and Load Waveforms Figure 12. Address Output Enable/Disable
Waveforms
Timing Diagrams
| FRAME FRAME
i X X+1
1 VERTICAL 1 VIDED VERTICAL -
| BLANKING i TIME BLANKING
i T T T T T e T T T s i T
CLEAR LINE B 23 (‘.8 23
COUNTER OUTPUT l I (NOTE 1) u -
I by — —-— -—
B TT_LT wee LT ¢ oL T LI T

| N |
unecoten T~~~ T 1~ T 1 Cworer] I__Sg_l__l 1T __[jigT_] CI1I-T
D b)) ‘
BLANKING OuTRF] Cwrea U R T 1

| (NOTE 4) | |
VERTICAL m&-T*T-ﬁH—T*T-T—TﬂT—T—Tﬁ—I—
SYNC OUTPUT — e o d i 1 1001 L 1 1 RN | 1 ——r e
C C O

Note 1: One full row before start of video the line counter is set to zero state — this provides line counter synchronization in cases
where the number of lines in vertical blanking are not even multiples of the number-of lines per row.
Note 2: The position of the line buffer recirculate enable logic low level is a function of the logic level of the address mode input (see
Table 3).
Note 3: The stop point of the vertical blanking output active signal is a function of device type or custom option, and will always be
within one row prior to video.
Note 4: The transition start and stop points of the vertical sync output signal are a function of device type or custom option.

Figure 14. Line/Frame Rate Functional Diagram
|« P ——]

o s
Hnmzugmé_'[j HE |l [1 L] l I | I I

-~

ouTPUT |«<—SERRATION PULSE ENVELOPE
|1 12}o— — T 2|
T et |
VERTICAL NOTE 1 NOTE 2) NOTE 2)
SYNC LU L L 1
OUTPUT

P =HORIZONTAL SCAN TIME PERIOD (ITEM 14 FROM PROGRAM TABLE)
H = HORIZONTAL SYNC WIDTH (ITEM 18 FROM PROGRAM TABLE)

- § = SERRATION PULSE WIDTH (ITEM 25 FROM PROGRAM TABLE)
T1=P-H (MAX)

T2 = H-1 CHARACTER TIME (MAX)

Note 1: The vertical sync transition point is always coincident with the beginning of horizontal blanking.

Note 2: T1 and T2 intervals represent the range of alignment offset between the vertical sync pulse and the serration pulse envelope
and is a function of the horizontal sync position with respect to the beginning of horizontal blanking.

Figure 15. Serration Pulse Format

287

Timing Diagrams (cont'a)

ALL SCAN
LINES

ALL SCAN
LINES

VERTICAL
INTERVAL

ALL SCAN
LINES

VERTICAL
BLANKING
INTERVAL

VIDEQ
ROWn

LINE

MAX-1

VIDEO

LINE
MAX

VIDEQ
ROW n+1

LINE1,

9

(

\

SCAN LINE X+1

HORIZONTAL

VIDEQ CHARACTER
POSITIDN\

LATCH CHARACTER
GENERATOR ADDRESS

BLANKING

SCAN LINE X

} VIDEO:

HORIZONTAL
BLANKING

S A

MAX |MAX
o oo

2 |

LOAD VIDEQ
SHIFT REGISTER

LINE BUFFER
CLOCK

MAX |MAX |MAX Iqu Im\x |mx
+1 +2 +3 +4 +5

+6

|

UUTIRTuUT

T — '
HORIZONTAL —1---1---:—‘-"1-'-"*:-1'— - e s s s s AP Sy S
AR e B
LINE BUFEER mmm
e ¢ '

TE— |

HORIZONTAL
SYNC

(NOTET)

— e o - — - ———
H H H H H

- —
A

b)Y

"__"'_"«'“'_*""'_""—T_"'-T—'__'_-I
H H e M H H - [SR S

LINE COUNTER

———— o s o S S e

OUTPUTS _._______.._.._.....__--...__..._.}é____..‘___._ 1
CLEAR LINE COUNTER B
(LOGIC HI) 148
(NOTE 3)
ADDRESS QUTPUTS = = = = = = = = [— _:[Sg: — [— T —————=——————
ATE o NOTED) e e
ENABLE OUTPUT - ¢ L -
CURSOR OUTPUT | — Y
e
LINE COUNTER o s s oo e s e o o e i e o S s e e e S e e a_._______ —
OUTPUTS 20 U,
CLEAR LINE 3%
COUNTER “ | I
: o POINT A (NOTE 2)
ADDRESS QUTPUTS ™ = = = = = = - — _.ﬁs._. — = mmmm——————— o
LS
(NOTE 2)
RECIACULATE — — = = — — = — = e = e e o o e e e e e m = — = — — =]
ENABLE OUTPUT 1 o— — e e
CURSOR OUTPUT r—L-P
¢
LINE COUNTER & [——————————————
OUTPUTS s o et e e s v e v e e e o s e o e S s S St 4 ¢ S — —— —
)
CLEAR LINE
COUNTER mme——emed o
« POINT B (NOTE 2)
ADDRESSOUTPUTS — — ~ "~ =TT =] — ISS R A
RECIRCULATE o !
ENABLE OUTPUT .___.._.____._____-.-_-_.__éé____._____J
(LOGIC LOW) 33
C

CURSOR QUTPUT

Note 1: The horizontal sync output start and stop point positions are a function of device type or custom option.

Note 2
mode

The position of the recirculate enable output logic “0” level is dependent on the state of the address mode input. When address
“0”, recirculate enable occurs on the max. line of a character row (solid line) and the address counter outputs roll over to the new

row address at point A. When address mode = “1”, recirculate enable occurs on the first line of a character row (dashed line) and the
address counter outputs roll over to the new row address at point B.

Note 3: The address counter outputs clock to the address of the last character of a video row plus 1. This address is then held during

the horizontal blanking interval until video minus three character times. At this point the outputs are modified to the contents of the

Row Start Register (RSR). :

Figure 13. Character/Line Rate Functional Diagram

288

Applications

SYSTEM
|NTE?FACE

DATA BUS

OPTIONAL

vID)
INTER

CONTROL
cPu ROM

VIDEO
RAM

3

CPU CONTROL
BUS

-

DISPLAY

CONTROL
BUS

CHARACTER
ROM

-

DOT SHIFT

SYSTEM
INTEI:FAI)E

ADDRESS BUS

REGISTER

;

VIDEO

CRT CONTROLLER

CURSOR
HORIZ SYNC
VERT SYNC

}

Figure 16. General System Block Diagram

DATA BUS

NUMBER OF MEMORY
BLOCKS IS EQUAL TO
NUMBER OF SCAN LINES

EQ
FACE

TO ATTRIBUTE
DECODE LOGIC

> EQUIVALENT TO
DMT6564

T0 MONITOR
INPUTS

VIDEO
INTERFACE

Figure 17. Dot-By-Dot Graphics Block Diagram

|
|
|
! I
' [
! f
: PER CHARACTER CELL I :
I 1
! VIDED |
! RAM : |
! i
: o _
| oot suer |
| - Y . }) ~ REGISTER |
| seo |
1 CPU CONTROL BUS |
| BCD DISPLAY :
‘__‘>E DECIMAL CONTROL A
| ADDRESS BUS \ :
i |
| A !
CURSOR _ |
I SCAN LINE >
COUNTER OUTPUTS HORIZSYNG |
CRT CONTROLLER VERTSYNG |
|
|
|

289

DP8350 CRT Controller

Table 6. Characteristic Format

Item

No. Parameter Value
1 Character Font Size Dots per Character (Width))
2 (Reference Only) Scan Lines per Character (Height) @
3 Dots per Character (Width) 7
Character Field Celf Size
4 - Scan Line per Character (Height) 10
5 | Number of Video Characters per Row 80
6 | Number of Video Character Rows per Frame 24
7 | Number of Video Scan Lines (Item 4 X item 6) 240
8 | Frame Refresh Rate (Hz) f1=60 f0=50
9 | Delay after Vertical Blank start to start of Vertical Sync (Number of Scan Lines) 4 30
10 | Vertical Sync Width (Number of Scan Lines) 10 10
1 Interval between Vertical Blank start and start of Video 20 72
. (Number of Scan Lines of Video Blanking)
12 | Total Scan Lines per Frame (item 7 + Item 11) 260 312
13 | Horizontal Scan Frequency (Line Rate) (item 8 x Iltem 12) 15.6kHz
14 | Number of Character Times per Scan Line 100
15 | Character Clock Rate (item 13 x ltem 14) 1.56 MHz
16 | Character Time (1 + Item 15) 641ns
17 | Delay after Horizontal Blank start to Horizontal Sync start (Character Times) 0
18 | Horizontal Sync Width (Character Times) 43
19 | Dot Frequency (item 3 x Item 15) 10.92MHz
20 | Dot Time (1 = item 19) 91.6ns
21 | Vertical Blanking Output Stop before start of Video (Number of Scan Lines) 1
22 | Cursor Enable on all Scan Lines of a Row? (Yes or No) Yes
23 | Does the Horizontal Sync Pulse have Serrations during Vértical Sync? (Yes or No) . No
24 Width of Line Buffer Clock logic “0” state within a Character Time 4
(Number of Dot Time increments)
25 | Serration Pulse Width, if used (Character Times) —
.26 | Horizontal Sync Pulse Active state logic level (1 or 0) 1
27 | Vertical Sync Pulse Active state logic level (1 or 0) 0
28 Vertical Blanking Pulse Active state logic level (1 or 0) 1

Video Monitor Format: Ball Brothers TV-12, TV-120 or Equivalent.

290

7D0TS

VIDEO
CHARACTER X-1
FORMAT

X+1

o L L L L L LU

LOAD VIDEO -

SHIFT
REGISTER

LATCH
CHARACTER
GENERATOR

ADDRESS

LINE
BUFFER

cLoek — —— |

CURSOR
ENABLE

4DOTS

ol

ADDRESS

OUTPUTS X+

X

X+2

l X+3

NOTE: DASHED LINES IN WAVEFORMS DENOTE INACTIVE STATE LOGIC LEVELS.

Figure 18. DP8350 Video Character Signals

20 CHAR

|

100 CHARACTERS

80 CHAR

HORIZONTAL
FORMAT

BLANKING

1%

VIDEO

43CHAR

HORIZONTAL
SYNC

LINE RATE
CLOCK

[=—15 CHAR —|

CLEAR
LINE
COUNTER

LINE

COUNTER
QUTPUTS

A

LINE

ENABLE

BUFFER v_——-l-_—.—*-—_——___‘——__—_———_—_
RECIRCULATE

NOTE: DASHED LINES IN WAVEFGRMS DENOTE INACTIVE STATE LOGIC LEVELS.

Figure 19. DP8350 Scan Line Signals

291

VERTICAL
FORMAT

VERTICAL
BLANK

| VERTICAL
SYNC

VERTICAL
FORMAT

VERTICAL
BLANK

VERTICAL
SYNC

260 SCAN LINES

20 LINES 240 LINES
BLANKING VIDEO
— =] j=—1LINE
—=| |~—4LINES
. —=| 10LINES j=—o

Figure 20. DP8350 60 Hz Refresh Rate Frame Signals

72 LINES

312 SCAN LINES

240 LINES

BLANKING

VIDEQ

—»1 ~—1 LINE

—=| 30 LINES |~=—

L

— [~—10 LINES

Figure 21. DP8350 50 Hz Refresh Rate Frame Signals

I
L

292

DP8352 CRT Controller

Table 7. Characteristic Format

Item

No. Parameter Value
1 Character Font Size Dots per Character (Width) 7
2 (Reference Only) Scan Lines per Character (Height) ©)
3 Dots per Character (Width) 9
Character Field Cell Size
4 Scan Line per Character (Height) 12
5 | Number of Video Characters per Row 32
6 | Number of Video Character Rows per Frame 16
7 Number of Video Scan Lines (ltem 4 x ltem 6) 192
8 | Frame Refresh Rate (Hz) f1=60 fo=50
9 | Delay after Vertical Blank start to start of Vertical Sync (Number of Scan Lines) 27 53
10 | Vertical Sync Width (Number of Scan Lines) 3 3
11 Interval between Vertical Blank start and start of Video 68 120
(Number of Scan Lines of Video Blanking)
12 | Total Scan Lines per Frame (item 7 + ltem 11) 260 312
13 | Horizontal Scan Frequency (Line Rate) (Item 8 X Item 12) 15.6kHz
14 | Number of Character Times per Scan Line 50
15 | Character Clock Rate (item 13 X item 14) 0.78 MHz
16 | Character Time (1 - Item 15) 1282ns
17 | Delay after Horizontal Blank start to Horizontal Sync start (Character Times) 6
18 | Horizontal Sync Width (Character Times) 4
19 | Dot Frequency (item 3 x item 15) 7.02MHz
20 | Dot Time (1 = Item 19) 142.4ns
21 | Vertical Blanking Output Stop before start of Video (Number of Scan Lines) 0
22 | Cursor Enable on all Scan Lines of a Row? (Yes or No) Yes
23 | Does the Horizontal Sync Pulse have Serrations during Vertical Sync? (Yes or No) Yes
24 Width of Line Buffer Clock logic “0” state within a Character Time 5
(Number of Dot Time increments)
25 | Serration Pulse Width, if used (Character Times) 4
26 | Horizontal Sync Pulse Active state logic level (1 or 0) 0
27 | Vertical Sync Pulse Active state logic level (1 or 0) 0
28 | Vertical Blanking Pulse Active state logic level (1 or 0) 1

Video Monitor Format: RS-170-Compatible (Standard American TV).

293

VIDEQ
CHARACTER X-1 X
FORMAT

X+

LML Lo

LOAD VIDEQ |— — J—
SHIFT
REGISTER

LATCH

CHARACTER
GENERATOR
ADDRESS

5D0TS

LINE ' .
BUFFER i -
CLOCK — e

CURSOR
ENABLE N o

ADDRESS
OUTPUTS X+ ,(X+2

NOTE: DASHED LINES IN WAVEFORMS DENOTE INACTIVE STATE LOGIC LEVELS.

Figure 22. DP8352 Video Character Signals

Kxs

50 CHARACTERS

18 CHAR 32 CHAR

HORIZONTAL -
FORMAT BLANKING % /////vm/z/o / /

-

8CH 4 CHAR

>
R

HORIZONTAL
SYNC

|~——13 CHAR——=|

LINE RATE
CLOCK

CLEAR =" — — — — —

LINE
COUNTER

LINE
COUNTER JL
ouTPUTS

LINE
BUFFER
RECIRCULATE

ENABLE
NOTE: DASHED LINES IN WAVEFORMS DENOTE INACTIVE STATE LOGIC LEVELS.

Figure 23. DP8352 Scan Line Signals

294

VERTICAL
FORMAT

VERTICAL
BLANK

VERTICAL
SYNC

VERTICAL
FORMAT

VERTICAL
BLANK

VERTICAL
SYNC

VERTICAL
SYNC

HORIZONTAL
SYNC

260 LINES
68 LINES 192 LINES
BLANKING VIDED
| | |
—=| 27 LINES f—
—| |=—3umes
Figure 24. DP8352 60 Hz Refresh Rate Frame Signals
312 LINES
120 LINES 192 LINES
BLANKING VIDEO
—=| 53 LINES Il-—
—=| |=—3umes
Figure 25. DP8352 50 Hz Refresh Rate Frame Signals
3 LINES
—=| |~—6cHAR 4.‘:%'; — —{ |=—2cHaR 7
— HAR 50 CHAR 50 CHAR 50 CHAR 50 CHAR - l 50 EH‘AR—-I

TYP

Figure 26. DP8352 Serration Pulse Format

295.

DP8353 CRT Controller

Table 8. Characteristic Format

Item

No. Parameter Value
1 Character Font Size Dots per Character (Width) (7)
2 (Reference Only) Scan Lines per Character (Height) 9)
3 . Dots per Character (Width) 9
Character Field Cell Size
4 Scan Line per Character (Height) 12
5 | Number of Video Characters per Row 80
6 | Number of Video Character Rows per Frame 25
7 | Number of Video Scan Lines (Item 4 x Item 6) 300
8 | Frame Refresh Rate (Hz) f1=60 f0 =50
9 | Delay after Vertical Blank start to start of Vertical Sync (Number of Scan Lines) 0 32
10 | Vertical Sync Width (Number of Scan Lines) 3 3
1 Interval between Vertical Blank start and start of Video 20 84
(Number of Scan Lines of Video Blanking) .
12 | Total Scan Lines per Frame (tem 7 + ltem 11) 320 384
13 | Horizontal Scan Frequency (Line Rate) (Item 8 X ltem 12) 19.20kHz
14 | Number of Character Times per Scan Line 102
15 | Character Clock Rate (Item 13 x ltem 14) 1.9584 MHz
16 | Character Time (1 + Item 15) 510.6ns
17 | Delay after Horizontal Blank start to Horizontal Sync start (Character Times) 5
18 | Horizontal Sync Width (Character Times) 9
19 | Dot Frequency (Item 3 x ltem 15) 17.6256 MHz
20 | Dot Time (1 + ltem 19) 56.7ns
21 | Vertical Blanking Output Stop before start of Video (Number of Scan Lines) 1
22 | Cursor Enable on all Scan Lines of a Row? (Yes or No) Yes
23 | Does the Horizontal Sync Pulse have Serrations during Vertical Sync? (Yes or No) No
24 Width of Line Buffer Clock logic “0” state within a Character Time 5
(Number of Dot Time increments)
25 . | Serration Pulse Width, if used (Character Times) —
26 | Horizontal Sync Pulse Active state logic level (1 or 0) 1
27 | Vertical Sync Pulse Active state logic level (1 or 0) 1
28 | Vertical Blanking Pulse Active state logic level (1 or 0) 1

Video Monitor Format: Motorola M3003 or Equivalent.

296

VIDED
CHARACTER
FORMAT

DoT
CLocK

LOAD VIDEO
SHIFT
REGISTER

LATCH
CHARACTER
GENERATOR

ADDRESS

LINE
BUFFER
CLOCK

CURSOR
ENABLE

ADDRESS
OUTPUTS

9D0TS

(5 I 5 I 6
X+ J(X+2 Yixﬂ

NOTE: DASHED LINES IN WAVEFORMS DENOTE INACTIVE STATE LOGIC LEVELS.

Figure 27. DP8353 Video Character Signals

102 CHARACTERS
22 CHAR 80 CHAR
HORIZONTAL
FORMAT BLANKING VIDEO
5 CHAR 9 CHAR

HORIZONTAL
SYNC

LINE RATE
CLOCK

CLEAR
LINE
COUNTER

=———17 CHAR—

LINE
COUNTER
OUTPUTS

LINE

BUFFER
RECIRCULATE
ENABLE

NOTE: DASHED LINES IN WAVEFORMS DENOTE INACTIVE STATE LOGIC LEVELS.

Figure 28. DP8353 Scan Line Signals

320 LINES
20 LINES 300 LINES

VERTICAL

FORMAT BLANKING VIDED

—| =—tunE
VERTICAL
BLANK
— f«—aLINEs -

VERTICAL
SYNC

Figure 29. DP8353 60 Hz Refresh Rate Frame Signals

297

384 LINES
84 LINES —— 300 LINES

VERTICAL
FORMAT BLANKING VIDEO

—| [=—1LINE

VERTICAL
BLANK

— ~—232 LINES

VERTICAL
SYNC

— ~—3 LINES

Figure 30. DP8353 50 Hz Refresh Rate Frame Signals

Physical Dimensions

2.070

{52.578) |
MAX ’

0.062

(1.575)
RAD

PINNO. 1 INDENT\

0.550 +0.005
(13.970 =0.127)

UT) 1 DT o1 [s] T o] [of bof [Tl o] Qs Ds] (e[[ro] [oe oo o

0.030
0060 {g762) 0.050

0.600-0.620 (1.524) MAX m’ 0.130 £0.005
{15.240-15.748) f] TYp ’1 l‘ {3.302 :0.127)
T

—T ,?T -

0.009-0.015
125 4025 {0229-0.381) | oo
625 5015 | 0075 0015 i ‘ 0.100 0.018 -0.003 0125 (0508)
+0.635 | feoszoasn 1 T I (2:530) (0,457 -0.076) = MIN
(15.875 3503 e @)
- MIN

40-Lead Molded DIP (N)
NS Package Number N40A

298 »

National
Semiconductor

DP8400 — E2C? Expandable Error Checker and Correétqr

General Description

The DP8400. Expandable Error Checker and Corrector
(E2C?) aids system reliability and integrity by detecting er-
rors in memory data and correcting single or double-bit er-
rors. The E2C? data I/O port sits across the processor-
memory data bus as shown, and the check bit I/O port con-
nects to the memory check bits. Error flags are provided,
and a syndrome /O port is available. Fabricated using
high speed Schottky technology in a 48-pin dual-in-line
package, the DP8400 has been designed such that its in-
ternal delay times are minimal, maintaining maximum
memory performance.

L omaus 1O
Ll A 70
| Svstem v |
CONTROL
PROCESSOR | | pe S/7/878 | memony
6/1/8/8 CHECK BIT
, Bus |
SYNDROME
BUS ‘ |
ERROR FLAGS

For a 16-bit word, the DP8400 monitors data between the
processor and memory, with its 16-bit bidirectional data
bus connected to the memory data bus. The DP8400 uses
an encoding matrix to generate 6 check bits from the 16
bits of data. In a WRITE cycle, the data word and the cor-
responding check bits are written into memory. Whenthe
same location of memory is subsequently read, the E2C2
generates 6 new check bits from the memory data and
compares them with the 6 check bits read from memory to
create 6 syndrome bits. If there is a difference (causing
some syndrome bits to go high), then that memory loca-
tion contains an error and the DP8400 indicates the type of
error with 3 error flags. If the error is a single-bit error, the
DP8400 will automatically correct it.

The DP8400 is easily expandable to other data configura-
tions. For a 32-bit data bus with 7 check bits, two DP8400s
can be used in cascade with no other ICs. Three DP8400s
can be used for 48 bits, and four DP8400s for 64 data bits,
both with 8 check bits. In all these configurations, single
and double-error detection and single-error correction are
easy to implement.

When the memory is more unreliable, or better system in-
tegrity is preferred, then in any of these configurations,
double-error correction can be performed. One approach
requires a further memory WRITE-READ cycle using com-
plemented data and check bits from the DP8400. If at least
one of the two errors is a hard error, the DP8400 will correct
both errors. This implementation requires no more
memory check bits or DP8400s than the single-error cor-
rect configurations. ‘ :

The DP8400 has a separate syndrome 1/0 bus which can
be used for error logging or error management. In addition,
the DP8400 can be used in BYTE-WRITE applications (for
up to 72 data bits) because it has separate byte controls
forthe data buffers. In 16 or 32-bit systems, the DP8400 will
generate and check system byte parity, if required, for in-
tegrity of the data supplied from or to the processor. There
are three latch controls to enable latching of data in vari-
ous modes and configurations.

Operational Features

B Fast single and double-error detection
B Fast single-error correction

B Double-error correction after catastrophic failure with
no additional ICs or check bits

B Functionally expandable to 100% double-error correct
capability

Functionally expandable to triple-error detect)
Directly expandable to 32 bits using 2 DP8400s only
Directly expandable to 48 bits using 3 DP8400s only
Directly expandable to 64 bits using 4 DP8400s only

Expandable to and beyond 64 bits in fast configuration
with extra ICs

3 error flags for complete error recording
3 latch enable inputs for versatile control
Byte parity generating and checking

Separate byte controls for outputting data in BYTE-
WRITE operation

B Separate syndrome /O port accessible for error logging
and management

B On-chip input and output latches for data bus, check bit
bus and syndrome bus

B Diagnostic capability for simdlating check bits
B Memory check bit bus, syndrome bus; error flags and in-
ternally generated syndromes available on the data bus

B Self-test of E2C2 on the memory card under processor
control

B Full diagnostic check of memory with the E2C2
B Complete memory failure detectable
B Power-on clears data and syndrome input latches

‘Timing Features

16-BIT CONFIGURATION

WRITE Time: 35 ns from data-in to check bits valid
DETECT Time: 35 ns from data-in to Any Error (AE) flag set
CORRECT Time: 70 ns from data-in to correct data out

299

Timing Features (continueq)

32-BIT CONFIGURATION

WRITE Time: 65 ns from data-in to check bits valid
DETECT Timée: 60 ns from data-in to Any Error (AE) flag set
CORRECT Time: 125 ns from data-in to correct data out

DP8400 Connection Diagram

Dual-In-Line Package

nns-;- ~ %- Do4
006 —+ 4T o3
07— % Doz
008 — h-:- a1
D03 —- 122 boo
D010 — 43 om0
Dﬂ"_s :—f OLE
0012 2L oie
mm-—i1 140 e
nm4-:-:’- 2—: AE
DQ15—m 138 oo
0BT DPB40 ST xp
GND — -g%- Vec
C0 = 35 g
- 34 2
c2 8 133 4
c3 % % vo
ca— L 5o
o5 2L 51
poo 12 2
BPO (C7)=2) 128 53
0Es 27 S4
CSLE :3 %;— $5
BP1 (S7) 12 56
TOP VIEW

Order Number DP8400N-4 or DP8400D-4
See NS Package N48A or D48A

Pin Definitions see Figure 1 for abbreviations

Vee; GND, GND: 5.0V +5%. The 3 supply pins have been
assigned to the center of the package to reduce voltage
drops, both DC and AC. Also there are two ground pins to
reduce the low-level noise. The second ground pin is lo-
cated two pins from Vg, so that decoupling capacitors
can be inserted directly next to these pins. It is important
to adequately decouple this device, due to the high switch-
ing currents that will occur when all 16 data bits change in
the same direction simultaneously. A recommended solu-
tion would be a 1 uF multilayer ceramic capacitor in
parallel with a low-voltage tantalum capacitor, both con-
nected close to pins 36 and 38 to reduce lead inductance.

DQO-DQ15: Data I/O port. 16-bit bidirectional data bus
which is connected to the input of DILO and DIL1 and the
output of DOBO and DOB1, with DQ8-DQ15 also to CIL.

C0-C6: Check-bit I/O port. 7-bit bidirectional bus which is
connected to the input of the CIL and the output of the
COB. COB is enabled whenever M2 is low.

$0-86: Syndrome I/O port. 7-bit bidirectional bus which is
connected to the input of the SIL and the output of the
SOB.

DLE: Input data latch enable. When high, DILO and DiL1
outputs follow the input data bus. When low, DILO and
DIL1 latch the input data.

CSLE: Input check bit and syndrome latch enable. When
high, CIL and SIL follow the input check and syndrome
bits. When low, CIL and SIL latch the input check and syn-
drome bits. If OES is low, SIL remains latched.

OLE: Output latch enable. OLE enables the internally
generated data to DOLO, and DOL1, COL and SOL when
low, and latches when high.

XP: Multi-expansion, which feeds into a three-level com-
parator. With XP at OV, only 6 or 7 check bits are available
for expansion up to 40 bits, allowing byte parity capability.
With XP open or at V¢, expansion beyond 40 bits is possi-
ble, but byte parity capability is no longer available. When
XP is at Vg, CG6 and CG7, the internally generated upper
two check bits, are set low. When XP is open, CG6 and CG7
are set to word parity.

BPO (C7): When XP is at 0V, this pin is byte-0 parity 1/0. In
the Normal WRITE mode, BP0 receives system byte-0 pari-
ty, and in the Normal READ mode outputs system byte-0
parity. When XP is open or at Vg, this pin becomes C7 1/Q,
the eighth check bit for the memory check bits, for 48-bit
expansion and beyond.

BP1(S7): When XP is at 0V, this pin is byte-1 parity /0. In
the Normal WRITE mode, BP1 receives system byte-1 pari-
ty, and in the Normal READ mode outputs system byte-i
parity. When XP is open or at Vg, this pin becomes S7 1/0,
the eighth syndrome bit for 48-bit expansion and beyond.

AE: Any error. In the Normal READ mode, when low, AE in-
dicates no error and when high, indicates that an error has
occurred. In any WRITE mode, AE is permanently low.

EOQ: Inthe Normal READ mode, EQ is high for a single-data
error, and low for other conditions. In the Normal WRITE
mode, EO becomes PEO and is low if a parity error exists in
byte-0 as transmitted from the processor.

E1: Inthe Normal READ mode, E1 is high for a single-data
error or a single check bit error, and low for no error and
double-error. In the Normal WRITE mode, E1 becomes PE1
and is low if a parity error exists in byte-1 as transmitted
from the processor.

OBO, OB1: Output byte-0 and output byte-1 enables.
These inputs, when low, enable DOLO and DOL1 through
DOBO and DOB1 onto the data bus pins DQ0-DQ7 and
DQ8-DQ15. When OBO0 and OB1 are high the DOBO, DOB1
outputs are TRI-STATE®.

OES: Output enable syndromes. /O control of the syn-
drome latches. When high, SOB is TRI-STATED and exter-
nal syndromes pass through the syndrome input latch
with CSLE high. When OES is low, SOB is enabled and the
generated syndromes appear on the syndrome bus, also
CSLE is inhibited internally to SIL.

MO, M1, M2: Mode control inputs. These three controls
define the eight major operational modes of the DP8400.
Table 11l depicts the modes.

300

10€

DIL
CG
CiL
cc
SIL
PSG
SG
DED
DEQ, 1
PE

€0-6.7-

. PG %mw O nos—15 Yo
DATA BUS b
DATA oty
o] meur |8 A D—b y
7| LATCH 1
8 A Dig L-) x 8 8 DATA oaa |,
£ 7 ’D—,Lp OUTPUT s outPUT
| v y e o] 3] 0c1 L‘y\“ 1 BUFFER 1
\DLE BYTE 3 BYTE PARITY
- q PARITY o »| ERROR [0-3]
INH GENERATOR DETECTOR
A__—— 1] 4 ALL ZERO
7| - CHECK BIT g, C6y 12 SYNDROMES Ly V4 A4
ENERATOR = - =
R |m:T Ly R G BA 7 1D s/, s, \ x a/ —) o oaTA own | g,
OUTPUT
LATCH O - — — — i — 8, J.o- D+ oureut BUFFERO | ©
0667 | - A7 -+ - [5] 00O | LATCHO
— -
T 6B, 7 oE
& C
[:j:] INH 4= {51 ~<
| oamaer | Lo
3] ERROR 18"/ DEO
—~ 5 , »—)D _ 8 7] o \ DETECTOR CI;E;:K p—
s — BIT 7.8
—| 7 A + ouTPUT outrui 7
: — LATCH BUFFER
-) A
CSLE .
>
E}+| wren
Tow PE 9
i INH Eﬂ—f Tﬂ v v v aee ,
> 7.8
\/< $0-6, 7 4 \l/ m ERROR ENCODER D&%?,E“ & v
7.8 y Y SYNDROME SYNDROME | 7 ¢
4 | svwonome . _:)D - - “outeur N ;
> weur -+ AR LATCH BUFFER
LATCH A Y
CLR 1
AN 0ES
4 SYNDROME BUS
CHECK BIT BUS
- AE El €0 M0-2
Data Input Latch DOLO, 1 Data Output Latch Bytes 0; 1 A v v VaN
Check Bit Generator CoL Check Bit Output Latch
Check Bit Input Latch SoL Syndrome Output Latch i
Check Bit Complementor DOBo, 1 Data Output Buffer Bytes 0, 1
Syndrome Input Latch coB Check Bit Output Buffer [R] mode of operation signifies active signal
Partial Syndrome Generator SOB Syndrome Output Buffer
Syndrome Generator EE Error Encoder
Data Error Detector DCO, 1 Data Corrector Bytes 0; 1
Data Error Bytes 0, 1
Parity Error

FIGURE 1. DP8400 Block Diagram

SYSTEM WRITE (Figure 2a)

The Normal WRITE mode is mode 0 of Table ill. Referring
to the block diagram in Figure 9a and the timing diagram
of Figure 9b, the 16 bits of data from the processor are ena-
bled into the data input latches, DILO and DiL1, when the
_input data latch enable (DLE) is high. When this goes low,
the input data is latched. The check bit generator (CG)
then produces 6 parity bits, called check bits. Each parity
bit monitors different combinations of the input data-bits.
In the 16-bit configuration, assuming no syndrome bits are
being fed in from the syndrome bus into the syndrome in-
put latch, the 6 check bits enter the check bit output latch
(COL), when the output latch enable OLE is low, and are
latched in when OLE goes high. Whenever M2 (READ/
WRITE) is low, the check bit output buffer COB always
enables the COL. contents onto the external check bit bus.
Also the data error decoder (DED) is inhibited during
WRITE so no correction can take place. Data output
latches DOLO and DOL1, when enabled with OLE, will
therefore see the contents of DILO and DIL1. If valid

|

system data is still on the data bus, a memory WRITE will
write to memory the data on the data bus and the check
bits output from COB. If the system has vacated the data
bus, output enables (OB0 and OB1) must be set low so that
the original data word with its 6 check bits can be written
to memory.

SYSTEM READ

There are two methods of reading data: the error monitor-
ing method (Figure 2b), and the always correct method
(Figure 2c). Both require fast error detection, and the sec-
ond, fast correction. With the first method, the memory
data is only monitored by the E2C2 and is assumed to be
correct. If there is an error, the Any Error flag (AE) goes
high, requiring further action from the system to correct
the data. With the always correct method, the memory
data is assumed to be possibly in error. Memory data is
removed and the corrected, or already correct, data is out-
put from the E2C2 by enabling OB1 and OBO. To detect an
error (referring to Figures 70a and 10b) first DLE and CSLE

N

DATA I& 7,

7 oama

<

14

i Al WRITE DATA

! 7
BYTE PARITY l
PROCESSOR

‘é’ MEMORY
[fPO1
BYTE PARITY ERROR
‘ 202 CHECK
—fn e o777
Low ANY P
ERROR M2 M1 MO | WRITE
| T l 1 CHECK BITS
___ Low
WRITE 2 = =
FIGURE 2a:, Normal WRITE Mode with E2C?
|
i
DATA KT % 2 727} oATA
| ” . V
1
| ™ PROBABLY CORRECT
DATA
PROCESSOR
BYTE PARITY
I READ CHECK | MEMORY |
[BPO,1 DO UL '
/ P
202 CHECK
| o €2 | G
INTERRUPT P—‘-—Ennun 2o wo

i HIGH

READ

11l

FIGURE 2b. Normal READ Mode, Error Monitoring Method with E2C2

A

o

DATA

DATA W 7

DATA
BYTE PARITY

J

ERROR-PRONE
MEMORY DATA

N
//// @

READ CHECK | wemoRY

| ALWAYS CDRHECT__)
PROCESSOR i |
I 1

BPO,

INTERRUPT I‘——— AE

[T}
E2c?

M2 M1

BITS

)

CHECK
BITS

M0

|
| wien
READ

11l

FIGURE 2c. Normal READ Mode, Always Correct Method with E2C?

302

go high to enter data bits and check bits from memory into
DILO, DOL1 and CIL. The 6 check bits generated in CG from
DILO and DOL1 are then compared with CIL to generate
syndromes on the internal syndrome bus (SG). Any bit or
bits of SG that go high indicate an error to the error en-
coder (EE).

If data correction is required OBO and OB1 must be set low
(after memory data has been disabled) to enable data out-
put buffers DOBO and DOB1. The location of any data bit
error is determined by the data error decoder (DED), from
the syndrome bits. The bit in error is complemented in the
DOL for correction. The other 15 bits from DED pass the
DIL contents directly to the DOL, so that DOL now con-
“tains corrected data.

ERROR DETERMINATION

The three error flags, for a 16-bit example, are decoded
from the internally generated syndromes as shown in
Figure 3. First, if any error has occurred, the generated
check bits will be different from the memory check bits,
causing some of the syndrome bits to go high. By OR-ing
the syndrome bits, the output will be an indication of any
error.

If there is a single-data error, then (from the matrix in
Table IV) it can be seen that any data error causes either 3
or 5 syndrome bits to go high. 16 AND gates decode which
bit is in error and the bit in error is XOR-ed with the cor-
responding bit of the DIL to correct it, whereas the other 15
decoder outputs are low, causing the corresponding 15
bits in DIL to transfer to DOL directly. DOL now contains
corrected data. The 16 AND gate outputs are OR-ed to-
gether causing EO to go high, so that EO is the single-data-
error indication. If the error is a double-error, then either 2,

6, SG

2

ANY SYNDROME BIT

- | anv eron
> e

WL

DETECT 3 OR 5 SYNDROME BITS
.
A o SINGLE DATA ERROR
j— ————p
1 — DATA BIT E0
e ERROR
[}
16
DETECT EVEN SYNDROME PARITY

=

INTERNAL
SYNDROME
BUS

DT

FIGURE 3. Error Encoder

4 or 6 of the syndrome bits will be high. The syndromes for
two errors (including one or two check bit errors) are the
two. sets of syndromes for each individual error bit,
XOR-ed together. By performing a parity check on the syn-
drome bits, fiag E1 will indicate éven/odd parity. If there is

" still an error, but it is not one of these errors, then it is a

detectable triple-bit error. Some triple-bit errors are not
detectable as such and may be interpreted as single-bit er-
rors and falsely corrected as single-data errors. This is
true for all standard ECC circuits using a Modified
Hamming-code matrix. The DP8400 is capable, with its
Rotational Syndrome Word Generator matrix, of determin-
ing all triple-bit errors using twice as many DP8400s and
twice as many check bits.

ERROR FLAGS

Three error flags are provided to allow full error determina-
tion. Table | shows the error flag outputs for the different
error types in Normal READ mode. If there is an error, then
ANY ERROR will go high, at a time tpgy (Figure 10b) after
data and check bits are presented to the DP8400. The
other two error flags EO and E1 become valid tpgy and
tpgq later. '

The error flags differentiate between no error single check
bit error, single data-bit error, double-bit error. Because the
DP8400 can correct double errors, it is important to know
that two errors have occurred, and not just a multiple-error
indication. The error flags will remain valid as long as DLE
and CSLE are low, or if DLE is high, and data and check
bits remain valid.

BYTE PARITY SUPPORT

Some systems require extra integrity for transmission of
data between the different cards. To achieve this, individ-
ual byte parity bits are transmitted with the data bits in
both directions. The DP8400 offers byte parity support for
up to 40 data bits. If the processor generates byte parity
when transferring information to the memory, during the
WRITE cycle, then each byte parity bit can be connected to
the corresponding byte parity I/O pin on the DP8400, either
BPO or BP1. The DP8400 develops its own internal byte
parity bits from the two bytes of data from the processor,
and compares them with BPO and BP1 using an exclusive-
OR for both parities. The output of each exclusive-OR is
fed to the error flags EO and E1 as PEO and PE1, so that a
byte parity error forces its respective error flag low, as in
Table Il. These flags are only valid for the Normal WRITE
(mode 0) and XP at OV. The DP8400 checks and generates
even byte parity.

When transferring information from the memory to the
processor, the DP8400 receives the memory data, and out-
puts the corresponding byte parity bits on BP0 and BP1 to
the processor. The processor block can then check data
integrity with its own byte parity generator. If in fact
memory data was in error, the DP8400 derives BP0 and
BP1 from the memory input data, and not the corrected
data, so when corrected data is output from the DP8400,
the processor will detect a byte parity error.

If correct byte parity is required, transfer of corrected out-
put data in the DOL to DIL will resuit in correct byte parity
at BP0 and BP1. This can be part of a normal memory re-
WRITE cycle once an error has occurred.

303

TABLE I. ERROR FLAGS AFTER) TABLE Il. ERROR FLAGS AFTER

NORMAL READ (MODE 4) NORMAL WRITE (MODE 0)

AE E1 €0 Error Type AE | E1(PE) | EO(PEO) Error Type
0 0 0 No error 0 1 1 No parity error
1 1 0 Single check bit error 0 1 0 Parity error, byte 0
1 1 1 Single-data error 0 0 1 Parity error, byte 1
1 0 0 Double-bit error 0 0 0 Parity error, bytes 0, 1

All Others Invalid conditions
TABLE Ill. DP8400 MODES OF OPERATION
Mode | M2 [m1 | mo | OES Operation
®w) | s
0 0 0 0 X Normal WRITE
DIL— DOL, GG— COL— COB
1 0 0o | 1 X | Complement WRITE
DIL— DOL, CIL— COL— COB
2 0 1 0 X | Diagnostic WRITE, DLE inhibited
DQ8-DQ15 ® CG— SOL— SOB
DQ8-DQ15— CIL— COL— COB
3 0 1 1 X Complement data-only WRITE
DiL—DOL, __
(CGO, 1, 4,5,CG2, CG3)— COL—COB
4 1 0 0 X Normal READ
DIL® DE—DOL, CIL—COL
5 1 0 1 X Complement READ
DiL @ DE—DOL, CIL— COL
6A 1 1 0 0 READ generated syndromes, check bit
bus, error flags, SG0-SG6—DQO0O-DQ6,
CILO-CIL6—DQ8-DQ14, E1-DQ7,
EQ0—DQ15
6B 1 1 0 1 READ syndrome bus, check bit bus, error
flags, SILO-SIL6 — DQO-DQS,
CILO-CIL6 — DQ8-DQ14, E1 — DQ7,
EO0 — DQ15
7A 1 1 1 0 Generated syndromes replace with zero
0—SIL—SG, CIL—COL,
DIL @ DE— DOL
7B 1 1 1 1 Generated syndromes replace
SIL— SG, CIL— COL, DIL ® DE— DOL
TABLE IV. DATA-IN TO CHECK BIT GENERATE, OR DATA BIT ERROR TO SYNDROME-GENERATE
MATRIX (16-BIT CONFIGURATION)
1 1 1 1 1 1
01 2 3 4 5 6 7 8 9 0 1 2 3 5]000’15
GENERATE CHECK BITS
0 0o 0 1 1 1 1 1 1 o 1 1 1 0 1 1 1 0
1 o 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1
GENERATED } 2 | 1 0 0 1+ 1 0 0 0 1 0 1 0 1 1 1 1|2 gsggEATED
SYNDROMES 3 0 1 1 0o 0 o0 o 1 1 1 1 0 1 0o 1 1 3* BITS
4 1 1 0 0 0 1 o 1 1 0o 0 1 0 1 0 1 4
5 1 1 1 0o 1 1 1 o 1 o 0 o 1 1 1 015
4 8 9 7 5 1 3 9 B D 3 C F F 0

3 3 2 0 2 38 2 1 3 0 0 1 2 3 2 1 1

Vv

HEXADECIMAL EQUIVALENT

OF SYNDROME BITS
* C2, C3 generate odd parity

AR

MODES OF OPERATION

There are three mode-control pins, M2, M1 and MO, offer-
ing 8 major modes of operation, according to Table lli.

M2 is the READ/WRITE control. In normal operation, mode
0is Normal WRITE and mode 4 is Normal READ. By clamp-
ing MO and M1 low, and setting M2 low during WRITE and
high during READ, the DP8400 is very easy to use for nor-
mal operation. The other modes will be covered in later
sections.

16-Bit Configuration

The first two rows on top of the check bit generate matrix
(Table 1V) indicate the data position of DQO to DQ15. The
left side of the matrix, listed 0 to 5, corresponds to syn-
dromes S0 to S5. S0 is the least significant syndrome bit.
There are two rows of hexadecimal numbers below the

' matrix. They are the hex equivalent of the syndrome pat-
terns. For example, syndrome pattern in the first column
of the matrix is 001011. lts least significant four bits (0010)
equal hexadecimal 4, and the remaining two bits (11) equal
hexadecimal 3.

Check bit generation is done by selecting different com-
binations of data bits and generating parities from them.
Each row of the check bit generate matrix corresponds to
the generation of a check bit numbered on the right hand
side of the matrix, and the ones in that row indicate the
selection of data bits.

The following are the check bit generate equations for
16-bit wide data words:

CG0=DQ2 e DQ3 @ DQ4 & DQ5 ® DQ6 & DQ7 © DQY
DQ10 « DQ11 @ DQ13 © DQ14 o DQ15

CG1=DQ3 © DQ6 & DQ8 & DQY9 «DQ11 & DQI3 o
DQ14 & DQ15

*CG2=DQ0 @ DQ3 & DQ4 » DQ8 » DQ10 © DQ12 &

‘ DQ13 @ DQ14 @ DQ15 o 1

*CG3=DQ1 » DQ2 & DQ7 & DQ8 & DQY ® DQ10 & DQ12
e DQ14 @ DQ15 & 1

CG4=DQ0 » DQ1 @ DQ5 @ DQ7 & DQ8 # DQ11 & DQ13
o DQ15

CG5=DQ0 ® DQ1 @ DQ2 @ DQ4 @ DQ5 @ DQ6 © DQB @
DQ12 & DQ13 e DQ14

*CG2 and CG3 are odd parities.

The following error map (Table V) depicts the relationship
between all possible error conditions and their associated
syndrome patterns. For example, if a syndrome pattern is
S0-5=111101, data bit 14 is in error.

Figure 4 shows how to connect one DP8400 in a 16-bit con-
figuration, in order to detect and correct single or double-

bit errors. For a Normal WRITE, processor data is
presented to the DP8400, where it is fed through DILO and
DIL1to the check bit generator. This generates 6 parity bits
from different combinations of data bits, according to
Table IV. The numbers in the row below the table are the
hexadecimal equivalent of the column bits (with bits 6, 7
low). A ‘1’ in any row indicates that the data bit in that col-
umn is connected to the parity generator for that row. For
example, check bit 1 generates parity from data bits 3,6, 8,
9, 11,13, 14, and 15. '

Check bits 0, 1, 4, 5, and 6 generate even parity, and check

‘bits 2 and 3 generate odd parity. This is done to insure that

a total memory failure is detected. If all check bits were
even parity, then all zeros in the data word would generate
all check bits zero and a total memory failure would not be
detected when a memory READ was performed. Now all-
zero-data bits produce C2 and C3 high and a total memory
failure will be detected. When reading back from the same
location, the memory data bits (possibly in error) are fed to
the same check bit generator, where they are compared to
the memory check bits (also possibly in error) using 6
exclusive-OR gates. The outputs of the XORs are the syn-
drome bits, and these can be determined according to
Table IV for one data bit error. For example, an error in bit 2
will produce the syndrome word 101001 (for S5 to SO
respectively). The syndrome word is decoded by the error
encoder to the error flags, and the data-error decoder to
correct a single data bit error. Assuming the memory data
has been latched in the DIL, by making DLE go low,
memory data can be disabled. Then by setting OB0 and
OB1 low, corrected data will appear on the data bus. The
syndromes are available as outputs on pins S0-5 when
OES is low. It is also possible to feed in syndromes to SIL
when OES is high and CSLE goes high. This can be useful
when using the Error Management Unit shown in Figure 4.
C6 and S6 are not used for 16 bits. It is safe therefore to
make C6 appear low, through a 2.7 kQ resistor to ground.
The same applies for S6 if syndromes are input to the
DP8400. If OES is permanently low, S6 may be left open.

Any 16-bit memory correct system. using the DP8400
without syndrome inputs must keep the OES pin
grounded, then all the syndrome I/O pins may be left
open. The reason for this is that the DP8400 resets the
syndrome input latch at power up. If the OES pin is
grounded, the syndrome input latch will remain reset for
normal operations.

The parameter tyur (see Figure 10b), new mode recog-
nized time, is measured from M2 (changing from READ
to WRITE) to the valid check bits appearing on the check
bit bus, provided the OLE was held low.

TABLE V. SYNDROME DECODE TO BIT IN ERROR FOR 16-BIT DATA WORD

S0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Syndrome S1 0o 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Bits S2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
S3 o 0 0 0 O O o0 o0 1 1 1 1 1 1 1 1
S5 S4 ‘
0 0 NE|CO|C1|DJ|C2|D|{D}|] 3|C3|D|D|9|DJ|10|T|D
0 1 C4(D{D|M|{D|T|T|D[{D}|7|T|D|T |D{D]15
1 0 C5| D D 6 D 4 T D D 2 T D12 {D | D |14
1 1 D{5|T|DjO0O{D}|D|13}] 1 D{D|T|D|T|{8]|D
NE = no error Cn =check bit nin error T = three errors detected

Number = single data bit in error D =two bits in error

305

A

Necessary only when incorporating

I double complement correct. Otherwise

connect C6 to GND through R.

A
"Bus 4 D015
SYSTEM{ BP1 ¢
BYTE PARITY
(F RequiRep) { BP0 ¢— , %
enaBLE { OB
BYTE | 080
MEMORY
_] v ; < é’ v
BPO 080 DQ8-15 081
LATCH
conTROLS | —] DLE ~1
ADDRESS —
—>]| CsLE L=
SYNDROME N
BUS T———
4 DPa400 CHECK
§0-5 BIT BUS|
6 t CB0-5
ERROR s !
MANAGEMENT »| OES
UNIT ' 3
(IF REQUIRED) SR AE M2 m1
<+
€ -| R=2.7 k@
* Necessary when inputting' y —
syndromes, otherwise leave open. J L 74L832 J
tRefer to discussion in “Other Modes of 4 -
Operation” under Clearing SIL. - o - py 4
**20 ns max tpd1, 0 ELAGS c[%%,_

FIGURE 4. 16-Bit Configuration Using One DP8400

A,

MEMORY

LATCH
CONTROLS

BP0 080
=1 DLE
CLSE

SYNDROME t
BUS $0-6

—>| 0ES

EXPANDED
LOWER WORD (L)
DP8400

E0 M2

XP

o L

C0-6

AE 1
Ncl NC l

=
|
Sl

XP Q-J-
EXPANDED)

HIGHER WORD (H)
DPB400

? T 4 sreus

ERROR
FLAGS

y rlw.

ERROR MANAGEMENT UNIT
(IF REQUIRED)

MODE CONTROLS

FIGURE 5. 32-Bit Error Detection and Correction

TRefer to discussion in “Other Modes of
Operation” under Clearing SIL.
** Connection sequence must be done
according to Table VIII.

2ne

g

The parameter tycr (see Figure 10b), mode change rec-
ognized time, is measured from M2 (changing from
WRITE to READ) when both E1 and E2 become invalid.
This is required- when a memory correcting system
employs the DP8400 with byte parity checking. The E1
and E2 pins flag the byte parity error in a memory WRITE
cycle. When the DP8400 switches to a subsequent mem-
ory READ cycle, it requires tycg for E1 and E2 to be
switched to flag any READ error(s).

EXPANDED OPERATION
32-Bit Configuration

Figure 5 shows how to connect two DP8400s in cascade to
detect single and double-bit errors, and to correct single-
data errors. The same circuit will also correct double-bit
errors once a double-error has been detected, provided at
least one error is a hard error. The lower chip Lis in effecta
slave to the higher chip H, which controls the memory
check bits and error reporting. The check bit bus of Lis re-
ordered and connected to the syndrome bus of H, as
.shown in Figure 5.

In a Normal WRITE mode, referring to Figures 13a, 13b, and
13¢, the 6 check bits generated from the lower 16 bits (CGL)
are transferred _ri_a the COLtothe COB of L, provided OLE is
high and M2 (R/W) of L is low. These partial check bits from
Lthen appearat SIL of H, so that with CSLE high, they com-
bine with the 6 check bits generated in H with'an overlap of
one bit, to produce 7 check bits. With M2 (R/W) of H low,
these 7 check bits are output from COB to memory.

A READ cycle may consist of DETECT ONLY or DETECT
THEN CORRECT, depending on the system approach. In
both approaches, L writes its partial check bits, CGL, to H
as in WRITE mode. H develops the syndrome bits from
CGL, CGH and the 7 check bits read from memory in CIL. H
thenoutputs from its errorencoder (EE) if there isanerror. If
corrected data is required, H already knows if it has a
single-data error from its syndrome bits, but if not, it must
transfer partial syndromes back to L. These partial syn-
dromes PSH, (CGH XOR-ed with CIL), are stored in SOL of
H. L must therefore change modes from WRITE to READ,
while H outputs the partial syndromes from its SOB by set-
ting OES low. The partial syndromes are fed into CIL of L
and XOR-ed with CGL to produce syndrome bits at SGL.
The data error decoder, DED, then corrects the error in L.
The DED of H will already have corrected an error in the
higher 16 bits. Only one errorin 32 bitscanbecorrectedasa
single-dataerror, the chipwithnoerrordoes notchangethe
contents of its DIL when it is enabled in DOL. Table Vi
shows the 3error flags of H, which become valid during the
DETECT cycle. E0 of L becomes valid during the CORRECT
cycle, so that the 4 flags provide complete error reporting.

TABLE VI. ERROR FLAGS AFTER NORMAL READ

(32-BIT CONFIGURATION)
AE (H) | E1(H) | EO(H) | EO(L)" Error Type
0 0 0 0 No error
1 1 0 0 Single-check bit error
1 1 1 0 Single-data bit error (H)
1 1 0 1 Single-data bit error (L)
1 0 0 0 Double-bit error
: All Others Invalid conditions

* EO(L) is valid after transfer of partial syndromes from higher to lower

Equations for 32-bit expansion:

tpces2 = toce1e + tscais

tbevaz = tbce1e + tsevis
tpcpaz (High Chip) = tpcaie + tscpie
tpcpaz (Low Chip) = tpca1e + ter™ + tecpis
*tgr: Bus reversing time (25 ns)

32-Bit Matrix

Table VIl shows a 32-bit matrix using two DP8400s in cas-
cade as in Figure 5. This is one of 12 matrices that work for
32 bits. The matrix for bits 0 to 15 (lower chip) is the matrix
of Table IV for 16-bit configuration, with row 6 always ‘0’
The matrix for bits 16 to 31 (higher chip) uses the same row
combinations but interchanged, for example, the 3rd row
(row 2) of L matrix is the same as the 6th row (row 5) of the
H matrix. This means row 5 of H is.in fact check bit 2 of H.
Thus, the 6th row (row 5) combines generated check bit 5
(CGS5) of L and generated check bit 2 of H. Check bit 5 of L
therefore connects to the syndrome bit 2 (CG2) of H, and
the composite generated check bit is written to check bit 2
of memory. Thus C2 performs a parity check on bits 0, 1, 2,
4,5,6,8,12, 13,14, of L, and bits 16, 19, 20, 24, 26, 28, 29, 30,
31, of H. CG2 and CG3 generate odd parity, so that CG5 of
L generates even parity which combines with CG2 of H
generating odd parity. CG3 of L and CG3 of H both
generate odd parity causing C3 to memory to represent
even parity. Only 6 check bits are generated in each chip,
the 7th (CG6) is always zero with XP grounded. Thus CG6
of L combines with CGO of H so that CO to memory is the
parity of bits 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31.
Similarly. C6 to memory is only CG2 of L. The 7 composite
generated check bits of H can now be written to memory.

When reading data and check bits from memory, CG6-
CGO of L are combined with CG6-CGO of H in the same
combination as WRITE. Memory check bits are fed into
C6-CO0 of H and compared with the 7 combined parity bits

TABLE VII. DATA BIT ERROR TO SYNDROME-GENERATE MATRIX (32-BIT CONFIGURATION)

f= L | ‘ H I
111111 1111222222222233 }000-31
0123456789012345 6789012345678290:H1 ‘
ojfoo0o11111101110111 000100101101 0111|1
110001001011 010111 1110111010001 110]5
*2/11001100010101111 000000000000000O00]|6 GENERATED
SYNDROMES| 3011 0000111101011 01100060111 101011(3 CHECK
4/1100010110010101 1100010110010101}|4 BITS
5/1t110111010001110 1001100010101 111|2
6/0000000000000000 0011111101 110111]0
48975139EBD3C7FF 2AA12238B981A3BY9 0 HEX
3320232130012321 31466545346527¢67 1
* CG2, CG3 generate odd parity

307

TABLE VIil. CHECK BIT PORT TO SYNDROME PORT
INTERCONNECTIONS FOR EXPANSION TO 32 BITS

L L|H H
) c|Ss C
SO {0 0|1 1| Co
S1 |1 115 5| Ct
Syndrome l/O | S2 | 2 216 6 | C2 | Check Bit I/O
to S3 |3 313 3| C3 to
Management | S4 | 4 4 | 4 4| C4 ‘Memory
S5 |5 5|2 2| Cs
S6 | 6 6|0 0| C6
TABLE IX. SYNDROME DECODE TO BIT IN ERROR FOR 32-BIT DATA WORD
S0 0o 1 0 1 0 1 0 1 0 1 0 1.0 1 0 1
Syndrome S1 0 0 1 1 0 0 1 1 0 0. 1 1 0 0 1 1
Bits S2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
S3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
S6 S5 S4
0o 0 oO NE|CO|C1|D|(C2|D |D|3|C3|D|D]J]9|DIJ|10|[T|D
0 0 1 C4| D D (11| D T T D|(D 7 |17 | D | T D |D]| 15
o 1 0 ¢cs5|D|D|6|D |4 |T|D}JD}|2|28|Dj12|D|D]| 14
0 1 1 D 5|16 | D 0 D D |13} 1 D D|24a| D | T 8 D
1 0 0 C6| D D[22 D T T D D |25 |18 | D T D|D| T
10 1 D |27 |21 DI|T D D T|23| D D T D|T T D
1 1 0 D|19]20| D | T D D T{26|D D|3|D|T T D
1 1 1 T|{b|D}l29|{D|T|{T|D/D|31|T|D|T|D|D}|T
NE = no error Cn = check bit n in error T =three errors detected l

Number = single data bit in error D =two bits in error

in H, to produce 7 syndrome bits S6-S0. H can now deter-
mine if there is any error, and if it has a single-data error, it
can locate it and correct it without transferring partial syn-
dromes to L. As an example of a DETECT cycle, CG5 of L
combines with CG2 of H and is compared in H with mem-
ory check bit 2.

If L is now set to mode 4, Normal READ, and OES of His
set low, the partial syndromes of H(CG6-CGO of H XOR-ed
with C6-CO of H) are transferred and shifted to L. L
receives these partial syndromes (S6-S0 of H) as check bit
inputs C2, C1, C4, C3, C5, CO, C6 respectively, and com-
pares them with CG6-CGO respectively, to produce syn-
drome bits S6-S0. L now decodes these syndromes to cor-
rect any single-data error in data bits 0 to 15. Forexample,
partial syndrome bit 2 of H combines with generated
check bit 5 of L to produce syndrome bit 5in L. An error in
data bit 10 will create syndrome bits in L as 0001101 from
S$6-80, and these will appear on S6-S0 of L with OES low.
An error in H will appear as per the H matrix. For example,
an error in bit 16 will cause S6-S0 of L to be 0110010.

If OES of L is set low, this syndrome combination appears
on pins S6 to S0. For errors in bits 0 to 15, the syndrome
outputs will be according to Table VII. For errors in bits 16
to 31, the syndrome outputs from L will still be according
to Table VIl due to the shifting of partial syndrome bits
from'H to L. The syndrome outputs from L are unique for
each of the possible 32 bits in error.

If there is a check bit error, only one syndrome bit will be
high. For example, if C5 is in error, then S1 of L will be high.
For double-errors, an even number of syndrome bits will be
high, derived from XOR-ing the two single-bit error syn-
dromes. As mentioned previously, this is only one of the 12
approaches to connecting two chips for 32 bits, 6 of which
are mirror images.

Table VIil depicts the exact connection for 32-bit expan-
sion. LS equals syndrome bits of L. LC equals check bits of
L. HS equals syndrome bits of H. HC equals check bits of
H. Syndrome bits S0 to S6 of L are connected to system
syndrome bits SO to S6. LC and HS columns are lined
together showing the check bit port of L connected to the
syndrome port of H in the exact sequence as shown in
Table VIil. For example, check bit CO of L is connected to
the syndrome bit S1 of H, and check bit C6 of L is con-
nected to the syndrome bit SO of H. Check bits of H are
connected to the system check bits in the order shown.
Check bit C1 of H is connected to the system check bit CO.

Expansion for Data Words Requiring 8 Check Bits

For 16-bit and 32-bit configurations, XP is set permanently
low. In 48-bit or 64-bit configurations, XP is either set per-
manently to Vg or left open, according to Table X, to pro-
vide 8 check bits and syndrome bits.

TABLE X. XP: EXPANSION STATUS

XP Status Data Bus

ov BP0 and BP1 are byte parity /O <40 Bits
CG6=0

Open No byte parity 1/O, >40 Bits
CG6 and CG7 = word parity

Vee No byte parity /0, =40 Bits
CG6 and CG7=0

48-Bit Expansion

Three DP8400s are required for 48 bits, with the higher
chip using all 8 of its check bits to the memory. No byte
parity is available for 48 or 64 bits. XP of all three chips
must be at Vgc. The three chips are connected in cascade

2N

TABIE XI. CHECK BIT PORT TO SYNDROME PORT
INTERCONNECTIONS FOR EXPANSION TO 48 BITS

LL LL |LH LH [HL HL
S C|S cC|Ss C

S0 | 0 0|1 116 6| CO

S1 1 1] 5 5|1 11 C1

S2 |2 216 6 | 4 4| C2 .
Syndr?;ne 110 s3] 3 3|3 3|7 71 ca CheckmBlt 1/0

' S4 | 4 4 | 4 4 | 2 2| Ca

Management s5 | 5 5| 2 213 3| cs Memory

S6 | 6 6|0 01|56 5| Cé6

S7 |7 717 710 0| C7

For SOofLLisc ted lu‘ Y syndr‘o-me SO CO of LL is connected to Si of

LH. C1 of LH is connected to S6 of HL. C6 of HL is connected to system check bit CO.

~ TABLE XIl. SYNDROME DECODE TO BITIN ERROR FOR 48-BIT DA;I'A WORD

S0 0 1 o] 1 0 1 0 1 0 1 0 1 0 1 0 1

Syndrome S1 0o 0 1 1 0o 0 1 1 o 0 1 1 0 0 1 1

Bits S2 0 0 ¢} 0 1 1 1 1 0 0 0 0 1 1 1 1

S3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

S7 S6 S5 S4

00 00O NE|CO|C1| D |C2|D D 3|C3|(D D 9 D [10]|T D
000 1t C4a| D D {11 D T T D D 7 17| D T D D |15
0010 Cs5|D | D 6 D 4 T|D D 2 128| D |12 |D D | 14
00 1 1 D 5 16| D 0 D D (13| 1 D D|24|D | T 8 D
0100 c6| D|D|2|D|T| T|D|D|{25|18|D|T|[D|D|T
010 1 D{27}21yD |3)|D D T|23|D D|T|D T T D
0110 D|19|20| D (33 |D|D|T|{26|D|D|30!/D{T|T|[D
01 1 1 44 | D [D |29 | D | T|[40]| D D |31 T D T D D T
1000 cr|\D|D|T|D|T|43|D|D|T|T|D|T|[D|D|T
10 0 1 D T|3]| D T D D T T D D|T D T T D
1010 D|T |41| D3 |D D T T D D T D T T D
1.0 1 1 42 { D | D T D T|47 | D D T T D T D D T

' 1100 DT [38(|{D|37|D D T T D D T D T T D
1101 B|(D|ID|{T|D|T|4|D|D|{T|T|D|T|D|D|T
11 1.0 34| D|DJ|T DI|T T D D T T D T D D|T
1111 pftj4|D{T|D|[D|T|{T|{D|D|{T|D|T|T]|D

NE = no error Cn = check bit n in error T =three errors detected

~ Number = single data bit in error D =two bits in error

as in Figure 6, but with the HH chip removed. The error
flags are as Table XV, but with AE (HH) and E1 (HH) be-
coming AE (HL) and E1 (HL), and EO (HH) removed.

48-Bit Matrix

The matrix for 48 bits is that for 64 bits shown (in Table XV1)
but only using bits 0 to 47. This is one of many matrices for
48-bit expansion using the basic 16-bit matrix. The matrix
shown uses 2 zeroes for CG6 and CG7, for all three chips,
with XP set to Vg¢. Other matrices may use CG6 and CG7
as word parity with XP open.

64-Bit Expansion

There are two basic methods of expansion to 64 bits, both
requiring 8 check bits to memory, and four DP8400s. One
is the cascade method of Figure 6, requiring no extra
ICs. With this method partial check bits have to be
transferred through three chips in the WRITE or DETECT
mode, and partial syndrome bits transferred back through
three chips in CORRECT mode. This method is similar to
Figure 5, 32-bit approach. The connections between the

~ check bit bus and syndrome bus for each of the chip pairs
are shown in Table XIlI.

The error flags of HH are valid during the DETECT cycle as
in Table XV, and the other error flags are valid during the
CORRECT cycle.

A faster method of 64-bit expansion shown in Figure 7 re-
quires a few extra ICs, but can WRITE in 57 ns, DETECT in
57ns or DETECT THEN CORRECT in 116 ns. In the WRITE
mode, all four sets of check bits are combined externally
in the 8 745280 parity generators. These generate 8 com-
posite check bits from the system data, which are then
enabled to m